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Preface

This book aims to understand human behavior and to address methods for social
design from both qualitative and quantitative perspectives based on the methodology
of data-centric science. Recently, a large amount of data formatted by various
expressions are accumulated in different fields of socioeconomic systems. However,
at this moment, it seems that the utilization of such data has not been matured,
yet. Since data are not answers but questions inspiring people who are working in
the fields, many efforts of data analysis are required to obtain insights from data.
Furthermore, the outcomes of data analysis should support human decision-making
from qualitative and quantitative points of view.

The design process is a sequence of actions with the decision-making. There
must be a lot of useful points of data-centric science to design. Primarily, this book
has been edited by motivating to collect methodologies and practical examples for
contributing to data-driven social design. The intentions behind this book are to
develop the methodology to support people who are joining or attempt to join all
the activities related to “social design” based on data.

This book contains three main parts, such as:

Part I: Methods for data analysis and design
Part II: A mathematical foundation of collective human behavior
Part III: Applications of data analysis to social design

Part I mentions a conceptual framework of applications of data-centric science
to social design and includes four chapters. Readers may find methodological ideas
and frameworks that can be used when they consider design for social systems from
the chapters in Part I.

The chapter titled “How to Design Society from a Data-Centric Point of View”
by Aki-Hiro Sato explains the intentions behind this book including the three
types of aspects: human behavior, data-centric science, and social design. The
chapter titled “Practical Methods for Data Analysis” by Aki-Hiro Sato explains
practical methods used in data utilization. The data analysis is an essential part to
understand the phenomena observed in the actual environment. The data analysis
forms a workflow consisting of data acquisition, data collection, data visualization,
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vi Preface

and quantification and data interpretation. The purpose of data analysis is to find
insights on phenomena that we have attended to and make decision-makers change
their behavior. The chapter titled “An Approach to Product Design Involving
Heterogeneous Stakeholders” by Aki-Hiro Sato discusses how to design our product
regarding data and communications among multi-stakeholders. Several methods
to design our product as group work are addressed. Specifically, eight techniques
that can be used in the group work are introduced step by step. The chapter titled
“Designing Human-Machine Systems Focusing on Benefits of Inconvenience” by
Hiroshi Kawakami proposes benefits of inconvenience in human-machine systems
to prevent loss of human ability and joy in too convenient human-machine systems.

Part II introduces collective human behavior and information cascade in social
groups from a mathematical physics point of view. Collective human behavior is
often seen in socioeconomic systems and should be understood when readers want
to deal with socioeconomic systems involving heterogeneous stakeholders. Readers
can understand collective human behavior with information interactions from the
chapters in this part.

The chapter titled “Information Cascade and Phase Transition” by Masato
Hisakado and Shintaro Mori discusses a voting model with two candidates and
concludes that the model features a phase transition beyond which a state where
most voters make the correct choice coexists with one where most of them are
wrong as the fraction of herders increases; the chapter titled “Information Cascade,
Kirman’s Ant Colony Model, and Kinetic Ising Model” by Masato Hisakado and
Shintaro Mori discusses a voting model in which voters can obtain information
from a finite number of previous voters. In this case, the phase transition can be
observed in infinite-size limit, but no phase transition happens when the reference
number is finite. The chapter titled “Information Cascade and Networks” by Masato
Hisakado and Shintaro Mori discusses a voting model on networks and concludes
that the influence of networks can be seen in the convergence speed only and cannot
be seen in the information cascade transition. The chapter titled “The Pitman-Yor
Process and Choice Behavior” by Masato Hisakado and Shintaro Mori discusses
choice behavior using a voting model in which voters can obtain information from
a finite number of some previous voters and concludes that the posting process is
described by the proposed model for analog herders for a small reference number.
The chapter titled “Domino Effect in Information Cascade” by Shintaro Mori
and Masato Hisakado studies several simple models for information cascade and
proposes that the memory length in the sequential decisions and the number of
stable states (equilibrium) play the key role in the domino effect in the information
cascade. The chapter titled “Information Cascade Experiment: General Knowledge
Quiz” by Shintaro Mori and Masato Hisakado and the chapter titled “Information
Cascade Experiment: Urn Quiz” by Shintaro Mori and Masato Hisakado deal with
information cascade experiments. The difficulty of the questions depends on the
sequential collective behavior. The chapter titled “Information Cascade and Bayes
Formula” by Masato Hisakado and Shintaro Mori considers a voting experiment
using two-choice questions and attempts to establish the Bayes formula to correct
the wrong decisions.
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Part III provides readers with several case studies of social systems based on a
data-driven approach. The final four chapters provide useful insights and domain
knowledge in each case study. Readers may obtain insights and domain knowledge
to deepen understandings of socioeconomic systems from data analysis. These
chapters may be useful when they obtain domain knowledge, practical examples,
need specification, and design of socioeconomic systems. All chapters are useful
when readers attempt to solve social issues and deal with social design by using the
methodology of data-centric science.

The chapter titled “How Betters Vote in Horse Race Betting Market” by Shintaro
Mori and Masato Hisakado analyzes JRA (Japan Racing Association) win betting
data and how the efficiency and the accuracy improve as betting proceeds. The
chapter titled “Smart Micro-sensing: Reaching Sustainability in Agriculture via
Distributed Sensors in the Food Chain” by Rob Dolci and Laura Boschis proposes
a method to detect contaminants during the whole food supply chain by using
portable biosensor devices. The proposed method can improve food safety in both
agriculture and food industries. The chapter titled “High-Frequency Data Analysis
of Foreign Exchange Markets” by Aki-Hiro Sato proposes a method to characterize
collective human behavior based on a multivariate Poisson model and shows results
obtained from empirical analysis with high-frequency foreign exchange data. The
common mode may measure collective human behavior from observable activity
data. The chapter titled “On Measuring Extreme Synchrony with Network Entropy
of Bipartite Graphs” by Aki-Hiro Sato proposes a method to quantify the structure
of a bipartite graph using a network entropy per link. The network entropy on a
bipartite network per link was used to quantify the degree of collective behavior
in the foreign exchange market. The proposed method is applicable to detecting
extreme synchrony in various types of socioeconomic systems.

This book will be devoted to promoting data-driven social design with multi-
stakeholders through design activities consisting of data acquisition, data collection,
data analysis, data interpretation, reporting, and decision-making by accumulating
data, methods, and connections with stakeholders.

Yokohama, Japan Aki-Hiro Sato

http://dx.doi.org/10.1007/978-981-10-7194-2_13
http://dx.doi.org/10.1007/978-981-10-7194-2_14
http://dx.doi.org/10.1007/978-981-10-7194-2_15
http://dx.doi.org/10.1007/978-981-10-7194-2_16


Contents

Part I Methods for Data Analysis and Design

How to Design Society from a Data-Centric Point of View . . . . . . . . . . . . . . . . . . 3
Aki-Hiro Sato

Practical Methods for Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Aki-Hiro Sato

An Approach to Product Design Involving Heterogeneous
Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Aki-Hiro Sato

Designing Human-Machine Systems Focusing on Benefits
of Inconvenience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Hiroshi Kawakami

Part II Mathematical Foundation of Human Collective Behavior

Information Cascade and Phase Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Masato Hisakado and Shintaro Mori

Information Cascade, Kirman’s Ant Colony Model, and Kinetic
Ising Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Masato Hisakado and Shintaro Mori

Information Cascade and Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Masato Hisakado and Shintaro Mori

The Pitman-Yor Process and Choice Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Masato Hisakado and Shintaro Mori

Domino Effect in Information Cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Shintaro Mori and Masato Hisakado

Information Cascade Experiment: General Knowledge Quiz . . . . . . . . . . . . . . 167
Shintaro Mori and Masato Hisakado

ix



x Contents

Information Cascade Experiment: Urn Quiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Shintaro Mori and Masato Hisakado

Information Cascade and Bayes Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Masato Hisakado and Shintaro Mori

Part III Applications of Data Analysis to Social Design

How Betters Vote in Horse Race Betting Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Shintaro Mori and Masato Hisakado

Smart Micro-sensing: Reaching Sustainability in Agriculture
via Distributed Sensors in the Food Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
R. Dolci and L. Boschis

High-Frequency Data Analysis of Foreign Exchange Markets . . . . . . . . . . . . . 225
Aki-Hiro Sato

On Measuring Extreme Synchrony with Network Entropy
of Bipartite Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Aki-Hiro Sato



Part I
Methods for Data Analysis and Design



How to Design Society
from a Data-Centric Point of View

Aki-Hiro Sato

1 Introduction

Many literatures are now engaged in terms of data-driven X, in which X can be
replaced with various concepts in different areas of investigation, research, and
practice. Examples include the following concepts: data-driven innovation, data-
driven decision-making, data-driven investigation, data-driven network analysis,
data-driven design, data-driven simulation, data-driven management, data-driven
programming, data-driven marketing, data-driven security, and data-driven science.
Data-driven innovation concerns product development based on data. Data-driven
decision-making is the principle of making decisions based on data. A data-driven
investigation is an investigation methodology both based on and driven by data.
Data-driven network analysis is a method to analyze networks based on data.
Data-driven design is a paradigm for products and service design based on data.
Data-driven approaches may have the potential to improve various aspects of
knowledge creation in society.

The author published a book entitled Applied Data-Centric Social Sciences
(Sato 2014), which set out several fundamental ideas concerning data analysis,
mathematical expressions, and computational abilities.

Ideally, science can be separated into four faces based on two axes such as
deductive-inductive and human-cyber dimensions (Kitagawa 2010). The deductive-
inductive axis characterizes scientific methods according to their philosophical
basis. The deductive method assumes that all insights can be derived from a few
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4 A.-H. Sato

fundamental theoretical principles. In this case, we believe that there are basic
equations or a few basic components (models) that can be used to explain the variety
of observations that occur in reality. When following a deductive approach, the
major task is to construct fundamental theories that will explain actual observa-
tions. Meanwhile, the inductive method takes for granted that we do not already
possess fundamental models that could explain all empirical data. In this sense,
inductive methods aim to uncover patterns and categorize the relationships among
observations. Meanwhile, the human-cyber axis assesses scientific methods in a
behavioral manner. The human-centric method focuses on scientific operations by
manual. Theoretical sciences are located at the intersection of deductive and human-
centric science. Experimental science is located where inductive and human-centric
science coincide. Meanwhile, computational science is located at the coextent of
deductive and cyber-enabled science, and data-centric or data science is located in
the quadrant belonging to inductive and cyber-enabled science.

Data-centric science, then, studies data processing techniques, data visualization
techniques, and data analytics in relation to a data analysis pipeline consisting of
data acquisition, data collection, data analysis, interpretation, and decision-making.
Data analysis may start with data acquisition by making connections with potential
stakeholders who manage data. It is often necessary to establish contracts with
several stakeholders to receive their data. Next, data collection must be undertaken,
consisting of available data. Data normalization should be designed to incorporate
database servers at the next stage, which may coincide with validation or verification
of data. Data quality management and data management should then be considered.
Afterward, data can be analyzed to understand the nature of the phenomena that
they express. Eventually, this process accumulates knowledge about the events
and phenomena that correspond to the data. Consequently, we can construct a
picture of the relationship between these phenomena and collected data at the data
interpretation stage for decision-making.

2 How to Use Data for Social Design

Three pillars of data analysis applications are nowcasting, forecasting, and doing
design. The nowcast is a tool with which to understand past and current situations,
including ongoing events, phenomena, and environmental factors. Meanwhile,
forecasting is intended to predict future situations based on insights concerning
past and current situations. Design, meanwhile, relies on the ability to identify
mechanisms of artificial and natural events and phenomena and find a solution
to solve issues by using controllable causal and correlational relationships among
them. Specifically, data analysis has a potential to drastically improve design from
both quantitative and qualitative perspectives since it enables us to improve our
understandings of causal and correlational relationships and help us make decisions
in design components.

Social systems can be constructed based on several components including rules,
organizations, individuals, roles, natural environments, artificial objects, technology,
and human relationships (Lazer et al. 2009).



How to Design Society from a Data-Centric Point of View 5

Our socioeconomic system

A social 
network 

(Relationship)

Accessibility to 
information and 

resources

Mobility

Mobility may create 
an opportunity to 
strengthen ties 
among people 

Accessibility to 
information and 
resources may drive 
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mobility

A social network gives 
an opportunity to 
access information 
and resources

Fig. 1 Socioeconomic system

From a functional perspective, society can be modeled using three attributes: a
social network (relationships), access to information and resources, and mobility.
These three components establish circular causality as shown in Fig. 1.

Social networks give us opportunities to access information and resources, which
may in turn propel an increasing opportunity for mobility. Finally, mobility may
create an opportunity to strengthen or weaken ties among individuals.

How can data be used to create the characteristics desired to serve specified social
functions? This is the main issue dealt with in this chapter. While many studies use
data accumulated within society, few of them have yet used these data to improve
society. To verify our interpretation derived from data analysis and available data,
we should understand the difference between data collection to problem-solving in
a nuanced way. Data are not answers in themselves but do inspire questions for both
researchers and practitioners. Data tell us how a phenomenon behaves and at the
same time prompt the question why a phenomenon behaves as observed.

3 How to Use Data for Social Storytelling

Data about society reflects the activities of each of its individual members. In fact,
each one independently executes their activities while only interacting with part of
the rest of the population. Therefore, it is worthwhile to find the patterns of our
social activity based on data and understand our society for obtaining insights to
construct and improve our social systems.

Researchers have two main types of methodologies available: data-driven and
purpose-driven methods. A data-driven method aims to identify a societal issue as a
focus of attention, if the researcher does not begin with a specific purpose in mind.
A data-driven method is useful to find an issue (problem) that should then be solved.
Meanwhile, a purpose-driven method aims to construct procedures to solve the issue
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or resolve the issue. If researchers begin a study having already identified a problem
to be solved, then they can collect data about the problem and attempt to find a
solution to solve it. In this case, identifying causality related to the issue is useful if
the problem results from a clear, linear relationship of cause and effect.

However, many social problems result from a circular relationship between cause
and effect, also referred to as circular causality. This implies that the action of one
person or organization results in an effect for other persons or organizations and
that at the same time the potential actions of any person or organization themselves
result from effects caused by other persons or organizations.

In general, it is difficult to detect time differences between a cause and an effect in
circumstances of circular causality. All researchers can do is to measure correlations
between the cause (effect) and the effect (cause). To analyze the problem from a
causal perspective, a story (narrative) about cause and effect is also required.

To tell a story based on data about society, two types of approaches may be
taken. One approach is to construct stories based on available data. Data about
human activities are collected by individuals or organizations. Researchers can tell
a story about the available data using a journey map technique (Miaskiewicz and
Kozar 2011; Richardson 2010; Moon et al. 2016), for example. To examine a story
about the data, analysts can draw a journey map related to the data. The overall
story about the data can be expressed using several journey maps that draw different
Personas (Nielsen 2013). Such a story is also profoundly related to workflow about
data collection, data summarization, and data dissemination.

Another approach is to understand human life using data based on a holistic
perspective since society consists of many individuals. The lifelog data (Botzheim
et al. 2013; Stefan 2016) and survey-based official statistics (Bureau of Statistics in
Japan 2016) about everyday life are useful from this perspective.

In the case of Japan, we have official statistics about everyday Japanese life in the
Survey on Time Use and Leisure Activities, (Bureau of Statistics in Japan 2016). This
survey aims to obtain comprehensive data on the daily patterns of time allocation
and leisure activities in Japanese society; it has been conducted every 5 years since
1976. This survey provides statistics that are not obtainable from others, which focus
almost exclusively on economic aspects of living. These statistics make it possible
to observe the lifestyles of various groups and evaluate preferences for certain
activities over others, as well as to improve the interpretation and understanding
of various social and economic phenomena. This survey also provides essential
background information on economic conditions.

The Survey on Time Use and Leisure Activities in 2016 classifies daily activities
into 20 categories and surveyed based on 15-minute time slots. The respondents
classify and record their activities on the reference date of the survey. When
respondents are engaged in more than one activity at the same time, they report
activity that they consider to be the main one. The 20 categories of activities are
grouped into three broad areas, called primary, secondary, and tertiary activities.

Primary activities are those that are physiologically necessary and consist of
“sleep,” “personal care,” and “meals.” Secondary activities comprise those which
each person is committed to performing as a member of a family or of the wider
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society. This category includes “commuting to and from school or work,” “work
(for pay or profit),” “school-work,” “housework,” “caring or nursing,” “child care,”
and “shopping.” Tertiary activities include all other activities such as “learning,
self-education, and training (except for schoolwork),” “hobbies and amusements,”
“sports,” and “volunteer and social activities.” Time spent in tertiary activities
corresponds to what is usually called “free time.” Table 1 shows the weekly average
time used in Japan for each kind of activity, grouped by sex, in 2011 and 2016. We
can see that in 2016, 10.41 h are used for primary activities, 6.57 h for secondary
activities, and 6.22 h for tertiary activities.

By using Personas and the journey map technique (Cooper and Saffo 1999;
Nielsen 2013), we can draw typical journey maps of the three types of activities
as shown in Fig. 2. The journey map of everyday life is quite meaningful. The
utility curve of primary activities is a function that increases with time. Meanwhile,
the utility curve of secondary and tertiary activities may increase or decrease as a
function of time. The maxima of the tertiary activities are usually higher than the
maxima of the secondary activities.

4 How to Use Data to Design Social Systems

Data consists in a collection of observations or facts. Efforts to analyze data and
to apply insights obtained from data analysis to solve problems are also important
when designing social systems. In such cases, participatory processes (Kita et al.
2008; Kita and Mori 2009) and a CAPD cycle (Check, Action, Plan, and Do) is
quite a useful method, representing a version of the Deming cycle (Deming 1986).

The first step of the CAPD cycle is to Check. In the Check phase, researchers
attempt to analyze the current situation of the social system that they aim to
improve. The next step of the cycle is Action, when they identify what they
want to improve in the selected social system more specifically. In the Plan
phase, they carefully construct a plan to modify the social system (organization,
communication, information, management, and so on). Finally, in the Do phase,
they execute the plan constructed in the Plan phase. In terms of this procedure, the
C and A phases form the basis of the gap analysis at the initial stage.

So how can the CAPD cycle be applied to solving social problems? A classical
approach to solving social problems consists of the following:

1. Specialists analyze social problems using advanced techniques and various types
of data and propose several potential solutions using insights about phenomena.

2. Specialists design plans to implement the optimal and most efficient solutions
identified.

3. Stakeholders in the actual social world select an optimal solution from various
proposals to solve social problems initiated outside of political organizations.

4. Stakeholders implement the optimal solution they have chosen.
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Table 1 Weekly average time usage (in hours) in Japan for each kind of activity by sex in 2011
and 2016

Total Male Female
2011 2016 Difference 2011 2016 Difference 2011 2016 Difference

Primary activities 10.40 10.41 0.01 10.33 10.34 0.01 10.46 10.49 0.03
Sleep 7.42 7.40 −0.02 7.49 7.45 −0.04 7.36 7.35 −0.01
Personal care 1.19 1.22 0.03 1.09 1.11 0.02 1.29 1.31 0.02
Meals 1.39 1.40 0.01 1.36 1.38 0.02 1.42 1.43 0.01
Secondary
activities

6.53 6.57 0.04 6.49 6.50 0.01 6.57 7.03 0.06

Work and
work-related
activity

4.43 4.49 0.06 6.08 6.08 0.00 3.23 3.35 0.12

Commuting to and
from school or
work

0.31 0.34 0.03 0.40 0.43 0.03 0.23 0.25 0.02

Work 3.33 3.33 0.00 4.46 4.41 −0.05 2.23 2.29 0.06
School work 0.39 0.42 0.03 042 0.44 0.02 0.37 0.41 0.04
Housework and
related work

2.10 2.08 −0.02 0.42 0.44 0.02 3.35 3.28 −0.07

Housework 1.27 1.23 −0.04 0.18 0.19 0.01 2.32 2.24 −0.08
Caring and nursing 0.03 0.04 0.01 0.02 0.02 0.00 0.05 0.06 0.01
Child care 0.14 0.15 0.01 0.05 0.06 0.01 0.23 0.24 0.01
Shopping 0.26 0.26 0.00 0.17 0.17 0.00 0.35 0.34 −0.01
Tertiary activities 6.27 6.22 −0.05 6.38 6.36 −0.02 6.16 6.09 −0.07
Moving (excluding
commuting)

0.30 0.29 −0.01 0.29 0.28 −0.01 030 0.30 0.00

Watching TV,
listening the radio,
reading
newspapers, or
magazines

2.27 2.15 −0.12 2.31 2.19 −0.12 2.24 2.11 −0.13

Rest and relaxation 1.31 1.37 0.06 1.31 1.37 0.06 1.31 1.36 0.05
Learning,
self-education, and
training (excluding
schoolwork)

0.12 0.13 0.01 0.13 0.13 0.00 0.12 0.12 0.00

Hobbies and
amusements

0.44 0.47 0.03 0.53 0.57 0.04 0.37 0.37 0.00

Sports 0.14 0.14 0.00 0.18 0.18 0.00 0.11 0.10 −0.01
Volunteer and
social activities

0.04 0.04 0.00 0.04 0.04 0.00 0.04 0.04 0.00

Social life 0.19 0.17 −0.02 0.18 0.15 −0.03 0.20 0.19 −0.01
Medical
examination or
treatment

0.08 0.08 0.00 0.07 0.07 0.00 0.10 0.09 −0.01

Other activities 0.17 0.19 0.02 0.15 0.17 0.02 0.18 0.20 0.02
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Story

Primary activities (Meals)

Secondary activities (Work)

Tertiary activities (Hobbies)

a

b
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Thinking
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Decide a
menu

Management
of ingredients

The utility curve of the primary activity is a typically increasing function in terms of time.

The utility curve of the secondary activity is a typically increasing and decreasing function in
terms of time.

The utility curve of the tertiary activity is a typically increasing and decreasing function in terms of time.
The maxima of the tertiary activities is usually higher than the maxima of the secondary activities.
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eat ?
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Go home

Never give
up!

Fig. 2 Examples of journey maps concerning three types of activities. (a) Primary activity (meals),
(b) secondary activity (work), and (c) tertiary activity (hobbies)
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However, the classical approach to solving social problems only works in
principle, since in practice specialists cannot understand all social phenomena due
to their complexity, while stakeholders cannot understand the plan designed by
specialists either, due to its complexity. Therefore, a modern approach to solving
social problems has been proposed as follows:

1. Specialists identify general areas of interest to focus on based on their research
activities.

2. Specialists organize groups of varied stakeholders in the areas identified, trying
to analyze and discuss social problems through participatory processes.

3. Both stakeholders and specialists analyze data related to social problems and
share their understanding of the problems along with visions of future society.

4. Based on shared visions, stakeholders design and implement plans to solve social
problems within their areas of influence and control.

This modern approach to solving social problems has also been articulated in the
12 steps used to develop indicators of sustainable development for tourism by the
World Tourism Organization (Indicators of Sustainable Development for Tourism
Destinations: A Guidebook 2004). Good indicators offer some of the benefits needed
for better decision-making, illuminating emerging issues, identifying impacts, mea-
suring the performance of monitored activities, and reducing the risk of planning
mistakes. Indicators have several levels of resolution in terms of both their spatial
and temporal aspects. From a spatial viewpoint, there is a hierarchical structure such
as the global, national, regional, subregional, and gridded levels. Moreover, specific
places, organizations, and establishments may be used as a unit of measurement for
indicators.

Indicators are categorized into six types:

1. Early warning indicators
2. Indicators of stresses on the system
3. Measures of the current state of the industry
4. Measures of the impact of implementation on the environment
5. Measures of management effort
6. Measures of management effect and performance

Measurements are separated into two types such as quantitative and qualitative
(or normative) measurements. Typical examples of quantitative measurements
include raw quantities, ratios, and percentages, while, typical qualitative and
normative measurements are mainly opinion-based indicators.

Moreover, we need to understand collective human behavior often observed
in socioeconomic systems. The simplest model of social collective behavior is
an Ising model, which was firstly proposed for understanding magnetisms. In the
Ising model, interactions among components and noises produce order parameters
governing each component. The order parameters appearing in a social group also
may coordinate human individual behavior. Key performance indicators (KPIs)
often may be introduced in a socioeconomic system to subject order parameters
based on data-driven methods.
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5 UNWTO Framework

This section explains the 12 steps for sustainable tourism development proposed by
the World Tourism Organization (UNWTO) (Indicators of Sustainable Development
for Tourism Destinations: A Guidebook 2004). The 12 steps are classified into
three phases. The three phases of this process consist of research and organization,
indicator development, and implementation. KPIs may be used to direct our society
toward what we desire. The three phases grouping 12 steps are as follows:

Phase 1. Research and organization

Step 1. Definition/delineation of the destination
Step 2. Use of participatory processes
Step 3. Identification of tourism assets and risks
Step 4. A long-term vision for a destination

Phase 2. Indicator development

Step 5. Selection of priority
Step 6. Identification of desired indicators
Step 7. Inventory of data sources
Step 8. Selection of procedures

Phase 3. Implementation

Step 9. Evaluation of feasibility/implementation
Step 10. Data collection and analysis
Step 11. Accountability, communication, and reporting
Step 12. Monitoring and evaluation of indicators application

As depicted in these 12 steps, data collection and data analysis take place at the
implementation phase. These activities are organized in the form of workshops or
conferences in which stakeholders participate.

The essential activity across the 12 steps is a gap analysis between the current
situation of the community to which participating stakeholders belong and the long-
term vision that can be shared by this community. After selecting priority issues
in the gap recognized by the community, participants attempt to construct KPIs
that can be measured by community members and to implement an organizational
reporting activity. KPIs can thus be used to improve the collective behavior of the
community, if all community members pay attention to the KPIs and change their
behavior based on what they observe.

The most essential components of this approach include the data (information)
flow needed to derive the KPIs and an organization willing to maintain them.
Specifically, the dominant factor concerns human collective behavior. Data can
form human relationships as they pass on information. Thus, the design and
implementation of data flow and organization can be the most essential step in
developing indicators. Data analysis and deployment of indicators sometimes need
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experts such as data scientists and ICT engineers due to high technical levels and
the complexity of social systems.

5.1 Phase 1. Research and Organization

Step 1. Definition/Delineation of the Place or Domain Definition of the place
and domain is a necessary first step. Practitioners should find key stakeholders
representing the place or domain as part of their research and organizing activities.
Moreover, they need to understand the current state of the place or domain. At this
step, they understand that significant amounts of information may already exist by
which to understand the issues and the scope of the project to be planned. To develop
indicators, a participatory process is essential; this is also beneficial for identifying
potential sources of information for indicators.

Step 2. Use of Participatory Processes Key factors to consider when building a
participatory process are timing, frequency, duration, and consultation techniques.
Evaluating the timing for participants to obtain knowledge about the system is
essential. The frequency of meeting or events may be adjusted. If they are not
frequent enough, participants may forget the processes of the project. Meanwhile,
meeting too frequently may result in less participation since participants feel
overloaded. Indicator development should be undertaken as a long-term activity.
However, the development phase should be done based on a project with a finite
duration and budget. The size of the group for any participatory process must also
be considered. Managing large groups is quite difficult at the initial stage. A growth
model for participatory processes may be used when introducing a CAPD cycle. As
a consultation technique, organizing meetings with selected stakeholders may be
useful.

Step 3. Identification of Assets and Risks The purpose of this step is to identify
the assets within the relevant place or domain and to understand what the key assets
are and which of their elements are valued by suppliers as well as current and
potential consumers. Assets are defined by the benefits they produce within the place
or domain. Moreover, it is necessary to understand the sensitivity of such assets to
changes in demand, which may entirely reconfigure their importance. Moreover, it
is useful to assess the strengths, weaknesses, opportunities, and threats (SWOT) of
the place or domain.

Step 4. The Long-Term Vision for a Place or Domain Indicators used to organize
participants should be based on the agreement of stakeholders within the place.
To accomplish this, a long-term vision should be developed that can be broadly
shared within the place. At a workshop, participants representing each stakeholder
may discuss a long-term vision that can be shared broadly within the place or
domain. For example, maintaining a community over an extended period of time
is typically more essential than high economic performance. In the case of an
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industrial organization, profit is often more important than environmental issues.
Thus, priorities depend strongly on stakeholder perspectives. This results in trade-
offs among stakeholders and may turn out to be a multi-objective optimization
problem.

5.2 Phase 2. Indicator Development

Step 5. Selection of Priority Issues and Policy Questions The purpose of this
step is to identify the most important issues while considering the perspectives of
all stakeholders. If possible, priority issues and policy questions should be identified
using a participatory group approach.

The objective at this stage is to obtain consensus involving a broad range of
participants on a list of important issues identified in a participatory workshop.

Step 6. Identification of Desired Indicators Based on the risks and policy
questions identified, multi-stakeholders may form a technical group consisting of
experts from several domains and can define a list of possible indicators that might
be used to understand the risks and issues and to manage the place or domain. In
certain cases, some of the most potentially useful indicators may not be feasible
due to technical, financial, staff, or other constraints related to data collection and
data processing. Such indicators can be set aside for further development. In some
cases, the range of processes to be used in indicator identification is highly technical;
stakeholders may need help from a technical group to identify the indicators they
desire and find most useful.

Step 7. Inventory of Data Sources To calculate indicators, data sources are
required. Indicator selection requires information about currently available and
potentially obtainable data sources to calculate indicators. Two methods may be
used to develop indicators, namely, data-driven and issue-driven approaches. The
data-driven approach is to develop indicators that can be calculated based on a
list of available data sources. This approach is particularly effective at places or
domains where extensive data source are already available. Meanwhile, the issue-
driven approach is to develop indicators for what stakeholders want to understand
to solve political issues. After identifying the issue and developing an indicator,
the feasibility of the indicator must be evaluated. This approach is useful in cases
where further development is needed to improve the current situation. Based on
desired indicators, a mechanism to collect data that has not previously existed can be
installed in the system. The process of indicator development needs to ask questions:
what information is needed to calculate indicators, what data can be created or
obtained now, and how information sources can be improved in the future.

Step 8. Selection Procedures Indicators should be scored based on five criteria
including (1) the relevance of the indicator, (2) the feasibility of obtaining and
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analyzing data, (3) the credibility of the information and reliability of the data
for users, (4) the clarity and understandability of the indicator for users, and (5)
comparability over time and across places and domains.

In many cases, the desired indicators will not be easy to produce due to technical,
financial, or organizational reasons. This can occur because information sources
are widely dispersed, and because the cost of data collection may be unacceptably
high, or there is no authority with the capacity to gather the information. However,
the selection procedure activates stakeholders throughout the discussion, which
may stimulate a discussion among stakeholders and eventual future implementation
activity.

5.3 Phase 3. Implementation

Step 9. Evaluation of Feasibility/Implementation Procedures To evaluate feasi-
bility and implementation procedures, each indicator in a list of selected candidates
should be specified in terms of:

1. Specific data source(s) to be used to compute the indicator
2. Specific characteristics of the data
3. The frequency of data collection
4. Time lags between collection and availability
5. Considerations of access and confidentiality
6. Reporting units, validity, and accuracy
7. Responsibility for the provision of data, data analysis, and any additional

manipulation
8. Costs and technical requirements of data collection and analysis

In practice, it may not always be necessary to calculate indicators based on
detailed scientific data. We need to consider what decision-makers need.

Step 10. Data Collection and Analysis For each indicator, it is essential to clarify
the specific means to be used to obtain information. Existing data collected by
stakeholders, extraction and manipulation of data from existing data sources, the
creation of new comprehensive data, and the creation of sample data are all possi-
bilities. It is often useful to consider data sources collected by other administrations
or organizations that have not been included in a participatory process. The four
types of possible indicators are quantitative, qualitative, normative, and descriptive
in nature. Quantitative means variables that may be collected to measure something
such as liters of water consumption per person. Qualitative measures include
percentages of the population who experience a particular feeling. Normative means
adaption to socially defined standards, and it is measurable from data that includes,
for example, the ratio of yes/no decisions to the total survey samples.

Step 11. Accountability, Communication, and Reporting The purpose of indi-
cators is to be used in decision-making and communication. Regular reporting
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to stakeholders, the public, and specific decision-makers is intended to maximize
this influence. The key to effective implementation is commitment. Essentially,
indicators should become part of a planning process for the place or the domain.

Step 12. Monitoring and Evaluation of the Application of Indicators Indicators
should be reviewed regularly. Periodic review of indicator applications can lead to
maintaining implemented KPIs from both organizational and technical perspectives
or shading light on further local priorities or emerging issues. Decision-makers
need to confirm current situations based on indicators and to understand changes
in situations by comparing indicators with past data. It is still worthwhile to revisit
indicators every few years seeking improvement.

6 Conclusions

This chapter has discussed how to understand society using data and apply insights
obtained data analysis to social design. It presented examples such as journey
maps about three types of activities (primary, secondary, and tertiary activities) and
statistics on time use for these activities based on Japanese official statistics. In such
cases, data storytelling is quite meaningful.

Participatory design approach is a helpful tool used to enhance design work
with different stakeholders. This chapter also mentioned the advantages of design
workshops with heterogeneous participants and how to position data analysis in
relation to the design workshop. Data analysis can be used to understand current
situations in both qualitative and quantitative terms. This analysis can be used as an
input into the design workshop with various types of stakeholders.

A CAPD (check, act, plan, and do) cycle was introduced to consider how
to influence social relationships and the behavior of members belonging to the
community, from a social design perspective.

Specifically, it is crucial to consider and manage the interaction among multiple
stakeholders during the design task based on the purpose of the design. In these
cases, understanding of herding behavior based on dynamical models is needed for
managing the design processes as well as for shaping social systems that we want
to design.
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Practical Methods for Data Analysis

Aki-Hiro Sato

Data analysis is essential for understanding the phenomena observed in the actual
environment. Data analysis forms a workflow consisting of data acquisition,
collection, visualization and quantification, and interpretation. The purpose of
data analysis is to find insights into phenomena that we have attended to and
make decision-makers change their behavior. Data utilization should form an
improvement cycle with Check, Action, Plan, and Do (CAPD). This chapter
shows a fundamental definition of data (four types of data formats, such as time
series, network, spatial, and linguistic data). Several methodological frameworks for
analyzing data and how to use the results obtained from data analysis are discussed.

1 Introduction

Why do we need data analysis? We have some likely answers to this question.
According to some, visualizing and quantifying data by applying statistical and
mathematical methods to the given data should be a goal of data analysis. Others
think that we should begin with data analysis to produce sufficient data collection.
Both answers are partially correct. Each mentions a methodological aspect of data
analysis but does not tell us the purpose of data analysis.

An essential answer to this question may be that we want to make decisions
in a specific domain from a data-centric point of view. Thus, the final goal of
data analysis should be to contribute to someone’s decision-making. To do so, we
need to consider a method for extracting information (interpretation, implication,

A.-H. Sato (�)
Yokohama City University, Kanazawa-ku, Yokohama-shi, Kanagawa, Japan

Japan Science and Technology Agency PRESTO, Kawaguchi-shi, Saitama, Japan

Statistical Research and Training Institute, Ministry of Internal Affairs and Communications,
Shinjuku-ku, Tokyo, Japan
e-mail: ahsato@yokohama-cu.ac.jp

© Springer Nature Singapore Pte Ltd. 2019
A.-H. Sato (ed.), Applications of Data-Centric Science to Social Design,
Agent-Based Social Systems 14, https://doi.org/10.1007/978-981-10-7194-2_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7194-2_2&domain=pdf
mailto:ahsato@yokohama-cu.ac.jp
https://doi.org/10.1007/978-981-10-7194-2_2


18 A.-H. Sato

and insights) from the data that we want to tackle. In this sense, data analysis
should form a process consisting of four steps: acquiring, collecting, visualizing
and quantifying, and interpreting data.

Specifically, in this chapter, we address existing workflows and frameworks that
can be useful in practical data analysis and compare those workflows. Moreover, we
discuss how to find a connection with problem discovery, problem identification,
problem-solving, and design of a system in societal contexts from a data-centric
point of view.

The Cross-Industry Standard Process for Data Mining (CRISP-DM) is a data
mining process model commonly used in business and management (Chapman et al.
2000). This framework includes six crucial components: understanding the business,
understanding the data, preparing the data, modeling, evaluating, and deploying.
The business understanding is located in the initial phase of data analysis. This step
focuses on understanding the project objectives and requirements from a business
perspective. Knowledge about business understanding can be used as a preliminary
plan designed to achieve the given project objectives. The data understanding phase
starts with the initial data collection to discover the first insights into the data and
interesting hypotheses.

Define, Measure, Analyze, Improve, and Control (DMAIC; ISO 13053-1:2011)
is another method for using data for decision-making. This approach was developed
in Six Sigma projects. This procedure is mainly used in the improvement process
to produce products in manufacturing and service industries. The initial phase of
DMAIC is Define. The purpose is to clarify business problems, goals, potential
resources, the project scope, and hierarchical project timeline from conceptual levels
to detailed levels.

The Generic Statistical Business Process Model (GSBPM; European Com-
mission 2014) is a workflow model for producing statistics within and between
statistical offices in different ways. This procedure is to be used when we produce
a data product. The GSBPM includes nine components: Specify Needs, Design,
Build, Collect, Process, Analyze, Disseminate, Archive, and Evaluate. The initial
phase of this procedure is the specification of needs, which consists of six steps:
determine the need for information, consult and confirm needs, establish output
objectives, identify concepts (user needs), check data availability, and prepare a
business case.

Specifying needs is an essential part of a project. This is almost equivalent to
managing projects to provide users with goods or services. However, we often do
not have sufficient project definitions, such as needs, project objectives, and plans.
In this case, exploratory data analysis (Tukey 1977) is an effective method. We also
introduce a cyclic pipeline based on the Check, Action, Plan, and Do (CAPD) cycle.
In this chapter, data analysis tools for decision-making are addressed.
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2 What Data Are

What are data? Data are a collection of facts that can be described as values or
expressions. Data are expressed as a set of descriptions or numbers and can be
qualitative or quantitative. Data are collected from the world through devices or
surveys. There are several types of data, such as time series, network, geospatial,
and text data. The data types are classified into structured, semi-structured, and
unstructured. An example of structured data is tabular data, which are expressed
as relational databases or. csv/.tsv data. Each column is represented by a field name,
and a set of elements filled in some fields in each row is called a record. Each record
contains values and expressions. The values are called “measures,” and the expres-
sions are “dimensions” (see Sect. 3.3). A dimension is a set of categorical discretized
concepts. Discrimination by categorical discretization is not unique. Moreover, we
intuitively use projectable predicates in inductive reasoning only. However, we
cannot rigorously discriminate projectable predicates from unprojectable predicates
when we apply inductive reasoning to problem-solving. This is referred to as “the
grue problem” (Goodman 1955). This problem proposes that categorical data are
ambiguous. By using continuous or discrete values recognized as a measure, we
normally define categories. For example, children and adults are defined by using
ages. A 25-year-old woman is categorized as an adult. An 8-year-old boy is called a
child. A boundary separates children and adults. This discrimination boundary is not
unique but dependent on societies, nations, and organizations. Thus, the selection of
the number of categories and a way to determine the discrimination boundaries are
arbitrary.

Moreover, we need to understand errors in values. Three types of errors
are important: observation, computational, and discrimination errors. Observation
errors are made through observation processes for collecting data. To improve
observation errors, we need to improve the physical processes for obtaining
the original data. Computational errors are errors made through computational
processes. Modern digital computers require discretization to store and manipulate
numerical data. In this case, rounding, discretization, numerical, and model errors
are inevitable. Discrimination errors dominate categorical data. Type I and type II
errors are known in model-based categorization problems. Moreover, ambiguity or
arbitrariness in categorical data should be mentioned. This means that categories and
categorized elements defined by one person are not always the same as categories
defined by other persons.

According to Karl Popper (1978), there are three worlds. World 1 is a world that
consists of physical bodies. World 2 is the world of mental or psychological states
or processes. World 3 is the world of the products of the human mind. Data are
collected from each of the three worlds.

Data are described as symbols associated with objects or concepts in the real
world. We assume that there is a one-to-one relationship between a symbol and an
object or a concept.
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3 Methods

3.1 Concepts

Data analysis forms a process consisting of several steps. Figure 1 shows a
schematic illustration of the essential workflow of the data analysis. A data analysis
pipeline consists of data acquisition, collection, quantification and visualization, and
interpretation. In this section, we explain a generic workflow for data analysis.

Data Acquisition In the data acquisition step, people access data sources and
construct a concrete connection with an organization to produce data sources.

Data Collection In the data collection step, people collect data from the detected
data sources. This includes storing data, constructing new data, and preparing data
that can be used in the next step, data visualization and quantification.

Data Visualization and Quantification In the data visualization and quantifica-
tion step, people may draw graphs or pictures from data and calculate representative
quantities called indicators or indices. Descriptive statistics, such as mean and
variance, are useful for characterizing quantitative data.

Data Interpretation In the data interpretation step, people write documents to
explain an objective with the graphs and representative quantities obtained in the
previous step. This activity is often called reporting. Reports that explain what the
data told us should be used to deliver messages or stories about insights obtained
from the data analysis to a decision-maker.

3.2 Data Acquisition

If we want to conduct data analysis, we always need data. Therefore, the first step
in data analysis is data acquisition. How do we acquire data? There are three ways
to acquire data:

1. Access data that were collected in our own organization.
2. Access data that were collected in other organizations.
3. Design experiments, survey, and investigations, and collect data from the actual

environment.

Fig. 1 A schematic illustration of a pipeline for data analysis
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Fig. 2 A schematic illustration of R&D for data and statistics

(1) When we access data that have accumulated in our own organization, we plan
a secondary use for the data. In this case, we do not always obtain the data that we
want to access because the designers of the data sets had different intentions for the
data and had different purposes for collecting the data. Nevertheless, we may find
a way to use data that were collected in other projects. Data repositories and data
libraries can be used to find useful data sets that we need.

(2) If we want to access data that were accumulated in other organizations, then
we may need to purchase data from commercial entities or obtain data based on
contracts. In this case, a data catalog and a data company are channels for accessing
data sources we need.

(3) If we want to collect original data based on an experiment, survey, or
investigation, then we need to develop what we want.

The data acquisition step is related to research and development (R&D) for data
analysis. In this sense, we may add a generic workflow about R&D to the data
acquisition step. A generic R&D process for data can consist of identification of
needs, design, development, and evaluation as shown in Fig. 2.

Identification of Needs We need to understand the needs of the data analysis
before we collect data. In this step, we could interview potential users. After we
understand the business processes, we can extract the requirements of our data
analysis.

Design After identifying the needs for the data analysis, we need to identify
procedures, a calculation method, data elements, and the data collection method.

Development After identifying the procedure for collecting data, we need to select
an executable operation and describe a series of methods as the operation manual.
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In this stage, we need a work schedule and resource estimates for the workforce,
finances, and equipment. We can produce a prototype from the developed work
schedule.

Evaluation We may evaluate the process for processing data by showing a
prototype to potential users and collecting their opinions.

These four steps should form a cycle. We can eventually improve our require-
ments and work schedules for producing data by using the cycle.

3.3 Data Collection

How do we collect data? What kinds of data are needed? To understand the phe-
nomena observed in the actual environment, we need to understand the fundamental
characteristics of the available data in advance.

According to the cube model in RDF Data Cube Vocabulary (MacKay and Old-
ford 2000; W3C 2014), tabular statistical data include three types of categories:

1. Dimension.
2. Measure.
3. Attribute.

The dimension components are used to identify the observations. Categorical
data are dimensional. For example, time stamps and regional codes are dealt with
in the dimension components. The measure components represent values observed
in the phenomenon. For example, physical quantities, such as temperature, length,
weight, speed, and the number of objects, are dealt with in the measure components.
The attribute components are used to qualify and interpret the observed values.
These components enable us to specify the units of measure, any scaling, and
metadata, such as the status of the observations (estimation, census, etc.).

If the data are tabular, then a relational data model is applicable. This model
is normally used in tabular data consisting of several cells. Rows and columns
are used to characterize the tabular data. A relational database must define the
meaning of the rows and columns. The action for defining the database structure is
called normalization. Creating a table is related to defining a data structure. In data
collection, we always define the data elements and the meaning of the dimension
components and measure components. This task sometimes is called understanding
the data. Understanding the data is the first important task of data collection. In
the first stage, we do not need to identify all the data elements. However, we must
identify some types of data elements before we analyze the data.

Figure 3 shows an example of tabular data that express statistical data. The field
names are expressed as dimension components, and observations are expressed
as measures. In this example, the measures and their values are expressed in
observations.
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Fig. 3 An example of tabular data in statistics

3.4 Data Visualization and Data Quantification

Data visualization and quantification are important tasks for explaining the char-
acteristics of the data to other people. For this purpose, various types of graphs
and visualized data representations have been invented by many researchers and
practitioner (Tufte 2001; Krum 2014; Kirk 2016; Naparin and Saad 2017). Edward
Tufte (2001), the father of data visualization, published The Visual Display of
Quantitative Information. The purpose of data visualization is to make audiences
understand the information from data. Thus, a better method for visualizing data is
to convey a strong sense of understanding and credibility.

The appropriate method for data visualization strongly depends on the type of
data. Three main types of data expression, such as time series, network, and spatial
data, are used. Combinations of the three types of data expressions are also possible.
For time series data, we can use a bar graph, a line graph, and a point graph. For
network data, we can use nodes (vertexes) and links (edges) to show relationships
among elements. For spatial data, we can use geographic mapping into spatial data.
We need to understand the characteristics of the data by using graph expressions.

3.5 Data Interpretation

From data analysis, we understand the structure of the data and draw the phe-
nomenon described by the data. Such outcomes should be described as a document
that includes stories about the phenomenon, graphs, and tables.
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Fig. 4 A conceptual illustration of communication between a transmitter and a receiver

If a decision-maker regards the information provided by the document and
changes his/her behavior, then the data analysis turned out to produce value.
Otherwise, the data analysis did not produce value. Therefore, the data or data
analysis should be measured by how much decision-makers change their behavior
by using the data, or an outcome of the data analysis.

This view of the value of data or data analysis is closely related to a general
definition of information from a qualitative point of view. The most famous
definition of information from the qualitative aspect is Gregory Bateson’s. In his
book Steps to an Ecology of Mind, Bateson (2000) defines information as “a
difference which makes a difference.”

As shown in Fig. 4, Bateson assumes there are two roles in communication: a
transmitter and a receiver. The transmitter and the receiver have their own internal
state that is sensitive to their action, attitude, and behavior. The transmitter produces
a message and sends it to the receiver. Bateson’s statement about the definition
of information means that the information in a message can be recognized by the
transmitter and the receiver if and only if the receiver’s internal state (related to
the receiver’s attitude and behavior) have been changed by the message that the
transmitter sent to the receiver.

In the context of data analysis, the value of data or data analysis should be
captured by how much information is extracted from the data through the data
analysis. Therefore, we must pay attention to the outcomes of data analysis by
measuring how our reporting activities made decision-makers change their internal
state.

4 CAPD Cycle

If we follow the conventional data analysis pipeline, then we need to consider
data acquisition as the first step. However, normally, we do not have sufficient
knowledge about data initially. As a result, we cannot find a good way to access an
adequate data source. To avoid deadlock, we should begin with small data related
to problems when we start the data analysis. Moreover, we do not sometimes have



Practical Methods for Data Analysis 25

Fig. 5 A conceptual
illustration of the data
analysis cycle

even fundamental domain knowledge about the data. We often do not know issues
and problems that we need to solve. We further may not know the exact meaning of
the descriptions included in the data. Thus, if we address the field names included in
tabular data, then we may improve our understanding of a specific domain about the
given data. In this case, we may use the Check, Action, Plan, and Do (CAPD) cycle
with the data analysis pipeline. Then we can form a data analysis cycle. Figure 5
shows a cyclic method for data analysis.

First, we should start with data acquisition. This data analysis pipeline will help
us improve the data volume and data variety by deepening the data interpretation.
If we employ the data analysis cycle by starting with small data in which we are
interested, then we may approach big data and big pictures from small data related
to what we want to focus on through an improvement process for data analysis.

Normally, big data exist far beyond the human processing capacity because
human data processing speed for long memory through reading, writing, and
speaking is estimated at 0.7–2.3 bits per second. The total volume of data that can be
expressed by narratives per life per human is estimated as ranging from 300 MB to
500 MB. Therefore, we humans normally need a system to use big data for decision-
making. Furthermore, such a system should be connected to several data sources
to construct data flows. We can identify three areas of data sources in the social
context:

1. Data we have not assessed yet.
2. Data we have accessed but have not extracted sufficient information for interpre-

tation.
3. Data we accessed and extracted sufficient information for interpretation but have

not integrated with other data for users.
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Big data are thought to be the next frontier for innovation, competition, and
productivity. The classical big data characteristics are volume, velocity, and variety.
This is abbreviated as the 3Vs.

Big data can be accessed by everybody theoretically; however, big data cannot
be analyzed by anybody in practice. This comes from a limitation of our resources
in the data analysis. Thus, we need to consider the data analysis workflow and the
purposes of data analysis carefully.

As we humans are finite, our capacity is smaller than the currently available big
data. Thus, we need to carefully consider how to tackle issues that we need to solve
with big data. In this sense, the CAPD cycle with gap analysis is quite helpful. In
the Check phase, we start by confirming our current situation, such as our resources,
knowledge, and capacity. In the Action phase, we recognize a gap between what we
are and what we will be. Our desirable ideal in the future should be designed then.
After understanding the gap, in the Plan phase, we can construct a plan to realize our
desirable ideal based on the current situation (knowledge, resources, memberships,
and organization). In the Do phase, we can conduct our plan step-by-step. If the
plan is executable within a reasonable time horizon, we may change our situation
and approach our desirable ideals. In the next cycle, we check our current situation
and recognize a gap between our current situation and our ideal.

Specifically, big data are characterized by the 3Vs. Volume means a quantitative
aspect of data, such as the number of records, the number of elements, and bits
included in data. The first, data volume, should be considered in terms of three
aspects: units of volume, a time period, and the criterion used to define the volume
size. Recently, the data size in some big data use cases reached from terabytes to
petabytes. The data-generating speed (velocity), which measured by bit per second
(pbs), can be used to characterize big data. This is referred to as the rate of flow at
which the data are created, stored, analyzed, and visualized. For example, big data
with high velocity means a large quantity of data is being processed within a short
amount of time. Velocity has three aspects: the unit, time period, and the criterion
used to define the velocity value. Data variety can be used to characterize big data.
This can be considered from multiple repositories, domains, or types. The number
of categories included in data is one of the indices for measuring various big data.
Other aspects of big data can also be characterized. For example, variability refers to
changes in the rate and nature of the data. Veracity relates to data quality represented
by the completeness and accuracy of the data concerning semantic content, as well
as the syntactical quality of the data (missing fields or incorrect values).

5 Previous Studies

We look at existing procedures related to data analysis. Some existing frameworks
can be used in practical data analysis. For example, CRISP-DM is a data mining
process model commonly used in business and management (Chapman et al. 2000;
Wirth and Hipp 2000). The CRISP-DM proposes a cyclic workflow reference
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Fig. 6 Phases of the
CRISP-DM reference model
(Chapman et al. 2000)

model consisting of data understanding, data preparation, data modeling, evaluation,
business understanding, and deployment. The CRISP-DM possesses a hierarchical
process model, composed of the sets of tasks described at four levels of abstraction:
phase, generic task, specialized task, and process instance. Each phase consists of
generic tasks related to possible data mining situations. The specialized tasks in
a generic task indicate specific situations. The process instance is a record of the
actions, decision, and results of an actual data mining engagement. The CRISP-DM
reference model forms the life cycle of a data mining project. This life cycle contains
six phases, business understanding, data understanding, data preparation, modeling,
evaluation, and deployment, as shown in Fig. 6.

Business understanding is the initial phase for understanding the project objec-
tives and requirements from a business perspective. In this phase, we need to find
a problem definition and a preliminary plan designed to achieve the objectives. In
the data understanding phase, we collect the initial data, and we attempt to become
familiar with the data. In this phase, we identify data quality problems, discover
first insights into the data, and assume working hypotheses regarding hidden
information. The data preparation phase includes all activities needed to construct
the final dataset based on the insights obtained during the data understanding
phase. In the modeling phase, various modeling techniques are selected and applied.
Moreover, model parameters are calibrated to optimal values. Some types of
techniques require additional data that are not included in the dataset generated
in the previous data preparation phase. Thus, going back to the data preparation
phase is often necessary. Evaluation is a phase for checking a model (models) with
high-quality data before the final deployment of the model. An essential purpose of
this stage is to determine whether there are some critical business issues that have
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Fig. 7 DMAIC methodology

not been sufficiently considered. If business issues have not sufficiently considered,
we need to go back to the business understanding phase. Deploying the model
developed through data analysis in the system or decision-making processes is
the final goal of the project. In the deployment phase, we generate a report for
decision-makers or construct automated systems based on the developed model with
calibrated parameters. The deployment phase is one of the end points of the project.

DMAIC (ISO 13053-1:2011) is another approach for using data for decision-
making. This approach was developed in Six Sigma projects. This procedure is
mainly used the improvement process to produce products in manufacturing and
service industries. DMAIC consists of five phases: Define, Measure, Analyze,
Improve, and Control. They are shown in Fig. 7. In the Define phase, we understand
the problem, project goals, and consumer requirements. We identify methods for
improving the system and opportunities for improvement. In the Measure phase,
we measure the system. In the Analysis phase, we determine dominant causes of
variation and poor performance (bottleneck). In the Improvement phase, we attempt
to eliminate dominant causes of the system bottleneck. In the Control phase, we
improve the system and consider how to improve the system performance further.

The GSBPM (European Commission 2014) is a workflow model for producing
statistics within and between statistical offices in different ways. In around 2006,
Statistics New Zealand was the first organization to adopt the GSBPM in official
statistics. Then, there was continuous work in joint UNECE/Eurostat/OECD Work
Sessions on Statistical Metadata (METIS). The GSBPM has a hierarchical structure
consisting of four levels:

Level 0, the statistical business process.
Level 1, the nine phases of the statistical business process.
Level 2, the sub-processes within each phase.
Level 3, a description of those sub-processes.
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The nine phases are as follows:

1. Specify needs.
2. Design.
3. Build.
4. Collect.
5. Process.
6. Analyze.
7. Disseminate.
8. Archive.
9. Evaluate.

The preparation is related to phases 1 to 3. The production ranges from phases
4 to 7. Phases 8 and 9 are actions for future improvement of data sets which have
been disseminated and archived until the previous phases.

Phase 1 consists of 1.1 “Determine needs for information,” 1.2 “Consult and confirm
needs,” 1.3 “Establish output objectives,” 1.4 “Identify concepts,” 1.5 “Check
data availability,” and 1.6 “Prepare the business case.”

Phase 2 consists of 2.1 “Design outputs,” 2.2 “Design variable descriptions,”
2.3 “Design data collection methodology,” 2.4 “Design frame and sample
methodology,” 2.5 “Design statistical processing methodology,” and 2.6 “Design
production system and workflow.”

Phase 3 consists of 3.1 “Build data,” 3.2 “Build or enhance process components,”
3.3 “Configure workflows,” 3.4 “Test production system,” 3.5 “Test statistical
business process,” and 3.6 “Finalize production system.”

Phase 4 consists of 4.1 “Select sample,” 4.2 “Set up collection,” 4.3 “Run
collection,” and 4.4 “Finalize collection.”

Phase 5 consists of 5.1 “Integrate data,” 5.2 “Classify and code,” 5.3 “Review
Variable and edit,” 5.4 “Impute,” 5.5 “Derive new variables and statistical units,”
5.6 “Calculate weights,” 5.7 “Calculate aggregates,” and 5.8 “Finalize data files.”

Phase 6 consists of 6.1 “Prepare draft outputs,” 6.2 “Validate outputs,” 6.3 “Scruti-
nize and explain,” 6.4 “Apply disclosure control,” and 6.5 “Finalize output.”

Phase 7 consists of 7.1 “Update output systems,” 7.2 “Produce dissemination
procedure,” 7.3 “Manage release of dissemination products,” and 7.5 “Manage
user support.”

Phase 8 consists of 8.1 “Define archive rules,” 8.2 “Manage archive repository,”
8.3 “Preserve data associated metadata,” and 8.4 “Dispose of data and associated
metadata.”

Phase 9 consists of 9.1 “Gather evaluation inputs,” 9.2 “Conduct evaluation,” and
9.3 “Agree action plan.” The GSBPM is a framework for producing data and
statistics for public and commercial uses through collaborative work by different
persons.

The Problem-Plan-Data-Analysis-Conclusion (PPDAC) model is a cyclic
methodological framework for approaching an analytical or research question based
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on the scientific method (MacKay and Oldford 2000). The PPDAC model provides
a fundamental workflow for applying scientific methodology to solving problems.

Data storytelling is one of the important issues in design thinking. Specifically,
in storytelling in the persona design (Cooper and Saffo 1999), it is essential to use
quantitative and qualitative data to understand consumer behavior (Nielsen 2013).
According to Miaskiewicz and Kozar (2011), the most significant characteristic
of personas introduced in a group task is their ability to let a group focus on the
actual goals of the target customers. If participants share real-life characteristics
of the target consumers, then the participants can use a common understanding
of the customer as a central driver of their design task. In general, to conduct
effective group work, we need expressionability, communicability, exchangeability,
and decisionability. Personas enable us to share fundamental assumptions about
consumers and markets, to express consumer behavior, to communicate with others,
and to make decisions under the same framework. Personas are required to draw
a customer journey map for design of goods and services. Data analysis about
consumers and markets is quite useful to assume the personas.

6 Conclusion

This chapter introduced several methods that are useful in data analysis. The
final goal of data analysis is to transmit insights obtained from data analysis and
reality expressed by the data. I introduced several existing methodologies related
to data analysis. A Check, Action, Plan, and Do (CAPD) cycle consisting of
data acquisition, data collection, data quantification and visualization, and data
interpretation is applicable to starting data analysis with small data.

We may improve our understanding of data and business models eventually by
using the CAPD cycle of the data pipeline. The outcome of data analysis should
be a document that reports results obtained from the analysis. If a report that
includes messages and insights obtained from the data analysis changes the behavior
of decision-makers, then the outcomes of the data analysis are meaningful. The
existing frameworks related to data analysis and data production exist depending
on the purpose of the applications. It was found that the DMAIC and PPDAC are
used for understanding problems and problem-solving based on the improvement
mechanism. The CRISP-DM was developed for problem-solving with business
modeling. The GSBPM enables different organizations to produce high-quality data
and statistics for public and commercial use.

The data analysis should begin with small data. The CAPD cycle is essential
to approach to big data analytics by accumulating data, domain knowledge, and
connections with stakeholders. Moreover, data storytelling is one of the important
issues in both data utilization and design thinking. Specifically, in storytelling
the persona design and journey map approach are useful and quantitative, and
qualitative data analysis to understand consumer behavior is one of the most exciting
applications of data analysis to social design.
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An Approach to Product Design
Involving Heterogeneous Stakeholders

Aki-Hiro Sato

1 Introduction

What is the purpose of data and data analysis? In general, we use data to
determine something, and data analysis should provide insights that will assist
decision-making. While society is sometimes unpredictable, data can be used to
shape its future. To create and change that future, we need innovation. Rather
than just producing new things, innovation can be understood as a process of
finding new combinations of goods and services by creating and strengthening
connections between products and stakeholders that did not previously exist or
whose significance has not yet been recognized. Design techniques can help us
to develop innovations by supporting decisions about structure, function, form,
amount, time, place, and occasion. Given the complexity of design decision-making,
data can inform the process in multiple ways.

According to Schumpeter (1983), our modern capitalist society creates “boom-
and-bust” business cycles as an inevitable consequence of how firms behave to make
profits, which are generated only while a given market is developing. Eventually,
that market becomes mature and must be destroyed in order to create a new market.
This process of innovation is used to attract consumers and generate profits by
exploiting a new business opportunity, resulting in the business cycle of boom-and-
bust.

Jetzek et al. (2014) proposed a conceptual model of data-driven innovation
comprising four multidimensional enabling factors (absorptive capacity, openness,
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resource governance, and technical connectivity), three innovation mechanisms
(idea generation, idea conversion, and idea diffusion), and two forms of impact (on
social and economic values). The adjustable factors in organizations allow people
to use data to more easily produce, convert, and diffuse ideas (Laursen and Salter
2006), resulting in the generation of macro-level value, and production of economic
and social value can further improve these enabling factors and the innovation
environment.

In general, design can be said to involve four phases: conceptual design,
fundamental design, detailed design, and production design. Conceptual design
defines the components of goods or services, addressing fundamental entities,
consumers, and stories about goods or services embedded in the actual environment.
Fundamental design is about identifying the necessary technologies to deliver
fundamental requirements, as well as specifying goods and services in terms of
costs and benefits. Detailed design determines the shapes and structures needed to
realize the requirements. Finally, production design must consider how to produce
and operate the goods or services in question, including fabrication, assembly, and
delivery from production line to end users.

Conceptual design requires careful identification of the potential users of goods
and services to be produced, as well as estimation of market size based on
current demand. This cannot be achieved solely by engineers with technical
domain knowledge but must also involve marketing, operations, fabrication, and
management specialists. In that sense, heterogeneous group work is more critical
than individual design work. The aim of this chapter is to explain how to organize a
design workshop for participants from heterogeneous backgrounds.

2 Design Workshops: A General Framework

A design workshop may include multiple elements such as lectures, field investiga-
tions, brainstorming, ideation, prototyping, and reviewing. These are participatory
processes, in which individuals from different domains of expertise and knowledge
come together as a group to share their visions and work collaboratively. The quality
of outcomes from a design workshop depends on appropriate task design and on
bringing the right people together. Typically, stakeholders participate in groups of
four to eight from different backgrounds, along with a few moderators or facilitators
to promote effective communication among the participants.

The following procedure is typical of a design workshop.

1. Inputs.
2. Brainstorming.
3. Ideation (from demand and supply sides).
4. Matrix expansion of ideas.
5. Persona design.
6. Data journey mapping.
7. Prototyping.
8. Review and reflection.
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Fig. 1 Cyclic procedure for a design workshop (S represents the starting point)

At the end, review and reflection can inform the inputs for subsequent groups.
In general, we can identify a cyclic procedure for organizing a series of design
workshops to generate ideas and to design goods and services. Figure 1 shows a
typical cycle of eight methodologies.

2.1 Inputs

Inputs are essential activities that provide participants with specific domain knowl-
edge and basic ideas about relevant fields. As they can be drawn from lectures,
expert interviews, field investigations, and data analysis, inputs are an adjustable
and controllable element of the design workshop.

• Lectures: Participants listen to talks by experts, acquiring previously unknown
domain knowledge and identifying fundamental ideas and principles, as well as
asking the experts any questions they may have.

• Expert interviews: Expert interviews are denser than lectures, as participants can
design their own questions to ask experts and stakeholders, listen to experts’
knowledge and experiences, and actively acquire information about a specific
field, leading to new ideas and insights.
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• Field investigation: Participants go into the field to make observations and to
discover issues. As well as new ideas and insights, they may gather samples of
materials and data.

• Data analysis and visualization: Participants frame questions based on the results
obtained from data analysis, sharing problems and definitions, acquiring new
insights and knowledge, and asking further questions.

2.2 Brainstorming

As proposed by Osborn (1953), brainstorming is a method of creating ideas through
group work. The purpose of brainstorming is to address issues, produce ideas, and
expand concepts by working together. To do so while maintaining the appropriate
atmosphere, four fundamental rules should be followed.

1. Motivate sharing of wild and unconventional ideas. As a brainstorming session
is also a fun tool to keep the whole team involved, it is sometimes useful to look
beyond serious solutions.

2. Do not criticize ideas. This is not a debate or a platform for one person to display
their superiority.

3. Build on other people’s ideas. As an idea suggested by one person can often
trigger a bigger and/or better idea, attempts should be made to expand or modify
ideas proposed by others.

4. Reverse the idea of “quality over quantity.” Here, quantity is more valuable than
quality: the more creative ideas we generate, the better brainstorming becomes.

In a brainstorming session, the aim is to produce a story about a specific topic.
One of the simplest ways of doing this is to introduce a modified 4W1H game,
which uses five questions (who, how, what, when, and where) to develop a story.

Step 1. Participants attempt to produce a story by combining each word in five
categories (4W1H).

Step 2. Participants have to write five words on a sticky note and place it on the
board to explain to other participants. The participants then listen to each other’s
stories.

Step 3. To expand and categorize ideas produced through brainstorming, the
following five methods can be applied to existing stories.

• Exchange: Swap two items including two different stories.
• Generalization: Find general patterns from entities.
• Alternatives: Find other possibilities.
• Classification: Find categories and other possible categories.
• Patterns: Find rules and patterns from several ideas.
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Fig. 2 Using 4W1H words to form four stories about data services

Step 4. Participants propose a new story consisting of five words not yet seen on the
board (Step 2) or produce a new story by swapping two words (Step 3) several
times.

Figure 2 shows four stories about data services, comprising five words based
on the 4W1H approach. The first story in Fig. 2 is about an experience of data
analysis in the university; the second story tells about a personal experience of data
visualization. Each participant must produce a story. For instance, by swapping “my
friends” in the first story and “a boy” in the fourth story, we can create a new story
(exchange). We can also produce a new story by swapping “drew” in the second
story and “searched” in the third story, and we can categorize the roles of words.
For example, generalization suggests that experiences of data services may include
data analysis, data visualization, data collection, and database searching. Among
the methods used to organize a brainstorming session, the scenario graph (Kunifuji
2013) collects various stories on a specific topic, and the KJ method (Kim and Ishii
2007) extracts general patterns.
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Fig. 3 Example of story separation into technology (seeds) and demand (needs) aspects

2.3 Ideation from Demand and Supply Sides

A story about goods or services can be told from two perspectives: seeds (supplier
technology) and needs (user demand). To develop useful ideas, both aspects are
included in one story of seeds and needs. The example in Fig. 3 uses seeds and
needs to tell a story about data analysis and demography, which can be divided into
two separate stories.

From a given story, we can derive a pair of stories of seeds and needs, both of
which include the core idea. From the supplier side, the story is “Software to analyze
Big Data about demography.” From the user side, the story is “Understanding
socioeconomic activities.” Using this method, each participant selects a useful story
and presents a pair of ideas from the supplier and user sides, leading to the collection
of a set of ideas produced by participants.

2.4 Matrix Expansion of Ideas

In this step, we can produce new stories about goods or services based on the core
ideas of supply and demand. Figure 4 shows a matrix comprising ideas about needs
(in the first column) and ideas about seeds (in the first row). We can then produce
new stories based on each independent idea about seeds and needs. The diagonal
cells of the matrix correspond to stories originally proposed by participants.

Participants rate each new story in terms of possibility, convenience, availability,
innovativity, and reliability. Stories are then evaluated on the basis of a sum or a
weighted sum of scores. Finally, the group identifies the best story from the set of
combinations included in the idea matrix, and that story can be used to draw a data
journey map.
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Fig. 4 (left) Matrix of ideas about seeds and needs; from N pairs of original stories, N(N-1) pairs
of new stories can be produced. (right) An example of story matrix produced through a design
workshop (The photo is provided by Mr. Y. Kenmochi).

2.5 Persona Design

To further elaborate the stories about services or goods selected from the matrix
expansion, we must envisage an actor who plays the role of the consumer in the
story (or stories) and then develop the characteristics of that actor in greater detail.
This task is referred to as persona design (Cooper and Saffo 1999); characteristics
typically used to express a persona include gender, age, location, place of birth,
profession, role, hobbies, preferences, interests, and desires.

According to Miaskiewicz and Kozar (2011), the key reason for introducing a
persona is to help the group to focus on the actual goals of the target customer.
By sharing characteristics of the target consumer in this way, the group can
develop a common understanding of the customer as a central driver of their design
task. In general, effective group work depends on expressibility, communicability,
exchangeability, and decidability. Personas enable us to share fundamental assump-
tions about consumers and markets, to express consumer behavior, to communicate
with others, and to make decisions based on an agreed framework.

We can also use insights from the analysis of consumption and social activities
data to identify typical national characteristics, using official statistics as data
sources for developing stories. Lene Nielsen of the Interaction Design Foundation
proposes ten steps to create personas and scenarios based on data analysis (Nielsen
2013). After collecting as much data as possible about the users, the insights
obtained from data analysis enable formulation of a hypothesis about potential
users. With the agreement of all participants, the final number of personas can be
established. Group work then involves describing these personas in order to capture
the needs and goals of users in the area of interest. The persona’s characteristics
should include education, lifestyle, interests, values, goals, needs, limitations,
desires, attitudes, and patterns of behavior. Fictional personas’ names and pictures
should be added at the end of each 1–2 page description. The example in Table 1
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Table 1 Example of a
persona description

Items Character

Name Data Raro
Age 32
Gender M
Profession Employee of a software company
Hobby Baseball, traveling
Attitude Active and enthusiastic
Education Bachelor’s degree (computer science)
Interests Open-source development and software design
Lifestyle Rhythmical
Needs Knowledge of information design
Desires To launch his own company

describes the persona of a 32-year-old male working in a software company. His
hobbies are playing baseball and traveling. He has an interest in open-source
development and wants to launch his own company.

2.6 Data Journey Map

The data journey map (DJM) is a useful method of conveying a user’s experience
and data behavior and may help to clarify issues regarding the story selected in
the matrix expansion. The DJM is a modified version of the customer journey map
(CJM) (Miaskiewicz and Kozar 2011), which is often used as a service design tool.
Among the various types of CJM (Richardson 2010; Moon et al. 2016), no standards
exist. Richardson proposed four lanes: actions, motivations, questions, and barriers.
Actions describe what the customer is doing (doing); motivations explain why the
customer is motivated to take actions to the next stage (feeling); questions refer to
uncertainties and issues that prevent customer engagement (problems); and barriers
include concerns about the service in relation to structure, process, cost-benefit, and
implementation. The CJM can also be used as a process mining tool to describe
business workflows (Bernard and Periklis 2017).

The critical difference between a DJM and a CJM is the addition of a lane
describing data behavior (e.g., status, touchpoint, how to collect), enabling the DJM
to specify how to manage additional data collected from user actions. To capture the
user experience, we propose the use of six DJM lanes: story, doing, data, thinking,
feeling, and problems (Table 2).

In Fig. 5, the first lane of the DJM is the story of the user’s experience. A utility
curve displays the temporal development of the user’s feeling. If the utility curve
goes up, the user’s satisfaction may increase; if the utility curve goes down, it may
decrease. The second lane shows actions assumed in the story. Typically, there are
three types of experience: before the use of services or goods, during use, and after
use. The third lane refers to two types of data opportunity related to the user’s
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Table 2 Steps in constructing a data journey map

Step 1 Extract the persona’s possible actions and display on a whiteboard
Step 2 Categorize and sort these actions
Step 3 Describe the persona’s feeling and thinking for each action
Step 4 Extract data opportunities related to consumer actions
Step 5 Discuss problems and exchange ideas; identify likely problems for each action
Step 6 Define the temporal development of utility using a utility curve
Step 7 Summarize all individual actions in the form of a story

Fig. 5 Schematic of the data journey map

actions: data collection and data usage. The fourth lane refers to what the user thinks
during the action, and the fifth lane refers to the user’s feelings (good or bad). The
sixth lane addresses problems extracted from the user’s thinking and feeling. Based
on a DJM constructed during group work, participants can discuss user experiences
and data behavior (opportunities). To address the problems in the sixth lane, the
user’s actions and data behavior should be added and modified. In this way, new
actions and experiences for services and goods related to the story can be designed
by modifying the DJM. Specifically, to address the issues extracted from a set of
actions and data opportunities, we can place a new sequence of actions and data
opportunities as a part of design process.

2.7 Prototyping Goods and Services

In the prototyping stage, we refine the content of the DJM. To implement the
developed story discussed in the DJM, we need to detail how consumers behave
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in the DJM and what kinds of system functions support consumer experiences.
Unified Modeling Language (UML 2.0) [13] uses four compliance levels related
to capability, which are partitioned into horizontal layers.

Level 0: class-based structures used in object-oriented programming languages and
providing entry-level modeling capacity

Level 1: adds use cases, interactions, structures, and activities to Level 0.
Level 2: adds deployment, state machine modeling, and profiles to Level 1.
Level 3: extends Level 2, adding information flows, templates, and detailed model-

ing packages.

This approach to prototyping refines an implementation through trial and error by
sharing structures and behaviors to be deployed at an initial stage to repeatedly pro-
duce and evaluate system descriptions. At this stage, UML 2.0 Level 1 description
may be sufficient to share a system described in group work. Some useful diagrams
for product prototyping are described below.

2.7.1 Use Cases

A use case specifies a set of actions performed by one or more actors or system
stakeholders.

1. When drawing a use case diagram, the first step is to identify the actors in the
system. An actor can be represented by a “stick man” icon bearing the name of
the actor or by a class rectangle that includes the word <<actor> > and the actor’s
name. Figure 6 shows an administrator represented as an actor.

2. The next step addresses essential actions performed by all actors referred to in
the first step.

3. A rectangle is drawn to refer to the system and actions in each oval within
the box, specifying the relationship between actions such as inclusions and
extensions (see Fig. 7).

4. Connections are drawn as a solid line between an actor and an action.
5. Inheritance is drawn as a solid arrow between actors (see Fig. 8).

Fig. 6 Representations of an
administrator as an actor:
(left) “stick man” icon and
(right) class rectangle with
the keyword <<actor>>
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Fig. 7 Example of actions
performed in a bank

Fig. 8 (left) Relationship representation and (right) use case diagram of a supermarket

2.7.2 Interactions

Interactions are used to archive a common understanding of the situation, and the
DJM is one of the diagrams used to express interactions. Other types of diagram
can also be used to represent interactions, including sequence diagrams, interaction
overview diagrams, and communication diagrams. For example, sequence diagrams
express sequences of messages between lifelines. The data that messages convey
and lifelines store may be important for making system interactions visible.
Sequence diagrams are drawn as follows. Objects are placed from left to right and
are expressed by a rectangle containing the object’s name. A dotted line is drawn at
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Synchronous message

Asynchronous message

Return message

(b)

(a)

: Front Panel

Order (Input)

: Register : Dispenser

Send (Select to input)
Send an order for 
canned juice (Select)

Serve canned juice (Select)

Obtain (Output)

Fig. 9 (a) Three types of message used in sequence diagrams. (b) Example of an instance
sequence diagram from the use case “buying a canned juice”

the center of an object from top to bottom to represent the period during which the
object is alive (the “lifeline”). A rectangular object represents “activation,” referring
to a situation in which the object is executing an action. As shown in Fig. 9a,
messages can be classified as one of three types: synchronous, asynchronous, or
return. A synchronous message is responded to after waiting for a sender’s response;
an asynchronous message is a message without any sender’s response; and a return
message is a direct reply from a receiver. The temporal development of the system is
shown on the y-axis. Figure 9b shows an example of an instance sequence diagram,
which is so called because it shows only one of several scenarios related to the use
case “buying a canned juice from a vending machine.” The simple messages shown
in the diagram are control instructions from one object to another.

2.7.3 Structures

Structure refers to the relationships among objects and can be expressed by a
collaboration diagram, which shows relationships as messages between objects.
In such diagrams, multilayer descriptions cannot be used to reduce complexity. In
collaboration diagrams, messages are shown with arrows beside the lines connecting
two objects; the arrow points to the object that receives the message. The action to
be taken by the receiver object is shown beside the arrow. Action parameters can
be added at the end of actions with brackets. As messages indicated in interactions
can be expressed in collaboration diagrams, it is useful to include orders as numbers
in front of each action. Colons divide message numbers and message names. In the
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Fig. 10 Example of a
collaboration diagram
involving three objects
sending messages from one to
another

: Object 1

: Object 2

: Object 3

1: Add ()

2: Amend ()

3: Refresh ()

example in Fig. 10, three objects send messages such as add, amend, and refresh
from one to another.

2.7.4 Activities

Activities consist of a series of actions, each of which may execute zero, one, or
more times for each activity. Implementation of a sequence of actions is based on
a story about the system. In the prototyping stage, the simplest approach is to use
pictogram objects made of paper, with simple illustrations that explain states and
processes for each action.

More directly, consumer experiences can be role-played by participants. The goal
of prototyping is to make a conceptual design that can be shared by participants in
the same group and communicated to other persons who have no knowledge of the
ideas produced by the group.

2.7.5 Design Patterns

Design patterns help to reduce the resources needed for prototyping in terms of the
time required to assign workers to design tasks. However, some common knowledge
is needed to use a design pattern effectively. Pattern languages have been invented
to express various design patterns. According to Meszaros and Doble (1997), these
patterns can be classified into five types.

Context-Setting Patterns This includes some working definitions that use patterns
and pattern language. A pattern is a solution to a problem in a context, and a pattern
language is the collection of patterns that solve the same problems or provide parts
of a solution to a more significant partitioned problem. The pattern language itself
presents the solution as several patterns, each of which describes the solution to a
specific smaller problem.
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Pattern Structuring Patterns These describe the desired content and structure
of individual patterns, explaining the rationale for using the solution as well as
describing that solution. Examples include patterns ensuring that all necessary
information is addressed and patterns that specify ways of ignoring or focusing on
particular elements in order to discuss an issue.

Pattern Naming and Referencing Patterns These describe techniques for label-
ing a pattern and linking one pattern to another. The names or labels representing a
pattern are sometimes referred to as jargons. Using evocative pattern names makes
them easier to refer to and reduces the need for users to follow by connecting with
other pattern names, using meaningful metaphors, using a phrase that refers to the
solution, and using understandable names.

Patterns for Making Patterns Understandable These make a pattern or pattern
language easier to read, understand, and apply. For example, we can categorize
specific patterns by user or employ terminologies and diagram notations that the
target users can understand. Sometimes, patterns can be described using examples
(such as code samples in software architectures) that only the target users can
understand.

Pattern Language Structuring Patterns These describe the desired content and
structure of a pattern language—for example, a set of patterns that solves a complex
problem in a specific domain, provides a problem/solution summary to help users
find the patterns used in specific problems, identifies several probable solutions to a
problem, or provides a single example for all patterns in the language. A sequential
diagram including such patterns can also be used to solve a problem.

Pattern languages are useful for constructing and sharing common design
patterns for problem-solving if all group members share fundamental knowledge
of the design patterns. The power of pattern languages lies in enabling members
sharing a common language to reduce the resources needed to communicate with
one another.

2.8 Review and Reflection

This usually involves several groups sharing outcomes. The purpose of this process
is to produce and disseminate group work outcomes clearly, using presentation
slides or posters to explain prototypes of services and products to other groups. This
enables participants to discuss the details of services and goods designed by each
group. Slides and/or posters should include (at least) a title, the outcome structure, a
prototype, and the DJM, enabling other groups to ask questions and offer comments
to indicate what might be improved and/or expanded in the outcome.

Reflection is feedback to explain roles in group work and share their own
feeling to other participants. Relationships among participants may be improved
by discussion about the group tasks.



An Approach to Product Design Involving Heterogeneous Stakeholders 47

3 Adjustable Parameters of Design Workshops

The generalized design work procedure described in Sect. 2 can be applied to
various types of design work to move from conceptual design to production design
by means of a participatory framework. The most general parameters of the design
work procedure are focus and total duration (typically 1 day or 3 successive days).
The design work should be defined on the basis of a problem definition and domain.
For example, to produce a conceptual design for goods and services, it is necessary
to identify related fields and organizational divisions. The main issue for workshop
design is the duration of each task.

Each task in the proposed design work procedure involves several parameters.
Table 3 shows the adjustable parameters of group work. Selection of inputs is a
significant determinant of quality of outcome. To strengthen connections with the
environment in question, expert interviews and field investigations are useful as
inputs; to collect various types of domain knowledge, use expert lectures as inputs;
and to obtain quantitative outcomes, use data analysis.

Typically, inputs and brainstorming should account for 30% of all design work.
Ideation, matrix expansion, and DJM should account for a further 30%, and the
remaining 40% should be used for prototyping and review and reflection.

Table 3 Adjustable parameters of a design workshop

Inputs Input types (lectures, expert interviews, field investigations, data
analysis)

Lectures Domain, number, and duration of lectures
Expert interviews Domain, number of interviewees, duration of interviews
Field investigations Domain, place, duration of field investigation
Data analysis Domain, data sources, duration of data analysis
Brainstorming Duration of brainstorming and enhanced methods to produce,

extend, and select ideas
Ideation Number of seeds-needs pairing ideas per participant, duration of

task
Matrix expansion Types of evaluation function (possibility, convenience,

availability, innovativity innovation plus creativity, reliability)
Persona design Number of personas, characteristics of each
Data journey map Task duration
Prototyping Types of prototyping (pictogram, performance, video,

presentation slides)
Review and reflection Duration of the task, types of review (presentation, posters,

report), method of reflection
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4 Using Insights from Data Analysis in a Design Workshop

As shown in Sect. 3, there are three opportunities across eight methods for exploiting
quantitative insights from data analysis in a design workshop. (1) As inputs,
insights from data analysis can be used directly. In this case, domains and data
sources underpinning domain knowledge must also be determined. Potential data
sources include official statistics, open data provided by government offices, and
commercial data supplied by commercial vendors. Before commencing a data
analysis session, the duration of data analysis should be determined, and potential
outputs should be explained. When using data analysis tools, these should be
explained in a hands-on lecture. As participants in a design workshop are likely to
constitute a heterogeneous group, many may find it difficult to engage with complex
techniques for analyzing and visualizing data. To avoid this problem, introduce
the simplest tools for data analysis, or include data analysis experts among the
participants.

A second opportunity is ideation. Using insights obtained from data analysis,
participants may produce a story about needs and seeds based on both quantitative
and qualitative evidence. This task is sometimes called data storytelling. For
example, by using demographic data to assess market size in a particular area,
demand can also be estimated to inform a story about needs.

The third and final opportunity is persona design. By collecting and analyzing
data about consumers, participants can more fully understand their likely behavior,
so improving persona quality and facilitating development of a DJM.

5 Conclusion

This chapter discussed the use of participatory design methods to perform a con-
ceptual design task from a data-centric perspective. The three essential components
of group design work are domain knowledge inputs, heterogeneous membership,
and a facilitator. The proposed design workshop procedure was based on eight
methodologies: inputs, brainstorming, ideation, idea expansion, persona design,
data journey map, prototyping, and review and reflection. The key objectives of
conceptual design are to produce a concept that can be communicated and explained
to others who have no knowledge of it. Personas enable participants to share
fundamental assumptions, to clarify interactions to construct consumer experiences,
and to make everything explainable. In proposing an approach to data utilization in
a design workshop, three opportunities were identified at the input, ideation, and
persona design stages. Cyclical use of the eight methodologies can improve design
outcomes.
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Designing Human-Machine Systems
Focusing on Benefits of Inconvenience

Hiroshi Kawakami

1 Introduction

Fuben-eki denotes the further benefits of a kind of inconvenience (Kawakami 2009).
It does not reflect nostalgia but a standpoint of reviewing existing things and
designing new ones.

In general, designers tend to automatically pursue convenient systems. Although
convenience may enrich our lives in some ways, it is not always optimal for
users. Convenient systems may inflate such harms as excluding users, depriving
the pleasure of using systems, and eroding human motivation and skills. For
example, the US Federal Aviation Administration reported that the continual use of
convenient auto-flight systems might degrade a pilot’s ability to recover an aircraft
quickly from undesired states (Federal Aviation Administration 2013).

Some other convenience-derived harms exist for human-machine systems (Nor-
man 2005). Contemplating the downside of convenience prompts us to pursue a new
design principle other than convenience. Fuben-eki is one of the promising bases of
a new principle for designing human-machine systems.
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2 Benefits of Inconvenience

2.1 Definition of Inconvenience

Generally, inconvenience and benefit are thought to be contradictory terms. Benefits
are associated with positive images; inconvenience seems to be negative. Although
the meaning of inconvenience is slippery, the word is used for multiple purposes.
The Internet provided sentences that included the term convenience and such
notions as save labor. The word labor has the following meanings:

physical labor: requiring time and effort,
mental labor: requiring special skills, including the consumption of such cogni-

tive resources as paying attention, memorization, and conception.

In this section, we define convenience/inconvenience:

convenience: saving labor to attain a specific task,
inconvenience: being comparatively not convenient, i.e., requiring more labor

than convenience.

Compared with the definition in the Longman Dictionary, which argues that
“convenience does not spoil plans or cause problems,” the above definition is
superficial and may be insufficient for structuralists; but it satisfies most of our
understanding of convenience.

Following this definition, inconvenience does not contradict benefit. Labor-
derived benefits exist.

2.2 Unilinear Pursuit of Convenience

2.2.1 Escalator for Hiking

Hiking is an example of a healthy pursuit. If we follow the above definition of
inconvenience, hiking (especially up a mountain) should be called an inconvenient
activity. If we are solely pursuing convenience, we have to construct an escalator
between the mountaintop and its foot, as shown in Fig. 1. Such convenience strikes
the wrong note and hiking is no longer leisure.

2.2.2 Ultimate Magic Bat

Sporting goods should be inconvenient. If there were an ultimate magic bat that
always got a hit, baseball games would become meaningless. LZR Racer is a line
of swimsuits, that was worn by 94% of the swimmers who won races in the 2008
Summer Olympics. Such dominance ruins the meaning of competition, even though
it may be convenient for reducing race times.
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Fig. 1 An Escalator for
mountaineering (Kawakami
2017)

2.3 Toward a Convenient Near Future

The fictional examples described in the previous section demonstrate that solely
pursuing convenience is not the ultimate strategy for designing artifacts. Not only
fictional but also the actual trend of recent technical development also provides
another discussion point.

With the tertiary AI boom, useful AI applications in various fields have been
developed. When it becomes impossible to read every mass-produced scientific
paper, an AI application that reads papers and accumulates knowledge will be really
convenient.

Good themes elicit arguments that blur the differences between means and ends.
Implementing an AI that defeats professional Go players must only be a means for
measuring the AI ability. However, if this AI is misused as a convenient system that
frees players from thinking, it ruins the meaning of Go.

One of my students accepted a job offer from a car manufacturer because he
loves driving. Unfortunately, he was assigned to a department that is developing
automatic driving systems that deprive people of the pleasure of driving. Automatic
systems are convenient, but they might foment problems when they are applied to a
field where the absence of human beings is antithetical.

3 Fuben-eki Systems

Systems that provide users with the benefits of inconvenience are called fuben-
eki systems. A conventional system design that produces convenient systems is
evaluated in terms of one axis: the amount of labor. Fuben-eki system design, on
the other hand, adds another axis that evaluates benefits. In this case, we get the
four quadrants shown in Table 1, where the horizontal axis denotes conventional
convenience and the vertical axis denotes further benefits. The opposite side of
convenience is inconvenience, and the opposite of benefit is harm.
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Table 1 Quadrants derived from production of convenience/inconvenience and benefit/harm

Benefits of inconvenience Benefits of convenience

Harm of inconvenience Harm of convenience

Overlooking the independence of the two axes restricts one’s vision to two
quadrants: the upper right and the lower left. This section examines examples from
the upper left quadrant, most of which are inextricably linked to the examples in the
lower right quadrant that shows the harms of convenience.

3.1 Negative Examples of Fuben-eki

Of course, not every inconvenience provides beneficial aspects. The following
three types of inconvenience were eliminated from the examples for investigating
beneficial inconveniences:

Retro styles: Fuben-eki is different from nostalgia which tends to design retro-
looking objects. From a fuben-eki viewpoint, old-fashioned things must be
analyzed not from structural aspects but from functional aspects.

Your inconvenience yields to my benefits: If you get benefits by causing trouble
to someone else, that situation is not fuben-eki. The person who gets the benefits
of inconvenience should also be the person who suffered from it.

Compromises: Inconvenience is inevitable to get fuben-eki. In other words,
inconvenience is not a compromise with benefits. For example, the time and
effort to type in a password are only compromised with security. In this case,
security is not fuben-eki. Typing in a password is not obligatory and can be
replaced by other security measures. However, if a person experiences subjective
benefits that are caused by the typing itself, such feelings are fuben-eki.

3.2 Positive Example of Fuben-eki

By eliminating such examples as those that are classified into the three types shown
in the previous section, we get positive examples of the benefits of inconvenience.

Figure 2 overviews a part of the relationship among benefits and inconvenience.
In the figure, each arc denotes the contribution relation and each bidirectional broken
arc denotes the mutual contribution relation. Symbol ♦ is a modal operator. In the
alethic mode, ♦p means that “proposition p is possible.” In the deontic mode, ♦p

means that “proposition p is permitted.” In either mode, even if the value of p

varies subjectively depending on a human attitude, the value of ♦p is objectively
determined.
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Fig. 2 Contribution relations among benefits and inconveniences. Rectangle nodes denote situ-
ations derived from systems, and white rectangles are called inconvenient situations. Ellipsoidal
nodes denote benefits, and white ellipsoidal nodes are user-dependent subjective benefits. Rectan-
gle nodes without labels mean conjunctions that work just like Petri-Net transitions

For example, when p denotes that “the user becomes skillful to operate the
system,” the value of p depends on the user, but the value of ♦p is objectively
determined depending on the system. When the system allows (permits) users to
become skilled, ♦p is true. Otherwise, it is false.
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4 Analyzing Fuben-eki Examples

4.1 Conditions for Approving Fuben-eki

We call examples that provide users with the benefits of inconvenience fuben-eki
examples. In Sect. 3.1, three types of negative examples are shown, which can be
rewritten as conditions for approving fuben-eki systems:

• Benefits and inconvenience belong to the user.
• Benefits are directly derived from the inconveniences.

“Your inconvenience is my benefit” is the worst case.
Another viewpoint of fuben-eki approval is the product of subjective/objective

and inconvenience/benefit shown in Table 2. The next section discusses fuben-eki
from these four viewpoints.

4.2 Objectivity and Subjectivity of Inconvenience

4.2.1 Objective Inconvenience (Labor)

Feelings of convenience/inconvenience are dependent on contexts and on individ-
uals. They vary by the person. Nevertheless, if we need to objectively discuss
convenience, individuals cannot be taken into account: they must be treated as a
group. In this case, saving labor is often substituted for convenience. Saving labor
is an objectively observable phenomenon.

Strictly speaking, when discussing convenience/inconvenience, a targeted task is
necessary. In addition, the measure of convenience/inconvenience is at most on a
semi-ordinal scale. In other words, they cannot be quantified like interval scales or
ratio scales. It is impossible to place a numerical value on the inconvenience degree
to a specific event.

Stemming from these facts, this section defines objective convenience as saving
labor to attain a specific task, and inconvenience as being comparatively not
convenient, as shown in Section 2.1.

Fuben-eki systems have to be objectively inconvenient in this sense.

Table 2 Subjective or objective inconvenience and benefits

Subjective Inconvenience Benefit

Objective Labor Function
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4.2.2 Subjective Inconvenience

Feelings of convenience/inconvenience are intrinsically subjective. When a person
is not aware of more convenient tools or methods, she/he does not subjectively feel
inconvenience even if she/he is using objectively inconvenient tools.

Furthermore, even if a person objectively knows about more convenient tools
or methods, she/he may prefer inconvenient tools. For example, some people
prefer manual transmissions to automatic transmissions for driving without feeling
inconvenience.

They are examples of these special cases where objective inconvenience is
observed but subjective inconvenience is not. It is desirable without being required
that subjective inconveniences are observed in each fuben-eki system.

4.3 Objectivity and Subjectivity of Benefits

This subsection discusses the objectivity and subjectivity of benefits.
In general, convenient tools are oriented to be usable by everyone, and users

do not have to be skilled with such tools. Inconvenient tools often allow users
to become skillful and to gradually master these tools. However, even if such
acquisition is allowed, the user does not always become skilled, and some users
may not appreciate the benefit of allowance.

Here, objectively “the system is allowing”, while subjectively “the user feels it
is beneficial.” In general, the objective benefits offered by inconvenience can be
regarded as a function provided by the system. The functions are expressed using
♦, which is a modal logic symbol (Fig. 2). In this section, we classify benefits into
objective ones with ♦ and subjective ones.

Positive examples provide users with the opportunity to get the following
inconvenience-oriented benefits (Hasebe et al. 2015).

4.3.1 Objective Benefits (Function)

When a system requires users to take time and consume cognitive resources, i.e.,
being objectively inconvenient, the system often performs the following functions:

♦devising ways: optimality to a specific task leads convenience, but not allows
users to devise ways.

♦enhancing awareness: inconvenience offers the opportunity of discovery in the
operation process.

♦system comprehension: interactions and physical feedbacks enable users to
understand systems.

♦improvement: inconvenience allows users to become skillful at exploiting the
systems.
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♦positive contribution to tasks: inconvenience requires users to do a work that in
turn enables users to contribute to tasks.

♦preventing skill erosion: to do a work can be a OJT for users.

4.3.2 Subjective Benefits

When the user subjectively regards the objective functions (provided by the system
as summarized above) as beneficial, the benefits are classified as follows:

• reassurance,
• personalization,
• motivating tasks,
• fostering affirmative feelings.

5 Synthesizing Fuben-eki Systems

Fuben-eki systems are designed so that users obtain benefits from inconvenience.
The time and effort of using fuben-eki systems provide benefits as the by-products
of accomplishing the main task.

Section 4 discussed the analysis of fuben-eki systems. This section discusses the
synthesis of such systems.

Conventional ideation support methods are based on the combination of diver-
gence and convergence. At the divergence stage of the first half, quantity is
required rather than quality, and criticism is forbidden. In this case, inconvenience is
passively accepted. On the other hand, this section positively utilizes inconvenience
as a key of ideations.

Figure 3 shows the quadrants that reflect Table 1. Ideation styles for fuben-eki
systems can be classified with the transitions of quadrants.

Fig. 3 Four types of ideation for fuben-eki systems
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5.1 Ideation Through Problem-Solving

The normal way of engineering is the sequence of two processes: formulating a
problem and solving it by developing a new system. This process can be applied to
developing fuben-eki systems, i.e., formulating a harm of convenience as a problem
and solving it by making target systems inconvenient. The arrow in Fig. 3 from the
right lower quadrant to the left upper quadrant illustrates this style of ideation.

Formulating the harm of convenience can be supported by the objective benefits
shown in Sect. 4.3.1. Checking whether a convenient system prevents users from
devising solutions, becoming skillful, understanding systems, contributing posi-
tively to tasks, and so on helps identify problems.

As one example of this ideation style, we employ navigation systems, which are
convenient because they show clear and accurate information. Unfortunately, the
convenience deflates our motivation to remember the environment we are walking
through. We only need to follow the fragments of direction to reach our destination,
without exploring our surroundings or beginning to proactively understand the area
we are moving through. Therefore, we do not remember the roads. Pleasurable
explorations are reduced to merely idle transportation.

One way to solve this problem is to introduce inconvenience. We transformed a
navigation system by introducing a novel inconvenience: map degradation (Kita-
gawa et al. 2010). In this new system, the trails followed by users gradually
disappear. Therefore, they need to recall the surroundings of the trails when they
use the system again; the system encourages users to remember landmarks more
precisely. Figure 4 shows the interface of degradation navi.

We developed two types of walking navigation systems: normal and degradation
navi. Using these systems, we conducted experiments where examinees walked
around a city and answered questions about pictures of the scenes around the
pathway of their walk. The answers of the examinees who used degradation navi
were significantly more correct than those who used a normal navigation system.

5.2 Ideation via Value Mining

The second type of ideation is value mining, which is different from problem-
solving because it does not anticipate problems in the target system. The upper
right quadrant in Fig. 3 is for happy states where the target system is convenient and
users feel that it is beneficial. That is, there are no problems. We can design fuben-
eki systems by transforming such convenient target systems into inconvenient ones
that occasionally mine latent benefits. Conceptually, such ideation is a shift from the
upper right to the upper left quadrant in Fig. 3.

When the course to transform a system into an inconvenient one reverts to its
actual historical development, the lost benefits of the old style system may be
revived. On the other hand, when the course introduces novel inconveniences, new
benefits are expected.



60 H. Kawakami

Fig. 4 Screenshot of degradation navi interface

Figure 5 shows an example of the results of such ideation: a prime number
ruler, which is an original item of Kyoto University. A conventional ruler is only
a convenient tool for measuring length, but an inconvenient prime number ruler
allows users to devise their own ways to measure length.

The process of making target systems inconvenient can be supported by
objective inconvenience, i.e., taking time and effort, or consuming the cognitive
resources of users.

For example, consider a ruler as the target system. Even if a normal ruler has
no problems, the first step of this ideation makes it inconvenient. That is, let the
ruler consume users’ time and cognitive resources. As one practical way to make
rulers inconvenient, an idea was provided that restricted the tick marks to just prime
numbers.

The second step of this ideation mines benefits from this inconvenient ruler. One
benefit is allowing users to make positive contribution to their tasks. A simple
subtraction is required to measure a length that is not marked on the scale. As
a result, the task of measuring the length became a task that must be positively
grappled with in the form of subjective subtraction.



Designing Human-Machine Systems Focusing on Benefits of Inconvenience 61

Fig. 5 Prime number ruler

5.3 Ideation by Emergence

There is an emergent type of ideation that is different from both problem-solving
and value-mining types. This method produces ideas what pops into a person’s mind
by shoving fuben-eki examples into the brain and extracting their essence without
converting them into linguistic thoughts.

Because emergence is the most non-systematic method, expert skill is required.
Professional designers call this method one hundred knocks. This style of thought
requires accumulated knowledge and the ability to change knowledge flexibly.
Analogies are frequently used.

For example, consider a method for unlocking a smartphone. We conducted
a battle-styled brainstorming and got a hundred ideas. Among them, a gesture-
unlocking mechanism was proposed. To unlock her smartphone, the user has to
shake it with almost the same movement as she registered in advance. This is
an inconvenient system because unlocking is almost impossible when an arbitrary
gesture is registered. Muscle memory is required to register gestures. That is, this
system provides users with a subjective benefit called personalization.

5.4 Ideation by Value Transformation

The fourth type of ideation first identifies the potential fuben-eki features of the
target systems without changing the level of convenience. It utilizes the existing
inconvenience by transforming annoying labor into a worthy activity. For example,
we might increase user fulfillment and affirmative feelings by presenting explicit
feedback of actions. Based on psychological theories with respect to motivation,
Hiraoka et al. proposed an eco-driving system that shows drivers the evaluations and
target scores of fuel saving (Hiraoka 2012). Although this system does not change
the amount of labor to drive a car, it increases motivation toward eco-driving by
informing drivers of their achievements in terms of the degree of eco-driving.

The arrow in Fig. 3 from the left lower quadrant illustrates such ideation.
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6 Conclusions

As one different direction from uncritical pursuits to convenience, we described a
direction to utilize the benefits of inconvenience and discussed the system design of
that direction. Of course, this direction does not insist on the uncritical pursuit of
inconvenience. This chapter organized what kind of inconvenience yields what kind
of benefits. In addition, we showed four ways to ideate systems that incorporate the
benefits of inconvenience.
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Part II
Mathematical Foundation of Human

Collective Behavior



Information Cascade and Phase
Transition

Masato Hisakado and Shintaro Mori

1 Introduction

In general collective herding poses interesting problems in several fields. To cite
a few examples in statistical physics, anomalous fluctuations in financial markets
(Cont and Bouchaud 2000; Eguíluz and Zimmermann 2000) and opinion dynamics
(Stauffer 2002; Galam 1990) have been related to percolation and the random-
field Ising model. To estimate public perception, people observe the actions of
other individuals; then, they make a choice similar to that of others. Recently,
these behaviors have been referred to as Kuki-wo-yomu (follow an atmosphere)
in Japanese. Because it is usually sensible to do what other people are doing,
the phenomenon is assumed to be the result of a rational choice. Nevertheless,
this approach can sometimes lead to arbitrary or even erroneous decisions. This
phenomenon is known as an information cascade (Bikhchndani et al. 1992).

A recent agent-based model proposed by Curty and Marsili (2006) focused on
the limitations imposed by herding on the efficiency of information aggregation.
Specifically, it was shown that when the fraction of herders in a population of agents
increases, the probability that herding yields the correct forecast (i.e., individual
information bits are correctly aggregated) undergoes a transition to a state in which
either all herders forecast rightly or no herder does.

We introduced a voting model that is similar to a Keynesian beauty contest
(Keynes 1936; Hisakado and Mori 2010). There are two types of voters – herders
and independents – and two candidates. Herders vote for each candidate with the
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probabilities that are proportional to the candidates’ votes. In the previous paper,
they were known as analog herders. We investigated a case wherein all the voters
are herders (Mori and Hisakado 2010). In such a case, the process is a Pólya process,
and the voting rate converges to a beta distribution in a large time limit (Hisakado
et al. 2006). Next, we doped independent voters in herders. They are a kind of
noise which plays the important role for the system. The proposed voting model
is a binomial distribution doped in a beta binomial distribution mathematically. In
the upper limit of t , the independent voters make the distribution of votes converge
to Dirac measure against herders. This model consists of three phases. If herders
constitute the majority or even half of the total voters, the voting rate converges
more slowly than it would in a binomial distribution. If independents constitute the
majority of the voters, the voting rate converges at the same rate as it would in a
binomial distribution. The phases differ in terms of the velocity of the convergence.
If the independent voters vote for the correct candidate rather than for the wrong
candidate, the model consists of no case wherein the majority of the voters select
the wrong answer. The herders affect only the speed of the convergence; they do not
affect the voting rates for the correct candidate.

In this chapter we consider the digital herder case (Hisakado and Mori 2011).
Because herders always select the majority of the votes, which are visible to
them, the behavior becomes digital (discontinuous). Digital herders have a stronger
herding power than analog herders, and we can find the phase transition like Ising
model.

Here, we discuss a voting model with two candidates, C0 and C1. We set two
types of voters – independent and herders. In this chapter, the herders are digital
herders. The voting of independent voters is based on their fundamental values. On
the other hand, the voting of herders is based on the number of votes. Herders always
select the majority of the previous r votes, which is visible to them.

The remainder of this chapter is organized as follows. In Sect. 2, we introduce our
voting model, and we mathematically define the two types of voters – independents
and herders. The voters can see the previous r votes of the voters. In Sect. 3, we
calculate the exact distribution functions of the votes for the case wherein the voters
can see the votes of all the voters. We discuss the phase transition using the exact
solutions. In Sect. 4, we discuss the special case, r = 1. In this case, we calculate
the exact distribution function; however, there is no phase transition. Finally, the
conclusions are presented in Sect. 5.

2 Model

We model the voting of two candidates, C0 and C1; at time t , they have c0(t) and
c1(t) votes, respectively. At each time step, one voter votes for one candidate; the
voting is sequential. Voters are allowed to see r previous votes for each candidate
when they vote so that they are aware of public perception. If r > t , voters can see
t previous votes for each candidate. At time t , the number of votes for C0 and C1 is
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Fig. 1 Demonstration of model. R = cr
0/{cr

0 + cr
1}

cr
0(t) and cr

1(t), respectively. In the limit r → ∞, voters can see all previous votes.
Therefore, c∞

0 (t) = c0(t) and c∞
1 (t) = c1(t).

There are two types of voters – independents and herders; we assume an infinite
number of voters. Independent voters vote for C0 and C1 with probabilities 1 − q

and q, respectively. Their votes are independent of others’ votes, i.e., their votes are
based on their fundamental values. Here, we set C0 as the wrong candidate and C1 as
the correct candidate to validate the performance of the herders. We can set q ≥ 0.5
because we believe that independent voters vote for the correct candidate C1 rather
than for the wrong candidate C0. In other words, we assume that the intelligence of
the independent voters is virtually correct. It also plays the role of noise.

On the other hand, herders vote for a majority candidate; if cr
0(t) > cr

1(t), herders
vote for the candidate C0. If cr

0(t) < cr
1(t), herders vote for the candidate C1. If

cr
0(t) = cr

1(t), herders vote for C0 and C1 with the same probability, i.e.,1/2. It
is the response function. The conclusion of the votes depends on this and we will
discuss in other chapters. In the previous paper, the herders voted for each candidate
with probabilities that were proportional to the candidates’ votes (Hisakado and
Mori 2010); they were known as analog herders. On the other hand, the herders in
this paper are known as digital herders (Fig. 1).

The independent voters and herders appear randomly and vote. We set the ratio of
independent voters to herders as (1 − p)/p. In this chapter we mainly pay attention
in large t limit. It means the voting of infinite voters.
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3 Exact Solutions for r = ∞

In this section, we study the exact solution of the case r = ∞ by using
combinatorics.

Here, we map the model to correlated Brownian motion along the edges of a grid
with square cells, and we count the number of paths. Let m and n be the horizontal
axis and the vertical axis, respectively. The coordinates of the lower left corner are
(0, 0); this is the starting point. m is the number of voters who vote for C1, and n

is the number of voters who vote for C0. A path shows the history of the votes. If a
voter votes for C1, the path moves rightward. If a voter votes for C0, the path moves
upward.

We define Pi(m, n) as the probability that the (n + m + 1)th voter votes for the
candidate Ci , where i = 0, 1. The probability of moving upward is as follows:

P0(m, n) =
⎧
⎨

⎩

p + (1 − p)(1 − q) ≡ A m < n;
1
2p + (1 − p)(1 − q) ≡ B m = n;
(1 − p)(1 − q) ≡ C m > n.

⎫
⎬

⎭
(1)

The probability of moving rightward is P1(m, n) = 1 − P0(m, n) for each case.
Here, we introduce X(m, n) as the probability that the path passes through the point
(m, n). The master equation is

X(m, n) = P1(m − 1, n)X(m − 1, n) + P0(m, n − 1)X(m, n − 1), (2)

for m ≥ 0 and n ≥ 0, with the initial condition X(0, 0) = 1. This defines X(m, n)

uniquely. Hereafter, we refer to the region m < n as I , m > n as II , and m = n as
III (Fig. 2).

First, we consider the case q = 1. At this limit, independent voters always vote
for only one candidate, C1 (if we set q = 0, independent voters vote only for C0).
The probability is reduced from (1) to

P0(m, n) =
⎧
⎨

⎩

p m < n;
1
2p m = n;
0 m > n.

⎫
⎬

⎭
(3)

In this case, if the path enters II (m > n), it can only move rightward. Hence,
n = m − 1 becomes the absorption wall, where m, n ≥ 0. There is a difference
between the probability (3) in I (m < n) and that in III (m = n). Then, we have to
count the number of times the path touches the diagonal.

Using (25), we can calculate the distribution for m ≤ n. (See Appendix A.)

X(m, n) =
{∑m

k=0 Am,n,k
pn(1−p)m

2k+1 m < n;
∑m

k=0 Am,m,k
pm(1−p)m

2k m = n.

}

, (4)
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Fig. 2 Voting and path. A path shows the history of the votes. If a voter votes for C1, the path
moves rightward. If a voter votes for C0, the path moves upward. The sample directed line shows
the voting of six voters, 0, 0, 1, 1, 1, 1. We refer to the regions m < n, m > n, and m = n as I , II ,
and III , respectively

where Am,n,k is given by (25) and k is the number of times the path touches the
diagonal.

The distribution for m > n can be easily calculated for the absorption wall n =
m − 1, where m, n ≥ 0. The distribution for m > n is given by

X(m, n) =
n∑

k=0

An,n,k

pn(1 − p)n(1 − 1
2p)

2k+1 m > n. (5)

We investigate the limit t → ∞. Here, we consider m as a variable; it is the
distribution function of the vote for C1. For large t , we can assume that only the first
terms of the summation of (4) and (5) are non-negligible. The first term becomes
the difference of the binomial distributions using (25). For m/t < 1/2, the peak of
the binomial distribution is 1 − p, and for m/t > 1/2, it is 1. Then, we can obtain
the distribution in the scaling limit t = m + n → ∞.

m

t
=⇒ Z. (6)

The probability measure of Z is

μ = αδ1−p + βδ1, (7)

where δx is Dirac measure. Z is the ratio of voters who vote to C1 from (6). The
distribution has two peaks, one at Z = 1 and the other at Z = 1 − p. Now, we
calculate α and β, where α + β = 1. The probability that the path touches the
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Fig. 3 β or s̄, i.e., average
votes for candidate C1 by
herders

absorption wall n = m − 1 is given by

β =
∞∑

m=0

X(m,m)(1 − p

2
) =

∞∑

m=0

m∑

k=0

Am,m,k

pm(1 − p)m

2k
(1 − p

2
)

= (1 − p

2
)[1 + x

2
C0(x) + (

x

2
)2C1(x) + (

x

2
)3C2(x) + · · · ]

= (1 − p

2
)[1 + x

2
C0(x) + (

x

2
)2{C0(x)}2 + (

x

2
)3{C0(x)}3 + · · · ]

= (1 − p

2
)[

∞∑

k=0

{xC0(x)}k
2k

] = (1 − p

2
)

1

1 − xC0(x)
2

= 4 − 2p

3 + √
1 − 4p(1 − p)

= 4 − 2p

3 + |1 − 2p| . (8)

Ck(x) is the generating function of the generalized Catalan number (30), and x =
p(1 − p). Here, we use the relations (29) and (32). (See Appendix B.)

In Fig. 3, we plot β for the case q = 1. We are interested in the average votes
for C1 by the herders to validate the performance of the herders. We define s as the
average votes for the correct candidate C1 by the herders.

s = Z − (1 − p)

p
. (9)

Here, we take expected values of (9) about several sequences of voting.

Z̄ = ps̄ + (1 − p) = (1 − p)α + β, (10)

where x̄ means the expected value of x. The second equality can be obtained
from (7). Using the relation α + β = 1, we can obtain s̄ = β.

When p is less than 0.5, herding is a highly efficient strategy. The distribution
of votes peaks when Z = 1. A majority of votes is necessary to select the correct
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Fig. 4 V ar(Z), the variance of Z, is the order parameter. V ar(Z) is not differentiable at pc. Z is
the ratio of voters who vote to C1

candidate C1. At p = pc = 0.5, there is a phase transition. When p exceeds pc =
0.5, the distribution of votes has two peaks. In this case, a majority may select the
wrong candidate C0. In the language of game theory, this is a bad equilibrium. The
probability of falling into bad equilibrium is 1−β. V ar(Z), the variance of Z in the
large t limit, is the order parameter. It is observed that V ar(Z) is not differentiable
at p = 1/2 (Fig. 4). Hence, the phase transition is of the second order.

When p ≤ pc, the distribution has one peak, and it does not depend on P0(m,m),
which is the probability of the vote when the number of votes for C0 is the same as
that for C1. We can confirm that V ar(Z) is 0 in Fig. 4. On the other hand, when
p > pc, the limit distribution depends on P0(m,m); P0(m,m) is given by (3). We
can confirm that V ar(Z) is not 0 in Fig. 4. If herders are analog, V ar(Z) is 0 in all
region of p.

Next, we consider the general q case. In this case, the path goes across the
diagonal several times. n = m−1 is no longer the absorption wall, where m, n ≥ 0.
Hence, it is difficult to calculate the exact solution for general q. However, as in
the discussion of (7), we can obtain the limit shape of the distribution of the votes
for C1.

m

t
=⇒ Z. (11)

The probability measure of Z is
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μ = αδ(1−p)q + βδp+(1−p)q, (12)

where α + β = 1. When q = 1, (12) becomes (7). We can calculate β as

β = R̃1(1 − R2)(1 + R1R2 + R2
1R2

2 + · · · ) = R̃1(1 − R2)

1 − R1R2
. (13)

R̃1 is the probability that the path starts from (0, 0), goes across the diagonal only
once, and reaches the wall n = m − 1 in II (m > n). R1 is the probability that the
path starts from the wall n = m + 1 in I (m < n), goes across the diagonal only
once, and reaches the wall n = m − 1 in II (m > n). R2 is the probability that the
path starts from the wall n = m − 1 in II (m > n), goes across the diagonal only
once, and reaches the wall n = m + 1 in I (m < n).

For example, the first term of (13) is the path that starts from (0, 0) and passes
through I (m < n) or directly enters II (m > n). The path goes across the diagonal
III (m = n) only once; the first step is rightward. The second term is the path that
starts from (0, 0), goes across the diagonal III (m = n) three times, and enters II

(m > n). We can calculate R̃1, R1, and R2 similarly to (8) (see Appendix B).

R̃1 = 2(1 − B)

2 − γ1(1 − √
1 − 4A(1 − A))

,

R1 = (1 − B)γ1(1 − √
1 − 4A(1 − A))

B{2 − γ1(1 − √
1 − 4A(1 − A))} ,

R2 = Bγ2(1 − √
1 − 4C(1 − C))

(1 − B){2 − γ2(1 − √
1 − 4C(1 − C))} , (14)

where A, B, and C are given by (1), γ1 = B/A, and γ2 = (1 − B)/(1 − C).
In general, we can calculate the exact value of pc.

pc = 1 − 1

2q
. (15)

As q increases, pc increases. At pc, the model features a phase transition beyond
which a state where most agents make the correct forecasts coexists with one where
most of them are wrong. Thus, the effectiveness of herding decreases as q decreases.
In the limit q = 0.5, the phase transition disappears. The distribution becomes
symmetric in this case.

If p is greater than pc, the vote ratios deviate considerably from the fundamental
value q. Thus, digital herders account for greater effects than analog herders. Analog
herders affect only the speed of convergence to the fundamental value (Hisakado and
Mori 2010). Independent voters cannot oppose digital herders.
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4 Exact Solutions for r = 1

Here, we discuss the cases r = 1 besides p 	= 1. When p = 1, all voters are herders,
and the distribution becomes the limit shape of beta distribution, as discussed in
Mori and Hisakado (2010). Herders can see only a vote of the previous voter. We
define Pi(t) as the probability that the (t + 1)th voter votes for Ci , where i = 0, 1.
Here, t denotes the time.

P0(t) =
{

p + (1 − p)(1 − q) ≡ F ;Y0(t − 1) = 1;
(1 − p)(1 − q) ≡ G : Y0(t − 1) = 0.

}

(16)

Yi(t) = 1 indicates that at t , the voter votes for Ci . Y0(t − 1) = 1 indicates that
the previous voter votes for C0. On the other hand, Yi(t) = 0 indicates that at t , the
voter does not vote for Ci . Y0(t − 1) = 0 indicates that the previous voter votes for
C1. Thus,

∑t
l=1 Yi(l) is the total number of votes for Ci until t . Here, the relation

P1(t) = 1 − P0(t) holds. The initial distribution is

P0(0) = 1

2
p + (1 − p)(1 − q). (17)

The model was studied as a one-dimensional correlated random walk (Bohm
2000; Konno 2002). Here, we introduce X(m, n) as the probability distribution. m

is the number of the voters who vote for C1, and n is the number of the voters who
vote for C0. The master equation is

X(m, n) = P1(t − 1)X(m − 1, n) + P0(t − 1)X(m, n − 1), (18)

for m ≥ 0 and n ≥ 0, with the initial condition X(0, 0) = 1.
In the limit t → ∞:

X(m, t − m) =⇒ N(qt,

√
F(1 − G)

(1 − F)G
t), (19)

where N(μ, σ 2) is the normal distribution with mean μ and variance σ 2. (See
Theorem 3.1. in Bohm 2000.) F and G are given in (16). Hence, we can obtain
the limit shape of the distribution as

m

t
=⇒ Z. (20)

The probability measure of Z is

μ = δq . (21)
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Then, r = 1 involves no phase transition, and the majority of the voters do not select
the wrong candidate C0.

The limit distribution is independent of the initial condition P0(0) because the
distribution Z has only one peak.

5 Concluding Remarks

We investigated a voting model that is similar to a Keynesian beauty contest. We
calculated the exact solutions for the special cases r = 1 and r = ∞. When r = ∞,
we can obtain the exact solutions and obtain the critical point pc of phase transition.

We consider herders who always choose the candidate with a majority of the
previous votes, which is visible to them. We refer to these herders as digital herders.
Digital herders exhibit stronger herd behavior than analog herders. We obtained
exact solutions when the voters comprised a mix of digital herders and independents
in r = ∞ and r = 1 cases. Here r is the referred number. r = ∞ case, the voter
refers to all previous voters. r = 1 case, the voter refers to the latest voter. r =
∞ case, as the fraction of herders increases, the model features a phase transition
beyond which a state where most voters make the correct choice coexists with one
where most of them are wrong. This phase transition is referred to as information
cascade transition. It is “spontaneous symmetry braking.” We can obtain the critical
point pc and the distribution. The phase transition is the non-equilibrium process.
On the other hand, the r = 1 case, there is no phase transition.

Ants use chemical signals called pheromones, and they behave as herders. The
pheromones evaporate quickly. As an analogy, in our model, r is small. Thus,
pheromones may amplify the limited intelligence of individual ants into something
more powerful to avoid phase transition. In this chapter we discussed extreme cases,
r = 1 and r = ∞ cases. r = 1 case corresponds to that where the pheromones
evaporate quickly. On the other hand, r = ∞ case corresponds to the no evaporation
case. We discuss r 	= 1,∞ cases in the next chapter.

The herding system has an important role in the society of ants. Using the
system, they can gather and unify the information. It is well known as an example of
“emergence.” The system which called ant colony optimization (ACO) is applied to
several problems such as traversing salesman problem (Dorigo and Stützle 2004;
Hisakado and Hino 2016). The herding strength, whether the herder is digital
or analog, and the number of references r are the important parameters. As we
discussed in this chapter, with the strong herding strength and long memory, there is
the phase transition, and the system may be trapped by the bad equilibrium. It seems
that ants adjust parameters to avoid the phase transition. There will be many useful
things which we can learn from ants.
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Appendix A Catalan Number and Extended

Here, we consider the number of monotonic paths along the edges of a grid with
square cells, which do not pass lower the diagonal. Let m and n be the horizontal
axis and the vertical axis, respectively. The coordinates of the lower left corner are
(0, 0). A monotonic path is one which starts in the lower left corner; finishes in the
upper triangle (m, n), where 0 ≤ m ≤ n; and consists entirely of edges pointing
rightward or upward.

The number of paths from (0, 0) to (m, n) can be calculated as

Cm,n = (n − m + 1)(n + m)!
m!(n + 1)! =

(
n + m

n

)

−
(

n + m

n + 1

)

. (22)

These numbers are known as generalized Catalan number.
If the finish point is (m,m), the number of paths becomes the Catalan number.

Cm,m = cm = 2m!
m!(m + 1)! =

(
2m

m

)

−
(

2m

m + 1

)

. (23)

Next, we compute the distribution of the number of the paths that starts in the
lower left corner, finishes in the upper triangle (m, n), and touches the diagonal k

times (Di Francesco et al. 1997; Lang 2000). Let Am,n,k denote the number of paths
that touches the diagonal k times. We get a simple recursion relation about Am,n,k .

Am,n,k =
m−1∑

j=0

cjAm−j−1,n−j−1,k−1, (24)

for k ≥ 0, n,m ≥ 0, and m ≥ k, with the initial condition A0,0,0 = 1. This defines
the numbers Am,n,k uniquely, and it is easy to prove that

Am,n,k = (n − m + k)(n + m − k − 1)!
n!(m − k)!

=
(

n + m − k − 1
n − 1

)

−
(

n + m − k − 1
n

)

. (25)

From (22) and (25), we can obtain the relation

Am,m,k = Cm−k,m−1. (26)
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The well-known generating function C0(x) of Catalan numbers is given by

C0(x) =
∞∑

n=0

Cm,mxn

= 1 + x + 2x2 + 5x3 + 14x4 + 42x5 + 132x6 + · · · , (27)

subject to the algebraic relation

xC0(x)2 = C0(x) − 1, (28)

and we can obtain

C0(x) = 1 − √
1 − 4x

2x
. (29)

Here, we obtain the generating function Am,k(x) of Am,m,k .

Am,k(x) =
∞∑

m−k=0

Am,m,kx
m−k =

∞∑

m−k=0

Cm−k,m−1x
m−k

=
∞∑

l=0

Cl,l+k−1x
l = Ck−1(x). (30)

We use (26) for the second equality. Cj (x) = ∑∞
l=1 Cl,l+j x

l is the generating
function of the generalized Catalan number (22). The generating function of the
generalized Catalan number is given by

C1(x) =
∞∑

n=0

Cm,m+1x
n

= 1 + 2x + 5x2 + 14x3 + 42x4 + 132x5 + 429x6 + · · · ,

C2(x) =
∞∑

n=0

Cm,m+2x
n

= 1 + 3x + 9x2 + 28x3 + 90x4 + 297x5 + 1001x6 + · · · ,

C3(x) =
∞∑

n=0

Cm,m+3x
n

= 1 + 4x + 14x2 + 48x3 + 165x4 + 572x5 · · · .
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Fig. 5 R̃1, R1, and R2. R̃1 is
the probability that the path
starts from (0, 0), goes across
the diagonal only once, and
reaches the wall n = m − 1 in
II (m > n). R1 is the
probability that the path starts
from the wall n = m + 1 in I

(m < n), goes across the
diagonal only once, and
reaches the wall n = m − 1 in
II (m > n). R2 is the
probability that the path starts
from the wall n = m − 1 in
II (m > n), goes across the
diagonal only once, and
reaches the wall n = m + 1 in
I (m < n)

From (24), we can obtain

Cj (x) = Cj−1(x)C0(x). (31)

Thus, the simple relation between the generating functions is given by

Cj (x) = {C0(x)}j+1. (32)

Appendix B Derivation of R̃1, R1, and R2

R̃1 is the probability that the path starts from (0, 0), goes across the diagonal only
once, and reaches the wall n = m − 1 in II (m > n) (Fig. 5).

R̃1 = (1 − B)[1 + yγ1C0(y) + (yγ1)
2C1(y) + (yγ )3C2(y) + · · · ]

= (1 − B)[1 + yγ1C0(y) + (yγ1)
2{C0(y)}2 + (yγ1)

3{C0(y)}3 + · · · ]

= (1 − B)[
∞∑

k=0

{γ1yC0(y)}k] = 1 − B

1 − γ1AC0(A)

= 2(1 − B)

2 − γ1(1 − √
1 − 4A(1 − A))

, (33)
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where A and B are given by (1), γ1 = B/A, and y = A(1 − A). Ck(y) is
the generation function of the generalized Catalan number (30). Here, we use the
relations (32) and (29). When q = 1, (33) reduces to (8).

R1 is the probability that the path starts from the wall n = m + 1 in I (m < n),
goes across the diagonal only once, and reaches the wall n = m − 1 in II (m > n).

R1 = 1 − B

B
[yγ1C0(y) + (yγ1)

2C1(y) + (yγ1)
3C2(y) + · · · ]

= 1 − B

B
[yγ1C0(y) + (yγ1)

2{C0(y)}2 + (yγ1)
3{C0(y)}3 + · · · ]

= 1 − B

B
[ R̃1

1 − B
− 1] = (1 − B)γ1(1 − √

1 − 4A(1 − A))

B{2 − γ1(1 − √
1 − 4A(1 − A))} . (34)

R2 is the probability that the path starts from the wall n = m − 1 in II (m > n),
goes across the diagonal only once, and reaches the wall n = m + 1 in I (m < n).

R2 = B

1 − B
[zγ2C0(z) + (zγ2)

2C1(z) + (zγ2)
3C2(z) + · · · ]

= B

1 − B
[zγ2C0(z) + (zγ2)

2{C0(z)}2 + (zγ2)
3{C0(z)}3 + · · · ]

= Bγ2(1 − √
1 − 4C(1 − C))

(1 − B){2 − γ2(1 − √
1 − 4C(1 − C))} ., (35)

where C is given by (1), γ2 = (1 − B)/(1 − C), and z = C(1 − C).
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Information Cascade, Kirman’s Ant
Colony Model, and Kinetic Ising Model

Masato Hisakado and Shintaro Mori

1 Introduction

While collective herding behaviour is popularly studied among animals, it can also
be observed in human beings. In this regard, there are interesting problems across
the fields of sociology (Tarde 1890), social psychology (Milgram et al. 1969),
ethnology (Partridge 1982; Couzin et al. 2002), and economics. Statistical physics
has been an effective tool to analyse these macro phenomena among human beings
and has led to the development of an associated field, sociophysics (Galam 2008;
Castellano et al. 2009). For example, in statistical physics, anomalous fluctuations
in financial markets (Cont and Bouchaud 2000; Egíluz and Zimmermann 2000) and
opinion dynamics (Stauffer 2002; Curty and Marsili 2006) have been discussed.

Most individuals observe the actions of other individuals to estimate public
perception and then make a choice similar to that of the others; this is called social
learning. Because it is usually sensible to do what other people are doing, collective
herding behaviour is assumed to be the result of a rational choice that is based on
public perception. While this approach could be viable in some ordinary cases, as a
macro phenomenon, it can sometimes lead to arbitrary or even erroneous decisions.
This phenomenon is known as an information cascade (Bikhchandani et al. 1992).
Here we show that an information cascade is described by the Ising model.

We introduced a sequential voting model (Hisakado and Mori 2010). At each
time step t , one voter opts for either of two candidates. As public perception,
the t th voter can see all previous votes, that is, (t − 1) votes. To identify the
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relationship between information cascade and phase transition, we introduce two
types of voters—herders and independents. We also introduce two candidates.

The herders’ behaviour is known as the influence response function, and
threshold rules have been derived for a variety of relevant theoretical scenarios
representing this function. Some empirical and experimental evidence supports
the assumption that individuals follow threshold rules when making decisions in
the presence of social influence (Watts and Dodds 2007). This rule posits that
individuals will switch from one decision to another only when sufficiently many
others have adopted the other decision. Such individuals are called digital herders
(Hisakado and Mori 2011). From our experiments, we observed that human beings
exhibit a behaviour between that of digital and analog herders, that is, the tanh-type
herder (Hisakado and Mori 2012). We obtained the probability that a herder makes
a choice under the influence of his/her prior voters’ votes. This probability can be
fitted by a tanh function (Mori et al. 2012).

Here, we discuss a voting model with two candidates. We set two types of
voters: independents and herders. As their name suggests, the independents collect
information independently, that is, their voting depends on their fundamental values
and rationality. In contrast, the voting of herders is based on public perception,
which is visible to them in the form of previous votes. In this study, we consider
the case wherein a voter can see the latest r previous votes.

When r → ∞ is the upper limit of t , we can observe several phenomena
(Hisakado and Mori 2011). In the case where there are independent voters and
digital herders, the independents cause the distribution of votes to converge to one-
peak distribution, a Dirac measure when the ratio of herders is small. However, if the
ratio of herders increases above the transition point, we can observe the information
cascade transition. As the fraction of herders increases, the model features a phase
transition beyond which a state where most voters make the correct choice coexists
with one where most of them are wrong. Further, the distribution of votes changes
from one peak to two peaks.

Here we show that there is no phase transition when r is finite and the solution
oscillates between two equilibria. Furthermore, we show relations among our voting
model, Kirman’s ant colony model, and kinetic Ising model.

The remainder of this chapter is organised as follows. In Sect. 2, we introduce
our voting model and mathematically define the two types of voters—independents
and herders. In Sect. 3, we discuss the case where there are digital herders and
independents. In Sect. 4, we verify the transitions between voting choices through
numerical simulations. In Sect. 5, we discuss the case where there are analog herders
and independents and show the relation between our voting model and Kirman’s ant
colony model. In Sect. 6, we discuss the relation between our voting model and the
kinetic Ising model. In the final section, we present the conclusions.
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2 Model

We model the voting of two candidates, C0 and C1. The voting is sequential, and
at time t , C0 and C1 have c0(t) and c1(t) votes, respectively. In each time step, one
voter votes for one candidate. Hence, at time t , the t th voter votes, after which the
total number of votes is t . Voters are allowed to see just r previous votes for each
candidate; thus, they are aware of public perception. r is a constant number.

We assume an infinite number of two types of voters—independents and herders.
The independents vote for C0 and C1 with probabilities 1 − q and q, respectively.
Their votes are independent of others’ votes, that is, their votes are based on their
own fundamental values.

Here, we set C0 as the wrong candidate and C1 as the correct one in order to
validate the performance of the herders. We can set q ≥ 0.5, because we believe
that independents vote for C1 rather than for C0. In other words, we assume that the
intelligence of the independents is virtually accurate.

In contrast, the herders’ votes are based on the number of previous r votes. At
time t , the information of r previous votes are the number of votes for C0 and
C1:cr

0(t) and cr
1(t), respectively. Hence, cr

0(t) + cr
1(t) = r holds. If r > t , voters

can see t previous votes for each candidate. For the limit r → ∞, voters can see
all previous votes. We define the number of all previous votes for C0 and C1 as
c∞

0 (t) ≡ c0(t) and c∞
1 (t) ≡ c1(t).

Now we define the majority’s correct decision. If the ratio to the candidate C1
who is correct is c1/t > 1/2(< 1/2), we define the majority as correct (wrong).
This ratio is important to evaluate the performance of the herders. In this chapter,
we consider three kinds of herders, namely, digital, analog, and tanh-type herders.
We define zr as zr = cr

1/r . The probability that a herder who refers to zr votes to
the candidate C1 is defined as f (zr). Digital herders always choose the candidate
with a majority of the previous r votes, which are visible to them (Hisakado and
Mori 2011). In this case, f (zr) = θ(zr − 1/2), where θ is a Heaviside function.
Analog herders vote for each candidate with probabilities that are proportional to the
candidates’ votes (Hisakado and Mori 2010). Thus, f (zr) = zr . The other herder
is the tanh-type herder, who is an intermediate between analog and digital herders
(Hisakado and Mori 2012). In this case, f (zr) = 1/2(tanh(zr − 1/2) + 1).

The independents and herders appear randomly and vote. We set the ratio of
independents to herders as (1 − p)/p. In this study, we mainly focus on the upper
limit of t . This refers to the voting of infinite voters.

In this model we introduce the two types of noise (Young 2011). One is
independents. They appear with the probability 1 − p and vote to the correct
candidates with the probability q. If q is high, the error becomes small. They choose
an action uniformly at random. The model is called “uniform error process”.

The other is “log-normal”. In this case the noise is included in the herders’
response function. The reason of the name is that log probability of choosing the
candidate C1 is linear. In the limit of the no noise case, the herder becomes the
digital. In the limit of the noisy case, he/she becomes the analog.
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3 Digital Herder

In this section, the herder is a digital herder (Hisakado and Mori 2011) and, hence,
votes for the majority candidate; if cr

0(t) > cr
1(t), herders vote for the candidate C0.

If cr
0(t) < cr

1(t), herders vote for the candidate C1. If cr
0(t) = cr

1(t), herders vote for
C0 and C1 with the same probability, that is, 1/2.

In the previous paper, we discussed this case by using mean field approximations
(Hisakado and Mori 2011). In this chapter, we discuss this using stochastic partial
differential equations. First, we consider an approximation to introduce the partial
differential equations. The voter selects r votes randomly from the latest previous r

voters with overlapping. We can write the process as

c1(t) = k → k + 1 : Pk,t :l,t−r = pπ((k − l)/r) + (1 − p)q,

c1(t) = k → k : Qk,t :lt−r = 1 − Pk,t , (1)

where c1(t − r) = l. Pk,t and Qk,t are the probabilities of the process. The sum
of Pk,t and Qk,t is 1. This means that at time (t − r), the number of votes for C1
is c1(t − r) = l. Here, we define π(Z) as the majority probability of binomial
distributions of Z. π(Z) can be calculated as follows:

π(Z) = (2n + 1)!
(n!)2

∫ Z

0
xn(1 − x)ndx = 1

B(n + 1, n + 1)

∫ Z

0
xn(1 − x)ndx, (2)

where r = 2n + 1.
For convenience, we define a new variable Δt such that

Δt = 2c1(t) − t = c1(t) − c0(t). (3)

We change the notation from k and l to Δt and Δt−r for convenience. Given Δt = u

and Δt−r = s, we obtain a random walk model:

Δt = u → u + 1 : Pu,t :s,t−r = π(
1

2
+ u − s

2r
)p + (1 − p)q,

Δt = u → u − 1 : Qu,t :s,t−r = 1 − Pu,t .

We now consider the continuous limit ε → 0:

Xτ̂ = εΔ[t/ε],

P (x, τ̂ ) = εP (Δt/ε, t/ε), (4)

where τ̂ = t/ε,r̂ = r/ε and x = Δt/ε. On approaching the continuous limit, we
can obtain the stochastic partial differential equation:
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dXτ̂ =
[

(1−p)(2q −1)−p+2p
(2n + 1)!

(n!)2

∫ 1
2 + Xτ̂ −Xτ̂−r̂

2r

0
xn(1−x)ndx

]

dτ̂ +√
ε,

(5)
where we used (2). Equation (5) depends on Xτ̂−r̂ and is the feedback system.

We are interested in the behaviour of Xτ̂ in the limit τ̂ → ∞. The relation
between X∞ and the voting ratio to C1,Z is 2Z − 1 = X∞/τ̂ .

We can assume the stationary solution to be

X∞ = v̄τ̂ + (1 − p)(2q − 1)τ̂ , (6)

where v̄ is constant. Substituting (6) into (5), we can obtain

v̄ = −p + 2p · (2n + 1)!
(n!)2

∫ 1
2 + (1−p)(2q−1)

2 + v̄
2

0
xn(1 − x)ndx. (7)

Equation (7) is self-consistent with a permission of overlapping. It is the same as the
mean field approximation in Hisakado and Mori (2011). If we set n = 2r +1 → ∞,
which is the second term of RHS, the herders behave as digital herders and (7)
becomes the strict form for them.

When r = 1, 2, there is only one solution of (7) in the range p. However, when
r ≥ 3, there is only one solution in p < pc and three solutions in p > pc, where
pc is critical p (Hisakado and Mori 2011). The middle solution is unstable, while
the other two solutions are stable. As there exist both good and bad equilibria, there
may be phase transitions.

In the case where r → ∞, the description is correct. In fact, there is phase
transition when r is infinite. The voting rates converge to one of the two stable
points. However, when r is finite, the solution oscillates between good and bad
equilibria. Hence, there is no phase transition. We elaborate this below.

Here, we consider a random walk between the two states, cr
1(t)/r > 1/2

(good equilibrium) and cr
0(t)/r > 1/2 (bad equilibrium). It is coarse-grained votes

and corresponds to the block spin transformation (Kadanoff 1966). We define the
hopping probability from the state cr

0(t)/r > 1/2 to cr
1(t)/r > 1/2 as a and that

from the state cr
1(t)/r > 1/2 to cr

0(t)/r > 1/2 as b. Note that a and b are not the
function of t . When t > r , the transition matrix A of this random walk is

A =
(

1 − a a

b 1 − b

)

. (8)

The random walk of the two states, X̃n, is defined as the transition matrix A when
t > r and the initial condition X̃0 = 0. If r > t , voters can see t previous votes for
each candidate.

The model was studied as a one-dimensional correlated random walk (Böhm
2000; Konno 2002). For the limit t → ∞,
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X̃∞ =⇒ N(
a − b

a + b
t,

4ab(2 − (a + b))

(a + b)3 t), (9)

where N(μ, σ 2) is the normal distribution with mean μ and variance σ 2. (See
Theorem 3.1, in Böhm 2000.) a and b are given in (8).

If consecutive independent voters choose the candidate C1(C0) when cr
0(t)/r >

1/2(cr
1(t)/r > 1/2), the state changes from cr

0(t)/r > 1/2(cr
1(t)/r > 1/2) to

cr
1(t)/r > 1/2(cr

0(t)/r > 1/2). Thus, independent voters behave as a switch for
hopping. When the independent voters who vote C1(C0) are the majority, the state
hops from cr

0(t)/r > 1/2(cr
1(t)/r > 1/2) to cr

1(t)/r > 1/2(cr
0(t)/r > 1/2). Hence,

the hopping rates a and b are estimated to be

a = π [(1 − p)q] = (2n + 1)!
(n!)2

∫ (1−p)q

0
xn(1 − x)ndx ∼ (1 − p)

r+1
2 q

r+1
2 ,

b = π [(1 − p)(1 − q)] ∼ (1 − p)
r+1

2 (1 − q)
r+1

2 , (10)

where the approximations are in p ∼ 1. In the case where r = 1, a = (1 − p)q

and b = (1 − p)(1 − q). We obtained an identical solution in Hisakado and Mori
(2010).

In the finite r case, the hopping rates a and b do not decrease as t increases,
and the state oscillates between good and bad equilibria. Hence, the distribution of
Xτ̂ becomes normal, and there is no phase transition. The voting rates converge to

(1−p)q+pa/(a+b) ∼ (1−p)q+pq
r+1

2 /(q
r+1

2 +(1−q)
r+1

2 ). The first term is the
number of votes by independent voters, and the second term is the number of votes
by the digital herders. The herders’ votes oscillate between good and bad equilibria
in (7). As r increases, the stay in the good equilibrium becomes longer. The ratio of
stay in the good equilibrium to that in the bad equilibrium is a/b ∼ (

q
1−q

)r+1/2.
When r = ∞, we consider two cases. One is the case where r increases with

t . Also, in this case, r increases rapidly, that is, the annealing schedule is not
adequately slow (Geman and Geman 1984). The voters can refer to all historical
votes. The hopping rates a and b decrease exponentially as t increases, and v̄

converges to the solutions of the self-consistent equation (7). Hence, above pc,
which is the critical p, the voting rate could converge to the bad equilibrium. Thus,
this is the information cascade transition.

The other case is where r increases slowly, that is, the annealing schedule is
adequately slow. At first, we set a finite r . After an adequate number of votes,
the state frequently oscillates between good and bad equilibria. We increase r

after several oscillations of the states. We continue this process until r reaches
∞. Thus, we deem the annealing schedule to be adequately slow. (See Sect. 4,
where the schedule r ∼ log t .) The ratio of stay in the good equilibrium to the
bad equilibrium is a/b ∼ (

q
1−q

)r+1/2 → ∞. It means that the state is always in
the good equilibrium, and the voting rate converges only to the good equilibrium
(1 − p)q + pa/(a + b) → (1 − p)q + p when r is large.
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Fig. 1 Illustration of voting rate convergence using the analogy of physical potential. The ball
stops at the bottom of the potential, corresponding to the convergence of the voting rate. The
deeper (shallower) potential corresponds to good (bad) equilibrium. (a) is the case where r = ∞.
As the annealing schedule is not adequately slow, sometimes, the voting rate converges to the
bad equilibrium, and there is information cascade. (b) is the case where the annealing schedule is
adequate slow. If we increase r slowly, the voting rate converges only to the good equilibrium

In Fig. 1, we depict the convergence as r increases. (a) is the case where r

increase rapidly, or the annealing schedule is not adequately slow. v̄ converges to
one of the solutions of the self-consistent equation (7). Hence, the average correct
ratio E(c1(t)/t) decreases above pc, as p increases. The average correct ratio is the
ratio of the number of votes for the candidate C1 to all votes. Further, (b) is the case
where r and p increase slowly from finite r . In this case, the voting rate converges
only to the good equilibrium.

4 Numerical Simulations

To confirm the analytic results of Sect. 3, we performed numerical and Monte Carlo
(MC) integration of the master equation for the digital herder case. For the Monte
Carlo study, we solve the master equation for 106 times and calculate the average
value of ratios.

In Fig. 2, we show the average votes ratio for the correct candidate vs p for
q = 0.6 and r = 5, 101 and r = ∞. For the time horizon t , we choose t = 102, 104,
and 106 in order to observe the limit behaviour t → ∞. We also plot the theoretical
results for the limit value as

lim
t→∞ E(c1/t) = (1 − p)q + p

a

a + b
, (11)
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Fig. 2 E(c1(t)/t) vs p for r = 5, 101,∞ and t = 102, 104, 106,∞. The symbols show the
results from numerical studies. The lines represent the theoretical results. The theoretical results
for finite r (11) are plotted with solid (r = 5) and broken lines (r = 101). For r = ∞, the result is
given in Hisakado and Mori (2011) and is plotted with thin solid line. We set q = 0.6

where a, b are given in (10). The thin solid line plots the exact result of the limit
value. For p < pc = 1/6, the herders make the correct choice, and it behaves
as (1 − p)q + p · 1. Above pc, the probability that all herders choose the wrong
candidate becomes finite, and it becomes smaller than (1 − p)q + p · 1.

When r = 5 and t = 102, E(c1(t)/t) slightly increases with p for small p. For
large p, the probability that the system is in the bad equilibrium becomes large, and
E(c1(t)/t) becomes small. As p increases further, the probability that the system
escapes from the bad equilibrium becomes negligibly small, and it approaches the
limit value for r = ∞. As t increases from 102 to 104, 106, the probability that the
system is in the bad equilibrium decreases, and E(c1(t)/t) becomes larger. As p

approaches 1, like in the t = 102 case, it approaches the limit value for r = ∞. We
also see that E(c1(t)/t) approaches the theoretically estimated limit value (11) as t

becomes large. For the limit t → ∞, the probability that herders make the correct
choice can be estimated as a/(a + b). For r = 101, we also see the same feature
with r = 5. Compared with r = 5, for r = 101, the peak position of E(c1(t)/t)

in p-axis becomes smaller, and it rapidly approaches the limit value for r = ∞.
As r becomes large, the mean oscillation time between good and bad equilibria
becomes large and the probability that the system escapes from the bad equilibrium
becomes small. Despite this, the system finally escapes from the bad equilibrium for
the limit t → ∞, and E(c1(t)/t) approaches the theoretically estimated result. The
probability that herders make the correct choice a/(a + b) is an increasing function
of r , and the slope of E(c1(t)/t) vs p becomes larger for large r . At r = 100 and
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q = 0.6, a/(a + b) is almost one and E(c1(t)/t) goes to one for the limit p → 1.
For better correct ratio E(c1(t)/t), r should be large. However, in order to realise
high value of E(c1(t)/t), t also should be large. Otherwise, one cannot necessarily
realise a high correct ratio. Therefore, there needs to be a trade-off between time
and correct ratio.

In order to realise the high value for E(c1(t)/t), r should be large. For large
r , for the probability in the bad equilibrium to be small, t should be large, and
the system should oscillate several times between the two equilibria. As the mean
cycle of the oscillation behaves as 1/[(1 − p)(r+1)/2(1 − q)(r+1)/2] = eCr with
C = − 1

2 log(1 − p)(1 − q), a good annealing schedule r(t) is estimated as

r(t) = log t/C. (12)

The annealing schedule r(t) depends on t logarithmically and is very slow.
In Fig. 3, we plot E(c1(t)/t) vs t for r = 5, 11, 21, 51, 101,∞ and r = r(t)

in Eq. (12). We set q = 0.6 and p = 0.5 > pc = 1/6. For r = ∞, the bad
equilibrium is stable, and E(c1(t)/t) saturates at low value ∼ 0.6 for t ≥ 102. For
r = 5, the herder’s probability of correct choice is low, and c1(t)/t soon reaches
the maximum value ∼ 0.65 at about t = 2 × 102. For r = 11, E(c1(t)/t) reaches
the maximum value for about t = 103. As r increases, the time t needed for the
high value of E(c1(t)/t) increases. For r = 51, c1(t)/t reaches about 0.8 at t =
105. If the probability that herders choose the correct candidate C1 is one, c1(t)/t

takes 0.8 = (1 − p)q + 1 · p for q = 0.6 and p = 0.5. r = 51 is large enough
to maximise the limit value limt→∞ c1(t)/t . If one adopts r(t) = 3 log t as the
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Fig. 3 Plots of E(c1(t)/t) vs t for r = 5, 11, 21, 51, 101,∞ and r = 3 log t . We set q = 0.6 and
p = 0.5 > pc = 1/6
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annealing schedule for r(t), E(c1(t)/t) increases smoothly to the maximum value
0.8 without saturation at some value between (1 − p)q + p · 0.5 = 0.55 and the
maximum value. If we adopt r = 51, at t = 106, c1(t)/t reaches the maximum
value. However, for t < 105, E(c1(t)/t) with r = r(t) is higher than that for
r = 51. If we set r = 51, the probability to escape from the bad equilibrium is
small, and it is necessary to wait for a long time t for c1(t) to reach the maximum
value. In contrast, for r = r(t), r slowly increases, and the probability to stay in the
bad equilibrium is minimised. Furthermore, unnecessary stay in good equilibrium
with medium E(c1(t)/t) is also avoided by increasing r and smoothly increasing
c1(t).

5 Analog Herder and Kirman’s Ant Colony Model

In this section, we consider the case of the analog herder (Hisakado and Mori 2010).
As mentioned earlier, the herders vote for the candidate with the probability that is
proportional to the previous votes ratio that can be referred. The voter can see the
latest previous r voters. The transition is

c1(t) = k → k + 1 : Pk,t :l,t−r = (1 − p)q + p
k − l

r
= q(1 − ρ) + ρ(k − l)

(1 − ρ) + ρr
,

c1(t) = k → k : Qk,t :lt−r = 1 − Pk,t :l,t−r = (1 − q)(1 − ρ) + ρ(r − (k − l))

(1 − ρ) + ρr
,

(13)

where c1(t −r) = l. Pk,t :l,t−r and Qk,t :l,t−r are the probabilities of the process. The
voting ratio for C1 is c1(t − r) = l. We changed the parameters from p to ρ, which
is the correlation of rth beta-binomial model (Hisakado et al. 2006). The relation
between p and ρ is

p = ρr

(1 − ρ) + ρr
. (14)

Hence, we can map independent voters and herders to beta-binomial distribution.
As r increases, 1 − p decreases as 1/r , and the independent voters’ ratio decreases.

Here, we consider the hopping rate among r + 1 states k̂ = k − l = 0, 1, · · · , r .
The dynamic evolution of the process is given by

k̂ → k̂ + 1 : P
k̂,k̂+1,t

= r − k̂

r

q(1 − ρ) + ρk̂

(1 − ρ) + ρr
,

k̂ → k̂ − 1 : P
k̂,k̂−1,t

= k̂

r

(1 − q)(1 − ρ) + ρ(r − k̂)

(1 − ρ) + ρr
,
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k̂ → k̂ : P
k̂,k̂,t

= 1 − P
k̂,k̂−1,t

− P
k̂,k̂+1,t

. (15)

This process means that a new vote is added by using the r references, where
the oldest vote of the r references exists. If we set ε = 1

2 (1 − ρ)/[(1 − ρ) +
ρr], 1 − δ = (r − 1)ρ/[(1 − ρ) + ρr], and q = 1/2, we obtain an equivalent of
Kirman’s ant colony model (Kirman 1993; Alfarano et al. 2005). The ant model has
been reasonably successful in replicating the statistical features of financial returns,
like volatility clustering and power low tails of the return distribution. They are
famous characteristic of financial return in econophysics. Kirman’s colony model
corresponds to r ≥ 2 case. In our model, there exists a constraint between the
parameters:

2ε + r

r − 1
(1 − δ) = 1. (16)

Here, we define μr(k̂, t) as a distribution function of the state k̂ at time t . The
number of all states is r + 1. Using the fact that the process is reversible, we have

μr(k̂ + 1, t)

μr(k̂, t)
= P

k̂,k̂+1,t

P
k̂+1,k̂,t

= r − k̂

k̂ + 1

q(1 − ρ) + ρk̂

(1 − q)(1 − ρ) + (r − k̂ − 1)ρ
. (17)

For the limit t → ∞, we can obtain the equilibrium distribution

μr(k̂,∞) = rCk̂

k̂−1
j=0(q(1 − ρ) + (jρ))r−k̂−1

j ′=0 ((1 − q)(1 − ρ) + (j ′ρ))

r−1
i=0 ((1 − ρ) + rρ)

. (18)

It is the (r − 1)th beta-binomial distribution that is constructed on the lattice
(Hisakado et al. 2006). It is the same distribution as that in Kirman’s colony model.

From the central limit theorem, as the distribution of states converges to the beta-
binomial distribution, the voting rates for the candidate C1 converge:

lim
t→∞

c1

t
= δq, (19)

where the reference number r is finite and δq is a Dirac measure. Further, when
r → ∞, the distribution of states is the same as the voting rates for the candidate
C1, that is, the beta distribution.

Now, we discuss the case where r increases slowly, that is, annealing schedule is
adequately slow. At first, we set a finite r . After an adequate number of votes, the
distribution of states converges to the rth beta-binomial distribution. We increase r

after the state converges. We continue this process until r reaches ∞. We call it the
case where the annealing schedule is adequately slow. In this case, the voting rates
for the candidate C1 converge to the same point, that is, independent voter’s correct
ratio q, as the finite r case.
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6 Tanh-Type Herder and Kinetic Ising Model

In this section, we identify the relation between our voting model and the infinite-
range kinetic Ising model. (See Appendix A.)

The state of the Ising model is denoted by the vector σ = (σ1, · · · , σr+1) with
σj = ±1.

The Hamiltonian is defined as

H(σ ) = −J

r+1∑

i 	=j

σiσj , (20)

where J is the exchange interaction.
We define Fj as a spin flip operator on j th site: Fjσ is the state in which j th

spin is flipped from σ with the other spins fixed. The Markov chain is characterised
by a transition probability wj(σ )per unit time from σ to Fjσ . Let p(σ , tn) be the
probability distribution for finding the spin sate σ at time tn. Then, the discrete
master equation is written as follows:

p(σ , tn+1) = p(σ , tn) − [
∑

j

wj (σ )]p(σ , tn)Δt + [
∑

j

wj (Fjσ )]p(Fjσ , tn)Δt,

(21)
where the second and third terms in RHS are ongoing and incoming probabilities,
respectively.

For the master equation (21), we consider the sufficient condition that p(σ , tn)

converges to the equilibrium distribution π(σ ) as tn → ∞ is that the transition
probability wj(σ ) satisfies a detail balance condition:

wj(σ )π(σ ) = wj(Fjσ )π(Fjσ ). (22)

This condition is known as reversibility. From this condition, the transition proba-
bility is given as

wj(σ )

Fjwj (σ )
= π(Fjσ )

π(σ )
= exp[−σjβhj ]

exp[σjβhj ] , (23)

where hj = J
∑r+1

i 	=j σi and an inverse temperature β, in the units where the
Boltzmann constant is 1.

Here, we set

wj(σ ) = 1

2
(1 − σj tanh βhj ). (24)
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We define the total number of σi = 1, where i 	= j , is ĉ1 and the total number of
σi = −1, where i 	= j , is ĉ−1. Hence, ĉ1 + ĉ−1 = r . The transition is given by

σj = 1 → −1 : wj(σ ) = 1

2
(1 − tanh βJ (ĉ1 − ĉ−1)),

σj = −1 → 1 : Fjwj (σ ) = 1

2
(1 + tanh βJ (ĉ1 − ĉ−1)). (25)

Note that as wj(σ ) + Fjwj (σ ) = 1, the transition does not depend on the previous
state of σj and depends on the other spins σi where i 	= j .

In an ordinary case, an updated spin is chosen randomly. Here, we consider the
case where the updated spin is chosen by the rules. The ordering of update is from
σ1 to σr+1. After the update of σr+1, we update σ1 and so on. We repeat this process.
Hereafter, we define the updated spin σj after n as σ

(n)
j . The initial condition is σ

(0)
j ,

where j = 1, 2, · · · , r .
Here, we consider a voting model where all herders are tanh-type herders. The

voter can see the latest previous r voters. The transition is given by

c1(t) = k → k + 1 : Pk,t :l,t−r = 1

2
[tanh λ(

k − l

r
− 1

2
) + 1]

c1(t) = k → k : Qk,t :lt−r = 1 − Pk,t :l,t−r , (26)

where c1(t −r) = l and λ is a parameter. (Please see in Hisakado and Mori 2012 for
details.) The number of votes for the candidate C1 at time (t − r) is c1(t − r) = l.

We define a new variable Δt such that

Δt = 2c1(t) − t = c1(t) − c0(t). (27)

For convenience, we change the notation from k to Δt as in Sect. 3. Given Δt = u

and Δt−r = s, we obtain a random walk model:

Δt = u → u + 1 : Pu,t :s,t−r,t = 1

2
(1 + tanh

λ(u − s)

2r
),

Δt = u → u − 1 : Qu,t :s,t−r,t = 1

2
(1 − tanh

λ(u − s)

2r
). (28)

Given that the voter who voted at time (t − r − 1) chose the candidate C0(C1),
the probability that another voter at time t votes to the candidate C1(C0) is
Pu,t :s,t−r,t (Qu,t :s,t−r,t ). Hence, (28) means that the hopping rate is Pu,t :s,t−r,t and
Qu,t :s,t−r,t . This is equivalent to (25), where βJ = λ/2r , ĉ1 − ĉ−1 = u − s. We use
the relations ĉ1 = k − l, ĉ−1 = r − (k − l), u = 2k − t , and s = 2l − (t − r).

If we consider the row of spins σ
(0)
1 · · · σ (0)

r+1σ
(1)
1 · · · σ (n)

r+1σ
(n+1)
1 · · · where

n = 0, 1, 2 · · · as the voting row. Hence, the voting model is equivalent to the
infinite-range kinetic Ising model. This is why we can find the same mean field
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approximation equation as that in the Ising model in the limit r → ∞ case
(Hisakado and Mori 2012). Thus, for the finite r case, we confirm that there is no
phase transition (Hisakado and Mori 2011) and that it is not appropriate to use the
mean field approximation as well.

When r → ∞, the kinetic Ising model is the voting model when the annealing
schedule is adequately slow, and the state is always in the good equilibrium. Hence,
the Ising model with external field has no phase transition, as discussed in Sects. 3
and 4. In fact, we can confirm as r increases, the maximum point of E(c1(t)/t)

approaches the maximum point of r = 3 log(t), the slow annealing, in Fig. 3. On the
other hand, when the annealing schedule is not adequately slow, the voting model
has the phase transition. It means that the voting rate could converge to the bad
equilibrium. The phase transition is observed when the size of r is infinite.

In addition, the voting model becomes the Potts model, if there are several
candidates above two. This is a simple extension of this section. While in this
section, we have discussed the Ising model without external fields, we discuss how
prior distribution and independent voters correspond to the outer fields of the Ising
model in the appendix of Hisakado and Mori (2015).

7 Concluding Remarks

In this chapter, we investigated a voting model that involves collective herding
behaviours. We investigated the case where voters can obtain the information from
previous r voters. We observed the states of reference votes and considered three
cases of voters:

(i) digital herders and independent voters,
(ii) analog herders and independent voters, and

(iii) tanh-type herders.

We investigated the case where there were only digital herders and independent
voters. Through numerical simulations and analysis, we show that for finite r , no
phase transitions occur and that there is only one-peak phase.

From the viewpoint of annealing, if the annealing schedule is adequately slow,
that is, r ∼ log t , the voting rate converges to the good equilibrium only. The
correct ratio E(c1(t)/t) increases as r increases. On the other hand, if the annealing
schedule is not adequately slow, that is, r ∼ t , the phase transitions occur. Further,
above pc, there are good and bad equilibria. The voting rates converge to one of
the two equilibria, but we cannot estimate which of these equilibria is selected. The
correct ratio decreases when phase transition exists. Therefore, there exists a trade-
off between time and the correct ratio.

In case (ii), we considered analog herders and independent voters. We show that
the states of reference votes in this model are equivalent to Kirman’s ant colony
model. In this case, the states follow beta-binomial distribution, and for large r , this
becomes beta distribution.
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In case (iii), we show that the model is equivalent to the finite-size kinetic
Ising model. This model follows a simple herding experiment if the voters are
rational (Bikhchandani et al. 1992; Anderson and Holt 1997). When r → ∞, the
voting model behaves as the infinite-range kinetic Ising model when the annealing
schedule is adequately slow. Hence, the Ising model with external field has no phase
transition. On the other hand, when the annealing schedule is not adequately slow,
the voting model with external fields has the phase transition. While there are many
studies in which the herding behaviour has been analysed by the Ising model, only
the current study explains this behaviour by using the kinetic Ising model.

In beginning of spring, in March, groups of swans return to Siberia from Japan.
When does travelling commence? At first, a few swans fly back and forth over a lake.
The remaining swans from the group begin to herd the initial few, and the crowd
becomes larger. This is an example of a quorum response, which we discussed as
the response function.

From the viewpoint of our model, each swan has the threshold. The threshold
goes down in spring. A few swans play the role of a lead and begin cascade. From the
observation that the large part of groups flies, we can estimate that the threshold is
low. The threshold depends on the day light. The research about the birds concludes
that birds recognise less than ten other birds. In this chapter we discussed the case,
the threshold is symmetric. We will discuss the asymmetric case in other place.

Appendix A Ising Model

Here we introduce the infinite-range model. It is one of the most popular model in
statistical physics which explains the phase transition. In the model spins interact
all other spins. Hamiltonian is

H(σ) = − J

N

∑

i>j

σiσj − h

N∑

i=1

σi, (29)

where N is the number of spins, σ is the spin that has the value ±1, J is the
parameter of interaction, and h is the outer field. Here we define average of spins,
as order parameter, m = 1/N

∑
σi .

In large N → ∞ limit, the self-consistent equation is

m = tanh β(Jm + h), (30)

where β = 1/kBT . kB is Boltzmann constant and T is temperature. When infinite-
range model, we can obtain the strict solution from the self-consistent equation.
When the symmetric case, under the transition temperature TC , there are two
solutions. One of the solution is selected, and it is called spontaneous symmetry
braking. On the other hand, above Tc, there is only one solution. It is the simple
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Table 1 Response functions of animalsl

No. Animal Linear or nonlinear Reference

1 Honey bee Linear Camazine and Sbeyd (1991)

2 Temnothorax albipennis (ant) Linear Pratt et al. (2002)

3 Lasius niger (ant) Nonlinear Bekers et al. (1992)

4 Three-spined sticklebacks (fish) Nonlinear Ward et al. (2008)

5 Gasterosteus aculeatus (fish) Nonlinear Ward et al. (2008)

6 Capuchin monkeys (Cebus capuccinus) Linear Meunier et al. (2007)

model which represents the phase transition. When there is the outer field h, the
model becomes the asymmetric model, and there is no phase transition.

In this chapter we discussed the equilibrium voting model. The model which we
discussed in Hisakado and Mori (2012) is the non-equilibrium model. The large r

limit corresponds to the large N limit of the infinite-range model. We can observe
the phase transition in both models.

In the case of non-equilibrium, we can obtain the same self-consistent equation.
In this case the solution which is against the outer field may be selected. It is
the characteristic point of the non-equilibrium model which we discuss in other
chapters.

Appendix B Response Function of Animals

In this chapter we use three kinds of herders, digital, analog, and tanh type. In
Sect. 3, we studied the Kirman’s ant colony model. In this model the response
function is analog. Here we have the question whether the real ant is analog herder.
In this appendix we review the several experiments of animals about decision of the
two choices. In Table 1 we show the list of the response function of the animals.
These are the decision of two selections of animals. For the nonlinear response
function, there is the spontaneous symmetry braking which corresponds to the
phase transition. On the other hand, for linear response function, there is no phase
transition. From the experiments some ants are analog herders, and some are tanh-
type herders. About humans we presented in Chaps. 8 and 9. In the case of animals,
the nonlinear response function is sometimes called quorum response.

References

Alfarano S, Lux T, Wagner F (2005) Estimation of agent-based models: the case of asymmetric
herding model. Comput Econ 26(1):19–49

Anderson LR, Holt CA (1997) Information cascdes in the laboratory. Am Econ Rev 87(5):847–862



Information Cascade, Kirman’s Ant Colony Model, and Kinetic Ising Model 97

Bekers R, Deneubourg JL, Gross S (1992) Modulation of trial laying in the ant Lasius niger
(Hymenoptera: Formicidae) and its role in the collective selection of a food source. J Insect
Behav 6:751–759

Bikhchandani S, Hirshleifer D, Welch I (1992) A theory of Ffads, fashion, custom, and cultural
changes as information cascades. J Polit Econ 100:992–1026

Böhm W (2000) The correlated random walk with boundaries: a combinatorial solution. J Appl
Prob 37:470–479

Camazine S, Sbeyd J (1991) A model of collective nectar source selection by honey bees: Self-
organization through simple rules. J Theor Biol 149:547–471

Castellano C, Fortunato S, Loreto V (2009) Statistical physics of social dynamics. Rev Mod Phys
81:591

Cont R, Bouchaud J (2000) Herd behavior and aggregate fluctuations in financial markets.
Macroecon Dyn 4:170–196

Couzin ID, Krause J, James R, Ruxton GR, Franks NR (2002) Collective memory and spatial
sorting in animal groups. J Theor Biol 218:1–11

Curty P, Marsili M (2006) Phase coexistence in a forecasting game. JSTAT P03013
Eguíluz V, Zimmermann M (2000) Transmission of information and herd behavior: an application

to financial markets. Phys Rev Lett 85:5659–5662
Galam S (2008) A review of Galam models. Int J Mod Phys C 19:409–440
Geman S, Geman D (1984) Stochastic relaxation, Gibbs, distribution, and the Bayesian restoration

of images. IEEE Trans PAMI 6:721–741
Hisakado M, Mori S (2010) Phase transition and information cascade in a voting model. J Phys A

43:315207
Hisakado M, Mori S (2011) Digital herders and phase transition in a voting model. J Phys A

44:275204
Hisakado M, Mori S (2012) Two kinds of phase transitions in a voting model. J Phys A 45:345002–

345016
Hisakado M, Mori S (2015) Information cascade, Kirman’s ant colony model and Ising model.

Physica A 417:63–75
Hisakado M, Kitsukawa K, Mori S (2006) Correlated binomial models and correlation structures.

J Phys A 39:1 5365–15378
Kadanoff L (1966) Scling laws for Ising model near Tc. Physics 2:263
Kirman A (1993) Ants, rationality, and recruitment. Q J Econ 108:137–156
Konno N (2002) Limit theorems and absorption problems for quantum random walks in one

dimension. Quantum Inf Comput 2:578–595
Meunier H, Leca JB, Deneubourg JL, Petit O (2007) Group movement decisions in capuchin

monkeys: the utility of an experimental study and a mathematical model to explore the
relationship between individual and collective behaviours. Behavior 143:1511

Milgram S, Bickman L, Berkowitz L (1969) Note on the drawing power of clowds of different
size. J Pers Soc Psychol 13:79–82

Mori S, Hisakado M, Takahashi T (2012) Phase transition to two-peaks phase in an information
cascade experiment. Phys Rev E 86:26109

Partridge BL (1982) The structure and function of fish schools. Sci Am 245:90–99
Pratt SC, Mallon E, Sumpter DJL, Franks RN (2002) Quorum sensing, recruitment, and collective

decision-making during colony emigration by the ant Leptothorax albipennis. Behav Ecol
Sociobiol 52:117–127

Stauffer D (2002) Sociophysics: the Sznajd model and its applications. Comput Phys Commun
146(1):93–98

Tarde G (1890) Les lois de l’imitation. Felix Alcan. Paris
Ward AJ, Sumpter DJ, Cauzin ID, Hart PJ, Krause J (2008) Quorum decision-making facilitates

information transfer in fish shoals. Proc Natl Acad Sci 205(19):6948–6953
Watts DJ, Dodds PS (2007) Influentials, networks, and public opinion formation. J Consum Res

34:441–458
Young (2011) The dynamics of social innovation. Proc Natl Acad Sci 108(4):21285–21291



Information Cascade and Networks

Masato Hisakado and Shintaro Mori

1 Introduction

Collective herding behavior can be seen in several fields. Such behaviors are
observed in not only animals but also in human beings. They are interesting
problems in several cross fields such as sociology (Tarde 1890), social psychology
(Milgram et al. 1969), ethnology (Partridge 1982; Couzin et al. 2002), and eco-
nomics. Statistical physics is an effective tool to analyze these macro phenomena of
human beings, and the associated field is developed as sociophysics (Galam 1990).
For example, in statistical physics, anomalous fluctuations in financial markets
(Cont and Bouchaud 2000; Egíluz and Zimmermann 2000) and opinion dynamics
(Stauffer 2002; Curty and Marsili 2006; Araújo et al. 2010) have been discussed.

In the case of human beings, to estimate public perception, people observe the
actions of other individuals; then, they make a choice similar to that of others. It is
also called social learning. Because it is usually sensible to do what other people are
doing, collective herding behavior is assumed to be the result of a rational choice
according to public perception. In ordinary cases, this is the collect strategy. But this
approach can sometimes lead to arbitrary or even erroneous decisions as a macro
phenomenon. This phenomenon is known as an information cascade (Bikhchandani
et al. 1992).

How do people obtain public perception? In the previous paper, we discuss
the case people obtain information from previous r voters using mean field
approximations (Hisakado and Mori 2011). We call the lattice 1D extended lattice.
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In the real world, people obtain information from their friends and influencers. The
influencers become the hubs and affect many voters. Hence, we consider the voting
model on several graphs, Barabási-Albert(BA) model, random graph, 1D extended
lattice case, and the intermediate graph of these and compare results which are
affected by networks (Barabáshi and Albert 1999).

In our previous paper, we introduced a sequential voting model that is similar to
a Keynesian beauty contest (Keynes 1936; Hisakado and Mori 2010). At each time
step t , one voter votes for one of two candidates. As public perception, the t-th voter
can see all previous votes, i.e., (t − 1) votes. There are two types of voters – herders
and independents – and two candidates.

Herders’ behavior is known as the influence response function. Threshold rules
have been derived for a variety of relevant theoretical scenarios as the influence
response function. Some empirical and experimental evidence has shown the
assumptions that individuals follow threshold rules when making decisions in the
presence of social influence (Watt and Dodds 2007). This rule posits that individuals
will switch from one to the other only when sufficiently many others have adopted
the other. We call them digital herders. From our experiments, we observed that
human beings exhibit a behavior between that of digital and analog herders (Mori
et al. 2012). Analog herders vote for each candidate with the probabilities that are
proportional to the candidates’ votes. In this chapter, we discuss the digital and the
analog herders cases to simplify the problems.

Here, we discuss a voting model with two candidates. We set two types of
voters – independents and herders. The voting of independents is based on their
fundamental values and rational. They collect information independently. On the
other hand, the voting of herders is based on the number of previous votes, which is
visible to them as public perceptions. In this study, we consider the case wherein a
voter can see r previous votes which depends on several graphs.

In the upper limit of t , the independents cause the distribution of votes to
converge to a Dirac measure against herders. This model contains two kinds of
phase transitions. One is a transition of super and normal diffusions. This phase
transition contains three phases – two super diffusion phases and a normal diffusion
phase. In super diffusion phases, the voting rate converges to a Dirac measure slower
than in a binomial distribution. In normal phase, the voting rate converges as in
a binomial distribution. The other phase transition is referred to as information
cascade transition. As the fraction of herders increases, the model features a phase
transition beyond which a state where most voters make the correct choice coexists
with one where most of them are wrong. The distribution of votes changes from one
peak to two peaks. It is our purpose to clarify how the network of references affects
these two phase transitions.

The remainder of this chapter is organized as follows. In Sect. 2, we introduce
our voting model and mathematically define the two types of voters – independents
and herders. In Sect. 3, we derive a stochastic differential equation and discuss the
voting model on the random graph. In Sect. 4, we discuss the voting model on BA
model. In Sect. 5, we discuss the model on fitness model. In the model, hubs which
are stronger than BA model appear. In Sect. 6, we verify these transitions through
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numerical simulations and compare the influence from the networks. Finally, the
conclusions are presented in Sect. 7.

2 Model

We model the voting of two candidates, C0 and C1; at time t , C0 and C1 have c0(t)

and c1(t) votes, respectively. In each time step, one voter votes for one candidate;
the voting is sequential. Hence, at time t , the t-th voter votes, after which the total
number of votes is t . Voters are allowed to see r previous votes for each candidate;
thus, they are aware of public perception. r is a constant number. The selections of
r previous votes depends on networks.

There are two types of voters – independents and herders; we assume an infinite
number of voters. The independents vote for C0 and C1 with probabilities 1 − q

and q, respectively. Their votes are independent of others’ votes, i.e., their votes are
based on their fundamental values.

Here, we set C0 as the wrong candidate and C1 as the correct candidate in order to
validate the performance of the herders. We can set q ≥ 0.5, because we believe that
independents vote for the correct candidate C1 rather than for the wrong candidate
C0. In other words, we assume that the intelligence of the independents is virtually
accurate.

On the other hand, the herders’ votes are based on the number of previous r

votes. Here, r does not always mean just previous r votes. We consider previous r

votes which are selected by voters’ network. At time t , the information of r previous
votes are the number of votes for C0 and C1:cr

0(t) and cr
1(t), respectively. Hence,

cr
0(t) + cr

1(t) = r holds. If r > t , voters can see t previous votes for each candidate.
In the limit r → ∞, voters can see all previous votes. We define the number of all
previous votes for C0 and C1 as c∞

0 (t) ≡ c0(t) and c∞
1 (t) ≡ c1(t). In real world,

the number of references r depends of voters, but here we set r as constant.
In this chapter, herder is digital herder and analog herder (Hisakado and Mori

2010, 2011). Here, we define c(t)r1/r = 1 − c(t)r0/r = z(t). Herder behavior is
defined by the function of f (z). We consider two types – (i) digital f (z) = θ(z −
1/2) and (ii) analog f (z) = z. Here, θ(z) is Heaviside function.

The independents and herders appear randomly and vote. We set the ratio of
independents to herders as (1 − p)/p. In this study, we mainly focus on the upper
limit of t . This refers to the voting of infinite voters.

We consider the voter can see r previous votes. It is the problem how the
voter select r previous votes. The influence of the reference voters is understood
as a voting model on networks. How the network affects the voting model is our
problem. In this chapter, we analyze cases, random graph, Barabási-Albert(BA)
model case, and their intermediate cases. In Fig. 1, we show three cases when
r = 2. We discussed 1D extended lattice cases and showed that analog herder
case is Kirman’s ant colony model and the digital herder case is the kinetic Ising
model (Hisakado and Mori 2015). A white (black) dot is a voter who voted to the
candidate C0(C1). Two arrows come into a dot. It means a voter refers to two voters
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Fig. 1 Representation of graphs. It is directed acyclic graph (DAG). The graph consists of the
arrows, and there is no cycle in the graph. We show extended 1D lattice, random graph, and BA
model when r = 2. White (black) dot is a voter who voted to the candidate C0(C1). Two arrows
come into a dot. It means a voter refers to two voters when r = 2. In the case of extended 1D lattice,
a voter refers to latest two voters. In the case of random graph, a voter refers to two previous voters
who are selected randomly. In the case of BA model, a voter refers to two previous voters who are
selected by the connectivity. Hence, there are voters who play the role of a hub in BA model. In
the above figure, the first voter in network graph is a hub who influences many other voters

when r = 2. In the case of 1D extended lattice, a voter refers to latest two voters.
In the case of random graph, a voter refers to two previous voters who are selected
randomly. In the case of BA model, a voter refers to two previous voters who is
selected by the connectivity which is introduced in BA model (Barabáshi and Albert
1999). BA model has the characteristics of scale-free network that contains hubs.
The power index of BA model is three. Hence, there are voters who play a role of a
hub. In the above figure, the first voter in BA model corresponds to a hub.

3 Random Graph

3.1 Digital Herder Case

We are interested in the limit t → ∞. At time t t-th, voter selects r voters who
have already voted. t-th voter can see the total votes of selected different r voters to
obtain the information. In this section, we consider the case that the voter selects r

votes randomly. Hence, this model is the voting model on the random graph.
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Herders vote for a majority candidate; if cr
0(t) > cr

1(t), herders vote for the
candidate C0. If cr

0(t) < cr
1(t), herders vote for the candidate C1. If cr

0(t) = cr
1(t),

herders vote for C0 and C1 with the same probability, i.e., 1/2. Here, at time t , the
selected information of r previous votes are the number of votes for C0 and C1:cr

0(t)

and cr
1(t), respectively. The herders in this section are known as digital herders.

We define P r
1 (t) as the probability of that the t-th voter votes for C1.

P r
1 (t) =

⎧
⎨

⎩

p + (1 − p)q ; cr
1(t) > r/2;

p/2 + (1 − p)q ; cr
1(t) = r/2;

(1 − p)q : cr
1(t) < r/2.

⎫
⎬

⎭
(1)

In the scaling limit t = c0(t) + c1(t) = c∞
0 + c∞

1 → ∞, we define

c1(t)

t
=⇒ Z∞. (2)

Z(t) is the ratio of voters who vote for C1 at t .
Here, we define π as the majority probability of binomial distributions of Z. In

other words, the probability of cr
1(t) > 1/2. When r is odd,

π(Z) =
r∑

g= r+1
2

(
r

g

)

Zg(1 − Z)r−g ≡ �r(Z). (3)

When r is even, from the definition of the behavior of the herder,

π(Z) =
r∑

g= r
2 +1

(
r

g

)

Zg(1 − Z)r−g + 1

2

(
r

r/2

)

Zg(1 − Z)r/2

=
r−1∑

g= r
2

(
r − 1

g

)

Zg(1 − Z)r−1−g = �r−1(Z). (4)

A majority probability π in even case becomes the odd case r − 1. Here, after we
consider only the odd case r = 2n + 1, where n = 0, 1, 2, . . . .

π can be calculated as follows:

π(Z) = (2n + 1)!
(n!)2

∫ Z

0
xn(1 − x)ndx = 1

B(n + 1, n + 1)

∫ Z

0
xn(1 − x)ndx. (5)

Equation (5) can be applied when the referred voters are selected overlap. In fact, the
referred voters are not selected overlap. But in this paper, we use this approximation
to study in large t limit.
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We can rewrite (1) for random graph as

c1(t) = k → k + 1 : Pk,t = pπ(k/t) + (1 − p)q,

c1(t) = k → k : Qk,t = 1 − Pk,t , (6)

We define a new variable Δt such that

Δt = 2c1(t) − t = c1(t) − c0(t). (7)

We change the notation from k to Δt for convenience. Then, we have |Δt | = |2k −
t | < t . Thus, Δt holds within {−t, t}. Given Δt = u, we obtain a random walk
model:

Δt = u → u + 1 : Pu,t = π(
1

2
+ u

2t
)p + (1 − p)q,

Δt = u → u − 1 : Qu,t = 1 − Pu,t .

We now consider the continuous limit ε → 0,

Xτ = εΔ[t/ε],

P (x, τ ) = εP (Δt/ε, t/ε), (8)

where τ = t/ε and x = Δt/ε. Approaching the continuous limit, we can obtain the
stochastic differential equation (see Appendix A):

dXτ = [(1 − p)(2q − 1) − p + 2p
(2n + 1)!

(n!)2

∫ 1
2 + Xτ

2τ

0
xn(1 − x)ndx]dτ + √

ε. (9)

In the case r = 1, the equation becomes

dXτ = [(1 − p)(2q − 1) + p
Xτ

τ
]dτ + √

ε. (10)

The voters vote for each candidate with the probabilities that are proportional to the
candidates’ votes. We refer to these herders as a kind of analog herders (Hisakado
and Mori 2010).

We are interested in the behavior in the limit τ → ∞. The relation between X∞
and the voting ratio to C1 is 2Z − 1 = X∞/τ . We consider the solution X∞ ∼ τα ,
where α ≤ 1, since the maximum speed is τ when q = 1. The slow solution is
X∞ ∼ τα , where α < 1 is hidden by the fast solution α = 1 in the upper limit of τ .
Hence, we can assume a stationary solution as

X∞ = v̄τ + (1 − p)(2q − 1)τ, (11)
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where v̄ is constant. Substituting (11) into (9), we can obtain

v̄ = −p + 2p · (2n + 1)!
(n!)2

∫ 1
2 + (1−p)(2q−1)

2 + v̄
2

0
xn(1 − x)ndx (12)

This is the self-consistent equation.
Equation (12) admits one solution below the critical point p ≤ pc and three

solutions for p > pc. When p ≤ pc, we refer to the phase as the one-peak phase.
When p > pc, the upper and lower solutions are stable; on the other hand, the
intermediate solution is unstable. Then, the two stable solutions attain a good and
bad equilibria, and the distribution becomes the sum of the two Dirac measures. We
refer to this phase as two-peak phase.

If r = 2n + 1 ≥ 3, a phase transition occurs in the range 0 ≤ p ≤ 1. If the voter
obtains information from the above three voters, as the number of herders increases,
the model features a phase transition beyond which a state where most voters make
the correct choice coexists with one where most of them are wrong. If the voter
obtains information from one or two voters, there is no phase transition. We refer to
this transition as information cascade transition (Hisakado and Mori 2011).

Next, we consider the phase transition of convergence. This type of transition
has been studied when herders are analog (Hisakado and Mori 2010). We expand
Xτ around the solution v̄τ + (1 − p)(2q − 1)τ .

Xτ = v̄τ + (1 − p)(2q − 1)τ + Wτ . (13)

Here, we set Xτ � Wτ , that is, τ � 1. We rewrite (9) using (13) and obtain as
follows:

dWτ = p
(2n + 1)!
(n!)2 · 22n

Wτ

τ
[1 − {v̄ + (1 − p)(2q − 1)}2]ndτ + √

ε (14)

We use relation (11) and consider the first term of the expansion. If we set l =
p(2n + 1)!/{(n!)2 · 22n}[1 − {v̄ + (1 − p)(2q − 1)}2]n, (54) is identical to (14).

From Appendix B, we can obtain the phase transition of convergence. The critical
point pvc is the solution of

p
(2n + 1)!
(n!)2 · 22n

[1 − {v̄ + (1 − p)(2q − 1)}2]n = 1

2
(15)

and the self-consistent equation (12).
Here, we consider the symmetric case, q = 1/2. The self-consistent equa-

tion (12) becomes

v̄ = −p + 2p · (2n + 1)!
(n!)2

∫ 1
2 + v̄

2

0
xn(1 − x)ndx. (16)
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RHS of (16) rises at v̄ = 0. If r = 1, 2, there is only one solution v̄ = 0 in all regions
of p. In this case, Z has only one peak, at 0.5, which indicates the one-peak phase.
In the case r = 1, 2, we do not observe information cascade transition (Hisakado
and Mori 2011). On the other hand, in the case r ≥ 3, there are two stable solutions
and an unstable solution v̄ = 0 above pc. The votes ratio for C1 attains a good or bad
equilibrium. This is the so-called spontaneous symmetry breaking. In one sequence,
Z is taken as v̄/2 + 1/2 in the case of a good equilibrium, or as −v̄/2 + 1/2 in
the case of a bad equilibrium, where v̄ is the solution of (16). This indicates the

two-peak phase, and the critical point is pc = (n!)2

(2n+1)!2
2n where gradient of the RHS

of (16) at v̄ = 0 is 1. In the case of r = 3, pc = 2/3. As r increases, pc moves
toward 0. In the large limit r → ∞, pc becomes 0. It is consistent with case that
herders obtain information from all previous voters (Hisakado and Mori 2016).

Next, we consider the normal-super transition of symmetric case q = 1/2. We
consider the case r = 2n + 1 ≥ 3. In this case, we observe information cascade
transition. If r ≤ 2, we do not observe information cascade transition, and we can
only observe a part of the phases, as described below.

In the one-peak phase p ≤ pc, the only solution is v̄ = 0. pc is the critical
point of the information cascade transition. The first critical point of convergence is

pvc1 = (n!)2

(2n+1)!2
2n−1 = pc

2 . When p ≤ pc, pvc1 is the solution of (16) and (15). If
0 < p < pvc1, the voting rate for C1 becomes 1/2, and the distribution converges
as in a binomial distribution. If pc > p ≥ pvc1, candidate C1 gathers 1/2 of all
the votes in the scaled distributions, too. However, the voting rate converges slower
than in a binomial distribution. We refer to these phases as super diffusion phases.
There are two phases, p = pvc1 and pc > p > pvc1; these phases differ in terms of
their convergence speed. If r ≤ 2, we can observe these three phases.

Above pc, in the two-peak phase, we can obtain two stable solutions that are not
v̄ = 0. At pc, v̄ moves from 0 to one of these two stable solutions. In one voting
sequence, the votes converge to one of these stable solutions. If pc < p ≤ pvc2, the
voting rate for C1 becomes v̄/2 + 1/2 or −v̄/2 + 1/2, and the convergence occurs
at a rate slower than that in a binomial distribution. Here, v̄ is the solution of (16).
We refer to this phase as a super diffusion phase. pvc2 is the second critical point
of convergence from the super to the normal diffusion phase, and it is the solution
of the simultaneous equations (16) and (15) when p > pc. In the case r = 3, we
can obtain pvc2 = 5/6 at v̄ = ±√

(3p − 2)/p. If p > pvc2, the voting rate for C1
becomes v̄/2 + 1/2 or −v̄/2 + 1/2. But the distribution converges as in a binomial
distribution. This is a normal diffusion phase. A total of six phases can be observed.

3.2 Analog Herder Case

The voters vote for each candidate with the probabilities that are proportional to the
candidates’ votes. We refer to these herders as a kind of analog herders (Hisakado
and Mori 2010). We can write for analog herder case on random graph as
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c1(t) = k → k + 1 : Pk,t = p(k/t) + (1 − p)q,

c1(t) = k → k : Qk,t = 1 − Pk,t , (17)

We define a new variable Δt such that

Δt = 2c1(t) − t = c1(t) − c0(t). (18)

We change the notation from k to Δt for convenience. Then, we have |Δt | = |2k −
t | < t . Thus, Δt holds within {−t, t}. Given Δt = u, we obtain a random walk
model:

Δt = u → u + 1 : Pu,t = (
1

2
+ u

2t
)p + (1 − p)q,

Δt = u → u − 1 : Qu,t = 1 − Pu,t .

We now consider the continuous limit ε → 0,

Xτ = εΔ[t/ε],

P (x, τ ) = εP (Δt/ε, t/ε), (19)

where τ = t/ε and x = Δt/ε. Approaching the continuous limit, we can obtain the
stochastic differential equation (see Appendix A):

dXτ = [(1 − p)(2q − 1) + p
Xτ

τ
]dτ + √

ε. (20)

We can assume a stationary solution as

X∞ = v̄τ + (1 − p)(2q − 1)τ, (21)

where v̄ is constant. Substituting (21) into (20), we can obtain X∞ = 2q − 1. It
means that there is no phase transition for this case. The average correct ratio is
constant.

We expand Xτ around the solution v̄τ + (1 − p)(2q − 1)τ .

Xτ = v̄τ + (1 − p)(2q − 1)τ + Wτ . (22)

Here, we set Xτ � Wτ , that is, τ � 1. We rewrite (20) using (22) and obtain as
follows:

dWτ = p
Wτ

τ
dτ + √

ε. (23)

From Appendix B, we can obtain the phase transition of convergence. The critical
point pvc = 1/2, and it is not dependent on q.
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4 Barabási-Albert Model

4.1 Digital Herder Case

In this section, we consider the case that the voter selects r different voters who will
be selected by the popularity. The popularity is proportional to the connectivity of
voter i, such that li/

∑
j lj . li is the sum of the number of voters whom voter i gave

the information and whom voter i obtained information, referenced r voters. The
total number of li after t-th voter voted is

∑
j lj = 2r(t − r + 1) where t ≥ r . li

corresponds to the connectivity in BA model (Barabáshi and Albert 1999). Hence,
the model is the voting model on BA model. The difference is the connectivity
has color. The color depends on whether the voter voted to candidate C1 or C0.
In Fig. 2, the voter who voted C1(C0) is black(white). We define the total number
of connectivity of the voters who voted the candidate C1(C0) at t as g1(t)(g0(t)).
Hence, g0(t)+g1(t) = 2r(t−r+1) where t ≥ r . In the scaling limit g0(t)+g1(t) =
2r(t − r + 1) → ∞, we define

g1(t)

2r(t − r + 1)
=⇒ Ẑ∞, (24)

Ẑ(t) is g1(t)/2r(t − r + 1) at t .
We can write the evolution of connectivity

g1(t) = k̂ → k̂ + i :
(3r + 1)/2 ≤ i ≤ 2r P

k̂,t
(i) = rC2r−i Ẑ

i−r (1 − Ẑ)2r−i[(1 − p)q + p],

Fig. 2 The sample graph BA model with r = 3. The voter i refers to three voters and is referred
by three voters. He/she is white, since he/she voted the candidate C0. The connectivity of i is 6,
and the color is white. The voter j refers to three voters and is referred by a voter. He/she is black,
since he/she voted the candidate C1. The connectivity of j is 4, and the color is black
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r + 1 ≤ i ≤ (3r − 1)/2 P
k̂,t

(i) = rC2r−i Ẑ
i−r (1 − Ẑ)2r−i (1 − p)q,

i = r P
k̂,t

(i) = (1 − Ẑ)r (1 − p)q + Ẑr (1 − p)(1 − q),

(r + 1)/2 ≤ i ≤ r − 1 P
k̂,t

(i) = rCr−i Ẑ
i (1 − Ẑ)r−i (1 − p)(1 − q),

0 ≤ i ≤ (r − 1)/2 P
k̂,t

(i) = rCr−i Ẑ
i (1 − Ẑ)r−i[(1 − p)(1 − q) + p].

(25)

Here, we consider the self-consistent equations for connectivity in the large t

limit.

2rẐ∞ =
2r∑

i=1

P
k̂,t

(i) · i = r(1 − p)q + rpπ(Ẑ∞) + rẐ∞. (26)

Hence, we can obtain

Ẑ∞ = (1 − p)q + pπ(Ẑ∞). (27)

On the other hand, the evolution equation for the voting ratio Z∞ is

Z∞ = (1 − p)q + pπ(Ẑ∞). (28)

Comparing (27) and (28), we can obtain Z∞ ∼ Ẑ∞. It means the behavior of the
voting ratio, Z∞, is the same as the connectivity ratio, Ẑ∞. Hereafter, we analyze
only behavior of the connectivity.

We define a new variable Δ̂t such that

Δ̂t = g1(t) − r(t − r + 1) = 1

2
{g1(t) − g0(t)}. (29)

We change the notation from k̂ to Δ̂t for convenience. Thus, Δ̂t holds within {−r(t−
r + 1), r(t − r + 1)}. Given Δ̂t = û, we obtain a random walk model:

Δ̂ = û → û + i :
(r + 1)/2 ≤ i ≤ r Pû,t (i) = rCr−i Ẑ

i (1 − Ẑ)r−i[(1 − p)q + p],
1 ≤ i ≤ (r − 1)/2 Pû,t (i) = rCr−i Ẑ

i (1 − Ẑ)r−i (1 − p)q,

i = 0 Pû,t (i) = (1 − Ẑ)r (1 − p)q + Ẑr (1 − p)(1 − q),

(−r + 1)/2 ≤ i ≤ −1 Pû,t (i) = rC−i Ẑ
r+i (1 − Ẑ)−i (1 − p)(1 − q),

−r ≤ i ≤ −(r + 1)/2 Pû,t (i) = rC−i Ẑ
r+i (1 − Ẑ)−i[(1 − p)(1 − q) + p],

(30)
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where Ẑ = k̂/(2r(t − r + 1)) = û/(2r(t − r + 1)) + 1/2
We now consider the continuous limit ε → 0,

X̂τ = εΔ̂[t/ε],

P (x̂, τ ) = εP (Δ̂t /ε, t/ε), (31)

where τ = t/ε and x̂ = Δ̂t /ε. Approaching the continuous limit, we can obtain the
stochastic partial differential equation (see Appendix A):

dX̂τ = [r(1 − p)q − r

2
+ X̂τ

2(τ − r + 1)

+rp
(2n + 1)!

(n!)2

∫ 1
2 + X̂τ

2r(τ−r+1)

0
xn(1 − x)ndx]dτ + √

ε. (32)

In the case r = 1, the equation becomes

dX̂τ = [(1 − p)(q − 1

2
) + p + 1

2

X̂τ

τ
]dτ + √

ε. (33)

The voters also vote for each candidate with probabilities that are proportional to
X̂τ . But Eq. (33) is different from (10). The relation between the voting ratio for C1
and X̂∞ is

X̂∞
2r(τ − r + 1)

= Ẑ∞ − 1

2
. (34)

We can assume a stationary solution as

X̂∞ = r ¯̂vτ + r(1 − p)(2q − 1)τ, (35)

where ¯̂v is constant. Since (34) and 0 ≤ Ẑ ≤ 1, we can obtain

−1 ≤ ¯̂v + (1 − p)(2q − 1) ≤ 1 (36)

Substituting (35) into (32), we can obtain

¯̂v = −p + 2p · (2n + 1)!
(n!)2

∫ 1
2 + (1−p)(2q−1)

2 + ¯̂v
2

0
xn(1 − x)ndx (37)

This is the self-consistent equation, and it agrees to (12) which is obtained for
random graph. Then, about the information cascade transition, the behavior in BA
model case is the same as in the random graph case. When p ≤ pc, we refer to
the phase as the one-peak phase. Equation (37) admits three solutions for p > pc.
When p > pc, the upper and lower solutions are stable; on the other hand, the
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intermediate solution is unstable. Then, the two stable solutions attain a good and
bad equilibrium, and the distribution becomes the sum of the two Dirac measures.
This phase is a two-peak phase. The phase transition point pc in BA model case is
the same as the random graph case. If r = 2n + 1 ≥ 3, a phase transition occurs in
the range 0 ≤ p ≤ 1. If the voter obtains information from one or two voters, there
is no phase transition.

Next, we consider the phase transition of convergence. We expand X̂τ around the
solution r ¯̂vτ + r(1 − p)(2q − 1)τ .

Xτ = r ¯̂vτ + r(1 − p)(2q − 1)τ + rŴτ . (38)

Here, we set Xτ � Wτ . This indicates τ � 1. We rewrite (32) using (38) and obtain
as follows:

dŴτ = [1 + p
(2n + 1)!
(n!)2 · 22n

(1 − { ¯̂v + (1 − p)(2q − 1)}2)n]Wτ

2τ
dτ + √

ε (39)

We use relation (37) and consider the first term of the expansion. If we set l =
1/2[1 + p(2n + 1)!/{(n!)2 · 22n}(1 − { ¯̂v + (1 − p)(2q − 1)}2)n], (54) is identical
to (39).

From Appendix B, we can obtain the phase transition of convergence. The critical
point pvc is the solution of

[1 + p
(2n + 1)!
(n!)2 · 22n

(1 − { ¯̂v + (1 − p)(2q − 1)}2)n]1

2
= 1

2
, (40)

and (37). RHS of (40) is not less than 1/2. Using (36), we can obtain pvc = 0. There
is no normal phase in BA model case. The speed of convergence is always slower
than the normal in all regions of p.

4.2 Analog Herder Case

In this subsection, we consider the analog herder case on BA model. We can write
the evolution of connectivity for analog herder as

Δ̂ = û → û + i :
1 ≤ i ≤ r Pû,t (i) = rCr−i Ẑ

i (1 − Ẑ)r−i[(1 − p)q + i

r
p],

i = 0 Pû,t (i) = (1 − Ẑ)r (1 − p)q + Ẑr (1 − p)(1 − q),

−r ≤ i ≤ −1 Pû,t (i) = rC−i Ẑ
r+i (1 − Ẑ)−i[(1 − p)(1 − q) − i

r
p],

(41)

where Ẑ = k̂/(2r(t − r + 1)) = û/(2r(t − r + 1)) + 1/2.
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We now consider the continuous limit ε → 0,

X̂τ = εΔ̂[t/ε],

P (x̂, τ ) = εP (Δ̂t /ε, t/ε), (42)

where τ = t/ε and x̂ = Δ̂t /ε. Approaching the continuous limit, we can obtain the
stochastic partial differential equation (see Appendix A):

dX̂τ = [r(1 − p)(q − 1

2
) + p + 1

2

X̂τ

τ
]dτ + √

ε. (43)

We can assume a stationary solution as

X̂∞ = r ¯̂vτ + r(1 − p)(2q − 1)τ, (44)

where ¯̂v is constant. Substituting (44) into (43), we can obtain X̂∞ = r(2q − 1)τ .
It means that there is no phase transition for this case and the average correct ratio
is constant. Herders cannot amplify the average correct ratio.

Next, we consider the phase transition of convergence. We expand X̂τ around the
solution r ¯̂vτ + r(1 − p)(2q − 1)τ .

Xτ = r ¯̂vτ + r(1 − p)(2q − 1)τ + rŴτ . (45)

Here, we set Xτ � Wτ . This indicates τ � 1. We rewrite (43) using (45) and obtain
as follows:

dŴτ = (1 + p)
Wτ

2τ
dτ + √

ε (46)

We use relation (44) and consider the first term of the expansion.
From Appendix B, we can obtain the phase transition of convergence. The critical

point is pvc = 0. There is no normal phase in BA model case. The speed of
convergence is always slower than the normal in all regions of p.

5 Fitness Model

In this section, we consider fitness model on BA model (Bianconi and Barabáshi
2001a,b). We set the fitness of each voter, and the fitness is the weight of the
connectivity. In this model, stronger hubs appear. The power index of BA model
is three. The power index of fitness model is below three. The problem is whether
the stronger hubs affect the phase transition point.
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The popularity is proportional to the weighted connectivity of voter i, such
that ηili/

∑
j ηj lj . li is the sum of the number of voters whom voter i gave the

information and whom voter i obtained information, referenced r voters. ηi is
the fitness of voter i. The total number of weighted li after t-th voter voted is∑

j lj = 2r(t − r + 1)η where t ≥ r and η̄ is the average of the fitness. li
corresponds to the connectivity in BA model. The color depends on whether the
voter voted to candidate C1 or C0 as Sect. 4. We define the total number of weighted
connectivity of the voters who voted the candidate C1(C0) at t as g1(t)(g0(t)).
Hence, g0(t) + g1(t) = 2rη̄(t − r + 1) where t ≥ r . In the scaling limit
g0(t) + g1(t) = 2η̄r(t − r + 1) → ∞, we define

g1(t)

2rη(t − r + 1)
=⇒ Ẑ∞, (47)

Ẑ(t) is g1(t)η̄/2r(t − r + 1) at t .
Here, we consider the self-consistent equations for connectivity in the large

t limit. We set the condition that i-th voter votes and Ẑ∞ does not change as
equilibrium. We can obtain using (25)

rη̄Ẑ∞ + rηiẐ∞ = r(1 − p)qηi + rpπ(Ẑ∞)ηi + rη̄Ẑ∞. (48)

Hence, we can obtain

Ẑ∞ = (1 − p)q + pπ(Ẑ∞). (49)

It is the same as (27). It means that the phase diagram for fitness model is the same
as the standard BA model. In this mean, we can conclude that the role of hub is
limited.

6 Numerical Simulations

To confirm the analytic results, we performed 106 Monte Carlo (MC) simulations up
to t = 103. In Fig. 3, we perform simulations for the symmetric independent voter
case, i.e., q = 1/2. Convergence of distribution in random graph case and BA model
case for the symmetric (a) q = 0.5 and (b) q = 0.8 cases. The reference number
is r = 3. The horizontal axis represents the ratio of herders p, and the vertical
axis represents the speed of convergence γ . We define γ as V ar(Z) = τ−γ , where
V ar(z) is the variance of Z.γ = 1 is the normal phase and 0 < γ < 1 is the super
diffusion phase.

Figure 3a is for the symmetric case q = 0.5. As discussed in the previous
sections, the critical point of the convergence of the transition from normal diffusion
to super diffusion is pvc ∼ 0 for BA model case. It means there is no normal phase
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Fig. 3 Convergence of distribution in random graph case and BA model case for the symmetric
(a) q = 0.5 and (b) q = 0.8 cases. The reference number is r = 3. The horizontal axis represents
the ratio of herders p, and the vertical axis represents the speed of convergence γ . (a) is for the
symmetric case q = 0.5. (b) is for the asymmetric case q = 0.8

for BA model case. The critical point is theoretically pvc1 ∼ 1/2pvc = 1/3 for
random case, where pc is the critical point of information cascade transition.

At the critical point of information cascade transition, the distribution splits in
two delta functions, and exponent γ becomes 0. For the BA model and random
graph case, the critical point pc = 2/3 is the same.

In Fig. 3b, we consider the asymmetric cases wherein q = 0.8 for random graph
and BA model cases. The critical point of the convergence of transition from normal
diffusion to super diffusion is pvc1 ∼ 0 for BA model case. It means there is no
normal phase for this case. The critical point of information cascade transition is the
same in the case of random graph and BA model cases.

7 Concluding Remarks

We investigated a voting model which contains collective herding behaviors on
the random graph, BA model, and fitness case. In this chapter, we investigated the
difference of phases which depend on network. The voter referred to the information
from the network. In the BA model and fitness model cases, the network is similar to
real networks which have hubs. In the continuous limit, we could obtain stochastic
differential equations. Using the stochastic differential equations, we analyze the
difference of the models.

The model has two kinds of phase transitions. One is information cascade
transition, which is similar to the phase transition of Ising model. As the herders
increased, the model featured a phase transition beyond which a state where most
voters make the correct choice coexists with one where most of them are wrong.
In this transition, the distribution of votes changed from the one-peak phase to the
two-peak phase.
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The other transition was the transition of the convergence between super
and normal diffusions. In the one-peak phase, if herders increased, the variance
converged slower than in a binomial distribution. This is the transition from normal
diffusion to super diffusion. In the two-peak phase, we can also find this phase
transition, and the sequential voting converged to one of the two peaks.

In the case of random graph, we can observe all phases. In the case of BA model
and fitness model, we can observe only super phase in one-peak and two-peak phase.
On the other hand, in the case of 1D extended lattice phase, there is only one-peak
phase.

The critical point pc in the random graph case, the BA model case, and the fitness
model is the same. The difference can be observed in normal and super phases. In
the case of BA model case, there is no super phase. The convergence speed is slower
than the normal case. In the case of random case, the super phase and normal phase
coexist. In the case of fitness model whose hubs are stronger than the BA model,
the phase is the same as BA model. In conclusion, the influence of hubs can be seen
in the convergence speed only and cannot be seen in the phase transition between
one-peak phase and two-peak phase.

In Watt and Dodds (2007), the “influential hypothesis” was discussed. The
hypothesis means that influential or hubs are important to the formation of public
opinion. In our model, the network does not affect the critical point of information
cascade transition. It is a phase transition beyond which a state where most voters
make the correct choice coexists with one where most of them are wrong. It means
the hubs or influencers do not affect the conclusions of votes in large t limit. In
this chapter, hubs affected only to the critical point of super-normal transitions in
large t limit. The phase transition is transition of the speed of the convergence.
Hence, hubs affect the standard deviation of the votes but cannot change the
conclusions. In this mean, we can conclude that the influence of hub is limited. On
the other hand, the response function is important. The response function decides
the information cascade transition. In this chapter, we have studied the analog
and digital response function cases. We discuss the response functions from the
viewpoints of experiments and empirical data in other chapters.

Appendix A Derivation of Stochastic Differential Equation

We use δXτ = Xτ+ε −Xτ and ζτ , a standard i.i.d. Gaussian sequence; our objective
is to identify the drift fτ and the variance g2

τ such that

δXτ = fτ (Xτ )ε + √
εgτ (Xτ )ζτ+ε . (50)

Given Xτ = x, using the transition probabilities of Δn, we get

E(δXτ ) = εE(Δ[τ/ε]+1 − Δ[τ/ε]) = ε(2p[ l/ε+τ/ε
2 ],τ/ε

− 1)
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= ε[(1−p)(2q−1)−p+2p
(2n + 1)!

(n!)2

∫ 1
2 + Xτ

2τ

0
xn(1 − x)ndx]. (51)

Then, the drift term is fτ (x) = (1 − p)(2q − 1) + p tanh(λx/2τ). Moreover,

σ 2(δXτ ) = ε2[12p[ l/ε+τ/ε
2 ],τ/ε

+ (−1)2(1 − p[ l/ε+τ/ε
2 ],τ/ε

)] = ε2, (52)

such that gε,τ (x) = √
ε. We can obtain Xτ such that it obeys a diffusion equation

with small additive noise:

dXτ = [(1−p)(2q −1)−p+2p
(2n + 1)!

(n!)2

∫ 1
2 + Xτ

2τ

0
xn(1−x)ndx]dτ +√

ε. (53)

Appendix B Behavior of Solutions of Stochastic Differential
Equation

We consider the stochastic differential equation

dxτ = (
lxτ

τ
)dτ + √

ε, (54)

where τ ≥ 1.
Let σ 2

1 be the variance of x1. If x1 is Gaussian (x1 ∼ N(x1, σ
2
1 )) or deterministic

(x1 ∼ δx1), the law of xτ ensures that the Gaussian is in accordance with density

pτ (x) ∼ 1√
2πστ

e−(x−μτ )2/2σ 2
τ , (55)

where μτ = E(xτ ) is the expected value of xτ and σ 2
τ ≡ ντ is its variance. If

Φτ (ξ) = log(eiξxτ ) is the logarithm of the characteristic function of the law of xτ ,
we have

∂τΦτ (ξ) = l

τ
ξ∂ξΦτ (ξ) − ε

2
ξ2, (56)

and

Φτ (ξ) = iξμτ − ξ2

2
ντ . (57)

Identifying the real and imaginary parts of Φτ (ξ), we obtain the dynamics of μτ as

μ̇τ = l

τ
μτ . (58)
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The solution for μτ is

μτ = x1τ
l. (59)

The dynamics of ντ are given by the Riccati equation

ν̇τ = 2l

τ
ντ + ε. (60)

If ν 	= 1/2, we get

ντ = ν1τ
2l + ε

1 − 2l
(τ − τ 2l ). (61)

If l = 1/2, we get

ντ = ν1τ + ετ logτ. (62)

We can summarize the temporal behavior of the variance as

ντ ∼ ε

1 − 2l
τ if l <

1

2
, (63)

ντ ∼ (ν1 + ε

2l − 1
)τ 2l if l >

1

2
, (64)

ντ ∼ ετ log(τ ) if l = 1

2
. (65)

This model has three phases. If l > 1/2 or l = 1/2, xτ /τ converges slower
than in a binomial distribution. These phases are the super diffusion phases. If 0 <

p < 1/2, xτ /τ converges as in a binomial distribution. This is the normal phase
(Hisakado and Mori 2010).
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The Pitman-Yor Process
and Choice Behavior

Masato Hisakado and Shintaro Mori

1 Introduction

In physics, equilibrium states are comparatively well understood, whereas non-
equilibrium states continue to attract much attention (Privman 1997; Hinrichsen
2000; Mantegna and Stanley 2008). The latter states pose several interesting
problems, and clarifying and classifying the nature of non-equilibrium stationary
states continues to be a central research theme (Sasamoto and Spohn 2010). In other
disciplines, the non-equilibrium stationary state is referred to. as the equilibrium
state. The ecology literature highlights that the equilibrium state in a zero-sum
model, in which the total number of individuals is constant, is an important process
(Hubbell 2001; Hisakado et al. 2018). The economics literature discusses the
equilibrium state in which companies survive competitive conditions (Aoki 2002;
Fujiwara et al. 2004).

The Ewens sampling formula is a one-parameter probability distribution on the
set of all partitions of an integer (Ewens 1990). The Pitman sampling formula is
a two-parameter extension of the Ewens sampling formula (Pitman 2006). The
Pitman-Yor process (Pitman and Yor 1997) and a generalized Pólya urn (Yamato and
Shibuya 2001) are the non-equilibrium stochastic processes that derive the Pitman
sampling formula (Pitman 2006). These processes permit new entries of individuals
and an increasing number of them. In a similar non-equilibrium process in which
the number of species or vertices increases, a power-law distribution can be obtained
(Yule 1925; Simon 1955; Barabashi and Albert 1999).
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We introduced a sequential voting model in previous studies (Hisakado and Mori
2015). At each time step t , one voter chooses one of two candidates. In addition, the
t-th voter can see the previous r votes and, thus, is given access to public perception.
When the voters vote for a candidate with a probability that is proportional to the
previous referable votes and there are two candidates, the model can be considered
as Kirman’s ant colony model (Kirman 1993). In these previous studies, a beta-
binomial distribution was derived as the equilibrium distribution of the r referable
votes in the stationary state of the process (Hisakado et al. 2006). If we assume
that voters can refer to all votes, the process becomes a non-equilibrium process.
The equilibrium distribution and the probability distribution in the non-equilibrium
process are the same (Hisakado and Mori 2015).

The response function is important for opinion dynamics, and decision-making
depends on social influence. In this study, we consider the case of analog herders
who vote for a candidate with a probability that is proportional to the referable votes.
We refer to the response function in this case as an analog type.

On the other hand, threshold rules have been used to influence response functions
in a variety of relevant theoretical scenarios (Hisakado and Mori 2011). This rule
posits that individuals will choose one of two choices only when a sufficient number
of other individuals have adopted that choice. We refer to such individuals as digital
herders. From our experiments, we observe that people’s individual behavior falls
between that of digital herders and that of analog herders. In this study, we show
that people behave as analog herders when posting to a bulletin board system.

We extend Kirman’s ant colony model when the number of candidates is greater
than two and not fixed (Kirman 1993; Hisakado and Mori 2015). The model is a
finite reference version of the Pitman-Yor process and the generalized Pólya urn
model (Pitman and Yor 1997; Yamato and Shibuya 2001). We derive the Pitman
sampling formula as an equilibrium distribution. As a comprehensive example of
the model, we analyze time series data for posts on 2ch.net. In the former case,
votes and candidates in the voting model correspond to posts on bulletin boards and
the bulletin boards’ threads. When r is small, the posting process is described by the
voting model.

The remainder of this paper is organized as follows. In Sect. 2 we introduce
a voting model, and we derive the Pitman sampling formula as an equilibrium
distribution of votes. In Sect. 3 we present the characteristics of several parameters.
In Sect. 4 we study time series data for posts on 2ch.net using the voting model, and
we conclude in the last section.

2 Model

We examine choice behavior using a voting model with candidates C1, C2, · · · .
At time t , candidate Cj has cj (t) votes. At each time step, a voter votes for one
candidate, and the voting is sequential. Thus, at time t , the t th voter votes, after
which the total number of votes is t . Voters are allowed to see the r previous votes
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for each candidate, where r is a constant, and, thus, voters are aware of public
perception. The candidates are allowed to both enter and exit. The voter votes for
the new candidate Ci with probability (θ + Krα)/(θ + r), where r is the number of
referred votes and Kr is the number of candidates who have more than one vote in
the last r votes. α and θ are parameters. If a candidate does not have more than one
vote in the last r votes, he/she exits. i in Ci is the number of candidates who have
appeared in the past plus one. The number of candidates at t = 1 is one, and there
is only one candidate C1.

In terms of the Chinese restaurant process or Hoppe’s urn process, we describe
the voting process as follows (Pitman 2006; Yamato and Shibuya 2001). At first,
there is an urn with θ black balls in it. In each step, one ball is drawn from the urn,
and two balls are placed back into the urn. In the first turn, a black ball is drawn, and
a ball of color 1 and the black ball are placed back into the urn. In subsequent turns,
if the drawn ball is black, a ball of another color that has not appeared in the past
and the black ball are returned to the urn, and if the drawn ball is not black, the ball
is duplicated, and the two balls are placed back into the urn. The difference between
this voting model and the Chinese restaurant process is that the voter refers to only
the recently added r balls and the black balls.

We illustrate the parameter space in Fig. 1. θ is the parameter that controls the
overall probability of adding a new candidate, and α is the parameter that adjusts the
entry probability of new candidates according to the number of candidates Kr = K .
When α < 0, the constraint θ = −αK exists.

We consider the case in which voters are analog herders. If cj (t) ≥ 1, the
transition is

cj (t) = k → k + 1 : Pj,k,t :l,t−r = −α + (k − l)

θ + r
, (1)

Fig. 1 Parameter space α and θ . α is the parameter that adjusts the entry probability of new
candidates as per the number of candidates, Kr . θ is the parameter that controls the overall
probability of adding a new candidate. The dotted line is not included in the parameter space.
When α < 0, the constraint θ = αK exists, and Kr cannot exceed K
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where Pj,k,t :l,t−rs are the probabilities of the process. The number of votes for Cj

at (t − r) is cj (t − r) = l. Hence, if (k − l) = 0, candidate Cj exits the system.
The process of a new candidate Cj entering is

cj (t) = 0 → 1 : Pj,k,t :l,t−r = Krα + θ

θ + r
, (2)

where the number of candidates who have more than 0 votes is Kr .
When α ≥ 0, from (1) and (2), the constraints θ + α > 0 and 1 > α ≥ 0 exist.

(See Fig. 1.) There is no upper limit on the number of candidates. When α > 0,
the probability of a new entry increases with an increase in Kr . When α = 0,
the probability of a new entry is constant. When α < 0, from (2), the constraint
αK +θ = 0 exists. The probability of a new entry decreases with an increase in Kr ,
and K is the upper limit of Kr . The number of candidates with more than one vote
does not exceed K . This model is similar to the model that does not allow candidate
entry, which is further discussed in Appendix A.

The distribution of cj (t) as the partition of integer t follows the Pitman sampling
formula in the generalized Pólya urn model (Pitman 2006; Yamato and Shibuya
2001). This is a non-equilibrium process, and the number of votes increases. We
focus not on the snapshot cj (t) but on the time series of state cj (t)− cj (t − r). This
is an equilibrium process, and the number of total votes is constant.

We consider a hopping rate among (r + 1) states k̂j = k − l, k̂j = 0, 1, · · · , r ,
and, here, we focus on the state. At each t , the vote at time (t − r) is deleted, and
a new one is obtained. k̂j is the number of votes that candidate Cj obtained in the
previous r votes.

First, we consider the case k̂j > 1. The transition is

k̂j → k̂j + 1 : P
k̂j ,k̂j +1,t

= r − k̂j

r

−α + k̂j

θ + r − 1
,

k̂j → k̂j − 1 : P
k̂j ,k̂j −1,t

= k̂j

r

(θ + α) + (r − k̂j − 1)

θ + r − 1
,

k̂j → k̂j : P
k̂j ,k̂j ,t

= 1 − P
k̂,k̂−1,t

− P
k̂,k̂+1,t

. (3)

P
k̂j ,k̂j ±1,t

and P
k̂j ,k̂j ,t

are the probabilities of the process. P
k̂j ,k̂j ±1,t

is the product
of the probabilities of exit and entry.

We consider hopping from candidate Ci to Cj .

k̂i → k̂i − 1, k̂j → k̂j + 1 : P
k̂i→k̂i−1,k̂j →k̂j +1,t

= k̂i

r

−α + k̂j

θ + r − 1
,

k̂i − 1 → k̂i , k̂j + 1 → k̂j : P
k̂i−1→k̂i ,k̂j +1→k̂j ,t

= k̂j + 1

r

−α + k̂i − 1

θ + r − 1
. (4)
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Here, we define μr(k̂, t) as the distribution function of state k̂ at time t . The number
of all states is (r+1). Using the fact that the process is reversible, in the equilibrium,
we have

μr(k̂i , k̂j , t)

μr(k̂i − 1, k̂j + 1, t)
= k̂j + 1

k̂i

−α + k̂i − 1

−α + k̂j

. (5)

We separate indexes i and j and obtain

μi
r(k̂i , t)

μi
r (k̂i − 1, t)

= −α + k̂i − 1

k̂i

c,

μ
j
r (k̂j + 1, t)

μ
j
r (k̂j , t)

= −α + k̂j

k̂j + 1
c, (6)

where c is a constant.
In the equilibrium, the number of candidates with k̂j > 0 is Kr . We ignore

candidates with k̂j = 0 and change the number of candidates and votes from Cj , k̂j

to C̃m, k̃m, where m = 1, · · · ,Kr , wherein k̃m > 0.
We can write the distribution as

μr(ã,∞) =
(

θ + r − 1
r

)−1 Kr∏

m=1

(1 − α)[k̃m]

k̃m! μr(ã = (1, 1, · · · , 1)
︸ ︷︷ ︸

Kr

,∞), (7)

where ã = (k̃1, · · · , k̃Kr ) and x[n] = x(x + 1) · · · (x + n − 1), which is the
Pochhammer symbol.

Given (6), we can obtain the equilibrium condition between ã = (1, 1, · · · , 1)
︸ ︷︷ ︸

Kr

=

1 and ã = (0, 0, · · · , 0)
︸ ︷︷ ︸

Kr

= 0:

μi
r(ã = (

n
︷ ︸︸ ︷
1, · · · , 1, 0, · · · , 0),∞)

μi
r (ã = (1, · · · , 1

︸ ︷︷ ︸
n−1

, 0, · · · , 0),∞)
= θ + (n − 1)α

n
c, (8)

where n = 1, · · · ,Kr . Hence, we can obtain

μr(ã = 1,∞) =
Kr∏

m=1

θ + (m − 1)α

m
μr(ã = 0,∞) = (θ)[Kr :α]

Kr ! , (9)
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where x[n:α] = x(x + α) · · · (x + (n − 1)α). Therefore, we can write (7) as

μr(ã,∞) =
(

θ + r − 1
r

)−1
θ [Kr :α]

Kr !
r∏

j=1

(
(1 − α)[j−1]

j !
)aj

, (10)

where aj is the number of candidates who have j votes. Therefore, the number of
candidates

∑r
j=1 aj = Kr and that of votes

∑r
j=1 jaj = r are related. Hereafter,

we use a partition vector â = (a1, · · · , ar ).
We consider the partitions of the integer Kr . To normalize, we add the following

combination term, Kr !/a1! · · · ar !:

μr(â,∞) = r!θ [Kr :α]

θ [r]
r∏

j=1

(
(1 − α)[j−1]

j !
)aj 1

aj ! . (11)

Equation (11) is simply a Pitman sampling formula (Pitman 2006). In the limit α =
0, we can obtain the Ewens sampling formula (Ewens 1990):

μr(â,∞) = r!
θ [r]

r∏

j=1

(
θ

j

)aj 1

aj ! . (12)

The Ewens sampling formula for the equilibrium process is presented in Aoki
(2002).

3 Four Regions in the Parameter Space

In this section, we characterize four regions in the parameter space. The parameter
θ denotes the intensity of correlations, and α refers to the intensity of competition.
In the upper plane, newcomers increase with a rise in α. In the lower plane, the
probability of the minimum growing increases with a decrease in α.

We consider both an increase and a decrease in k̂j . The probability of a decrease
in votes for candidate j is k̂j /r , and that of an increase in votes for candidate j is
(−α + k̂j )/(θ + r − 1), as shown in (1). We consider the condition in which the
probability of an increase is larger than that of a decrease:

α ≤ − k̂j

r
(θ − 1). (13)

In this region, the number of votes increases on average.
We divide the parameter space into four regions, I ∼ IV , as shown in Fig. 2a.

To clarify the regions, we define zone U
k̂j

as the region where the probability of
an increase in votes is larger than that of a decrease. U

k̂j
is defined in (13). Ur is

α ≤ −(θ − 1), and U0 is α ≤ 0.
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Fig. 2 Four regions in the parameter space and the average increase and decrease in each region

We define zone I, where α > 0 and α < (1 − θ), as Ur . In zone I, Ur ⊃ Ur−1 ⊃
· · · ⊃ U0. We consider the case in which the parameter set x = (θ, α) is x ∈ Ul and
x /∈ Ul−1. In this case, kj ≥ l is the increasing zone and kj < l the decreasing zone.
If a candidate has more than l votes, he/she can increase the number of votes and
maintain his/her position. On the other hand, it is difficult to increase votes if the
candidate has less than l votes. We show the average trend in Fig. 2b. In this region,
the leader in the trapped zone has an advantage. On the other hand, the competition
intensifies for newcomers as α increases.

We define zone II as α > 0 and α ≥ (1 − θ). In zone II, x /∈ U0, · · · , Ur .
Furthermore, it is difficult to increase the number of votes for every candidate and
to be a stable leader. The zone becomes more competitively intense with an increase
in α. In other words, it is possible to adjust the competitive intensity and protect
newcomers by adjusting α, which denotes the number of newcomers.

In the plane in the lower half, there is a capacity limit and no newcomers. We
define zone III as α < 0 and α > (1 − θ). When α < 0, U0 ⊃ U1 ⊃ · · · ⊃ Ur . We
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consider the case in which the parameter set x = (θ, α) is x ∈ Ul and x /∈ Ul+1. In
this case, k̂j > l is the decreasing zone and k̂j ≤ l the increasing zone. It is easy to
increase the number of votes to k̂j = l, but it is difficult to increase the number of
votes above k̂j = l + 1. In this region, it is also difficult to be a stable leader.

We define zone IV as α < 0 and α ≤ (1 − θ). In this zone, x ∈ U0, · · · , Ur . It
is easy to increase the votes for each candidate. In addition, this zone is competitive
when the number of members is fixed.

Next, we consider the Ewens sampling formula on the θ axis. When α = 0 and
θ = 1, the probabilities of an increase and decrease both become k̂j /r . For any
k̂j , the probabilities of an increase and decrease are equal. Thus, the correlation
becomes ρ = 1/2 (see Appendix A), and there is a uniform random permutation.
The probability of an increase or a decrease is proportional to the number of
partitions.

When α = 0 and θ < 1 within the boundaries of zone IV, if candidates can enter,
the number of votes easily increases. In this zone, the correlation is high. When
α = 0 and θ > 1 within the boundaries of zone II, it is difficult to increase the
number of votes. Here, there is a low correlation. In summary, there are numerous
candidates who have few votes.

4 Data Analysis of a Bulletin Board System

In this section, we examine the data of posts to a bulletin board system (BBS),
2ch.net. 2ch.net is the largest BBS in Japan and covers a wide range of topics. Each
bulletin board is separated by a field unit or a category, such as, for example, news,
food and culture, and net relations. Each category is further divided into genres, or
boards, and each board contains numerous threads, which are segregated by topics
that belong to the board. Writing and viewing boards is done on a thread. There are
about 900 boards on 2ch.net. It is possible to make anonymous posts on all threads.

We study the time series of posts on the following ten boards: business news,
East Asia news, live news, music news, breaking news, digital camera, game,
entertainment, international affairs, and press. We label these boards as the No.
1, No. 2, · · · No. 10 boards, respectively. The first five boards fall under the
news category. Each board has several hundred threads, and managers maintain the
number of threads by removing old ones and replacing them with new threads. The
duration of a post on a thread is set to 5 days for the No. 4 and No. 5 boards. As
a result, the lifetime of a thread is generally about a few days. One cannot post
more than 1,000 posts to a thread. Threads that no longer allow posts are deleted
from the thread lists of the boards, and managers prepare a new sequential thread
using the same thread title. The lifetime of a thread can therefore be longer than the
abovementioned duration, as the postable duration rule applies to descendant threads
with a new start date. We identify sequential descendant threads from a common
ancestor thread as one thread. Table 1 summarizes the statistics of the threads of the
ten boards.
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Table 1 Statistics of 2ch.net post data. The observation period, the total number of threads N , the
average number of posts per thread T/N , and its standard deviation (S.D.) are presented in the
third, fourth, fifth, and sixth columns, respectively. wMax in the seventh column lists the maximum
number of posts on a thread. The numerical value in the eighth column indicates the average
lifetime of a thread [in days]. The lifetime is defined as the difference between the last and first
post date. sH is in the last column and indicates the time horizon, which is defined in Eq. (14)

No. Board Name Obs. Period N T/N S.D. wMax Lifetime sH [sec]

1 Business News Aug. 10, 2009–Dec.
31, 2009

8,248 140 290 7,707 7.5 260.0

2 East Asia News Mar. 8, 2009–Aug.5,
2009

8,225 388 1,022 27,966 7.5 205.4

3 Live News Mar. 8, 2009–Aug.
5, 2009

15,307 53 333 30,443 2.0 95.1

4 Music News Mar. 8, 2009–Aug.
5, 2009

23,000 332 1,123 78,388 2.8 140.2

5 Breaking News Mar. 8,
2009–Dec.31, 2009

33,677 658 1,497 113,220 2.9 94.5

6 Digital Camera Aug. 10, 2009–Dec.
31, 2009

835 527 1,530 33,494 251.4

7 Game Mar. 8, 2009–Aug.
10, 2009

1,371 241 286 2,043 132.6

8 Entertainment Aug. 10, 2009–Dec.
31, 2009

1,464 134 1188 30999 35.4

9 Int. Affairs Aug. 10, 2009–Dec.
31, 2009

688 233 241 1,000 1,123.8

10 Press Aug. 10, 2009–Dec.
31, 2009

1,011 235 296 2,182 358.5

The total number of posts on each board is about 0.2–22 million. Each thread
has an average of several hundred posts, and the standard deviation is large. The
maximum number of posts wMax is 50–100 times larger than the average. The
average lifetime of a thread on news boards is several days, which is derived from
the strict rule defining the period within which a post can be made on threads.
There is no strict rule for the remaining five boards, and the average lifetimes are
considerably longer than those of the news boards.

We label threads by n ∈ {1, · · · , N}, and N is the total number of threads that
appear on the board. We describe the t th post to the board at s[sec] by the thread
number n and s as (n(t), s(t)), t = 1, · · · , T . We measure the post time s by setting
the time of the first post time on the board as zero seconds. We present the scatter
plot of the time series post data (n(t), s(t)), t = 1, · · · , T in the (n, s) plane of the
No. 5 and No. 8 boards in Fig. 3. Because the threads have a strict finite lifetime of
5 days on the No. 5 board, the plot shows a narrow strip pattern. Some threads have a
longer lifetime because they have a long family tree from ancestors to descendants.
The No. 8 board shows a wide strip pattern, which indicates that the number of
threads is considerably large.
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Fig. 3 Scatterplot of post data (n(t), s(t)) for the No. 5 and No. 8 boards. Each dot corresponds
to a post

Fig. 4 Posts, threads, and a board. Posts are shown as balls and are labeled as t . There are Kr = 6
threads with a non-zero number of posts. n shows the threads numbers. The “21st post? refers to
the previous 10 posts, t = 11, 12, · · · .10. The thread numbers are n = 5, 9, 11, 16, 18, 10 and
appear (k5, k9, k11, k16, k18, k10) = (3, 1, 2, 2, 1, 1) times, respectively. The multiplicities a are
a1 = 3, a2 = 2 and a3 = 1. a1 + a2 + a3 = Kr = 6 and 1 · a1 + 2 · · · a2 + 3 · a3 = 10 hold.
The probability of a post on a thread with two posts is 2 · 2−α

θ+10 . The probability of a thread not

appearing in ten posts is θ+6·α
θ+10

4.1 Correlation Function C(τ) for Equilibrium r

We identify threads and posts as candidates and votes in the voting model in Fig. 4.
As previously shown, when voting occurs with reference to the previous r votes,
the stationary distribution of the r consecutive previous votes obeys the Pitman
sampling formula in (11). In this case, the correlation between n(t) and n(t − τ)

for the voting lag τ does not decay for τ < r , as the distribution is stationary in
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Fig. 5 Plot of C(τ) vs. τ . The left (right) panel shows the results for the first (remaining) five
boards. τ on the x-axis indicates the voting lag, and C(τ) denotes the autocorrelation function
between n(t) and n(t + τ)

r consecutive votes. In the range τ > r , C(τ) dumps, so if a post on the board
is described by this voting model with reference r , C(τ) should demonstrate this
feature. We adopt the expectation value of the coincidence of n(t) and n(t − τ) as
the correlation between n(t) and n(t − τ),

C(τ) ≡ E(δn(t),n(t−τ)).

We assume that C(τ) does not depend on t , and we estimate it using time series data
{n(t)}, t = 1, · · · , T as

C(τ) = 1

T − τ

T −τ∑

t=1

δn(t),n(t+τ).

Figure 5 illustrates the semilogarithmic plot C(τ) vs. τ . The properties of C(τ)

of a voting model with finite r are summarized in Mori and Hisakado (2015). We
see a plateau structure in which C(τ) does not decrease with τ for the first five news
boards in the left panel. For the No. 4 and No. 5 boards, C(τ) is almost constant for
τ ≤ τc � 80. As for the other boards, C(τ) decreases for τ ≥ τc = 20 for the No.
1 and No. 2 boards and for smaller values of τc ∼ 5 for the No. 3 board. In these
news boards, C(τ) is almost constant among posts within τc. On the other hand,
C(τ) decreases with τ for the latter boards in the right panel, with the exception
of the No. 8 board. As for the No. 8 board, C(τ) is large for large τ and gradually
decreases, indicating that the board has special features.

We apply the voting model to the posts on 2ch.net in the boards for the news
category with r < τc. We adopt r = 80 for the No. 4 and No. 5 boards, r =
20 for the No. 1 and No. 2 boards, and r = 5 for the No. 3 board. To interpret
τc, we highlight the response times of board users. We believe that a user needs
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several minutes to respond to posts. Next, the post should be random for a short time
interval, and the probability of a post on a thread is roughly estimated as the post
ratio in the previous posts. In the last column of Table 1, we indicate the time horizon
sH [sec] for τc, which is defined as the mean duration between posts multiplied by
τc, as

sH ≡ s(T ) − s(1)

T − 1
· τc. (14)

sH is about 1.5–4 min, which is possibly the requisite time duration to respond to
posts.

4.2 Estimation of the Parameters θ and α

We use time series data {n(t)}, t = 1, · · · , T , n ∈ {1, . . . , N} and estimate the
model parameters θ and α using the maximum likelihood principle. In the model,
the probability of a post on a thread that appears in the past r posts k̂ times is defined
as in (1). The probability of a post to a

k̂
threads with k̂ is

PExisting(k̂) = a
k̂
· k̂ − α

θ + r
. (15)

The probability of a post on a new thread that does not appear in the past r posts
depends on the number of threads Kr in the past r posts and is defined in (2):

PNew(Kr) = Krα + θ

θ + r
. (16)

For t ∈ [1×104, T −r], we choose tn, n = 1, · · · S randomly and study the following
r+1 sequence, n(tn), n(tn+1), · · · , n(tn+r−1). We estimate the number of threads
Kr and the number of threads with k̂ posts a

k̂
in the past r posts.

∑
k̂
a
k̂

= Kr holds.
If thread n(tn + r) does not exist in the Kr threads, the likelihood is PNew(Kr). If
the thread exists and thread n(tn + r) appears k̂ times, the likelihood is PExisting(k̂).
The likelihood of S sample is then estimated by the products of these likelihoods for
all s = 1, · · · , S. We adopt S = 2 × 105. In addition, we fit the parameters using
the maximum likelihood principle for the distribution of the partitions of a

k̂
with the

Pitman sampling formula in (11).
The estimated values for the parameters are summarized in Table 2. We adopted

r = 20 for the No. 1 and No. 2 boards, r = 5 for the No. 3 board, and r = 80
for the No. 4 and No. 5 boards by the correlation analysis. The standard errors are
estimated using the square root of the negative eigenvalue for the Hessian of the log
likelihood. For r = 80, we only show the results by fitting with probabilistic rules.
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Table 2 Fitting results of θ and α for probabilistic rules in (15) and (16). We use the maximum
likelihood principle, and the sample number S is 2 × 105. We show the estimates for the No. 1 and
No. 2 boards with r = 20, for the No. 3 board with r = 5, and for the No. 4 and No. 5 boards
with r = 80 in the third and fourth columns. For r = 5 and r = 20, we show the goodness-of-fit
results using the Pitman sampling formula in (11) in the fifth and sixth columns. We adopt the same
samples for the two fittings. The standard error (S.E.) in the last digit of the estimate is provided in
parentheses

Fit with probabilistic rules Fit with Pitman’s distribution

No. r θ(S.E.) α(S.E.) θ(S.E.) α(S.E.)

1 20 8.8(2) 0.37(1) 8.7(0) 0.390(2)

2 20 2.2(1) 0.42(1) 2.0(0) 0.418(2)

3 5 1.7(0) 0.560(4) 1.3(0) 0.623(3)

4 80 10.0(3) 0.35(1) NA NA

5 80 11.9(4) 0.28(1) NA NA

To verify the probabilistic rules, we directly estimate PExissting(k̂) and
PNew(Kr). We calculate the number of threads with post times k̂ for the past r

posts and denote it as N(k̂). In addition, we count the number of times a post is
made on an exiting thread with posts k̂ and denote it as Npost (k̂). The estimator for
PExisting(k̂) is

P̂Existing(k̂) = NPost (k̂)

N(k̂)
. (17)

Likewise, we count the number of threads Kr and the number of times a post is made
on a new thread when the number of threads is Kr . We denote them as NKr (Kr) and
NNew(Kr), respectively. The estimator for PNew(Kr) is then denoted as

P̂New(Kr) = NNew(Kr)

NKr (Kr)
. (18)

Figure 6 presents the estimates for P̂Existing(k̂) and P̂new(Kr). We also plot
PExisting(k̂) and PNew(Kr) in (15) and (16) with fitted values for θ and α in Table 2.
The estimated results for the maximum likelihood fit well with the results from the
estimators P̂Existing(k̂) and P̂New(Kr). The parameters fall in zone II, which was
introduced in the previous section. In this zone, it is difficult for a leader to appear.

4.3 Distribution of Kr and k̂

We compare (11) and the probability mass function for Kr using the fitted
parameters in Table 2 and those of an empirical distribution. The probability mass
function Pr(Kr) for the number of candidates Kr with reference r is given as
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Fig. 6 Plots of PExisting(k̂) vs. k̂ and PNew(Kr) vs. Kr . The symbols denote the estimated results
using P̂Existing(k̂) in (17) and P̂Kr (Kr) in (18). The lines denote the plots of (15) and (16) with
fitted parameters for θ and α in Table 2

Pr(Kr) = θ [r:α]

θ [r] c(r,Kr, α)α−Kr , (19)

where c(r,Kr, α) is the generalized Stirling number or the C-numbers (Pitman
2006). As for the probability mass function for the post times k̂, we calculate the
number of posts k̂1st ≥ k̂2nd ≥ k̂3rd for the most popular three threads in the past r

posts in addition to all post times k̂ for all threads. We plot the results in Fig. 7.
As we can see, the fitting results are good. The distributions of k̂1st , k̂2nd , k̂3rd ,

k̂, and Kr are well described by the Pitman sampling formula (11) and Pr(Kr) with
fitted parameters for θ, α in Table 2.

4.4 Distribution of Total Votes cn(T )

In this subsection, we discuss the distribution of total votes cn(T ) for thread n, where
cn(t) = ∑t

t ′=1 δn(t ′),n. Figure 8 shows the semilogarithmic plot of the cumulative
distribution P(k) ≡ P(cn(T ) ≥ k) vs. k. The left (right) panel depicts the results for
the first (remaining) five boards. The dotted line denotes the cumulative distribution
of the log-normal distribution with the same mean and variance. As is clearly
shown, the results show good fits. In the previous subsection, we confirm that
the distribution of posts on the four boards obey the equilibrium Pitman sampling
formula. The difference between the equilibrium and non-equilibrium suggests that
the posting process for a large r is not described by the voting process.

In the remaining boards, we confirm that the distribution of the number of posts
on the No. 8 board follows the power-law distribution and the power-law index is
1.65, P(k) ∼ k−(1.65−1). We have seen that the board has a long memory in Fig. 5.
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Fig. 7 Plots of the distribution of post times k̂ and number of threads Kr In the past r posts for
data with symbols and for (11) and (19). We sort k̂ in descending order and select the largest three
values k̂1 ≥ k̂2 ≥ k̂3. The symbols ◦, and � denote the empirical distributions of k̂1, k̂2, and
k̂3, respectively. � and

�
show the distribution of all k̂ and Kr . The lines indicate the plots of

Pr(Kr) in (19) and the distributions of the ordered k̂j and k̂, which are calculated using the Pitman
sampling formula in eq. (11). We adopt r = 20(80) for the No. 1 and No. 2 (No. 4 and No. 5)
boards. The parameters for (11) and (19) are presented in Table 2. We adopt the second set for
r = 20 and the first set for r = 80

Furthermore, we can confirm that the probability of a post is proportional to the
number of posts and that of a new thread is proportional to the number of threads
for a large r in Fig. 9. As r increases, the latter dependence disappears, and the
process is described by the Yule process (Yule 1925). As the power-law exponent is
less than two, the fitness model for evolving networks might be a better candidate
to describe the posting process (Bianconi and Barabási 2001; Hisakado and Mori
2016).
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Fig. 8 Plot of P(k) ≡ P(cn(T ) ≥ k) vs. k. The left (right) panel presents the results for the
first (remaining) five boards. The means and standard deviations of cj for the first five boards are
(3.93, 1.41), (4.79, 1.48), (3.03, 1.10), (4.76, 1.45), and (5.47, 1.47)

Fig. 9 Plot of PExisting(k̂) vs. PNew(Kr) for the No. 8 board. The symbols show the estimated
results using P̂Existing(k̂) in (17) and P̂Kr (Kr) in (18). The lines denote the plots of (15) and (16)

5 Concluding Remarks

In this chapter, we discuss choice behavior using a voting model comprising voters
and candidates. Voters vote for a candidate with a probability that is proportional
to the ratio of previous votes, which is visible to the voters. In addition, voters can
obtain information from a finite number r of the most recent previous voters.

In the large t limit, the system is equilibrated, and the partition of r votes follows
the Pitman sampling formula. Kirman’s ant colony model is a special case that
corresponds to the number of states K = 2. The equilibrium probability distribution
and the non-equilibrium probability distribution for t = r are the same. We propose
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using this voting model for the posting process of a BBS, 2ch.net, where users can
select one of many threads to make a post. We explore how this choice depends on
the last r posts and the distribution of the last r posts across boards. We conclude
that the posting data in the news category is described by the voting model. The
equilibrium time or time horizon sH is about 1.5–4 min. Up to this time horizon, the
probability of posting on a thread is proportional to the ratio of posts on the thread,
in other words analog herders.

Recently the monopoly of information is a hot topic. A few largest companies
like GAFA gather most of data. In Fig. 2 we divided four regions, I, II, III, and IV,
in the parameter space. Here we consider that the candidates are enterprises and the
voters are users. The lower half is the membership region, high barriers to enter. The
barriers to enter become lower and lower for the enterprises in the Internet era. On
the other hand, for users the enterprises which gather larger data are useful platforms
because of the convenience. It is called network externality. In Fig. 3 we can observe
the winner got all in the zone I. The monopoly will be advanced here after.

Appendix A Fixed Number of Candidates Case

We model the voting of K candidates, C1 · · · CK . At time t , candidate Cj has cj (t)

votes. In this appendix, we consider the case in which the number of candidates
K is fixed, that is, no new entry is allowed. In each time step, one voter votes for
one candidate; the voting is sequential. Hence, at time t , the t th voter votes, after
which the total number of votes is t . Voters are allowed to see r previous votes for
each candidate and, thus, are aware of public perception. r is a constant number.
We consider the case in which all voters vote for the candidate with a probability
proportional to the previous votes ratio, which is visible to the voters.

The transition is

cj (t) = k → k + 1 : Pj,k,t :l,t−r =
qj (1−ρ)

ρ
+ (k − l)

1−ρ
ρ

+ r
= βj + (k − l)

θ + r
, (20)

where cj (t − r) = l, ρ is the correlation coefficient and qj is the initial constant of
the j th candidate (Hisakado et al. 2006). ρ is the correlation of the beta-binomial
model. The constraint

∑K
j=1 qj = 1 exists. We define θ = (1 − ρ)/ρ and βj =

qj (1 − ρ)/ρ. Pj,k,t :l,t−r denotes the probabilities of the process. The voting ratio
for Cj at t − r is cj (t − r) = l. We consider the case βj ≥ 0 from Pj,k,t :l,t−r > 0
and the constraint

∑
j βj = θ . When βj = β, the constraint becomes βK = θ .

We consider the hopping rate among (r + 1) states k̂j = k − l, k̂j = 0, 1, · · · , r .
In each step of t , the vote at time (t − r) is deleted, and a new vote is obtained. k̂ is
the number of votes candidate Cj obtained in the latest r votes. In case K = 2, the
model becomes Kirman’s ant colony model (Kirman 1993). The dynamic evolution
of the process is given by
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k̂j → k̂j + 1 : P
k̂j ,k̂j +1,t

= r − k̂j

r

βj + k̂j

θ + r − 1
,

k̂j → k̂j − 1 : P
k̂j ,k̂j −1,t

= k̂j

r

(θ − βj ) + (r − 1 − k̂j )

θ + r − 1
,

k̂j → k̂j : P
k̂j ,k̂j ,t

= 1 − P
k̂,k̂−1,t

− P
k̂,k̂+1,t

.

P
k̂j ,k̂j ±1,t

are the probabilities of the process and the products of exit votes and new
entry votes.

We consider hopping from candidate Ci to Cj .

k̂i → k̂i − 1, k̂j → k̂j + 1 : P
k̂i→k̂i−1,k̂j →k̂j +1,t

= k̂i

r

βj + k̂j

θ + r − 1
,

k̂i − 1 → k̂i , k̂j + 1 → k̂j : P
k̂i−1→k̂i ,k̂j +1→k̂j ,t

= k̂j + 1

r

βi + k̂i − 1

θ + r − 1
.

Here, we define μr(k̂, t) as a distribution function of the state k̂ at time t . The
number of all states is (r + 1). Given that the process is reversible, we have

μr(k̂i , k̂j , t)

μr(k̂i − 1, k̂j + 1, t)
= k̂j + 1

k̂i

βi + k̂i − 1

βj + k̂j

. (21)

We can separate indexes i and j and obtain

μi
r(k̂i , t)

μi
r (k̂i − 1, t)

= βi + k̂i − 1

k̂i

c

μ
j
r (k̂j + 1, t)

μ
j
r (k̂j , t)

= βj + k̂j

k̂j + 1
c, (22)

where c is a constant. Using (22) sequentially, in the limit t → ∞, we can obtain
the equilibrium distribution, which can be written as

μr(a,∞) =
(

θ + r − 1
r

)−1 K∏

j=1

(
βj + k̂j − 1

k̂j

)

, (23)

where a = (k̂1, k̂2, · · · , k̂K). This distribution is written as

μr(a,∞) = r!
θ [r]

K∏

i=1

β
[k̂i ]
i

k̂i !
, (24)
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where x[n] = x(x+1) · · · (x+n−1). This is the Dirichlet-multinomial distribution.
Here, we set βj = β. The relation β = −α exists, where α is the parameter used

in the main text. We write (23) as

μr(â,∞) =
(

θ + r − 1
r

)−1 r∏

j=1

(
β + j − 1

j

)aj

, (25)

where aj is the number of candidates for whom j voters voted and â =
(a1, · · · , ar ). Hence, the relations

∑r
i=1 ai = Kr < K and

∑r
i=1 iai = r exist.

Here, we define Kr as the number of candidates who have more than one vote.
(K − Kr) candidates have no vote.

We consider the partitions of integer Kr . To normalize, we add the term of
combination: K!/a1! · · · ar !(K − Kr)!. We obtain

μr(â,∞) = K!
a1! · · · ar !(K − Kr)!

(
θ + r − 1

r

)−1 r∏

j=1

(
β + j − 1

j

)aj

= r!θ [Kr :−β]

θ [r]
r∏

j=1

(
(1 + β)[j−1]

j ! )aj
1

aj ! , (26)

where x[n:−β] = x(x − β) · · · (x − (n − 1)β). We use the relation θ = Kβ.
Equation (26) is simply the Pitman sampling formula (Pitman 2006).

In the limit β → 0 and K → ∞, subject to a fixed θ = βK , we can obtain the
Ewens sampling formula. In this case, the sum of the probabilities that a candidate
who has zero votes can obtain one vote is θ/(θ + r). This case is the same as α = 0
in Sect. 2.

Appendix B Partition Number and Pitman Distribution

A partition of positive integer is called integer partition problem. It is the number of
the representations that positive integer n as the sum of the positive integer. Here we
write the number p(n). For example, 3 is presented as 3, 2+1, 1+1+1, and p(3) = 3.

The generating function of p(n) is known as

∞∑

n=0

p(n)xn = 1 + x + 2x2 + 3x3 + 5x4 + 7x5 + 11x6 + . . .

=
∞∏

k=1

(
1

1 − xk

)

= (1 + x + x2 · · · )(1 + x2 + x4 + · · · ) (27)

(1 + x3 + · · · ).
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Fig. 10 The black bar is the Pitman distribution. The red line is the empirical data of 2ch. Here
we show n = 3, 5, 20, 50 cases

We can confirm the combinatorics of n as the coefficients of xn. The Pitman
distribution represents the distribution for each representation. We show the Pitman
distribution and the votes for 2ch in Fig. 10.

The red line is the business data which fits well to the Pitman distribution. The
parameter is calibrated by the historical data, when n is less than the range of the
auto correlation which we discussed in the Sect. 4.1. We can confirm 2ch data is
represented by the Pitman distribution.
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Domino Effect in Information Cascade

Shintaro Mori and Masato Hisakado

1 Information Cascade

Social learning is a learning process by observing others’ behaviors and adopting
them (Rendell et al. 2010). As the cost of social learning is smaller than individual
learning, many kinds of animals and human adopt the process. However, it is also
known to be error-prone. The obtained information might be outdated and wrong. In
information cascade, where individuals make sequential decisions after observing
the actions of those ahead of them and follow the majority’s behavior of the
preceding individuals without regard to their own private information, we observe
such sub-optimal case (Bikhchandani et al. 1992). When information cascade starts,
the majority behavior continues in the sequence. Even if it is sub-optimal, it never
switches to the optimal one as the private information is lost in later decisions. Some
individuals might recognize that the majority’s behavior is based only on a few
individuals’ private information. They might choose the minority’s choice based on
their private information. The uniformity is broken and there might occur a switch
to an optimal behavior. The perception of the “shallowness” of the depth of the
private information that piled up in the majority’s choice is one mechanism of the
fragility of information cascade. It explains the localized and short-lived nature of
fluctuations in culture, like fads and fashion (Devenow and Welch 1996). Even if
the uniformity is broken, it is another problem that the minority’s choice becomes
the majority.
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As the first individual’s choice greatly affects the majority’s choice of the early
individuals that trigger the information cascade, domino effect is the key concept
in information cascade (Mori and Hisakado 2015a,b). The central question about
information cascade is when and how the domino effect propagates along the
individuals’ choice sequence. If many individuals recognize that the true “depth”
of an information cascade is shallow, the information cascade is fragile. The
uniform behavior is broken and domino effect disappears. However, if the network
externality of the majority’s choice reinforces as more majority adopter appears, the
conformity in the information cascade is robust, and the domino effect continues
forever.

In this chapter, we address the central question of information cascade by
studying the domino effect of several simple models. We explain the necessary
condition for the occurrence of an infinitely long cascade. Based on the results, one
can understand the micro-macro features of the information cascade experiments
that are presented in later chapters.

2 General Setting and Measure of Domino Effect

We start from the general setting of information cascade and introduce a measure
of the domino effect. Assume that there are two options, A and B, one of which
is chosen to be correct with equal probability. Without loss of generality, we label
the correct (incorrect) option as 1 (0). Each individual has private information about
the true option. We denote the order of the individual in the sequential choice as
t = 1, 2, · · · and individual t’s private information and decision as S(t) ∈ {0, 1}
and X(t) ∈ {0, 1}, respectively. In information cascade experiment, S(t) is random
which takes 1 with probability q.

P(S(t) = 1) = q and P(S(t) = 0) = 1 − q.

The summary statistics of how many individuals among first t have chosen correct
and incorrect option are denoted as N1(t) and N0(t), respectively.

N1(t) =
∑

s

X(s) and N0(t) = t − N0(t).

We denote the difference in the number of correct and incorrect choices up to the
t-th individual as N(t) = N1(t) − N0(t). Individual t + 1 observes these summary
statistics and make decision X(t +1) based on (S(t +1), N1(t), N0(t)). Information
cascade models are determined by the probabilistic rule for X(t + 1). It is given by
the conditional probability P(X(t + 1) = x|S(t + 1), N1(t), N0(t)), x ∈ {0, 1}.

The domino effect of information cascade is measured by the correlation function
C(t), which is defined as the difference in the conditional probabilities (Mori and
Hisakado 2015b).
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C(t) = Pr(X(t + 1) = 1|X(1) = 1) − Pr(X(t + 1) = 1|X(1) = 0).

C(t) can also be defined as the covariance of X(1) and X(t + 1) divided by the
variance of X(1).

C(t) = Cov(X(1),X(t + 1))

V(X(1))
.

The first definition makes it easy to understand C(t) as domino effect. Or more
intuitively, we can rewrite it as

C(t) = Pr(X(t + 1) = 0|X(1) = 0) − Pr(X(t + 1) = 0|X(1) = 1).

This definition indicates that C(t) measures how the first individual’s choice X(1)

affects the later individual t + 1’s choice X(t + 1). In general, by the change from
X(1) = 1 to X(1) = 0, the conditional probability for P(X(t + 1) = 0|X(1))

increases, and the difference between the two conditional probabilities is positive.
If domino effect disappears as the later individuals choose independently from the
first individual’s choice, C(t) decays to zero. If it remains and the domino effect
propagates to infinitely later individuals, C(t) in the limit t → ∞ is positive. We
denote it as c.

c ≡ lim
t→∞ C(t).

The central problem in information cascade is the clarification of the condition for
c > 0.

3 Simple Models

We study several simple models of information cascade and classify the asymptotic
behavior of C(t) and the limit value c. We clarify the condition when the domino
effect disappears (c = 0) or remains forever (c > 0). We also study models that
show the phase transition between c = 0 and c > 0 by the change of the model’s
parameters. We explain that it is a non-equilibrium phase transition and is akin to
percolation transition.

3.1 Pólya Urn

The Pólya urn is a simple stochastic process for contagion where it is taken into
account by a reinforcement mechanism (Pólya 1931). As the social learning process
is a kind of contagion process, we study Pólya urn as a model of information
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cascade. There are initially R0 red balls and B0 blue balls in an urn. At each step,
one draws a ball randomly from the urn and duplicates it. Then, one returns the
balls, and the probability of selecting a ball of the same color is reinforced. As the
process is repeated infinitely, the ratio of red balls in the urn z becomes random and
obeys the beta distribution Beta (R0, B0).

In the context of information cascade, the red balls correspond to correct choice,
and the blue balls correspond to incorrect choice. Individuals draw a ball from the
urn, and the color of the ball is his private information. He chooses the same option
with the color of the ball.

X(t) = S(t)

The probability that individual t + 1 chooses the correct option is

P(X(t + 1) = S(t + 1) = 1) = R0 + N1(t)

t + R0 + B0

Here, N1(t) is the number of individuals who have drawn red balls until individual
t . The correlation function C(t) does not decay with t , and the limit value c is
1/(R0 + B0 + 1).

C(t) = 1

R0 + B0 + 1

The domino effect continues forever.

3.2 BHW’s Basic Cascade Model

We study the “basic model” of information cascade (Bikhchandani et al. 1992). We
assume that the first individual chooses 1 (0) if his private signal is 1 (0).

X(1) = S(1).

The second individual can infer the first individual’s signal S(1) from X(1). If the
first individual chooses 1 (0), the second individual chooses 1 (0) if his signal is 1
(0). If his signal contradicts the first individual’s choice, we assume he chooses the
same option as his signal S(2), which is different from the tiebreaking convention
in the “basic model,” where the individual chooses 1 or 0 with equal probability. We
summarize the decision rules for the first two individuals as

X(t) = S(t), t = 1, 2.
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There are three situations for the third individual: (1) If both predecessors have
chosen 1, irrespective of his signal S(3), he chooses 1. The following individuals
also choose 1, and a correct cascade, which is called up cascade, starts. (2) If both
have chosen 0, an incorrect cascade, or down cascade, starts. (3) One has chosen
1, and the other has chosen 0. The third individual is in the same situation as
the first individual, and he chooses the option matching his private information,
X(3) = S(3).

The probability that both of the first two individuals receive correct (incorrect)
signals is q2((1−q)2), so an up (down) cascade starts with probability q2((1−q)2).
From the above discussion, if N(t) ≥ 2(≤ −2), individual t +1 chooses X(t +1) =
1(0) irrespective of his private information S(t + 1). And up (down) cascade starts
from t + 1.

X(t + 1) = θ(N(t)) if |N(t)| ≥ 2

If |N(t)| ≤ 1, individual t +1 trusts his private information and chooses X(t +1) =
S(t + 1).

X(t + 1) = S(t + 1) if |N(t)| ≤ 1

As information cascade starts for |N(t)| ≥ 2, we identify all states with N(t) ≥
2(≤ −2) as N(t) = 2(−2), and there remain five states, N(t) ∈ {−2,−1, 0, 1, 2}.
If t is even, there are three states, N(t) ∈ {−2, 0, 2}, and there are four states,
N(t) ∈ {−2,−1, 1, 2}, if t is odd. Figure 1 illustrates the model. In the figure,
we also show the probabilistic rule for the transition between states. At t = 0,
N(0) = 0, and it jumps to N(t) = 1(−1) with probability q (1 − q). From t = 1 to

Fig. 1 Simple model of information cascade. As information cascade starts for |N(t)| ≥ 2, We
identify all states with N(t) ≥ 2(≤ −2) as N(t) = 2(−2). States N(t) ∈ {2, 1, 0,−1,−2} and
probabilities for X(t) ∈ {0, 1}
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t = 2, the same rule applies, and N(t) increases (decreases) by 1 with probability
q (1 − q). If N(t) = 2(−2) at t = 2, an up (down) cascade starts. Later individuals
choose 1 (0) for t ≥ 3, and N(t) remains 2(−2). If N(t) = 0 at t = 2, the third
individual chooses 1 with probability q. In general, if |N(t)| ≤ 1, N(t) increases
(decreases) by 1 with probability q (1 − q). The problem is a random walk model
with absorbing walls at N(t) = ±2. As t increases, the probability that the random
walk is absorbed in the walls increases. In the limit t → ∞, all random walks
are absorbed in the walls. The state N(t) = 0 for even t is absorbed into the state
N(t + 2) = 2 with probability q2/(q2 + (1 − q)2) and is absorbed into the state
N(t + 2) = −2 with probability (1 − q)2/(q2 + (1 − q)2). The probability for an
up cascade in the limit t → ∞, which we denote by P2(∞), is then given as

P2(∞) ≡ Pr(N(∞) = 2) = q2

q2 + (1 − q2)
. (1)

In the up (down) cascade, individuals always choose 1 (0), and P2(∞) is the limit
value for the probability of the correct choice. It is greater than q for q > 1/2,
and the deviation shows an increase in the accuracy from that of the signal S(t).
P2(∞) − q is a measure of the collective intelligence (left figure in Fig. 2).

C(t) is estimated as

C(2n) = q(1 − q)

q2 + (1 − q)2 + (1 − 2q)2

2(q2 + (1 − q)2)
(
√

(2q(1 − q)))2n,

C(2n + 1) = C(2n).

C(t) decays exponentially with t and the limit value is the first term.

c = lim
t→∞ C(t) = q(1 − q)

q2 + (1 − q)2
. (2)

Fig. 2 Plot of P2(∞) (Eq. (1)) and c (Eq. (2)) vs. q
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c changes continuously with q, and it takes zero at q = 1 (right figure in Fig. 2). The
results indicate that the domino effect continues forever irrespective of the value of
q. The first individual’s choice affects the probability of the occurrence of the up
and down cascades.

3.3 Correlated Random Walk

If the individuals refer to the previous individual only, X(t + 1) depends on X(t)

and S(t + 1). In the case, the system is described as a correlated random walk
(CRW) (Mori and Hisakado 2015a). If they refer to their private information only,
X(t + 1) = S(t + 1) holds, and the probability that X(t + 1) takes 1 is q. If they
choose the same choice with the previous individuals, X(t + 1) = X(t) holds.
We interpolated the two limits by a parameter p and introduce the next model for
X(t + 1).

P(X(t + 1) = 1|X(t) = x, S(t + 1) = s) = (1 − p) · s + p · x.

If one takes the average over S(t + 1) with probabilities q and 1 − q, we have

P(X(t + 1) = 1|X(t) = x) = (1 − p) · q + p · x.

C(t) is then estimated as

C(t) = pt .

C(t) decays exponentially to zero with the increase of t , and the domino effect
disappears. We introduce correlation length ξ to characterize the length scale of the
correlation function as C(t) ∝ e−t/ξ . As C(t) = pt = et log p, we have

ξ = −1/ log(p).

If p < 1, ξ is finite and C(t) decays exponentially with t . If p = 1, ξ diverges and
c = limt C(t) = 1. The model has two limits, c = 0 and c = 1, and the critical
value of p is pc = 1.

3.4 Majority Rule Model

Individuals choose the majority choice of the previous r individuals with probability
p or refers to his private signal with probability 1 − p. For simplicity, we assume
r is an odd number greater than three, r ∈ {3, 5, 7 · · · }. The probabilistic rule for
X(t + 1), t ≥ r is written as
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Fig. 3 Real-space renormalization by coarse graining from X(r(t − 1) + 1), · · · , X(rt) to Xr(t)

P

(

X(t + 1) = 1|
t∑

s=t−r+1

X(s) = x

)

= (1 − p) · q + p · θ(x − r/2).

When r is finite, the correlation length ξ is finite, and the domino effect does vanish
for p < 1. We can map the model to CRW by applying real-space renormalization
transformation. Here, real-space renormalization transformation is a kind of coarse-
graining process, and we group r variables X(r(t − 1) + 1), · · · , X(rt) into Xr(t)

by the majority rule as depicted in Fig. 3.

Xr(t) = θ(X(r(t − 1) + 1) + · · · + X(rt) − r/2).

rT variables X(1), · · · , X(rT ) are then transformed into T variables Xr(1), · · · ,

Xr(T ). We modify the above probabilistic rule to the next one for X(rt + s), s =
1, · · · , r as

P(X(rt + s) = 1|Xr(t) = x) = (1 − p) · q + p · x.

X(rt + s), s = 1, · · · , r , which are transformed into Xr(t + 1), depends not on the
nearest r individuals but the r individuals X(r(t − 1) + s′), s′ = 1, · · · , r , which
are transformed into Xr(t). Xr(t + 1) is composed of X(rt + 1), · · · , X(r(t + 1)),
and they take 1 with probability (1 − p)q + px. The probability that Xr(t) takes 1
becomes

P(Xr(t + 1) = 1|Xr(t) = x) = (1 − pr) · qr + pr · x.

The parameters qr and pr are

qr = πr((1 − p)q)

πr((1 − p)q) + πr((1 − p)(1 − q))
,

pr = 1 − (πr((1 − p)q) + πr((1 − p)(1 − q))).

Here, πr(x) is defined as πr(x) = ∑r
n=(r+1)/2 rCn · xn(1 − x)r−n, and rCn is the

binomial coefficient. πr(x) gives the majority probability P(n > r/2) if n obeys
binomial distribution B(r, x). In the limit r → ∞, πr(x) behaves as θ(x − 1/2).
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Fig. 4 (Left) Plot of transformation (q, p) → (qr , pr ) under the renormalization transformation
{X(r(t − 1) + 1), · · · , X(rt)} → Xr(t). Arrows indicate the direction of movement from (q, p)

to (qr , pr ). There are three stable fixed points at (1, 1), (1, 0), (1/2, 1) (filled circles) and two
unstable fixed points at (1/2, 0), (1, 1/2) (filled triangle and diamond, respectively). (Right) r

dependence of ξ for p = 0.6 > pc = 0.5 and p = 0.4 < pc = 0.5

We study the transformation (q, p) → (qr , pr) under the renormalization
transformation. The transformation has three stable fixed points (◦), one unstable
fixed point (�), and one marginally stable fixed point (�), which are summarized in
the left figure of Fig. 4. When q > 1/2, (q, p) on the line p = 1−1/2q moves along
it under the transformation because (qr , pr) also satisfies pr = 1 − 1/2qr . We call
this line the critical line and denote pc(q) = 1−1/2q. In the limit r → ∞, we have
limr→∞(qr , pr) = (1, 1/2). If p < pc(q), we have limr→∞(qr , pr) = (1, 0). If
p > pc(q), we have limr→∞(qr , pr) = (1, 1). The marginal fixed point at (1, 1/2)

has one stable and one unstable direction. If q = 1/2, limr→∞(qr , pr) = (1/2, 1)

for p > 0. (1/2, 0) is an unstable fixed point.
There are two important points. The first one is that if r is finite, pr < 1 for

p < 1. The correlation length for Xr(t) is 1/ log(pr). As X(r(t−1)+1), · · · , X(rt)

are grouped into Xr(t); the correlation length for the original X(t) is

ξ = −r/ log pr

ξ is finite for p < 1 and r < ∞. C(t) decays exponentially with t and c = 0.
The domino effect C(t) disappears for large t . The second point is the difference
in the dependence of ξ on r for p < pc(q) and p > pc(q). When p < pc(q),
pr goes to 0 in the limit r → ∞. When p > pc(q), pr goes to 1 in the limit
r → ∞. As ξ ∝ − log pr , ξ diverges in the limit. If ξ diverges, C(t) does not decay
exponentially and it might occur that c > 0. The right figure in Fig. 4 shows the
dependence of ξ on r . We set q = 1 and pc(q) = 1/2. When p = 0.4 < pc(q),
ξ is finite in the limit r → ∞. C(t) decays exponentially with t even for the limit
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r → ∞. When p = 0.6 > pc(q), ξ diverges exponentially with r . This indicates
that C(t) does not decay exponentially. In the next section, we calculate C(t) in the
limit r → ∞ and study its asymptotic behavior for p > pc(q), p < pc(q) and
p = pc(q).

4 Nonlinear Polya Urn: Majority Rule Case

We consider the r → ∞ limit of the majority rule model in the previous section
(Hisakado and Mori 2011; Mori and Hisakado 2015a). More precisely, individual
t + 1 refers to all his previous t individuals.

P(X(t + 1) = 1|N1(t) = n) = (1 − p) · q + p · θ(n − t/2).

We write the ratio of correct choice as z(t) ≡ N1(t)/t . The probabilistic rule for
X(t + 1) is rewritten as

P(X(t + 1) = 1|z(t) = z) = f (z) = (1 − p) · q + p · θ(z − 1/2).

We can interpret the individuals as the mixture of independent voters who decide
based on their private information and majority voters who choose the majority
choice with ratios 1−p and p. f (z) describes the probability P(X(t+1) = 1|z(t) =
z) as function of z.

Depending on the value of p, the number of the solution for f (z) = z or fixed
point of the map f : z → z changes. Figure 5 shows the plots of f (z) for q = 0.8
with p = 0.1 (left) and p = 0.6 (right). pc = 1 − 1/2q = 3/8. When z > 1/2,
f (z) = (1 − p)q + p = q + p(1 − q) ≡ z+. When z < 1/2, f (z) = (1 − p)q =
q −pq ≡ z−. As z+ is always greater than q, f (z) crosses the diagonal at (z+, z+).
If p < pc and z < 1/2, z− > (1 − pc)q = 1/2, and f (z) does not cross the

Fig. 5 Plots of f (z) vs. z for q = 0.8 and pc = 3/8. The left figure shows the plot for p = 0.1 <

pc. The right figure shows the plot for p = 0.6 > pc
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diagonal. On the other hand, if p > pc, z− < 1/2 and f (z) crosses the diagonal
at (z−, z−). If p = pc, f (z) touches the diagonal at z = 1/2 ≡ zt and crosses the
diagonal at (z+, z+). It is known that the z+ and z− are stable fixed points and the
probability for the convergence of z(t) to these points are positive (Hill et al. 1980).
On the other hand, for p = pc, the fixed point at zt is called touch point, and it is
unstable (Pemantle 1991, 2007).

From the results, we can anticipate the asymptotic behavior of C(t) (Mori and
Hisakado 2015a). For p < pc(q), there is only one stable state at z+, and z(t)

always converges to z+ irrespective of the value of X(1). The initial condition
X(1) = x does not affect the probability P(X(t + 1)|X(1) = x) in the limit t → ∞
and c = 0. The domino effect disappears after many individual choices. On the
other hand, if p > pc(q), as there are two stable states at z±, the probability to the
convergence to z± depends on the initial value X(1) = x. If z(t) converges to z±,
P(X(t + 1) = 1|z(t) → z±) = f (z±). As f (z+) = z+ > f (z−) = z−, c should
remain positive in the limit t → ∞.

As f (z) changes discontinuously at z = 1/2, it is necessary to estimate the
probability that z(t) enters into z < 1/2 and z > 1/2 and z = 1/2 under the initial
condition X(1) = x for the estimation of C(t). We call these domains as regions
I, II, and III. If z(t) stays in region J = {I, II, III }, the probability that X(t + 1)

takes 0 is 1 − z− = A, 1 − z+ = C, 1 − ((1 − p)q + p/2) = B, respectively. We
write them as qJ , J ∈ {I, II, III }. We denote the probabilities that z(t) stays in
region J ∈ {I, II, III } with initial condition X(1) = x as PJ (t |X(1) = x). C(t)

is written as

C(t) =
∑

J

qJ (PJ (t |X(1) = 1) − PJ (t |X(1) = 0))

We introduce a tilted two-dimensional square lattice (m, n),m, n ∈ {0, 1, · · · } with
the origin at the top of it. We describe the stochastic process as a directed path on
the lattice (Fig. 6). We map X(t), t ∈ {1, 2, · · · } to a path on the lattice as (m, n) =
(C1, C0) with C1 = ∑t

s=1 X(s) and C0 = t − C1. The path starts from the top
[(0, 0)], and if X(t) = 1(0), it moves to the lower right (left). The “directed” means
that the path always goes downward.

Fig. 6 Directed path
representation of {X(t)} as
(C1, C0) = (m, n)
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If q = 1 and z+ = 1, when z(t) enters into region II, it cannot return to region
III. The wall n = m − 1 in II becomes an absorbing wall for the path. If the initial
condition is X(1) = 1, it is in region II and PII (t |X(1) = 1) = 1 holds. The
remaining quantities are PJ (t |X(1) = 0). We denote the number of paths from
(0, 0) to (s, s) in I and III that enter III k times as Ak

s = k(2s − k − 1)!/s!(s − k)!.
The probability that a path starts from (0, 1) and reaches (s, s) is then given as

Pr(z(t = 2s) = 1/2|X(1) = 0) =
s∑

k=1

Ak
s · ps−1(1 − p)s/2k−1.

For large t , the k = 1 term is dominant, we have

PIII(t = 2s|X(1) = 0) � 2

p
· e

8
√

π
s−3/2(4p(1 − p))s for t >> 1. (3)

The probability that a path enters II from (s, s) to (s + 1, s) is (1 − p/2), and we
have the following expression.

PII(t = 2s + 1|X(1) = 0) =
s∑

u=1

PIII(2u|X(1) = 0) · (1 − p/2).

PI (t |X(1) = 0) � 1 − PII (t |X(1) = 0) holds as PIII (t |X(1) = 0) is negligibly
small for large t . Pr(X(t + 1) = 0) = p for z(t) < 1/2 and we have

C(t) = p · PI(t |X(1) = 0) = p · (1 − PII(t |X(1) = 0)) for t >> 1.

The limit value c is then estimated as

c =
{

0 p ≤ 1/2,
4p−2
(1+p)

p ≥ 1/2.

For p < pc(1) = 1/2, C(t) decays exponentially for large t and c = 0. For p > pc,
c > 0 and the domino effect remains forever. c plays the role of the order parameter
of the continuous phase transition. We estimate the critical exponents β for the order
parameter c by expanding c around p = pc(1) = 1/2. Then we have β = 1 for
c ∝ |p − 1/2|β .

In order to understand the nature of the phase transition, we rewrite the
expression for C(t) using c as

C(t = 2s) = c + p ·
∞∑

u=s+1

PIII(2u|X(1) = 0) · (1 − p/2).
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Putting the asymptotic form of Eq. (3) for PIII (2u|X(1) = 0) in the expression, we
obtain

C(t) ∼ c + p ·
∫ ∞

t

ds
e

8
√

π
s−3/2e−s/ξ(p) · (1 − p/2).

Here, we define ξ = −/ log
√

4p(1 − p). At p = pc(1) = 1/2, ξ = ∞ and C(t)

behaves as

C(t) ∼
∫ ∞

t

s−3/2ds ∝ t−1/2.

C(t) behaves as t−α with α = 1/2. The domino effect vanishes; however,
the disappearance is extremely slow. About ν|| of the critical exponent for the
divergence of ξ ∝ |p − pc|νII as p → pc, we expand ξ around pc = 1/2 and
obtain ν|| = 2.

The above directed path picture suggests the relation between the information
cascade phase transition and a phase transition to absorbing states. The phase
transition to absorbing state is a non-equilibrium phase transition. As its typical
example, directed percolation is well known. For q = 1, the wall n = m − 1 in
II becomes an absorbing wall, and a directed path does not return to I if it touches
the wall. Region II becomes an absorbing state for the path. C(t) is the survival
probability of the path in I, which is the order parameter of the phase transition into
absorbing states. We can assume the following scaling form for C(t) in the critical
region for q > 1/2.

C(t) ∝ t−α · g(t/ξ), and α = 1/2.

Here, we assume that C(t) is scaled by ξ with a universal scaling function g. In the
limit t → ∞ for p � pc(q), limt→∞ C(t) = c > 0. Because g(x) should behave
as g(x) ∼ xα to cancel t−α , we have

c ∝ ξ−α ∝ |p − pc(q)|αν|| .

We have the scaling relation β = ν|| · α, which has been shown to hold for q = 1 as
1 = 2 · 1/2. The scaling relation suggests that only two exponents, β and ν||, might
be sufficient to characterize the universality class of the information cascade phase
transition.

The result in the previous section suggests that the phase transition for general
q > 1/2 is governed by the fixed point (1, 1/2) of the renormalization transfor-
mation (q, p) → (qr , pr). In particular, at p = pc(q), qI = 1/2 and it is a
simple symmetric random walk. In II and III, qJ > 1/2, J ∈ {II, III }, and
it is not symmetric. The nonrecurrence probability that a simple random walk
does not return to the diagonal up to t behaves as t−1/2. C(t) is proportional to
the probability that the random walker remains in I because it is difficult for the
random walker to return from II to I even for q < 1. Thus, C(t) ∝ PI (t |X(1) =
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0) ∼ t−1/2 holds generally at the critical point. Furthermore, because the paths
of the random walker in I are concentrated around z ∼ 1/2, the same asymptotic
behaviors Pr(X(t ′) = 0|X(t) = 0) ∼ |t ′ − t |−1/2 should hold for t, t ′ > 0. This
suggests that the translational invariance is recovered at p = pc and C(t, t ′) ≡
Cov(X(t),X(t ′))/V(X(t)) ∝ |t − t ′|−1/2.

We can obtain the scaling form for C(t) as

C(t) = bt−1/2g(t/ξ).

b and ξ are estimated as

b =
√

8

π

(
2q − 1

4q − 1

)

ξ−1 = − ln
√

4(p + (1 − p)(1 − q))((1 − p)q)

g(x) is given as

g(x) =
{√

4πx + x1/2

2

∫ ∞
x

u−3/2e−udu p > pc(q∗),
x1/2

2

∫ ∞
x

u−3/2e−udu p < pc(q∗).
(4)

We can estimate C(t) for t ≤ 105 and q∗ = 0.6 by numerically integrating
the master equation for the system. Figure 7 shows the results. The empty symbols
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Fig. 7 Plot of C(t)/bt−1/2 vs. t/ξ with empty symbols indicating p > pc(q) = 1/6 and filled
symbols indicating p < pc(q). We adopt q = 0.6 and 104 ≤ t ≤ 105. The lines show the results
of Eq. (4)



Domino Effect in Information Cascade 155

indicate the results for p > pc(q). We have adopted the value of p in the vicinity of
pc(q) = 1/6 and t ∈ [104, 4 × 105]. As can be clearly seen, the data obtained for
different p and t values lies on the curve of Eq. (4). The filled symbols indicate the
results for p < pc(q). The curve of Eq. (4) describes the data.

4.1 Analog Herder Model

Individual t + 1 refers to all his previous t individuals, and the probabilistic rule for
X(t + 1) is written as

P(X(t + 1) = 1|z(t) = z) = f (z) = (1 − p) · q + p · z.

We can interpret the individuals as the mixture of independent voters who decide
based on their private information and herding voters who choose the majority
choice with the probability of the ratio of the individuals of the option (Hisakado
and Mori 2010). In the case p = 1, f (z) is the limit t → ∞ of P(X(t + 1) = 1) of
the Pólya urn. We call such proportional herding voter as analog herder.

The model has only one equilibrium at q, which is the probability that the
independent voter chooses the correct option (Fig. 8). C(t) satisfies the recursive
relation.

C(t) = t − 1 + p

t
C(t − 1).

Fig. 8 Plots of f (z) vs. z for
q = 0.8 and p = 1/2
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We solve it and obtain

C(t) =
t∏

s=1

s − 1 + p

s
∝ tp−1.

The limit value c is zero and the domino effect disappears with power-law decay.

5 Nonlinear Polya Urn: Logistic-Type Case

We study a model where the majority rule θ(z − 1/2) is replaced with sigmoidal
continuous function. Individual t + 1 refers to all previous t individuals, and the
probabilistic rule for X(t + 1) is rewritten as

P(X(t + 1) = 1|N(t)/t = z) = f (z) = 1

2
(tanh[J (2z − 1) + h] + 1) .

The choice of f (z) is arbitrary, and we adopt the above form, which is familiar in
the field of physics (Stanley 1971; Mori and Hisakado 2015b). The fixed point of
f (z) is a solution to f (z) = z. Using the mapping m = 2z − 1, we obtain the
self-consistent equation m = tanh(J · m + h) for the magnetization m in the mean-
field Ising model. Here, we consider only the case for which J ≥ 0. Because of the
symmetry under (X, h) ↔ (1 − X,−h), we also assume that h ≥ 0.

5.1 Fixed Point and Touch Point

The number of fixed points for f (z) depends on (J, h). There is a threshold value
J = Jc(h) as a function of h (Fig. 9). For J < Jc(h), there is only one fixed point

Fig. 9 Plot of Jc(h) in (J, h)
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Fig. 10 Plot of f (z) vs. z for J < Jc(h) (left) and J > Jc(h) (right). We adopt J = 0.7, h = 0.1
and J = 2.0, h = 0.1. The intersection between y = f (z) and y = z is the fixed point of
f (z). J < Jc(h), with one fixed point at z = z+ (left). J > Jc(h), with three fixed points at
z ∈ {z−, zu, z+} (right)

Fig. 11 Plot of f (z) vs. z. J = 1.0, h = 0.0 and J = 2.0, h = 0.0 in the left figure. There is one
fixed point at zt = 1/2 for J = Jc(0). J = 1.25, h = 0.1 and J = 2.0, h = 0.1 in the right figure.
There is one fixed point at z+ for J = Jc(h) and one touch point at z = zt

at z = z+ (left figure in Fig. 10). By increasing J , f (z) becomes tangential to the
diagonal z at zt for J = Jc(h). For h > 0, zt 	= z+, and both zt and z+ are stable
(right figure in Fig. 11). For h = 0, zt = z+, and it is also stable (left figure in
Fig. 11). In both cases, the slope of the curve at zt is equal to one. For J > Jc(h),
there are three fixed points, and we denote them as z− < zu < z+; z± is stable,
and zu is unstable (right figure in Fig. 10). We denote the slope of f (z) at z±, zt as
l± ≡ f ′(z±), lt = f ′(zt ) = 1. As z± is stable and downcrossing, l± < 1.

We note a crucial difference between h = 0 and h > 0. For h = 0, the touchpoint
at zt = 1/2 for J = Jc(0) = 1 coincides with the stable fixed point at z+ = 1/2
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for J < Jc(0). It splits into the two stable fixed points at z = z± for J > Jc(0)

(right figure in Fig. 11). z± continuously moves away from zt = z+ and z+ − z− ∝
(J − Jc)

1/2 for |J − Jc| << 1 as in the case of the mean-field Ising model. On
the other hand, for h > 0, the touchpoint zt appears at a different position from z+
for J = Jc(h) (left figure in Fig. 11). As J increases from Jc(h), zt splits into z−
and zu. The change from J < Jc(h) to J > Jc(h) is discontinuous. This difference
suggests that the phase transition is continuous for h = 0 and discontinuous for
h > 0.

5.2 C(t) for J �= Jc(h)

The asymptotic behavior of C(t) depends on (J, h). If J < Jc(h), there is one
stable fixed point at z+, and z(t) converges to z+ through the power-law relation
E(z(t) − z+) ∝ t l+−1. Here, the expectation value E(A) of a certain quantity A

is defined as the ensemble average over the paths of the stochastic process. If J >

Jc(h), there is another stable fixed point at z−. Both z± are stable, and z(t) converges
to one of the fixed points. The convergence of z(t) to z± also exhibits a power-law
behavior E(z(t) − z±) ∝ t l±−1. Here, the ensemble average is the average over the
samples that converges to z±. We assume that the probability that z(t) converges to
one of the z± depends on X(1), and we denote this as

p±(x) ≡ Pr(z(t) → z±|X(1) = x).

For J < Jc(h), z(t) always converges to z+ irrespective of the value of X(1) = x,
and p+(x) = 1 holds. In this case, we set p−(x) = 0. Regarding the asymptotic
behavior of the convergence of z(t) → z±, which also depends on X(1), we assume

E(z(t) − z±|X(1) = x) � W±(x)t l±−1

We write the dependence of the coefficients W±(x) on the value of X(1) explicitly.
Using these behaviors and notations, we estimate the asymptotic behavior of C(t)

as

C(t) = Pr(X(t + 1) = 1|X(1) = 1) − Pr(X(t + 1) = 1|X(1) = 0)

= E(f (z(t))|X(1) = 1) − E(f (z(t))|X(1) = 0)

=
1∑

x=0

(−1)x−1 {E(f (z(t))|x)Pr(z(t) → z+|x)

+ E(f (z(t))|x)Pr(z(t) → z−|x)}
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�
1∑

x=0

(−1)x−1 {(q++l+E(z − z+|x))p+(x)+(q−+l−E(z − z−|x))p−(x)}

=
1∑

x=0

(−1)x−1
{
(q+ + l+W+(x)t l+−1)p+(x)

+(q− + l−W−(x)t l−−1)p−(x)
}

=
1∑

x=0

[
q+p+(x) + q−p−(x) + (l+W+(x)p+(x)t l+−1

+l−W−(x)p−(x)t l−−1)
]
(−1)x−1.

(5)

Here, we expand f (z) as

f (z) = f (z± + l± · (z − z±)) � q± + l± · (z − z±).

Given that p+(x) + p−(x) = 1 for x = 0, 1, the limit value c ≡ limt→∞ C(t) is
estimated to be

c = (q+ − q−)(p+(1) − p+(0)).

For J < Jc(h), p+(x) = 1 and c = 0. For J > Jc(h), the probability for the
convergence of z(t) to z− is positive. It is natural to assume that p+(1) > p+(0)

and c > 0 for J > Jc(h).
The asymptotic behavior of C(t) is governed by the term with the largest value

among {l+, l−} for J > Jc(h). We define lmax as

lmax ≡
{

l+ , J < Jc(h),

Max{l+, l−} , J > Jc(h).

We summarize the asymptotic behavior of C(t) as

C(t) � c + c′ · t l−1 and l = lmax.

Here, we write the coefficient of the term proportional to t l−1 as c′. If J > Jc(h),
the constant term c is the leading term. If J < Jc(h), the power-law term c′ · t l−1 is
the leading term.
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5.3 J = Jc(h)

On the boundary J = Jc(h), there are two stable points z+ and zt for h > 0. As zt

is stable, the probability for the convergence of z(t) to zt is positive. It is natural to
assume that p+(1) > p+(0) and c > 0. If h = 0, there is only one stable point at
z+ = zt = 1/2 and c = 0. As lmax = lt = 1, we anticipate that |C(t) − c| becomes
a decreasing function of ln t . One possibility is a power-law behavior of ln t such as

C(t) � c + c′ · (ln t)−α.

We derive α by a simple heuristic argument. At first, we consider the case of h =
0. There is only one stable touchpoint at zt , and z(t) converges to it. Equation (5)
suggests that the asymptotic behavior of C(t) is governed by E(z− zt |x) as zt is the
only stable state. As f (zt ) = zt and f ′(zt ) = 1 at zt , f (z) can be approximated in
the vicinity of zt as

f (z) = −δ(z − zt )
3 + z.

Here δ is a positive constant, as zt is stable (left figure in Fig. 11). The time evolution
of E(z − zt |x) is given as

E(z(t+1)−zt |x)−E(z(t)−zt |x) = 1

t + 1
E(f (z(t))−z(t)|x) � −δ

t
E((z−zt )

3|x).

Here the denominator t + 1 in the middle of the equation comes from the fact that
there occurs a 1

t+1 change in E(z(t)|x) for X(t + 1) ∈ {0, 1}. We also assume
E((z(t) − zt )

3|x) � E(z(t) − zt |x)3, and the equation can be written as

d

dt
E(z(t) − zt |x) = −δ

t
E(z(t) − zt |x)3.

The solution to this shows the next asymptotic behavior

E(z − zt |x) ∝ (ln t)−1/2,

and we obtain α = 1/2.
Likewise, for h > 0, there are two stable states q+ and qt . The subleading term

in C(t) is governed by E(z − zt |x). We can approximate q(z) in the vicinity of zt to
be

f (z) = δ(z − zt )
2 + z.

Here δ is a positive constant (right figure in Fig. 11). If z(t) > zt , z(t) moves toward
the right-hand direction, on average, and converges to z+. We only need to consider
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the case z(t) < zt and z(t) converges to zt . In the case, E(z(t) − zt |x) obeys the
next differential equation.

d

dt
E(z(t) − zt |x) = δ

t
E(z(t) − zt |x)2.

The solution shows the next asymptotic behavior

E(z(t) − zt |x) ∝ (ln t)−1,

and we obtain α = 1.
The system shows a continuous phase transition for h = 0. As we have seen,

the analysis does not depend on the precise form of f (z). As far as f (z) has
Z2-symmetry, f (1 − z) = 1 − f (z), and y = f (z) are tangential to y = z at
zt = 1/2, a similar continuous phase transition occurs (Mori and Hisakado 2015b).
In order to discuss the universality class of the phase transition, we compare the
scaling properties of C(t) for two models. One model is the logistic model. For
h = 0, Jc(0) = 1. Another model adopts the next fr(z) with three parameters
r, p ∈ [0, 1], q ∈ [1/2, 1].

fr(z) = (1 − p) · q + p · πr(z)

πr(z) =
r∑

s=(r+1)/2

rCs · zs(1 − z)r−s

r is odd number greater than or equal to three, r ∈ {3, 5, 7 · · · }. In the limit r → ∞,
qr(z) reduces to that of the majority model, (1 −p) · q +p · θ(z− 1/2). This model
corresponds to the mean-field approximation of the majority rule model, where the
individual chooses the majority of r randomly chosen previous variables with a
probability of p. For q = 1/2, fr(z) has Z2-symmetry, and the threshold value
pc(r) is determined by the condition 1 = f ′

r (zt = 1/2) = pc(r) · π ′
r (1/2). pc is

explicitly given as

pc(r) = [(r − 1)/2!]22r−1

r! .

pc(r) is a decreasing function of r and limr→∞ pc(r) = 0, which is compatible
with pc = 1 − 1/2q∗ = 0 of the digital model with q∗ = 1/2.

At J = Jc(0), C(t) obeys a power law of ln t as C(t) � c′ ln t−α′
with α′ = 1/2

for the former model. Below Jc(0) = 1, C(t) ∝ t l−1 with l = l+ = J . We set
ΔJ = Jc − J = 1 − J . The expression for the exponent of C(t) ∝ t l−1 is given by

1 − l = ΔJ , J < Jc(0) = 1.
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For J > 1, C(t) − c ∝ t l−1 with l = l+ = l− = f ′(z+). As in the case of the
estimation of the critical exponents for the mean-field Ising model (Stanley 1971),
we solve z+ = f (z+) with the assumption ΔJ ≡ J − 1 << 1. We obtain z+ − 1 =√

3ΔJ and estimate l as

1 − l = 1

2
ΔJ , J > Jc(0) = 1.

As J approaches Jc(0) from below and above of Jc, 1 − l approaches 0. At J = Jc,
C(t) obeys a power law of ln t . As t−(1−l) = e−(1−l) ln t , we can regard 1/(1 − l) as
the correlation length in the scale of ln t . We assume the phenomenological scaling
ansatz for C(t) to be

C(t) = ln t−αg((1 − l) ln t). (6)

In the ansatz, ln t dependence of C(t) is scaled with 1/(1 − l). g(x) is the universal
function and is finite at x = 0. For J = Jc and l = 1, C(t) = g(0) ln t−α with
g(0) = c′. In the limit x → ∞, in order to compensate the ln t−α term, g(x)

should behave as g(x) ∝ xα for J > Jc(0). Then C(t) behaves as limt→∞ C(t) ∝
(1 − l)α = ΔJα . The critical exponent β for c ∝ ΔJβ coincides with α. The
exponent ν|| is defined for the divergence of 1/(1 − l) as

1/(1 − l) ∝ ΔJ−ν|| .

As (1 − l) ∝ ΔJ , we obtain ν|| = 1. The scaling relation β = α · ν|| holds.
For the latter model with fr(z), l = p · f ′

r (zt = 1/2) for p < pc(r). As 1 =
pc · f ′

r (1/2) holds, the correlation length 1/(1 − l) is estimated to be

1/(1 − l) = 1

π ′
r (1/2)(pc(r) − p)

and diverges as 1/(1 − l) ∝ Δp−ν|| with ν|| = 1. Here, we define Δp ≡ pc(r) − p.
For p > pc, we assume Δp = p − pc(r) << 1 and estimate z+ by solving
z+ = qr(z+) up to O(Δz3) = O((z+ − 1/2)3). One may then show that 1 − l =
f ′

r (z+) ∝ Δp, and we obtain ν|| = 1. If we assume the scaling form for C(t) to be
C(t) � ln t−α · g(ln t · (1 − l)) and define β as c ∝ Δpβ , we obtain β = α · ν||.

If the two models share the same value for α and β, this suggests that they are in
the same universality class.

5.4 Numerical Calculation of g(x)

We estimate the universal function g(x) assumed in Eq. (6) numerically. For the
former logistic model with h = 0, we estimate that α′ = 1/2. Jc(0) = 1 and we
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Fig. 12 Plot of ln t1/2 · C(t) vs. (l − 1) ln t

estimate C(t) for t ≤ 4 × 105 and 2/3 < J < 3/2. For the latter model with r = 3
and q = 1/2, pc(3) = 2/3. We estimate C(t) for t ≤ 4 × 105 and 4/9 < p < 1.
Using data for C(t) between 104 ≤ t ≤ 4 × 105, we determine g(x) to be

g(x) = ln t1/2 · C(t) , x = (1 − l) ln t.

g(x) should be smooth near x = 0 and g(0) = c′. For a sufficiently large J , c � 1
and l = 0. g(x) should behave as x1/2 for sufficiently large x values. For J < 1,
g(x) should decrease exponentially.

Figure 12 shows the results of this analysis. The thick continuous and thick
dashed lines indicate the results for J > Jc(0) and p > pc(3), respectively. As
can be clearly seen in this figure, the data obtained for different J and t values and
for different p and t values lie on two curves, which represent g(x) in the phase
with c > 0 for both models. For large x, g(x) � x1/2. The thin continuous and thin
dashed lines indicate the results for J < Jc(0) and p < pc(3), respectively. The data
lie on two curves, which represent g(x) in the phase with c = 0 for both models.
g(x) can be seen to decay exponentially. The results indicate that the scaling ansatz
in Eq. (6) holds with α = 1/2.

6 Summary

We explain the domino effect in information cascade by studying several simple
information cascade models. It was argued that the information cascade is fragile
as the depth of cumulative private information is shallow and the later individual
might choose the minority choice by trusting his private information. In order to test
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the conjecture, we propose to measure the domino effect in information cascade by
estimating the correlation function C(t) between the first individual’s choice and
the later individual’s choice.

If the individual recognizes that the depth of the majority choice is shallow and
might choose the minority choice based on his private information, the sequential
choice process is modeled as correlated random walk (CRW) or CRW with finite
memory length r , where the individual refers to previous r individual’s choice.
In the case, C(t) decays exponentially, and the majority choice should become
minority choice after many individuals’ choices. If q > 1/2 and the information of
the individual voter contain some information, the majority choice converges to the
correct choice. Even so, the correlation length r might exponentially diverge with
r if the ratio p of the individuals who choose the majority choice in the r choices
is larger than some critical values pc. If the precision of the private information is
q > 1/2, pc is given as pc(q) = 1 − 1/2q.

If the network externality to enforce the majority choice increases with the
number of votes, which occurs when individuals do not recognize the shallowness
of the depth of the majority choice, the sequential choice process is described by
nonlinear Pólya urn. In the case, the probabilistic rule of the sequential choice is
described by a function f (z), and the equilibrium of the system is given as the stable
fixed point of f . If there is one equilibrium, C(t) decays with t and the domino effect
disappears. Even if the system is in the down cascade, it can be reverted to the up
cascade. If there are two equilibria, the limit value c = limt→∞ C(t) is positive,
and the first individual’s choice propagates to the infinitely later individuals. The
change in the number of equilibrium is a non-equilibrium phase transition. If f is
Z2-symmetric, the phase transition is continuous. The asymptotic behavior C(t) is
described by the scaling form as

C(t) ∝ (ln t)−αg(ln t/ξ).

g(x) is the universal function and the scaling relation β = ν|| · α, holds. If f is not
Z2-symmetric, c changes discontinuously from c = 0 in the one-equilibrium phase
to c > 0 in two-equilibrium phase.

In later chapters, we estimate f (z) using experimental data of information
cascade and the time series data of horse race betting market.
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Information Cascade Experiment:
General Knowledge Quiz

Shintaro Mori and Masato Hisakado

1 Information Cascade as Social Contagion Process

Because of the progress in information communication technology, we often rely
on social information in decision-making, and the social contagion process has long
been extensively studied. The Pólya urn is a simple stochastic process in which
contagion is taken into account by a reinforcement mechanism (Pólya 1931). There
are initially R0 red balls and B0 blue balls in an urn. At each step, one draws a
ball randomly from the urn and duplicates it. Then, one returns the balls, and the
probability of selecting a ball of the same color is strengthened. As the process is
repeated infinitely, the ratio z of red balls in the urn becomes random and obeys
the beta distribution Beta(R0, B0). In the process, information of the first draw
propagates and affects the later draws. The correlation between the color of the
first ball and that of a ball chosen later is 1/(R0 + B0 + 1).

As the Pólya urn process is very simple, and there are many reinforcement
phenomena in nature and the social environment, many variants of the process
have been proposed under the name of nonlinear Pólya urn (Pemantle 2007). In the
process, the choice of the ball is described by a nonlinear function f (z) of the ratio
of red balls z (Hill et al. 1980). In contrast to the original Pólya urn, where f (z) = z,
the ratio of red balls converges to a stable fixed point z∗ = f (z∗). Mathematically,
the fixed points z∗ are categorized as upcrossings and downcrossings, at which the
graph y = f (z) crosses the graph y = z going upward and downward, respectively.
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The downcrossing (upcrossing) fixed point is stable (unstable), and the probability
that z converges to it is positive (zero).

If the number of stable fixed points changes as one changes the parameters of
the function f (z), the nonlinear Pólya urn shows continuous or discontinuous phase
transitions (Mori and Hisakado 2015a,b). The order parameter is the limit value of
the correlation between the first drawn ball and later drawn balls. If f (z) is Z2-
symmetric and satisfies f (z) = 1 − f (1 − z), the transition becomes continuous,
and the order parameter satisfies a scaling relation in the nonequilibrium phase
transition. One good candidate for experimental realization of the phase transition is
the information cascade experiment (Bikhchandani et al. 1992; Devenow and Welch
1996; Anderson and Holt 1997). There, participants answer two-choice questions
sequentially. In the canonical setting of the experiment, two urns, A and B, which
are composed of different numbers of red and blue balls, are prepared. One of the
two urns is chosen at random to be X, and the question is whether X is A or B. The
participants can draw a ball from X and see which type of ball it is. This knowledge,
which is called the private signal, provides some information about X. However,
the private signal does not indicate the truth unequivocally, and participants have
to decide under uncertainty. Participants are also provided with social information
regarding how many prior participants have chosen each urn. The social information
introduces network externality to the decision-making: as more participants choose
A (B), later participants are more likely to identify X as A (B). The social interaction
in which a participant tends to choose the majority choice even if it contradicts the
private signal is called an information cascade or rational herding (Bikhchandani
et al. 1992). In a simple model of information cascade, BHW’s cascade model, if
the difference in the numbers of subjects who have chosen A and B exceeds two,
the social information overwhelms subjects’ private signals. In the limit of many
previous subjects, the decision is described by a threshold rule stating that a subject
chooses an option if its ratio exceeds 1/2, f (z) = θ(z − 1/2) (Hisakado and Mori
2011). The function f (z) that describes decisions under social information is called
response function.

To detect the phase transition caused by the change in f (z), we have proposed
another information cascade experiment in which subjects answer two-choice
general knowledge questions (Mori et al. 2012, 2013). If almost all of the subjects
know the answer to a question, the probability of the correct choice is high, and f (z)

does not depend greatly on the social information. In this case, f (z) has only one
stable fixed point. However, when almost all the subjects do not know the answer,
they show a strong tendency to choose the majority answer. Then f (z) becomes S-
shaped, and it could have multiple stable fixed points. In this chapter, we review the
result of the information cascade experiment using the general knowledge quiz. We
have performed four experiments up to now. We use all data to estimate the response
function f (z). Using f (z), we explain the micro-macro features of the experiment.
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2 Experimental Setup

The experiments reported here were conducted at the Information Science Labora-
tory at Kitasato University and at the Group Experiment Laboratory of the Center
for Experimental Research in Social Sciences at Hokkaido University. The subjects
included students from the two universities. We call the experiments as EXP1,
EXP2, EXP3, and EXP4. EXP1 and EXP4 were performed at Kitasato University
in 2010 and 2013. We performed EXP2 and EXP3 at Hokkaido University in 2011
and 2012.

In the experiments the subjects answer general knowledge two-choice questions
one by one sequentially without referring to the previous subjects’ choices in the
first place. Afterward, they answer the same question by referring to the previous
subjects’ choices. We provide the number of subjects who have chosen each options.
There are two ways to provide the information. One way is to provide it by gradually
increasing the number of the previous subjects. We denote the number as r , and r

increases in a set R, and at last the summary statistics of all previous subjects’
choices is provided to the current subject. If the subject is t + 1-th respondent, r

increases in R until r < t holds, and then the subject answers by referring to all
r = t previous subject choices. We adopted the procedure in EXP1 and EXP2.
Another way is to provide the summary statistic of all r = t previous subjects’
choices. We adopted the procedure in EXP3 and EXP4. If we denote the answer
without reference as r = 0 and the answer with reference to all previous subjects’
choices as r = t , R should be R = {0, t} in the latter case.

In EXP1, 62 subjects have participated and were divided into 2 groups of 31
subjects. They have answered 100 questions, and the length T of the subjects’
sequence is 31. In EXP2 (3), 102 (120) students have participated and answered
120 question. We divide the subjects into two groups and the average length T is
50.8 (60). In EXP4, 125 students have participated and answered 120 questions.
Each student answered 80 questions and T = 83.15. We denote the number of
choice sequence and the (average) number of subject as I and T (Tavg), respectively.
In Table 1, we summarize the data of the experiment. More tailed information about
the experiments is found in Mori et al. (2012, 2013).

The subjects answered the quiz individually with and without information about
the previous subjects’ choices. This information, called social information, is given

Table 1 Experimental design. T is the length of the subjects’ sequence and Tavg is the average
value. R is the set of r . r = t means that the subject t + 1 refers to all previous subjects’ choices.
I is the number of the sequence

Exp. T , Tavg R = {r} I Subject pool

EXP1 31 {0, 1, 2, 3, 5, 7, 9, t} 200 Kitasato Univ.

EXP2 50.8 {0, 1, 5, 11, 21, t} 240 Hokkaido Univ.

EXP3 60 {0, t} 240 Hokkaido Univ.

EXP4 83.2 {0, t} 120 Kitasato Univ.
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Fig. 1 Snapshot of the screen for r = 0, 1, 11 and t in EXP2. The summary statistics {N0, N1}
are given in the second row in the box in cases r = 1, 11 and t

as the summary statistics of the previous r subjects as {N0, N1}. N0 +N1 = r holds.
We denote the t + 1-th subject’s answer to question i for case r by X(i, r, t + 1),
which takes the value 1 (0) if the choice is true (false). {N0(i, r, t), N1(i, r, t)} are
the numbers of subjects who choose each choice among the prior r subjects as
N1(i, r, t) = ∑t

t ′=t−r+1 X(i, r, t ′) and N0(i, r, t) = r − N1(i, r, t).
Figure 1 shows the experience of the subjects in EXP2 more concretely. The

subjects entered the laboratory and sat in the partitioned spaces. After listening
to a brief explanation about the experiment and the reward, they logged into the
experiment web site using their IDs and started to answer the questions. A question
was chosen by the experiment server and displayed on the monitor. First, the
subjects answered the question using their own knowledge only (r = 0). Later,
the subjects received social information and answered the same question. Figure 1
shows the cases r = 1, 11 and r = t . Subjects could then use or ignore the social
information in making decisions.

2.1 Quiz Selection

We explain the choice of the questions in the quiz. In the experiment, it was
necessary to control the difficulty of the questions. If a question is too easy, all
subjects know the answer. If the question is too difficult, no subjects know the
answer. In order to study social influence by varying the ratio of people who do
not know the answer, it is necessary to choose moderately difficult questions. In
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Table 2 Five typical questions from the two-choice quiz in EXP2. q is the label of the questions
in the quiz and q ∈ {0, 1, 2 · · · , 119}
q Question Choice 0 Choice 1 Answer

0 Which insect’s wings flap more in 1 minute? Mosquito Honeybee 0

1 During which period did the Tyrannosaurus rex live? Jurassic Cretaceous 1

3 Which animal has a horn at birth? Rhinoceros Giraffe 1

7 Which is forbidden during TV programs in Korea? Commercials Kissing scenes 0

8 Which instrument is in the same group as the
marimba?

Vibraphone Xylophone 1

EXP1, we selected 100 questions for which only 1 among the 5 experimenters knew
the answer. This choice means that the ratio is estimated to be around 80% for
the subjects. After EXP1, we calculated the correct answer ratio for each question.
In general, the ratio should be greater than 0.5 for two-choice questions. A too
small value of the ratio indicates some bias in the given choices of the question.
We excluded questions with too small values of the ratio and prepared a new quiz
with 120 questions in EXP2. Table 2 shows five typical questions from EXP2. In
EXP3 and EXP4, we adopted the questions of EXP2 after slight replacement.

3 Data Analysis: Macroscopic Aspects

We denote the correct answer ratio up to respondent t for question i with reference
to r ∈ R as

Z(i, r, t) = 1

t

t∑

s=1

X(i, r, s).

If T (i) subjects answered to question i, the final value of Z(i, r, t) is denoted as

Z(i, r) = Z(i, r, T (i)).

In order to see the social influence more pictorially, we show the scatter plots
of Z(i, r) vs. Z(i, 0) in Fig. 2. The left figure shows the scatter plot of Z(i, 0) and
Z(i, r) for r ∈ {1, 5, 21, t} in EXP1 and EXP2. The right figure shows the plot of
Z(i, 0) and Z(i, r = t) of all experiments. The x-axis shows Z(i, 0) and the y-axis
shows Z(i, r) and Z(i, r = t) in the figures.

If the subjects’ answers are not affected by the social information, the data
should distribute on the diagonal line. However, as the plots clearly indicate, this
is not the case. As r increase in the left figure, the amount of social information
increases. As r increases from r = 1 to r = t , the changes |Z(i, r) − Z(i, 0)|
increase, and the samples scatter more widely in the plane. In the right figure, as
the EXP No. increases, the average length of the subjects’ sequence increases. We
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Fig. 2 (Left) Scatter plots of Z(i, r) vs. Z(i, 0) for r ∈ {1, 5, 21, t} in EXP1 and EXP2. (Right)
Scatter plots of Z(i, r = t) vs. Z(i, 0) in all experiments
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Fig. 3 (Top) Boxplot of Z(i, t). (Bottom) Plot of Zavg(x) and Zavg vs. q

do not notice clear difference between EXP1(T = 31) and EXP4(Tavg = 83.2). For
the samples with Z(i, 0) ≥ 0.8, the changes are almost positive, and Z(i, r = t)

takes a value greater than 0.9. The average performance improves by the social
information there. On the other hand, for the samples with 0.4 ≤ Z(i, 0) < 0.7, the
social information does not necessarily improve the average performance. There are
many samples with negative change Z(i, r = t) − Z(i, 0) < 0. These samples are
in the sub-optimal state which corresponds to the equilibrium q− of nonlinear Pólya
urn (See chapter “Domino Effect in Information Cascade”).

Figure 3 shows boxplots and the average values of Z(i, r = t). The data are
stratified according to Z(i, 0) and X(i, 0, 1). From left to right, the bins for Z(i, 0)

are Z(i, 0) ∈ {(45%, 55%], (55%, 65%], (65%, 75%], (75%, 85%], (85%, 100%]}.
Furthermore, the data are classified by X(i, r = t, 1) = x ∈ {0, 1}, and blue (red)
boxplots (symbols) are the boxplots (symbols) for x = 0(1).
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The left figure shows the boxplots. When Z(i, 0) ∈ (45%, 55%], (55%, 65%],
the distribution of Z(i, r = t) is very wide, and it greatly depends on x. For
Z(i, 0) ∈ (45%, 55%], the median of Z(i, r = t) is below 40% for x = 0 and
about 80% for x = 1, respectively. The results suggest that there are two equilibria.
When Z(i, 0) ∈ (75%, 85%], (85%, 100%], the difference between the median of
Z(i, r = t) for x = 0 and x = 1 becomes small. All Z(i, r = t) except the two
samples are greater than one-half. This suggests that there is only one equilibrium.

The right figure shows the average value of Z(i, r = t). The average values are
denoted as Zavg(r = t |x), and Zavg(r = t) is the unconditional average value. The
difference between Z(r = t |1) (red) and Z(r = t |0) (blue) is larger when Zavg(0|x)

is small. As Zavg(r = t) (green) is larger than q (thin dotted line), we observe the
collective intelligence effect.

3.1 Correlation Function C(t) and Related Quantities

As we have discussed in chapter “Domino Effect in Information Cascade”, the
order parameter c of the information cascade phase transition of nonlinear Pólya
urn is defined as the limit value of the correlation function C(t) (Mori and Hisakado
2015a). C(t) is defined as

C(t) ≡ Cor(X(1),X(t + 1))/V(X(1))

= E(X(t + 1)|X(1) = 1) − E(X(t + 1) = 1|X(1) = 0).

C(t) behaves asymptotically with three parameters, c, c′, and l > 0, as

C(t) � c + c′ · t l−1.

If there is one stable state at z+, f (z+) = z+, Z(t) converges to z+. The memory
of X(1) = x disappears and c = 0. C(t) decays to zero with power-law behavior as
C(t) ∝ t l−1. The exponent l is given by the slope of f (z) at the stable fixed point
z+ as l = f ′(z+) < 1. If there are two stable states at z−, z+ and z− < z+, the
probability that Z(t) converges to z± depends on X(1) = x. If c is subtracted from
C(t), the remaining terms also obey a power law as C(t) − c ∝ t l−1. The exponent
l is given by the larger one of {f ′(z+), f ′(z−)}.

We estimate C(t) using experimental data. We combine data of EXP1 and EXP2
and denote EXP1+EXP2. Likewise, we combine data of EXP3 and EXP4 and
denote EXP3+EXP4. The reason to divide four experiments into two groups is that
the way to provide social information is completely different between the groups.
Figure 4 plots C(t) vs. t . The left figure plots C(t) of EXP1 + EXP2, and the right
figure plots C(t) of EXP3 + EXP4, respectively. We observe that C(t) shows the
tendency of the monotonic decrease apart from some fluctuation. For Z(i, 0) ∈
(45, 55%], (55%, 65%], C(t) is about 0.2 at t = 30, which suggests that c > 0. For
Z(i, 0) ∈ (75, 85%], C(t) decays to zero. The right figure for EXP3 + EXP4 shares
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Fig. 4 Plot of C(t) vs. t . The left (right) figure is the plot for EXP1 + EXP2 (EXP3 + EXP4).
The data are stratified by Z(i, 0), and we show the results for the four bins, Z(i, 0) ∈
(45%, 55%], (55%, 65%], (65%, 75%], and (75%, 85%]

almost the same features with the left figure for EXP1 + EXP2. The results suggest
the phase transition between the phase with c > 0 and the phase with c = 0.

In order to clarify the possibility of the phase transition, we estimate the
relaxation time τ(t) and the second moment correlation time ξ(t) using the n-th
moment of C(t) as (Mori and Hisakado 2015a,b)

Mn(t) ≡
t−1∑

s=0

C(s)sn

τ (t) = M0(t)

ξ(t) =
√

M2(t)

M0(t)

If we assume that C(t) ∝ t l−1, Mn(t) behaves as

Mn(t) ∝ 1

n + l
tn+l

Using the asymptotic behavior of Mn(t), we find τ(t)/t behaves as

τ(t)/t ∝ 1

l
t l−1,

and ξ(t)/t behaves as

ξ(t)/t ∝
√

l

2 + l
.
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Fig. 5 Semilogarithmic plot of τ(t)/t(top) and ξ(t)/t (bottom) vs. t

When c > 0, we assume C(t) � c+c′t l−1, c > 0. We find τ(t)/t � c+o(1/t) and
ξ(t)/t � 1/

√
3. If limt→∞ τ(t)/t > 0 and limt→∞ ξ(t)/t = 1/

√
3, we can judge

c > 0. If limt→∞ τ(t)/t = 0 and limt→∞ ξ(t)/t < 1/
√

3, c = 0.
Figure 5 shows the semilogarithmic plot of τ(t)/t (top left and bottom left)

and ξ(t)/t vs. t(top right and bottom right). τ(t)/t converges to a positive
value for Z(i, 0) ∈ (45%, 55%], (55%, 65%] for EXP3+EXP4. For Z(i, 0) ∈
(65%, 75%], (75%, 85%] in EXP3+EXP4 and all cases in EXP1 + EXP2, it is
difficult to judge whether τ(t)/t converges to zero or a positive value. The slopes
at the right edge are negative; it suggests that τ(t)/t converges to zero. However, in
EXP1+EXP2, t ≤ 30 and the judge about the limit t → ∞ is impossible.
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ξ(t)/t converges to 1/
√

3 for Z(i, 0) ∈ (45%, 55%], (55%, 65%] in
EXP3+EXP4, which suggests that c > 0. For Z(i, 0) ∈ (65%, 75%], (75%, 85%],
even though the fluctuation is large, ξ(t)/t seems to converge to a value less than
1/

√
3. In EXP1+EXP2, one observes almost the same feature with EXP3+EXP4;

as t ≤ 30, the converging value of ξ(t)/t is unclear.
The behaviors of C(t), τ (t)/t , and ξ(t)/t suggest that there occurs the informa-

tion cascade phase transition in EXP3+EXP4. As the system size is very limited, we
need to estimate the response function f (z) of nonlinear Pólya urn. If the number of
stable fixed points changes, it strongly supports the existence of the phase transition.

4 Data Analysis: Microscopic Aspects

The results of the macroscopic analysis in the previous section strongly suggest the
existence of the information cascade phase transition. In this section, we study the
microscopic behavior of the subjects. We study how the social information affects
the subjects’ choices. We estimate f (z) of the nonlinear Pólya urn. f (z) is defined
as

P(X(t + 1) = 1|z(t) = z) = f (z).

Based on the results, we describe the system with nonlinear Pólya urn.

4.1 Strength of Social Influence

To measure how strongly the social information affects subjects’ decision-making,
we estimate the correlation coefficients between them. We estimate the correlation
coefficients between Z(i, r = t, t) and X(i, r = t, t + 1) for t ≥ 1.

Figure 6 shows the plot of the correlation coefficients versus t . Overall,
Cor(X(i, r = t, t + 1), Z(i, r = t, t)) increases with t and begins to fluctuate
around 0.6 for t ≥ 10. The result suggests that the microscopic behavior of the
subjects becomes stationary for t ≥ 10.

4.2 Response Function f (z)

As Cor(Z(i, r = t, t), X(i, r = t, t + 1)) increases with t and saturates
at around t = 10, we use data for t ≥ 10 to estimate f (z). We pre-
pared data set {Z(i, r = t, t), X(i, r = r, t + 1)}, t ≥ 10 for each bin
(45, 55%], (55%, 65%], (65%, 75%], (75, 85%]. In each bin, we calculate the
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Fig. 6 Plot of Cor(X(i, r =
t, t + 1), Z(i, r = t, t)) vs. t
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average value of Z(i, r = t, t), X(i, r = t, t + 1) and obtain f (z). We plot
the results in Fig. 7. The top (bottom) figure shows the result for EXP1+EXP2
(EXP3+EXP4). It is clear that f (z) is an almost monotonic increasing function of z.
We also notice that f (z) for bin (45, 55%] has two stable fixed points if one simply
extrapolate f (z) linearly. In other cases, there is only one stable fixed point. The
results suggest that the system shows the information cascade phase transition by
the change of the difficulty of the question.

The fitted curves in the figures adopt the next functional form

f (z) = (1 − p) · 1 + p · logistic(λ(z − 1/2)). (1)

Here logistic (x) = 1/(1 + exp(−x)) is logistic function. The functional form
assumes that there are two types of subjects, and 1 − p : p means the ratio of each
type. The subjects in one type know the answer to the question. The probability that
the subject choose the correct answer is 1. The subjects of another type do not know
the answer. They have the tendency to follow the majority’ choice, and we assume
that the probability that the they choose the option with the vote share z is given
by the logistic function. λ is the measure of the tendency to follow the majority’s
choice. If there is no social information, the probability to choose the correct option
is 1−p/2. We estimate p by the formula 1−p/2 = Z(i, 0). We estimate λ using the
maximum likelihood method. In EXP1 + EXP2 (EXP3 + EXP4), λ = 4.69(5.30).

Base on the form of f (z), we can understand the behavior of C(t). If the question
is difficult and Z(i, 0) ∈ (45, 55%], there are two stable fixed point and c > 0. The
first subject’s choice affects the later subject’s choices forever. If the question is easy
and there is only one stable fixed point, C(t) decays to zero, and the domino effect
disappears. Even so, the decay of C(t) obeys power law; the domino effect might
remain for long time in the sequence.
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Fig. 7 Plot of f (z) vs. z. The
solid curves are fitted results
with Eq. (1)
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5 Conclusions

In this chapter, we explain the results of information cascade experiment that uses
general knowledge two-choice quiz. Contrary to the conventional urn choice quiz,
it is difficult to control and know the private signal in the experiment. We overcome
the difficulty by letting subjects answer with and without referring to the previous
subjects’ choices. From the answer without reference, we estimate the difficulty of
the questions. The distribution of the correct answer ratio depends on the difficulty
of the question. If the questions are easy (difficult), the distribution is unimodal
(bimodal). The change in the shape of the distribution suggests the phase transition
of nonlinear P’olya urn. We estimate the response function f (z) empirically and
show that the system has one (two) stable fixed point(s) if the questions are easy
(difficult). Based on f (z), we understand the behavior of the correlation function
C(t) and verify the possibility of the phase transition macroscopically.
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6 Data and R Script

One can download the data and the R script that is used to plot the figures in this
chapter. One should visit https://sites.google.com/site/shintaromori/home/data and
download AppDCSSDy_Chap10.tar.gz.
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Information Cascade Experiment:
Urn Quiz

Shintaro Mori and Masato Hisakado

1 Background

Many researchers have done the experimental studies of information cascade after
the pioneering work by Anderson and Holt (1997). The experimental implemen-
tation of information cascade is based on the “basic” model (Bikhchandani et al.
1992), where two-choice question is the choice of one of two urns. In the experiment
of Anderson and Holt, six subjects answer the two-choice quiz one by one after
referring to all the previous subjects’ choices. There are two urns, urn A and urn B,
and urn A(B) contains two (one) red and one (two) blue balls. Later, in addition to
the original 2:1 and 1:2 compositions of red and blue balls, 5:4 and 4:5 compositions
cases were also studied (Goeree et al. 2007). At the beginning, urn X is chosen at
random from the two urns A and B, and the question is which urn is X. As the
private signal, one draws a ball from X, and as public information, one knows the
choices of all previous subjects. If the ball is red (blue), the posterior probability
that urn X is A (B) is 2/3 in the original 2:1 and 1:2 setting.

We denote the private signal for t-th subject in the sequential choices as S(t). The
probability that S(t) is correct is q, q depends on the composition of balls in the urn.
In the m : n and n : m composition case, where urn A (B) contains m(n) red balls
and n(m) blue balls, the posterior probability that X is A is q = m/(m + n) if one
gets a red ball. If one gets a blue ball, the probability that X is B is q = m/(m+n). In
the original information cascade experiment, t + 1-th subject answered the question
based on his private signal and the history of the previous subjects’ choices. In the
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experiment reported here, the subject answered based on the private signal and the
summary statistics of the previous subjects’ choices (Hino et al. 2016). We model
the sequential choice process as a nonlinear Pólya urn and estimate the response
functions of the subjects. We study the possibility of the information cascade phase
transition from the microscopic and macroscopic viewpoints.

2 Experimental Setup

The experiments reported here were conducted at Kitasato University. We recruited
307 students, mainly from the school of science. We prepared I = 200 questions for
q ∈ Q = {5/9, 6/9, 7/9} and I = 400 questions for q = 8/9. Subjects sequentially
answered two-choice questions and received returns for each correct choice. The
experiment was performed during three periods, q ∈ {5/9, 6/9} in 2013, q = 7/9
in 2014, and q = 8/9 in 2015. We label the questions as i = 1, 2, · · · , I . We
obtained I sequences of answers of length T = 63 for q = 5/9, 6/9. The average
length T is 54.0 for q = 7/9 and 60.5 for q = 8/9.

We prepared a question for q = m/(m+n) ∈ Q by randomly choosing an urn X
from two urns, A and B. For q = m/(m+n) > 1/2, urn A (B) contains m red (blue)
balls and n blue (red) balls. Urn A (B) contains more red (blue) balls than blue (red)
balls. We denote the answer to question q ∈ Q, i ∈ {1, · · · , I } as U(q, i) ∈ {A,B}.
The subjects obtain information about X by knowing the color of a ball randomly
drawn from it. The color of the ball is the private signal, as it is not shared with
other subjects. If the ball is red (blue), X is more likely to be A (B). Further, q is
the posterior probability that the randomly chosen ball suggests the correct urn. We
prepared the private signal S(q, i, t) ∈ {A,B} for T subjects and I questions in
advance. Table 1 summarizes the design.

Subjects answered the questions sequentially using their respective private
signals and information about the previous subjects’ choices. This information,
called social information, was given as the summary statistics of the previous
subjects. When the subject answers question q, i after t subjects, the subject receives
a private signal S(q, i, t + 1) and social information {CA(q, i, t), CB(q, i, t)} from
the previous t subjects. Let X(q, i, s) ∈ {A,B} be the s-th subject’s choice; the
social information Cx(q, i, t), x ∈ {A,B} is written as

Table 1 Experimental design. |ID| number of subjects, Tavg average length of subject sequence,
{q} precision of private signal, I number of questions

Date |ID| Tavg {q} I

2013.9∼ 2013.10 126 63 {5/9, 6/9} 200

2014.12 109 54.0 7/9 200

2015.9 121 60.5 8/9 400
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Fig. 1 Snapshot of the screen for q = 6/9 = 2/3. The private signal (RED) is shown on the
second line. The summary statistics {CA(t), CB(t)} = {3, 1} appear in the second row in the box.
Subjects answer by choosing a radio button. In the experiment, subjects are asked to answer their
confidence about their answers

Cx(q, i, t) =
t∑

s=1

δX(q,i,s),x,

where CA(q, i, t − 1) + CB(q, i, t − 1) = t holds.
Figure 1 illustrates the experience of subjects more concretely. The second

line shows the subject’s private signal. The figure below the question shows the
type of question, q. Before the experiment, the experimenter described the ball
configuration in A and B and explained how the signal is related to the likelihood for
each urn. The subjects can recall the question by looking at the figure. In the second
row of the box, the social information {CA,CB} is provided. In the screenshot
shown in the figure, four subjects have already answered the question. Three of
them have chosen A, and one has chosen B. The subject chooses A or B using the
radio buttons in the last row of the box. They were asked to choose A or B by stating
how confident they were about their answers, that is, to choose 100% if they were
certain about their choices and to choose 50% if they were not at all confident about
their choices. The reward for the correct choice does not depend on the confidence
level. Irrespective of the degree of confidence, subjects receive a fixed return for the
correct choice. After they chose an option and put answer button below the box, they
know whether their choices are correct or not in the next screen. For more details
about the experimental procedures, please refer to Hino et al. (2016).
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Hereafter, instead of A and B, we use 1 and 0 to describe the correct and
incorrect choices and private signal. We use the same notation for them, as follows:
S(q, i, t) ∈ {0, 1} and X(q, i, t) ∈ {0, 1}. For the social information, we define
{C1(q, i, t), C0(q, i, t)} as C1(q, i, t) ≡ CU(q,i)(q, i, t) = ∑t

s=1 X(q, i, s) and
C0(q, i, t) ≡ t − C1(q, i, t). Here, C1(q, i, t) shows the number of correct choices
up to the t-th subject for question q ∈ Q, i ∈ {1, · · · , I }. We denote the correct
ratio up to the t-th subject for question q, i as Z(q, i, t):

Z(q, i, t) = 1

t

t∑

s=1

X(q, i, s).

We denote the length of the subjects’ sequence as T (q, i) and the final value of
Z(q, i, T (q, i))) as Z(q, i).

3 Data Analysis: Macroscopic Aspects

In this section, we show the macroscopic aspects of the results of the analysis of
the experimental data. We show how the difficulty of quiz q and the first subject’s
answer X(q, i, 1) affect the Z(q, i).

3.1 Distribution of Z(q, i)

We study the relationship between the precision of the private signal q and Z(q, i).
As we are interested in the dependence of Z(q, i) on X(q, i, 1), we divide the
samples based on X(q, i, 1) = x. We denote the average value of Z(q, i) for
x ∈ {0, 1} and q ∈ Q as Zavg(q|x), respectively.

Zavg(q|x) =
∑I

i=1 Z(q, i)δX(q,i,1),x
∑I

i=1 δX(q,i,1),x

.

The unconditional average value of Zavg(q|x) is then given as

Zavg(q) = q · Zavg(q|1) + (1 − q) · Zavg(q|1).

The deviation of Zavg(q) from q is a measure of the collective intelligence.
Figure 2 shows boxplots of Z(q, i) for the samples with X(q, i, 1) = x ∈ {0, 1}

and q ∈ Q and plot of Zavg(q|x) vs. q and x. From left to right, q increases. Blue
(red) boxplots (symbols) are for x = 0(1). When q is small, the distribution of
Z(q, i) greatly depends on x. For q = 5/9, the median is about 50% for x = 0 and
80% for x = 1, respectively. For q = 8/9, the difference becomes small. All Z(q, i)
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Fig. 2 (Left) Boxplot of Z(q, i). (Right) Plot of Zavg(q|x) and Zavg(q) vs. q. The thin solid line
shows P2(∞) given by Eq. (1) in chapter “Domino Effect in Information Cascade”

are larger than one-half for x = 1. This suggests that Z(q, i, t) converges to almost
1 as t increases. On the other hand, if x = 0 for q = 8/9, there are some samples
with Z(q, i) < 1/2. We cannot judge whether all Z(q, i, t) converge to almost 1 in
the limit t → ∞. If x = 0 with q ∈ {5/9, 6/9}, the distribution of Z(q, i) is wide,
suggesting the existence of two fixed points where Z(q, i, t) converges.

From the right figure, one notices that Z(q|x) monotonically increases with q.
The difference between Z(q|1)(red) and Z(q|0)(blue) is larger when q is small. As
Zavg(q)(green) is larger than q(thin dotted line), there is the collective intelligence
effect. The thick solid line plots P2(∞) in Eq. (1) in chapter “Domino Effect in
Information Cascade” as a function of q. One sees that P2(∞) describes Zavg(q)

relatively well. However, it does not mean that the experiment should be described
by the BHW’s simple cascade model.

3.2 Correlation Function C(t) and Related Quantities

As we have discussed in chapter “Domino Effect in Information Cascade”, the
order parameter of the information cascade phase transition of nonlinear Pólya urn
with f (z) is defined as the limit value of the correlation function C(t) (Mori and
Hisakado 2015a). C(t) is defined as

C(t) ≡ Cor(X(1),X(t + 1))/V(X(1))

= E(X(t + 1)|X(1) = 1) − E(X(t + 1) = 1|X(1) = 0).

C(t) behaves asymptotically with three parameters, c, c′ and l > 0, as

C(t) � c + c′ · t l−1. (1)
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Fig. 3 Plot of C(t) vs. t for
q = 5/9, 6/9, 7/9 and 8/9
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If there is one stable state at z+, f (z+) = z+ , Z(t) converges to z+. The memory
of X(1) = x disappears and c = 0. C(t) decreases to zero with power-law behavior
as C(t) ∝ t l−1. The exponent l is given by the slope of f (z) at the stable fixed point
z+ as l = f ′(z+) < 1. If there are two stable states at z−, z+ and z− < z+, the
probability that Z(t) converges to z± depends on X(1) = x. If c is subtracted from
C(t), the remaining terms also obey a power law as C(t) − c ∝ t l−1. The exponent
l is given by the larger one of {f ′(z+), f ′(z−)}, as the term with the larger value
governs the asymptotic behavior of C(t) − c.

Figure 3 plots C(t) as a function of t . C(t) fluctuates around 0.25 for q ∈
{5/9, 6/9}. For q ∈ {7/9, 8/9}, C(t) decreases slowly and takes small values
for large t . The results suggest that there occurs the phase transition between
q = 7/9, 8/9 with c = 0 and q = 5/9, 6/9 with c > 0. However, it is difficult
to judge whether C(t) decreases to zero or fluctuates around some positive values
in the limit t → ∞.

In order to clarify the possibility of the phase transition, we estimate the
relaxation time τ(t) and the second-moment correlation time ξ(t) using the n-th
moment of C(t) as (Mori and Hisakado 2015a,b),

Mn(t) ≡
t−1∑

s=0

C(s)sn

τ (t) = M0(t)

ξ(t) =
√

M2(t)

M0(t)
(2)
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If we assume that C(t) ∝ t l−1 and C(0) = 1, Mn(t) behaves as

Mn(t) ∝ 1

n + l
tn+l

Using the asymptotic behavior of Mn(t), we find τ(t)/t behaves as

τ(t)/t ∝ 1

l
t l−1,

and ξ(t)/t behaves as

ξ(t)/t ∝
√

l

2 + l
.

When c > 0, we assume C(t) � c+c′t l−1, c > 0. We find τ(t)/t � c+o(1/t) and
ξ(t)/t � 1/

√
3. If limt→∞ τ(t)/t > 0 and limt→∞ ξ(t)/t = 1/

√
3, we can judge

c > 0. If limt→∞ τ(t)/t = 0 and limt→∞ ξ(t)/t < 1/
√

3, c = 0.
Figure 4 shows the semilogarithmic plot of τ(t)/t and ξ(t)/t vs. t . τ(t)/t

converges to a positive value for q = 5/9, 6/9. For q = 7/9, 8/9, it is difficult
to judge whether τ(t)/t converges to zero or a positive value. The slope at the
right edge is negative; it suggests that τ(t)/t converges to zero. ξ(t)/t converges
to 1/

√
3 for q = 5/9, 6/9, which suggests that c > 0. For q = 7/9, 8/9, the

slope of ξ(t)/t on the right edge is almost zero and takes about 0.5. If c = 0,
ξ(t)/t → √

1/(l + 2) <
√

1/3. The result suggests that c = 0 for q = 7/9, 8/9.
The behaviors of C(t), τ (t)/t , and ξ(t)/t suggest that there occurs the informa-

tion cascade phase transition at qc ∈ (6/9, 7/9). As the system size is limited in the
experiment, we need to estimate the response function f (z) of nonlinear Pólya urn.
If the number of stable fixed points changes between q = 6/9 and 7/9, it strongly
supports the existence of the phase transition.
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Fig. 4 Semilogarithmic plot of τ(t)/t (left) and ξ(t)/t (right) vs. t
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4 Data Analysis: Microscopic Aspects

The results of the macroscopic analysis in the previous section strongly suggest the
existence of the information cascade phase transition. In this section, we study the
microscopic behavior of the system. We study how the subjects choose based on the
private signal and the social influence.

4.1 Strength of Social Influence and Private Signal

To measure how strongly the social information and private signal affect subjects’
decision-making, we compare the correlation coefficients between them and the
subjects’ decisions. We estimate the correlation coefficients between S(q, i, t) and
X(q, i, t) and between Z(q, i, t) and X(q, i, t + 1) for t ≥ 1.

Figure 5 shows the plots of the correlation coefficients vs. t . Overall,
Cor(S(q, i, t), X(q, i, t)) decreases and Cor(Z(q, i, t), X(q, i, t + 1)) increases
with t . For q = 5/9, Cor(S(q, i, t), X(q, i, t)) starts at very small values. We think
that subjects were confused with small q, and they could not trust their private
signals. However, Cor(S(q, i, t), X(q, i, t)) rapidly increases and behaves similarly
with other cases. At around t = 20, the correlation coefficients fluctuate around
certain values. The results suggest that the subjects’ behaviors becomes stationary
for t ≥ 20. Cor(S(q, i, t), X(q, i, t)) and Cor(Z(q, i, t), X(q, i, t + 1)) fluctuate
around 0.3 and 0.6, respectively. The result indicates that the social influence is
stronger than the private signal.
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Fig. 5 Plot of Cor(S(q, i, t), X(q, i, t))(left) and Cor(Z(q, i, t), X(q, i, t + 1)) (right) vs. t
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4.2 Response Function f (z, s) and f (z)

We study how subjects’ decisions are affected by the social information and private
signal. We study the probabilities that X(t + 1) takes 1 under the condition that
Z(t) = z and S(t + 1) = s. We denote them as

f (z, s) ≡ Pr(X(t + 1) = 1|Z(t) = z, S(t + 1) = s).

By the symmetry under the transformations S ↔ 1−S, X ↔ 1−X, and Z ↔ 1−Z,
f (z, s) has the Z2 symmetry

1 − f (1 − z, 0) = f (z, 1).

In the estimation of f (z, s) using experimental data {S(q, i, t), Z(q, i, t −
1),X(q, i, t)}, we exploit the symmetry. As we are interested in the stationary
behavior of f (z, s), and Cor(S(q, i, t), X(q, i, t)) and Cor(Z(q, i, t), X(q, i, t+1))

reach their stationary values at t = 20, we use data {S(q, i, t), Z(q, i, t −
1),X(q, i, t)} for t ≥ 20.

Figure 6 shows plots of f (z, 1) vs. z. It is clear that f (z, 1) are monotonically
increasing functions of z. For q = 5/9, 6/9, the behaviors are almost the same. For
q = 7/9, 8/9, few samples appear in the middle bins, and the error bars are large.

We fit the experimental data {S(q, i, t), Z(q, i, t − 1),X(q, i, t)}, q ∈ Q, 20 ≤
t ≤ T (q, i) with logistic function. By the symmetry of f (z, s), we assume

f (z, s) = 1

1 + exp(−β1(s − 1/2) − β2(z − 1/2))
.

By the maximum likelihood estimate, we obtain β1 = 2.92 and β2 = 7.64. The
solid lines in the top figure show the fitted result.

As the private signal takes 1 with probability q, the probability that the t + 1-th
subject chooses the correct option under the social influence Z(t) = z is estimated
as

f (z) ≡ Pr(X(t + 1) = 1|Z(t) = z) = q · f (z, 1) + (1 − q) · f (z, 0).

We denote the averaged response function as f (z). Then the voting process
{X(t)}, t = 1, 2, · · · becomes a nonlinear Pólya urn process with f (z). The bottom
figure of Fig. 6 shows f (z) vs. z for q ∈ Q.

For q = 5/9 (red), f (z) crosses the diagonal (black broken line) at three points.
The left and right fixed points are stable, and the middle one is unstable. Z(q, i, t)

converges to the two stable fixed points with positive probability, and the order
parameter c is positive, c > 0. For q = 6/9 (green), f (z) touches and crosses
the diagonal. The touchpoint and the fixed points are both stable and c > 0. For
q = 7/9 (blue) and q = 8/9 (light blue), f (z) have only one stable fixed point.
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Fig. 6 (Top) Response
functions f (z, 1) for q ∈ Q.
The solid line shows the fitted
result with logistic
(β1(z − 0.5) + β2(s − 0.5)

with β1 = 2.92 and
β2 = 7.64. (Bottom) Plot of
f (z) vs. z for q ∈ Q and
f (z) =
q · f (z, 1) + (1 − q) · f (z, 0).
f (z) is the fitted result with
logistic function
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Z(q, i, t) converges to the unique fixed point and c = 0. However, for q = 7/9 the
departure from the diagonal is small, and it is difficult to judge whether there is only
one stable fixed point or there are two stable fixed points.

5 Summary

We explain the information cascade experiment in the canonical setup. Two-choice
urn quiz is adopted, and we can control the precision of the private signal by
changing the composition of red and blue balls in two urns. We show the results
of the analysis of the experimental data. Both the macroscopic and microscopic



Information Cascade Experiment: Urn Quiz 191

analyses strongly suggest the existence of the information cascade phase transition.
If the private signal q is 5/9, 6/9, there are two stable states in the system, and
the limit value of the correlation function becomes positive. The domino effect
continues forever, and the first subject’s choice affects infinitely later subjects’
choices. If q = 7/9, 8/9, there is only one stable state in the system. The domino
effects decay to zero with power-law behavior, and the first subject’s choice does
not affect infinitely later subjects’ choices.

However, the system and sample size of the experiment are very limited. In order
to realize larger system size, web-based online experiment should be adopted in the
future experiment.

6 Data and R Script

One can download the data and the R script that is used to plot the figures in this
chapter. One should visit https://sites.google.com/site/shintaromori/home/data and
download AppDCSSD_Chap11.tar.gz.
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Information Cascade and Bayes Formula

Masato Hisakado and Shintaro Mori

1 Introduction

Human beings estimate public perception by observing the actions of other indi-
viduals, following which they exercise a choice similar to that of others. This
phenomenon is also referred to as social learning or imitation and studied several
fields (Galam 1990). Because it is usually sensible to do what other people are
doing, collective herding behavior is assumed to be the result of a rational choice
according to public perception. In ordinary situations this is the correct strategy
and sometimes erroneous decisions. As a macro phenomenon, we can see that large
social movement start is the absence of central control or public communications. A
well-known studied example is the bank run on the Toyokawa Credit Union in 1973.
The incident was caused by a false rumor, the process of which was subsequently
analyzed by Ito et al. (1974a,b). These phenomena are known as an information
cascade (Bikhchandani et al. 1992). We can define information cascade is that the
few persons’ personal information is introduced without correction. In other words
the correlation function is not zero in the large time limit.

Herders’ behavior is known as the influence response function. Threshold rules
have been derived for a variety of relevant theoretical scenarios as the response
function. Some empirical and experimental evidence has confirmed the assumptions
that individuals follow threshold rules when making decisions in the presence
of social influence (Watts and Dodds 2007; Watts 2002). This rule posits that
individuals will switch between two choices only when a sufficient number of other
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persons have adopted the choice. We refer to individuals such as these as digital
herders (Hisakado and Mori 2011). From our experiments, we observed that human
beings exhibit behavior between that of digital and analog herders (Mori et al. 2012).
Analog herders vote for each candidate with probabilities that are proportional to
candidates’ votes (Hisakado and Mori 2010). In the previous paper Hisakado and
Mori (2016), we discuss the digital herders who have threshold in half.

To investigate the phenomena, there are several experiments. Here, participants
answer two-choice questions sequentially (Anderson and Holt 1997; Mori et al.
2012). In the canonical setting of the experiment, two urns, A and B, with different
configurations of red and blue balls are prepared. One of the two urns is chosen at
random to be urn X, and the question is whether urn X is A or B. The participants
can draw a ball from urn X and see which type of ball it is. This knowledge, which
is called the private information, provides some information about X. However, the
private information indicate the true situation equivocally, and participants have to
decide under uncertainty.

Participants are also provided with social information regarding how many prior
participants have chosen each urn. The social information introduces externally
to the decision-making; as more participants choose urn A (B), later participants
are more likely to identify urn X as urn A (B). The social interaction in which
a participant tends to choose the majority choice even if it contradicts the private
signal is called an information cascade or rational herding. In simple experiments
of information cascade, if the difference in the numbers of subjects who have
chosen each urn exceeds two, the social information overwhelms subjects private
information (Anderson and Holt 1997). In the limit of many previous subjects, the
decision is described by a threshold rule stating that a subject chooses an option if
its ratio exceeds 1/2, f (z) = θ(z− 1/2). The function f (z) that describes decisions
under social information is a response function.

To detect the phase transition caused by the change in f (z), we have proposed
another information cascade experiment in which subjects answer two-choice
general knowledge questions. If almost all of the subjects know the answer to a
question, the probability of the correct choice is high, and f (z) does not depend
greatly on the social information. In this case, f (z) has only one stable fixed point.
However, when almost all the subjects do not know the answer, they show a strong
tendency to choose the majority answer. Then f (z) becomes S shaped, and it could
have multiple stable fixed points. We have shown that when the difficulty of the
questions is changed, the number of stable fixed points of the experimentally derived
f (z) changes.

If the questions are easy, there is only one stable fixed point, z+, and the ratio
of the correct choice z converges to that value. If the questions are difficult, two
stable fixed points, z+ and z−, appear. The stable fixed point to which z converges
becomes random. To detect the randomness using experimental data, we study how
the variance of z changes as more subjects answer questions of fixed difficulty. We
showed that the variance converges to zero in the limit of many subjects for easy
questions. For difficult questions, it converges to a finite and positive value, which
suggests the existence of multiple stable states in the system.
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Since the phase transition, we sometimes did wrong conclusion. We cannot
choose the correct pod. In this chapter we are interested in whether we can repair
the voting process by Bayesian statistics. We study the method to recalculate the
votes by weighting each vote and to conclude the correct decisions.

The remainder of this chapter is organized as follows. In Sect. 2, we introduce
our pod model and discuss the information cascade transition. In Sect. 3, we discuss
the Bayes formula to estimate the ratio of red and blue balls. Finally, the conclusions
are presented in Sect. 4.

2 Model

Voters sequentially answered a two-choice question. We prepared questions, urn
X, by randomly choosing an urn from two different urns, urn A and urn B, which
contain ball A (red) and ball B (blue) in different proportions. For q = n/m > 1/2,
urn A (B) contains n A (B) balls and m − n B (A) balls. Urn A (B) contains more
A (B) balls than B (A) balls. The voters obtain information about urn X by knowing
the color of a ball randomly drawn from it. The color of the ball is the private signal,
as it is not shared with other voters. Here we assume X is Urn A.

If the ball is ball A (B), urn X is more likely to be A (B). We prepared the
private signal S(t) ∈ {A,B}. Voters answered the questions individually using their
respective private signals and information about the previous voters’ choices. This
information, called social information, was given as the summary statistics of the
previous voters. If the voter answers question, after t − 1 voters, the voter receives a
private signal S(t) and social information cA(t −1) and cB(t −1) from the previous
t − 1 voters. Let X(t) ∈ {A,B} be the t-th subject’s choice; the social information
ci(t − 1), i ∈ {A,B} is written as

ci(t − 1) =
t−1∑

t=1

δX(t),i ,

where cA(t − 1) + cB(t − 1) = t − 1holds.
Hereafter, instead of A and B, we use 1 and 0 to describe the correct and incorrect

choices and private signal. We use the same notation for them, as follows: S(t) ∈
{0, 1} and X(t) ∈ {0, 1}.

c1(t) shows the number of correct choices up to the t-th voter. We denote the
percentage up to the t-th voter as

Z(t) = 1

t

t∑

i=1

X(i).
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We are interested in how voters’ decisions are affected by the social information
and private signal. We study the probabilities that X(t + 1) takes 1 under the
condition that Z(t) = z and S(t + 1) = s. We denote them as f (z, s) =
Pr(X(t +1) = 1|Z(t) = z, S(t +1) = s). By the symmetry we have the hypothesis
there is the relation

1 − f (1 − z, 0) = f (z, 1). (1)

We can write the process as

c1(t) = k → k + 1 : Pk,t = qf (k/t, 1) + (1 − q)f (k/t, 0),

c1(t) = k → k : Qk,t = 1 − Pk,t , (2)

We define a new variable Δt such that

Δt = 2c1(t) − t = c1(t) − c0(t). (3)

We change the notation from k to Δt for convenience. Then, we have |Δt | = |2k −
t | < t . Thus, Δt holds within {−t, t}. Given Δt = u, we obtain a random walk
model:

Δt = u → u + 1 : Pu,t = qf (
1

2
+ u

2t
, 1) + (1 − q)f (

1

2
+ u

2t
, 0),

Δt = u → u − 1 : Qu,t = 1 − Pu,t .

We now consider the continuous limit ε → 0,

Xτ = εΔ[τ/ε], (4)

where τ = tε. Approaching the continuous limit, we can obtain the stochastic
differential equation:

dXτ =
[

2qf

(
1

2
+ Xτ

2τ
, 1

)

+ 2(1 − q)f

(
1

2
+ Xτ

2τ
, 0

)

− 1

]

dτ + √
ε. (5)

We are interested in the behavior at the limit τ → ∞. The relation between X∞
and the voting ratio to 1 is 2Z − 1 = X∞/τ . We consider the solution X∞ ∼ τα ,
where α ≤ 1, since the maximum speed is τ when q = 1. The slow solution is
X∞ ∼ τα , where α < 1 is hidden by the fast solution α = 1 in the upper limit of τ .
Hence, we can assume a stationary solution as X∞ = v̄τ , where v̄ is constant. We
can obtain the self-consistent equation:

v̄ = 2qf

(
1

2
+ v̄

2
, 1

)

+ 2(1 − q)f

(
1

2
+ v̄

2
, 0

)

− 1. (6)
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The number of solutions depends on the function f (z, s). The number of solution
is important. If there is only one solution, the voting converges the solution. On the
other hand, if there are three solutions, the middle solution is unstable. The other
solutions become good and bad equilibria. Hence there is phase transition we call
information cascade transition. The response function which is obtained from the
urn experiments is in Chap. 11.

3 Bayes Formula

3.1 Bayesian Updating

In this section we consider how to estimate the urn X using Bayes formula. We
observe the final voting history without personal information. Sometimes the final
votes do not show the correct answers. We recalculate the final votes by Bayes
formula. Table 1 is estimated conditional probabilities. f̂ (z, i) is the estimated
probabilities that the voter takes 1 under the condition the social information Z = z

and personal signal S = i; i = 1, 0. We estimate the Table 1 from the training data.
When the final vote is 1(0) and prior probability of personal signal S =

i is q̂i , the posterior probabilities of personal signal are i, ; i = 1, 0 is
q̂i f̂ (z, i)/(

∑
j q̂j f̂ (z, j)) (q̂i(1 − f̂ (z, i))/(

∑
j q̂j (1 − f̂ (z, j))). There is the

relation
∑

j q̂j = 1. In standard case, we take the prior probability q̂1 = 1/2 at
t = 1. We consider the process of q̂1(t), Bayesian updating.

X(t) = 1 : q̂1(t) = g(q̂1(t − 1)) = q̂1(t − 1)f̂ (z, 1)

(
∑

j q̂j (t − 1)f̂ (z, j))
,

X(t) = 0 : q̂1(t) = g(q̂1(t − 1)) = q̂1(t − 1)(1 − f̂ (z, 1))
∑

j (t − 1)q̂j (1 − f̂ (z, j))
, (7)

where g is the updating function. We consider the equilibrium of this process. Here
we confirm the notations. x̂ means estimated parameter x. The expected value of
posterior probability g(q̂1), E[g(q̂1)] is

Table 1 Personal signal and
final votes

Personal signal \ final votes 1 0

1 f̂ (z, 1) 1 − f̂ (z, 1)

0 f̂ (z, 0) 1 − f̂ (z, 0)
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E[g(q̂1)] − q̂1 = [qf (Z, 1) + (1 − q)f (z, 0)] q̂1f̂ (z, 1)

(
∑

j q̂j f̂ (z, j))

+[q(1 − f (Z, 1)) + (1 − q)(1 − f (z, 0))] q̂1(1 − f̂ (z, 1))
∑

j q̂j (1 − f̂ (z, j))

−q̂1. (8)

Here we consider the case f̂ (z, i) = f (z, i). It means the estimated response
function is adequate good approximation of real response function.

We can calculate (8)

E[q̂1] − q̂1 = (q − q̂1)q̂1(1 − q̂1)(f̂ (z, 1) − f̂ (z, 0))2

(
∑

j q̂j f̂ (z, j))(
∑

j q̂j (1 − f̂ (z, j)))
. (9)

When the prior probability q̂1 is larger than real q, the posterior probability q̂1
increases. When the prior probability q̂1 is smaller than real q, the posterior
probability q̂1 decreases. The data set of voting is enough; the posterior probability
q̂1 converges to q necessary. It does not depend on z.

We consider the case f̂ (z, 1) 	= f̂ (z, 0). It means that the personal signal is
effective for voting. In Fig. 1, we show the prior probability p̂1 and the expected
posterior probability E[g(q̂1)]. There are three intersections, q̂1 = 0, 1, and q. The
solutions 1 and 0 are not stable solutions. The middle intersection q̂1 = q is the
stable solution of (9). We can conclude that the Bayesian update converges to the
correct q.

Fig. 1 We show the relation
between the prior probability
and the posterior probability.
The X-axis is the prior
probability, and Y-axis is the
posterior probability. The
middle intersection is the
stable point
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3.2 Fixed Prior Probability

Using Bayes formula which is introduced in the previous subsection, we can
estimate the ratio of red ones to blue ones. If the data is adequate and the response
function is collected, the ratio converges to the real q.

But we do not have adequate data and the response function has errors. In this
section we study the pod problem to estimate whether the number of blue balls in
pod X is larger than red balls or not.

Bayesian updating (7) has volatility; we set the prior probability as 1/2.

X(t) = 1 : q̂1(t) = g(1/2) = f̂ (z, 1)

(
∑

j f̂ (z, j))
,

X(t) = 0 : q̂1(t) = g(1/2) = (1 − f̂ (z, 1))

(
∑

j (1 − f̂ (z, j)))
. (10)

We define the sum of the posterior probability for the pods 1 and 0 as Q1 and Q0,

Qi =
∑

t

q̂i (t), (11)

where i = 1, 0. It is the sum of the divided votes for pods 1 and 0, when the prior
probability is 1/2. There is the constraint Q1 + Q2 = t .

When Q1 > Q0, we can estimate the pod is A. When Q0 > Q1, we can estimate
the pod is B. By setting the prior probability 1/2, we can make the influence of the
prior probability small. Equation (9) becomes

E

(
Q1 − Q0

2t

)

= E[g(1/2)] − 1/2 = (2q1 − 1)(f̂ (z, 1) − f̂ (z, 0))2

(
∑

j f̂ (z, j))(
∑

j (1 − f̂ (z, j)))
> 0.

(12)
It does not depend on z, the path of the voting. When there is the adequate data, if
we select the larger one of Qi , we can estimate correctly whether X is A or B.

4 Concluding Remarks

We consider a voting experiment using two-choice questions. An urn X is chosen
at random from two urns A and B, which contain red and blue balls in different
configurations. Subjects sequentially guess whether X is A or B using information
about the prior subjects’ choices and the color of a ball randomly drawn from X.
The color tells the subject which is X with probability q. We describe the sequential
voting process by a nonlinear Pólya urn model. The model suggests the possibility
of a phase transition when q changes. When there is not the phase transition, in the
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limit t → ∞, we can choose the correct pod. When there is the phase transition,
the votes sometimes converge to the wrong equilibrium. We consider the method to
estimate the ratio of red and blue balls using the Bayes formula. It is the corrections
of the voting conclusions. If the estimated response function is correct, we can
estimate the correct ratio of red and blue balls. The method will not be affected
whether there is the phase transition or not.

We can see ratings in many Internet sites which are related to the consumers. It is
the important information to choose an option for consumers and useful as the social
system. Using these ratings, we can choose the option without adequate information.
But we sometimes have questions whether the rating is correct or not after we have
tried the option. The reason is the ratings may be affected by the ratings of the other
persons.

The rating is the sequential voting process which we discussed in this chapter.
The consumers have the personal information and social information. For example,
we consider the gourmet Internet sites; the personal information is the stand-alone
rating. The social information is the rating which are represented in the site before
his/her rating. If we can estimate the correct response function by observation and
experiments, we can estimate the true rating using the method which we explained in
this chapter. The true rating is the rating which gathered independent ratings. In this
mean we explained the noise reduction system by the Bayes formula in this chapter.

Appendix A Multi-choice Case

In this appendix we consider how to estimate the answer using Bayes formula for
multi-choice case. As the Sect. 3.1, we observe the final voting history without
personal information. We recalculate the final votes by Bayes formula.

Table 2 is the estimated conditional probabilities. f̂j (z, i) is the estimated
probabilities that the voter takes j , j = 0, 1, 2 · · · r under the condition the social
information Z = z and personal signal S = i; i = 0, 1 · · · r . There is the constraint∑

k f̂k(z, j) = 1.
When the final vote is j and prior probability of personal signal S = i is q̂i ,

the posterior probabilities of personal signal are i is q̂i f̂j (z, i)/(
∑

k q̂kf̂j (z, k)).
There is the normalization relation

∑
k q̂k = 1. In standard case we take the prior

probability q̂1 = 1/(r + 1) at t = 1. We consider the process of q̂1(t), Bayesian
updating.

Table 2 Personal signal and final votes of multi-choice

Personal signal \ final votes 0 1 · · · r

0 f̂0(z, 0) f̂1(z, 0) · · · f̂r (z, 0)

1 f̂0(z, 1) f̂1(z, 1) · · · f̂r (z, 1)

· · · · · · · · · · · · · · ·
r f̂0(z, r) f̂1(z, r) · · · f̂r (z, r)
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X(t) = j : q̂i (t) = g(q̂i(t − 1)) = q̂i (t − 1)f̂i(z, j)

(
∑

j q̂k(t − 1)f̂j (z, k))
, (13)

a where g is the updating function. We consider the equilibrium of this process.
Here we confirm the notations. x̂ means estimated parameter x.

The expected value of posterior probability g(q̂1), E[g(q̂1)] is

E[g(q̂i)] − q̂i =
∑

j

[(
∑

k

qkfj (z, k))
q̂i f̂j (z, i)

(
∑

l q̂l f̂j (z, l))
] − q̂i . (14)

Here we consider the case f̂j (z, i) = fj (z, i). It means the estimated response
function is adequate good approximation of real response function. We consider the
case f̂k(z, i) 	= f̂k(z, j), when i 	= j .

We consider the equilibrium solutions of E[g(q̂i)] − q̂i = 0. The equation is
r +2th rank equation. There are (r +2) solutions. r +1 solutions are q̂i = 1, q̂j = 0
where j 	= i. The other solution is q̂i = qi .

We investigate the former solutions. We consider q̂0 = 1 − rδ, q̂i = δ where
i 	= 0 and δ << 1.

E[g(q̂0)]−q̂0 =
∑

j

[(
∑

k

qkfj (z, k)

)
(1−rδ)f̂j (z, 0)

((1−rδ)f̂j (z, 0)+δ
∑

i 	=0 f̂j (z, i))

]

−1

<
∑

j

[(
∑

k

qkfj (z, k)

)]

− 1 = 0 (15)

q̂0 leaves from 1. Hence, these solutions are unstable. The later solution, q̂i = qi ,
correct solution becomes stable. Then we can conclude the process converges to the
correct solution.

Appendix B Response Function of Humans

Recently, the response function f (z) of foreign exchange (FX) traders is estimated.
The traders decide their bid-ask prices referring to the price in the market. In our
model, the price is the social information. According to the social information and
private information, the traders decide the mid-price of bid-ask spread. The response
function is tanh type function, which is nonlinear function. The response function
depends on the trader, but it can be scaled by adjusting parameters. In Table 3
we summarize the response function of humans. It depends on the circumstances
whether the response function is linear or nonlinear.
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Table 3 Response functions of humans

No. Experiments and observation Linear or Non-linear Reference

1 Two choice question I Non-linear Chapter 10 (Mori et al. 2012)

2 Two choice question II Non-linear Chapter 11 (Hino et al. 2016)

3 Horse race betting market Linear Chapter 13

4 BBS contributors Linear Chapter 8 (Hisakado et al. 2018)

5 FX trader Non-linear Kanazawa et al. (2018)
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How Betters Vote in Horse Race Betting
Market

Shintaro Mori and Masato Hisakado

1 Introduction

Racetrack betting is a simple exercise of gaining a profit or losing one’s wager. How-
ever, one needs to make a decision in the face of uncertainty, and a closer inspection
reveals great complexity and scope. The field has attracted many academics from a
wide variety of disciplines and has become a subject of wider importance (Hausch
et al. 2008). Compared to the stock or currency exchange markets, racetrack betting
is a short-lived and repeated market. It is possible to obtain starker views of
aggregated better behavior and study the market efficiency. One of the main findings
of the previous studies is the favorite-longshot bias (FL bias) in the racetrack
betting market (Griffith 1949; Hausch et al. 2008). Final odds are, on average,
accurate measures of winning probability, and short-odds horses are systematically
undervalued, and long-odds horses are systematically overvalued. The bias becomes
smaller as time proceeds. Long ago, it was possible to make money by using the
bias; it is no more possible as the bias becomes small (Hausch et al. 2008). As the
market can predict the future well, the betters’ decision mechanism is an interesting
research theme (Ali 1977). Recently, the prediction market emerges where the
betters’ information is collected efficiently as in the horse race betting market and
the price of the market can predict the future (Wolfers et al. 2004).

From an econophysical viewpoint, horse race betting market is an interesting
subject. Park and Dommany have done an analysis of the distribution of final odds
(dividends) of the races organized by the Korean Racing Association (Park and
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Dommany 2001). They found power law behavior in the distribution and proposed
a simple betting model. Ichinomiya also found the power law in the races of the
Japan Racing Association (JRA) (Ichinomiya 2006) and proposed another betting
model. We have studied the relationship between the rank of a racehorse in JRA
and the result of victory or defeat (Mori and Hisakado 2010). Horses are ranked
according to the win bet fractions and we studied the ROC curve. ROC curve is a 2D
curve which measures the accuracy of a classification algorithm, and the coordinates
(x, y) of the curve are the false positive rate (FPR) and the true positive rate (TPR)
of the predictions. The area under the ROC curve (AUROC) or the normalized index
AR (accuracy ratio) is used to estimate the accuracy of the classification. In the horse
race betting, we study the the ROC curve (x(v), y(v)) for the win bet fraction v. In
particular, we focus on the long-odds region, where the win bet fraction v is small
and the corresponding horses are considered to be weak in the market (Mori and
Hisakado 2010). The double logarithmic plot of the ROC curve for small v becomes
straight; that means the power law relation holds as (1−y(v) ∝ (1−x(v))α for small
v. We show that in a Pólya model, where betters are pure analog herder and vote on
the horses according to the probabilities that are proportional to the votes shares,
the ROC curve is given by the incomplete gamma functions whose cumulative
functions show the scale invariance. Furthermore, the exact scale invariant relation
(1 − y(v)) = (1 − x(v))α holds exactly over the entire range 0 ≤ x(v), y(v) ≤ 1 in
a limit of the model.

In this chapter, we start with the review of the efficiency of the racetrack betting
market by studying the JRA winning bet data in Sect. 2. We study the relation of the
win betting fractions and the probabilities of win using about one million win bet
fraction data of JRA from 1986 to 2008. We show the FL bias is negligibly small
and the market is efficient. We introduce the expected ROC (EROC) curve, whose
coordinates are the cumulative sum of 1 − v and v. By studying the discrepancy
between ROC and EROC, or the areas under the curves, we measure the efficiency
of the market. In Sect. 3, we study the time series data of the odds of the winning
bet of JRA in 2008. We estimate how the accuracy and efficiency change as betting
proceeds. After that, we study the betting behavior in Sect. 4. We classify the horses
according to the final win bet fraction vf and study the response function of the
betters. The crossing point of the response function with the diagonal indicates the
equilibrium value of the win bet fraction. In the initial stage of the betting, the
equilibrium value is far from the final win bet fraction. However, betters adjust the
response function as betting proceeds. We explain the typical response functions of
noisy, herding, and arbitrage betters and interpret the empirically observed response
function as the combination of them.

2 Efficiency and Accuracy

We study all the data on horse race betting obtained from the Japan Racing
Association (JRA) for the period 1986–2008. There were 100,0825 horses and
78,564 winning horses. We study the efficiency of the market by estimating the
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Fig. 1 Plot of the winning horse rate vs. win bet fraction v. The right figure is the double
logarithmic plot

winning probability of the horses with win bet fraction v. If the market is efficient
and there is no bias, the winning probability should coincide with v. We bin the
horses according to the value of v, and each bin contains 104 horses, except for the
last bin which contains 10,825 horses. We calculate the rate of the winning horses
and the average values of the win bet fractions. Figure 1 plots the results.

One sees that the curve almost coincides with the diagonal and the market is
almost efficient. From the left figure, we see small discrepancy around v � 0.4.
The curve is lower than the diagonal and the strength of the horses is overestimated.
The right figure is the double logarithmic plot of the relationship in order to see the
longshot bias. The curve is also below the diagonal for v < 0.01 and the longshot
horses are overestimated. There is a small favorite bias for v > 0.5, which cannot
be seen. It is impossible to utilize the inefficiency of the market to get profit by
buying the favorite horses winning bet even if their strength is underestimated, as
the discrepancy is too small.

We measure the accuracy of win bet fraction as the classification of the winning
and losing horses. As the estimate of the accuracy, we use the ROC curve. For a
threshold win bet fraction v, we measure the rates of losing horses x(v) among all
losing horses (false positive rate, FPR) and the rate of the winning horse y(v) among
all winning horses (true positive rate, TPR) whose win bet fractions are larger than
v. For v > 1, there is no horse with such a value of v and x(v), y(v) are zeros.
The curve starts from the origin. As v decreases from 1 and v is large, the winning
probability is high and the curve rapidly rises. As v becomes smaller, the direction of
the curve bents downward. At v = 0, all the losing and winning horses are counted
and (x(0), y(0) = (1, 1). If the classification is random, the ROC curve goes on the
diagonal. If the classification is perfect, the TPR reaches (0, 1) for some v and then
ROC goes to (1, 1). As the estimate of the accuracy of the prediction, the area under
the ROC curve (AUROC) is often used. As the diagonal ROC curve means random
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classification, the area of the diagonal 1/2 set the standards for the accuracy of the
classification. The AUROC for the perfect classification is 1. Accuracy ratio (AR)
is a normalized estimate of the accuracy of the classification, defined as

AR = 2

(

AUROC − 1

2

)

.

AR takes 0 (1) for the random (perfect) classification.
AR measures how different is the ranking of the horses according to the win

bet fraction from the complete case where all the winning horse appears first and
then losing horse follows. In order to estimate the efficiency of the win bet fraction
v as the winning probability, we estimate the expected ROC (EROC) curve. Here,
instead of FPR and TPR, we calculate the cumulative sum of 1−vi and vi divided by
the number of losing and winning horses for vi > v. If the vi matches the winning
probability, EROC curve matches ROC curves. The discrepancy between the ROC
curve and the EROC curves means the inefficiency of the market. We estimate AR
of the EROC curve and denote it as EAR (expected accuracy ratio).

Figure 2 shows the ROC and EROC curve for the win bet fractions. The
discrepancy is small. AR is 0.734 and EAR is 0.734; they are almost the same.
In order to see the longshot cases, we show the double logarithmic plot of 1 − x(v)

and 1−y(v). As x(v), y(v) are almost 1 for small v, we can observe the ROC curve
for the longshot cases at the lower left corner. The ROC curve becomes straight at
the corner, which means the relation (1 − y(v)) ∝ (1 − x(v))α holds with some
α. From the figure, α � 1.5. The scale invariance of the ROC curve with α > 1
in the longshot regime means that the better can sort the winning horses even if
the winning probability is less than 1%. If the better cannot sort horses for small
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Fig. 2 (Left) ROC curve and expected ROC curve. AR and EAR is the normalized area under
the curves. (Right) Double-logarithmic plot of (1 − x(v), 1 − y(v)) of the ROC curve. The fitted
functions (1 − y(v)) ∝ (1 − x(v))1.5 are also plotted
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probability region, the winning horses appear at random and α = 1. α � 1.5
indicates the classification ability of the market participants for the rare events.

3 Time Series Data Analysis

We study the time series data of the odds in win betting market of JRA in 2008
(Mori and Hisakado 2009). A win bet requires one to name the winner of the race.
The data set contains times series of total votes (public win pool) and odds of 3450
races. There are 16 horses on average in a race. The time interval of the records of
odds is several minutes, and the number of records in each race K is in the range
13 ∼ 262. The total number of records in the data set is 307,964. A typical sample
from the data is shown in Table 1.

We transform the odds to the vote shares and the number of votes. O(k, h)

denotes the odds of horse h in the k-th record, and V (k) denotes the total number
of votes up to the k-th records. We write the vote and the win bet fraction of horse
h in k-th record as V (k, h) and v(k, h), respectively. As the final total votes V (K)

differ from race to race, we introduce a normalized time variable t which is defined
as t (k) = V (k)/V (K). As betting proceeds, t (k) increase from 0 to 1. We write the
final value of the win bet fraction of horse h as vf (h) = v(K, h).

In order to see the betting process pictorially, we pick up 100 winning and 100
losing horses in the data set. We arrange the 200 horses in the decreasing order of
the win bet fraction from left to right. On the left-hand side of the sequence, more
popular horses exist. On the right-hand side, there are less popular horses.

Figure 3 shows the time evolution of the ranking of the win bet fraction of the
horses. The bottom line shows the initial configuration of the horses. The top line
shows the final configuration of the horses. Initially, the horses are arranged in the
sequence at random. The win bet fractions do not contain much information about
the strength of the horses, and the winning and the losing horses are mixed up. As
the betting progresses from the bottom to the top, the phase separation between the
two categories of the horses does occur. Winning (losing) horses move to the left
(right) in general. In the end, to the left (right) are more winning (losing) horses. In
the betting process, betters have succeeded in choosing the winning horses to some
extent. We also note that there remain winning horses in the right. This means that
we can find winning horses with very small win bet fractions.

In order to quantify the improvement of the accuracy and the efficiency of the
predictions of the racetrack betters, we use AR and EAR as in the previous section.
For t , we choose the minimum k such that t (k) = V (k)/V (K) > t . As t increases
from 0 to 1, k increase from 1 to K . With the choice of k for t , we calculate the ROC
and EROC curves and estimate AR and EAR.

Figure 4 shows AR and EAR as the functions of t . As the betting progresses, AR
increases monotonically and it almost reaches its maximum at t = 0.2. Afterward,
the increase in AR is very slow, and the following bets do not increase the accuracy
of the prediction as to which horse wins the race. Or, the accuracy of the ranking by
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Fig. 3 Pictorial presentation of the betting process. We choose 100 winning (red) and 100 losing
(blue) horses randomly from the data set and follow their ranking of the win bet fraction as the
betting proceeds. One losing horse is tagged by yellow dots

Fig. 4 Plot of AR and EAR
as the functions of t
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the win bet fraction does not increase anymore. More interesting behavior can be
found in the time evolution of EAR. At t = 10−6(k = 1), EAR is very large and is
0.934. Almost all votes are concentrated on a small number of horses. However,
AR at t = 10−6(k = 1) is small and the horses with large win bet fractions
(popular) are not so strong. There are many winning horses which do not obtain
votes. Afterward, EAR decreases rapidly and at t = 0.05 EAR reaches its minimum.
The bets are scattered among many horses, and this implies the rich variety of the
betters’ predictions as to which horse wins the race. This also means that the strong
horses are undervalued and the weak horses are overvalued, that is, the FL bias state.
The discrepancy between AR and EAR decreases afterward, and at t = 0.5, they
almost coincide as EAR increases faster than AR. The bets begin to be concentrated
on stronger horses and the FL bias decreases. The concentration of votes to stronger
horses continues, and we observe a small discrepancy between AR and EAR for
t > 0.5.
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4 Better’s Response Function

We estimate f (z) of the nonlinear Pólya urn (Hill et al. 1980) using the time
series data {V (k, h)}. Here, f (z) determines the probability that the binary random
variable X ∈ {0, 1} takes 1 under the condition that the ratio of the previous random
variables that takes 1 is z.

P(x(t + 1) = 1|v(t) = v) = f (v) , v(t) = 1

t

t∑

s=1

X(s).

As v(k, h) evolves to vf (h) at k = K and the final value vf (h) almost coincides
with the winning probability of horse h. It suggests that the betters know the winning
probability of the horses at the collective level and f (v) should depend on vf . In
addition, the betting behavior changes as betting proceeds as we observe in the
behavior of AR and EAR in the previous section. We divide the time series data
v(k, h) according to the values of t = k/K and vf as t < 5%, t > 5% and vf ∈
{[0 − 1%], [1 − 4%], [4 − 8%], [8 − 12%], [12 − 20%], [20 − 50%]}. We estimate
the ratio of the votes that are cast to horse h as

V (k + 1, h) − V (k, h)

V (k + 1) − V (k)
.

We estimate the average value of the ratio as function of the deviation of v(k, h)

from vf (h).

f (vf + v) = V (k + 1, h) − V (k, h)

V (k + 1) − V (k)
|v(k,h)=vf (h)+v.

A|B indicates the average of A over the samples with condition B. We bin data
according to the values v(k, h) − vf (h), k/K , and we estimate the average value of
(V (k + 1, h) − V (k, h))/(V (k + 1) − V (k)) and v(k, h) − vf in each bin.

Figure 5 shows the results. As f (vf + v) should be vf at v = 0 if v(k, h)

converges to vf , we plot f (vf + v) − vf as function of v. If f (vf + v) = vf at
v = 0, the graph (v, f (vf + v)− vf ) should cross the origin. In the figures, we plot
the symbol • to show the place of the origin. The red (blue) curve corresponds to
the result for t < 5%(> 5%).

At first, we check the position of the crossing point of the curve with the diagonal.
If the crossing point is larger than 0, the converging value of v is greater than vf , and
it corresponds to the overestimate of the strength of the horse. If the crossing point
is smaller than zero, it means the underestimate. One can clearly see the crossing
point depends on the stage of the betting t < 5%, t > 5% and the final value
vf . In general, the position of the crossing points approaches to the origin from
the initial stage of the betting (t < 5%) to the latter stage (t > 5%). The market
participants modify the odds and reduce the bias. It is consistent with the behavior
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Fig. 5 Plots of f (v − vf ) vs. v − vf for vf ∈ [0 − 1%], [1 − 4%], [4 − 8%], [8 − 12%], [12 −
20%], [20 − 50%]. The symbol • shows the position of the origin

of the discrepancy of AR and EAR for t > 5%. As the crossing points approach
to the origin, the bias becomes small and the efficiency of the market improves.
We also observe that the crossing points is larger than zero for vf ∈ {[0 − 1%],
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[1 − 4%], [4 − 8%]} and smaller than zero for vf ∈ {[12 − 20%], [20 − 50%]}.
About the case vf ∈ [8 − 12%], the crossing points almost coincide with the origin
for both initial and later stage of the betting. The results indicate that the weaker
(stronger) horses are over(under)estimated.

Next, we study the shape of the curves (v, f (vf + v) − vf ). Before that, we
explain f (vf + v) for three types of voters.

1. Noisy voter
The first type is the noisy voter who casts his vote randomly with some
probability. f (vf + v) is constant function and the curve becomes a horizontal
line. One can regard the noisy voter as the independent voter who casts his
vote independently from the choice of other betters. Independent voter bring
some information about the strength of the horses by the choice of the betting
probability. If there are only independent voters in the market and they vote with
probability vf , the win bet fraction of the horse converges rapidly to vf .

2. Herder
The second type is herder who has the tendency to choose the popular choice.
The simplest herder is analog herder whose probability coincides with the win
bet fraction v (Mori and Hisakado 2010; Hisakado and Mori 2010). The digital
herder is a voter who has a threshold value vth, and if v > vh, he casts his
votes and otherwise not (Hisakado and Mori 2011). The nonlinear herder has a
monotonic increasing function f (vh + v) (Mori and Hisakado 2015). In general,
the curve is ever-increasing for the herders. For simplicity, we only consider the
analog herder here. As f (vf +v)−vf = v for the analog herder, it is the diagonal
line.

3. Arbitrager
The third type is arbitrager who has some estimate about the winning probability
of the horse v∗ (Ali 1977; Manski 2006; Wolfers et al. 2004). If the win bet
fraction is smaller than v∗, the odds of the horses provide a good chance of
making money for the better, and he casts his vote. In a sense, arbitrager prefers
the minority choice. The estimate v∗ varies among arbitragers and the distribution
of v∗ determines f (vf + v). If the distribution of v∗ is described by g(v) and

we denote its cumulative function as G(v) = ∫ 1
v

g(u)du, the probability that
arbitrager votes at vf + v is given by P(v∗ > vf + v) = G(vf + v).

f (vf + v) = G(vf + v).

If we assume that the arbitragers realize the efficiency of the market, G(vf ) = vf

should hold (Ali 1977). In general, the curve (v, f (vf + v) − vf ) = (v,G(vf +
v)− vf ) of the arbitrager is ever-decreasing and crosses the origin if the equality
G(vf ) = vf holds.

The plots of the empirically estimated f (vf +v) show that it decreases for small
v < 0; it is ever-increasing or becomes flat for large v − vf . In particular, in all
six cases, f (vf + v) shows the increase from the left edge of the curve to the right
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edge of it, and it suggests the existence of herders. For the initial stage, the switch
point from decreasing to increasing exits for the cases vf ∈ [0 − 1%], [1 − 4%] and
the position is almost zero. The arbitrager’s g(v) might notice vf and G(vf + v)

decreases sharply at v = 0. The crossing point with the diagonal is larger than
zero, and the betters overestimate the strength of the horse. For other cases, we do
not notice such sharp switching point from decreasing to increasing. For the latter
stage of the betting (t > 5%), we notice the switching point at v = 0. For the
cases vf ∈ [0 − 1%], [1 − 4%], [4 − 8%], f (vf + v) changes from decreasing to
increasing. It suggests that the arbitragers completely disappear and there remain
herders and noise voters in the market. If we assume there remains some arbitrager
in the market, g(vf + v) should decrease very slowly with v, and G(vf + v) does
not decrease rapidly with v. In the range, we cannot distinguish noisy voters from
the arbitragers. For the cases vf ∈ [8 − 12%], [12 − 20%], [20 − 50%], the slope of
the curve decreases at v = 0. Furthermore, we observe a hinge for vf ∈ [8 − 12%],
and it suggests that the arbitragers notice vf and G(vf + v) drops at v = 0 for
vf ∈ [8 − 12%]. We can interpret the slope change at v = 0 as the decreasing rate
of g(vf + v) becomes larger for v > 0. For vf ∈ [20 − 50%], the slope for v > vf

is almost zero; we can interpret it as there is only noisy voter after the disappearance
of the arbitrager.

5 Conclusion

We study the accuracy and efficiency of the horse race betting market in Japan. We
observe a small discrepancy between the vote share of a win bet and the winning
probability; it is negligibly small. The favorite-longshot (FL) bias does also exist;
one cannot make money by using the bias. The accuracy of the predictions is
excellent and the accuracy ratio (AR) is about 73.4%. In order to understand the
emergence of the accuracy and the efficiency of the market, we study the time series
data of odds. We estimate the time evolution of AR and EAR. Initially, the odds does
not predict the winning of the horses so well. As time goes on and the 20% betting
has finished, the sorting of the horses by the odds has completed, and AR almost
reaches its maximum value. After 5% of betting, the adjustment of the odds starts,
and at 50% of betting, EAR coincides with AR and the efficiency of the market
recovers. In addition, we derive the probabilistic rule of the betters. We assume
three types of voters, noisy voter, analog herder, and arbitrager. We interpret the
probabilistic rule as the combination of the response function of the three types of
voters. In the initial stage of the betting (t < 5%), the equilibrium values of the vote
share are rather different from their final values. In most cases, the probability of the
betting becomes an increasing function of the previous vote shares which suggests
the existence of herders. At the latter stage of the betting (t > 5%), the equilibrium
values approach to the final value, which means that the betters do fine-tuning of the
odds and realize the efficiency of the market. The decomposition of the probabilistic
rules by the combination of the three types of voters depends on the strength of
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the horse. When the horses are weak, the slope of the response function becomes
steeper at the final value, which suggests the disappearance of the arbitrager there.
If the horses are strong, the slope becomes smaller there. This suggests that the
arbitrager whose estimate of the winning probability exceeds the final value of the
win bet fraction begins to decrease faster there. Even so, the existence of the herder
is necessary to explain the probabilistic rule, because the herder’s response function
is the unique one that increases monotonically.

6 Data and R Script

One can download the data and the R script that is used to plot the figures in this
chapter. One should visit https://sites.google.com/site/shintaromori/home/data and
download AppDCSSD_Chap13.tar.gz.
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Smart Micro-sensing: Reaching
Sustainability in Agriculture via
Distributed Sensors in the Food Chain

R. Dolci and L. Boschis

1 Introduction

The last two decades has witnessed the growth of the industrial approach to
agriculture, with biotech and infotech becoming the buzzwords in farming. This also
led to a consolidation in two parts of the market: the companies producing farming
machinery and the ones developing new seeds and treatments. Today less than ten
multinationals control most processing and distribution of agricultural products and
in so doing leave sustainability to the smaller and weaker players, the farmers (Ikerd
1996).

The difference in level of sophistication between large multinationals and small
farmers suggests that some technologies and products could be misused and lead
to safety issues. For example, glyphosate has made news worldwide for its possible
role in causing acute myeloid leukemia (AML) or other pathologies (Andreotti et
al. 2018). Regardless of continued research in the toxicity of this chemical, there is
general consensus that frequency and quantity of its application are paramount to
keeping crop safe.

Food safety is therefore the top priority issue of the whole production chain,
from crops and cattle breeding to processing facilities. Foodborne disease, indeed, is
currently a critical public health concern worldwide. Being able to accurately assess
the presence of contaminants, pathogens, or allergens in foods is crucial, and there
is a constant research for new performing analytical methods and data management
tools.
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Quality by design (QbD) is simultaneously the new leading paradigm in the food
industry and is directly inspired by the process analytical technology (PAT) concept,
originally introduced for the pharmaceutical industry in 2004 by the US Food and
Drug Administration (FDA, United States Food and Drug Administration 2004).
This paradigm bases its shift on the hypothesis that the quality of the (food) products
can and should be incorporated by process design and not by postproduction quality
testing. It is evident that farmers need to be part of this all-encompassing effort
to produce safe products, and the ability to monitor the variables of their fields is
crucial in such respect.

Currently, food safety is assessed by standard techniques, such as ELISA, PCR,
chromatography, and spectroscopy analyses, carried out in central laboratories. This
approach is not time-effective and exhaustive, because only a limited number of
representative samples are tested. The development of point-of-use tests (POUT)
logically allows for a timely control on the farming process, by setting up local
extensive monitoring programs and rapid screenings. This requires high sensibility,
high selectivity, and rapid and reliable biosensors, integrated with an automated
control system, something Aizoon works on often exploiting machine learning
algorithms to develop a twin digital process of what happens in the field. In fact,
available physical sensors such as for temperature, relative humidity, PH, and
nitrogen allow for some tuning of the farming processes but do not indicate the
definite presence and concentration of pathogens such as aflatoxins and others.

By coupling real-time or near-real-time process monitoring capabilities with
advanced sensors, the industry is gradually moving from inferential monitoring
toward continuous measurement of core quality parameters. Research-based devel-
opment and implementation of PAT in farming is focused on improved control, rapid
final product quality evaluation, and increased productivity. A positive side effect
can be industrial innovation and enhanced competitiveness. In fact, the interest
toward “smart” analytical approaches based on the use of micro- and nanosensors is
continuously growing worldwide.

Portable and automated devices for the detection and characterization of biotic
and abiotic contaminant during the whole food supply chain are pivotal in this
context and constitute a dynamic area in food processing, which is experiencing
important developments coming mainly from the standpoint of food safety. Several
sensing systems are described in the literature (Bhardwaj and McGoron 2014).
Commonly they are based on an optical or electrochemical transducer function-
alized with a biological recognizing element (enzymes, cells, or affinity molecules)
(Narsaiah et al. 2012; Thakur and Ragavan 2013; Dong et al. 2014; Kim et al. 2016).
Several new commercially available tests are issued every year, but no one performs
all the requirements needed for food analysis protocols, and it is still difficult to
satisfy both accuracy and on-field reliability.

A new analytic platform named EliChip has been developed by Trustech
(www.trustech.it) and combines capillary data collection to elaboration during the
entire farming and food processing. A corn farmer can tune their seeding, irrigation,
treatment, harvesting, and storage processes if relevant data points inform about the
efficiency and safety of the produce. While sensing relative humidity, airflow, and

http://www.trustech.it
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temperature will help optimize irrigation, the sensing of molds or toxins such as
aflatoxins will guide the storage and processing of corn.

The EliChip device is based on a microfluidic ready-to-use disposable card (lab-
on-a-chip, LOC) and a small portable related reader. EliChip has been designed
to be automated and highly integrated with the whole control system software of
food smart factories. Following this vision, new portable and connected biosensors
like EliChip are very important to monitor chemical, physical, and microbiological
parameters, in addition to data and information collected during the whole food
production chain, which will allow the capillary control of industry production
processes. This centralized monitoring system will allow food companies to control
the entire production and distribution chain by detecting occurring anomalies
through diagrams that will quicken the identification of the problem. The dashboard
will therefore enable the real-time and near real-time intervention directly in the
production stages, thus improving the efficiency and limiting the random variability,
the rebalancing, and the product losses. Tools like EliChip are crucial to empower
this concept of “Smart Factory.”

In this section we describe the EliChip smart sensor and present the experimental
data regarding food allergens and mycotoxins detected. EliChip is a microfluidic
point-of-care biosensor able to detect biotic and abiotic contaminants (e.g., allergens
and mycotoxins) during the food supply chain. EliChip probes are based on
affinity biomolecules; both antibodies and aptamers can be used. In this paper, two
significant case studies are reported: lysozyme as food allergen and aflatoxin B1 as
food contaminant.

Lysozyme, like gluten and lactose, increases allergy-related risks in susceptible
individuals. It is naturally present in eggs and egg derivates and is often added
as preservative in various foods (such as cheese and wine), medications, and
vaccines. The residues of this protein could represent a serious risk for allergic
subjects. According to the EU Directive on labeling (2003/89/EU), if one or more
of the ingredients listed in Annex IIIa of Directive 2000/13/EC (and following
amendments) are present in wine, they must be indicated on the labeling of the
product. Egg proteins like lysozyme used during the production need to be present
at a detection level lower than 0.25 mg/L.

Aflatoxins are hepatotoxic and carcinogenic secondary metabolic products,
synthetized by fungi belonging in particular to the Aspergillus flavus and A.
parasiticus species (Council for Agricultural Science and Technology 1989; Kensler
et al. 2010). Aflatoxins are found as natural contaminants in many feedstuffs of plant
origin, especially in cereals but also in fruits, hazelnuts, almonds, and their products,
intended for human or animal consumption (Binder et al. 2007). It is well known that
AB1 can cause chronic diseases in humans and animals and can determine several
adverse effects, such as hepatotoxicity, genotoxicity, and immunotoxicity (Liu and
Felicia 2010). European legislation sets a maximum permitted concentration in
human food (2–12 μg/kg), infant foods (0.1 μg/kg), and animal feeds (5–50 μg/kg)
(Liu and Felicia 2010).
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2 System Overview and Description of the Analytical
Approach

For farming and the entire food chain to be sustainable, especially in consideration
of the sophistication brought to the field by large multinationals and the importance
of safety, we argue the relevance of gathering and sharing data at farmer level, some
kind of data democratization. It is farmers who decide how much pesticide (e.g.,
glyphosate) to apply and how frequently, so no matter how innovative is the latest
product from the chemical providers, knowledge needs to be with the farmer. When
considering Internet of Things (IoT) benefits to sustainable agriculture, one can see
the advantages of sensors and big data analytics in informing operators of the best
way to farm (Popovic et al. 2017).

In this specific work, a portable and automated diagnostic platform able to
perform miniaturized ELISA assays has been set up, developed, and applied to some
case studies. The system is suitable for point-of-use (POU) analysis in agrifood
quality control applications and can be a remote node or a larger network connected
to the control software of a “Smart Factory.”

The EliChip device is composed of:

– Disposable ready-to-use LOC cards.
– A light and automated reader.

The LOC has been designed to perform direct, indirect, competitive, and
noncompetitive assays based on antibodies as well as aptamers. The microfluidic
architecture is made of microchambers devoted to reagent reservoirs, reaction
chambers, optical detection areas, and waste collection chambers, all connected
through microchannels, as described in Fig. 1.

Four analytical lines are present in the LOC architecture, in order to perform
four tests in parallel. This configuration allows choosing between a semiquantitative
multi-target measurement, being able to perform either four different analyses in

Fig. 1 Microfluidic
architecture of EliChip LOC



Smart Micro-sensing: Reaching Sustainability in Agriculture via Distributed. . . 221

parallel, and a single quantitative target measurement, being able to perform a
calibration curve and one target quantitative analysis at the same time.

To perform a calibration curve at the same time of the analysis enables the
accurate quantification of the target, and this is a main advantage of EliChip that
allows an accurate and precise detection even outside the lab. Most of currently
available screening devices do not give this possibility, thus lacking in accuracy and
precision, especially for low-concentrated targets like aflatoxins.

In this configuration, the first line is dedicated to the analyte analysis, while
the second is dedicated to the blank (or max signal control, depending whether
the ELISA is competitive or not), and the last two lines are measures of known
reference standard analytes. The LOC, realized in a biocompatible thermoplastic
polymer such to be producible in industrial scale with injection molding, is designed
to have all reagents preloaded; antibodies or aptamers are bound to the surface of the
reaction region. In this configuration, the device is ready to use. The only operational
step required is loading the sample and inserting the LOC into the instrument, which
can be done by either a user or a robotic system.

Once inserted in the instrument, the LOC card is automatically connected
to micropumps and electrovalves inside the reader, and the software can prop-
erly manage the loading of reagents. Appropriate ELISA protocols are executed
automatically pumping reagents and samples through the microfluidic channels
architecture. When the final reaction occurs, absorbance readings are performed.
The software processes the data acquired by interpolating them with the calibration
curve and calculating the concentration of the target analyte. Then, the result of
analysis can be sent to the Smart Factory central control software.

The colorimetric detection was chosen as detection system. This is composed of
a light source, a light-emitting diode (LED), and a photodiode used as collector.
Experimental tests have shown that the method is selective and very sensitive,
reaching detection limits in the order of parts per trillion (ppt).

The method was tested for aflatoxin M1 in milk and B1 in corn and wheat and to
discover traces of allergens like lysozyme in wine.

The molecular probes used were antibodies, properly immobilized inside the
reaction chambers.

EliChip microfluidic architecture is designed to allow the performance both of
competitive and not competitive assays. In the reactive region, antibodies are bound
on the surface. The HPR, linked to the secondary antibody, and TMB in the solution
react producing a change of color directly related to the concentration of the target,
which can be evaluated with absorbency (Fig. 2).

HPR target

1st Antibody

2nd Antibody

HPR

Fig. 2 Typical ELISA protocol
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3 Experimental Results and Preliminary Outcomes
of the Research

The EliChip LOC device and system have been set up to execute both compet-
itive and noncompetitive assays, in order to detect small molecules as well as
macromolecules. Regarding small molecules, like aflatoxins, a competitive ELISA
design is preferred, since it allows the detection of very low concentration of the
target. As for macromolecules, like gluten and lysozyme, a noncompetitive ELISA
design is preferred, in order to reach high specificity. Experiments were carried
out to compare standard laboratory ELISA and EliChip LOC measurement of
different concentrations of target molecules. As molecular model for competitive
ELISA assay design, different aflatoxin B1 concentrations (0.1 ng/mL, 0.6 ng/mL,
1.2 ng/mL) have been tested. As molecular model for noncompetitive ELISA assay
design, different lysozyme concentrations (1.5 ng/mL, 6.25 ng/mL, 12.5 ng/mL)
have been tested. The resulting curves overlapped with standard ELISA, as showed
in Figs. 3 and 4.

In addition, in order to test the reproducibility of analytical results, different
experimental sessions have been planned to calculate the coefficient of variation
(CV). The CV is defined as the ratio of the standard deviation σ to the mean μ,
and it is a very important parameter to evaluate the reliability of the measurements.
Usually, for commercial ELISA assays, the CV is <10%. The EliChip LOC device
has been optimized to reach this requirement, and the data collected are shown in
Table 1.

Fig. 3 Comparison between
the performances of EliChip
(blue line) and a laboratory
ELISA test for aflatoxin B1
(purple line)

100

80

60

40

20

0
0.01 0.1

ng/ml

B
/B

O

1 10

Fig. 4 Comparison between
the performances of EliChip
(blue line) and a laboratory
ELISA test for lysozyme
(purple line)

1.5
0

0.5A
bs

or
ba

nc
e 

(O
D

)

1

1.5

2

2.5

6.25 12.5

ng/ml



Smart Micro-sensing: Reaching Sustainability in Agriculture via Distributed. . . 223

Table 1 EliChip
optimization

Aflatoxin B1
Session CV%
1 7
2 8.1
3 8.5
Lysozyme
Session CV%
1 6.4
2 10
3 9

These results are referred to EliChip LOC devices fabricated by lab-scale
prototyping techniques and operator-depended assembly. Thus, the reproducibility
of the fabrication and of the bio-functionalization needs to be achieved using
industrial-grade equipment.

Preliminary outcomes confirm that the developed portable device shows similar
test quality compared to conventional laboratory ELISA, opening new interesting
challenges in the setting up of detection systems to be exploited during the food
supply and production chain.

4 Conclusion and Future Work

In conclusion, it is evident how the fragmented world of agriculture, where a
multitude of farmers operate under much economic pressure from large multina-
tionals in the machinery and chemical sectors and from markets that are based on
commodity, can benefit from a more sophisticated approach to data analytics. At
present the use of third-party laboratories to monitor the presence of toxins and
other pathogens causes delays and costs to farmers who would need a much more
real-time indication of problems they need to act upon swiftly.

In this regard, the availability of a portable and economic lab-on-a-chip (LOC)
that allows for immunoenzymatic reactions to test for the presence of toxins and
pathogens is a welcome development.

This chapter has presented EliChip as an example of one such portable sensor.
Future work will be focused on the development of virtual sensors or the application
of machine learning algorithms to the estimation of variables from the big data
analysis of the other known physical and biological conditions.

Acknowledgment The work was part of the project “Food Digital Monitoring,” financed by the
Piedmont Region with European Funds for Regional Development (Call: Smart Factory Platform).
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High-Frequency Data Analysis of Foreign
Exchange Markets

Aki-Hiro Sato

1 Introduction

A challenging new field called econophysics has been established during the past
quinquennium. This movement was derived from the fact that recently, physicists
have begun writing research papers on finance and economics. Econophysics is a
movement to apply statistical physics to economically motivated problems, and it
is attracting many physicists. The reason is that they can be considered exciting
subjects of “complex systems,” indeed, the definition of complex systems has not
yet been properly formalized. However, it is pointed out that complex systems
include a self-organization mechanism (Haken 1983). In other words, they should be
understood as circular causal systems including information feedback loops (Wiener
1961). Namely, cause and effect look like a reversal. For example, a cause produces
an effect and the effect leads to the next cause.

Economical systems (of course, similarly, social systems) obviously present
“complexity” derived from interactions between humans. Such interactions allow
communication with each other and common understandings to converge into
a range or diverge. Namely, information flow through interactions can produce
both negative and positive feedback. For example, a common understanding is
established at a certain point when the negative feedback appears (Helbing 2001).
On the other hand, a misunderstanding is more amplified as deeper communication
when positive feedback exists.
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Recently, investigations of foreign exchange rates have been conducted inten-
sively by several researchers (Gworek et al. 2010; Kaltwasser 2010; Alfarano
et al. 2006; Liu et al. 2010). Moreover, it became possible to examine the foreign
exchange market using tick-by-tick data (Sazuka et al. 2009; Inoue and Sazuka
2010; Ohnishi et al. 2004; Sato and Takayasu 1998; Hashimoto and Ito 2010).
Ohnishi et al. (2004) proposed a weighted-moving-average analysis for the tick-
by-tick data of yen–dollar exchange rates. Meanwhile, Hashimoto and Ito examined
the market impact of Japanese macroeconomic statistics news within minutes of
their announcements on the yen–dollar exchange rates (Hashimoto and Ito 2010).
In general, after participants perceive information, they determine their investment
attitude. However, the impact of news on trading decisions is an open question (Kyle
1985).

Nevertheless, it may include meaningful information to investigate both quota-
tion and transaction activities. In this chapter, we focus on the numbers of quotations
and transactions for each currency pair in the foreign exchange market as a test
bed of collective human behavior that can be empirically observed, and we attempt
to develop a method to characterize them as a multivariate time series. In fact,
Bonanno et al. investigated the spectral density of both the logarithm of prices
and the daily number of trades of a set of stocks traded on the New York Stock
Exchange (Bonanno et al. 2000). They detected a 1/f -like behavior for the spectral
density of the daily number of trades. It shows that the number of transactions is
generated by a long memory process similar to volatility. In such studies on financial
time series, several researchers take a stance that the traded volume or number of
transactions (quotations) is a proxy variable for unobservable information arrivals
perceived by market participants.

The statistical properties of price fluctuations are important in understanding how
real markets behave. A large amount of high-frequency financial data are available
owing to high-performance computers and huge data storage. Mantegna et al.
investigated fluctuations in the stock market price index of the S&P 500 (Mantegna
and Stanley 1995). Meanwhile, Mandelbrot analyzed the market price changes in
an open market and proposed the multi-fractal model to describe them (Mandelbrot
1997).

The price fluctuations were treated as stochastic processes. Traditionally,
stochastic differential equations are often used to understand the characteristics
of option pricing (Black and Scholes 1973; Merton 1973). Specifically, they assume
that a stock price follows a geometric Brownian motion,

dYt = νYtdt + σYtdWt , (1)

where ν is the expected return per unit time, σ 2 is the variance per unit time, and Wt

is a Wiener process. More recently, stochastic processes based on time-dependent
volatility (so-called clustered volatility) have been proposed (Engle 1982; Bollerslev
1986; Nelson 1990). Especially, ARCH-type stochastic processes are well-known.
In fact, this approach has clarified the properties of market price fluctuations, but it
does not answer why the market prices fluctuate, because it is a phenomenological
approach.
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An approach using agent-based market models aims to construct an artificial
market model having dealers who trade virtual securities in computers and to
calculate numerically market prices that result from dealers’ interactions (Takayasu
et al. 1992; Hirabayashi et al. 1993; Palmer et al. 1994; Brock and LeBaron 1996;
Bak et al. 1997; Johnson et al. 1998; Egenter et al. 1999; Lux and Marchesi
1999; Matassini and Franci 2001; Jefferies et al. 2001). These models have dealers
interacting with market prices and some even include learning dealers. Advantages
of this approach are that one can follow market prices easily and infer data unknown
in the real market through numerical simulations.

2 Statistical Property of Foreign Exchange Rates

2.1 Fundamental Properties

Mantegna et al. investigated time series of the stock market index of the S&P500
and reported in their famous paper (Mantegna and Stanley 1995) that a probability
density function of changes obeys a power law distribution. They indicated that the
power law exponent is estimated as 1.4. However, it is clarified that the exponent
is not universal in other research. Besides stock market prices, it is known that the
probability density function of foreign exchange rates also follows a power law
distribution (Takayasu et al. 2000).

Here, we deal with high-frequency financial data, the so-called tick data of
yen–dollar exchange rates. They are collected by Bloomberg from representative
dealers, and the dealers report their transaction prices on which they have traded
to Bloomberg whenever they trade; then, Bloomberg announces the prices to the
rest of the world right away. These data are not sampled at a constant interval but at
every report. As a result, the interval of their time stamp is not constant. Data from 6
October 1998 to 4 December 1998 with 477,060 ticks except Saturday and Sunday
are available. The foreign currency market is usually open on weekdays, and the
trades are successive all over the globe.

Figure 1 displays a typical example of time series of the yen–dollar currency
rate. Blank spaces represent weekends. Let ticks of the yen–dollar exchange rate be
numbered in order, the rate of the s-th tick be denoted as rs , and the corresponding
change be Δrs = rs−rs−1. Figure 2 shows typical examples of yen–dollar exchange
rates and their changes. The sampling term is from 6 October 1998 to 9 October
1998 with 36,758 data points (36,787 data points in the changes). The time series
of Δrs has a continuation of changes, which is called volatility clustering. Volatility
means variance/standard deviation in physics.

We focus on a frequency distribution of changes at s, its autocorrelation functions
(defined in detail below), and a distribution of time intervals between trades as
statistical properties of the sequence. Figure 3 exhibits a probability density function
estimated from rate changes Δrs and the corresponding cumulative distribution
function, which is defined by
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Fig. 1 Typical examples of time series of yen–dollar exchange rates from 06 October 1999 to 04
December 1999. r(t) represents the rate at time t . Blank spaces represent weekends

P(≥ |x|) =
∫ −|x|

−∞
p(x′)dx′ +

∫ ∞

|x|
p(x′)dx′, (2)

where p(x) denotes the probability density function. It is found that the probability
density function has fatter tails than a Gaussian distribution with the same variance
(0.006375043). A cumulative distribution function has a linear slope with a quick
decay at 1 yen in log–log plots. It is known that if the cumulative distribution
function has a linear slope in log–log plots, it follows the power law distribution,

P(≥ |x|) ∝ |x|−β, (3)

where β is a power law exponent and 0 < β < 2. Fitted to the cumulative
distribution function numerically, we get β = 1.8.

Figure 4 shows the autocorrelation coefficient R
(1)

s′ and volatility correlation

coefficient R
(2)

s′ , defined as

R
(1)

s′ = 〈rsrs+s′ 〉 − 〈rs〉〈rs+s′ 〉
〈r2〉 − 〈r〉2 , (4)

R
(2)

s′ = 〈r2
s r2

s+s′ 〉 − 〈r2
s 〉〈r2

s+s′ 〉
〈r4〉 − 〈r2〉2

. (5)

The autocorrelation coefficient R
(1)

s′ displays a short-time correlation with a negative

value at s′ = 1. On the other hand, the volatility correlation coefficient R
(2)

s′ shows
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Fig. 2 Typical examples of sequences of the yen–dollar exchange rates numbered in order (a) and
their changes (b) from 06 October 1999 to 09 October 1999, where rs represents the rate at the s-th
tick and Δrs a corresponding change

a far longer correlation than R
(1)

s′ . As mentioned above, this means that a high-
volatility regime sustains for long ticks (volatility clustering).

Consider time stamps of time series in Fig. 1. As shown in Table 1 an interval
of their transaction time is not constant and appears random. We define an interval
between the (s − 1)-th trade and the s-th trade as τs = ts − ts−1, where ts is the time
when the s-th transaction occurs. We show averaging intervals over days at the time t

in Fig. 5. It is obviously found that intervals between successive trades depend fully
on transaction time. This implies that trading activity is related to human activity
and that activity averages differ from each other.
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Fig. 3 (a) Semi-log plots of a probability density function of changes in yen–dollar exchange
rates together with a Gaussian distribution having the same variance as the data (variance =
0.006375043). Triangles represent estimated distributions and a solid-line Gaussian. (b) Log–log
plots of a corresponding cumulative distribution function. A solid line represents the power law
with β = 1.8

Here, we focus on the mean interval averaged over T seconds from the observing
point (Takayasu et al. 2002), and we introduce a normalized time interval μT,s ,
which is defined as follows:

〈τs〉T = 1

Ns(T )

s−1∑

i=n−Ns(T )

τi, (6)
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Fig. 4 (a) Typical examples of an autocorrelation coefficient of Δps . A small panel in the graph
represents the focusing snap near zero. (b) Corresponding volatility correlation coefficient. A small
panel into the graph represents log–log plots of it
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Table 1 Typical examples of
time series of yen–dollar
currency rates. The
transaction time resolution is
a second. The time stamps are
US Central Time (Chicago
time)

Trade day Transaction time Transaction price

1998/10/06 13:00:21 132.780

1998/10/06 13:00:21 132.780

1998/10/06 13:00:21 132.780

1998/10/06 13:00:23 132.780

1998/10/06 13:00:32 132.780

1998/10/06 13:00:44 132.780

1998/10/06 13:00:48 132.780

1998/10/06 13:01:00 132.810

1998/10/06 13:01:00 132.810
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Fig. 5 Mean values of intervals between two successive trades over an hour, where t represents
the time and 〈τ 〉 an average of intervals over the sampling day. European activity runs from 00:00
to 07:00. American activity runs through from 07:00 to 17:00. Asian activity runs through from
17:00 to 24:00. The time stamp is US Central Time (Chicago time)

〈μT,s〉 = τs

〈τs〉T , (7)

where Ns(T ) represents the number of transactions in the preceding T seconds, and
〈τs〉T is the corresponding mean interval. For example, if the (s − 1)-th tick occurs
more than T seconds before the s-th tick, then Ns(T ) is set to unity.

Figure 6 shows cumulative distribution functions of normalized transaction
intervals at bin size T . The normalized interval distributions are plotted for two
typical sizes of T . The thick line is normalized using a bin size of 150 s, which
almost overlaps with the theoretical line of exponential decay, P(≥ μT,s) =
exp(−μT,s), shown by a broken line. The thin line shows the distribution normalized
using a bin size of 400 s. Therefore, this means that we can tune the mean interval
of the normalized time to be close to unity, where 〈μT,s〉 = 1 if we choose an
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Fig. 6 Semi-log plots of cumulative distributions of a normalized transaction interval. The thick
line is normalized using a 150 s bin size, and the thin line is normalized using a 400 s bin size. The
broken line shows the exponential, e−μT,s

appropriate bin size T . It has longer intervals compared with the case of T = 150 s.
We found that for any bin size smaller than 150 s, we always obtained a clear
exponential decay. On the other hand, if we chose a bin size larger than 150 s, we
obtained a longer tail that deviated from the exponential decay. Thus, the deviation
from the exponential decay in our overall data set can be viewed as an artifact
of changes in the mean interval with a time scale larger than 150 s. In practice,
we conclude from these results that the transaction intervals are a quasi-stationary
Poisson process within the range of 150 s and local mean interval changes in the
time order of several hundred seconds.

This process can be modeled as the autoregressive conditional duration (ACD)
model in the context of econometrics (Engle and Russell 1998). Suppose that τs can
be represented as

τs = ψsεs, (8)

where εs is an i.i.d. nonnegative random number and ψs is assumed to be a linear
relationship.

ψs = ω +
p∑

j=1

αj τs−j +
q∑

j=1

βs−jψs−1, (9)
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If we assume εs is sampled from a standard exponential distribution

f (ε) = e−ε, (10)

then this is called EACD(p,q). In contrast, if we observe the number of transactions
X in every T , then X is modeled as a Poisson process

P(X; T ) = e−λ(t)T (λ(t)T )X

X! , (11)

where λ(t) is an intensity described as

λ(t) = 1

ψN(t)−1
. (12)

However, a multidimensional viewpoint is needed to understand states of the foreign
exchange market. In the next subsection, we will introduce a way to deal with the
tick-by-tick data of the foreign exchange market from a comprehensive perspective.

2.2 Fluctuation Scaling

Fluctuation scaling refers to the fact that there exists a scaling relationship between
the mean of constituent flows at the i-th observation point and their standard
deviation on a system. The origin of Taylor’s power law has been successively
discussed in the literature of ecology (Kilpatrick and Ives 2003; Samaniego et al.
2011; Kendal 2004) and physics (Fronczak et al. 2010; Eisler and Kertész 2006;
Eisler et al. 2008; Sato et al. 2010; Kendal and Jorgensen 2011). Taylor’s law has
been recently hypothesized to result from the second law of thermodynamics and
the behavior of the density of states. This hypothesis is predicated on physical
quantities, such as free energy and an external field, though it remains unproven.
The Tweedie models can express power variance functions over a wide range of
measurement scales (Kendal and Jorgensen 2011). However, there are few studies
on the relationship between cross-correlation and Taylor’s law for multivariate
counting processes.

Multivariate Poisson distributions with correlations have been considered to
model multivariate counting data (Teicher 1954). Guerrero considers an entropy of a
multivariate Poisson distribution (Guerrero-Cusumano 1995). While the multivari-
ate Poisson model is the most important among discrete multivariate distributions, it
has several shortcomings in its application. The main drawback of the multivariate
Poisson model is its complicated form of the joint probability function. As a result,
multivariate Poisson distributions are defined as characteristic functions (Lukacs
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and Beer 1977). Karlis and Meligkotsidou studied mixtures of multivariate Poisson
distributions and their parameter estimation procedure based on the maximum like-
lihood (ML) estimator and the expectation–maximization (EM) algorithm (Karlis
and Meligkotsidou 2007). However, the convergence of parameter estimates of both
the ML and EM estimators strongly depends on starting points of computation.
In this way, we need much computational power to find adequate parameter
estimations. A simpler way to generate a correlation among variables is to use a
linear transformation to independent univariate Poisson random variables. However,
it is not sufficient to consider Taylor’s scaling relationship.

Here, we attempt to consider an infinite mixture of the multivariate Poisson
distribution in a simpler way with fluctuations in common mode. Let the market
activity X of the foreign exchange market be described by a Poisson distribution
with a parameter μ. Let Ki be further a fraction that is devoted to an asset i, where∑N

i=1 Ki = 1. Observing the market during the period T , we have time series where
X is sampled from

P(X; T ) = e−μT (μT )X

X! , (13)

and activity Xi for the asset i from

Pi(Xi; T ) = e−μKiT
(μKiT )Xi

Xi ! . (14)

Their fluctuations in activity Xi are equal to the square root of mean value.

σi = √
μKiT = 〈Xi〉1/2. (15)

Let us assume that the whole market is equally described by a set of Poisson
processes with intensities described by G(μ), μ ∈ (0,+∞) . It follows that now

P(X; T ) =
∫ ∞

0
e−μT (μT )X

X! G(μ)dμ, (16)

and

Pi(Xi; T ) =
∫ ∞

0
e−μKiT

(μKiT )Xi

Xi ! G(μ)dμ. (17)

Then, we have

〈Xi〉(T ) =
∫ ∞

0
e−μKiT

(μKiT )Xi

Xi ! XiG(μ)dμ = KiT 〈μ〉, (18)
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and

〈X2
i 〉(T ) = 〈K2

i T 2μ2〉 + 〈KiT μ〉
= K2

i T 2〈μ2〉 + KiT 〈μ〉

= K2
i T 2

∫ ∞

0
μ2G(μ)dμ + KiT

∫ ∞

0
μG(μ)dμ

= K2
i T 2

∫ ∞

0
μ2G(μ)dμ + 〈Xi〉. (19)

Because we have

〈μ2〉 =
∫ ∞

0

(
μ − 〈μ〉)2G(μ)dμ − 〈μ〉2 + 2

∫ ∞

0
μ〈μ〉G(μ)dμ

=
∫ ∞

0

(
μ − 〈μ〉)2

G(μ)dμ + 〈μ〉2, (20)

σ 2
i (T ) = 〈X2

i 〉(T ) − 〈Xi〉2(T )

= K2
i T 2〈μ2〉 + 〈Xi〉 − K2

i T 2〈μ〉2

= K2
I T 2(〈μ2〉 − 〈μ〉2) + 〈Xi〉, (21)

we got

σ 2
i (T ) = K2

i T 2
∫ ∞

0

(
μ − 〈μ〉)2

G(μ)dμ + KiT 〈μ〉

= 〈Xi〉2(T )

∫ ∞
0 (μ − 〈μ〉)2G(μ)dμ

〈μ〉2
+ 〈Xi〉(T )

= 〈Xi〉(T )
[
1 + 〈Xi〉(T )

∫ ∞
0

(
μ − 〈μ〉)2

G(μ)dμ

〈μ〉2

]
. (22)

Thus, we have

σ 2
i (T ) = 〈Xi〉(T )

[
1 + 〈Xi〉(T )

σ 2
μ

〈μ〉2

]
, (23)

where 〈μ〉 = ∫ ∞
0 μG(μ)dμ and σ 2

μ = ∫ ∞
0

(
μ − 〈μ〉)2

G(μ)dμ, but because
〈Xi〉(T ) = KiT 〈μ〉, we also have

σ 2
i (T ) = 〈Xi〉(T )

[
1 + KiT

σ 2
μ

〈μ〉
]
. (24)
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Because from Eq. (13), we have 〈X〉(T ) = 〈μ〉T and 〈X2〉(T ) =
T 2

∫ ∞
0 μ2G(μ)dμ + 〈μ〉T , we get

{
〈μ〉 = 〈X〉(T )

T
,

σ 2
μ = 〈X2〉(T )−〈X〉(T )−〈X〉2(T )

T 2 .
. (25)

Hence, we have

σ 2
i (T )

σ 2(T )
=

〈Xi〉(T )
[
1 + 〈Xi〉(T )

σ 2
μ

〈μ〉2

]

T 2σ 2
μ + T 〈μ〉

= K2
i T σ 2

μ + Ki〈μ〉
T σ 2

μ + 〈μ〉 . (26)

From the high-resolution data of the foreign exchange market, we extract the
number of quotations (transactions) Xi,T (t, s) (i = 1, . . . , N; t = 0, . . . ,Qs −1)

in the interval [tT , (t + 1)T ] for the s-th observation period.

〈Xi〉(T , s) = 1

Qs

Qs−1∑

t=0

Xi,T (t, s), (27)

σ 2
i (T , s) = 1

Qs

Qs−1∑

t=0

(
Xi,T (t, s) − 〈Xi〉(T , s)

)2
, (28)

〈X〉(T , s) = 1

Qs

Qs−1∑

t=0

N∑

i=1

Xi,T (t, s), (29)

σ 2(T , s) = 1

Q

Qs−1∑

t=0

( N∑

i=1

Xi,T (t, s) − 〈X〉(T , s)
)2

. (30)

Because we can empirically obtain these means and the variance as functions in
terms of T , the parameter of the common mode 〈μ〉(s) and σ 2

μ(s) within s should
be computed from these values at a different T . From Eq. (25), we may determine
these values by minimizing the squared errors

e2 =
Tmax∑

T =1

(
〈μ〉(s) − 〈X〉(T , s)

T

)2

+ λ

Tmax∑

T =1

(
σ 2

μ(s) − 〈X2〉(T , s) − 〈X〉(T , s) − 〈X〉2(T , s)

T 2

)2
,
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where λ is an arbitrary constant. Partially differentiating it in terms of 〈μ〉(s) and
σ 2

μ(s) and setting them to zero lead to

〈μ〉(s) = 1

Tmax

Tmax∑

T =1

〈X〉(T , s)

T
, (31)

σ 2
μ(s) = 1

Tmax

Tmax∑

T =1

〈X2〉(T , s) − 〈X〉(T , s) − 〈X〉2(T , s)

T 2 . (32)

By using the bootstrap method, we computed 〈μ〉(s) and σ 2
μ(s) from the

number of quotations and transactions for each 1-week observation period by
using Eqs. (27), (28), (29), and (30). Figure 7 shows the fluctuation coefficients
〈μ〉(s)/σμ(s) for each week, respectively. The financial crises are labeled as the
(I) Paribas shock (August 2007), (II) Bear Stearns shock (February 2008), (III)
subprime crisis driven by Lehman shock (September 2008 to March 2009), (IV)
Euro crisis (April to May 2010), and (V) 3/11 earthquake and tsunami disaster of
Japan. From Fig. 7, it is found that two phases exist before and after August 2009
in both graphs. Both the coefficients of variation have highly similar tendencies.
Moreover, during the significant shocks and crises, they increase.

Furthermore, from the actual data, we confirm whether Eq. (23) holds. Figure 8
(top) shows the relationship between the mean of the number of quotations and their
variance during different intervals T for several weeks. We found that these plots fit
well with Eq. (23). We further confirmed whether Eq. (24) holds. Figure 8 (bottom)
shows σ 2

i (T , s)/〈Xi〉(T , s) − 1 versus T computed from the number of quotations.
From these graphs, we found that the linear tendency of σ 2

i (T )/〈Xi〉(T ) on 〈Xi〉(T )

exists for any i. The slope of this relationship is further proportional to Ki .
Moreover, the least squares method is applicable to finding an adequate coeffi-

cient σ 2
μ(s)/〈μ〉2(s) in Eq. (23). The squared error is defined as

e2 =
Tmax∑

T =1

N∑

i=1

[
σ 2

i (s) − 〈Xi〉(T , s)
{
1 + 〈Xi〉(T , s)/κ2(s)

}]2
, (33)

where κ(s) = 〈μ〉(s)
σμ(s)

. Partially differentiating e2 in terms of κ(s) and setting it zero
lead to

∂e2

∂κ
= 4

Tmax∑

T =1

N∑

i=1

[
σ 2

i − 〈Xi〉(T )
{
1 + 〈Xi〉(T )/κ2}

]
〈Xi〉2(T )κ−3 = 0. (34)

Hence,

Tmax∑

T =1

N∑

i=1

σ 2
i 〈Xi〉2(T ) −

Tmax∑

T =1

N∑

i=1

〈Xi〉3(T )
{
1 + 〈Xi〉(T )/κ2} = 0.

Tmax∑

T =1

N∑

i=1

σ 2
i 〈Xi〉2(T ) −

Tmax∑

T =1

N∑

i=1

〈Xi〉3(T ) − κ−2
Tmax∑

T =1

N∑

i=1

〈xi〉4(T ) = 0.
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Fig. 7 Fluctuation coefficients of the total number of (a) quotations and (b) transactions per
minute for each week. Values of 〈μ〉(s)/σμ(s) for the period from 28 May 2007 to 31 June 2011.
The solid curves are obtained from empirical means and standard deviations, and dashed curves
are from by the least squares method for empirical values of 〈Xi〉(T , s) and σ 2

i (T , s)
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〈μ〉(s)
σμ(s)

=

√
√
√
√
√
√
√
√
√
√

Tmax∑

T =1

N∑

i=1

〈Xi〉4(T , s)

Tmax∑

T =1

N∑

i=1

σ 2
i (T , s)〈Xi〉2(T , s) −

Tmax∑

T =1

N∑

i=1

〈Xi〉3(T , s)

. (35)

It is confirmed that the values of 〈μ〉(s)/σμ(s) obtained from Eqs. (31) and
(32) are significantly close to fitting the values computed from Eq. (35), which is
calculated with the least squares method to Eq. (23). As shown in Fig. 7, we find
that these values are close to each other for all the observation weeks. Because the
fluctuation coefficients of μ correspond to the common mode, it is concluded that
comprehensive behavior of the foreign exchange market may be captured by the
total number of quotations and transactions in the market.

Moreover, we may calibrate Ki by using an empirical variance–covariance
matrix. The squared error between an empirical variance–covariance matrix and
a theoretical one should be minimized. Because we have the empirical variance–
covariance matrix

Covemp

ij (T , s) = 1

Qs

Qs−1∑

t=0

(
Xi,T (t, s) − 〈Xi〉(T , s)

)

×
(
Xj,T (t, s) − 〈Xj 〉(T , s)

)
, (36)

and a theoretical one

Cov(Xi,Xj )(T , s) =
{

Ki(s)Kj (s)σ
2
μ(s)T 2 (i 	= j)

K2
i (s)σ 2

μ(s)T 2 + Ki(s)〈μ〉(s)T (i = j)
, (37)

we further define their squared error as

e2 =
Tmax∑

T =1

N∑

l=1

N∑

m=1

(
Covemp

lm(T , s) − Cov(Xl,Xm)(T , s)
)2

= 2
N−1∑

l=1

N∑

m=l+1

(
Covemp

lm−KlKmσ 2
μT 2

)2+
N∑

l=1

(
Covemp

ll −(
K2

l σ 2
μT 2+Kl〈μ〉T ))2

.

(38)

Partially differentiating Eq. (38) in terms of Ki(s) and setting it zero imply

∂e2

∂Ki

= −4
N∑

m=l+1

(
Covemp

lm − KlKmσ 2
μT 2

)
Kmσ 2

μT 2

− 2
(

Covemp

ii − (
K2

i σ 2
μT 2 + Ki〈μ〉T )) × (

2Kiσ
2
μT 2 + 〈μ〉T )

)
(39)
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= −2
{

2σ 2
μT 2

N∑

m=l+1

Covemp

lmKm − 2σ 4
μT 4Ki

N∑

m=i+1

K2
m + 2KiCovemp

ii σ 2
μT 2

+ Covemp

ii 〈μ〉T − (
K2

i σ 2
μT 2 + Ki〈μ〉T )(

2Kiσ
2
μT 2 + 〈μ〉T )}

(40)

= 0.

We have nonlinear equations with respect to Ki(s)

2σ 4
μ(s)

Tmax∑

T =1

T 2
N∑

m=1

Covemp

im(T , s)Km(s)

− 2σ 4
μ(s)Ki(s)

Tmax∑

T =1

T 4
N∑

m=1

K2
m(s)

− 3K2
i (s)〈μ〉(s)σ 2

μ(s)

Tmax∑

T =1

T 3 − Ki(s)〈μ〉2(s)

Tmax∑

T =1

T 2

+ 〈μ〉(s)
Tmax∑

T =1

Covemp

ii (T , s)T = 0. (i = 1, . . . , N) (41)

By solving the nonlinear equations described as Eq. (41) numerically, we can finally
obtain normalize Ki(s).

To examine the method to calibrate parameters, we use actual tick-by-tick data of
the foreign exchange market for 31 currency pairs consisting of 22 currencies (ICAP
2013).1 We obtain real solutions for Ki(s) by using Eq. (41), and the calculated
values are shown in Table 2. The calibrated values are consistent with the values
computed from relative frequencies of the number of quotations.

As shown in Fig. 7, it is found that the coefficients estimated from the model
with computed parameters Ki(s) and those values directly computed from the
data showed similar temporal development. The estimated parameters can be used
to capture the collective behavior of market participants in the foreign exchange
markets.

The proposed method may measure the weights of participants in socioeconomic
activities from the number of counts for specific activities.

1USD: US Dollar, CHF: Swiss Franc, EUR: European Union Euro, JPY: Japanese Yen, NZD: New
Zealand Dollar, AUD: Australian Dollar, GBP: British Pound, CAD: Canadian Dollar, XAU: Gold,
XAG: Silver, SEK: Swedish Krona, XPD: Palladium, XPT: Platinum, SGD: Singapore Dollar,
HKD: Hong Kong Dollar, NOK: Norway Krona, ZAR: South African Rand, MXN: Mexico Peso,
DKK: Danish Krone, CZK: Czech Koruna, TRY: Turkish Lira, and RUB: Russian Ruble.
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Table 2 Calibrated values of
Ki(s) for 31 currency pairs
consisting of 22 currencies
and precious metals for the
period from 3 to 10 August
2008 at Tmax = 100. The
value is compared with the
calibrated value computed
from their relative
frequencies,
K̃i (s) = ∑Qs−1

t=0 Xi,T (t, s)/
∑Qs−1

t=0

∑N
i=1 Xi,T (t, s)

Currency pair Calibration Comp.

USD/CHF 0.066246 0.061597

EUR/USD 0.060267 0.067412

USD/JPY 0.040629 0.054125

EUR/JPY 0.061965 0.076751

EUR/CHF 0.037817 0.033362

NZD/USD 0.006404 0.008336

AUD/USD 0.036921 0.038402

GBP/USD 0.051995 0.050295

USD/CAD 0.030301 0.025032

AUD/NZD 0.001012 0.001172

EUR/GBP 0.035353 0.040190

XAU/USD 0.080827 0.077078

XAG/USD 0.051762 0.038437

EUR/SEK 0.017530 0.012714

CHF/JPY 0.028117 0.035791

XPD/USD 0.004156 0.002822

XPT/USD 0.005090 0.004679

USD/SGD 0.000019 0.000030

USD/HKD 0.000657 0.001297

EUR/NOK 0.006757 0.005836

USD/ZAR 0.000010 0.000013

USD/MXN 0.032158 0.025681

EUR/DKK 0.000135 0.000092

EUR/CZK 0.000000 0.000002

USD/RUB 0.036570 0.024212

GBP/JPY 0.080507 0.100893

GBP/CHF 0.029609 0.025867

AUD/JPY 0.050981 0.063165

USD/TRY 0.022449 0.014726

NZD/JPY 0.043717 0.052984

CAD/JPY 0.050737 0.057006

3 Conclusion

This chapter investigated the quotation and transaction activities of the foreign
exchange markets as an observable example of collective man–machine behavior.
We proposed a simple multivariate Poisson model with the common mode to
describe both the quotation and transaction activities of the foreign exchange
market. We developed a method to compute fluctuation coefficients of the common
mode from actual observations. We found that the fluctuation coefficients increase
during unstable market situations. It was concluded that the fluctuation coefficients
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of the common mode for quotation and transaction activities may be used to quantify
the situations of the foreign exchange markets from a comprehensive viewpoint.

The proposed method may measure collective human behavior and use the
weights of participants in socioeconomic activities from the number of counts for
specific activities as indicators to quantify the importance of specific behavior.
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On Measuring Extreme Synchrony with
Network Entropy of Bipartite Graphs

Aki-Hiro Sato

1 Introduction

Recently a comprehensive measurement of agent behavior can be conducted based
on high-resolution data on socioeconomic systems due to the development of
information and communication technology. In particular, we want to consider a
problem that we need to deal with the collective behavior of millions of nodes
contribute to the observable dynamical features of such a complex system (de
Menezes and Barabási 2004).

To do so, it is necessary to develop an adequate model both which considers states
of agent behavior from the comprehensive point of view and which is as simple as
one can estimate its parameters from actual data under assumptions. Specifically in
socioeconomic activities, if we regard the situation where people exchange things,
money, and information with each other as a network, then it further seems to be
fruitful to study such social or economic systems from a network point of view.

To make advances in this direction, we need to treat structure on the basis of
information transmission among heterogeneous agents in a given socioeconomic
system from a limited amount of available data without precise knowledge on
communication networks.

Several networks relating to human activity can be described as bipartite graphs
with two kinds of nodes as shown in Fig. 1. For example, it is known that
financial markets (financial commodities and participants), blog systems (blogs and
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Fig. 1 A conceptual illustration of social systems where M agents (B node) communicate with
one another in K groups (A node)

bloggers), and economic systems (firms and goods/consumers) can be described as
a directed bipartite graph (Lambiotte et al. 2007; Chmiel et al. 2007; Sato 2007;
Sato and Hołyst 2008).

Such a bipartite network is recognized by observers when constituents are
transmitted between two kinds of nodes. Links are recognized by observers when
a constituent moves from one node to another node. Therefore bipartite network
representation also seems to be one of our cognitive categories such as causality,
time and space, intensity, quantity, and so on.

This chapter considers a model-based comparative measurement of collective
behavior of groups based on their activities (Sato 2017). Specifically, a descriptive
multivariate model of a financial market is proposed from a comprehensive point
of view. Using comprehensive high-resolution data on the behavior of market
participants, correlations of log returns and quotations (transactions) are analyzed
on the basis of theoretical insights from the proposed model.

As a subject, we focus on financial markets which are attracting numerous
researchers in various fields since they are of complex systems consisting of
various types of heterogeneous agents. In the context of finance, the normal
mixture hypothesis (or more generally “mixture of distribution hypothesis”) has
been proposed as an alternative explanation for the description of return distribution
of financial assets by several studies (Mandelbrot and Taylor 1967; Clark 1973;
Tauchen and Pitts 1983; Richardson and Smith 1994). They have considered trading
volume or the number of transactions (or quotations) as a proxy of the latent number
of information arrivals. The proposed model may lead to better understanding
of dynamics for return-volume relationship including volatility persistence (Lam-
oureux and Lastrapes 1990; Andersen 1996; Liesenfeld 1998; Watanabe 2000).

Cloud-based services can be used to provide various kinds of real-world applica-
tions. In fact, rich data on both mobility and activity of users have been accumulated
by the cloud service providers. If secondary usage of the data collected in the cloud-
based servers is permitted both legally and adequately and data analytics procedures
for anonymized data can be developed, then we will be able to quantify risk and
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chance of our society based on rich data on human mobility and activity with high
resolution.

The chapter aims to propose a method to detect change points of temporally evo-
lutionary bipartite network regarding anonymity of personal information. Moreover,
in order to confirm an ability of the proposed method empirically, the proposed
method is applied to data of trading activity collected in a cloud-based service of
the foreign exchange market and quantified trading activity of the foreign exchange
market from a comprehensive point of view.

The network structure of various kinds of physical and social systems has
attracted considerable research attention. A many-body system can be described
as a network, and the nature of growing networks has been examined well (Albert
and Barabási 2002; Miura et al. 2012). Power-law properties can be found in the
growing networks, which are called complex networks. These properties are related
to the growth of elements and preferential attachment (Albert and Barabási 2002).

A network consists of several nodes and links that connect nodes. In the literature
on the physics of socioeconomic systems (Carbone et al. 2007), nodes are assumed
to represent agents, goods, and computers, while links express the relationships
between nodes (Milaković et al. 2010; Lämmer et al. 2006). The network structure
is perceived in many cases through the conveyance of information, knowledge, and
energy, among others.

In statistical physics, the number of combinations of possible configurations
under given energy constraints is related to “entropy.” Entropy is a measure that
quantifies the states of thermodynamic systems. In physical systems, entropy
naturally increases because of the thermal fluctuations on elements. Boltzmann
proposed that entropy S is computed from the possible number of ensembles g

by S = log g. For a system that consists of two sub-systems whose respective
entropies are S1 and S2, the total entropy S is calculated as the sum of one of two
subsystems S1 + S2. This case is attributed to the possible number of ensembles
g1g2. Entropy in statistical physics is also related to the degree of complexity of a
physical system. If the entropy is low (high), then the physical configuration is rarely
(often) realized. Energy injection or work in an observed system may be assumed
to represent rare situations. Shannon entropy is also used to measure the uncertainty
of time series (Carbone and Stanley 2007).

The concept of statistical–physical entropy was applied by Bianconi (2009) to
measure network structure. She considered that the complexity of a network is
related to the number of possible configurations of nodes and links under some
constraints determined by observations. She calculated the network entropy of an
arbitrary network in several cases of constraints.

Researchers have used a methodology to characterize network structure with
information-theoretic entropy (Dehmer and Mowshowitz 2011; Wilhelm and Hol-
lunder 2007; Rashevsky 1955; Trucco 1956; Mowshowitz 1968; Sato 2009). Several
graph invariants such as the number of vertices, vertex degree sequence, and
extended degree sequences have been used in the construction of entropy-based
measures (Wilhelm and Hollunder 2007; Sato 2009).
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2 An Entropy Measure on a Bipartite Network

The number of elements in socioeconomic systems is usually very large, and several
restrictions or finiteness of observations can be found. Therefore, we need to develop
a method to infer or quantify the affairs of the entire network structure from
partial observations. Specifically, many affiliation relationships of socioeconomic
systems can be expressed as a bipartite network. Describing the network structure of
complex systems that consist of two types of nodes by using the bipartite network is
important. A bipartite graph model also can be used as a general model for complex
networks (Guillaume and Latapy 2006; Chmiel et al. 2007; Tumminello et al. 2011).
Tumminello et al. proposed a statistical method to validate the heterogeneity of
bipartite networks (Tumminello et al. 2011).

Suppose a symmetric binary two-mode network can be constructed by linking K

groups (A node) and M participants (B node) if the participants belong to groups
(Fig. 1). Assume that we can count the number of participants in each group within
the time window [tδ, (t + 1)δ] (t = 1, 2, 3, . . .), which is defined as mi(t) (i =
1, 2, . . . , K).

Let us assume a bipartite graph consisting of A nodes and B nodes, of which the
structure at time t is described as an adjacency matrix Cij (t). We also assume that
A nodes are observable and B nodes are unobservable. That is, we only know the
number of participants (B node) belonging to A nodes mi(t). We do not know the
correct number of B nodes, but we assume that it is M . In this setting, how do we
measure the complexity of the bipartite graph from mi(t) at each observation time t?

The network entropy is defined as a logarithmic form of the number of possible
configurations of a network under a constraint (Bianconi 2009). We can introduce
the network entropy at time t as a measure to quantify the complexity of a bipartite
network structure. The number of possible configurations under the constraint
mi(t) = ∑M

j=1 Cij (t) may be counted as

N(t) =
K∏

i=1

(
M

mi(t)

)

=
K∏

i=1

M!
mi(t)!(M − mi(t))! . (1)

Then, the network entropy is defined as Σ(t) = ln N(t). Inserting Eq. (1) into this
definition, we have

Σ(t) = K

M∑

n=1

ln n −
K∑

i=1

M−mi(t)∑

n=1

ln n −
K∑

i=1

mi(t)∑

n=1

ln n. (2)

Note that because 0! = 1,
∑0

n=1 ln n = 0. Obviously, if mi(t) = M for any i, then
Σ(t) = 0. If mi(t) = 0 for any i, then Σ(t) = 0. The lower number of combinations
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gives a lower value of Σ(t). To eliminate a difference in the number of links, we
consider the network entropy per link defined as

σ(t) = Σ(t)
∑K

i=1 mi(t)
. (3)

This quantity shows the degree of complexity of the bipartite network structure. We
may capture the temporal development of the network structure from the value of
σ(t). The network entropy per link σ(t) is also an approximation of the ratio of the
entropy rate for mi(t) to its mean so that

σ [m1(t), . . . , mK(t)] =
1
K

Σ[m1(t), . . . , mK(t)]
1
K

∑K
i=1 mi(t)

≈ Σ[m(t)]
〈m(t)〉 , (4)

where the entropy rate and the mean are, respectively, defined as

Σ[m(t)] = lim
K→∞

1

K
Σ[m1(t), . . . , mK(t)], (5)

〈m(t)〉 = lim
K→∞

1

K

K∑

i=1

mi(t). (6)

The ratio of the entropy rate to the mean tells us the uncertainty of the mean
from a different point of view from the coefficient of variation (C.V . =
standard deviation/mean).

To understand the fundamental properties of Eq. (3), we compute σ(t) in simple
cases. Consider values of entropy for several cases at K = 100 with different M .
We assume that the total number of links is fixed at 100, which is the same as
the number of A nodes, and we confirm the dependence of σ(t) on the degree of
monopolization. We assign the same number of links at each A node. That is, we set

mi(t) =
{

100/k (i = 1, . . . , k)

0 (i = k + 1, . . . , K)
, (7)

where k can be set as 1, 2, 4, 5, 10, 20, 50, or 100. In this case, we can calculate
σ(t) as follows:

σ(t) =
∑k

i=1 ln

(
M

100/k

)

∑k
i=1 100/k

= k

100

(
ln M! − ln(100/k)! − ln(M − 100/k)!

)
. (8)
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Fig. 2 (a) Plots between
σ(t) and degree of
monopolization k. Each curve
represents the relation
between σ(t) and k. Filled
squares numerical values for
M = 1000, unfilled circles
for M = 2000, filled circles
for M = 3000, and unfilled
triangle for M = 4000. (b)
Plots between σ(t) and
density of links p. Each curve
represents the relation
between σ(t) and k. Filled
squares numerical values for
M = 1000, unfilled circles
for M = 2000, filled circles
for M = 3000, and unfilled
triangle for M = 4000
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Figure 2a shows the relationship between σ(t) and the degree of monopolization
at M = 1000, 2000, 3000, and 4000. The network entropy per link σ(t) is small
if a small population of nodes occupies a large number of links. The multiplication
regime gives a large value of σ(t). The value of σ(t) is a monotonically increasing
function in terms of k. As M increases, the value of σ(t) increases. From this
instance, we confirmed that σ(t) decreases with the degree of monopolization at
A nodes.

Next, we confirm the dependency of σ(t) on the density of links. We assume that
each element of an adjacency matrix Cij (t) is given by an i.i.d. Bernoulli random
variable with a successful probability of p. Then, mi(t) = ∑M

j=1 Cij (t) is sampled
from an i.i.d. binomial distribution Bin(p,M). In this case, one can approximate
σ(t) as
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σ(t) =
1
K

∑K
i=1 Σ[mi(t)]

1
K

∑K
i=1 mi(t)

≈ 〈Σ[m1(t)]〉
〈m1(t)〉

= 1

M

M∑

k=1

(
M

k

)

pk−1(1 − p)M−k ln

(
M

k

)

. (9)

Figure 2b shows the plots of σ(t) versus p obtained from both Monte Carlo
simulation with random links drawn from Bernoulli trials and Eq. (9). The number
of links at each A node monotonically increases as p increases. σ(t) decreases
as the density of links decreases. The dependence of the entropy per link on p is
independent of M .

3 Empirical Analysis

The application of network analysis to financial time series has been advancing.
Several researchers have investigated the network structure of financial mar-
kets (Bonanno et al. 2003; Gworek et al. 2010; Podobnik et al. 2009; Iori et al.
2008). Bonanno et al. examined the topological characterization of the correlation-
based minimum spanning tree (MST) of real data (Bonanno et al. 2003). Gworek
et al. analyzed the exchange rate returns of 38 currencies (including gold) and
computed the characteristic path length and average weighted clustering coefficient
of the MST topology of the graph extracted from the cross-correlations for several
base currencies (Gworek et al. 2010). Podobnik et al. (2009) examined the cross-
correlations between volume changes and price changes for the New York Stock
Exchange, Standard and Poor’s 500 index, and 28 worldwide financial indices. Iori
et al. (2008) analyzed the network topology of the Italian segment of the European
overnight money market and investigated the evolution of these banks’ connectivity
structure over the maintenance period. These studies collectively aimed to detect the
susceptibility of network structures to macroeconomic situations.

Data collected from the ICAP EBS platform were used. The data period spanned
May 28, 2007 to November 30, 2012 (ICAP 2013). The data included records for
orders (BID/OFFER) and transactions for currencies and precious metals with a 1-s
resolution. The total number of orders included in the data set is 520,973,843, and
the total number of transactions is 58,679,809. The data set involved 94 currency
pairs consisting of 39 currencies, 11 precious metals, and 2 basket currencies (AUD,
NZD, USD, CHF, JPY, EUR, CZK, DKK, GBP, HUF, ISK, NOK, PLN, SEK, SKK,
ZAR, CAD, HKD, MXC, MXN, MXT, RUB, SGD, XAG, XAU, XPD, XPT, TRY,
THB, RON, BKT, ILS, SAU, DLR, KES, KET, AED, BHD, KWD, SAR, EUQ,
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Fig. 3 A network representation of 94 currency pairs included in the data sets. Nodes show
currencies and links currency pairs. If there is a link between two currencies, it is shown that
the currency pair consisting of them is included in the data set

USQ, CNH, AUQ, GBQ, KZA, KZT, BAG, BAU, BKQ, LPD, and LPT).1 Figure 3
shows a network representation of 94 currency pairs.

1AED, United Arab Emirates dirham; AUD, Australian dollar; AUQ, Australian dollar (small
amount); BAG, gold (bank); BAU, silver (bank); BHD, Bahraini dinar; BKT, basket of USD/EUR;
BKQ, basket of USD/EUR (small amount); CAD, Canadian dollar; CHF, Swiss franc; CNH,
Chinese yuan; CZK, Czech koruna; DKK, Danish krone; EUR, EU euro; EUQ, EU euro (small
amount); GBP, British sterling; GBQ, British sterling (small amount); HKD, Hong Kong dollar;
HUF, Hungarian forint; ILS, Israeli new shekel; ISK, Iceland krona; JPY, Japanese yen; KES,
Kenyan shilling; KET, Kenyan shilling (small amount); KZA, Kazakhstani tenge (small amount);
KZT, Kazakhstani tenge; LPD, palladium (London); LPT, platium (London); MXN, Mexican
peso; MXQ, Mexican peso (small amount); MXT, Mexican peso (special deals); NOK, Norwegian
krone; NZD, New Zealand dollar; PLN, Poland zloty; RON, Romanian leu; RUB, Russian ruble;
SAR, Saudi Arabian riyal; SGD, Singapore dollar; SEK, Swedish krona; SKK, Slovak koruna;
SAU, silver (small amount); TRY, Turkish lira; THB, Thai baht; USD/DLR, US dollar; USQ, US
dollar (small amount); ZAR, South African rand; XAU, gold; SAU, gold (small amount); XAG,
silver; XPD, palladium; and XPT, platinum.
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3.1 The Total Number

The number of quotations and transactions in each currency pair was extracted from
the raw data. Let mX,i(t) (t = 0, . . . ; i = 1, . . . , K) be the number of quotations
(X = P ) or transactions (X = D) within every minute (δ = 1 [min]) for a currency
pair i (K = 94) at time t . Let cX(t) be denoted as the total number of quotations
(X = P ) and transactions (X = D), which is defined as

cX(t) =
K∑

i=1

mX,i(t). (10)

Let us consider the maximum value of cX(t) in each week:

wX(s) = max
t∈W(s)

{cX(t)}, (11)

where W(s) (s = 1, . . . , T ) represents a set of times included in the s-th week.
A total of 288 weeks are included in the data set (T = 288). Figure 4 shows the
maximum values cX(t) for the period from May 28, 2007 to November 30, 2012.

According to the extreme value theorem, the probability density for maximum
values can be assumed to be a Gumbel density:

P(wX;μX, ρX) = 1

ρX

exp
(
−wX − μX

ρX

− e
− wX−μX

ρX

)
, (12)

where μX and ρX are the location and scale parameters, respectively. Under
the assumption of the Gumbel density, these parameters are estimated with the
maximum likelihood procedure. The log-likelihood function for T observations
wX(s′) (s′ = 1, . . . , T ) under Eq. (12) is defined as

l(μX, ρX) =
T∑

s′=1

ln
[ 1

ρX

exp
(
−wX(s′) − μX

ρX

− e
− wX(s′)−μX

ρX

)]
. (13)

The maximum likelihood estimators are obtained by maximizing the log-likelihood
function. Partially differentiating l(μX, ρX) in terms of μX and ρX and setting them
to zero, one has its maximum likelihood estimators as

e
− μ̂X

ρ̂X = 1

T

T∑

s′=1

e
− wX(s′)

ρ̂X , (14)

ρ̂X = 1

T

T∑

s′=1

wX(s′) −
∑T

s′=1 e
− wX(s′)

ρ̂X wX(s′)
∑T

s′=1 e
− wX(s′)

ρ̂X

(15)
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Fig. 4 (a) The maximum
values of the number of
quotations within 1 min in
every week. (b) The
maximum values of the
number of transactions within
1 min in every week
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The parameters are estimated as μ̂P = 772.179499, ρ̂P = 281.741815, μ̂D =
206.454884, and ρ̂D = 35.984804.

The Kolmogorov–Smirnov (KS) test is conducted to determine the statistical sig-
nificance of the estimated distributions. The KS test is a popular statistical method
of assessing the difference between observations and its assumed distribution by
p-value, which is a measure of probability where a difference between the two
distributions happens by chance. Large p-values imply that the observations are
sampled from the assumed distribution in the null hypothesis with high significance.
Let wX(s) (s = 1, . . . , T ) be T observations, and let KT be a test statistic

KT = sup
1≤s′≤T

√
T

∣
∣
∣FT (wX(s′)) − F(wX(s′))

∣
∣
∣, (16)

where 0 ≤ F(v) ≤ 1 is an assumed cumulative distribution in a null hypothesis and
FT (v) an empirical one based on T observations such that FT (v) = k/T , in which
k represents the number of observations satisfying vX(s) ≤ v(s = 1, . . . , T ). The
p-value is computed from the Kolmogorov–Smirnov distribution.
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Table 1 The p-values of statistical tests under a stationary assumption of the Gumbel distribution
for the maximum values

p-val (P) KS-val (P) p-val (D) KS-val (D)

0.041374 1.392521 0.586818 0.774087

The KS test is conducted under the assumption of the Gumbel distribution for
the maximum value corresponding to Eq. (19):

F(wX;μX, ρX) = exp
[
− exp

(−wX − μX

ρX

)]
. (17)

The p-values of the KS test are shown in Table 1. The stationary Gumbel assumption
cannot explain the maximum values for quotes with a 5% significance level in
the KS test. The stationary Gumbel assumption may not be accepted in the case
of the block maximum number of quotes. The dominant reason is the strong
nonstationarity of the maximum number of quotes. During the last 5 years, the
currencies and pairs quoted in the electronic brokerage market increased. The mean
value of the total number constantly increased. In fact, the maximum number of
quotations wP (t) reached the maximum value on 30 July, 2012. The nonstationarity
breaks the assumption of the extreme value theorem.

It is confirmed that the stationary Gumbel assumption can be accepted for the
block maxima of transactions in each week using the KS test with a 5% significance
level. The maximum number of transactions wD(t) was reached on on January 30,
2012. This period seems to be related to the extreme synchrony.

3.2 Network Entropy Per Link

The proposed method based on statistical–physical entropy is applied to measure the
states of the foreign exchange market. The relationship between a bipartite network
structure and macroeconomic shocks or crises was investigated, and the occurrence
probabilities of extreme synchrony were inferred. We compute a statistical–physical
entropy per link from mX,i(t)(X ∈ {P,D}) with Eqs. (2) and (3), which are denoted
as σX(t). σP (t) and σD(t).

Since small values of σX(t) correspond to a concentration of links at a few nodes
or a dense network structure, let us consider the minimum value of σX(t) every
week:

vX(s) = min
t∈W(s)

{σX(t)}, (18)

where W(s) (s = 1, . . . , T ) represents a set of times included in the s-th week. A
total of 288 weeks are included in the data set (T = 288). According to the extreme
value theorem, the probability density for minimum values can be assumed to be the
Gumbel density:
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P(vX;μX, ρX) = 1

ρX

exp
(vX + μX

ρX

− e
vX+μX

ρX

)
, (19)

where μX and ρX are the location and scale parameters, respectively. Under
the assumption of the Gumbel density, these parameters are estimated with the
maximum likelihood procedure. The log-likelihood function for T observations
vX(s′) (s′ = 1, . . . , T ) under Eq. (19) is defined as

l(μX, ρX) =
T∑

s′=1

ln
[ 1

ρX

exp
(vX(s′) + μX

ρX

− e
vX(s′)+μX

ρX

)]
. (20)

Partially differentiating l(μX, ρX) in terms of μX and ρX and setting them to zero
yields its maximum likelihood estimators as

e
− μ̂X

ρ̂X = 1

T

T∑

s′=1

e
vX(s′)

ρ̂X , (21)

ρ̂X =
∑T

s′=1 e
vX(s′)

ρ̂X vX(s′)
∑T

s′=1 e
vX(s′)

ρ̂X

− 1

T

T∑

s′=1

vX(s′). (22)

The parameter estimates are computed as μ̂P = −4.865382, ρ̂P = 0.110136, μ̂D =
−5.010175, and ρ̂D = 0.120809 with Eqs. (21) and (22).

The KS test is conducted for the Gumbel distribution for the minimum values
corresponding to Eq. (19):

F(vX;μX, ρX) = 1 − exp
[
− exp

(vX + μX

ρX

)]
. (23)

The p-value of the distribution is shown in Table 2. The stationary Gumbel assump-
tion cannot explain the synchronizations observed in both quotes and transactions
completely with a 5% significance level. The stationary Gumbel assumption is
rejected because there is a stationary assumption to derive the extreme value
distribution. If we can weaken this assumption, then the goodness of fit may be
improved.

Table 2 The p-values of statistical tests under a stationary Gumbel ssumption

p-val (P) KS-val (P) p-val (D) KS-val (D)

0.001393 1.906528 0.019241 1.523791
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4 Probability of Extreme Synchrony

The literature detecting structural breaks or change points in an economic time
series (Goldfeld and Quandt 1973; Preis et al. 2011; Scalas 2007; Cheong et al.
2012) points out that nonstationary time series are constructed from locally station-
ary segments sampled from different distributions. Goldfeld and Quandt conducted
a pioneering work on the separation of stationary segments (Goldfeld and Quandt
1973). Recently, a hierarchical segmentation procedure was also proposed by
Choeng et al. under the Gaussian assumption (Cheong et al. 2012). We applied this
concept to define the segments for vX(s′) (s′ = 1, . . . , T ).

Let us consider the null model L1, which assumes that all the observations
vX(s′) (s′ = 1, . . . , T ) are sampled from a stationary Gumbel density parame-
terized as μ and ρ. An alternative model L2(s) assumes that the left observations
vX(s′) (s′ = 1, . . . , s) are sampled from a stationary Gumbel density parameter-
ized as μL and ρL and that the right observations vX(s′) (s′ = s + 1, . . . , T ) are
sampled from a stationary Gumbel density parameterized as μR and ρR .

Denoting likelihood functions as

L1(μ, ρ) =
T∏

s′=1

P(vX(s′);μ, ρ), (24)

L2(s;μL, ρL,μR, ρR) =
s∏

s′=1

P(vX(s′);μL, ρL)

×
T∏

s′=s+1

P(vX(s′);μR, ρR), (25)

the difference between the log-likelihood functions can be defined as

Δ(s) = log L2(s) − log L1. (26)

Δ(s) can be approximated as the Shannon entropy H [p] = − ∫ ∞
−∞ dv log p(v)p(v):

Δ(s) ≈ T H [P(vX;μ, ρ)]
− sH [P(vX;μL, ρL)] − (T − s)H [P(vX;μR, ρR)]. (27)

Since the Shannon entropy of the Gumbel density expressed in Eq. (12) is calculated
as

H [P(vX;μX, ρX)] = ln ρX − γE + 1, (28)
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where γE represents Euler’s constant, defined as

γE =
∫ ∞

0
ln te−tdt, (29)

we obtain

Δ(s) ≈ T ln ρ − s ln ρL − (T − s) ln ρR. (30)

In the context of model selection, several information criteria are proposed.
The information criterion provides both goodness of fit of the model to the data
and model complexity. For the sake of simplicity, we use the Akaike information
criterion (AIC) to determine the adequate model. The AIC for a model with the
number of parameters K and the maximum likelihood of L is defined as

AIC = −2 ln L + 2K. (31)

We can compute the difference in AIC between model L2 and model L1(s) as

ΔAIC(s) = AIC of L2(s) − AIC of L1

≈ −2
(
T ln ρ̂ − s ln ρ̂L − (T − s) ln ρ̂R

) + 4,

= −2Δ(s) + 4 (32)

since the number of parameters of L1 is 2, that of L2(s) is 4, and the maximum
likelihood is obtained by using their maximum likelihood estimators calculated from

ρ̂ =
∑T

s′=1 e
vX(s′)

ρ̂X vX(s′)
∑T

s′=1 e
vX(s′)

ρ̂X

− 1

T

T∑

s′=1

vX(s′) (33)

ρ̂L =
∑s

s′=1 e
vX(s′)

ρ̂L vX(s′)
∑s

s′=1 e
vX(s′)

ρ̂L

− 1

s

s∑

s′=1

vX(s′) (34)

ρ̂R =
∑T

s′=s+1 e
vX(s′)

ρ̂R vX(s′)
∑T

s′=s+1 e
vX(s′)

ρ̂R

− 1

T − s

T∑

s′=s+1

vX(s′) (35)

Therefore, P(vX;μL, ρL) is maximally different from P(vX;μR, ρR) when
Δ(s) assumes a maximal value. This spectrum has a maximum at some time s∗,
which is denoted as

Δ∗
AIC = ΔAIC(s∗) = max

s
ΔAIC(s). (36)
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The segmentation can be used recursively to separate the time series into further
smaller segments. We do this iteratively until all segment boundaries have converged
onto their optimal segment, defined by a stopping (termination) condition.

Several termination conditions were discussed in previous studies (Cheong
et al. 2012). Assuming that Δ0 > 0, we terminate the iteration if Δ∗

AIC is
less than a typical conservative threshold of Δ0 = 10, while the procedure is
recursively conducted if Δ∗

AIC is larger than Δ0. We checked the robustness of
this segmentation procedure for Δ0. Δ0 gives a statistical significance level of
termination. The value of Δ0 is related to statistical significance. According to Wilks
theorem, −2Δ(s) follows a chi-squared distribution with a degree of freedom r ,
where r is given by the difference between the number of parameters assumed in
the null hypothesis and one in the alternative hypothesis. In this case, r = 2. Hence,
the cumulative distribution function of Δ∗

AIC may follow

Pr[Δ∗
AIC > x] = 1 − γ

(
1,

x − 4

2

)
, (37)

where γ (x, a) is the regularized incomplete gamma function defined as

γ (a, x) =
∫ x

0 ta−1e−tdt
∫ ∞

0 ta−1e−tdt
. (38)

Therefore, setting the threshold Δ0 = 10 implies that the segmentation procedure is
tuned as a 4.928% statistical significance level.

Let the number of segments be LX, the parameter estimates be {μX,j , ρX,j } at

the j -th segment, and the length of the j -th segment be τX,j , where
∑RX

j=1 τX,j = T .
The cumulative probability distribution for vX(s) (s = 1, . . . , T ) may be assumed
to be a finite mixture of Gumbel distributions:

Pr(VX ≤ vX) =
∫ vX

−∞

RX∑

j=1

τX,j

T
P (v′

X;μX,j , ρX,j )dv′
X

=
RX∑

j=1

τX,j

T

{
1 − exp

[−e

vX+μX,j
ρX,j

]}
, (39)

Tables 3 and 4 show parameter estimates of vP (s) and vD(s) using the recursive
segmentation procedure. Figure 5 shows the temporal development of vP (s) and
vD(s) from May 28, 2007 to November 30, 2012. RP = 6 and RD = 6 are obtained
from vX(s) using the proposed segmentation procedure. During the observation
period, the global financial system suffered from the following significant macroe-
conomic shocks and crises: (I) the BNP Paribas shock (August 2007), (II) the Bear
Stearns shock (February 2008), (III) the Lehman shock (September 2008 to March
2009), (IV) the European sovereign debt crisis (April to May 2010), (V) the East
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Table 3 Parameter estimates obtained from the weekly minimum values of network entropy for
quotations with the recursive segmentation procedure

j Start date End date τ/T μ̂X,j ρ̂X,j

1 May 28, 2007 Oct. 15, 2007 0.072917 −4.965486 0.078571

2 Oct. 22, 2007 Aug. 17, 2009 0.333333 −4.829061 0.080558

3 Aug. 24, 2009 Oct. 21, 2011 0.274306 −4.880156 0.099532

4 Feb. 28, 2011 Jul. 30, 2012 0.260417 −4.798364 0.058265

5 Aug. 6, 2012 Sep. 10, 2012 0.020833 −4.856415 0.121566

6 Sep. 17, 2012 Nov. 26, 2012 0.038194 −5.031930 0.071871

Table 4 Parameter estimates obtained from the weekly minimum values of network entropy for
transactions with the recursive segmentation procedure

j Start date End date τ/T μ̂X,j ρ̂X,j

1 May 28, 2007 Mar. 16, 2009 0.329861 −4.903660 0.072684

2 Mar. 23, 2009 Jun. 14, 2010 0.225694 −4.990569 0.088420

3 Jun. 21, 2010 Dec. 5, 2011 0.267361 −5.065305 0.087721

4 Dec. 12, 2011 Mar. 12, 2012 0.048611 −4.826384 0.174328

5 Mar. 19, 2012 Apr. 30, 2012 0.024306 −5.108679 0.011079

6 May 7, 2012 Nov. 26, 2012 0.104167 −5.131156 0.079630

Japan tsunami (March 2011), (VI) the United States debt-ceiling crisis (May 2011),
and (VII) the Bank of Japan’s 10 trillion JPY gift on Valentine’s Day (February
2012).

Before entering these global affairs, both vP (s) and vD(s) took large values. Note
that, during the (I) Paribas shock, the (II) Bear Stearns and the (III) Lehman shock
vP (s) and vD(s) took smaller values than they did during the previous term. This
implies that a global shock may drive many participants and that these participants
may trade the same currencies at the same time. The smallest values vP (s) and
vD(t) correspond to the days of the (II) Bear Stearns shock, the (III) Lehman shock,
and the (VI) Euro crisis. These days are generally related to the start or the end of
macroeconomic shocks or crises. The period from December 2011 to March 2012
shows that the values of vD(s) are smaller than they were during other periods. This
result implies that, during period, singular patterns appeared in the transactions.

Figure 6 shows both the empirical and estimated cumulative distribution func-
tions of vP (s) and vD(s). The estimated cumulative distributions are drawn from
Eq. (39) with parameter estimates. The KS test verifies this mixing assumption.
The distribution estimated by the finite mixture of Gumbel distributions for quotes
is well fitted, as shown in Table 5. From the p-values, the mixture of Gumbel
distributions for quotations accepts the null hypothesis that vP (s) is sampled from
the mixing distribution with a 5% significance level. The mixture of Gumbel distri-
butions for transactions also accepts the null hypothesis that vD(s) is sampled from
the mixing distribution with a 5% significance level. Extrapolation of cumulative
distribution function also provides a guideline of the future probability of extreme
events. The finite mixture Gumbel distributions with parameter estimates may be
used as an inference of probable extreme synchrony.
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Fig. 5 Temporal
development of (a) vP (s) and
(b) vD(s) from May 28, 2007
to November 30, 2012. Each
color corresponds to a
segment which is shown in
Tables 3 and 4
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5 Conclusion

A method based on the concept of “entropy” in statistical physics was proposed
to quantify states of a bipartite network under constraints. The statistical–physical
network entropy of a bipartite network was derived under the constraints for the
number of links at each group node. Both numerical and theoretical calculations for
a binary bipartite graph with random links showed that the network entropy per link
can capture both the density and the concentration of links in the bipartite network.
The proposed method was applied to measure the structure of bipartite networks
consisting of currency pairs and participants in the foreign exchange market.

An empirical investigation of the total number of quotes and transactions was
conducted. The nonstationarity of the number of quotes and transactions strongly
affected the extreme value distributions. The empirical investigation confirmed that
the entropy per link decreased before and after the latest global shocks that have
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Fig. 6 Cumulative
distribution functions for the
minimum values of the
entropy per link in each week
(a) vP (s) and (b) vD(s).
Filled squares represent the
empirical distribution of
vP (s), and unfilled circles
represent the empirical
distribution of vD(s). A solid
curve represents the estimated
distribution of vP (s), and a
dashed curve represents the
estimated distribution of
vD(s)  0.0001
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Table 5 The p-values of statistical tests under the assumption of a finite mixture of Gumbel
distributions

p-val (P) KS-val (P) p-val (D) KS-val (D)

0.183793 1.092317 0.829013 0.625372

influenced the world economy. A method was proposed to determine segments with
recursive segmentation based on the Akaike information criterion between Gumbel
distributions with different parameters. Under the assumption of a finite mixture of
Gumbel distributions, the estimated distributions were verified by the Kolmogorov–
Smirnov test. The finite mixture of Gumbel distributions can estimate the occurrence
probabilities of extreme synchrony of a nonstationary system extracted as a bipartite
network. The extrapolation of the extreme synchrony can be done based on the
estimated mixture of Gumbel distributions.
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