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Until recently, the depth and breadth of datasets available 
to financial researchers was, to put it mildly, extremely 
shallow. Some exchanges did not record volume infor-
mation until the early 2000s. The wide adoption of 

time stamping with millisecond resolution took even longer. Outside 
exchange trade records and infrequent government statistics, alterna-
tive data sources were rare. The implication is that financial researchers 
conducted the large majority of their analyses on daily price series. This 
state of data paucity set a hard limit on the sophistication of the tech-
niques that financial researchers could use. In that financial paleo-data 
age, the linear regression method was a reasonable choice, even though 
most of us suspected that the linearity assumption may not provide a 
realistic representation of a system as complex and dynamic as modern 
financial markets.

Today, we live in a different era, the age of financial Big Data. 
Researchers have at their disposal datasets that only a few years ago were 
unimaginable: Satellite images, credit card transactions, sensor data, 
web scrapes, sentiment from news and tweets, recordings from speeches, 
geolocation of cargos crossing the oceans, web searches, supply-chain 
statistics, and the like. The size, quality, and variety of these sources of 
information, combined with the power of modern computers, allow 
us to apply more sophisticated mathematical techniques.

However, the adoption of these new techniques is not straight-
forward. It requires researchers to abandon the comfort of closed-form 
solutions and embrace the f lexibility of numerical and nonparametric 
methods. The goal of this journal is to facilitate this transition among 
academics and practitioners. We, the editors, felt that the established 
journals were not ready to serve this goal for multiple reasons. Our 
readers will f ind in this journal high-quality academic articles that 
are applicable to the practical problems faced by asset managers. These 
articles present fresh ideas that challenge the traditional way of thinking 
about finance, the economy, and investing. Through case studies, we 
offer a front-row view of the cutting-edge of empirical research in 
financial economics.

In the first article, two of the co-editors, Joseph Simonian and 
Frank J. Fabozzi, position financial data science within the broader 
history of econometrics. They explain why its ascendance marks a re-
orientation of the field toward a more empirical and pragmatic stance, 
and that due to the unique nature of financial information, financial 
data science should be considered a field in its own right and not just 
an application of data science methods to finance.

Ashby Monk, Marcel Prins, and Dane Rook explain how in 
finance as alternative data become mainstream, institutional investors 
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may benefit from rethinking how they engage with 
alternative datasets. By rethinking their approaches 
to alternative data as the authors suggest, institutional 
investors can select alternative datasets that better align 
with their organizational resources and contexts. 

As a remedy to the shortcomings of traditional 
factor models, Joseph Simonian, Chenwei Wu, Daniel 
Itano, and Vyshaal Narayanam describe a machine 
learning approach to factor modeling based on the 
random forests algorithm. As a case study, the authors 
apply random forests to the well-known Fama-French-
Carhart factors and analyze the major equity sectors, 
showing that compared to a traditional regression-based 
factor analysis, the random forests algorithm provides 
significantly higher explanatory power, as well as the 
ability to account for factors’ nonlinear behavior and 
interaction effects. In addition to providing evidence 
that the random forests framework can enhance ex 
post risk analysis, the authors also demonstrate that 
combining the random forest algorithm with another 
machine learning framework, association rule learning, 
can also help produce useful ex ante trading signals. 

It is well-known that the classic mean-variance 
portfolio framework generates weights for the optimized 
portfolios that are directly proportional to the inverse of 
the asset correlation matrix. However, most of contem-
porary portfolio optimization research focuses on opti-
mizing the correlation matrix itself, and not its inverse. 
Irene Aldridge demonstrates that this is a mistake, spe-
cifically from a Big Data perspective. She demonstrates 
that the inverse of the correlation matrix is much more 
unstable and sensitive to random perturbations than the 
correlation matrix itself. The results she reports are novel 
in the Data Science space, extending far beyond financial 
data, and are applicable to any data correlation matrices 
and their inverses.

Although machine learning offers a set of powerful 
tools for asset managers, one crucial limitation involves 
data availability. Because machine learning applica-
tions typically require far more data than are available, 
especially for longer-horizon investing, it is important 
for asset managers to select the right application before 
applying the tools. Rob Arnott, Campbell Harvey, and 
Harry Markowitz provide a research checklist that can 
be used by asset managers and quantitative analysts to 

select the appropriate machine learning applications as 
well as, more generally, providing a framework for best 
practices in quantitative investment research.

Applying a machine learning technique that is 
new to finance called independent Bayesian classif ier 
combination, David Bew, Campbell Harvey, Anthony 
Ledford, Sam Radnor, and Andrew Sinclair test whether 
valuable information can be extracted from analysts’ rec-
ommendations of stock performance. The technique 
provides a way to weight analysts forecasts based on their 
performance in rating a particular stock as well as their 
performance rating other stocks. Their results show that 
a combination of their machine learning recommen-
dations along with the analysts’ ratings leads to excess 
returns in their sample suggesting this new technique 
could be useful for active investors.

Thousands of journal articles have claimed to have 
discovered a wide range of risk premia. Most of these 
discoveries are false, as a result of selection bias under 
multiple testing. Using a combination of extreme value 
theory and unsupervised learning, Marcos López de Prado 
proposes a practical method to discount the inf lationary 
effect that selection bias has on a particular discovery. 

Ananth Madhavan and Aleksander Sobczyk 
employ data science to create an investible, dynamic 
portfolio to mimic the factor characteristics of private 
equity. Using textual analysis, they first identify firms 
taken private and then use a multifactor model to mea-
sure the cross-sectional factor exposures of firms imme-
diately prior to the announcement that they were being 
acquired by a private equity firm. Then the authors use 
holdings-based optimization to build a liquid, invest-
ible, long-only portfolio that dynamically mimics the 
factor characteristics of the portfolio of stocks that were 
taken private.

Julia Klevak, Joshua Livnat, and Kate Suslava illus-
trate how the utilization of text mining and scoring 
of an unstructured data can add information to inves-
tors beyond structured data. They demonstrate how the 
application to the analysis of earnings conference call 
transcripts produces a signal that is incrementally addi-
tive to earnings surprises and the short-term returns 
around the earnings announcement. 

In their article, Sidney C. Porter and Sheridan 
Porter contribute two new fundamental properties of 
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indexes—similarity and stability—to indexing theory, 
made practical by advances in data science technology.   
In the application of the theory,  they introduce a frame-
work for a repeatable decomposition of private equity 
returns that disambiguates the quantification of manager 
skill. 

A graph-theoretic framework for monitoring 
system-wide risk by extending methods widely deployed 
in social networks is provided by Sanjiv R. Das, 
Seoyoung Kim, and Daniel N. Ostrov. They introduce 
desired properties for any systemic risk measure and 
provide a novel extension of the well-known Merton 
credit risk model to a generalized stochastic network-
based framework across large financial institutions.

The problem of optimally hedging an options book 
in a practical setting, where trading decisions are dis-
crete and trading costs can be nonlinear and difficult to 
model. Using reinforcement learning, a well-established 
machine learning technique, Petter Kolm and Gordon 
Ritter propose a f lexible, accurate and very promising 
model for solving this problem.

�Frank J. Fabozzi,  
Marcos López de Prado,  
Joseph Simonian
Editors
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Triumph of the Empiricists:  
The Birth of Financial Data Science	 10
Joseph Simonian and Frank J. Fabozzi

The authors situate f inancial data science within the 
broader history of econometrics and argue that its ascen-
dance marks a reorientation of the field toward a more 
empirical and pragmatic stance. They also argue that 
owing to the unique nature of financial information, 
f inancial data science should be considered a f ield in 
its own right and not just an application of data science 
methods to finance.

Rethinking Alternative Data  
in Institutional Investment	 14
Ashby Monk, Marcel Prins, and Dane Rook

As alternative data steadily become mainstream in 
f inance, institutional investors may benef it from 
rethinking how they engage with alternative datasets. 
Specifically, they could gain from rethinking (1) alterna-
tive data’s value proposition, (2) how they characterize 
alternative data, and (3) how they access alternative 
data. Rethinking their approaches to alternative data 
in these ways can help investors select alternative data-
sets that better align with their organizational resources 
and contexts. Such rethinking offers the greatest advan-
tages when it focuses on building defensive and defensible 
strategies around alternative data, rather than priori-
tizing quicker exploitation of short-lived opportunities. 
Rethinking alternative data will require institutional 
investors to investigate new partnering possibilities, 
which should help them weather (and even thrive 
during) the escalating arms race among financial-market 
participants for alternative data. Building capacity for 
alternative data in these ways could also help investors 
accelerate innovation.

A Machine Learning Approach 
to Risk Factors: A Case  
Study Using the Fama–French– 
Carhart Model	 32
Joseph Simonian, Chenwei Wu,  
Daniel Itano, and Vyshaal Narayanam

Factor models are by now ubiquitous in f inance and 
form an integral part of investment practice. The most 
common models in the investment industry are linear, 
a development that is no doubt the result of their famil-
iarity and relative simplicity. Linear models, however, 
often fail to capture important information regarding 
asset behavior. To address the latter shortcoming, the 
authors show how to use random forests, a machine 
learning algorithm, to produce factor frameworks that 
improve upon more traditional models in terms of their 
ability to account for nonlinearities and interaction 
effects among variables, as well as their higher explana-
tory power. The authors also demonstrate, by means of 
a simple example, how combining the random forest 
algorithm with another machine learning framework 
known as association rule learning can produce viable 
trading strategies. Machine learning methods thus show 
themselves to be effective tools for both ex post risk 
decomposition and ex ante investment decision-making.

Big Data in Portfolio 
Allocation: A New Approach to 
Successful Portfolio Optimization	 45
Irene Aldridge

In the classic mean–variance portfolio theory as proposed 
by Harry Markowitz, the weights of the optimized port-
folios are directly proportional to the inverse of the asset 
correlation matrix. However, most contemporary port-
folio optimization research focuses on optimizing the cor-
relation matrix itself, and not its inverse. In this article, 
the author demonstrates that this is a mistake. Specifically, 
from the Big Data perspective, she proves that the inverse 
of the correlation matrix is much more unstable and sen-
sitive to random perturbations than is the correlation 
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matrix itself. As such, optimization of the inverse of the 
correlation matrix adds more value to optimal portfolio 
selection than does optimization of the correlation matrix. 
The author further shows the empirical results of portfolio 
reallocation under different common portfolio compo-
sition scenarios. The technique outperforms traditional 
portfolio allocation techniques out of sample, delivering 
nearly 400% improvement over the equally weighted 
allocation over a 20-year investment period on the S&P 
500 portfolio with monthly reallocation. In general, the 
author demonstrates that the correlation inverse optimiza-
tion proposed in this article significantly outperforms the 
other core portfolio allocation strategies, such as equally 
weighted portfolios, vanilla mean–variance optimization, 
and techniques based on the spectral decomposition of the 
correlation matrix. The results presented in this article 
are novel in the data science space, extend far beyond 
financial data, and are applicable to any data correla-
tion matrixes and their inverses, whether in advertising, 
healthcare, or genomics.

A Backtesting Protocol in the 
Era of Machine Learning	 64
Rob Arnott, Campbell R. Harvey,  
and Harry Markowitz

Machine learning offers a set of powerful tools that 
holds considerable promise for investment manage-
ment. As with most quantitative applications in finance, 
the danger of misapplying these techniques can lead to 
disappointment. One crucial limitation involves data 
availability. Many of machine learning’s early successes 
originated in the physical and biological sciences, in 
which truly vast amounts of data are available. Machine 
learning applications often require far more data than 
are available in finance, which is of particular concern 
in longer-horizon investing. Hence, choosing the right 
applications before applying the tools is important. 
In addition, capital markets ref lect the actions of people, 
who may be inf luenced by the actions of others and by 
the findings of past research. In many ways, the chal-
lenges that affect machine learning are merely a continu-
ation of the long-standing issues researchers have always 

faced in quantitative finance. Although investors need to 
be cautious—indeed, more cautious than in past appli-
cations of quantitative methods—these new tools offer 
many potential applications in finance. In this article, the 
authors develop a research protocol that pertains both 
to the application of machine learning techniques and 
to quantitative finance in general.

Modeling Analysts’ 
Recommendations via  
Bayesian Machine Learning	 75
David Bew, Campbell R. Harvey,  
Anthony Ledford, Sam Radnor,  
and Andrew Sinclair

Individual analysts typically publish recommendations 
several times per year on the handful of stocks they follow 
within their specialized fields. How should investors 
interpret this information? How can they factor in the 
past performance of individual analysts when assessing 
whether to invest long or short in a stock? This is a 
complicated problem to model quantitatively: There are 
thousands of individual analysts, each of whom follows 
only a small subset of the thousands of stocks available for 
investment. Overcoming this inherent sparsity naturally 
raises the question of how to learn an analyst’s forecasting 
ability by integrating track-record information from all 
the stocks the analyst follows; in other words, inferring 
an analyst’s ability on Stock X from track records on both 
Stock X and stocks other than X. The authors address 
this topic using a state-of-the-art computationally rapid 
Bayesian machine learning technique called independent 
Bayesian classifier combination (IBCC), which has been 
deployed in the physical and biological sciences. The 
authors argue that there are many similarities between 
the analyst forecasting problem and a very successful 
application of IBCC in astronomy, a study in which 
it dominates heuristic alternatives including simple or 
weighted averages and majority voting. The IBCC tech-
nique is ideally suited to this particularly sparse problem, 
enabling computationally efficient inference, dynamic 
tracking of analyst performance through time, and real-
time online forecasting. The results suggest the IBCC 
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technique holds promise in extracting information that 
can be deployed in active discretionary and quantitative 
investment management.

A Data Science Solution  
to the Multiple-Testing Crisis  
in Financial Research	 99
Marcos López de Prado

Most discoveries in empirical finance are false, as a conse-
quence of selection bias under multiple testing. Although 
many researchers are aware of this problem, the solu-
tions proposed in the literature tend to be complex and 
hard to implement. In this article, the author reduces 
the problem of selection bias in the context of invest-
ment strategy development to two sub-problems: deter-
mining the number of essentially independent trials and 
determining the variance across those trials. The author 
explains what data researchers need to report to allow 
others to evaluate the effect that multiple testing has 
had on reported performance. He applies his method 
to a real case of strategy development and estimates the 
probability that a discovered strategy is false.

Fine-Tuning Private 
Equity Replication Using 
Textual Analysis	 111
Ananth Madhavan and Aleksander Sobczyk

In this article, the authors use textual analysis to create 
an investable, dynamic portfolio to mimic the factor 
characteristics of private equity. First, using textual anal-
ysis, they identify firms taken private by those firms in 
the 10-year period ending June 2018. Second, they use 
a multifactor model to measure the cross-sectional factor 
exposures of firms immediately prior to the announce-
ment that they were being acquired by a private equity 
f irm. Finally, they use holdings-based optimization 
to build a liquid, investible, long-only portfolio that 
dynamically mimics the factor characteristics of the 
portfolio of stocks that were taken private. Practitioner 
applications include interim beta solutions for investors 

(including venture capital and private equity f irms) 
seeking to deploy excess cash, mitigate underfunding 
risk, and manage capital calls.

A Practical Approach  
to Advanced Text Mining  
in Finance	 122
Julia Klevak, Joshua Livnat,  
and Kate Suslava

The purpose of the study is to illustrate one application 
of unstructured data analysis in finance: the scoring of 
a text document based on its tone (sentiment) and spe-
cif ic events that are important for the end user. The 
methodology begins with the well-known practice of 
counting positive and negative words and progresses 
to illustrate the construction of relevant events. The 
authors show how the application of this methodology 
to the analysis of earnings conference call transcripts 
produces a signal that is incrementally additive to earn-
ings surprises and the short-term returns around the 
earnings announcement. An interesting feature of the 
tone change extracted from the conference calls is that 
it has a relatively low correlation with both earnings 
surprises and the short-term return around the earnings 
announcement. This indicates how use of text mining 
and scoring of unstructured data can add information 
to investors beyond structured data. 

Introducing Objective 
Benchmark-Based Attribution  
in Private Equity	 130
Sidney C. Porter and Sheridan Porter

Private-equity asset owners seeking to reduce down-
side risk and increase upside probability would logi-
cally benefit from indexing prospective asset managers 
by their skill. However, theoretical deficiencies and a 
lack of rigorous market calibration prevent the met-
rics and techniques commonly used in private equity 
from isolating manager skill. In this article, the authors 
introduce a new conceptual framework for a repeatable 
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decomposition of private equity returns that disambigu-
ates the quantification of manager skill. Modern proxy 
benchmarks are a key component of the framework for 
their definition of systemic returns specific to the target 
asset. They satisfy the fundamental properties of an index 
(systematic, transparent, and investable) suggested by 
Andrew Lo and the CFA Institute’s SAMURAI criteria 
for a valid benchmark. However, the authors propose 
that the integrity of the decomposition requires that 
the benchmark’s similarity (to target) and its stability 
be systematically derived, measured quantities. The 
authors discuss these two new properties in conjunc-
tion with the technology that enables the construction 
of modern proxy benchmarks and their active manage-
ment over time. With systemic returns thus defined, 
excess returns against the modern proxy benchmark 
are attributed to dynamic elements under the control 
of the manager, which the authors define as manager 
alpha. Systemic returns in excess of a broad/policy 
benchmark are deemed static elements. Static elements 
measure the portion of returns attributable to size and 
sector selection, in which a manager tends to specialize 
and which are known to the limited partner investor 
prior to investment. Although both static and dynamic 
elements contribute active returns to the investment, 
it is the dynamic elements—alpha—that should merit 
attention (and high fees) from limited partners. 

Dynamic Systemic Risk:  
Networks in Data Science	 141
Sanjiv R. Das, Seoyoung Kim,  
and Daniel N. Ostrov

In this article, the authors propose a theory-driven frame-
work for monitoring system-wide risk by extending data 
science methods widely deployed in social networks. 

Their approach extends the one-firm Merton credit 
risk model to a generalized stochastic network-based 
framework across all financial institutions, comprising 
a novel approach to measuring systemic risk over time. 
The authors identify four desired properties for any sys-
temic risk measure. They also develop measures for the 
risks created by each individual institution and a measure 
for risk created by each pairwise connection between 
institutions. Four specific implementation models are 
then explored, and brief empirical examples illustrate the 
ease of implementation of these four models and show 
general consistency among their results.

Dynamic Replication  
and Hedging: A Reinforcement  
Learning Approach	 159
Peter N. Kolm and Gordon Ritter

The authors of this article address the problem of how 
to optimally hedge an options book in a practical set-
ting, where trading decisions are discrete and trading 
costs can be nonlinear and difficult to model. Based on 
reinforcement learning (RL), a well-established machine 
learning technique, the authors propose a model that 
is f lexible, accurate and very promising for real-world 
applications. A key strength of the RL approach is that it 
does not make any assumptions about the form of trading 
cost. RL learns the minimum variance hedge subject to 
whatever transaction cost function one provides. All that 
it needs is a good simulator, in which transaction costs 
and options prices are simulated accurately.
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Triumph of the Empiricists: 
The Birth of Financial Data 
Science
JOSEPH SIMONIAN AND FRANK J. FABOZZI

The methodological foundations of 
contemporary econometrics were 
laid in the aftermath of a debate 
that was epitomized by Tjalling 

Koopmans’ (1947) critical review of Arthur 
Burns and Wesley Mitchell’s (1946) Mea-
suring Business Cycles. In the review, “Mea-
surement Without Theory,” Koopmans, 
who was a member of the theory-focused 
Cowles Commission, argued that eco-
nomic data cannot be properly interpreted 
without the benefit of well-hewn economic 
assumptions. The target of the review was 
not only Burns and Mitchell’s book, but also 
the empiricist econometric methodology 
employed by the National Bureau of Eco-
nomic Research, which Koopmans felt was 
overly preoccupied with devising techniques 
for measuring economic data at the expense 
of the development of the theory necessary 
to draw robust economic conclusions. In 
the review of Burns and Mitchell’s book, 
Koopmans defines empiricism as a scientific 
methodology in which decisions about “what 
economic phenomena to observe, and what 
measures to define and compute, are made 
with a minimum of assistance from theo-
retical conceptions or hypotheses regarding 
the nature of the economic processes…” 
The motivating belief that drives Koop-
mans’ argument is a committed philosophical 
realism regarding economic phenomena. Just 
as natural science assumes that physical and 

biological phenomena are regulated by nat-
ural laws, Koopmans assumes that economic 
phenomena are governed by their own set 
of immutable laws. If this is the case, then 
the job of the economist is to discover truths 
about economic reality in the same way that 
a physicist discovers (or is often assumed to 
discover) truths about physical reality.1

In the years following the theory versus 
measurement debate, as economics’ theoret-
ical footing was being reified, the field was 
also being increasingly formalized—to the 
extent that, by the early 1980s, the philoso-
pher of science Alexander Rosenberg could 
confidently state that economic theory is 
most appropriately viewed not as a science, 
but as a branch of mathematics (Rosenberg 
1983). In Rosenberg’s characterization, eco-
nomics abstracts away from actual human 
interaction and posits a set of basic assump-
tions from which it derives a formally impres-
sive yet empirically empty set of conclusions. 
He ultimately argued that economics should 
be treated as “somewhere on the intersec-
tion between pure and applied axiomatic 
systems,” whose f indings may not corre-
spond to any facts in the world but that are 

1 Koopmans forcefully argued his case and gave 
the impression that it is impossible to justify an empiri-
cally robust theory at all, given that you seemingly 
need to have a well-grounded theory to comprehend 
empirical evidence in the first place.

JFDS-Simonian.indd   10JFDS-Simonian.indd   10 05/01/19   10:21 am05/01/19   10:21 am
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nevertheless interesting from an intellectual standpoint. 
Although Rosenberg’s account of economics may be 
viewed as somewhat extreme and not ref lective of how 
most economists view themselves and their profession, 
it nevertheless brings to the fore the extent to which 
economics is viewed by many as a largely theoretical 
endeavor. That being said, we do not need to subscribe 
in whole to Rosenberg’s argument to recognize that a 
broadly theoretical approach has become dominant in 
economics—econometrics in particular—so much so 
that today we may succinctly summarize the primary 
beliefs that drive contemporary econometric practice 
as follows:

1. The goal of econometrics is to discover well-
def ined economic processes, mechanisms, and 
structures.2

2. Modern probability theory and statistical inference 
are indispensable tools in the definition and dis-
covery of economic phenomena.3

3. An econometric methodology founded on points 
1 and 2 can produce reliable economic forecasts, 
which can fruitfully be applied in business and 
policymaking.

Although econometrics is anchored toward the 
ideology of philosophical realism and strict adherence 
to the tenets of probability theory, as the quotation from 
Koopmans indicates, at any given time, the degree to 
which scientific methodologies are theory-laden may 
vary. Moreover, scientific frameworks in practice gener-
ally differ not by their choice of either a purely empiricist 
or realist methodology, but by the degree to which a 
given methodological program is guided by empirical 
considerations. Where economics has erred, in our 
opinion, is in allowing the pendulum to swing too far 
in favor of theory. In the physical sciences, although the 
tension between more theoretically and more empiri-
cally inclined methodologies exists, experiments are 
nevertheless considered indispensable tools for validating 

2 This belief is perhaps best exemplif ied by econometrics’ 
preoccupation with causality, a highly complex, not to mention 
metaphysical, concept that has been a major focus of philosophical 
analysis for centuries. For a sample of some of the extensive litera-
ture on causality in economics, see Haavelmo (1943), Simon (1953), 
Granger (1969), Hicks (1979), and Hoover (2001).

3 For a classic statement and argument of this view, see 
Haavelmo (1944).

or invalidating theories. Experimental tools in the phys-
ical sciences are of course better developed than in eco-
nomics, for a variety of reasons.4 With the advent of data 
science, however, we believe that economics now pos-
sesses a tool with which economic theories can be tested 
in a more robust manner, using new and richer datasets. 
Accordingly, financial data science is well positioned to 
reorient financial econometrics toward a more empirical 
stance, a methodological position that was in fact advo-
cated in an argument almost as old as Koopmans’.

THEORY, SHMEORY: AN INSTRUMENTALIST 

VIEW OF ECONOMICS

At around the same time that Koopmans was 
arguing in defense of economic realism and the impor-
tance of theory, another well-known economist, Milton 
Friedman (1953), presented an argument in favor of an 
empirical approach to economics. The strain of empiri-
cism Friedman defended is usually labeled instrumentalism 
(although Friedman never mentioned the term) and 
emphasizes the predictive role of science, downplaying 
science’s role as an unassailable arbiter of “reality.”5

In the 20th century, different forms of instrumen-
talism were championed by a wide variety of thinkers, 
from Pierre Duhem (1914) to John Dewey (1916, 1938). 
Today, instrumentalism is an inf luential methodology 
in the physical sciences (Torretti 1999). In contrast to 
Koopmans, Friedman viewed assumptions as tools to be 
employed in the production of reliable forecasts. As such, 
in Friedman’s instrumentalism, a theory need only be 
sufficiently coherent if it leads to successful predictions. 
This view of theory thus eschews, or at least radically 
downplays, its explanatory role and instead relegates it 
to a device to frame and guide the process of predic-
tion, or as Friedman put it, “to serve as a filing system 
for organizing empirical material.” Indeed, under an 
instrumentalist view of economics, the truth or falsity 
of the axioms and postulates of an economic theory is 
less relevant than the degree to which a theory facilitates 
successful prediction.

4 To name just two, the ability to conduct closed experiments 
and to study subject matter that behaves more or less mechanistically 
gives the physical sciences the ability to confidently draw conclu-
sions from experiments in a way that has hitherto been impossible 
in economics.

5 For a review of Friedman’s instrumentalism and its critics, 
see Boland (2016).
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Contemporary econometrics’ emphasis on theory 
versus prediction has been detrimental to the ability of 
the f ield to produce models with reliable forecasting 
ability, an outcome that explains its relative lack of inf lu-
ence on economics as a whole versus more “pragmatic” 
empirical work that generally proceeds with a broad 
theoretical stance but without a theoretical “straight-
jacket” (Summers 1991). This paucity of inf luence on 
the field as a whole is true even for some of the most 
popular econometric models, such as the Dynamic 
Stochastic General Equilibrium (DSGE) class of models, 
which have shown themselves to be unexceptional fore-
casting tools both in absolute terms and in relation to 
much simpler frameworks (Edge and Gurkaynak 2010; 
Edge, Kiley, and Laforte 2010). Why is this the case? It 
is surely not due to lack of sophistication on the part of 
the builders of these elaborate models. To the contrary, 
it may be due to their “square-in-the-circle” attempts 
to build predictive models within the strict confines of 
often complex econometric theories, rather than con-
forming theories to empirical findings. This approach 
to model building is, in addition to being less useful 
from a practical standpoint, also the antithesis of scien-
tific practice; natural scientists, in general, evaluate and 
refine theories through empirical observation, not the 
other way around.6

FINANCIAL ECONOMETRICS 

FOR THE 21ST CENTURY

We believe that financial data science represents an 
advancement over the traditional econometrics toolbox. 
As a scientific endeavor, data science combines statistics 
and computing in an effort to uncover patterns in infor-
mation that can then be used to assist decision-making. 
Although data science employs statistical concepts, its 
methodological approach is decidedly instrumentalist 
and is open to using any type of quantitative method, 
heuristic, or technique in so far as it is useful in pro-
ducing accurate predictions and informed decisions, 
regardless of strict adherence to the tenets of any theory. 
The instrumentalist orientation of data science is pre-
cisely what makes it so useful for applications to invest-
ment research, a pursuit that is valuable only if it leads to 

6 A classic example of this process is given by the set of experi-
ments designed to verify the theory of special relativity (see, e.g., 
Robertson 1949).

practical results, namely the improvement of individuals’ 
and institutions’ financial well-being.

That said, we believe that financial data science is 
a discipline in its own right, and not merely the applica-
tion of data science methods to finance. We hold this 
view for at least three reasons. First, finance brings with 
it a unique set of problems and puzzles that distinguish 
it from standard applications of data science, especially 
those in the natural sciences. The challenges that prac-
titioners face in devising trading strategies, asset alloca-
tion, and financial risk management, for example, all 
require specific solutions. Second, financial time series 
possess unique characteristics that ref lect their origins in 
human action and intentionality. The defining proper-
ties of financial time series such as volatility clustering, 
momentum, and mean reversion are prime examples of 
this. Third, modeling agents, especially the collective 
agents that constitute “the market,” is an extremely chal-
lenging problem that demands specialized techniques. 
For these three reasons, we believe it would be a mistake 
to think that financial data science is merely one area of 
applied data science.7

Just as we believe it is a mistake to consider finan-
cial data science as simply a subset of data science, we 
likewise believe that it is a mistake to consider finan-
cial data science as a branch of financial econometrics. 
Rather, it would be more accurate to describe financial 
data science as encompassing traditional financial econo-
metrics and expanding it with new techniques and a new 
orientation. Although financial data science brings its 
own set of formal tools to the analysis of time-series, 
cross-sectional, and panel data, it also brings with it 
a mathematical arsenal capable of dealing with dispa-
rate types of data—both structured data, which is the 
terrain of traditional econometrics, and unstructured 
data, such as textual and visual information. Moreover, 
financial data science has a distinctly applied and hence 
empirical orientation, dispensing with unnecessary the-
oretical machinery and abstraction in favor of methods 
designed to adequately frame and solve real-life prob-
lems. Its methodological orientation thus places it, and 
by extension finance as a whole, closer to engineering 
than to pure science.

From a historical standpoint, the emergence of 
financial data science represents both a resurgence of 

7 For a similar argument, see López de Prado and Israel 
(forthcoming).
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instrumentalism as a scientific methodology in financial 
econometrics and, because of the introduction of a mul-
titude of new analytical techniques, an enhancement of 
the pragmatic empiricism mentioned earlier. By priori-
tizing successful prediction and usable results, financial 
data science promises to bring financial econometrics 
more in line with mainstream scientific practice and, in 
doing so, takes up the mantle in defending it and eco-
nomics as a whole against critics who charge that eco-
nomics is not a “real science.” That financial data science 
is being increasingly recognized as an indispensable part 
of investment research is a testament to its practical value 
and a triumph of the empiricism on which it is founded.
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A lternative datasets (alt-datasets) 
 appear to be entering the financial 
 mainstream. Alternative data (alt-
 data) have always occupied a crucial 

role in financial markets, but, until recently, 
cultivation and use of alt-data were largely seen 
as niche activities for specialist players (e.g., 
hedge funds with esoteric strategies). Yet, the 
number and diversity of readily accessible alt-
datasets has ballooned in the past decade. This 
proliferation now confronts institutional inves-
tors (Investors)—such as public pension funds, 
endowments, and sovereign wealth funds—
with a dilemma: How can they responsibly 
choose which alt-datasets are most likely to be 
sources of significant value for their investment 
objectives? This article’s main goal is to help 
Investors properly address that question.

Within the financial community, alt-
data are widely understood to be datasets 
that are not conventionally used in invest-
ment decision making.1 A few archetypal 
(and well-hyped) examples of alt-data have 
emerged in recent years. These include

• satellite imagery of commercial or eco-
nomic activity (e.g., the number of cars 
in parking lots of major retailers, ships 

1 Some examples of conventional financial data-
sets include asset prices and trading volumes; corporate 
earnings reports; economic forecasts of employment, 
inf lation, housing starts, and consumer spending; 
exchange rates; and yield curves.

passing through ports, and agricultural 
or mining operations);

• social-media streams, from which con-
sumer, political, or other sentiment may 
be gauged;

• microdata about consumers’ shopping 
activities (e.g., credit card transactions 
or in-app purchases on smartphones);

• data scraped from the internet (e.g., 
job postings to track corporate hiring 
patterns); and

• data exhaust—the assortment of log 
f iles, cookies, and other digital foot-
prints created by people’s online 
browsing (including geolocation data 
from searches on mobile devices).

These diverse examples are united by 
a common value proposition for alt-data: 
market participants can extract an infor-
mational edge from some alt-datasets and 
use it to beat competitors when identifying 
trading opportunities.2 This opportunistic, 

2 Less commonly, some Investors are beginning 
to view various alt-datasets as sources of insight for 
responsible investing (e.g., as providing information 
about environmental, social, or governance impacts of 
investable companies). As we discuss later in this article, 
the value proposition of such uses for alt-data does not 
rely on speed. Nevertheless, such applications largely 
remain viewed as (at best) secondary applications for 
alt-datasets by most market players currently active in 
the alt-data space (although some experts expect it to 
become more primary over the coming years).
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speed-centric perspective on alt-data’s value is pervasive 
and neatly captured by the tagline of a leading alt-data 
platform operator: “Alternative data is untapped alpha.”3

We argue that alt-data’s core value proposition 
is, however, meaningfully different for Investors than 
that slogan would suggest. Investors (as defined earlier) 
have a distinct comparative advantage over other market 
participants: patience. Because of their long operating 
horizons, Investors can pursue investment strategies 
unavailable to other market players. This comparative 
advantage is more aligned with defensive and defensible 
approaches to alt-data than it is with the exploitative 
strategies that short-horizon investors tend to pursue. 
That is, Investors will likely be better off using alt-data 
in ways that are unharmed by competition over alt-data 
(i.e., nonrivalrous) or for activities others cannot easily 
replicate (i.e., excludable).4 In rethinking how alt-data 
will be most valuable to long-term strategies, we con-
tend that Investors must also rethink how they evaluate 
and characterize alt-data, along with whom they should 
partner in gaining access to alt-datasets.

Rethinking these three issues could guide Investors 
in selecting alt-datasets, and strategies for analyzing and 
acting on them, that better fit with their organizational 
contexts. We seek to help Investors re-examine how 
alt-data could best serve their needs and offer recom-
mendations that are informed by both formal empirical 
findings and our own close interactions with Investors. 
We also explore examples of how alt-data can be cre-
atively used in defensive or defensible strategies.

Although building capacity around alt-data is 
strategically valuable in its own right, doing so has the 
added benefit of promoting innovation. Using alt-data 
demands (almost by definition) that Investors depart 
from the status quo in their decision making. As such, 
thoughtful design of an alt-data program can drive 
innovation in all aspects of an Investor’s business (e.g., 
creative improvements in processes, people’s skill sets, 

3 See: https://www.quandl.com/alternative-data.
4 An example of a nonrivalrous application of alt-data is in 

screening public equities based on sustainability criteria for the 
underlying companies. An example of excludable alt-data use would 
be for due diligence on direct investments in startup companies to 
which an Investor has privileged access (e.g., a university endow-
ment having first access to funding spinouts from its research labo-
ratories). In this sense, an Investor benefits not from an alt-dataset 
being excludable but from its own ability to use that data being an 
excludable (i.e., not easily repeated or imitated) capability.

and technology). Finding partnerships that facilitate, 
rather than forfeit, opportunities to innovate and learn 
from alt-data is therefore a key issue we address and one 
that is likely to materially affect Investors’ success (with 
alt-data and beyond).

The rest of this article is organized as follows. 
We f irst make the case that Investors are better off 
designing their alt-data strategies around defensive and 
defensible approaches to using alt-data than aiming to 
use it for alpha-oriented, opportunistic purposes. We 
provide examples of creative uses of alt-datasets under 
these strategies. These examples emphasize how alt-data 
can be used for deeper understanding of risk and gen-
erating operational alpha. We then cover why existing 
systems for characterizing alt-datasets do not fit Inves-
tors’ needs. We consider a replacement system that could 
improve the appraisal of alt-datasets in terms of how 
well their characteristics align with an Investor’s specific 
objectives and capabilities. Next, we distill our empirical 
findings about Investors’ organizational attitudes on, and 
capacities for, alt-data. Our analysis concludes that Inves-
tors will generally need to partner for access to alt-data 
and to realize efficiencies in organizing and (pre-)pro-
cessing alt-datasets. We detail the benefits and costs of 
partnering with different types of entities and remark on 
how opportunities for innovation may be a core consid-
eration in selecting alt-data partners. We then describe 
how the growing arms race around alt-data could affect 
Investors. Finally, we close by summarizing our findings 
and highlight additional facets of alt-data strategies that 
Investors might wish to rethink in the future.

RETHINKING ALT-DATA’S VALUE 

PROPOSITION

Although alt-data have garnered increased atten-
tion in recent years, their use in f inance is not new. 
Alt-data have played an integral role in investing ever 
since humans first began keeping records of trade: They 
deepen the connections between financial valuations 
and real-world sources of value. For instance, some 
enterprising merchants in ancient Babylon used mea-
surements of the Euphrates’ depth and f low to gain 
an informational edge in trading various commodities 
(because they realized that these variables were corre-
lated with market supply) (Lo and Hasanhodzic 2010).

What has recently changed about alt-data’s role in 
finance is its degree of accessibility. Perhaps the most 
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recited example of alt-data in finance is hedge funds 
counting cars in retailers’ parking lots (which suppos-
edly is a leading indicator of sales performance). In the 
past, such counts had to be made manually, with analysts 
physically located in or near cars they tracked. Apart 
from a small number of well-resourced hedge funds, few 
financial organizations could devote sufficient resources 
to such a narrow endeavor. Currently, however, these 
data are accessible through a subscription service to any 
investment organization inclined to purchase it (thanks 
to lower costs of satellite imagery).

More generally, the number and diversity of alt-
data sources that are readily accessible to financial enti-
ties has mushroomed. The tally of large-scale alt-data 
vendors who specifically cater to investment organiza-
tions has gone from a few dozen to several hundred in 
less than half a decade.5 The total alt-data sources poten-
tially relevant to investment decision making that can 
be cheaply and easily accessed is in the many millions. 
Furthermore, tools for acquiring and processing these 
plentiful datasets are increasingly user friendly.6 Alt-data 
are steadily becoming mainstream.

As a result, the rate at which any one type or source 
of alt-data becomes conventional—and therefore ceases 
to be alt-data—is likely to increase. If the value of alt-
data is premised on their conferring advantages in faster 
exploitation of trading opportunities (as is the case for 
many financial-market participants), then this means the 
value of any given alt-dataset will probably deteriorate 
at an accelerating rate because both alt-data and their 
value are relatively determined. Notice that data may 
qualify as alternative at any of three levels: the firm, the 
industry, and the financial ecosystem as a whole. For 
example, a dataset may be unconventional for a given 
hedge fund, but not for other funds in the hedge-fund 
industry. Likewise, some data may be conventional for 
a given firm, yet be unconventional for most organi-
zations in the wider f inancial system. When enough 

5 Here, we make a meaningful distinction between providers 
or sources of alt-data (point vendors) and alt-data access providers 
(platform vendors). Later, we discuss why this distinction is relevant. 
For now, we simply note that the number of alt-data vendors vastly 
exceeds the number of platforms, and this gap is only likely to 
widen in the future.

6 These tools may be standalone (e.g., http://scikit-learn.org/
stable/) or part of the suite of offerings from an alt-data platform 
(i.e., an entity that offers not just alt-datasets but also additional 
support or tools for working with them).

organizations make use of any alt-dataset, it stops being 
alternative at a system-wide level.

Similarly, two relative dimensions help deter-
mine the value of any alt-dataset: rivalry and exclud-
ability.7 Rivalry is the extent to which one entity’s use 
of a resource diminishes its value for another entity.8 
Excludability is the degree to which one entity can 
prevent another from using a resource. When alt-data’s 
value is premised on allowing market players to better 
exploit trading opportunities, then alt-datasets will 
tend to exhibit high rivalry. Moreover, rising acces-
sibility of many alt-datasets is tending to lead to lower 
excludability.9 These trends suggest the shelf lives for 
alt-datasets may be shortening if their value comes solely 
from helping to exploit opportunities.10

Defensive and Defensible Value

When an alt-dataset’s value is premised on it 
improving a market participant’s ability to speedily seize 
trading opportunities, there is an embedded assump-
tion that the participant will need to act quicker than 
others to realize that value. This value proposition for 
alt-data implies that alt-datasets should be more useful 
for financial organizations with comparative advantages 
in rapid execution.

Speed is, in general, not a comparative advan-
tage for Investors, and for sound reasons: They are 
long-lived organizations whose success is mission 
critical for their beneficiaries. Building an investment 
strategy around speed can greatly increase the risk of 

7 The dimensions of rivalry and excludability are conven-
tionally used to classify economics goods as private, public, club, 
or common pool. For such purposes, rivalry and excludability are 
usually treated as binary categories (i.e., something is either rival-
rous or nonrivalrous and excludable or not). We see them here as 
continuous properties.

8 Rivalry is a congestion effect, which is the opposite of a network 
effect (i.e., a resource’s value grows with popularity).

9 This decreasing excludability may become more prevalent as 
methods for dataset emulation and replication (e.g., statistically syn-
thesizing better proxy datasets) techniques improve. Likewise, the 
bigger the market for alt-data becomes, the less incentivized many 
vendors are likely to be, given that they may be able to maximize 
revenue by selling their datasets to a wider demand base.

10 A plausible circularity may exacerbate the shrinking shelve 
lives of alt-datasets: As the number of alt-datasets grows, more value 
accrues to those market participants that build alt-data capacity, 
which makes providing alt-datasets that much more appealing for 
vendors, who then increase market supply further, and so on.
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losing unacceptable amounts of capital. Because most 
speed-oriented strategies are expensive to implement 
(e.g., they usually require specialized infrastructure or 
talent), they are often only efficient to deploy when large 
amounts of capital can be allocated to them. This risk 
profile for speed-based investing makes it unpalatable for 
most long-term Investors to undertake directly. In con-
trast, many asset-management firms (e.g., hedge funds, 
active mutual funds, or other organizations that extract 
management fees) can be relatively short-lived entities 
(i.e., they may not exist after their founders leave), and 
their failure would usually be less socioeconomically 
disastrous than it would be for Investors; thus, their cost 
of allocating most of their capital to speed-driven strate-
gies is far lower.

Investors are also comparatively disadvantaged in 
terms of agility. As noted, rising rivalry and declining 
excludability of many alt-datasets means that market 
participants who attempt to use alt-data to exploit 
opportunities must be somewhat f lexible to succeed; 
when some alt-datasets lose value from becoming more 
conventional, others must be sought. Because alt-datasets 
are largely heterogeneous, organizations that design 
investment strategies around them need to be agile. The 
level of agility required for this purpose would over-
whelm the data-management and governance systems of 
many Investors. Although it can be argued that Investors 
should strive to improve such systems, in many cases it is 
more pragmatic to align their use of alt-data with their 
native strengths.

Perhaps the most powerful comparative strength 
that Investors have is patience. Their long horizons of 
operation mean that Investors can reap greater gains than 
other market participants by being more methodical and 
disciplined in their investment activities. Accordingly, 
we assert that the deepest value proposition alt-data has 
for Investors entails defensive and defensible strategies.

Defensive strategies prioritize capital preservation 
and prudent risk-taking over speedily exploiting oppor-
tunities. Hence, defensive strategies that incorporate alt-
data should be centered on pursuits such as advanced 
risk analysis and management or improving operating 
efficiencies. Done correctly, these strategies can substan-
tially decrease the degree of rivalry over an alt-dataset 
(i.e., one Investor building a defensive strategy around an 
alt-dataset need not reduce the value to another Investor 
of doing likewise). Risk management and exclusionary 
screening in responsible/sustainable investing are 

quintessential examples of defensively applying alt-data: 
Alt-data can be an invaluable source of intelligence on 
environmental, social, governance, and other factors 
that are germane to responsible/sustainable investment 
decisions, and use of an alt-dataset for exploring those 
factors does not necessarily degrade its value for use in 
the same type of decisions by others.

Defensible alt-data strategies, meanwhile, can help 
Investors increase the excludability of an alt-dataset by 
either restricting access to it (e.g., via making it proprietary) 
or by developing execution capabilities around it that are 
not replicable by other market participants (e.g., through 
having privileged access to infrastructure deals via special 
relationships with local governments).

In this article, we concentrate on defensive alt-
data strategies because we believe these are most broadly 
applicable across various Investor types and circum-
stances. We cover defensible strategies brief ly in the 
final section of this article, and we reserve a detailed 
treatment for a companion article.11 From what we see, 
the two clearest categories of defensive alt-data strategies 
for Investors are deeper understanding of risk (to better 
allocate and manage it) and driving operational alpha.

Understanding Risk

Modern efforts in risk management largely empha-
size simplifying risk over deeply comprehending its 
sources. Put differently, such risk-management para-
digms are better at detecting that specif ic risks have 
materialized in the past than revealing why they 
have done so. For example, they may uncover how 
price movements for a given basket of securities correlate 
when responding to some event, but they deliver scant 
insight into why the event transpired in the first place. 
For market participants that operate over short horizons, 
knowing the correlation may suffice for managing risk, 
but for Investors to better leverage their capacity for 
patience, understanding the reasons why can be essential.

This need to more deeply probe causality is due to 
the fact that correlations in conventional datasets often 
break down over longer horizons and typically do not 
ref lect the entire spectrum of events that could occur 
over long periods of time. Alt-data can (partly) mitigate 
these shortcomings by supplying more context about 
how events in the wider world drive downside moves 

11 See Monk, Prins, and Rook (2018).
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in markets. Although it is true that rapid detection of 
such events might allow Investors to exploit opportuni-
ties, a less rivalrous (and more durable) benefit of early 
detection is that it allows more time for Investors to 
respond to downside events once they are f lagged as 
likely. Moreover, added context can help warn about 
unprecedented downside events. When more variables 
are tracked, there is a higher likelihood of catching 
anomalous behavior that heralds highly atypical events, 
even if the precise impacts of such events might not be 
immediately apparent.12 The ability to be alerted about 
unusual events is of prime importance to Investors. 
Large market crashes practically never play out in the 
same ways their predecessors did, but a single crash can 
fully nullify many years of outstanding performance.13

The purpose of defensive alt-data strategies is not 
to totally eliminate risk exposure for Investors but more 
to distribute it selectively.14 Selective risk exposure is 
the chief idea behind smart-beta investment strategies, 
which seek to control exposures by holding positions 
in assets that are not necessarily proportional to their 
respective market capitalizations. Today, many Inves-
tors pursue smart-beta investing through purposed 
exchange-traded funds (ETFs), but smart-beta ETFs 
often lack fine control over risk exposure. For one, such 
ETFs are usually only ever composed of public securi-
ties and thus are not helpful for controlling private-
asset exposure. Second, the asset weightings for the vast 
majority of ETFs are based on factors derived from con-
ventional data (e.g., company size, dividends, or price 
momentum). These factors mostly fail to ref lect risk 
in any nuanced way. For finer control over risk expo-
sures through smart-beta ETFs, Investors must purchase 
shares in niche ETFs that can have high liquidity risk and 
management fees. Finally, the programmatic rebalancing 
rules for passive (and many semiactive) smart-beta ETFs 

12 Consider a parable example: An island civilization that 
never has witnessed (or even heard of ) a tsunami may nonetheless 
get advanced warning of an impending anomalous event because 
of the sudden, dramatic recession of shoreline that characteristically 
precedes a tsunami.

13 Long-lived entities are more likely to encounter such 
crashes, so being able to not do too badly during these crashes is as 
good as, if not better than, exploitation speed. Investors cannot just 
shut their doors if they do poorly.

14 That is, by augmenting information sets with alt-data, 
Investors may reduce unwanted exposures (e.g., to climate change 
or reputational risk of investee companies) in a more controlled way, 
while increasing their desired exposures.

can create unintended—and severely disadvantageous—
consequences when abrupt market downturns occur.

Judicious use of alt-data may allow Investors to 
deploy smart-beta (or similar) strategies in ways that 
avoid these shortfalls. A suitable supply of alt-data could 
allow Investors to design index-construction methods 
for public (or private) assets that create tailored, con-
trolled risk exposures.15

The use of alt-data to more deeply understand risk 
is not confined to portfolio construction. Indeed, alt-
data have applications in other areas of risk management, 
such as in asset oversight and due-diligence processes, 
especially in private markets. For example, if an Investor 
directly owns a real-estate development project in an 
emerging market, it may hire a local manager to oversee 
that asset’s construction. However, this delegation can 
generate agency problems, such as when the Investor 
must rely primarily on the local manager’s reports about 
the project’s progress. A form of alt-data that might 
lessen such problems is images of shadow lengths from 
the project’s construction site (e.g., taken from aircraft or 
satellites). Algorithms such as those developed by Orbital 
Insight are capable of converting the lengths in such 
images into calculations of the pace of projects so that 
an Investor might enjoy greater clarity about whether 
its local manager is providing valid reports.16

An example of alt-data’s use for deeper under-
standing of risk in due diligence involves the analysis of a 
venture capitalist’s networks in determining whether to 
invest in one of its funds. The relevant networks might 
be derived from alt-data sources, such as LinkedIn (for 
general partners’ professional and social networks), or 

15 In practice, such methods might be similar to those used by 
Kensho Technologies to construct its New Economy Indices, which 
capture public companies’ degrees of involvement in thematic 
technological trends, such as artif icial intelligence, autonomous 
vehicles, or drones. To derive its indexes, Kensho uses natural-
language processing to identify a company’s exposure to a given 
trend by parsing its public filings (e.g., 10-Ks, 20-Fs) for information 
on (for example) product lines, supply chains, or planned capital 
expenditures. Although such filings do not qualify as alt-data, this 
approach could be applied on other, less-conventional text docu-
ments to construct indexes (e.g., sustainability reports).

16 Another example that may materialize in the future could 
involve Investors using internet-of-things data feeds from their 
investee companies or assets. Such data could be used in risk man-
agement, help in monitoring human work patterns and informa-
tion f low, give greater clarity on microjudgments, and help make 
valuation more real time.
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built from scraping websites or digital newsfeeds (to 
capture what other funds were co-investors on specific 
deals). Because relationships are integral to most ven-
ture capitalists’ success, understanding the strength or 
weakness of a fund manager’s networks can be a crucial 
variable for deciding whether an Investor should allocate 
capital to that manager.17

Some other examples of how alt-data may be used 
defensively for understanding risk include the following:

• harvesting dynamic pricing information from 
online sources to garner a clearer, more real-time 
picture of inf lation (and draw on wider or more 
targeted sources of pricing information than are 
usual in generic consumer-price indexes);

• aggregating label information (e.g., nutrition facts, 
ingredients lists) from food-product companies’ 
offerings to see how they may be vulnerable to 
shifting dietary trends or new warnings by health 
agencies (Investors may then be able to compel com-
pany managers to alter their offerings—e.g., through 
shareholder activism for publicly traded companies);

• assembling online price and ratings histories of 
possible competitors (e.g., from Airbnb, TripAd-
visor, or Yelp) or price series of airfares to that 
locale when doing due diligence on candidate 
direct investments in leisure-related properties 
(e.g., hotels or casinos);

• using microsensors (or other remote sensors) to 
track f luctuations in soil moisture for determining 
what plants are best suited to intercropping in a 
plantation-forestry investment; and

• controlling reputational risk from investee compa-
nies by monitoring controversies about them that 
arise in social-media posts (or other localized or 
unconventional news outlets).

Generating Operational Alpha

Alongside deeper understanding of risk, Investors 
can also use alt-datasets in defensive ways by turning 

17 More specifically, an Investor may have little ex ante clarity 
about the specific startup companies in which a venture capitalist 
will invest (and no control over how it does so once capital is 
pledged). The quality of the venture capitalist’s likely co-investors, 
however, may be easier to discern and serve as an indicator of the 
ultimate riskiness of its portfolio.

them into sources of operational alpha. The chief idea 
behind operational alpha is to better align operating 
resources with investment strategies by eliminating 
internal inefficiencies in how investment processes are 
executed. This concept is (loosely) related to invest-
ment alpha, which is the generation of returns in excess 
of some benchmark, after adjusting for the riskiness of 
the assets used to generate the excess returns. Although 
operational alpha has a secondary benefit of (potentially) 
improving gross investment returns, its chief aim is to 
improve net returns by reducing unneeded operating 
costs. Because such reductions are often risk free, oper-
ating alpha can substitute for, and in many instances 
is superior to, investment alpha.18 It can also comple-
ment investment alpha because it frees up room in the 
risk budget and thus allows pursuit of strategies with 
higher upside.

Alt-data can aid Investors in driving operational 
alpha. Perhaps surprisingly, most Investors already pos-
sess large volumes of alt-data within their own orga-
nizations. Because alt-data are def ined as data not 
conventionally used in decision making, novel forms of 
internal data count as alt-data.

Aggregation and disaggregation are key to con-
verting conventional internal data into alt-data. For 
instance, inventive collation and synthesis of documents 
(e.g., e-mails, investment memos, and contracts) can 
uncover precious metadata that is able to provide insights 
for enhancing communication, culture, negotiation, 
time allocation, benchmarking, and diligence. Likewise, 
the disaggregation of collective processes into individual 
contributions can give a clearer picture of where latent 
organizational resources—and opportunities to improve 
them—reside. For example, by tracking how individual 
internal users query and access documents in organi-
zational databases, an Investor can construct a map of 
intraorganizational knowledge f lows and examine the 
typical approaches its analysts use in problem solving. 
More granular visibility of these individual activities 
can not only expose areas for improvement but also help 
better identify best practices.19

18 Notably, operational alpha can be (almost or fully) market 
agnostic.

19 Such added visibility of internal processes also has a poten-
tial risk-management benefit in the form of compliance. Newly leg-
islated requirements for data handling (e.g., the European Union’s 
General Data Protection Regulation) mandate that users be made 
aware of how their personal data are being treated. In the case of 
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Implications of a Changed Value Proposition

In rethinking the value proposition of alt-data, 
Investors will need to re-examine other views and 
approaches they have regarding alt-data. Specifically, 
in pursuing defensive or defensible alt-data strategies, 
Investors will likely need to alter how they characterize 
and access alt-datasets. In the next two sections of this 
article, we discuss pragmatic paths for addressing each 
of these matters.

RETHINKING HOW ALT-DATA 

IS CHARACTERIZED

Because the number and diversity of alt-datasets 
is enormous, Investors need to be discriminating when 
selecting which alt-datasets deserve resources (e.g., 
money to acquire; time to store, prepare, and analyze; 
and capacity to be governed). Such selectivity requires 
characterizing alt-datasets to establish which will be 
most valuable for organizational needs. As the value any 
dataset has to an Investor lies in the questions it can help 
answer, there is a need for data-characterization methods 
that can ref lect the question-answering capabilities of 
datasets (alternative or otherwise).

Alt-data are defined in an exclusionary way—by 
stating what they are not (conventional). However, 
unlike alt-data’s definition, a characterization system for 
alt-data should not be constructed around exclusion: It is 
more reasonable to characterize an alt-dataset by those 
properties that it verifiably exhibits, rather than those it 
does not. Problematically, however, few Investors—or, 
for that matter, financial organizations in general—have 
any such system for alt-data characterization. In fact (and 
as we will detail later), Investors rarely have any formal 
criteria for establishing whether a dataset is indeed alter-
native (i.e., a threshold that divides conventional from 
unconventional data on the basis of scarcity, novelty, or 
another relevant quantitative or qualitative dimension).20

Unsurprisingly, because few Investors have any 
systems for distinguishing or characterizing alt-data, 

Investors, these users can be their employees. Because the definition 
of what constitutes personal data is evolving, Investors stand better 
chances of remaining compliant if they already have developed 
processes and systems for tracking diverse forms of internal data in 
their organization.

20 More generally, many Investors have no formalized models 
or system for characterizing data or judging data quality.

few use any consistent process for valuing its worth 
in advancing organizational objectives. Undoubtedly, 
rigorous valuation of alt-data (or any data, for that 
matter) is a difficult undertaking and subject to wide 
error margins.21 Characterization is a more achievable 
step: It at least facilitates judgments about whether a 
given alt-dataset aligns with organizational capabilities 
and strategic priorities. Lack of characterization systems, 
however, invites the expenditure of resources on alt-
datasets that do not fit with organizational priorities and 
resources and promotes avoidable waste.

Apart from being wasteful, not having character-
ization systems can challenge an Investor’s fulfillment of 
its fiduciary duties or regulatory compliance: Investors 
may be hard-pressed to claim that they are engaging in 
responsible decision making when decisions are made 
based on data that are not well understood (e.g., in terms 
of blind spots it may create). Suitably understanding data 
(whether alternative or conventional) in any consistent 
way requires a means of characterizing it.

Existing Characterization Systems

Existing systems for characterizing alt-datasets are 
not suitably aligned with the value propositions we have 
described. These existing systems either ignore the ways 
in which an alt-dataset is likely to create value for an 
Investor (and so neglect organizational context) or assume 
that any dataset’s main use will be driving investment 
alpha (or a similar short-term, opportunistic pursuit).

For example, Kolanovic and Krishnamachari 
(2017) posited a characterization system for alt-data 
that focuses on the origins of datasets (Exhibit 1). This 
system is not ideal for Investors’ purposes for several 
reasons. First, although it encompasses many sources of 
alt-datasets, it is not necessarily exhaustive. Second, it 
gives no indication of how valuable a given alt-dataset is 
to an Investor. Taxonomical schemas such as this are not 
best suited to help Investors evaluate alt-data.22

21 Inarguably, an alt-dataset’s value should be positively related 
to its quality. Yet no quality metrics exist that are universally appli-
cable across datasets or free of restrictive assumptions. We must 
resort to using properties of data that can serve as context-appro-
priate proxies for quality. It is on these properties that alt-data should 
be characterized.

22 Taxonomical systems are characterization systems that are 
(or attempt to be) mutually exclusive and collectively exhaustive—
that is, the items they characterize must fit into one, and only one, 
classif ication category within the system.
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Kolanovic and Krishnamachari (2017) proposed 
another taxonomical schema for alt-data characterization 
that does embed a value proposition and strives to indi-
cate the usefulness of alt-datasets in relation to use cases 
based on asset class and investing style. Unfortunately, 
that system is premised on investment-alpha generation, 
and so it does not cover defensive or defensible uses, 
which thus undercuts its relevance for Investors (which 
is further lowered by being taxonomical).

Dannemiller and Kataria (2017) avoided the taxo-
nomical approach and instead suggested that alt-data be 
characterized on a “continuum … from structured to 
unstructured.” For the purposes of indicating the likely 
value of an alt-dataset, using continuums, and not dis-
crete categories, makes sense, but whether a dataset is 
structured or unstructured does not immediately ref lect 
its value for an Investor. It is true that more effort may 
be required to extract insight from unstructured datasets 
(which makes them more expensive from an organiza-
tional-resource perspective), but this does not neces-
sarily ref lect the full value that an alt-dataset holds. For 
example, both unstructured and structured alt-datasets 
may be relevant (or not) for defensive or defensible 
approaches by Investors.

Although big data and alt-data are not perfectly 
identical, there are cases in which alt-data qualify as big 
data. It may thus be hoped that characterization schemas 
for big data could sometimes be applicable to alt-data. 
The most prevalent such schema is the 3 Vs of big data: 
volume, velocity, and variety. IBM’s Big Data unit sug-
gests a further dimension: veracity (i.e., the degree of 
uncertainty around a dataset).23 These systems are a step 

23 See: http://www.ibmbigdatahub.com/infographic/four-
vs-big-data.

in the right direction because veracity, velocity (the rate 
at which new data arrive), and volume (the size of a 
dataset) could all potentially add to a dataset’s value for 
an Investor.24 Yet these dimensions by themselves are 
incomplete, and none seem to squarely encapsulate how 
specific properties of an alt-dataset should translate into 
value. For example, velocity may be important for assets 
that have value-determining properties, which change 
frequently, but not so important for those without such 
properties (e.g., many private assets).25 Thus, freshness—
how well a dataset ref lects the most recent changes that 
are material for decision making—might be more appro-
priate. Likewise, volume seems to be less important for 
Investors than whether a dataset is comprehensive. That 
is, a dataset may contain many items (i.e., have high 
volume) from only a narrow number of categories of 
interest. In such a case, a dataset that has smaller volume, 
but encompasses more categories (i.e., is more compre-
hensive), would likely have higher value. We thus need 
a different characterization scheme.

The system devised by Kitchin (2015) comes closest 
to what Investors need. It builds upon the 3-Vs setup 
(but is still intended for characterizing big data, rather 
than alt-data) by adding four additional dimensions: com-
prehensiveness, granularity (how fine- or coarse-scaled the 
data are), relationality (how many fields a dataset shares 
with other datasets of interest), and f lexibility (how easily 
new fields can be added to a dataset).26 Comprehensive-
ness and granularity seem to be apt fits for Investors’ 
purposes, but it is less clear that relationality or f lexibility 
are pertinent concerns. Furthermore, Kitchin’s scheme 
gives no explicit consideration to the known quality (i.e., 
reliability) of data. Knowing how reliable a dataset is can 
be essential for Investors to decide how it can be used.

Six Dimensions of Alt-Data

We adapt Kitchin’s (2015) system by replacing 
relationality, f lexibility, variety, and volume with the 
dimensions of reliability, actionability, and scarcity (and 
replacing the velocity dimension with the more f it-
ting notion of freshness). Reliability (which covers the 

24 Velocity may concern the rate at which new datasets are 
onboarded or the rate at which existing ones are refreshed.

25 Velocity may also be valuable (for example) in rapidly 
detecting reputational risks for Investors in social-media activity.

26 Kitchin actually uses “exhaustivity” and “resolution” in 
place of comprehensiveness and granularity, respectively.

E X H I B I T  1
Kolanovic and Krishnamachari’s Characterization 
System for Alt-Data

Source: Kolanovic and Krishnamachari (2017).

Source Category

Individual Processes

Business Processes

Sensors

Specific Alt-Data Source

Social media, news and reviews,
 web searches, personal data
Transaction data, corporate data,
 government agency data
Satellites, geolocation, other sensors
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accuracy, precision, and verifiability of a dataset) seems 
to us a more fitting concept than IBM’s veracity. Reli-
ability essentially equates with the known quality of a 
dataset.27 Actionability and scarcity are loosely related to, 
but distinct from, the ideas of rivalry and excludability. 
In a sense, actionability and scarcity are primitives of 
rivalry and scarcity. For rivalry to matter, an alt-dataset 
must be actionable (i.e., it needs to be usable for deci-
sions that lead to actions). Likewise, when rivalry is a 
concern, it is valuable to have access to scarce (albeit 
relevant) datasets. Excludability refers to scarcity that is 
(semi-)permanent. Hence, this characterization schema 
helps clarify not only what kinds of questions can be 
answered by a particular alt-dataset but also what kinds 
of strategies that an alt-dataset may usefully inform (see 
Exhibit 2 for further details on each of these dimensions).

How do these six characterization dimensions 
meaningfully contribute to an alt-dataset’s potential 
value in defensive or defensible strategies? The f irst 
three dimensions’ contributions are relatively clear-cut 
(although they are also relevant for opportunistic strate-
gies). Because alt-data’s purpose is to guide decisions, it 

27 Reliability includes how verifiable a dataset is. Verifiability 
here has two aspects: (1) how readily a dataset’s accuracy can be con-
firmed by using other datasets and (2) the clarity of its provenance. 
Also note that the first four elements (reliability, granularity, fresh-
ness, and comprehensiveness) may be seen as referring to a dataset’s 
richness. Importantly, these four dimensions appear to be the most 
objective and universally applicable across Investors (it can be argued 
that scarcity depends on substitutability, which may differ for some 
Investors—depending on their specif ic organizational contexts): 
These dimensions could therefore potentially be standardized to 
some degree to allow faster assessment of alt-datasets. This might 
be a useful enterprise for some commercial organization (e.g., an 
alt-data platform vendor) to undertake in the near future (it also is 
one that could generate considerable efficiency gains for Investors).

should be trustworthy (and, in some cases, transparently 
verifiable). Similarly, decisions can be made at different 
levels, and those made at highly specif ic levels often 
require very fine data, whereas high-level decisions can 
usually be made on less granular (or, at least, more highly 
condensed) data. Lastly, decisions should not be made 
on stale data for which more recent versions exist. High 
freshness is thereby desirable in most cases.28 What quali-
fies as high, however, can vary with the nature of the 
decisions that are made based on the dataset in question.

The chief way our proposed characterization is 
more applicable to defensive and defensible alt-data 
strategies than it is to opportunistic strategies is in impor-
tance of comprehensiveness.29 For opportunistic uses, 
alt-data need not be comprehensive: They can encom-
pass narrow ranges of instances or categories and still 
deliver genuine advantages. Although narrow alt-data 
can still be useful for defensive or defensible purposes, 
comprehensive datasets are generally more valuable 
because they give more complete visibility and scope. 
This greater breadth of coverage is useful for a deeper 
understanding of risk situations or internal inefficiencies 
(for defensive strategies), as well as for more exhaustive 
awareness of ways in which defensible advantages might 
be vulnerable.

Actionability is highly important for both defen-
sive and defensible approaches because alt-data that 

28 Desirability of low latency does not mean longer time series 
of alt-data are less valuable. Latency in the case of time series refers 
to the most recent record in a series. The length of the time series 
instead ref lects its comprehensiveness.

29 Although we expect that this characterization will likely 
be useful for many financial-market participants, we realize that 
the relative importance of each dimension will likely differ across 
entities (or different types of financial entity).

E X H I B I T  2
Six-Dimensional Characterization of Alt-Data

Source: Authors.

Dimension

Reliability
Granularity
Freshness
Comprehensiveness
Actionability
Scarcity

Explanation

How accurate, precise, and verifiable the data are (e.g., error-free, unbiased, checkable)
The scale covered by specific data points or entries (e.g., continental, industry-wide) 
Age of the data (i.e., when collected/generated) relative to the phenomena they reflect
What portion of a given domain the data cover (e.g., 25% of households in Canada)
Degree to which significant actions or decisions can be made based on the data
How widely or readily available the data are to other (especially competing) organizations
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cannot be translated into proactive or reactive actions are 
of little (or no) practical value to any Investor. Scarcity 
has different bearings for defensible and defensive strate-
gies. For the former, its value is more directly connected 
to excludability. For the latter, scarcity is more related 
to the rate at which alt-data spread to different finan-
cial organizations. If some alt-dataset is very accessible 
(e.g., public information) and many organizations begin 
noticing and acting on it at once, there can be systematic 
effects, which can be troublesome from a risk-manage-
ment standpoint. Meanwhile, alt-datasets whose scarcity 
declines slowly can enable more considered and advanta-
geous reaction.

RETHINKING ACCESS TO ALT-DATA

In addition to rethinking the value proposition 
of alt-data and how they are characterized, Investors 
might need to rethink how they access alt-data. Indeed, 
the first two reconsiderations are irrelevant if Investors 
cannot access alt-data. How any Investor should appro-
priately access alt-data is a joint function of (1) what enti-
ties can provide it and how they go about doing so and 
(2) what the Investor’s current organizational capabilities 
in and attitudes toward alt-data are. Answers to these 
questions will necessarily vary to some degree across 
Investors. Our research indicates, however, that some 
generalizations can be made so that a typical recom-
mendation can be safely made to Investors. Succinctly, 
we f ind evidence that Investors are eager to tap the 
potential benefits of alt-data but are, on average, not 
(yet) adequately equipped to independently source, pro-
cess, and maintain alternative-data resources. However, 
these current circumstances do not suggest that Investors 
should abandon efforts to build internal alt-data capa-
bilities by surrendering all alt-data functions to third 
parties—especially to external asset managers. Instead, 
we find it reasonable that Investors should prioritize 
partnerships with platform providers of alt-data (at least 
for the near-term future).

In the remainder of this section, we first explore 
empirical evidence on Investors’ current capabilities in, 
and organizational stances on, alt-data. We then turn to 
how these findings intersect with the different alt-data 
access modes available to Investors. A focal component 
of our analysis here is how alt-data can be used as an 
accelerant for various forms of organizational innovation.

Empirical Findings on Alt-Data 

in Institutional Investment

The findings reported in this subsection are drawn 
from extensive interviews with senior decision makers 
across a diverse sample of institutional-investment orga-
nizations, along with results from a survey of Investors. 
We describe these studies more extensively later, but we 
first give an overall synopsis.

Succinctly, Investors’ current relationships with the 
rise of alt-data can be described as considerably inter-
ested yet significantly underprepared. More fully, we 
observe the following:

• Investors pervasively believe that alt-data can be 
used to improve net investment returns, but many 
are unconvinced that their organization is well 
equipped to use alt-data to do so.

• Few Investors have a formalized strategy regarding 
alt-data or are actively developing one.

• Many Investors worry about alt-data costs, specifi-
cally to develop in-house capability.

• Investors widely view building or acquiring propri-
etary alt-datasets as a way to succeed with alt-data 
and feel that the most valuable use of alt-data is in 
identifying opportunities.

Both survey evidence and content from inter-
views provide rationale for, and additional details on, 
these summary f indings. Regarding the former, our 
survey instrument was completed in February 2018 by 
senior decision makers (i.e., chief executive officer, chief 
information officer, chief technology officer) from 22 
leading institutional-investment organizations. Col-
lectively, respondent organizations manage over US$1 
trillion; they represent a diverse mix of geographies 
(Australasia, Europe, Middle East, and North America), 
fund types (sovereign wealth funds, endowments, public 
pension funds), and fund sizes.

Although 70% of respondents feel that alt-data 
could help improve risk-adjusted returns in their organi-
zation, 90% state that their organization has no “defined 
alternative-data strategy” (of the 10% that do have alt-
data strategies, all admitted that these strategies are “not 
well developed”). Furthermore, less than 15% claim 
their organization is “equipped to handle” multiple 
forms of alt-data (nearly 30% strongly disagree that they 
are equipped). Less than one-third report that alt-data 
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are a “priority” for senior management, although 60% 
of respondents note that their organization is actively 
monitoring developments in alt-data or considering cre-
ating capacity in alt-data.

In aggregate, these response patterns depict an 
uneasy tension. Investors are clearly aware of alt-data’s 
potential benef its but are not situating themselves 
strategically to reap these benefits. This awareness-
without-progress could drive a reactive need to catch 
up in the future and cause alt-data strategies to be less 
carefully designed than they might have been with pro-
active planning.

Respondents also believe speed and quality are sig-
nificantly more important properties for alt-data than 
are granularity or volume.30 Over 80% claim “oppor-
tunity identification” to be the capability that alt-data 
could improve most within their organizations (“risk 
management” was selected by less than 10% of respon-
dents). These answers indicate a view that the primary 
beneficial application of alt-data is in allowing rapid 
detection of mispriced assets (e.g., arbitrages).

Finally, among survey respondents, a lack of “suit-
able ways to invest” (i.e., actionability) is stated to be 
the “biggest challenge” to their effective use of alt-data 
(32%), followed by the state of their existing tech-
nology (23%), analytic capability (23%), organizational 
culture (18%), and trust in alt-data from key decision 
makers (4%). We comment on the gravity of these chal-
lenges shortly.

To validate our survey findings and probe the situ-
ations behind them, we conducted a series of in-depth, 
semistructured interviews with seven of the respondents 
(one-third of the full sample). Interviews were conducted 
by telephone and lasted between 30 and 45 minutes. 
Overall, these interviews not only confirmed results 
from the survey but also provided additional details 
germane to Investors’ perspectives about alt-data. First, 
none of the interviewee organizations have formal defi-
nitions for what constitutes alt-data. Such definitions 
are, arguably, a prerequisite for prudent alt-data strate-
gies. Second, interviewees voiced concern over both 
the costliness of acquiring alt-data and their organiza-
tions’ ability to be competitive in their usage of alt-data. 
Worries about cost fixate on how expensive interviewees 

30 The fact that respondents do not feel alt-dataset size is of 
primary importance is reinforced by the fact that a majority (72%) 
answered that alt-data are not “essentially the same as big data.”

think it will be to conduct alt-data operations in-house. 
Relatedly, although respondents generally feel that they 
could become as capable as their peers in developing 
alt-data functions, they are unsure about whether they 
can compete with other entities (especially hedge funds) 
when it comes to their ability to use (i.e., analyze) alt-
datasets. Third, interviewees confirmed the survey 
finding that rapid identification of mispriced assets is 
the application for alt-datasets with which Investors are 
most (and, for some, exclusively) familiar. Fourth, a con-
sensus emerged among interviewees that alt-data are 
most valuable if they are proprietary.

Two other notable points arose in the interviews, 
concerning (1) data provenance and (2) cooperation. For 
some Investors, a key stall point is how transparent an 
alt-dataset’s lineage is (i.e., how clear is knowledge of 
its source, what transformations have been performed 
on it, and who performed them). Several interviewees 
noted that their organizations would have reservations 
about making decisions based on alt-data of uncertain 
provenance and that murky provenance could dis-
suade or prevent them from using third-party alt-data. 
Furthermore, most interviewees agree that their orga-
nizations would very likely cooperate with peers in 
building alt-data capacity.

Modes for Accessing Alt-Data’s Benefits

In sum, the preceding observations strongly dem-
onstrate that Investors do not appear prepared to go 
it alone in sourcing, processing, or maintaining either 
a wide or deep array of alt-data. Yet, the results also 
indicate that Investors seem sufficiently interested in alt-
data to be unlikely to ignore it altogether. Nor should 
they. For reasons already mentioned, alt-data could serve 
Investors as a crucial resource. The question then sur-
faces of how Investors should access alt-data.

We see two assisted paths Investors might follow 
in accessing alt-data. The first involves trusting external 
third parties (including asset managers) to provide indi-
rect access. That is, those access providers take care of 
the difficult tasks of sourcing, managing, and acting on 
alt-data, and Investors reap some of the benefits that 
they may have otherwise received from handling the 
alt-data themselves. This path addresses the realization 
that accessing alt-data should not be an end goal in its 
own right for Investors. Instead, they should aim to 
maximize the benefits from alt-data.
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Nonetheless, off loading alt-data responsibilities 
onto access providers deprives Investors of a pivotal 
benefit that building alt-data capacity could provide 
to them: accelerating innovation. Investors generally 
struggle with innovation (Monk and Rook 2018). Alt-
data, however, supply a springboard for innovation. 
By definition, the use of alt-data in decision making 
requires at least some innovation by Investors. In many 
cases, the amount of innovation itself may be modest, 
but the amount of learning from it (which could drive 
future innovation) can be significant.

Moreover, alt-data is a topic that invites consid-
erable excitement and stirs imaginations: It is a sexy 
concept in finance. Investors can often struggle with 
innovation simply because they lack internal agree-
ment (within their organizations) about what resources 
deserve innovation. Alt-data’s allure could make it a 
common point of agreement for coalescing support for 
innovation.

As we elaborate later, outsourcing alt-data 
capabilities—such as relying exclusively upon external 
third parties for indirect access to alt-data—could cause 
a sizable sacrifice in innovation capabilities for Investors. 
We believe that many, if not most, Investors should be 
thinking about how to build in-house capacity around 
alt-data, especially for defensive and defensible strat-
egies.31 The degree and nature of this capacity will need 
to vary with each Investor’s own organizational context, 
but every Investor is indeed capable of building such 
capacity—to at least a minor extent.

The drive to build some internal alt-data capacity—
coupled with the fact that Investors are not ready, by and 
large, to undertake the sourcing and management of 
alt-data all by themselves—suggests the second assisted 
path by which Investors may feasibly access alt-data: 
alt-data vendors. Two main types of alt-data vendors 
can be distinguished: point vendors, who offer either 
a single or limited number and type of alt-dataset; and 
platform vendors, who tend to offer wider selections of 
alt-datasets and may additionally offer integration or 
analytical tools that aid use of alt-datasets.

In the following, we compare prospects and 
demerits of Investors seeking alt-dataset access through 

31 If Investors are electing not to build in-house capacity, then 
we recommend that the decision result from thorough analysis of 
long-term trade-offs to the organization (e.g., from loss in potential 
innovation versus resource absorption).

both kinds of vendor, in relation to one another and in 
relation to external access providers. On the latter, we 
focus on the impacts of Investors relying on external 
asset managers for alt-data.

External Asset Managers as Access Providers

Some external asset managers (e.g., some hedge 
funds) have enjoyed relatively lengthy experience in 
working with alt-data—at least when compared to Inves-
tors. Given Investors’ widespread desire to gain exposure 
to the benefits of alt-data but lack of full capacity to do 
so at present, it may seem advisable that they seek indi-
rect access through such managers. If doing so came only 
at the cost of forfeiting some experience with learning to 
innovate, this option might be recommendable. How-
ever, there are at least three additional reasons why it 
is not. The first stems from the opportunistic nature of 
most external asset managers. In general, external man-
agers are less incentivized to be concerned about capital 
preservation and are more motivated to f ixate upon 
investment alpha than are Investors. These differences 
are not by themselves inherently problematic, given 
that external managers often are able to build stronger 
comparative advantages in generating investment alpha 
than are many Investors (although such advantages are 
routinely on a gross basis and may not hold once costs 
are fully considered). What is troublesome, however, is 
the fact that this emphasis on alt-data for opportunity 
identification and exploitation predisposes external asset 
managers to becoming engulfed in an escalating arms 
race around alt-data. We discuss the drivers, dynamics, 
and likely implications for Investors of that arms race in 
the next section.

A second major reason why it might not be recom-
mendable for Investors to rely too heavily on external 
managers for alt-data access involves transparency and 
provenance. When Investors outsource their alt-data 
efforts to external managers, they lose the ability to 
inspect, verify, and otherwise work with the data on 
which those managers are basing decisions. Not only 
does this loss translate into opportunity costs from for-
gone innovation opportunities, it also creates issues 
around lack of visibility and verifiability. In not directly 
accessing alt-data used by their external managers, 
Investors are forced to rely on those managers to estab-
lish and maintain their quality. As we explain in the 
next section, however, heightening competition over 
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alt-data may well push external managers to accept and 
execute investment decisions on alt-datasets of increas-
ingly lower quality, which can inject unforeseen (and 
sometimes unidentifiable) risk into Investors’ portfolios. 
The likelihood of transparency problems will probably 
worsen as competition over alt-data grows; managers 
should then tend to be more secretive about their pro-
cesses around and sources of alt-data.

Another major reason why Investors should restrict 
reliance on external asset managers in accessing alt-
data is the subsidization of a capability gap. That is, 
although some external managers presently possess some 
comparative advantages over Investors when it comes 
to alt-data, those advantages need not be permanent. 
Whenever an Investor contracts an external manager to 
invest on its behalf, and the manager makes use of alt-
data to do so, that Investor is effectively subsidizing the 
manager in improving its capacity for alt-data relative 
to the Investor’s own capacity. This subsidization thus 
increases both the manager’s comparative advantage and 
the Investor’s reliance on external parties for alt-data 
capacity, reducing the Investor’s future strategic f lex-
ibility around alt-data.

Access through Alternative-Data Vendors

The path of building increasing internal capacity 
around alt-data through partnering with vendors miti-
gates or eliminates many of the aforementioned prob-
lems with relying on external managers. First, vendors 
are (usually) just providers of alt-data, the use of which 
is determined by Investors. Hence, vendor-supplied 
alt-data do not necessarily expose Investors to prob-
lems connected with opportunistic usage of alt-data 
(although, as mentioned earlier, many vendors do stress 
the alpha-generating merits of their datasets). Second, 
concerns about transparency are partly lessened when 
Investors access alt-data directly through vendors rather 
than indirectly through external managers; in the former 
instance, Investors are actually able to examine the alt-
datasets. To be clear, being able to actually work with 
the data directly does not eliminate the possibility of 
errors or other quality problems in the data. Yet such 
possibilities are typically more investigable (i.e., Investors 
may be able to request assurances about the secure prov-
enance of the alt-datasets) than they are with external 
managers. Furthermore, because quality and trustwor-
thiness are dimensions on which vendors compete with 

one another, many are incentivized to remain highly 
transparent.

A third concern that is alleviated by partnering 
with vendors rather than asset managers is that of subsi-
dization. It is true that whenever an Investor subscribes 
to or buys an alt-dataset from a third-party vendor, 
it is subsidizing that vendor’s comparative advantage 
in sourcing alt-data (and possibly cleaning or prepro-
cessing alt-data, depending on the services that vendor 
provides). When creating defensible strategies around 
proprietary alt-datasets, this subsidization may be prob-
lematic. However, we expect that most Investors will 
instead favor defensive applications of alt-data, in which 
case such subsidization would actually tend to be helpful 
for Investors: It would help fund the vendor’s provision 
of additional alt-datasets, and so would further benefit 
Investors.

Additionally—depending on its infrastructure and 
particular method of accessing alt-data from vendors—
experimenting with different forms of alt-data may 
be substantially easier through vendors than through 
external asset managers. That is, switching between 
vendor subscriptions is, in many situations, likely to 
be less arduous than switching allocations to different 
external asset managers. Thus, partnering with ven-
dors may allow Investors to try out more configura-
tions of alt-data when attempting to incorporate it into 
their strategies, thus increasing their odds of finding a 
good fit.

Still, the path of accessing alt-data via vendors is 
not without its downside.32 The foremost of these is 
the low degree of excludability for vendor-supplied alt-
data. Of course, when Investors’ use cases for alt-data 
are predominantly defensive, excludability becomes less 
worrying. Likewise, when Investors use alt-data to build 
capabilities that are defensible (even when the alt-data 
upon which they are based are not), such as privileged 
access to deal f lows, excludability is not a concern.

Moreover, higher (if not total) excludability can 
often be achieved at higher cost: Vendors may be willing 
to provide more exclusive access to alt-datasets for pre-
mium prices. In many cases, therefore, Investors that 

32 One particular challenge that Investors may face in relying 
on platform vendors to access alt-data is whether external data pro-
vided by the vendor can be easily integrated with the Investor’s 
internal data—without Investors losing control over their internal 
data or giving others access to it. Tackling this challenge could help 
vendors distinguish themselves.
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access alt-data through vendors can balance dataset cost 
against scarcity. Striking such a balance may frequently 
entail working with multiple vendors. In so doing, any 
Investor should consider the relative advantages and dis-
advantages of point and platform vendors.

Point vendors tend to be more specialized than 
platform vendors.33 The former therefore can often pro-
vide more novel, differentiated alt-datasets. Moreover, 
because point vendors have fewer product offerings than 
platform vendors, they may be able to verify a larger 
fraction of their data more intensively than platform 
vendors (although this need not always be true). Point 
vendors, however, often have smaller markets for their 
offerings than do platform vendors, which can bundle 
together multiple datasets to broaden their appeal. This 
narrower market for many point vendors means that 
their costs can be higher than their platform counter-
parts and so put them out of reach for smaller Investors 
(or those with less budgetary room for alt-data). Also, 
point vendors can face diseconomies of scope that are 
less severe for platform vendors. For instance, it is typical 
that platform vendors can deliver alt-datasets in a single 
format or offer more streamlined integration (through, 
e.g., standardized APIs).34 Doing so simplifies access for 
Investors—relative to having to integrate multiple, dis-
tinct formats from point vendors.35

We anticipate that many Investors who partner 
with third-party vendors to serve their alt-data ambi-
tions will select a limited (e.g., one or two) number of 
platform partners and supplement the alt-datasets offered 
by these platform vendors with specif ic alt-datasets 
accessed through point vendors.

33 Examples of platform providers that specialize in alt-data 
include Neudata and Quandl. More traditional financial-data plat-
forms, such as Bloomberg and FactSet, also are increasing their 
alt-data offerings. Interestingly, a new type of alt-data entity also 
seems to be emerging that offers analysis of specific types of alt-
datasets, rather than just providing access to them (in some instances 
such entities do not provide access to the alt-datasets themselves). 
Examples of these new kinds of entity include Orbital Insight (for 
satellite-image analysis) and Predata (for social-media analytics).

34 Integration difficulties may (initially) favor platform pro-
viders that specialize in conventional data but offer alt-datasets as 
an additional service. Increasingly, incumbent providers of conven-
tional data are also offering alt-data.

35 Platforms may also prove a more efficient way for Investors 
to keep pace with changing data regulations, under the assumption 
that the chosen platform can be trusted to stay current with data 
legislation and related compliance issues.

THE ESCALATING ALTERNATIVE-DATA 

ARMS RACE

Rethinking alt-data—in terms of its value proposi-
tion, characterization, and access—will almost surely be 
a strenuous process for most Investors. Might it not be 
better for some to avoid involvement in alt-data alto-
gether? We think not. As we explain here, an arms race 
around alt-data is underway and gathering momentum 
across f inancial markets. The ways in and extent to 
which we foresee this race escalating lead us to believe 
that Investors will not be able to escape becoming mean-
ingfully affected by it. We advise that they try to pro-
actively engage with alt-data by building defensive and 
defensible alt-data strategies, rather than being dragged 
along in a reactive manner.

Arms-Race Logic

In an elegant application of formal economic logic, 
Grossman and Stiglitz (1980) proved that the persistence 
of efficient equilibria is impossible in financial markets. 
They did so by highlighting a fundamental paradox. 
Market efficiency is driven by profit-motivated market 
participants who aim to exploit the mispricing of finan-
cial assets through transacting, based on information 
they possess. In transacting, they jointly increase market 
efficiency and decrease the value of their information. In 
(the strongest forms of ) equilibrium, there is no unex-
ploited information and so no incentives for participants 
to either transact or seek out additional information 
to exploit. However, because the wider world is never 
in stasis—new information is arriving all the time—
markets cannot be permanently in equilibrium. If they 
were, then there would be no (nonrandom) transacting, 
which would permit existence of unexploited infor-
mation and thereby mean that no equilibrium existed, 
by definition.

Paradoxically, competition is a force that makes 
markets more efficient but also ensures that they cannot 
become entirely efficient. An unceasing inf low of new 
information and data is the key to this seeming contra-
diction. If no new data about the wider world were to be 
created, then markets would (hypothetically) settle into 
equilibrium, but because the world is ever changing, 
there is continual production of new information.36 

36 More than 90% of all digital data that have ever existed 
was created in the last two years (see, e.g., Henke, Libarikian, and 
Wiseman 2016).
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Ongoing competition among market participants to 
exploit this new information and data squarely qualifies 
as an arms race, which is definable as a situation in which 
parties are locked in perpetual efforts to outcompete one 
another, without a defined endpoint. Thus, any effort at 
active investing amounts to participating in a data arms 
race. Still, this race is useful: If all participants were 
passive, then markets would not function.

Every Investor is therefore directly affected by 
active investing, even if its own strategies are fully pas-
sive. By merely deploying capital in public markets 
(which every Investor does), they are exposed to the 
active-investing activities of other parties, which affect 
the volatility and liquidity of their own portfolios. Much 
of this active investing is done by non-Investor asset 
managers, who are either hired by or compete with 
Investors. Thus, all Investors are directly affected by 
the arms race for data in general (not just alt-data) that 
is continually underway in public markets. To better 
understand the consequences of an alt-data arms race for 
Investors, we should understand what drives the inten-
sity of data arms races more broadly. To that end, rivalry 
and excludability are core forces.

Role of Rivalry and Excludability

The intensity of data arms races is fueled by 
the rivalry and excludability of the datasets based on 
which their participants aim to make investment deci-
sions. Practically all data in finance are rivalrous in the 
sense that any use of data for transacting reduces (or 
even eliminates) the value in executing similar trans-
actions thereafter, regardless of who conducts them. 
This property means any (profitable) actionability of 
data is eventually self-eliminating so that the value of a 
dataset decreases by acting on it. This self-eroding value 
of data’s actionability can, however, be partly offset by 
scarcity. The fewer entities that have access to a dataset, 
the more proportional value can be kept by those with 
access. Scarcity is a crucial reason why alt-datasets can 
be so precious. Most conventional datasets in finance 
are nonexcludable.37 Entities with them cannot readily 
bar others from getting them, and when they transact 

37 This low excludability is increasing the need for financial 
organizations to conceal their digital activities (i.e., reduce their 
digital footprints) so that their data and information inputs are less 
inferable by other, competing organizations.

on these datasets, others can better divine their content, 
which devalues them more (i.e., they devalue when first 
transacted on as a result of decreased actionability, and 
then again from reduced scarcity).

Alt-data, meanwhile, are typically more exclud-
able—and so any specific alt-dataset tends to be scarcer—
than are conventional data. Some alt-datasets can be 
permanently excludable: Those who create or acquire 
them first can prevent all others from possessing and 
transacting on them. More typically, alt-datasets are 
limitedly excludable: Entities with them can only exclude 
others from acquiring them (or replicating them, to 
some approximation) for a limited time or else can 
only restrict the number of others who obtain them to 
a limited extent. Consequently, excludability of many 
alt-datasets means substantial value can be realized by 
being f irst to capture a dataset, even if it cannot be 
immediately acted on (i.e., scarcity might offset low 
near-term actionability).38

This interplay among competition, rivalry, and 
excludability underpins the intensity of current land 
grabs for alt-data (i.e., an alt-data arms race) in global 
financial markets. Moreover, the combination of these 
factors creates perverse incentives for market participants 
to (1) overweight specif ic facets of alt-datasets when 
evaluating them, (2) focus on short horizons, and (3) 
potentially overprice alt-datasets of undetermined value. 
Valuing an alt-dataset is an uncertain business. Its full 
richness (i.e., comprehensiveness, reliability, granularity, 
and freshness) is often hard to establish without spending 
much time working with it. Likewise, the complete set 
of ways in which it is actionable may not come into 
focus until it is more thoroughly processed and analyzed. 
These layers of uncertainty mean that a hierarchy often 
emerges for alt-datasets, whereby scarcity and immediate 
actionability trump other characteristics.

The primacy of these two factors, in light of 
the limited excludability of many alt-datasets, means 

38 Alt-data that concern sustainable/responsible investing 
may be somewhat different from other forms of alt-data in this 
respect. Investors may well benefit from reducing the excludability 
of alt-data that are relevant for sustainable/responsible investing 
(e.g., that relate to environmental, social, or governance factors or 
sustainable development); in doing so, they might benefit from the 
emergence of stronger standards and norms regarding sustainable/
responsible investment practices.
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short timeframes can easily become overemphasized.39 
First, accentuation of datasets that have immediate 
actionability naturally biases use of them toward the 
short term. Second, limited excludability creates an 
impetus to act before others are able to acquire or 
create substitute datasets. Third, the outsized value of 
scarcity can encourage data hoarding, whereby entities 
leap before looking and obtain alt-datasets that promise 
high scarcity and excludability but only minimally 
consider the actionability of such alt-datasets upfront. 
Data hoarding can lead to strategic misfits, that is, alt-
datasets that are poorly aligned with organizational 
capabilities or priorities and so have low long-term 
strategic value. Datasets with sufficiently low value can 
drive pursuit of shorter payback periods to offset their 
costs and thus compress the time horizons of decisions 
made with them.

For entities that can cope with, or even excel 
at, concentrating on short horizons (e.g., some hedge 
funds), the current intensity of the alt-data arms race 
may be meaningfully beneficial and increase rewards for 
their comparative advantages in speed or agility. In gen-
eral, Investors are not in this group. By and large, their 
foremost advantage is patience and the ability to operate 
over long timescales. Unfortunately, Investors’ involve-
ment in this arms race is not readily avoidable, which is a 
problem because the race shows no sign of abating soon. 
On the supply side, an increasing number of sources and 
formats for new data continues to emerge. Meanwhile, 
proliferation of advanced analytic tools, such as deep-
learning platforms, are stoking fiercer competition over 
alt-data.

Sticky Consequences for Investors

Few, if any, Investors will be able to successfully 
decouple themselves from the alt-data arms race. Its 
stickiness will mean that Investors cannot insulate 
themselves from it and still achieve current risk and 
performance targets. A pivotal realization here is that 
market competition makes alt-data a moving target. 
In not using alt-data, market participants handicap 

39 Alt-datasets that are perfectly excludable can still create 
bias toward short-term action. In contrast, alt-datasets with limited 
excludability carry additional pressure because of their wasting 
nature, which can encourage use-it-or-lose-it mentalities. Fur-
thermore, many limitedly excludable alt-datasets are cheaper and 
quicker to capture than are perfectly excludable ones.

themselves by limiting any informational edge that they 
can possess over other participants. As more participants 
begin to acquire and transact on any specific type of 
alt-data (if not the same alt-dataset), however, that type 
starts to become conventional data, which then lifts the 
net value of other unconventional datasets. In short, 
opportunity costs for many market participants, espe-
cially non-Investor asset managers, become too great to 
not seek and use alt-data. As more market participants 
embrace alt-datasets, markets (especially public markets) 
will be more affected by them, until they affect even 
passive investing.

A vital question for Investors engaged in predom-
inantly passive strategies is how alt-data’s increased 
inf luence over market activity will change the char-
acter of that activity itself. How will the rising inten-
sity of the alt-data arms race alter the nature of risk 
in markets? There is a reasonable case to be made that 
the increased intensity of this race will not lower vola-
tility in public markets. Indeed, the opposite appears 
to us more probable, due to (at least) three factors. For 
one, pressures toward short-termism that we discussed 
earlier bias decisions toward action rather than inac-
tion. More market activity means greater volatility. 
Furthermore, intensif ied competition over alt-data 
means that there is pressure not only to act fast but also 
to act big because of f leeting actionability. Possessing 
a unique and excludable alt-dataset does not block 
other entities from eroding its actionability by acting 
on it f irst: There is reason to act not only swiftly but 
also extensively to prevent actionability from evapo-
rating. More extensive activity also increases volatility. 
Finally, the increasing use of algorithmic methods 
for trading based on alt-data will likely contribute 
to higher market volatility. Increased volatility will 
probably raise costs of passive investing through a 
combination of higher transaction costs (because of 
faster turnover), hedging costs, liquidity threats, and 
cash drag.40 Whether these negative possibilities might 
push more Investors away from passive strategies is 
not yet clear.

40 One way to temper risk in passive investing is to increase 
portfolio allocations to cash, versus the market portfolio. Because 
the return on cash will not necessarily be increased because of 
higher volatility in the wider market portfolio, there will be likely 
be opportunity costs in gross (and possibly net) returns when cash 
allocations increase (i.e., cash drag).
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But if the alt-data arms race succeeds in shifting 
more capital to active-investment strategies, then a cir-
cularity might arise: More money pumped into active 
investing would raise the value in using alt-data for 
active investors, which would increase the intensity 
of the arms race around alt-datasets. This is a perilous 
treadmill for Investors and threatens their interests.

We have already asserted one way to avoid step-
ping onto that treadmill: concentrating on cultivating 
defensive and defensible alt-data strategies. Such 
approaches could partly immunize Investors against 
the arms race over alt-data but, by themselves, may not 
be sufficient. To properly insulate themselves from the 
alt-data arms race, Investors might need to bolster their 
capabilities in real-asset investments, such as natural 
resources and infrastructure. These types of invest-
ment have risk prof iles distinct from public securi-
ties and naturally lend themselves to more defensive 
applications of alt-data. Moreover, real-asset invest-
ments generally allow Investors to more fully exercise 
their comparative advantages in long-term investing. 
Rethinking the value proposition for alt-data could 
therefore go hand in hand with rethinking the com-
position of long-term portfolios.

SUMMARY

The rising accessibility and diversity of and com-
petition over alt-datasets presents Investors with novel 
challenges. We believe that these challenges give Inves-
tors cause to rethink how they will strategically engage 
with alt-data. Escalating competition for alt-datasets 
means that Investors are unlikely to remain unaffected 
by alt-data and that their strategic planning should take 
this fact into account. Potential opportunities afforded 
by defensive and defensible alt-data strategies give Inves-
tors ample reasons not only to seek access to alt-datasets 
but to build internal capacity for working with and 
acting on them. Cultivating such capacity could be a 
key engine for innovation.

Although we see many merits for Investors in 
directly engaging with alt-data, we point out that not 
all Investors should do so in the same ways or to equal 
degrees. Defensive and defensible alt-data strategies 
should be designed in ways that respect the specif ic 
resources and organizational contexts of individual 
Investors, which necessarily means that such strategies 
will differ from one Investor to the next. However, they 

need not differ so extensively that Investors cannot 
beneficially work together in growing their capacities 
for alt-data, including collaborating to generate and 
share alt-datasets with one another. We investigate these 
collaborative opportunities in a companion article.

In closing, we remind Investors of the advantages 
in being open-minded about alt-data and specifically 
about taking a wide view on how they can leverage alt-
data that already exist in their own organizations. Such 
data need not be exotic or complicated to be valuable. 
Indeed, the rising sophistication, but user friendliness, 
of many data-science tools should cause an increasing 
number of internal alt-datasets to be significant sources 
of operational alpha within the immediate future. More-
over, Investors should bear in mind that alt-datasets that 
relate to internal operations have a very valuable prop-
erty: They are maximally excludable and thus a fully 
defensible form of data.
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Perhaps the most important defining 
characteristic of factor models is that 
they must explain asset behavior to 
a sufficient degree given a restricted 

set of explanatory variables. Given this, the 
primary challenge for anyone building a 
factor model is to settle on a set of factors that 
on one hand can adequately explain port-
folio behavior over time, and on the other 
is simple enough to remain computationally 
tractable. In this way, the challenge faced in 
building a factor model is the same faced by 
scientists when building theories to explain 
natural phenomena, in which the trade-off 
between informative power and simplicity is 
also a fundamental consideration.

Although it is generally accepted that 
factor models should be built based on the 
foregoing principles, we often see practitio-
ners developing and using factor models that 
deviate from them in significant ways. This 
is especially the case with the models that 
underlie many commercially available risk 
platforms, which often include hundreds of 
correlated variables that are presented as fac-
tors. The reason why commercial risk plat-
forms take a maximalist approach to factor 
modeling is likely rooted in their motivation 
to provide a comprehensive picture of the 
risk exposures driving portfolio behavior. 

It is also rooted in their use of linear models. 
A linear factor model that restricts itself to 
a small number of factors faces the risk of 
providing an inadequate picture of portfolio 
behavior over a given measurement period. 
As a result, commercial risk platforms try to 
cover their bases by including a multitude 
of factors so that no exposure is seemingly 
unaccounted for. Despite this technical 
maneuver, the resulting frameworks are usu-
ally not genuine linear factor models, because 
of their size and the presence of correlated 
variables, nor are they maximally informa-
tive, because of their inability to account for 
the nonlinear behavior of and/or interaction 
effects among factors.

A natural response to the shortcom-
ings of linear factor models is to recommend 
the use of nonlinear factor models; however, 
parametric nonlinear models have a number 
of shortcomings. First, the structure of the 
latter models is often heavily dependent on 
the sample data. As the sample expands or 
contracts, we at times f ind that the func-
tion specified by the model changes, some-
times dramatically. Second, unlike linear 
models, parameter estimates cannot always 
be derived analytically. Rather, solutions are 
often found using iterative methods, in which 
initial values are posited for each unknown 
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target variable before various optimization techniques 
are invoked to home in on a solution. Although iterative 
methods can be useful, the optimizations that drive them 
may ultimately fail to converge if the initial values are 
too distant from possible solution values. Initial values 
that are remote from optimal values can also cause con-
vergence to a local solution rather than a global solution.

As a remedy to the drawbacks of both linear models 
and parametric nonlinear models, in this article the 
authors present a factor framework based on a machine 
learning algorithm known as random forests (RFs) (Ho 
1995, 1998; Breiman 2001). The authors show how to 
use the RF algorithm to produce models that, within 
a single framework, provide information regarding 
the sensitivity of assets to factors broadly analogous to 
those generated by more commonly used frameworks, 
but with a signif icantly higher level of explanatory 
power. Moreover, RF-based factor models are able to 
account for the nonlinear relationships, discontinuities 
(e.g., threshold correlations), and interactions among the 
variables, while dispensing with the need for complex 
functional forms or additional interaction terms (thus 
remaining in harmony with the principle of parsimony). 
In the last section of the article, the authors demon-
strate how the framework can be combined with another 
machine learning algorithm known as association rule 
learning (ARL) to build effective trading strategies, using 
a sector rotation strategy as an example. 

BASIC FEATURES OF FACTOR MODELS

Investment factor models are supposed to provide 
insight into the primary drivers of portfolio behavior. 
Formally, there are various ways to build a factor model 
(for a basic overview, see Connor 1995). Perhaps the 
simplest way is via an ordinary least squares (OLS) 
regression, in which the portfolio return is the depen-
dent variable, and the risk factors are the independent 
variables. As long as the independent variables have suf-
ficiently low correlation, different models will be statis-
tically valid and explain portfolio behavior to varying 
degrees. In addition to revealing what percentage of a 
portfolio’s behavior is explained by the model in ques-
tion, a regression will also reveal the sensitivity of a 
portfolio’s return to each factor’s behavior. These sen-
sitivities are expressed by the beta coefficient attached 
to each factor. 

Factor sensitivities and measures of explanatory 
power are the defining characteristics of factor models 
and are present in other common frameworks, such as 
those based on principal component analysis (PCA) (see 
Jolliffe 2002). As we show later, factor models based on 
machine learning can also describe the sensitivity of 
variables to the factors that explain them and provide 
information relating to the overall explanatory power of 
a given model. However, as previously mentioned, they 
also offer some distinct advantages over more traditional 
frameworks, such as the ability to capture nonlinear 
behavior and the interaction effects between factors. 
Additionally, RF models are generally less inf luenced 
by correlations between variables. Indeed, the ques-
tion of multicollinearity does not enter into the picture 
when building an RF model in the way it does in an 
OLS regression.1 One reason for this is that unlike OLS 
regression, RF models are estimated without requiring 
the inversion of a covariance matrix. Another distinct 
advantage of RF models is that they do not have strict 
parametric assumptions, nor do they rely on other time 
series assumptions such as homoskedasticity or indepen-
dence of errors. Nevertheless, although RF models are 
relatively rule-free, it is our view that a fair amount 
of pre-model work should be done to ensure that the 
inputs into the model make sense from the standpoint of 
both investment relevance and economic coherence and 
possess a sufficient level of factor uniqueness to produce 
models that are both practical and free from explanatory 
redundancies. Although factor selection is an impor-
tant aspect of building any factor model, it is especially 
critical when using machine learning-based methods.

MACHINE LEARNING AND THE RANDOM 

FOREST ALGORITHM

Machine learning refers to a collection of computa-
tional techniques that facilitate the automated learning 
of patterns and the formation of predictions from data. 
As such, machine learning methods can be used to 
build models with minimal human intervention and 
pre-programmed rules. Machine learning algorithms are 
(very) broadly classified as either supervised or unsupervised 

1 Those concerned with multicollinearity may benefit from 
using PCA or LASSO (least absolute shrinkage and selection oper-
ator) in the pre-model stage of an analysis to aid in generating factors 
that are unique.
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learning algorithms. Unsupervised learning algorithms 
include those encompassing clustering and dimension 
reduction, in which the goal is to draw inferences and 
define hidden structures from input data. Unsuper-
vised algorithms are distinguished by the fact that the 
input data are not categorized or classif ied. Rather, 
the algorithm is expected to provide a structure for 
the data. A well-known example of an unsupervised 
learning algorithm is k-means clustering (Lloyd 1982). 
In contrast, supervised learning (including reinforce-
ment learning) algorithms use input variables that are 
clearly demarcated. With supervised learning, the goal 
is to produce rules and/or inferences that can be reli-
ably applied to new data, whether for classification or 
regression-type problems. The RF algorithm used in 
this article is an example of a supervised learning algo-
rithm and has been shown to be extremely effective 
in a variety of scientific applications, such as medical 
diagnosis, genome research, and cosmology.

Some machine learning algorithms, including RF, 
incorporate decision trees, a tool that is helpful in ana-
lyzing and explaining complex datasets. For regression-
type problems, decision trees start from a topmost or 
root node and proceed to generate branches, with each 
branch containing a condition, and a prediction in the 
form of a real-valued number, given the condition in 
question. Trees are composed of a series of conditions 
attached to decision nodes, which ultimately arrive at a leaf 
or terminal node whose value is a real number.2 The latter 
value represents a predicted value for a target variable 
given a set of predictor values. In Exhibit 1, we show a 
simple example of a decision tree that analyzes the rela-
tionship between monetary policy and macroeconomic 
conditions.

Decision trees can be constructed using var-
ious procedures (e.g., ID3, CHAID, MARS). In this 
article, we use a procedure known as CART (classifica-
tion and regression tree, a methodology developed by 
Breiman et al. 1984). CART uses an algorithm called 
binary recursive partitioning, which divides the input space 
into binary decision trees. In this procedure, features are 
evaluated using all sample values, and the feature that 
minimizes the cost function at a specific value is chosen 
as the best split. Recursive partitioning takes place at 

2 Several stopping criteria can be used to halt the tree-building 
process—for example, a minimum number of samples in a leaf, the 
depth of the tree, and the total number of leaves.

each level down the tree, and the value at each leaf of 
the tree is the average of all the resulting observations. 

In Exhibits 2, 3, and 4, we proceed to describe 
binary recursive partitioning and the RF algorithm in 
formal detail. In doing so, we use (with some modifica-
tion) the descriptions provided by Cutler, Cutler, and 
Stevens (2012). We begin with the definition of binary 
recursive partitioning in Exhibit 2.

RF uses an ensemble of decision trees in con-
junction with the CART technique. Each tree in the 
ensemble is constructed via bootstrapping, which 
involves resampling from the data with replacement 
to build a unique dataset for each tree in the ensemble. 
The trees in the ensemble are then averaged (in the case 
of regression), resulting in a final model. The bootstrap 
aggregation of a large number of trees is called bagging.3 
We describe the RF algorithm formally in Exhibit 3.

Predicted values of the response variable for regres-
sion4 at a given point x are given by

 ∑( ) ( )=
=

ˆ 1 ˆ
1

f x(
J

h (
j

J

j  

where h xj
ˆ ( )x  is the prediction of the response variable at x 

using the jth tree (This formula concludes the algorithm 
in Exhibit 3).

When a bootstrap is conducted, some observa-
tions are left out of the bootstrap. These are called 
out-of-bag (OOB) data and are used for measuring 
estimation error and variable importance. If trees are 
large, using all the trees may produce a false level of 
conf idence in the predictions of the response vari-
able for observations in the training set D. To remedy 
this risk, the prediction of the response variable for 
training set observations is done exclusively with trees 
for which the observation is OOB. The resulting 

3 Bagging is useful because it generally reduces overfitting 
and has a lower variance when compared to processes that only use 
individual decision trees. An individual tree may end up learning 
highly idiosyncratic relationships among the data and hence may end 
up overfitting the model. Averaging ensembles of trees provides a 
better opportunity to uncover more general patterns and relation-
ships between variables. Overfitting can also be addressed by using 
simpler trees (i.e., those with a lower number of splits).

4 For classif ication, the prediction values are given by

∑= ∑ˆ ) argmax ˆ ( ) ).
1

f x( I h( x y=)y j∑ =
(

1
I h(

j

J
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predictions, f ittingly labeled out-of-bag predictions, are 
defined in Exhibit 4.

For regression5 with squared error loss, generaliza-
tion error is generally measured using the OOB mean 

squared error (MSE): ∑= ∑ =

1
( ˆ ( )) .2

1
MSE

N
y f−OOB i OOBff ii

N

An RF analysis produces two basic outputs. The 
first output is simply a set of conditional values—for 
example, a set of factor returns and a predicted value for 
a dependent variable such as a portfolio return, given the 
posited factor returns. The second output is something 

5 For classification with zero-one loss, the generalization error 

rate is given by ∑= ≠∑ =

1
( ˆ )).

1
E

N
I y( f x(OOB i OOBff ii

N

called feature importance (FI). As its name implies, FI 
indicates the importance of each explanatory variable 
in contributing to the predicted value of the dependent 
variable in question. 

We calculate FI using mean decrease accuracy, which 
measures the degree to which the predictive power of 
the model would be diluted if the values for the explana-
tory variable in question were randomly changed. The 
mechanics of FI measurement work as follows: Once the 
jth tree is generated, the values for the predictor variables 
are randomly permuted in the bootstrapped sample, and 
the prediction accuracy is recalculated. For regression, 
the FI for the observation is calculated as the difference 
between the MSE of the predictions using the permuted 

E X H I B I T  1
Example of a Decision Tree
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E X H I B I T  2
Algorithm for Binary Recursive Partitioning

Σ

Note: For classification, the prediction values are given by ∑= ∑ˆ( ) argmax ( )=
1

h x( I( yy k∑ =1
I y( ii

n
 where I(yki = y) = 1 if yki = y and 0 otherwise.

Source: Cutler, Cutler, and Stevens (2012).

E X H I B I T  3
Algorithm for Random Forests

J = 1 to j:

1. Draw a bootstrap sample  j of sizej N fromN .
2. Using the bootstrap sample  j as the training data, fit a tree using binary recursive partitioning (Exhibit 2):

a. Start with all observations in a single node.

b. Repeat the following steps recursively for each unsplit node until the stopping criterion is met:
  i. Select m predictors at random from the p available predictors.

ii. Find the best binary split among all binary splits on the m predictors from step i.

iii. Split the node into two descendant nodes using the split from step ii.

Let = {(x(( 1, y1), ..., (x(( n, yn)} denote the training data, with xi = (x(( i,1, ..., xi,p, )T.

Source: Cutler, Cutler, and Stevens (2012).

E X H I B I T  4
Algorithm for Out-of-Bag Predictions

Let  j denote thej jth bootstrap sample and hjh (x(( ) denote the prediction x from the jth tree, for

1. Let i = { j{{ : (x(( i, yi) ∉ j}, and let JiJ  be the cardinality of i (Exhibit 3).

2. Define the OOB prediction for regression6 at xi to be fOOBff (x(( i) =

j = 1, ...,j J. For JJ i = 1 to N:NN

∑j∑ ∈ i
hjh (x(( i).JiJ

1

ˆ

ˆ ˆ

Note: For classification, the OOB prediction is given by 
J∑= ∑ ∈

ˆ ) argmax ( ˆ ( ) ),f x( I h( y=)OOBff i y) argmax j i(
j

j
 where ˆ )h x(j i((  is the prediction of the response variable at 

xi using the jth tree.

Source: Cutler, Cutler, and Stevens (2012).
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data and the MSE of the predictions using the original 
data: −( ) .FI M=) SEMM MSEj OOB OOBPermuted

6

Next, a normalization is generally conducted to 
allow an assignment of a relative FI (RFI) value to each 
feature. The normalization is accomplished by adding 
the FI values for each factor in a single tree and dividing 
that value into the FI value for each factor. This will 
yield a cross section of FI values that sum to unity. This 
operation is repeated for each tree, and the normalized 
FI (NFI) values are then averaged across all the gener-
ated trees to produce an RFI value for a given feature 

k—that is, 
∑

= =RFI kFF
NFI kFF

J
j

J

j
( )k

( )k
1 . The RFIs will also 

fall in the range [0,1] and sum to unity. As we shall 
see in the forthcoming sections of the article, the RFI 
measure plays a pivotal role in building and interpreting 
RF-based approaches to factor modeling.

BUILDING FACTOR MODELS USING 

RANDOM FORESTS

Factor models are generally articulated as linear 
models despite the drawbacks highlighted earlier. Linear 
models are preferred by practitioners because they gen-
erally present readily understandable and interpretable 
analysis. In contrast, machine learning approaches, 
although useful in uncovering the nonlinear behavior 
of and interaction relationships among variables, are 
often articulated in a way that makes their output unin-
tuitive, and hence unattractive, to many investment pro-
fessionals. Nonetheless, as we shall demonstrate, it is 
possible to interpret the results of an RF factor analysis 
in a way that is both tractable and practical. 

To frame our discussion, we use a variant of 
the well-known Fama–French–Carhart (FFC) equity 
factor model (Fama and French 1992, 1993; Carhart 
1997). The FFC model is a multifactor extension of 
the capital asset pricing model (CAPM) (Treynor 1961; 
Sharpe 1964; Lintner 1965; and Mossin 1966), where 
the market represents the sole source of systemic risk. 
The FFC model extends the CAPM framework by 

6 For classif ication, FI(i) = −E EOOB OOBPermuted
. We note that 

although we have chosen to use MSE as our operative measure of 
feature importance, it is not the only one available. Other com-
monly used metrics include mean absolute error, the Gini index, 
and entropy.

introducing three new factors in addition to the market 
factor: the size factor (small-cap stock returns minus 
large-cap stock returns), value (high book-to-price 
stock returns minus low book-to-price stock returns), 
and momentum (high-returning stocks minus low-
returning stocks).7 Both the CAPM and the FFC are 
typically expressed as linear models. Thus, the RF 
variant of the FFC presented here provides a counter-
point to its traditional representation.

We use the FFC model to explain the performance 
of the 10 primary sectors of the stock market, with each 
sector represented by its respective Dow Jones index. 
In an RF model, the FFC factors function as features 
that we use to predict return values for each of our 
sectors. It is thus possible to examine how various fac-
tors inf luence the predicted values for a target variable 
when the latter takes on different values. A natural way 
to do this is to divide the predicted sector returns into 
percentiles and observe the value that factor returns 
take at each of them. Here we select observations that 
map to the 10th, 25th, 50th, 75th, and 90th percentile 
values of the target variable, then observe how each 
factor’s inf luence on the predicted value of the target 
variable differs at each percentile.8 Doing this produces 

7 The following are detailed factor descriptions obtained from 
Ken French’s website (http://mba.tuck.dartmouth.edu/pages/fac-
ulty/ken.french/data_library.html):

• Rm − Rf  , the excess return on the market, is the value-weighted 
return of all CRSP firms incorporated in the United States 
and listed on the NYSE, AMEX, or NASDAQ that have a 
CRSP share code of 10 or 11 at the beginning of month t, 
good shares and price data at the beginning of t, and good 
return data for t minus the one-month Treasury bill rate. 

• SMB (small minus big) is the average return on three small 
portfolios minus the average return on three big portfolios: 

= +

− + +
3

     
3

SMBMM
Small value Small neutral S+ mall growth

Big value Big neutral Big growth  

• HML (high minus low) is the average return on two value 
portfolios minus the average return on two growth portfolios: 

= +

− +
2

2

HMLMM
Small value Big value

Small growth Big growth  

• Momentum is the average return on two high prior return port-
folios minus the average return on two low prior return port-

folios: = + − +   
2 2

Mom
Small h  igh Big highi Small l  ow Big low

8 It is also possible to organize the explanatory variables into per-
centiles and investigate how the predicted values for the target variable 
change in response to significant shifts in the values of the predictors.
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information regarding the sensitivity of sector returns 
to factor returns that is similar to that provided by a 
quantile regression (Koenker 2005). Observing variable 
behavior across percentiles is useful because doing so 
often reveals asymmetric relationships between factors 
and target variables within a set of observations.

In Exhibit 5, we show the returns for each FFC 
factor at different percentiles, as well as the predicted 
equity sector return. We also show the RF model R2 
value and the OLS R2 value for each sector. As the exhibit 
shows, the R2 produced by the RF model for each sector 
is, in general, significantly higher than that produced 
using an OLS regression. We also see that examining 
sector returns at different percentiles allows us to observe 
the varying inf luence of the FFC factors as the level of the 
predicted sector returns changes. In some cases, we see 
significant divergences between sector and factor returns. 
For example, for the consumer staples sector, at the 10th 
and 25th percentiles, all of the FFC factor returns are 
significantly more negative than the sector’s predicted 
returns. One can interpret this result as reinforcing the 
sector’s reputation as a defensive “low beta” sector. The 
opposite is true for the financials and materials sectors, 
whose predicted 90th percentile returns are significantly 
higher than the FFC factor returns. 

In Exhibit 6, we show the RFI of each factor. 
Again, a factor’s RFI indicates its importance in pre-
dicting sector returns when compared to the other fac-
tors in a set. Because RFI values sum to unity, they are 
naturally viewed as weights. As such, RFI values can 
plausibly be used to offer guidance in portfolio con-
struction along the lines of a traditional returns-based 
style analysis (RBSA).9 Assuming that investible proxies 
are available for the factors used in a given model, RFI 

9 Returns-based style analysis was introduced by Sharpe 
(1988, 1992). It is a way of analyzing and replicating investment 
strategies by means of investable proxies. The analysis is regression 

based, expressed formally as ∑α + β∑ +
=1

R R= α + β∑t
m

i tRi
ti

I
ε , where Rt

m is 
the return stream for the investment strategy to be replicated, Rt

i 
is the set of return streams for the proxy returns, I is the number 
of investable proxies, and tε  is the error term. Two important con-
straints are put in place to produce a combination of investable 
proxies suitable for a long-only implementation. First, each beta 
coefficient is constrained to be greater than zero—that is, β > ∀0,  .∀ii  

Second, the sum of the betas is constrained to sum to unity—that 

is, ∑ β =
=

1.
1 ii

I
 As such, each beta is interpreted as a weight assigned 

to a particular investable proxy in a replication portfolio.

values can be used to inform the weighting of the proxies 
used as constituents in a portfolio seeking to mimic the 
behavior of a target strategy. The RF model, however, 
possesses an advantage over a standard RBSA in gener-
ally providing a much better fit, as evidenced by the R2 
values it produces.

USING FEATURE IMPORTANCES TO DERIVE 

PSEUDO-BETAS

Because the RF model captures hierarchical 
(non-geometric) relationships between factors, it cannot 
be understood as a direct analog of an OLS regression 
or PCA because it does not convey the individual direc-
tional relationships between factors and assets. It is nev-
ertheless possible to provide an interpretation of the RF 
model output so that the inf luence of the predictors can be 
understood in a way that is similar to traditional models. 
Previous attempts to “beta-ize” tree-based predictors 
have, for the most part, been of a more formal nature 
(e.g., Friedman 2001). Here we take a more conceptual 
approach because our goal is merely to provide a transla-
tion of the RF model output to individuals who are more 
familiar with linear models. We do not recommend using 
the results of the translation for trading applications, but 
simply as a communication device. 

Recall that a widely accepted definition of beta is 
the elasticity of one variable to another. If we assume 
factor independence, then as a first step we can simply 
divide the predicted target variable return by each pre-
dictor return to gain a raw elasticity value for each factor. 
For example, let us consider the returns at the median 
for the industrials sector in Exhibit 5 referenced earlier. 
In the following, we list the sector and factor returns, 
along with the raw factor elasticity values in parentheses 
next to each.

The raw elasticity values indicate a sort of ceteris 

paribus degree of target variable sensitivity to each pre-
dictor; however, the raw values provide an incomplete 
picture of the relationship between target and predictor 
variables because they do not account for each factor’s 
importance as a predictor, something expressed by RFI 
values. As such, our second step is to weight each factor’s 
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E X H I B I T  5
Factor Percentile Returns and Equity Sector Predicted Values (monthly returns, Jan 1991 to Aug 2018)

Source: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html and Natixis Investment Managers.
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respective raw elasticity by its RFI to obtain a set of 
importance-adjusted elasticity values or pseudo-betas:

We formally express the entire operation as

 
×Target variable rr value

Predictor value
Feature impom rtance

 

Again, it is important to keep in mind that the 
intent here is not to discard the actual results of the anal-
ysis but to provide a simple way to facilitate communica-
tion with investment professionals who are accustomed 
to OLS betas, PCA loadings, and the like.

TRADING APPLICATION: BUILDING 

A SECTOR ROTATION STRATEGY USING 

THE RF FFC MODEL AND ASSOCIATION 

RULE LEARNING

In the previous sections of the article, we have 
shown how to use the RF algorithm to decompose risk 
ex post. In what follows, we adapt the framework for 
its use ex ante in trading applications. In particular, we 
apply our RF variant of the FFC model to build a sector 
rotation strategy. In doing so, we demonstrate how com-
bining the output of an RF model with a simple, almost 
primitive signal can generate tradable information and 

provide the rudiments to developing a more sophisticated 
investment strategy. We do this to demonstrate the power 
of the RF model and to show that its effectiveness as an 
alpha generation tool does not necessarily depend on a 
complicated implementation. 

We develop our trading strategy with the help 
of another machine learning methodology known as 
association rule learning (ARL) (Agrawal, Imieliński, and 
Swami 1993). ARL is a framework originally developed 
for discovering the relationships between sets of variables 
in a database. It can alternatively be viewed as a frame-
work for deriving (learning) deductive inference rules from 
empirical data. In our example, we use ARL to establish a 
relationship between a pair of signals and the one-month-
ahead return for a given sector over 18-month rolling 
windows. The signals are the RF-predicted return of a 
sector and the ratio of shorter-term to longer-term realized 
volatility (24-month vs. 36-month).10 If (1) a positive rela-
tionship has been established between our signals and the 
one-month-ahead returns over the preceding 18-month 
window, (2) the ratio of shorter-term to longer-term vola-
tility is less than one, and (3) the RF-predicted return for 
next month is greater than a designated threshold value, 
then we will own the sector for the month. Otherwise, the 
portfolio will carry a zero weight in the sector. The sectors 
that are owned will be equally weighted. We describe the 
association, trading, and portfolio construction rules that 
frame the strategy in formal detail in Exhibit 7.

We display out-of-sample backtest (Panel A) and 
bootstrap11 results (Panel B) in Exhibit 8, comparing 
both unconstrained and constrained versions of our 
active strategy with a passive equal-weight portfolio.12 
In Exhibit 9, we show the cumulative out-of-sample 
backtest performance of each strategy. As we see in 
each exhibit, the active strategy outperforms the “no 
information” equal-weight portfolio, both in uncon-
strained form and with turnover constraints. The 
active strategy also exhibits respectable values for the 

10 The ratio of longer-term to shorter-term volatility has 
also been shown to reinforce other types of market signals (e.g., 
momentum). See Wang and Xu (2015) and Simonian et al. (2018).

11 For the bootstrap, we use the stationary bootstrap approach 
described by Politis and Romano (1994), with an average block size 
of six months. The values in the exhibit are obtained by averaging 
500 bootstrap samples.

12 For each asset, Constrained active weight = Unconstrained active 

weight × 30% + 70%
#

.

E X H I B I T  6
Relative Feature Importance of Fama–French–Carhart 
Factors (Jan 1991 to Aug 2018)

Source: Natixis Investment Managers.
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aAn additional way of measuring rule strength is via the confidence of a rule, X ⇒ Y, where
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bIt is also possible to construct our trading rule using the confidence of a rule:
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Source: Agrawal, Imieliński, and Swami (1993).

E X H I B I T  7
Sector Rotation Strategy Rules
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E X H I B I T  8
Sector Rotation Strategy Backtest and Bootstrap Results (Jan 1997 to Aug 2018)

Source: Natixis Investment Managers.

Panel A: Out-of-Sample Backtest Results

Panel B: Bootstrap Performance Results

Equal-Weight
Unconstrained
Strategy
Constrained
Strategy

Equal-Weight
Unconstrained
Strategy
Constrained
Strategy

Annualized
Return

10.0%

12.9%

11.0%

11.0%

12.2%

11.4%

Annualized
Volatility

13.8%

14.2%

13.6%

13.4%

14.4%

13.4%

PSharpe
0.0

99.2%

99.9%

99.7%

96.7%

97.6%

97.3%

PSharpe
0.1

78.8%

94.9%

87.3%

78.9%

82.2%

81.3%

PSharpe
0.2

23.4%

53.8%

35.0%

43.0%

45.8%

45.9%

PIR 0.0

N/A

96.9%

97.8%

N/A

66.7%

66.7%

PIR 0.1

N/A

60.3%

66.1%

N/A

25.7%

25.8%

PIR 0.2

N/A

10.3%

13.6%

N/A

4.2%

4.3%

Turnover

0.0%

74.6%

22.4%

0.0%

85.4%

25.6%

Total
Cumulative

Return

632%

1106%

773%

982%

1202%

1041%

E X H I B I T  9
Cumulative Out-of-Sample Backtest Performance of Sector Rotation Strategy vs. Equal-Weight Portfolio 
(Jan 1997 to Aug 2018)

probabilistic Sharpe ratio (PSharpe) introduced by Bailey 
and López de Prado (2012)13 and favorable values for the 

13 The PSharpe is defined as 
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where Z [·] is the cumulative distribution function of a standard 
normal distribution, and oSR is the observed Sharpe ratio. SR∗ is the 

information ratio variant of the PSharpe (PIR), where 
the equal-weighted portfolio is used as the benchmark. 
The PSharpe measure is designed to show the probability 
of a strategy achieving a given Sharpe ratio threshold 
given a specific track record or backtest length and the 

predefined benchmark Sharpe ratio (ex ante Sharpe ratio), n is the 
number of periods over which the strategy’s performance is tested, 
and ˆ

3 and γ̂ 4 are the respective observed skewness and kurtosis 
values of the strategy.
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presence of non-normal returns. The comparatively 
favorable results for our active investment strategy dem-
onstrate that even with the barest of inputs, machine 
learning methods—and the RF and ARL frameworks in 
particular—provide powerful means to uncover useful 
patterns in investment data. It is a given that the strategy 
presented here could be built up and improved upon, 
with the introduction of new factors and/or a more 
nuanced treatment of existing inputs. Nevertheless, 
the results here convincingly speak to the investment 
insights that can be gained by practitioners willing to 
incorporate machine learning methods into their invest-
ment process.

CONCLUSION

Machine-learning approaches to risk factor mod-
eling offer investment practitioners the ability to enrich 
their analysis by providing insight into relationships 
between variables that are unaccounted for in more tra-
ditional models such as OLS regression. By means of the 
RF algorithm, the authors uncover nonlinear relation-
ships and interaction effects between the well-known 
FFC factors and show how to translate the output from 
the RF model so that it has the basic form of a more 
traditional factor model. In the last section of the article, 
the authors combine the RF algorithm with another 
machine learning framework, association rule learning, 
to build a sector rotation strategy. The article thus dem-
onstrates that machine learning approaches can inform 
both risk analysis and portfolio management, providing 
readily usable output that can be communicated in a 
straightforward manner.
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Big Data in Portfolio Allocation: 
A New Approach to Successful 
Portfolio Optimization
IRENE ALDRIDGE

A ccording to DeMiguel, Garlappi, 
 and Uppal (2009, p. 1915), the 
 idea of diversifying one’s financial 
 portfolio dates back at least to the 

fourth century AD, when Rabbi Issac bar 
Aha documented a rule for asset allocation 
in the Babylonian Talmud (Tractate Baba 
Mezi’a, folio 42a): “One should always divide 
his wealth into three parts: a third in land, 
a third in merchandise, and a third ready to 
hand.”

Modern portfolio theory originated 
from Markowitz (1952), and the body of 
work suggested not only diversifying assets 
and asset classes but also finessing portfolio 
composition by taking into account mutual 
co-movement of returns. Investments, the 
theory goes, should be diversified so that if or 
when one investment heads south, the others 
rise or at least counterbalance the total value 
of the portfolio. Co-movement of returns is 
often proxied by correlation matrixes. The 
optimal portfolio weights are computed to 
be directly proportional to the correlation 
matrix inverse.

When the number of positions is rela-
tively small and stable, the classic Markowitz 
framework may work well. For larger port-
folios, such as mutual funds and hedge funds 
with assets valued in the billions of US dol-
lars, diversification suffers with unstable vari-
ance–covariance matrixes, costly reallocation 
requirements, and some illiquid positions. 

Exchange-traded funds further complicate 
the situation by providing a low-cost universe 
of potentially redundant securities that did 
not exist during Markowitz era, as described 
by Aldridge and Krawciw (2017). The cor-
relation matrixes become very large. Big data 
techniques become necessary to intelligently 
reduce the size of the correlation matrixes, 
to select the key drivers in portfolios, and 
to remove redundant securities. Doing so 
helps portfolio managers improve transac-
tion costs, stability of portfolio weights, and 
liquidity. With the advent of MiFID II and 
streamlined, potentially f lat transaction fees 
per financial instrument, the smaller universe 
of financial instruments traded may be par-
ticularly beneficial to institutional investors.

Another benefit of reducing portfolio 
selection is the shortened history required for 
a robust performance estimation. As illus-
trated by DeMiguel, Garlappi, and Uppal 
(2009), increasing the number of instruments 
in the portfolio requires a significant increase 
in the length of historical data. Specifically, 
DeMiguel, Garlappi, and Uppal (2009) found 
that a portfolio of 25 assets with monthly 
reallocation requires a 250-year estima-
tion window (across all positions) to reli-
ably outperform the equally weighted (EW) 
strategy. This is a diff icult requirement to 
fulfill considering reliable daily records have 
been kept for less than 70 years. DeMiguel, 
Garlappi, and Uppal (2009) also showed that 
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the required estimating window scales linearly with the 
number of assets in the portfolio. Thus, a portfolio with 
five assets requires only 50 years of monthly data for 
reliable estimation.

Several techniques have been proposed over the 
years to mitigate the issues surrounding the Markowitz 
model. At the core of portfolio management is the fol-
lowing question: Which instruments should be removed 
and which ones kept? The decision is hardly trivial. Big 
data techniques do help to pinpoint the keepers in a 
reasonable time.

Traditional, not–big data solutions to the problem 
of optimal portfolio allocation fall roughly into two cat-
egories: Bayesian and non-Bayesian. Bayesian approaches 
include statistical, diffuse-priors, shrinkage estima-
tors, and asset-pricing model priors. The diffuse-priors 
approach was pioneered by Barry (1974) and Bawa, 
Brown, and Klein (1979). The original shrinkage esti-
mators date back to Jobson, Korkie, and Ratti (1979); 
Jobson and Korkie (1980); and Jorion (1985, 1986). The 
original asset-pricing models for establishing a prior were 
discussed by Pastor (2000) and Pastor and Stambaugh 
(2000) and, more recently, Brandt et al. (2005). They 
developed, for example, a simulation-based approach 
using recursion of approximations to the portfolio 
policy. Garlappi and Skoulakis (2008) simulated optimal 
portfolio choices using recursion of approximations to 
the portfolio value function.

Non-Bayesian non –big data approaches to min-
imizing estimation errors are similarly numerous. 
Goldfarb and Iyengar (2003) and Garlappi, Uppal, and 
Wang (2007) proposed robust portfolio optimization 
to deal with estimation errors using uncertainty struc-
tures and confidence intervals, respectively. MacKinlay 
and Pastor (2000) restricted the moments of returns by 
imposing factor dependencies. Best and Grauer (1992); 
Chan, Karceski, and Lakonishok (1999); and Ledoit and 
Wolf (2004a, 2004b) proposed methods for reducing the 
errors in the estimation of variance–covariance matrixes. 
Frost and Savarino (1988), Chopra and Ziemba (1993), 
and Jagannathan and Ma (2003) introduced short-selling 
constraints.

A separate stream of literature considers different 
portfolio optimization frameworks that depend on the 
concurrent market regime (i.e., bull versus bear market). 
For example, Ang and Bekaert (2002) used the Markov 
regime-switching model to show that regime-switching 

strategies that rely on macro factors as states outperform 
static portfolio allocation strategies out of sample.

Optimization problems from other disciplines with 
similarities to portfolio management and optimal asset 
allocation have been successfully studied in great detail 
in the field of big data analytics, and big data has been 
making inroads in portfolio management. Partovi and 
Caputo (2004) were the first to apply principal compo-
nent analysis (PCA) to the portfolio choice problem to 
decompose principal portfolios uncorrelated by construc-
tion. Meucci (2009) followed up on the idea with the 
creation of maximum entropy portfolios. Garlappi and 
Skoulakis (2008) applied singular value decomposition 
(SVD) to solving several portfolio optimization problems 
in the context of the investor utility maximization. To 
do so, they deployed SVD to decompose state variables 
into fundamental drivers and shocks. The highest sin-
gular values or eigenvalues portray the drivers, whereas 
the lowest identify the shocks. Garlappi and Skoulakis 
(2008) applied the technique to solving the classic port-
folio choice problem first proposed by Samuelson (1970) 
and extended by Hakansson (1971) and, later, Loistl 
(1976); Pulley (1981, 1983); Kroll, Levy, and Markowitz 
(1984); and Markowitz (1991), among others. A relatively 
recent stream of literature applies eigenvalue techniques 
to covariance matrixes to create eigenportfolios from any 
set of assets chosen by a researcher or a portfolio manager 
by some other evaluation criteria (see, for example, Steele 
(1995), Partovi and Caputo (2004), Avellaneda and Lee 
(2010), and Boyle (2014)).

The covariance and correlation matrixes, how-
ever, have been known to evolve, presenting a chal-
lenge to portfolio managers and researchers. Allez and 
Bouchaud (2012) studied eigenvalue evolution in cova-
riance matrixes and attempted to f ind a time-based 
pattern of covariance evolution. They found that the 
covariance eigenvalues evolve over time, as expected. 
To deal with the estimation errors in the forward-
looking correlation and covariance matrixes, Ledoit and 
Wolf (2017) proposed shrinking the sample covariance 
matrix toward a multiple of the identity matrix to push 
sample eigenvalues toward their mean. They proposed 
shrinking covariance matrixes by sampling eigenvalues 
in a nonlinear manner. Fan, Liao, and Mincheva (2013) 
developed a principal orthogonal complement thresh-
olding method to estimate a high-dimensional cova-
riance matrix with a conditional sparse structure and 
fast-diverging eigenvalues.
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In this article I provide the first study of the big 
data properties of the inverse of the correlation matrix 
and show that the inverse is much more informative 
than the correlation matrix itself, from the big data 
perspective. Subsequently, the article proposes big data 
approaches to harness the correlation inverse and to 
deliver superior out-of-sample returns. The three key 
advantages of the method proposed in this article are 
conceptual simplicity, analytically tractable performance 
improvements, and empirically verified portfolio gains.

BIG DATA OVERVIEW

Many big data techniques, such as spectral decom-
position, f irst appeared in the 18th century when 
researchers grappled with solutions to differential equa-
tions in the context of wave mechanics and vibration 
physics. Fourier has furthered the field of eigenvalue 
applications extensively with partial differential equa-
tions and other work.

At the heart of many big data models is the idea 
that the properties of every dataset can be uniquely 
summarized by a set of values, called eigenvalues. An 
eigenvalue is a total amount of variance in the dataset 
explained by the common factor. The bigger the eigen-
value, the higher the proportion of the dataset dynamics 
that eigenvalue captures.

Eigenvalues are obtained via either PCA or SVD. 
The latter technique is discussed in the following. The 
eigenvalues and related eigenvectors describe and opti-
mize the composition of the dataset, perhaps best illus-
trated with an example of an image.

Consider the black-and-white image shown in 
Exhibit 1. It is a set of data points, pixels in computer 
lingo, whereby each data point describes the color of 
that point on a 0–255 scale, where 0 corresponds to pure 
black, 255 to pure white, and all other shades of gray 
lie in between. This particular image contains 960 rows 
and 720 columns.

To perform spectral decomposition on the image, I 
use SVD, a technique originally developed by Beltrami 
(1873).1 PCA is a related technique that produces eigen-
values and eigenvectors identical to those produced by 
SVD when PCA eigenvalues are normalized. Raw, non-
normalized, PCA eigenvalues can be negative or posi-
tive and do not equal the singular values produced by 

1 For a detailed history of SVD, please see Stewart (1993).

SVD. For the purposes of the analysis presented here, we 
assume that all the eigenvalues are normalized, equal to 
singular values, and we will use the terms singular values 
and eigenvalues interchangeably throughout this article 
because the results presented can be developed using 
SVD and PCA techniques.

In SVD, a matrix X is decomposed into three 
matrixes: U, S, and V

 ′X U= SVUU  (1)

where X is the original n × m matrix; S is an m × m 
diagonal matrix of singular values or eigenvalues sorted 
from the highest to the lowest on the diagonal; V ′ is 
a transpose of the m × m matrix of so-called singular 
vectors, sorted according to the sorting of S; and U is 
an n × n user matrix containing characteristics of rows 
vis-a-vis singular values.

SVD delivers singular values sorted from largest to 
smallest. The plot of the singular values corresponding 
to the image in Exhibit 1 is shown in Exhibit 2. The 
plot of singular values is known as a scree plot because it 
resembles a real-life scree, a rocky mountain slope.

E X H I B I T  1
Original Sample Image

Source: Courtesy Dr. Frank Fabozzi, 2018.
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A scree plot is a simple line segment plot that shows 
the fraction of total variance in the data as explained or 
represented by each singular value (eigenvalue). The sin-
gular values are ordered and are assigned a number label 
by decreasing order of contribution to total variance.

To reduce the dimensionality of a dataset, we select 
k singular values. If we were to use the most significant 
of the singular values, typically containing macroin-
formation common to the dataset, we would select the 
first k values. However, in applications involving idio-
syncratic data details, we may be interested in the last k 
values (e.g., when we need to evaluate the noise in the 
system). A rule of thumb dictates breaking the eigen-
values into sets before the elbow and after the elbow sets 
in the scree plot.

What is the perfect number of singular values to 
keep in the image of Exhibit 1? An experiment presented 
in the seven panels in Exhibit 3 shows the evolution of 
the data with varying number of eigenvalues included. 
The eigenvalues and the corresponding eigenvectors 
composed of linear combinations of the original data 
create new dimensions of data. As the seven panels in the 
Exhibit 3 show, as few as 10 eigenvalues allow a human 
eye to identify the content of the image, effectively 
reducing dimensionality of the image from 720 columns 
to 10.

However, the guesswork is not at all needed 
because the optimal method of discarding the eigenvec-
tors associated with the smallest eigenvalues has already 

been developed (see, for example, Carrasco, Florens, 
and Renault 2007). The method is known as the spec-
tral cutoff method. Carrasco and Noumon (2011) further 
proposed a data-driven method to select the optimal 
number of principal components to be kept in the spec-
tral cutoff method.

To create the reduced dataset, we restrict the 
number of columns in the S and V matrixes to k by 
selecting k f irst elements, determined by the spectral 
cutoff method. The resulting matrix  Xreduced has dimen-
sions n rows and k columns, where

 X U= S Vreduced nxk nxk kS xk kxVV k
TS,  (2)

TRADITIONAL PORTFOLIO OPTIMIZATION 

AND BIG DATA APPLICATIONS

Markowitz-style portfolio optimization is often 
known as mean–variance optimization (MVO) because 
it seeks to increase mean returns while simultane-
ously decreasing variance in portfolios. Denoting the 
beginning prices of each asset i Xi, i = 0, 1, ..., n, we can 
express the investment portfolio as

 + + +w X w X w Xn n0 0X 1 1X  (3)

where wi, i = 0, 1, ..., n are portfolio weights: the pro-
portion of the total portfolio wealth that is invested in 

E X H I B I T  2
Scree Plot Corresponding to the Image in Exhibit 1
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the asset i. The sum of the weights of the portfolio assets 
is then equal to 1, and w0 + w1 + ... + wn = 1. The asset 
with i = 0 is often assumed to be the prevailing risk-free 
rate, denoted r0.

Denoting risk aversion as γ, we now express the 
traditional MVO as follows:

 ′ ′Σ +′′ ′ =( + ′μ −′ γ ′Σ′′ 1+ ′ 1, 0( 0 0μ γ )μ γ          .
0

max (( ++ γγ Σγγ Σ . w+0w ,  (4)

E X H I B I T  3
Reconstruction of the Image of Exhibit 1
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where Σ represents the variance–covariance matrix of 
the returns of the n assets under consideration.

Subtracting the risk-free rate, the maximization 
problem can be rewritten as follows:

 ( ( 1) ) . 1 1, 0( ( 00
′ μ − − γ ′Σ +) .   ′ =max (( r w1)0 − γγ w s)) t w..  ww ,  (5)

Equation 2 then leads to the following optimal 
solution:

 ∑γ
μ

−
w ∑= 1

2
( 1μ − rμ − )0rr

1
 (6)

Although the vector of returns is typically assumed 
to be the long-running average of returns on assets under 
consideration (see, for example, Jegadeesh and Titman 
(1993)), the covariance matrix presents several challenges 
to researchers and practitioners. Specifically, the covari-
ance matrix can in turn be decomposed into variance 
and correlation matrixes, although variances tend to be 
sticky and reasonably predictable by techniques such as 
generalized autoregressive conditional heteroskedas-
ticity2 and correlations of asset returns are notoriously 
volatile.3 It is the properties of correlation matrixes that 
induce two key problems portfolio managers encounter 
when implementing MVO:

1. Possibly extreme positions in selected assets (i.e., 
a large proportion of the portfolio) resulting in 
liquidity constraints and violating the economic 
equilibrium of the portfolio allocation. To solve 
the issue, Black and Litterman (1993) and others 
proposed a blended solution between economic 
equilibrium and MVO.

2. Possibly extreme changes in portfolio weights from 
one investment period to the next, resulting in 
large transaction costs. Bertsimas and Lo (1998), 
Liu (2004), Muthuraman and Kumar (2006), 
Lynch and Tan (2008), and Mei, DeMiguel, and 
Nogales (2016), for example, propose penalizing 
the MVO function with transaction costs as the 
remedy to the problem. However, such methods 
often tend to be opaque in practice.

2 See Engle (1982), Bollerslev (1986), and Andersen et al. 
(2006).

3 See Davis and Mikosch (1998), Gourieroux (1997), and Cont 
(2001).

Big data techniques, such as spectral decompo-
sition, have appealed to researchers for their data size 
reduction and stabilization properties but have produced 
variable results to date. Several techniques have been 
developed and popularized over the years, all deploying 
big data on the correlation matrix or, worse, on the 
covariance matrix itself, instead of tackling the root of 
the portfolio management woes: the correlation matrix 
inverse.

Reduction of the covariance matrix can be consid-
ered erroneous for the following reasons: The volatility 
properties have been well studied and can be successfully 
modeled independently of the correlation framework. 
As a result, including variances in the optimization bag 
together with the correlations prevents the researchers 
from finessing the optimization with the independent 
volatility properties.

The prevalent techniques for the stand-alone cor-
relation optimization suffer from an even bigger f law. 
The classic foundation technique, known as PCA, is at 
the heart of most current optimization frameworks for 
the correlation matrix. The technique decomposes the 
correlation matrix into its eigenvalue-related principal 
components and then shrinks the correlation matrix by 
setting the eigenvalue tail to zeros. The technique fol-
lows the principles of big data optimization discussed in 
the previous section.

Two immediate issues arise. First, the largest eigen-
value of the correlation matrix has long been known 
to be a market portfolio, whereas the eigenvalue tail 
corresponds to the idiosyncratic properties of the assets 
under consideration. Retaining the dominant market 
portfolio while discarding the idiosyncratic pieces goes 
completely against the spirit of the classical Markowitz 
optimization, which seeks instead to diversify away from 
the market. Second, setting eigenvalues to zero prior to 
matrix inversion renders matrixes singular and, there-
fore, noninvertible. In other words, reducing the spectral 
dimensionality of the correlation matrixes and subse-
quent inversion blow up the outcome. To overcome 
the issue, researchers often use whitening—replacing set-
to-zero eigenvalues with white noise N(0, 1) to allow 
matrix invertibility. The process introduces noise into 
the system, resulting in classic “garbage in, garbage out” 
situations well known in engineering disciplines.

Most models, such as shrinkage operators and 
Bayesian optimization frameworks, use the described 
faulty PCA as their underlying core, producing suboptimal 
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results. The same argument applies to recently popular 
eigenportfolios and other techniques that apply spec-
tral decomposition or PCA to correlation or covariance 
matrixes, instead of correlation matrix inverses.

BIG DATA WITH THE INVERSE 

OF THE CORRELATION MATRIX: 

A NOVEL APPROACH

In contrast to the established techniques tackling 
the correlation matrix, big data application to the inverse 
of the correlation matrix appears to be more promising 
and robust. The eigenvectors of an invertible matrix are 
also the eigenvectors of the matrix’s inverse. To show 
this, consider an invertible matrix A. Matrix A is invert-
ible if and only if its determinant is not zero (Lipschutz 
1991, p. 45), which in turn implies that matrix A col-
umns are linearly independent, further implying that 
its eigenvalue λ is not zero. Suppose that matrix A has 
eigenvectors v. By definition of eigenvectors, Av = λv. 
Multiplying by A−1 from the left, we obtain

 = λvv = 1  (7)

 ( / )1 = λ(1/ vA v1−  (8)

Another solution is to exploit the fact that sin-
gular values of a matrix may be found and the dimen-
sions reduced after the inversion with equal success and 
without sacrificing data precision.

 =− −( ) 1 1 1B A1−  (9)

More generally,

 ∏ ∏⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎠⎠=

−

=

−

0

1

0

1A∏
k

N

k

N

N k−  (10)

So, for SVD

 = ′( ) ( ) ( ) ( )A p( U p( S p( V p′(  (11)

the inverse becomes

 =− −( ( )) ( )1 1′( )′ 1 1−A p( S) 1−)′′ U  (12)

SVD of the inverse of the correlation matrix is, 
therefore, much more precise because no data are lost 

as a result of the poorly specified input to the inver-
sion process that occurs with whitening methodology. 
Accordingly, the SVD in the case of the matrix inversion 
can be performed as follows: The spectral decomposition 
can be performed after the matrix inversion without 
sacrificing results.

If SVD decomposes a correlation matrix C into 
C = USVT, then the inverse of the matrix C can be 
written as C −1 = (VT)−1S −1U −1, where S −1 is the inverse 
of the diagonal matrix S

0 0 0
0 0 0
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−
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Inverting the correlation matrix f irst and then 
spectrally decomposing it to retrieve eigenvalues {λ} 
therefore allows researchers to retain much more pre-
cision. Instead of replacing the irrelevant eigenvalues 
with noise to allow inversion, the proposed process is 
to replace the eigenvalues directly with 0 postinversion.

Which eigenvalues should you keep or discard? 
This, once again, is a nontrivial question. Spectral 
decomposition of the original, noninverted correlation 
matrix results in principal components or portfolios 
sorted according to their universality vis-a-vis all assets 
considered. Thus, the largest component often repre-
sents the global macro portfolio factor driving most 
of the performance and typically ref lecting the broad 
market movement. Several of the following eigenvalues 
deliver portfolios that induce synchronized f luctua-
tions of groups of stocks; these can be, for example, 
factors driving industries. The remaining small com-
ponents are idiosyncratic in nature. Spectral decom-
position of the inverted correlation matrix produces 
eigenvalues sorted in the opposite order: from smallest 
to the largest.

Numerous big data techniques have been devel-
oped to help us understand the information content 

JFDS-Aldridge.indd   51JFDS-Aldridge.indd   51 05/01/19   10:38 am05/01/19   10:38 am



52   Big Data in Portfolio Allocation: A NEW APPROACH TO SUCCESSFUL PORTFOLIO OPTIMIZATION Winter 2019

of the matrix under consideration—in our case, the 
inverse of the correlation matrix. Here, we develop and 
prove a conjecture that the top eigenvalue information 
content of the inverse of the correlation matrix always 
exceeds that of the correlation matrix itself. As a result, 
the big data analysis pertaining to the optimal port-
folio allocation should be carried out on the correla-
tion matrix inverse, not on the correlation matrix as is 
done at present. The invert-then-optimize methodology 
proposed in this article, and diametrically opposite to 
established methodologies, not only delivers superior 
results but also delivers explicit tractable solutions to 
the most-cited woes of existing portfolio optimization 
methodologies: correlation instability and extreme port-
folio weights.

In short, the proposed methodology is to retain 
the largest eigenvalues in the inverse of the correlation 
matrix. These eigenvalues correspond to the smallest 
eigenvalues of the original correlation matrix, the values 
discarded in traditional analyses. We show that these 
values, long known to contain idiosyncratic proper-
ties of assets, are indeed key to successful portfolio 
optimization.

CORRELATION MATRIXES VERSUS 

INVERSES: STABILITY AND SENSITIVITY 

TO PERTURBATIONS

Given that the main problems associated with 
large-scale portfolio optimization revolve around the 
instability of the resulting portfolio weights, the objec-
tive of the decomposition should be to preserve the 
most stable components and to discard the least stable 
ones. Much of the traditional literature interprets this 
as retaining the top eigenvalues of the correlation 
matrix and discarding the smallest values. However, 
this does not make sense given that the final portfolio 
weights are proportional to the inverse of the correla-
tion matrix instead. As this section shows, the inverse 
of the correlation matrix is necessarily less stable than 
the correlation matrix itself; to stabilize portfolios, one 
needs to stabilize the inverse of the correlation matrix, 
not the correlation matrix itself.

A vast stream of literature focusing on the stability 
of matrixes and their sensitivity to perturbations dates 
back to Gershgorin (1931). Gershgorin circles allow us 
to identify the span of possible values for eigenvalues 

in our system. The Gershgorin circles define the radii 
around each aii in a matrix A, within which lies eigen-
value i

 ∑λ − a a∑=i ia i
i j≠

ij  (13)

The tighter the Gershgorin circle around i, the 
more stable the eigenvalue i to small perturbations in 
the matrix under consideration. Correspondingly, the 
larger the Gershgorin circle around i, the less stable the 
ith eigenvalue and the more sensitive the matrix is to 
even the smallest changes in the underlying data.

Gershgorin circles form a convenient visual repre-
sentation of the sensitivity of data to small perturbations. 
As an example, consider just five equities (A, AA, AAL, 
AAMC, and AAN) over a three-week period ending 
October 27, 2017, with the summary statistics shown in 
Exhibit 4. Exhibit 5 shows the normalized eigenvalues of 
the correlation matrix, the respective Gershgorin radii 
of the correlation matrix, the eigenvalues of the inverse 
of the correlation matrix, and the Gershgorin radii of 
the inverse of the correlation matrix.

The two panels in Exhibit 6 represent the 
resulting Gershgorin circles visually. As this exhibit 
shows, the Gershgorin circles of the inverse are much 
larger, indicating that the inverse of the matrix is 
much more unstable than the sample correlation 
matrix itself.

Similar empirical results can be obtained with 
the Bauer–Fike theorem (Bauer and Fike, 1960) and 
other methods, such as the Robinson and Wathen 
(1992) method. The Bauer–Fike theorem proposes 
comparing operator vector norms of eigenvectors. The 
vector norms serve as upper bounds for perturbations 
for respective eigenvectors. Exhibit 7 shows the upper 
bounds for matrix perturbations for vanilla correlation 
and correlation inverse matrixes for data in Exhibit 1. 
As shown in Exhibit 7, the bounds on the inverse of the 
correlation matrix are considerably higher than that on 
the correlation matrix itself, implying once again that 
the inverse of the correlation matrix is much less stable 
than the correlation matrix.

Similar results can be obtained using key relation 
between matrixes, ordered eigenvalues {�}, and matrix 
inverses derived by Robinson and Wathen (1992)
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A formal theoretical conclusion showing the 
higher instability of the correlation inverse is as follows: 
The largest eigenvalue of the inverse of the correlation 
matrix is always larger than the largest eigenvalue of the 
correlation matrix itself. The proof of this theoretical 
conclusion is provided in the online supplement.

The obtained results are independent of the under-
lying distribution of returns. Indeed, the result accom-
modate Gaussian, leptokurtic, and other distributions 
with equal effect, making the strategy robust to a variety 
of financial return models. Furthermore, the result of 
the theoretical conclusion extends far beyond financial 
data and is applicable to any datasets, whether adver-
tising, healthcare, or genomics.

SENSITIVITY OF CORRELATION MATRIXES 

VERSUS THEIR INVERSES: SIMULATION

To ascertain the validity of our conjecture, we 
perform 10,000 experiments of the following nature:

1. We create a random symmetric 100 × 100 matrix 
{Aij} simulating the real-life correlation struc-
ture: All the values on the diagonal are set to 1.0, 
and all other values for i ≠ j range in the interval 
[−1.0, 1.0], with entries aij = aji = ∀i, j.

2. We compute and document the eigenvalues of the 
correlation matrix and its inverse.

As the results presented in Exhibit 8 illustrate, the 
top eigenvalue of the inverse is considerably higher than 
the top eigenvalue of the correlation matrix itself. As the 

simulation results show, it is the inverse of the correla-
tion matrix that is the unstable component of the port-
folio optimization puzzle. Because the portfolio weights 
are directly proportional to the inverse of the correlation 

E X H I B I T  4
An Illustration of Gershgorin Circles on Sample Correlation Matrixes

E X H I B I T  5
Comparative Dispersion of Eigenvalues via 
Gershgorin Radii for the Correlation Matrix 
of Exhibit 4 and the Inverse

E X H I B I T  6
Gershgorin Circles of the Sample Correlation Matrix 
of Exhibit 4 and the Inverse of the Matrix, Graphical 
Representation
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matrix, stabilization and other optimization of the inverse 
of the correlation matrix—not the correlation matrix 
itself—are critical for successful portfolio allocation.

OUT-OF-SAMPLE APPLICATIONS 

TO FINANCIAL DATA

I next test the theory (the importance of the 
optimization of the correlation matrix inverse) on the 
historical financial data. I performed two experiments:

1. Comparison of the core portfolio management tech-
niques on the S&P 500 data for the 20-year period 
from 1998 through 2017, with monthly reallocation

2. Comparison of the portfolio management tech-
niques on 1,000 portfolios with 50 or more stocks 
each, the constituents of which were randomly 
drawn from the S&P 500 from 1998 through 2017, 
with monthly reallocation

Both experiments show that regardless of portfolio 
composition, the correlation inverse optimization pro-
posed in this article significantly outperforms the other 
core portfolio allocation strategies.

Out-of-Sample Application to the S&P 500

The test uses daily closing price data for the 
S&P 500 constituents for the 20-year period spanning 
1998–2017 and obtained from Yahoo!. We assume 
monthly portfolio reallocation and test the following 
strategies on the S&P 500 data: EW, vanilla MVO, PCA 
with the top eigenvalues retained, and PCA_Inverse 
with the bottom eigenvalues of the inverse taken into 
account and the bottom eigenvalues discarded.

To compute strategy performance, the lognormal 
daily returns from the price data are first determined

  ( ) ( )−1r l= og P l−) ogt t(r lr og t  (14)

Next the monthly correlation matrixes using 
the returns falling into each calendar month in the 
1998–2017 span are computed. Each correlation matrix 
then serves as an input to the strategy evaluation over the 
following month. For example, the correlation matrix 
computed on January 30, 1998 serves as the input for 
portfolio selection for February 1998.

Monthly performance of the strategies is next mea-
sured using the strategy weights computed on the last 
day of the previous month using the daily returns for 
the previous month. For analytical tractability, the risk 
aversion coefficient is chosen to be 1; however, it can be 
easily scaled up or down because the portfolio weights 
of the MVO, PCA of MVO, and PCA_Inverse of MVO 
strategies are directly proportional to the risk aversion 
coeff icient. The performance evaluation applies the 
weights to the returns observed on the last trading day of 
the following month vis-a-vis the price levels observed 
on the last day of the portfolio creation month. Thus, 
the performance of portfolios created on January 30, 
1998 is tested by returns observed from the closing price 

E X H I B I T  7
Bauer–Fike Norms for Eigenvectors of Correlations 
and Inverse Correlations of Data in Exhibit 4

E X H I B I T  8
Summary Statistics for Eigenvalues of 10,000 
Simulated Correlation Matrixes and Their Inverses

Note: Bolded value show much higher inverse dispersion.

Note: Bolded value show much higher inverse dispersion.
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on January 30, 1998 to the closing price observed on 
February 27, 1998.

The four panels in Exhibit 9 document the per-
formance of the monthly reallocation of the strategies. 
As the exhibit shows, the PCA_Inverse strategy outper-
forms the other strategies when the number of selected 
eigenvalues is small, such as the top one eigenvalue 
selected in the PCA_Inverse strategy shown in Panel A 
(with outliers) and Panel B (outliers removed for clarity) 
of Exhibit 9. As the number of retained eigenvalues 
increases, the PCA_Inverse strategy loses its power and 
eventually yields to the EW strategy.

Exhibit 10 shows the Sharpe ratios from the obtained 
strategies. As the exhibit shows, the PCA_Inverse strategy 
consistently outperforms other portfolio management 
strategies, particularly when the outliers, such as extreme 
one-time returns, are discarded from the data. Exhibit 11 
presents average monthly returns for each strategy com-
puted over the 1998–2017 period. As shown in the exhibit 
once again, the PCA_Inverse strategy delivers superior 
results when a concentrated number of eigenvalues is 
deployed to create an optimal portfolio allocation.

The results of the analysis so far show that just 
the top eigenvalue of the inverse of the correlation 
matrix contains enough portfolio information to out-
perform the other strategies. Just how many instru-
ments does such a strategy contain? Exhibits 12 and 
13 help answer this question. The number of posi-
tions with the absolute value greater than or equal 
to 2% of the total portfolio value varied throughout 
the 20-year period; the number of stocks was signif i-
cantly smaller than that of other strategies, pointing 
to a smart diversif ication portfolio selection of the 
PCA_Inverse strategy.

Bootstrapping the S&P 500: Technique 

Comparison on Randomly Selected 

Subportfolios over 1998–2017 Period

To anticipate the objections of researchers and 
portfolio managers dealing with assets other than the 
prim and proper S&P 500 and to showcase the strength 
and capability of the correlation inverse optimiza-
tion proposed in this article, the following tests were 
conducted:

1. On January 1, 1998, we randomly select 50 or more 
names from the S&P 500. There are no restrictions 

on the name selections or their quantity, other than 
the randomly chosen portfolio must include at least 
50 names. As noted earlier in this article, portfolios 
of fewer than 50 names are considered suitable for 
vanilla MVO and may not be as interesting for our 
purposes.

2. The four core portfolio management strategies 
with monthly reallocation on the portfolio ran-
domly chosen in Step 1 were then run: (a) EW; (b) 
MVO; (c) spectral decomposition and optimization 
via PCA of the asset correlation matrix (PCA), 
retaining the top eigenvector only; and (d) the 
methodology proposed in this article, spectral 
decomposition and optimization of the inverse of 
the asset correlation matrix (PCA_Inverse), again, 
retaining only the top eigenvector, this time of the 
inverse.

The portfolio compositions do not change from 
1998 through 2017. The portfolio weights are com-
puted on the last trading day of each month. The EW 
weights do not change, unless the originally chosen 
stock is no longer trading. For MVO, PCA, and PCA_
Inverse, the correlation matrixes used to set portfolio 
weights for the following month are computed on the 
last day of each trading month using daily log returns 
based on closing prices for the past month. Thus, the 
correlation matrix used to compute the weights for 
March 2005 is determined on the last trading day of 
February 2005 using all the closing daily returns for 
February 2005, including the first and the last trading 
days.

The traditional PCA approach to the correlation 
matrix is analogous to the eigenportfolio selection. As 
our analysis shows, the methodology on the correlation 
inverse PCA (PCA_Inverse) proposed in this article is 
far superior to the plain eigenportfolio construction. 
Panel A in Exhibit 14 shows the cumulative returns 
of the four core strategies averaged by month across 
30 random draws of 50 or more securities comprising 
the S&P 500. Panel B shows standard deviations of 
the 30 independent repetitions by month from 1998 
through 2017, illuminating outliers. As the two panels of 
Exhibit 14 show, even with severe outliers, the proposed 
methodology significantly outperforms other methods, 
regardless of portfolio construction. Panel C of Exhibit 
14 shows the cumulative returns of PCA_Inverse over 
the 20-year period from 1998 through 2017.
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E X H I B I T  9
Portfolio Strategy Performance Comparison, S&P 500, 1998–2017

(continued)
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E X H I B I T  9  (continued)
Portfolio Strategy Performance Comparison, S&P 500, 1998–2017

Notes: Gross cumulative annualized returns of EW, standard MVO, inverse correlation largest eigenvalue deciles (inverse largest), and inverse correlation 
smallest eigenvalue decile (inverse smallest) portfolios.
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E X H I B I T  1 0
Sharpe Ratios on Strategy Performance, S&P 500, 1998–2017, Monthly Reallocation

E X H I B I T  1 1
Average Monthly Returns per Strategy, S&P 500, 1998–2017, Monthly Reallocation

E X H I B I T  1 2
Number of Securities Selected Each Month from the S&P 500 by PCA_Inverse Method, 1998–2017

Notes: Using only the top eigenvalue of the inverse. It is common for the algorithm to deliver a single-digit number of names under this portfolio 
construction.
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CONCLUSIONS

In this article, I demonstrate that the inverse of 
the correlation matrix is inherently more sensitive to 
perturbations than the correlation matrix itself, affecting 
the Markowitz portfolio allocation strategies. To harness 

the power of big data analytics to capitalize on this 
information content, I propose a big data refinement to 
portfolio selection: applying spectral decomposition to 
the inverse of the correlation matrix, instead of to the 
correlation matrix. The proposed methodology is tested 
on the S&P 500 Index and random subportfolios of the 

E X H I B I T  1 3
Mean and Standard Deviation (in parentheses) for the Number of Equities from the S&P 500 with Absolute 
Values of Weights Exceeding 1% or 2% of the Entire Portfolio Selected Monthly by Vanilla MVO, PCA, 
and PCA_Inverse Methods for Different Eigenvalue Cutoffs

Note: Data: 1998–2017, monthly portfolio rebalancing.

E X H I B I T  1 4
Performance of Portfolio Randomly Selected from the S&P 500 Constituents, 1998–2017

(continued)
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E X H I B I T  1 4  (continued)
Performance of Portfolio Randomly Selected from the S&P 500 Constituents, 1998–2017
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S&P 500 from 1998 through 2017. Out of sample, the 
methodology consistently outperforms other common 
methods, such as EW portfolio allocation, plain MVO, 
and previously suggested big data portfolio optimization 
methodologies.
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Data mining is the search for 
replicable patterns, typically in 
large sets of data, from which we 
can derive benefit. In empirical 

finance, data mining has a pejorative conno-
tation. We prefer to view data mining as an 
unavoidable element of research in finance. 
We are all data miners, even if only by living 
through a particular history that shapes 
our beliefs. In the past, data collection was 
costly, and computing resources were lim-
ited. As a result, researchers had to focus 
their efforts on the hypotheses that made 
the most sense. Today, both data and com-
puting resources are cheap, and in the era 
of machine learning, researchers no longer 
even need to specify a hypothesis—the algo-
rithm will supposedly f igure it out.

Researchers are fortunate today to 
have a variety of statistical tools available, 
among which machine learning, and the 
array of techniques it represents, is a promi-
nent and valuable one. Indeed, machine 
learning has already advanced our knowl-
edge in the physical and biological sciences 
and has also been successfully applied to the 
analysis of consumer behavior. All of these 
applications benefit from a vast amount of 
data. With large data, patterns will emerge 
purely by chance. One of the big advantages 
of machine learning is that it is hardwired to 
try to avoid overfitting by constantly cross-
validating discovered patterns. Again, this 

advantage serves well in the presence of a 
large amount of data.

In investment f inance, apart from 
tick data, the data are much more limited 
in scope. Indeed, most equity-based strate-
gies that purport to provide excess returns 
to a passive benchmark rely on monthly and 
quarterly data. In this case, cross-validation 
does not alleviate the curse of dimensionality. 
As a noted researcher remarked to one of us:

[T]uning 10 different hyperparam-
eters using k-fold cross-validation is a 
terrible idea if you are trying to pre-
dict returns with 50 years of data (it 
might be okay if you had millions of 
years of data). It is always necessary to 
impose structure, perhaps arbitrary 
structure, on the problem you are 
trying to solve.

Machine learning and other statistical 
tools, which have been impractical to use in 
the past, hold considerable promise for the 
development of successful trading strategies, 
especially in higher-frequency trading. They 
might also hold great promise in other appli-
cations, such as risk management. Neverthe-
less, we need to be careful in applying these 
tools. Indeed, we argue that given the limited 
nature of the standard data that we use in 
finance, many of the challenges we face in 
the era of machine learning are very similar 
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to the issues we have long faced in quantitative finance 
in general. We want to avoid backtest overf itting of 
investment strategies, and we want a robust environ-
ment to maximize the discovery of new (true) strategies.

We believe the time is right to take a step back 
and to re-examine how we do our research. Many 
have warned about the dangers of data mining in the 
past (e.g., Leamer 1978; Lo and MacKinlay 1990; and 
Markowitz and Xu 1994), but the problem is even more 
acute today. The playing field has leveled in computing 
resources, data, and statistical expertise. As a result, 
new ideas run the risk of becoming very crowded, very 
quickly. Indeed, the mere publishing of an anomaly may 
well begin the process of arbitraging the opportunity 
away.

Our article develops a protocol for empirical 
research in finance. Research protocols are popular in 
other sciences and are designed to minimize obvious 
errors, which might lead to false discoveries. Our pro-
tocol applies to both traditional statistical methods and 
modern machine learning methods.

HOW DID WE GET HERE?

The early days of quantitative investing brought 
many impressive successes. Severe constraints on com-
puting and data led research to be narrowly focused. In 
addition, much of the client marketplace was skeptical 
of quantitative methods. Consequently, given the lim-
ited capital deployed on certain strategies, the risk of 
crowding was minimal. Today, however, the playing 
field has changed. Now almost everyone deploys quan-
titative methods—even discretionary managers—and 
clients are far less averse to quantitative techniques.

The pace of transformation is striking. Consider 
the Cray 2, the fastest supercomputer in the world in the 
late 1980s and early 1990s (Bookman 2017). It weighed 
5,500 pounds and, adjusted for inf lation, cost over 
US$30 million in 2019 dollars. The Cray 2 performed 
an extraordinary (at the time) 1.9 billion operations per 
second (Anthony 2012). Today’s iPhone Xs is capable 
of 5 trillion operations per second and weighs just six 
ounces. Whereas a gigabyte of storage cost $10,000 in 
1990, it costs only about a penny today. Furthermore, a 
surprising array of data and application software is avail-
able for free, or very nearly free. The barriers to entry in 
the data-mining business, once lofty, are now negligible.

Sheer computing power and vast data are only 
part of the story. We have witnessed many advances in 
statistics, mathematics, and computer science, notably 
in the fields of machine learning and artif icial intel-
ligence. In addition, the availability of open-source 
software has also changed the game: It is no longer 
necessary to invest in (or create) costly software. Essen-
tially, anyone can download software and data and 
potentially access massive cloud computing to join the 
data-mining game.

Given the low cost of entering the data-mining 
business, investors need to be wary. Consider the long–
short equity strategy whose results are illustrated in 
Exhibit 1. This is not a fake exhibit.1 It represents a 
market-neutral strategy developed on NYSE stocks 
from 1963 to 1988, then validated out of sample with 
even stronger results over the years 1989 through 2015. 
The Sharpe ratio is impressive—over a 50-year span, 
far longer than most backtests—and the performance 
is both economically meaningful, generating nearly 6% 
alpha a year, and statistically significant.

Better still, the strategy has f ive very attractive 
practical features. First, it relies on a consistent meth-
odology through time. Second, performance in the 
most recent period does not trail off, indicating that 
the strategy is not crowded. Third, the strategy does 
well during the f inancial crisis, gaining nearly 50%. 
Fourth, the strategy has no statistically signif icant 
correlations with any of the well-known factors, such 
as value, size, and momentum, or with the market as a 
whole. Fifth, the turnover of the strategy is extremely 
low, less than 10% a year, so the trading costs should 
be negligible.

This strategy might seem too good to be true. And 
it is. This data-mined strategy forms portfolios based 
on letters in a company’s ticker symbol. For example, 
A(1)−B(1) goes long all stocks with “A” as the first letter 
of their ticker symbol and short all stocks with “B” as 
the f irst letter, equally weighting in both portfolios. 
The strategy in Exhibit 1 considers all combinations of 
the first three letters of the ticker symbol, denoted as 
S(3)−U(3). With 26 letters in the alphabet and with two 
pairings on three possible letters in the ticker symbol, 
thousands of combinations are possible. In searching 

1 Harvey and Liu (2014) presented a similar exhibit with 
purely simulated (fake) strategies.
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all potential combinations,2 the chances of f inding a 
strategy that looks pretty good are pretty high.

A data-mined strategy that has a nonsensical basis 
is, of course, unlikely to fool investors. We do not see 
exchange-traded funds popping up that offer “alpha-
bets,” each specializing in a letter of the alphabet. 
Although a strategy with no economic foundation 
might have worked in the past by luck, any future suc-
cess would be the result of equally random luck.

The strategy detailed in Exhibit 1, as preposterous 
as it seems, holds important lessons in both data mining 
and machine learning. First, the S(3)−U(3) strategy 
was discovered by brute force, not machine learning. 
Machine learning implementations would carefully 
cross-validate the data by training the algorithm on 
part of the data and then validating on another part 

2 Online tools, such as those available at http://datagrid.lbl.
gov/backtest/index.php, generate fake strategies that are as impres-
sive as the one illustrated in Exhibit 1. 

of the data. As Exhibit 1 shows, however, in a simple 
implementation when the S(3)−U(3) strategy was identi-
fied in the first quarter-century of the sample, it would 
be “validated” in the second quarter-century. In other 
words, it is possible that a false strategy can work in the 
cross-validated sample. In this case, the cross-validation 
is not randomized; as a result, a single historical path 
can be found.

The second lesson is that the data are very lim-
ited. Today, we have about 55 years of high-quality 
equity data (or less than 700 monthly observations) for 
many of the metrics in each of the stocks we may wish 
to consider. This tiny sample is far too small for most 
machine learning applications and impossibly small for 
advanced approaches such as deep learning. Third, we 
have a strong prior that the strategy is false: If it works, it 
is only because of luck. Machine learning, and particu-
larly unsupervised machine learning, does not impose 

E X H I B I T  1
Long–Short Market-Neutral Strategy Based on NYSE Stocks, January 1963 to December 2015

Notes: Gray areas denote NBER recessions. Strategy returns scaled to match S&P 500 T-bill volatility during this period.

Source: Campbell Harvey, using data from CRSP.
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economic principles. If it works, it works in retrospect 
but not necessarily in the future.

When data are limited, economic foundations 
become more important. Chordia, Goyal, and Saretto 
(2017) examined 2.1 million equity-based trading strate-
gies that use different combinations of indicators based 
on data from Compustat. They carefully took data 
mining into account by penalizing each discovery (i.e., 
by increasing the hurdle for significance). They identi-
fied 17 strategies that “survive the statistical and eco-
nomic thresholds.”

One of the strategies is labeled (dltis-pstkr)/mrc4. 
This strategy sorts stocks as follows: The numerator 
is long-term debt issuance minus preferred/prefer-
ence stock redeemable. The denominator is minimum 
rental commitments four years into the future. The sta-
tistical significance is impressive, nearly matching the 
high hurdle established by researchers at CERN when 
combing through quintillions of observations to discover 
the elusive Higgs boson (ATLAS Collaboration 2012; 
CMS Collaboration 2012). All 17 of the best strategies 
Chordia, Goyal, and Saretto identified have a similarly 
peculiar construction, which—in our view and in the 
view of the authors of the paper—leaves them with little 
or no economic foundation, even though they are based 
on financial metrics.

Our message on the use of machine learning in 
backtests is one of caution and is consistent with the 
admonitions of López de Prado (2018). Machine learning 
techniques have been widely deployed for uses ranging 
from detection of consumer preferences to autono-
mous vehicles, all situations that involve big data. The 
large amount of data allows for multiple layers of cross-
validation, which minimizes the risk of overfitting. We 
are not so lucky in finance. Our data are limited. We 
cannot f lip a 4TeV switch at a particle accelerator and 
create trillions of fresh (not simulated) out-of-sample 
data. But we are lucky in that finance theory can help 
us filter out ideas that lack an ex ante economic basis.3

We also do well to remember that we are not 
investing in signals or data; we are investing in finan-
cial assets that represent partial ownership of a business, 
or of debt, or of real properties, or of commodities. 

3 Economists have an advantage over physicists in that soci-
eties are human constructs. Economists research what humans have 
created, and as humans, we know how we created it. Physicists are 
not so lucky.

The quantitative community is sometimes so focused 
on its models that we seem to forget that these models 
are crude approximations of the real world and cannot 
possibly ref lect all nuances of the assets that actually 
comprise our portfolios. The amount of noise usually 
dwarfs the signal. Finance is a world of human beings, 
with emotions, herding behavior, and short memories, 
and market anomalies—opportunities that are the main 
source of intended profit for the quantitative commu-
nity and their clients—are hardly static. They change 
with time and are often easily arbitraged away. We 
ignore the gaping chasm between our models and the 
real world at our peril.

THE WINNER’S CURSE

Most in the quantitative community will acknowl-
edge the many pitfalls in model development. Consider-
able incentives exist to beat the market and to outdo the 
competition. Countless thousands of models are tried. 
In contrast to our example with ticker symbols, most of 
this research explores variables that most would consider 
reasonable. An overwhelming number of these models 
do not work and are routinely discarded. Some, how-
ever, do appear to work. Of the models that appear to 
work, how many really do, and how many are just the 
product of overfitting?

Many opportunities exist for quantitative invest-
ment managers to make mistakes. The most common 
mistake is being seduced by the data into thinking a 
model is better than it is. This mistake has a behavioral 
underpinning. Researchers want their model to work. 
They seek evidence to support their hypothesis—and all 
of the rewards that come with it. They believe if they 
work hard enough, they will f ind the golden ticket. 
This induces a type of selection problem in which the 
models that make it through are likely to be the result 
of a biased selection process.

Models with strong results will be tested, modi-
fied, and retested, whereas models with poor results will 
be quickly expunged. This creates two problems. One 
is that some good models will fail in the test period, 
perhaps for reasons unique to the dataset, and will be 
forgotten. The other problem is that researchers seek a 
narrative to justify a bad model that works well in the test 
period, again perhaps for reasons irrelevant to the future 
efficacy of the model. These outcomes are false negatives 
and false positives, respectively. Even more common 

JFDS-Arnott.indd   67JFDS-Arnott.indd   67 05/01/19   10:40 am05/01/19   10:40 am



68   A Backtesting Protocol in the Era of Machine Learning Winter 2019

than a false positive is an exaggerated positive, an outcome 
that seems stronger, perhaps much stronger, than it is 
likely to be in the future.

In other areas of science, this phenomenon is some-
times called the winner’s curse. This is not the same win-
ner’s curse as in auction theory. The researcher who is 
first to publish the results of a clinical trial is likely to 
face the following situation: Once the trial is replicated, 
one of three different outcomes can occur.4 First (sadly 
the least common outcome), the trial stands up to many 
replication tests, even with a different sample, different 
time horizons, and other out-of-sample tests, and con-
tinues to work after its original publication roughly as 
well as in the backtests. Second, after replication, the 
effect is far smaller than in the original finding (e.g., if 
microcap stocks are excluded or if the replication is out 
of sample). The third outcome is the worst: There is no 
effect, and the research is eventually discredited. Once 
published, models rarely work as well as in the backtest.5

Can we avoid the winner’s curse? Not entirely, but 
with a strong research culture, it is possible to mitigate 
the damage.

AVOIDING FALSE POSITIVES: A PROTOCOL

The goal of investment management is to present 
strategies to clients that perform, as promised, in live 
trading. Researchers want to minimize false positives 
but to do so in a way that does not miss too many 
good strategies. Protocols are widely used both in sci-
entif ic experiments and in practical applications. For 
example, every pilot is now required to go through a 
protocol (sometimes called a checklist) before takeoff, 
and airline safety has greatly improved in recent 
years. More generally, the use of protocols has been 
shown to increase performance standards and prevent 
failure, as tasks become increasingly complex (e.g., 

4 In investing, two of these three outcomes pose a twist to the 
winner’s curse: private gain and social loss. The investment manager 
pockets the fees until the f law of the strategy becomes evident, and 
the investor bears the losses until the great reveal that it was a bad 
strategy all along.

5 See McLean and Pontiff (2016). Arnott, Beck, and Kalesnik 
(2016) examined eight of the most popular factors and showed an 
average return of 5.8% a year in the span before the factors’ publica-
tion and a return of only 2.4% after publication. This loss of nearly 
60% of the alpha on a long−short portfolio before any fees or trading 
costs is far more slippage than most observers realize. 

Gawande 2009). We believe that the use of protocols 
for quantitative research in finance should become de 
rigueur, especially for machine learning–based tech-
niques, as computing power and process complexity 
grow. Our goal is to improve investor outcomes in the 
context of backtesting.

Many items in the protocol we suggest are not 
new (e.g., Harvey 2017, Fabozzi and López de Prado 
2018, and López de Prado 2018), but in this modern 
era of data science and machine learning, we believe it 
worthwhile to specify best research practices in quan-
titative finance.

CATEGORY #1: RESEARCH MOTIVATION

Establish an Ex Ante Economic Foundation

Empirical research often provides the basis for the 
development of a theory. Consider the relation between 
experimental and theoretical physics. Researchers in 
experimental physics measure (generate data) and test 
the existing theories. Theoretical physicists often use 
the results of experimental physics to develop better 
models. This process is consistent with the concept of 
the scientific method: A hypothesis is developed, and 
the empirical tests attempt to find evidence inconsistent 
with the hypothesis—so-called falsifiability.6

The hypothesis provides a discipline that reduces the 
chance of overfitting. Importantly, the hypothesis needs 
to have a logical foundation. For example, the “alpha-bet” 
long–short trading strategy in Exhibit 1 has no theoretical 
foundation, let alone a prior hypothesis. Bem (2011) pub-
lished a study in a top academic journal that “supported” 
the existence of extrasensory perception using over 1,000 
subjects in 10 years of experiments. The odds of the results 
being a f luke were 74 billion to 1. They were a f luke: The 
tests were not successfully replicated.

The researcher invites future problems by starting 
an empirical investigation without an ex ante economic 
hypothesis. First, it is inefficient even to consider models 
or variables without an ex ante economic hypothesis 
(such as scaling a predictor by rental payments due in 
the fourth year, as in Exhibit 1). Second, no matter 
the outcome, without an economic foundation for the 

6 One of the most damning critiques of theories in physics 
is to be deemed unfalsif iable. Should we hold finance theories to 
a lesser standard?
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model, the researcher maximizes the chance that the 
model will not work when taken into live trading. This 
is one of the drawbacks of machine learning.

One of our recommendations is to carefully struc-
ture the machine learning problem so that the inputs 
are guided by a reasonable hypothesis. Here is a simple 
example: Suppose the researcher sets a goal of finding a 
long–short portfolio of stocks that outperforms on a risk-
adjusted basis, using the full spectrum of independent 
variables available in Compustat and I/B/E/S. This is 
asking for trouble. With no particular hypothesis, and 
even with the extensive cross-validation done in many 
machine learning applications, the probability of a false 
positive is high.

Beware an Ex Post Economic Foundation

It is also almost always a mistake to create an eco-
nomic story—a rationale to justify the findings—after 
the data mining has occurred. The story is often f limsy, 
and if the data mining had delivered the opposite result, 
the after-the-fact story might easily have been the oppo-
site. An economic foundation should exist first, and a 
number of empirical tests should be designed to test 
how resilient that foundation is. Any suspicion that the 
hypothesis was developed after looking at the data is an 
obvious red f lag.

Another subtle point: In other disciplines such as 
medicine, researchers often do not have a prespecified 
theory, and data exploration is crucial in shaping future 
clinical trials. These trials provide the researcher with truly 
out-of-sample data. In finance and economics, we do not 
have the luxury of creating a large out-of-sample test. 
It is therefore dangerous to appropriate this exploratory 
approach into our field. We may not jeopardize customer 
health, but we will jeopardize their wealth. This is particu-
larly relevant when it comes to machine learning methods, 
which were developed for more data-rich disciplines.

CATEGORY #2: MULTIPLE TESTING 

AND STATISTICAL METHODS

Keep Track of What Is Tried

Given 20 randomly selected strategies, one strategy 
will likely exceed the two-sigma threshold (t-statistic of 
2.0 or above) purely by chance. As a result, the t-sta-
tistic of 2.0 is not a meaningful benchmark if more than 
one strategy is tested. Keeping track of the number of 

strategies tried is crucial, as is measuring their correla-
tions (Harvey 2017; López de Prado 2018). A bigger 
penalty in terms of threshold is applied to strategies that 
are relatively uncorrelated. For example, if the 20 strate-
gies tested had a near 1.0 correlation, then the process is 
equivalent to trying only one strategy.

Keep Track of Combinations of Variables

Suppose the researcher starts with 20 variables and 
experiments with some interactions, say (variable 1 × 
variable 2) and (variable 1 × variable 3). This single inter-
action does not translate into only 22 tests (the original 
20, plus two additional interactions) but into 190 possible 
interactions. Any declared significance should take the 
full range of interactions into account.7

Beware the Parallel Universe Problem

Suppose a researcher develops an economic hypoth-
esis and tests the model once; that is, the researcher decides 
on the data, variables, scaling, and type of test—all in 
advance. Given the single test, the researcher believes 
the two-sigma rule is appropriate, but perhaps it is not. 
Think of being in 20 different parallel universes. In each, 
the researcher chooses a different model informed on the 
identical history. In each, the researcher performs a single 
test. One of them works. Is it significant at two sigma? 
Probably not.

Another way to think about this is to suppose 
that (in a single universe) the researcher compiles a list 
of 20 variables to test for predictive ability. The first 
one “works.” The researcher stops and claims to have 
done a single test. True, but the outcome may be lucky. 
Think of another researcher with the same 20 variables 
who tests in a different order, and only the last variable 
“works.” In this case, a discovery at two sigma would 
be discarded because a two-sigma threshold is too low 
for 20 different tests.

CATEGORY #3: SAMPLE CHOICE AND DATA

Define the Test Sample Ex Ante

The training sample needs to be justif ied in 
advance. The sample should never change after the 
research begins. For example, suppose the model 

7 There are 20 choose 2 interactions, which is 20!/(18!2!).
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“works” if the sample begins in 1970 but does not work 
if the sample begins in 1960—in such a case, the model 
does not work. A more egregious example would be to 
delete the global financial crisis data, the tech bubble, or 
the 1987 market crash because they hurt the predictive 
ability of the model. The researcher must not massage 
the data to make the model work.

Ensure Data Quality

Flawed data can lead researchers astray. Any statis-
tical analysis of the data is only as good as the quality of 
the data that are input, especially in the case of certain 
machine learning applications that try to capture nonlin-
earities. A nonlinearity might simply be a bad data point.

The idea of garbage in/garbage out is hardly 
new. Provenance of the data needs to be taken into 
account. For example, data from CRSP, Compustat, or 
some other “neutral” provider should have a far higher 
level of trust than raw data supplied by some broker. 
In the past, researchers would literally eyeball smaller 
datasets and look for anomalous observations. Given the 
size of today’s datasets, the human eyeball is insufficient. 
Cleaning the data before employing machine learning 
techniques in the development of investment models is 
crucial. Interestingly, some valuable data science tools 
have been developed to check data integrity. These need 
to be applied as a first step.

Document Choices in Data Transformations

Manipulation of the input data (e.g., volatility 
scaling or standardization) is a choice and is analogous 
to trying extra variables. The choices need to be docu-
mented and ideally decided in advance. Furthermore, 
results need to be robust to minor changes in the trans-
formation. For example, given 10 different volatility-
scaling choices, if the one the researcher chose is the one 
that performed the best, this is a red f lag.

Do Not Arbitrarily Exclude Outliers

By definition, outliers are inf luential observa-
tions for the model. Inclusion or exclusion of inf luential 
observations can make or break the model. Ideally, a 
solid economic case should be made for exclusion—
before the model is estimated. In general, no inf luen-
tial observations should be deleted. Assuming the 

observation is based on valid data, the model should 
explain all data, not just a select number of observations.

Select Winsorization Level before 

Constructing the Model

Winsorization is related to data exclusion. Win-
sorized data are truncated at a certain threshold (e.g., trun-
cating outliers to the 1% or 2% tails) rather than deleted. 
Winsorization is a useful tool because outliers can have an 
outsize inf luence on any model, but the choice to win-
sorize, and at which level, should be decided before con-
structing the model. An obvious sign of a faulty research 
process is a model that “works” at a winsorization level of 
5% but fails at 1%, and the 5% level is then chosen.

CATEGORY #4: CROSS-VALIDATION

Acknowledge Out of Sample Is Not 

Really Out of Sample

Researchers have lived through the hold-out 
sample and thus understand the history, are knowledge-
able about when markets rose and fell, and associate 
leading variables with past experience. As such, no true 
out-of-sample data exist; the only true out of sample is 
the live trading experience.

A better out-of-sample application is on freshly 
uncovered historical data; for example, some researchers 
have tried to backfill the historical database of US fun-
damental data to the 1920s. It is reasonable to assume 
these data have not been data mined because the data 
were not previously available in machine readable form. 
But beware: Although these data were not previously 
available, well-informed researchers are aware of how 
history unfolded and how macroeconomic events were 
correlated with market movements. For those well 
versed on the history of markets, these data are in sample 
in their own experience and in shaping their own prior 
hypotheses. Even for those less knowledgeable, today’s 
conventional wisdom is informed by past events.

As with deep historical data, applying the model in 
different settings is a good idea but should be done with 
caution because correlations exist across countries. For 
example, a data-mined (and potentially fake) anomaly that 
works in the US market over a certain sample may also 
work in Canada or the United Kingdom over the same 
time span, given the correlation between these markets.
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Recognize That Iterated Out of Sample 

Is Not Out of Sample

Suppose a model is successful in the in-sample 
period but fails out of sample. The researcher observes 
that the model fails for a particular reason. The researcher 
modif ies the initial model so it then works both in 
sample and out of sample. This is no longer an out-of-
sample test. It is overfitting.

Do Not Ignore Trading Costs and Fees

Almost all of the investment research published 
in academic finance ignores transactions costs.8 Even 
with modest transactions costs, the statistical signifi-
cance of many published anomalies essentially vanishes. 
Any research on historical data needs to take transac-
tions costs and, more generally, implementation shortfall 
into account in both the in-sample and out-of-sample 
analysis (Arnott 2006).

CATEGORY #5: MODEL DYNAMICS

Be Aware of Structural Changes

Certain machine applications have the ability to 
adapt through time. In economic applications, structural 
changes—or nonstationarities—exist. This concern is 
largely irrelevant in the physical and biological sciences. 
In finance, we are not dealing with physical constants; 
we are dealing with human beings and with changing 
preferences and norms. Once again, the amount of 
available data is limiting, and the risk of overfitting the 
dynamics of a relation through time is high.

Acknowledge the Heisenberg Uncertainty 

Principle and Overcrowding

In physics, the Heisenberg uncertainty principle 
states that we cannot know a particle’s position and 
momentum simultaneously with precision. The more 
accurately we know one characteristic, the less accu-
rately we can know the other. A similar principle can 
apply in finance. As we move from the study of past data 
into the live application of research, market inefficien-

8 See Asness and Frazzini (2013). Hou, Xue, and Zhang (2017) 
showed that most anomaly excess returns disappear once microcaps 
are excluded. 

cies are hardly static. The cross-validated relations of the 
past may seem powerful for reasons that no longer apply 
or may dissipate merely because we are now aware of 
them and are trading based on them.

Indeed, the mere act of studying and refining a 
model serves to increase the mismatch between our 
expectations of a model’s eff icacy and the true under-
lying eff icacy of the model—and that is before we 
invest live assets, moving asset prices and shrinking 
the eff icacy of the models through our own collective 
trading.

Refrain from Tweaking the Model

Suppose the model is running but not doing as well 
as expected. Such a case should not be a surprise because 
the backtest of the model is likely overfit to some degree. 
It may be tempting to tweak the model, especially as a 
means to improve its fit in recent, now in-sample, data. 
Although these modifications are a natural response to 
failure, we should be fully aware that they will generally 
lead to further overfitting of the model and may lead to 
even worse live-trading performance.

CATEGORY #6: MODEL COMPLEXITY

Beware the Curse of Dimensionality

Multidimensionality works against the viability of 
machine learning applications; the reason is related to 
the limitations of data. Every new piece of information 
increases dimensionality and requires more data. Recall 
the research of Chordia, Goyal, and Saretto (2017), who 
examined 2.1 million equity models based on Compu-
stat data. There are orders of magnitude more models 
than assets. With so many models, some will work very 
well in sample.

Consider a model to predict the cross section of 
stock prices. One reasonable variable to explore is past 
stock prices (momentum), but many other variables, such 
as volume, trailing volatility, bid–ask spread, and option 
skew, could be considered. As each possible predictor 
variable is added, more data are required, but history is 
limited and new data cannot be created or simulated.9

9 Monte Carlo simulations are part of the toolkit, perhaps 
less used today than in the past. Of course, simulations will pro-
duce results entirely consonant with the assumptions that drive the 
simulations.
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Macroeconomic analysis provides another 
example. Although most believe that certain economic 
state variables are important drivers of market behavior 
and expected returns, macroeconomic data, generally 
available on a monthly or quarterly basis, are largely 
offside for most machine learning applications. Over the 
post-1960 period,10 just over 200 quarterly observations 
and fewer than 700 monthly observations exist.

Although the number of historical observations 
is limited for each time series, a plethora of macroeco-
nomic variables is available. If we select one or two to 
be analyzed, we create an implicit data-mining problem, 
especially given that we have lived through the chosen 
out-of-sample period.

Pursue Simplicity and Regularization

Given data limitations, regularizing by imposing 
structure on the data is important. Regularization is a 
key component of machine learning. It might be the 
case that a machine learning model decides that a linear 
regression is the best model. If, however, a more elabo-
rate machine learning model beats the linear regression 
model, it had better win by an economically significant 
amount before the switch to a more complex model is 
justified.

A simple analogy is a linear regression model of Y 
on X. The in-sample fit can almost always be improved 
by adding higher powers of X to the model. In out-of-
sample testing, the model with the higher powers of X 
will often perform poorly.

Current machine learning tools are designed to 
minimize the in-sample overfitting by extensive use 
of cross-validation. Nevertheless, these tools may add 
complexity (which is potentially nonintuitive) that leads 
to disappointing performance in true out-of-sample live 
trading. The greater the complexity and the reliance on 
nonintuitive relationships, the greater the likely slippage 
between backtest simulations and live results.

Seek Interpretable Machine Learning

It is important to look under the hood of any 
machine learning application. It cannot be a black box. 
Investment managers should know what to expect with 

10 Monthly macroeconomic data generally became available 
in 1959. 

any machine learning–based trading system. Indeed, 
an interesting new subfield in computer science focuses 
on interpretable classification and interpretable policy 
design (e.g., Wang et al. 2017).

CATEGORY #7: RESEARCH CULTURE

Establish a Research Culture 

That Rewards Quality

The investment industry rewards research that pro-
duces backtests with winning results. If we do this in 
actual asset management, we create a toxic culture that 
institutionalizes incentives to hack the data to produce a 
seemingly good strategy. Researchers should be rewarded 
for good science, not good results. A healthy culture 
will also set the expectation that most experiments will 
fail to uncover a positive result. Both management and 
researchers must have this common expectation.

Be Careful with Delegated Research

No one can perform every test that could poten-
tially render an interesting result, so researchers will 
often delegate. Delegated research needs to be carefully 
monitored. Research assistants have an incentive to 
please their supervisor by presenting results that support 
the supervisor’s hypothesis. This incentive can lead to a 
free-for-all data-mining exercise that is likely to lead to 
failure when applied to live data.

Exhibit 2 condenses the foregoing discussion into a 
seven-point protocol for research in quantitative finance.

CONCLUSIONS

The nexus of unprecedented computing power, 
free software, widely available data, and advances in 
scientif ic methods provide us with unprecedented 
opportunities for quantitative research in finance. Given 
these unprecedented capabilities, we believe it is useful 
to take a step back and ref lect on the investment indus-
try’s research process. It is naïve to think we no longer 
need economic models in the era of machine learning. 
Given that the quantity (and quality) of data is relatively 
limited in finance, machine learning applications face 
many of the same issues quantitative finance researchers 
have struggled with for decades.
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In this article, we have developed a research pro-
tocol for investment strategy backtesting. The list is 
applicable to most research tools used in investment 
strategy research—from portfolio sorts to machine 
learning. Our list of prescriptions and proscriptions is 
long, but hardly exhaustive.

Importantly, the goal is not to eliminate all false 
positives. Indeed, that is easy—just reject every single 
strategy. One of the important challenges we face is sat-
isfying the dual objectives of minimizing false strategies 
but not missing too many good strategies at the same 
time. The optimization of this trade-off is the subject of 
ongoing research (see Harvey and Liu 2018).

At first reading, our observations may seem trivial 
and obvious. Importantly, our goal is not to criti-
cize quantitative investing. Our goal is to encourage 
humility, to recognize that we can easily deceive our-
selves into thinking we have found the Holy Grail. 
Hubris is our enemy. A protocol is a simple step. Pro-
tocols can improve outcomes, whether in a machine 
shop, an airplane cockpit, a hospital, or for an investment 
manager. For the investment manager, the presump-
tive goal is an investment process that creates the best 
possible opportunity to match or exceed expectations 
when applied in live trading. Adopting this process is 
good for the client and good for the reputation of the 
investment manager.

E X H I B I T  2
Seven-Point Protocol for Research in Quantitative Finance
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Modeling Analysts’ 
Recommendations via 
Bayesian Machine Learning
DAVID BEW, CAMPBELL R. HARVEY, ANTHONY LEDFORD, 
SAM RADNOR, AND ANDREW SINCLAIR

In 2009, a unique citizen science project 
called the Galaxy Zoo Supernovae 
project was launched.1 One of the 
goals of the project was to identify new 

supernovae (SN)—and to recruit the help 
of thousands of amateur astronomers. The 
astronomers were asked to give three levels 
of classification: very likely SN object, pos-
sible SN object, and not likely SN object. 
Determination of the true classification came 
from the spectrographic analysis of Caltech’s 
Palomar Transient Factory.2 

The problem arose as to how to com-
bine the classifications. At any point in time, 
many astronomers may be scoring a par-
ticular object. Should we look at the average 
classif ication? Obviously the classif ications 
are imperfect, and an average may reduce 
the noise. A simple majority vote (yes or 
no) is another possibility. However, both 
the majority and the average do not allow 
for differential skill among the classif iers. 
Is there a way to build a system that takes 
the track record of the astronomer into 
account? Importantly, the quality of the 
track record should be dynamic to allow 
for both improvement through time as well 
as fatigue.

Such a task is an ideal application of a 
type of machine learning called independent 

1 See Lintott (2012). 
2 https://www.ptf.caltech.edu/iptf. 

Bayesian classifier combination3 (IBCC), origi-
nally def ined by Ghahramani and Kim 
(2003). The Galaxy Zoo data were analyzed 
by Simpson et al. (2013) with impressive 
results. They found that their probabilistic 
model for the IBCC technique led to dramatic 
improvements in classification. For example, 
allowing for a 10% error rate, the rate of cor-
rect classification went from approximately 
65% using the average to 97% using IBCC.

What does the classification of SN have 
to do with finance? It turns out that there are 
striking similarities to the problem facing an 
investment manager in evaluating analysts’ 
recommendations: As in the Galaxy Zoo 
project, there are thousands of objects (com-
panies) and thousands of astronomers (ana-
lysts). In both cases, the subjects do not cover 
all the objects (companies), but only a subset 
(sparsity). The classif ication mechanism in 
the Galaxy Zoo project (very likely, possible, 
and not likely) has an uncanny resemblance 
to buy, hold, or sell. In addition, it is reason-
able to assume a differential degree of skill 
among analysts; hence, the IBCC method, 
given its track record in the physical and bio-
logical sciences, is a logical place to start. 

The goal of our article is to apply IBCC 
to the I/B/E/S forecast universe to determine 

3 Despite its name, the IBCC model does not 
assume independence but, instead, assumes conditional 
independence, which is discussed later.
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whether the classif ier provides information that may 
lead to improved investment management. We are fully 
aware that analysts’ forecasts are a well-researched area in 
the academic finance and accounting literature. Indeed, 
Brown (2000) detailed 575 studies, many of which are 
focused on analysts’ forecasts—and that article is 20 years 
out of date. A search of SSRN’s Financial Economics 
Network and Accounting Research Network reveals 
over 1,000 papers dealing with analysts’ forecasts.4 

Despite the large quantity of research, ours is the 
f irst article (that we know of ) to apply IBCC to the 
important problem of how to combine analysts’ recom-
mendations. Previous applications of IBCC in economics 
include work by Levenberg et al. (2013), who focused 
on forecasting the trend of the US nonfarm payrolls, 
and by Levenberg et al. (2014), who incorporated sen-
timent measures obtained using sentence-level lan-
guage analysis. The popularity of IBCC in large-scale 
machine learning applications is largely due to it pro-
viding a scalable multidimensional inference procedure 
for combining arbitrary groups of simultaneous recom-
mendations from multiple sources. It does this while 
requiring only univariate classif ier learning, thereby 
allowing the set of sources to be easily extended. These 
features also make it ideal for combining analysts’ 
forecasts.

With the potential for incorporating so many clas-
sifier sources, avoiding overfitting becomes an impor-
tant consideration. Bayesian models are not as prone to 
overfitting as are models that require point estimates to 
be specified for large numbers of parameters; uncertainty 
about all the unknowns in a Bayesian model is described 
using their joint posterior probability distribution. 
Prediction requires integrating over this distribution, 
a procedure that properly accounts for diffuse knowledge 
about all parameters rather than requiring point values to 
be ascribed. The primary drawback of Bayesian models, 
which automatically account for parameter uncertainty, 
is that their use can be computationally demanding, 
often making them unsuitable or even impossible for 
real-time use. In contrast, our inference approach uses 
a state-of-the-art Bayesian technique called variational 
approximation, and it is extremely efficient computation-
ally. The model we present here can be applied to learn 

4 Early reviews of the literature were conducted by Givoly 
and Lakonishok (1984), Schipper (1991), and Brown (1993). A more 
recent treatment was done by Bradshaw (2011).

about each analyst individually or groups of analysts. 
Restrictions currently in place require that we only 
report at the broker level.

We realize that predicting f inancial outcomes 
remains diff icult, even when expansive datasets and 
sophisticated machine learning models are available. Our 
primary aim is not to identify the best analyst or broker 
but to make a coherent ensemble forecast in which the 
weight given to each broker is driven by the length and 
quality of the broker’s track record. In our application, 
the best results arise when there is agreement between 
broker recommendations and the forecasts obtained 
using IBCC. This conf irmation (or reinforcement) 
effect, which pervades our long-only, long–short, and 
short-only portfolios and the various robustness anal-
yses we perform, suggests intriguing ways for machine 
learning to enhance the investment processes of both 
quantitative and discretionary fund managers.

Our article is organized as follows. The second sec-
tion discusses the data, focusing on nonstandard features 
such as their categorical nature, dependence structure, 
and sparsity (i.e., characteristics that necessitate a bespoke 
modeling treatment). The third section details the IBCC 
model and discusses important choices about priors and 
hyperparameters within our Bayesian framework. The 
fourth section explains how inference is undertaken 
using a state-of-the-art computationally efficient tech-
nique called variational approximation. Empirical results 
are presented in the fifth section, together with a range 
of robustness checks. Concluding remarks and some sug-
gestions for further research are offered in a final part.

DESCRIPTION OF THE DATA 

MODELING PROBLEM

Our study falls within the area of machine learning 
known as supervised learning. The input data are categor-
ical analyst recommendations about individual compa-
nies and are obtained from a large, publicly available 
database. Associated with each analyst recommendation 
is a categorical outcome variable (sometimes called a 
target, or truth, within the IBCC literature) that describes 
the directional price movement of the company’s stock 
(relative to a benchmark) subsequent to the recom-
mendation. We aim to use a modern Bayesian machine 
learning method to learn the relationship between these 
input and target data and thereby predict future price 
movements based on current recommendations data.
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Input Data: I/B/E/S Broker Recommendations

A vast amount of analyst data are available on both 
the individual stocks and the various subsectors within 
international equities markets. Our focus here is on rec-
ommendation data from the Thomson Reuters I/B/E/S 
database, a data source that covers nearly all analysts 
within their respective geographies and provides analyst-
by-analyst recommendations for individual securities. 

A recommendation is simply an analyst’s rating for 
a particular company, and because different analysts 
use a variety of ratings schemes, each recommenda-
tion received from a contributing analyst is mapped 
by Thomson Reuters to one of five Standard Ratings: 
strong buy, buy, hold, underperform, and sell. 

Several factors distinguish such data from those 
typically encountered in mainstream financial fore-
casting applications. First, unlike in standard time-series 
forecasting, recommendations are not observed at a fixed 
frequency but are event based; that is, they are observed 
irregularly and at largely unpredictable discrete dates. 
Second, instead of being quantitative forecasts on some 
continuous-valued scale, recommendations are categor-
ical. This makes them better suited to a classification-
based analysis than to a standard regression approach. 
Additionally, the recommendation database we examine 
has the following characteristics:

1. Very high dimensionality: Recommendations 
are received on thousands of stocks from thousands 
of individual analysts.

2. Extreme sparsity: Typically only a small number 
of analysts issue recommendations on any par-
ticular stock on any particular day; the rest say 
nothing.

3. Dependence: We expect analyst recommenda-
tions to be statistically dependent for a number of 
reasons:
A. Cross-sectional dependence: Contributing 

analysts often have exposure to correlated infor-
mation sets and therefore reach the same or similar 
conclusions even though their decision processes 
are otherwise independent. This is an example 
of an important special case in statistics: When a 
multivariate random variable, (X1, X2, …, Xm, Z) 
say, is such that Pr(X1, X2, …,Xm|Z) = Pr(X1|Z) × 
Pr(X2|Z) × … × Pr(Xm|Z), then the Xs are said 

to be conditionally independent given Z, or 
equivalently, the Xs are independent conditional 
on Z. The IBCC model makes extensive use of 
such a conditional independence structure (see 
the third section).

B. Temporal dependence: Analyst views typi-
cally update gradually, and analysts often restate 
their previous recommendations. This leads to 
serial correlation. Group behavior among ana-
lysts can also generate serial correlation (e.g., 
some analysts leading opinion and others fol-
lowing consensus).

4. Lack of consistency: Although the analyst rec-
ommendations provided by I/B/E/S are recorded 
on the common five-category scale given earlier, 
for many analysts, only two of these categories 
are populated. Other analysts may use three of 
the available categories and still others all f ive. 
Although it is quite possible to deal with this 
inconsistency using all five categories within the 
IBCC model, there is little practical gain in doing 
so here. Thus, we group together the first two and 
last two Thomson Reuters Standard Ratings and 
relabel the original I/B/E/S analyst recommen-
dations as buy, hold, and sell. For each I/B/E/S 
recommendation, we artif icially label each ana-
lyst not issuing a recommendation for that stock-
day pair with the category label “Missing.” This 
means that recommendations are recorded on the 
following four-category scale: missing, buy, hold, 
and sell. Finally, we note that the distribution of 
buys and sells can be extremely uneven ref lecting 
inherent biases in broker behavior.

Accounting for any one of these four characteristics 
within a Bayesian analysis requires detailed probabilistic 
modeling. Our IBCC methodology deals with all of 
them simultaneously and does so with a computation-
ally rapid approach that allows the resulting system to 
calibrate dynamically to the prevailing environment. We 
also require that the prediction computations required 
for forecasting be feasible in real time so incoming 
recommendations can be responded to with minimal 
delay. Our Bayesian approach also allows prior beliefs 
to be accommodated so that the system can be guided 
by information from outside the observed data, should 
that be required.
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Outcome Data: Post-Recommendation 

Price Movements

Unlike the input recommendations data, which 
are intrinsically categorical, the outcome data we seek 
to predict are price movements of the underlying com-
pany’s stock over some future time horizon. Such price 
movements arise on an essentially continuous rather than 
categorical scale, whereas the IBCC model, which we 
seek to apply here, requires categorical targets. Our first 
step is therefore to create these categorical targets for the 
historical recommendation data. For consistency with 
the IBCC literature, these targets will be referred to as 
truths.

We first need to choose the time horizon, Δτ, over 
which we are interested in predicting the movement of 
the stock price; for the majority of this study, we use 
Δτ = 60 business days. For each analyst recommenda-
tion, we note the day it became public, s, and calculate 
r(s,Δτ), which is defined as the excess return of the relevant 
stock over the Δτ period starting the next business day 
after s and measured relative to our benchmark return. 
We use this together with a relative measure of index 
volatility to define a categorical truth variable t for each 
recommendation according to 

=

≤

≥ ×
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where RVols denotes an estimator of index volatility 
scaled to have unit mean. Given their obvious inter-
pretations, we refer interchangeably to the truth states 
{0, 1, 2} as Price_Down, Price_Flat, and Price_Up, 
respectively. Clearly, the truth variable defined here has 
nothing to do with any broker recommendation being 
correct or incorrect; it is determined solely by the subse-
quent performance of the stock relative to the index after 
the recommendation. Many reasonable extensions of this 
truth variable definition are possible—for example, one 
could incorporate the market β of each underlying stock.

We restrict our attention to the period January 1, 
2004, to January 1, 2013, and include only the 
pan-European region comprising Austria, Belgium, the 
Czech Republic, Cyprus, Denmark, Finland, France, 
Germany, Greece, Hungary, Ireland, Italy, Luxembourg, 

the Netherlands, Norway, Poland, Portugal, Russia, 
Spain, Sweden, Switzerland, Turkey, and the United 
Kingdom. Our benchmark is the Dow Jones Euro Stoxx 
Index.5 Additionally, at the announcement time of each 
recommendation, we apply a filter to the stock universe 
to ensure our results are free of survivorship bias. 

We group analysts by their stated corporate 
employer, henceforth broker, which gives 347 separate 
brokers. To be clear, the IBCC technique can be applied 
at the level of individual analysts or at the broker level. 
Because of reporting restrictions, we focus this article 
at the broker level. 

Aggregating recommendations about the same 
stock that arise on the same day, we obtain the com-
bined recommendations and truths dataset described in 
Exhibit 1. The dataset has 105,319 rows.6 If recommen-
dations were recorded for all 347 brokers for each of 
the 105,319 rows there would be 36,545,693 nonzero 
recommendation codes, corresponding to combinations 
of the labels hold, sell, and buy. However, the reality 
is that only 116,220 of the recommendation codes in 
Exhibit 1 are nonzero, meaning 99.7% correspond to the 
label “Missing.” This demonstrates the extreme sparsity 
of the data object at the heart of our IBCC analysis. 

5 Bloomberg ticker: SXXE Index.
6 This choice of a one-day aggregation period is arbitrary and 

is something we return to later. From the previous discussion about 
group behavior, we would expect statistical dependence between 
rows at this aggregation were analysts to issue recommendations on 
a stock prompted by others doing so.

E X H I B I T  1
The Structure of the Dataset

Notes: Integer codes {0,1,2} are used to denote the truth outcomes 
{Price_Down, Price_Flat, Price_Up}, respectively. The artificial recom-
mendation label “Missing” is encoded as 0 for each noncontributing broker 
in each row, and the resulting recommendation set {Missing, Hold, Sell, 
Buy} is encoded as {0,1,2,3}, respectively. Each row contains at least one 
nonzero recommendation code. A very high proportion of recommendations 
is recorded as 0, corresponding to “Missing,” because only a small number 
of brokers within each row issues hold, sell, or buy recommendations.

Stock ID

#1234
#5678
#5678
#5678

Date

...

July 10, 2008
Feb 7, 2012
July 1, 2012

Mar 14, 2012 

Truth

...

0
0
2
1

Broker 1

...

3
0
2
0

Broker 2

...

0
1
0
3

...

... ...

Broker N 

0
2
0
1
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THE IBCC MODEL: PROBABILISTIC 

SPECIFICATION AND CONSTRUCTION 

OF THE POSTERIOR

The IBCC model is a fully probabilistic model 
that relates a constellation of categorical inputs—in 
our case, the constellation of broker recommenda-
tions within each row of the data object described in 
Exhibit 1—and a categorical truth variable associated 
with those inputs.7 

We start by specifying a probabilistic model over 
the categorical truth variable T. In our IBCC implemen-
tation, T takes values over states {0, 1, 2} corresponding 
to Price_Down, Price_Flat, and Price_Up, respectively, 
and is assumed to have probability mass function

 κκκκκκκκκκκ tPr( |T t= )  = κ t for {∈t 0,1, 2} (1)

where the parameter κκ  = (κ0, κ1, κ2) denotes a three-
vector of probabilities so that κ0 + κ1 + κ2 = 1. This 
specification is simply saying the truths {0, 1, 2} occur 
with probabilities κκ  = (κ0, κ1, κ2) respectively, and that 
no other truth outcomes are possible. The conditioning 
notation in Equation 1 makes explicit that the parameter 
κκ  is assumed to be known at this stage.

The next step is to specify, for each broker, three 
separate distributions to describe their recommenda-
tion behavior given each possible truth. More explic-
itly, letting Bk ∈ {0, 1, 2, 3} denote the recommendation 
of broker k corresponding to missing, hold, sell, and 
buy, respectively, for each k ∈ {1, …, N} we require dis-
tributions for the following three conditional random 
variables: Bk|T = 0, Bk|T = 1, and Bk|T = 2. Writing Tj 
for the truth in row j, the IBCC model assumes, condi-
tionally on Tj = t, that the Bk are independent and have 
probability mass functions given by

 Pr( | , ) for {0,1,2,3}b T t bk kj j|Tk t t b kjkj
ππππ|T = π ∈( )k ( )k  (2)

where, for each truth t ∈ {0, 1, 2}, the parameter 
[ , ]0 1, 2 3,t t tππ =tππ π π π π,0 1, 2 ,t

( )kk ( )kk ( )kk ( )kk ( )k  denotes a four-vector of probabil-
ities for broker k and so satisfies π + π + π + π =( ) ( ) ( ) ( ) 10 1+ π 2 3+ πt t . 
This conditional specification looks complicated, but all 
we are doing is defining three separate four-dimensional 
multinomial distributions for each broker, one for each 

7 Code for IBCC is available at https://github.com/edwinrobots/
pyIBCC. This is not the code that we used for our research. 

of the possible truth outcomes. Thus, for each broker 
k, we have parameters 0ππππ( )k , 1ππππ( )k , and 2ππππ( )k . Again, the 
conditioning notation in Equation 2 makes explicit that 
the parameters tππππ( )k  are assumed known at this point. 

The assumption that the broker recommendations 
within row j are independent conditionally on Tj = tj 
allows the likelihood contribution for row j to be con-
structed, giving

∏

…

= κ π π π = κ π∏ ( )( ) ( ) ( )

=

B b= B b= B b=j jB j N… B Nj

t tπ b tπ b tπ b t
l

N

t bj jt j j j jt Nj j j∏ t lj

Pr( ,T t= j ,  … )

π

1bb 2 2

π) (

1
1 2t bj jt

The IBCC model assumes all rows in the data object 
described in Exhibit 1 are independent, so the full 
likelihood, over its n distinct rows, is given by

 
 b b  bN

j

n

l

N

t bj jt lj∏ ∏t j
… = π∏t

⎛
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

( )l

=

Pr( ,t , , )N )b bN1 2b, b
1l1 ⎝ =l⎝

 (3) 

where for notational brevity we have written t = (t1,…, tn) 
for the column of n truths in Exhibit 1 and bk=(bk1,…, bkn)  
for the recommendation column for broker k, for each 
k ∈ {1,…, N}.

So far we have treated the parameters of the truths 
and broker distributions—that is, κκ  and ( , )0 1, 2

kπ,, π ,1
kππ( )k ( )kkkk ( )k  

for k ∈ {1,…, N}, respectively—as fixed parameters. In 
a frequentist analysis, we would need to estimate these 
(e.g., by maximum likelihood and its well-established 
asymptotic theory) to obtain point estimates and con-
fidence intervals. This is not the approach we adopt 
here. Our Bayesian analysis requires that we treat all 
these quantities probabilistically so that each is described 
according to its own prior probability distribution. For-
mulation of the posterior distribution then proceeds via 
the product of these prior distributions and the likeli-
hood given in Equation 3, and inferences are made based 
on the posterior distribution alone (see Lee 2012).

Thus, we must specify priors over κκ  and 0ππππ( )k , 1ππππ( )k , 
and 2ππππ( )k  for each k ∈ {1,…, N}. Because the truth and 
broker recommendation distributions are all examples 
of multinomial distributions, we choose to use the 
family of Dirichlet distributions as priors because the 
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Dirichlet family is the conjugate8 family of priors for the 
multinomial distribution (for details, see Bishop 2006). 

For the truth probabilities κκ  = (κ0, κ1, κ2), 
we assume a three-dimensional Dirichlet distrib-
uted prior, that is, the continuous distribution with 
probability density function over domain of sup-
port {( , ); 0 1}0 1, 2 0); 0 2D j 1, t= κ{( κ κ,1 ≤ κ ≤ Σ111, κ =t  given by 

Pr ( | ) ( ) 0
2 10
t t0

tν|ν ν) (νν ννν= Π( )ν(ννν κν −0 t , where C(ν) = Γ(ν00 + ν01 + ν02)/
{Γ(ν00) × Γ(ν01) × Γ(ν02)}; the three-vector ν = (ν00, ν01, ν02) 
denotes a so-called hyperparameter (i.e., a parameter of the 
prior); and Γ(⋅) is the gamma function. Note that substi-
tuting ν0t ≡ 1 into this probability density function for 
each t ∈ {0, 1, 2} yields a f lat prior for κκ  over D. Similarly, 
for each broker recommendation Bk for k ∈ {1,…, N} 
and conditional on truth t ∈ {0, 1, 2} we assume 

t tπ π π πt
( )kk ( )kk ( )kk ( )k{ , tπt }0 1tππ, tπt 2 3tπ,  has a four-dimensional Dirichlet 

prior with hyperparameters { , , }.0, 0 0, , 1 0, 2 0, , 3t tα,, α α0 2 ,
( )k ( )k ( )kk ( )k  To 

condense the notation, we denote the complete set of 
bro ker recommendation probabilities conditional on each 
truth by ΠΠ =ΠΠ π π π π = …( ) ( )

pp
( ) ( )[{ ,π }: 0, , ; 1, ,0 1ππ,π 2 3π, t k= 0, 1, 2;t t  

N] and their corresponding hyperparameters by 
t kt tA = α α α = = …( )k ( )kk ( )k ( )k[{ , tα t , }tα t

( )kk : 0t =t , , ; 1= , ,…   ]N .0 0α[{ , 0t 0, 1 0α, , 2t 0, 3  
Having now fully specified both the likelihood 

and the prior, we are equipped to construct the posterior 
distribution, which is proportional to their product, and 
hence satisfies

 

b b bN
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n
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N

t bj jt lj
A∏ ∏t j

κ ΠΠ νt b b b AΠΠ
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r ( | )νννν ( |ΠΠΠΠ ).

1 2b,b 0

1l1 ⎝ =l⎝ 0  (4)

This is a joint distribution in over 4,000 dimen-
sions9 and incorporates information about κκ  and ΠΠ from 
both the observed data and the prior. In some IBCC 
applications, it is common to choose informative priors; 
however, we deliberately choose priors that are f lat over 
their respective domains. This is achieved by setting the 
hyperparameters ν0t ≡ 1 for each t ∈ {0, 1, 2}, and 10,tjα ≡0 tj

( )kk  
for each j ∈ {0, 1, 2, 3} where {k ∈ 1,…, N; t ∈ 0, 1, 2}. 
These f lat priors ensure that only information learned 
from the observed truths and recommendations data, 

8 A conjugate prior is one that leads to a posterior distribution 
that is within the same parametric family as the prior, which there-
fore leads to greatly simplified Bayesian analysis. See Bishop (2006).

9 There are 347 brokers, each requiring three separate four-
dimensional distributions, plus the three-dimensional truth distri-
bution. In all, this makes 347 × 4 × 3 + 3 = 4,167 dimensions.

and not our choice of priors, is driving the trading sig-
nals and allows straightforward assessment of the efficacy 
of our learning framework. 

For the avoidance of doubt, we note that the IBCC 
model incorporates no sense of ordering within the 
category labels for either the truths or the broker recom-
mendations. Its fundamental job is simply to learn how 
one set of labels (the broker recommendations) relates to 
the other set (the truths, which encode subsequent price 
outcome). Indeed, a broker that always recommends buy 
when the truth is Price_Down is just as informative 
within our IBCC implementation as a broker that always 
recommends sell in such cases. 

The high dimensionality and data sparsity of our 
application mean using alternative dependence models 
(e.g., copulas) to capture the dependence between dif-
ferent brokers is computationally infeasible. The IBCC 
model deals with this limitation by assuming conditional 
independence and thereby provides a scalable and com-
putationally efficient multidimensional inference proce-
dure over arbitrary groups of classifiers that requires only 
univariate classif ier learning. This key feature of the 
IBCC model is one of the reasons it has become popular 
for large-scale Bayesian machine learning applications. 

VARIATIONAL BAYESIAN INFERENCE 

In this section, we introduce variational Bayesian 
inference, an approach sometimes termed variational 
Bayes, or simply VB. See Bishop (2006, Chapter 10) 
and Blei, Kucukelbir, and McAuliffe (2018) for detailed 
treatments and Fox and Roberts (2011) for a tutorial.10 
We then provide the key results of applying VB to our 
IBCC model. The theory is elegant, but its mathematical 
derivation can obscure the simplicity of the underlying 
approach: We approximate a multivariate distribution by 
a product of simpler distributions that we update itera-
tively to obtain the best overall approximation. In what 
follows, all logarithms are natural logs, that is, loge(⋅).

Let X denote a set of observed data and Z a com-
bined set of latent (i.e., unobserved) parameters and 
variables. We use the generic shorthand p(⋅) to denote 
the probabilistic model governing whatever quantities 
appear inside the parentheses; for example, the joint 
distribution of X and Z is written p(X, Z). Our goal is 
to find a good approximation, q(Z) say, for the posterior 

10 Also, see https://staff.aist.go.jp/bevan.jones/vb-tutorial-
slides.pdf.
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p(Z|X). In our IBCC implementation, Z will include 
the truth outcome we seek to predict (i.e., Price_Up, 
Price_Down, or Price_Flat; see Exhibit 2).

Noting that q(Z) represents a probability model 
and therefore integrates to one, we may always write 
logp(X ) = q∫ Z( )  logp(X )dZ, where p(X ) denotes 
the so-called model evidence. Furthermore, because 
the def inition of conditional probabil ity gives 
p(X) = p(X, Z)/p(Z|X), we may substitute for p(X) in 
this integral to obtain 

 

log ( ( ) log
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This can be written as logp(X) = L(q) + KL(q, p), 
where KL(q, p) = − q∫ Z( )log{p(Z|X)/q(Z)}dZ denotes the 
Kullback–Leibler11 divergence (KL-divergence) between 
q(Z) and p(Z|X), and L(q) = q∫ Z( )log{p(X, Z)/q(Z)}dZ 
is the negative of a quantity called the variational free 

11 The KL-divergence between the two probability distri-
butions f and g is a global measure of their dissimilarity and is 
defined by ∫−( ) = ( )/( xKL f g, f g( ) l g{) log{ f d/ (/ )}x xx)} . It is called a diver-
gence, rather than a distance, because it is not symmetric; that is, 

( ) ( )KL f g, g f, . Standard properties include that ( ) 0KL f g,  
always and that ( ) 0KL f g,  if and only if f = g.

energy.12 Standard properties of the KL-divergence 
include that it is always nonnegative and that KL(q, p) = 
0 if and only if q(Z) equals p(Z|X). This implies L(q) 
is a lower bound for logp(X) and furthermore that this 
lower bound can be maximized by minimizing the KL-
divergence, KL(q, p), with respect to the distribution 
q(Z). This is a calculus of variations problem.13

VB considers a restricted but tractable family of 
distributions to represent q(Z) and then seeks the ele-
ment of that family that maximizes L(q). The approach 
we adopt involves partitioning Z into m groups of vari-
ables and assuming that q(Z) can be approximated by 
the factorized structure ( ).1q q( ) 1i

m
i i(ΠZ Z) (q) 1

m
i(Π This factorized 

version of variational approximation has its origins in 
physics, where it is called mean field theory.14 Thus, among 
all distributions of the form ( )1q q( ) 1i

m
i i(ΠZ Z) (q) 1

m
i(Π , we seek 

the distributions ∗ Z( )Zqi i(Z  that jointly maximize L(q). To 
be clear, other than the assumed factorization structure 
( )1q q( ) 1i

m
i i(ΠZ Z) (q) 1

m
i(Π , no further assumptions about q(Z) are 

required. 
Subst itut ing our a s sumed factor izat ion 

( )1q q( ) 1i
m

i i(ΠZ Z) (q) 1
m

i(Π  into the definition of L(q) given ear-
lier and adopting the notation qi = qi(Zi), we obtain 

X Z ZL q q p q dZZi iq i iq∫= Π∫ Σ( )q {l ( ,X ) li− Σ og . We now rewrite 
this expression to make clear how it depends on one of 
the individual factors, qj(Zj) say, noting that any terms 
not involving qj may be treated as constant with respect 
to Zj. We thereby obtain
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L q dZZ
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j jq j

∫q j

∫
{ }Zq dZZi j iq iZ∫= ∫q X ZX∫
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We now def ine the new distribution ( , )p jX Z, j  
by log ( ) [log ( )]p( , E) p c( , )]j iE) j +[log ( )]E p( )]iE j≠X Z, X Z, , where c is a 
normalization constant and Ei≠j[⋅] denotes expecta-
tion with respect to all qi distributions for i ≠ j so that 

12 To avoid the possibility of misinterpretation, for clarity 
we remark that ( )L(  is not the likelihood function. Writing 

Z Z∫ ∫
)q(

Z X Z− = −∫ XL q q∫ZZZ q dZ ZZ( )q ZZZ ZZ ( )Z log{1/ Z , we obtain an 
energy term minus an entropy term, which is why it is called the 
free energy. See Sato (2001).

13 Standard calculus allows functions to be optimized, where 
a function is a map that takes the value of some variable as input and 
returns the value of the function as output. Calculus of variations 
allows functionals to be optimized rather than functions, where 
functionals are maps that take functions as inputs.

14 See Parisi (1988).

E X H I B I T  2
Graphical Model of Our IBCC Implementation

Notes: Elliptical/circular nodes are variables with a distribution, whereas 
rectangular nodes represent hyperparameter variables that are instanti-
ated with fixed values. The red shaded node represents recommendations, 
which are observed during both training and prediction. The orange shaded 
node represents truths, which are observed during training but have to be 
inferred during prediction.

A0

ν

Π

Broker k ∈ {1, ..., N}

κ

Day j ∈ {1, ..., n}

T = tj

Bκ = bκj
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Ei≠j[logp(X, Z)] = ∫ logp(X, Z)Πi≠jqidZi. Careful inspection 
of Equation 5 now shows that L(q) is simply the negative 
KL-divergence between q j(Zj) and ( , )p jX Z, j , which is 
minimized by taking ( ( , )q p( )j j( jZ X) (p) Z j . Thus, keeping 
qi constant for each i ≠ j, we have that maximizing L(q) 
over all possible distributions qj(Zj) is achieved by taking 
log ( [log )])( p c( , )]j j( i j +)], )]∗ Z X) [l () [log (( Z , where c denotes a nor-
malizing constant. This key result provides the basis for 
application of variational methods. 

The set of equations log ( [log )]E)( p( , )]j j( i j )], )]∗ Z X) [l () [log (( Z  + c 
for each j ∈ {1,…, m} provides conditions for the max-
imum of L(q) subject to the assumed factorization 

)1q q( ) 1i
m

i i(ΠZ Z) (q) 1
m

i(Π . However, these equations do not 
provide an explicit solution because the expression for 
each ( )q j j(∗ Z  involves taking expectation with respect 
to the other ( )qi i(∗ Z  distributions for i ≠ j. To solve these 
equations, we proceed iteratively. First, each qi(Zi) distri-
bution is initiated—for example, with parameters chosen 
broadly to match moments of the observed data. Then 
we cycle through each j ∈ {1, …, m}, updating qj(Zj) by 
evaluating Ei≠j[logp(X, Z)] using the current estimates of 
qi(Zi) for each i ≠ j. Convergence to a local maximum 
is guaranteed because of certain convexity properties 
of L(q) with respect to the factors qi(Zi) (see Boyd and 
Vendenberghe 2004). Furthermore, in the particular 
case of our IBCC implementation, because all the fac-
tors we have chosen are of the exponential family type 
(Bernardo and Smith 1994), this maximum can be 
shown to be the global maximum within the family of 
factorized distributions.

Variational Inference for Our 

IBCC Implementation

Our IBCC application deviates from those of Kim 
and Ghahramani (2012) and Simpson et al. (2013) in 
three key ways. First, we intend to perform online fore-
casting, so temporal consistency requires running the 
model using only information that is already available 
at the time of each forecast. Second, with the excep-
tion of truths corresponding to recommendations made 
within the most recent Δτ period, all truths within our 
training data are completely observed because they are 
based on publicly available price data. In contrast, for 
the Galaxy Zoo project, the truth data were largely 
missing. Finally, our primary interest is the predictive 
distribution Pr(T = t|B1 = b1, B2 = b2,…, BN = bN), rather 
than the posterior, because we wish to forecast the truth 

outcome conditional on, for example, today’s constella-
tion of broker recommendations.15

Although it is possible to extend the IBCC model 
to include explicit temporal structure, as done by 
Simpson et al. (2013), our approach is based on cali-
brating their simpler static model to a dataset that updates 
as time evolves. Specifically, we truncate the observed 
data, comprising the time-stamped recommendations 
and truths, at a sequence of evaluation dates, ensuring 
additionally that a buffer of duration Δτ is incorporated 
between the last admitted training observations and the 
onset of prediction. For each training data set so cre-
ated, we seek to calculate the predictive distribution 
Pr(T = t|B1 = b1, B2 = b2,…, BN = bN) for each constel-
lation of broker recommendations that arises until the 
next evaluation date. Learning remains halted over this 
prediction phase, so each constellation of analyst recom-
mendations we use in prediction is treated individually. 
All our findings are obtained using this rolling out-of-
sample scheme.

For each evaluation date, we undertake both 
expanding-window and moving-window analyses. The 
expanding-window analysis admits all data from January 
1, 2004, up to the evaluation date, whereas the moving-
window analysis admits only data within a three-year 
lookback from each evaluation date. In principle, the 
evaluation dates could be chosen to index each busi-
ness day; however, for practical reasons16 we set them 
quarterly, to the first day of March, June, September, 
and December.

Let index i ∈ (1,…, nr) denote the rows of the 
training data, renumbered as required for the rolling 
window case. Because all the recommendations and 
truths are observed for these training data and because 
we chose conjugate Dirichlet priors for both κκ  and ΠΠ, 
standard properties of the multinomial-Dirichlet family 
(see Bishop 2006) give the following:

1. The posterior of κκ  is a Dirichlet distribution with 
parameter ( , , )0 1, 2νν =νν ν,,∗ ∗( ∗ ∗ , where Nj j0 jν =j ν +0 j0

∗  

15 The predictive distribution we seek, sometimes called the 
posterior predictive distribution, is defined by the multivariate integral  

B b B b B b d dN Nb∫
pp

κκ Πκκ Π κΠΠ κ ΠΠ dΠΠ ΠdΠΠΠB …bPr( |T tt ,  , ,…   ,BN Nb   ,κκκκ )ΠΠΠΠ ( ,κκκκ )1 1b 2 2b , where 
Pr( , )κ Π,ΠΠΠ  denotes the posterior distribution of ( , )κ Π,ΠΠΠ , which depends 
implicitly on the training data. 

16 Risk managers tend to have a preference for models with 
parameters that remain static for reasonable periods rather than 
models in which parameters change on a daily basis.
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and Nj denotes the number of occurrences of 
truth j in the training data for j ∈ {0, 1, 2}. The 

Nj j0 jν =j ν +0 j0
∗  formula is often referred to as the 

prior counts plus data counts updating relationship for 
the multinomial-Dirichlet family. 

2. The posterior of tππππ( )l  is a Dirichlet distribution 
with parameters α α α( ) ( ) ( )( ) ( )∗ ∗) ( ) ( ) (

t t( ,α( ))
t ,αt )0 1αt, 2 3αt, , where 

0,Ntb tb tbα =tb + α( )ll ( )l ( )l , and Ntb
( )l  denotes the number 

of recommendations of type b ∈ {0, 1, 2, 3} made 
in the training data by broker l ∈ {1,…, N} for each 
truth t ∈ {0, 1, 2}. We let A∗ denote the collection 
of all these posterior parameters.

Our procedure for approximating the predictive 
distribution Pr(T = t|B1 = b1, B2 = b2,…, BN = bN) starts by 
considering Pr(κκ , ΠΠ, t, b1, b2,…, bN|A∗, ν∗). This has the 
same structure as the individual data terms in Equation 4 
except that now the truth t is unobserved, and (A∗, ν∗) 
denotes the ensemble of posterior parameters given ear-
lier. Thus, logPr(κκ , ΠΠ, t, b1, b2, …, bN|A∗, ν∗) is of the form

 

∑ ∑ κκκκ

ΠΠΠΠ

π
⎛
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+

+ +ΠΠΠΠ

( )

= =⎝
∗

∗

j
j

l

N

jbl
l∑∑ g  log Pr( | )νννν∗

log Pr( | )∗A Constant.

0

2

1

 (6)

Here, we have introduced the indicator function 
I(⋅), defined by I(t = j) = 1 if t = j and I(t = j) = 0 oth-
erwise, because it will be convenient later. To reduce 
clutter, we drop the dependence on (b1,…, bN A∗, ν∗) from 
our notation. We therefore represent the latent variables 
and parameters by Z κκ Πκκ ΠΠΠ= ( ,t , )ΠΠΠΠ . We assume q(Z) factor-
izes as κκ Πκκ Π κΠΠ κ ΠΠΠΠ( , , )ΠΠΠΠ ) ( ,κκκκ )q t( q t( q . This is the only assump-
tion we need to make; several further simplifications 
arise because of the structure of the IBCC model. For 
example, Equation 6 shows that the terms involving κκ  
and ΠΠ can be separated, which implies the additional 
factorization Π κΠΠ κ Πκκ ΠΠΠ∗ ∗ΠΠΠΠ ∗(κκκκ ( ) ( )q qΠΠΠΠ( ,κκκκ ) q .

We start by initializing the distributions for 
κκ  and tππππ( )l  with their posterior distributions, that 
is, the Dirichlet distr ibutions with parameters 
ν∗ and A∗ given earlier. To obtain q∗(t), we need 
to evaluate κ Πκκ ΠΠΠκκ Πκκ ΠΠΠ

∗log (∗ ) [= l g ( , ,κκκκ )],q t( E pκκ Πκκ ΠΠΠ[κκ Πκκ ΠΠΠ log t  + Constant. 
Extracting the relevant terms from Equation 6, we 
obtain κ +κκκκ

∗ t E tlog (∗q )  = log Σ π( )
= ( )lll

N
tb

t lππππ
g Cπ +( )

tbl
onstant1 . 

Standard properties of the Dirichlet distribution (e.g., 

Bishop 2006) give Ψ ν Ψ Σ νκκκκ
∗ ∗E t jν jlog κ = Ψt Ψ ) (− Ψ )t 0Σ =jΣ) (ΨΨ 2  and 

Ψ α Ψ Σ α
ππππ

( ) ( ) ( )
( )E tb tb tαs= stt
t l ltblog (π = Ψ( )

tbl
) (− Ψ )0

3 , where Ψ(⋅) denotes 
the DiGamma function.17 Next, def ining the terms 
log ) ( ) [ ) ( )],2

1 0[ ( ) ( 3
t t( j j0 l

N
t0 sttl

Ψ ν(( Ψ Σ ν0
2
j 0 Σ Ψ α(( − Ψ Σ α0

3
0

( )l ( )l∗ ∗

where b1,…, bN denote the observed broker 
recommendations for the prediction, we therefore 
obtain ( ) / ( )0 1 2q t( t= ρ ρ +0 ρ +1 ρ∗ . This expression for 
q ∗(t )  p rov ide s  ou r  i n i t i a l  e s t i m a t e  o f 
Pr( | , , , )1 1 2 2B b1 B b2 B bN Nb|B …,2b .

Deriving q∗(κκ ) and q∗(ΠΠ) requires taking 
expectations with respect to this newly calculated 
q∗(t) distribution. We start by extracting the terms 
involving κκ  from Equation 6. Recalling that for 
any event X, the expectation of I(X ) is Pr(X ), we 
obtain κκκκ Σ = κ + Σ ν κ∗ ∗κκκκ j=j jκq t j j j= jlog (∗q ) Σ= Σ q= ) log 1ν −∗

jν ) log2 2

+ Constant. Gathering together the logκj terms in this 
expression shows q∗(κκ ) to be Dirichlet distributed 
with parameters q t( jj jν =j ν +j

∗  for j ∈ {0, 1, 2}. This 
formula for iterating the κκ  distribution is similar in 
structure to the prior counts plus data counts relation 
noted previously, except that now the prior over each 
forecasting period is the posterior obtained at the rel-
evant evaluation date, and the counts for each truth 
class are replaced with their expected values; that is, 

( ) f {0,1,2}.E I j q t( j j) forrt =) ) forr
We essentially repeat this argument to obtain the 

update equations for q∗(ΠΠ). First, because the jππππ( )l  terms in 
Equation 6 are separate for each truth j ∈ {0, 1, 2} and each 
broker l ∈ {1,…, N}, we obtain the further factorization 

ΠΠ πΠΠ ( )∗ ∗(ΠΠΠΠ )ππππ( )
1

2q =( )ΠΠΠΠ 1l
N

j j(ππππ0q0= . Extracting the jππππ( )l terms and 
taking expectation with respect to q∗(t) thereby yields log

ππππ Σ = Σ π + Σ π( ) ( ) ( ) ( )∗ ∗ππππ j=j j lq t j N
b s jsjj jsl

(∗q ) Σ= Σ q= )Σ =lΣ ( 1α −( )
jα sjj ) log2

1 0π + Σtb s=l
g 3

+ Constant. Gathering together terms in π( )
jblog  now 

shows ( )q j
( )l∗  to be Dirichlet distributed with param-

eters ( ) ( )q t( j I) b bjb l j) bα =jb (I) + α( )ll ( )l  for b ∈ {0,1,2,3} and 
l ∈ {1,…, N}. As before, these equations for iterating the 
ΠΠ distributions have the same prior counts plus expected 
counts interpretation. 

Having updated both q∗(κκ ) and q∗(ΠΠ), we now 
use these distributions to obtain the next update of q∗(t), 
and the whole scheme is iterated until convergence is 
obtained. The truth distribution that results is the VB 

17 I f  the d -d imens iona l va r i able X d…= ( ,XX , )Xd1  
is Dir ichlet distr ibuted with parameter (μ1,…, μ d), then 

(log ) ( ) ( )1E X(log i i) ( j
d

jΨ μ −)i Ψ Σ( μ=  for each i ∈ {1,…, d}, where ( )Ψ(  
denotes the DiGamma funct ion, which is def ined as 

( ) log ( )
d
 

dz
zΨ =( ) Γ , where ( )Γ(  denotes the gamma function.
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approximation to Pr( | ,  , , ).1 1 2 2B b1 B b2 B bN Nb|B …,2b
In practice, convergence is achieved rapidly. 

Although we have expressed the method in terms 
of a single prediction, in practice the calculations can 
be undertaken in parallel, allowing efficient prediction 
of the truth distribution for multiple constellations of 
broker recommendations. We remark that although 
the VB iteration scheme is operationally similar to the 
update procedure of the expectation-maximization 
(EM) algorithm,18 the VB and EM algorithms do very 
different things: EM obtains the maximum likelihood 
(i.e., point) estimate of a parameter, whereas VB pro-
vides a global approximation of the distribution.

From Predictive Probabilities to Decisions

The outputs of the previous procedure are the esti-
mated truth probabilities, (q0, q1, q2) say, for Price_Down, 
Price_Flat, and Price_Up, respectively, for each out-of-
sample constellation of broker recommendations. Even 
when these predictive probabilities have been calculated, 
one still requires a decision rule—that is, a rule to decide 
what, if any, action to take. 

We restrict our attention to the discrete set of 
actions Go_Short, No_Trade, and Go_Long.19 It is 
tempting to choose one of these actions according to 
whichever of Price_Down, Price_Flat, or Price_Up has 
the highest predictive probability (HPP). Unfortunately, 
this HPP rule, which chooses Go_Short if q0 > max 
(q1, q2), Go_Long if q2 > max (q0, q1), and No_Trade oth-
erwise, is not selective enough and results in too many 
Go_Long actions. This behavior is unsurprising because 
the underlying training dataset contains unadjusted 
biases; analysts typically issue more buy recommenda-
tions than hold or sell, and there are more Price_Up 
labels than Price_Down or Price_Flat.20

Recalling that qt is an estimate of the conditional 
probability B b B b bN NB …bPr( |T tt ,  , ,…   )B bN Nb1 1b 2 2b , our 
preferred decision rule is to take the HPP action only 

18 See Dempster, Laird, and Rubin (1977) and Tanner (1996).
19 Many alternatives to our discrete choice rule are possible 

here. For example, the calculated (q0, q1, q2) probabilities could be 
used to derive weights on a continuous long–short scale.

20 In the Galaxy Zoo project, Simpson et al. (2013) subsam-
pled to adjust for class imbalance. We chose not to do this, instead 
developing a model that ref lects the probabilistic structure of the 
observed dataset, including its biases, and dealing with these biases 
using an extension of the HPP decision rule.

when qt exceeds the current estimate of the unconditional 
probability of T = t, which is κt. This simple extension of 
the HPP rule ensures a Go_Long (Go_Short) decision 
arises only when knowledge of the observed constel-
lation of broker recommendations B1 = b1, B2 = b2,…, 
BN = bN boosts the estimated probability of Price_Up 
(Price_Down) relative to the background level observed 
within the training data.

Our default decision rule is the c = k = 1 case of 
the more general decision rule summarized as follows:

Decision

Go_Short
No_Trade

Trigger Condition

q0/κ0 > c and q0 > k max(q1, q2)

q2/κ2 > c and q2 > k max(q0, q1)
otherwise

Go_Long

Both parameters, c and k, affect the selectivity 
of this trading rule, but their effects are different and 
somewhat complementary. The parameter c relates to 
comparison of the conditional and unconditional prob-
abilities of each truth outcome. Thus, increasing c while 
keeping k = 1 fixed means the value of the information 
imparted by the broker recommendations needs to be 
higher for a Go_Long (Go-Short) decision to arise. In 
contrast, the condition involving parameter k relates to 
the relationship among the three conditional truth prob-
abilities, q0, q1, and q2, but does not involve the uncon-
ditional probabilities. Thus, increasing k while keeping 
c = 1 fixed raises the threshold required for HPP decision 
making to produce a Go_Long (Go-Short) outcome; 
simply being the largest value of q0, q1, and q2 is no 
longer sufficient.

EMPIRICAL RESULTS AND 

ROBUSTNESS CHECKS

The results are based on grouping the analysts by 
broker (i.e., their stated corporate employers or affili-
ation). Learning is undertaken at this broker level and 
is achieved by integrating information over all the 
stocks and all the analysts affiliated with that broker. 
It is possible to implement IBCC on different types of 
groupings—or even by individual analysts. Such infor-
mation pooling is a powerful feature of the IBCC model 
and Bayesian approaches more generally (e.g., providing 
protection against overf itting). Finer aggregations 
than this are possible; for example, learning could be 
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undertaken at the Global Industry Classification Stan-
dard sector or subsector level within each broker or even 
at the individual analyst level, where sufficiently detailed 
tracking information exists to follow an analyst’s career 
between brokers. There is, of course, a complexity pen-
alty for finer aggregations—more model components 
to infer based on the same amount of data. We do not 
report on such aggregations here.

Another feature of our IBCC implementation is 
its ability to combine multiple simultaneous recom-
mendations for each stock without the need for extra 
parameters. To exploit this, in the backtest simulations 
reported later, recommendations are aggregated over a 
lookback of 30 calendar days, a process that increases 
the number of concurrent recommendations within the 
rows of the training data. This procedure is best under-
stood by considering a single stock: When a new recom-
mendation appears, we simply look back and find the 
latest recommendations from the other brokers within 
a 30-day window and group them together in a single 
row of the data. Further examinations (not reported) 
show the impact of this choice of lookback window to 
be minimal. 

Our standard approach is to estimate the IBCC 
model on a three-year period of in-sample data and then 
apply it out of sample to the recommendations that arise 
over the subsequent quarter. We then either expand or 
roll forward the in-sample period to include the next 
quarter, always applying the new fit out of sample to the 
following unused quarter of data. The default decision 
rule we use is the c = k = 1 case of the rule given previ-
ously. The impact of varying the parameters c and k is 
examined later. 

We benchmark IBCC performance against a 
scheme that does no learning but simply aims to follow 
each broker’s recommendations. This broker-following 
benchmark is referred to as Brok_Flw in the exhibits 
that follow and allows assessment of the value added 
by IBCC. 

The Brok_Flw benchmark is constructed as 
follows:

1. For every buy recommendation, we create a signal 
of +1 that lasts from the day following the recom-
mendation for 60 business days.

2. Likewise, for every sell recommendation we create 
a signal of −1.

3. These signals are summed within a stock, both 
across the multiple brokers and across multiple rec-
ommendations from the same broker.

4. The resulting signal is capped/f loored at ±10.
5. For long-only portfolios, only underlying long 

recommendations are included, and conversely for 
short-only portfolios.

6. Each portfolio’s positions are rebalanced on a daily 
basis to maintain a gross exposure of $100; that 
is, = Σ/position signi al signi alit it i isigni al t , where the sum in 
this normalization is across all contemporaneous 
positions, both long and short.

The following nomenclature is used in presenting 
the results:

• Brok_Flw_LS: This is the broker-following 
benchmark described previously. We ignore rec-
ommendations in which there are simultaneous 
buys and sells for the same stock from different 
brokers.

• IBCC_Rol_LS: Here we apply the IBCC algo-
rithm, fitting on a three-year rolling window, with 
both long and short positions.

• IBCC_Exp_LS: As noted earlier, but now the 
estimation is performed on an expanding window.

• Both_Rol_LS: Both here denotes that we only 
take a position if the IBCC recommendation and 
the raw Brok_Flw signal agree at the individual 
broker level. This prevents IBCC from reversing 
broker recommendations. Estimation is performed 
on a three-year rolling window.

• Both_Exp_LS: As noted earlier, but using the 
IBCC model on an expanding window.

Here, L (S) is used in place of LS when only long 
(short) positions are allowed. In all cases, the gross expo-
sure is normalized to $100.21 This means that net expo-
sure for the LS portfolio is time varying according to 
the relative number of long and short recommendations. 
In particular, the LS results in the exhibits cannot be 
imputed from the separate L and S short results.

The reference index used for the intercept and 
slope estimates, α and β, reported in the following is 
the Euro Stoxx,22 the same index we used in defining 

21 Gross exposure is defined as posiΣ , where posi is the posi-
tion in the ith market, in US dollars.

22 DJEURST in Thomson Reuters notation.
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the truths for the training data. This is based on a liquid 
subset of around 300 Eurozone stocks from the STOXX 
Europe 600. This index had an average return close to 
zero over the 2007–2012 period, so the reported alphas 
are similar to the outright returns. Returns on short 
portfolios are reported assuming that all stocks have been 
borrowed and sold short; however, transaction and bor-
rowing costs are not included in the results.

Exhibit 3 shows the performance of the long-only 
and long-short portfolios, both in terms of their out-
right performance and their performance relative to the 
relevant Brok_Flw_∗ benchmark. All long portfolios 
struggled during the global financial crisis (GFC) but 
comfortably outperformed the DJEURST index from 
2009 onward. The long IBCC strategies remain broadly 
in line with the Brok_Flw_L benchmark, with best long 
performance arising for the strategies labeled Both. 

E X H I B I T  3
Performance of Long-Only Models (left) and Long–Short Models (right)

Notes: Outright performance is shown in the top panels, whereas the bottom panels show performance relative to the relevant Brok_Flw_∗ benchmark. 
Note the vertical axes do not share a common scale.
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For the long–short portfolios, there is no corresponding 
LS index, but all IBCC portfolios outperform the Brok_
Flw_LS benchmark. Again, the portfolios labeled Both 
provide the strongest performance. Investing only when 
both the IBCC model and the underlying broker rec-
ommendations agree suggests a straightforward and 
intriguing way this machine learning application may 
assist investment management. No consistent benefit 
of f itting with rolling or expanding data windows is 
observed in these results.

Results for all the long-only, long–short, and short-
only portfolios are tabulated in Exhibit 4, and a yearly 
breakdown is provided in Exhibit 5. The Brok_Flw_S 
benchmark and both of the short IBCC strategies are 
loss making, so we do not focus on their outright per-
formance. The more interesting point is that the short 
portfolios labeled Both again perform better, repeating 
the outperformance pattern seen earlier in the long-only 
and long–short cases. The relative performance chart 
for the short-only portfolios is given in Exhibit 6 and 
shows the outperformance of the Both portfolios to be 
reasonably consistent over the post-GFC period. 

Robustness Checking—Impact 

of Firm Liquidity 

A potentially serious concern is that our IBCC 
procedure might be favoring recommendations from 
brokers who recommend smaller, less well-known 
stocks and thus may be inadvertently accessing a size 
bias. A quick check of Exhibit 7, for example, shows 
that Brok_Flw_L holds more stocks over $25 billion 
than does IBCC.

In an attempt to control for this effect, we split 
the stock universe in half by market capitalization. We 
rank the original universe of liquid stocks by market 
capitalization and form a large-half backtest by including 
only the largest half of these stocks; in the small-half 
backtest, we only include the smallest half. This deter-
mination is made each month and is implemented with 
a five-business-day lag in an effort to reduce short-term 
timing effects. In the subsequent backtesting, we use 
these reduced universes both for the fitting of the IBCC 
models and subsequently for their assessment on the 
usual rolling out-of-sample basis. The overall number 
of recommendations in the two backtests is shown in 
Exhibit 8. The split is surprisingly even. 

E X H I B I T  4
Performance Statistics for the Various Long-Only, Short-Only, and Long–Short Models for the Period 2007–2012

Notes: The reference index used for the α and β calculations is the Euro Stoxx, the same index used for defining the truths in the training data. 
The alpha values are annualized. Turnover denotes a measure of the volume traded by each portfolio on a standardized scale that allows meaning ful 
comparison between portfolios.

Side
Long-Only

Short-Only

Long–Short

Model
Brok_Flw_L
IBCC_Rol_L
IBCC_Exp_L
Both_Rol_L
Both_Exp_L
Brok_Flw_S
IBCC_Rol_S
IBCC_Exp_S
Both_Rol_S
Both_Exp_S

Brok_Flw_LS
IBCC_Rol_LS
IBCC_Exp_LS
Both_Rol_LS
Both_Exp_LS

Mean
5.43
4.77
5.30
6.99
7.13

–0.51
–3.38
–3.54
2.99
2.11
4.54
5.07
6.50
7.99
7.88

Vol
24.18
24.66
24.89
24.51
24.71
24.96
25.24
24.85
25.98
25.71
13.92
11.01
12.66
15.43
16.00

Alpha
5.47
4.91
5.39
7.06
7.28

–0.13
–3.23
–3.53
3.45
2.46
4.65
5.30
6.64
8.15
8.09

Alpha
t-Stat

2.73
2.09
2.27
2.75
2.84

–0.05
–1.46
–1.60
1.06
0.79
2.09
2.69
3.35
3.18
3.12

Beta
1.01
1.02
1.03
1.00
1.01

–1.03
–1.05
–1.03
–1.03
–1.03
0.52
0.39
0.47
0.56
0.59

Beta
t-Stat
26.97
23.36
23.63
20.18
20.47

–29.42
–34.83
–34.76
–21.81
–25.39
10.88
10.63
13.46
11.11
11.69

Turnover
5.75
5.74
5.68
6.13
6.07
6.38
6.15
6.18
7.12
7.04
6.50
7.23
7.06
6.32
6.29
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Backtest performance is shown in Exhibit 9 for the 
long-only and short-only cases,23 and the distributions 
of market capitalization for the two subportfolios are 
shown in Exhibit 10. We conclude that IBCC is able to 
add value to plain I/B/E/S estimates in both large- and 
small-capitalization subportfolios and that the efficacy 
of the algorithm is not driven by a size bias.

Robustness Checking—Selectivity 

of the Trading Rule

We examine the impact of changing the selec-
tivity of the trading rule so that only recommenda-
tions with progressively higher levels of conviction 
produce trades. The IBCC procedure remains iden-
tical to that used before; the only changes are to the 
values of the parameters c and k within the decision 
rule. This also provides a principled way to control 
the number of open positions. Recall that c may be 

23 We do not expect bottom-up broker recommendations to 
yield effective market-timing portfolios, so we do not explore the 
long–short case here for brevity.

interpreted as a threshold on the information content 
needed within the observed constellation of broker 
recommendations to generate a trade. In contrast, 
k > 1 raises the threshold required for HPP decision 
making to produce a Go_Long (Go-Short) outcome; 
simply being the largest value of q0, q1, and q2 is no 
longer suff icient.

We examine the impact of varying c and k sepa-
rately; for space considerations, we examine only the 
long-only portfolios. Exhibit 11 shows the results of 
varying c while holding k = 1, and Exhibit 12 shows 
the results of varying k while holding c = 1. The 
results for varying c while holding k = 1 suggest some 
strengthening of both the alpha and beta as c is raised, 
in particular for the Both_Exp_L results. The results 
for varying k while holding c = 1 show a milder effect. 
As might be expected, we observed that the turnover 
increases as the decision rules become more selective, 
although the effect is mild compared to the baseline 
c = k = 1 case. 

E X H I B I T  5
Calendar Year Performance for Long-Only, Short-Only, and Long–Short Portfolios from 2007 to 2012 Inclusive 
(expressed as percentage) 

Notes: The figures quoted are the sum of each year’s daily returns. For reference, Euro Stoxx returns are shown in the right-hand column.

Side
Long-Only

Short-Only

Long–Short

Year
2007
2008
2009
2010
2011
2012
2007
2008
2009
2010
2011
2012
2007
2008
2009
2010
2011
2012

Brok_Flw
4.37

–47.35
44.20
20.29
–9.99
20.69

5.39
46.59

–42.88
–12.20
20.76

–20.70
5.04

–24.52
22.66
16.58
–4.83
12.00

IBCC_Rol
2.37

–49.06
44.45
23.92

–12.79
19.42
–0.32
41.07

–46.24
–13.29

18.86
–20.14

–0.36
–16.82

21.94
21.62
–6.51
10.18

IBCC_Exp
2.11

–49.38
44.80
24.79

–13.56
22.65
–0.99
40.97

–43.83
–12.73

18.04
–22.42

–0.99
–14.78

24.22
22.81

–10.37
17.62

Both_Rol
6.07

–47.82
45.25
25.00
–8.00
20.94

7.07
41.64

–39.54
–7.41
33.24

–17.26
5.87

–24.42
30.99
24.83
–4.03
14.12

Both_Exp
5.83

–48.56
45.47
25.04
–9.33
23.81

8.83
41.26

–38.96
–5.05
25.15

–18.74
5.29

–24.59
29.98
24.33
–7.83
19.51

Euro Stoxx
7.51

–51.09
28.84
5.84

–11.91
20.63
7.51

–51.09
28.84
5.84

–11.91
20.63
7.51

–51.09
28.84
5.84

–11.91
20.63
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E X H I B I T  6
Performance of the Short-Only Models Relative to the Brok_Flw_S Benchmark

Note: The portfolios labeled Both provide the best performance, as was the case for the long-only and long–short portfolios. 
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E X H I B I T  7
Size Tilts for the Different Portfolios

Note: Exhibit shows the sum of absolute positions by market capitalization bucket, averaged across time.

Model

Brok_Flw_L
IBCC_Rol_L
IBCC_Exp_L
Both_Rol_L
Both_Exp_L
Brok_Flw_S
IBCC_Rol_S
IBCC_Exp_S
Both_Rol_S
Both_Exp_S

Mega Cap
>$25 Billion

23.1
17.2
16.3
18.3
17.5
15.9
23.5
22.8
14.8
14.2

Large Cap
$10 Billion

to $25 Billion

20.8
19.9
19.8
19.3
19.3
20.6
19.7
19.6
19.6
19.9

Mid Cap
$2 Billion

to $10 Billion

48.7
53.0
53.8
53.2
54.0
52.5
47.7
48.7
53.4
54.2

Small Cap
$250 Million
to $2 Billion

7.2
9.9
9.9
9.2
9.2

10.9
8.8
8.6

11.7
11.2

Micro Cap
<$250 Million

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.1

Missing
Data

0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.1
0.1
0.1
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Robustness Checking—Sensitivity 

to Truth Threshold

A threshold of 5% was used in the truth definition 
given by 

t

l

r RVol
s

s=

≤

≥ ×

⎧

⎨
⎪
⎧⎧

⎨⎨
⎪⎪
⎨⎨⎨⎨

⎩
⎪
⎨⎨

⎪⎩⎩
⎪⎪

( )s

( )rr s

0,  if 5r ≤ −( )rrf % ,RVols×

2,  if 5%  ,

1, otherwise

This value has been used throughout. Here we 
explore varying this parameter between 1% and 10%, 
keeping everything else the same. Results are summa-
rized in Exhibit 13 for the long-only and short-only 
portfolios, where for brevity we quote results only 
for the Both portfolios. Unreported results show that 
IBCC_∗ consistently underperforms Brok_Flw and 
Both_∗, consistent with our previous findings.

We find that

• As before, the Both portfolios outperform the rel-
evant Brok_Flw_∗ benchmark at all threshold set-
tings for both long-only and short-only.

• There seems to be a sweet spot for thresholds 
within the 4%–6% range for the long-only port-
folios, particularly in terms of the t-statistic for 
alpha, which broadly measures the consistency of 
the outperformance.

• In the case of short-only portfolios, a tighter 
threshold of around 2%–3% gives slightly better 
results, although nothing obtains statistical signifi-
cance. One possible explanation is that the smaller 
number of short recommendations leads to greater 
sampling error in assessing a broker’s short efficacy, 
and allocating more Price_Down truths may miti-
gate this. 

Robustness Checking—Sensitivity 

to Holding Period

Here we explore the sensitivity to the arbitrary 
60-day holding period that has been used throughout. 
For brevity, we quote results for just the long-only 
portfolios.

From Exhibit 14 it is reasonably clear that

• Shorter holding periods give stronger performance.
• Shorter holding periods increase turnover.
• The Both portfolios again are the strongest per-

formers for all horizons. 
• Pure IBCC underperforms the Brok_Flw_L 

benchmark.

MACHINE LEARNING IN ACTION

An unhelpful aspect of machine learning systems 
is their reputation for being black boxes that users cannot 
understand. Whether or not one subscribes to this point 
of view, it is important to have easily interpreted diag-
nostic tools available that allow inspection of the model’s 
internal components, especially as these evolve through 
time. In what follows, we provide two such tools. 

Broker-Level Diagnostics

The f irst is an animated visualization that dis-
plays the evolution of a broker’s recommendation dis-
tributions24 conditional on each truth t = 0, 1, 2. These 
distributions are precisely what the system has learned 
about that broker’s recommendation behavior up to each 
evaluation date. A snapshot of the animation for one 
broker (the one with broker code IBES_207) is given in 
Exhibit 15; the full animated version, which depicts the 
evolution of these distributions for four different brokers 
(IBES_199, IBES_207, IBES_410 and IBES_1296), is 
available online.25

24 Each conditional recommendation distribution is actually 
four-dimensional, not three-dimensional. In each case, we have 
marginalized over the label corresponding to Missing to obtain a 
three-dimensional distribution. It is these that we have plotted as 
triangular heatmaps. 

25 https://faculty.fuqua.duke.edu/~charvey/JFDS_2018/
IBCC_Animation.mpeg.

E X H I B I T  8
Number of Recommendations after Bisecting the 
Universe of Stocks by Market Capitalization

Universe

Large Half 
Small Half 

Number
of Recommendations 

58,466
45,316

As a
Percentage 

56%
44%
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The vertices of the triangles represent the three 
different recommendations hold, buy (here labeled 
Go_L), and sell (here, Go_S). Each point within a tri-
angle corresponds to a three-vector of probabilities over 

these recommendations, with the color of each point 
depicting its posterior probability. If the three heatmaps 
in Exhibit 15 were identical, then knowledge of that 
broker’s recommendation would impart no information 

E X H I B I T  9
IBCC Results with the Stock Universe Split into Two by Market Capitalization

Note: The alpha values are annualized.

E X H I B I T  1 0
Distribution of Market Capitalization after Bisecting the Universe 

Notes: Here the positions for Brok_Flw_L are summarized. The numbers shown in this exhibit are time series averages 2007–2012. 

Side
Long-Only

Short-Only

Size
Large Half

Small Half

Large Half

Small Half

Simulation
Name

Brok_Flw_L
IBCC_Rol_L
IBCC_Exp_L
Both_Rol_L
Both_Exp_L
Brok_Flw_L
IBCC_Rol_L
IBCC_Exp_L
Both_Rol_L
Both_Exp_L
Brok_Flw_S
IBCC_Rol_S
IBCC_Exp_S
Both_Rol_S
Both_Exp_S
Brok_Flw_S
IBCC_Rol_S
IBCC_Exp_S
Both_Rol_S
Both_Exp_S

Return
Mean

5.95
6.96
7.70
7.77
8.11
4.70
4.15
2.42
5.89
4.66

–2.43
–5.69
–5.22
–2.53
4.35
1.98
0.08

–2.68
8.68
3.23

Vol

23.93
24.57
24.50
24.75
24.51
25.60
25.98
26.08
25.61
25.78
24.81
25.70
25.54
27.90
28.30
27.23
26.24
26.14
27.32
27.41

Alpha

5.96
7.22
7.98
7.98
8.38
4.76
4.54
2.76
6.30
4.98

–2.33
–5.30
–5.03
–2.13
4.59
2.54
0.23

–2.13
9.49
4.63

Alpha
t-Stat

3.74
3.01
3.44
3.14
3.43
1.63
1.73
1.06
2.13
1.72

–1.08
–2.93
–2.46
–0.61
1.22
0.77
0.07

–0.68
2.22
1.02

Beta

1.01
1.01
1.01
1.01
1.00
1.03
1.06
1.07
1.03
1.04

–1.03
–1.08
–1.07
–1.11
–1.12
–1.09
–1.05
–1.05
–1.02
–1.01

Turnover

5.79
5.75
5.71
6.40
6.32
6.00
6.08
6.03
6.33
6.27
6.55
6.37
6.41
7.60
7.58
6.51
6.54
6.51
7.25
7.16

Mktcap Bucket
Sum

Position (%)
Number
of Stocks

Return
(% p.a.)

Risk
(% p.a.)

Large Cap (US$10 billion to US$25 billion) 33.4 70.6 3.1 6.1
Mid Cap (US$2 billion to US$10 billion) 22.2 53.4 –0.3 6.9

Small Cap (US$250 million to US$2 billion) 2.8 7.8 –1.4 1.9

Mega Cap (>US$25 billion) 0.0 0.1 0.0 0.0
Large Cap (US$10 billion to US$25 billion) 5.1 9.9 1.7 0.9

Universe

Mega Cap (>US$25 billion) 41.5 75.2 4.2 6.7Large half

Micro Cap (<US$250 million) 0.0 0.1 0.0 0.1Small half

Mid Cap (US$2 billion to US$10 billion) 80.2 149.8 6.8 15.2
Small Cap (US$250 million to US$2 billion) 14.5 30.7 –3.8 8.5

Micro Cap (<US$250 million) 0.1 0.2 –0.2 0.3
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about the truth outcome. In this exhibit, the three heat-
maps are not identical, but the differences are subtle. 
This broker also displays the typical broker characteristic 
of having a low probability of issuing sell (Go_S) rec-
ommendations whatever the observed truth outcome. 

Stock-Level Diagnostics

The focus of the previous section was visualizing 
what the model learns about a particular broker from the 
ensemble of their recommendations across a multiplicity 
of stocks. Here we fix our attention on a particular stock 
and visualize information from the multiplicity of bro-
kers that make recommendations on that stock. 

Exhibit 16 shows our visual diagnostic for the 
stock with identifier AST14822 (an internal code that 

is unimportant). The top-panel shows the time series 
of recommendations for the five most prolific brokers 
that comment on that stock; the green and red symbols 
represent buy and sell, respectively, and the black symbol 
represents hold (labeled here as filtered, equivalently). The 
second panel lists the same information but is more clut-
tered because it now includes the recommendations of 
all brokers commenting on that stock. The third panel 
shows the actions that result from the predicted truths, 
obtained using our rolling out-of-sample process with 
the c = k = 1 case of the decision rule discussed previ-
ously. No predictions are made during the initial three-
year in-sample period, so the panel is blank at the start. 
The fourth panel shows the positions obtained from 
these actions for the Both portfolios in the expanding-
window long-only and long–short cases, together with 

E X H I B I T  1 1
Varying c to Change the Conviction Level Needed to Initiate a Trade for the Long-Only Models 
for the Period 2007–2012

Notes: Results are based on varying c while holding k = 1 in the decision rule. Recommendations were aggregated within the usual 30-day window 
when combining brokers. The alpha values are annualized. 

MeanModel c Vol Alpha
Alpha
t-Stat Beta

Beta
t-Stat Turnover

Brok_Flw_L 5.43 24.18 5.47 2.73 1.01 26.97
IBCC_Exp_L 1.0

–
5.30 24.89 5.39 2.27 1.03 23.63

1.1 5.13 25.38 5.43 2.06 1.04 20.67
1.2 4.77 26.31 5.42 1.82 1.06 17.78
1.3 6.46 26.23 6.49 2.04 1.05 16.58
1.4 6.37 26.86 6.15 1.78 1.06 14.70
1.5 5.89 27.34 5.97 1.59 1.06 13.13

IBCC_Rol_L 1.0 4.77 24.66 4.91 2.09 1.02 23.36
1.1 4.82 25.14 5.12 1.98 1.03 20.62
1.2 4.66 25.60 5.33 1.90 1.04 18.41
1.3 5.14 26.04 5.20 1.74 1.05 16.95
1.4 5.21 26.48 5.18 1.63 1.06 16.03
1.5 5.55 27.01 5.56 1.61 1.07 14.56

Both_Exp_L 1.0 7.13 24.71 7.28 2.84 1.01 20.47
1.1 7.10 25.15 7.59 2.67 1.01 18.17
1.2 6.85 26.36 7.22 2.18 1.04 15.14
1.3 8.73 26.67 8.90 2.50 1.04 14.26
1.4 8.33 27.63 8.40 2.14 1.06 12.99
1.5 8.52 28.15 8.85 2.10 1.07 11.85

Both_Rol_L 1.0 6.99 24.51 7.06 2.75 1.00 20.18
1.1 6.98 24.86 7.40 2.63 1.00 17.93
1.2 7.12 25.44 7.48 2.37 1.01 15.31
1.3 7.36 26.14 7.54 2.18 1.03 13.81
1.4 6.34 27.09 6.56 1.74 1.05 12.89
1.5 6.97 27.76 7.12 1.76 1.06 11.91

5.75
5.68
5.81
5.96
6.06
6.17
6.33
5.74
5.83
5.97
5.95
6.18
6.38
6.07
6.23
6.33
6.49
6.56
6.73
6.13
6.28
6.38
6.37
6.58
6.78
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various Brok_Flw_∗ benchmarks. The final panel shows 
the truth (target) outcomes for each recommendation. 

CONCLUSIONS AND FUTURE 

RESEARCH DIRECTIONS

We have demonstrated a computationally efficient 
practical approach for combining analysts’ forecasts using 
a probabilistic machine learning model called IBCC 
combining it with a state-of-the-art approximate infer-
ence technique called VB. Throughout our results, the 
best outcomes were obtained when there was agree-
ment between the broker recommendations and the 
machine learning–based forecasts obtained using IBCC. 
These findings echo important current research in the 
area of human–computer interaction, where decision 

making based on inputs from artificial intelligence and 
other sources is used to assist human decision making. 
It also suggests some intriguing research directions for 
enhancing the investment processes and performance 
of both quantitative and discretionary fund managers.

An important advantage of the IBCC model is its 
scalability compared to other multivariate dependence 
techniques (e.g., copula models). Our application 
integrated recommendations from 347 brokers; how-
ever, IBCC has been successfully used in applications 
involving many thousands of individual classifiers, so 
there is ample scope for extension. For example, we 
could look at individual analysts, or more refined groups 
of analysts, rather than brokers.26 In addition, it may 

26 We are unable to report on this because of current 
restrictions. 

E X H I B I T  1 2
Varying k to Change the Conviction Level Needed to Initiate a Trade for the Long-Only Models 
for the Period 2007–2012

Notes: Results are based on varying k while holding c = 1 in the decision rule. Recommendations were aggregated within the usual 30-day window 
when combining brokers. The alpha values are annualized.

MeanModel k Vol Alpha
Alpha
t-Stat Beta

Beta
t-Stat Turnover

Brok_Flw_L
IBCC_Exp_L 1.0

–

1.1
1.2
1.3
1.4
1.5

IBCC_Rol_L 1.0
1.1
1.2
1.3
1.4
1.5

Both_Exp_L 1.0
1.1
1.2
1.3
1.4
1.5

Both_Rol_L 1.0
1.1
1.2
1.3
1.4
1.5

5.43
5.30
5.11
5.22
5.45
5.30
5.50
4.77
4.88
4.83
5.24
5.23
5.37
7.13
7.02
7.24
7.44
7.21
7.62
6.99
7.22
7.07
7.21
6.35
6.86

24.18
24.89
24.96
25.20
25.78
26.25
26.51
24.66
24.70
24.84
25.21
25.57
25.73
24.71
24.78
24.89
25.65
26.30
26.67
24.51
24.60
24.69
24.95
25.36
25.61

5.47
5.39
5.22
5.40
5.44
5.22
5.47
4.91
5.05
5.06
5.28
5.21
5.46
7.28
7.19
7.48
7.60
7.27
7.72
7.06
7.32
7.29
7.40
6.48
7.03

2.73
2.27
2.11
2.07
1.91
1.74
1.72
2.09
2.07
1.97
1.94
1.83
1.83
2.84
2.70
2.69
2.48
2.21
2.23
2.75
2.78
2.62
2.50
2.06
2.10

1.01
1.03
1.03
1.03
1.04
1.06
1.06
1.02
1.02
1.02
1.03
1.04
1.04
1.01
1.01
1.01
1.03
1.04
1.05
1.00
1.00
1.00
1.00
1.01
1.01

26.97
23.63
22.25
20.90
18.22
17.36
16.30
23.36
22.00
20.19
18.80
17.73
16.95
20.47
19.38
18.64
16.61
15.56
14.85
20.18
19.44
18.06
16.94
15.54
14.65

5.75
5.68
5.73
5.81
5.92
6.16
6.10
5.74
5.83
5.85
5.97
6.12
6.05
6.07
6.09
6.17
6.34
6.42
6.47
6.13
6.20
6.25
6.34
6.37
6.45
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be useful to combine the recommendation data exam-
ined here with categorical sentiment measures extracted 
using a range of different natural language interpreters 
on both mainstream and financial news sources. There 
is scope to obtain an order of magnitude more classifiers. 
The computational eff iciency of our implementation 
would enable such data to be handled without issue and 
real time forecasting to be undertaken. 

Although the VB implementation of the IBCC 
holds promise, it also has limitations. In the Galaxy Zoo 
experiment that we used to motivate the research appli-
cation, several distinct issues make the application to 
analysts different from the application to astronomers. 
First, it is reasonable to assume that the astronomers are 
operating independently (not collaborating with each 
other). However, it is likely that analysts are aware of 

E X H I B I T  1 3
Varying the Truth Boundary Parameter over the Period 2007–2012 for Long-Only and Short-Only Portfolios

Notes: Unreported results show that IBCC_∗ consistently underperforms Brok_Flw and Both_∗, consistent with our previous findings. The alpha values 
are annualized.

Brok_Flw_L
Both_Exp_L

Both_Rol_L

Brok_Flw_S
Both_Exp_S

Both_Rol_S

–
1
2
3
4
5
6
8
10
1
2
3
4
5
6
8
10
–
1
2
3
4
5
6
8
10
1
2
3
4
5
6
8
10

5.43
6.07
6.09
6.39
6.57
7.13
7.61
5.94
6.66
6.29
6.10
6.10
6.32
6.99
6.97
7.17
7.74

–0.51
2.10
3.36
3.13
2.17
2.11
4.09
0.67

–1.15
2.73
2.75
3.28
1.80
2.99
2.71
0.36

–1.18

24.18
24.70
24.72
24.65
24.63
24.71
24.86
26.31
26.95
24.39
24.39
24.42
24.43
24.51
24.60
26.19
27.00
24.96
25.76
25.56
25.45
25.53
25.71
26.51
28.84
31.44
25.68
25.43
25.51
25.69
25.98
26.76
27.63
29.56

5.47
6.04
6.24
6.56
6.70
7.28
7.81
6.24
6.74
6.30
6.26
6.26
6.46
7.06
7.29
7.95
7.59

–0.13
2.31
3.55
3.38
2.35
2.46
4.02
1.06

–1.28
2.92
2.93
3.49
1.98
3.45
3.07

–0.24
–1.81

2.73
2.55
2.59
2.68
2.68
2.84
2.90
1.86
1.84
2.66
2.62
2.59
2.61
2.75
2.75
2.33
2.13

–0.05
0.83
1.27
1.23
0.81
0.79
1.05
0.21

–0.22
1.09
1.08
1.27
0.69
1.06
0.88

–0.06
–0.36

1.01
1.02
1.02
1.01
1.01
1.01
1.01
1.04
1.05
1.00
1.00
1.00
1.00
1.00
1.00
1.03
1.06

–1.03
–1.05
–1.04
–1.04
–1.03
–1.03
–1.02
–1.04
–1.09
–1.05
–1.04
–1.04
–1.04
–1.03
–1.05
–1.05
–1.08

26.97
21.53
21.34
21.24
20.93
20.47
19.82
15.25
14.93
21.82
21.41
21.34
20.69
20.18
19.98
14.78
15.09

–29.42
–26.19
–26.51
–26.27
–25.31
–25.39
–19.30
–15.77
–14.66
–25.52
–24.57
–24.65
–24.71
–21.81
–23.33
–20.90
–20.01

Model
Truth
(%) Mean Vol Alpha

Alpha
t-Stat Beta

Beta
t-Stat Turnover

5.75
6.00
6.03
6.00
6.03
6.07
6.25
6.56
6.77
6.00
6.03
6.00
6.05
6.13
6.29
6.67
6.87
6.38
6.91
6.94
6.97
7.00
7.04
7.20
7.50
7.76
6.79
6.78
6.84
6.99
7.12
7.23
7.50
7.62
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other analysts’ forecasts—and this could affect their fore-
casts. Second, the quality of all analysts’ forecasts could 
be affected by common events such as a recession, global 
sentiment, and common market factors that may affect 
their sector or region. Such common factors do not apply 
in the Galaxy Zoo experiment. 

There are also areas for methodological consider-
ation within the current implementation. For example, 
the IBCC model has no concept of ordering within 
the truth outcomes or the recommendations; they are 

simply sets of categorical labels. Perhaps more impor-
tantly, IBCC has no concept of parity between the rec-
ommendations and truths. Maybe it is therefore only 
to be expected that our strongest results arose when 
we looked for reinforcement between the raw broker 
recommendations and the IBCC predictions. Changing 
the model to incorporate some parity effect would make 
it less general but would likely boost performance in 
our application. On the other hand, if sufficient data 
were available to learn the parity relationship with the 

E X H I B I T  1 4
Varying the Holding Period for the Long-Only Models for Period 2007–2012

Notes: Here the trade holding period and the holding period for assessing truths are constrained to be equal. The ±5% threshold for converting stock 
returns to truths is scaled to yield a similar number of truths for each horizon, using the usual random walk property that ( ) t)tσ ∝( )) , which gives y

/ %5   %550threshee old t h%55 l gd p d/t . As elsewhere, recommendations are aggregated with a lookback of up to 30 days when 
combining brokers. The alpha values are annualized. 

Model

Brok_Flw_L

IBCC_Exp_L

IBCC_Rol_L

Both_Exp_L

Both_Rol_L

Holding
Period

10
20
30
45
60
90
10
20
30
45
60
90
10
20
30
45
60
90
10
20
30
45
60
90
10
20
30
45
60
90

Mean

10.04
7.39
6.82
6.05
5.43
5.46
7.09
5.93
5.15
5.61
5.30
4.95
8.02
5.75
6.13
5.60
4.77
5.12

14.05
9.76
8.42
7.98
7.13
6.63

13.38
9.44
9.27
7.71
6.99
6.48

Vol

23.99
24.16
24.33
24.27
24.18
23.94
24.01
24.81
24.77
24.79
24.89
24.62
24.01
24.76
24.55
24.46
24.66
24.58
23.97
24.75
24.79
24.91
24.71
24.39
23.87
24.35
24.66
24.51
24.51
24.27

Alpha

10.01
7.27
6.71
6.01
5.47
5.32
7.08
5.76
5.18
5.76
5.39
5.10
7.84
5.64
6.20
5.79
4.91
5.28

14.21
9.80
8.24
7.93
7.28
6.65

13.36
9.62
9.11
7.75
7.06
6.61

Alpha
t-Stat

4.55
3.51
3.23
2.98
2.73
2.75
2.92
2.29
2.13
2.43
2.27
2.23
3.15
2.22
2.56
2.52
2.09
2.31
5.51
3.76
3.18
3.04
2.84
2.66
5.00
3.63
3.41
3.07
2.75
2.66

Beta

0.99
1.01
1.02
1.01
1.01
1.00
0.98
1.02
1.02
1.02
1.03
1.02
0.98
1.01
1.01
1.01
1.02
1.02
0.97
1.01
1.01
1.02
1.01
1.00
0.96
0.99
1.00
1.00
1.00
0.99

Beta
t-Stat

29.08
28.17
26.99
26.48
26.97
29.61
25.66
21.80
21.93
23.20
23.63
26.34
22.83
21.09
22.49
24.75
23.36
25.71
25.38
20.78
20.87
20.73
20.47
22.05
22.10
20.48
21.07
21.43
20.18
21.83

Turnover

28.20
14.89
10.35
7.31
5.75
4.31

28.73
15.19
10.55
7.29
5.68
4.20

28.76
15.24
10.53
7.31
5.74
4.21

30.18
15.99
11.03
7.74
6.07
4.71

30.28
16.06
11.03
7.73
6.13
4.67
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E X H I B I T  1 5
Screenshot of the Website Animation

Notes: This exhibit shows the evolving recommendation distributions for the broker with identifier IBES_207, conditional on truth=Price_Down (left), 
truth=Price_Flat (middle), and truth=Price_Up (right). Within each triangle, each pixel represents a three-vector of probabilities over the recommendations 
hold, buy (Go_L), and sell (Go_S). The color of each pixel represents the posterior probability of this corresponding three-vector; blue pixels have very low 
posterior probability, and dark red pixels have the highest posterior probability. 
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Go_L
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IBES_207

Conditional on
Truth = Price_Flat

Go_L

Go_S Hold

Conditional on
Truth = Price_Up

Go_L

Go_S Hold Go_S

E X H I B I T  1 6
Diagnostic Panel for the Stock with Identifier AST14822

(continued)
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2005 2006 2007
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E X H I B I T  1 6  (continued)
Diagnostic Panel for the Stock with Identifier AST14822

Notes: The top panel shows recommendations for the five most prolific brokers that comment on the stock; green and red represent buy and sell, respectively, 
and the black symbol represents hold (labeled here as filtered, equivalently). The second panel lists the same information and now includes the recommen-
dations of all brokers commenting on that stock. The third panel shows the actions that result from the predicted truths, obtained using our rolling out-of-
sample process with the c = k = 1 case of the decision rule. No predictions are made during the initial three-year in-sample period. The fourth panel shows 
the positions obtained from these actions for the Both portfolios in the expanding-window long-only and long–short cases, together with various 
Brok_Flw_∗ benchmarks. The final panel shows the truth (target) outcomes for each recommendation.
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original IBCC model, then there would be no issue. Our 
practical experience is that there are never sufficient data 
available compared to what we would like, so working 
with f lexible but not completely general models gives 
the best results.
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A Data Science Solution to 
the Multiple-Testing Crisis 
in Financial Research
MARCOS LÓPEZ DE PRADO

A cademics and investors often 
 compute the performance of an 
 investment strategy or factor to 
 determine whether such strategy 

or factor profits beyond what could be con-
sidered “luck.” By far the most commonly 
used investment performance statistic is 
the Sharpe ratio (SR), f irst introduced by 
Sharpe (1966) and further studied by Sharpe 
(1975, 1994). The probability distribution of 
this statistic is well known under a variety 
of assumptions (Lo 2002; Bailey and López 
de Prado 2012). Using those distributions, 
it is possible to derive the probability that 
the observed SR exceeds a given threshold. 
Under this framework, an investment strategy 
with a low SR based on a long backtest or 
track record may be preferred to an alterna-
tive strategy with a high SR computed on a 
short backtest or track record. One problem 
with this approach is that it does not account 
for selection bias under multiple testing (SBuMT).

In 1933, Jerzy Neyman and Egon 
Pearson developed the standard hypoth-
esis test used in most scientific applications. 
These authors did not consider the pos-
sibility of performing multiple tests on the 
same dataset and selecting the most favor-
able outcome (the one that rejects the null 
with the lowest false positive probability). At 
that time, the absence of powerful computers 
made SBuMT unlikely. Bonferroni (1935) 
was among the f irst to recognize that the 

probability of obtaining a false positive would 
increase as a test is repeated multiple times 
over the same dataset. Ever since, statisticians 
have taken the problem of multiple testing 
seriously (Gelman and Locken 2013). In its 
ethical guidelines,1 the American Statistical 
Association warns that “failure to disclose the 
full extent of tests and their results in such a 
case would be highly misleading” (American 
Statistical Association 1999).

Given this background, it is surprising 
to find that practically all papers in empirical 
finance fail to disclose the number of trials 
involved in a discovery. Virtually every paper 
reports a result as if it were the only trial 
attempted. This is, of course, rarely the case, 
and it is common for economists to conduct 
millions of regressions or simulations before 
f inding a result striking enough to merit 
publication (Sala-i-Martin 1997; Leinweber 
2007). Researchers in other fields have taken 
steps to control for and prevent SBuMT (e.g., 
visit www.alltrials.net, or see Szucs and Ioan-
nidis 2017). Unlike physics, finance does not 
have laboratories in which false claims can be 
easily debunked based on independent tests: 
All we count on are the same time series used 
to overfit the backtest, and gathering out-of-
sample evidence will take decades (López de 
Prado 2017).

1 See Ethical Guideline A.8: http://community
.amstat.org/ethics/aboutus/new-item.
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A very common misconception is that the problem 
of SBuMT only affects historical simulations (back-
testing). In fact, this problem encompasses any situation 
in which we select one outcome without controlling 
for the totality of alternative outcomes from which we 
choose. For example, a hedge fund may want to hire a 
portfolio manager with an SR of 2. To that purpose, 
the fund may interview multiple candidates, not real-
izing that they should adjust the SR higher with every 
additional interview. The fact that the SR is computed 
on an actual track record does not mean that SBuMT 
will not take place. We could interview a series of dart-
throwing monkeys, and eventually we would find one 
with an SR of 2.

There is nothing wrong with carrying out mul-
tiple tests. Researchers should perform multiple tests 
and report the results of all trials; however, when the 
extent of the tests carried out is hidden from journal 
referees, readers, and investors, it is impossible for them 
to assess whether a particular result is a false positive 
(Bailey et al. 2014, 2017). For this reason, Harvey, Liu, 
and Zhu (2016) concluded that “most claimed research 
findings in financial economics are likely false.” 

Yet, there is hope. SBuMT can be prevented and 
corrected in financial economics. Nothing forbids finan-
cial researchers from joining the ranks of researchers 
from other f ields who control for SBuMT. Accord-
ingly, the main goal and contribution of this article is 
to provide a template for how the results from multiple 
trials could be reported in financial publications. The 
information regarding all trials could be disclosed in a 
separate section or an appendix to a publication, while 
the focus remains on explaining the selected finding. 
Ideally, the author would report the performance of 
a proposed investment strategy or factor adjusted for 
SBuMT. In this particular article we apply the def lated 
SR (DSR) method (Bailey and López de Prado 2014; 
López de Prado and Lewis 2018) to control for the effects 
of SBuMT, non-normality, and sample length. It is not 
the goal of this article to present a financial discovery or 
promote an investment strategy, even though the results 
presented in this publication correspond to an actual 
investment mandate.

In the following sections, we provide a template for 
how authors and journals could expose to referees and 
readers critical information concerning all trials involved 
in a discovery.

DISCLOSURE OF ALL TRIALS

We have developed a market-neutral strategy that 
invests in liquid high-grade corporate bonds denomi-
nated in US dollars. The investment universe is taken 
from the history of constituents of the Markit iBoxx 
IG USD index. At each point in time, the strategy may 
invest in bonds included in the coetaneous index defini-
tion, so as to prevent survivorship bias and other forms 
of information leakage. Although the target portfolio 
aims at being market neutral, market frictions may pre-
vent all intended trades from being executed. When that 
happens, the residual risk is hedged with bond futures.

Exhibit 1 lists some statistics associated with the 
selected strategy. As a reference, it also provides the same 
information for the index, although results from a long-
only index are not directly comparable to those of a 
market-neutral strategy. Exhibit 2 shows a scatter plot 
of index returns against strategy returns. The Appendix 
provides a definition for each of these statistics.

Performance incorporates transaction costs and 
slippage, based on real transaction cost information col-
lected for this universe over the years. An SR of 2.0 is 
generally considered high, because the probability of 
observing that SR after a single trial is infinitesimal, 
under the null hypothesis that the true SR is zero 
(see Bailey and López de Prado 2012 for the estimation 
of such probability).

E X H I B I T  1
Performance Statistics for the Index and the 
Selected Strategy

Statistic

Start date
End date
aRoR (Total)
Avg AUM (1E6)
Avg Gini
Avg Duration
Avg Default Prob
An. Sharpe ratio
Turnover
Effective Number
Correl. to Ix
Drawdown (95%)
Time Underwater (95%)
Leverage

iBoxxIG

1/21/2010
5/1/2018
4.90%

1,000.00
0.29
7.88

1.36%
0.99
0.64

1034.87
1.00

3.17%
0.23
1.00

Strategy

1/21/2010
5/1/2018
9.35%

1,506.43
0.88
0.08

1.58%
2.00
5.68

186.26
0.48

2.89%
0.20
3.59
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Other specif ics about the strategy, such as the 
underlying principle exploited or predictive features, 
belong to a different discussion. As explained earlier, our 
key concern is to provide a template for reporting the 
information from all trials conducted so that journal ref-
erees and investors may evaluate the probability that the 
discovered strategy is a false positive as a result of SBuMT.

Unlike the practical totality of publications in 
f inance, we begin by acknowledging that the results 
presented in Exhibits 1 and 2 are not the outcome of a 
single trial. Because more than one trial took place, the 
reader must assume that this result is the best out of many 
alternative ones, and therefore SBuMT is present. By 
disclosing the information associated with those alterna-
tive outcomes, we allow referees and investors to adjust 
for the inf lationary effect of SBuMT.

Exhibit 3 plots the heatmap of return correlations 
among the 6,385 trials that have taken place before the 
selection of this investment strategy. This set of trials 
satisfies the following properties: 

• Complete
° The set includes every backtest computed by 

any of the authors for this or similar investment 
mandates.

° Researchers do not have the ability to delete 
trials, and they are not allowed to backtest 
outside the official research platform.

• Coerced
° Researchers do not choose what to log or 

present. Terabytes of intermediate research 
metadata are automatically recorded and curated 
by research surveillance systems.

• Untainted
° Every batch of backtests must be preapproved by 

the research committee to prevent that externally 
preselected trials contaminate the internal trials.

External trials are those that have been executed 
by other authors, outside the control of our research 
framework. They may have been preselected; hence, 
they are likely to be biased. To reduce the likelihood 
of external trials, ideally the research committee may 
require that trials be justified by a priori economic or 
mathematical theories (e.g., arbitrage-free pricing equa-
tions) rather than a posteriori empirical theories (e.g., 
conjectures based on empirical studies).

As is customary in machine learning applications, 
the main diagonal crosses the Cartesian product from 
the bottom left to the top right. A light color indi-
cates that the correlation between the returns of two 
trials was high. The predominance of light colors sug-
gests that the number of uncorrelated trials may be 
relatively low.

E X H I B I T  2
Scatter Plot of iBoxx IG Returns (x-axis) against 
Strategy Returns (y-axis)

0.000 0.005 0.010–0.010 –0.050
iBoxxIG

St
ra

t

–0.015

–0.02

–0.01

0.00

0.01

0.02

E X H I B I T  3
Heatmap of the Correlation Matrix of the Returns 
of All 6,385 Trials
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To assess whether the strategy reported in Exhibit 1 
is a false investment strategy, we need to discount the 
inf lationary effect caused by all the trials displayed in 
Exhibit 3. The first step is to determine the number of 
effectively uncorrelated clusters of trials.

CLUSTERING OF TRIALS

In this section, we apply the optimal number of clusters 
(ONC) algorithm introduced by López de Prado and 
Lewis (2018) to the correlation matrix plotted in Exhibit 3. 
Exhibit 4 plots the measure of the quality of clusters qk 
that results from producing k clusters, where k = 2, …, 
6385. The quality of the clusters seems to collapse beyond 
k = 1,000. The higher quality levels are observed for k 
< 10, with the maximum reached by k = 4.

Exhibit 5 shows the clustered correlation 
matrices derived for k ≤ 10. A visual inspection of 
these heatmaps seems to confirm that the best clus-
tering is achieved by k = 4. For instance, the heatmaps 
for k ≥ 5 show multiple large, off-diagonal blocks 
of highly correlated trials. These off-diagonal blocks 
appear when very similar trials belong to different 
(and nonconsecutive) clusters, indicating that the cor-
relation matrix has been overclustered. In contrast, 
no such off-diagonal blocks can be appreciated in the 
heatmap for k = 4.

One explanation for the low number of clusters is 
that the researchers tried only strategy configurations 
that had a rigorous theoretical foundation, derived from 
mathematical bond pricing equations. The search region 
was narrowly constrained by predefined mathematical 
theories. The number of clusters would have been much 
larger, perhaps in the hundreds, if researchers had tried 
less mathematical (more arbitrary) configurations.

CLUSTER STATISTICS

Following López de Prado and Lewis (2018), we 
have computed one return series for each cluster; each 
cluster’s composition was determined in the previous 
section. Forming one time series per cluster further 
reduces the bias caused by selecting outliers: We do 
not evaluate the strategy based on a single (potentially 
“lucky”) trial, but based on a large collection of similar 
trials. In particular, we compute each cluster’s returns 
applying the minimum variance allocation so that highly 
volatile trials do not dominate the returns time series. 
Otherwise, a single volatile trial might bias the time 
series of returns that characterize the entire cluster. 
Exhibit 6 reports the statistics computed on the clus-
ters’ returns series.

For each cluster, we report the following infor-
mation: (1) Strat Count is the number of trials included 
in a cluster; (2) aSR is the annualized SR; (3) SR is the 
nonannualized SR (computed on the same sampling fre-
quency of the original observations; in this case, daily); 
(4) Skew is the skewness of the returns (in the original 
frequency); (5) Kurt is the kurtosis of the returns (in the 
original frequency); (6) T is the number of observations 
in the returns series; (7) StartDt is the date of the first 
observation in the returns series; (8) EndDt is the date of 
the last observation in the returns series; (9) Freq is the 
average number of observations per year, used to annu-
alize the SR; (10) sqrt(V[SR_k]) is the standard deviation 
of the SRs across clusters, expressed in the frequency of 
the cluster; (11) E[max SR_k] is the expected maximum 
SR, derived from the false strategy theorem; and (12) 
DSR is the def lated SR—that is, the probability that 
the true SR exceeds zero after controlling for SBuMT. 
For the cluster that contains the selected strategy, we 
have highlighted the SR and E[max SR_k] so that the 
reader can appreciate the inf lationary effect caused by 

E X H I B I T  4
Quality of Clusters (y-axis) for a Varying Number of 
Clusters (x-axis, in logarithmic scale)
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E X H I B I T  5
Heatmap of the Clustered Correlation Matrix for k = 2, …, 10
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(continued)
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multiple testing. Also highlighted is DSR, which cor-
rects for the aforementioned inf lation.

Cluster 2 of Exhibit 6 contains the strategy reported 
in Exhibit 1. The aSR for Cluster 2 is 2.0275, in line 
with the aSR reported in Exhibit 1. The nonannual-
ized SR is 0.1255, which is consistent with the aSR 

≈(2.0275 0.1255 261.1159 ). Given the number of clus-
ters, and the variance of the cluster SRs, the expected 
maximum SR (nonannualized) is 0.027, which is sig-
nificantly lower than 0.1255. Consequently, the DSR is 
very close to 1. Hence, the probability that the selected 
strategy is a false positive is virtually zero.

ROBUSTNESS OF THE FINDING

Even though the empirical evidence strongly indi-
cates that k = 4 is the optimal clustering, we choose to 
provide full results for all k = 2, …, 10. In this way, 
referees and readers can evaluate the robustness of the 
conclusions under alternative scenarios, as unlikely as 
those scenarios might be. Exhibit 7 displays the cluster 
statistics for k = 2,3,5, …, 10, in the same format we pre-
viously used for k = 4. For each clustering, we have high-
lighted the cluster that contains the strategy reported in 
Exhibit 1.
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E X H I B I T  5  (continued)
Heatmap of the Clustered Correlation Matrix for k = 2, …, 10
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Results are robust and consistent across all the 
studied clusterings. The lowest DSR takes place when 
k = 10, where DSR = 0.9995. This DSR level is well 
above the common confidence levels of 0.95 or 0.975 
used in most publications. In any event, this DSR cor-
responds to a very unlikely scenario, given the relatively 
low quality of the k = 10 clustering, compared to the 
quality achieved by the k = 4 clustering. Under these 
circumstances, we conclude that the strategy underlying 
these performance results is unlikely to be a false positive 
caused by SBuMT.

The reader should not infer from this analysis that 
the strategy will never lose money. All investments 
involve risk, even those with an SR that almost certainly 
is positive (see Exhibit 6). The purpose of this analysis 
was to determine whether the strategy appears to be 
profitable because of the inf lationary effects of SBuMT. 
Even though the strategy is unlikely to be a false positive, 
no risky investment can guarantee a positive outcome.

IMPLICATIONS FOR AUTHORS, JOURNALS, 

AND FINANCIAL FIRMS

The research crisis that aff licts financial economics 
is not unsolvable. In this article we have presented a 
template of how this problem can be addressed in prac-
tical terms. If the publication of future discoveries could 
be accompanied with information regarding all the 

trials involved in those discoveries, financial economics 
would be able to overcome this crisis and reassert its 
credibility.

In particular, authors could (1) add to every pub-
lication an appendix explaining why the purported 
discovery is not a false positive caused by SBuMT; 
(2) certify that they have logged and recorded all 
the trials that took place during their research; and 
(3) provide to journal referees the outcomes from all 
trials. Journals could publish the outcomes from all trials 
in their websites so that researchers can evaluate the 
totality of the evidence, not only the trials handpicked 
by the authors or referees.

Journals could demand that authors (1) disclose 
all trials; (2) report the extent to which their findings 
are affected by SBuMT; and (3) evaluate the robustness 
of their findings to alternative scenarios of SBuMT, as 
shown in this article.

Financial f irms could (1) avoid the practice of 
optimizing backtests (i.e., picking the winners while 
ignoring the losers); (2) implement research surveillance 
frameworks that record, store, and curate every single 
research trial that takes place within the organization; 
and (3) estimate the probability of a false positive, objec-
tively controlling for SBuMT.

We believe that adopting these or similar controls 
for SBuMT would significantly improve the quality of 
financial journals.

E X H I B I T  6
Statistics Computed on Clusters’ Returns (k = 4, q = 2.7218)

Note: Results for the cluster containing the chosen strategy are shaded.

Stats

Strat Count
aSR
SR
Skew
Kurt
T
StartDt
EndDt
Freq
sqrt(V[SR_k])
E[max SR_k]
DSR

Cluster 0

3,265
1.5733
0.0974
–0.3333
11.2773
2,172

01-04-2010
05-01-2018
261.0474
0.0257
0.0270
0.9993

Cluster 1

1,843
1.4907
0.0923
–0.4520
6.0953
2,168

01-04-2010
04-25-2018
261.0821
0.0256
0.0270
0.9985

Cluster 2

930
2.0275
0.1255
–0.4194
7.4035
2,174

01-04-2010
05-03-2018
261.1159
0.0256
0.0270
1.0000

Cluster 3

347
1.0158
0.0629
0.8058
14.2807
2,172

01-04-2010
05-01-2018
261.0474
0.0257
0.0270
0.9558

JFDS-Lopez de Prado.indd   105JFDS-Lopez de Prado.indd   105 05/01/19   10:51 am05/01/19   10:51 am



106   A Data Science Solution to the Multiple-Testing Crisis in Financial Research Winter 2019

E X H I B I T  7
Statistics Computed on Clusters’ Returns

Stats

Strat Count
aSR
SR
Skew
Kurt
T
StartDt
EndDt
Freq
sqrt(V[SR_k])
E[max SR_k]
DSR

Stats

Strat Count
aSR
SR
Skew
Kurt
T
StartDt
EndDt
Freq
sqrt(V[SR_k])
E[max SR_k]
DSR

Stats

Strat Count
aSR
SR
Skew
Kurt
T
StartDt
EndDt
Freq
sqrt(V[SR_k])
E[max SR_k]
DSR

Cluster 0

317
0.9690
0.0600
2.2161
41.2726
2,172

01-04-2010
05-01-2018
261.0474
0.0234
0.0279
0.9418

Cluster 0

2,937
1.7707
0.1096
–0.5780
6.5878
2,174

01-04-2010
05-03-2018
261.1159
0.0074
0.0038
1.0000

Cluster 0

2,063
1.4411
0.0892
–0.4310
5.8606
2,170

01-04-2010
04-27-2018
261.1507

0.0202
0.0173
0.9995

Cluster 1

1,524
1.4664
0.0907
–0.3286
9.7988
2,170

01-04-2010
04-27-2018
261.1507
0.0234
0.0279
0.9979

Cluster 1

3,448
1.6023
0.0992
–0.3351
11.3212
2,172

01-04-2010
05-01-2018
261.0474
0.0074
0.0038
1.0000

Cluster 1

3,329
1.5780
0.0977
–0.3357
11.2267
2,172

01-04-2010
05-01-2018
261.0474
0.0203
0.0173
0.9999

Cluster 2

1,434
1.4065
0.0870
–0.4864
5.4162
2,168

01-04-2010
04-25-2018
261.0821
0.0234
0.0279
0.9964

Cluster 2

993
2.0638
0.1277
–0.4137
7.3681
2,174

01-04-2010
05-03-2018
261.1159
0.0202
0.0173
1.0000

Cluster 3

2,169
1.5272
0.0945
–0.4086
12.1809
2,172

01-04-2010
05-01-2018
261.0474
0.0234
0.0279
0.9987

Cluster 4

941
2.0319
0.1257
–0.4172
7.4552
2,174

01-04-2010
05-03-2018
261.1159
0.0234
0.0279
1.0000

Panel A: k = 2, q = 2.3274

Panel B: k = 3, q = 2.7068

Panel C: k = 5, q = 2.6517

(continued)
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Stats Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Strat Count 411 1,021 1,037 794 846 1,606 228
aSR 1.8643 1.3267 1.4133 1.9881 1.5228 1.4607 0.3817
SR 0.1154 0.0821 0.0875 0.1230 0.0942 0.0904 0.0236
Skew –0.2217 –0.4884 –0.3657 –0.4156 –0.3822 –0.4481 0.1270
Kurt 13.2850 5.1541 10.3922 6.7874 7.4346 12.7538 5.3075
T 2,170 2,167 2,169 2 2,168 2,170 2,170
StartDt 01-04-2010 01-05-2010 01-04-2010 01-04-2010 01-04-2010 01-04-2010 01-04-2010
EndDt 04-27-2018 04-25-2018 04-26-2018 05-03-2018 04-25-2018 04-27-2018 04-27-2018
Freq 261.1507 261.0477 261.1164 261.1159 261.0821 261.1507 261.1507
sqrt(V[SR_k]) 0.0298 0.0298 0.0298 0.0298 0.0298 0.0298 0.0298
E[max SR_k] 0.0435 0.0435 0.0435 0.0435 0.0435 0.0435 0.0435
DSR 0.9994 0.9606 0.9772 0.9998 0.9895 0.9829 0.1774

Cluster 7

442
1.3586
0.0841
1.6051
34.8674
2,172

01-04-2010
05-01-2018
261.0474

0.0298
0.0435
0.9754

Panel F: k = 8, q = 2.2822

Stats

Strat Count
aSR
SR
Skew
Kurt
T
StartDt
EndDt
Freq
sqrt(V[SR_k])
E[max SR_k]
DSR

Stats

Strat Count
aSR
SR
Skew
Kurt
T
StartDt
EndDt
Freq
sqrt(V[SR_k])
E[max SR_k]
DSR

Cluster 0

1,873
1.5205
0.0941
–0.4254
13.0185
2,170

01-04-2010
04-27-2018
261.1507
0.0321
0.0417
0.9909

Cluster 0

443
1.4985
0.0927
–0.4098
10.4565
2,170

01-04-2010
04-27-2018
261.1507
0.0298
0.0413
0.9901

Cluster 1

1,418
1.4034
0.0869
–0.4872
5.4077
2,168

01-04-2010
04-25-2018
261.0821
0.0321
0.0418
0.9797

Cluster 1

232
0.4229
0.0262
0.1355
5.6820
2,170

01-04-2010
04-27-2018
261.1507
0.0298
0.0413
0.2403

261.1159

Cluster 2

1,447
1.4580
0.0902
–0.3458
9.9281
2,170

01-04-2010
04-27-2018
261.1507
0.0321
0.0417
0.9862

Cluster 2

940
2.0314
0.1257
–0.4174
7.4499
2,174

01-04-2010
05-03-2018

0.0298
0.0413
0.9999

Cluster 3

476
1.3853
0.0857
0.5432
16.1401
2,172

01-04-2010
05-01-2018
261.0474
0.0321
0.0418
0.9807

Cluster 3

1,436
1.4566
0.0901
–0.3447
9.9064
2,169

01-04-2010
04-26-2018
261.1164
0.0298
0.0413
0.9868

Cluster 4

935
2.0296
0.1256
–0.4188
7.4308
2,174

01-04-2010
05-03-2018
261.1159
0.0321
0.0417
0.9999

Cluster 4

1,418
1.4034
0.0869
–0.4872
5.4077
2,168

01-04-2010
04-25-2018
261.0821
0.0298
0.0413
0.9807

Cluster 5

236
0.4322
0.0267
0.1344
5.6976
2,170

01-04-2010
04-27-2018
261.1507
0.0321
0.0417
0.2421

Cluster 5

1,591
1.4816
0.0917
–0.4488
13.8743
2,170

01-04-2010
04-27-2018
261.1507
0.0298
0.0413
0.9884

Cluster 6

325
1.2380
0.0766
10.2898
295.3934

2,172
01-04-2010
05-01-2018
261.0474
0.0298
0.0413
0.9799

Panel D: k = 6, q = 2.4919

Panel E: k = 7, q = 2.3650

E X H I B I T  7  (continued)
Statistics Computed on Clusters’ Returns

(continued)
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E X H I B I T  7  (continued)
Statistics Computed on Clusters’ Returns

Stats Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9

Strat Count 806 1,596 948 332 409 353 327 227 851 536
aSR 1.5222 1.4586 1.3083 1.9497 1.3378 1.8174 1.2172 0.3787 1.4057 1.8971
SR 0.0942 0.0903 0.0810 0.1207 0.0828 0.1125 0.0753 0.0234 0.0870 0.1174
Skew –0.3953 –0.4461 –0.4847 –0.4008 –0.1356 –0.2065 4.5167 0.1274 –0.4064 –0.3769
Kurt 6.9109 12.7512 5.1189 10.0715 7.4999 13.3321 108.1831 5.3035 10.9871 6.1852
T 2,168 2,170 2,167 2,171 2,170 2,170 2,172 2,170 2,169 2,160
StartDt 01-04-2010 01-04-2010 01-05-2010 01-04-2010 01-04-2010 01-04-2010 01-04-2010 01-04-2010 01-04-2010 01-22-2010
EndDt 04-25-2018 04-27-2018 04-25-2018 04-30-2018 04-27-2018 04-27-2018 05-01-2018 04-27-2018 04-26-2018 05-03-2018
Freq 261.0821 261.1507 261.0477 261.0131 261.1507 261.1507 261.0474 261.1507 261.1164 260.9792
sqrt(V[SR_k]) 0.0278 0.0278 0.0278 0.0279 0.0278 0.0278 0.0278 0.0278 0.0278 0.0279
E[max SR_k] 0.0438 0.0438 0.0439 0.0439 0.0438 0.0438 0.0439 0.0438 0.0438 0.0439
DSR 0.9889 0.9819 0.9544 0.9997 0.9636 0.9990 0.9483 0.1706 0.9748 0.9995

Panel H: k = 10, q = 2.2211

Stats Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

Strat Count 1,021 352 536 1,037 1,593 440 228 846
aSR 1.3267 1.8185 1.8971 1.4133 1.4578 1.3482 0.3817 1.5228
SR 0.0821 0.1125 0.1174 0.0875 0.0902 0.0834 0.0236 0.0942
Skew –0.4884 –0.2077 –0.3769 –0.3657 –0.4467 2.2752 0.1270 –0.3822
Kurt 5.1541 13.3085 6.1852 10.3922 12.7629 49.3210 5.3075 7.4346
T 2,167 2,170 2,160 2,169 2,170 2,172 2,170 2,168
StartDt 01-05-2010 01-04-2010 01-22-2010 01-04-2010 01-04-2010 01-04-2010 01-04-2010 01-04-2010
EndDt 04-25-2018 04-27-2018 05-03-2018 04-26-2018 04-27-2018 05-01-2018 04-27-2018 04-25-2018
Freq 261.0477 261.1507 260.9792 261.1164 261.1507 261.0474 261.1507 261.0821
sqrt(V[SR_k]) 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290
E[max SR_k] 0.0441 0.0441 0.0441 0.0441 0.0441 0.0441 0.0441 0.0441
DSR 0.9580 0.9990 0.9995 0.9755 0.9813 0.9736 0.1696 0.9886

Cluster 8

332
1.9497
0.1207
–0.4008
10.0715
2,171

01-04-2010
04-30-2018
261.0131
0.0290
0.0441
0.9997

Panel G: k = 9, q = 2.2594

Note: Results for the cluster containing the chosen strategy are shaded.
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A P P E N D I X

PERFORMANCE STATISTICS

aRoR (Total)

Total return obtained by annualizing the geometrically 
linked total daily returns. This includes returns due to income 
from coupons, clean price changes, and financing.

Avg AUM (1E6)

Average of the daily assets under management of the 
long portfolio, expressed in millions of US dollars.

Avg Gini

Average of the daily Gini coeff icients. The daily 
Gini coeff icient is the ratio (1) and (2), where (1) is the 
area between the Lorenz curve and the line of equality 
and (2) is the area under the line of equality. The input is 
the vector of allocations (w) for the ISINs in the index at 
that moment.
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Avg Duration

Average of the daily weighted average durations of the 
portfolio (includes long, short, and futures positions), where 
the weights are derived from market value allocations. The 
daily weighted average duration δt is computed as

 ∑
∑

δ
ω δ

ω
= =

=

t
k

n

t n t n

k

n

t n

0 , ,n t
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Avg Default Prob

Average of the daily weighted average default prob-
abilities of long positions. Weights are derived from market 
value allocations. A default on a short position is favorable; 
hence, only long positions are included in the calculation.

An. Sharpe Ratio

Annualized Sharpe ratio computed from daily total 
returns.

Turnover

Annualized turnover measures the ratio of the average 
dollar amount traded per year to the average annual assets 
under management.

Effective Number

The effective number of positions in the portfolio, con-
trolling for concentration of allocations. For a detailed expla-
nation, see López de Prado (2018), Chapter 18, Section 18.7.

Correl to Ix

Correlation of daily returns relative to the index.

Drawdown (95%)

The 95th percentile across all drawdowns. Drawdowns 
are computed using the following function.

Time Underwater (95%)

The 95th percentile across all time underwater. The 
series of time underwater is computed using the above 
function.

Leverage

Average of the daily leverage. Daily leverage is defined 
as the ratio between the market value of the long positions 
and the assets under management.
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def getGiniCoeff(w):

    w=w/w.sum()

    N=len(w)

    Ideal=(N+1)/2.

    lorenz=np.sum(np.cumsum(np.sort(w)))
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Fine-Tuning Private 
Equity Replication Using
Textual Analysis
ANANTH MADHAVAN AND ALEKSANDER SOBCZYK

Private equity is an attractive asset 
class to investors seeking supe-
rior returns and low correlation to 
public equity markets. By private 

equity, we refer to buyouts of mature compa-
nies and growth equity—that is, established 
and expanding firms.1 Private equity investors 
make money through management fees and 
performance-based fees. The illiquid nature 
of private equity and asymmetric informa-
tion may drive risk premiums. In comparison 
to private markets, public markets are more 
transparent, and asymmetric information 
risk is mitigated by accounting that abides 
by generally accepted accounting principles, 
company regulation, and the attention of 
financial analysts and short sellers. Illiquidity 
is a major consideration. Private equity invest-
ments typically require a long-term commit-
ment of 10 years or more, with the first 2 to 4 
years being investment years (capital calls or 
periodic draw) and subsequent years the har-
vest period. Although the investment period 
is known up front to investors, capital calls 
are unpredictable and can vary significantly 
in size. The schedule of capital calls may be 
estimated by managers at launch (and through 

1 Buyouts are often structured as leveraged 
buyouts but can also refer to so-called turnaround 
approaches through earnings growth, often accom-
panied by cost-reduction strategies. By contrast, we 
think of venture capital as more early-stage investment 
in firms that have yet to go public.

annual updates) but for many private equity 
investors in the early years the experience is 
quite variable.

These considerations imply that private 
equity investors and venture capitalists have 
a need for an interim beta solution to miti-
gate cash drag and the risk of underperfor-
mance arising from large and unpredictable 
capital calls. The need for interim exposure 
applies even to investors who have a full 
private equity allocation (beyond the early 
years) who face reinvestment risk with dis-
tributions (e.g., return of capital, realized 
gains, interest income) or liquidity needs for 
various expenses. Note the interim solution 
is not intended to permanently replace pri-
vate equity, given the unique risk premiums 
associated with this asset class, but rather to 
supplement an actual private equity position 
within a portfolio. 

What would such an interim portfolio 
solution look like? First, it should be liquid 
because the funds could be needed at short 
notice, and it should be long-only because 
there may be investment constraints on short 
positions. The solution should also be unle-
vered; any desired leverage can be added on 
top of the portfolio. Finally, and perhaps most 
importantly, the interim beta solution should 
provide dynamic economic exposure to the 
asset class. A dynamic portfolio is impor-
tant because private equity opportunities 
vary over time with changes in regulation, 
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technology, and the business cycle. In this article, we 
develop a holdings-based methodology using modern data 
science to create a liquid investable portfolio to mimic 
dynamically the factor characteristics of private equity 
over time.

The alternative to a holdings-based approach is 
to use reported returns. Indeed, a substantial literature 
on hedge fund replication looks to create an investable 
liquid proxy for this asset class by regressing fund returns 
on factors associated with public equities. The returns-
based regression approach has the distinct advantage of 
requiring only return data, but it faces some particularly 
difficult challenges with private equity, as we describe 
in detail later, because of return smoothing and other 
distortions.

It is generally recognized that holdings-based data 
provide a more accurate way to measure performance 
and gauge a fund’s exposure to factors.2 But how do 
we measure at a point in time holdings that are, by 
definition, not public? The approach taken here involves 
several steps using modern data science techniques. First, 
using textual analysis, we create a dictionary of private 
equity firms from a variety of sources. We then identify 
firms taken private by those private equity firms in the 
10-year period ending June 2018. This step is needed 
because there is no explicit f lag for private equity trans-
actions in the data. Previous analyses (see, e.g., Stafford 
2017) used a combination of methods and heuristics. 
Our approach allows us to create a dynamic portfolio 
that resembles that of private equity at a point in time.

Next, using a multifactor risk model, we measure 
on a quarterly basis the cross-sectional factor expo-
sures of f irms immediately prior to the announcement 
(not effective) date when the firms were being acquired 

2 Use of stock-level information in return analysis dates 
back to at least Brinson and Fachler (1985) and Brinson, Hood, 
and Beebower (1995) in holdings-based return attribution. Chen, 
Forsberg, and Gallagher (2016) used institutional holdings data and 
concluded that hedge funds are superior to other institutional inves-
tors at security selection, and hedge funds, mutual funds, and pen-
sion funds are able to successfully time the market. Lo (2008) and 
Hsu, Kalesnik, and Myers (2010) showed how to identify the factor 
and nonfactor components of active returns using security-level 
holdings. Grinold (2006) proposed a holdings-based attribution 
method using characteristic portfolios. When managers dynami-
cally change factor loadings in response to changing economic envi-
ronments, regression-based approaches may result in excessively 
smoothed coefficients.

by a private equity f irm.3 This analysis is of interest 
in itself because it complements the growing literature 
(see, e.g., Kinlaw, Kritzman, and Mao 2014) on the 
factor characteristics of private equity. We show that 
the private equity deal portfolio looks quite different 
from other transactions. Finally, we use holdings-based 
optimization to build a liquid, investable, unlevered, 
long-only portfolio that mimics the factor characteris-
tics of the stocks taken private. This portfolio evolves 
dynamically on a quarter-by-quarter basis and, overall, 
has risk–return characteristics that are similar to those of 
reported private equity returns. Interestingly, the mim-
icking portfolio does not load heavily on small size or the 
broader market, and the factor loadings vary substantially 
over time. Value and minimum volatility are important 
attributes overall, indicative of a preference for cheaper, 
more stable firms, but traditional quality metrics such as 
profitability are not preferred, perhaps because private 
equity firms seek turnaround companies.

PREVIOUS LITERATURE

The article is related to several distinct areas of 
the literature. First, we complement previous empirical 
studies of the characteristics of private equity. In partic-
ular, Stafford (2017) noted that private equity funds tend 
to select small firms with low multiples of price to earn-
ings before interest, tax, depreciation, and amortization 
(EBITDA) (i.e., smaller, value firms). He found that a 
passive portfolio of small, low-EBITDA-multiple stocks 
with modest leverage and hold-to-maturity accounting 
produces an unconditional return distribution that is 
highly consistent with that of the pre-fee aggregate 
private equity index.4 This passive replicating strategy 
represents an economically large improvement in risk- 
and liquidity-adjusted returns over direct allocations to 
private equity funds. Franzoni, Nowak, and Phalippou 
(2012) estimated a four-factor model to private equity 
returns and reported significant exposure to factors for 
the market, liquidity, and value, but not size. The four-
factor alpha is zero, and the liquidity risk premium is 
about 3% annually.

3 This approach is well established in asset pricing; an early 
approach was used by Ferson and Harvey (1991), who assumed that 
betas are a linear function of characteristics. 

4 Indexes are unmanaged, and it is not possible to invest 
directly in an index.
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Our work is also related to efforts to capture the 
returns of private equity using liquid assets. Kinlaw, 
Kritzman, and Mao (2014) used a proprietary database 
of private equity returns to measure the excess return of 
private equity over public equity and to partition it into 
two components: an asset class alpha and compensation 
for illiquidity. They found that private equity managers 
generate alpha by anticipating the relative performance 
of economic sectors, consistent with our notion that cap-
turing the dynamics of the opportunity set is important. 
They interpreted the balance of excess return as a pre-
mium for illiquidity. They also noted that their results 
suggest that investors can capture the asset class alpha of 
private equity by using liquid assets such as exchange-
traded funds (ETFs) to match the sector weights of pri-
vate equity investors.

The approach is also related to a large literature on 
hedge fund replication that seeks to create an investable 
liquid proxy for an asset class by regressing returns of 
that asset class on factors associated with public equi-
ties. Private equity investment returns are reported only 
quarterly and appear to provide high levels of return 
with only modest amounts of volatility, as we show 
later. Return series available to researchers are typically 
smoothed, the result of appraisal-based valuations.5 As 
a result of artif icial smoothing, which we investigate 
empirically in the following, investment returns exhibit 
high levels of autocorrelation and understate true vola-
tility. Leverage further enhances returns, but transaction 
costs are understated because of the lack of liquidity. 
These factors tend to produce high Sharpe ratios that 
are difficult to proxy with public companies.

By working with unlevered, whitened returns, we 
can potentially approximate the true unobserved returns 
to private equity. One approach was illustrated by 
Pedersen, Page, and He (2014), who employed a lagged 
factor model to describe the performance of a variety 
of alternative and illiquid asset classes. The authors 
described how to estimate risk factor exposures when 
the available asset return series may be smoothed (owing 
to the difficulty of obtaining market-based valuations). 

5 Returns ref lect management fees, which can range widely 
(Stafford 2017 estimated fees of 3.5% to 5% annually), and perfor-
mance fees on the profits (up to 20%). Returns may ref lect unreal-
ized and realized gains from the investments, as well as income from 
the investment in credit instruments. See also Ang et al. (2018).

They showed that private equity has exposure to beta, 
size, value, and liquidity factors.

An alternative source of return data is use of the 
returns of publicly traded firms that have private equity 
portfolios. Although approximately 60 global companies 
that invest in private equity are publicly traded (including 
well-known firms such as Apollo Global Management, 
Blackstone Group, and KKR), many private equity 
companies (such as Bain Capital) are structured as pri-
vate partnerships. It is not clear that the returns of public 
companies are necessarily a representative proxy for the 
returns to the asset class in general.6 However, even if 
we have accurate return information for private equity, 
the challenge of regression-based time-series coefficients 
being the (weighted) average over the particular sample 
period remains, and any attempt to replicate their expo-
sures is inherently static.

Finally, it is worth noting that the holdings-based 
approach taken here is consistent with the literature 
showing that factor loadings vary over time. Indeed, 
conditional factor models, beginning with the condi-
tional capital asset pricing model, predict that betas are 
a function of the economic environment, time-varying 
company characteristics, or the changing risk aversion of 
economic agents.7 The time variation of factor loadings 
also significantly affects the interpretation and estimation 
of econometric and statistical models, including those 
for private equity. For example, Jagannathan and Wang 
(1996) showed that conditional betas are an omitted 
state variable, and failing to take this into account causes 
other coefficients, including factor loadings and alphas, 
to be biased. These private equity factor benchmarks we 
construct at each point in time are dynamic, investable, 
and without look-ahead bias.

EMPIRICAL ANALYSIS OF RETURNS

Before we turn to our holdings-based approach, it 
is useful to provide some evidence on returns to moti-
vate the analysis to follow. We gathered quarterly total 
return data for private equity (Cambridge Associates 
US Private Equity) and two small-capitalization public 
equity proxies (see, e.g., Stafford 2017), namely the 

6 As an aside, several ETFs hold public companies that invest 
in private equity, an indicator of interest in this asset class.

7 See Ang (2014) for a comprehensive review of the major 
literature in this area.
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Russell 2000 Index and the S&P Small Cap 600 Index, 
for the period of January 1999 to April 2018, for a total 
of 78 quarters. Summary statistics on all three return 
series are presented in Exhibit 1. Consistent with the 
previous literature, we find the following:

• Private equity average returns are higher than both 
public indexes.

• Private equity returns are less variable in terms 
of measures such as the interquartile range (third 
quartile less first quartile) or the (quarterly) stan-
dard deviation of returns. There is little difference 
between the two small-cap public equity return 
series in terms of the measures of central tendency 
and dispersion, and the correlation in the two 
public return series is approximately 0.98.

• The risk–return trade-off is seemingly quite favor-
able to private equity. Approximate annual returns 
are 12.7% for private equity, and the annualized 
standard deviation is 10.4%, a ratio of return to risk 
of 1.22. By contrast, for the Russell 2000 Index, 
the approximate corresponding figures are 10.4% 
and 20.1%, respectively, for a return to risk ratio 
of 0.52.

Private equity reported returns are strongly statisti-
cally related to contemporaneous US small-cap equity 
returns. How well can we model the time-series pat-
tern of returns to private equity in Exhibit 1 using a 
public small-cap equity index? We regress the quarterly 

reported private equity returns on the Russell 2000 
quarterly return. The coefficient on small-cap returns 
is only 0.36, significantly less than 1, and the intercept 
(or Jensen’s alpha)8 is 2.23% per quarter; both are highly 
signif icant (t-values of 5.17 and 8.72, respectively).9 
Although the R2 is relatively high at 0.49, this simple 
model illustrates that small-cap returns alone are unable 
to explain the risk and return characteristics of reported 
private equity returns.

Unlike the two public equity indexes of Exhibit 1, 
neither of which have autocorrelations at any lag that 
are statistically signif icantly different from zero, the 
reported returns of private equity show complicated 
dynamics possibly ref lective of interpolation, smoothing, 
and appraisal-based valuations. We fit an autoregressive 
moving-average model to the private equity returns to 
model these dynamics parsimoniously. The model for 
reported private equity returns is given by:

 εrtrr
i

p

i

q

i tε i
1 1i

∑ ∑ri trr i= μ + ∑ θ∑
=

−  (1)

Here rt is the reported private equity return in quarter t, 
μ is a constant term, and {εt} is a weak white noise pro-
cess with expectation zero and constant variance. In the 
ARMA(p, q) model of Equation 1, returns are a function 
of p quarters of past returns through the autoregressive 
coefficients {ρi} and q quarters of moving average terms 
via the coefficients {θi}. The estimated autoregressive 
{ρi} and moving average coefficients {θi} are shown in 
Exhibit 2 for (p, q) = (5, 5). Not only are the autoregres-
sive elements important and significant, it is also clear 
that all the moving-average terms up to quarterly lag 5 
are highly statistically significant.

Recall that the autocorrelation function of an 
ARMA(p, q) process exhibits exponential decay toward 
zero, but with possibly damped oscillations. The conclu-
sion that emerges from our analysis of the time series 
of reported private equity returns is that even with 
78 quarters of data, return dynamics are very complex. 
Although it is certainly possible to try to correct for 
the impact of smoothing, staleness, interpolation, and 

8 See, for example, Jensen (1968). We get very similar results 
when using the S&P 600 series instead of the Russell 2000.

9 Note also that the low beta coefficient on small-cap returns 
is to be expected if the proxy (i.e., the Russell 2000) is very noisy 
because of a well-known errors-in-variables problem.

E X H I B I T  1
Summary Statistics on Quarterly Returns, 
January 1999 to April 2018

Note: Statistics are returns, in percent, observed on a quarterly basis.

Source: Based on data from Bloomberg, FactSet, and Cambridge 
Associates.
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appraisal-based valuations (e.g., whitening), this is not 
an easy task given the complexity shown in Exhibit 2. 
Accordingly, we turn to a different approach, based on 
holdings, that allows us to dynamically model the factor 
attributes of private equity.

DYNAMIC HOLDINGS-BASED LIQUID 

ALTERNATIVES MODELING

Private Equity Acquisitions 

of Public Companies

Our holdings-based approach to liquid alternatives 
modeling consists of three elements:

• Use public equity markets, identify companies that 
were acquired by private equity firms;

• Use a multifactor model to measure cross-sectional 
characteristics of those firms prior to the announce-
ment; and

• Use holdings-based factor characteristic mapping 
to build liquid, investable, long-only portfolios 
that vary over time to mimic the dynamic target 
private equity portfolio.

Our sample covers the 10-year period between 
June 2008 and June 2018. We use the FactSet M&A data-
base and the Bloomberg CAX database to identify 1,107 
mergers and acquisitions (M&A) events that resulted in 
a public US company being delisted (approximately 
110 instances per calendar year). Unfortunately, there 
is no easy way to detect which of these events involved 
private equity. Although it is possible to make such a 
determination by hand, this is not a scalable approach—
certainly not globally or on a going-forward basis for 
a possible product or a client portfolio. To develop a 
systematic approach to identify private equity deals, we 

used textual identif ication against custom word dic-
tionaries (based on relevant textual sources for broad 
industry designations and including firm-specific words) 
to identify acquirers that are private equity f irms or 
part of private equity–led consortia or private groups. 
This exercise resulted in 159 events. Exhibit 3 provides 
a sample textual analysis of an event; Panel A shows 
the dictionary, and Panel B shows how we distinguish 
between two M&A events, one of which involves pri-
vate equity whereas the other is a within-industry bio-
pharma acquisition.

Not surprisingly, the great majority of private 
equity deals (deal portfolio) involve cash (97%), as shown 
in Exhibit 4. Furthermore, the majority of private 
equity acquirers are private (86%), with some notable 
exceptions (e.g., Blackstone, Apollo). Private equity 
firms target smaller deals (average of $2.5 billion com-
pared to $3.8 billion for non–private equity acquirers), 
but there are some notable exceptions. This finding sug-
gests that using the returns of public companies that 
invest in private equity as proxies for private equity 
returns may not be representative. We note in passing 
that the sector and industry composition of the deal 
portfolio changes over time, as one would expect given 
a time-varying opportunity set, again motivating the 
need for a dynamic approach.

Mapping Style Factor Exposures 

The next step is to determine the factor exposures 
of the deal portfolio at each point in time, as a prelude to 
mapping them to investable, long-only factors. For indi-
vidual stocks, we collect risk characteristics produced by 
an industry multifactor risk model, BlackRock’s Fun-
damental US Equity Risk Model (BFRE USAM), that 
includes style characteristics such as momentum, vola-
tility, size, value, and trading, as well as individual sector 

E X H I B I T  2
ARMA(p, q) Model of Reported Private Equity Returns

Notes: Coefficients that are statistically significant are marked in bold. The log likelihood is −222.48, and the Akaike information criterion is 466.95. 
Technically, we estimate an ARIMA(5, 1, 5) model to handle nonstationarity.

Source: Based on return data from Cambridge Associates, in percent, observed on 78 quarters.

ρ ρ ρ ρ ρ θ θ θ θ θ
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exposures. The choice of risk model has little impact on 
the results, given the similarity in models across different 
providers. Our set of tradable factors are MSCI single 
factor indexes, which offer a variety of targeted factor 
exposures and can be traded by an investor at low cost 
through ETFs. The individual factors, beyond the broad 

market (Russell 3000), are size, value, momentum, min-
imum volatility, and quality.

When to Map Factors?

We have a choice in the date of factor mapping. 
One approach is to use the last calendar month-end date 
before delisting (i.e., the effective date). Thus, if a com-
pany was taken private and delisted from an exchange 
on June 13, 2001, we could use factor exposures on May 
31, 2001. An alternative is to use the style factor charac-
teristics prior to the deal announcement date—that is, if 
a company was delisted from an exchange on June 13, 
2001, but the deal was announced on March 15, 2001, 
we could use factor exposures on February 28, 2001. The 
advantage of using the deal announcement date is that 
this analysis controls for any post-announcement price 
movement (i.e., from the market price before announce-
ment to the target price). Indeed, we find that the factor 

E X H I B I T  3
Sample Textual Analysis

Source: BlackRock, based on FactSet M&A and Bloomberg CAX data.

E X H I B I T  4
M&A-Driven Delistings of US Public Companies, 
2008 to 2018

Source: BlackRock, based on FactSet M&A and Bloomberg CAX data.
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exposures of private equity targets are significantly more 
differentiated when mapping their style exposures on 
the announcement date than on the effective date. Not 
surprisingly, the effects are strongest for the momentum 
factor. Just prior to the announcement, the momentum 
Z-score of the deal portfolio averages −0.57 versus 0.20 
on the effective date. Price appreciation to the new 
target price leads to momentum and a reversal toward 
the effective date. There is also an evident effect on 
the liquidity factor and, through price appreciation, on 
the value factor. In what follows, we will use the (pre) 
announcement date for factor matching.

Comparison of Deals

We assume a standard multifactor model in which 
the returns of stock i at time t, ri,t, are a linear function 
of K factors with betas that vary over time:

 r Fi trr i
k

K

i k t kFF t i t ,,
1

, ,k 1 ,kFF ,∑α β+ ∑ + ε
=

 (2)

where βi,k,t–1 denotes the exposure of stock i to factor k 
at time t. Note that timing is explicit in the subscripts. 

We instrument the beta βi,k,t–1 for returns at time t to 
emphasize that it is measurable with respect to informa-
tion at time t – 1. We summarize this information in a 
characteristics vector, denoted by zi,t–1. The constant or 
alpha is not time subscripted, meaning it does not itself 
vary with time, but returns in excess of the time-varying 
factor exposures are subject to stochastic shocks, εi,t.

We estimate factor loadings, βi,k,t–1, using cross-sec-
tional information, zi,t–1, by assuming that various sets of 
factors are functions of security-level risk characteristics. 
Exhibit 5 shows the mean Z-score by factor model (using 
BFRE USAM) for the sample of companies identified 
as private equity deals based on two dates, announce-
ment and effective. The analysis in Exhibit 5 also shows 
the changes in average style factor exposure between 
the deal announcement date and the effective (delisting) 
date for private equity targets. The column “Other” 
represents other deals.

Of special interest is the comparison of the deal 
portfolio to other M&A transactions. Exhibit 6 shows 
the t-statistic for a two-tailed test of a difference between 
the mean (pre-announcement date) of the private deal 
sample versus the “other” deal category. There are 
marked differences in the factor characteristics of the 
deal portfolio compared with other public M&A targets. 
Consistent with the previous literature, we find that 
compared to all other public M&A targets, targets of 
private equity firms are

• smaller (size and small cap; also less liquid)
• cheaper (value and earnings yield)
• higher quality (profitability)

Important differences between the deal and other 
portfolios relate to factors such as momentum (private 
equity deals have significantly negative momentum rela-
tive to other deals when estimated pre-announcement). 
There are also important and statistically significant dif-
ferences for value, quality, yield, and profitability.

Factor Index Portfolios—Intuition

The next step is to translate the private equity port-
folio’s cross-sectional risk characteristics into investable 

E X H I B I T  5
Comparison of US Public Companies Delisted, 
2008 to 2018

Notes: The column “Other” represents all 948 nonprivate deals out of 
a total of 1,107 deals. The t-statistic refers to a two-tailed test of pre-
announcement date factor loadings for private versus other deals, with 
significant differences marked in bold.

Source: BlackRock, based on FactSet M&A and Bloomberg CAX data.
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factor index portfolios at each point in time. We follow 
the approach of Ang, Madhavan, and Sobczyk (2017):

• We start with risk characteristics: variables such as 
beta or book-to-price for stocks, but also sectors, 
countries, and currencies.

• The risk model maps securities onto risk charac-
teristics such as value and momentum, as described 
by Equation 2 earlier.

• At each point in time, optimally match the risk 
characteristics of a given company to the risk char-
acteristics of a set of third-party long-only style 
indexes using optimization.

• The resulting portfolio is dynamic, investable, and 
without any look-ahead bias.

We assume that traded securities have security-
level risk attributes. Some of these characteristics, such 
as valuation ratios or past returns, are sometimes directly 
used to form style (or smart beta) factors, following Fama 
and French (1993). We compute factor loadings for our 
proxy private equity fund at a given time by finding 
the combination of factors with the closest match, in 

terms of characteristics, to that fund’s holdings. The 
formal optimization problem is laid out in the next sec-
tion, but the intuition is quite simple. Suppose that the 
private equity portfolio at a particular point in time has 
a value Z-score (e.g., using metrics such as earnings/
price or book/price) of 0.40 and a momentum (e.g., 
trailing-12-month returns omitting the most recent 
month) Z-score of 0.25. Suppose a long-only, invest-
able value index has Z-scores to value and momentum 
of 0.90 and −0.10, respectively. Furthermore, suppose a 
long-only momentum index has Z-scores to value and 
momentum of –0.10 and 0.70, respectively. It is easy to 
see then that the investable factor-mimicking portfolio 
is composed of 50% value index and 50% momentum 
index. A formal exposition follows.

Formal Optimization Objective

The formal objective is to translate cross-sectional 
risk characteristics (exposures) into investable factor 
index exposures. At the start of period t, for any given 
fund, define an index factor portfolio comprising weights 
w j t

INDNN
, 1t  in an investable index factor j = 1…M, where the 

E X H I B I T  6
Investable Private Equity Mimicking Portfolio

Source: BlackRock, based on FactSet M&A and Bloomberg CAX data from September 30, 2009, to June 30, 2018.

JFDS-Madhavan.indd   118JFDS-Madhavan.indd   118 05/01/19   10:56 am05/01/19   10:56 am



The Journal of Financial Data Science   119Winter 2019

number of investable funds (e.g., ETFs) does not exceed 
the number of possible risk factors in Equation 1 (i.e., 
M ≤ K). We require the weights in the index portfolio to 
satisfy j t

INDN0 1w j 1tt≤ ≤INDNw j
INDNN

t  and j
M

j t
INDN 11 j1w j 1Σ =wj

M
t

INDNN
1w j 1−t=1 j  (i.e., the portfolio 

is long-only and fully invested). Denote by j k t
INDNNˆ

,kβ  the 
exposure of investable fund j to risk factor k in period t. 
It follows that the expected return of the private equity 
factor portfolio with weights w j t

INDNN
, 1t  (where j = 1…M) in t is:

 E[ ] ˆ )E( )
1 1

, ,R ]t
INDN

j

M

j
k

K

j k, t
INDNN

k t,∑1∑ j t,∑ ∑INDN βE(= ∑∑ 1j ,
INDN ⎛

⎝⎝⎝
⎞
⎠⎟
⎞⎞
⎠⎠= =

 (3)

The difference between the fund’s expected total return 
attributable to static exposures to the K risk factors (from 
Equation 2) and the expected return of the index factor 
portfolio (from Equation 3) is denoted by tη̂ , where

 ˆ ˆ E( ˆ )E( )
1 1

, 1
1

, ,wt
k

K

j

M

j t,
INDNN

k

K

j k, t
INDNN
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⎛
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The ordinary least squares estimate for the index factor 
portfolio at time t is the set of M weights w j t

INDNN
, 1t that mini-

mizes the squared residual in Equation 4, subject to the 
following constraints:

 
w

w j M

j

M

j t
INDNN

j t
INDN

1,

and  0 1 f h 1... .

1
, 1t

1t

∑ =

≤ ≤wINDN =
=

 (5)

In other words, we require full investment and long-
only positions in the factor indexes. This approach could 
be used more broadly for alpha capture with other return 
drivers.

Investable Liquid Portfolios 

Following the methodology described earlier, 
we constructed an investable factor-mimicking port-
folio for public companies that were targets of private 
equity acquisitions. The mimicking portfolio is rebal-
anced quarterly (although we could use an alternative 
frequency such as monthly, albeit with fewer constit-
uents) and created using the following liquid public 
instruments:

• MSCI USA Enhanced Value Index (Value)
• MSCI USA Minimum Volatility Index (Min Vol)

• MSCI USA Momentum Index (Momentum)
• MSCI USA Risk Weighted Index (Low Size)
• MSCI USA Sector Neutral Quality Index (Quality)
• Russell 3000 Index (Market)

Exhibit 6 shows the composition of the invest-
able mimicking portfolio based on private deals over the 
sample period of 10 years, from Q3 2009 through Q2 
2018, with no look-forward bias. The factor-mimicking 
portfolio is dynamic, changing with the latest quarter’s 
private deal portfolio.

Exhibit 6 shows that the mimicking portfolio is 
not simply composed of the broader market (e.g., the 
Russell 3000 Index has a median weight of only 12.9% 
over the whole period) but ref lects time-varying factor 
attributes. Nor is the mimicking portfolio completely 
dominated by small-cap proxies. Consistent with our 
earlier regression results of private equity returns on 
small-cap indexes, low size is an important (median of 
15.5%; range of 0.2%–50.0%), but by no means domi-
nant, factor. Rather, value is the largest component, with 
a median allocation of 37.3% over the entire period, 
but it also exhibits significant time-series variation. The 
quality factor generally has a very low or zero weight 
in most quarters (the median weight is zero, the lowest 
possible given the long-only constraint), possibly because 
private equity firms seek out companies they can turn 
around that score low on quality metrics such as return 
on equity and profitability. By contrast, minimum vola-
tility has a median weight of 8.4%, consistent with the 
notion that private equity firms prefer companies with 
stable cash f lows over the business cycle that have the 
capacity to carry additional debt.

Recall that the private equity mimicking portfolio 
represented in Exhibit 6 has no look-ahead bias. It is 
worth emphasizing that we do not use reported pri-
vate equity returns (which could ref lect smoothing and 
leverage) to construct this portfolio. Assuming quarterly 
reconstitution and no leverage, the annualized return 
for the mimicking portfolio in the period beginning 
September 30, 2009, and ending June 30, 2018, based 
on the returns to the factors, is 15.1%, with a volatility 
of 11.6%.10 By contrast, from Exhibit 1, the reported 

10 The computation takes the sum of factor weights times the 
returns to the associated factors. Indexes are unmanaged, and it is 
not possible to invest directly in an index. In the last three years, 
there are ETFs that offer low-cost proxies (15 basis points) for the 
factor indexes considered here.
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(approximate) annual private equity returns are 12.7% 
with an annualized standard deviation of 10.4%. It is 
important to note, though, that the investable mim-
icking portfolio is not intended to be a substitute for 
private equity (which offers liquidity and other risk 
premiums), but rather is a way to deploy excess cash in 
anticipation of possible future capital calls.

CONCLUSIONS

Private equity is of considerable interest as an asset 
class. In the early years, private equity investors are com-
mitted, but they face challenges because capital calls are 
unpredictable and can vary significantly in size, risking 
a performance shortfall. Consequently, private equity 
investors and venture capitalists have a need for liquid 
solutions that provide economic exposure to the asset 
class (so-called interim beta) to deploy excess cash, miti-
gate the risk of underfunding, and manage large and 
unpredictable capital calls.

In this article, we develop a holdings-based method-
ology using modern data science to create an investable 
portfolio to dynamically replicate the factor character-
istics of private equity. The alternative to a holdings-
based approach is to use reported returns, following a 
large literature on hedge fund replication that seeks to 
create an investable liquid proxy by regressing hedge 
fund returns on factors associated with public equities. 
The returns-based regression approach has the distinct 
advantage of requiring only return data, but it faces 
some particularly difficult challenges in private equity, 
as we showed. Specifically, using 78 quarters of data 
from January 1999 to April 2018, we find significant 
evidence of autocorrelation and moving average terms 
at up to five quarterly lags. These complex dynamics 
ref lect effects such as smoothing, interpolation, and 
appraisal-based valuations, but perhaps also cyclical 
factors or error correction. Further research into the 
dynamics of reported returns is clearly important to 
investors seeking to understand the diversification ben-
efits of private equity across the business cycle and as 
part of a public portfolio.

As an alternative to using reported private equity 
returns, we explore a holdings-based approach to mimic 
the factor characteristics of a private equity portfolio 
dynamically. Using textual analysis, we create a dic-
tionary of private equity firms and then identify firms 
taken private by those f irms in the 10-year period 

ending June 2018. We measure the cross-sectional factor 
exposures of firms immediately prior to the announce-
ment that they were being acquired by a private equity 
firm using a risk model. We show the importance of 
measuring factor exposures of the private equity deal 
portfolio prior to the announcement date and dem-
onstrate significant changes in momentum and value 
between the announcement and effective dates. Pri-
vate equity portfolios look different from other deals: 
They are smaller (size and small cap; also, less liquid), 
cheaper (value and earnings yield), and higher quality 
(profitability).

Finally, we use holdings-based robust optimiza-
tion to build a portfolio of factor indexes that replicate 
the factor characteristics of the stocks taken private. 
This exercise can be repeated at any interval. It would 
be interesting to understand better how the dynamic 
holdings-based approach described here compares and 
contrasts with a returns-based approach and whether 
both could be integrated in some fashion. In recent 
years, the mimicking portfolio loads not only on small 
size but on value and other factors. From a practical 
perspective, the ability to create a factor-mimicking 
portfolio that is liquid, investable, and long-only offers 
a valuable way for private equity investors to maintain 
exposure and control the risks associated with unpre-
dictable capital calls.
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A Practical Approach 
to Advanced Text Mining 
in Finance
 JULIA KLEVAK, JOSHUA LIVNAT, AND KATE SUSLAVA

The sheer volume of data available 
for analysis can be a daunting 
prospect for an investor. Some of 
these data are structured and nor-

malized—for example, numeric information 
from financial statements or analysts’ earn-
ings forecasts. However, a large body of data 
is available in the form of text, such as Securi-
ties and Exchange Commission (SEC) filings, 
news, materials scraped from the web, and so 
on. The construction of an investment signal 
from text is a complex task because it requires 
the ability to identify positive and negative 
parts of the text, weight the different parts, 
and construct a final score. In this study, we 
brief ly review the evolution of the analysis of 
text in finance and accounting and provide 
a concrete example through the analysis of 
earnings conference call transcripts.

The early literature in f inance and 
accounting used a simplistic way to score a 
text: counting the number of positive and 
negative words in the text to determine the 
overall tone of the text. Researchers initially 
identified positive and negative words using 
general dictionaries developed in psychology, 
such as the General Inquirer (Tetlock 2007). 
It soon became clear that the business use 
of words is different from the general use, 
and some words that are generally considered 
negative may not be so in a business context. 
For example, liability has a negative connota-
tion in general use; however, in the language 

of business it simply refers to the company’s 
debts. The word sinking normally has a nega-
tive sentiment, but in business communica-
tion, using this word in the phrase sinking fund 
refers to a regular financing practice. On the 
other hand, although reconciliation is generally 
a positive word, in business a bank reconciliation 
is a regular accounting procedure that does 
not carry any sentiment. 

Some authors reacted to this challenge 
by constructing their own dictionary of 
positive and negative words (Henry 2008). 
A more comprehensive effort was made by 
Loughran and McDonald 2011; they used 
Form 10-K SEC filings, the annual form 
publicly listed companies are required to file, 
to construct a comprehensive dictionary from 
words that were frequently used by f irms. 
This list of words still needed to be classified 
into positive and negative categories, as well 
as uncertainty, litigious, modal, and con-
straining categories.1 This became the golden 
standard in academic studies afterward, and 
many studies used it to analyze various chan-
nels of financial disclosures: the management 
discussion and analysis (MD&A) section of 
10-Q and 10-K (Feldman et al. 2010), earn-
ings conference calls (Brochet, Loumioti, 
and Serafeim 2015; Suslava 2016), loan agree-
ments (Bozanic, Cheng, and Zach 2018), 

1 See: https://sraf.nd.edu/textual-analysis/
resources/.
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and initial public offering prospectuses (Fishe, North, 
and Smith 2014). 

The most common approach in text mining has 
been to count the number of positive and negative words 
in a text and construct an overall score based on these 
quantities, which then defines the tone or sentiment of 
the text. For example, one can use the number of posi-
tive words minus the number of negative words, scaled 
by the total number of words (or the sum of positive 
and negative words) as a measure of tone. Some studies 
use only the proportion of negative words in a text to 
measure tone because text generated by a company, such 
as press releases, tend to have a positive bias. Using word 
lists to identify the tone of a document is essentially a 
blunt tool and may be used as a cursory and superficial 
instrument, similar to taking body temperature to diag-
nose an illness. Realizing this bluntness, some authors 
focused on comparisons across time for the same com-
pany, which can mitigate the positive bias inherent in 
self-reporting. 

Another text mining approach is to use classifica-
tion, which can be performed at the level of the entire 
document, the individual paragraph, or even the spe-
cific sentence. Typically, the classification process begins 
with training data (i.e., a preliminary set of annotated 
examples that provide the basis for classif ication of 
future documents). Of course, to obtain decent accuracy 
with future classif ication, the training set is crucially 
important. Using more annotated examples typically 
leads to a more accurate classification. Additionally, the 
training set should be annotated in a similar manner. 
Having several annotators, which is often the case in 
obtaining a large training set, leads to inconsistency 
across annotators, which will likely reduce the future 
accuracy of the classification. This approach is similar to 
the doctor who searches for symptoms that may indicate 
the types of illnesses the patient may be suffering.

As an example of the classif ication approach, 
Li (2010) used phrases that discuss future events in the 
MD&A sections of SEC filings to assess the quality of 
earnings and improve the predictability of future earn-
ings. His approach was based on identifying words that 
denote the future (e.g., expect) and assessing whether the 
entire sentence was positive or negative, using a large 
sample of examples to classify future phrases. Using a 
large dataset of annotated sentences to classify future text 
is also the basis of some commercial work in text mining 
(e.g., the news sentiment approach used by RavenPack). 

It should be noted that in addition to measuring 
the tone or sentiment of a text, one can use a classifica-
tion technique to identify events that are present in the 
text. For example, using training data on acquisition 
announcements by companies, one can develop a classi-
fication tool that will seek to identify future occurrences 
of acquisitions in other documents. What reduces the 
accuracy of future identification of events is the simi-
larity in reporting of events that involve more than one 
company. For example, language used to describe an 
acquisition may be similar to the language used to report 
merger and acquisition activity, joint ventures, alliances, 
and so on. Thus, the accuracy of event extraction from 
a text is dependent on the number of extracted events, 
the size of the training set, and the correct annotation 
of the training set.

A third and more sophisticated text mining 
approach is based on writing natural language processing 
(NLP) rules to extract specific events from text. These 
rules use the semantic structure of a sentence to report the 
event, and in some cases this approach involves writing 
numerous NLP rules for a single event. This approach 
usually yields more accurate identification of events in a 
text, but it requires expending significant effort for each 
event. However, NLP offers the rule creator an oppor-
tunity to continuously improve the rules when extracted 
events are wrong or when omitted events have not been 
extracted by the rules. This approach is more specific 
and targeted and is similar to various medical tests the 
doctor orders to better diagnose a patient’s condition.

Other, more mechanical types of textual anal-
yses include comparing texts from the same company 
across time to identify differences (Cohen, Malloy, and 
Nguyen 2015) or counting the number of words or 
numbers in a document (Zhou 2018). Similarly, sev-
eral authors examined how text clarity and readability 
affect investors (Li 2008; Biddle, Hilary, and Verdi 
2009; Lehavy, Li, and Merkley 2011; De Franco et al. 
2015). Others use the business description in the 10-K to 
examine the similarity of firms’ products and operations 
(Hoberg, Phillips, and Prabhala 2014). Such approaches, 
although worthwhile from the perspective of research 
topics, are less interesting as text mining endeavors 
because they are based on well-known mechanical tools 
for processing text.

The purpose of this study is to illustrate an advanced 
approach to text mining that is based on writing spe-
cif ic NLP rules to identify events without advanced 
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knowledge of NLP theory. The approach uses software 
that allows a domain expert to easily write NLP rules 
that identify events of interest for the expert in that 
domain, quickly test the rules by searching for other 
examples within a small corpus of documents from that 
domain, and then decide whether to use that rule on the 
entire domain or to modify it. We show in the following 
the application of the approach to earnings conference 
call transcripts. We should emphasize that the approach 
we describe in this article is one efficient way of writing 
rules but not necessarily the only way.

AN EASY PROCESS TO RULE WRITING

The approach we describe is based on software 
developed by Amenity Analytics, Inc. (Amenity).2 
Amenity’s software is used to process a text and to 
extract from it both the tone (sentiment) and events 
for which Amenity has developed specific rules. The 
extracted tone is based on expanded word lists that the 
founders have accumulated through their long experi-
ence working with financial literature. In addition to 
words, Amenity’s software has cataloged phrases that are 
often used in financial texts and has carefully written 
rules to identify sentences and even complete para-
graphs as positive or negative. Amenity has also written 
rules around events it considers important and assigned 
weights to the various events, ref lecting its views on the 
significance of these events. Thus, a document is given a 
numeric score based on a combination of sentiment and 
events captured from the text.

For advanced users, the real benefit of the soft-
ware is in the user’s ability to write additional rules 
to identify events without having any NLP expertise. 
This is accomplished through a few steps that we will 
outline. The first step involves creating a small sample 
of documents from the corpus. These documents are 
then processed through the software and are available 
for viewing. The text of each document is annotated in 
color to ref lect the words and phrases used for extracted 
sentiment and events; the user has the ability to indi-
cate whether these annotations are correct or not. The 
second step in rule writing is to highlight a sentence or a 
phrase of interest, which is used by the program to parse 

2 The software was licensed from the vendor through a paid 
subscription. There are no benef icial agreements between the 
authors and Amenity. 

the sentence and create a graph of the parsed sentence. 
The user can examine the graph and then easily modify 
it to make it more general, so the program can identify 
similar structures in other documents. For example, the 
user can omit company-specific identifications (“The 
agricultural products segment”), specif ic numerical 
values (“generated growth of 18%”), and auxiliary words 
(“has generated”) and use synonyms for the key words 
(“generated” and “growth”). The software automati-
cally creates an NLP equivalent of the modified parsed 
graph. The next step is to determine the efficacy of the 
rule for other documents. This is done by clicking on a 
“Find Matches” button, which retrieves other examples 
from the sample corpus. If only the original example is 
retrieved, it is likely that the rule is not general enough 
and additional parts may be omitted. If a suff icient 
number of other examples are correctly extracted and 
the user is satisf ied with the rule, the user assigns a 
name to the event (e.g., Revenue Growth), determines 
its polarity (e.g., positive), and saves the rule. The user 
can also determine the weight that should be attached 
to the event, depending on its perceived importance in 
predicting future returns. On reprocessing the docu-
ments in the corpus, all identif ied Revenue Growth 
events should now be highlighted and color-coded for 
their polarity. For example, if the manager said, “Sales 
were affected negatively because our Florida stores did 
not generate the expected growth,” the software will 
f lag the event Revenue Growth as negative.

Note that the software does all the heavy lifting of 
writing NLP rules. The user is only required to home in 
on a sentence or a phrase that is of interest and then easily 
construct a rule that addresses what the user wanted and 
is sufficiently general to capture other examples in the 
corpus. The software allows people who are domain 
experts to write rules, thereby making the task of rule 
writing more efficient and streamlined and more effi-
ciently utilizing the domain expert’s perspective on 
events that typically affect security prices. However, 
it should be stressed that having people who are both 
domain experts and proficient in NLP is likely to yield 
even greater benefits. 

AN APPLICATION TO EARNINGS 

CONFERENCE CALL TRANSCRIPTS

A few weeks after the f iscal quarter ends, most 
companies issue a press release that provides preliminary 
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details about their performance in the prior quarter. 
Many companies will also host a conference call with 
analysts to provide additional color on the press release. 
The call typically consists of two parts: a scripted part 
during which management discusses the newly issued 
release, which then often opens the f loor to a question 
and answer discussion with analysts. The transcripts 
of these conference calls are available for consumption 
through several vendors. 

Earnings conference call transcripts are of par-
ticular interest to quantitative investors. First, these 
transcripts are available for a large proportion of the 
investable universe (typically over 80% of the 3,000 
largest companies in the United States). Second, this 
source of data becomes available at regular quarterly 
intervals. Third, like earnings surprises and estimate 
revisions, which were shown to exhibit investors’ under-
reaction and autocorrelations, conference call tone sig-
nals are also likely to be autocorrelated from quarter 
to quarter. Finally, quantitative portfolios are typically 
broad, with many positions and with small bets on those 
positions. This is ideal for a text-mining tool, which is 
likely to make errors in identifying the precise tone or 
tone change of a specific firm but is likely to be correct 
more often than not for a broad portfolio, if constructed 
appropriately. We should note, however, that the confer-
ence call occurs immediately after earnings are released. 
To the extent that investors react to the earnings and 
the information contained in the earnings press release, 
the stock price may have already incorporated the infor-
mation discussed during the call. Thus, in all our tests 
we control for the earnings surprise and the abnormal 
return around the earnings announcement, which cap-
tures other information in the earnings press release.

Analysis

For this analysis, we obtained conference call tran-
scripts from Thomson Reuters for the period 2002–
2016. We restricted our sample to earnings conference 
calls of US companies that had preliminary earnings 
information in the Compustat Point-in-Time database 
and returns in the Center for Research in Security Prices 
(CRSP) database. For each conference call, we first cal-
culated the earnings surprise (SUE) as the earnings per 
share (EPS) reported in the earnings release minus the 
EPS reported in the same quarter of the prior year, and 
minus the average same-quarter EPS differences in the 

prior eight quarters.3 We scale this earnings surprise by 
the standard deviation of the same-quarter EPS differ-
ences during the prior eight quarters. We then rank all 
the earnings surprises during a calendar quarter into 
quintiles (0 through 4), divide by 4, and subtract 0.5. 
We use this transformed variable as an independent 
variable in quarterly regressions of the abnormal future 
return on various signals. Its coefficient is equivalent to 
the return on a hedge portfolio that has a long position in 
the top quintile (4, the largest positive earnings surprises) 
and a short position in the bottom quintile (0, the most 
negative earnings surprises).

We use two abnormal return windows in this 
study. The first is a short window around the earnings 
release date [−1, +1], where day 0 is the earnings release 
date (XRET_PRELIM). The second begins on day +2 
through one day after the earnings announcement date 
of the subsequent quarter (XRET_DRIFT ). We use 
XRET_PRELIM to complement the earnings surprise 
in case additional information is released in the prelimi-
nary earnings announcement. As we did for SUE, we 
rank XRET_PRELIM within a calendar quarter into 
quintiles, divide the rank by 4, and subtract 0.5. The 
longer return window is a standard definition of the 
drift return. We calculate abnormal return as the buy-
and-hold return on the stock minus the value-weighted 
buy-and-hold return on all stocks of the same size (three 
groups), book/market ratio (B/M; three groups), and 
11-month momentum (three groups).

The initial analysis we performed on the conference 
call transcripts involved counting the number of positive 
words (POS) and negative words (NEG) according to 
Loughran and McDonald (2011). For each transcript, 
we calculated the word count tone as (POS − NEG)/
(POS + NEG). We then calculated the word-count tone 
change variable as the transcript tone minus the average 
tone of all available transcripts for this company in the 
prior 370 days (TONE_CH_L&M ). Thus, the tone 
change was a number in the range of [−2, +2]. In the 
following, we provide evidence about the incremental 
contribution of TONE_CH_L&M to the drift return 
beyond the earnings surprise and the short-window 
return around the earnings announcement.

To assess the contribution of using Amenity’s 
software plus our rule writing, we began by writing 

3 The subtraction of the average differences adjusts for cases in 
which earnings grow (or decline) by a constant amount each period.
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additional rules on six areas of interest to us. One of 
these areas included operational issues discussed by 
management or analysts. For example, we identif ied 
any problems in distributing products, sourcing raw 
materials, labor strikes, and so on and created specific 
rules to identify such events under the heading of opera-
tional problems. We added approximately 500 rules to the 
roughly 3,600 rules that Amenity already had already 
written to capture events. Using our own weights for 
these rules, we obtained a new tone score for each tran-
script based on a weighted combination of sentiment 
scores and event scores. In addition, we compiled a list 
of euphemisms that management or analysts used on the 
conference call, such as headwinds, speedbumps, and hic-
cups, (Suslava 2016), and created specific rules to identify 
those. We added the euphemisms score to the combined 
sentiment and events score and calculated a total tone 
score as (POS − NEG)/(POS + NEG). As before, we 
focused on the tone change variable by subtracting the 
average tone of all available earnings transcripts in the 
prior 370 days (TONE_CH_AM).

Results

Exhibit 1 shows the number of transcripts per 
quarter for the period of our analysis, where we have 
earnings surprise, returns, and tone change variables. 

We begin with about 890 transcripts in 2003, exceed 
2,000 in 2009, and remain at that level through 2016, 
with slight variations. Thus, we have good representa-
tion of many firms in the investable universe. 

Exhibit 2 reports summary statistics on our main 
variables. It shows that firms with conference calls tend 
to be larger, have comparable B/M ratios to the uni-
verse, have median abnormal returns that are negative, 
and have median earnings surprises and tone change 
variables that are positive.

Exhibit 3 provides the correlations among the 
variables used in the cross-sectional regressions in the 
following. Recall that SUE and XRET_PRELIM were 
transformed to variables between −0.5 and +0.5, so their 
coefficients in the regression will ref lect the return on 
the hedge portfolio that is long the top (most positive) 
quintile minus the bottom (most negative quintile). 
We follow a similar procedure for the two tone change 
variables. As can be seen from the exhibit, the drift 
return is positively and significantly associated with all 
the independent variables, but its highest correlation is 
with TONE_CH_AM, followed by TONE_CH_L&M, 
XRET_PRELIM, and SUE. Note the high correlation 
(50%) between the TONE_CH_AM and TONE_
CH_L&M variables. However, the TONE_CH_AM 
variables did not have high correlations with the earn-
ings surprises or the short-window abnormal returns, 

E X H I B I T  1
Quarterly Earnings Conference Call Transcripts

Source: Thomson Reuters conference call transcripts, Compustat Point-in-Time data, CRSP return data, and authors’ analysis.
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indicating a suff iciently different potential source of 
information.

Exhibit 4 contains the results of quarterly cross-
sectional regressions of the abnormal drift returns on 
various independent variables in the manner of Fama 
and MacBeth (1973). We report the average quarterly 
coefficient and its t-statistic over the 55 quarters used 
in the study. 

The f irst specif ication shows the contribution 
of earnings surprises and the short-window abnormal 
returns around the earnings announcement to explain 

the drift return. Both are positive and statistically sig-
nificant, as we expected based on prior studies. Together 
they yield about 3% of abnormal return per quarter, 
again in line with prior studies. In the second specifica-
tion, we added the L&M tone change to the prior two 
explanatory variables. All three independent variables 
are still positive and significant, but now the word-count 
tone change contributes the most to the drift, with a 
quarterly hedge return of 1.66%, bringing the total drift 
return to 4.19%, a significant increase in return. Our 
third specification introduces the Amenity tone change 

E X H I B I T  2
Descriptive Statistics

Notes: Exhibit 2 reports summary statistics for variables used in subsequent tests. TONE_CH_L&M is the difference between the L&M tone in a com-
pany’s conference call and the mean L&M tone in the company’s conference calls held within the preceding 370 calendar days. L&M tone is a sentiment 
signal based on the Loughran and McDonald dictionary and calculated as the difference between the positive sentiment score and the negative sentiment 
score, scaled by the sum of the positive and the negative sentiment score. TONE_CH_AM is calculated in the same manner as TONE_CH_L&M but 
is based on the Amenity score, which consists of Amenity sentiment and events score, including events identified by the authors. SUE is calculated as the 
EPS reported in the earnings release minus the EPS reported in the same quarter of the prior year and minus the average same-quarter EPS differences in 
the prior eight quarters, scaled by the standard deviation of the same-quarter EPS differences during the prior eight quarters. MKT is the market value of 
equity at the conference call date. BM is shareholders’ equity divided by pre-earnings announcement market value. XRET_PRELIM is the buy-and-hold 
return on a stock minus the average return on a matched size–B/M–momentum portfolio in the interval [−1, +1], where day 0 is the preliminary earnings 
announcement date. XRET_DRIFT is the buy-and-hold return on a stock minus the average return on a matched size–B/M–momentum portfolio from 
two days after the preliminary earnings announcement date through one day after the subsequent quarter’s preliminary earnings announcement. 

Source: Thomson Reuters conference call transcripts, authors’ analysis using Amenity software, CRSP returns, and Compustat Point-in-Time earnings.

Variable

TONE_CH_L&M
TONE_CH_AM
SUE
MKT
BM
XRET_PRELIM
XRET_DRIFT

N

101,125
101,125
101,125
101,125
101,125
101,125
101,125

Mean

6,756.79

0.006
0.000

–9.102

0.610
0.241
0.611

Median

1,211.860

0.011
0.007

–0.026

0.481
0.110

–0.102

Std. Dev.

2,836.380
23,759.85

0.156
0.196

0.615
8.626

20.129

Q1

393.02

–0.092
–0.119
–0.717

0.284
–3.760
–9.235

Q3

0.109
0.126
0.637

3,829.41
0.760
4.189
9.142

E X H I B I T  3
Pearson Correlations

Notes: This exhibit reports Pearson correlations for our testing variables. All variables are defined in the footnotes to Exhibit 2.

∗∗∗ denotes significance at the 1% level. 

Source: Thomson Reuters conference call transcripts, authors’ analysis using Amenity software, CRSP returns, and Compustat Point-in-Time earnings.

XRET_DRIFT
SUE
XRET_PRELIM
TONE_CH_L&M
TONE_CH_AM

XRET_DRIFT

1
0.027***
0.033***
0.048***
0.036***

SUE

1
0.160***
0.212***
0.157***

XRET_PRELIM

1
0.228***
0.176***

TONE_CH_L&M

1
0.503***

TONE_CH_AM

1
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variable (TONE_CH_AM), which shows a hedge return 
of 2.27% per quarter, bringing the total contribution 
of the three variables to 4.45% per quarter. Thus, our 
effort of using Amenity’s software and writing additional 
rules to capture our own events and euphemisms added 
another 26 bps of abnormal return per quarter.4

CONCLUSIONS

This study proposes an advanced approach to ana-
lyzing text and converting it into a numerical score, 
which is easy to implement with the right software. This 
approach determines the sentiment in the document, 
but more importantly, it identifies additional events of 
importance to the user. The software allows the writing 

4 Controlling for size and B/M in the regressions did not 
change the relative order and the significance of the contributions.

of NLP rules by individuals who are not data scientists 
or NLP experts but are experts in the particular domain 
from which the text originated. This reduces the cost of 
writing rules to capture relevant events and makes the 
text mining process more efficient. Another advantage 
of this approach is that each firm can create its own 
rules to capture specific events from the same text used 
by other firms, but each will have its own secret sauce. 
Furthermore, each firm that uses such software will have 
incentive to continuously engage in writing new rules 
to capture new events of interest and improve its future 
returns. This same process can also be used to generate 
rules that capture specific items of interest, such as newly 
imposed tariffs (see Klevak et al. 2018) or sensitivity to 
operations in a specific country. 
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In this article, we propose that in private 
equity, measurement of asset manager 
(general partner [GP]) skill should 
begin with a repeatable benchmark-

based performance attribution, which is 
then extended to explicitly quantify sources 
of alpha. Furthermore, in this article, we lay 
out a framework for repeatable measure-
ment of performance attribution. Modern 
proxy benchmarks form a key component of 
this framework by enabling public market 
information to systematically inform private 
equity performance.

For manager evaluation, benchmarks 
serve as a standard against which past per-
formance is measured and compared. In 
private equity, creating such a standard 
is confounded by the absence of price for 
extended periods and by the vicissitude of 
exposures and cash f lows a private equity 
fund will experience over its lifetime. 
Recent advances in data science technology 
now support a host of indexing capabilities 
that work within these constraints, allowing 
fully modernized benchmarking and perfor-
mance evaluation.

Modern indexes, as described by Lo 
(2016), are similar in concept to the modern 
proxy benchmark by their systematic con-
struction and ability to highlight systemic 
behavior of a set of stocks against a given 
factor(s). Such indexes are diverse, at the fore-
front of financial innovation, and—notable 

to this article—include non-market-cap-
weighted (fundamental value) varieties.

Technology can now systematically and 
objectively determine a suitably stable set of 
stocks based on their similarity to a target 
asset, providing the basis for quantifying 
systemic elements of performance. The custom 
index, thus composed, closely resembles the 
size and sector style returns described by 
Sharpe (1992) and can be used to define the 
highly prized excess returns produced by the 
manager relative to that of a passive mix with 
the same style (see Exhibit 1).

PROPERTIES OF MODERN PROXY 

BENCHMARKS

Modern proxy benchmarks are con-
structed as custom modern indexes but with 
two distinct (additional) properties: They 
satisfy fully the CFA Institute’s criteria for a 
valid benchmark (“SAMURAI”),1 and they 
are functionally ideal for performance com-
parison because they are objective, actually 
investable, and transparent. These properties 
are nontrivial to achieve and introduce two 
requisite quantities to the construction pro-
cess: technical similarity and stability.

1 “SAMURAI” stands for Specified in advance; 
Appropriate; Measurable; Unambiguous; Ref lective of 
manager’s universe; Accountable; Investable.
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Technical Similarity

Within the attribution taxonomy described by 
Sharpe (1992), and within our own related approach, 
similarity between the target asset and the benchmark 
is germane to its economic meaning. But what is simi-
larity? Arguably, the most enduring markers of similarity 
are also the most fundamental: financial quantities and 
business descriptors of the companies within the funds 
(Arnott, Hsu, and Moore 2005).

The second question then becomes how it is mea-
sured. In this work, we develop a similarity measurement 
based on a combination of a company’s fundamental 
components: its economic size2 (as opposed to market 
cap or price), industry, and interplay of financial ratios. 
Similarity can then be implemented as a distance func-
tion, in which components are mapped along these three 
axes, with closer companies being more similar to the 
target company. This approach, which measures at the 
underlying company level as opposed to the fund level, 
is made possible by data science technology.

2 Economic size—what we call fundamental economic value—is 
itself a mathematically valid indexation of a company’s intrinsic 
value as measured by statistical models. The predictive accuracy (to 
market value) of these statistical models is 0.813 (the R2 statistic) and 
is equally accurate across the public–private divide.

Technical similarity radically transforms similarity 
from a subjective notion (inevitably biased toward 
familiar companies3) into an objective empirical quantity.

Stability

The purpose of the benchmark is to capture sys-
temic behavior against which idiosyncratic behavior 
(i.e., excess returns) may be measured. It is critical then 
that its constituents be sufficiently numerous to aggre-
gate to a systemic representation and attenuate idiosyn-
cratic behavior. A benchmark’s ability to reliably capture 
systemic behavior describes the property of stability.

We propose that stability is an essential property 
of a benchmark, central to the integrity of an excess 
returns measure. An unstable benchmark can be unduly 
inf luenced by a subset (or one) of its constituents, mis-
representing systemic returns and causing unavoidable 
confusion of constituent and target idiosyncrasies. An 
unstable benchmark therefore makes a repeatable defini-
tion of manager alpha unattainable.

3 For further reading on familiarity bias, see Heath and 
Tversky (1991).

E X H I B I T  1
The Role of Modern Proxy Benchmarks in the Decomposition of Fund Performance

Notes: The modern proxy benchmark is a public peer set, adjusted for liquidity and control, ref lective of the target entity’s industry, economic size 
(not market cap), and interplay of financial ratios. It has 50–150 companies, objectively composed by technology for optimal specificity and stability.
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Appropriating the Herfindahl Index 

to Measure Stability

The Herf indahl (also called the Herf indahl–
Hirschman Index, or HHI) is a commonly accepted 
device to measure market concentration.4 However, 
the Herfindahl can be appropriated to calibrate stock 
exposures in benchmark construction and determine 
the number of constituents needed to control for bench-
mark stability. Higher concentrations are represented 
by a larger Herfindahl. For example, a benchmark con-
taining fewer than 10 constituents—not uncommon for 
custom benchmarks in private equity—approximates to 
a Herfindahl between 0.10 and 0.25, sometimes even 
larger. At a Herfindahl of 0.05—far more stable than 
0.15—a benchmark produces unacceptable variances and 
is at high risk of being materially skewed by idiosyncratic 
behavior of its constituents.

Our research f inds evidence of concentration 
thresholds in a benchmark that provide guidance for 
a stability range. The upper threshold corresponds to a 
Herfindahl of 0.05, as previously stated; however, the 
lower threshold should be considered in the context 
of what the benchmark is trying to capture: systemic 
behavior specific to the target entity.

4 For example, the United States Department of Justice 
and the Federal Trade Commission consider the Herf indahl 
a measure of market concentration: https://www.justice.gov/atr/
herfindahl-hirschman-index.

The Specificity–Stability Spectrum

In general, by making the benchmark more 
stable, we are trading off specif icity to the target 
asset(s). Conventional practice in private equity bunches 
benchmarks at either end of this spectrum, in which 
a custom benchmark with (typically) fewer than 
10 constituents is at one end, and a broad benchmark like 
the Russell 3000 is at the other (see Exhibit 2). Although 
practitioners may be aware that neither case is suitable for 
performance evaluation, gaining consensus on a larger 
set of subjectively chosen stocks and weighting them in 
an index is an extremely difficult and universally tire-
some process with little clarity in the end.

The compelling “middle ground” of this spec-
trum, in which a benchmark is stable and specific to its 
target, typically requires between 50 and 150 constitu-
ents that are each monitored to continuously satisfy the 
requirement of technical similarity.

BENCHMARKING TECHNOLOGY

Practitioners will recognize that, in the absence 
of benchmarking technology, benchmark construc-
tion is an intensely subjective stock-picking process. 
Because of this difficulty, a (conventionally constructed) 
custom benchmark is typically aimed at the fund or 
manager level and composed of far fewer than the 50 
constituents per target company needed for benchmark 
stability; however, this crude approach is a practical 
workaround rather than a theoretical consideration—a 

E X H I B I T  2
Benchmarking Private Equity—Balancing a Fundamental Trade-Off between Specificity and Stability 
(and effort)

Broad Benchmarks

Specific Stable Specific Stable Specific Stable

Conventional Custom Benchmarks Proxy Benchmarks

Typical Size: < 10 constituents
Herfindahl: Unacceptably high/

> 0.15
Effort: High/Manual
Indication: <superseded>

Too influenced by idiosyncrasies to
delineate manager skill

Typical Size: > 500 constituents
Herfindahl: Very low/< 0.005
Effort: None/Automated
Indication: Market proxy

Lack sufficient specificity to
delineate manager skill

Typical Size: 50–150 constituents
Herfindahl: Managed/0.02
Effort: None/Automated
Indication: Target proxy

Sufficiently stable to represent systemic
returns specific to the target
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constraint readily removed by automated benchmarking 
technology.

The efficiency of technology makes robust bench-
marking at the company level feasible and excess returns 
calculable on a per company basis (see Exhibit 3). Alpha 
can be “rolled up” outside of the fund wrapper and 
examined in compelling ways (i.e., by industry, company 
size, and even deal team). As represented by Korteweg 

and Sørensen (2014), this intelligence—afforded by 
technology—may unlock greater predictive power in 
the manager evaluation process.

Data science technology is already behind remark-
able innovation in finance and investing, so it is perhaps 
unsurprising that it also has the power to unlock new 
capabilities in private equity. Modern proxy benchmarks 
and benchmark-based attribution are one such example, 

E X H I B I T  3
Cumulative Returns of Assets (dark line) and Their Modern Proxy Benchmarks (dashed), Rolled Up to Their Fund
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with precision and objectivity offering new capabilities, 
such as

• Quantification and indexation (i.e., direct com-
parison) of manager skill

• Consistent delineation of systemic returns (i.e., 
company size, industry, region)

• Emergence of risk metrics and portfolio construction
• Consideration of dynamic and static elements of 

active returns in fee structures.

Maintenance of the Modernized Benchmark

The changing composition of a private equity fund 
as assets enter and exit is further complicated (in terms 
of performance attribution) by asset bolt-ons, divest-
ments, and restructuring during the holding period. The 
changing nature of a fund’s exposures and the economic 
size of its assets is the result of GP operational control 
and is constitutive to private equity investing; however, 
despite these changes being implicit to GP skill, the fixed 
benchmark typical in private equity is indifferent to it.

Through its efficiency, benchmarking technology 
makes it possible to preserve specificity and stability over 
time in a systematic manner. In so doing, the GP’s skill is 
more accurately captured because it is always being gauged 
appropriately. To illustrate, imagine a merger of two sim-
ilar assets. The strategy is to drive operating efficiency, 
strengthen exit multiples, and generate higher total returns. 
If the benchmark did not change to ref lect the merged 
entity, then the GP would be gauged against companies that 
had lower operating efficiencies, with no understanding of 
the potential returns or the opportunity as indicated by its 
similarly sized peers. If the benchmark is adjusted to ref lect 
the larger entity, then the opportunity (and by extension 
the opportunity cost) is made measurable.

To capture the more predictive components of 
performance (i.e., GP skill), the benchmark must be 
meticulously maintained to ref lect the actions of the GP 
as it changes the composition and nature of the fund.

APPROACH

The exactitude of the approach enabled by tech-
nology starts with measuring at the holdings or asset level. 
For every company inside the fund, a proxy benchmark 
consisting of between 50 and 150 technically similar 
companies (peers) is systematically constructed. With 

today’s computing power, technology can evaluate the 
similarity of 6,000 companies in less than six seconds, 
making a scan of all public exchanges (including over-
the-counter stocks) for fundamentally similar constitu-
ents a rapid process.

Constituents with greater similarity to the target 
company are weighted accordingly by the number of 
their shares held in the benchmark. Therefore, for each 
private company in a fund, benchmark technology cre-
ates a mathematically precise cloud of public peers. The 
company-level public benchmarks are then rolled up 
to the fund level to create the equivalent of a virtual 
synthetic investment.

A private equity fund can be thought of as a series 
of stakes in various companies over time. Change in 
fund composition or the nature of any one compo-
nent company is generally accompanied by a cash f low 
event; a stake is the period between cash f low events 
(see Exhibit 4). Each stake is treated as its own vir-
tual synthetic investment that is completely cashed out 
and immediately reinvested as a new stake at cash f low 
events. The synthetic fund is actively managed by the 
technology to mirror the changed nature of every stake 
for the life of the fund.

In this way, the GP’s actions are precisely replicated 
in the benchmark. Furthermore, implied returns may 
be captured without forcing the benchmark to engineer 
its way around going short—a nontrivial issue that var-
ious public market equivalent (PME5) methods handle 
differently.

Much like the S&P 500 is not a f ixed basket of 
stocks, technically similar companies are actively moved 
in and out of the benchmark based on a consistent meth-
odology that is specified in advance. Although compu-
tationally intensive, rigorous ex post analysis of a private 
equity fund for the purpose of manager evaluation can 
be completed in seconds.

FRAMEWORK FOR DECOMPOSITION 

OF RETURNS

An asset’s cumulative returns are modeled from 
unsmoothed cash f lows and explicitly account for 

5 PME—also known as the Index Comparison Method, or 
ICM—analysis was first proposed by Long and Nickels (1996); sub-
sequent f lavors have worked toward minimizing technical issues, 
including the public index going short.
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economic value growth and market f luctuations with 
an objective and measurably accurate continuous pricing 
mechanism. Data science technology provides such a 
mechanism.6

Active/Passive Decomposition

Market returns are indicated by a broad index 
such as the ACWI or Russell 3000 or by returns of the 
investor’s own public equities portfolio. The market, so 
defined, marks the active/passive decomposition of the 
private asset’s returns (see Exhibit 5).

Limitations of the PME 

in Performance Attribution

Broad benchmarks differ substantially in similarity 
to a given fund and do not offer a meaningful marker of 
manager skill. For example, consider the Russell 3000 
gaining 20% while the technology sector goes down 
15%. A fund (or GP) weighted in technology assets 
would appear unskilled but when the technology sector 
recovers it would look highly skilled.

This simple example illustrates the major limitation 
of the PME approach to performance attribution: It is 
simultaneously driven and limited by its benchmark. It is 
the benchmark that drives the legitimacy of performance 

6 See the section “Objective Measurement of Interim Valua-
tions” later in this article for elaboration on the continuous pricing 
mechanism.

attribution (Cumming, Hass, and Schweizer 2013) in the 
dimension of time and in the dimension of similarity/
stability. As previously discussed, a meaningful measure 
of alpha is dependent on a systematic and robust quan-
tification of systemic performance that is always techni-
cally similar to the target asset.

Decomposition of Active Returns

From the active/passive decomposition, active 
returns are further decomposed into static and dynamic 
elements by the modern proxy benchmark.

Static Elements of Active Returns

Modern proxy benchmarks capture the systemic 
portion of active returns, namely the contribution of 
industry, asset size range, and region. Therefore, cumu-
lative returns of the proxy benchmark in excess of pas-
sive returns approximate the economic value of a GP’s 
exposure to these systemic factors.

For most GPs, the systemic factors to which their 
funds provide limited partners (LPs) access are relatively 
static over time. It could be argued then that the value 
added by static elements ref lects a strategic bet on beta 
made explicitly by the LP. Certainly, an objective seg-
mentation of systemic returns gives perspective to the 
concern of many LPs that they may be paying high fees 
for beta.

Nevertheless, as framed by Lo (2007), there exists a 
potential economic value in a GP’s weighting of certain 

E X H I B I T  4
The Benchmark Is Adjusted Synchronous with Every Cash Flow to Reflect the Actions of the GP

Note: Each vertical line represents a cash f low event, indicative of a change in the fund’s exposures or component company size.
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exposures within a given fund. In other words, the 
degree to which a GP uses prior information to “launch 
boats onto rising tides” may be considered the private 
equity equivalent of timing. Strategic weighting of static 
elements by the GP is an interesting source of potential 
value, further examination of which is supported by our 
attribution framework.

Dynamic Elements of Active Returns: 

Manager Skill

If the modern proxy benchmark represents sys-
temic returns, then excess returns are idiosyncratic in 
origin. The GP’s operational control of the asset makes 
these idiosyncrasies a genuine approximation of GP 
skill. Therefore, within an attribution framework, excess 
returns to the proxy benchmark equals manager alpha, 
which equals manager skill.

The control levers available to a GP—namely 
asset growth, f inancial engineering, and transaction 
premiums7—are applied dynamically in the marketplace 

7 We measure the premium paid on the asset (company) at 

entry and exit as per =Market premium
FEV

( )Price F− EVFF
.

The asset’s premium is mapped to a distribution of the 
modern proxy benchmark’s component firm premiums at the exact 

by the GP to maximize yield given contemporaneous 
market conditions and opportunities. The GP’s ability 
to forecast and execute winning strategies underwrites 
how it works the control levers, and alpha is its measure.

Because of their predictive nature, dynamic ele-
ments are worthy of greater examination. Modern proxy 
benchmarks support an attribution framework capable of 
extending to a novel quantification of contributions to 
alpha by source. These sources are described fully in a 
forthcoming paper by Porter and Porter on performance 
attribution measurement in private equity.

APPLICATION OF MODERN BENCHMARK-

BASED ATTRIBUTION TO MANAGER 

EVALUATION

Benchmark-based attribution using technology 
provides an objective, consistent decomposition of per-
formance ex post that allows simultaneous comparison 
between GPs and to the market (see Exhibit 6). This 
allows the LP to index investment proposals by the 

corresponding times. This determines whether the GP paid a higher 
or lower premium relative to the market at each transaction (i.e., 
buy low and sell high) and whether the premium percentile moved 
favorably between transactions.

E X H I B I T  5
Framework for Decomposition of Returns

Notes: Advanced applications of data science technology allow modeling of private equity performance in time series and the componentization of returns. 
The structure of these components, shown in the exhibit, allows independent consideration and comparison of market returns, the investor’s choice of systemic 
exposures, and the GP’s skill in producing excess returns. Within this framework, manager alpha is excess return from the proxy benchmark, provided the 
proxy benchmark exhibits the properties of stability and technical similarity and is actively maintained to continuously mirror the fund.
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factor that is widely accepted as most predictive of future 
performance: GP skill.

Reducing the Influence of Gameable Metrics

The cash f low–weighted metrics that dominate 
the industry impose severe limitations on GP evalua-
tion because, fundamentally, they do not offer predictive 
intelligence (Porter and Porter 2018). In the absence of 
viable alternative performance metrics, the industry has 
nonetheless drawn conclusions from, and made infer-
ences based on, internal rates of return (IRRs) to inform 
investment decision-making.

Unfortunately, the gameable nature of IRR inputs 
has opened the door to it being used for the purpose 
of misinformation. For instance, peer ranking is most 
commonly based on fund-level IRR as compiled by 
numerous third parties. A “top quartile” fund has an 
IRR in the top 25% of its vintage year cohort.8 Aside 

8 The definition of vintage year varies among researchers. It 
may mean the date of fund closing, the date of first capital call, or the 
fund’s date of first entry. This wiggle room can potentially be used 
to identify a fund with a cohort in which it ranks more favorably.

from issues pertaining to data completeness and selection 
bias of the proprietary database, the IRR cannot deter-
mine manager skill or rank performance. Research by 
Gottschalg and Phalippou (2007) illustrated this. They 
found that the IRR materially misstated returns, even 
on fully realized funds, and that rankings were not pre-
served when reinvestment rates were adjusted using the 
modified IRR function (MIRR).9 For example, the 
top two ranked funds by the MIRR did not make an 
appearance in the top 10 funds ranked by the IRR.

The potential for distortion, even misrepre-
sentation, is increased when either IRR or MIRR 
analysis involves current assets (i.e., interim funds) 
because of the subjectivity of underlying asset valua-
tions. Discussed widely in the literature and echoed by 
the Securities and Exchange Commission repeatedly 
from 2013 (Karpati 2013; Bowden 2014), GPs generally 
inf late valuations to peak IRR at the time of fund-
raising (Barber and Yasuda 2016). Subjectivity means 
that valuations can be (and generally are) manipulated 
for the express purpose of inf luencing the investor 

9

=
−

−MIRRMM
FV Positive cashfloh ws Reinvestment rate

PV g cashfloh ws Finance

 ( ,cashfloh ws Reinvestment )

(Negatie ve ,   )ratrr e
1.n

E X H I B I T  6
Comparing Alpha across Funds and Between GPs
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(Barber and Yasuda 2016)—despite the fact that interim 
valuations are typically produced by independent valu-
ation experts.10

Against a backdrop of at-times f lagrant gaming of 
the IRR,11 the industry has nonetheless been driven to 
infer that successive top-quartile funds indicate GP skill 
(Sensoy, Wang, and Weisbach 2014). As an illustration of 
the degree to which this persistence is prized: A GP with 
an existing top-quartile buyout fund can raise a follow-
on fund 5.7 times faster than a bottom-quartile coun-
terpart (Barber and Yasuda 2016). However, the IRR 
cannot discern between skill and luck. It is possible to 
be lucky on multiple occasions, especially if the market 
is generally rising and competition does not increase. 
These conditions unfortunately do not describe the cur-
rent or likely future scenario of private equity, and at 
least for buyouts, persistence as an indicator of future 
performance has already evaporated (Braun, Jenkinson, 
and Stoff [2015]).

BENCHMARK-BASED ATTRIBUTION 

WITHIN AN OBJECTIVE MEASUREMENT 

FRAMEWORK

The decomposition of returns discussed in this 
article provides a clarity of analysis because it is created 
by repeatable measurement. Creation of an objective 
measurement framework necessarily begins with high-
accuracy valuation technology.

10 According to the (formerly named) Financial Services 
Authority (2006) (FSA Discussion Paper 06/06), private equity 
f irms number among the largest clients for most big f inancial 
intermediaries—banks, lawyers, accountants, management con-
sultants—creating the potential for moral hazard. In particular, the 
revenue stream a service provider receives from a private equity 
firm “may cause them to consider actions that they would normally 
discount.” For example, one (unnamed) bank earned almost €900 
million from its private equity–related activities in a year, whereas 
another bank was shown to generate over 50% of its income from 
private equity.

11 In addition to manipulating valuations, the IRR can be 
gamed by delaying capital calls. GPs can finance acquisitions using 
short-term debt, delaying capital calls by months or potentially 
years; however, if the debt is secured against LP commitments, 
the LP bears default risk (off balance sheet). Although this is not 
an illegal practice, it nonetheless has the effect of juicing the IRR, 
which is then used to substantiate the skill and fees of the GPs in 
their marketing process.

Objective Measurement of Interim 

Valuations

The approach to interim valuation underpinning 
the framework described herein involves the capture of 
three sets of information: the economic size of the target 
company, company idiosyncratic factors, and market 
movements.

1. The economic size of the target company is measured 
by its fundamental economic value (FEV). The 
FEV is a unique size measure produced by data 
science technology, with certain properties:

   i. High predictive accuracy of market price (R2 = 
0.813)

ii. Objective and systematic, requiring no forward-
looking or subjective quantities

   iii. Simultaneously measures public and private 
companies with equal accuracy on a standard-
ized basis

iv. Fundamentals-driven
  v. Automated

2. Company idiosyncratic factors are estimated by 
computing the premium of each company from 
its entry price. By also computing the premium 
distribution of the proxy benchmark at that date, 
the distance of the company’s premium from the 
median premium can be attributed to company 
idiosyncratic factors, which might include brand 
power, customer base, assets, growth potential, and 
so on. The premium percentile of the company 
purchase price represents the overall impact of 
idiosyncratic factors at entry. Under the assumption 
that these idiosyncratic sources of value vary 
slowly, the premium percentile can be used as a 
proxy for them.

3. Market movements are captured by the modern 
proxy benchmark. Together with the FEV, it is 
possible to simultaneously measure pricing changes 
and growth in the economic ecosystem of each 
company and roll these up to the fund and GP 
levels.

Interim valuations are calculated by computing the 
FEV of each company’s most recently available financial 
information, calculating the premium distribution of 
the proxy benchmark on the valuation date, using the 
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distribution and the premium percentile to estimate the 
market premium of the company, and then deriving Fair 
value = FEV × (1 + Estimated market premium).

This interim valuation method is wholly objective 
and has been tested on more than 100,000 public com-
pany quarterly valuation estimates. The tests show that 
the method is unbiased, with a median absolute percent 
error of less than 0.05.

Outputs of the Objective Modern 

Framework Beneficial to GP Performance 

Attribution Analysis

• An objectively constructed and investable bench-
mark (full SAMURAI compliance)

• A high-integrity benchmark in terms of specificity 
and robustness—that is, a robust public proxy

• An efficient and exacting mechanism for main-
taining benchmark integrity over time

• An elegant method for calculating implied returns 
from the benchmark

• Rigorous delineation of dynamic and static ele-
ments of active returns

• The means to align performce compensation with 
the investment decision-making process

In addition, the objective basis of this framework 
permits an approach of continuous improvement and 
accountability to the manager evaluation process itself. 
Whether corroborating or challenging an investment 
narrative, objectivity enhances the overall probity of 
the process.

CONCLUSION

B enchmark-based attr ibution as descr ibed 
throughout this article disambiguates the quantification 
and comparison of manager skill.

Technology eff iciencies radically change our 
understanding of what is practical; LPs can measure 
and index manager skill on a far broader scale than what 
has been previously possible. For instance, early-stage 
rigorous analysis that incurs less cost, time, and effort 
may be implemented by LPs as a screening mecha-
nism. Collectively, these analyses can inform an LP’s 
understanding of the changing fund-raising climate 

over time, which in turn informs investment discipline 
and tactical excellence alongside pacing plans or other 
forms of investment pressure. The evaluation process 
can take on more of a funnel shape with a significantly 
wider catchment than is currently normal and elimi-
nate the LP’s equivalent of potentially harmful sample 
selection bias.

Finally, the systematic separation of active returns 
into static and dynamic elements by the modern proxy 
benchmark allows LPs to actively seek improved per-
formance from both.

Although the performance metrics of public equi-
ties have surged in dimensionality and predictive power, 
a similar scientific quest has not f lourished in private 
equity. The reason might have cultural underpinnings, 
but the absence of a continuous price mechanism has his-
torically posed an intractable technical barrier. Advances 
in data science—a combination of computational power, 
statistical programming language, and the development 
of advanced mathematical models—have now allowed 
that barrier to be broken, engendering exciting opportu-
nities for private equity, risk management, and portfolio 
management.
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Dynamic Systemic Risk: 
Networks in Data Science
Sanjiv R. Das, Seoyoung Kim, and Daniel N. Ostrov

Systemic risk arises from the conf lu-
ence of two effects. First, individual 
financial institutions (FIs) experience 
increases in the likelihood of default. 

Second, these degradations in credit quality 
are transmitted through the connectedness of 
these institutions. The framework in this article 
explicitly models the contributions of both of 
these drivers of systemic risk. By embedding 
these constructs in a data science model drawn 
from the field of social networks, we are able 
to construct a novel measure of systemic risk.

The Dodd–Frank Act (2010) defined a 
systemically important FI (SIFI) as any FI that is 
(1) large, (2) complex, (3) connected to other 
FIs, and (4) critical, in that it provides hard-
to-substitute services to the f inancial sys-
tem.1  The Act did not recommend a systemic 
risk-scoring approach. This article provides 
objective models to determine SIFIs and to 
calculate a composite systemic risk score.

The Merton (1974) model provides an 
elegant way to use option pricing theory 
to determine the credit quality of a single 
firm (i.e., its term structure of credit spreads 
and the term structure of the probability 
of default [PD] for different horizons). We 
demonstrate how the model may be extended 
to a network of connected FIs, including a 
metric for the systemic risk of these firms that 

1 See also the literature analysis of Silva, Kimura, 
and Sobreiro (2017) for a conceptual overview and 
definition of systemic financial risk.

evolves over time. Therefore, this article pro-
vides an example of the power of combining 
mathematical finance with network science.

Our systemic risk measure has two pri-
mary attributes: (1) aggregation—that is, our 
metric combines risk across all firms and all 
connections between firms in the system to 
produce a summary systemic risk number 
that may be measured and tracked over time; 
and (2) attribution—how systemic risk can 
be mathematically analyzed to measure the 
sources that contribute to overall system risk. 
The primary way we want to understand 
attribution is through an institution risk mea-
sure, which determines the risk contributions 
from each firm so that the extent to which 
a single firm contributes to systemic risk at 
any point in time is quantifiable. A secondary 
way to look at attribution is to compute a con-
nectedness risk measure, which determines the 
risk contributions from each pairwise link 
between two firms at any point in time.

CONTRAST WITH EXTANT 
APPROACHES

Current approaches to measuring sys-
temic risk include the systemic expected 
shortfall (SES) measure of Acharya et al. 
(2017)2;  the conditional value at risk (CoVaR) 

2 See the extensive research in this class of 
models at Rob Engle’s V-Lab at NYU: https://vlab 
.stern.nyu.edu/.
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measure of Adrian and Brunnermeier (2016); the 
construction of FI networks using bivariate Granger 
causality regressions from Billio et al. (2012) (and a more 
general framework from Merton et al. 2013); the dis-
tressed insurance premium measure of Huang, Zhou, 
and Zhu (2012) and Black et al. (2016); the absorp-
tion ratio of Kritzman et al. (2011); the system value at 
risk of Bluhm and Krahnen (2014); the credit default 
swap (CDS)-based metric of interconnectedness used 
by Abbass et al. (2016); and the calculation of capital 
charges required to insure against unexpected losses as 
from Avramidis and Pasiouras (2015).

These approaches predominantly employ the 
correlation matrix of equity returns to develop their 
measures. A recent comprehensive article by Giglio, 
Kelly, and Pruitt (2016) examines 19 systemic risk met-
rics for the US economy and finds that these measures 
collectively are predictive of heightened left-tail eco-
nomic outcomes. Furthermore, a dimension reduction 
approach creates a composite systemic risk measure that 
performs well in forecasts. Unlike the measure in this 
article, these 19 metrics do not exploit network analysis. 
All measures cited are mostly return based, and these 
have been criticized by Löff ler and Rapauch (2018) as 
being subject to gaming in that a bank may cause the 
systemic risk measure to rise, while, at the same time, 
having its own contribution fall. These spillover issues 
do not appear to be a problem in this article.

In contrast, Burdick et al. (2011) used semistruc-
tured archival data from the Securities and Exchange 
Commission and Federal Deposit Insurance Corpora-
tion to construct a co-lending network and then used 
network analysis to determine which banks pose the 
greatest risk to the system. Finally, Das (2016) combined 
credit and network information to construct aggregate 
systemic risk metrics that are decomposable and may be 
measured over time. The unifying theme across these 
models is to offer static snapshots of the network of FIs 
at various points in time. This article is a stochastic 
dynamic extension of the Das (2016) model.

STOCHASTIC DYNAMICS 
IN A NETWORK MODEL

We extend these static network models by including 
stochastic dynamics for the assets of the financial firms 
in the model. This is where the Merton (1974) model 
becomes useful. We give this model the moniker Merton 

on a network. This model uses geometric Brownian 
motion as the stochastic process for each FI’s underlying 
assets. That is, for the n FIs in the system, we have

	 , 1, 2, ,da a dt v a dB i ni i i i i i= µ + = … 	 (1)

	 , 1, 2, , ; 1, 2, ,da da dt i n j ni j ij= ρ = … = … 	 (2)

Here mi is the ith FI’s expected growth rate, and vi 
is its volatility (both annualized). The asset movement 
of FIs i and j are correlated through the coefficient rij.

Assuming that the ith FI has a face value of debt 
Di with maturity T, Merton’s model established that the 
FI’s equity, Ei, is a call option on the assets:

	 ( ) ( )1, 2,E a d D e di i i i
r T

i
f= Φ − Φ− 	 (3)
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where rf is the risk-free rate of interest (annualized), 

and ∫Φ =
π
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 is the cumulative standard 

normal distribution function. Merton’s model also shows 
that the volatility of equity is
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Because ai and vi are not directly observable in the 
market, but Ei and si are, the pair of Equations 3 and 6 
may be solved simultaneously to determine the values of 
ai and vi for each i at any time, t. These values, as we will 
see later, allow us to obtain the one-year probability of 
default (PD) for each financial firm, denoted li, at any 
given point in time.3

Our measure for systemic risk captures the size and 
PD of all FIs (from the Merton model) and combines 
this with a network of FI connectedness to construct 

3 In implementing our model as Merton on a network, our 
approach is distinct from those that infer risk-neutral PDs from CDS 
spreads on the referenced banks (e.g., as by Huang, Zhou, and Zhu 
2012). We are also afforded greater f lexibility in inferring what the 
PDs may be under varying market conditions.
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one composite system-wide value. We exploit the 
stochastic structure of the asset movements of all FIs via 
Equations 1 and 2 to create a variety of constructions 
of the connectedness (network) matrix. Because the 
underlying assets are stochastic and correlated, so is the 
network; as a consequence, the systemic risk score is 
dynamic. In sum, we have a systemic risk measure that 
captures, over time, the size, risk, and connectedness of 
firms in the financial system.

The contagion literature has attempted to capture 
stochastic systemic risk by other means. Simulation of 
contagion networks is one approach; see Espinosa-Vega 
and Sole (2010), Upper (2011), and Hüser (2015). Bivalent 
networks of banks and assets have been simulated on data 
from Venezuela in another approach by Levy-Carciente 
et al. (2015). In our complementary approach, network 
and firm risk are endogenously generated through the 
underlying Merton (1974) model, which also offers a 
direct empirical implementation. To illustrate, we will 
later provide an example using a 20-year data sample 
from large, publicly traded FIs.

PRACTICAL VALUE OF THE MODEL

The models developed here have many features 
of interest to risk managers and regulators. First, each 
model produces a single number for the systemic risk 
in the economy. Second, the risk contribution of each 
institution in the system enables a risk ranking of these 
institutions. This ranking and the measures that deter-
mine them can help determine whether an institution is 
systemically important, the extent of additional super-
vision the institution should require, and how much 
the capital charge should be for the risks the institution 
poses to the system. Third, the risk contribution of each 
pairwise connection between two FIs can be measured. 
This allows regulators to determine which relationships 
between FIs are of greatest concern to the overall health 
of the system. Fourth, the models display several useful 
mathematical properties that we develop to indicate a 
good measure of systemic risk, as discussed in the next 
section. Fifth, the model’s rich comparative statics may 
be used to examine various policy prescriptions for miti-
gating systemic risk.

In the next section, we introduce our general 
framework for systemic risk and the institution risk mea-
sure. This section also introduces four desirable prop-
erties for a systemic risk model. The following section 

introduces three models within the general framework 
that have similar structures. We discuss the institution 
risk measure for the three models and then show that 
each model possesses all four desirable properties. In the 
next section, we introduce our fourth model, which 
takes a different, although intuitive, structure from the 
first three models. Here we discuss both the institution 
risk measure and the connectedness risk measure for the 
model, although in this case we show that the model 
possesses only three of the four desirable properties. The 
data section provides a discussion of the data, spanning 
two decades (from 1995 to 2015), to which we apply our 
four models. The empirical section describes applica-
tions of our four models and demonstrates the general 
consistency of their results. We close with a concluding 
discussion and extensions.

A GENERAL FRAMEWORK  
FOR SYSTEMIC RISK

Dependence

For our general framework, the systemic risk, S, 
for a system of n FIs depends on the following three sets 
of variables:

1.	 l, an n-vector whose components, li, represent the 
annual probability that the ith FI will default.

2.	a, an n-vector whose components, ai, represent the 
market value of assets in the ith FI.

3.	 Σ, an n × n matrix whose components, Σij, repre-
sent the financial connection from the ith FI to the 
jth FI. Depending on the model for these connec-
tions, Σ may or may not be symmetric.

In other words, our systemic risk measures take the 
following functional form

	 S ( , , )λλ ΣΣ= f a 	 (7)

where a specific systemic risk model corresponds to a 
specific function f and specific definition for the con-
nection matrix Σ.

Our approach complements the ideas laid out by 
De Nicolo, Favara, and Ratnovski (2012), who offered 
a class of externalities that lead to systemic risk. First, 
externalities from strategic complementarities are 
captured through asset (a) correlations in our model. 
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Second, externalities related to fire sales are embedded 
in the default probabilities (l). Third, externalities from 
interconnectedness are captured through network struc-
tures (Σ) in the model. These features connect the finan-
cial sector to systemic risk and the macroeconomy.

THE INSTITUTION RISK MEASURE, 
CONNECTEDNESS, AND THE 
CONNECTEDNESS RISK MEASURE

It is important that the impact of each institution 
on the overall systemic risk, S, can be measured. For 
example, consider the case in which S is homogeneous 
in its default risks, l, which means, for any scalar α > 0,

	 ( , , ) ( , , )a aλλ λλα Σ = α Σf f 	 (8)

In this case one way to measure the impact of each 
institution on S is to decompose S into the sum of n 
components by differentiating Equation 8 with respect 
to a, yielding the result of Euler’s theorem

	 S
S S

 
1

∑λλ
λλ= ∂

∂
= ∂

∂λ
λ

=i

n

i
i 	 (9)

This result clearly suggests using each component, 

i
i

S∂
∂λ

λ , of the sum to define the corresponding institu-

tion risk measure of institution i.
Systemic risk is also impacted by the connected-

ness of the institutions via pairwise links between the 
institutions. These links may be directed or undirected, 
depending on the model. One way to measure the con-
nection from institution i to institution j is to use Σij. In 
this case, if Σ is symmetric, it corresponds to undirected 
links; otherwise, there is at least one Σij ≠ Σji, which 
corresponds to a directed link. Graphically, these links 
can be shown for a directed or undirected network by 
using a binary network adjacency matrix B whose com-
ponents, Bij, are derived from Σij by selecting a threshold 
value K and then defining Bij = 1 if Σij > K and i ≠ j; 
otherwise, Bij = 0. Links are then shown in an edge graph 
only when Bij = 1, noting that the threshold value K can 
be altered as desired.

The strength of the connections described in the 
last paragraph do not necessarily correspond to measure-
ments of the risk that the connection from institution i 
to institution j poses to the overall systemic risk. In the 
cases in which it does, we can refer to the strength of the 

connection as the connectedness risk measure from institu-
tion i to institution j. Connectedness risk measures are 
important to regulators who wish to determine which 
relationships between institutions are of primary con-
cern to the overall health of the system.

FOUR FINANCIAL PROPERTIES

Ideally, from a practical viewpoint, the definition 
of Σ and the definition of the function f that defines 
systemic risk, S, conforms to the following four finan-
cial properties:

•	 Property 1: All other things being equal, S 
should be minimized by dividing risk equally 
among the n FIs and maximized by putting 
all the risk into one institution. That is, the 
more the risk is spread out, the lower S should be. 
The definition of risk will depend on the model. 
This is a standard property emanating from diver-
sification but is also applicable in the case of con-
tagion. If all risk is concentrated in one entity, 
then contagion is instantaneous; therefore, if risk 
is spread out, a useful property is that the systemic 
score should be correspondingly lower.

•	 Property 2: S should increase as the FIs become 
more entwined. That is, if any of the off-diagonal 
elements of Σ increase, then S should increase. The 
more connected the institutions are, the greater the 
likelihood of contagion and systemic risk.

•	 Property 3: If all the assets, ai, are multiplied 
by a common factor, α > 0, they should have 
no effect on S. If a country’s FIs’ assets all grow 
or all shrink in the same way, it should not affect 
the systemic risk of the country’s financial system. 
That is, we want f(l, αa, Σ) = f(l, a, Σ). This 
property is useful because it enables comparison 
of systemic risk scores across countries, and even 
for the same country, across time.

•	 Property 4: Substanceless partitioning of a bank 
into two banks has no effect on S. If institution 
i’s assets are artificially divided into two institutions 
of size γai and (1 − γ)ai for some γ ∈ [0, 1], where both 
of these new institutions are completely connected to 
each other and both have the same connections with 
the other banks that the original institution did, then 
this division is without substantive meaning, so it 
should not affect the value of S. Splitting a large bank 
into two fully connected components with the same 
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connections as before should not change S because 
such a split is mere window dressing. To bring down 
the value of S by breaking up a bank, the metric 
states that it is important to either disconnect the two 
components or reduce the connectivity for each one. 
In fact, the metric S enables a regulator to assess the 
effect of different kinds of bank splits on reducing 
systemic risk.

SYSTEMIC RISK NETWORK MODELS THAT 
ARE HOMOGENOUS IN DEFAULT RISKS

We first examine three models that are homogenous 
in default risks, each using different empirical approaches 
and notions of risk. All three of these models satisfy all 
four of the financial properties listed earlier. The proof 
that they are satisfied is contained in the Appendix.

Models C, D, and G

We define Σ = M, an n × n matrix where Mij ∈ [0, 1]  
for all i and j and Mii = 1 for all i. We consider three 
examples of M matrices with this property:

1.	Model C, a correlation-based model. In this 

case, 
1

2
( 1)Mij ij= ρ + , where rij is the correlation 

between the daily asset returns of institutions i 
and j. Here, M defines an undirected network for 
connectedness.

2.	Model D, a conditional default model. In this case, 
Mij is the annual conditional probability that insti-
tution j defaults if institution i fails. In this case, 
M defines a directed network. We note that even 
though the model is composed of default probabili-
ties, we are using the Merton model only to define 
connectedness over the long term and thereafter 
assume this is independent of day-to-day changes 
in default risk.

3.	Model G, a Granger causality model. This model 
is based on the methodology in Billio et al. (2012). 
For each pair of FIs (i, j), a pair of lagged value 
regressions of daily asset returns, r, is run to deter-
mine whether i Granger causes j and whether j 
Granger causes i.

	 ( ) ( 1) ( 1)1 2 3r t r t r ti i j iε= δ + δ ⋅ − + δ ⋅ − +
	

	 ( ) ( 1) ( 1)4 5 6r t r t r tj j i jε= δ + δ ⋅ − + δ ⋅ − +

		  The connectedness matrix is defined as follows:  
Mij = 1 − p(δ6) and Mji = 1 − p(δ3), where p(x) is the 
p-value for the hypothesis that the coefficient x = δ6 
or δ3 is equal to zero in the regressions. When i = j, we 
set Mii = 1. In this case, M defines a directed network.

Next, define c to be the n-vector whose compo-
nents, ci, represent institution i’s credit risk. Specifically, 
we define

	 c a = λ 	

where ° represents the Hadamard (or Schur) product, 
meaning that we have element-wise multiplication: ci = aili.

4 
With these definitions of M and c, we can define 

the systemic risk, S, by

	
c Mc

1 a

T

TS = 	 (10)

where 1 is an n-vector of ones, and the superscript 
T denotes the transpose of the vector. Note that the 
numerator is the weighted norm of the vector c, and the 
denominator 1 a 1 aT

i
n

i= ∑ =  represents the total assets in 
the n FIs. Also note that M is unitless in models C, D, 
and G; therefore, because of the presence of assets, both 
the numerator and denominator in Equation 10 have 
monetary units that cancel each other, so S is a unitless 
measure of systemic risk.

The Institution Risk Measure  
and Connectedness

Our model is homogeneous in l, so, from 
Equation 9, we have that
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where, from differentiating our system risk definition in 
Equation 10, we obtain the n-dimensional vector
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4 We note that this definition of credit risk is qualitatively 
similar in nature to replacing a with the quantity of debt. That is, 
FIs tend to uniformly maximize along the imposed capital adequacy 
ratio, which results in the low cross-sectional variation in leverage 
across the institutions in question. Exhibit 1 presents various examples 
of the range in leverage across institutions at different points in time.
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This decomposition of S gives the risk measure of each 
institution. The off-diagonal elements of M give the 
connectedness, although this notion of connectedness 
is not a connectedness risk measure.

A SYSTEMIC RISK NETWORK MODEL THAT 
IS NOT HOMOGENOUS IN DEFAULT RISKS

The network model in this section corresponds 
to a different f inancial view of constituting risk. As 
explained in the Appendix, this section’s model satisfies 
our first three financial properties, but not the fourth.

Model R (Internal Risk Plus 
External Risks Model)

For this model we define Σ = M, where Mij is the 
annual probability that FIs i and j both default. Next, 
we consider the following view of defining the risk to 
the system from institution i: Institution i has internal 
risk, which measures the chance that it will collapse 
and via the impact of that collapse, hurts the system 
directly; and it has external risk, the chance that its 
collapse will cause other FIs to collapse, hurting the 
system further. The internal risk for FI i is def ined 
simply as the credit risk, ci = liai, that we had previously. 
Note that we can also write this as ci = Miiai because, 
by definition, Mii = li. The external risk from FI i to 
FI j is defined as the probability that FI i will default 
multiplied by the probability that FI j will default given 
that FI i defaults multiplied by the assets in FI j. Because 
this is equal to the probability that both FI i and FI j 
default multiplied by the assets in FI j, we can write 
this as Mijaj.

We thus can define ri, which is the internal risk 
from FI i plus the sum of the external risks from FI i to 
each of the other FIs, by

	
1

M ai
j

n

ij j∑ρ =
=

	 (12)

Defining r to be the n-vector with components ri, we 
can define the systemic risk to be

	 S
1 a

ρρ ρρ
=

T

T 	 (13)

Note again that S is unitless, as was the case in the 
previous section when we defined S in Equation 10 for 
models C, D, and G.

The Institution Risk Measure and  
the Connectedness Risk Measure

These measures are straightforward. Institution i’s 
risk measure in this case is the value of ri defined earlier. 
Note here that 1i

n
i SΣ ρ ≠= , unlike the case in which S is 

homogeneous in l, for which this equality holds because 
of Equation 9. This model, unlike the three models from 
the previous section, has a connectedness risk measure 
from bank i to bank j, which is the external risk, Mijaj.

DATA SOURCES AND DESCRIPTION  
OF VARIABLES

All four models are easy to implement using publicly 
available data. We describe our data sources and present 
key summary statistics. The data used are extensive and 
publicly available. Hence, the approach is amenable to 
many data science methods applied to big data.

Sources

Our sample period spans January 1992 to 
December 2015 and consists of publicly traded FIs under 
major Standard Industrial Classif ication (SIC) groups 
60 (depository institutions), 61 (nondepository credit 
institutions), and 62 (security and commodity brokers, 
dealers, exchanges, and services). 5 We obtain daily stock 
returns, stock prices, and shares outstanding for each of 
these firms, as well as the daily market returns, from 
the Center for Research in Securities Prices. We obtain 
applicable Treasury rates (i.e., the constant-maturity 
rates) on a monthly basis from the Federal Reserve 
Bank reports, and we obtain quarterly balance-sheet 
and income-statement data from Compustat. Our final 
sample consists of a panel dataset of 2,066,868 firm-
days for 1,171 distinct FIs, from which we select the 20 
largest institutions by total assets at various points across 
time. Working with more institutions does not pose 
computational difficulty; we choose only 20 institutions 

5 For a detailed breakdown of the SIC division structure, see 
https://www.osha.gov/pls/imis/sic_manual.html.
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for clarity. The top 20 institutions consistently represent 
over 70% of the total worth of the assets in the 1,171 FIs.

Key Definitions and Data-Generating 
Computations

We solve for the ith FI’s market value of assets, 
ai(t), and the annualized volatility of asset returns, vi(t) 
on day t, based on the Merton (1974) model for calcu-
lating equity value and equity return volatility. Recall 
Equations 3 and 6. Given market capitalization, Ei(t); 
annualized equity return volatility,6  si(t); total face value 
of debt, Di(t); and the annualized risk-free rate of return, 7 
rf(t), we can use a simultaneous nonlinear equation root 
finder to simultaneously solve Equations 3 and 6 and 
determine the values of ai(t) and vi(t) for any i and t. 8

Once we have our panel of daily asset values, ai(t), 
and volatilities, vi(t), we can calculate the daily asset 
returns, ri(t). The daily asset returns allow us to run the 
Granger regressions that determine Mij in model G and 
to determine rij, the correlation of the daily asset returns 
of institutions i and j, which defines Mij in model C. 
Furthermore, the daily asset returns allow us to compute 
asset betas, bi(t), which we do on a daily, rolling basis, 
based on a three-year (i.e., 750-day) lookback period 
for ri(t). Using this information, we can then calcu-
late expected asset returns, mi(t), using the capital asset 
pricing model as follows

	 ( ) ( ) ( ( ) ( )) ( )t t t r t r ti i MKT f fµ = β ⋅ µ − + 	 (14)

where mMKT(t) represents the annualized expected return 
on the market portfolio on day t. For the illustrative 
purposes of this article, we simply set mMKT(t) equal to a 
constant value of 10%.

The expected asset returns are used to determine 
li(t), the annualized PD, which is the probability that 
the market value of the FI’s assets, ai, governed by the 
geometric Brownian motion in Equation 1, will become 
smaller than the FI’s current debt, Di, in a year. That is

	 ( ) ˆ
2,t di i( )λ = Φ − 	 (15)

6 We calculate equity-return volatility based on a 130-day 

(i.e., six-month) lookback period, which we then multiply by 252 .
7 We use the three-month constant maturity T-bill rate.
8 We use the multiroot function for finding roots, which is 

included in R’s rootSolve package.

where F(⋅) is the cumulative standard normal distribution 
function,
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and T = 1 year. Note that ˆ
2,d i  has the same definition as 

d2,i in Equation 5, but with rf(t) in that equation replaced 
by mi(t). That is, ˆ2,d i corresponds to d2,i in the physical, 
instead of the risk-neutral, measure.

To determine the joint probability that both FIs 
i and j will default, which is the Mij for model R, we 
have that

( ˆ , ˆ , )2 2, 2,M d dij i j ij= Φ − − ρ

where T = 1 year and F2(⋅, ⋅, ⋅) is the bivariate cumula-
tive standard normal distribution function defined by
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where x is a column vector with entries x1 and x2, and 
S is a 2 × 2 matrix with ones on the diagonal and r 
in the two off-diagonal entries.9 Finally, to determine 
the conditional default probability Mij for model D, we 
simply divide the Mij for model R by li.

Exhibit 1 shows the evolution of these basic sum-
mary statistics over time. We note as a reality check 
for our calculations that the total book value of assets 
tracks our calculated implied market value of assets in 
each exhibit. For instance, as of the end of June 1995, 
we see that our 20 FIs held an average of approximately 
$120.1 billion in total assets, which grows considerably 
to $354.3 billion by the end of June 2000 and then 
grows further to $1,313 billion by the end of June 2007. 
However, as a result of the financial crisis of 2008, this 
average is only moderately greater, at $1,546 billion, 
by the end of June 2015. The average leverage stays 
approximately constant at 0.9407, 0.9475, and 0.9521 in 
June of 1995, 2000, and 2007, respectively. Some dele-
veraging to an average ratio of 0.9265 happens by the 
end of June 2015. The dominance of the 20 largest FIs 
over the field of all FIs f luctuates over the years, from 

9 We use the pmvnorm function, which is included in R’s 
mvtnorm package, to calculate Φ2(⋅ , ⋅ , ⋅).
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77.34% of all FIs’ total assets in June 1995, to 73.83% in 
June 2000, and then to 77.51% in June 2007. Interest-
ingly, even with global concern over FIs deemed too big 
to fail during the financial crisis of 2008, this number 
only dips slightly to 76.83% by June 2015.

Summary Statistics

We present basic summary statistics for the 20 
largest FIs at various points in time. These summary 
statistics, given in Exhibit 1, consist of

1.	Book value of assets, the total book value of each of 
the 20 FI’s assets (in millions of dollars).

2.	Leverage, the total face value of debt scaled by the 
total book value of the assets.

3.	Market capitalization, E, the total market value of 
equity (in millions), calculated as the price per 
share times the number of shares outstanding.

4.	Equity volatility, s, the equity-return volatility based 
on a 130-day (i.e., six-month) lookback period.

E x h i b i t  1
20 Largest FIs at Various Times

Note: All dollar amounts are all in millions.

σ

σ

σ

σ
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5.	Implied market value of assets, a, the implied market 
value of assets (in millions) based on the Black–
Scholes formula for options valuation.

6.	Implied volatility of assets, ν, the implied assets’ return 
volatility based on the Black–Scholes formula for 
options valuation.

7.	 The total book value of the assets held by the 20 
largest FIs as a percentage of the total book value 
of the assets held by all FIs.

EMPIRICAL ILLUSTRATIONS

We test our network risk framework on the financial 
data mined in the previous section. Recall that we have 
four models for systemic risk (models C, D, G, and R)  
within our overall framework. We compare these models 
in this section.

We determine systemic risk under each of our 
four models every six months (at the end of June and 
December) between 1995 and 2015. At each of these 
six-month intervals, we extract and analyze data for the 
top 20 FIs by total book value of assets, which, as we 
have noted, consistently accounts for approximately 75% 
of the aggregate assets of the more than 1,000 FIs we had 
available. For each of the four models, we plot the value 
of systemic risk over time, with each time series normal-
ized to be in the range [0, 1], in Exhibit 2. First, this plot 
confirms that systemic risk spiked in the financial crisis 
of 2008. We also see smaller conf lagrations of systemic 
risk in 2000 and 2011. Second, we see that all the models 
generate time series that track each other closely, with 
pairwise correlations ranging from 90%–97% (with a 
mean of 95%). Therefore, even though the four models 
are derived in uniquely different ways, time variation 
in the systemic risk score in these models is very much 
the same, implying that our systemic risk framework is 
robust to model choice.

It is also useful to look at the institution risk 
measure to see which FIs contributed the most to sys-
temic risk. This is shown in Exhibit 3 using model G 
in 2007 and 2014. We can see that in 2007 mortgage-
related FIs such as RBS Holdings (discontinued ticker 
ABNYY), Banco Santander (SAN), Federal Home 
Loan Mortgage Corp (FMCC), Fannie Mae (FNMA), 
Mitsubishi Trust (MTU), and Lehman Brothers 
(LEHMQ) were the top systemically risky f irms. In 
2014, the top systemic risk contributors were Mizuho 
Financial Group (ticker MFG), Lloyds Banking Group 

(LYG), Royal Bank of Scotland (RBS), Mitsubishi 
Trust (MTU), Sumitomo Mitsui Financial Group 
(SMFG), and Barclays (BCS). From both plots, we 
see that risk contributions are concentrated in a few 
banks. Furthermore, mortgage-related f irms were 
more systemically risky in 2007, whereas in 2014, the 
traditional large banks were salient contributors of 
systemic risk.

We checked that the institution risk measure 
rankings are similar across the four models. The top 
few names remain very much the same, irrespective of 
which model is used. In particular, the top five systemi-
cally risky FIs are the same in all four models, although 
not in the same order. These are Royal Bank of Scot-
land (RBS), Lloyds (LYG), Mizuho (MFG), Mitsubishi 
(MTU), and Sumitomo Mitsui (SMFG). Thus, there 
are two UK banks and three Japanese banks. Post-crisis 
measures in the United States may have reduced these 
banks’ systemic risk levels.

Exhibit 4 extends this consistency check by 
displaying the union of the four models’ top f ive risky 
institutions in each six-month interval. We note that 
in each interval there are between 5 and 13 FIs, where 
5, of course, represents complete agreement among the 
four models and 20, of course, is the maximum pos-
sible number of FIs in the union. The average number 
of FIs is 6.45, showing considerable consistency among 
the four models in determining the top risky FIs.

We see Lehman Brothers (LEHMQ) appear con-
sistently as a top systemically risky institution up until 
its demise in 2008. Around the time of the f inancial 
crisis in 2008, we also see Fannie Mae (FNMA) and 
the Federal Mortgage Credit Corporation (FMCC) 
show up as key contributors to systemic risk. Inter-
estingly, though, these institutions were beginning 
to appear in the top risky list in 2003, suggesting 
that our methodology may have been able to pro-
vide an early warning about these mortgage-related 
institutions and their role in the systemic risk of the 
f inancial system.

In the latter time periods from our sample, we see 
Lloyds (LYG), Royal Bank of Scotland (RBS), Bank 
of America (BAC), and Deutsche Bank (DB) appear 
consistently, ref lecting the fact that these institutions 
have been troubled in the last few years. Other large 
US banks that appear regularly, as is to be expected, 
are Citigroup (C), J.P. Morgan ( JPM), and Morgan 
Stanley (MS). Many Japanese banks also appear, such 
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as Mitsubishi (MTU), Mizuho (MFG), and Sumitomo 
Mitsui (SMFG).

We can also investigate the links between institu-
tions that contribute the most to systemic risk in each 
six-month interval. Exhibit 5 illustrates this for model R. 
We see the same SIFIs that show up in Exhibit 4, but in 
this graphic, we show links (pairs of FIs) rather than indi-
vidual FIs. As expected, up to the crisis we see Lehman 
(LEHMQ) appear on a regular basis, both as affecting 

other FIs and being affected by others. Santander (SAN) 
appears on both sides of links throughout the sample. 
Morgan Stanley (MS) seems to be at the receiving end 
of most links in which it appears. In the latter third of 
the sample, Mitsubishi (MTU) and Mizuho (MFG), both 
Japanese banks, demonstrate mutual systemic spillover 
risk to each other. They are also connected to another 
Japanese FI, Sumitomo Mitsui (SMFG). These examples 
illustrate that, in addition to designating individual SIFIs, 

E x h i b i t  2
Systemic Risk over Time (1995–2015)

Notes: The plot shows systemic risk computed from data for the top 20 FIs (by assets). All four models, C (dashed line), D (dotted line), G (dotted dashed 
line), and R (solid line), are represented. The average correlation between all four models’ time series is 95%.
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our model may also be used to designate systemically 
risky relationships.

We may wish to explore how sensitive the systemic 
risk measure is both, to changes in the financial strength 
of the FIs and to changes in the strength of the con-
nections between the FIs. Specifically, we explore the 
changes in our systemic risk measures when we impose 
a blanket-wide increase in all the PD values (i.e., all 
PDs, li) and when we impose a blanket-wide decrease 
or increase in all the pairwise correlations (i.e., all the 
rij, subject, of course, to remaining within the interval 
[−1,1]). In Exhibit 6, we demonstrate the effect of these 
changes at two snapshots in time: December 29, 2000 
and December 31, 2007. We see from the exhibit that 
reasonable changes in either the PD values or in the 

correlation values affect the systemic risk score, mir-
roring the importance of considering the strength of 
both the individual FIs and the interconnections between 
the FIs in calculating systemic risk.

Finally, we consider the def iciency of return-
based models highlighted by Löff ler and Rapauch 
(2018). They showed that many of these popular models 
permitted banks to take on more risk, thereby raising 
overall systemic risk but at the same time reducing their 
own risk contribution relative to others, sometimes to 
the extent that their systemic risk contribution would 
even decline. We examine whether our model suffers 
from such a deficiency by increasing an FI’s PD by 1% 
while holding all the other FIs’ PD values frozen and 
then calculating how much the FI’s institution risk 

E x h i b i t  3
Institution Risk Measures

Notes: We display the institution risk measure using model G. This decomposes the systemic risk by institution. The upper plot is for December 2007, and 
the lower is for December 2014.
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E x h i b i t  4
Top SIFIs

Notes: The graphic shows the FIs that contribute the most to systemic risk every half year in the sample across all four models. Each row displays the union 
of each of the four models’ top five FIs that contribute the most risk. If the FIs are the same across all models, we will see exactly five FIs listed in a row; if 
not, then a few more will appear. One can see high agreement across models because the average number of firms in the rows is only 6.45.
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E x h i b i t  5
Top Risky Links

Notes: The graphic shows the five links with the highest connectedness risk measure in each six-month interval according to model R. The links are listed in 
the form i:j for a directed link from institution i to institution j.
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measure changes compared to each of the other FIs. 
Exhibit 7 shows this effect for the top 20 FIs in 2007 
and for the top 20 FIs in 2014. At both times, for 
each of the 20 FIs, we see from the exhibit that the 
FI’s own institution risk measure increases more than 
that of the other FIs, because, for each row, the values 
on the diagonal are higher than the other values. A 
closer analysis of the data used to create the exhibit 
shows that the other FIs’ institution risk measure actu-
ally decreases generally, and the highest increase in the 
data is only about half of the increase of the FI whose 
PD is increased. This indicates that our metric is not 
susceptible to gaming by any one bank.

CONCLUDING COMMENTS

Using data science and modeling tools from the 
social networks arena, we capture the systemic risk of 
a f inancial system in a Merton-on-a-network model 
that includes three important determining elements: (1) 
connectedness (via banking networks), (2) joint default 
risk (from an extension of the Merton 1974 model), and 
(3) size (i.e., the market value of a bank’s assets, also 
implied from the Merton model). We define and analyze 
four important properties of our systemic risk measure 

and develop four different models that generally have 
these properties.

Empirical examination demonstrates that sys-
temic risk, as well as the risk assigned to individual 
banks within the system, are similar across these four 
models, suggesting that the framework is robust to 
implementation design, in contrast to conf licting find-
ings about other systemic risk measures, as shown by 
Benoit et al. (2013). 10  The metric also does not appear 
to suffer from the def iciency noted by Löff ler and  
Rapauch (2018).

The current model supports many theoretical 
and empirical extensions. For example, whereas the 
model setting is that of the f inancial system, we may 
embed this model within a broader general equilib-
rium model of the entire economy, either by adding 
other sectors or by making the f inancial system 
variables functions of the broader macroeconomy. 

10 This article found systemic risk results to vary markedly 
across the four models they surveyed, namely marginal expected 
shortfall and SES, both from Acharya et al. (2017); the systemic 
risk measure from Acharya, Engle, and Richardson (2012) and 
Brownlees and Engle (2012); and the ΔCoVaR from Adrian and 
Brunnermeier (2016).

E x h i b i t  6
Percentage Changes in Systemic Risk Measures

Notes: This exhibit demonstrates how the systemic risk score changes with changes in the PD or changes in the strength of the network structure.
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E x h i b i t  7
Spillover Risk–Change in Institutional Risk Measures

Notes: We see how much a single bank’s increase in its PD affects its institution risk measure (i.e., its contribution to systemic risk) in comparison to that of 
the other banks. The left panel is for 2007 and the right for 2014. This experimental analysis was done for the case of model G. The largest numbers are 
on the diagonal, indicating that an increase to a bank’s own PD increases its institution risk measure more than it increases any of the other 19 banks’ insti-
tution risk measures. The diagonal values are higher than the off-diagonal values, which are mostly indistinguishable from zero. Also note that the difference 
in increases are more marked for 2007 before the crisis than they were for 2014.

Furthermore, we are able to extract the time series 
for systemic risk, which may be related to macroeco-
nomic variables and events. Our framework supports 
objective real-time measurement of systemic risk, 
identif ication of SIFIs, and identif ication of systemi-
cally important connections between FIs so that the 
system may be analyzed, monitored, and controlled 
by regulators. The article demonstrates the eff icacy 
of open big data in conjunction with data science 
techniques in risk management.

A p p e n d i x

PROOFS OF MODEL PROPERTIES

Financial Properties for the Homogenous 
Models C, D, and G

All four desired f inancial properties for S hold in 
models C, D, and G, as we next proceed to establish.

Property 1: All other things being equal, S is 
minimized by dividing the credit risk equally among 

the n FIs and is maximized by putting all the credit 
risk into one institution. To make all other things be 
equal, we set the total assets, 1 a1ai

n
i

TΣ == , constant; set the 
total credit risk, 1ci

n
i

TΣ == 1 c, equal to a constant, ctotal; and 
set Mij equal to the same number, m, if i ≠ j while, of course, 
keeping Mii = 1 for all i. For the singular case in which m = 1, 
all the institutions act like a single institution, and so it makes 
no difference to S how the credit risk is spread among the 
institutions. For the general case in which m < 1, from the 
definition of S in Equation 10, we see that maximizing or 
minimizing S now corresponds to maximizing or mini-
mizing c Mc 1

2
1c m c cT

i
n

i i
n

j i i j= Σ + Σ Σ= = ≠ , subject to the restric-
tion that 1c cT

i
n

i total= Σ ==1 c .
Because m < 1, it is clear that 1

2
1c m c ci

n
i i

n
j i i jΣ + Σ Σ ≤= = ≠  

( )1
2

1 1
2 2c c c c ci

n
i i

n
j i i j i

n
i totalΣ + Σ Σ = Σ == = ≠ = . However, if all the credit  

risk is put into one institution, we have 1
2

1
2c m c c ci

n
i i

n
j i i j totalΣ + Σ Σ == = ≠ , 

the highest possible value, and so S is maximized when all 
the credit risk is concentrated into one FI.

On the other hand, the Lagrange multiplier method 
tells us that we have minimized 1

2
1c m c ci

n
i i

n
j i i jΣ + Σ Σ= = ≠  subject 

to the restriction 1c ci
n

i totalΣ ==  when (denoting the Lagrange 
multiplier by l),
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The f irst n equations give us that c1 = c2 = … = cn =	
2

2(1 )
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m
totalλ −

−
. That is, when S is minimized, all ci have the same 

value. The second equation then tells us that each c
c
ni
total= ,  

and so we have that S is minimized by dividing the credit 
risk equally among the n institutions.

Property 2: S should increase as the institutions’ 
defaults become more connected. Consider the case in 
which a and c are both held constant so that S only depends 
on M, specifically through the expression

c Mc
1 1

c M cT

i

n

j

n

i ij j∑∑=
= =

in the numerator of our model’s definition of S. Clearly, 
the bigger the values of Mij, the larger S becomes. Because 
Mii must always equal 1, S is minimized when M = I, the 
identity matrix, and is maximized when the components 
of the M matrix are all ones. We note that when M = I

c Mc c1
2

2cT
i
n

i  = Σ == , the 2-norm of the vector c, whereas 

when M is all ones, = Σ ==  c Mc c1 1cT
i
n

i , the 1-norm of the 
vector c.

Property 3: If all the assets, ai, are multiplied 
by a common factor, α > 0, it should have no effect 
on S. In our model, if we replace each ai with αai, we then 

replace c McT  by α c McT  and replace 1Ta with α1Ta. 

Because the α then cancel in the expression for S from 
Equation 10, we have the desired property that systemic 
risk is unchanged.

Property 4: Substanceless partitioning of an 
institution into two institutions should have no effect 
on S. If institution i’s assets are artificially divided into two 
institutions of size γai and (1 − γ)ai for some γ ∈ [0, 1], where 
both of these new institutions are completely connected to 
each other and both have the same connections with the 
other banks that the original institution did, then this divi-
sion is without substantive meaning and should not affect the 
value of S. Without loss of generality, we can let the index 
of the divided institution i = n, so, in our model, the new 
(n + 1)-vector c is

c

(1 )

1

1

c

c

c

c

n

n

n
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where we note that M(n+1)n = Mn(n+1) = 1 to ref lect the fact that 
both of the new institutions are completely connected to each 
other. A quick computation shows that the new c McT  is 

equal to the old c McT , and because a1 + … + an = a1 + … + 
a(n−1) + γan + (1 − γ)an, we also have that the new 1Ta is equal 
to the old 1Ta. Therefore, the value of S in Equation 10 is 
unchanged, and our model has this desired property.

Financial Properties for the 
Nonhomogeneous Model R

Property 1: All other things being equal, S is 
minimized by dividing the risk equally among the n 
FIs and is maximized by putting all the risk into one 
institution. Paralleling our approach in the previous section, 
we hold the total assets, 1 a1ai

n
i

TΣ == , constant and hold the 
total risk, 1 1 ρρΣ ρ ==i

n
i

T , equal to a constant. If we replace c 
and M in the model from the previous section for S given 
in Equation 10 with r and the identity matrix I, we get our 
new model for S in Equation 13. Therefore, the proof of 
Property 1 from the previous section with m = 0 also estab-
lishes Property 1 for the model of S in Equation 13.

We note that if the numerator in the definition of S in 
Equation 13 were 1i

n
iΣ ρ= , the 1-norm of r, instead of ρρ ρρT ,  

the 2-norm of r, we would lose Property 1.
Property 2: S should increase as the institutions’ 

defaults become more connected. An increasing con-
nection means Mij is increasing, which, from Equation 12, 
means that ri increases. As any ri increases, we have from 
Equation 13 that S increases, assuming, as we also did in the 
previous section, that a is held constant.
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Property 3: If all the assets, ai, are multiplied by 
a common factor, α > 0, it should have no effect on 
S. In our model, if we replace each ai with αai, we replace 

ρρ ρρT  by α ρρ ρρT , and we replace 1Ta with α1Ta. Because the 
α then cancel in the expression for S given in Equation 13, 
we have the desired property that systemic risk is unchanged.

Property 4: Substanceless partitioning of an 
institution into two institutions should have no 
effect on S. This property does not hold. Let’s say we arti-
f icially divide institution n’s assets into two institutions, 
call them institution nnew and institution (n + 1)new, of 
size γan and (1 − γ)an. Because the division is artif icial, 

( 1) ( 1) ( 1)( 1)M M M Mn n n n n n n nnew new new new new new new new
= = =+ + + + , which al l  

equal Mnn, where n again represents the divided insti-
tution before it was divided, and, for any i < n, Mn inew

=   

( 1) ( 1)M M Mn i in i nnew new new
= =+ +  equals Mni = Min.

From Equation 12, we see that the ri are unchanged for 
i = 1, 2, ..., n. However, an extra (n + 1)th component now 
has been added to the vector r, where rn+1 = rn, which must 
increase the norm of r, which must increase the systemic 
risk S in Equation 13. Therefore, artificial division of a FI 
increases S instead of having no effect on it.
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Dynamic Replication and 
Hedging: A Reinforcement 
Learning Approach
PETTER N. KOLM AND GORDON RITTER

The problem of replicating and 
hedging an option position is 
fundamental in finance. Since the 
publication of the seminal work of 

Black and Scholes (1973) and Merton (1973) on 
option pricing and dynamic hedging ( jointly 
referred to as BSM), a substantial number of 
articles have addressed the problem of optimal 
replication and hedging. The core idea of BSM 
is that in a complete and frictionless market 
there is a continuously rebalanced dynamic 
trading strategy in the stock and riskless secu-
rity that perfectly replicates the option.

However, in practice, continuous trading 
of arbitrarily small amounts of stock is infi-
nitely costly. Instead, the portfolio replicating 
the option is adjusted at discrete times to mini-
mize trading costs. Consequently, perfect rep-
lication is impossible, and an optimal hedging 
strategy will depend on the desired trade-off 
between replication error and trading costs. In 
other words, the hedging strategy chosen by 
an agent depends on the agent’s risk aversion.

Although a number of articles have con-
sidered discrete time hedging or transaction 
costs alone, Leland (1985) was first to address 
discrete hedging under transaction costs. His 
work was followed by others.1   The majority 

1 See, for example, Figlewski (1989), Boyle and 
Vorst (1992), Henrotte (1993), Grannan and Swindle 
(1996), Toft (1996), Whalley and Wilmott (1997), and 
Martellini (2000).

of these studies treat proportionate transaction 
costs. More recently, several studies have con-
sidered option pricing and hedging subject to 
both permanent and temporary market impact 
in the spirit of Almgren and Chriss (1999), 
including Rogers and Singh (2010); Almgren 
and Li (2016); Bank, Soner, and Vob (2017); 
and Saito and Takahashi (2017).

In this article, we show how to build 
a system that can learn how to optimally 
hedge an option (or other derivative secu-
rity) in a fully realistic setting. Our method 
applies to the real-world engineering 
problem faced daily by trading and risk man-
agement desks at investment banks. In such 
situations, continuous-time theory is only a 
guide. Portfolio rebalance decisions must be 
made in discrete time and in markets with 
frictions, in which liquidity is not guaran-
teed and the market impact of the hedge 
could be substantial if not managed care-
fully. Almgren and Chriss (1999) showed 
that executing a large trade in a single stock 
is a multiperiod planning problem that can 
be solved by mean–variance optimization. 
The option hedging problem is similar but 
more complex. In most cases, the hedge 
itself is not static but needs to be continu-
ously readjusted. Nonetheless, both prob-
lems are related in the sense that one wishes 
to minimize (1) all forms of cost and (2) the 
deviation from the optimal hedge.
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This article contributes to the literature in several 
ways. First, our method is quite general. In particular, 
given any derivative security that we know how to 
price (even if that pricing is done by Monte Carlo), our 
method will quickly produce an autonomous agent who 
knows how to optimally trade off trading costs versus 
hedging variance for that security. The relative impor-
tance of cost versus variance is determined by the agent’s 
risk-aversion parameter.

Second, our method is based on reinforcement 
learning (RL). Although RL is well known in its 
own right, to the best of our knowledge this form of 
machine learning technique has previously not been 
applied to discrete replication and hedging subject to 
nonlinear transaction costs. It is worthwhile to note 
that with the f lexibility of the technique presented in 
this article, it is a straightforward process to extend 
the model with additional features and constraints 
such as round-lotting and position-level constraints. 
Although Halperin (2017) applied RL to options, 
the methods therein appear very specif ic to the BSM 
model, whereas our method allows the user to plug 
in any option pricing and simulation library and then 
train the system with no further modifications. Note 
also that Halperin (2017) did not consider transaction 
costs. Our article is also related to work by Buehler 
et al. (2018), who evaluated neural network–based 
hedging under convex risk measures subject to pro-
portional transaction costs.

Third, our method is based on a continuous state 
space, and the training neither uses finite-state-space 
methods nor does it use or require a (necessarily arbi-
trary) selection of basis functions (as semigradient 
methods from Sutton and Barto (2018) would). Rather, 
we introduce a training method that has not been applied 
to derivatives hedging problems previously. Our training 
method relies on applying nonlinear regression tech-
niques to the sarsa targets (Equation 6) derived from the 
Bellman equation.

Methods that require f inite state spaces fail for 
larger problems, due to the curse of dimensionality. The 
state vector must contain all variables that are relevant 
to making a decision. For example, suppose there are k 
such variables, and each variable is allowed to have 10 
possible values. The resulting state space has 10k ele-
ments. Of course, this leads to insurmountable problems, 
such as (1) the fact that the training process can never 
visit most of the states; (2) there is no guarantee that the 

value function will be continuous, let alone smooth; (3) a 
vector containing all such states cannot fit in computer 
memory; and (4) one must estimate millions of inde-
pendent parameters from relatively fewer data points. 
By using a continuous state space, we avoid the curse of 
dimensionality and are thereby able to apply our method 
to higher-dimensional problems.

Fourth, the method extends in a straightforward 
way to arbitrary portfolios of derivative securities. For 
example, envision a trader who has inherited a deriva-
tive security that he or she must hold to expiration 
because of some exogenous constraint. The trader has 
no directional view on the derivative or its underlier. 
With the method proposed in this article, the trader 
can essentially press a button to train an algorithm to 
hedge the position. The algorithm can then handle the 
hedging trades until expiration with no further human 
intervention.

REINFORCEMENT LEARNING

RL2 has been developed largely independently 
from classical utility theory in finance. It provides a way 
to train artificial agents that learn through positive rein-
forcement to interact with an environment, with the goal 
of optimizing a reward over time. The learning agent 
does this through simple trial and error by receiving 
feedback on the amount of reward that a particular 
action yields. In contrast to supervised learning, an RL 
agent is not trained on labeled examples to optimize its 
actions. In addition, RL is not trying to find a hidden 
structure in unlabeled data and hence is different from 
unsupervised learning.

Mathematically speaking, RL is a way to solve 
multiperiod optimal control problems. The agent’s 
policy typically consists of explicitly maximizing the 
action-value function for the current state. This value 
function is an approximation of the true value function 
of the multiperiod optimal control problem. Training 
refers to the process of improving on the approxima-
tion of the value functions as more training examples 
are made available.

Following the notation of Sutton and Barto 
(2018), the sequence of rewards received after time step 

2 See Sutton and Barto (2018) and Kaelbling, Littman, and 
Moore (1996) for an introduction to RL.
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t is denoted Rt+1, Rt+2, Rt+3, …. The agent’s goal is to 
maximize the expected cumulative reward, denoted by

 + γ ++ ++ γ+ γ 2
3G R= R Rγ + γγγγ 2

t tR t tγ2+ + γ  (1)

The agent then searches for policies that maximize 
E[Gt]. The sum in Equation 1 can be either finite or 
infinite. The constant γ ∈ [0, 1] is known as the dis-
count rate. If rewards are bounded, then γ < 1 ensures 
convergence of the infinite sum.

A policy, denoted π, is a way of choosing an action 
at, conditional on the current state st. A policy is allowed 
to be stochastic. For example, choosing a random action 
is also a policy.

There are principally two kinds of value functions; 
at optimality, one is a maximization of the other. The 
action-value function expresses the value of starting in 
state s, taking an arbitrary action a, and then following 
policy π thereafter

 Eπ π( , ) [ | , ]qπ( a E= EπE) : [ S s= =t t|S t  (2)

where Eπ denotes the expectation under the assumption 
that policy π is followed. The state-value function is the 
action-value function, where the first action also comes 
from the policy π

E= =Eπ πE π( ) [ | ] (= π , (π(π ))vπ( S| s q] = s(πt t|S|

Action-value functions are, for most practical pur-
poses, more useful than state-value functions because 
any action-value function immediately gives rise to a 
natural policy: If q̂  is any action-value function, the 
q̂ -greedy policy is to choose the action a, in state s, that 
maximizes q̂ (s, a).

Policy π is defined to be at least as good as π′ if 
vπ (s) ≥ vπ′(s) for all states s. An optimal policy is defined 
to be one that is at least as good as any other policy. 
There need not be a unique optimal policy, but all 
optimal policies share the same optimal state-value func-
tion v∗(s) = supπvπ(s) and optimal action-value function 
q∗(s, a) = supπqπ(s, a). Note also that v∗ is the supremum 
over a of q∗. In particular, v∗(s) is the expected gain 
(under any optimal policy), given that one started from 
state s. Colloquially, one might then refer to v∗(s) as the 
value of being in state s.

The search for an optimal policy reduces to the 
search for the optimal action-value function q∗ because 

the q∗-greedy policy is optimal. The typical way of 
searching for q∗ is to produce a sequence of iterates that 
approximates q∗ with increasing accuracy. Methods for 
producing those iterates are based on the Bellman equa-
tions, which we now recall.

Let p(s′, r | s, a) denote the probability that the pro-
cess transitions to state s′ and the agent receives reward r, 
conditional on the event that the process was previously 
in state s, and in that state, the agent choses action a. The 
optimal state-value function and action-value function 
satisfy the Bellman equation

 ∑= ′ γ ′∗
′

( ) max (∑ , | , )[ (+ γ ∗ )]
,

v∗( p s( s| )[ s(∗
a

s r,

 (3)

 ∑ ′ ′ ′
′ ′ ∗( , ) (∑ , | , )[ m+ γ ( ,′ )]
,

q s∗( a p∑) ∑= s , s, r qγ
′

m+ γ ax a,
s r,

a
 (4)

where the sum over s′, r, denotes a sum over all states s′, 
and all rewards r.

The intuition for Equation 3 is that the value of 
being in state s equals the average, over all possible next 
states s′, of the value of being in s′ plus the reward asso-
ciated with making the transition s → s′. The intuitive 
interpretation for Equation 4 is very similar; indeed 
maxa′ q∗(s′, a′) = v∗(s′), so the bracketed quantities are the 
same in both equations.

The state-value function v∗(s) has a natural inter-
pretation in derivatives pricing theory. Specifically, in 
continuous time and frictionless markets, the optimal 
value function of the dynamic replicating strategy is 
obviously equal to the no-arbitrage price of the option. 
This is the value function that solves the Hamilton–
Jacobi–Bellman partial differential equation, as shown 
by Merton and Samuelson (1992). Thus, it is natural that 
RL, in which value functions organize the search for 
optimal policies, should apply to pricing and, by exten-
sion, hedging of derivatives.

TRAINING VIA SIMULATION 

AND BATCH LEARNING

Although t he state of the art is still evolving, the 
vast majority of the most successful applications of RL 
in recent years use a simulation of the environment to 
generate training data (as opposed to, say, training on 
historical data).
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In a famous example from Mnih et al. (2013, 
2015), a deep RL system learned to play video games 
on a superhuman level. According to the authors, the 
network was not provided with any game-specific infor-
mation or hand-designed features and was not privy to 
the internal state of the emulator. It simply learned from 
nothing but the video input, the reward and terminal 
signals, and the set of possible actions.

In another famous example, Silver et al. (2017) 
created the best Go player in the world “based solely on 
RL, without human data, guidance, or domain knowl-
edge beyond game rules.” The associated system, termed 
AlphaGo Zero “is trained solely by self-play RL, starting 
from random play, without any supervision or use of 
human data.”

In these cases (and many simpler ones—see Sutton 
and Barto (2018) for examples), the agents are trained in 
a simulated environment, as opposed to being trained 
on historical data. This has an advantage: Millions of 
training examples can be generated, limited only by 
computer hardware capabilities. The examples in the 
present article follow the same pattern: The system is 
trained by interacting with a simulator.

We now provide more details about how the 
training procedure works. We start with an estimate q̂
of the optimal action-value function. This estimate is 
often initialized to be the zero function and is refined 
as the algorithm continues.

All RL systems must balance exploration and 
exploitation in the training process. They must some-
times take random actions to explore new areas of state 
space and action space—this is exploration. However, 
ultimately they must use their experience to concen-
trate the search around strategies that are likely to be 
optimal and refine the estimate of the value function on 
those areas of state space. We follow standard practice, 
which is to force exploration during training by using 
an ε-greedy policy relative to q

 
ε
εεπ =ε

<
≥

⎧
⎨
⎪⎧⎧
⎨⎨
⎩⎪
⎨⎨
⎩⎩

( )
argmax ˆ( , )-greedydd

a u
q s( a u)a

 (5)

where ε is a real number between 0 and 1, u is a uni-
formly distributed random variable on (0, 1), and ã  is 
sampled uniformly from the action space. As is standard 
in RL and necessary to ensure convergence, we decrease 
the value of ε as training progresses.

Let st be the state at the t-th step in the simula-
tion, and let at = πε-greedy(s) be the associated ε-greedy 
action. Let

( , )X s: (=t t: (s: ( t

be the resulting state-action pair. The update target Yt is 
defined to be any valid approximation of qπ(st, at). In this 
article we use the one-step sarsa target, which approxi-
mates qπ(st, at) as follows

 + γ+ +ˆ( , )+ γ+ γ + 1Y r= q(( at tY rY r t t,1++ a  (6)

Intuitively, Equation 6 resembles part of the 
Bellman equation

 ∑ ′ ′ ′
′ ′ ∗( , ) (∑ , | , )[ m+ γ ( ,′ )]
,

q s∗( a p∑) ∑= s , s, r qγ
′

m+ γ ax a,
s r,

a
 (7)

Indeed, if ′ ′∗( ,′ )a q=+ ′argmax1 a,t a+1 argm+ ax1 , then Equation 6 
would be a sample of the random variable in brackets 
in Equation 7. Thus, Equation 6 may be viewed as an 
approximation of qπ(st, at).

We shall define a batch to be a collection of pairs of 
the form (Xt, Yt) where Xt: = (st, at) is a state-action pair, 
and Yt is the corresponding update target (Equation 6). 
A batch is typically obtained by running the simulator 
for the required number of time steps and choosing the 
actions via some policy π that is being evaluated.

Suppose we are going to run B different batches, 
indexed by b = 1, …, B. We assume there is a nonlinear 
regression learner available that can learn a function 
of the form Y = ( )q b (X) using all of the samples in the 
batch. Suitable nonlinear regression learners are a topic 
of frequent study in the statistical learning literature 
(see Friedman, Hastie, and Tibshirani (2001) for an 
overview). They include random forests, Gaussian pro-
cess regression, support vector regression, and artificial 
neural networks.

The fitted model ˆ( )q b  will then be used to improve 
the model current q̂  by model averaging. We then gen-
erate batch b + 1, using the updated/improved q̂  to 
calculate the Yt, and repeat until we have B batches 
and q̂  has been updated B times. Alternating between 
generation of batches and fitting models continues until 
some convergence criterion is reached. The simulations 
in this article used B = 5 batches each consisting of 
750,000 (X, Y ) pairs.
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AUTOMATIC HEDGING IN THEORY

We define automatic  hedging to be the practice of 
using trained RL agents to handle the hedging of certain 
derivative positions. The agent has a long option posi-
tion that cannot be traded. The agent is only allowed 
to trade any other nonoption positions that would be 
used for replication. In a world with no trading frictions 
and where continuous trading is possible, there may be 
a dynamic replicating portfolio that hedges the option 
position perfectly, meaning that the overall portfolio 
(option minus replication) has zero variance. In our set-
ting in this article, we will consider frictions and where 
only discrete trading is possible. Here the goal becomes 
minimization of variance and cost.

We will derive the precise form of the reward 
function, assuming our agent has a quadratic utility. 3  
In particular, the agent’s optimal portfolio is given by 
the solution to a mean–variance optimization problem 
with risk-aversion κ

 E Vκ⎛
⎝

⎞
⎠
⎞⎞max [E⎛

⎝
⎛⎛

2
[ ]V[T TV]

2
[V[  (8)

where the final wealth wT is the sum of individual wealth 
increments δwt

∑= + δ
=

0
1

w w= wT
t

T

t

and so  E[wT] = w0 + ∑tE[δwt]. The variance term involves 
cross-covariances of the form cov(δwt, δws) for s ≠ t, but if 
we are willing to assume independence of wealth incre-
ments across time, that is

δ δ ≠(δ ) 0= fcov wδ t≠t sδ, wδ

then V[wT] = ∑t V[δwt].
4

In complete markets, options are redundant instru-
ments. They can be exactly replicated (with zero vari-
ance) by a continuous-time dynamic trading strategy 
that trades infinitely often in infinitesimal increments. 
In the real world, the profit and loss (P&L) variance of 

3 See Ritter (2017) for a discussion of how the mean–variance 
assumption fits in within a general utility framework.

4 The independence assumption will be violated in a number 
of interesting examples, such as assets with long-lived transient 
market impact.

an option minus its offsetting replicating portfolio is not 
zero. In the spirit of Almgren and Chriss (2001), our 
hedging agent would like to solve a simplified version 
of Equation 8, namely

 ∑ −δ κ δ⎛
⎝

⎞
⎠
⎞⎞

=

mi [En ∑⎛
⎝
⎛⎛

2
[V ]

strategies
0

wδ[V
t

T

t tδ]
2

[V wδ[V  (9)

where the minimum is computed across all permissible 
trading strategies. What is different in our work as com-
pared to that of Almgren and Chriss (2001) is that a 
machine will learn the optimal strategy by simulating 
a financial market and applying RL to the simulation 
results.

If the log price process is a random walk, then 
wealth increments can be decomposed as

δ = −w q= ct tq t

where qt is random walk term, and ct is the total trading 
cost paid in period t (including commissions, bid–offer 
spread cost, market impact cost, and other sources of 
slippage). In the random walk case, the expected wealth 
increment is therefore just −1 times the expected cost

δ[ δ [ ]E[t t] [E] [

In other words, in this case the problem (Equation 9) 
becomes a trade-off of cost versus variance. The agent 
can hedge more frequently to reduce the variance of the 
hedged position, but at increased trading costs.

As shown by Ritter (2017), with an appropriate 
choice of the reward function, the problem of maxi-
mizing E[u(wT)] can be recast as a RL problem. The 
reward in each period corresponding to Equation 9 is 
approximately

δ − κ δ
2

( )δ 2R w= δ:t tδwδ: t

By plugging each one-period reward into the 
cumulative reward (Equation 1), we obtain an approxi-
mation of the mean–variance objective. Thus, training 
reinforcement learners with this kind of reward function 
amounts to training expected-utility maximizers. In the 
context of option hedging, it amounts to training auto-
matic hedgers that are prepared to optimize the trade-off 
of costs versus variance from being out of hedge.
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In the next section, we shall show that automatic 
hedging is indeed possible using RL training methods. 

AUTOMATIC HEDGING IN PRACTICE

We look at the simplest possible examp le: 
a European call option with strike price K and expiry 
T on a non-dividend-paying stock. We take the strike 
and maturity as fixed, exogenously given constants. For 
simplicity, we assume the risk-free rate is zero. The agent 
we train will learn to hedge this specific option with 
this strike and maturity. It is not being trained to hedge 
any option with any possible strike/maturity.5 

The agent comes into the current period with a 
fixed option position of L contracts. We assume for sim-
plicity that this option position will stay the same until 
the option either is exercised or expires—we are training 
an agent to be an optimal hedger of a given contract, not 
an agent that can decide not to hold the contract at all.

Each period, the agent observes a new state and 
then can decide on an action. Available actions always 
include trading shares of the underlying, with bounds 
dictated by the economics of the problem. For example, 
with L contracts, each for 100 shares, one would not 
want to trade more than 100⋅L shares. If the option is 
American, then there is an additional action, which is 
to exercise the option and hence buy or sell shares at the 
strike price K. 

In any successful application of RL, the state must 
contain all of the information that is relevant for making 
the optimal decision. Information that is not relevant to 
the task at hand, or which can be derived directly from 
other variables of the state, does not need to be included. 
For European options, the state must minimally contain 
the current price St of the underlying and the time τ := 
T − t > 0 still remaining to expiry, as well as our cur-
rent position of n shares. The state is thus naturally an 
element of

R Z ZS τ+: {R Z= R =+ ( , , )| 0, 0τ , }Z∈2 τ, 0> , 0τ > ,

If the option is American, then it may be optimal 
to exercise early just before an ex-dividend date. In 
this situation, the state must be augmented with one 

5 However, we note that this is possible on an extended state 
space.

additional variable: the size of the anticipated dividend 
in period t + 1.

The state does not need to contain the option 
Greeks because they are (nonlinear) functions of the 
variables the agent has access to via the state. We expect 
agents, given enough simulations, to learn such non-
linear functions on their own as needed. This has the 
advantage of not requiring any special, model-specific 
calculations that may not extend beyond BSM models.

Practitioners often compute the delta of an option 
position, for hedging purposes, using the BSM formula:
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∂
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but with σ replaced by the implied volatility. This is 
referred to as practitioner delta by Hull and White [2017]. 
Note that parameters such as K and σ2 are not provided 
to the agent, although they are used in constructing the 
simulation under which the agent is trained.

The agent will learn the properties of the stochastic 
world it inhabits by means of a large number of simula-
tions of such world, as described. Nonlinear functions 
such as Δ as given by Equation 11, insofar as they affect 
the optimal strategy, will become part of the agent’s 
learned action-value function (Equation 2).

We simulate a BSM world but modified to ref lect 
the realities of trading: discrete time and space. We 
consider a stock whose price process is a geometric 
Brownian motion (GBM) with initial price S0 and daily 
lognormal volatility of σ ⁄day. We consider an initially 
at-the-money European call option (struck at K = S0) 
with T days to maturity. We discretize time with D 
periods per day; hence each episode has T ⋅ D total 
periods. We require trades (hence also holdings) to be 
integer numbers of shares. We assume that our agent’s 
job is to hedge one contract of this option. In the fol-
lowing specif ic examples, the parameters are σ = 0.01, 
S0 = 100, T = 10, and D = 5. In addition, we set the 
risk aversion κ = 0.1.

We f irst consider a frictionless world without 
trading costs and answer the question of whether it is 
possible for a machine to learn what we teach students 
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in their first semester of business school: formation of 
the dynamic replicating portfolio strategy. Unlike our 
students, the machine can only learn by observing and 
interacting with simulations.

The RL agent is at a disadvantage, initially. Recall 
that it does not know any of the following pertinent 
pieces of information: (1) the strike price K, (2) the 
fact that the stock price process is a GBM, (3) the vol-
atility of the price process, (4) the BSM formula, (5) 
the payoff function (S − K)+ at maturity, and (6) any of 
the Greeks. It must infer the relevant information from 
these variables, insofar as it affects the value function, by 

interacting with a simulated environment. 6 Each out-of-
sample simulation of the GBM is different, but we show 
a typical example of the trained agent’s performance in 
Exhibit 1.

6 One could try to help the algorithm by providing the BSM 
delta as part of the state variable, hence allowing the reinforcement 
learner to use that directly, but we deliberately chose not to include 
any of the option Greeks as state variables. Giving the system access 
to the option Greeks is sure to improve its performance because the 
function being learned is closer to linear. We chose not to do this 
to make the problem as hard as possible and to see if RL is up to 
the challenge. However, in a real-world production scenario, we 
recommend making the problem as easy as possible by including 
certain option Greeks in the state variable, unless they are prohibi-
tively hard to calculate.

E X H I B I T  1
Out-of-Sample Simulation of a Trained RL Agent

Notes: We depict cumulative stock, option, and total P&L; RL agent’s position in shares (stock.pos.shares); and −100⋅Δ (delta.hedge.shares). Observe that 
(1) cumulative stock and options P&L roughly cancel one another to give the (relatively low variance) total P&L, and (2) the RL agent’s position tracks the 
delta position even though it was not provided with it.
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Because the  examples of Exhibit 1 were generated 
in a frictionless simulation, why is the total P&L not 
exactly zero? The answer is discretization error. Time 
is discretized (to five periods per day), so continuous 
hedging is not possible. Moreover, the simulation 
requires trading an integer number of shares, which 
introduces further discretization error.

Any complex model should be tested against a sim-
pler model as a baseline. To justify its additional com-
plexity, the more complex model should be able to do 
something that the simpler model cannot. Along these 
lines, let us define a simple policy, πDH, as a baseline for 
the more complex policy learned by RL methods.

As in Equation 11, let Δ(pt, τ) denote the delta as 
computed from the price pt at time t and the time-to-
expiry τ = T − t. The full state variable is then st = (pt, τ, nt), 

where nt denotes the agent’s current holding, in shares, 
at time t. Our simple baseline policy must output an 
action, which is just a number of shares to trade, given 
this state vector. Define

π = π τ Δ −( ) ( , , ) 100 (Δ , )τ )s = π n p⋅= −) : 100 (Δ nDH t Dπ) H tp( t tp) : 100 ound( (Δ t (12)

where the round function returns the closest integer to 
the argument.

The policy πDH, without rounding, is optimal 
in a hypothetical trading-cost-free world, where the 
number of time steps goes to infinity and where one can 
trade fractional numbers of shares. There is, however, 
no reason to expect that πDH would solve the utility-
maximization problem (Equation 9) in a simulation with 

E X H I B I T  2
Out-of-Sample Simulation of a Baseline RL Agent That Uses Policy Delta or πDH, Defined in Equation 12

Notes: We show cumulative stock P&L and option P&L, which roughly cancel one another to give the (relatively low variance) total P&L. We show the 
position, in shares, of the agent (stock.pos.shares). The agent trades so that the position in the next period will be the quantity −100⋅Δ rounded to shares.
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nontrivial trading costs or, for that matter, in the real 
world (where we know trading costs are nontrivial).

For a trade size of n shares we define

 × ×cost( ) l iplier Ti kSize ( 0+ .01 )2××=) multiplier TickSize (  (13)

where we take TickSize = 0.1. With multiplier = 1, the 
term TickSize × |n| represents a cost, relative to the 
midpoint, of crossing a bid–offer spread that is two ticks 
wide. The quadratic term in Equation 13 is a simplistic 
model for market impact. Exhibit 1 has multiplier = 0.

A key strength of the RL approach is that it 
does not make any assumptions about the form of 
the cost function (Equation 13). It will learn to opti-
mize expected utility under whatever cost function is 
provided. In Exhibit 1, we had taken multiplier = 0 in 

the function cost(n), representing no frictions. We now 
take multiplier = 5, representing a high level of friction. 
Our intuition is that in high-trading-cost environments 
(which would always be the case if the position being 
hedged were large relative to the typical volume in the 
market), the simple policy πDH trades too much. One 
could perhaps save a great deal of cost in exchange for a 
slight increase in variance.

Given the mean–variance utility function in 
Equation 9, we expect RL to learn the trade-off between 
variance and cost. In other words, we expect it to realize 
lower cost than πDH, possibly coming at the expense 
of higher variance, when averaged across a sufficiently 
large number of out-of-sample simulations (i.e., simu-
lations that were not used during the training phase in 
any way).

E X H I B I T  3
Out-of-Sample Simulation of Our Trained RL Agent

Note: The curve representing the agent’s position (stock.pos.shares) controls trading costs and is hence much smoother than the value of −100⋅Δ (called delta.
hedge.shares), which naturally f luctuates along with the GBM process.
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We trained the agent using f ive batches with 
15,000 episodes per batch, each episode having D ⋅ T = 
50 time steps, as before. This means that each call to 
the nonlinear regression learner involves 750,000 (Xt, Yt) 
pairs. The training procedure took one hour on a single 
CPU. After training, we ran N = 10,000 out-of-sample 
simulations. Using the out-of-sample simulations, we 
ran a horse race between the baseline agent that uses 
just delta-hedging and ignores cost and the RL-trained 
agent that trades cost for realized volatility.

Exhibit 2 shows one representative out-of-sample 
path of the baseline agent. We see that the baseline agent 
is overtrading and paying too much cost. Exhibit 3 shows 
the RL agent on the same path. We see that, while main-
taining a hedge, the agent is trading in a cost-conscious 
way. The curves in Exhibit 2, representing the agent’s 
position (stock.pos.shares), are much smoother than the 
value of −100⋅Δ (called delta.hedge.shares in Exhibit 2), 
which naturally f luctuates along with the GBM process.

Exhibit 3 consists of on  ly one representative run 
from an out-of-sample set of N = 10,000 paths. To sum-
marize the results from all runs, we computed the total 
cost and standard deviation of total P&L of each path. 
Exhibit 4 shows kernel density estimates (basically, 

smoothed histograms) of total costs and volatility of total 
P&L of all paths. In each case, we performed a Welch 
two-sample t-test to determine whether the difference 
in means was signif icant. The difference in average 
cost is highly statistically significant, with a t-statistic 
of −143.22. The difference in vols, on the other hand, 
was not statistically significant at the 99% level.

One can also gauge the efficacy of an automatic 
hedging model by how often the total P&L (including 
the hedge and all costs) is significantly less than zero. 
For both policies (delta and reinf ), we computed the 
t-statistic of total P&L for each of our out-of-sample 
simulation runs and constructed kernel density estimates 
(see Exhibit 5). The reinf method is seen to outper-
form: Its t-statistic is much more often close to zero and 
insignificant.

CONCLUSIONS

The main contribution of  this article is to show that 
with RL one can train a machine learning algorithm to 
hedge an option under realistic conditions. Somewhat 
remarkably, it accomplishes this without the user providing 
any of the following pertinent pieces of information: 

E X H I B I T  4
Kernel Density Estimates for Total Cost (left panel) and Volatility of Total P&L (right panel) from N = 10,000 
Out-of-Sample Simulations 

Notes: Policy delta is πDH, while policy reinf is the greedy policy of an action-value function trained by RL. The reinf policy achieves much lower cost 
(t-statistic = −143.22) with no significant difference in volatility of total P&L.
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(1) the strike price K, (2) the stock price process, 
(3) the volatility of the price process, (4) the BSM for-
mula, (5) the payoff function (S − K)+ at maturity, and 
(6) any of the Greeks. This is the financial derivatives 
analogue of the examples of Mnih et al. (2013) and Mnih 
et al. (2015), wherein computers learned to play games 
without knowing the rules.

A key strength of the RL approach is that it does 
not make any assumptions about the form of trading 
cost. RL learns the minimum variance hedge subject 
to whatever transaction cost function one provides. All 
it needs is a good simulator in which transaction costs 
and options prices are simulated accurately. This has the 
interesting implication that any option that can be priced 
can also be hedged, whether or not the pricing is done by 
explicitly constructing a replicating portfolio—whether 
or not a replicating portfolio even exists among the class 
of tradable assets.

Our approach does not depend on the existence of 
perfect dynamic replication. It will learn to optimally 

trade off variance and cost using whatever assets it is 
given as potential candidates for inclusion in a hedging 
portfolio. In other words, it will f ind the minimum-
variance dynamic hedging strategy, whether or not the 
minimum variance is actually zero (as it typically is in 
derivatives pricing, where one needs perfect replica-
tion to derive a no-arbitrage price). This is important 
because, in many realistic cases, markets are not com-
plete and hence some of the assets required for perfect 
replication may not exist.

Another advantage of this approach is that it can 
deal automatically with position-level constraints. 
It is part of the structure of any RL problem that, for 
each possible state s of the environment, the agent has 
a (potentially state-dependent) list of possible actions. 
In the examples given, the list of possible actions was 
taken to be buying or selling up to 100 shares in integer 
numbers of shares. We note that other trade or position 
constraints could be incorporated in a straightforward 

E X H I B I T  5
Kernel Density Estimates of the t-Statistic of Total P&L for Each of Our Out-of-Sample Simulation Runs 
and for Both Policies Represented Previously (delta and reinf)

Note: The reinf method is seen to outperform in the sense that the t-statistic is much more often close to zero and insignificant.
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way, simply by modifying the state-dependent list of 
available actions.

In this article, we leave open several avenues for 
further research. One obvious point of interest would 
be to train agents like ours on more sophisticated hard-
ware and hence to take advantage of many more simula-
tions and finer discretization of time. Silver et al. (2017) 
described various Go players that were trained on clus-
ters with up to 176 GPUs and/or 48 TPUs, with training 
times ranging from 3 to 40 days. For reference, all of the 
examples in this article were trained on a single CPU, 
and the longest training time allowed was one hour.

Transaction costs are not static. The intraday term 
structure of trading volume has a well-known smile 
shape (documented by Chan, Christie, and Schultz 
1995), with a nontrivial fraction of US equity trading 
volume occurring in the close and closing auction. Our 
RL system should handle this sort of complication very 
well. For instance, the simulator could be augmented 
with a nuanced cost function that depends on the time 
of day and add a discrete time-of-day indicator to the 
state vector.

Another interesting line of research would be to 
investigate optimal hedging strategies for portfolios of 
options in the presence of trading costs. Obviously, 
for low-gamma portfolios, delta-hedging would not 
be needed so frequently, thus naturally reducing the 
trading costs for that kind of portfolio. In general, the 
most cost-effective way to reduce variance is likely to 
use other options rather than a replicating portfolio of 
the underlier.

REFERENCES

Almgren, R., and N. Chriss. 1999. “Value under Liquida-
tion.” Risk 12 (12): 61–63.

——. 2001. “Optimal Execution of Portfolio Transactions.” 
Journal of Risk 3: 5–40.

Almgren, R., and T. M. Li. 2016. “Option Hedging with 
Smooth Market Impact.” Market Microstructure and Liquidity 
2 (1): 1650002.

Bank, P., H. M. Soner, and M. Vob. 2017. “Hedging with 
Temporary Price Impact.” Mathematics and Financial Economics 
11 (2): 215–239.

Black, F., and M. Scholes. 1973. “The Pricing of Options 
and Corporate Liabilities.” Journal of Political Economy 81 (3): 
637–654.

Boyle, P. P., and T. Vorst. 1992. “Option Replication in Dis-
crete Time with Transaction Costs.” The Journal of Finance 
47 (1): 271–293.

Buehler, H., L. Gonon, J. Teichmann, and B. Wood. 2018. 
“Deep Hedging.” arXiv 1802.03042.

Chan, K. C., W. G. Christie, and P. H. Schultz. 1995. “Market 
Structure and the Intraday Pattern of Bid–Ask Spreads for 
NASDAQ Securities.” The Journal of Business 68 (1): 35–60.

Figlewski, S. 1989. “Options Arbitrage in Imperfect Mar-
kets.” The Journal of Finance 44 (5): 1289–1311.

Friedman, J., T. Hastie, and R. Tibshirani. The Elements of 
Statistical Learning. Berlin: Springer, 2001.

Grannan, E. R., and G. H. Swindle. 1996. “Minimizing 
Transaction Costs of Option Hedging Strategies.” Math-
ematical Finance 6 (4): 341–364.

Halperin, I. 2017. “QLBS: Q-Learner in the Black–Scholes 
(–Merton) Worlds.” arXiv 1712.04609.

Henrotte, P. “Transaction Costs and Duplication Strategies.” 
Graduate School of Business, Stanford University, 1993.

Hull, J., and A. White. 2017. “Optimal Delta Hedging for 
Options.” Journal of Banking & Finance 82: 180–190.

Kaelbling, L. P., M. L. Littman, and A. W. Moore. 1996. 
“Reinforcement Learning: A Survey.” Journal of Artificial Intel-
ligence Research 4: 237–285.

Leland, H. E. 1985. “Option Pricing and Replication with 
Transactions Costs.” The Journal of Finance 40 (5): 1283–1301.

Martellini, L. 2000. “Efficient Option Replication in the 
Presence of Transactions Costs.” Review of Derivatives Research 
4 (2): 107–131.

Merton, R. C. 1973. “Theory of Rational Option Pricing.” 
The Bell Journal of Economics and Management Science 4 (1): 
141–183.

Merton, R. C., and P. A. Samuelson. Continuous-Time Finance. 
Boston: Blackwell Boston, 1992.

JFDS-Kolm.indd   170JFDS-Kolm.indd   170 05/01/19   11:17 am05/01/19   11:17 am



The Journal of Financial Data Science   171Winter 2019

Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. 
Antonoglou, D. Wierstra, and M. Riedmiller. 2013. “Playing 
Atari with Deep Reinforcement Learning.” arXiv 1312.5602.

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, 
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, 
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antono-
glou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. 
Hassabis. 2015. “Human-Level Control through Deep Rein-
forcement Learning.” Nature 518 (7540): 529.

Ritter, G. 2017. “Machine Learning for Trading.” Risk 30 
(10): 84–89.

Rogers, L. C. G., and S. Singh. 2010. “The Cost of Illi-
quidity and Its Effects on Hedging.” Mathematical Finance 20 
(4): 597–615.

Saito, T., and A. Takahashi. 2017. “Derivatives Pricing 
with Market Impact and Limit Order Book.” Automatica 86: 
154–165.

Silver, D., J. Schrittwieser, K. Simonyan, I. Antonoglou, A. 
Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. 
Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. 
Graepel, and D. Hassabis. 2017. “Mastering the Game of Go 
without Human Knowledge.” Nature 550 (7676): 354–359.

Sutton, R. S., and A. G. Barto. Reinforcement Learning: An 
Introduction. 2nd ed. Cambridge, MA: MIT Press, 2018 
(in progress).

Toft, K. B. 1996. “On the Mean–Variance Tradeoff in Option 
Replication with Transactions Costs.” Journal of Financial and 
Quantitative Analysis 31 (2): 233–263.

Whalley, A. E., and P. Wilmott. 1997. “An Asymptotic Anal-
ysis of an Optimal Hedging Model for Option Pricing with 
Transaction Costs.” Mathematical Finance 7 (3): 307–324.

To order reprints of this article, please contact David Rowe at 
d.rowe@pageantmedia.com or 646-891-2157.

JFDS-Kolm.indd   171JFDS-Kolm.indd   171 05/01/19   11:17 am05/01/19   11:17 am



–

ACTIONABLE RESEARCH—
SMARTER INVESTING

UNRESTRICTED 
ACCESS 

	 11 JOURNALS 

	 400 ARTICLES ANNUALLY

	 COVERING 60+ TOPICS

	� ARCHIVE OF OVER  
10,000 ARTICLES

THE IPR JOURNALS PLATFORM is the go-to resource for all 
independent research for those within the investment 
management community. Delve further than ever 
before into our content on our new global platform.

CONTACT US (646) 931-9045  |  iprjournals@pageantmedia.com  |  www.iprjournals.com



At Natixis, we practice Active Thinking®. That means we draw on the diverse expertise of our affiliated 

asset managers to challenge conventional wisdom and develop unique perspectives. You’ll get the tools,  

information and insights to make confident decisions. See what we can do for you.

For more information, visit im.natixis.com

All investing involves risk, including risk of loss.

Natixis Investment Managers includes all of the investment management and distribution entities affiliated with Natixis Distribution, L.P. and Natixis Investment Managers S.A.  
Natixis Distribution, L.P. is located at 888 Boylston Street, Suite 800, Boston, MA 02199.    ADUS07-0119    1999205.3.1

A B R A N D N E W 
P O I NT O F V I E W


	000_C1_Cover_JFDS_0200
	000_C2_SPGlobal_JFDS_0200
	001-003_EDITOR LETTER_JFDS
	004_Masthead_JFDS_0207
	005-006_TOC_JFDS
	007_Event_JFDS_0207
	008-009_TOC_JFDS
	010-013_Simonian_JFDS
	014-031_Monk_JFDS
	032-044_Simonian2_JFDS
	045-063_Aldridge_JFDS
	064-074_Arnott_JFDS
	075-098_Bew_JFDS
	099-110_Lopez de Prado_JFDS
	111-121_Madhavan_JFDS
	122-129_Klevak_JFDS
	130_140_Porter_JFDS
	141-158_Das_JFDS
	159-171_Kolm_JFDS
	000_C3_Portal1_JFDS_0200

