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SERIES FOREWORD

The MIT Press Essential Knowledge series offers acces-
sible, concise, beautifully produced pocket-size books on 
topics of current interest. Written by leading thinkers, 
the books in this series deliver expert overviews of sub-
jects that range from the cultural and the historical to the  
scientific and the technical.

In today’s era of instant information gratification, we 
have ready access to opinions, rationalizations, and super-
ficial descriptions. Much harder to come by is the founda-
tional knowledge that informs a principled understanding 
of the world. Essential Knowledge books fill that need. 
Synthesizing specialized subject matter for nonspecialists 
and engaging critical topics through fundamentals, each 
of these compact volumes offers readers a point of access 
to complex ideas.

Bruce Tidor
Professor of Biological Engineering and Computer Science
Massachusetts Institute of Technology





PREFACE

Deep learning is enabling innovation and change across 
all aspects of our modern lives. Most of the artificial intel-
ligence breakthroughs that you hear about in the media 
are based on deep learning. As a result, whether you are 
a business person interested in improving the efficiency 
of your organization, a policymaker concerned with eth-
ics and privacy in a Big Data world, a researcher working 
with complex data, or a curious citizen who wants a better 
sense of the potential of artificial intelligence and how it 
will change your life, it is important for you to have an 
understanding of deep learning.

The goal of this book is to enable the general reader 
to gain an understanding of what deep learning is, where 
it has come from, how it works, what it makes possible 
(and what it doesn’t), and how the field is likely to develop 
in the next ten years. The fact that deep learning is a set 
of algorithms and models means that understanding deep 
learning requires understanding how these algorithms 
and models process data. As a result, this book is not 
purely descriptive and definitional; it also includes expla-
nations of algorithms. I have attempted to present the 
technical material in an accessible way. From my teaching 
experience, I have found that for technical topics the most 
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accessible presentation is to explain the fundamental con-
cepts in a step-by-step manner. So, although I have tried 
to keep the mathematical content to a minimum, where 
I felt it was necessary to include it I have endeavored to 
walk you through the mathematical equations in as clear 
and direct a manner as I can. I have supplemented these 
explanations with examples and illustrations.

What is really wondrous about deep learning is not 
the complexity of the math it is built on, but rather, that it 
can perform such a diverse set of exciting and impressive 
tasks using such simple calculations. Don’t be surprised to 
find yourself saying: “Is that all it’s doing?” In fact, a deep 
learning model really is just a lot (admittedly, an awful 
lot) of multiplications and additions with a few nonlinear 
mappings (which I will explain) added in. Yet, despite this 
simplicity, these models can, among other achievements, 
beat the Go world champion, define the state-of-the-art 
in computer vision and machine translation, and drive a 
car. This book is an introductory text about deep learning, 
but I hope that it is an introduction that has enough depth 
that you will come back to the book as your confidence 
with the material grows.
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1

INTRODUCTION TO  
DEEP LEARNING

Deep learning is the subfield of artificial intelligence that 
focuses on creating large neural network models that are 
capable of making accurate data-driven decisions. Deep 
learning is particularly suited to contexts where the data is 
complex and where there are large datasets available. To-
day most online companies and high-end consumer tech-
nologies use deep learning. Among other things, Facebook 
uses deep learning to analyze text in online conversations. 
Google, Baidu, and Microsoft all use deep learning for im-
age search, and also for machine translation. All modern 
smart phones have deep learning systems running on 
them; for example, deep learning is now the standard 
technology for speech recognition, and also for face de-
tection on digital cameras. In the healthcare sector, deep 
learning is used to process medical images (X-rays, CT, and 
MRI scans) and diagnose health conditions. Deep learning 
is also at the core of self-driving cars, where it is used for 
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localization and mapping, motion planning and steering, 
and environment perception, as well as tracking driver 
state.

Perhaps the best-known example of deep learning is 
DeepMind’s AlphaGo.1 Go is a board game similar to Chess. 
AlphaGo was the first computer program to beat a profes-
sional Go player. In March 2016, it beat the top Korean 
professional, Lee Sedol, in a match watched by more than 
two hundred million people. The following year, in 2017, 
AlphaGo beat the world’s No. 1 ranking player, China’s  
Ke Jie.

In 2016 AlphaGo’s success was very surprising. At 
the time, most people expected that it would take many 
more years of research before a computer would be able 
to compete with top level human Go players. It had been 
known for a long time that programming a computer to 
play Go was much more difficult than programming it to 
play Chess. There are many more board configurations 
possible in Go than there are in Chess. This is because Go 
has a larger board and simpler rules than Chess. There are, 
in fact, more possible board configurations in Go than 
there are atoms in the universe. This massive search space 
and Go’s large branching factor (the number of board 
configurations that can be reached in one move) makes 
Go an incredibly challenging game for both humans and 
computers.

One way of illustrating the relative difficulty Go 
and Chess presented to computer programs is through 
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a historical comparison of how Go and Chess programs 
competed with human players. In 1967, MIT’s MacHack-6 
Chess program could successfully compete with humans 
and had an Elo rating2 well above novice level, and, by May 
1997, DeepBlue was capable of beating the Chess world 
champion Gary Kasparov. In comparison, the first com-
plete Go program wasn’t written until 1968 and strong 
human players were still able to easily beat the best Go 
programs in 1997.

The time lag between the development of Chess and 
Go computer programs reflects the difference in compu-
tational difficulty between these two games. However, a 
second historic comparison between Chess and Go illus-
trates the revolutionary impact that deep learning has 
had on the ability of computer programs to compete with 
humans at Go. It took thirty years for Chess programs to 
progress from human level competence in 1967 to world 
champion level in 1997. However, with the development 
of deep learning it took only seven years for computer Go 
programs to progress from advanced amateur to world 
champion; as recently as 2009 the best Go program in 
the world was rated at the low-end of advanced amateur. 
This acceleration in performance through the use of deep 
learning is nothing short of extraordinary, but it is also 
indicative of the types of progress that deep learning has 
enabled in a number of fields.
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AlphaGo uses deep learning to evaluate board configu-
rations and to decide on the next move to make. The fact 
that AlphaGo used deep learning to decide what move to 
make next is a clue to understanding why deep learning 
is useful across so many different domains and applica-
tions. Decision-making is a crucial part of life. One way 
to make decisions is to base them on your “intuition” or 
your “gut feeling.” However, most people would agree that 
the best way to make decisions is to base them on the rel-
evant data. Deep learning enables data-driven decisions by 
identifying and extracting patterns from large datasets 
that accurately map from sets of complex inputs to good 
decision outcomes.

Artificial Intelligence, Machine Learning, and  
Deep Learning

Deep learning has emerged from research in artificial 
intelligence and machine learning. Figure 1.1 illustrates 
the relationship between artificial intelligence, machine 
learning, and deep learning.

The field of artificial intelligence was born at a 
workshop at Dartmouth College in the summer of 1956. 
Research on a number of topics was presented at the 
workshop including mathematical theorem proving, nat-
ural language processing, planning for games, computer 



Deep learning enables 
data-driven decisions  
by identifying and 
extracting patterns 
from large datasets that 
accurately map from 
sets of complex inputs 
to good decision 
outcomes.
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programs that could learn from examples, and neural net-
works. The modern field of machine learning draws on the 
last two topics: computers that could learn from examples, 
and neural network research.

Machine learning involves the development and eval-
uation of algorithms that enable a computer to extract (or 
learn) functions from a dataset (sets of examples). To un-
derstand what machine learning means we need to under-
stand three terms: dataset, algorithm, and function.

In its simplest form, a dataset is a table where each row 
contains the description of one example from a domain, 

Artificial
intelligence

Machine
learning

Deep
learning

Figure 1.1  The relationship between artificial intelligence, machine 
learning, and deep learning.
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and each column contains the information for one of the 
features in a domain. For example, table 1.1 illustrates 
an example dataset for a loan application domain. This 
dataset lists the details of four example loan applications. 
Excluding the ID feature, which is only for ease of refer-
ence, each example is described using three features: the 
applicant’s annual income, their current debt, and their 
credit solvency.

An algorithm is a process (or recipe, or program) that 
a computer can follow. In the context of machine learning, 
an algorithm defines a process to analyze a dataset and 
identify recurring patterns in the data. For example, the 
algorithm might find a pattern that relates a person’s an-
nual income and current debt to their credit solvency rat-
ing. In mathematics, relationships of this type are referred 
to as functions.

A function is a deterministic mapping from a set of 
input values to one or more output values. The fact that 

Table 1.1.  A dataset of loan applicants and their known 
credit solvency ratings

ID Annual Income Current Debt Credit Solvency

1 $150 -$100 100

2 $250 -$300 -50

3 $450 -$250 400

4 $200 -$350 -300
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the mapping is deterministic means that for any specific 
set of inputs a function will always return the same out-
puts. For example, addition is a deterministic mapping, 
and so 2+2 is always equal to 4. As we will discuss later, 
we can create functions for domains that are more com-
plex than basic arithmetic, we can for example define a 
function that takes a person’s income and debt as inputs 
and returns their credit solvency rating as the output 
value. The concept of a function is very important to 
deep learning so it is worth repeating the definition for 
emphasis: a function is simply a mapping from inputs to 
outputs. In fact, the goal of machine learning is to learn 
functions from data. A function can be represented in 
many different ways: it can be as simple as an arithmetic 
operation (e.g., addition or subtraction are both functions 
that take inputs and return a single output), a sequence 
of if-then-else rules, or it can have a much more complex  
representation.

One way to represent a function is to use a neural 
network. Deep learning is the subfield of machine learn-
ing that focuses on deep neural network models. In fact, 
the patterns that deep learning algorithms extract from 
datasets are functions that are represented as neural 
networks. Figure 1.2 illustrates the structure of a neural 
network. The boxes on the left of the figure represent the 
memory locations where inputs are presented to the net-
work. Each of the circles in this figure is called a neuron 



A function is a 
deterministic mapping 
from a set of input 
values to one or more 
output values.
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and each neuron implements a function: it takes a number 
of values as input and maps them to an output value. The 
arrows in the network show how the outputs of each neu-
ron are passed as inputs to other neurons. In this network, 
information flows from left to right. For example, if this 
network were trained to predict a person’s credit solvency, 
based on their income and debt, it would receive the in-
come and debt as inputs on the left of the network and 
output the credit solvency score through the neuron on  
the right.

A neural network uses a divide-and-conquer strategy 
to learn a function: each neuron in the network learns a 
simple function, and the overall (more complex) function, 
defined by the network, is created by combining these 
simpler functions. Chapter 3 will describe how a neural 
network processes information.

Figure 1.2  Schematic illustration of a neural network.
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What Is Machine Learning?

A machine learning algorithm is a search process designed 
to choose the best function, from a set of possible func-
tions, to explain the relationships between features in a 
dataset. To get an intuitive understanding of what is in-
volved in extracting, or learning, a function from data, ex-
amine the following set of sample inputs to an unknown 
function and the outputs it returns. Given these examples, 
decide which arithmetic operation (addition, subtraction, 
multiplication, or division) is the best choice to explain 
the mapping the unknown function defines between its 
inputs and output:

function Inputs Output( ) =

function 5 5 25,( ) =

function 2 6 12,( ) =

function 4 4 16,( ) =

function 2 2 04,( ) =

Most people would agree that multiplication is the best 
choice because it provides the best match to the observed 
relationship, or mapping, from the inputs to the outputs:
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5 5 25× =

2 6 12× =

4 7 28× =

2 2 04× =

In this particular instance, choosing the best func-
tion is relatively straightforward, and a human can do it 
without the aid of a computer. However, as the number 
of inputs to the unknown function increases (perhaps 
to hundreds or thousands of inputs), and the variety of 
potential functions to be considered gets larger, the task 
becomes much more difficult. It is in these contexts that 
harnessing the power of machine learning to search for 
the best function, to match the patterns in the dataset, 
becomes necessary.

Machine learning involves a two-step process: train-
ing and inference. During training, a machine learning 
algorithm processes a dataset and chooses the function 
that best matches the patterns in the data. The extracted 
function will be encoded in a computer program in a par-
ticular form (such as if-then-else rules or parameters of 
a specified equation). The encoded function is known as 
a model, and the analysis of the data in order to extract 
the function is often referred to as training the model. 
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Essentially, models are functions encoded as computer 
programs. However, in machine learning the concepts of 
function and model are so closely related that the distinc-
tion is often skipped over and the terms may even be used 
interchangeably.

In the context of deep learning, the relationship be-
tween functions and models is that the function extracted 
from a dataset during training is represented as a neural 
network model, and conversely a neural network model 
encodes a function as a computer program. The standard 
process used to train a neural network is to begin train-
ing with a neural network where the parameters of the 
network are randomly initialized (we will explain network 
parameters later; for now just think of them as values that 
control how the function the network encodes works). 
This randomly initialized network will be very inaccurate 
in terms of its ability to match the relationship between 
the various input values and target outputs for the ex-
amples in the dataset. The training process then proceeds 
by iterating through the examples in the dataset, and, 
for each example, presenting the input values to the net-
work and then using the difference between the output 
returned by the network and the correct output for the ex-
ample listed in the dataset to update the network’s param-
eters so that it matches the data more closely. Once the 
machine learning algorithm has found a function that is 
sufficiently accurate (in terms of the outputs it generates 
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matching the correct outputs listed in the dataset) for 
the problem we are trying to solve, the training process 
is completed, and the final model is returned by the algo-
rithm. This is the point at which the learning in machine  
learning stops.

Once training has finished, the model is fixed. The sec-
ond stage in machine learning is inference. This is when 
the model is applied to new examples—examples for 
which we do not know the correct output value, and there-
fore we want the model to generate estimates of this value 
for us. Most of the work in machine learning is focused on 
how to train accurate models (i.e., extracting an accurate 
function from data). This is because the skills and meth-
ods required to deploy a trained machine learning model 
into production, in order to do inference on new examples 
at scale, are different from those that a typical data scien-
tist will possess. There is a growing recognition within the 
industry of the distinctive skills needed to deploy artifi-
cial intelligence systems at scale, and this is reflected in a 
growing interest in the field known as DevOps, a term de-
scribing the need for collaboration between development 
and operations teams (the operations team being the 
team responsible for deploying a developed system into 
production and ensuring that these systems are stable and 
scalable). The terms MLOps, for machine learning opera-
tions, and AIOps, for artificial intelligence operations, are 
also used to describe the challenges of deploying a trained 
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model. The questions around model deployment are be-
yond the scope of this book, so we will instead focus on 
describing what deep learning is, what it can be used for, 
how it has evolved, and how we can train accurate deep 
learning models.

One relevant question here is: why is extracting a 
function from data useful? The reason is that once a func-
tion has been extracted from a dataset it can be applied 
to unseen data, and the values returned by the function 
in response to these new inputs can provide insight into 
the correct decisions for these new problems (i.e., it can 
be used for inference). Recall that a function is simply a 
deterministic mapping from inputs to outputs. The sim-
plicity of this definition, however, hides the variety that 
exists within the set of functions. Consider the following 
examples:

•	 Spam filtering is a function that takes an email as  
input and returns a value that classifies the email as 
spam (or not).

•	 Face recognition is a function that takes an image as 
input and returns a labeling of the pixels in the image 
that demarcates the face in the image.

•	 Gene prediction is a function that takes a genomic DNA 
sequence as input and returns the regions of the DNA 
that encode a gene.
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•	 Speech recognition is a function that takes an audio 
speech signal as input and returns a textual transcription 
of the speech.

•	 Machine translation is a function that takes a sentence 
in one language as input and returns the translation of 
that sentence in another language.

It is because the solutions to so many problems across so 
many domains can be framed as functions that machine 
learning has become so important in recent years.

Why Is Machine Learning Difficult?

There are a number of factors that make the machine 
learning task difficult, even with the help of a computer. 
First, most datasets will include noise3 in the data, so 
searching for a function that matches the data exactly is 
not necessarily the best strategy to follow, as it is equiva-
lent to learning the noise. Second, it is often the case that 
the set of possible functions is larger than the set of ex-
amples in the dataset. This means that machine learning 
is an ill-posed problem: the information given in the prob-
lem is not sufficient to find a single best solution; instead 
multiple possible solutions will match the data. We can 
use the problem of selecting the arithmetic operation (ad-
dition, subtraction, multiplication, or division) that best 
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matches a set of example input-output mappings for an 
unknown function to illustrate the concept of an ill-posed 
problem. Here are the example mappings for this function 
selection problem:

function Inputs Output( ) =

function 1 1 1,( ) =

function 2 1 2,( ) =

function 3 1 3,( ) =

Given these examples, multiplication and division are bet-
ter matches for the unknown function than addition and 
subtraction. However, it is not possible to decide whether 
the unknown function is actually multiplication or divi-
sion using this sample of data, because both operations 
are consistent with all the examples provided. Conse-
quently, this is an ill-posed problem: it is not possible to 
select a single best answer given the information provided 
in the problem.

One strategy to solve an ill-posed problem is to col-
lect more data (more examples) in the hope that the new 
examples will help us to discriminate between the cor-
rect underlying function and the remaining alternatives. 
Frequently, however, this strategy is not feasible, either 
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because the extra data is not available or is too expensive 
to collect. Instead, machine learning algorithms overcome 
the ill-posed nature of the machine learning task by sup-
plementing the information provided by the data with a 
set of assumptions about the characteristics of the best 
function, and use these assumptions to influence the pro-
cess used by the algorithm that selects the best function 
(or model). These assumptions are known as the inductive 
bias of the algorithm because in logic a process that infers 
a general rule from a set of specific examples is known as 
inductive reasoning. For example, if all the swans that you 
have seen in your life are white, you might induce from 
these examples the general rule that all swans are white. 
This concept of inductive reasoning relates to machine 
learning because a machine learning algorithm induces (or 
extracts) a general rule (a function) from a set of specific 
examples (the dataset). Consequently, the assumptions 
that bias a machine learning algorithm are, in effect, bias-
ing an inductive reasoning process, and this is why they 
are known as the inductive bias of the algorithm.

So, a machine learning algorithm uses two sources of 
information to select the best function: one is the dataset, 
and the other (the inductive bias) is the assumptions that 
bias the algorithm to prefer some functions over others, 
irrespective of the patterns in the dataset. The inductive 
bias of a machine learning algorithm can be understood 
as providing the algorithm with a perspective on a dataset. 
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However, just as in the real world, where there is no single 
best perspective that works in all situations, there is no 
single best inductive bias that works well for all datasets. 
This is why there are so many different machine learning 
algorithms: each algorithm encodes a different inductive 
bias. The assumptions encoded in the design of a machine 
leanring algorithm can vary in strength. The stronger the 
assumptions the less freedom the algorithm is given in se-
lecting a function that fits the patterns in the dataset. In a 
sense, the dataset and inductive bias counterbalance each 
other: machine learning algorithms that have a strong in-
ductive bias pay less attention to the dataset when selecting 
a function. For example, if a machine learning algorithm 
is coded to prefer a very simple function, no matter how 
complex the patterns in the data, then it has a very strong  
inductive bias.

In chapter 2 we will explain how we can use the equa-
tion of a line as a template structure to define a function. 
The equation of the line is a very simple type of mathemat-
ical function. Machine learning algorithms that use the 
equation of a line as the template structure for the func-
tions they fit to a dataset make the assumption that the 
model they generate should encode a simple linear map-
ping from inputs to output. This assumption is an exam-
ple of an inductive bias. It is, in fact, an example of a strong 
inductive bias, as no matter how complex (or nonlinear) 
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the patterns in the data are the algorithm will be restricted 
(or biased) to fit a linear model to it.

One of two things can go wrong if we choose a machine 
learning algorithm with the wrong bias. First, if the in-
ductive bias of a machine learning algorithm is too strong, 
then the algorithm will ignore important information in 
the data and the returned function will not capture the 
nuances of the true patterns in the data. In other words, 
the returned function will be too simple for the domain,4 
and the outputs it generates will not be accurate. This 
outcome is known as the function underfitting the data. 
Alternatively, if the bias is too weak (or permissive), the 
algorithm is allowed too much freedom to find a function 
that closely fits the data. In this case, the returned func-
tion is likely to be too complex for the domain, and, more 
problematically, the function is likely to fit to the noise in 
the sample of the data that was supplied to the algorithm 
during training. Fitting to the noise in the training data 
will reduce the function’s ability to generalize to new data 
(data that is not in the training sample). This outcome is 
known as overfitting the data. Finding a machine learning 
algorithm that balances data and inductive bias appropri-
ately for a given domain is the key to learning a function 
that neither underfits or overfits the data, and that, there-
fore, generalizes successfully in that domain (i.e., that is 
accurate at inference, or processing new examples that 
were not in the training data).
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However, in domains that are complex enough to war-
rant the use of machine learning, it is not possible in ad-
vance to know what are the correct assumptions to use 
to bias the selection of the correct model from the data. 
Consequently, data scientists must use their intuition (i.e., 
make informed guesses) and also use trial-and-error ex-
perimentation in order to find the best machine learning 
algorithm to use in a given domain. 

Neural networks have a relatively weak inductive bias. 
As a result, generally, the danger with deep learning is that 
the neural network model will overfit, rather than under-
fit, the data. It is because neural networks pay so much 
attention to the data that they are best suited to contexts 
where there are very large datasets. The larger the dataset, 
the more information the data provides, and therefore 
it becomes more sensible to pay more attention to the 
data. Indeed, one of the most important factors driving 
the emergence of deep learning over the last decade has 
been the emergence of Big Data. The massive datasets 
that have become available through online social plat-
forms and the proliferation of sensors have combined to 
provide the data necessary to train neural network mod-
els to support new applications in a range of domains. To 
give a sense of the scale of the big data used in deep learn-
ing research, Facebook’s face recognition software, Deep-
Face, was trained on a dataset of four million facial images 
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belonging to more than four thousand identities (Taigman  
et al. 2014).

The Key Ingredients of Machine Learning

The above example of deciding which arithmetic opera-
tion best explains the relationship between inputs and 
outputs in a set of data illustrates the three key ingredi-
ents in machine learning:

1.	 Data (a set of historical examples).

2.	 A set of functions that the algorithm will search 
through to find the best match with the data.

3.	 Some measure of fitness that can be used to evaluate 
how well each candidate function matches the data.

All three of these ingredients must be correct if a machine 
learning project is to succeed; below we describe each of 
these ingredients in more detail.

We have already introduced the concept of a dataset 
as a two-dimensional table (or n × m matrix),5 where each 
row contains the information for one example, and each 
column contains the information for one of the features 
in the domain. For example, table 1.2 illustrates how the 
sample inputs and outputs of the first unknown arithmetic 
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function problem in the chapter can be represented as a 
dataset. This dataset contains four examples (also known 
as instances), and each example is represented using two 
input features and one output (or target) feature. De-
signing and selecting the features to represent the ex-
amples is a very important step in any machine learning  
project.

As is so often the case in computer science, and ma-
chine learning, there is a tradeoff in feature selection. If 
we choose to include only a minimal number of features 
in the dataset, then it is likely that a very informative 
feature will be excluded from the data, and the function 
returned by the machine learning algorithm will not work 
well. Conversely, if we choose to include as many features 
as possible in the domain, then it is likely that irrelevant 
or redundant features will be included, and this will also 
likely result in the function not working well. One reason 
for this is that the more redundant or irrelevant features 
that are included, the greater the probability for the ma-
chine learning algorithm to extract patterns that are based 
on spurious correlations between these features. In these 
cases, the algorithm gets confused between the real pat-
terns in the data and the spurious patterns that only ap-
pear in the data due to the particular sample of examples 
that have been included in the dataset.

Finding the correct set of features to include in a 
dataset involves engaging with experts who understand 
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the domain, using statistical analysis of the distribution 
of individual features and also the correlations between 
pairs of features, and a trial-and-error process of building 
models and checking the performance of the models when 
particular features are included or excluded. This process 
of dataset design is a labor-intensive task that often takes 
up a significant portion of the time and effort expended 
on a machine learning project. It is, however, a critical task 
if the project is to succeed. Indeed, identifying which fea-
tures are informative for a given task is frequently where 
the real value of machine learning projects emerge.

The second ingredient in a machine learning project is 
the set of candidate functions that the algorithm will con-
sider as the potential explanation of the patterns in the 
data. In the unknown arithmetic function scenario previ-
ously given, the set of considered functions was explicitly 
specified and restricted to four: addition, subtraction, mul-
tiplication, or division. More generally, the set of functions 
is implicitly defined through the inductive bias of the 

Table 1.2.  A simple tabular dataset

Input 1 Input 2 Target

5 5 25

2 6 12

4 4 16

2 2 04
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machine learning algorithm and the function representa-
tion (or model) that is being used. For example, a neural 
network model is a very flexible function representation.

The third and final ingredient to machine learning is 
the measure of fitness. The measure of fitness is a function 
that takes the outputs from a candidate function, gener-
ated when the machine learning algorithm applies the can-
didate function to the data, and compares these outputs 
with the data, in some way. The result of this comparison 
is a value that describes the fitness of the candidate func-
tion relative to the data. A fitness function that would 
work for our unknown arithmetic function scenario is to 
count in how many of the examples a candidate function 
returns a value that exactly matches the target specified 
in the data. Multiplication would score four out of four 
on this fitness measure, addition would score one out of 
four, and division and subtraction would both score zero 
out of four. There are a large variety of fitness functions 
that can be used in machine learning, and the selection of 
the correct fitness function is crucial to the success of a 
machine learning project. The design of new fitness func-
tions is a rich area of research in machine learning. Vary-
ing how the dataset is represented, and how the candidate 
functions and the fitness function are defined, results in 
three different categories of machine learning: supervised, 
unsupervised, and reinforcement learning.
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Supervised, Unsupervised, and Reinforcement Learning

Supervised machine learning is the most common type of 
machine learning. In supervised machine learning, each 
example in the dataset is labeled with the expected output 
(or target) value. For example, if we were using the dataset 
in table 1.1 to learn a function that maps from the inputs 
of annual income and debt to a credit solvency score, the 
credit solvency feature in the dataset would be the target 
feature. In order to use supervised machine learning, our 
dataset must list the value of the target feature for every 
example in the dataset. These target feature values can 
sometimes be very difficult, and expensive, to collect. In 
some cases, we must pay human experts to label each ex-
ample in a dataset with the correct target value. However, 
the benefit of having these target values in the dataset is 
that the machine learning algorithm can use these values 
to help the learning process. It does this by comparing the 
outputs a function produces with the target outputs speci-
fied in the dataset, and using the difference (or error) to 
evaluate the fitness of the candidate function, and use the 
fitness evaluation to guide the search for the best func-
tion. It is because of this feedback from the target labels 
in the dataset to the algorithm that this type of machine 
learning is considered supervised. This is the type of ma-
chine learning that was demonstrated by the example of 
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choosing between different arithmetic functions to ex-
plain the behavior of an unknown function.

Unsupervised machine learning is generally used for 
clustering data. For example, this type of data analysis 
is useful for customer segmentation, where a company 
wishes to segment its customer base into coherent groups 
so that it can target marketing campaigns and/or product 
designs to each group. In unsupervised machine learning, 
there are no target values in the dataset. Consequently, 
the algorithm cannot directly evaluate the fitness of a 
candidate function against the target values in the dataset. 
Instead, the machine learning algorithm tries to identify 
functions that map similar examples into clusters, such 
that the examples in a cluster are more similar to the other 
examples in the same cluster than they are to examples in 
other clusters. Note that the clusters are not prespecified, 
or at most they are initially very underspecified. For ex-
ample, the data scientist might provide the algorithm with 
a target number of clusters, based on some intuition about 
the domain, without providing explicit information on 
relative sizes of the clusters or regarding the characteris-
tics of examples that belong in each cluster. Unsupervised 
machine learning algorithms often begin by guessing an 
initial clustering of the examples and then iteratively 
adjusting the clusters (by dropping instances from one 
cluster and adding them to another) so as to improve the 
fitness of the cluster set. The fitness functions used in 
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unsupervised machine learning generally reward candi-
date functions that result in higher similarity within in-
dividual clusters and, also, high diversity between clusters.

Reinforcement learning is most relevant for online 
control tasks, such as robot control and game playing. In 
these scenarios, an agent needs to learn a policy for how it 
should act in an environment in order to be rewarded. In 
reinforcement learning, the goal of the agent is to learn 
a mapping from its current observation of the environ-
ment and its own internal state (its memory) to what 
action it should take: for instance, should the robot move 
forward or backward or should the computer program move 
the pawn or take the queen. The output of this policy (func-
tion) is the action that the agent should take next, given 
the current context. In these types of scenarios, it is dif-
ficult to create historic datasets, and so reinforcement 
learning is often carried out in situ: an agent is released 
into an environment where it experiments with different 
policies (starting with a potentially random policy) and 
over time updates its policy in response to the rewards it 
receives from the environment. If an action results in a 
positive reward, the mapping from the relevant observa-
tions and state to that action is reinforced in the policy, 
whereas if an action results in a negative reward, the map-
ping is weakened. Unlike in supervised and unsupervised 
machine learning, in reinforcement learning, the fact 
that learning is done in situ means that the training and 
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inference stages are interleaved and ongoing. The agent 
infers what action it should do next and uses the feedback 
from the environment to learn how to update its policy. 
A distinctive aspect of reinforcement learning is that the 
target output of the learned function (the agent’s actions) 
is decoupled from the reward mechanism. The reward 
may be dependent on multiple actions and there may be 
no reward feedback, either positive or negative, available 
directly after an action has been performed. For example, 
in a chess scenario, the reward may be +1 if the agent wins 
the game and -1 if the agent loses. However, this reward 
feedback will not be available until the last move of the 
game has been completed. So, one of the challenges in re-
inforcement learning is designing training mechanisms 
that can distribute the reward appropriately back through 
a sequence of actions so that the policy can be updated 
appropriately. Google’s DeepMind Technologies gener-
ated a lot of interest by demonstrating how reinforcement 
learning could be used to train a deep learning model to 
learn control policies for seven different Atari computer 
games (Mnih et al. 2013). The input to the system was 
the raw pixel values from the screen, and the control poli-
cies specified what joystick action the agent should take at 
each point in the game. Computer game environments are 
particularly suited to reinforcement learning as the agent 
can be allowed to play many thousands of games against 
the computer game system in order to learn a successful 
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policy, without incurring the cost of creating and labeling 
a large dataset of example situations with correct joystick 
actions. The DeepMind system got so good at the games 
that it outperformed all previous computer systems on six 
of the seven games, and outperformed human experts on 
three of the games.

Deep learning can be applied to all three machine 
learning scenarios: supervised, unsupervised, and rein-
forcement. Supervised machine learning is, however, the 
most common type of machine learning. Consequently, 
the majority of this book will focus on deep learning in a 
supervised learning context. However, most of the deep 
learning concerns and principles introduced in the super-
vised learning context also apply to unsupervised and re-
inforcement learning.

Why Is Deep Learning So Successful?

In any data-driven process the primary determinant of 
success is knowing what to measure and how to measure it. 
This is why the processes of feature selection and feature 
design are so important to machine learning. As discussed 
above, these tasks can require domain expertise, statis-
tical analysis of the data, and iterations of experiments 
building models with different feature sets. Consequently, 
dataset design and preparation can consume a significant 
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portion of time and resources expended in the project, in 
some cases approaching up to 80% of the total budget of 
a project (Kelleher and Tierney 2018). Feature design is 
one task in which deep learning can have a significant ad-
vantage over traditional machine learning. In traditional 
machine learning, the design of features often requires a 
large amount of human effort. Deep learning takes a dif-
ferent approach to feature design, by attempting to auto-
matically learn the features that are most useful for the 
task from the raw data.

To give an example of feature design, a person’s body 
mass index (BMI) is the ratio of a person’s weight (in ki-
lograms) divided by their height (in meters squared). In a 
medical setting, BMI is used to categorize people as under-
weight, normal, overweight, or obese. Categorizing people 
in this way can be useful in predicting the likelihood of 
a person developing a weight-related medical condition, 
such as diabetes. BMI is used for this categorization be-
cause it enables doctors to categorize people in a manner 
that is relevant to these weight-related medical condi-
tions. Generally, as people get taller they also get heavier. 
However, most weight-related medical conditions (such as 
diabetes) are not affected by a person’s height but rather 
the amount they are overweight compared to other peo-
ple of a similar stature. BMI is a useful feature to use for 
the medical categorization of a person’s weight because 
it takes the effect of height on weight into account. BMI 
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is an example of a feature that is derived (or calculated) 
from raw features; in this case the raw features are weight 
and height. BMI is also an example of how a derived fea-
ture can be more useful in making a decision than the raw 
features that it is derived from. BMI is a hand-designed 
feature: Adolphe Quetelet designed it in the eighteenth  
century.

As mentioned above, during a machine learning proj-
ect a lot of time and effort is spent on identifying, or de-
signing, (derived) features that are useful for the task the 
project is trying to solve. The advantage of deep learn-
ing is that it can learn useful derived features from data 
automatically (we will discuss how it does this in later 
chapters). Indeed, given large enough datasets, deep 
learning has proven to be so effective in learning fea-
tures that deep learning models are now more accurate 
than many of the other machine learning models that use 
hand-engineered features. This is also why deep learning 
is so effective in domains where examples are described 
with very large numbers of features. Technically datasets 
that contain large numbers of features are called high-
dimensional. For example, a dataset of photos with a fea-
ture for each pixel in a photo would be high-dimensional. 
In complex high-dimensional domains, it is extremely 
difficult to hand-engineer features: consider the chal-
lenges of hand-engineering features for face recognition 
or machine translation. So, in these complex domains, 
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adopting a strategy whereby the features are automati-
cally learned from a large dataset makes sense. Related 
to this ability to automatically learn useful features, deep 
learning also has the ability to learn complex nonlinear 
mappings between inputs and outputs; we will explain 
the concept of a nonlinear mapping in chapter 3, and in 
chapter 6 we will explain how these mappings are learned  
from data.

Summary and the Road Ahead

This chapter has focused on positioning deep learning 
within the broader field of machine learning. Consequently, 
much of this chapter has been devoted to introducing ma-
chine learning. In particular, the concept of a function as a 
deterministic mapping from inputs to outputs was intro-
duced, and the goal of machine learning was explained as 
finding a function that matches the mappings from input 
features to the output features that are observed in the 
examples in the dataset.

Within this machine learning context, deep learn-
ing was introduced as the subfield of machine learning 
that focuses on the design and evaluation of training 
algorithms and model architectures for modern neural 
networks. One of the distinctive aspects of deep learn-
ing within machine learning is the approach it takes to 
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feature design. In most machine learning projects, feature 
design is a human-intensive task that can require deep 
domain expertise and consume a lot of time and project 
budget. Deep learning models, on the other hand, have 
the ability to learn useful features from low-level raw 
data, and complex nonlinear mappings from inputs to 
outputs. This ability is dependent on the availability of 
large datasets; however, when such datasets are available, 
deep learning can frequently outperform other machine 
learning approaches. Furthermore, this ability to learn 
useful features from large datasets is why deep learning 
can often generate highly accurate models for complex do-
mains, be it in machine translation, speech processing, or 
image or video processing. In a sense, deep learning has 
unlocked the potential of big data. The most noticeable 
impact of this development has been the integration of 
deep learning models into consumer devices. However, 
the fact that deep learning can be used to analyze massive 
datasets also has implications for our individual privacy 
and civil liberty (Kelleher and Tierney 2018). This is why 
understanding what deep learning is, how it works, and 
what it can and can’t be used for, is so important. The 
road ahead is as follows:

•	 Chapter 2 introduces some of the foundational 
concepts of deep learning, including what a model is, 
how the parameters of a model can be set using data, and 
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how we can create complex models by combining simple 
models.

•	 Chapter 3 explains what neural networks are, how  
they work, and what we mean by a deep neural  
network.

•	 Chapter 4 presents a history of deep learning. This 
history focuses on the major conceptual and technical 
breakthroughs that have contributed to the development 
of the field of machine learning. In particular, it provides 
a context and explanation for why deep learning has seen 
such rapid development in recent years.

•	 Chapter 5 describes the current state of the field, by 
introducing the two deep neural architectures that are 
the most popular today: convolutional neural networks 
and recurrent neural networks. Convolutional neural 
networks are ideally suited to processing image and 
video data. Recurrent neural networks are ideally suited 
to processing sequential data such as speech, text, or 
time-series data. Understanding the differences and 
commonalities across these two architectures will give 
you an awareness of how a deep neural network can be 
tailored to the characteristics of a specific type of data, 
and also an appreciation of the breadth of the design 
space of possible network architectures.
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•	 Chapter 6 explains how deep neural networks 
models are trained, using the gradient descent and 
backpropagation algorithms. Understanding these two 
algorithms will give you a real insight into the state 
of artificial intelligence. For example, it will help you 
to understand why, given enough data, it is currently 
possible to train a computer to do a specific task within a 
well-defined domain at a level beyond human capabilities, 
but also why a more general form of intelligence is still an 
open research challenge for artificial intelligence.

•	 Chapter 7 looks to the future in the field of deep 
learning. It reviews the major trends driving the 
development of deep learning at present, and how they 
are likely to contribute to the development of the field 
in the coming years. The chapter also discusses some of 
the challenges the field faces, in particular the challenge 
of understanding and interpreting how a deep neural 
network works.





2

CONCEPTUAL FOUNDATIONS

This chapter introduces some of the foundational concepts 
that underpin deep learning. The basis of this chapter is 
to decouple the initial presentation of these concepts from 
the technical terminology used in deep learning, which is 
introduced in subsequent chapters.

A deep learning network is a mathematical model that 
is (loosely) inspired by the structure of the brain. Conse-
quently, in order to understand deep learning it is helpful 
to have an intuitive understanding of what a mathemati-
cal model is, how the parameters of a model can be set, 
how we can combine (or compose) models, and how we 
can use geometry to understand how a model processes 
information.
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What Is a Mathematical Model?

In its simplest form, a mathematical model is an equa-
tion that describes how one or more input variables are 
related to an output variable. In this form a mathematical 
model is the same as a function: a mapping from inputs 
to outputs.

In any discussion relating to models, it is important 
to remember the statement by George Box that all models 
are wrong but some are useful! For a model to be useful it 
must have a correspondence with the real world. This cor-
respondence is most obvious in terms of the meaning that 
can be associated with a variable. For example, in isola-
tion a value such as 78,000 has no meaning because it has 
no correspondence with concepts in the real world. But 
yearly income=$78,000 tells us how the number describes 
an aspect of the real world. Once the variables in a model 
have a meaning, we can understand the model as describ-
ing a process through which different aspects of the world 
interact and cause new events. The new events are then 
described by the outputs of the model.

A very simple template for a model is the equation of 
a line:

y mx c= +

In this equation y is the output variable, x is the input 
variable, and m and c are two parameters of the model 
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that we can set to adjust the relationship the model de-
fines between the input and the output.

Imagine we have a hypothesis that yearly income af-
fects a person’s happiness and we wish to describe the  
relationship between these two variables.1 Using the equa-
tion of a line, we could define a model to describe this  
relationship as follows:

happiness m income c= × +

This model has a meaning because the variables in the 
model (as distinct from the parameters of the model) 
have a correspondence with concepts from the real world. 
To complete our model, we have to set the values of the 
model’s parameters: m and c. Figure 2.1 illustrates how 
varying the values of each of these parameters changes 
the relationship defined by the model between income and 
happiness.

One important thing to notice in this figure is that no 
matter what values we set the model parameters to, the re-
lationship defined by the model between the input and the 
output variable can be plotted as a line. This is not surpris-
ing because we used the equation of a line as the template 
to define our model, and this is why mathematical models 
that are based on the equation of a line are known as linear 
models. The other important thing to notice in the figure 
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is how changing the parameters of the model changes the 
relationship between income and happiness.

The solid steep line, with parameters c m= =( )1 0 08, . , 
is a model of the world in which people with zero income 
have a happiness level of 1, and increases in income have 
a significant effect on people’s happiness. The dashed line, 
with parameters c m= =( )1 0 06, . , is a model in which peo-
ple with zero income have a happiness level of 1 and in-
creased income increases happiness, but at the slower rate 
compared to the world modeled by the solid line. Finally, 
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Figure 2.1  Three different linear models of how income affects happiness.
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the dotted line, parameters c m= =( )4 0 02, . , is a model 
of the world where no one is particularly unhappy—even 
people with zero income have a happiness of 4 out of 10—
and although increases in income do affect happiness, the 
effect is moderate. This third model assumes that income 
has a relatively weak effect on happiness.

More generally, the differences between the three 
models in figure 2.1 show how making changes to the 
parameters of a linear model changes the model. Chang-
ing c causes the line to move up and done. This is most 
clearly seen if we focus on the y-axis: notice that the line 
defined by a model always crosses (or intercepts) the 
y-axis at the value that c is set to. This is why the c pa-
rameter in a linear model is known as the intercept. The 
intercept can be understood as specifying the value of the 
output variable when the input variable is zero. Chang-
ing the m parameter changes the angle (or slope) of the 
line. The slope parameter controls how quickly changes in 
income effect changes in happiness. In a sense, the slope 
value is a measure of how important income is to happi-
ness. If income is very important (i.e., if small changes in 
income result in big changes in happiness), then the slope 
parameter of our model should be set to a large value. An-
other way of understanding this is to think of a slope pa-
rameter of a linear model as describing the importance, or 
weight, of the input variable in determining the value of  
the output.
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Linear Models with Multiple Inputs

The equation of a line can be used as a template for math-
ematical models that have more than one input variable. 
For example, imagine yourself in a scenario where you 
have been hired by a financial institution to act as a loan 
officer and your job involves deciding whether or not a 
loan application should be granted. From interviewing 
domain experts you come up with a hypothesis that a use-
ful way to model a person’s credit solvency is to consider 
both their yearly income and their current debts. If we as-
sume that there is a linear relationship between these two 
input variables and a person’s credit solvency, then the 
appropriate mathematical model, written out in English  
would be:

solvency income weight for income
debt weight for debt

= ×( )
+ ×( ) ++ intercept

Notice that in this model the m parameter has been re-
placed by a separate weight for each input variable, with 
each weight representing the importance of its associated 
input in determining the output. In mathematical nota-
tion this model would be written as:

y input weight input weight c= ×( ) + ×( ) +1 1 2 2



	 Conceptual Foundations    45

where y represents the credit solvency output, input1 rep-
resents the income variable, input2 represents the debt 
variable, and c represents the intercept. Using the idea of 
adding a new weight for each new input to the model al-
lows us to scale the equation of a line to as many inputs as 
we like. All the models defined in this way are still linear 
within the dimensions defined by the number of inputs 
and the output. What this means is that a linear model 
with two inputs and one output defines a flat plane rather 
than a line because that is what a two-dimensional line 
that has been extruded to three dimensions looks like.

It can become tedious to write out a mathematical 
model that has a lot of inputs, so mathematicians like to 
write things in as compact a form as possible. With this 
in mind, the above equation is sometimes written in the 
short form:

y input weight ci i
i

n

= ×( ) +
=
∑

1

This notation tells us that to calculate the output variable 
y we must first go through all n inputs and multiple each 
input by its corresponding weight, then we should sum 
together the results of these n multiplications, and finally 
we add the c intercept parameter to the result of the sum-
mation. The ∑  symbol tells us that we use addition to 
combine the results of the multiplications, and the index i  
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tells us that we multiply each input by the weight with the 
same index. We can make our notation even more compact 
by treating the intercept as a weight. One way to do this is 
to assume an input0  that is always equal to 1 and to treat 
the intercept as the weight on this input, that is, weight0.  
Doing this allows us to write out the model as follows:

y input weighti i
i

n

= ×( )
=
∑

0

Notice that the index now starts at 0, rather than 1, be-
cause we are now assuming an extra input, input0 1= , and 
we have relabeled the intercept weight0.

Although we can write down a linear model in a num-
ber of different ways, the core of a linear model is that the 
output is calculated as the sum of the n input values mul-
tiplied by their corresponding weights. Consequently, this 
type of model defines a calculation known as a weighted 
sum, because we weight each input and sum the results. 
Although a weighted sum is easy to calculate, it turns out 
to be very useful in many situations, and it is the basic cal-
culation used in every neuron in a neural network.

Setting the Parameters of a Linear Model

Let us return to our working scenario where we wish 
to create a model that enables us to calculate the credit 
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solvency of individuals who have applied for a financial 
loan. For simplicity in presentation we will ignore the 
intercept parameter in this discussion as it is treated the 
same as the other parameters (i.e., the weights on the in-
puts). So, dropping the intercept parameter, we have the 
following linear model (or weighted sum) of the relation-
ship between a person’s income and debt to their credit  
solvency:

solvency income weight for income
debt weight for debt

= ×( )
+ ×( )

In order to complete our model, we need to specify the pa-
rameters of the model; that is, we need to specify the value 
of the weight for each input. One way to do this would be 
to use our domain expertise to come up with values for 
each of the parameters.

For example, if we assume that an increase in a per-
son’s income has a bigger impact on their credit solvency 
than a similar increase in their debt, we should set the 
weighting for income to be larger than that of the debt. 
The following model encodes this assumption; in par-
ticular this model specifies that income is three times 
as important as debt in determining a person’s credit  
solvency:

solvency income debt= ×( ) + ×( )3 1
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The drawback with using domain knowledge to set the 
parameters of a model is that experts often disagree. For 
example, you may think that weighting income as three 
times as important as debt is not realistic; in that case the 
model can be adjusted by, for example, setting both in-
come and debt to have an equal weighting, which would be 
equivalent to assuming that income and debt are equally 
important in determining credit solvency. One way to 
avoid arguments between experts is to use data to set the 
parameters. This is where machine learning helps. The 
learning done by machine learning is finding the param-
eters (or weights) of a model using a dataset.

Learning Model Parameters from Data

Later in the book we will describe the standard algorithm 
used to learn the weights for a linear model, known as the 
gradient descent algorithm. However, we can give a brief 
preview of the algorithm here. We start with a dataset con-
taining a set of examples for which we have both the input 
values (income and debt) and the output value (credit sol-
vency). Table 2.1 illustrates such a dataset from our credit 
solvency scenario.2

We then begin the process of learning the weights by 
guessing initial values for each weight. It is very likely that 
this initial, guessed, model will be a very bad model. This 
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is not a problem, however, because we will use the dataset 
to iteratively update the weights so that the model gets 
better and better, in terms of how well it matches the data. 
For the purpose of the example, we will use the model de-
scribed above as our initial (guessed) model:

solvency income debt= ×( ) + ×( )3 1

The general process for improving the weights of the 
model is to select an example from the dataset and feed 
the input values from the example into the model. This 
allows us to calculate an estimate of the output value for 
the example. Once we have this estimated output, we can 
calculate the error of the model on the example by sub-
tracting the estimated output from the correct output for 
the example listed in the dataset. Using the error of the 
model on the example, we can improve how well the model 

Table 2.1.  A dataset of loan applications and known 
credit solvency rating of the applicant

ID Annual income Current debt Credit solvency

1 $150 -$100 100

2 $250 -$300 -50

3 $450 -$250 400

4 $200 -$350 -300
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fits the data by updating the weights in the model using 
the following strategy, or learning rule:

•	 If the error is 0, then we should not change the weights 
of the model.

•	 If the error is positive, then the output of the model 
was too low, so we should increase the output of the 
model for this example by increasing the weights for 
all the inputs that had positive values for the example 
and decreasing the weights for all the inputs that had 
negative values for the example.

•	 If the error is negative, then the output of the model 
was too high, so we should decrease the output of the 
model for this example by decreasing the weights for 
all the inputs that had positive values for the example 
and increasing the weights for all the inputs that had 
negative values for the example.

To illustrate the weight update process we will use ex-
ample 1 from table 2.1 (income = 150, debt = -100, and 
solvency = 100) to test the accuracy of our guessed model 
and update the weights according to the resulting error.

solvency income debt= ×( ) + ×( )3 1

= ×( ) + − ×( )150 3 100 1

= 350
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When the input values for the example are passed into 
the model, the credit solvency estimate returned by the 
model is 350. This is larger than the credit solvency listed 
for this example in the dataset, which is 100. As a result, 
the error of the model is negative (100 – 350 = –250); 
therefore, following the learning rule described above, we 
should decrease the output of the model for this example 
by decreasing the weights for positive inputs and increas-
ing the weights for negative inputs. For this example, the 
income input had a positive value and the debt input had 
a negative value. If we decrease the weight for income by 1 
and increase the weight for debt by 1, we end up with the 
following model:

solvency income debt= ×( ) + ×( )2 2

We can test if this weight update has improved the 
model by checking if the new model generates a better 
estimate for the example than the old model. The follow-
ing illustrates pushing the same example through the new 
model:

solvency income debt= ×( ) + ×( )2 2

= ×( ) + − ×( )150 2 100 2

= 100

This time the credit solvency estimate generated by the 
model matches the value in the dataset, showing that the 
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updated model fits the data more closely than the original 
model. In fact, this new model generates the correct out-
put for all the examples in the dataset.

In this example, we only needed to update the weights 
once in order to find a set of weights that made the be-
havior of the model consistent with all the examples in 
the dataset. Typically, however, it takes many iterations 
of presenting examples and updating weights to get a 
good model. Also, in this example, we have, for the sake 
of simplicity, assumed that the weights are updated by 
either adding or subtracting 1 from them. Generally, in 
machine learning, the calculation of how much to update 
each weight by is more complicated than this. However, 
these differences aside, the general process outlined here 
for updating the weights (or parameters) of a model in or-
der to fit the model to a dataset is the learning process at 
the core of deep learning.

Combining Models

We now understand how we can specify a linear model to 
estimate an applicant’s credit solvency, and how we can 
modify the parameters of the model in order to fit the 
model to a dataset. However, as a loan officer our job is 
not simply to calculate an applicant’s credit solvency; we 
have to decide whether to grant the loan application or 
not. In other words, we need a rule that will take a credit 
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solvency score as input and return a decision on the loan 
application. For example, we might use the decision rule 
that a person with a credit solvency above 200 will be granted 
a loan. This decision rule is also a model: it maps an input 
variable, in this case credit solvency, to an output variable, 
loan decision.

Using this decision rule we can adjudicate on a loan 
application by first using the model of credit solvency to 
convert a loan applicant’s profile (described in terms of the 
annual income and debt) into a credit solvency score, and 
then passing the resulting credit solvency score through 
our decision rule model to generate the loan decision. We 
can write this process out in a pseudomathematical short-
hand as follows:

loan decision
decision rule solvency income debt= = × + ×( )( )2 2) (

Using this notation, the entire decision process for ad-
judicating the loan application for example 1 from  
table 2.1 is:

loan decision
decision rule solvency income debt= = ×( ) + ×( )( )2 2

= = × + − ×( )( )decision rule solvency 150 2 100 2) (

= =( )decision rule solvency 100

= reject
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We are now in a position where we can use a model 
(composed of two simpler models, a decision rule and a 
weighted sum) to describe how a loan decision is made. 
What is more, if we use data from previous loan applica-
tions to set the parameters (i.e., the weights) of the model, 
our model will correspond to how we have processed pre-
vious loan applications. This is useful because we can use 
this model to process new applications in a way that is 
consistent with previous decisions. If a new loan applica-
tion is submitted, we simply use our model to process the 
application and generate a decision. It is this ability to 
apply a mathematical model to new examples that makes 
mathematical modeling so useful.

When we use the output of one model as the input 
to another model, we are creating a third model by com-
bining two models. This strategy of building a complex 
model by combining smaller simpler models is at the core 
of deep learning networks. As we will see, a neural net-
work is composed of a large number of small units called 
neurons. Each of these neurons is a simple model in its 
own right that maps from a set of inputs to an output. 
The overall model implemented by the network is cre-
ated by feeding the outputs from one group of neurons as 
inputs into a second group of neurons and then feeding 
the outputs of the second group of neurons as inputs to 
a third group of neurons, as so on, until the final output 
of the model is generated. The core idea is that feeding 
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the outputs of some neuron as inputs to other neurons 
enables these subsequent neurons to learn to solve a dif-
ferent part of the overall problem the network is trying to 
solve by building on the partial solutions implemented by 
the earlier neurons—in a similar way to the way the deci-
sion rule generates the final adjudication for a loan appli-
cation by building on the calculation of the credit solvency 
model. We will return to this topic of model composition 
in subsequent chapters.

Input Spaces, Weight Spaces, and Activation Spaces

Although mathematical models can be written out as 
equations, it is often useful to understand the geomet-
ric meaning of a model. For example, the plots in figure 
2.1 helped us understand how changes in the parameters 
of a linear model changed the relationship between the 
variables that the model defined. There are a number of 
geometric spaces that it is useful to distinguish between, 
and understand, when we are discussing neural networks. 
These are the input space, the weight space, and the activa-
tion space of a neuron. We can use the decision model for 
loan applications that we defined in the previous section 
to explain these three different types of spaces.

We will begin by describing the concept of an input 
space. Our loan decision model took two inputs: the 
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annual income and current debt of the applicant. Table 
2.1 listed these input values for four example loan applica-
tions. We can plot the input space of this model by treating 
each of the input variables as the axis of a coordinate sys-
tem. This coordinate space is referred to as the input space 
because each point in this space defines a possible com-
bination of input values to the model. For example, the 
plot at the top-left of figure 2.2 shows the position of each 
of the four example loan applications within the models  
input space.

The weight space for a model describes the universe of 
possible weight combinations that a model might use. We 
can plot the weight space for a model by defining a coor-
dinate system with one axis per weight in the model. The 
loan decision model has only two weights, one weight for 
the annual income input, and one weight for the current 
debt input. Consequently, the weight space for this model 
has two dimensions. The plot at the top-right of figure 
2.2 illustrates a portion of the weight space for this model. 
The location of the weight combination used by the model 
2 2,  is highlighted in this figure. Each point within this co-
ordinate system describes a possible set of weights for the 
model, and therefore corresponds to a different weighted 
sum function within the model. Consequently, moving 
from one location to another within this weight space is 
equivalent to changing the model because it changes the 
mapping from inputs to output that the model defines.
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Figure 2.2  There are four different coordinate spaces related to the 
processing of the loan decision model: top-left plots the input space; top-right 
plots the weight space; bottom-left plots the activation (or decision) space; 
and bottom-right plots the input space with the decision boundary plotted.
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A linear model maps a set of input values to a point 
in a new space by applying a weighted sum calculation to 
the inputs: multiply each input by a weight, and sum the 
results of the multiplication. In our loan decision model it 
is in this space that we apply our decision rule. Thus, we 
could call this space the decision space, but, for reasons 
that will become clear when we describe the structure of 
a neuron in the next chapter, we call this space the activa-
tion space. The axes of a model’s activation space corre-
spond to the weighted inputs to the model. Consequently, 
each point in the activation space defines a set of weighted 
inputs. Applying a decision rule, such as our rule that a 
person with a credit solvency above 200 will be granted a loan, 
to each point in this activation space, and recording the 
result of the decision for each point, enables us to plot the 
decision boundary of the model in this space. The decision 
boundary divides those points in the activation space that 
exceed the threshold, from those points in the space below 
the threshold. The plot in the bottom-left of figure 2.2 il-
lustrates the activation space for our loan decision model. 
The positions of the four example loan applications listed 
in table 2.1 when they are projected into this activation 
space are shown. The diagonal black line in this figure 
shows the decision boundary. Using this threshold, loan 
application number three is granted and the other loan 
applications are rejected. We can, if we wish, project the 
decision boundary back into the original input space by 
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recording for each location in the input space which side of 
the decision boundary in the activation space it is mapped 
to by the weighted sum function. The plot at the bottom-
right of figure 2.2 shows the decision boundary in the 
original input space (note the change in the values on the 
axes) and was generated using this process. We will return 
to the concepts of weight spaces and decision boundar-
ies in next chapter when we describe how adjusting the 
parameters of a neuron changes the set of input combina-
tions that cause the neuron to output a high activation.

Summary

The main idea presented in this chapter is that a linear 
mathematical model, be it expressed as an equation or 
plotted as a line, describes a relationship between a set of 
inputs and an output. Be aware that not all mathematical 
models are linear models, and we will come across nonlin-
ear models in this book. However, the fundamental cal-
culation of a weighted sum of inputs does define a linear 
model. Another big idea introduced in this chapter is that 
a linear model (a weighted sum) has a set of parameters, 
that is, the weights used in the weighted sum. By chang-
ing these parameters we can change the relationship the 
model describes between the inputs and the output. If we 
wish we could set these weights by hand using our domain 
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expertise; however, we can also use machine learning to 
set the weights of the model so that the behavior of the 
model fits the patterns found in a dataset. The last big 
idea introduced in this chapter was that we can build com-
plex models by combining simpler models. This is done by 
using the output from one (or more) models as input(s) 
to another model. We used this technique to define our 
composite model to make loan decisions. As we will see in 
the next chapter, the structure of a neuron in a neural net-
work is very similar to the structure of this loan decision 
model. Just like this model, a neuron calculates a weighted 
sum of its inputs and then feeds the result of this calcula-
tion into a second model that decides whether the neuron 
activates or not.

The focus of this chapter has been to introduce some 
foundational concepts before we introduce the terminol-
ogy of machine learning and deep learning. To give a quick 
overview of how the concepts introduced in this chapter 
map over to machine learning terminology, our loan deci-
sion model is equivalent to a two-input neuron that uses 
a threshold activation function. The two financial indica-
tors (annual income and current debt) are analogous to 
the inputs the neuron receives. The terms input vector or 
feature vector are sometimes used to refer to the set of in-
dicators describing a single example; in this context an ex-
ample is a single loan applicant, described in terms of two 
features: annual income and current debt. Also, just like 
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the loan decision model, a neuron associates a weight with 
each input. And, again, just like the loan decision model, a 
neuron multiplies each input by its associated weight and 
sums the results of these multiplications in order to calcu-
late an overall score for the inputs. Finally, similar to the 
way we applied a threshold to the credit solvency score to 
convert it into a decision of whether to grant or reject the 
loan application, a neuron applies a function (known as 
an activation function) to convert the overall score of the 
inputs. In the earliest types of neurons, these activation 
functions were actually threshold functions that worked 
in exactly the same way as the score threshold used in this 
credit scoring example. In more recent neural networks, 
different types of activation functions (for example, the 
logistic, tanh, or ReLU functions) are used. We will intro-
duce these activation functions in the next chapter.





3

NEURAL NETWORKS:  
THE BUILDING BLOCKS  

OF DEEP LEARNING

The term deep learning describes a family of neural network 
models that have multiple layers of simple information 
processing programs, known as neurons, in the network. 
The focus of this chapter is to provide a clear and com-
prehensive introduction to how these neurons work and 
are interconnected in artificial neural networks. In later 
chapters, we will explain how neural networks are trained 
using data.

A neural network is a computational model that is in-
spired by the structure of the human brain. The human 
brain is composed of a massive number of nerve cells, 
called neurons. In fact, some estimates put the number 
of neurons in the human brain at one hundred billion 
(Herculano-Houzel 2009). Neurons have a simple three-
part structure consisting of: a cell body, a set of fibers 
called dendrites, and a single long fiber called an axon. 
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Figure 3.1 illustrates the structure of a neuron and how 
it connects to other neurons in the brain. The dendrites 
and the axon stem from the cell body, and the dendrites of 
one neuron are connected to the axons of other neurons. 
The dendrites act as input channels to the neuron and re-
ceive signals sent from other neurons along their axons. 
The axon acts as the output channel of a neuron, and so 
other neurons, whose dendrites are connected to the axon, 
receive the signals sent along the axon as inputs.

Neurons work in a very simple manner. If the incom-
ing stimuli are strong enough, the neuron transmits an 
electrical pulse, called an action potential, along its axon 
to the other neurons that are connected to it. So, a neuron 
acts as an all-or-none switch, that takes in a set of inputs 
and either outputs an action potential or no output.

This explanation of the human brain is a significant 
simplification of the biological reality, but it does capture 

Figure 3.1  The structure of a neuron in the brain.
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the main points necessary to understand the analogy 
between the structure of the human brain and compu-
tational models called neural networks. These points of 
analogy are: (1) the brain is composed of a large number 
of interconnected and simple units called neurons; (2) the 
functioning of the brain can be understood as processing 
information, encoded as high or low electrical signals, or 
activation potentials, that spread across the network of 
neurons; and (3) each neuron receives a set of stimuli from 
its neighbors and maps these inputs to either a high- or 
low-value output. All computational models of neural net-
works have these characteristics.

Artificial Neural Networks

An artificial neural network consists of a network of 
simple information processing units, called neurons. The 
power of neural networks to model complex relationships 
is not the result of complex mathematical models, but 
rather emerges from the interactions between a large set 
of simple neurons.

Figure 3.2 illustrates the structure of a neural net-
work. It is standard to think of the neurons in a neural net-
work as organized into layers. The depicted network has 
five layers: one input layer, three hidden layers, and one 
output layer. A hidden layer is just a layer that is neither 
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the input nor the output layer. Deep learning networks 
are neural networks that have many hidden layers of neu-
rons. The minimum number of hidden layers necessary to 
be considered deep is two. However, most deep learning 
networks have many more than two hidden layers. The 
important point is that the depth of a network is mea-
sured in terms of the number of hidden layers, plus the  
output layer.

In figure 3.2, the squares in the input layer represent 
locations in memory that are used to present inputs to 
the network. These locations can be thought of as sensing 
neurons. There is no processing of information in these 
sensing neurons; the output of each of these neurons is 
simply the value of the data stored at the memory location. 

Input
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Output
layer 4

Figure 3.2  Topological illustration of a simple neural network.



Deep learning networks 
are neural networks that 
have many hidden layers 
of neurons.
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The circles in the figure represent the information proc-
essing neurons in the network. Each of these neurons 
takes a set of numeric values as input and maps them to 
a single output value. Each input to a processing neuron 
is either the output of a sensing neuron or the output of 
another processing neuron.

The arrows in figure 3.2 illustrate how information 
flows through the network from the output of one neu-
ron to the input of another neuron. Each connection in 
a network connects two neurons and each connection is 
directed, which means that information carried along a 
connection only flows in one direction. Each of the con-
nections in a network has a weight associated with it. A 
connection weight is simply a number, but these weights 
are very important. The weight of a connection affects 
how a neuron processes the information it receives along 
the connection, and, in fact, training an artificial neural 
network, essentially, involves searching for the best (or 
optimal) set of weights.

How an Artificial Neuron Processes Information

The processing of information within a neuron, that is, 
the mapping from inputs to an output, is very similar 
to the loan decision model that we developed in chapter 
2. Recall that the loan decision model first calculated a 
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weighted sum over the input features (income and debt). 
The weights used in the weighted sum were adjusted using 
a dataset so that the results of the weighted sum calcula-
tion, given an loan applicant’s income and debt as inputs, 
was an accurate estimate of the applicant’s credit solvency 
score. The second stage of processing in the loan decision 
model involved passing the result of the weighted sum 
calculation (the estimated credit solvency score) through 
a decision rule. This decision rule was a function that 
mapped a credit solvency score to a decision on whether a 
loan application was granted or rejected.

A neuron also implements a two-stage process to map 
inputs to an output. The first stage of processing involves 
the calculation of a weighted sum of the inputs to the neu-
ron. Then the result of the weighted sum calculation is 
passed through a second function that maps the results of 
the weighted sum score to the neuron’s final output value. 
When we are designing a neuron, we can used many differ-
ent types of functions for this second stage or processing; 
it may be as simple as the decision rule we used for our 
loan decision model, or it may be more complex. Typically 
the output value of a neuron is known as its activation 
value, so this second function, which maps from the result 
of the weighted sum to the activation value of the neuron, 
is known as an activation function.

Figure 3.3 illustrates how these stages of processing 
are reflected in the structure of an artificial neuron. In 
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figure 3.3, the Σ symbol represents the calculation of the 
weighted sum, and the φ symbol represents the activation 
function processing the weighted sum and generating the 
output from the neuron.

The neuron in figure 3.3 receives n inputs x xn1, ,…[ ] 
on n different input connections, and each connection has 
an associated weight w wn1, ,…[ ]. The weighted sum cal-
culation involves the multiplication of inputs by weights 
and the summation of the resulting values. Mathemati-
cally this calculation is written as:

z x w x w x wn n= ( ) + ( ) +…+ ( )1 1 2 2× × ×

This calculation can also be written in a more compact 
mathematical form as:

z x wi
n

i i= =Σ 1 ×

Σ ϕ

x1

x2

x3

x4

xn

w
1

w
2

w3

w4

w n
Output

...

Figure 3.3  The structure of an artificial neuron.
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For example, assuming a neuron received the inputs  
x x1 23 9= =[ ],  and had the following weights w1 3= −[ , 

w2 1= ], the weighted sum calculation would be:

z = × −( ) + ×( )3 3 9 1
= 0

The second stage of processing within a neuron is to 
pass the result of the weighted sum, the z  value, through 
an activation function. Figure 3.4 plots the shape of a num-
ber of possible activation functions, as the input to each 
function, z, ranges across an interval, either [-1, ..., +1] or 
[-10, ..., +10] depending on which interval best illustrates 
the shape of the function. Figure 3.4 (top) plots a thresh-
old activation function. The decision rule we used in the 
loan decision model was an example of a threshold func-
tion; the threshold used in that decision rule was whether 
the credit solvency score was above 200. Threshold acti-
vations were common in early neural network research. 
Figure 3.4 (middle) plots the logistic and tanh activation 
functions. The units employing these activation functions 
were popular in multilayer networks until quite recently. 
Figure 3.4 (bottom) plots the rectifier (or hinge, or posi-
tive linear) activation function. This activation function is 
very popular in modern deep learning networks; in 2011 
the rectifier activation function was shown to enable bet-
ter training in deep networks (Glorot et al. 2011). In fact, 
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as will be discussed in chapter 4, during the review of the 
history of deep learning, one of the trends in neural net-
work research has been a shift from threshold activation 
to logistic and tanh activations, and then onto rectifier  
activation functions.

Returning to the example, the result of the weighted 
summation step was z = 0. Figure 3.4 (middle plot, solid 
line) plots the logistic function. Assuming that the neuron 
is using a logistic activation function, this plot shows how 
the result of the summation will be mapped to an output 
activation: logistic 0 0 5( ) = . . The calculation of the output 
activation of this neuron can be summarized as:

Output activation z x w
i

n

i i= =( )=
_function ×Σ

1

= = × −( ) + ×( )( )logistic z 3 3 9 1

= =( )logistic z 0

= 0 5.

Notice that the processing of information in this neuron 
is nearly identical to the processing of information in the 
loan decision model we developed in the last chapter. The 
major difference is that we have replaced the decision 
threshold rule that mapped the weighted sum score to an 
accepted or rejected output with a logistic function that 
maps the weighted sum score to a value between 0 and 1. 
Depending on the location of this neuron in the network, 
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the output activation of the neuron, in this instance 
y = 0 5. , will either be passed as input to one or more neu-
rons in the next layer in the network, or will be part of 
the overall output of the network. If a neuron is at the 
output layer, the interpretation of what its output value 
means would be dependent on the task that the neuron 
is designed to model. If a neuron is in one of the hidden 
layers of the network, then it may not be possible to put 
a meaningful interpretation on the output of the neuron 
apart from the general interpretation that it represents 
some sort of derived feature (similar to the BMI feature we 
discussed in chapter 1) that the network has found useful 
in generating its outputs. We will return to the challenge 
of interpreting the meaning of activations within a neural 
network in chapter 7.

The key point to remember from this section is that 
a neuron, the fundamental building block of neural net-
works and deep learning, is defined by a simple two-step 
sequence of operations: calculating a weighted sum and 
then passing the result through an activation function.

Figure 3.4 illustrates that neither the tanh nor the 
logistic function is a linear function. In fact, the plots of 
both of these functions have a distinctive s-shaped (rather 
than linear) profile. Not all activation functions have an 
s-shape (for example, the threshold and rectifier are not 
s-shaped), but all activation functions do apply a nonlin-
ear mapping to the output of the weighted sum. In fact, 
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it is the introduction of the nonlinear mapping into the 
processing of a neuron that is the reason why activation 
functions are used.

Why Is an Activation Function Necessary?

To understand why a nonlinear mapping is needed in a 
neuron, it is first necessary to understand that, essentially, 
all a neural network does is define a mapping from inputs 
to outputs, be it from a game position in Go to an evalu-
ation of that position, or from an X-ray to a diagnosis of 
a patient. Neurons are the basic building blocks of neural 
networks, and therefore they are the basic building blocks 
of the mapping a network defines. The overall mapping 
from inputs to outputs that a network defines is com-
posed of the mappings from inputs to outputs that each of 
the neurons within the network implement. The implica-
tion of this is that if all the neurons within a network were 
restricted to linear mappings (i.e., weighted sum calcula-
tions), the overall network would be restricted to a linear 
mapping from inputs to outputs. However, many of the re-
lationships in the world that we might want to model are 
nonlinear, and if we attempt to model these relationships 
using a linear model, then the model will be very inaccu-
rate. Attempting to model a nonlinear relationship with 
a linear model would be an example of the underfitting 
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problem we discussed in chapter 1: underfitting occurs 
when the model used to encode the patterns in a dataset 
is too simple and as a result it is not accurate.

A linear relationship exists between two things when 
an increase in one always results in an increase or decrease 
in the other at a constant rate. For example, if an employee 
is on a fixed hourly rate, which does not vary at weekends 
or if they do overtime, then there is a linear relationship 
between the number of hours they work and their pay. A 
plot of their hours worked versus their pay will result in 
a straight line; the steeper the line the higher their fixed 
hourly rate of pay. However, if we make the payment sys-
tem for our hypothetical employee just slightly more com-
plex, by, for example, increasing their hourly rate of pay 
when they do overtime or work weekends, then the rela-
tionship between the number of hours they work and their 
pay is no longer linear. Neural networks, and in particular 
deep learning networks, are typically used to model rela-
tionships that are much more complex than this employ-
ee’s pay. Modeling these relationships accurately requires 
that a network be able to learn and represent complex 
nonlinear mappings. So, in order to enable a neural net-
work to implement such nonlinear mappings, a nonlinear 
step (the activation function) must be included within the 
processing of the neurons in the network.

In principle, using any nonlinear function as an activa-
tion function enables a neural network to learn a nonlinear 
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mapping from inputs to outputs. However, as we shall see 
later, most of the activation functions plotted in figure 3.4 
have nice mathematical properties that are helpful when 
training a neural network, and this is why they are so pop-
ular in neural network research.

The fact that the introduction of a nonlinearity into 
the processing of the neurons enables the network to 
learn a nonlinear mapping between input(s) and output 
is another illustration of the fact that the overall behav-
ior of the network emerges from the interactions of the 
processing carried out by individual neurons within the 
network. Neural networks solve problems using a divide-
and-conquer strategy: each of the neurons in a network 
solves one component of the larger problem, and the 
overall problem is solved by combining these component 
solutions. An important aspect of the power of neural 
networks is that during training, as the weights on the 
connections within the network are set, the network is 
in effect learning a decomposition of the larger problem, 
and the individual neurons are learning how to solve and 
combine solutions to the components within this problem 
decomposition.

Within a neural network, some neurons may use dif-
ferent activation functions from other neurons in the net-
work. Generally, however, all the neurons within a given 
layer of a network will be of the same type (i.e., they will 
all use the same activation function). Also, sometimes 
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neurons are referred to as units, with a distinction made 
between units based on the activation function the units 
use: neurons that use a threshold activation function are 
known as threshold units, units that use a logistic acti-
vation function are known as logistic units, and neurons 
that use the rectifier activation function are known as 
rectified linear units, or ReLUs. For example, a network 
may have a layer of ReLUs connected to a layer of logistic 
units. The decision regarding which activation functions 
to use in the neurons in a network is made by the data 
scientist who is designing the network. To make this deci-
sion, a data scientist may run a number of experiments 
to test which activation functions give the best perfor-
mance on a dataset. However, frequently data scientists 
default to using whichever activation function is popular 
at a given point. For example, currently ReLUs are the 
most popular type of unit in neural networks, but this 
may change as new activation functions are developed and 
tested. As we will discuss at the end of this chapter, the 
elements of a neural network that are set manually by the 
data scientist prior to the training process are known as  
hyperparameters.

The term hyperparameter is used to describe the 
manually fixed parts of the model in order to distinguish 
them from the parameters of the model, which are the 
parts of the model that are set automatically, by the ma-
chine learning algorithm, during the training process. The 



Neural networks solve 
problems using a divide-
and-conquer strategy: 
each of the neurons in  
a network solves one 
component of the larger 
problem, and the overall 
problem is solved by 
combining these 
component solutions.
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parameters of a neural network are the weights used in 
the weighted sum calculations of the neurons in the net-
work. As we touched on in chapters 1 and 2, the standard 
training process for setting the parameters of a neural 
network is to begin by initializing the parameters (the 
network’s weights) to random values, and during train-
ing to use the performance of the network on the dataset 
to slowly adjust these weights so as to improve the ac-
curacy of the model on the data. Chapter 6 describes the 
two algorithms that are most commonly used to train a 
neural network: the gradient descent algorithm and the 
backpropagation algorithm. What we will focus on next 
is understanding how changing the parameters of a neu-
ron affects how the neuron responds to the inputs it  
receives.

How Does Changing the Parameters of a Neuron Affect 
Its Behavior?

The parameters of a neuron are the weights the neuron  
uses in the weighted sum calculation. Although the 
weighted sum calculation in a neuron is the same weighted 
sum used in a linear model, in a neuron the relationship 
between the weights and the final output of neuron is 
more complex because the result of the weighted sum  
is passed through an activation function in order to 
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generate the final output. To understand how a neuron 
makes a decision on a given input, we need to understand 
the relationship between the neuron’s weights, the input 
it receives, and the output it generates in response.

The relationship between a neuron’s weights and the 
output it generates for a given input is most easily under-
stood in neurons that use a threshold activation function. 
A neuron using this type of activation function is equiva-
lent to our loan decision model that used a decision rule 
to classify the credit solvency scores, generated by the 
weighted sum calculation, to reject or grant loan applica-
tions. At the end of chapter 2, we introduced the concepts 
of an input space, a weight space, and an activation space 
(see figure 2.2). The input space for our two-input loan 
decision model could be visualized as a two-dimensional 
space, with one input (annual income) plotted along the x-
axis, and the other input (current debt) on the y-axis. Each 
point in this plot defined a potential combination of in-
puts to the model, and the set of points in the input space 
defines the set of possible inputs the model could process. 
The weights used in the loan decision model can be un-
derstood as dividing the input space into two regions: the 
first region contains all of the inputs that result in the loan 
application being granted, and the other region contains 
all the inputs that result in the loan application being re-
jected. In that scenario, changing the weights used by the 
decision model would change the set of loan applications 



84    chapter 3

that were accepted or rejected. Intuitively, this makes 
sense because it changes the weighting that we put on an 
applicant’s income relative to their debt when we are de-
ciding on granting the loan or not.

We can generalize the above analysis of the loan deci-
sion model to a neuron in a neural network. The equivalent 
neuron structure to the loan decision model is a two-input 
neuron with a threshold activation function. The input 
space for such a neuron has a similar structure to the in-
put space for a loan decision model. Figure 3.5 presents 
three plots of the input space for a two-input neuron us-
ing a threshold function that outputs a high activation if 
the weighted sum result is greater than zero, and a low 
activation otherwise. The differences between each of the 
plots in this figure is that the neuron defines a different 
decision boundary in each case. In each plot, the decision 
boundary is marked with a black line.

Each of the plots in figure 3.5 was created by first fix-
ing the weights of the neuron and then for each point in 
the input space recording whether the neuron returned a 
high or low activation when the coordinates of the point 
were used as the inputs to the neuron. The input points for 
which the neuron returned a high activation are plotted in 
gray, and the other points are plotted in white. The only 
difference between the neurons used to create these plots 
was the weights used in calculating the weighted sum of 
the inputs. The arrow in each plot illustrates the weight 
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vector used by the neuron to generate the plot. In this 
context, a vector describes the direction and distance of 
a point from the origin.1 As we shall see, interpreting the 
set of weights used by a neuron as defining a vector (an 
arrow from the origin to the coordinates of the weights) 
in the neuron’s input space is useful in understanding how 
changes in the weights change the decision boundary of 
the neuron.

The weights used to create each plot change from one 
plot to the next. These changes are reflected in the direc-
tion of the arrow (the weight vector) in each plot. Spe-
cifically, changing the weights rotates the weight vector 
around the origin. Notice that the decision boundary in 
each plot is sensitive to the direction of the weight vector: 
in all the plots, the decision boundary is orthogonal (i.e., 
at a right, or 90°, angle) to the weight vector. So, chang-
ing the weights not only rotates the weight vector, it also 
rotates the decision boundary of the neuron. This rotation 
changes the set of inputs that the neuron outputs a high 
activation in response to (the gray regions).

To understand why this decision boundary is always 
orthogonal to the weight vector, we have to shift our per-
spective, for a moment, to linear algebra. Remember that 
every point in the input space defines a potential combi-
nation of input values to the neuron. Now, imagine each 
of these sets of input values as defining an arrow from the 
origin to the coordinates of the point in the input space. 
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There is one arrow for each point in the input space. Each 
of these arrows is very similar to the weight vector, ex-
cept that it points to the coordinates of the inputs rather 
than to the coordinates of the weights. When we treat a 
set of inputs as a vector, the weighted sum calculation is 
the same as multiplying two vectors, the input vector by 
the weight vector. In linear algebra terminology, multi-
plying two vectors is known as the dot product operation. 
For the purposes of this discussion, all we need to know 
about the dot product is that the result of this operation 
is dependent on the angle between the two vectors that 
are multiplied. If the angle between the two vectors is less 
than a right angle, then the result will be positive; other-
wise, it will be negative. So, multiplying the weight vec-
tor by an input vector will return a positive value for all 
the input vectors at an angle less than a right angle to the 
weight vector, and a negative value for all the other vec-
tors. The activation function used by this neuron returns 
a high activation when positive values are input and a low 
activation when negative values are input. Consequently, 
the decision boundary lies at a right angle to the weight 
vector because all the inputs at an angle less than a right 
angle to the weight vector will result in a positive input 
to the activation function and, therefore, trigger a high-
output activation from the neuron; conversely, all the 
other inputs will result in a low-output activation from  
the neuron.
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Switching back to the plots in figure 3.5, although the 
decision boundaries in each of the plots are at different 
angles, all the decision boundaries go through the point in 
space that the weight vectors originate from (i.e., the ori-
gin). This illustrates that changing the weights of a neuron 
rotates the neuron’s decision boundary but does not trans-
late it. Translating the decision boundary means moving 
the decision boundary up and down the weight vector, so 
that the point where it meets the vector is not the origin. 
The restriction that all decision boundaries must pass 
through the origin limits the distinctions that a neuron 
can learn between input patterns. The standard way to 
overcome this limitation is to extend the weighted sum 
calculation so that it includes an extra element, known as 
the bias term. This bias term is not the same as the induc-
tive bias we discussed in chapter 1. It is more analogous 
to the intercept parameter in the equation of a line, which 
moves the line up and down the y-axis. The purpose of this 
bias term is to move (or translate) the decision boundary 
away from the origin.

The bias term is simply an extra value that is included 
in the calculation of the weighted sum. It is introduced 
into the neuron by adding the bias to the result of the 
weighted summation prior to passing it through the ac-
tivation function. Here is the equation describing the  
processing stages in a neuron with the bias term repre-
sented by the term b:
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Figure 3.6 illustrates how the value of the bias term affects 
the decision boundary of a neuron. When the bias term is 
negative, the decision boundary is moved away from the 
origin in the direction that the weight vector points to (as 
in the top and middle plots in figure 3.6); when the bias 
term is positive, the decision boundary is translated in the 
opposite direction (see the bottom plot of figure 3.6). In 
both cases, the decision boundary remains orthogonal to 
the weight vector. Also, the size of the bias term affects 
the amount the decision boundary is moved from the ori-
gin; the larger the value of the bias term, the more the de-
cision boundary is moved (compare the top plot of figure 
3.6 with the middle and bottom plots).

Instead of manually setting the value of the bias term, 
it is preferable to allow a neuron to learn the appropriate 
bias. The simplest way to do this is to treat the bias term as 
a weight and allow the neuron to learn the bias term at the 
same time that it is learning the rest of the weights for its 
inputs. All that is required to achieve this is to augment all 
the input vectors the neuron receives with an extra input 
that is always set to 1. By convention, this input is input 
0 (x0 1= ), and, consequently, the bias term is specified by 
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weight 0 (w0).2 Figure 3.7 illustrates the structure of an 
artificial neuron when the bias term has been integrated 
as w0.

When the bias term has been integrated into the 
weights of a neuron, the equation specifying the map-
ping from input(s) to output activation of the neuron can 
be simplified (at least from a notational perspective) as 
follows:

Output activation function z x wi
i

n

i= =



=

∑_
0

×

Notice that in this equation the index i  goes from 0 to  
n, so that it now includes the fixed input, x0 1= , and the 
bias term, w0; in the earlier version of this equation, the 
index only went from 1 to n. This new format means that 
the neuron is able to learn the bias term, simply by learn-
ing the appropriate weight w0, using the same process 

Σ ϕ

= 1x0x1

x2

x3

x4

xn

w0(originally b)

w
1

w
2

w3

w4

w n

Output

...

Figure 3.7  An artificial neuron with a bias term included as w0.



92    chapter 3

that is used to learn the weights for the other inputs: at 
the start of training, the bias term for each neuron in the 
network will be initialized to a random value and then ad-
justed, along with the weights of the network, in response 
to the performance of the network on the dataset.

Accelerating Neural Network Training Using GPUs

Merging the bias term is more than a notational conve-
nience; it enables us to use specialized hardware to accel-
erate the training of neural networks. The fact that a bias 
term can be treated as the same as a weight means that the 
calculation of the weighted sum of inputs (including the 
addition of the bias term) can be treated as the multipli-
cation of two vectors. As we discussed earlier, during the 
explanation of why the decision boundary was orthogonal 
to the weight vector, we can think of a set of inputs as a 
vector. Recognizing that much of the processing within a 
neural network involves vector and matrix multiplications 
opens up the possibility of using specialized hardware to 
speed up these calculations. For example, graphics proc-
essing units (GPUs) are hardware components that have 
specifically been designed to do extremely fast matrix 
multiplications.

In a standard feedforward network, all the neurons 
in one layer receive all the outputs (i.e., activations) from 
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all the neurons in the preceding layer. This means that all 
the neurons in a layer receive the same set of inputs. As 
a result, we can calculate the weighted sum calculation 
for all the neurons in a layer using only a single vector by 
matrix multiplication. Doing this is much faster than cal-
culating a separate weighted sum for each neuron in the 
layer. To do this calculation of weighted sums for an entire 
layer of neurons in a single multiplication, we put the out-
puts from the neurons in the preceding layer into a vector 
and store all the weights of the connections between the 
two layers of neurons in a matrix. We then multiply the 
vector by the matrix, and the resulting vector contains  
the weighted sums for all the neurons.

Figure 3.8 illustrates how the weighted summation 
calculations for all the neurons in a layer in a network can 
be calculated using a single matrix multiplication opera-
tion. This figure is composed of two separate graphics: the 
graphic on the left illustrates the connections between 
neurons in two layers of a network, and the graphic on 
the right illustrates the matrix operation to calculate the 
weighted sums for the neurons in the second layer of the 
network. To help maintain a correspondence between  
the two graphics, the connections into neuron E are high-
lighted in the graphic on the left, and the calculation of the 
weighted sum in neuron E is highlighted in the graphic on 
the right.
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Focusing on the graphic on the right, the 1 3×  vec-
tor (1 row, 3 columns) on the bottom-left of this graphic, 
stores the activations for the neurons in layer 1 of the net-
work; note that these activations are the outputs from an 
activation function ϕ (the particular activation function is 
not specified—it could be a threshold function, a tanh, a 
logistic function, or a rectified linear unit/ReLU function). 
The 3 4×  matrix (three rows and four columns), in the top-
right of the graphic, holds the weights for the connections 
between the two layers of neurons. In this matrix, each 
column stores the weights for the connections coming into 
one of the neurons in the second layer of the network. The 
first column stores the weights for neuron D, the second 
column for neuron E, etc.3 Multiplying the 1 3×  vector of 
activations from layer 1 by the 3 4×  weight matrix results 
in a 1 4×  vector corresponding to the weighted summa-
tions for the four neurons in layer 2 of the network: zD is 
the weighted sum of inputs for neuron D, zE for neuron E, 
and so on.

To generate the 1 4×  vector containing the weighted 
summations for the neurons in layer 2, the activation 
vector is multiplied by each column in the matrix in turn. 
This is done by multiplying the first (leftmost) element in 
the vector by the first (topmost) element in the column, 
then multiplying the second element in the vector by the 
element in the second row in the column, and so on, un-
til each element in the vector has been multiplied by its 
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corresponding column element. Once all the multiplica-
tions between the vector and the column have been com-
pleted, the results are summed together and the stored in 
the output vector. Figure 3.8 illustrates multiplication of 
the activation vector by the second column in the weight 
matrix (the column containing the weights for inputs to 
neuron E) and the storing of the summation of these mul-
tiplications in the output vector as the value zE.

Weight matrix for
edges in layer 2

Activations from layer 1 Weighted sums for layer 2

Figure 3.8  A graphical illustration of the topological connections of a 
specific neuron E in a network, and the corresponding vector by matrix 
multiplication that calculates the weighted summation of inputs for the 
neuron E, and its siblings in the same layer.5
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Hidden layer
weight matrix

Activations
input layer

Activations
hidden layer

Output

Output layer
weight matrix

Figure 3.9  A graph representation of a neural network (left), and the same 
network represented as a sequence of matrix operations (right).6

Indeed, the calculation implemented by an entire neu-
ral network can be represented as a chain of matrix multi-
plications, with an element-wise application of activation 
functions to the results of each multiplication. Figure 3.9 
illustrates how a neural network can be represented in 
both graph form (on the left) and as a sequence of matrix 
operations (on the right). In the matrix representation, 
the ×  symbol represents standard matrix multiplication 
(described above) and the → →ϕ  notation represents the 
application of an activation function to each element in 
the vector created by the preceding matrix multiplication. 
The output of this element-wise application of the activa-
tion function is a vector containing the activations for the 
neurons in a layer of the network. To help show the corre-
spondence between the two representations, both figures 
show the inputs to the network, I1  and I2 , the activations 
from the three hidden units, A1, A2, and A3, and the over-
all output of the network, y.
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As a side note, the matrix representation provides a 
transparent view of the depth of a network; the network’s 
depth is counted as the number of layers that have a weight 
matrix associated with them (or equivalently, the depth of 
a network is the number of weight matrices required by 
the network). This is why the input layer is not counted 
when calculating the depth of a network: it does not have 
a weight matrix associated with it.

As mentioned above, the fact that the majority of cal-
culations in a neural network can be represented as a se-
quence of matrix operations has important computational 
implications for deep learning. A neural network may con-
tain over a million neurons, and the current trend is for the 
size of these networks to double every two to three years.4 
Furthermore, deep learning networks are trained by itera-
tively running a network on examples sampled from very 
large datasets and then updating the network parameters 
(i.e., the weights) to improve performance. Consequently, 
training a deep learning network can require very large 
numbers of network runs, with each network run requir-
ing millions of calculations. This is why computational 
speedups, such as those that can be achieved by using 
GPUs to perform matrix multiplications, have been so im-
portant for the development of deep learning.

The relationship between GPUs and deep learning 
is not one-way. The growth in demand for GPUs gener-
ated by deep learning has had a significant impact on 
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GPU manufacturers. Deep learning has resulted in these 
companies refocusing their business. Traditionally, these 
companies would have focused on the computer games 
market, since the original motivation for developing GPU 
chips was to improve graphics rendering, and this had a 
natural application to computer games. However, in re-
cent years these companies have focused on positioning 
GPUs as hardware for deep learning and artificial intel-
ligence applications. Furthermore, GPU companies have 
also invested to ensure that their products support the top 
deep learning software frameworks.

Summary

The primary theme in this chapter has been that deep 
learning networks are composed of large numbers of 
simple processing units that work together to learn and 
implement complex mappings from large datasets. These 
simple units, neurons, execute a two-stage process: first, a 
weighted summation over the inputs to the neuron is cal-
culated, and second, the result of the weighted summation 
is passed through a nonlinear function, known as an acti-
vation function. The fact that a weighted summation func-
tion can be efficiently calculated across a layer of neurons 
using a single matrix multiplication operation is impor-
tant: it means that neural networks can be understood as a 



	Neural Networks: The Building Blocks of Deep Learning      99

sequence of matrix operations; this has permitted the use 
of GPUs, hardware optimized to perform fast matrix mul-
tiplication, to speed up the training of networks, which in 
turn has enabled the size of networks to grow.

The compositional nature of neural networks means 
that it is possible to understand at a very fundamental 
level how a neural network operates. Providing a compre-
hensive description of this level of processing has been the 
focus of this chapter. However, the compositional nature 
of neural networks also raises a raft of questions in rela-
tion to how a network should be composed to solve a given 
task, for example:

•	 Which activation functions should the neurons in a 
network use?

•	 How many layers should there be in a network?

•	 How many neurons should there be in each layer?

•	 How should the neurons be connected together?

Unfortunately, many of these questions cannot be an-
swered at a level of pure principle. In machine learning 
terminology, the types of concepts these questions are 
about are known as hyperparameters, as distinct from 
model parameters. The parameters of a neural network 
are the weights on the edges, and these are set by training 
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the network using large datasets. By contrast, hyperpa-
rameters are the parameters of a model (in these cases, 
the parameters of a neural network architecture) and/or 
training algorithm that cannot be directly estimated from 
the data but instead must be specified by the person cre-
ating the model, either through the use of heuristic rules, 
intuition, or trial and error. Often, much of the effort that 
goes into the creation of a deep learning network involves 
experimental work to answer the questions in relation to 
hyperparameters, and this process is known as hyperpa-
rameter tuning. The next chapter will review the history 
and evolution of deep learning, and the challenges posed 
by many of these questions are themes running through 
the review. Subsequent chapters in the book will explore 
how answering these questions in different ways can cre-
ate networks with very different characteristics, each 
suited to different types of tasks. For example, recurrent 
neural networks are best suited to processing sequential/
time-series data, whereas convolutional neural networks 
were originally developed to process images. Both of these 
network types are, however, built using the same funda-
mental processing unit, the artificial neuron; the differ-
ences in the behavior and abilities of these networks stems 
from how these neurons are arranged and composed.



4

A BRIEF HISTORY OF  
DEEP LEARNING

The history of deep learning can be described as three 
major periods of excitement and innovation, interspersed 
with periods of disillusionment. Figure 4.1 shows a time-
line of this history, which highlights these periods of ma-
jor research: on threshold logic units (early 1940s to the 
mid 1960s), connectionism (early 1980s to mid-1990s), 
and deep learning (mid 2000s to the present). Figure 4.1 
distinguishes some of the primary characteristics of the 
networks developed in each of these three periods. The 
changes in these network characteristics highlight some 
of the major themes within the evolution of deep learning, 
including: the shift from binary to continuous values; the 
move from threshold activation functions, to logistic and 
tanh activation, and then onto ReLU activation; and the 
progressive deepening of the networks, from single layer, 
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to multiple layer, and then onto deep networks. Finally, 
the upper half of figure 4.1 presents some of the impor-
tant conceptual breakthroughs, training algorithms, and 
model architectures that have contributed to the evolu-
tion of deep learning.

Figure 4.1 provides a map of the structure of this 
chapter, with the sequence of concepts introduced in the 
chapter generally following the chronology of this time-
line. The two gray rectangles in figure 4.1 represent the 
development of two important deep learning network ar-
chitectures: convolutional neural networks (CNNs), and 
recurrent neural networks (RNNs). We will describe the 
evolution of these two network architectures in this chap-
ter, and chapter 5 will give a more detailed explanation of 
how these networks work.

Early Research: Threshold Logic Units

In some of the literature on deep learning, the early neural 
network research is categorized as being part of cybernet-
ics, a field of research that is concerned with developing 
computational models of control and learning in biologi-
cal units. However, in figure 4.1, following the terminol-
ogy used in Nilsson (1965), this early work is categorized 
as research on threshold logic units because this term 
transparently describes the main characteristics of the 
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systems developed during this period. Most of the models 
developed in the 1940s, ’50s, and ’60s processed Boolean 
inputs (true/false represented as +1/-1 or 1/0) and gener-
ated Boolean outputs. They also used threshold activation 
functions (introduced in chapter 3), and were restricted to 
single-layer networks; in other words, they were restricted 
to a single matrix of tunable weights. Frequently, the fo-
cus of this early research was on understanding whether 
computational models based on artificial neurons had the 
capacity to learn logical relations, such as conjunction or 
disjunction.

In 1943, Walter McCulloch and Walter Pitts published 
an influential computational model of biological neurons 
in a paper entitled: “A Logical Calculus of the Ideas Im-
manent in Nervous Activity” (McCulloch and Pitts 1943). 
The paper highlighted the all-or-none characteristic of 
neural activity in the brain and set out to mathematically 
describe neural activity in terms of a calculus of propo-
sitional logic. In the McCulloch and Pitts model, all the 
inputs and the output to a neuron were either 0 or 1. 
Furthermore, each input was either excitatory (having a 
weight of +1) or inhibitory (having a weight of -1). A key 
concept introduced in the McCulloch and Pitts model was 
a summation of inputs followed by a threshold function 
being applied to the result of the summation. In the sum-
mation, if an excitatory input was on, it added 1; if an in-
hibitory input was on, it subtracted 1. If the result of the 
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summation was above a preset threshold, then the output 
of the neuron was 1; otherwise, it output a 0. In the paper, 
McCulloch and Pitts demonstrated how logical operations 
(such as conjunction, disjunction, and negation) could be 
represented using this simple model. The McCulloch and 
Pitts model integrated the majority of the elements that 
are present in the artificial neurons introduced in chapter 
3. In this model, however, the neuron was fixed; in other 
words the weights and threshold were set by han.

In 1949, Donald O. Hebb published a book entitled  
The Organization of Behavior, in which he set out a neu-
ropsychological theory (integrating psychology and the 
physiology of the brain) to explain general human be-
havior. The fundamental premise of the theory was that 
behavior emerged through the actions and interactions 
of neurons. For neural network research, the most im-
portant idea in this book was a postulate, now known as 
Hebb’s postulate, which explained the creation of lasting 
memory in animals based on a process of changes to the 
connections between neurons:

When an axon of a cell A is near enough to excite 
a cell B and repeatedly or persistently takes part 
in firing it, some growth process or metabolic 
change takes place in one or both cells such that A’s 
efficiency, as one of the cells firing B, is increased. 
(Hebb 1949, p. 62)
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This postulate was important because it asserted that in-
formation was stored in the connections between neurons 
(i.e., in the weights of a network), and furthermore that 
learning occurred by changing these connections based 
on repeated patterns of activation (i.e., learning can take 
place within a network by changing the weights of the 
network).

Rosenblatt’s Perceptron Training Rule
In the years following Hebb’s publication, a number of re-
searchers proposed computational models of neuron activ-
ity that integrated the Boolean threshold activation units 
of McCulloch and Pitts, with a learning mechanism based 
on adjusting the weights applied to the inputs. The best 
known of these models was Frank Rosenblatt’s perceptron 
model (Rosenblatt 1958). Conceptually, the perceptron 
model can be understood as a neural network consisting 
of a single artificial neuron that uses a threshold activa-
tion unit. Importantly, a perceptron network only has a 
single layer of weights. The first implementation of a per-
ceptron was a software implementation on an IBM 704 
system (and this was probably the first implementation 
of any neural network). However, Rosenblatt always in-
tended the perceptron to be a physical machine and it was 
later implemented in custom-built hardware known as the 

“Mark 1 perceptron.” The Mark 1 perceptron received input 
from a camera that generated a 400-pixel image that was 
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passed into the machine via an array of 400 photocells 
that were in turn connected to the neurons. The weights 
on connections to the neurons were implemented using 
adjustable electrical resistors known as potentiometers, 
and weight adjustments were implemented by using elec-
tric motors to adjust the potentiometers.

Rosenblatt proposed an error-correcting training pro-
cedure for updating the weights of a perceptron so that it 
could learn to distinguish between two classes of input: 
inputs for which the perceptron should produce the out-
put y = +1, and inputs for which the perceptron should 
produce the output y = −1 (Rosenblatt 1960). The train-
ing procedure assumes a set of Boolean encoded input pat-
terns, each with an associated target output. At the start 
of training, the weights in the perceptron are initialized 
to random values. Training then proceeds by iterating 
through the training examples, and after each example 
has been presented to the network, the weights of the net-
work are updated based on the error between the output 
generated by the perceptron and the target output speci-
fied in the data. The training examples can be presented to 
the network in any order and examples may be presented 
multiple times before training is completed. A complete 
training pass through the set of examples is known as an 
iteration, and training terminates when the perceptron 
correctly classifies all the examples in an iteration.
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Rosenblatt defined a learning rule (known as the 
perceptron training rule) to update each weight in a per-
ceptron after a training example has been processed. The 
strategy the rule used to update the weights is the same as 
the three-condition strategy we introduced in chapter 2 to 
adjust the weights in the loan decision model:

1.	 If the output of the model for an example matches the 
output specified for that example in the dataset, then 
don’t update the weights.

2.	 If the output of the model is too low for the current 
example, then increase the output of the model by 
increasing the weights for the inputs that had positive 
value for the example and decreasing the weights for the 
inputs that had a negative value for the example.

3.	 If the output of the model is too high for the current 
example, then reduce the output of the model by 
decreasing the weights for the inputs that had a positive 
value and increasing the weights for the inputs that had a 
negative value for the example.

Written out in an equation, Rosenblatt’s learning rule 
updates a weight i  (wi) as:

w w y y xi
t

i
t t t

i
t+ = + × −( )×( )1 η ˆ
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In this rule, wi
t+1 is the value of weight i after the net-

work weights have been updated in response to the proc-
essing of example t, wi

t  is the value of weight i used during 
the processing of example t, η is a preset positive constant 
(known as the learning rate, discussed below), yt is the ex-
pected output for example t as specified in the training 
dataset, ŷt is the output generated by the perceptron for 
example t, and xi

t is the component of input t that was 
weighted by wi

t  during the processing of the example.
Although it may look complex, the perceptron train-

ing rule is in fact just a mathematical specification of the 
three-condition weight update strategy described above. 
The primary part of the equation to understand is the 
calculation of the difference between the expected output 
and what the perceptron actually predicted: y yt t− ˆ . The 
outcome of this subtraction tells us which of the three 
update conditions we are in. In understanding how this 
subtraction works, it is important to remember that for 
a perceptron model the desired output is always either 
y = +1 or y = −1. The first condition is when y yt t− =ˆ 0;  
then the output of the perceptron is correct and the 
weights are not changed.

The second weight update condition is when the out-
put of the perceptron is too large. This condition can only 
be occur when the correct output for example t  is yt = −1 
and so this condition is triggered when y yt t− <ˆ 0. In 
this case, if the perceptron output for the example t  is  
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ŷ t = +1, then the error term is negative (y yt t− = −ˆ 2) and 
the weight wi is updated by + × − ×( )η 2 xi

t . Assuming, for 
the purpose of this explanation, that η is set to 0.5, then 
this weight update simplifies to −xi

t . In other words, when 
the perceptron’s output is too large, the weight update 
rule subtracts the input values from the weights. This will 
decrease the weights on inputs with positive values for the 
example, and increase the weights on inputs with negative 
values for the example (subtracting a negative number is 
the same as adding a positive number).

The third weight update condition is when the out-
put of the perceptron is too small. This weight update 
condition is the exact opposite of the second. It can only  
occur when yt = +1 and so is triggered when y yt t− >ˆ 0.  
In this case (y yt t− =ˆ 2), and the weight is updated by 
+ × ×( )η 2 xi

t . Again assuming that η is set to 0.5, then 
this update simplifies to +xi

t , which highlights that when 
the error of the perceptron is positive, the rule updates 
the weight by adding the input to the weight. This has the 
effect of decreasing the weights on inputs with negative 
values for the example and increasing the weight on in-
puts with positive values for the example.

At a number of points in the preceding paragraphs 
we have referred to learning rate, η. The purpose of the 
learning rate, η, is to control the size of the adjustments 
that are applied to a weight. The learning rate is an ex-
ample of a hyperparameter that is preset before the model 
is trained. There is a tradeoff in setting the learning rate:
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•	 If the learning rate is too small, it may take a very 
long time for the training process to converge on an 
appropriate set of weights.

•	 If the learning rate is too large, the network’s weights 
may jump around the weight space too much and the 
training may not converge at all.

One strategy for setting the learning rate is to set it to 
a relatively small positive value (e.g., 0.01), and another 
strategy is to initialize it to a larger value (e.g., 1.0)  
but to systematically reduce it as the training progresses 

(e.g., η ηt

t
+ = ×1 1 1

).

To make this discussion regarding the learning rate 
more concrete, imagine you are trying to solve a puzzle 
that requires you to get a small ball to roll into a hole. You 
are able to control the direction and speed of the ball by 
tilting the surface that the ball is rolling on. If you tilt the 
surface too steeply, the ball will move very fast and is likely 
to go past the hole, requiring you to adjust the surface 
again, and if you overadjust you may end up repeatedly 
tilting the surface. On the other hand, if you only tilt the 
surface a tiny bit, the ball may not start to move at all, or it 
may move very slowly taking a long time to reach the hole. 
Now, in many ways the challenge of getting the ball to roll 
into the hole is similar to the problem of finding the best 
set of weights for a network. Think of each point on the 
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surface the ball is rolling across as a possible set of network 
weights. The ball’s position at each point in time specifies 
the current set of weights of the network. The position  
of the hole specifies the optimal set of network weights for 
the task we are training the network to complete. In this 
context, guiding the network to the optimal set of weights 
is analogous to guiding the ball to the hole. The learning 
rate allows us to control how quickly we move across the 
surface as we search for the optimal set of weights. If we set 
the learning rate to a high value, we move quickly across 
the surface: we allow large updates to the weights at each 
iteration, so there are big differences between the network 
weights in one iteration and the next. Or, using our rolling 
ball analogy, the ball is moving very quickly, and just like 
in the puzzle when the ball is rolling too fast and passes 
the hole, our search process may be moving so fast that it 
misses the optimal set of weights. Conversely, if we set the 
learning rate to a low value, we move very slowly across 
the surface: we only allow small updates to the weights at 
each iteration; or, in other words, we only allow the ball 
to move very slowly. With a low learning rate, we are less 
likely to miss the optimal set of weights, but it may take 
an inordinate amount of time to get to them. The strategy 
of starting with a high learning rate and then systemati-
cally reducing it is equivalent to steeply tilting the puzzle 
surface to get the ball moving and then reducing the tilt to 
control the ball as it approaches the hole.
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Rosenblatt proved that if a set of weights exists that 
enables the perceptron to properly classify all of the train-
ing examples correctly, the perceptron training algorithm 
will eventually converge on this set of weights. This find-
ing is known as the perceptron convergence theorem 
(Rosenblatt 1962). The difficulty with training a percep-
tron, however, is that it may require a substantial number 
of iterations through the data before the algorithm con-
verges. Furthermore, for many problems it is unknown 
whether an appropriate set of weights exists in advance; 
consequently, if training has been going on for a long time, 
it is not possible to know whether the training process is 
simply taking a long time to converge on the weights and 
terminate, or whether it will never terminate.

The Least Mean Squares Algorithm
Around the same time that Rosenblatt was developing the 
perceptron, Bernard Widrow and Marcian Hoff were devel-
oping a very similar model called the ADALINE (short for 
adaptive linear neuron), along with a learning rule called 
the LMS (least mean square) algorithm (Widrow and Hoff 
1960). An ADALINE network consists of a single neuron 
that is very similar to a perceptron; the only difference is 
that an ADALINE network does not use a threshold func-
tion. In fact, the output of an ADALINE network is the just 
the weighted sum of the inputs. This is why it is known 
as a linear neuron: a weighted sum is a linear function (it 
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defines a line), and so an ADALINE network implements 
a linear mapping from inputs to output. The LMS rule is 
nearly identical to the perceptron learning rule, except 
that the output of the perceptron for a given example ŷt 
is replaced by the weighted sum of the inputs:

w w y w x xi
t
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The logic of the LMS update rule is the same as that 
of the perceptron training rule. If the output is too large, 
then weights that were applied to a positive input caused 
the output to be larger, and these weights should be de-
creased, and those that were applied to a negative input 
should be increased, thereby reducing the output the next 
time this input pattern is received. And, by the same logic, 
if the output is too small, then weights that were applied 
to a positive input are increased and those that were ap-
plied to a negative input should be decreased.

One of the important aspects of Widrow and Hoff’s 
work was to show that LMS rule could be used to train 
network to predict a number of any value, not just a +1 
or -1. This learning rule was called the least mean square 
algorithm because using the LMS rule to iteratively ad-
just the weights in a neuron is equivalent to minimizing 
the average squared error on the training set. Today, the 
LMS learning rule is sometimes called the Widrow-Hoff 



If the output of the 
model is too large, then 
weights associated with 
positive inputs should 
be reduced, whereas if 
the output is too small, 
then these weights 
should be increased.
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learning rule, after the inventors; however, it is more com-
monly called the delta rule because it uses the difference 
(or delta) between desired output and the actual output 
to calculate the weight adjustments. In other words, the 
LMS rule specifies that a weight should be adjusted in pro-
portion to the difference between the output of an ADA-
LINE network and the desired output: if the neuron makes 
a large error, then the weights are adjusted by a large 
amount, if the neuron makes a small error, then weights 
are adjusted by a small amount.

Today, the perceptron is recognized as important mile-
stone in the development of neural networks because it 
was the first neural network to be implemented. However, 
most modern algorithms for training neural networks are 
more similar to the LMS algorithm. The LMS algorithm 
attempts to minimize the mean squared error of the net-
work. As will be discussed in chapter 6, technically this 
iterative error reduction process involves a gradient de-
scent down an error surface; and, today, nearly all neu-
ral networks are trained using some variant of gradient  
descent.

The XOR Problem
The success of Rosenblatt, Widrow and Hoff, and others, 
in demonstrating that neural network models could au-
tomatically learn to distinguish between different sets of 
patterns, generated a lot of excitement around artificial 
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intelligence and neural network research. However, in 
1969, Marvin Minsky and Seymour Papert published a 
book entitled Perceptrons, which, in the annals of neural 
network research, is attributed with single-handedly de-
stroying this early excitement and optimism (Minsky and 
Papert 1969). Admittedly, throughout the 1960s neural 
network research had suffered from a lot of hype, and a 
lack of success in terms of fulfilling the correspondingly 
high expectations. However, Minsky and Papert’s book 
set out a very negative view of the representational power 
of neural networks, and after its publication funding for 
neural network research dried up.

Minsky and Papert’s book primarily focused on single 
layer perceptrons. Remember that a single layer percep-
tron is the same as a single neuron that uses a threshold 
activation function, and so a single layer perceptron is re-
stricted to implementing a linear (straight-line) decision 
boundary.1 This means that a single layer perceptron can 
only learn to distinguish between two classes of inputs if 
it is possible to draw a straight line in the input space that 
has all of the examples of one class on one side of the line 
and all examples of the other class on the other side of the 
line. Minsky and Papert highlighted this restriction as a 
weakness of these models.

To understand Minsky and Papert’s criticism of single 
layer perceptrons, we must first understand the concept 
of a linearly separable function. We will use a comparison 
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between the logical AND and OR functions with the logi-
cal XOR function to explain the concept of a linearly sepa-
rable function. The AND function takes two inputs, each 
of which can be either TRUE or FALSE, and returns TRUE 
if both inputs are TRUE. The plot on the left of figure 4.4 
shows the input space for the AND function and catego-
rizes each of the four possible input combinations as ei-
ther resulting in an output value of TRUE (shown in the 
figure by using a clear dot) or FALSE (shown in the figure 
by using black dots). This plot illustrates that is possible 
to draw a straight line between the inputs for which the 
AND function returns TRUE, (T,T), and the inputs for 
which the function returns FALSE, {(F,F), (F,T), (T,F)}. 
The OR function is similar to the AND function, except 
that it returns TRUE if either or both inputs are TRUE. 
The middle plot in figure 4.4 shows that it is possible to 
draw a line that separates the inputs that the OR function 
classifies as TRUE, {(F,T), (T,F), (T,T)}, from those it clas-
sifies as FALSE, (F,F). It is because we can draw a single 
straight line in the input space of these functions that 
divides the inputs belonging to one category of output 
from the inputs belonging to the other output category 
that the AND and OR functions are linearly separable  
functions.

The XOR function is also similar in structure to the 
AND and OR functions; however, it only returns TRUE 
if one (but not both) of its inputs are TRUE. The plot on 
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the right of figure 4.2 shows the input space for the XOR 
function and categorizes each of the four possible input 
combinations as returning either TRUE (shown in the fig-
ure by using a clear dot) or FALSE (shown in the figure by 
using black dots). Looking at this plot you will see that it is 
not possible to draw a straight line between the inputs the 
XOR function classifies as TRUE and those that it classi-
fies as FALSE. It is because we cannot use a single straight 
line to separate the inputs belonging to different catego-
ries of outputs for the XOR function that this function is 
said to be a nonlinearly separable function. The fact that 
the XOR function is nonlinearly separable does not make 
the function unique, or even rare—there are many func-
tions that are nonlinearly separable.

The key criticism that Minsky and Papert made of sin-
gle layer perceptrons was that these single layer models 

Figure 4.2  Illustrations of the linearly separable function. In each figure, 
black dots represent inputs for which the function returns FALSE, circles 
represent inputs for which the function returns TRUE. (T stands for true and 
F stands for false.)



120    chapter 4

were unable to learn nonlinearly separable functions, such 
as the XOR function. The reason for this limitation is that 
the decision boundary of a perceptron is linear and so a 
single layer perceptron cannot learn to distinguish be-
tween the inputs that belong to one output category of a 
nonlinearly separable function from those that belong to 
the other category.

It was known at the time of Minsky and Papert’s 
publication that it was possible to construct neural net-
works that defined a nonlinear decision boundary, and 
thus learn nonlinearly separable functions (such as the 
XOR function). The key to creating networks with more 
complex (nonlinear) decision boundaries was to extend 
the network to have multiple layers of neurons. For ex-
ample, figure 4.3 shows a two-layer network that imple-
ments the XOR function. In this network, the logical 
TRUE and FALSE values are mapped to numeric values: 
FALSE values are represented by 0, and TRUE values are 
represented by 1. In this network, units activate (out-
put +1) if the weighted sum of inputs is ≥ 1; otherwise, 
they output 0. Notice that the units in the hidden layer 
implement the logical AND and OR functions. These can 
be understood as intermediate steps to solving the XOR 
challenge. The unit in the output layer implements the 
XOR by composing the outputs of these hidden layers. In 
other words, the unit in the output layer returns TRUE 
only when the AND node is off (output=0) and the OR 
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Figure 4.3  A network that implements the XOR function. All processing 
units use a threshold activation function with a threshold of ≥ 1.

node is on (output=1). However, it wasn’t clear at the time 
how to train networks with multiple layers. Also, at the 
end of their book, Minsky and Papert argued that “in their 
judgment” the research on extending neural networks 
to multiple layers was “sterile” (Minsky and Papert 1969,  
sec. 13.2 page 23).

In a somewhat ironic historical twist, contempo-
raneous with Minsky and Papert’s publication, Alexey 
Ivakhnenko, a Ukrainian researcher, proposed the group 
method for data handling (GMDH), and in 1971 published 
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a paper that described how it could be used to learn a neu-
ral network with eight layers (Ivakhnenko 1971). Today 
Ivakhnenko’s 1971 GMDH network is credited with be-
ing the first published example of a deep network trained 
from data (Schmidhuber 2015). However, for many years, 
Ivaknenko’s accomplishment was largely overlooked by the 
wider neural network community. As a consequence, very 
little of the current work in deep learning uses the GMDH 
method for training: in the intervening years other train-
ing algorithms, such as backpropagation (described below), 
became standardized in the community. At the same time 
of Ivakhnenko’s overlooked accomplishment, Minsky 
and Papert’s critique was proving persuasive and it her-
alded the end of the first period of significant research on  
neural networks.

This first period of neural network research, did, how-
ever, leave a legacy that shaped the development of the 
field up to the present day. The basic internal structure 
of an artificial neuron was defined: a weighted sum of in-
puts fed through an activation function. The concept of 
storing information within the weights of a network was 
developed. Furthermore, learning algorithms based on 
iteratively adapting weights were proposed, along with 
practical learning rules, such as the LMS rule. In particu-
lar, the LMS approach, of adjusting the weights of neu-
rons in proportion to the difference between the output 
of the neuron and the desired output, is present in most 
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modern training algorithms. Finally, there was recogni-
tion of the limitations of single layer networks, and an 
understanding that one way to address these limitations 
was to extend the networks to include multiple layers of 
neurons. At this time, however, it was unclear how to train 
networks with multiple layers. Updating a weight requires 
an understanding of how the weight affects the error of 
the network. For example, in the LMS rule if the output of 
the neuron was too large, then weights that were applied 
to positive inputs caused the output to increase. There-
fore, decreasing the size of these weight would reduce the 
output and thereby reduce the error. But, in the late 1960s, 
the question of how to model the relationship between the 
weights of the inputs to neurons in the hidden layers of 
a network and the overall error of the network was still 
unanswered; and, without this estimation of the contri-
bution of the weight to the error, it was not possible to 
adjust the weights in the hidden layers of a network. The 
problem of attributing (or assigning) an amount of error 
to the components in a network is sometimes referred to 
as the credit assignment problem, or as the blame assign-
ment problem.

Connectionism: Multilayer Perceptrons

In the 1980s, people began to reevaluate the criticisms of 
the late 1960s as being overly severe. Two developments, 
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in particular, reinvigorated the field: (1) Hopfield net-
works; and (2) the backpropagation algorithm.

In 1982, John Hopfield published a paper where he 
described a network that could function as an associative 
memory (Hopfield 1982). During training, an associative 
memory learns a set of input patterns. Once the associate 
memory network has been trained, then, if a corrupted 
version of one of the input patterns is presented to the 
network, the network is able to regenerate the complete 
correct pattern. Associative memories are useful for a 
number of tasks, including pattern completion and error 
correction. Table 4.12 illustrates the tasks of pattern com-
pletion and error correction using the example of an asso-
ciative memory that has been trained to store information 
on people’s birthdays. In a Hopfield network, the memo-
ries, or input patterns, are encoded in binary strings; and, 

Table 4.1.  Illustration of the uses of an association 
memory for pattern completion and error correction

Training patterns Pattern completion

John**12May Liz***????? → Liz***25Feb

Kerry*03Jan ???***10Mar → Des***10Mar

Liz***25Feb Error correction

Des***10Mar Kerry*01Apr → Kerry*03Jan

Josef*13Dec Jxsuf*13Dec → Josef*13Dec



	 A Brief History of Deep Learning     125

assuming binary patterns are relatively distinct from each 
other, a Hopfield network can store up to 0.138N of these 
strings, where N is the number of neurons in the network. 
So to store 10 distinct patterns requires a Hopfield net-
work with 73 neurons, and to store 14 distinct patterns 
requires 100 neurons.

Backpropagation and Vanishing Gradients
In 1986, a group of researchers known as the parallel 
distributed processing (PDP) research group published a 
two-book overview of neural network research (Rumel-
hart et al. 1986b, 1986c). These books proved to be in-
credibly popular, and chapter 8 in volume one described 
the backpropagation algorithm (Rumelhart et al. 1986a). 
The backpropagation algorithm has been invented a num-
ber of times,3 but it was this chapter by Rumelhart, Hin-
ton, and Williams, published by PDP, that popularized 
its use. The backpropagation algorithm is a solution to 
the credit assignment problem and so it can be used to 
train a neural network that has hidden layers of neurons. 
The backpropagation algorithm is possibly the most im-
portant algorithm in deep learning. However, a clear and 
complete explanation of the backpropagation algorithm 
requires first explaining the concept of an error gradient, 
and then the gradient descent algorithm. Consequently, 
the in-depth explanation of backpropagation is post-
poned until chapter 6, which begins with an explanation 
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of these necessary concepts. The general structure of the 
algorithm, however, can be described relatively quickly. 
The backpropagation algorithm starts by assigning ran-
dom weights to each of the connections in the network. 
The algorithm then iteratively updates the weights in the 
network by showing training instances to the network and 
updating the network weights until the network is work-
ing as expected. The core algorithm works in a two-stage 
process. In the first stage (known as the forward pass), an 
input is presented to the network and the neuron activa-
tions are allowed to flow forward through the network un-
til an output is generated. The second stage (known as the 
backward pass) begins at the output layer and works back-
ward through the network until the input layer is reached. 
This backward pass begins by calculating an error for each 
neuron in the output layer. This error is then used to up-
date the weights of these output neurons. Then the error 
of each output neuron is shared back (backpropagated) to 
the hidden neurons that connect to it, in proportion to 
the weights on the connections between the output neu-
ron and the hidden neuron. Once this sharing (or blame 
assignment) has been completed for a hidden neuron, the 
total blame attributable to that hidden neuron is summed 
and this total is used to update the weights on that neuron. 
The backpropagation (or sharing back) of blame is then 
repeated for the neurons that have not yet had blame at-
tributed to them. This process of blame assignment and 
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weight updates continues back through the network until 
all the weights have been updated.

A key innovation that enabled the backpropagation al-
gorithm to work was a change in the activation functions 
used in the neurons. The networks that were developed 
in the early years of neural network research used thresh-
old activation functions. The backpropagation algorithm 
does not work with threshold activation functions be-
cause backpropagation requires that the activation func-
tions used by the neurons in the network be differentiable. 
Threshold activation functions are not differentiable be-
cause there is a discontinuity in the output of the function 
at the threshold. In other words, the slope of a threshold 
function at the threshold is infinite and therefore it is not 
possible to calculate the gradient of the function at that 
point. This led to the use of differentiable activation func-
tions in multilayer neural networks, such as the logistic 
and tanh functions.

There is, however, an inherent limitation with using 
the backpropagation algorithm to train deep networks. 
In the 1980s, researchers found that backpropagation 
worked well with relatively shallow networks (one or two 
layers of hidden units), but that as the networks got deeper, 
the networks either took an inordinate amount of time to 
train, or else they entirely failed to converge on a good set 
of weights. In 1991, Sepp Hochreiter (working with Jürgen 
Schmidhuber) identified the cause of this problem in his 
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diploma thesis (Hochreiter 1991). The problem is caused 
by the way the algorithm backpropagates errors. Fun-
damentally, the backpropagation algorithm is an imple-
mentation of the chain rule from calculus. The chain rule 
involves the multiplication of terms, and backpropagat-
ing an error from one neuron back to another can involve 
multiplying the error by a number terms with values less 
than 1. These multiplications by values less than 1 happen 
repeatedly as the error signal gets passed back through the 
network. This results in the error signal becoming smaller 
and smaller as it is backpropagated through the network. 
Indeed, the error signal often diminishes exponentially 
with respect to the distance from the output layer. The 
effect of this diminishing error is that the weights in the 
early layers of a deep network are often adjusted by only 
a tiny (or zero) amount during each training iteration. In 
other words, the early layers either train very, very slowly 
or do not move away from their random starting positions 
at all. However, the early layers in a neural network are 
vitally important to the success of the network, because 
it is the neurons in these layers that learn to detect the 
features in the input that the later layers of the network 
use as the fundamental building blocks of the representa-
tions that ultimately determine the output of the network. 
For technical reasons, which will be explained in chapter 
6, the error signal that is backpropagated through the net-
work is in fact the gradient of the error of the network, 
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and, as a result, this problem of the error signal rapidly di-
minishing to near zero is known as the vanishing gradient  
problem.

Connectionism and Local versus Distributed 
Representations
Despite the vanishing gradient problem, the backpropa-
gation algorithm opened up the possibility of training 
more complex (deeper) neural network architectures. 
This aligned with the principle of connectionism. Connec-
tionism is the idea that intelligent behavior can emerge 
from the interactions between large numbers of simple 
processing units. Another aspect of connectionism was 
the idea of a distributed representation. A distinction can 
be made in the representations used by neural networks 
between localist and distributed representations. In a lo-
calist representation there is a one-to-one correspondence 
between concepts and neurons, whereas in a distributed 
representation each concept is represented by a pattern 
of activations across a set of neurons. Consequently, in a 
distributed representation each concept is represented by 
the activation of multiple neurons and the activation of 
each neuron contributes to the representation of multiple 
concepts.

To illustrate the distinction between localist and dis-
tributed representations, consider a scenario where (for 
some unspecified reason) a set of neuron activations is 
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being used to represent the absence or presence of dif-
ferent foods. Furthermore, each food has two properties, 
the country of origin of the recipe and its taste. The pos-
sible countries of origin are: Italy, Mexico, or France; and, 
the set of possible tastes are: Sweet, Sour, or Bitter. So, in 
total there are nine possible types of food: Italian+Sweet, 
Italian+Sour, Italian+Bitter, Mexican+Sweet, etc. Using a 
localist representation would require nine neurons, one 
neuron per food type. There are, however, a number of 
ways to define a distributed representation of this do-
main. One approach is to assign a binary number to each 
combination. This representation would require only four 
neurons, with the activation pattern 0000 representing 
Italian+Sweet, 0001 representing Italian+Sour, 0010 rep-
resenting Italian+Bitter, and so on up to 1000 represent-
ing French+Bitter. This is a very compact representation. 
However, notice that in this representation the activation 
of each neuron in isolation has no independently mean-
ingful interpretation: the rightmost neuron would be ac-
tive (***1) for Italian+Sour, Mexican+Sweet, Mexican+Bitter, 
and France+Sour, and without knowledge of the activa-
tion of the other neurons, it is not possible know what 
country or taste is being represented. However, in a 
deep network the lack of semantic interpretability of the 
activations of hidden units is not a problem, so long as 
the neurons in the output layer of the network are able 
to combine these representations in such a way so as to 
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generate the correct output. Another, more transparent, 
distributed representation of this food domain is to use 
three neurons to represent the countries and three neu-
rons to represent the tastes. In this representation, the 
activation pattern 100100 could represent Italian+Sweet, 
001100 could represent French+Sweet, and 001001 could 
represent French+Bitter. In this representation, the acti-
vation of each neuron can be independently interpreted; 
however the distribution of activations across the set of 
neurons is required in order to retrieve the full description 
of the food (country+taste). Notice, however, that both of 
these distributed representations are more compact than 
the localist representation. This compactness can signifi-
cantly reduce the number of weights required in a network, 
and this in turn can result in faster training times for the 
network.

The concept of a distributed representation is very 
important within deep learning. Indeed, there is a good 
argument that deep learning might be more appropriately 
named representation learning—the argument being that 
the neurons in the hidden layers of a network are learning 
distributed representations of the input that are useful in-
termediate representations in the mapping from inputs to 
outputs that the network is attempting to learn. The task 
of the output layer of a network is then to learn how to 
combine these intermediate representations so as to gen-
erate the desired outputs. Consider again the network in 
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figure 4.3 that implements the XOR function. The hidden 
units in this network learn an intermediate representa-
tion of the input, which can be understood as composed 
of the AND and OR functions; the output layer then com-
bines this intermediate representation to generate the 
required output. In a deep network with multiple hidden 
layers, each subsequent hidden layer can be interpreted as 
learning a representation that is an abstraction over the 
outputs of the preceding layer. It is this sequential abstrac-
tion, through learning intermediate representations, that 
enables deep networks to learn such complex mappings 
from inputs to outputs.

Network Architectures: Convolutional and Recurrent 
Neural Networks
There are a considerable number of ways in which a set 
of neurons can be connected together. The network ex-
amples presented so far in the book have been connected 
together in a relatively uncomplicated manner: neurons 
are organized into layers and each neuron in a layer is di-
rectly connected to all of the neurons in the next layer of 
the network. These networks are known as feedforward 
networks because there are no loops within the network 
connections: all the connections point forward from the 
input toward the output. Furthermore, all of our net-
work examples thus far would be considered to be fully 
connected, because each neuron is connected to all the 
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neurons in the next layer. It is possible, and often use-
ful, to design and train networks that are not feedforward 
and/or that are not fully connected. When done correctly, 
tailoring network architectures can be understood as em-
bedding into the network architecture information about 
the properties of the problem that the network is trying 
to learn to model.

A very successful example of incorporating domain 
knowledge into a network by tailoring the networks ar-
chitecture is the design of convolutional neural networks 
(CNNs) for object recognition in images. In the 1960s, 
Hubel and Wiesel carried out a series of experiments on 
the visual cortex of cats (Hubel and Wiesel 1962, 1965). 
These experiments used electrodes inserted into the 
brains of sedated cats to study the response of the brain 
cells as the cats were presented with different visual stim-
uli. Examples of the stimuli used included bright spots or 
lines of light appearing at a location in the visual field, or 
moving across a region of the visual field. The experiments 
found that different cells responded to different stimuli at 
different locations in the visual field: in effect a single cell 
in the visual cortex would be wired to respond to a par-
ticular type of visual stimulus occurring within a particu-
lar region of the visual field. The region of the visual field 
that a cell responded to was known as the receptive field 
of the cell. Another outcome of these experiments was the 
differentiation between two types of cells: “simple” and 
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“complex.” For simple cells, the location of the stimulus is 
critical with a slight displacement of the stimulus resulting 
in a significant reduction in the cell’s response. Complex 
cells, however, respond to their target stimuli regardless 
of where in the field of vision the stimulus occurs. Hubel 
and Wiesel (1965) proposed that complex cells behaved as 
if they received projections from a large number of simple 
cells all of which respond to the same visual stimuli but 
differing in the position of their receptive fields. This hi-
erarchy of simple cells feeding into complex cells results 
in funneling of stimuli from large areas of the visual field, 
through a set of simple cells, into a single complex cell. Fig-
ure 4.4 illustrates this funneling effect. This figure shows 
a layer of simple cells each monitoring a receptive field at 
a different location in the visual field. The receptive field 
of the complex cell covers the layer of simple cells, and 

Visual
field Layer of

simple cells

Complex
cell

Figure 4.4  The funneling effect of receptive fields created by the hierarchy 
of simple and complex cells.
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this complex cell activates if any of the simple cells in its 
receptive field activates. In this way the complex cell can 
respond to a visual stimulus if it occurs at any location  
in the visual field.

In the late 1970s and early 1980s, Kunihiko Fuku-
shima was inspired by Hubel and Wiesel’s analysis of the 
visual cortex and developed a neural network architecture 
for visual pattern recognition that was called the neocog-
nitron (Fukushima 1980). The design of the neocognitron 
was based on the observation that an image recogni-
tion network should be able to recognize if a visual fea-
ture is present in an image irrespective of location in the  
image—or, to put it slightly more technically, the network 
should be able to do spatially invariant visual feature de-
tection. For example, a face recognition network should 
be able to recognize the shape of an eye no matter where 
in the image it occurs, similar to the way a complex cell 
in Hubel and Wiesel’s hierarchical model could detect the 
presence of a visual feature irrespective of where in the 
visual field it occurred.

Fukushima realized that the functioning of the simple 
cells in the Hubel and Wiesel hierarchy could be replicated 
in a neural network using a layer of neurons that all use 
the same set of weights, but with each neuron receiving in-
puts from fixed small regions (receptive fields) at different 
locations in the input field. To understand the relationship 
between neurons sharing weights and spatially invariant 
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visual feature detection, imagine a neuron that receives a 
set of pixel values, sampled from a region of an image, as 
its inputs. The weights that this neuron applies to these 
pixel values define a visual feature detection function that 
returns true (high activation) if a particular visual feature 
(pattern) occurs in the input pixels, and false otherwise. 
Consequently, if a set of neurons all use the same weights, 
they will all implement the same visual feature detector. If 
the receptive fields of these neurons are then organized 
so that together they cover the entire image, then if the 
visual feature occurs anywhere in the image at least one of 
the neurons in the group will identify it and activate.

Fukushima also recognized that the Hubel and Wiesel 
funneling effect (into complex cells) could be obtained by 
neurons in later layers also receiving as input the outputs 
from a fixed set of neurons in a small region of the preced-
ing layer. In this way, the neurons in the last layer of the 
network each receive inputs from across the entire input 
field allowing the network to identify the presence of a 
visual feature anywhere in the visual input.

Some of the weights in neocognitron were set by hand, 
and others were set using an unsupervised training pro-
cess. In this training process, each time an example is pre-
sented to the network a single layer of neurons that share 
the same weights is selected from the layers that yielded 
large outputs in response to the input. The weights of the 
neurons in the selected layer are updated so as to reinforce 
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their response to that input pattern and the weights of 
neurons not in the layer are not updated. In 1989 Yann  
LeCun developed the convolutional neural network (CNN) 
architecture specifically for the task of image processing 
(LeCun 1989). The CNN architecture shared many of 
the design features found in the neocognitron; however,  
LeCun showed how these types of networks could be 
trained using backpropagation. CNNs have proved to be 
incredibly successful in image processing and other tasks. 
A particularly famous CNN is the AlexNet network, which 
won the ImageNet Large-Scale Visual Recognition Chal-
lenge (ILSVRC) in 2012 (Krizhevsky et al. 2012). The goal 
of the ILSVRC competition is to identify objects in pho-
tographs. The success of AlexNet at the ILSVRC competi-
tion generated a lot of excitement about CNNs, and since 
AlexNet a number of other CNN architectures have won 
the competition. CNNs are one of the most popular types 
of deep neural networks, and chapter 5 will provide a more 
detailed explanation of them.

Recurrent neural networks (RNNs) are another ex-
ample of a neural network architecture that has been tai-
lored to the specific characteristics of a domain. RNNs are 
designed to process sequential data, such as language. An 
RNN network processes a sequence of data (such as a sen-
tence) one input at a time. An RNN has only a single hid-
den layer. However, the output from each of these hidden 
neurons is not only fed forward to the output neurons, it 
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is also temporarily stored in a buffer and then fed back 
into all of the hidden neurons at the next input. Conse-
quently, each time the network processes an input, each 
neuron in the hidden layer receives both the current input 
and the output the hidden layer generated in response to 
the previous input. In order to understand this explana-
tion, it may at this point be helpful to briefly skip forward 
to figure 5.2 to see an illustration of the structure of an 
RNN and the flow of information through the network. 
This recurrent loop, of activations from the output of the 
hidden layer for one input being fed back into the hidden 
layer alongside the next input, gives an RNN a memory 
that enables it to process each input in the context of the 
previous inputs it has processed.4 RNNs are considered 
deep networks because this evolving memory can be con-
sidered as deep as the sequence is long.

An early well-known RNN is the Elman network. In 
1990, Jeffrey Locke Elman published a paper that de-
scribed an RNN that had been trained to predict the end-
ings of simple two- and three-word utterances (Elman 
1990). The model was trained on a synthesized dataset 
of simple sentences generated using an artificial gram-
mar. The grammar was built using a lexicon of twenty-
three words, with each word assigned to a single lexical 
category (e.g., man=NOUN-HUM, woman=NOUN-HUM, 
eat=VERB-EAT, cookie=NOUN-FOOD, etc.). Using this 
lexicon, the grammar defined fifteen sentence generation 
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templates (e.g., NOUN-HUM+VERB-EAT+NOUN-FOOD 
which would generate sentences such as man eat cookie). 
Once trained, the model was able to generate reason-
able continuations for sentences, such as woman+eat+? = 
cookie. Furthermore, once the network was started, it was 
able to generate longer strings consisting of multiple sen-
tences, using the context it generated itself as the input 
for the next word, as illustrated by this three-sentence  
example:

girl eat bread dog move mouse mouse move book

Although this sentence generation task was applied 
to a very simple domain, the ability of the RNN to gener-
ate plausible sentences was taken as evidence that neural 
networks could model linguistic productivity without re-
quiring explicit grammatical rules. Consequently, Elman’s 
work had a huge impact on psycholinguistics and psychol-
ogy. The following quote, from Churchland 1996, illus-
trates the importance that some researchers attributed to 
Elman’s work:

The productivity of this network is of course a feeble 
subset of the vast capacity that any normal English 
speaker commands. But productivity is productivity, 
and evidently a recurrent network can possess 
it. Elman’s striking demonstration hardly settles 
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the issue between the rule-centered approach to 
grammar and the network approach. That will be 
some time in working itself out. But the conflict is 
now an even one. I’ve made no secret where my own 
bets will be placed. (Churchland 1996, p. 143)5

Although RNNs work well with sequential data, the 
vanishing gradient problem is particularly severe in these 
networks. In 1997, Sepp Hochreiter and Jürgen Schmid-
huber, the researchers who in 1991 had presented an ex-
planation of the vanishing gradient problem, proposed 
the long short-term memory (LSTM) units as a solution 
to this problem in RNNs (Hochreiter and Schmidhuber 
1997). The name of these units draws on a distinction be-
tween how a neural network encodes long-term memory 
(understood as concepts that are learned over a period of 
time) through training and short-term memory (under-
stood as the response of the system to immediate stim-
uli). In a neural network, long-term memory is encoded 
through adjusting the weights of the network and once 
trained these weights do not change. Short-term memory 
is encoded in a network through the activations that flow 
through the network and these activation values decay 
quickly. LSTM units are designed to enable the short-term 
memory (the activations) in the network to be propagated 
over long periods of time (or sequences of inputs). The 
internal structure of an LSTM is relatively complex, and 
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we will describe it in chapter 5. The fact that LSTM can 
propagate activations over long periods enables them to 
process sequences that include long-distance dependen-
cies (interactions between elements in a sequence that 
are separated by two or more positions). For example, 
the dependency between the subject and the verb in an 
English sentence: The dog/dogs in that house is/are aggres-
sive. This has made LSTM networks suitable for language 
processing, and for a number of years they have been the 
default neural network architecture for many natural 
language processing models, including machine transla-
tion. For example, the sequence-to-sequence (seq2seq) 
machine translation architecture introduced in 2014 con-
nects two LSTM networks in sequence (Sutskever et al. 
2014). The first LSTM network, the encoder, processes 
the input sequence one input at a time, and generates a 
distributed representation of that input. The first LSTM 
network is called an encoder because it encodes the se-
quence of words into a distributed representation. The 
second LSTM network, the decoder, is initialized with the 
distributed representation of the input and is trained to  
generate the output sequence one element at a time us-
ing a feedback loop that feeds the most recent output ele-
ment generated by the network back in as the input for 
the next time step. Today, this seq2seq architecture is the 
basis for most modern machine translation systems, and 
is explained in more detail in chapter 5.



	 A Brief History of Deep Learning     143

By the late 1990s, most of the conceptual require-
ments for deep learning were in place, including both the 
algorithms to train networks with multiple layers, and 
the network architectures that are still very popular today 
(CNNs and RNNs). However, the problem of the vanishing 
gradients still stifled the creation of deep networks. Also, 
from a commercial perspective, the 1990s (similar to the 
1960s) experienced a wave of hype based on neural net-
works and unrealized promises. At the same time, a num-
ber of breakthroughs in other forms of machine learning 
models, such as the development of support vector ma-
chines (SVMs), redirected the focus of the machine learn-
ing research community away from neural networks: at 
the time SVMs were achieving similar accuracy to neural 
network models but were easier to train. Together these 
factors led to a decline in neural network research that 
lasted up until the emergence of deep learning.

The Era of Deep Learning

The first recorded use of the term deep learning is credited 
to Rina Dechter (1986), although in Dechter’s paper the 
term was not used in relation to neural networks; and the 
first use of the term in relation to neural networks is cred-
ited to Aizenberg et al. (2000).6 In the mid-2000s, inter-
est in neural networks started to grow, and it was around 
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this time that the term deep learning came to prominence 
to describe deep neural networks. The term deep learn-
ing is used to emphasize the fact that the networks being 
trained are much deeper than previous networks.

One of the early successes of this new era of neural 
network research was when Geoffrey Hinton and his col-
leagues demonstrated that it was possible to train a deep 
neural network using a process known as greedy layer-
wise pretraining. Greedy layer-wise pretraining begins by 
training a single layer of neurons that receives input di-
rectly from the raw input. There are a number of different 
ways that this single layer of neurons can be trained, but 
one popular way is to use an autoencoder. An autoencoder 
is a neural network with three layers: an input layer, a hid-
den (encoding) layer, and an output (decoding) layer. The 
network is trained to reconstruct the inputs it receives in 
the output layer; in other words, the network is trained 
to output the exact same values that it received as input. 
A very important feature in these networks is that they 
are designed so that it is not possible for the network to 
simply copy the inputs to the outputs. For example, an 
autoencoder may have fewer neurons in the hidden layer 
than in the input and output layer. Because the autoen-
coder is trying to reconstruct the input at the output layer, 
the fact that the information from the input must pass 
through this bottleneck in the hidden layer forces the au-
toencoder to learn an encoding of the input data in the 
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hidden layer that captures only the most important fea-
tures in the input, and disregards redundant or superflu-
ous information.7

Layer-Wise Pretraining Using Autoencoders
In layer-wise pretraining, the initial autoencoder learns an 
encoding for the raw inputs to the network. Once this en-
coding has been learned, the units in the hidden encoding 
layer are fixed, and the output (decoding) layer is thrown 
away. Then a second autoencoder is trained—but this 
autoencoder is trained to reconstruct the representation 
of the data generated by passing it through the encoding 
layer of the initial autoencoder. In effect, this second au-
toencoder is stacked on top of the encoding layer of the 
first autoencoder. This stacking of encoding layers is con-
sidered to be a greedy process because each encoding layer 
is optimized independently of the later layers; in other 
words, each autoencoder focuses on finding the best solu-
tion for its immediate task (learning a useful encoding for 
the data it must reconstruct) rather than trying to find a 
solution to the overall problem for the network.

Once a sufficient number8 of encoding layers have 
been trained, a tuning phase can be applied. In the tuning 
phase, a final network layer is trained to predict the tar-
get output for the network. Unlike the pretraining of the 
earlier layers of the network, the target output for the fi-
nal layer is different from the input vector and is specified 
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in the training dataset. The simplest tuning is where the 
pretrained layers are kept frozen (i.e., the weights in the 
pretrained layers don’t change during the tuning); how-
ever, it is also feasible to train the entire network during 
the tuning phase. If the entire network is trained during 
tuning, then the layer-wise pretraining is best understood 
as finding useful initial weights for the earlier layers in the 
network. Also, it is not necessary that the final prediction 
model that is trained during tuning be a neural network. 
It is quite possible to take the representations of the data 
generated by the layer-wise pretraining and use it as the 
input representation for a completely different type of 
machine learning algorithm, for example, a support vector 
machine or a nearest neighbor algorithm. This scenario is 
a very transparent example of how neural networks learn 
useful representations of data prior to the final prediction 
task being learned. Strictly speaking, the term pretraining 
describes only the layer-wise training of the autoencoders; 
however, the term is often used to refer to both the layer-
wise training stage and the tuning stage of the model.

Figure 4.5 shows the stages in layer-wise pretraining. 
The figure on the left illustrates the training of the initial 
autoencoder where an encoding layer (the black circles) of 
three units is attempting to learn a useful representation 
for the task of reconstructing an input vector of length 4. 
The figure in the middle of figure 4.5 shows the training of 
a second autoencoder stacked on top of the encoding layer 
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of the first autoencoder. In this autoencoder, a hidden 
layer of two units is attempting to learn an encoding for an 
input vector of length 3 (which in turn is an encoding of a 
vector of length 4). The grey background in each figure de-
marcates the components in the network that are frozen 
during this training stage. The figure on the right shows 
the tuning phase where a final output layer is trained to 
predict the target feature for the model. For this example, 
in the tuning phase the pretrained layers in the network 
have been frozen.

Layer-wise pretraining was important in the evolu-
tion of deep learning because it was the first approach 
to training deep networks that was widely adopted.9 
However, today most deep learning networks are trained 

A1 A2 A3 A4

B2 B4 B6

A1 A2 A3 A4

Pretraining layer B

B1 B2 B3

C3 C5

B1 B2 B3

A1 A2 A3 A4

Pretraining layer C

D4

C1 C2

B1 B2 B3

A1 A2 A3 A4

Tuning

Target output

Figure 4.5  The pretraining and tuning stages in greedy layer-wise 
pretraining. Black circles represent the neurons whose training is the primary 
objective at each training stage. The gray background marks the components 
in the network that are frozen during each training stage.
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without using layer-wise pretraining. In the mid-2000s, 
researchers began to appreciate that the vanishing gra-
dient problem was not a strict theoretical limit, but was 
instead a practical obstacle that could be overcome. The 
vanishing gradient problem does not cause the error gra-
dients to disappear entirely; there are still gradients being 
backpropagated through the early layers of the network, it 
is just that they are very small. Today, there are a number 
of factors that have been identified as important in suc-
cessfully training a deep network.

Weight Initialization and ReLU Activation Functions
One factor that is important in successfully training a 
deep network is how the network weights are initialized. 
The principles controlling how weight initialization af-
fects the training of a network are still not clear. There 
are, however, weight initialization procedures that have 
been empirically shown to help with training a deep net-
work. Glorot initialization10 is a frequently used weight 
initialization procedure for deep networks. It is based on 
a number of assumptions but has empirical success to sup-
port its use. To get an intuitive understanding of Glorot 
initialization, consider the fact that there is typically a re-
lationship between the magnitude of values in a set and 
the variance of the set: generally the larger the values in 
a set, the larger the variance of the set. So, if the variance 
calculated on a set of gradients propagated through a layer 
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at one point in the network is similar to the variance for 
the set of gradients propagated through another layer in 
a network, it is likely that the magnitude of the gradients 
propagated through both of these layers will also be simi-
lar. Furthermore, the variance of gradients in a layer can 
be related to the variance of the weights in the layer, so a 
potential strategy to maintain gradients flowing through 
a network is to ensure similar variances across each of the 
layer in a network. Glorot initialization is designed to ini-
tialize the weight in a network in such a way that all of the 
layers in a network will have a similar variance in terms 
of both forward pass activations and the gradients propa-
gated during the backward pass in backpropagation. Glo-
rot initialization defines a heuristic rule to meet this goal 
that involves sampling the weights for a network using the 
following uniform distribution (where w is the weight on a 
connection between layer j and j+i that is being initialized, 
U[-a,a] is the uniform distribution over the interval (-a,a), 
nj is the number of neurons in layer j, and the notation w 

~ U indicates that the value of w is sampled from distribu-
tion U)11:
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Another factor that contributes to the success or 
failure of training a deep network is the selection of the 
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activation function used in the neurons. Backpropagating 
an error gradient through a neuron involves multiplying 
the gradient by the value of the derivative of the activation 
function at the activation value of the neuron recorded 
during the forward pass. The derivatives of the logistic 
and tanh activation functions have a number of properties 
that can exacerbate the vanishing gradient problem if they 
are used in this multiplication step. Figure 4.6 presents a 
plot of the logistic function and the derivative of the logis-
tic function. The maximum value of the derivative is 0.25. 
Consequently, after an error gradient has been multiplied 
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by the value of the derivative of the logistic function at 
the appropriate activation for the neuron, the maximum 
value the gradient will have is a quarter of the gradient 
prior to the multiplication. Another problem with using 
the logistic function is that there are large portions of the 
domain of the function where the function is saturated 
(returning values that very close to 0 or 1), and the rate 
of change of the function in these regions is near zero; 
thus, the derivative of the function is near 0. This is an 
undesirable property when backpropagating error gradi-
ents because the error gradients will be forced to zero (or 
close to zero) when backpropagated through any neuron 
whose activation is within one of these saturated regions. 
In 2011 it was shown that switching to a rectified linear 
activation function, g x x( ) = ( )max ,0 , improved training 
for deep feedforward neural networks (Glorot et al. 2011). 
Neurons that use a rectified linear activation function are 
known as rectified linear units (ReLUs). One advantage 
of ReLUs is that the activation function is linear for the 
positive portion of its domain with a derivative equal to 1. 
This means that gradients can flow easily through ReLUs 
that have positive activation. However, the drawback of 
ReLUs is that the gradient of the function for the nega-
tive part of its domain is zero, so ReLUs do not train in 
this portion of the domain. Although undesirable, this 
is not necessarily a fatal flaw for learning because when 
backpropagating through a layer of ReLUs the gradients 
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can still flow through the ReLUs in the layers that have 
positive activation. Furthermore, there are a number of 
variants of the basic ReLU that introduce a gradient on 
the negative side of the domain, a commonly used variant 
being the leaky ReLU (Maas et al. 2013). Today, ReLUs (or 
variants of ReLUs) are the most frequently used neurons 
in deep learning research.

The Virtuous Cycle: Better Algorithms, Faster Hardware, 
Bigger Data
Although improved weight initialization methods and 
new activation functions have both contributed to the 
growth of deep learning, in recent years the two most 
important factors driving deep learning have been the 
speedup in computer power and the massive increase in 
dataset sizes. From a computational perspective, a major 
breakthrough for deep learning occurred in the late 2000s 
with the adoption of graphical processing units (GPUs) 
by the deep learning community to speed up training. A 
neural network can be understood as a sequence of matrix 
multiplications that are interspersed with the application 
of nonlinear activation functions, and GPUs are optimized 
for very fast matrix multiplication. Consequently, GPUs 
are ideal hardware to speed up neural network train-
ing, and their use has made a significant contribution to 
the development of the field. In 2004, Oh and Jung re-
ported a twentyfold performance increase using a GPU 
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implementation of a neural network (Oh and Jung 2004), 
and the following year two further papers were published 
that demonstrated the potential of GPUs to speed up the 
training of neural networks: Steinkraus et al. (2005) used 
GPUs to train a two-layer neural network, and Chella-
pilla et al. (2006) used GPUs to train a CNN. However, at 
that time there were significant programming challenges 
to using GPUs for training networks (the training algo-
rithm had to be implemented as a sequence of graphics 
operations), and so the initial adoption of GPUs by neural 
network researchers was relatively slow. These program-
ming challenges were significantly reduced in 2007 when 
NVIDIA (a GPU manufacturer) released a C-like program-
ming interface for GPUs called CUDA (compute unified 
device architecture).12 CUDA was specifically designed to 
facilitate the use of GPUs for general computing tasks. In 
the years following the release of CUDA, the use of GPUs 
to speed up neural network training became standard.

However, even with these more powerful computer 
processors, deep learning would not have been possible 
unless massive datasets had also become available. The de-
velopment of the internet and social media platforms, the 
proliferation of smartphones and “internet of things” sen-
sors, has meant that the amount of data being captured 
has grown at an incredible rate over the last ten years. 
This has made it much easier for organizations to gather 
large datasets. This growth in data has been incredibly 
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important to deep learning because neural network mod-
els scale well with larger data (and in fact they can struggle 
with smaller datasets). It has also prompted organizations 
to consider how this data can be used to drive the develop-
ment of new applications and innovations. This in turn 
has driven a need for new (more complex) computational 
models in order to deliver these new applications. And, the 
combination of large data and more complex algorithms 
requires faster hardware in order to make the necessary 
computational workload tractable. Figure 4.7 illustrates 
the virtuous cycle between big data, algorithmic break-
throughs (e.g., better weight initialization, ReLUs, etc.), 

Big

data

Better

algorithms

Faster

hardware

Figure 4.7  The virtuous cycle driving deep learning. Figure inspired by 
figure 1.2 in Reagen et al. 2017.
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and improved hardware that is driving the deep learning 
revolution.

Summary

The history of deep learning reveals a number of under-
lying themes. There has been a shift from simple binary 
inputs to more complex continuous valued input. This 
trend toward more complex inputs is set to continue 
because deep learning models are most useful in high-
dimensional domains, such as image processing and lan-
guage. Images often have thousands of pixels in them, 
and language processing requires the ability represents 
and process hundreds of thousands of different words. 
This is why some of the best-known applications of deep 
learning are in these domains, for example, Facebook’s 
face-recognition software, and Google’s neural machine 
translation system. However, there are a growing number 
of new domains where large and complex digital datasets 
are being gathered. One area where deep learning has the 
potential to make a significant impact within the coming 
years is healthcare, and another complex domain is the 
sensor rich field of self-driving cars.

Somewhat surprisingly, at the core of these powerful 
models are simple information processing units: neurons. 
The connectionist idea that useful complex behavior can 
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emerge from the interactions between large numbers of 
simple processing units is still valid today. This emergent 
behavior arises through the sequences of layers in a net-
work learning a hierarchical abstraction of increasingly 
complex features. This hierarchical abstraction is achieved 
by each neuron learning a simple transformation of the 
input it receives. The network as a whole then composes 
these sequences of smaller transformations in order to 
apply a complex (highly) nonlinear mapping to the input. 
The output from the model is then generated by the final 
output layers of neuron, based the learned representa-
tion generated through the hierarchical abstraction. This 
is why depth is such an important factor in neural net-
works: the deeper the network, the more powerful the 
model becomes in terms of its ability to learn complex 
nonlinear mappings. In many domains, the relationship 
between input data and desired outputs involves just such 
complex nonlinear mappings, and it is in these domains 
that deep learning models outdo other machine learning  
approaches.

An important design choice in creating a neural net-
work is deciding which activation function to use within 
the neurons in a network. The activation function within 
each neuron in a network is how nonlinearity is intro-
duced into the network, and as a result it is a necessary 
component if the network is to learn a nonlinear mapping 
from inputs to output. As networks have evolved, so too 
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have the activation functions used in them. New activa-
tion functions have emerged throughout the history of 
deep learning, often driven by the need for functions with 
better properties for error-gradient propagation: a major 
factor in the shift from threshold to logistic and tanh acti-
vation functions was the need for differentiable functions 
in order to apply backpropagation; the more recent shift 
to ReLUs was, similarly, driven by the need to improve the 
flow of error gradients through the network. Research on 
activations functions is ongoing, and new functions will 
be developed and adopted in the coming years.

Another important design choice in creating a neural 
network is to decide on the structure of the network: for 
example, how should the neurons in the network be con-
nected together? In the next chapter, we will discuss two 
very different answers to this question: convolution neu-
ral networks and recurrent neural networks.



5

CONVOLUTIONAL AND RECURRENT 
NEURAL NETWORKS

Tailoring the structure of a network to the specific char-
acteristics of the data from a task domain can reduce the 
training time of the network, and improves the accuracy 
of the network. Tailoring can be done in a number of ways, 
such as: constraining the connections between neurons 
in adjacent layers to subsets (rather than having fully 
connected layers); forcing neurons to share weights; or 
introducing backward connections into the network. Tai-
loring in these ways can be understood as building domain 
knowledge into the network. Another, related, perspec-
tive is it helps the network to learn by constraining the 
set of possible functions that it can learn, and by so do-
ing guides the network to find a useful solution. It is not 
always clear how to fit a network structure to a domain, 
but for some domains where the data has a very regular 
structure (e.g., sequential data such as text, or gridlike 
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data such as images) there are well-known network ar-
chitectures that have proved successful. This chapter will 
introduce two of the most popular deep learning architec-
tures: convolutional neural networks and recurrent neural  
networks.

Convolutional Neural Networks

Convolution neural networks (CNNs) were designed for 
image recognition tasks and were originally applied to the 
challenge of handwritten digit recognition (Fukushima 
1980; LeCun 1989). The basic design goal of CNNs was to 
create a network where the neurons in the early layer of 
the network would extract local visual features, and neu-
rons in later layers would combine these features to form 
higher-order features. A local visual feature is a feature 
whose extent is limited to a small patch, a set of neighbor-
ing pixels, in an image. For example, when applied to the 
task of face recognition, the neurons in the early layers of a 
CNN learn to activate in response to simple local features 
(such as lines at a particular angle, or segments of curves), 
neurons deeper in the network combine these low-level 
features into features that represent body parts (such as 
eyes or noises), and the neurons in the final layers of the 
network combine body part activations in order to be able 
to identify whole faces in an image.
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Using this approach, the fundamental task in image 
recognition is learning the feature detection functions 
that can robustly identify the presence, or absence, of local 
visual features in an image. The process of learning func-
tions is at the core of neural networks, and is achieved by 
learning the appropriate set of weights for the connec-
tions in the network. CNNs learn the feature detection 
functions for local visual features in this way. However, a 
related challenge is designing the architecture of the net-
work so that the network will identify the presence of a 
local visual feature in an image irrespective of where in 
the image it occurs. In other words, the feature detection 
functions must be able to work in a translation invariant 
manner. For example, a face recognition system should be 
able to recognize the shape of an eye in an image whether 
the eye is in the center of the image or in the top-right 
corner of the image. This need for translation invariance 
has been a primary design principle of CNNs for image 
processing, as Yann LeCun stated in 1989:

It seems useful to have a set of feature detectors that 
can detect a particular instance of a feature anywhere 
on the input plane. Since the precise location of a 
feature is not relevant to the classification, we can 
afford to lose some position information in the 
process. (LeCun 1989, p. 14)
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CNNs achieve this translation invariance of local vi-
sual feature detection by using weight sharing between 
neurons. In an image recognition setting, the function 
implemented by a neuron can be understood as a visual 
feature detector. For example, neurons in the first hidden 
layer of the network will receive a set of pixel values as 
input and output a high activation if a particular pattern 
(local visual feature) is present in this set of pixels. The 
fact that the function implemented by a neuron is defined 
by the weights the neuron uses means that if two neurons 
use the same set of weights then they both implement the 
same function (feature detector). In chapter 4, we intro-
duced the concept of a receptive field to describe the area 
that a neuron receives its input from. If two neurons share 
the same weights but have different receptive fields (i.e., 
each neuron inspects different areas of the input), then 
together the neurons act as a feature detector that acti-
vates if the feature occurs in either of the receptive fields. 
Consequently, it is possible to design a network with 
translation invariant feature detection by creating a set of 
neurons that share the same weights and that are orga-
nized so that: (1) each neuron inspects a different portion 
of the image; and (2) together the receptive fields of the 
neurons cover the entire image.

The scenario of searching an image in a dark room with 
a flashlight that has a narrow beam is sometimes used to 
explain how a CNN searches an image for local features. 
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At each moment you can point the flashlight at a region of 
the image and inspect that local region. In this flashlight 
metaphor, the area of the image illuminated by the flash-
light at any moment is equivalent to the receptive field of a 
single neuron, and so pointing the flashlight at a location 
is equivalent to applying the feature detection function to 
that local region. If, however, you want to be sure you in-
spect the whole image, then you might decide to be more 
systematic in how you direct the flashlight. For example, 
you might begin by pointing the flashlight at the top-left 
corner of the image and inspecting that region. You then 
move the flashlight to the right, across the image, inspect-
ing each new location as it becomes visible, until you reach 
the right side of the image. You then point the flashlight 
back to the left of the image, but just below where you 
began, and move across the image again. You repeat this 
process until you reach the bottom-right corner of the im-
age. The process of sequentially searching across an im-
age and at each location in the search applying the same 
function to the local (illuminated) region is the essence of 
convolving a function across an image. Within a CNN, this 
sequential search across an image is implemented using 
a set of neurons that share weights and whose union of 
receptive fields covers the entire image.

Figure 5.1 illustrates the different stages of processing 
that are often found in a CNN. The 6 6×  matrix on the left 
of the figure represents the image that is the input to the 
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CNN. The 4 4×  matrix immediately to the right of the in-
put represents a layer of neurons that together search the 
entire image for the presence of a particular local feature. 
Each neuron in this layer is connected to a different 3 3×  
receptive field (area) in the image, and they all apply the 
same weight matrix to their inputs:

w w w

w w w

w w w

0 1 2

3 4 5

6 7 8

















The receptive field of the neuron 0 0,[ ] (top-left) in 
this layer is marked with the gray square covering the 3 3×  
area in the top-left of the input image. The dotted arrows 
emerging from each of the locations in this gray area rep-
resent the inputs to neuron 0 0,[ ]. The receptive field of 
the neighboring neuron 0 1,[ ] is indicated by 3 3×  square, 
outlined in bold in the input image. Notice that the recep-
tive fields of these two neurons overlap. The amount of 
overlap of receptive fields is controlled by a hyperparam-
eter called the stride length. In this instance, the stride 
length is one, meaning that for each position moved in 
the layer the receptive field of the neuron is translated by 
the same amount on the input. If the stride length hyper-
parameter is increased, the amount of overlap between 
receptive fields is decreased.
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The receptive fields of both of these neurons ( 0 0,[ ] and 
0 1,[ ]) are matrices of pixel values and the weights used by 

these neurons are also matrices. In computer vision, the 
matrix of weights applied to an input is known as the ker-
nel (or convolution mask); the operation of sequentially 
passing a kernel across an image and within each local 
region, weighting each input and adding the result to its 
local neighbors, is known as a convolution. Notice that a 
convolution operation does not include a nonlinear activa-
tion function (this is applied at a later stage in processing). 
The kernel defines the feature detection function that all 
the neurons in the convolution implement. Convolving 
a kernel across an image is equivalent to passing a local 
visual feature detector across the image and recording all 
the locations in the image where the visual feature was 
present. The output from this process is a map of all the 
locations in the image where the relevant visual feature oc-
curred. For this reason, the output of a convolution process 
is sometimes known as a feature map. As noted above, the 
convolution operation does not include a nonlinear activa-
tion function (it only involves a weighted summation of 
the inputs). Consequently, it is standard to apply a nonlin-
earity operation to a feature map. Frequently, this is done 
by applying a rectified linear function to each position in a 
feature map; the rectified linear activation function is de-
fined as: rectifier z max z( ) = ( )0, . Passing a rectified linear 
activation function over a feature map simply changes all 
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negative values to 0. In figure 5.1, the process of updat-
ing a feature map by applying a rectified linear activation 
function to each of its elements is represented by the layer 
labeled Nonlinearity.

The quote from Yann LeCun, at the start of this sec-
tion, mentions that the precise location of a feature in an 
image may not be relevant to an image processing task. 
With this in mind, CNNs often discard location informa-
tion in favor of generalizing the network’s ability to do 
image classification. Typically, this is achieved by down-
sampling the updated feature map using a pooling layer. 
In some ways pooling is similar to the convolution opera-
tion described above, in so far as pooling involves repeat-
edly applying the same function across an input space. For 
pooling, the input space is frequently a feature map whose 
elements have been updated using a rectified linear func-
tion. Furthermore, each pooling operation has a receptive 
field on the input space—although, for pooling, the recep-
tive fields sometimes do not overlap. There are a number 
of different pooling functions used; the most common is 
called max pooling, which returns the maximum value of 
any of its inputs. Calculating the average value of the in-
puts is also used as a pooling function.

The operation sequence of applying a convolution, 
followed by a nonlinearity, to the feature map, and then 
down-sampling using pooling, is relatively standard across 
most CNNs. Often these three operations are together 
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considered to define a convolutional layer in a network, 
and this is how they are presented in figure 5.1.

The fact that a convolution searches an entire image 
means that if the visual feature (pixel pattern) that the 
function (defined by shared kernel) detects occurs any-
where in the image, its presence will be recorded in the 
feature map (and if pooling is used, also in the subsequent 
output from the pooling layer). In this way, a CNN sup-
ports translation invariant visual feature detection. How-
ever, this has the limitation that the convolution can only 
identify a single type of feature. CNNs generalize beyond 
one feature by training multiple convolutional layers 
in parallel (or filters), with each filter learning a single  

Input
image

Convolution:
layer of neurons
with shared weights

Feature
map

Layer of
nonlinearity
functions

Pooling
layer Dense

layer

Convolutional layer

Figure 5.1  Illustrations of the different stages of processing in a 
convolutional layer. Note in this figure the Image and Feature Map are data 
structures; the other stages represent operations on data.
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kernel matrix (feature detection function). Note the con-
volution layer in figure 5.1 illustrates a single filter. The 
outputs of multiple filters can be integrated in a variety 
of ways. One way to integrate information from differ-
ent filters is to take the feature maps generated by the 
separate filters and combine them into a single multifil-
ter feature map. A subsequent convolutional layer then 
takes this multifilter feature map as input. Another other 
way to integrate information from different filter is to 
use a densely connected layer of neurons. The final layer 
in figure 5.1 illustrates a dense layer. This dense layer 
operates in exactly the same way as a standard layer in 
a fully connected feedforward network. Each neuron in 
the dense layer is connected to all of the elements out-
put by each of the filters, and each neuron learns a set 
of weights unique to itself that it applies to the inputs. 
This means that each neuron in a dense layer can learn 
a different way to integrate information from across the  
different filters.

The AlexNet CNN, which won the ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC) in 2012, 
had five convolutional layers, followed by three dense lay-
ers. The first convolutional layer had ninety-six different 
kernels (or filters) and included a ReLU nonlinearity and  
pooling. The second convolution layer had 256 kernels and 
also included ReLU nonlinearity and pooling. The third, 
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fourth, and fifth convolutional layers did not include a 
nonlinearity step or pooling, and had 384, 384, and 256 
kernels, respectively. Following the fifth convolutional 
layer, the network had three dense layers with 4096 neu-
rons each. In total, AlexNet had sixty million weights and 
650,000 neurons. Although sixty million weights is a large 
number, the fact that many of the neurons shared weights 
actually reduced the number of weights in the network. 
This reduction in the number of required weights is one 
of the advantages of CNN networks. In 2015, Microsoft 
Research developed a CNN network called ResNet, which 
won the ILSVRC 2015 challenge (He et al. 2016). The 
ResNet architecture extended the standard CNN architec-
ture using skip-connections. A skip-connection takes the 
output from one layer in the network and feeds it directly 
into a layer that may be much deeper in the network. Us-
ing skip-connections it is possible to train very deep net-
works. In fact, the ResNet model developed by Microsoft 
Research had a depth of 152 layers.

Recurrent Neural Networks

Recurrent neural networks (RNNs) are tailored to the 
processing of sequential data. An RNN processes a se-
quence of data by processing each element in the sequence 
one at time. An RNN network only has a single hidden 
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layer, but it also has a memory buffer that stores the out-
put of this hidden layer for one input and feeds it back 
into the hidden layer along with the next input from the 
sequence. This recurrent flow of information means that 
the network processes each input within the context gen-
erated by processing the previous input, which in turn was 
processed in the context of the input preceding it. In this 
way, the information that flows through the recurrent 
loop encodes contextual information from (potentially) 
all of the preceding inputs in the sequence. This allows 
the network to maintain a memory of what it has seen 
previously in the sequence to help it decide what to do 
with the current input. The depth of an RNN arises from 
the fact that the memory vector is propagated forward 
and evolved through each input in the sequence; as a re-
sult an RNN network is considered as deep as a sequence  
is long.

Figure 5.2 illustrates the architecture of an RNN and 
shows how information flows through the network as 
it processes a sequence. At each time step, the network 
in this figure receives a vector containing two elements 
as input. The schematic on the left of figure 5.2 (time 
step=1.0) shows the flow of information in the network 
when it receives the first input in the sequence. This input 
vector is fed forward into the three neurons in the hid-
den layer of the network. At the same time these neurons 
also receive whatever information is stored in the memory 
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buffer. Because this is the initial input, the memory buf-
fer will only contain default initialization values. Each of 
the neurons in the hidden layer will process the input and 
generate an activation. The schematic in the middle of fig-
ure 5.2 (time step=1.5) shows how this activation flows 
on through the network: the activation of each neuron is 
passed to the output layer where it is processed to gener-
ate the output of the network, and it is also stored in the 
memory buffer (overwriting whatever information was 
stored there). The elements of the memory buffer simply 
store the information written to them; they do not trans-
form it in any way. As a result, there are no weights on 
the edges going from the hidden units to the buffer. There 
are, however, weights on all the other edges in the net-
work, including those from the memory buffer units to 
the neurons in the hidden layer. At time step 2, the net-
work receives the next input from the sequence, and this 
is passed to the hidden layer neurons along with the infor-
mation stored in the buffer. This time the buffer contains 
the activations that were generated by the hidden neurons 
in response to the first input.

Figure 5.3 shows an RNN that has been unrolled 
through time as it processes a sequence of inputs 
X X Xt1 2, , ,…[ ]. Each box in this figure represents a layer 

of neurons. The box labeled h0 represents the state of 
the memory buffer when the network is initialized; the 
boxes labeled h ht1, ,…[ ] represent the hidden layer of the 
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network at each time step; and the boxes labeled Y Yt1, ,…[ ] 
represent the output layer of the network at each time 
step. Each of the arrows in the figure represents a set of 
connections between one layer and another layer. For ex-
ample, the vertical arrow from X1  to h1 represents the con-
nections between the input layer and the hidden layer at 
time step 1. Similarly, the horizontal arrows connecting 
the hidden layers represent the storing of the activations 
from a hidden state at one time step in the memory buffer 
(not shown) and the propagation of these activations to 
the hidden layer at the next time step through the connec-
tions from the memory buffer to the hidden state. At each 
time step, an input from the sequence is presented to the 
network and is fed forward to the hidden layer. The hid-
den layer generates a vector of activations that is passed 
to the output layer and is also propagated forward to the 

Output:

Input:

Y1 Y2 Y3 Yt

h0 h1 h2 h3 · · · ht

X1 X2 X3 Xt

Figure 5.3  An RNN network unrolled through time as it processes a 
sequence of inputs X X Xt1 2, , ,…[ ].
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next time step along the horizontal arrows connecting the 
hidden states.

Although RNNs can process a sequence of inputs, 
they struggle with the problem of vanishing gradients. 
This is because training an RNN to process a sequence of 
inputs requires the error to be backpropagated through 
the entire length of the sequence. For example, for the 
network in figure 5.3, the error calculated on the output 
Yt must be backpropagated through the entire network 
so that it can be used to update the weights on the con-
nections from h0 and X1  to h1. This entails backpropagat-
ing the error through all the hidden layers, which in turn 
involves repeatedly multiplying the error by the weights 
on the connections feeding activations from one hidden 
layer forward to the next hidden layer. A particular prob-
lem with this process is that it is the same set of weights 
that are used on all the connections between the hidden 
layers: each horizontal arrow represents the same set of 
connections between the memory buffer and the hidden 
layer, and the weights on these connections are stationary 
through time (i.e., they don’t change from one time step 
to the next during the processing of a given sequence of 
inputs). Consequently, backpropogating an error through 
k time steps involves (among other multiplications) mul-
tiplying the error gradient by the same set of weights k 
times. This is equivalent to multiplying each error gradi-
ent by a weight raised to the power of k. If this weight is 
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less than 1, then when it is raised to a power, it diminishes 
at an exponential rate, and consequently, the error gra-
dient also tends to diminish at an exponential rate with 
respect to the length of the sequence—and vanish.

Long short-term memory networks (LSTMs) are de-
signed to reduce the effect of vanishing gradients by re-
moving the repeated multiplication by the same weight 
vector during backpropagation in an RNN. At the core of 
an LSTM1 unit is a component called the cell. The cell is 
where the activation (the short-term memory) is stored 
and propagated forward. In fact, the cell often maintains 
a vector of activations. The propagation of the activations 
within the cell through time is controlled by three compo-
nents called gates: the forget gate, the input gate, and the 
output gate. The forget gate is responsible for determining 
which activations in the cell should be forgotten at each 
time step, the input gate controls how the activations in 
the cell should be updated in response to the new input, 
and the output gate controls what activations should be 
used to generate the output in response to the current  
input. Each of the gates consists of layers of standard neu-
rons, with one neuron in the layer per activation in the  
cell state.

Figure 5.4 illustrates the internal structure of an 
LSTM cell. Each of the arrows in this image represents a 
vector of activations. The cell runs along the top of the 
figure from left (ct−1) to right (ct). Activations in the cell 
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can take values in the range -1 to +1. Stepping through the 
processing for a single input, the input vector xt is first 
concatenated with the hidden state vector that has been 
propagated forward from the preceding time step ht−1. 
Working from left to right through the processing of the 
gates, the forget gate takes the concatenation of the input 
and the hidden state and passes this vector through a layer 
of neurons that use a sigmoid (also known as logistic)2 ac-
tivation function. As a result of the neurons in the forget 
layer using sigmoid activation functions the output of this 
forget layer is a vector of values in the range 0 to 1. The cell 
state is then multiplied by this forget vector. The result 
of this multiplication is that activations in the cell state 
that are multiplied by components in the forget vector 
with values near 0 are forgotten, and activations that are 
multiplied by forget vector components with values near 1 
are remembered. In effect, multiplying the cell state by the 
output of a sigmoid layer acts as a filter on the cell state.

Next, the input gate decides what information should 
be added to the cell state. The processing in this step is 
done by the components in the middle block of figure 5.4, 
marked Input. This processing is broken down into two 
subparts. First, the gate decides which elements in the 
cell state should be updated, and second it decides what 
information should be included in the update. The deci-
sion regarding which elements in the cell state should be 
updated is implemented using a similar filter mechanism 
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to the forget gate: the concatenated input xt plus hidden 
state ht−1 is passed through a layer of sigmoid units to 
generate a vector of elements, the same width as the cell, 
where each element in the vector is in the range 0 to 1; 
values near 0 indicate that the corresponding cell element 
will not be updated, and values near 1 indicate that the 
corresponding cell element will be updated. At the same 
time that the filter vector is generated, the concatenated 
input and hidden state are also passed through a layer 
of tanh units (i.e., neurons that use the tanh activation 
function). Again, there is one tanh unit for each activation 
in the LSTM cell. This vector represents the information 

Forget Input Output

× ×

T

+

T σσσ

×ct−1 ct

ht−1 ht

xt output

Figure 5.4  Schematic of the internal structure of an LSTM unit: σ  
represents a layer of neurons with sigmoid activations, T represents a layer 
of neurons with tanh activations, × represents vector multiplication, and + 
represents vector addition. The figure is inspired by an image by Christopher 
Olah available at: http://colah.github.io/posts/2015-08-Understanding 
-LSTMs/.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/.
http://colah.github.io/posts/2015-08-Understanding-LSTMs/.
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that may be added to the cell state. Tanh units are used 
to generate this update vector because tanh units out-
put values in the range -1 to +1, and consequently the 
value of the activations in the cell elements can be both 
increased and decreased by an update.3 Once these two 
vectors have been generated, the final update vector is 
calculated by multiplying the vector output from the 
tanh layer by the filter vector generated from the sigmoid 
layer. The resulting vector is then added to the cell using  
vector addition.

The final stage of processing in an LSTM is to decide 
which elements of the cell should be output in response to 
the current input. This processing is done by the compo-
nents in the block marked Output (on the right of figure 
5.4). A candidate output vector is generated by passing 
the cell through a tanh layer. At the same time, the con-
catenated input and propagated hidden state vector are 
passed through a layer of sigmoid units to create another 
filter vector. The actual output vector is then calculated by 
multiplying the candidate output vector by this filter vec-
tor. The resulting vector is then passed to the output layer, 
and is also propagated forward to the next time step as the 
new hidden state ht .

The fact that an LSTM unit contains multiple layers  
of neurons means that an LSTM is a network in itself. 
However, an RNN can be constructed by treating an LSTM 
as the hidden layer in the RNN. In this configuration, an 
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LSTM unit receives an input at each time step and gener-
ates an output for each input. RNNs that use LSTM units 
are often known as LSTM networks.

LSTM networks are ideally suited for natural language 
processing (NLP). A key challenge in using a neural net-
work to do natural language processing is that the words 
in language must be converted into vectors of numbers. 
The word2vec models, created by Tomas Mikolov and col-
leagues at Google research, are one of the most popular 
ways of doing this conversion (Mikolov et al. 2013). The 
word2vec models are based on the idea that words that 
appear in similar contexts have similar meanings. The 
definition of context here is surrounding words. So for ex-
ample, the words London and Paris are semantically simi-
lar because each of them often co-occur with words that 
the other word also co-occurs with, such as: capital, city, 
Europe, holiday, airport, and so on. The word2vec models 
are neural networks that implement this idea of seman-
tic similarity by initially assigning random vectors to each 
word and then using co-occurrences within a corpus to it-
eratively update these vectors so that semantically similar 
words end up with similar vectors. These vectors (known 
as word embeddings) are then used to represent a word 
when it is being input to a neural network.

One of the areas of NLP where deep learning has 
had a major impact is in machine translation. Figure 
5.5 presents a high-level schematic of the seq2seq (or 



182    chapter 5

encoder-decoder) architecture for neural machine transla-
tion (Sutskever et al. 2014). This architecture is composed 
of two LSTM networks that have been joined together. 
The first LSTM network processes the input sentence in 
a word-by-word fashion. In this example, the source lan-
guage is French. The words are entered into the system in 
reverse order as it has been found that this leads to better 
translations. The symbol eos is a special end of sentence 
symbol. As each word is entered, the encoder updates the 
hidden state and propagates it forward to the next time 
step. The hidden state generated by the encoder in re-
sponse to the eos symbol is taken to be a vector represen-
tation of the input sentence. This vector is passed as the 
initial input to the decoder LSTM. The decoder is trained 
to output the translation sentence word by word, and af-
ter each word has been generated, this word is fed back 
into the system as the input for the next time step. In a 

Decoder

Encoder

Life is beautiful < eos >

h1 h2 h3 h4 C d1 d2 d3

belle est vie La < eos >

Figure 5.5  Schematic of the seq2seq (or encoder-decoder) architecture.
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way, the decoder is hallucinating the translation because 
it uses its own output to drive its own generation pro-
cess. This process continues until the decoder outputs an  
eos symbol.

The idea of using a vector of numbers to represent the 
(interlingual) meaning of a sentence is very powerful, and 
this concept has been extended to the idea of using vectors 
to represent intermodal/multimodal representations. For 
example, an exciting development in recent years has been 
the development of automatic image captioning systems. 
These systems can take an image as input and generate a 
natural language description of the image. The basic struc-
ture of these systems is very similar to the neural machine 
translation architecture shown in figure 5.5. The main 
difference is that the encoder LSTM network is replaced 
by a CNN architecture that processes the input image and 
generates a vector representation that is then propagated 
to the decoder LSTM (Xu et al. 2015). This is another ex-
ample of the power of deep learning arising from its ability 
to learn complex representations of information. In this 
instance, the system learns intermodal representations 
that enable information to flow from what is in an im-
age to language. Combining CNN and RNN architectures 
is becoming more and more popular because it offers the 
potential to integrate the advantages of both systems and 
enables deep learning architectures to handle very com-
plex data.
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Irrespective of the network architecture we use, we 
need to find the correct weights for the network if we 
wish to create an accurate model. The weights of a neu-
ron determine the transformation the neuron applies to 
its inputs. So, it is the weights of the network that define 
the fundamental building blocks of the representation the 
network learns. Today the standard method for finding 
these weights is an algorithm that came to prominence in 
the 1980s: backpropagation. The next chapter will present 
a comprehensive introduction to this algorithm.



6

LEARNING FUNCTIONS

A neural network model, no matter how deep or complex, 
implements a function, a mapping from inputs to outputs. 
The function implemented by a network is determined 
by the weights the network uses. So, training a network 
(learning the function the network should implement) on 
data involves searching for the set of weights that best 
enable the network to model the patterns in the data. The 
most commonly used algorithm for learning patterns 
from data is the gradient descent algorithm. The gradi-
ent descent algorithm is very like the perceptron learn-
ing rule and the LMS algorithm described in chapter 4: 
it defines a rule to update the weights used in a function 
based on the error of the function. By itself the gradient 
descent algorithm can be used to train a single output neu-
ron. However, it cannot be used to train a deep network 
with multiple hidden layers. This limitation is because of 
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the credit assignment problem: how should the blame for 
the overall error of a network be shared out among the 
different neurons (including the hidden neurons) in the 
network? Consequently, training a deep neural network 
involves using both the gradient descent algorithm and 
the backpropagation algorithm in tandem.

The process used to train a deep neural network can 
be characterized as: randomly initializing the weight of a 
network, and then iteratively updating the weights of the 
network, in response to the errors the network makes on a 
dataset, until the network is working as expected. Within 
this training framework, the backpropagation algorithm 
solves the credit (or blame) assignment problem, and the 
gradient descent algorithm defines the learning rule that 
actually updates the weights in the network.

This chapter is the most mathematical chapter in the 
book. However, at a high level, all you need to know about 
the backpropagation algorithm and the gradient descent 
algorithm is that they can be used to train deep networks. 
So, if you don’t have the time to work through the details 
in this chapter, feel free to skim through it. If, however, 
you wish to get a deeper understanding of these two al-
gorithms, then I encourage you to engage with the mate-
rial. These algorithms are at the core of deep learning and 
understanding how they work is, possibly, the most direct 
way of understanding its potentials and limitations. I have 
attempted to present the material in this chapter in an 
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accessible way, so if you are looking for a relatively gentle 
but still comprehensive introduction to these algorithms, 
then I believe that this will provide it for you. The chapter 
begins by explaining the gradient descent algorithm, and 
then explains how gradient descent can be used in con-
junction with the backpropagation algorithm to train a 
neural network.

Gradient Descent

A very simple type of function is a linear mapping from a 
single input to a single output. Table 6.1 presents a data-
set with a single input feature and a single output. Figure 
6.1 presents a scatterplot of this data along with a plot of 
the line that best fits this data. This line can be used as a 
function to map from an input value to a prediction of the 

Table 6.1.  A sample dataset with one input feature, x, 
and an output (target) feature, y

X Y

0.72 0.54

0.45 0.56

0.23 0.38

0.76 0.57

0.14 0.17
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output value. For example, if x = 0.9, then the response 
returned by this linear function is y = 0.6746. The error (or 
loss) of using this line as a model for the data is shown by 
the dashed lines from the line to each datum.

In chapter 2, we described how a linear function can 
be represented using the equation of a line:

y mx c= +

where m is the slope of the line, and c is the y-intercept, 
which specifies where the line crosses the y-axis. For the 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

x = 0.9
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Figure 6.1  Scatterplot of data with “best fit” line and the errors of the line 
on each example plotted as vertical dashed line segments. The figure also 
shows the mapping defined by the line for input x=0.9 to output y=0.6746.
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line in figure 6.1, c = 0 203.  and m = 0 524. ; this is why the 
function returns the value y = 0 6746.  when x = 0 9. , as in 
the following:

0 6746 0 524 0 9 0 203. . . .= ( ) +×

The slope m and the y-intercept c are the parameters of 
this model, and these parameters can be varied to fit the 
model to the data.

The equation of a line has a close relationship with the 
weighted sum operation used in a neuron. This becomes 
apparent if we rewrite the equation of a line with model 
parameters rewritten as weights (c w m w→ →0 1, ):

y w w x= ( ) + ( )0 11× ×

Different lines (different linear models for the data) can 
be created by varying either of these weights (or model pa-
rameters). Figure 6.2 illustrates how a line changes as the 
intercept and slope of the line varies: the dashed line illus-
trates what happens if the y-intercept is increased, and the 
dotted line shows what happens if the slope is decreased. 
Changing the y-intercept w0 vertically translates the line, 
whereas modifying the slope w1 rotates the line around 
the point x y intercept= =( )0, .

Each of these new lines defines a different func-
tion, mapping from x to y, and each function will have 
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a different error with respect to how well it matches the 
data. Looking at figure 6.2, we can see that the full line, 
w w0 10 203 0 524= =[ ]. , . , fits the data better than the 

other two lines because on average it passes closer to the 
data points. In other words, on average the error for this 
line for each data point is less than those of the other two 
lines. The total error of a model on a dataset can be mea-
sured by summing together the error the model makes on 
each example in the dataset. The standard way to calculate 
this total error is to use an equation known as the sum of 
squared errors (SSE):
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[w0 = 0.203, w1 = 0.524]
[w0 = 0.400, w1 = 0.524]
[w0 = 0.203, w1 = 0.300]

Figure 6.2  Plot illustrating how a line changes as the intercept w0( ) and 
slope w1( )  are varied.
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SSE y yj j
j

n

= −( )
=
∑1

2
2

1

ˆ

This equation tells us how to add together the errors of a 
model on a dataset containing n examples. This equation 
calculates for each of the n examples in the dataset the er-
ror of the model by subtracting the prediction of the target 
value returned by the model from the correct target value 
for that example, as specified in the dataset. In this equa-
tion y j  is the correct output value for target feature listed 
in the dataset for example j, and ŷ j  is the estimate of the 
target value returned by the model for the same example. 
Each of these errors is then squared and these squared er-
rors are then summed. Squaring the errors ensures that 
they are all positive, and therefore in the summation the 
errors for examples where the function underestimated 
the target do not cancel out the errors on examples where 
it overestimated the target. The multiplication of the sum-
mation of the errors by 1 2/ , although not important for 
the current discussion, will become useful later. The lower 
the SSE of a function, the better the function models the 
data. Consequently, the sum of squared errors can be used 
as a fitness function to evaluate how well a candidate 
function (in this situation a model instantiating a line) 
matches the data.
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Figure 6.3 shows how the error of a linear model var-
ies as the parameters of the model change. These plots 
show the SSE of a linear model on the example single-
input–single-output dataset listed in table 6.1. For each 
parameter there is a single best setting and as the param-
eter moves away from this setting (in either direction) 
the error of the model increases. A consequence of this 
is that the error profile of the model as each parameter 
varies is convex (bowl-shaped). This convex shape is par-
ticularly apparent in the top and middle plots in figure 6.3, 
which show that the SSE of the model is minimized when 
w0 0 203= .  (lowest point of the curve in the top plot), 
and when w1 0 524= .  (lowest point of the curve in the  
middle plot).

If we plot the error of the model as both parame-
ters are varied, we generate a three-dimensional convex 
bowl-shaped surface, known as an error surface. The 
bowl-shaped mesh in the plot at the bottom of figure 6.3 
illustrates this error surface. This error surface was cre-
ated by first defining a weight space. This weight space is 
represented by the flat grid at the bottom of the plot. Each 
coordinate in this weight space defines a different line be-
cause each coordinate specifies an intercept (a w0 value) 
and slope (a w1 value). Consequently, moving across this 
planar weight space is equivalent to moving between dif-
ferent models. The second step in constructing the error 
surface is to associate an elevation with each line (i.e., 
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Figure 6.3  Plots of the changes in the error (SSE) of a linear model as the 
parameters of the model change. Top: the SSE profile of a linear model with a 
fixed slope w1 0 524= .  when w0  ranges across the interval 0.3 to 1. Middle: 
the SSE profile of a linear model with a y-intercept fixed at w0 0 203= .  when 
w1 ranges across the interval 0 to 1. Bottom: the error surface of the linear 
model when both w0  and w1 are varied.
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coordinate) in the weight space. The elevation associated 
with each weight space coordinate is the SSE of the model 
defined by that coordinate; or, put more directly, the 
height of the error surface above the weight space plane 
is the SSE of the corresponding linear model when it is 
used as a model for the dataset. The weight space coordi-
nates that correspond with the lowest point of the error 
surface define the linear model that has the lowest SSE on 
the dataset (i.e., the linear model that best fits the data).

The shape of the error surface in the plot on the right 
of figure 6.3 indicates that there is only a single best linear 
model for this dataset because there is a single point at 
the bottom of the bowl that has a lower elevation (lower 
error) than any other points on the surface. Moving away 
from this best model (by varying the weights of the model) 
necessarily involves moving to a model with a higher SSE. 
Such a move is equivalent to moving to a new coordinate 
in the weight space, which has a higher elevation associ-
ated with it on the error surface. A convex or bowl-shaped 
error surface is incredibly useful for learning a linear func-
tion to model a dataset because it means that the learning 
process can be framed as a search for the lowest point on 
the error surface. The standard algorithm used to find this 
lowest point is known as gradient descent.

The gradient descent algorithm begins by creat-
ing an initial model using a randomly selected a set of 
weights. Next the SSE of this randomly initialized model 



A convex or bowl-
shaped error surface  
is incredibly useful  
for learning a linear 
function to model a 
dataset because it 
means that the learning 
process can be framed 
as a search for the 
lowest point on the 
error surface.
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is calculated. Taken together, the guessed set of weights 
and the SSE of the corresponding model define the ini-
tial starting point on the error surface for the search. It 
is very likely that the randomly initialized model will be 
a bad model, so it is very likely that the search will begin 
at a location that has a high elevation on the error surface. 
This bad start, however, is not a problem, because once 
the search process is positioned on the error surface, the 
process can find a better set of weights by simply following 
the gradient of the error surface downhill until it reaches 
the bottom of the error surface (the location where mov-
ing in any direction results in an increase in SSE). This is 
why the algorithm is known as gradient descent: the gradi-
ent that the algorithm descends is the gradient of the error 
surface of the model with respect to the data.

An important point is that the search does not pro-
gress from the starting location to the valley floor in one 
weight update. Instead, it moves toward the bottom of the 
error surface in an iterative manner, and during each itera-
tion the current set of weights are updated so as to move 
to a nearby location in the weight space that has a lower 
SSE. Reaching the bottom of the error surface can take 
a large number of iterations. An intuitive way of under-
standing the process is to imagine a hiker who is caught 
on the side of a hill when a thick fog descends. Their car 
is parked at the bottom of the valley; however, due to the 
fog they can only see a few feet in any direction. Assuming 
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that the valley has a nice convex shape to it, they can still 
find their way to their car, despite the fog, by repeatedly 
taking small steps that move down the hill following the 
local gradient at the position they are currently located. 
A single run of a gradient descent search is illustrated in 
the bottom plot of figure 6.3. The black curve plotted on 
the error surface illustrates the path the search followed 
down the surface, and the black line on the weight space 
plots the corresponding weight updates that occurred dur-
ing the journey down the error surface. Technically, the 
gradient descent algorithm is known as an optimization 
algorithm because the goal of the algorithm is to find the 
optimal set of weights.

The most important component of the gradient de-
scent algorithm is the rule that defines how the weights are 
updated during each iteration of the algorithm. In order to 
understand how this rule is defined it is first necessary to 
understand that the error surface is made up of multiple 
error gradients. For our simple example, the error surface 
is created by combining two error curves. One error curve 
is defined by the changes in the SSE as w0 changes, shown 
in the top plot of figure 6.3. The other error curve is de-
fined by the changes in the SSE as w1 changes, shown in 
the plot in the middle of figure 6.3. Notice that the gradi-
ent of each of these curves can vary along the curve, for 
example, the w0 error curve has a steep gradient on the ex-
treme left and right of the plot, but the gradient becomes 
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somewhat shallower in the middle of the curve. Also, the 
gradients of two different curves can vary dramatically; in 
this particular example the w0 error curve generally has a 
much steeper gradient than the w1 error curve.

The fact that the error surface is composed of mul-
tiple curves, each with a different gradient, is important 
because the gradient descent algorithm moves down the 
combined error surface by independently updating each 
weight so as to move down the error curve associated 
with that weight. In other words, during a single itera-
tion of the gradient descent algorithm, w0 is updated to 
move down the w0 error curve and w1 is updated the move 
down the w1 error curve. Furthermore, the amount each 
weight is updated in an iteration is proportional to the 
steepness of the gradient of the weight’s error curve, and 
this gradient will vary from one iteration to the next as 
the process moves down the error curve. For example, w0 
will be updated by relatively large amounts in iterations 
where the search process is located high up on either side 
of the w0 error curve, but by smaller amounts in iterations 
where the search process is nearer to the bottom of the w0  
error curve.

The error curve associated with each weight is defined 
by how the SSE changes with respect to the change in the 
value of the weight. Calculus, and in particular differentia-
tion, is the field of mathematics that deals with rates of 
change. For example, taking the derivative of a function, 
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y f x= ( ), calculates the rate of change of y (the output) 
for each unit change in x (the input). Furthermore, if a 
function takes multiple inputs [y f x xn= …( )1, , ] then it 
is possible to calculate the rate of change of the output, 
y, with respect to changes in each of these inputs, xi , by 
taking the partial derivative of the function of with re-
spect to each input. The partial derivative of a function 
with respect to a particular input is calculated by first as-
suming that all the other inputs are held constant (and so 
their rate of change is 0 and they disappear from the cal-
culation) and then taking the derivative of what remains.  
Finally, the rate of change of a function for a given input is 
also known as the gradient of the function at the location 
on the curve (defined by the function) that is specified by 
the input. Consequently, the partial derivative of the SSE 
with respect to a weight specifies how the output of the 
SSE changes as that weight changes, and so it specifies 
the gradient of the error curve of the weight. This is ex-
actly what is needed to define the gradient descent weight 
update rule: the partial derivative of the SSE with respect 
to a weight specifies how to calculate the gradient of the 
weight’s error curve, and in turn this gradient specifies 
how the weight should be updated to reduce the error (the 
output of the SSE).

The partial derivative of a function with respect to a 
particular variable is the derivative of the function when 
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all the other variables are held constant. As a result there 
is a different partial derivative of a function with respect 
to each variable, because a different set of terms are con-
sidered constant in the calculation of each of the partial 
derivatives. Therefore, there is a different partial deriva-
tive of the SSE for each weight, although they all have a 
similar form. This is why each of the weights is updated in-
dependently in the gradient descent algorithm: the weight 
update rule is dependent on the partial derivative of the 
SSE for each weight, and because there is a different par-
tial derivative for each weight, there is a separate weight 
update rule for each weight. Again, although the partial 
derivative for each weight is distinct, all of these deriva-
tives have the same form, and so the weight update rule 
for each weight will also have the same form. This simpli-
fies the definition of the gradient descent algorithm. An-
other simplifying factor is that the SSE is defined relative 
to a dataset with n examples. The relevance of this is that 
the only variables in the SSE are the weights; the target 
output y and the inputs x are all specified by the dataset 
for each example, and so can be considered constants. As 
a result, when calculating the partial derivative of the SSE 
with respect to a weight, many of the terms in the equa-
tion that do not include the weight can be deleted because 
they are considered constants.

The relationship between the output of the SSE and 
each weight becomes more explicit if the SSE definition 
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is rewritten so that the term ŷ j , denoting the output pre-
dicted by the model, is replaced by the structure of the 
model generating the prediction. For the model with a 
single input x1 and a dummy input, x0 1= ,this rewritten 
version of the SSE is:

SSE y w x w xj j j
j

n

= × + ×( )( )−
=
∑1

2
0 0 1 1

2

1
, ,

This equation uses a double subscript on the inputs, the 
first subscript j identifies the example (or row in the 
dataset) and the second subscript specifies the feature (or 
column in the dataset) of the input. For example, x j,1  rep-
resents feature 1 from example j. This definition of the 
SSE can be generalized to a model with m inputs:

SSE y w xj i
i

m

j i
j

n

= − ×









==

∑∑1
2 0

2

1
,

Calculating the partial derivative of the SSE with re-
spect to a specific weight involves the application of the 
chain rule from calculus and a number of standard dif-
ferentiation rules. The result of this derivation is the fol-
lowing equation (for simplicity of presentation we switch 
back to the notation ŷ i  to represent the output from the 
model):
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This partial derivative specifies how to calculate the 
error gradient for weight wi for the dataset where xj i,  is the 
input associated with wi for each example in the dataset. 
This calculation involves multiplying two terms, the error 
of the output and the rate of change of the output (i.e., the 
weighted sum) with respect to changes in the weight. One 
way of understanding this calculation is that if changing 
the weight changes the output of the weighted sum by a 
large amount, then the gradient of the error with respect 
to the weight is large (steep) because changing the weight 
will result in big changes in the error. However, this gradi-
ent is the uphill gradient, and we wish to move the weights 
so as to move down the error curve. So in the gradient 
descent weight update rule (shown below) the “–” sign in 
front of the input xj i,  is dropped. Using t  to represent the 
iteration of the algorithm (an iteration involves a single 
pass through the n examples in the dataset), the gradient 
descent weight update rule is defined as:
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There are a number of notable factors about this 
weight update rule. First, the rule specifies how the weight 
wi should be updated after iteration t  through the dataset. 
This update is proportional to the gradient of the error 
curve for the weight for that iteration (i.e., the summa-
tion term, which actually defines the partial derivative 
of the SSE for that weight). Second, the weight update 
rule can be used to update the weights for functions with 
multiple inputs. This means that the gradient descent al-
gorithm can be used to descend error surfaces with more 
than two weight coordinates. It is not possible to visual-
ize these error surfaces because they will have more than 
three dimensions, but the basic principles of descending 
an error surface using the error gradient generalizes to 
learning functions with multiple inputs. Third, although 
the weight update rule has a similar structure for each 
weight, the rule does define a different update for each 
weight during each iteration because the update is de-
pendent on the inputs in the dataset examples to which 
the weight is applied. Fourth, the summation in the rule 
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indicates that, in each iteration of the gradient descent al-
gorithm, the current model should be applied to all n of 
the examples in the dataset. This is one of the reasons why 
training a deep learning network is such a computation-
ally expensive task. Typically for very large datasets, the 
dataset is split up into batches of examples sampled from 
the dataset, and each iteration of training is based on a 
batch, rather than the entire dataset. Fifth, apart from the 
modifications necessary to include the summation, this 
rule is identical to the LMS (also known as the Widrow-
Hoff or delta) learning rule introduced in chapter 4, and 
the rule implements the same logic: if the output of the 
model is too large, then weights associated with positive 
inputs should be reduced; if the output is too small, then 
these weights should be increased. Moreover, the purpose 
and function of the learning rate hyperparameter (η) is 
the same as in the LMS rule: scale the weight adjustments 
to ensure that the adjustments aren’t so large that the 
algorithm misses (or steps over) the best set of weights. 
Using this weight update rule, the gradient descent algo-
rithm can be summarized as follows:

1.	 Construct a model using an initial set of weights.

2.	 Repeat until the model performance is good enough.

a.	 Apply the current model to the examples in the 
dataset.
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b.	 Adjust each weight using the weight update  
rule.

3.	 Return the final model.

One consequence of the independent updating of 
weights, and the fact that weight updates are proportional 
to the local gradient on the associated error curve, is that 
the path the gradient descent algorithm follows to the 
lowest point on the error surface may not be a straight 
line. This is because the gradient of each of the component 
error curves may not be equal at each location on the error 
surface (the gradient for one of the weights may be steeper 
than the gradient for the other weight). As a result, one 
weight may be updated by a larger amount than another 
weight during a given iteration, and thus the descent to 
the valley floor may not follow a direct route. Figure 6.4 
illustrates this phenomenon. Figure 6.4 presents a set of 
top-down views of a portion of a contour plot of an error 
surface. This error surface is a valley that is quite long and 
narrow with steeper sides and gentler sloping ends; the 
steepness is reflected by the closeness of the contours. As 
a result, the search initially moves across the valley before 
turning toward the center of the valley. The plot on the 
left illustrates the first iteration of the gradient descent 
algorithm. The initial starting point is the location where 
the three arrows, in this plot, meet. The lengths of the 
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dotted and dashed arrows represent the local gradients 
of the w0 and w1 error curves, respectively. The dashed 
arrow is longer than the dotted arrow reflecting the fact 
that the local gradient of the w0 error curve is steeper than 
that of the w1 error curve. In each iteration, each of the 
weights is updated in proportion to the gradient of their 
error curve; so in the first iteration, the update for w0 is 
larger than for w1 and therefore the overall movement is 
greater across the valley than along the valley. The thick 
black arrow illustrates the overall movement in the un-
derlying weight space, resulting from the weight updates 
in this first iteration. Similarly, the middle plot illustrates 
the error gradients and overall weight update for the next 
iteration of gradient descent. The plot on the right shows 
the complete path of descent taken by the search process 
from initial location to the global minimum (the lowest 
point on the error surface).

Figure 6.4  Top-down views of a portion of a contour plot of an error surface, 
illustrating the gradient descent path across the error surface. Each of the 
thick arrows illustrates the overall movement of the weight vector for a 
single iteration of the gradient descent algorithm. The length of dotted and 
dashed arrows represent the local gradient of the w0  and w1 error curves, 
respectively, for that iteration. The plot on the right shows the overall path 
taken to the global minimum of the error surface.
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It is relatively straightforward to map the weight up-
date rule over to training a single neuron. In this mapping, 
the weight w0 is the bias term for a neuron, and the other 
weights are associated with the other inputs to the neu-
ron. The derivation of the partial derivative of the SSE  
is dependent on the structure of the function that gen-
erates ŷ . The more complex this function is, the more 
complex the partial derivative becomes. The fact that the 
function a neuron defines includes both a weighted sum-
mation and an activation function means that the partial 
derivative of the SSE with respect to a weight in a neuron 
is more complex than the partial derivative given above. 
The inclusion of the activation function within the neuron 
results in an extra term in the partial derivative of the SSE. 
This extra term is the derivative of the activation function 
with respect to the output from the weighted summation 
function. The derivative of the activation function is with 
respect to the output of the weighted summation function 
because this is the input that the activation function re-
ceives. The activation function does not receive the weight 
directly. Instead, the changes in the weight only affect 
the output of the activation function indirectly through 
the effect that these weight changes have on the output  
of the weighted summation. The main reason why the 
logistic function was such a popular activation func-
tion in neural networks for so long was that it has a very 
straightforward derivative with respect to its inputs. The  
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gradient descent weight update rule for a neuron using the 
logistic function is as follows:
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The fact that the weight update rule includes the derivative 
of the activation function means that the weight update 
rule will change if the activation function of the neuron is 
changed. However, this change will simply involve updat-
ing the derivative of the activation function; the overall 
structure of the rule will remain the same.

This extended weight update rule means that the gra-
dient descent algorithm can be used to train a single neu-
ron. It cannot, however, be used to train neural networks 
with multiple layers of neurons because the definition of 
the error gradient for a weight depends on the error of 
the output of the function, the term y yj j− ˆ . Although it 
is possible to calculate the error of the output of a neuron 
in the output layer of the network by directly comparing 
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the output with the expected output, it is not possible to 
calculate this error term directly for the neurons in the 
hidden layer of the network, and as a result it is not pos-
sible to calculate the error gradients for each weight. The 
backpropagation algorithm is a solution to the problem of 
calculating error gradients for the weights in the hidden 
layers of the network.

Training a Neural Network Using Backpropagation

The term backpropagation has two different meanings. 
The primary meaning is that it is an algorithm that can be 
used to calculate, for each neuron in a network, the sen-
sitivity (gradient/rate-of-change) of the error of the net-
work to changes in the weights. Once the error gradient 
for a weight has been calculated, the weight can then be 
adjusted to reduce the overall error of the network using a 
weight update rule similar to the gradient descent weight 
update rule. In this sense, the backpropagation algorithm 
is a solution to the credit assignment problem, introduced 
in chapter 4. The second meaning of backpropagation is 
that it is a complete algorithm for training a neural net-
work. This second meaning encompasses the first sense, 
but also includes a learning rule that defines how the er-
ror gradients of the weights should be used to update the 
weights within the network. Consequently, the algorithm 
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described by this second meaning involves a two-step pro-
cess: solve the credit assignment problem, and then use 
the error gradients of the weights, calculated during credit 
assignment, to update the weights in the network. It is 
useful to distinguish between these two meanings of back-
propagation because there are a number of different learn-
ing rules that can be used to update the weights, once the 
credit assignment problem has been resolved. The learn-
ing rule that is most commonly used with backpropaga-
tion is the gradient descent algorithm introduced earlier. 
The description of the backpropagation algorithm given 
here focuses on the first meaning of backpropagation, that 
of the algorithm being a solution to the credit assignment 
problem.

Backpropagation: The Two-Stage Algorithm
The backpropagation algorithm begins by initializing all 
the weights of the network using random values. Note 
that even a randomly initialized network can still generate 
an output when an input is presented to the network, al-
though it is likely to be an output with a large error. Once 
the network weights have been initialized, the network 
can be trained by iteratively updating the weights so as 
to reduce the error of the network, where the error of the 
network is calculated in terms of the difference between 
the output generated by the network in response to an 
input pattern, and the expected output for that input, as 
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defined in the training dataset. A crucial step in this itera-
tive weight adjustment process involves solving the credit 
assignment problem, or, in other words, calculating the 
error gradients for each weight in the network. The back-
propagation algorithm solves this problem using a two-
stage process. In first stage, known as the forward pass, 
an input pattern is presented to the network, and the re-
sulting neuron activations flow forward through the net-
work until an output is generated. Figure 6.5 illustrates 
the forward pass of the backpropagation algorithm. In 
this figure, the weighted summation of inputs calculated 
at each neuron (e.g., z1 represents the weighted summa-
tion of inputs calculated for neuron 1) and the outputs (or 
activations, e.g., a1 represents the activation for neuron 1) 
of each neuron is shown. The reason for listing the zi  and 
ai values for each neuron in this figure is to highlight the 
fact that during the forward pass both of these values, for 
each neuron, are stored in memory. The reason they are 
stored in memory is that they are used in the backward 
pass of the algorithm. The zi  value for a neuron is used to 
calculate the update to the weights on input connections 
to the neuron. The ai value for a neuron is used to calculate 
the update to the weights on the output connections from 
a neuron. The specifics of how these values are used in the 
backward pass will be described below.

The second stage, known as the backward pass, be-
gins by calculating an error gradient for each neuron in 
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the output layer. These error gradients represent the sen-
sitivity of the network error to changes in the weighted 
summation calculation of the neuron, and they are often 
denoted by the shorthand notation δ (pronounced delta) 
with a subscript indicating the neuron. For example, δk is 
the gradient of the network error with respect to small 
changes in the weighted summation calculation of the 
neuron k. It is important to recognize that there are two 
different error gradients calculated in the backpropaga-
tion algorithm:

1.	 The first is the δ value for each neuron. The δ for each 
neuron is the rate of change of the error of the network 
with respect to changes in the weighted summation 
calculation of the neuron. There is one δ for each 
neuron. It is these δ error gradients that the algorithm 
backpropagates.

2.	 The second is the error gradient of the network with 
respect to changes in the weights of the network. There 
is one of these error gradients for each weight in the 
network. These are the error gradients that are used 
to update the weights in the network. However, it is 
necessary to first calculate the δ term for each neuron 
(using backpropagation) in order to calculate the error 
gradients for the weights.
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Note there is only a single δ per neuron, but there may be 
many weights associated with that neuron, so the δ term 
for a neuron may be used in the calculation of multiple 
weight error gradients.

Once the δs for the output neurons have been calcu-
lated, the δs for the neurons in the last hidden layer are 
then calculated. This is done by assigning a portion of the 
δ from each output neuron to each hidden neuron that is 
directly connected to it. This assignment of blame, from 
output neuron to hidden neuron, is dependent on the 
weight of the connection between the neurons, and the 
activation of the hidden neuron during the forward pass 
(this is why the activations are recorded in memory dur-
ing the forward pass). Once the blame assignment, from 
the output layer, has been completed, the δ for each neu-
ron in the last hidden layer is calculated by summing the 
portions of the δs assigned to the neuron from all of the 
output neurons it connects to. The same process of blame 
assignment and summing is then repeated to propagate 
the error gradient back from the last layer of hidden neu-
rons to the neurons in the second last layer, and so on, 
back to the input layer. It is this backward propagation of 
δs through the network that gives the algorithm its name. 
At the end of this backward pass there is a δ calculated 
for each neuron in the network (i.e., the credit assignment 
problem has been solved) and these δs can then be used 
to update the weights in the network (using, for example, 



214    chapter 6

the gradient descent algorithm introduced earlier). Figure 
6.6 illustrates the backward pass of the backpropagation 
algorithm. In this figure, the δs get smaller and smaller as 
the backpropagation process gets further from the output 
layer. This reflects the vanishing gradient problem dis-
cussed in chapter 4 that slows down the learning rate of 
the early layers of the network.

In summary, the main steps within each iteration of 
the backpropagation algorithm are as follows:

1.	 Present an input to the network and allow the neuron 
activations to flow forward through the network until an 
output is generated. Record both the weighted sum and 
the activation of each neuron.
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Forward pass: activations flow from inputs to outputs

Figure 6.5  The forward pass of the backpropagation algorithm.
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2.	 Calculate a δ (delta) error gradient for each neuron in 
the output layer.

3.	 Backpropagate the δ error gradients to obtain a δ 
(delta) error gradient for each neuron in the network.

4.	 Use the δ error gradients and a weight update 
algorithm, such as gradient descent, to calculate the error 
gradients for the weights and use these to update the 
weights in the network.

The algorithm continues iterating through these steps  
until the error of the network is reduced (or converged) to 
an acceptable level.
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Backward pass: error gradients (δs) flow from outputs to inputs

Figure 6.6  The backward pass of the backpropagation algorithm.
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Backpropagation: Backpropagating the δ s
A δ  term of a neuron describes the error gradient for the 
network with respect to changes in the weighted summa-
tion of inputs calculated by the neuron. To help make this 
more concrete, figure 6.7 (top) breaks open the processing 
stages within a neuron k  and uses the term zk  to denote 
the result of the weighted summation within the neuron. 
The neuron in this figure receives inputs (or activations) 
from three other neurons (h i j, , ), and zk  is the weighted 
sum of these activations. The output of the neuron, ak , is 
then calculated by passing zk  through a nonlinear activa-
tion function, ϕ, such as the logistic function. Using this 
notation a δ for a neuron k  is the rate of change of the 
error of the network with respect to small changes in the 
value of zk . Mathematically, this term is the partial deriva-
tive of the networks error with respect to zk :

δk
k

Error
z

= ∂
∂

No matter where in a network a neuron is located 
(output layer or hidden layer), the δ for the neuron is cal-
culated as the product of two terms:

1.	 the rate of change of the network error in response to 
changes in the neuron’s activation (output): ∂ ∂E ak/ ;
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Figure 6.7  Top: the forward propagation of activations through the 
weighted sum and activation function of a neuron. Middle: The calculation of 
the δ  term for an output neuron (tk  is the expected activation for the neuron 
and ak  is the actual activation). Bottom: The calculation of the δ  term for a 
hidden neuron. This figure is loosely inspired by figure 5.2 and figure 5.3 in 
Reed and Marks II 1999.
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2.	 the rate of change of the activation of the neuron with 
respect to changes in the weighted sum of inputs to the 
neuron: ∂ ∂a zk k/ .

δk
k

k

k

E
a

a
z

= ∂
∂

× ∂
∂

Figure 6.7 (middle) illustrates how this product is cal-
culated for neurons in the output layer of a network. The 
first step is to calculate the rate of change of the error of 
the network with respect to the output of the neuron, the 
term ∂ ∂E ak/ . Intuitively, the larger the difference between 
the activation of a neuron, ak , and the expected activation, 
tk , the faster the error can be changed by changing the 
activation of the neuron. So the rate of change of the error 
of the network with respect to changes in the activation of 
an output neuron k  can be calculated by subtracting the 
neuron’s activation (ak ) from the expected activation (tk ):

∂
∂

= −E
a

t a
k

k k

This term connects the error of the network to the out-
put of the neuron. The neuron’s δ, however, is the rate 
of change of the error with respect to the input to the 
activation function (zk ), not the output of that function  
(ak ). Consequently, in order to calculate the δ for the 
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neuron, the ∂ ∂E ak/  value must be propagated back 
through the activation function to connect it to the in-
put to the activation function. This is done by multiplying 
∂ ∂E ak/  by the rate of change of the activation function 
with respect to the input value to the function, zk . In fig-
ure 6.7, the rate of change of the activation function with 
respect to its input is denoted by the term: ∂ ∂a zk k/ . This 
term is calculated by plugging the value zk  (stored from 
the forward pass through the network) into the equation 
of the derivative of the activation function with respect 
to zk . For example, the derivative of the logistic function 
with respect to its input is:

∂ ( )
∂

= ( ) × − ( )( )logistic z
z

logistic z logistic z1

Figure 6.81 plots this function and shows that plugging a 
zk  value into this equation will result in a value between 
0 and 0.25. For example, figure 6.8 shows that if zk = 0 
then ∂ ∂ =a zk k/ .0 25. This is why the weighted summa-
tion value for each neuron (zk ) is stored during the for-
ward pass of the algorithm.

The fact that the calculation of a neuron’s δ involves 
a product that includes the derivative of the neuron’s ac-
tivation function makes it necessary to be able to take the 
derivative of the neuron’s activation function. It is not 
possible to take the derivative of a threshold activation 
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function because there is a discontinuity in the function 
at the threshold. As a result, the backpropagation algo-
rithm does not work for networks composed of neurons 
that use threshold activation functions. This is one of the 
reasons why neural networks moved away from threshold 
activation and started to use the logistic and tanh activa-
tion functions. The logistic and tanh functions both have 
very simple derivatives and this made them particularly 
suitable to backpropagation.

Figure 6.7 (bottom) illustrates how the δ for a neu-
ron in a hidden layer is calculated. This involves the same 
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Figure 6.8  Plots of the logistic function and the derivative of the logistic 
function.
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product of terms as was used for neurons in the output 
layer. The difference is that the calculation of the ∂ ∂E ak/  
is more complex for hidden units. For hidden neurons, it is 
not possible to directly connect the output of the neuron 
with the error of a network. The output of a hidden neu-
ron only indirectly affects the overall error of the network 
through the variations that it causes in the downstream 
neurons that receive the output as input, and the magni-
tude of these variations is dependent on the weight each 
of these downstream neurons applies to the output. Fur-
thermore, this indirect effect on the network error is in 
turn dependent on the sensitivity of the network error to 
these later neurons, that is, their δ values. Consequently, 
the sensitivity of the network error to the output of a hid-
den neuron can be calculated as a weighted sum of the δ 
values of the neurons immediately downstream of the 
neuron:

∂
∂

= ×
=
∑E

a
w

k
k i

i

N

i,
1

δ

As a result, the error terms (the δ values) for all the down-
stream neurons to which a neuron’s output is passed in 
the forward pass must be calculated before the ∂ ∂E ak/  for 
neuron k can be calculated. This, however, is not a prob-
lem because in the backward pass the algorithm is working 
backward through the network and will have calculated 
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the δ terms for the downstream neurons before it reaches 
neuron k.

For hidden neurons, the other term in the δ prod-
uct, ∂ ∂a zk k/ , is calculated in the same way as it is calcu-
lated for output neurons: the zk  value for the neuron (the 
weighted summation of inputs, stored during the forward 
pass through the network) is plugged into the derivative 
of the neuron’s activation function with respect to zk .

Backpropagation: Updating the Weights
The fundamental principle of the backpropagation algo-
rithm in adjusting the weights in a network is that each 
weight in a network should be updated in proportion to the 
sensitivity of the overall error of the network to changes 
in that weight. The intuition is that if the overall error of 
the network is not affected by a change in a weight, then 
the error of the network is independent of that weight, 
and, therefore, the weight did not contribute to the error. 
The sensitivity of the network error to a change in an in-
dividual weight is measured in terms of the rate of change 
of the network error in response to changes in that weight.

The overall error of a network is a function with mul-
tiple inputs: both the inputs to the network and all the 
weights in the network. So, the rate of change of the er-
ror of a network in response to changes in a given net-
work weight is calculated by taking the partial derivative 
of the network error with respect to that weight. In the 
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backpropagation algorithm, the partial derivative of the 
network error for a given weight is calculated using the 
chain rule. Using the chain rule, the partial derivative of 
the network error with respect a weight w j k,  on the con-
nection between a neuron j and a neuron k  is calculated 
as the product of two terms:

1.	 the first term describes the rate of change of the 
weighted sum of inputs in neuron k  with respect to 
changes in the weight ∂ ∂z wk j k/ , ;

2.	 and the second term describes the rate of change of 
the network error in response to changes in the weighted 
sum of inputs calculated by the neuron k . (This second 
term is the δk for neuron k .)

Figure 6.9 shows how the product of these two terms 
connects a weight to the output error of the network.  
The figure shows the processing of the last two neurons  
(k  and l) in a network with a single path of activation. 
Neuron k  receives a single input aj and the output from 
neuron k  is the sole input to neuron l. The output of neu-
ron l  is the output of the network. There are two weights 
in this portion of the network, w j k,  and wk l, .

The calculations shown in figure 6.9 appear compli-
cated because they contain a number of different compo-
nents. However, as we will see, by stepping through these 
calculations, each of the individual elements is actually 
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easy to calculate; it’s just keeping track of all the different 
elements that poses a difficulty.

Focusing on wk l, , this weight is applied to an input of 
the output neuron of the network. There are two stages 
of processing between this weight and the network out-
put (and error): the first is the weighted sum calculated 
in neuron l; the second is the nonlinear function applied 
to this weighted sum by the activation function of neuron  
l . Working backward from the output, the δ l  term is calcu-
lated using the calculation shown in the middle figure of 
figure 6.7: the difference between the target activation for 
the neuron and the actual activation is calculated and is 
multiplied by the partial derivative of the neuron’s activa-
tion function with respect to its input (the weighted sum 
zk ), ∂ ∂a zl l/ . Assuming that the activation function used 

aj
∑

aj × wj,k
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ϕ(zk)

zk ∑
ak × wk,l

wk,l
ϕ(zl)
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∂Error
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δk
∂zk

∂wj,k
×

∂Error
∂wj,k

Neuron k Neuron l

Figure 6.9  An illustration of how the product of derivatives connects 
weights in the network to the error of the network.
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by neuron l  is the logistic function, the term ∂ ∂a zl l/  is 
calculated by plugging in the value zl  (stored during the 
forward pass of the algorithm) into the derivation of the 
logistic function:

∂
∂

= ∂ ( )
∂

= ( ) × − ( )( )a
z

logistic z
z

logistic z logistic zl

l

l

l
l l1

So the calculation of δ l  under the assumption that neuron 
l  uses a logistic function is:

δ l l l l llogistic z logistic z t a= ( ) × − ( )( ) × ( )−1

The δ l  term connects the error of the network to the 
input to the activation function (the weighted sum zl). 
However, we wish to connect the error of the network back 
to the weight wk l, . This is done by multiplying the δ l  term 
by the partial derivative of the weighted summation func-
tion with respect to weight wk l, : ∂ ∂z wl k l/ , . This partial 
derivative describes how the output of the weighted sum 
function zl  changes as the weight wk l,  changes. The fact 
that the weighted summation function is a linear function 
of weights and activations means that in the partial de-
rivative with respect to a particular weight all the terms in 
the function that do not involve the specific weight go to 
zero (are considered constants) and the partial derivative 
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simplifies to just the input associated with that weight, in 
this instance input ak .
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This is why the activations for each neuron in the network 
are stored in the forward pass. Taken together these two 
terms, ∂ ∂z wl k l/ ,  and δ l , connect the weight wk l,  to the 
network error by first connecting the weight to zl , and 
then connecting zl  to the activation of the neuron, and 
thereby to the network error. So, the error gradient of  
the network with respect to changes in weight wk l,  is  
calculated as:
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The other weight in the figure 6.9 network, wk l, , is 
deeper in the network, and, consequently, there are more 
processing steps between it and the network output (and 
error). The δ term for neuron k  is calculated, through 
backpropagation (as shown at the bottom of figure 6.7), 
using the following product of terms:
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Assuming the activation function used by neuron k  is the 
logistic function, then the term ∂ ∂a zk k/  is calculated in 
a similar way to ∂ ∂a zl l/ : the value zk  is plugged into the 
equation for the derivative of the logistic function. So, 
written out in long form the calculation of δk is:

δ δk k k k l llogistic z logistic z w= ( ) × − ( )( ) × ×( )1 ,

However, in order to connect the weight w j k,  with the error 
of the network, the term δk must be multiplied by the par-
tial derivative of the weighted summation function with 
respect to the weight: ∂ ∂z wk j k/ , . As described above, the 
partial derivative of a weighted sum function with respect 
to a weight reduces to the input associated with the weight 
w j k,  (i.e., a j); and the gradient of the networks error with 
respect to the hidden weight w j k,  is calculated by multi-
plying aj by δk . Consequently, the product of the terms 
(∂ ∂z wk j k/ ,  and δk) forms a chain connecting the weight 
w j k,  to the network error. For completeness, the product 
of terms for w j k, , assuming logistic activation functions in 
the neurons, is:
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Although this discussion has been framed in the con-
text of a very simple network with only a single path of 
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connections, it generalizes to more complex networks be-
cause the calculation of the δ terms for hidden units already 
considers the multiple connections emanating from a neu-
ron. Once the gradient of the network error with respect 
to a weight has been calculated (∂ = ×Error w aj k k j/ , δ ),  
the weight can be adjusted so as to reduce the weight of 
the network using the gradient descent weight update 
rule. Here is the weight update rule, specified using the 
notation from backpropagation, for the weight on the con-
nection between neuron j and neuron k  during iteration 
t  of the algorithm:

w w aj k
t

j k
t

k j, ,
+ = + × ×( )1 η δ

Finally, an important caveat on training neural net-
works with backpropagation and gradient descent is that 
the error surface of a neural network is much more com-
plex than that of a linear models. Figure 6.3 illustrated the 
error surface of a linear model as a smooth convex bowl 
with a single global minimum (a single best set of weights). 
However, the error surface of a neural network is more like 
a mountain range with multiple valleys and peaks. This is 
because each of the neurons in a network includes a non-
linear function in its mapping of inputs to outputs, and so 
the function implemented by the network is a nonlinear 
function. Including a nonlinearity within the neurons of 
a network increases the expressive power of the network 



230    chapter 6

in terms of its ability to learn more complex functions. 
However, the price paid for this is that the error surface 
becomes more complex and the gradient descent algo-
rithm is no longer guaranteed to find the set of weights 
that define the global minimum on the error surface; in-
stead it may get stuck within a minima (local minimum). 
Fortunately, however, backpropagation and gradient de-
scent can still often find sets of weights that define useful 
models, although searching for useful models may require 
running the training process multiple times to explore dif-
ferent parts of the error surface landscape.



7

THE FUTURE OF DEEP LEARNING

On March 27, 2019, Yoshua Bengio, Geoffrey Hinton, and 
Yann LeCun jointly received the ACM A.M. Turing award. 
The award recognized the contributions they have made 
to deep learning becoming the key technology driving the 
modern artificial intelligence revolution. Often described 
as the “Nobel Prize for Computing,” the ACM A.M Tur-
ing award carries a $1 million prize. Sometimes working 
together, and at other times working independently or in 
collaboration with others, these three researchers have, 
over a number of decades of work, made numerous contri-
butions to deep learning, ranging from the popularization 
of backpropagation in the 1980s, to the development of 
convolutional neural networks, word embeddings, atten-
tion mechanisms in networks, and generative adversarial 
networks (to list just some examples). The announcement 
of the award noted the astonishing recent breakthroughs 
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that deep learning has led to in computer vision, robot-
ics, speech recognition, and natural language processing, 
as well as the profound impact that these technologies 
are having on society, with billions of people now using 
deep learning based artificial intelligence on a daily basis 
through smart phones applications. The announcement 
also highlighted how deep learning has provided scien-
tists with powerful new tools that are resulting in scien-
tific breakthroughs in areas as diverse as medicine and 
astronomy. The awarding of this prize to these research-
ers reflects the importance of deep learning to modern 
science and society. The transformative effects of deep 
learning on technology is set to increase over the com-
ing decades with the development and adoption of deep 
learning continuing to be driven by the virtuous cycle of 
ever larger datasets, the development of new algorithms, 
and improved hardware. These trends are not stopping, 
and how the deep learning community responds to them 
will drive growth and innovations within the field over the 
coming years.

Big Data Driving Algorithmic Innovations

Chapter 1 introduced the different types of machine learn-
ing: supervised, unsupervised, and reinforcement learn-
ing. Most of this book has focused on supervised learning, 



	T he Future of Deep Learning    233

primarily because it is the most popular form of machine 
learning. However, a difficulty with supervised learning 
is that it can cost a lot of money and time to annotate 
the dataset with the necessary target labels. As datasets 
continue to grow, the data annotation cost is becoming 
a barrier to the development of new applications. The 
ImageNet dataset1 provides a useful example of the scale 
of the annotation task involved in deep learning projects. 
This data was released in 2010, and is the basis for the Ima-
geNet Large-Scale Visual Recognition Challenge (ILSVRC). 
This is the challenge that the AlexNet CNN won in 2012 
and the ResNet system won in 2015. As was discussed in 
chapter 4, AlexNet winning the 2012 ILSVRC challenge 
generated a lot of excitement about deep learning mod-
els. However, the AlexNet win would not have been pos-
sible without the creation of the ImageNet dataset. This 
dataset contains more than fourteen million images that 
have been manually annotated to indicate which objects 
are present in each image; and more than one million of 
the images have actually been annotated with the bound-
ing boxes of the objects in the image. Annotating data at 
this scale required a significant research effort and budget, 
and was achieved using crowdsourcing platforms. It is not 
feasible to create annotated datasets of this size for every 
application.

One response to this annotation challenge has 
been a growing interest in unsupervised learning. The 
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autoencoder models used in Hinton’s pretraining (see 
chapter 4) are one neural network approach to unsuper-
vised learning, and in recent years different types of au-
toencoders have been proposed. Another approach to this 
problem is to train generative models. Generative models 
attempt to learn the distribution of the data (or, to model 
the process that generated the data). Similar to autoen-
coders, generative models are often used to learn a useful 
representation of the data prior to training a supervised 
model. Generative adversarial networks (GANs) are an ap-
proach to training generative models that has received a 
lot of attention in recent years (Goodfellow et al. 2014). A 
GAN consists of two neural networks, a generative model 
and a discriminative model, and a sample of real data. The 
models are trained in an adversarial manner. The task of 
the discriminative model is to learn to discriminate be-
tween real data sampled from the dataset, and fake data 
that has been synthesized by the generator. The task of 
the generator is to learn to synthesize fake data that can 
fool the discriminative model. Generative models trained 
using a GAN can learn to synthesize fake images that 
mimic an artistic style (Elgammal et al. 2017), and also to 
synthesize medical images along with lesion annotations 
(Frid-Adar et al. 2018). Learning to synthesize medical 
images, along with the segmentation of the lesions in 
the synthesized image, opens the possibility of automati-
cally generating massive labeled datasets that can be used 
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for supervised learning. A more worrying application of 
GANs is the use of these networks to generate deep fakes: 
a deep fake is a fake video of a person doing something 
they never did that is created by swapping their face into a 
video of someone else. Deep fakes are very hard to detect, 
and have been used maliciously on a number of occasions 
to embarrass public figures, or to spread fake news stories.

Another solution to the data labeling bottleneck is that 
rather than training a new model from scratch for each 
new application, we rather repurpose models that have 
been trained on a similar task. Transfer learning is the ma-
chine learning challenge of using information (or repre-
sentations) learned on one task to aid learning on another 
task. For transfer learning to work, the two tasks should 
be from related domains. Image processing is an example 
of a domain where transfer learning is often used to speed 
up the training of models across different tasks. Transfer 
learning is appropriate for image processing tasks because 
low-level visual features, such as edges, are relatively stable 
and useful across nearly all visual categories. Furthermore, 
the fact that CNN models learn a hierarchy of visual fea-
ture, with the early layers in CNN learning functions that 
detect these low-level visual features in the input, makes it 
possible to repurpose the early layers of pretrained CNNs 
across multiple image processing projects. For example, 
imagine a scenario where a project requires an image clas-
sification model that can identify objects from specialized 
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categories for which there are no samples in general image 
datasets, such as ImageNet. Rather than training a new 
CNN model from scratch, it is now relatively standard to 
first download a state-of-the-art model (such as the Mi-
crosoft ResNet model) that has been trained on ImageNet, 
then replace the later layers of the model with a new set 
of layers, and finally to train this new hybrid-model on 
a relatively small dataset that has been labeled with the 
appropriate categories for the project. The later layers of 
the state-of-the-art (general) model are replaced because 
these layers contain the functions that combine the low-
level features into the task specific categories the model 
was originally trained to identify. The fact that the early 
layers of the model have already been trained to identify 
the low-level visual features speeds up the training and re-
duces the amount of data needed to train the new project 
specific model.

The increased interest in unsupervised learning, gen-
erative models, and transfer learning can all be understood 
as a response to the challenge of annotating increasingly 
large datasets.

The Emergence of New Models

The rate of emergence of new deep learning models is ac-
celerating every year. A recent example is capsule networks 
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(Hinton et al. 2018; Sabour et al. 2017). Capsule networks 
are designed to address some of the limitations of CNNs. 
One problem with CNNs, sometimes known as the Picasso 
problem, is the fact that a CNN ignores the precise spatial 
relationships between high-level components within an 
object’s structure. What this means in practice is that a 
CNN that has been trained to identify faces may learn to 
identify the shapes of eyes, the nose, and the mouth, but 
will not learn the required spatial relationships between 
these parts. Consequently, the network can be fooled by 
an image that contains these body parts, even if they are 
not in the correct relative position to each other. This 
problem arises because of the pooling layers in CNNs that 
discard positional information.

At the core of capsule networks is the intuition that 
the human brain learns to identify object types in a view-
point invariant manner. Essentially, for each object type 
there is an object class that has a number of instantiation 
parameters. The object class encodes information such as 
the relative relationship of different object parts to each 
other. The instantiation parameters control how the ab-
stract description of an object type can be mapped to the 
specific instance of the object that is currently in view (for 
example, its pose, scale, etc.).

A capsule is a set of neurons that learns to identify 
whether a specific type of object or object part is present 
at a particular location in an image. A capsule outputs an 
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activity vector that represents the instantiation parame-
ters of the object instance, if one is present at the relevant 
location. Capsules are embedded within convolutional 
layers. However, capsule networks replace the pooling 
process, which often defines the interface between convo-
lutional layers, with a process called dynamic routing. The 
idea behind dynamic routing is that each capsule in one 
layer in the network learns to predict which capsule in the 
next layer is the most relevant capsule for it to forward its 
output vector to.

At the time or writing, capsule networks have the state-
of-the-art performance on the MNIST handwritten digit 
recognition dataset that the original CNNs were trained 
on. However, by today’s standards, this is a relatively small 
dataset, and capsule networks have not been scaled to 
larger datasets. This is partly because the dynamic rout-
ing process slows down the training of capsule networks. 
However, if capsule networks are successfully scaled, then 
they may introduce an important new form of model that 
extends the ability of neural networks to analyze images 
in a manner much closer to the way humans do.

Another recent model that has garnered a lot of in-
terest is the transformer model (Vaswani et al. 2017). 
The transformer model is an example of a growing trend 
in deep learning where models are designed to have so-
phisticated internal attention mechanisms that enable a 
model to dynamically select subsets of the input to focus 
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on when generating an output. The transformer model 
has achieved state-of-the-art performance on machine 
translation for some language pairs, and in the future this 
architecture may replace the encoder-decoder architecture 
described in chapter 5. The BERT (Bidirectional Encoder 
Representations from Transformers) model has built on 
the Transformer architecture (Devlin et al. 2018). The 
BERT development is particularly interesting because at 
its core is the idea of transfer learning (as discussed above 
in relation to the data annotation bottleneck). The basic 
approach to creating a natural language processing model 
with BERT is to pretrain a model for a given language us-
ing a large unlabeled dataset (the fact that the dataset is 
unlabeled means that it is relatively cheap to create). This 
pretrained model can then be used as the basis to create a 
models for specific tasks for the language (such as senti-
ment classification or question answering) by fine-tuning 
the pretrained model using supervised learning and a 
relatively small annotated dataset. The success of BERT 
has shown this approach to be tractable and effective in 
developing state-of-the-art natural language processing 
systems.

New Forms of Hardware

Today’s deep learning is powered by graphics processing 
units (GPUs): specialized hardware that is optimized to 
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do fast matrix multiplications. The adoption, in the late 
2000s, of commodity GPUs to speed up neural network 
training was a key factor in many of the breakthroughs 
that built momentum behind deep learning. In the last 
ten years, hardware manufacturers have recognized the 
importance of the deep learning market and have devel-
oped and released hardware specifically designed for deep 
learning, and which supports deep learning libraries, such 
as TensorFlow and PyTorch. As datasets and networks 
continue to grow in size, the demand for faster hardware 
continues. At the same time, however, there is a grow-
ing recognition of the energy costs associated with deep 
learning, and people are beginning to look for hardware 
solutions that have a reduced energy footprint.

Neuromorphic computing emerged in the late 1980s 
from the work of Carver Mead.2 A neuromorphic chip is 
composed of a very-large-scale integrated (VLSI) circuit, 
connecting potentially millions of low-power units known 
as spiking neurons. Compared with the artificial neurons 
used in standard deep learning systems, the design of a 
spiking neuron is closer to the behavior of biological neu-
rons. In particular, a spiking neuron does not fire in re-
sponse to the set of input activations propagated to it at a 
particular time point. Instead, a spiking neuron maintains 
an internal state (or activation potential) that changes 
through time as it receives activation pulses. The activa-
tion potential increases when new activations are received, 
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and decays through time in the absence of incoming ac-
tivations. The neuron fires when its activation potential 
surpasses a specific threshold. Due to the temporal decay 
of the neuron’s activation potential, a spiking neuron only 
fires if it receives the requisite number of input activations 
within a time window (a spiking pattern). One advantage 
of this temporal based processing is that spiking neurons 
do not fire on every propagation cycle, and this reduces 
the amount of energy the network consumes.

In comparison with traditional CPU design, neuro-
morphic chips have a number of distinctive characteristics, 
including:

1.	 Basic building blocks: traditional CPUs are built using 
transistor based logic gates (e.g., AND, OR, NAND gates), 
whereas neuromorphic chips are built using spiking 
neurons.

2.	 Neuromorphic chips have an analog aspect to them: 
in a traditional digital computer, information is sent in 
high-low electrical bursts in sync with a central clock; in 
a neuromorphic chip, information is sent as patterns of 
high-low signals that vary through time.

3.	 Architecture: the architecture of traditional CPUs 
is based on the von Neumann architecture, which is 
intrinsically centralized with all the information passing 
through the CPU. A neuromorphic chip is designed to 
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allow massive parallelism of information flow between 
the spiking neurons. Spiking neurons communicate 
directly with each other rather than via a central 
information processing hub.

4.	 Information representation is distributed through 
time: the information signals propagated through a 
neuromorphic chip use a distributed representation, 
similar to the distributed representations discussed in 
chapter 4, with the distinction that in a neuromorphic 
chip these representations are also distributed through 
time. Distributed representations are more robust to 
information loss than local representations, and this is 
a useful property when passing information between 
hundreds of thousands, or millions, of components, 
some of which are likely to fail.

Currently there are a number of major research proj-
ects focused on neuromorphic computing. For example, 
in 2013 the European Commission allocated one billion 
euros in funding to the ten-year Human Brain Project.3 
This project directly employs more than five hundred sci-
entists, and involves research from more than a hundred 
research centers across Europe. One of the projects key ob-
jectives is the development of neuromorphic computing 
platforms capable of running a simulation of a complete 
human brain. A number of commercial neuromorphic 
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chips have also been developed. In 2014, IBM launched 
the TrueNorth chip, which contained just over a million 
neurons that are connected together by over 286 million 
synapses. This chip uses approximately 1/10,000th the 
power of a conventional microprocessor. In 2018, Intel 
Labs announced the Loihi (pronounced low-ee-hee) neu-
romorphic chip. The Loihi chip has 131,072 neurons con-
nected together by 130,000,000 synapses. Neuromorphic 
computing has the potential to revolutionize deep learn-
ing; however, it still faces a number of challenges, not least 
of which is the challenge of developing the algorithms and 
software patterns for programming this scale of massively 
parallel hardware.

Finally, on a slightly longer time horizon, quantum 
computing is another stream of hardware research that 
has the potential to revolutionize deep learning. Quantum 
computing chips are already in existence; for example, In-
tel has created a 49-qubit quantum test chip, code named 
Tangle Lake. A qubit is the quantum equivalent of a binary 
digit (bit) in traditional computing. A qubit can store more 
than one bit of information; however, it is estimated that 
it will require a system with one million or more qubits 
before quantum computing will be useful for commercial 
purposes. The current time estimate for scaling quantum 
chips to this level is around seven years.
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The Challenge of Interpretability

Machine learning, and deep learning, are fundamentally 
about making data-driven decisions. Although deep learn-
ing provides a powerful set of algorithms and techniques 
to train models that can compete (and in some cases out-
perform) humans on a range of decision-making tasks, 
there are many situations where a decision by itself is not 
sufficient. Frequently, it is necessary to provide not only 
a decision but also the reasoning behind a decision. This 
is particularly true when the decision affects a person, be 
it a medical diagnosis or a credit assessment. This concern 
is reflected in privacy and ethics regulations in relation to 
the use of personal data and algorithmic decision-making 
pertaining to individuals. For example, Recital 714 of the 
General Data Protection Regulations (GDPR) states that 
individuals, affected by a decision made by an automated 
decision-making process, have the right to an explanation 
with regards to how the decision was reached.

Different machine learning models provide different 
levels of interpretability with regard to how they reach a 
specific decision. Deep learning models, however, are pos-
sibly the least interpretable. At one level of description, 
a deep learning model is quite simple: it is composed of 
simple processing units (neurons) that are connected to-
gether into a network. However, the scale of the networks 
(in terms of the number of neurons and the connections 
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between them), the distributed nature of the represen-
tations, and the successive transformations of the input 
data as the information flows deeper into the network, 
makes it incredibly difficult to interpret, understand, and 
therefore explain, how the network is using an input to 
make a decision.

The legal status of the right to explanation within 
GDPR is currently vague, and the specific implications 
of it for machine learning and deep learning will need to 
be worked out in the courts. This example does, however, 
highlight the societal need for a better understanding of 
how deep learning models use data. The ability to inter-
pret and understand the inner workings of a deep learn-
ing model is also important from a technical perspective. 
For example, understanding how a model uses data can 
reveal if a model has an unwanted bias in how it makes its 
decisions, and also reveal the corner cases that the model 
will fail on. The deep learning and the broader artificial 
intelligence research communities are already responding 
to this challenge. Currently, there are a number of proj-
ects and conferences focused on topics such as explainable 
artificial intelligence, and human interpretability in ma-
chine learning.

Chis Olah and his colleagues summarize the main 
techniques currently used to examine the inner workings 
of deep learning models as: feature visualization, attribu-
tion, and dimensionality reduction (Olah et al. 2018). One 
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way to understand how a network processes information is 
to understand what inputs trigger particular behaviors in 
a network, such as a neuron firing. Understanding the spe-
cific inputs that trigger the activation of a neuron enables 
us to understand what the neuron has learned to detect in 
the input. The goal of feature visualization is to generate 
and visualize inputs that cause a specific activity within a 
network. It turns out that optimization techniques, such 
a backpropogation, can be used to generate these inputs. 
The process starts with a random generated input and the 
input is then iteratively updated until the target behavior 
is triggered. Once the required necessary input has been 
isolated, it can then be visualized in order to provide a bet-
ter understanding of what the network is detecting in the 
input when it responds in a particular way. Attribution fo-
cuses on explaining the relationship between neurons, for 
example, how the output of a neuron in one layer of the 
network contributes to the overall output of the network. 
This can be done by generating a saliency (or heat-map) 
for the neurons in a network that captures how much 
weight the network puts on the output of a neuron when 
making a particular decision. Finally, much of the activity 
within a deep learning network is based on the processing 
of high-dimensional vectors. Visualizing data enables us 
to use our powerful visual cortex to interpret the data and 
the relationships within the data. However, it is very dif-
ficult to visualize data that has a dimensionality greater 
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than three. Consequently, visualization techniques that 
are able to systematically reduce the dimensionality of 
high-dimensional data and visualize the results are incred-
ibly useful tools for interpreting the flow of information 
within a deep network. t-SNE5 is a well-known technique 
that visualizes high-dimensional data by projecting each 
datapoint into a two- or three-dimensional map (van der 
Maaten and Hinton 2008). Research on interpreting deep 
learning networks is still in its infancy, but in the com-
ing years, for both societal and technical reasons, this re-
search is likely to become a more central concern to the 
broader deep learning community.

Final Thoughts

Deep learning is ideally suited for applications involving 
large datasets of high-dimensional data. Consequently, 
deep learning is likely to make a significant contribution 
to some of the major scientific challenges of our age. In 
the last two decades, breakthroughs in biological se-
quencing technology have made it possible to generate 
high-precision DNA sequences. This genetic data has the 
potential to be the foundation for the next generation of 
personalized precision medicine. At the same time, inter-
national research projects, such as the Large Hadron Col-
lider and Earth orbit telescopes, generate huge amounts 
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of data on a daily basis. Analyzing this data can help us to 
understand the physics of our universe at the smallest and 
the biggest scales. In response to this flood of data, scien-
tists are, in ever increasing numbers, turning to machine 
learning and deep learning to enable them to analyze  
this data.

At a more mundane level, however, deep learning al-
ready directly affects our lives. It is likely, that for the last 
few years, you have unknowingly been using deep learning 
models on a daily basis. A deep learning model is prob-
ably being invoked every time you use an internet search 
engine, a machine translation system, a face recognition 
system on your camera or social media website, or use a 
speech interface to a smart device. What is potentially 
more worrying is that the trail of data and metadata that 
you leave as you move through the online world is also 
being processed and analzsed using deep learning models. 
This is why it is so important to understand what deep 
learning is, how it works, what is it capable of, and its cur-
rent limitations.



GLOSSARY

Activation Function
A function that takes as input the result of the weighted sum of the inputs to 
a neuron and applies a nonlinear mapping to this weighted sum. Including an 
activation function within the neurons of a network enables the network to 
learn a nonlinear mapping. Examples of commonly used activation functions 
include: logistic, tanh, and ReLU.

Artificial Intelligence
The field of research that is focused on developing computational systems 
that can perform tasks and activities normally considered to require human 
intelligence.

Backpropagation
Backpropagation is an algorithm used to train a neural network with hidden 
layers of neurons. During training, the weights in a network are iteratively 
updated to reduce the error of the network. In order to update the weights 
on the links coming into a specific neuron in a network, it is necessary to first 
calculate an estimate of the contribution of the output of that neuron to the 
overall error of the network. The backpropagation algorithm is a solution to 
calculating these estimates for each neuron in the network. Once these errors 
estimates have been calculated for each neuron, the weights of the neurons 
can be updated using an optimization algorithm such as gradient descent. 
Backpropagation works in two phases: a forward pass and a backward pass. In 
the forward pass, an example is presented to the network and the overall error 
of the network is calculated at the output layer of the network by comparing 
the output of the network with the expected output for the example specified 
in the dataset. In the backward pass, the error of the network is shared back 
through the network with each neuron receiving a portion of blame for the 
error in proportion to the sensitivity of the error to changes in the output 
of that neuron. The process of sharing back the errors through the network 
is known as backpropagating the errors and this is where the algorithm gets  
its name.
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Convolutional Neural Network
A convolutional neural network is a network that has at least one convolu-
tional layer in it. A convolution layer is composed of a set of neurons that share 
the same set of weights and whose combined receptive fields cover an entire 
input. The union of the outputs of such a set of neurons is known as a fea-
ture map. In many convolutional neural networks, features maps are passed 
through a ReLU activation layer and then a pooling layer.

Dataset
A collection of instances with each instances described in terms of a set of 
features. In its most basic form, a dataset is organized in an n × m matrix, 
where n is the number of instances (rows) and m is the number of features  
(columns).

Deep Learning
Deep learning is the subfield of machine learning that designs and evaluates 
training algorithms and architectures for modern neural network models. A 
deep neural network is a network that has multiple (e.g., >2) layers of hidden 
units (or neurons).

Feedforward Network
A feedforward network is a neural network where all the connections in the 
network point forward to the neurons in subsequent layer. In other words, 
there are no links backward from the output of a neuron to the input of a 
neuron in an earlier layer.

Function
A function is a deterministic mapping from a set of input values to one or more 
output values. In the context of machine learning, the term function is often 
used interchangeably with the term model.

Gradient Descent
Gradient descent is an optimization algorithm for finding a function with the 
minimum error with respect to modeling the patterns in a dataset. In the 
context of training a neural network, gradient descent is used to find the set 
of weights for a neuron that minimizes the error of the output of the neuron. 
The gradient the algorithm descends is the error gradient of the neuron as its 
weights are updated. The algorithm is frequently used in conjunction with 
backpropagation to train neural networks with hidden layers of neurons.
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GPU (Graphical Processing Unit)
Specialized hardware that is optimized for fast matrix multiplication. Origi-
nally designed to increase the speed in graphics rendering but also found to 
speed up the training of neural networks.

LSTM (Long Short-Term Memory)
A network designed to address the problem of vanishing gradients in recurrent 
neural networks. The network is composed of a cell block where activations 
flow through from one time-step to the next and a set of gates on the cell 
block that control the flow of these activations. The gates are implemented 
using layers of sigmoid and tanh activation functions. The standard LSTM 
architecture has three such gates: the forget gate, the update gate, and the  
output gate.

Machine Learning (ML)
The field of computer science research that focuses on developing and evalu-
ating algorithms that enable computers to learn from experience. Generally 
the concept of experience is represented as a dataset of historic events, and 
learning involves identifying and extracting useful patterns from a data-
set. A machine learning algorithm takes a dataset as input and returns a 
model that encodes the patterns the algorithm extracted (or learned) from  
the data.

Machine Learning Algorithm
A process that analyzes a dataset and returns as model (i.e., an instan-
tiation of a function as a computer program) that matches the patterns in  
the data.

Model
In machine learning, a model is a computer program that encodes the patterns 
the machine learning algorithm has extracted from a dataset. There are many 
different types of machine learning models; however, deep learning is focused 
on creating neural network models with multiple layers of hidden neurons. A 
model is created (or trained) by running a machine learning algorithm on a 
dataset. Once the model has been trained, it can then be used to analyze new 
instances; the term inference is sometimes used to describe the process of ana-
lyzing a new instance using a trained model. In the context of machine learn-
ing, the terms model and function are often used interchangeably: a model is 
an instantiation of a function as a computer program.
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Neuromorphic Computing
Neuromorphic chips are composed of very large sets of spiking neurons archi-
tecture that are connected in a massively parallel manner.

Neural Network
A machine learning model that is implemented as a network of simple infor-
mation processing units called neurons. It is possible to create a variety of 
different types of neural networks by modifying the connections between the 
neurons in the network. Examples of popular types of neural networks in-
clude: feedforward, convolutional, and recurrent networks.

Neuron
In the context of deep learning (as opposed to brain science), a neuron is a 
simple information processing algorithm that takes a number of numeric val-
ues as input and maps these values to a high- or low-output activation. This 
mapping is typically implemented by first multiplying each input value by a 
weight, then summing the results of these multiplications, and finally passing 
the results of the weighted summation through an activation function.

Overfitting
Overfitting a dataset occurs if the model returned by a machine learning algo-
rithm is so complex that it is able to model small variations in the data caused 
by the noise in the data sample.

Recurrent Neural Network
A recurrent neural network has a single layer of hidden neurons, the output 
of which is fed back into this layer with the next input. This feedback (or re-
currence) within the network gives the network a memory that enables it to 
process each input within the context of what it has previously processed. 
Recurrent neural networks are ideally suited to processing sequential or time-
series data.

Reinforcement Learning
The goal of reinforcement learning is to enable an agent to learn a policy on 
how it should act in a given environment. A policy is a function that maps 
from an agent’s current observations of its environment and its own internal 
state to an action. Typically used for online control tasks such as robot control 
and game playing.
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ReLU Unit
A ReLU unit is a neuron that uses a rectified linear function as its activation 
function.

Supervised Learning
A form of machine learning where the goal is to learn a function that maps 
from a set of input attributes for an instance to an accurate estimate of the 
missing value for the target attribute of the same instance.

Target Attribute
In supervised machine learning, a target attribute is the attribute that the 
model is trained to estimate the value of.

Underfitting
Underfitting a dataset occurs if the model returned by a machine learning 
algorithm is too simplistic to capture the real complexity of the relationship 
between the inputs and outputs in a domain.

Unsupervised Learning
A form of machine learning where the goal is to identify regularities, such as 
clusters of similar instances, in the data. Unlike supervised learning, there is 
no target attribute in an unsupervised learning task.

Vanishing Gradient
The vanishing gradient problem describes the fact that as more layers are 
added to a network it takes longer to train the network. This problem is caused 
by the fact that when a neural network is trained using backpropagation and 
gradient descent, the updating of the weights on links coming into a neuron 
in the network is dependent on the gradient (or sensitivity) of the network 
error with respect to the output of the neuron. Using backpropagation, the 
process of sharing back the error gradients through a neuron involves a se-
quence of multiplications, often by values less than one. As a result, as the 
error gradient is passed back through the network, the error gradient tends 
to get smaller and smaller (i.e., vanish). As a direct consequence of this, the 
updates to weights in the early layers of the network are very small and the 
neurons in these layers take a long time to train.





NOTES

Chapter 1
1.  https://deepmind.com/research/alphago/.
2.  The Elo rating system is a method for calculating the skill level of  
players in zero-sum games, such as Chess. It is named after its inventor,  
Arpad Elo.
3.  Noise in data refers to corrupt or incorrect data. Noise in data can been 
caused by broken sensors, or mistakes in data entry, and so on.
4.  By domain we mean the problem or task that we are trying to solve using 
machine learning. For example, it could be spam filtering, house prices predic-
tion, or automatically classifying X-rays.
5.  There are some scenarios where more complex dataset representations are 
required. For example, for time-series data, a dataset may require a three-
dimensional representation, composed of a series of two-dimensional matri-
ces, each describing the state of the system at a point in time, linked together 
through time. The term tensor generalizes the concept of a matrix to higher 
dimensions.

Chapter 2
1.  It turns out that the relationship between annual income and happiness 
is linear up to a point, but that once your annual income goes beyond this 
point more money won’t make you happier. A study by Kahneman and Deaton 
(2010) found that in the US the general cutoff, after which increases in income 
no longer increase emotional well-being, was around $75,000.
2.  This is the same dataset that appears in table 1.1 in chapter 1; it is repeated 
here for convenience.

Chapter 3
1.  The origin is the location in a coordinate system where the axes cross. In a 
two-dimensional coordinate system, it is where the x-axis and y-axis cross—in 
other words, it is the location at coordinates x=0, y=0.
2.  In chapter 2, we used the same approach to merge the intercept parameter 
of the linear model into the weights of the model.
3.  To highlight this column organization the weights have been indexed 
column-row, rather than row-column.

https://deepmind.com/research/alphago/.
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4.  For further discussion on the size and growth of networks, see page 23 of 
Goodfellow et al. 2016.

Chapter 4
1.  Figures 3.6 and 3.7 show the linear (straight line) decision boundary of 
neuron that uses a threshold activation function.
2.  This illustration of the use of associative memory for pattern completion 
and error correction is inspired from an example in chapter 42 of MacKay 
2003.
3.  For example, Paul Werbos’s 1974 PhD thesis is credited with being the first 
publication to describe the use of backpropagation of errors in the training of 
artificial neural networks (Werbos 1974).
4.  The Hopfield network architecture, introduced at the start of this sec-
tion, also included recurrent connections (feedback loops between neurons). 
However, the design of the Hopfield architecture is such that a Hopfield net-
work cannot process sequences. Consequently, it is not considered a full RNN 
architecture.
5.  I originally came across this Churchland quote in Marcus 2003 (p. 25).
6.  Critique of paper “Deep Learning Conspiracy” (Nature 521, p. 436), cri-
tique posted by Jürgen Schmidhuber, June 2015, available at: http://people 

.idsia.ch/~juergen/deep-learning-conspiracy.html.
7.  There are a number of other ways that autoencoders can be constrained to 
preclude the possibility that the network will learn an uninformative identity 
mapping from inputs to outputs; for example, noise can be injected into the in-
put patterns and the network can be trained to reconstruct the un-noisy data. 
Alternatively, the units in the hidden (or encoding) layer can be restricted 
to have binary values. Indeed, Hinton and his colleagues originally used net-
works called Restricted Boltzman Machines (RBMs) in their initial pretraining 
work, which used binary units in the encoding layer.
8.  The number of layers trained during pretraining is a hyperparameter 
that is set based on the intuition of the data scientist and trial-and-error 
experimentation.
9.  As early as 1971, Alexey Ivakhnenko’s GMDH method had been shown to 
be able to train a deep network (up to eight layers), but this method had been 
largely overlooked by the research community.
10.  Glorot initialization is also known as Xavier initialization. Both of these 
names are references to one of the authors (Xavier Glorot) of the first paper 
that introduced this initialization procedure: Xavier Glorot and Yoshua Bengio, 

“Understanding the Difficulty of Training Deep Feedforward Neural Networks,” 

http://people.idsia.ch/~juergen/deep-learning-conspiracy.html.
http://people.idsia.ch/~juergen/deep-learning-conspiracy.html.
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in Proceedings of the 13th International Conference on Artificial Intelligence and 
Statistics (AISTATS), 2010, pp. 249–256.
11.  Glorot initialization can also be defined as sampling the weights from 
a Gaussian distribution with a mean of 0 and standard deviation set to the 
square root of 2 divided by nj + nj+1. However, both of these definitions of 
Glorot initialization have the same goal of ensuring a similar variance in acti-
vations and gradients across the layers in a network.
12.  https://developer.nvidia.com/cuda-zone.

Chapter 5
1.  The explanation of LSTM units presented here is inspired by an excellent 
blog post by Christopher Olah, which explains LSTMs clearly and in detail; post 
available at: http://colah.github.io/posts/2015–08-Understanding-LSTMs/.
2.  A sigmoid function is in fact a special case of the logistic function, and for 
the purposes of this discussion the distinction is not relevant.
3.  If, for example, sigmoid units with an output range of 0 to 1 were used 
then activations could only be either maintained or increased at each update 
and eventually the cell state would become saturated with maximum values.

Chapter 6
1.  This figure also appears in chapter 4 but it is repeated here for convenience.

Chapter 7
1.  http://www.image-net.org.
2.  https://en.wikipedia.org/wiki/Carver_Mead.
3.  https://www.humanbrainproject.eu/en/.
4.  Recitals are a non-legally binding section of a regulation that seeks to clar-
ify the meaning of the legal text.
5.  Laurens van der Maaten and Geoffrey Hinton, “Visualizing Data using  
t-SNE,” Journal of Machine Learning Research 9 (2008): 2579–2605.

https://developer.nvidia.com/cuda-zone.
http://colah.github.io/posts/2015–08-Understanding-LSTMs/.
http://www.image-net.org.
https://en.wikipedia.org/wiki/Carver_Mead.
https://www.humanbrainproject.eu/en/.
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