

DEEP LEARNING

The MIT Press Essential Knowledge Series

A complete list of the titles in this series appears at the back of this book.

DEEP LEARNING
JOHN D. KELLEHER

The MIT Press | Cambridge, Massachusetts | London, England

© 2019 The Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by
any electronic or mechanical means (including photocopying, recording,
or information storage and retrieval) without permission in writing from
the publisher.

This book was set in Chaparral Pro by Toppan Best-set Premedia Limited.
Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Names: Kelleher, John D., 1974- author.
Title: Deep learning / John D. Kelleher.
Description: Cambridge, MA : The MIT Press, [2019] | Series:

The MIT press essential knowledge series | Includes bibliographical
references and index.

Identifiers: LCCN 2018059550 | ISBN 9780262537551 (pbk. : alk. paper)
Subjects: LCSH: Machine learning. | Artificial intelligence.
Classification: LCC Q325.5 .K454 2019 | DDC 006.3/1—dc23 LC record

available at https://lccn.loc.gov/2018059550

10 9 8 7 6 5 4 3 2 1

https://lccn.loc.gov/2018059550

CONTENTS

Series Foreword  vii

Preface  ix

Acknowledgments  xi

1	 Introduction to Deep Learning  1

2	 Conceptual Foundations  39

3	 Neural Networks: The Building Blocks of Deep
Learning  65

4	 A Brief History of Deep Learning  101

5	 Convolutional and Recurrent Neural Networks  159

6	 Learning Functions  185

7	 The Future of Deep Learning  231

Glossary  251

Notes  257

References  261

Further Readings  267

Index  269

SERIES FOREWORD

The MIT Press Essential Knowledge series offers acces-
sible, concise, beautifully produced pocket-size books on
topics of current interest. Written by leading thinkers,
the books in this series deliver expert overviews of sub-
jects that range from the cultural and the historical to the
scientific and the technical.

In today’s era of instant information gratification, we
have ready access to opinions, rationalizations, and super-
ficial descriptions. Much harder to come by is the founda-
tional knowledge that informs a principled understanding
of the world. Essential Knowledge books fill that need.
Synthesizing specialized subject matter for nonspecialists
and engaging critical topics through fundamentals, each
of these compact volumes offers readers a point of access
to complex ideas.

Bruce Tidor
Professor of Biological Engineering and Computer Science
Massachusetts Institute of Technology

PREFACE

Deep learning is enabling innovation and change across
all aspects of our modern lives. Most of the artificial intel-
ligence breakthroughs that you hear about in the media
are based on deep learning. As a result, whether you are
a business person interested in improving the efficiency
of your organization, a policymaker concerned with eth-
ics and privacy in a Big Data world, a researcher working
with complex data, or a curious citizen who wants a better
sense of the potential of artificial intelligence and how it
will change your life, it is important for you to have an
understanding of deep learning.

The goal of this book is to enable the general reader
to gain an understanding of what deep learning is, where
it has come from, how it works, what it makes possible
(and what it doesn’t), and how the field is likely to develop
in the next ten years. The fact that deep learning is a set
of algorithms and models means that understanding deep
learning requires understanding how these algorithms
and models process data. As a result, this book is not
purely descriptive and definitional; it also includes expla-
nations of algorithms. I have attempted to present the
technical material in an accessible way. From my teaching
experience, I have found that for technical topics the most

x   PREFACE

accessible presentation is to explain the fundamental con-
cepts in a step-by-step manner. So, although I have tried
to keep the mathematical content to a minimum, where
I felt it was necessary to include it I have endeavored to
walk you through the mathematical equations in as clear
and direct a manner as I can. I have supplemented these
explanations with examples and illustrations.

What is really wondrous about deep learning is not
the complexity of the math it is built on, but rather, that it
can perform such a diverse set of exciting and impressive
tasks using such simple calculations. Don’t be surprised to
find yourself saying: “Is that all it’s doing?” In fact, a deep
learning model really is just a lot (admittedly, an awful
lot) of multiplications and additions with a few nonlinear
mappings (which I will explain) added in. Yet, despite this
simplicity, these models can, among other achievements,
beat the Go world champion, define the state-of-the-art
in computer vision and machine translation, and drive a
car. This book is an introductory text about deep learning,
but I hope that it is an introduction that has enough depth
that you will come back to the book as your confidence
with the material grows.

ACKNOWLEDGMENTS

This book would not have been possible without the sacri-
fices made by my wife, Aphra, and my family, in particular
my parents John and Betty Kelleher. I have also received
a huge amount of support from friends, especially Alan
McDonnell, Ionela Lungu, Simon Dobnik, Lorraine Byrne,
Noel Fitzpatrick, and Josef van Genabith.

I would also like to acknowledge the help I have re-
ceived from the staff at the MIT Press, and from a number
of people who have read sections of the book and provided
feedback. MIT Press organized three anonymous review-
ers who read and commented on a draft of the book. I
thank these reviewers for their time and helpful feedback.
Also a number of people read draft chapters from the book
and I wish to take this opportunity to publicly acknowl-
edge their help, so my thanks to: Mike Dillinger, Magda-
lena Kacmajor, Elizabeth Kelleher, John Bernard Kelleher,
Aphra Kerr, Filip Klubička, and Abhijit Mahalunkar. This
book has been informed by the many conversations I have
had with colleagues and students about deep learning, in
particular those with Robert Ross and Giancarlo Salton.

This book is dedicated to my sister Elizabeth (Liz)
Kelleher in recognition of her love and support, and her
patience with a brother who can’t stop explaining things.

1

INTRODUCTION TO
DEEP LEARNING

Deep learning is the subfield of artificial intelligence that
focuses on creating large neural network models that are
capable of making accurate data-driven decisions. Deep
learning is particularly suited to contexts where the data is
complex and where there are large datasets available. To-
day most online companies and high-end consumer tech-
nologies use deep learning. Among other things, Facebook
uses deep learning to analyze text in online conversations.
Google, Baidu, and Microsoft all use deep learning for im-
age search, and also for machine translation. All modern
smart phones have deep learning systems running on
them; for example, deep learning is now the standard
technology for speech recognition, and also for face de-
tection on digital cameras. In the healthcare sector, deep
learning is used to process medical images (X-rays, CT, and
MRI scans) and diagnose health conditions. Deep learning
is also at the core of self-driving cars, where it is used for

2   chapter 1

localization and mapping, motion planning and steering,
and environment perception, as well as tracking driver
state.

Perhaps the best-known example of deep learning is
DeepMind’s AlphaGo.1 Go is a board game similar to Chess.
AlphaGo was the first computer program to beat a profes-
sional Go player. In March 2016, it beat the top Korean
professional, Lee Sedol, in a match watched by more than
two hundred million people. The following year, in 2017,
AlphaGo beat the world’s No. 1 ranking player, China’s
Ke Jie.

In 2016 AlphaGo’s success was very surprising. At
the time, most people expected that it would take many
more years of research before a computer would be able
to compete with top level human Go players. It had been
known for a long time that programming a computer to
play Go was much more difficult than programming it to
play Chess. There are many more board configurations
possible in Go than there are in Chess. This is because Go
has a larger board and simpler rules than Chess. There are,
in fact, more possible board configurations in Go than
there are atoms in the universe. This massive search space
and Go’s large branching factor (the number of board
configurations that can be reached in one move) makes
Go an incredibly challenging game for both humans and
computers.

One way of illustrating the relative difficulty Go
and Chess presented to computer programs is through

	 Introduction to Deep Learning     3

a historical comparison of how Go and Chess programs
competed with human players. In 1967, MIT’s MacHack-6
Chess program could successfully compete with humans
and had an Elo rating2 well above novice level, and, by May
1997, DeepBlue was capable of beating the Chess world
champion Gary Kasparov. In comparison, the first com-
plete Go program wasn’t written until 1968 and strong
human players were still able to easily beat the best Go
programs in 1997.

The time lag between the development of Chess and
Go computer programs reflects the difference in compu-
tational difficulty between these two games. However, a
second historic comparison between Chess and Go illus-
trates the revolutionary impact that deep learning has
had on the ability of computer programs to compete with
humans at Go. It took thirty years for Chess programs to
progress from human level competence in 1967 to world
champion level in 1997. However, with the development
of deep learning it took only seven years for computer Go
programs to progress from advanced amateur to world
champion; as recently as 2009 the best Go program in
the world was rated at the low-end of advanced amateur.
This acceleration in performance through the use of deep
learning is nothing short of extraordinary, but it is also
indicative of the types of progress that deep learning has
enabled in a number of fields.

4   chapter 1

AlphaGo uses deep learning to evaluate board configu-
rations and to decide on the next move to make. The fact
that AlphaGo used deep learning to decide what move to
make next is a clue to understanding why deep learning
is useful across so many different domains and applica-
tions. Decision-making is a crucial part of life. One way
to make decisions is to base them on your “intuition” or
your “gut feeling.” However, most people would agree that
the best way to make decisions is to base them on the rel-
evant data. Deep learning enables data-driven decisions by
identifying and extracting patterns from large datasets
that accurately map from sets of complex inputs to good
decision outcomes.

Artificial Intelligence, Machine Learning, and
Deep Learning

Deep learning has emerged from research in artificial
intelligence and machine learning. Figure 1.1 illustrates
the relationship between artificial intelligence, machine
learning, and deep learning.

The field of artificial intelligence was born at a
workshop at Dartmouth College in the summer of 1956.
Research on a number of topics was presented at the
workshop including mathematical theorem proving, nat-
ural language processing, planning for games, computer

Deep learning enables
data-driven decisions
by identifying and
extracting patterns
from large datasets that
accurately map from
sets of complex inputs
to good decision
outcomes.

6   chapter 1

programs that could learn from examples, and neural net-
works. The modern field of machine learning draws on the
last two topics: computers that could learn from examples,
and neural network research.

Machine learning involves the development and eval-
uation of algorithms that enable a computer to extract (or
learn) functions from a dataset (sets of examples). To un-
derstand what machine learning means we need to under-
stand three terms: dataset, algorithm, and function.

In its simplest form, a dataset is a table where each row
contains the description of one example from a domain,

Artificial
intelligence

Machine
learning

Deep
learning

Figure 1.1  The relationship between artificial intelligence, machine
learning, and deep learning.

	 Introduction to Deep Learning     7

and each column contains the information for one of the
features in a domain. For example, table 1.1 illustrates
an example dataset for a loan application domain. This
dataset lists the details of four example loan applications.
Excluding the ID feature, which is only for ease of refer-
ence, each example is described using three features: the
applicant’s annual income, their current debt, and their
credit solvency.

An algorithm is a process (or recipe, or program) that
a computer can follow. In the context of machine learning,
an algorithm defines a process to analyze a dataset and
identify recurring patterns in the data. For example, the
algorithm might find a pattern that relates a person’s an-
nual income and current debt to their credit solvency rat-
ing. In mathematics, relationships of this type are referred
to as functions.

A function is a deterministic mapping from a set of
input values to one or more output values. The fact that

Table 1.1.  A dataset of loan applicants and their known
credit solvency ratings

ID Annual Income Current Debt Credit Solvency

1 $150 -$100 100

2 $250 -$300 -50

3 $450 -$250 400

4 $200 -$350 -300

8   chapter 1

the mapping is deterministic means that for any specific
set of inputs a function will always return the same out-
puts. For example, addition is a deterministic mapping,
and so 2+2 is always equal to 4. As we will discuss later,
we can create functions for domains that are more com-
plex than basic arithmetic, we can for example define a
function that takes a person’s income and debt as inputs
and returns their credit solvency rating as the output
value. The concept of a function is very important to
deep learning so it is worth repeating the definition for
emphasis: a function is simply a mapping from inputs to
outputs. In fact, the goal of machine learning is to learn
functions from data. A function can be represented in
many different ways: it can be as simple as an arithmetic
operation (e.g., addition or subtraction are both functions
that take inputs and return a single output), a sequence
of if-then-else rules, or it can have a much more complex
representation.

One way to represent a function is to use a neural
network. Deep learning is the subfield of machine learn-
ing that focuses on deep neural network models. In fact,
the patterns that deep learning algorithms extract from
datasets are functions that are represented as neural
networks. Figure 1.2 illustrates the structure of a neural
network. The boxes on the left of the figure represent the
memory locations where inputs are presented to the net-
work. Each of the circles in this figure is called a neuron

A function is a
deterministic mapping
from a set of input
values to one or more
output values.

10   chapter 1

and each neuron implements a function: it takes a number
of values as input and maps them to an output value. The
arrows in the network show how the outputs of each neu-
ron are passed as inputs to other neurons. In this network,
information flows from left to right. For example, if this
network were trained to predict a person’s credit solvency,
based on their income and debt, it would receive the in-
come and debt as inputs on the left of the network and
output the credit solvency score through the neuron on
the right.

A neural network uses a divide-and-conquer strategy
to learn a function: each neuron in the network learns a
simple function, and the overall (more complex) function,
defined by the network, is created by combining these
simpler functions. Chapter 3 will describe how a neural
network processes information.

Figure 1.2  Schematic illustration of a neural network.

	 Introduction to Deep Learning     11

What Is Machine Learning?

A machine learning algorithm is a search process designed
to choose the best function, from a set of possible func-
tions, to explain the relationships between features in a
dataset. To get an intuitive understanding of what is in-
volved in extracting, or learning, a function from data, ex-
amine the following set of sample inputs to an unknown
function and the outputs it returns. Given these examples,
decide which arithmetic operation (addition, subtraction,
multiplication, or division) is the best choice to explain
the mapping the unknown function defines between its
inputs and output:

function Inputs Output() =

function 5 5 25,() =

function 2 6 12,() =

function 4 4 16,() =

function 2 2 04,() =

Most people would agree that multiplication is the best
choice because it provides the best match to the observed
relationship, or mapping, from the inputs to the outputs:

12   chapter 1

5 5 25× =

2 6 12× =

4 7 28× =

2 2 04× =

In this particular instance, choosing the best func-
tion is relatively straightforward, and a human can do it
without the aid of a computer. However, as the number
of inputs to the unknown function increases (perhaps
to hundreds or thousands of inputs), and the variety of
potential functions to be considered gets larger, the task
becomes much more difficult. It is in these contexts that
harnessing the power of machine learning to search for
the best function, to match the patterns in the dataset,
becomes necessary.

Machine learning involves a two-step process: train-
ing and inference. During training, a machine learning
algorithm processes a dataset and chooses the function
that best matches the patterns in the data. The extracted
function will be encoded in a computer program in a par-
ticular form (such as if-then-else rules or parameters of
a specified equation). The encoded function is known as
a model, and the analysis of the data in order to extract
the function is often referred to as training the model.

	 Introduction to Deep Learning     13

Essentially, models are functions encoded as computer
programs. However, in machine learning the concepts of
function and model are so closely related that the distinc-
tion is often skipped over and the terms may even be used
interchangeably.

In the context of deep learning, the relationship be-
tween functions and models is that the function extracted
from a dataset during training is represented as a neural
network model, and conversely a neural network model
encodes a function as a computer program. The standard
process used to train a neural network is to begin train-
ing with a neural network where the parameters of the
network are randomly initialized (we will explain network
parameters later; for now just think of them as values that
control how the function the network encodes works).
This randomly initialized network will be very inaccurate
in terms of its ability to match the relationship between
the various input values and target outputs for the ex-
amples in the dataset. The training process then proceeds
by iterating through the examples in the dataset, and,
for each example, presenting the input values to the net-
work and then using the difference between the output
returned by the network and the correct output for the ex-
ample listed in the dataset to update the network’s param-
eters so that it matches the data more closely. Once the
machine learning algorithm has found a function that is
sufficiently accurate (in terms of the outputs it generates

14   chapter 1

matching the correct outputs listed in the dataset) for
the problem we are trying to solve, the training process
is completed, and the final model is returned by the algo-
rithm. This is the point at which the learning in machine
learning stops.

Once training has finished, the model is fixed. The sec-
ond stage in machine learning is inference. This is when
the model is applied to new examples—examples for
which we do not know the correct output value, and there-
fore we want the model to generate estimates of this value
for us. Most of the work in machine learning is focused on
how to train accurate models (i.e., extracting an accurate
function from data). This is because the skills and meth-
ods required to deploy a trained machine learning model
into production, in order to do inference on new examples
at scale, are different from those that a typical data scien-
tist will possess. There is a growing recognition within the
industry of the distinctive skills needed to deploy artifi-
cial intelligence systems at scale, and this is reflected in a
growing interest in the field known as DevOps, a term de-
scribing the need for collaboration between development
and operations teams (the operations team being the
team responsible for deploying a developed system into
production and ensuring that these systems are stable and
scalable). The terms MLOps, for machine learning opera-
tions, and AIOps, for artificial intelligence operations, are
also used to describe the challenges of deploying a trained

	 Introduction to Deep Learning     15

model. The questions around model deployment are be-
yond the scope of this book, so we will instead focus on
describing what deep learning is, what it can be used for,
how it has evolved, and how we can train accurate deep
learning models.

One relevant question here is: why is extracting a
function from data useful? The reason is that once a func-
tion has been extracted from a dataset it can be applied
to unseen data, and the values returned by the function
in response to these new inputs can provide insight into
the correct decisions for these new problems (i.e., it can
be used for inference). Recall that a function is simply a
deterministic mapping from inputs to outputs. The sim-
plicity of this definition, however, hides the variety that
exists within the set of functions. Consider the following
examples:

•	 Spam filtering is a function that takes an email as
input and returns a value that classifies the email as
spam (or not).

•	 Face recognition is a function that takes an image as
input and returns a labeling of the pixels in the image
that demarcates the face in the image.

•	 Gene prediction is a function that takes a genomic DNA
sequence as input and returns the regions of the DNA
that encode a gene.

16   chapter 1

•	 Speech recognition is a function that takes an audio
speech signal as input and returns a textual transcription
of the speech.

•	 Machine translation is a function that takes a sentence
in one language as input and returns the translation of
that sentence in another language.

It is because the solutions to so many problems across so
many domains can be framed as functions that machine
learning has become so important in recent years.

Why Is Machine Learning Difficult?

There are a number of factors that make the machine
learning task difficult, even with the help of a computer.
First, most datasets will include noise3 in the data, so
searching for a function that matches the data exactly is
not necessarily the best strategy to follow, as it is equiva-
lent to learning the noise. Second, it is often the case that
the set of possible functions is larger than the set of ex-
amples in the dataset. This means that machine learning
is an ill-posed problem: the information given in the prob-
lem is not sufficient to find a single best solution; instead
multiple possible solutions will match the data. We can
use the problem of selecting the arithmetic operation (ad-
dition, subtraction, multiplication, or division) that best

	 Introduction to Deep Learning     17

matches a set of example input-output mappings for an
unknown function to illustrate the concept of an ill-posed
problem. Here are the example mappings for this function
selection problem:

function Inputs Output() =

function 1 1 1,() =

function 2 1 2,() =

function 3 1 3,() =

Given these examples, multiplication and division are bet-
ter matches for the unknown function than addition and
subtraction. However, it is not possible to decide whether
the unknown function is actually multiplication or divi-
sion using this sample of data, because both operations
are consistent with all the examples provided. Conse-
quently, this is an ill-posed problem: it is not possible to
select a single best answer given the information provided
in the problem.

One strategy to solve an ill-posed problem is to col-
lect more data (more examples) in the hope that the new
examples will help us to discriminate between the cor-
rect underlying function and the remaining alternatives.
Frequently, however, this strategy is not feasible, either

18   chapter 1

because the extra data is not available or is too expensive
to collect. Instead, machine learning algorithms overcome
the ill-posed nature of the machine learning task by sup-
plementing the information provided by the data with a
set of assumptions about the characteristics of the best
function, and use these assumptions to influence the pro-
cess used by the algorithm that selects the best function
(or model). These assumptions are known as the inductive
bias of the algorithm because in logic a process that infers
a general rule from a set of specific examples is known as
inductive reasoning. For example, if all the swans that you
have seen in your life are white, you might induce from
these examples the general rule that all swans are white.
This concept of inductive reasoning relates to machine
learning because a machine learning algorithm induces (or
extracts) a general rule (a function) from a set of specific
examples (the dataset). Consequently, the assumptions
that bias a machine learning algorithm are, in effect, bias-
ing an inductive reasoning process, and this is why they
are known as the inductive bias of the algorithm.

So, a machine learning algorithm uses two sources of
information to select the best function: one is the dataset,
and the other (the inductive bias) is the assumptions that
bias the algorithm to prefer some functions over others,
irrespective of the patterns in the dataset. The inductive
bias of a machine learning algorithm can be understood
as providing the algorithm with a perspective on a dataset.

	 Introduction to Deep Learning     19

However, just as in the real world, where there is no single
best perspective that works in all situations, there is no
single best inductive bias that works well for all datasets.
This is why there are so many different machine learning
algorithms: each algorithm encodes a different inductive
bias. The assumptions encoded in the design of a machine
leanring algorithm can vary in strength. The stronger the
assumptions the less freedom the algorithm is given in se-
lecting a function that fits the patterns in the dataset. In a
sense, the dataset and inductive bias counterbalance each
other: machine learning algorithms that have a strong in-
ductive bias pay less attention to the dataset when selecting
a function. For example, if a machine learning algorithm
is coded to prefer a very simple function, no matter how
complex the patterns in the data, then it has a very strong
inductive bias.

In chapter 2 we will explain how we can use the equa-
tion of a line as a template structure to define a function.
The equation of the line is a very simple type of mathemat-
ical function. Machine learning algorithms that use the
equation of a line as the template structure for the func-
tions they fit to a dataset make the assumption that the
model they generate should encode a simple linear map-
ping from inputs to output. This assumption is an exam-
ple of an inductive bias. It is, in fact, an example of a strong
inductive bias, as no matter how complex (or nonlinear)

20   chapter 1

the patterns in the data are the algorithm will be restricted
(or biased) to fit a linear model to it.

One of two things can go wrong if we choose a machine
learning algorithm with the wrong bias. First, if the in-
ductive bias of a machine learning algorithm is too strong,
then the algorithm will ignore important information in
the data and the returned function will not capture the
nuances of the true patterns in the data. In other words,
the returned function will be too simple for the domain,4
and the outputs it generates will not be accurate. This
outcome is known as the function underfitting the data.
Alternatively, if the bias is too weak (or permissive), the
algorithm is allowed too much freedom to find a function
that closely fits the data. In this case, the returned func-
tion is likely to be too complex for the domain, and, more
problematically, the function is likely to fit to the noise in
the sample of the data that was supplied to the algorithm
during training. Fitting to the noise in the training data
will reduce the function’s ability to generalize to new data
(data that is not in the training sample). This outcome is
known as overfitting the data. Finding a machine learning
algorithm that balances data and inductive bias appropri-
ately for a given domain is the key to learning a function
that neither underfits or overfits the data, and that, there-
fore, generalizes successfully in that domain (i.e., that is
accurate at inference, or processing new examples that
were not in the training data).

	 Introduction to Deep Learning     21

However, in domains that are complex enough to war-
rant the use of machine learning, it is not possible in ad-
vance to know what are the correct assumptions to use
to bias the selection of the correct model from the data.
Consequently, data scientists must use their intuition (i.e.,
make informed guesses) and also use trial-and-error ex-
perimentation in order to find the best machine learning
algorithm to use in a given domain.

Neural networks have a relatively weak inductive bias.
As a result, generally, the danger with deep learning is that
the neural network model will overfit, rather than under-
fit, the data. It is because neural networks pay so much
attention to the data that they are best suited to contexts
where there are very large datasets. The larger the dataset,
the more information the data provides, and therefore
it becomes more sensible to pay more attention to the
data. Indeed, one of the most important factors driving
the emergence of deep learning over the last decade has
been the emergence of Big Data. The massive datasets
that have become available through online social plat-
forms and the proliferation of sensors have combined to
provide the data necessary to train neural network mod-
els to support new applications in a range of domains. To
give a sense of the scale of the big data used in deep learn-
ing research, Facebook’s face recognition software, Deep-
Face, was trained on a dataset of four million facial images

22   chapter 1

belonging to more than four thousand identities (Taigman
et al. 2014).

The Key Ingredients of Machine Learning

The above example of deciding which arithmetic opera-
tion best explains the relationship between inputs and
outputs in a set of data illustrates the three key ingredi-
ents in machine learning:

1.	 Data (a set of historical examples).

2.	 A set of functions that the algorithm will search
through to find the best match with the data.

3.	 Some measure of fitness that can be used to evaluate
how well each candidate function matches the data.

All three of these ingredients must be correct if a machine
learning project is to succeed; below we describe each of
these ingredients in more detail.

We have already introduced the concept of a dataset
as a two-dimensional table (or n × m matrix),5 where each
row contains the information for one example, and each
column contains the information for one of the features
in the domain. For example, table 1.2 illustrates how the
sample inputs and outputs of the first unknown arithmetic

	 Introduction to Deep Learning     23

function problem in the chapter can be represented as a
dataset. This dataset contains four examples (also known
as instances), and each example is represented using two
input features and one output (or target) feature. De-
signing and selecting the features to represent the ex-
amples is a very important step in any machine learning
project.

As is so often the case in computer science, and ma-
chine learning, there is a tradeoff in feature selection. If
we choose to include only a minimal number of features
in the dataset, then it is likely that a very informative
feature will be excluded from the data, and the function
returned by the machine learning algorithm will not work
well. Conversely, if we choose to include as many features
as possible in the domain, then it is likely that irrelevant
or redundant features will be included, and this will also
likely result in the function not working well. One reason
for this is that the more redundant or irrelevant features
that are included, the greater the probability for the ma-
chine learning algorithm to extract patterns that are based
on spurious correlations between these features. In these
cases, the algorithm gets confused between the real pat-
terns in the data and the spurious patterns that only ap-
pear in the data due to the particular sample of examples
that have been included in the dataset.

Finding the correct set of features to include in a
dataset involves engaging with experts who understand

24   chapter 1

the domain, using statistical analysis of the distribution
of individual features and also the correlations between
pairs of features, and a trial-and-error process of building
models and checking the performance of the models when
particular features are included or excluded. This process
of dataset design is a labor-intensive task that often takes
up a significant portion of the time and effort expended
on a machine learning project. It is, however, a critical task
if the project is to succeed. Indeed, identifying which fea-
tures are informative for a given task is frequently where
the real value of machine learning projects emerge.

The second ingredient in a machine learning project is
the set of candidate functions that the algorithm will con-
sider as the potential explanation of the patterns in the
data. In the unknown arithmetic function scenario previ-
ously given, the set of considered functions was explicitly
specified and restricted to four: addition, subtraction, mul-
tiplication, or division. More generally, the set of functions
is implicitly defined through the inductive bias of the

Table 1.2.  A simple tabular dataset

Input 1 Input 2 Target

5 5 25

2 6 12

4 4 16

2 2 04

	 Introduction to Deep Learning     25

machine learning algorithm and the function representa-
tion (or model) that is being used. For example, a neural
network model is a very flexible function representation.

The third and final ingredient to machine learning is
the measure of fitness. The measure of fitness is a function
that takes the outputs from a candidate function, gener-
ated when the machine learning algorithm applies the can-
didate function to the data, and compares these outputs
with the data, in some way. The result of this comparison
is a value that describes the fitness of the candidate func-
tion relative to the data. A fitness function that would
work for our unknown arithmetic function scenario is to
count in how many of the examples a candidate function
returns a value that exactly matches the target specified
in the data. Multiplication would score four out of four
on this fitness measure, addition would score one out of
four, and division and subtraction would both score zero
out of four. There are a large variety of fitness functions
that can be used in machine learning, and the selection of
the correct fitness function is crucial to the success of a
machine learning project. The design of new fitness func-
tions is a rich area of research in machine learning. Vary-
ing how the dataset is represented, and how the candidate
functions and the fitness function are defined, results in
three different categories of machine learning: supervised,
unsupervised, and reinforcement learning.

26   chapter 1

Supervised, Unsupervised, and Reinforcement Learning

Supervised machine learning is the most common type of
machine learning. In supervised machine learning, each
example in the dataset is labeled with the expected output
(or target) value. For example, if we were using the dataset
in table 1.1 to learn a function that maps from the inputs
of annual income and debt to a credit solvency score, the
credit solvency feature in the dataset would be the target
feature. In order to use supervised machine learning, our
dataset must list the value of the target feature for every
example in the dataset. These target feature values can
sometimes be very difficult, and expensive, to collect. In
some cases, we must pay human experts to label each ex-
ample in a dataset with the correct target value. However,
the benefit of having these target values in the dataset is
that the machine learning algorithm can use these values
to help the learning process. It does this by comparing the
outputs a function produces with the target outputs speci-
fied in the dataset, and using the difference (or error) to
evaluate the fitness of the candidate function, and use the
fitness evaluation to guide the search for the best func-
tion. It is because of this feedback from the target labels
in the dataset to the algorithm that this type of machine
learning is considered supervised. This is the type of ma-
chine learning that was demonstrated by the example of

	 Introduction to Deep Learning     27

choosing between different arithmetic functions to ex-
plain the behavior of an unknown function.

Unsupervised machine learning is generally used for
clustering data. For example, this type of data analysis
is useful for customer segmentation, where a company
wishes to segment its customer base into coherent groups
so that it can target marketing campaigns and/or product
designs to each group. In unsupervised machine learning,
there are no target values in the dataset. Consequently,
the algorithm cannot directly evaluate the fitness of a
candidate function against the target values in the dataset.
Instead, the machine learning algorithm tries to identify
functions that map similar examples into clusters, such
that the examples in a cluster are more similar to the other
examples in the same cluster than they are to examples in
other clusters. Note that the clusters are not prespecified,
or at most they are initially very underspecified. For ex-
ample, the data scientist might provide the algorithm with
a target number of clusters, based on some intuition about
the domain, without providing explicit information on
relative sizes of the clusters or regarding the characteris-
tics of examples that belong in each cluster. Unsupervised
machine learning algorithms often begin by guessing an
initial clustering of the examples and then iteratively
adjusting the clusters (by dropping instances from one
cluster and adding them to another) so as to improve the
fitness of the cluster set. The fitness functions used in

28   chapter 1

unsupervised machine learning generally reward candi-
date functions that result in higher similarity within in-
dividual clusters and, also, high diversity between clusters.

Reinforcement learning is most relevant for online
control tasks, such as robot control and game playing. In
these scenarios, an agent needs to learn a policy for how it
should act in an environment in order to be rewarded. In
reinforcement learning, the goal of the agent is to learn
a mapping from its current observation of the environ-
ment and its own internal state (its memory) to what
action it should take: for instance, should the robot move
forward or backward or should the computer program move
the pawn or take the queen. The output of this policy (func-
tion) is the action that the agent should take next, given
the current context. In these types of scenarios, it is dif-
ficult to create historic datasets, and so reinforcement
learning is often carried out in situ: an agent is released
into an environment where it experiments with different
policies (starting with a potentially random policy) and
over time updates its policy in response to the rewards it
receives from the environment. If an action results in a
positive reward, the mapping from the relevant observa-
tions and state to that action is reinforced in the policy,
whereas if an action results in a negative reward, the map-
ping is weakened. Unlike in supervised and unsupervised
machine learning, in reinforcement learning, the fact
that learning is done in situ means that the training and

	 Introduction to Deep Learning     29

inference stages are interleaved and ongoing. The agent
infers what action it should do next and uses the feedback
from the environment to learn how to update its policy.
A distinctive aspect of reinforcement learning is that the
target output of the learned function (the agent’s actions)
is decoupled from the reward mechanism. The reward
may be dependent on multiple actions and there may be
no reward feedback, either positive or negative, available
directly after an action has been performed. For example,
in a chess scenario, the reward may be +1 if the agent wins
the game and -1 if the agent loses. However, this reward
feedback will not be available until the last move of the
game has been completed. So, one of the challenges in re-
inforcement learning is designing training mechanisms
that can distribute the reward appropriately back through
a sequence of actions so that the policy can be updated
appropriately. Google’s DeepMind Technologies gener-
ated a lot of interest by demonstrating how reinforcement
learning could be used to train a deep learning model to
learn control policies for seven different Atari computer
games (Mnih et al. 2013). The input to the system was
the raw pixel values from the screen, and the control poli-
cies specified what joystick action the agent should take at
each point in the game. Computer game environments are
particularly suited to reinforcement learning as the agent
can be allowed to play many thousands of games against
the computer game system in order to learn a successful

30   chapter 1

policy, without incurring the cost of creating and labeling
a large dataset of example situations with correct joystick
actions. The DeepMind system got so good at the games
that it outperformed all previous computer systems on six
of the seven games, and outperformed human experts on
three of the games.

Deep learning can be applied to all three machine
learning scenarios: supervised, unsupervised, and rein-
forcement. Supervised machine learning is, however, the
most common type of machine learning. Consequently,
the majority of this book will focus on deep learning in a
supervised learning context. However, most of the deep
learning concerns and principles introduced in the super-
vised learning context also apply to unsupervised and re-
inforcement learning.

Why Is Deep Learning So Successful?

In any data-driven process the primary determinant of
success is knowing what to measure and how to measure it.
This is why the processes of feature selection and feature
design are so important to machine learning. As discussed
above, these tasks can require domain expertise, statis-
tical analysis of the data, and iterations of experiments
building models with different feature sets. Consequently,
dataset design and preparation can consume a significant

In any data-driven
process the primary
determinant of success
is knowing what to
measure and how to
measure it.

32   chapter 1

portion of time and resources expended in the project, in
some cases approaching up to 80% of the total budget of
a project (Kelleher and Tierney 2018). Feature design is
one task in which deep learning can have a significant ad-
vantage over traditional machine learning. In traditional
machine learning, the design of features often requires a
large amount of human effort. Deep learning takes a dif-
ferent approach to feature design, by attempting to auto-
matically learn the features that are most useful for the
task from the raw data.

To give an example of feature design, a person’s body
mass index (BMI) is the ratio of a person’s weight (in ki-
lograms) divided by their height (in meters squared). In a
medical setting, BMI is used to categorize people as under-
weight, normal, overweight, or obese. Categorizing people
in this way can be useful in predicting the likelihood of
a person developing a weight-related medical condition,
such as diabetes. BMI is used for this categorization be-
cause it enables doctors to categorize people in a manner
that is relevant to these weight-related medical condi-
tions. Generally, as people get taller they also get heavier.
However, most weight-related medical conditions (such as
diabetes) are not affected by a person’s height but rather
the amount they are overweight compared to other peo-
ple of a similar stature. BMI is a useful feature to use for
the medical categorization of a person’s weight because
it takes the effect of height on weight into account. BMI

	 Introduction to Deep Learning     33

is an example of a feature that is derived (or calculated)
from raw features; in this case the raw features are weight
and height. BMI is also an example of how a derived fea-
ture can be more useful in making a decision than the raw
features that it is derived from. BMI is a hand-designed
feature: Adolphe Quetelet designed it in the eighteenth
century.

As mentioned above, during a machine learning proj-
ect a lot of time and effort is spent on identifying, or de-
signing, (derived) features that are useful for the task the
project is trying to solve. The advantage of deep learn-
ing is that it can learn useful derived features from data
automatically (we will discuss how it does this in later
chapters). Indeed, given large enough datasets, deep
learning has proven to be so effective in learning fea-
tures that deep learning models are now more accurate
than many of the other machine learning models that use
hand-engineered features. This is also why deep learning
is so effective in domains where examples are described
with very large numbers of features. Technically datasets
that contain large numbers of features are called high-
dimensional. For example, a dataset of photos with a fea-
ture for each pixel in a photo would be high-dimensional.
In complex high-dimensional domains, it is extremely
difficult to hand-engineer features: consider the chal-
lenges of hand-engineering features for face recognition
or machine translation. So, in these complex domains,

34   chapter 1

adopting a strategy whereby the features are automati-
cally learned from a large dataset makes sense. Related
to this ability to automatically learn useful features, deep
learning also has the ability to learn complex nonlinear
mappings between inputs and outputs; we will explain
the concept of a nonlinear mapping in chapter 3, and in
chapter 6 we will explain how these mappings are learned
from data.

Summary and the Road Ahead

This chapter has focused on positioning deep learning
within the broader field of machine learning. Consequently,
much of this chapter has been devoted to introducing ma-
chine learning. In particular, the concept of a function as a
deterministic mapping from inputs to outputs was intro-
duced, and the goal of machine learning was explained as
finding a function that matches the mappings from input
features to the output features that are observed in the
examples in the dataset.

Within this machine learning context, deep learn-
ing was introduced as the subfield of machine learning
that focuses on the design and evaluation of training
algorithms and model architectures for modern neural
networks. One of the distinctive aspects of deep learn-
ing within machine learning is the approach it takes to

	 Introduction to Deep Learning     35

feature design. In most machine learning projects, feature
design is a human-intensive task that can require deep
domain expertise and consume a lot of time and project
budget. Deep learning models, on the other hand, have
the ability to learn useful features from low-level raw
data, and complex nonlinear mappings from inputs to
outputs. This ability is dependent on the availability of
large datasets; however, when such datasets are available,
deep learning can frequently outperform other machine
learning approaches. Furthermore, this ability to learn
useful features from large datasets is why deep learning
can often generate highly accurate models for complex do-
mains, be it in machine translation, speech processing, or
image or video processing. In a sense, deep learning has
unlocked the potential of big data. The most noticeable
impact of this development has been the integration of
deep learning models into consumer devices. However,
the fact that deep learning can be used to analyze massive
datasets also has implications for our individual privacy
and civil liberty (Kelleher and Tierney 2018). This is why
understanding what deep learning is, how it works, and
what it can and can’t be used for, is so important. The
road ahead is as follows:

•	 Chapter 2 introduces some of the foundational
concepts of deep learning, including what a model is,
how the parameters of a model can be set using data, and

36   chapter 1

how we can create complex models by combining simple
models.

•	 Chapter 3 explains what neural networks are, how
they work, and what we mean by a deep neural
network.

•	 Chapter 4 presents a history of deep learning. This
history focuses on the major conceptual and technical
breakthroughs that have contributed to the development
of the field of machine learning. In particular, it provides
a context and explanation for why deep learning has seen
such rapid development in recent years.

•	 Chapter 5 describes the current state of the field, by
introducing the two deep neural architectures that are
the most popular today: convolutional neural networks
and recurrent neural networks. Convolutional neural
networks are ideally suited to processing image and
video data. Recurrent neural networks are ideally suited
to processing sequential data such as speech, text, or
time-series data. Understanding the differences and
commonalities across these two architectures will give
you an awareness of how a deep neural network can be
tailored to the characteristics of a specific type of data,
and also an appreciation of the breadth of the design
space of possible network architectures.

	 Introduction to Deep Learning     37

•	 Chapter 6 explains how deep neural networks
models are trained, using the gradient descent and
backpropagation algorithms. Understanding these two
algorithms will give you a real insight into the state
of artificial intelligence. For example, it will help you
to understand why, given enough data, it is currently
possible to train a computer to do a specific task within a
well-defined domain at a level beyond human capabilities,
but also why a more general form of intelligence is still an
open research challenge for artificial intelligence.

•	 Chapter 7 looks to the future in the field of deep
learning. It reviews the major trends driving the
development of deep learning at present, and how they
are likely to contribute to the development of the field
in the coming years. The chapter also discusses some of
the challenges the field faces, in particular the challenge
of understanding and interpreting how a deep neural
network works.

2

CONCEPTUAL FOUNDATIONS

This chapter introduces some of the foundational concepts
that underpin deep learning. The basis of this chapter is
to decouple the initial presentation of these concepts from
the technical terminology used in deep learning, which is
introduced in subsequent chapters.

A deep learning network is a mathematical model that
is (loosely) inspired by the structure of the brain. Conse-
quently, in order to understand deep learning it is helpful
to have an intuitive understanding of what a mathemati-
cal model is, how the parameters of a model can be set,
how we can combine (or compose) models, and how we
can use geometry to understand how a model processes
information.

40   chapter 2

What Is a Mathematical Model?

In its simplest form, a mathematical model is an equa-
tion that describes how one or more input variables are
related to an output variable. In this form a mathematical
model is the same as a function: a mapping from inputs
to outputs.

In any discussion relating to models, it is important
to remember the statement by George Box that all models
are wrong but some are useful! For a model to be useful it
must have a correspondence with the real world. This cor-
respondence is most obvious in terms of the meaning that
can be associated with a variable. For example, in isola-
tion a value such as 78,000 has no meaning because it has
no correspondence with concepts in the real world. But
yearly income=$78,000 tells us how the number describes
an aspect of the real world. Once the variables in a model
have a meaning, we can understand the model as describ-
ing a process through which different aspects of the world
interact and cause new events. The new events are then
described by the outputs of the model.

A very simple template for a model is the equation of
a line:

y mx c= +

In this equation y is the output variable, x is the input
variable, and m and c are two parameters of the model

	 Conceptual Foundations    41

that we can set to adjust the relationship the model de-
fines between the input and the output.

Imagine we have a hypothesis that yearly income af-
fects a person’s happiness and we wish to describe the
relationship between these two variables.1 Using the equa-
tion of a line, we could define a model to describe this
relationship as follows:

happiness m income c= × +

This model has a meaning because the variables in the
model (as distinct from the parameters of the model)
have a correspondence with concepts from the real world.
To complete our model, we have to set the values of the
model’s parameters: m and c. Figure 2.1 illustrates how
varying the values of each of these parameters changes
the relationship defined by the model between income and
happiness.

One important thing to notice in this figure is that no
matter what values we set the model parameters to, the re-
lationship defined by the model between the input and the
output variable can be plotted as a line. This is not surpris-
ing because we used the equation of a line as the template
to define our model, and this is why mathematical models
that are based on the equation of a line are known as linear
models. The other important thing to notice in the figure

42   chapter 2

is how changing the parameters of the model changes the
relationship between income and happiness.

The solid steep line, with parameters c m= =()1 0 08, . ,
is a model of the world in which people with zero income
have a happiness level of 1, and increases in income have
a significant effect on people’s happiness. The dashed line,
with parameters c m= =()1 0 06, . , is a model in which peo-
ple with zero income have a happiness level of 1 and in-
creased income increases happiness, but at the slower rate
compared to the world modeled by the solid line. Finally,

0 20 40 60 80 100

0
2

4
6

8
10

Income ($1,000s)

H
ap

pi
ne

ss
 (o

ut
 o

f 1
0)

c = 1,m = 0.08
c = 1,m = 0.06
c = 4,m = 0.02

Figure 2.1  Three different linear models of how income affects happiness.

	 Conceptual Foundations    43

the dotted line, parameters c m= =()4 0 02, . , is a model
of the world where no one is particularly unhappy—even
people with zero income have a happiness of 4 out of 10—
and although increases in income do affect happiness, the
effect is moderate. This third model assumes that income
has a relatively weak effect on happiness.

More generally, the differences between the three
models in figure 2.1 show how making changes to the
parameters of a linear model changes the model. Chang-
ing c causes the line to move up and done. This is most
clearly seen if we focus on the y-axis: notice that the line
defined by a model always crosses (or intercepts) the
y-axis at the value that c is set to. This is why the c pa-
rameter in a linear model is known as the intercept. The
intercept can be understood as specifying the value of the
output variable when the input variable is zero. Chang-
ing the m parameter changes the angle (or slope) of the
line. The slope parameter controls how quickly changes in
income effect changes in happiness. In a sense, the slope
value is a measure of how important income is to happi-
ness. If income is very important (i.e., if small changes in
income result in big changes in happiness), then the slope
parameter of our model should be set to a large value. An-
other way of understanding this is to think of a slope pa-
rameter of a linear model as describing the importance, or
weight, of the input variable in determining the value of
the output.

44   chapter 2

Linear Models with Multiple Inputs

The equation of a line can be used as a template for math-
ematical models that have more than one input variable.
For example, imagine yourself in a scenario where you
have been hired by a financial institution to act as a loan
officer and your job involves deciding whether or not a
loan application should be granted. From interviewing
domain experts you come up with a hypothesis that a use-
ful way to model a person’s credit solvency is to consider
both their yearly income and their current debts. If we as-
sume that there is a linear relationship between these two
input variables and a person’s credit solvency, then the
appropriate mathematical model, written out in English
would be:

solvency income weight for income
debt weight for debt

= ×()
+ ×() ++ intercept

Notice that in this model the m parameter has been re-
placed by a separate weight for each input variable, with
each weight representing the importance of its associated
input in determining the output. In mathematical nota-
tion this model would be written as:

y input weight input weight c= ×() + ×() +1 1 2 2

	 Conceptual Foundations    45

where y represents the credit solvency output, input1 rep-
resents the income variable, input2 represents the debt
variable, and c represents the intercept. Using the idea of
adding a new weight for each new input to the model al-
lows us to scale the equation of a line to as many inputs as
we like. All the models defined in this way are still linear
within the dimensions defined by the number of inputs
and the output. What this means is that a linear model
with two inputs and one output defines a flat plane rather
than a line because that is what a two-dimensional line
that has been extruded to three dimensions looks like.

It can become tedious to write out a mathematical
model that has a lot of inputs, so mathematicians like to
write things in as compact a form as possible. With this
in mind, the above equation is sometimes written in the
short form:

y input weight ci i
i

n

= ×() +
=
∑

1

This notation tells us that to calculate the output variable
y we must first go through all n inputs and multiple each
input by its corresponding weight, then we should sum
together the results of these n multiplications, and finally
we add the c intercept parameter to the result of the sum-
mation. The ∑ symbol tells us that we use addition to
combine the results of the multiplications, and the index i

46   chapter 2

tells us that we multiply each input by the weight with the
same index. We can make our notation even more compact
by treating the intercept as a weight. One way to do this is
to assume an input0 that is always equal to 1 and to treat
the intercept as the weight on this input, that is, weight0.
Doing this allows us to write out the model as follows:

y input weighti i
i

n

= ×()
=
∑

0

Notice that the index now starts at 0, rather than 1, be-
cause we are now assuming an extra input, input0 1= , and
we have relabeled the intercept weight0.

Although we can write down a linear model in a num-
ber of different ways, the core of a linear model is that the
output is calculated as the sum of the n input values mul-
tiplied by their corresponding weights. Consequently, this
type of model defines a calculation known as a weighted
sum, because we weight each input and sum the results.
Although a weighted sum is easy to calculate, it turns out
to be very useful in many situations, and it is the basic cal-
culation used in every neuron in a neural network.

Setting the Parameters of a Linear Model

Let us return to our working scenario where we wish
to create a model that enables us to calculate the credit

The multiplication of
inputs by weights,
followed by a
summation, is known
as a weighted sum.

48   chapter 2

solvency of individuals who have applied for a financial
loan. For simplicity in presentation we will ignore the
intercept parameter in this discussion as it is treated the
same as the other parameters (i.e., the weights on the in-
puts). So, dropping the intercept parameter, we have the
following linear model (or weighted sum) of the relation-
ship between a person’s income and debt to their credit
solvency:

solvency income weight for income
debt weight for debt

= ×()
+ ×()

In order to complete our model, we need to specify the pa-
rameters of the model; that is, we need to specify the value
of the weight for each input. One way to do this would be
to use our domain expertise to come up with values for
each of the parameters.

For example, if we assume that an increase in a per-
son’s income has a bigger impact on their credit solvency
than a similar increase in their debt, we should set the
weighting for income to be larger than that of the debt.
The following model encodes this assumption; in par-
ticular this model specifies that income is three times
as important as debt in determining a person’s credit
solvency:

solvency income debt= ×() + ×()3 1

	 Conceptual Foundations    49

The drawback with using domain knowledge to set the
parameters of a model is that experts often disagree. For
example, you may think that weighting income as three
times as important as debt is not realistic; in that case the
model can be adjusted by, for example, setting both in-
come and debt to have an equal weighting, which would be
equivalent to assuming that income and debt are equally
important in determining credit solvency. One way to
avoid arguments between experts is to use data to set the
parameters. This is where machine learning helps. The
learning done by machine learning is finding the param-
eters (or weights) of a model using a dataset.

Learning Model Parameters from Data

Later in the book we will describe the standard algorithm
used to learn the weights for a linear model, known as the
gradient descent algorithm. However, we can give a brief
preview of the algorithm here. We start with a dataset con-
taining a set of examples for which we have both the input
values (income and debt) and the output value (credit sol-
vency). Table 2.1 illustrates such a dataset from our credit
solvency scenario.2

We then begin the process of learning the weights by
guessing initial values for each weight. It is very likely that
this initial, guessed, model will be a very bad model. This

The learning done by
machine learning is
finding the parameters
(or weights) of a model
using a dataset.

	 Conceptual Foundations    51

is not a problem, however, because we will use the dataset
to iteratively update the weights so that the model gets
better and better, in terms of how well it matches the data.
For the purpose of the example, we will use the model de-
scribed above as our initial (guessed) model:

solvency income debt= ×() + ×()3 1

The general process for improving the weights of the
model is to select an example from the dataset and feed
the input values from the example into the model. This
allows us to calculate an estimate of the output value for
the example. Once we have this estimated output, we can
calculate the error of the model on the example by sub-
tracting the estimated output from the correct output for
the example listed in the dataset. Using the error of the
model on the example, we can improve how well the model

Table 2.1.  A dataset of loan applications and known
credit solvency rating of the applicant

ID Annual income Current debt Credit solvency

1 $150 -$100 100

2 $250 -$300 -50

3 $450 -$250 400

4 $200 -$350 -300

52   chapter 2

fits the data by updating the weights in the model using
the following strategy, or learning rule:

•	 If the error is 0, then we should not change the weights
of the model.

•	 If the error is positive, then the output of the model
was too low, so we should increase the output of the
model for this example by increasing the weights for
all the inputs that had positive values for the example
and decreasing the weights for all the inputs that had
negative values for the example.

•	 If the error is negative, then the output of the model
was too high, so we should decrease the output of the
model for this example by decreasing the weights for
all the inputs that had positive values for the example
and increasing the weights for all the inputs that had
negative values for the example.

To illustrate the weight update process we will use ex-
ample 1 from table 2.1 (income = 150, debt = -100, and
solvency = 100) to test the accuracy of our guessed model
and update the weights according to the resulting error.

solvency income debt= ×() + ×()3 1

= ×() + − ×()150 3 100 1

= 350

	 Conceptual Foundations    53

When the input values for the example are passed into
the model, the credit solvency estimate returned by the
model is 350. This is larger than the credit solvency listed
for this example in the dataset, which is 100. As a result,
the error of the model is negative (100 – 350 = –250);
therefore, following the learning rule described above, we
should decrease the output of the model for this example
by decreasing the weights for positive inputs and increas-
ing the weights for negative inputs. For this example, the
income input had a positive value and the debt input had
a negative value. If we decrease the weight for income by 1
and increase the weight for debt by 1, we end up with the
following model:

solvency income debt= ×() + ×()2 2

We can test if this weight update has improved the
model by checking if the new model generates a better
estimate for the example than the old model. The follow-
ing illustrates pushing the same example through the new
model:

solvency income debt= ×() + ×()2 2

= ×() + − ×()150 2 100 2

= 100

This time the credit solvency estimate generated by the
model matches the value in the dataset, showing that the

54   chapter 2

updated model fits the data more closely than the original
model. In fact, this new model generates the correct out-
put for all the examples in the dataset.

In this example, we only needed to update the weights
once in order to find a set of weights that made the be-
havior of the model consistent with all the examples in
the dataset. Typically, however, it takes many iterations
of presenting examples and updating weights to get a
good model. Also, in this example, we have, for the sake
of simplicity, assumed that the weights are updated by
either adding or subtracting 1 from them. Generally, in
machine learning, the calculation of how much to update
each weight by is more complicated than this. However,
these differences aside, the general process outlined here
for updating the weights (or parameters) of a model in or-
der to fit the model to a dataset is the learning process at
the core of deep learning.

Combining Models

We now understand how we can specify a linear model to
estimate an applicant’s credit solvency, and how we can
modify the parameters of the model in order to fit the
model to a dataset. However, as a loan officer our job is
not simply to calculate an applicant’s credit solvency; we
have to decide whether to grant the loan application or
not. In other words, we need a rule that will take a credit

	 Conceptual Foundations    55

solvency score as input and return a decision on the loan
application. For example, we might use the decision rule
that a person with a credit solvency above 200 will be granted
a loan. This decision rule is also a model: it maps an input
variable, in this case credit solvency, to an output variable,
loan decision.

Using this decision rule we can adjudicate on a loan
application by first using the model of credit solvency to
convert a loan applicant’s profile (described in terms of the
annual income and debt) into a credit solvency score, and
then passing the resulting credit solvency score through
our decision rule model to generate the loan decision. We
can write this process out in a pseudomathematical short-
hand as follows:

loan decision
decision rule solvency income debt= = × + ×()()2 2) (

Using this notation, the entire decision process for ad-
judicating the loan application for example 1 from
table 2.1 is:

loan decision
decision rule solvency income debt= = ×() + ×()()2 2

= = × + − ×()()decision rule solvency 150 2 100 2) (

= =()decision rule solvency 100

= reject

56   chapter 2

We are now in a position where we can use a model
(composed of two simpler models, a decision rule and a
weighted sum) to describe how a loan decision is made.
What is more, if we use data from previous loan applica-
tions to set the parameters (i.e., the weights) of the model,
our model will correspond to how we have processed pre-
vious loan applications. This is useful because we can use
this model to process new applications in a way that is
consistent with previous decisions. If a new loan applica-
tion is submitted, we simply use our model to process the
application and generate a decision. It is this ability to
apply a mathematical model to new examples that makes
mathematical modeling so useful.

When we use the output of one model as the input
to another model, we are creating a third model by com-
bining two models. This strategy of building a complex
model by combining smaller simpler models is at the core
of deep learning networks. As we will see, a neural net-
work is composed of a large number of small units called
neurons. Each of these neurons is a simple model in its
own right that maps from a set of inputs to an output.
The overall model implemented by the network is cre-
ated by feeding the outputs from one group of neurons as
inputs into a second group of neurons and then feeding
the outputs of the second group of neurons as inputs to
a third group of neurons, as so on, until the final output
of the model is generated. The core idea is that feeding

	 Conceptual Foundations    57

the outputs of some neuron as inputs to other neurons
enables these subsequent neurons to learn to solve a dif-
ferent part of the overall problem the network is trying to
solve by building on the partial solutions implemented by
the earlier neurons—in a similar way to the way the deci-
sion rule generates the final adjudication for a loan appli-
cation by building on the calculation of the credit solvency
model. We will return to this topic of model composition
in subsequent chapters.

Input Spaces, Weight Spaces, and Activation Spaces

Although mathematical models can be written out as
equations, it is often useful to understand the geomet-
ric meaning of a model. For example, the plots in figure
2.1 helped us understand how changes in the parameters
of a linear model changed the relationship between the
variables that the model defined. There are a number of
geometric spaces that it is useful to distinguish between,
and understand, when we are discussing neural networks.
These are the input space, the weight space, and the activa-
tion space of a neuron. We can use the decision model for
loan applications that we defined in the previous section
to explain these three different types of spaces.

We will begin by describing the concept of an input
space. Our loan decision model took two inputs: the

58   chapter 2

annual income and current debt of the applicant. Table
2.1 listed these input values for four example loan applica-
tions. We can plot the input space of this model by treating
each of the input variables as the axis of a coordinate sys-
tem. This coordinate space is referred to as the input space
because each point in this space defines a possible com-
bination of input values to the model. For example, the
plot at the top-left of figure 2.2 shows the position of each
of the four example loan applications within the models
input space.

The weight space for a model describes the universe of
possible weight combinations that a model might use. We
can plot the weight space for a model by defining a coor-
dinate system with one axis per weight in the model. The
loan decision model has only two weights, one weight for
the annual income input, and one weight for the current
debt input. Consequently, the weight space for this model
has two dimensions. The plot at the top-right of figure
2.2 illustrates a portion of the weight space for this model.
The location of the weight combination used by the model
2 2, is highlighted in this figure. Each point within this co-
ordinate system describes a possible set of weights for the
model, and therefore corresponds to a different weighted
sum function within the model. Consequently, moving
from one location to another within this weight space is
equivalent to changing the model because it changes the
mapping from inputs to output that the model defines.

	 Conceptual Foundations    59

Figure 2.2  There are four different coordinate spaces related to the
processing of the loan decision model: top-left plots the input space; top-right
plots the weight space; bottom-left plots the activation (or decision) space;
and bottom-right plots the input space with the decision boundary plotted.

60   chapter 2

A linear model maps a set of input values to a point
in a new space by applying a weighted sum calculation to
the inputs: multiply each input by a weight, and sum the
results of the multiplication. In our loan decision model it
is in this space that we apply our decision rule. Thus, we
could call this space the decision space, but, for reasons
that will become clear when we describe the structure of
a neuron in the next chapter, we call this space the activa-
tion space. The axes of a model’s activation space corre-
spond to the weighted inputs to the model. Consequently,
each point in the activation space defines a set of weighted
inputs. Applying a decision rule, such as our rule that a
person with a credit solvency above 200 will be granted a loan,
to each point in this activation space, and recording the
result of the decision for each point, enables us to plot the
decision boundary of the model in this space. The decision
boundary divides those points in the activation space that
exceed the threshold, from those points in the space below
the threshold. The plot in the bottom-left of figure 2.2 il-
lustrates the activation space for our loan decision model.
The positions of the four example loan applications listed
in table 2.1 when they are projected into this activation
space are shown. The diagonal black line in this figure
shows the decision boundary. Using this threshold, loan
application number three is granted and the other loan
applications are rejected. We can, if we wish, project the
decision boundary back into the original input space by

	 Conceptual Foundations    61

recording for each location in the input space which side of
the decision boundary in the activation space it is mapped
to by the weighted sum function. The plot at the bottom-
right of figure 2.2 shows the decision boundary in the
original input space (note the change in the values on the
axes) and was generated using this process. We will return
to the concepts of weight spaces and decision boundar-
ies in next chapter when we describe how adjusting the
parameters of a neuron changes the set of input combina-
tions that cause the neuron to output a high activation.

Summary

The main idea presented in this chapter is that a linear
mathematical model, be it expressed as an equation or
plotted as a line, describes a relationship between a set of
inputs and an output. Be aware that not all mathematical
models are linear models, and we will come across nonlin-
ear models in this book. However, the fundamental cal-
culation of a weighted sum of inputs does define a linear
model. Another big idea introduced in this chapter is that
a linear model (a weighted sum) has a set of parameters,
that is, the weights used in the weighted sum. By chang-
ing these parameters we can change the relationship the
model describes between the inputs and the output. If we
wish we could set these weights by hand using our domain

62   chapter 2

expertise; however, we can also use machine learning to
set the weights of the model so that the behavior of the
model fits the patterns found in a dataset. The last big
idea introduced in this chapter was that we can build com-
plex models by combining simpler models. This is done by
using the output from one (or more) models as input(s)
to another model. We used this technique to define our
composite model to make loan decisions. As we will see in
the next chapter, the structure of a neuron in a neural net-
work is very similar to the structure of this loan decision
model. Just like this model, a neuron calculates a weighted
sum of its inputs and then feeds the result of this calcula-
tion into a second model that decides whether the neuron
activates or not.

The focus of this chapter has been to introduce some
foundational concepts before we introduce the terminol-
ogy of machine learning and deep learning. To give a quick
overview of how the concepts introduced in this chapter
map over to machine learning terminology, our loan deci-
sion model is equivalent to a two-input neuron that uses
a threshold activation function. The two financial indica-
tors (annual income and current debt) are analogous to
the inputs the neuron receives. The terms input vector or
feature vector are sometimes used to refer to the set of in-
dicators describing a single example; in this context an ex-
ample is a single loan applicant, described in terms of two
features: annual income and current debt. Also, just like

	 Conceptual Foundations    63

the loan decision model, a neuron associates a weight with
each input. And, again, just like the loan decision model, a
neuron multiplies each input by its associated weight and
sums the results of these multiplications in order to calcu-
late an overall score for the inputs. Finally, similar to the
way we applied a threshold to the credit solvency score to
convert it into a decision of whether to grant or reject the
loan application, a neuron applies a function (known as
an activation function) to convert the overall score of the
inputs. In the earliest types of neurons, these activation
functions were actually threshold functions that worked
in exactly the same way as the score threshold used in this
credit scoring example. In more recent neural networks,
different types of activation functions (for example, the
logistic, tanh, or ReLU functions) are used. We will intro-
duce these activation functions in the next chapter.

3

NEURAL NETWORKS:
THE BUILDING BLOCKS

OF DEEP LEARNING

The term deep learning describes a family of neural network
models that have multiple layers of simple information
processing programs, known as neurons, in the network.
The focus of this chapter is to provide a clear and com-
prehensive introduction to how these neurons work and
are interconnected in artificial neural networks. In later
chapters, we will explain how neural networks are trained
using data.

A neural network is a computational model that is in-
spired by the structure of the human brain. The human
brain is composed of a massive number of nerve cells,
called neurons. In fact, some estimates put the number
of neurons in the human brain at one hundred billion
(Herculano-Houzel 2009). Neurons have a simple three-
part structure consisting of: a cell body, a set of fibers
called dendrites, and a single long fiber called an axon.

66   chapter 3

Figure 3.1 illustrates the structure of a neuron and how
it connects to other neurons in the brain. The dendrites
and the axon stem from the cell body, and the dendrites of
one neuron are connected to the axons of other neurons.
The dendrites act as input channels to the neuron and re-
ceive signals sent from other neurons along their axons.
The axon acts as the output channel of a neuron, and so
other neurons, whose dendrites are connected to the axon,
receive the signals sent along the axon as inputs.

Neurons work in a very simple manner. If the incom-
ing stimuli are strong enough, the neuron transmits an
electrical pulse, called an action potential, along its axon
to the other neurons that are connected to it. So, a neuron
acts as an all-or-none switch, that takes in a set of inputs
and either outputs an action potential or no output.

This explanation of the human brain is a significant
simplification of the biological reality, but it does capture

Figure 3.1  The structure of a neuron in the brain.

	Neural Networks: The Building Blocks of Deep Learning     67

the main points necessary to understand the analogy
between the structure of the human brain and compu-
tational models called neural networks. These points of
analogy are: (1) the brain is composed of a large number
of interconnected and simple units called neurons; (2) the
functioning of the brain can be understood as processing
information, encoded as high or low electrical signals, or
activation potentials, that spread across the network of
neurons; and (3) each neuron receives a set of stimuli from
its neighbors and maps these inputs to either a high- or
low-value output. All computational models of neural net-
works have these characteristics.

Artificial Neural Networks

An artificial neural network consists of a network of
simple information processing units, called neurons. The
power of neural networks to model complex relationships
is not the result of complex mathematical models, but
rather emerges from the interactions between a large set
of simple neurons.

Figure 3.2 illustrates the structure of a neural net-
work. It is standard to think of the neurons in a neural net-
work as organized into layers. The depicted network has
five layers: one input layer, three hidden layers, and one
output layer. A hidden layer is just a layer that is neither

68   chapter 3

the input nor the output layer. Deep learning networks
are neural networks that have many hidden layers of neu-
rons. The minimum number of hidden layers necessary to
be considered deep is two. However, most deep learning
networks have many more than two hidden layers. The
important point is that the depth of a network is mea-
sured in terms of the number of hidden layers, plus the
output layer.

In figure 3.2, the squares in the input layer represent
locations in memory that are used to present inputs to
the network. These locations can be thought of as sensing
neurons. There is no processing of information in these
sensing neurons; the output of each of these neurons is
simply the value of the data stored at the memory location.

Input
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Output
layer 4

Figure 3.2  Topological illustration of a simple neural network.

Deep learning networks
are neural networks that
have many hidden layers
of neurons.

70   chapter 3

The circles in the figure represent the information proc-
essing neurons in the network. Each of these neurons
takes a set of numeric values as input and maps them to
a single output value. Each input to a processing neuron
is either the output of a sensing neuron or the output of
another processing neuron.

The arrows in figure 3.2 illustrate how information
flows through the network from the output of one neu-
ron to the input of another neuron. Each connection in
a network connects two neurons and each connection is
directed, which means that information carried along a
connection only flows in one direction. Each of the con-
nections in a network has a weight associated with it. A
connection weight is simply a number, but these weights
are very important. The weight of a connection affects
how a neuron processes the information it receives along
the connection, and, in fact, training an artificial neural
network, essentially, involves searching for the best (or
optimal) set of weights.

How an Artificial Neuron Processes Information

The processing of information within a neuron, that is,
the mapping from inputs to an output, is very similar
to the loan decision model that we developed in chapter
2. Recall that the loan decision model first calculated a

	Neural Networks: The Building Blocks of Deep Learning     71

weighted sum over the input features (income and debt).
The weights used in the weighted sum were adjusted using
a dataset so that the results of the weighted sum calcula-
tion, given an loan applicant’s income and debt as inputs,
was an accurate estimate of the applicant’s credit solvency
score. The second stage of processing in the loan decision
model involved passing the result of the weighted sum
calculation (the estimated credit solvency score) through
a decision rule. This decision rule was a function that
mapped a credit solvency score to a decision on whether a
loan application was granted or rejected.

A neuron also implements a two-stage process to map
inputs to an output. The first stage of processing involves
the calculation of a weighted sum of the inputs to the neu-
ron. Then the result of the weighted sum calculation is
passed through a second function that maps the results of
the weighted sum score to the neuron’s final output value.
When we are designing a neuron, we can used many differ-
ent types of functions for this second stage or processing;
it may be as simple as the decision rule we used for our
loan decision model, or it may be more complex. Typically
the output value of a neuron is known as its activation
value, so this second function, which maps from the result
of the weighted sum to the activation value of the neuron,
is known as an activation function.

Figure 3.3 illustrates how these stages of processing
are reflected in the structure of an artificial neuron. In

72   chapter 3

figure 3.3, the Σ symbol represents the calculation of the
weighted sum, and the φ symbol represents the activation
function processing the weighted sum and generating the
output from the neuron.

The neuron in figure 3.3 receives n inputs x xn1, ,…[]
on n different input connections, and each connection has
an associated weight w wn1, ,…[]. The weighted sum cal-
culation involves the multiplication of inputs by weights
and the summation of the resulting values. Mathemati-
cally this calculation is written as:

z x w x w x wn n= () + () +…+ ()1 1 2 2× × ×

This calculation can also be written in a more compact
mathematical form as:

z x wi
n

i i= =Σ 1 ×

Σ ϕ

x1

x2

x3

x4

xn

w
1

w
2

w3

w4

w n
Output

...

Figure 3.3  The structure of an artificial neuron.

	Neural Networks: The Building Blocks of Deep Learning     73

For example, assuming a neuron received the inputs
x x1 23 9= =[], and had the following weights w1 3= −[,

w2 1=], the weighted sum calculation would be:

z = × −() + ×()3 3 9 1
= 0

The second stage of processing within a neuron is to
pass the result of the weighted sum, the z value, through
an activation function. Figure 3.4 plots the shape of a num-
ber of possible activation functions, as the input to each
function, z, ranges across an interval, either [-1, ..., +1] or
[-10, ..., +10] depending on which interval best illustrates
the shape of the function. Figure 3.4 (top) plots a thresh-
old activation function. The decision rule we used in the
loan decision model was an example of a threshold func-
tion; the threshold used in that decision rule was whether
the credit solvency score was above 200. Threshold acti-
vations were common in early neural network research.
Figure 3.4 (middle) plots the logistic and tanh activation
functions. The units employing these activation functions
were popular in multilayer networks until quite recently.
Figure 3.4 (bottom) plots the rectifier (or hinge, or posi-
tive linear) activation function. This activation function is
very popular in modern deep learning networks; in 2011
the rectifier activation function was shown to enable bet-
ter training in deep networks (Glorot et al. 2011). In fact,

Fi
gu

re
 3

.4
 

To
p:

 th
re

sh
ol

d
fu

nc
ti

on
; m

id
dl

e:
 lo

gi
st

ic
 a

nd
 ta

nh
 fu

nc
ti

on
s;

 b
ot

to
m

: r
ec

ti
fi

ed
 li

ne
ar

 fu
nc

ti
on

.

	Neural Networks: The Building Blocks of Deep Learning     75

as will be discussed in chapter 4, during the review of the
history of deep learning, one of the trends in neural net-
work research has been a shift from threshold activation
to logistic and tanh activations, and then onto rectifier
activation functions.

Returning to the example, the result of the weighted
summation step was z = 0. Figure 3.4 (middle plot, solid
line) plots the logistic function. Assuming that the neuron
is using a logistic activation function, this plot shows how
the result of the summation will be mapped to an output
activation: logistic 0 0 5() = . . The calculation of the output
activation of this neuron can be summarized as:

Output activation z x w
i

n

i i= =()=
_function ×Σ

1

= = × −() + ×()()logistic z 3 3 9 1

= =()logistic z 0

= 0 5.

Notice that the processing of information in this neuron
is nearly identical to the processing of information in the
loan decision model we developed in the last chapter. The
major difference is that we have replaced the decision
threshold rule that mapped the weighted sum score to an
accepted or rejected output with a logistic function that
maps the weighted sum score to a value between 0 and 1.
Depending on the location of this neuron in the network,

76   chapter 3

the output activation of the neuron, in this instance
y = 0 5. , will either be passed as input to one or more neu-
rons in the next layer in the network, or will be part of
the overall output of the network. If a neuron is at the
output layer, the interpretation of what its output value
means would be dependent on the task that the neuron
is designed to model. If a neuron is in one of the hidden
layers of the network, then it may not be possible to put
a meaningful interpretation on the output of the neuron
apart from the general interpretation that it represents
some sort of derived feature (similar to the BMI feature we
discussed in chapter 1) that the network has found useful
in generating its outputs. We will return to the challenge
of interpreting the meaning of activations within a neural
network in chapter 7.

The key point to remember from this section is that
a neuron, the fundamental building block of neural net-
works and deep learning, is defined by a simple two-step
sequence of operations: calculating a weighted sum and
then passing the result through an activation function.

Figure 3.4 illustrates that neither the tanh nor the
logistic function is a linear function. In fact, the plots of
both of these functions have a distinctive s-shaped (rather
than linear) profile. Not all activation functions have an
s-shape (for example, the threshold and rectifier are not
s-shaped), but all activation functions do apply a nonlin-
ear mapping to the output of the weighted sum. In fact,

	Neural Networks: The Building Blocks of Deep Learning     77

it is the introduction of the nonlinear mapping into the
processing of a neuron that is the reason why activation
functions are used.

Why Is an Activation Function Necessary?

To understand why a nonlinear mapping is needed in a
neuron, it is first necessary to understand that, essentially,
all a neural network does is define a mapping from inputs
to outputs, be it from a game position in Go to an evalu-
ation of that position, or from an X-ray to a diagnosis of
a patient. Neurons are the basic building blocks of neural
networks, and therefore they are the basic building blocks
of the mapping a network defines. The overall mapping
from inputs to outputs that a network defines is com-
posed of the mappings from inputs to outputs that each of
the neurons within the network implement. The implica-
tion of this is that if all the neurons within a network were
restricted to linear mappings (i.e., weighted sum calcula-
tions), the overall network would be restricted to a linear
mapping from inputs to outputs. However, many of the re-
lationships in the world that we might want to model are
nonlinear, and if we attempt to model these relationships
using a linear model, then the model will be very inaccu-
rate. Attempting to model a nonlinear relationship with
a linear model would be an example of the underfitting

78   chapter 3

problem we discussed in chapter 1: underfitting occurs
when the model used to encode the patterns in a dataset
is too simple and as a result it is not accurate.

A linear relationship exists between two things when
an increase in one always results in an increase or decrease
in the other at a constant rate. For example, if an employee
is on a fixed hourly rate, which does not vary at weekends
or if they do overtime, then there is a linear relationship
between the number of hours they work and their pay. A
plot of their hours worked versus their pay will result in
a straight line; the steeper the line the higher their fixed
hourly rate of pay. However, if we make the payment sys-
tem for our hypothetical employee just slightly more com-
plex, by, for example, increasing their hourly rate of pay
when they do overtime or work weekends, then the rela-
tionship between the number of hours they work and their
pay is no longer linear. Neural networks, and in particular
deep learning networks, are typically used to model rela-
tionships that are much more complex than this employ-
ee’s pay. Modeling these relationships accurately requires
that a network be able to learn and represent complex
nonlinear mappings. So, in order to enable a neural net-
work to implement such nonlinear mappings, a nonlinear
step (the activation function) must be included within the
processing of the neurons in the network.

In principle, using any nonlinear function as an activa-
tion function enables a neural network to learn a nonlinear

	Neural Networks: The Building Blocks of Deep Learning     79

mapping from inputs to outputs. However, as we shall see
later, most of the activation functions plotted in figure 3.4
have nice mathematical properties that are helpful when
training a neural network, and this is why they are so pop-
ular in neural network research.

The fact that the introduction of a nonlinearity into
the processing of the neurons enables the network to
learn a nonlinear mapping between input(s) and output
is another illustration of the fact that the overall behav-
ior of the network emerges from the interactions of the
processing carried out by individual neurons within the
network. Neural networks solve problems using a divide-
and-conquer strategy: each of the neurons in a network
solves one component of the larger problem, and the
overall problem is solved by combining these component
solutions. An important aspect of the power of neural
networks is that during training, as the weights on the
connections within the network are set, the network is
in effect learning a decomposition of the larger problem,
and the individual neurons are learning how to solve and
combine solutions to the components within this problem
decomposition.

Within a neural network, some neurons may use dif-
ferent activation functions from other neurons in the net-
work. Generally, however, all the neurons within a given
layer of a network will be of the same type (i.e., they will
all use the same activation function). Also, sometimes

80   chapter 3

neurons are referred to as units, with a distinction made
between units based on the activation function the units
use: neurons that use a threshold activation function are
known as threshold units, units that use a logistic acti-
vation function are known as logistic units, and neurons
that use the rectifier activation function are known as
rectified linear units, or ReLUs. For example, a network
may have a layer of ReLUs connected to a layer of logistic
units. The decision regarding which activation functions
to use in the neurons in a network is made by the data
scientist who is designing the network. To make this deci-
sion, a data scientist may run a number of experiments
to test which activation functions give the best perfor-
mance on a dataset. However, frequently data scientists
default to using whichever activation function is popular
at a given point. For example, currently ReLUs are the
most popular type of unit in neural networks, but this
may change as new activation functions are developed and
tested. As we will discuss at the end of this chapter, the
elements of a neural network that are set manually by the
data scientist prior to the training process are known as
hyperparameters.

The term hyperparameter is used to describe the
manually fixed parts of the model in order to distinguish
them from the parameters of the model, which are the
parts of the model that are set automatically, by the ma-
chine learning algorithm, during the training process. The

Neural networks solve
problems using a divide-
and-conquer strategy:
each of the neurons in
a network solves one
component of the larger
problem, and the overall
problem is solved by
combining these
component solutions.

82   chapter 3

parameters of a neural network are the weights used in
the weighted sum calculations of the neurons in the net-
work. As we touched on in chapters 1 and 2, the standard
training process for setting the parameters of a neural
network is to begin by initializing the parameters (the
network’s weights) to random values, and during train-
ing to use the performance of the network on the dataset
to slowly adjust these weights so as to improve the ac-
curacy of the model on the data. Chapter 6 describes the
two algorithms that are most commonly used to train a
neural network: the gradient descent algorithm and the
backpropagation algorithm. What we will focus on next
is understanding how changing the parameters of a neu-
ron affects how the neuron responds to the inputs it
receives.

How Does Changing the Parameters of a Neuron Affect
Its Behavior?

The parameters of a neuron are the weights the neuron
uses in the weighted sum calculation. Although the
weighted sum calculation in a neuron is the same weighted
sum used in a linear model, in a neuron the relationship
between the weights and the final output of neuron is
more complex because the result of the weighted sum
is passed through an activation function in order to

	Neural Networks: The Building Blocks of Deep Learning     83

generate the final output. To understand how a neuron
makes a decision on a given input, we need to understand
the relationship between the neuron’s weights, the input
it receives, and the output it generates in response.

The relationship between a neuron’s weights and the
output it generates for a given input is most easily under-
stood in neurons that use a threshold activation function.
A neuron using this type of activation function is equiva-
lent to our loan decision model that used a decision rule
to classify the credit solvency scores, generated by the
weighted sum calculation, to reject or grant loan applica-
tions. At the end of chapter 2, we introduced the concepts
of an input space, a weight space, and an activation space
(see figure 2.2). The input space for our two-input loan
decision model could be visualized as a two-dimensional
space, with one input (annual income) plotted along the x-
axis, and the other input (current debt) on the y-axis. Each
point in this plot defined a potential combination of in-
puts to the model, and the set of points in the input space
defines the set of possible inputs the model could process.
The weights used in the loan decision model can be un-
derstood as dividing the input space into two regions: the
first region contains all of the inputs that result in the loan
application being granted, and the other region contains
all the inputs that result in the loan application being re-
jected. In that scenario, changing the weights used by the
decision model would change the set of loan applications

84   chapter 3

that were accepted or rejected. Intuitively, this makes
sense because it changes the weighting that we put on an
applicant’s income relative to their debt when we are de-
ciding on granting the loan or not.

We can generalize the above analysis of the loan deci-
sion model to a neuron in a neural network. The equivalent
neuron structure to the loan decision model is a two-input
neuron with a threshold activation function. The input
space for such a neuron has a similar structure to the in-
put space for a loan decision model. Figure 3.5 presents
three plots of the input space for a two-input neuron us-
ing a threshold function that outputs a high activation if
the weighted sum result is greater than zero, and a low
activation otherwise. The differences between each of the
plots in this figure is that the neuron defines a different
decision boundary in each case. In each plot, the decision
boundary is marked with a black line.

Each of the plots in figure 3.5 was created by first fix-
ing the weights of the neuron and then for each point in
the input space recording whether the neuron returned a
high or low activation when the coordinates of the point
were used as the inputs to the neuron. The input points for
which the neuron returned a high activation are plotted in
gray, and the other points are plotted in white. The only
difference between the neurons used to create these plots
was the weights used in calculating the weighted sum of
the inputs. The arrow in each plot illustrates the weight

Fi
gu

re
 3

.5
 

D
ec

is
io

n
bo

un
da

ri
es

 fo
r a

 tw
o-

in
pu

t n
eu

ro
n.

 T
op

: w
ei

gh
t v

ec
to

r [
w

1=
1,

 w
2=

1]
; m

id
dl

e:
 w

ei
gh

t v
ec

to
r [

w
1=

-2
, w

2=
1]

; b
ot

to
m

:
w

ei
gh

t v
ec

to
r [

w
1=

1,
 w

2=
-2

].

86   chapter 3

vector used by the neuron to generate the plot. In this
context, a vector describes the direction and distance of
a point from the origin.1 As we shall see, interpreting the
set of weights used by a neuron as defining a vector (an
arrow from the origin to the coordinates of the weights)
in the neuron’s input space is useful in understanding how
changes in the weights change the decision boundary of
the neuron.

The weights used to create each plot change from one
plot to the next. These changes are reflected in the direc-
tion of the arrow (the weight vector) in each plot. Spe-
cifically, changing the weights rotates the weight vector
around the origin. Notice that the decision boundary in
each plot is sensitive to the direction of the weight vector:
in all the plots, the decision boundary is orthogonal (i.e.,
at a right, or 90°, angle) to the weight vector. So, chang-
ing the weights not only rotates the weight vector, it also
rotates the decision boundary of the neuron. This rotation
changes the set of inputs that the neuron outputs a high
activation in response to (the gray regions).

To understand why this decision boundary is always
orthogonal to the weight vector, we have to shift our per-
spective, for a moment, to linear algebra. Remember that
every point in the input space defines a potential combi-
nation of input values to the neuron. Now, imagine each
of these sets of input values as defining an arrow from the
origin to the coordinates of the point in the input space.

	Neural Networks: The Building Blocks of Deep Learning     87

There is one arrow for each point in the input space. Each
of these arrows is very similar to the weight vector, ex-
cept that it points to the coordinates of the inputs rather
than to the coordinates of the weights. When we treat a
set of inputs as a vector, the weighted sum calculation is
the same as multiplying two vectors, the input vector by
the weight vector. In linear algebra terminology, multi-
plying two vectors is known as the dot product operation.
For the purposes of this discussion, all we need to know
about the dot product is that the result of this operation
is dependent on the angle between the two vectors that
are multiplied. If the angle between the two vectors is less
than a right angle, then the result will be positive; other-
wise, it will be negative. So, multiplying the weight vec-
tor by an input vector will return a positive value for all
the input vectors at an angle less than a right angle to the
weight vector, and a negative value for all the other vec-
tors. The activation function used by this neuron returns
a high activation when positive values are input and a low
activation when negative values are input. Consequently,
the decision boundary lies at a right angle to the weight
vector because all the inputs at an angle less than a right
angle to the weight vector will result in a positive input
to the activation function and, therefore, trigger a high-
output activation from the neuron; conversely, all the
other inputs will result in a low-output activation from
the neuron.

88   chapter 3

Switching back to the plots in figure 3.5, although the
decision boundaries in each of the plots are at different
angles, all the decision boundaries go through the point in
space that the weight vectors originate from (i.e., the ori-
gin). This illustrates that changing the weights of a neuron
rotates the neuron’s decision boundary but does not trans-
late it. Translating the decision boundary means moving
the decision boundary up and down the weight vector, so
that the point where it meets the vector is not the origin.
The restriction that all decision boundaries must pass
through the origin limits the distinctions that a neuron
can learn between input patterns. The standard way to
overcome this limitation is to extend the weighted sum
calculation so that it includes an extra element, known as
the bias term. This bias term is not the same as the induc-
tive bias we discussed in chapter 1. It is more analogous
to the intercept parameter in the equation of a line, which
moves the line up and down the y-axis. The purpose of this
bias term is to move (or translate) the decision boundary
away from the origin.

The bias term is simply an extra value that is included
in the calculation of the weighted sum. It is introduced
into the neuron by adding the bias to the result of the
weighted summation prior to passing it through the ac-
tivation function. Here is the equation describing the
processing stages in a neuron with the bias term repre-
sented by the term b:

	Neural Networks: The Building Blocks of Deep Learning     89

Output activation function z x wi
i

n

i

weighted sum

= = 



=

∑_
1

×
� ��� ��

�+

















b
bias

Figure 3.6 illustrates how the value of the bias term affects
the decision boundary of a neuron. When the bias term is
negative, the decision boundary is moved away from the
origin in the direction that the weight vector points to (as
in the top and middle plots in figure 3.6); when the bias
term is positive, the decision boundary is translated in the
opposite direction (see the bottom plot of figure 3.6). In
both cases, the decision boundary remains orthogonal to
the weight vector. Also, the size of the bias term affects
the amount the decision boundary is moved from the ori-
gin; the larger the value of the bias term, the more the de-
cision boundary is moved (compare the top plot of figure
3.6 with the middle and bottom plots).

Instead of manually setting the value of the bias term,
it is preferable to allow a neuron to learn the appropriate
bias. The simplest way to do this is to treat the bias term as
a weight and allow the neuron to learn the bias term at the
same time that it is learning the rest of the weights for its
inputs. All that is required to achieve this is to augment all
the input vectors the neuron receives with an extra input
that is always set to 1. By convention, this input is input
0 (x0 1=), and, consequently, the bias term is specified by

Fi
gu

re
 3

.6
 

D
ec

is
io

n
bo

un
da

ry
 p

lo
ts

 fo
r a

 tw
o-

in
pu

t n
eu

ro
n

th
at

 il
lu

st
ra

te
 th

e
ef

fe
ct

 o
f t

he
 b

ia
s

te
rm

 o
n

th
e

de
ci

si
on

 b
ou

nd
ar

y.
 T

op
:

w
ei

gh
t v

ec
to

r [
w

1=
1,

 w
2=

1]
 a

nd
 b

ia
s

eq
ua

l t
o

-1
; m

id
dl

e:
 w

ei
gh

t v
ec

to
r [

w
1=

-2
, w

2=
1]

 a
nd

 b
ia

s
eq

ua
l t

o
-2

; b
ot

to
m

: w
ei

gh
t v

ec
to

r [
w

1=
1,

w

2=
-2

] a
nd

 b
ia

s
eq

ua
l t

o
2.

	Neural Networks: The Building Blocks of Deep Learning     91

weight 0 (w0).2 Figure 3.7 illustrates the structure of an
artificial neuron when the bias term has been integrated
as w0.

When the bias term has been integrated into the
weights of a neuron, the equation specifying the map-
ping from input(s) to output activation of the neuron can
be simplified (at least from a notational perspective) as
follows:

Output activation function z x wi
i

n

i= =



=

∑_
0

×

Notice that in this equation the index i goes from 0 to
n, so that it now includes the fixed input, x0 1= , and the
bias term, w0; in the earlier version of this equation, the
index only went from 1 to n. This new format means that
the neuron is able to learn the bias term, simply by learn-
ing the appropriate weight w0, using the same process

Σ ϕ

= 1x0x1

x2

x3

x4

xn

w0(originally b)

w
1

w
2

w3

w4

w n

Output

...

Figure 3.7  An artificial neuron with a bias term included as w0.

92   chapter 3

that is used to learn the weights for the other inputs: at
the start of training, the bias term for each neuron in the
network will be initialized to a random value and then ad-
justed, along with the weights of the network, in response
to the performance of the network on the dataset.

Accelerating Neural Network Training Using GPUs

Merging the bias term is more than a notational conve-
nience; it enables us to use specialized hardware to accel-
erate the training of neural networks. The fact that a bias
term can be treated as the same as a weight means that the
calculation of the weighted sum of inputs (including the
addition of the bias term) can be treated as the multipli-
cation of two vectors. As we discussed earlier, during the
explanation of why the decision boundary was orthogonal
to the weight vector, we can think of a set of inputs as a
vector. Recognizing that much of the processing within a
neural network involves vector and matrix multiplications
opens up the possibility of using specialized hardware to
speed up these calculations. For example, graphics proc-
essing units (GPUs) are hardware components that have
specifically been designed to do extremely fast matrix
multiplications.

In a standard feedforward network, all the neurons
in one layer receive all the outputs (i.e., activations) from

	Neural Networks: The Building Blocks of Deep Learning     93

all the neurons in the preceding layer. This means that all
the neurons in a layer receive the same set of inputs. As
a result, we can calculate the weighted sum calculation
for all the neurons in a layer using only a single vector by
matrix multiplication. Doing this is much faster than cal-
culating a separate weighted sum for each neuron in the
layer. To do this calculation of weighted sums for an entire
layer of neurons in a single multiplication, we put the out-
puts from the neurons in the preceding layer into a vector
and store all the weights of the connections between the
two layers of neurons in a matrix. We then multiply the
vector by the matrix, and the resulting vector contains
the weighted sums for all the neurons.

Figure 3.8 illustrates how the weighted summation
calculations for all the neurons in a layer in a network can
be calculated using a single matrix multiplication opera-
tion. This figure is composed of two separate graphics: the
graphic on the left illustrates the connections between
neurons in two layers of a network, and the graphic on
the right illustrates the matrix operation to calculate the
weighted sums for the neurons in the second layer of the
network. To help maintain a correspondence between
the two graphics, the connections into neuron E are high-
lighted in the graphic on the left, and the calculation of the
weighted sum in neuron E is highlighted in the graphic on
the right.

94   chapter 3

Focusing on the graphic on the right, the 1 3× vec-
tor (1 row, 3 columns) on the bottom-left of this graphic,
stores the activations for the neurons in layer 1 of the net-
work; note that these activations are the outputs from an
activation function ϕ (the particular activation function is
not specified—it could be a threshold function, a tanh, a
logistic function, or a rectified linear unit/ReLU function).
The 3 4× matrix (three rows and four columns), in the top-
right of the graphic, holds the weights for the connections
between the two layers of neurons. In this matrix, each
column stores the weights for the connections coming into
one of the neurons in the second layer of the network. The
first column stores the weights for neuron D, the second
column for neuron E, etc.3 Multiplying the 1 3× vector of
activations from layer 1 by the 3 4× weight matrix results
in a 1 4× vector corresponding to the weighted summa-
tions for the four neurons in layer 2 of the network: zD is
the weighted sum of inputs for neuron D, zE for neuron E,
and so on.

To generate the 1 4× vector containing the weighted
summations for the neurons in layer 2, the activation
vector is multiplied by each column in the matrix in turn.
This is done by multiplying the first (leftmost) element in
the vector by the first (topmost) element in the column,
then multiplying the second element in the vector by the
element in the second row in the column, and so on, un-
til each element in the vector has been multiplied by its

	Neural Networks: The Building Blocks of Deep Learning     95

corresponding column element. Once all the multiplica-
tions between the vector and the column have been com-
pleted, the results are summed together and the stored in
the output vector. Figure 3.8 illustrates multiplication of
the activation vector by the second column in the weight
matrix (the column containing the weights for inputs to
neuron E) and the storing of the summation of these mul-
tiplications in the output vector as the value zE.

Weight matrix for
edges in layer 2

Activations from layer 1 Weighted sums for layer 2

Figure 3.8  A graphical illustration of the topological connections of a
specific neuron E in a network, and the corresponding vector by matrix
multiplication that calculates the weighted summation of inputs for the
neuron E, and its siblings in the same layer.5

96   chapter 3

Hidden layer
weight matrix

Activations
input layer

Activations
hidden layer

Output

Output layer
weight matrix

Figure 3.9  A graph representation of a neural network (left), and the same
network represented as a sequence of matrix operations (right).6

Indeed, the calculation implemented by an entire neu-
ral network can be represented as a chain of matrix multi-
plications, with an element-wise application of activation
functions to the results of each multiplication. Figure 3.9
illustrates how a neural network can be represented in
both graph form (on the left) and as a sequence of matrix
operations (on the right). In the matrix representation,
the × symbol represents standard matrix multiplication
(described above) and the → →ϕ notation represents the
application of an activation function to each element in
the vector created by the preceding matrix multiplication.
The output of this element-wise application of the activa-
tion function is a vector containing the activations for the
neurons in a layer of the network. To help show the corre-
spondence between the two representations, both figures
show the inputs to the network, I1 and I2 , the activations
from the three hidden units, A1, A2, and A3, and the over-
all output of the network, y.

	Neural Networks: The Building Blocks of Deep Learning     97

As a side note, the matrix representation provides a
transparent view of the depth of a network; the network’s
depth is counted as the number of layers that have a weight
matrix associated with them (or equivalently, the depth of
a network is the number of weight matrices required by
the network). This is why the input layer is not counted
when calculating the depth of a network: it does not have
a weight matrix associated with it.

As mentioned above, the fact that the majority of cal-
culations in a neural network can be represented as a se-
quence of matrix operations has important computational
implications for deep learning. A neural network may con-
tain over a million neurons, and the current trend is for the
size of these networks to double every two to three years.4
Furthermore, deep learning networks are trained by itera-
tively running a network on examples sampled from very
large datasets and then updating the network parameters
(i.e., the weights) to improve performance. Consequently,
training a deep learning network can require very large
numbers of network runs, with each network run requir-
ing millions of calculations. This is why computational
speedups, such as those that can be achieved by using
GPUs to perform matrix multiplications, have been so im-
portant for the development of deep learning.

The relationship between GPUs and deep learning
is not one-way. The growth in demand for GPUs gener-
ated by deep learning has had a significant impact on

98   chapter 3

GPU manufacturers. Deep learning has resulted in these
companies refocusing their business. Traditionally, these
companies would have focused on the computer games
market, since the original motivation for developing GPU
chips was to improve graphics rendering, and this had a
natural application to computer games. However, in re-
cent years these companies have focused on positioning
GPUs as hardware for deep learning and artificial intel-
ligence applications. Furthermore, GPU companies have
also invested to ensure that their products support the top
deep learning software frameworks.

Summary

The primary theme in this chapter has been that deep
learning networks are composed of large numbers of
simple processing units that work together to learn and
implement complex mappings from large datasets. These
simple units, neurons, execute a two-stage process: first, a
weighted summation over the inputs to the neuron is cal-
culated, and second, the result of the weighted summation
is passed through a nonlinear function, known as an acti-
vation function. The fact that a weighted summation func-
tion can be efficiently calculated across a layer of neurons
using a single matrix multiplication operation is impor-
tant: it means that neural networks can be understood as a

	Neural Networks: The Building Blocks of Deep Learning     99

sequence of matrix operations; this has permitted the use
of GPUs, hardware optimized to perform fast matrix mul-
tiplication, to speed up the training of networks, which in
turn has enabled the size of networks to grow.

The compositional nature of neural networks means
that it is possible to understand at a very fundamental
level how a neural network operates. Providing a compre-
hensive description of this level of processing has been the
focus of this chapter. However, the compositional nature
of neural networks also raises a raft of questions in rela-
tion to how a network should be composed to solve a given
task, for example:

•	 Which activation functions should the neurons in a
network use?

•	 How many layers should there be in a network?

•	 How many neurons should there be in each layer?

•	 How should the neurons be connected together?

Unfortunately, many of these questions cannot be an-
swered at a level of pure principle. In machine learning
terminology, the types of concepts these questions are
about are known as hyperparameters, as distinct from
model parameters. The parameters of a neural network
are the weights on the edges, and these are set by training

100   chapter 3

the network using large datasets. By contrast, hyperpa-
rameters are the parameters of a model (in these cases,
the parameters of a neural network architecture) and/or
training algorithm that cannot be directly estimated from
the data but instead must be specified by the person cre-
ating the model, either through the use of heuristic rules,
intuition, or trial and error. Often, much of the effort that
goes into the creation of a deep learning network involves
experimental work to answer the questions in relation to
hyperparameters, and this process is known as hyperpa-
rameter tuning. The next chapter will review the history
and evolution of deep learning, and the challenges posed
by many of these questions are themes running through
the review. Subsequent chapters in the book will explore
how answering these questions in different ways can cre-
ate networks with very different characteristics, each
suited to different types of tasks. For example, recurrent
neural networks are best suited to processing sequential/
time-series data, whereas convolutional neural networks
were originally developed to process images. Both of these
network types are, however, built using the same funda-
mental processing unit, the artificial neuron; the differ-
ences in the behavior and abilities of these networks stems
from how these neurons are arranged and composed.

4

A BRIEF HISTORY OF
DEEP LEARNING

The history of deep learning can be described as three
major periods of excitement and innovation, interspersed
with periods of disillusionment. Figure 4.1 shows a time-
line of this history, which highlights these periods of ma-
jor research: on threshold logic units (early 1940s to the
mid 1960s), connectionism (early 1980s to mid-1990s),
and deep learning (mid 2000s to the present). Figure 4.1
distinguishes some of the primary characteristics of the
networks developed in each of these three periods. The
changes in these network characteristics highlight some
of the major themes within the evolution of deep learning,
including: the shift from binary to continuous values; the
move from threshold activation functions, to logistic and
tanh activation, and then onto ReLU activation; and the
progressive deepening of the networks, from single layer,

102   chapter 4

to multiple layer, and then onto deep networks. Finally,
the upper half of figure 4.1 presents some of the impor-
tant conceptual breakthroughs, training algorithms, and
model architectures that have contributed to the evolu-
tion of deep learning.

Figure 4.1 provides a map of the structure of this
chapter, with the sequence of concepts introduced in the
chapter generally following the chronology of this time-
line. The two gray rectangles in figure 4.1 represent the
development of two important deep learning network ar-
chitectures: convolutional neural networks (CNNs), and
recurrent neural networks (RNNs). We will describe the
evolution of these two network architectures in this chap-
ter, and chapter 5 will give a more detailed explanation of
how these networks work.

Early Research: Threshold Logic Units

In some of the literature on deep learning, the early neural
network research is categorized as being part of cybernet-
ics, a field of research that is concerned with developing
computational models of control and learning in biologi-
cal units. However, in figure 4.1, following the terminol-
ogy used in Nilsson (1965), this early work is categorized
as research on threshold logic units because this term
transparently describes the main characteristics of the

	 A Brief History of Deep Learning     103

Fi
gu

re
 4

.1
 

H
is

to
ry

 o
f D

ee
p

Le
ar

ni
ng

.

104   chapter 4

systems developed during this period. Most of the models
developed in the 1940s, ’50s, and ’60s processed Boolean
inputs (true/false represented as +1/-1 or 1/0) and gener-
ated Boolean outputs. They also used threshold activation
functions (introduced in chapter 3), and were restricted to
single-layer networks; in other words, they were restricted
to a single matrix of tunable weights. Frequently, the fo-
cus of this early research was on understanding whether
computational models based on artificial neurons had the
capacity to learn logical relations, such as conjunction or
disjunction.

In 1943, Walter McCulloch and Walter Pitts published
an influential computational model of biological neurons
in a paper entitled: “A Logical Calculus of the Ideas Im-
manent in Nervous Activity” (McCulloch and Pitts 1943).
The paper highlighted the all-or-none characteristic of
neural activity in the brain and set out to mathematically
describe neural activity in terms of a calculus of propo-
sitional logic. In the McCulloch and Pitts model, all the
inputs and the output to a neuron were either 0 or 1.
Furthermore, each input was either excitatory (having a
weight of +1) or inhibitory (having a weight of -1). A key
concept introduced in the McCulloch and Pitts model was
a summation of inputs followed by a threshold function
being applied to the result of the summation. In the sum-
mation, if an excitatory input was on, it added 1; if an in-
hibitory input was on, it subtracted 1. If the result of the

	 A Brief History of Deep Learning     105

summation was above a preset threshold, then the output
of the neuron was 1; otherwise, it output a 0. In the paper,
McCulloch and Pitts demonstrated how logical operations
(such as conjunction, disjunction, and negation) could be
represented using this simple model. The McCulloch and
Pitts model integrated the majority of the elements that
are present in the artificial neurons introduced in chapter
3. In this model, however, the neuron was fixed; in other
words the weights and threshold were set by han.

In 1949, Donald O. Hebb published a book entitled
The Organization of Behavior, in which he set out a neu-
ropsychological theory (integrating psychology and the
physiology of the brain) to explain general human be-
havior. The fundamental premise of the theory was that
behavior emerged through the actions and interactions
of neurons. For neural network research, the most im-
portant idea in this book was a postulate, now known as
Hebb’s postulate, which explained the creation of lasting
memory in animals based on a process of changes to the
connections between neurons:

When an axon of a cell A is near enough to excite
a cell B and repeatedly or persistently takes part
in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased.
(Hebb 1949, p. 62)

106   chapter 4

This postulate was important because it asserted that in-
formation was stored in the connections between neurons
(i.e., in the weights of a network), and furthermore that
learning occurred by changing these connections based
on repeated patterns of activation (i.e., learning can take
place within a network by changing the weights of the
network).

Rosenblatt’s Perceptron Training Rule
In the years following Hebb’s publication, a number of re-
searchers proposed computational models of neuron activ-
ity that integrated the Boolean threshold activation units
of McCulloch and Pitts, with a learning mechanism based
on adjusting the weights applied to the inputs. The best
known of these models was Frank Rosenblatt’s perceptron
model (Rosenblatt 1958). Conceptually, the perceptron
model can be understood as a neural network consisting
of a single artificial neuron that uses a threshold activa-
tion unit. Importantly, a perceptron network only has a
single layer of weights. The first implementation of a per-
ceptron was a software implementation on an IBM 704
system (and this was probably the first implementation
of any neural network). However, Rosenblatt always in-
tended the perceptron to be a physical machine and it was
later implemented in custom-built hardware known as the

“Mark 1 perceptron.” The Mark 1 perceptron received input
from a camera that generated a 400-pixel image that was

	 A Brief History of Deep Learning     107

passed into the machine via an array of 400 photocells
that were in turn connected to the neurons. The weights
on connections to the neurons were implemented using
adjustable electrical resistors known as potentiometers,
and weight adjustments were implemented by using elec-
tric motors to adjust the potentiometers.

Rosenblatt proposed an error-correcting training pro-
cedure for updating the weights of a perceptron so that it
could learn to distinguish between two classes of input:
inputs for which the perceptron should produce the out-
put y = +1, and inputs for which the perceptron should
produce the output y = −1 (Rosenblatt 1960). The train-
ing procedure assumes a set of Boolean encoded input pat-
terns, each with an associated target output. At the start
of training, the weights in the perceptron are initialized
to random values. Training then proceeds by iterating
through the training examples, and after each example
has been presented to the network, the weights of the net-
work are updated based on the error between the output
generated by the perceptron and the target output speci-
fied in the data. The training examples can be presented to
the network in any order and examples may be presented
multiple times before training is completed. A complete
training pass through the set of examples is known as an
iteration, and training terminates when the perceptron
correctly classifies all the examples in an iteration.

108   chapter 4

Rosenblatt defined a learning rule (known as the
perceptron training rule) to update each weight in a per-
ceptron after a training example has been processed. The
strategy the rule used to update the weights is the same as
the three-condition strategy we introduced in chapter 2 to
adjust the weights in the loan decision model:

1.	 If the output of the model for an example matches the
output specified for that example in the dataset, then
don’t update the weights.

2.	 If the output of the model is too low for the current
example, then increase the output of the model by
increasing the weights for the inputs that had positive
value for the example and decreasing the weights for the
inputs that had a negative value for the example.

3.	 If the output of the model is too high for the current
example, then reduce the output of the model by
decreasing the weights for the inputs that had a positive
value and increasing the weights for the inputs that had a
negative value for the example.

Written out in an equation, Rosenblatt’s learning rule
updates a weight i (wi) as:

w w y y xi
t

i
t t t

i
t+ = + × −()×()1 η ˆ

	 A Brief History of Deep Learning     109

In this rule, wi
t+1 is the value of weight i after the net-

work weights have been updated in response to the proc-
essing of example t, wi

t is the value of weight i used during
the processing of example t, η is a preset positive constant
(known as the learning rate, discussed below), yt is the ex-
pected output for example t as specified in the training
dataset, ŷt is the output generated by the perceptron for
example t, and xi

t is the component of input t that was
weighted by wi

t during the processing of the example.
Although it may look complex, the perceptron train-

ing rule is in fact just a mathematical specification of the
three-condition weight update strategy described above.
The primary part of the equation to understand is the
calculation of the difference between the expected output
and what the perceptron actually predicted: y yt t− ˆ . The
outcome of this subtraction tells us which of the three
update conditions we are in. In understanding how this
subtraction works, it is important to remember that for
a perceptron model the desired output is always either
y = +1 or y = −1. The first condition is when y yt t− =ˆ 0;
then the output of the perceptron is correct and the
weights are not changed.

The second weight update condition is when the out-
put of the perceptron is too large. This condition can only
be occur when the correct output for example t is yt = −1
and so this condition is triggered when y yt t− <ˆ 0. In
this case, if the perceptron output for the example t is

110   chapter 4

ŷ t = +1, then the error term is negative (y yt t− = −ˆ 2) and
the weight wi is updated by + × − ×()η 2 xi

t . Assuming, for
the purpose of this explanation, that η is set to 0.5, then
this weight update simplifies to −xi

t . In other words, when
the perceptron’s output is too large, the weight update
rule subtracts the input values from the weights. This will
decrease the weights on inputs with positive values for the
example, and increase the weights on inputs with negative
values for the example (subtracting a negative number is
the same as adding a positive number).

The third weight update condition is when the out-
put of the perceptron is too small. This weight update
condition is the exact opposite of the second. It can only
occur when yt = +1 and so is triggered when y yt t− >ˆ 0.
In this case (y yt t− =ˆ 2), and the weight is updated by
+ × ×()η 2 xi

t . Again assuming that η is set to 0.5, then
this update simplifies to +xi

t , which highlights that when
the error of the perceptron is positive, the rule updates
the weight by adding the input to the weight. This has the
effect of decreasing the weights on inputs with negative
values for the example and increasing the weight on in-
puts with positive values for the example.

At a number of points in the preceding paragraphs
we have referred to learning rate, η. The purpose of the
learning rate, η, is to control the size of the adjustments
that are applied to a weight. The learning rate is an ex-
ample of a hyperparameter that is preset before the model
is trained. There is a tradeoff in setting the learning rate:

	 A Brief History of Deep Learning     111

•	 If the learning rate is too small, it may take a very
long time for the training process to converge on an
appropriate set of weights.

•	 If the learning rate is too large, the network’s weights
may jump around the weight space too much and the
training may not converge at all.

One strategy for setting the learning rate is to set it to
a relatively small positive value (e.g., 0.01), and another
strategy is to initialize it to a larger value (e.g., 1.0)
but to systematically reduce it as the training progresses

(e.g., η ηt

t
+ = ×1 1 1

).

To make this discussion regarding the learning rate
more concrete, imagine you are trying to solve a puzzle
that requires you to get a small ball to roll into a hole. You
are able to control the direction and speed of the ball by
tilting the surface that the ball is rolling on. If you tilt the
surface too steeply, the ball will move very fast and is likely
to go past the hole, requiring you to adjust the surface
again, and if you overadjust you may end up repeatedly
tilting the surface. On the other hand, if you only tilt the
surface a tiny bit, the ball may not start to move at all, or it
may move very slowly taking a long time to reach the hole.
Now, in many ways the challenge of getting the ball to roll
into the hole is similar to the problem of finding the best
set of weights for a network. Think of each point on the

112   chapter 4

surface the ball is rolling across as a possible set of network
weights. The ball’s position at each point in time specifies
the current set of weights of the network. The position
of the hole specifies the optimal set of network weights for
the task we are training the network to complete. In this
context, guiding the network to the optimal set of weights
is analogous to guiding the ball to the hole. The learning
rate allows us to control how quickly we move across the
surface as we search for the optimal set of weights. If we set
the learning rate to a high value, we move quickly across
the surface: we allow large updates to the weights at each
iteration, so there are big differences between the network
weights in one iteration and the next. Or, using our rolling
ball analogy, the ball is moving very quickly, and just like
in the puzzle when the ball is rolling too fast and passes
the hole, our search process may be moving so fast that it
misses the optimal set of weights. Conversely, if we set the
learning rate to a low value, we move very slowly across
the surface: we only allow small updates to the weights at
each iteration; or, in other words, we only allow the ball
to move very slowly. With a low learning rate, we are less
likely to miss the optimal set of weights, but it may take
an inordinate amount of time to get to them. The strategy
of starting with a high learning rate and then systemati-
cally reducing it is equivalent to steeply tilting the puzzle
surface to get the ball moving and then reducing the tilt to
control the ball as it approaches the hole.

	 A Brief History of Deep Learning     113

Rosenblatt proved that if a set of weights exists that
enables the perceptron to properly classify all of the train-
ing examples correctly, the perceptron training algorithm
will eventually converge on this set of weights. This find-
ing is known as the perceptron convergence theorem
(Rosenblatt 1962). The difficulty with training a percep-
tron, however, is that it may require a substantial number
of iterations through the data before the algorithm con-
verges. Furthermore, for many problems it is unknown
whether an appropriate set of weights exists in advance;
consequently, if training has been going on for a long time,
it is not possible to know whether the training process is
simply taking a long time to converge on the weights and
terminate, or whether it will never terminate.

The Least Mean Squares Algorithm
Around the same time that Rosenblatt was developing the
perceptron, Bernard Widrow and Marcian Hoff were devel-
oping a very similar model called the ADALINE (short for
adaptive linear neuron), along with a learning rule called
the LMS (least mean square) algorithm (Widrow and Hoff
1960). An ADALINE network consists of a single neuron
that is very similar to a perceptron; the only difference is
that an ADALINE network does not use a threshold func-
tion. In fact, the output of an ADALINE network is the just
the weighted sum of the inputs. This is why it is known
as a linear neuron: a weighted sum is a linear function (it

114   chapter 4

defines a line), and so an ADALINE network implements
a linear mapping from inputs to output. The LMS rule is
nearly identical to the perceptron learning rule, except
that the output of the perceptron for a given example ŷt
is replaced by the weighted sum of the inputs:

w w y w x xi
t

i
t t

i
t

i

n

i
t

i
t+

=
= + × ×











×





− ∑1

0

η

The logic of the LMS update rule is the same as that
of the perceptron training rule. If the output is too large,
then weights that were applied to a positive input caused
the output to be larger, and these weights should be de-
creased, and those that were applied to a negative input
should be increased, thereby reducing the output the next
time this input pattern is received. And, by the same logic,
if the output is too small, then weights that were applied
to a positive input are increased and those that were ap-
plied to a negative input should be decreased.

One of the important aspects of Widrow and Hoff’s
work was to show that LMS rule could be used to train
network to predict a number of any value, not just a +1
or -1. This learning rule was called the least mean square
algorithm because using the LMS rule to iteratively ad-
just the weights in a neuron is equivalent to minimizing
the average squared error on the training set. Today, the
LMS learning rule is sometimes called the Widrow-Hoff

If the output of the
model is too large, then
weights associated with
positive inputs should
be reduced, whereas if
the output is too small,
then these weights
should be increased.

116   chapter 4

learning rule, after the inventors; however, it is more com-
monly called the delta rule because it uses the difference
(or delta) between desired output and the actual output
to calculate the weight adjustments. In other words, the
LMS rule specifies that a weight should be adjusted in pro-
portion to the difference between the output of an ADA-
LINE network and the desired output: if the neuron makes
a large error, then the weights are adjusted by a large
amount, if the neuron makes a small error, then weights
are adjusted by a small amount.

Today, the perceptron is recognized as important mile-
stone in the development of neural networks because it
was the first neural network to be implemented. However,
most modern algorithms for training neural networks are
more similar to the LMS algorithm. The LMS algorithm
attempts to minimize the mean squared error of the net-
work. As will be discussed in chapter 6, technically this
iterative error reduction process involves a gradient de-
scent down an error surface; and, today, nearly all neu-
ral networks are trained using some variant of gradient
descent.

The XOR Problem
The success of Rosenblatt, Widrow and Hoff, and others,
in demonstrating that neural network models could au-
tomatically learn to distinguish between different sets of
patterns, generated a lot of excitement around artificial

	 A Brief History of Deep Learning     117

intelligence and neural network research. However, in
1969, Marvin Minsky and Seymour Papert published a
book entitled Perceptrons, which, in the annals of neural
network research, is attributed with single-handedly de-
stroying this early excitement and optimism (Minsky and
Papert 1969). Admittedly, throughout the 1960s neural
network research had suffered from a lot of hype, and a
lack of success in terms of fulfilling the correspondingly
high expectations. However, Minsky and Papert’s book
set out a very negative view of the representational power
of neural networks, and after its publication funding for
neural network research dried up.

Minsky and Papert’s book primarily focused on single
layer perceptrons. Remember that a single layer percep-
tron is the same as a single neuron that uses a threshold
activation function, and so a single layer perceptron is re-
stricted to implementing a linear (straight-line) decision
boundary.1 This means that a single layer perceptron can
only learn to distinguish between two classes of inputs if
it is possible to draw a straight line in the input space that
has all of the examples of one class on one side of the line
and all examples of the other class on the other side of the
line. Minsky and Papert highlighted this restriction as a
weakness of these models.

To understand Minsky and Papert’s criticism of single
layer perceptrons, we must first understand the concept
of a linearly separable function. We will use a comparison

118   chapter 4

between the logical AND and OR functions with the logi-
cal XOR function to explain the concept of a linearly sepa-
rable function. The AND function takes two inputs, each
of which can be either TRUE or FALSE, and returns TRUE
if both inputs are TRUE. The plot on the left of figure 4.4
shows the input space for the AND function and catego-
rizes each of the four possible input combinations as ei-
ther resulting in an output value of TRUE (shown in the
figure by using a clear dot) or FALSE (shown in the figure
by using black dots). This plot illustrates that is possible
to draw a straight line between the inputs for which the
AND function returns TRUE, (T,T), and the inputs for
which the function returns FALSE, {(F,F), (F,T), (T,F)}.
The OR function is similar to the AND function, except
that it returns TRUE if either or both inputs are TRUE.
The middle plot in figure 4.4 shows that it is possible to
draw a line that separates the inputs that the OR function
classifies as TRUE, {(F,T), (T,F), (T,T)}, from those it clas-
sifies as FALSE, (F,F). It is because we can draw a single
straight line in the input space of these functions that
divides the inputs belonging to one category of output
from the inputs belonging to the other output category
that the AND and OR functions are linearly separable
functions.

The XOR function is also similar in structure to the
AND and OR functions; however, it only returns TRUE
if one (but not both) of its inputs are TRUE. The plot on

	 A Brief History of Deep Learning     119

the right of figure 4.2 shows the input space for the XOR
function and categorizes each of the four possible input
combinations as returning either TRUE (shown in the fig-
ure by using a clear dot) or FALSE (shown in the figure by
using black dots). Looking at this plot you will see that it is
not possible to draw a straight line between the inputs the
XOR function classifies as TRUE and those that it classi-
fies as FALSE. It is because we cannot use a single straight
line to separate the inputs belonging to different catego-
ries of outputs for the XOR function that this function is
said to be a nonlinearly separable function. The fact that
the XOR function is nonlinearly separable does not make
the function unique, or even rare—there are many func-
tions that are nonlinearly separable.

The key criticism that Minsky and Papert made of sin-
gle layer perceptrons was that these single layer models

Figure 4.2  Illustrations of the linearly separable function. In each figure,
black dots represent inputs for which the function returns FALSE, circles
represent inputs for which the function returns TRUE. (T stands for true and
F stands for false.)

120   chapter 4

were unable to learn nonlinearly separable functions, such
as the XOR function. The reason for this limitation is that
the decision boundary of a perceptron is linear and so a
single layer perceptron cannot learn to distinguish be-
tween the inputs that belong to one output category of a
nonlinearly separable function from those that belong to
the other category.

It was known at the time of Minsky and Papert’s
publication that it was possible to construct neural net-
works that defined a nonlinear decision boundary, and
thus learn nonlinearly separable functions (such as the
XOR function). The key to creating networks with more
complex (nonlinear) decision boundaries was to extend
the network to have multiple layers of neurons. For ex-
ample, figure 4.3 shows a two-layer network that imple-
ments the XOR function. In this network, the logical
TRUE and FALSE values are mapped to numeric values:
FALSE values are represented by 0, and TRUE values are
represented by 1. In this network, units activate (out-
put +1) if the weighted sum of inputs is ≥ 1; otherwise,
they output 0. Notice that the units in the hidden layer
implement the logical AND and OR functions. These can
be understood as intermediate steps to solving the XOR
challenge. The unit in the output layer implements the
XOR by composing the outputs of these hidden layers. In
other words, the unit in the output layer returns TRUE
only when the AND node is off (output=0) and the OR

	 A Brief History of Deep Learning     121

Figure 4.3  A network that implements the XOR function. All processing
units use a threshold activation function with a threshold of ≥ 1.

node is on (output=1). However, it wasn’t clear at the time
how to train networks with multiple layers. Also, at the
end of their book, Minsky and Papert argued that “in their
judgment” the research on extending neural networks
to multiple layers was “sterile” (Minsky and Papert 1969,
sec. 13.2 page 23).

In a somewhat ironic historical twist, contempo-
raneous with Minsky and Papert’s publication, Alexey
Ivakhnenko, a Ukrainian researcher, proposed the group
method for data handling (GMDH), and in 1971 published

122   chapter 4

a paper that described how it could be used to learn a neu-
ral network with eight layers (Ivakhnenko 1971). Today
Ivakhnenko’s 1971 GMDH network is credited with be-
ing the first published example of a deep network trained
from data (Schmidhuber 2015). However, for many years,
Ivaknenko’s accomplishment was largely overlooked by the
wider neural network community. As a consequence, very
little of the current work in deep learning uses the GMDH
method for training: in the intervening years other train-
ing algorithms, such as backpropagation (described below),
became standardized in the community. At the same time
of Ivakhnenko’s overlooked accomplishment, Minsky
and Papert’s critique was proving persuasive and it her-
alded the end of the first period of significant research on
neural networks.

This first period of neural network research, did, how-
ever, leave a legacy that shaped the development of the
field up to the present day. The basic internal structure
of an artificial neuron was defined: a weighted sum of in-
puts fed through an activation function. The concept of
storing information within the weights of a network was
developed. Furthermore, learning algorithms based on
iteratively adapting weights were proposed, along with
practical learning rules, such as the LMS rule. In particu-
lar, the LMS approach, of adjusting the weights of neu-
rons in proportion to the difference between the output
of the neuron and the desired output, is present in most

	 A Brief History of Deep Learning     123

modern training algorithms. Finally, there was recogni-
tion of the limitations of single layer networks, and an
understanding that one way to address these limitations
was to extend the networks to include multiple layers of
neurons. At this time, however, it was unclear how to train
networks with multiple layers. Updating a weight requires
an understanding of how the weight affects the error of
the network. For example, in the LMS rule if the output of
the neuron was too large, then weights that were applied
to positive inputs caused the output to increase. There-
fore, decreasing the size of these weight would reduce the
output and thereby reduce the error. But, in the late 1960s,
the question of how to model the relationship between the
weights of the inputs to neurons in the hidden layers of
a network and the overall error of the network was still
unanswered; and, without this estimation of the contri-
bution of the weight to the error, it was not possible to
adjust the weights in the hidden layers of a network. The
problem of attributing (or assigning) an amount of error
to the components in a network is sometimes referred to
as the credit assignment problem, or as the blame assign-
ment problem.

Connectionism: Multilayer Perceptrons

In the 1980s, people began to reevaluate the criticisms of
the late 1960s as being overly severe. Two developments,

124   chapter 4

in particular, reinvigorated the field: (1) Hopfield net-
works; and (2) the backpropagation algorithm.

In 1982, John Hopfield published a paper where he
described a network that could function as an associative
memory (Hopfield 1982). During training, an associative
memory learns a set of input patterns. Once the associate
memory network has been trained, then, if a corrupted
version of one of the input patterns is presented to the
network, the network is able to regenerate the complete
correct pattern. Associative memories are useful for a
number of tasks, including pattern completion and error
correction. Table 4.12 illustrates the tasks of pattern com-
pletion and error correction using the example of an asso-
ciative memory that has been trained to store information
on people’s birthdays. In a Hopfield network, the memo-
ries, or input patterns, are encoded in binary strings; and,

Table 4.1.  Illustration of the uses of an association
memory for pattern completion and error correction

Training patterns Pattern completion

John**12May Liz***????? → Liz***25Feb

Kerry*03Jan ???***10Mar → Des***10Mar

Liz***25Feb Error correction

Des***10Mar Kerry*01Apr → Kerry*03Jan

Josef*13Dec Jxsuf*13Dec → Josef*13Dec

	 A Brief History of Deep Learning     125

assuming binary patterns are relatively distinct from each
other, a Hopfield network can store up to 0.138N of these
strings, where N is the number of neurons in the network.
So to store 10 distinct patterns requires a Hopfield net-
work with 73 neurons, and to store 14 distinct patterns
requires 100 neurons.

Backpropagation and Vanishing Gradients
In 1986, a group of researchers known as the parallel
distributed processing (PDP) research group published a
two-book overview of neural network research (Rumel-
hart et al. 1986b, 1986c). These books proved to be in-
credibly popular, and chapter 8 in volume one described
the backpropagation algorithm (Rumelhart et al. 1986a).
The backpropagation algorithm has been invented a num-
ber of times,3 but it was this chapter by Rumelhart, Hin-
ton, and Williams, published by PDP, that popularized
its use. The backpropagation algorithm is a solution to
the credit assignment problem and so it can be used to
train a neural network that has hidden layers of neurons.
The backpropagation algorithm is possibly the most im-
portant algorithm in deep learning. However, a clear and
complete explanation of the backpropagation algorithm
requires first explaining the concept of an error gradient,
and then the gradient descent algorithm. Consequently,
the in-depth explanation of backpropagation is post-
poned until chapter 6, which begins with an explanation

126   chapter 4

of these necessary concepts. The general structure of the
algorithm, however, can be described relatively quickly.
The backpropagation algorithm starts by assigning ran-
dom weights to each of the connections in the network.
The algorithm then iteratively updates the weights in the
network by showing training instances to the network and
updating the network weights until the network is work-
ing as expected. The core algorithm works in a two-stage
process. In the first stage (known as the forward pass), an
input is presented to the network and the neuron activa-
tions are allowed to flow forward through the network un-
til an output is generated. The second stage (known as the
backward pass) begins at the output layer and works back-
ward through the network until the input layer is reached.
This backward pass begins by calculating an error for each
neuron in the output layer. This error is then used to up-
date the weights of these output neurons. Then the error
of each output neuron is shared back (backpropagated) to
the hidden neurons that connect to it, in proportion to
the weights on the connections between the output neu-
ron and the hidden neuron. Once this sharing (or blame
assignment) has been completed for a hidden neuron, the
total blame attributable to that hidden neuron is summed
and this total is used to update the weights on that neuron.
The backpropagation (or sharing back) of blame is then
repeated for the neurons that have not yet had blame at-
tributed to them. This process of blame assignment and

	 A Brief History of Deep Learning     127

weight updates continues back through the network until
all the weights have been updated.

A key innovation that enabled the backpropagation al-
gorithm to work was a change in the activation functions
used in the neurons. The networks that were developed
in the early years of neural network research used thresh-
old activation functions. The backpropagation algorithm
does not work with threshold activation functions be-
cause backpropagation requires that the activation func-
tions used by the neurons in the network be differentiable.
Threshold activation functions are not differentiable be-
cause there is a discontinuity in the output of the function
at the threshold. In other words, the slope of a threshold
function at the threshold is infinite and therefore it is not
possible to calculate the gradient of the function at that
point. This led to the use of differentiable activation func-
tions in multilayer neural networks, such as the logistic
and tanh functions.

There is, however, an inherent limitation with using
the backpropagation algorithm to train deep networks.
In the 1980s, researchers found that backpropagation
worked well with relatively shallow networks (one or two
layers of hidden units), but that as the networks got deeper,
the networks either took an inordinate amount of time to
train, or else they entirely failed to converge on a good set
of weights. In 1991, Sepp Hochreiter (working with Jürgen
Schmidhuber) identified the cause of this problem in his

128   chapter 4

diploma thesis (Hochreiter 1991). The problem is caused
by the way the algorithm backpropagates errors. Fun-
damentally, the backpropagation algorithm is an imple-
mentation of the chain rule from calculus. The chain rule
involves the multiplication of terms, and backpropagat-
ing an error from one neuron back to another can involve
multiplying the error by a number terms with values less
than 1. These multiplications by values less than 1 happen
repeatedly as the error signal gets passed back through the
network. This results in the error signal becoming smaller
and smaller as it is backpropagated through the network.
Indeed, the error signal often diminishes exponentially
with respect to the distance from the output layer. The
effect of this diminishing error is that the weights in the
early layers of a deep network are often adjusted by only
a tiny (or zero) amount during each training iteration. In
other words, the early layers either train very, very slowly
or do not move away from their random starting positions
at all. However, the early layers in a neural network are
vitally important to the success of the network, because
it is the neurons in these layers that learn to detect the
features in the input that the later layers of the network
use as the fundamental building blocks of the representa-
tions that ultimately determine the output of the network.
For technical reasons, which will be explained in chapter
6, the error signal that is backpropagated through the net-
work is in fact the gradient of the error of the network,

	 A Brief History of Deep Learning     129

and, as a result, this problem of the error signal rapidly di-
minishing to near zero is known as the vanishing gradient
problem.

Connectionism and Local versus Distributed
Representations
Despite the vanishing gradient problem, the backpropa-
gation algorithm opened up the possibility of training
more complex (deeper) neural network architectures.
This aligned with the principle of connectionism. Connec-
tionism is the idea that intelligent behavior can emerge
from the interactions between large numbers of simple
processing units. Another aspect of connectionism was
the idea of a distributed representation. A distinction can
be made in the representations used by neural networks
between localist and distributed representations. In a lo-
calist representation there is a one-to-one correspondence
between concepts and neurons, whereas in a distributed
representation each concept is represented by a pattern
of activations across a set of neurons. Consequently, in a
distributed representation each concept is represented by
the activation of multiple neurons and the activation of
each neuron contributes to the representation of multiple
concepts.

To illustrate the distinction between localist and dis-
tributed representations, consider a scenario where (for
some unspecified reason) a set of neuron activations is

In a distributed
representation each
concept is represented
by the activation of
multiple neurons and
the activation of each
neuron contributes to
the representation of
multiple concepts.

	 A Brief History of Deep Learning     131

being used to represent the absence or presence of dif-
ferent foods. Furthermore, each food has two properties,
the country of origin of the recipe and its taste. The pos-
sible countries of origin are: Italy, Mexico, or France; and,
the set of possible tastes are: Sweet, Sour, or Bitter. So, in
total there are nine possible types of food: Italian+Sweet,
Italian+Sour, Italian+Bitter, Mexican+Sweet, etc. Using a
localist representation would require nine neurons, one
neuron per food type. There are, however, a number of
ways to define a distributed representation of this do-
main. One approach is to assign a binary number to each
combination. This representation would require only four
neurons, with the activation pattern 0000 representing
Italian+Sweet, 0001 representing Italian+Sour, 0010 rep-
resenting Italian+Bitter, and so on up to 1000 represent-
ing French+Bitter. This is a very compact representation.
However, notice that in this representation the activation
of each neuron in isolation has no independently mean-
ingful interpretation: the rightmost neuron would be ac-
tive (***1) for Italian+Sour, Mexican+Sweet, Mexican+Bitter,
and France+Sour, and without knowledge of the activa-
tion of the other neurons, it is not possible know what
country or taste is being represented. However, in a
deep network the lack of semantic interpretability of the
activations of hidden units is not a problem, so long as
the neurons in the output layer of the network are able
to combine these representations in such a way so as to

132   chapter 4

generate the correct output. Another, more transparent,
distributed representation of this food domain is to use
three neurons to represent the countries and three neu-
rons to represent the tastes. In this representation, the
activation pattern 100100 could represent Italian+Sweet,
001100 could represent French+Sweet, and 001001 could
represent French+Bitter. In this representation, the acti-
vation of each neuron can be independently interpreted;
however the distribution of activations across the set of
neurons is required in order to retrieve the full description
of the food (country+taste). Notice, however, that both of
these distributed representations are more compact than
the localist representation. This compactness can signifi-
cantly reduce the number of weights required in a network,
and this in turn can result in faster training times for the
network.

The concept of a distributed representation is very
important within deep learning. Indeed, there is a good
argument that deep learning might be more appropriately
named representation learning—the argument being that
the neurons in the hidden layers of a network are learning
distributed representations of the input that are useful in-
termediate representations in the mapping from inputs to
outputs that the network is attempting to learn. The task
of the output layer of a network is then to learn how to
combine these intermediate representations so as to gen-
erate the desired outputs. Consider again the network in

	 A Brief History of Deep Learning     133

figure 4.3 that implements the XOR function. The hidden
units in this network learn an intermediate representa-
tion of the input, which can be understood as composed
of the AND and OR functions; the output layer then com-
bines this intermediate representation to generate the
required output. In a deep network with multiple hidden
layers, each subsequent hidden layer can be interpreted as
learning a representation that is an abstraction over the
outputs of the preceding layer. It is this sequential abstrac-
tion, through learning intermediate representations, that
enables deep networks to learn such complex mappings
from inputs to outputs.

Network Architectures: Convolutional and Recurrent
Neural Networks
There are a considerable number of ways in which a set
of neurons can be connected together. The network ex-
amples presented so far in the book have been connected
together in a relatively uncomplicated manner: neurons
are organized into layers and each neuron in a layer is di-
rectly connected to all of the neurons in the next layer of
the network. These networks are known as feedforward
networks because there are no loops within the network
connections: all the connections point forward from the
input toward the output. Furthermore, all of our net-
work examples thus far would be considered to be fully
connected, because each neuron is connected to all the

134   chapter 4

neurons in the next layer. It is possible, and often use-
ful, to design and train networks that are not feedforward
and/or that are not fully connected. When done correctly,
tailoring network architectures can be understood as em-
bedding into the network architecture information about
the properties of the problem that the network is trying
to learn to model.

A very successful example of incorporating domain
knowledge into a network by tailoring the networks ar-
chitecture is the design of convolutional neural networks
(CNNs) for object recognition in images. In the 1960s,
Hubel and Wiesel carried out a series of experiments on
the visual cortex of cats (Hubel and Wiesel 1962, 1965).
These experiments used electrodes inserted into the
brains of sedated cats to study the response of the brain
cells as the cats were presented with different visual stim-
uli. Examples of the stimuli used included bright spots or
lines of light appearing at a location in the visual field, or
moving across a region of the visual field. The experiments
found that different cells responded to different stimuli at
different locations in the visual field: in effect a single cell
in the visual cortex would be wired to respond to a par-
ticular type of visual stimulus occurring within a particu-
lar region of the visual field. The region of the visual field
that a cell responded to was known as the receptive field
of the cell. Another outcome of these experiments was the
differentiation between two types of cells: “simple” and

	 A Brief History of Deep Learning     135

“complex.” For simple cells, the location of the stimulus is
critical with a slight displacement of the stimulus resulting
in a significant reduction in the cell’s response. Complex
cells, however, respond to their target stimuli regardless
of where in the field of vision the stimulus occurs. Hubel
and Wiesel (1965) proposed that complex cells behaved as
if they received projections from a large number of simple
cells all of which respond to the same visual stimuli but
differing in the position of their receptive fields. This hi-
erarchy of simple cells feeding into complex cells results
in funneling of stimuli from large areas of the visual field,
through a set of simple cells, into a single complex cell. Fig-
ure 4.4 illustrates this funneling effect. This figure shows
a layer of simple cells each monitoring a receptive field at
a different location in the visual field. The receptive field
of the complex cell covers the layer of simple cells, and

Visual
field Layer of

simple cells

Complex
cell

Figure 4.4  The funneling effect of receptive fields created by the hierarchy
of simple and complex cells.

136   chapter 4

this complex cell activates if any of the simple cells in its
receptive field activates. In this way the complex cell can
respond to a visual stimulus if it occurs at any location
in the visual field.

In the late 1970s and early 1980s, Kunihiko Fuku-
shima was inspired by Hubel and Wiesel’s analysis of the
visual cortex and developed a neural network architecture
for visual pattern recognition that was called the neocog-
nitron (Fukushima 1980). The design of the neocognitron
was based on the observation that an image recogni-
tion network should be able to recognize if a visual fea-
ture is present in an image irrespective of location in the
image—or, to put it slightly more technically, the network
should be able to do spatially invariant visual feature de-
tection. For example, a face recognition network should
be able to recognize the shape of an eye no matter where
in the image it occurs, similar to the way a complex cell
in Hubel and Wiesel’s hierarchical model could detect the
presence of a visual feature irrespective of where in the
visual field it occurred.

Fukushima realized that the functioning of the simple
cells in the Hubel and Wiesel hierarchy could be replicated
in a neural network using a layer of neurons that all use
the same set of weights, but with each neuron receiving in-
puts from fixed small regions (receptive fields) at different
locations in the input field. To understand the relationship
between neurons sharing weights and spatially invariant

	 A Brief History of Deep Learning     137

visual feature detection, imagine a neuron that receives a
set of pixel values, sampled from a region of an image, as
its inputs. The weights that this neuron applies to these
pixel values define a visual feature detection function that
returns true (high activation) if a particular visual feature
(pattern) occurs in the input pixels, and false otherwise.
Consequently, if a set of neurons all use the same weights,
they will all implement the same visual feature detector. If
the receptive fields of these neurons are then organized
so that together they cover the entire image, then if the
visual feature occurs anywhere in the image at least one of
the neurons in the group will identify it and activate.

Fukushima also recognized that the Hubel and Wiesel
funneling effect (into complex cells) could be obtained by
neurons in later layers also receiving as input the outputs
from a fixed set of neurons in a small region of the preced-
ing layer. In this way, the neurons in the last layer of the
network each receive inputs from across the entire input
field allowing the network to identify the presence of a
visual feature anywhere in the visual input.

Some of the weights in neocognitron were set by hand,
and others were set using an unsupervised training pro-
cess. In this training process, each time an example is pre-
sented to the network a single layer of neurons that share
the same weights is selected from the layers that yielded
large outputs in response to the input. The weights of the
neurons in the selected layer are updated so as to reinforce

138   chapter 4

their response to that input pattern and the weights of
neurons not in the layer are not updated. In 1989 Yann
LeCun developed the convolutional neural network (CNN)
architecture specifically for the task of image processing
(LeCun 1989). The CNN architecture shared many of
the design features found in the neocognitron; however,
LeCun showed how these types of networks could be
trained using backpropagation. CNNs have proved to be
incredibly successful in image processing and other tasks.
A particularly famous CNN is the AlexNet network, which
won the ImageNet Large-Scale Visual Recognition Chal-
lenge (ILSVRC) in 2012 (Krizhevsky et al. 2012). The goal
of the ILSVRC competition is to identify objects in pho-
tographs. The success of AlexNet at the ILSVRC competi-
tion generated a lot of excitement about CNNs, and since
AlexNet a number of other CNN architectures have won
the competition. CNNs are one of the most popular types
of deep neural networks, and chapter 5 will provide a more
detailed explanation of them.

Recurrent neural networks (RNNs) are another ex-
ample of a neural network architecture that has been tai-
lored to the specific characteristics of a domain. RNNs are
designed to process sequential data, such as language. An
RNN network processes a sequence of data (such as a sen-
tence) one input at a time. An RNN has only a single hid-
den layer. However, the output from each of these hidden
neurons is not only fed forward to the output neurons, it

	 A Brief History of Deep Learning     139

is also temporarily stored in a buffer and then fed back
into all of the hidden neurons at the next input. Conse-
quently, each time the network processes an input, each
neuron in the hidden layer receives both the current input
and the output the hidden layer generated in response to
the previous input. In order to understand this explana-
tion, it may at this point be helpful to briefly skip forward
to figure 5.2 to see an illustration of the structure of an
RNN and the flow of information through the network.
This recurrent loop, of activations from the output of the
hidden layer for one input being fed back into the hidden
layer alongside the next input, gives an RNN a memory
that enables it to process each input in the context of the
previous inputs it has processed.4 RNNs are considered
deep networks because this evolving memory can be con-
sidered as deep as the sequence is long.

An early well-known RNN is the Elman network. In
1990, Jeffrey Locke Elman published a paper that de-
scribed an RNN that had been trained to predict the end-
ings of simple two- and three-word utterances (Elman
1990). The model was trained on a synthesized dataset
of simple sentences generated using an artificial gram-
mar. The grammar was built using a lexicon of twenty-
three words, with each word assigned to a single lexical
category (e.g., man=NOUN-HUM, woman=NOUN-HUM,
eat=VERB-EAT, cookie=NOUN-FOOD, etc.). Using this
lexicon, the grammar defined fifteen sentence generation

140   chapter 4

templates (e.g., NOUN-HUM+VERB-EAT+NOUN-FOOD
which would generate sentences such as man eat cookie).
Once trained, the model was able to generate reason-
able continuations for sentences, such as woman+eat+? =
cookie. Furthermore, once the network was started, it was
able to generate longer strings consisting of multiple sen-
tences, using the context it generated itself as the input
for the next word, as illustrated by this three-sentence
example:

girl eat bread dog move mouse mouse move book

Although this sentence generation task was applied
to a very simple domain, the ability of the RNN to gener-
ate plausible sentences was taken as evidence that neural
networks could model linguistic productivity without re-
quiring explicit grammatical rules. Consequently, Elman’s
work had a huge impact on psycholinguistics and psychol-
ogy. The following quote, from Churchland 1996, illus-
trates the importance that some researchers attributed to
Elman’s work:

The productivity of this network is of course a feeble
subset of the vast capacity that any normal English
speaker commands. But productivity is productivity,
and evidently a recurrent network can possess
it. Elman’s striking demonstration hardly settles

	 A Brief History of Deep Learning     141

the issue between the rule-centered approach to
grammar and the network approach. That will be
some time in working itself out. But the conflict is
now an even one. I’ve made no secret where my own
bets will be placed. (Churchland 1996, p. 143)5

Although RNNs work well with sequential data, the
vanishing gradient problem is particularly severe in these
networks. In 1997, Sepp Hochreiter and Jürgen Schmid-
huber, the researchers who in 1991 had presented an ex-
planation of the vanishing gradient problem, proposed
the long short-term memory (LSTM) units as a solution
to this problem in RNNs (Hochreiter and Schmidhuber
1997). The name of these units draws on a distinction be-
tween how a neural network encodes long-term memory
(understood as concepts that are learned over a period of
time) through training and short-term memory (under-
stood as the response of the system to immediate stim-
uli). In a neural network, long-term memory is encoded
through adjusting the weights of the network and once
trained these weights do not change. Short-term memory
is encoded in a network through the activations that flow
through the network and these activation values decay
quickly. LSTM units are designed to enable the short-term
memory (the activations) in the network to be propagated
over long periods of time (or sequences of inputs). The
internal structure of an LSTM is relatively complex, and

142   chapter 4

we will describe it in chapter 5. The fact that LSTM can
propagate activations over long periods enables them to
process sequences that include long-distance dependen-
cies (interactions between elements in a sequence that
are separated by two or more positions). For example,
the dependency between the subject and the verb in an
English sentence: The dog/dogs in that house is/are aggres-
sive. This has made LSTM networks suitable for language
processing, and for a number of years they have been the
default neural network architecture for many natural
language processing models, including machine transla-
tion. For example, the sequence-to-sequence (seq2seq)
machine translation architecture introduced in 2014 con-
nects two LSTM networks in sequence (Sutskever et al.
2014). The first LSTM network, the encoder, processes
the input sequence one input at a time, and generates a
distributed representation of that input. The first LSTM
network is called an encoder because it encodes the se-
quence of words into a distributed representation. The
second LSTM network, the decoder, is initialized with the
distributed representation of the input and is trained to
generate the output sequence one element at a time us-
ing a feedback loop that feeds the most recent output ele-
ment generated by the network back in as the input for
the next time step. Today, this seq2seq architecture is the
basis for most modern machine translation systems, and
is explained in more detail in chapter 5.

	 A Brief History of Deep Learning     143

By the late 1990s, most of the conceptual require-
ments for deep learning were in place, including both the
algorithms to train networks with multiple layers, and
the network architectures that are still very popular today
(CNNs and RNNs). However, the problem of the vanishing
gradients still stifled the creation of deep networks. Also,
from a commercial perspective, the 1990s (similar to the
1960s) experienced a wave of hype based on neural net-
works and unrealized promises. At the same time, a num-
ber of breakthroughs in other forms of machine learning
models, such as the development of support vector ma-
chines (SVMs), redirected the focus of the machine learn-
ing research community away from neural networks: at
the time SVMs were achieving similar accuracy to neural
network models but were easier to train. Together these
factors led to a decline in neural network research that
lasted up until the emergence of deep learning.

The Era of Deep Learning

The first recorded use of the term deep learning is credited
to Rina Dechter (1986), although in Dechter’s paper the
term was not used in relation to neural networks; and the
first use of the term in relation to neural networks is cred-
ited to Aizenberg et al. (2000).6 In the mid-2000s, inter-
est in neural networks started to grow, and it was around

144   chapter 4

this time that the term deep learning came to prominence
to describe deep neural networks. The term deep learn-
ing is used to emphasize the fact that the networks being
trained are much deeper than previous networks.

One of the early successes of this new era of neural
network research was when Geoffrey Hinton and his col-
leagues demonstrated that it was possible to train a deep
neural network using a process known as greedy layer-
wise pretraining. Greedy layer-wise pretraining begins by
training a single layer of neurons that receives input di-
rectly from the raw input. There are a number of different
ways that this single layer of neurons can be trained, but
one popular way is to use an autoencoder. An autoencoder
is a neural network with three layers: an input layer, a hid-
den (encoding) layer, and an output (decoding) layer. The
network is trained to reconstruct the inputs it receives in
the output layer; in other words, the network is trained
to output the exact same values that it received as input.
A very important feature in these networks is that they
are designed so that it is not possible for the network to
simply copy the inputs to the outputs. For example, an
autoencoder may have fewer neurons in the hidden layer
than in the input and output layer. Because the autoen-
coder is trying to reconstruct the input at the output layer,
the fact that the information from the input must pass
through this bottleneck in the hidden layer forces the au-
toencoder to learn an encoding of the input data in the

	 A Brief History of Deep Learning     145

hidden layer that captures only the most important fea-
tures in the input, and disregards redundant or superflu-
ous information.7

Layer-Wise Pretraining Using Autoencoders
In layer-wise pretraining, the initial autoencoder learns an
encoding for the raw inputs to the network. Once this en-
coding has been learned, the units in the hidden encoding
layer are fixed, and the output (decoding) layer is thrown
away. Then a second autoencoder is trained—but this
autoencoder is trained to reconstruct the representation
of the data generated by passing it through the encoding
layer of the initial autoencoder. In effect, this second au-
toencoder is stacked on top of the encoding layer of the
first autoencoder. This stacking of encoding layers is con-
sidered to be a greedy process because each encoding layer
is optimized independently of the later layers; in other
words, each autoencoder focuses on finding the best solu-
tion for its immediate task (learning a useful encoding for
the data it must reconstruct) rather than trying to find a
solution to the overall problem for the network.

Once a sufficient number8 of encoding layers have
been trained, a tuning phase can be applied. In the tuning
phase, a final network layer is trained to predict the tar-
get output for the network. Unlike the pretraining of the
earlier layers of the network, the target output for the fi-
nal layer is different from the input vector and is specified

146   chapter 4

in the training dataset. The simplest tuning is where the
pretrained layers are kept frozen (i.e., the weights in the
pretrained layers don’t change during the tuning); how-
ever, it is also feasible to train the entire network during
the tuning phase. If the entire network is trained during
tuning, then the layer-wise pretraining is best understood
as finding useful initial weights for the earlier layers in the
network. Also, it is not necessary that the final prediction
model that is trained during tuning be a neural network.
It is quite possible to take the representations of the data
generated by the layer-wise pretraining and use it as the
input representation for a completely different type of
machine learning algorithm, for example, a support vector
machine or a nearest neighbor algorithm. This scenario is
a very transparent example of how neural networks learn
useful representations of data prior to the final prediction
task being learned. Strictly speaking, the term pretraining
describes only the layer-wise training of the autoencoders;
however, the term is often used to refer to both the layer-
wise training stage and the tuning stage of the model.

Figure 4.5 shows the stages in layer-wise pretraining.
The figure on the left illustrates the training of the initial
autoencoder where an encoding layer (the black circles) of
three units is attempting to learn a useful representation
for the task of reconstructing an input vector of length 4.
The figure in the middle of figure 4.5 shows the training of
a second autoencoder stacked on top of the encoding layer

	 A Brief History of Deep Learning     147

of the first autoencoder. In this autoencoder, a hidden
layer of two units is attempting to learn an encoding for an
input vector of length 3 (which in turn is an encoding of a
vector of length 4). The grey background in each figure de-
marcates the components in the network that are frozen
during this training stage. The figure on the right shows
the tuning phase where a final output layer is trained to
predict the target feature for the model. For this example,
in the tuning phase the pretrained layers in the network
have been frozen.

Layer-wise pretraining was important in the evolu-
tion of deep learning because it was the first approach
to training deep networks that was widely adopted.9
However, today most deep learning networks are trained

A1 A2 A3 A4

B2 B4 B6

A1 A2 A3 A4

Pretraining layer B

B1 B2 B3

C3 C5

B1 B2 B3

A1 A2 A3 A4

Pretraining layer C

D4

C1 C2

B1 B2 B3

A1 A2 A3 A4

Tuning

Target output

Figure 4.5  The pretraining and tuning stages in greedy layer-wise
pretraining. Black circles represent the neurons whose training is the primary
objective at each training stage. The gray background marks the components
in the network that are frozen during each training stage.

148   chapter 4

without using layer-wise pretraining. In the mid-2000s,
researchers began to appreciate that the vanishing gra-
dient problem was not a strict theoretical limit, but was
instead a practical obstacle that could be overcome. The
vanishing gradient problem does not cause the error gra-
dients to disappear entirely; there are still gradients being
backpropagated through the early layers of the network, it
is just that they are very small. Today, there are a number
of factors that have been identified as important in suc-
cessfully training a deep network.

Weight Initialization and ReLU Activation Functions
One factor that is important in successfully training a
deep network is how the network weights are initialized.
The principles controlling how weight initialization af-
fects the training of a network are still not clear. There
are, however, weight initialization procedures that have
been empirically shown to help with training a deep net-
work. Glorot initialization10 is a frequently used weight
initialization procedure for deep networks. It is based on
a number of assumptions but has empirical success to sup-
port its use. To get an intuitive understanding of Glorot
initialization, consider the fact that there is typically a re-
lationship between the magnitude of values in a set and
the variance of the set: generally the larger the values in
a set, the larger the variance of the set. So, if the variance
calculated on a set of gradients propagated through a layer

In the mid-2000s,
researchers began to
appreciate that the
vanishing gradient
problem was not a strict
theoretical limit, but
was instead a practical
obstacle that could be
overcome.

150   chapter 4

at one point in the network is similar to the variance for
the set of gradients propagated through another layer in
a network, it is likely that the magnitude of the gradients
propagated through both of these layers will also be simi-
lar. Furthermore, the variance of gradients in a layer can
be related to the variance of the weights in the layer, so a
potential strategy to maintain gradients flowing through
a network is to ensure similar variances across each of the
layer in a network. Glorot initialization is designed to ini-
tialize the weight in a network in such a way that all of the
layers in a network will have a similar variance in terms
of both forward pass activations and the gradients propa-
gated during the backward pass in backpropagation. Glo-
rot initialization defines a heuristic rule to meet this goal
that involves sampling the weights for a network using the
following uniform distribution (where w is the weight on a
connection between layer j and j+i that is being initialized,
U[-a,a] is the uniform distribution over the interval (-a,a),
nj is the number of neurons in layer j, and the notation w

~ U indicates that the value of w is sampled from distribu-
tion U)11:

w ∼ U
n n n nj j j j

−
+ +











+ +

6 6

1 1

,

Another factor that contributes to the success or
failure of training a deep network is the selection of the

	 A Brief History of Deep Learning     151

activation function used in the neurons. Backpropagating
an error gradient through a neuron involves multiplying
the gradient by the value of the derivative of the activation
function at the activation value of the neuron recorded
during the forward pass. The derivatives of the logistic
and tanh activation functions have a number of properties
that can exacerbate the vanishing gradient problem if they
are used in this multiplication step. Figure 4.6 presents a
plot of the logistic function and the derivative of the logis-
tic function. The maximum value of the derivative is 0.25.
Consequently, after an error gradient has been multiplied

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z

Ac
tiv

at
io

n(
z)

Logistic(z)

∂ logistic(z)
∂ z

max = 0.25

saturated = 0 saturated = 0

Figure 4.6  Plots of the logistic function and the derivative of the logistic
function.

152   chapter 4

by the value of the derivative of the logistic function at
the appropriate activation for the neuron, the maximum
value the gradient will have is a quarter of the gradient
prior to the multiplication. Another problem with using
the logistic function is that there are large portions of the
domain of the function where the function is saturated
(returning values that very close to 0 or 1), and the rate
of change of the function in these regions is near zero;
thus, the derivative of the function is near 0. This is an
undesirable property when backpropagating error gradi-
ents because the error gradients will be forced to zero (or
close to zero) when backpropagated through any neuron
whose activation is within one of these saturated regions.
In 2011 it was shown that switching to a rectified linear
activation function, g x x() = ()max ,0 , improved training
for deep feedforward neural networks (Glorot et al. 2011).
Neurons that use a rectified linear activation function are
known as rectified linear units (ReLUs). One advantage
of ReLUs is that the activation function is linear for the
positive portion of its domain with a derivative equal to 1.
This means that gradients can flow easily through ReLUs
that have positive activation. However, the drawback of
ReLUs is that the gradient of the function for the nega-
tive part of its domain is zero, so ReLUs do not train in
this portion of the domain. Although undesirable, this
is not necessarily a fatal flaw for learning because when
backpropagating through a layer of ReLUs the gradients

	 A Brief History of Deep Learning     153

can still flow through the ReLUs in the layers that have
positive activation. Furthermore, there are a number of
variants of the basic ReLU that introduce a gradient on
the negative side of the domain, a commonly used variant
being the leaky ReLU (Maas et al. 2013). Today, ReLUs (or
variants of ReLUs) are the most frequently used neurons
in deep learning research.

The Virtuous Cycle: Better Algorithms, Faster Hardware,
Bigger Data
Although improved weight initialization methods and
new activation functions have both contributed to the
growth of deep learning, in recent years the two most
important factors driving deep learning have been the
speedup in computer power and the massive increase in
dataset sizes. From a computational perspective, a major
breakthrough for deep learning occurred in the late 2000s
with the adoption of graphical processing units (GPUs)
by the deep learning community to speed up training. A
neural network can be understood as a sequence of matrix
multiplications that are interspersed with the application
of nonlinear activation functions, and GPUs are optimized
for very fast matrix multiplication. Consequently, GPUs
are ideal hardware to speed up neural network train-
ing, and their use has made a significant contribution to
the development of the field. In 2004, Oh and Jung re-
ported a twentyfold performance increase using a GPU

154   chapter 4

implementation of a neural network (Oh and Jung 2004),
and the following year two further papers were published
that demonstrated the potential of GPUs to speed up the
training of neural networks: Steinkraus et al. (2005) used
GPUs to train a two-layer neural network, and Chella-
pilla et al. (2006) used GPUs to train a CNN. However, at
that time there were significant programming challenges
to using GPUs for training networks (the training algo-
rithm had to be implemented as a sequence of graphics
operations), and so the initial adoption of GPUs by neural
network researchers was relatively slow. These program-
ming challenges were significantly reduced in 2007 when
NVIDIA (a GPU manufacturer) released a C-like program-
ming interface for GPUs called CUDA (compute unified
device architecture).12 CUDA was specifically designed to
facilitate the use of GPUs for general computing tasks. In
the years following the release of CUDA, the use of GPUs
to speed up neural network training became standard.

However, even with these more powerful computer
processors, deep learning would not have been possible
unless massive datasets had also become available. The de-
velopment of the internet and social media platforms, the
proliferation of smartphones and “internet of things” sen-
sors, has meant that the amount of data being captured
has grown at an incredible rate over the last ten years.
This has made it much easier for organizations to gather
large datasets. This growth in data has been incredibly

	 A Brief History of Deep Learning     155

important to deep learning because neural network mod-
els scale well with larger data (and in fact they can struggle
with smaller datasets). It has also prompted organizations
to consider how this data can be used to drive the develop-
ment of new applications and innovations. This in turn
has driven a need for new (more complex) computational
models in order to deliver these new applications. And, the
combination of large data and more complex algorithms
requires faster hardware in order to make the necessary
computational workload tractable. Figure 4.7 illustrates
the virtuous cycle between big data, algorithmic break-
throughs (e.g., better weight initialization, ReLUs, etc.),

Big

data

Better

algorithms

Faster

hardware

Figure 4.7  The virtuous cycle driving deep learning. Figure inspired by
figure 1.2 in Reagen et al. 2017.

156   chapter 4

and improved hardware that is driving the deep learning
revolution.

Summary

The history of deep learning reveals a number of under-
lying themes. There has been a shift from simple binary
inputs to more complex continuous valued input. This
trend toward more complex inputs is set to continue
because deep learning models are most useful in high-
dimensional domains, such as image processing and lan-
guage. Images often have thousands of pixels in them,
and language processing requires the ability represents
and process hundreds of thousands of different words.
This is why some of the best-known applications of deep
learning are in these domains, for example, Facebook’s
face-recognition software, and Google’s neural machine
translation system. However, there are a growing number
of new domains where large and complex digital datasets
are being gathered. One area where deep learning has the
potential to make a significant impact within the coming
years is healthcare, and another complex domain is the
sensor rich field of self-driving cars.

Somewhat surprisingly, at the core of these powerful
models are simple information processing units: neurons.
The connectionist idea that useful complex behavior can

	 A Brief History of Deep Learning     157

emerge from the interactions between large numbers of
simple processing units is still valid today. This emergent
behavior arises through the sequences of layers in a net-
work learning a hierarchical abstraction of increasingly
complex features. This hierarchical abstraction is achieved
by each neuron learning a simple transformation of the
input it receives. The network as a whole then composes
these sequences of smaller transformations in order to
apply a complex (highly) nonlinear mapping to the input.
The output from the model is then generated by the final
output layers of neuron, based the learned representa-
tion generated through the hierarchical abstraction. This
is why depth is such an important factor in neural net-
works: the deeper the network, the more powerful the
model becomes in terms of its ability to learn complex
nonlinear mappings. In many domains, the relationship
between input data and desired outputs involves just such
complex nonlinear mappings, and it is in these domains
that deep learning models outdo other machine learning
approaches.

An important design choice in creating a neural net-
work is deciding which activation function to use within
the neurons in a network. The activation function within
each neuron in a network is how nonlinearity is intro-
duced into the network, and as a result it is a necessary
component if the network is to learn a nonlinear mapping
from inputs to output. As networks have evolved, so too

158   chapter 4

have the activation functions used in them. New activa-
tion functions have emerged throughout the history of
deep learning, often driven by the need for functions with
better properties for error-gradient propagation: a major
factor in the shift from threshold to logistic and tanh acti-
vation functions was the need for differentiable functions
in order to apply backpropagation; the more recent shift
to ReLUs was, similarly, driven by the need to improve the
flow of error gradients through the network. Research on
activations functions is ongoing, and new functions will
be developed and adopted in the coming years.

Another important design choice in creating a neural
network is to decide on the structure of the network: for
example, how should the neurons in the network be con-
nected together? In the next chapter, we will discuss two
very different answers to this question: convolution neu-
ral networks and recurrent neural networks.

5

CONVOLUTIONAL AND RECURRENT
NEURAL NETWORKS

Tailoring the structure of a network to the specific char-
acteristics of the data from a task domain can reduce the
training time of the network, and improves the accuracy
of the network. Tailoring can be done in a number of ways,
such as: constraining the connections between neurons
in adjacent layers to subsets (rather than having fully
connected layers); forcing neurons to share weights; or
introducing backward connections into the network. Tai-
loring in these ways can be understood as building domain
knowledge into the network. Another, related, perspec-
tive is it helps the network to learn by constraining the
set of possible functions that it can learn, and by so do-
ing guides the network to find a useful solution. It is not
always clear how to fit a network structure to a domain,
but for some domains where the data has a very regular
structure (e.g., sequential data such as text, or gridlike

160   chapter 5

data such as images) there are well-known network ar-
chitectures that have proved successful. This chapter will
introduce two of the most popular deep learning architec-
tures: convolutional neural networks and recurrent neural
networks.

Convolutional Neural Networks

Convolution neural networks (CNNs) were designed for
image recognition tasks and were originally applied to the
challenge of handwritten digit recognition (Fukushima
1980; LeCun 1989). The basic design goal of CNNs was to
create a network where the neurons in the early layer of
the network would extract local visual features, and neu-
rons in later layers would combine these features to form
higher-order features. A local visual feature is a feature
whose extent is limited to a small patch, a set of neighbor-
ing pixels, in an image. For example, when applied to the
task of face recognition, the neurons in the early layers of a
CNN learn to activate in response to simple local features
(such as lines at a particular angle, or segments of curves),
neurons deeper in the network combine these low-level
features into features that represent body parts (such as
eyes or noises), and the neurons in the final layers of the
network combine body part activations in order to be able
to identify whole faces in an image.

	 Convolutional and Recurrent Neural Networks    161

Using this approach, the fundamental task in image
recognition is learning the feature detection functions
that can robustly identify the presence, or absence, of local
visual features in an image. The process of learning func-
tions is at the core of neural networks, and is achieved by
learning the appropriate set of weights for the connec-
tions in the network. CNNs learn the feature detection
functions for local visual features in this way. However, a
related challenge is designing the architecture of the net-
work so that the network will identify the presence of a
local visual feature in an image irrespective of where in
the image it occurs. In other words, the feature detection
functions must be able to work in a translation invariant
manner. For example, a face recognition system should be
able to recognize the shape of an eye in an image whether
the eye is in the center of the image or in the top-right
corner of the image. This need for translation invariance
has been a primary design principle of CNNs for image
processing, as Yann LeCun stated in 1989:

It seems useful to have a set of feature detectors that
can detect a particular instance of a feature anywhere
on the input plane. Since the precise location of a
feature is not relevant to the classification, we can
afford to lose some position information in the
process. (LeCun 1989, p. 14)

162   chapter 5

CNNs achieve this translation invariance of local vi-
sual feature detection by using weight sharing between
neurons. In an image recognition setting, the function
implemented by a neuron can be understood as a visual
feature detector. For example, neurons in the first hidden
layer of the network will receive a set of pixel values as
input and output a high activation if a particular pattern
(local visual feature) is present in this set of pixels. The
fact that the function implemented by a neuron is defined
by the weights the neuron uses means that if two neurons
use the same set of weights then they both implement the
same function (feature detector). In chapter 4, we intro-
duced the concept of a receptive field to describe the area
that a neuron receives its input from. If two neurons share
the same weights but have different receptive fields (i.e.,
each neuron inspects different areas of the input), then
together the neurons act as a feature detector that acti-
vates if the feature occurs in either of the receptive fields.
Consequently, it is possible to design a network with
translation invariant feature detection by creating a set of
neurons that share the same weights and that are orga-
nized so that: (1) each neuron inspects a different portion
of the image; and (2) together the receptive fields of the
neurons cover the entire image.

The scenario of searching an image in a dark room with
a flashlight that has a narrow beam is sometimes used to
explain how a CNN searches an image for local features.

	 Convolutional and Recurrent Neural Networks    163

At each moment you can point the flashlight at a region of
the image and inspect that local region. In this flashlight
metaphor, the area of the image illuminated by the flash-
light at any moment is equivalent to the receptive field of a
single neuron, and so pointing the flashlight at a location
is equivalent to applying the feature detection function to
that local region. If, however, you want to be sure you in-
spect the whole image, then you might decide to be more
systematic in how you direct the flashlight. For example,
you might begin by pointing the flashlight at the top-left
corner of the image and inspecting that region. You then
move the flashlight to the right, across the image, inspect-
ing each new location as it becomes visible, until you reach
the right side of the image. You then point the flashlight
back to the left of the image, but just below where you
began, and move across the image again. You repeat this
process until you reach the bottom-right corner of the im-
age. The process of sequentially searching across an im-
age and at each location in the search applying the same
function to the local (illuminated) region is the essence of
convolving a function across an image. Within a CNN, this
sequential search across an image is implemented using
a set of neurons that share weights and whose union of
receptive fields covers the entire image.

Figure 5.1 illustrates the different stages of processing
that are often found in a CNN. The 6 6× matrix on the left
of the figure represents the image that is the input to the

164   chapter 5

CNN. The 4 4× matrix immediately to the right of the in-
put represents a layer of neurons that together search the
entire image for the presence of a particular local feature.
Each neuron in this layer is connected to a different 3 3×
receptive field (area) in the image, and they all apply the
same weight matrix to their inputs:

w w w

w w w

w w w

0 1 2

3 4 5

6 7 8

















The receptive field of the neuron 0 0,[] (top-left) in
this layer is marked with the gray square covering the 3 3×
area in the top-left of the input image. The dotted arrows
emerging from each of the locations in this gray area rep-
resent the inputs to neuron 0 0,[]. The receptive field of
the neighboring neuron 0 1,[] is indicated by 3 3× square,
outlined in bold in the input image. Notice that the recep-
tive fields of these two neurons overlap. The amount of
overlap of receptive fields is controlled by a hyperparam-
eter called the stride length. In this instance, the stride
length is one, meaning that for each position moved in
the layer the receptive field of the neuron is translated by
the same amount on the input. If the stride length hyper-
parameter is increased, the amount of overlap between
receptive fields is decreased.

	 Convolutional and Recurrent Neural Networks    165

The receptive fields of both of these neurons (0 0,[] and
0 1,[]) are matrices of pixel values and the weights used by

these neurons are also matrices. In computer vision, the
matrix of weights applied to an input is known as the ker-
nel (or convolution mask); the operation of sequentially
passing a kernel across an image and within each local
region, weighting each input and adding the result to its
local neighbors, is known as a convolution. Notice that a
convolution operation does not include a nonlinear activa-
tion function (this is applied at a later stage in processing).
The kernel defines the feature detection function that all
the neurons in the convolution implement. Convolving
a kernel across an image is equivalent to passing a local
visual feature detector across the image and recording all
the locations in the image where the visual feature was
present. The output from this process is a map of all the
locations in the image where the relevant visual feature oc-
curred. For this reason, the output of a convolution process
is sometimes known as a feature map. As noted above, the
convolution operation does not include a nonlinear activa-
tion function (it only involves a weighted summation of
the inputs). Consequently, it is standard to apply a nonlin-
earity operation to a feature map. Frequently, this is done
by applying a rectified linear function to each position in a
feature map; the rectified linear activation function is de-
fined as: rectifier z max z() = ()0, . Passing a rectified linear
activation function over a feature map simply changes all

166   chapter 5

negative values to 0. In figure 5.1, the process of updat-
ing a feature map by applying a rectified linear activation
function to each of its elements is represented by the layer
labeled Nonlinearity.

The quote from Yann LeCun, at the start of this sec-
tion, mentions that the precise location of a feature in an
image may not be relevant to an image processing task.
With this in mind, CNNs often discard location informa-
tion in favor of generalizing the network’s ability to do
image classification. Typically, this is achieved by down-
sampling the updated feature map using a pooling layer.
In some ways pooling is similar to the convolution opera-
tion described above, in so far as pooling involves repeat-
edly applying the same function across an input space. For
pooling, the input space is frequently a feature map whose
elements have been updated using a rectified linear func-
tion. Furthermore, each pooling operation has a receptive
field on the input space—although, for pooling, the recep-
tive fields sometimes do not overlap. There are a number
of different pooling functions used; the most common is
called max pooling, which returns the maximum value of
any of its inputs. Calculating the average value of the in-
puts is also used as a pooling function.

The operation sequence of applying a convolution,
followed by a nonlinearity, to the feature map, and then
down-sampling using pooling, is relatively standard across
most CNNs. Often these three operations are together

Convolving a kernel
across an image is
equivalent to passing
a local visual feature
detector across the
image and recording all
the locations in the
image where the visual
feature was present.

168   chapter 5

considered to define a convolutional layer in a network,
and this is how they are presented in figure 5.1.

The fact that a convolution searches an entire image
means that if the visual feature (pixel pattern) that the
function (defined by shared kernel) detects occurs any-
where in the image, its presence will be recorded in the
feature map (and if pooling is used, also in the subsequent
output from the pooling layer). In this way, a CNN sup-
ports translation invariant visual feature detection. How-
ever, this has the limitation that the convolution can only
identify a single type of feature. CNNs generalize beyond
one feature by training multiple convolutional layers
in parallel (or filters), with each filter learning a single

Input
image

Convolution:
layer of neurons
with shared weights

Feature
map

Layer of
nonlinearity
functions

Pooling
layer Dense

layer

Convolutional layer

Figure 5.1  Illustrations of the different stages of processing in a
convolutional layer. Note in this figure the Image and Feature Map are data
structures; the other stages represent operations on data.

	 Convolutional and Recurrent Neural Networks    169

kernel matrix (feature detection function). Note the con-
volution layer in figure 5.1 illustrates a single filter. The
outputs of multiple filters can be integrated in a variety
of ways. One way to integrate information from differ-
ent filters is to take the feature maps generated by the
separate filters and combine them into a single multifil-
ter feature map. A subsequent convolutional layer then
takes this multifilter feature map as input. Another other
way to integrate information from different filter is to
use a densely connected layer of neurons. The final layer
in figure 5.1 illustrates a dense layer. This dense layer
operates in exactly the same way as a standard layer in
a fully connected feedforward network. Each neuron in
the dense layer is connected to all of the elements out-
put by each of the filters, and each neuron learns a set
of weights unique to itself that it applies to the inputs.
This means that each neuron in a dense layer can learn
a different way to integrate information from across the
different filters.

The AlexNet CNN, which won the ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC) in 2012,
had five convolutional layers, followed by three dense lay-
ers. The first convolutional layer had ninety-six different
kernels (or filters) and included a ReLU nonlinearity and
pooling. The second convolution layer had 256 kernels and
also included ReLU nonlinearity and pooling. The third,

170   chapter 5

fourth, and fifth convolutional layers did not include a
nonlinearity step or pooling, and had 384, 384, and 256
kernels, respectively. Following the fifth convolutional
layer, the network had three dense layers with 4096 neu-
rons each. In total, AlexNet had sixty million weights and
650,000 neurons. Although sixty million weights is a large
number, the fact that many of the neurons shared weights
actually reduced the number of weights in the network.
This reduction in the number of required weights is one
of the advantages of CNN networks. In 2015, Microsoft
Research developed a CNN network called ResNet, which
won the ILSVRC 2015 challenge (He et al. 2016). The
ResNet architecture extended the standard CNN architec-
ture using skip-connections. A skip-connection takes the
output from one layer in the network and feeds it directly
into a layer that may be much deeper in the network. Us-
ing skip-connections it is possible to train very deep net-
works. In fact, the ResNet model developed by Microsoft
Research had a depth of 152 layers.

Recurrent Neural Networks

Recurrent neural networks (RNNs) are tailored to the
processing of sequential data. An RNN processes a se-
quence of data by processing each element in the sequence
one at time. An RNN network only has a single hidden

	 Convolutional and Recurrent Neural Networks    171

layer, but it also has a memory buffer that stores the out-
put of this hidden layer for one input and feeds it back
into the hidden layer along with the next input from the
sequence. This recurrent flow of information means that
the network processes each input within the context gen-
erated by processing the previous input, which in turn was
processed in the context of the input preceding it. In this
way, the information that flows through the recurrent
loop encodes contextual information from (potentially)
all of the preceding inputs in the sequence. This allows
the network to maintain a memory of what it has seen
previously in the sequence to help it decide what to do
with the current input. The depth of an RNN arises from
the fact that the memory vector is propagated forward
and evolved through each input in the sequence; as a re-
sult an RNN network is considered as deep as a sequence
is long.

Figure 5.2 illustrates the architecture of an RNN and
shows how information flows through the network as
it processes a sequence. At each time step, the network
in this figure receives a vector containing two elements
as input. The schematic on the left of figure 5.2 (time
step=1.0) shows the flow of information in the network
when it receives the first input in the sequence. This input
vector is fed forward into the three neurons in the hid-
den layer of the network. At the same time these neurons
also receive whatever information is stored in the memory

The depth of an RNN
arises from the fact that
the memory vector is
propagated forward and
evolved through each
input in the sequence;
as a result an RNN
network is considered
as deep as a sequence
is long.

	 Convolutional and Recurrent Neural Networks    173

buffer. Because this is the initial input, the memory buf-
fer will only contain default initialization values. Each of
the neurons in the hidden layer will process the input and
generate an activation. The schematic in the middle of fig-
ure 5.2 (time step=1.5) shows how this activation flows
on through the network: the activation of each neuron is
passed to the output layer where it is processed to gener-
ate the output of the network, and it is also stored in the
memory buffer (overwriting whatever information was
stored there). The elements of the memory buffer simply
store the information written to them; they do not trans-
form it in any way. As a result, there are no weights on
the edges going from the hidden units to the buffer. There
are, however, weights on all the other edges in the net-
work, including those from the memory buffer units to
the neurons in the hidden layer. At time step 2, the net-
work receives the next input from the sequence, and this
is passed to the hidden layer neurons along with the infor-
mation stored in the buffer. This time the buffer contains
the activations that were generated by the hidden neurons
in response to the first input.

Figure 5.3 shows an RNN that has been unrolled
through time as it processes a sequence of inputs
X X Xt1 2, , ,…[]. Each box in this figure represents a layer

of neurons. The box labeled h0 represents the state of
the memory buffer when the network is initialized; the
boxes labeled h ht1, ,…[] represent the hidden layer of the

174   chapter 5

Fi
gu

re
 5

.2
 

Th
e

fl
ow

 o
f i

nf
or

m
at

io
n

in
 a

n
R

N
N

 a
s

it
 p

ro
ce

ss
es

 a
 s

eq
ue

nc
e

of
 in

pu
ts

. T
he

 a
rr

ow
s

in
 b

ol
d

ar
e

th
e

ac
ti

ve

pa
th

s
of

 in
fo

rm
at

io
n

fl
ow

 a
t e

ac
h

ti
m

e
po

in
t;

 th
e

da
sh

ed
 a

rr
ow

s
sh

ow
 c

on
ne

ct
io

ns
 th

at
 a

re
 n

ot
 a

ct
iv

e
at

 th
at

 ti
m

e.

	 Convolutional and Recurrent Neural Networks    175

network at each time step; and the boxes labeled Y Yt1, ,…[]
represent the output layer of the network at each time
step. Each of the arrows in the figure represents a set of
connections between one layer and another layer. For ex-
ample, the vertical arrow from X1 to h1 represents the con-
nections between the input layer and the hidden layer at
time step 1. Similarly, the horizontal arrows connecting
the hidden layers represent the storing of the activations
from a hidden state at one time step in the memory buffer
(not shown) and the propagation of these activations to
the hidden layer at the next time step through the connec-
tions from the memory buffer to the hidden state. At each
time step, an input from the sequence is presented to the
network and is fed forward to the hidden layer. The hid-
den layer generates a vector of activations that is passed
to the output layer and is also propagated forward to the

Output:

Input:

Y1 Y2 Y3 Yt

h0 h1 h2 h3 · · · ht

X1 X2 X3 Xt

Figure 5.3  An RNN network unrolled through time as it processes a
sequence of inputs X X Xt1 2, , ,…[].

176   chapter 5

next time step along the horizontal arrows connecting the
hidden states.

Although RNNs can process a sequence of inputs,
they struggle with the problem of vanishing gradients.
This is because training an RNN to process a sequence of
inputs requires the error to be backpropagated through
the entire length of the sequence. For example, for the
network in figure 5.3, the error calculated on the output
Yt must be backpropagated through the entire network
so that it can be used to update the weights on the con-
nections from h0 and X1 to h1. This entails backpropagat-
ing the error through all the hidden layers, which in turn
involves repeatedly multiplying the error by the weights
on the connections feeding activations from one hidden
layer forward to the next hidden layer. A particular prob-
lem with this process is that it is the same set of weights
that are used on all the connections between the hidden
layers: each horizontal arrow represents the same set of
connections between the memory buffer and the hidden
layer, and the weights on these connections are stationary
through time (i.e., they don’t change from one time step
to the next during the processing of a given sequence of
inputs). Consequently, backpropogating an error through
k time steps involves (among other multiplications) mul-
tiplying the error gradient by the same set of weights k
times. This is equivalent to multiplying each error gradi-
ent by a weight raised to the power of k. If this weight is

	 Convolutional and Recurrent Neural Networks    177

less than 1, then when it is raised to a power, it diminishes
at an exponential rate, and consequently, the error gra-
dient also tends to diminish at an exponential rate with
respect to the length of the sequence—and vanish.

Long short-term memory networks (LSTMs) are de-
signed to reduce the effect of vanishing gradients by re-
moving the repeated multiplication by the same weight
vector during backpropagation in an RNN. At the core of
an LSTM1 unit is a component called the cell. The cell is
where the activation (the short-term memory) is stored
and propagated forward. In fact, the cell often maintains
a vector of activations. The propagation of the activations
within the cell through time is controlled by three compo-
nents called gates: the forget gate, the input gate, and the
output gate. The forget gate is responsible for determining
which activations in the cell should be forgotten at each
time step, the input gate controls how the activations in
the cell should be updated in response to the new input,
and the output gate controls what activations should be
used to generate the output in response to the current
input. Each of the gates consists of layers of standard neu-
rons, with one neuron in the layer per activation in the
cell state.

Figure 5.4 illustrates the internal structure of an
LSTM cell. Each of the arrows in this image represents a
vector of activations. The cell runs along the top of the
figure from left (ct−1) to right (ct). Activations in the cell

178   chapter 5

can take values in the range -1 to +1. Stepping through the
processing for a single input, the input vector xt is first
concatenated with the hidden state vector that has been
propagated forward from the preceding time step ht−1.
Working from left to right through the processing of the
gates, the forget gate takes the concatenation of the input
and the hidden state and passes this vector through a layer
of neurons that use a sigmoid (also known as logistic)2 ac-
tivation function. As a result of the neurons in the forget
layer using sigmoid activation functions the output of this
forget layer is a vector of values in the range 0 to 1. The cell
state is then multiplied by this forget vector. The result
of this multiplication is that activations in the cell state
that are multiplied by components in the forget vector
with values near 0 are forgotten, and activations that are
multiplied by forget vector components with values near 1
are remembered. In effect, multiplying the cell state by the
output of a sigmoid layer acts as a filter on the cell state.

Next, the input gate decides what information should
be added to the cell state. The processing in this step is
done by the components in the middle block of figure 5.4,
marked Input. This processing is broken down into two
subparts. First, the gate decides which elements in the
cell state should be updated, and second it decides what
information should be included in the update. The deci-
sion regarding which elements in the cell state should be
updated is implemented using a similar filter mechanism

	 Convolutional and Recurrent Neural Networks    179

to the forget gate: the concatenated input xt plus hidden
state ht−1 is passed through a layer of sigmoid units to
generate a vector of elements, the same width as the cell,
where each element in the vector is in the range 0 to 1;
values near 0 indicate that the corresponding cell element
will not be updated, and values near 1 indicate that the
corresponding cell element will be updated. At the same
time that the filter vector is generated, the concatenated
input and hidden state are also passed through a layer
of tanh units (i.e., neurons that use the tanh activation
function). Again, there is one tanh unit for each activation
in the LSTM cell. This vector represents the information

Forget Input Output

× ×

T

+

T σσσ

×ct−1 ct

ht−1 ht

xt output

Figure 5.4  Schematic of the internal structure of an LSTM unit: σ
represents a layer of neurons with sigmoid activations, T represents a layer
of neurons with tanh activations, × represents vector multiplication, and +
represents vector addition. The figure is inspired by an image by Christopher
Olah available at: http://colah.github.io/posts/2015-08-Understanding
-LSTMs/.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/.
http://colah.github.io/posts/2015-08-Understanding-LSTMs/.

180   chapter 5

that may be added to the cell state. Tanh units are used
to generate this update vector because tanh units out-
put values in the range -1 to +1, and consequently the
value of the activations in the cell elements can be both
increased and decreased by an update.3 Once these two
vectors have been generated, the final update vector is
calculated by multiplying the vector output from the
tanh layer by the filter vector generated from the sigmoid
layer. The resulting vector is then added to the cell using
vector addition.

The final stage of processing in an LSTM is to decide
which elements of the cell should be output in response to
the current input. This processing is done by the compo-
nents in the block marked Output (on the right of figure
5.4). A candidate output vector is generated by passing
the cell through a tanh layer. At the same time, the con-
catenated input and propagated hidden state vector are
passed through a layer of sigmoid units to create another
filter vector. The actual output vector is then calculated by
multiplying the candidate output vector by this filter vec-
tor. The resulting vector is then passed to the output layer,
and is also propagated forward to the next time step as the
new hidden state ht .

The fact that an LSTM unit contains multiple layers
of neurons means that an LSTM is a network in itself.
However, an RNN can be constructed by treating an LSTM
as the hidden layer in the RNN. In this configuration, an

	 Convolutional and Recurrent Neural Networks    181

LSTM unit receives an input at each time step and gener-
ates an output for each input. RNNs that use LSTM units
are often known as LSTM networks.

LSTM networks are ideally suited for natural language
processing (NLP). A key challenge in using a neural net-
work to do natural language processing is that the words
in language must be converted into vectors of numbers.
The word2vec models, created by Tomas Mikolov and col-
leagues at Google research, are one of the most popular
ways of doing this conversion (Mikolov et al. 2013). The
word2vec models are based on the idea that words that
appear in similar contexts have similar meanings. The
definition of context here is surrounding words. So for ex-
ample, the words London and Paris are semantically simi-
lar because each of them often co-occur with words that
the other word also co-occurs with, such as: capital, city,
Europe, holiday, airport, and so on. The word2vec models
are neural networks that implement this idea of seman-
tic similarity by initially assigning random vectors to each
word and then using co-occurrences within a corpus to it-
eratively update these vectors so that semantically similar
words end up with similar vectors. These vectors (known
as word embeddings) are then used to represent a word
when it is being input to a neural network.

One of the areas of NLP where deep learning has
had a major impact is in machine translation. Figure
5.5 presents a high-level schematic of the seq2seq (or

182   chapter 5

encoder-decoder) architecture for neural machine transla-
tion (Sutskever et al. 2014). This architecture is composed
of two LSTM networks that have been joined together.
The first LSTM network processes the input sentence in
a word-by-word fashion. In this example, the source lan-
guage is French. The words are entered into the system in
reverse order as it has been found that this leads to better
translations. The symbol eos is a special end of sentence
symbol. As each word is entered, the encoder updates the
hidden state and propagates it forward to the next time
step. The hidden state generated by the encoder in re-
sponse to the eos symbol is taken to be a vector represen-
tation of the input sentence. This vector is passed as the
initial input to the decoder LSTM. The decoder is trained
to output the translation sentence word by word, and af-
ter each word has been generated, this word is fed back
into the system as the input for the next time step. In a

Decoder

Encoder

Life is beautiful < eos >

h1 h2 h3 h4 C d1 d2 d3

belle est vie La < eos >

Figure 5.5  Schematic of the seq2seq (or encoder-decoder) architecture.

	 Convolutional and Recurrent Neural Networks    183

way, the decoder is hallucinating the translation because
it uses its own output to drive its own generation pro-
cess. This process continues until the decoder outputs an
eos symbol.

The idea of using a vector of numbers to represent the
(interlingual) meaning of a sentence is very powerful, and
this concept has been extended to the idea of using vectors
to represent intermodal/multimodal representations. For
example, an exciting development in recent years has been
the development of automatic image captioning systems.
These systems can take an image as input and generate a
natural language description of the image. The basic struc-
ture of these systems is very similar to the neural machine
translation architecture shown in figure 5.5. The main
difference is that the encoder LSTM network is replaced
by a CNN architecture that processes the input image and
generates a vector representation that is then propagated
to the decoder LSTM (Xu et al. 2015). This is another ex-
ample of the power of deep learning arising from its ability
to learn complex representations of information. In this
instance, the system learns intermodal representations
that enable information to flow from what is in an im-
age to language. Combining CNN and RNN architectures
is becoming more and more popular because it offers the
potential to integrate the advantages of both systems and
enables deep learning architectures to handle very com-
plex data.

184   chapter 5

Irrespective of the network architecture we use, we
need to find the correct weights for the network if we
wish to create an accurate model. The weights of a neu-
ron determine the transformation the neuron applies to
its inputs. So, it is the weights of the network that define
the fundamental building blocks of the representation the
network learns. Today the standard method for finding
these weights is an algorithm that came to prominence in
the 1980s: backpropagation. The next chapter will present
a comprehensive introduction to this algorithm.

6

LEARNING FUNCTIONS

A neural network model, no matter how deep or complex,
implements a function, a mapping from inputs to outputs.
The function implemented by a network is determined
by the weights the network uses. So, training a network
(learning the function the network should implement) on
data involves searching for the set of weights that best
enable the network to model the patterns in the data. The
most commonly used algorithm for learning patterns
from data is the gradient descent algorithm. The gradi-
ent descent algorithm is very like the perceptron learn-
ing rule and the LMS algorithm described in chapter 4:
it defines a rule to update the weights used in a function
based on the error of the function. By itself the gradient
descent algorithm can be used to train a single output neu-
ron. However, it cannot be used to train a deep network
with multiple hidden layers. This limitation is because of

186   chapter 6

the credit assignment problem: how should the blame for
the overall error of a network be shared out among the
different neurons (including the hidden neurons) in the
network? Consequently, training a deep neural network
involves using both the gradient descent algorithm and
the backpropagation algorithm in tandem.

The process used to train a deep neural network can
be characterized as: randomly initializing the weight of a
network, and then iteratively updating the weights of the
network, in response to the errors the network makes on a
dataset, until the network is working as expected. Within
this training framework, the backpropagation algorithm
solves the credit (or blame) assignment problem, and the
gradient descent algorithm defines the learning rule that
actually updates the weights in the network.

This chapter is the most mathematical chapter in the
book. However, at a high level, all you need to know about
the backpropagation algorithm and the gradient descent
algorithm is that they can be used to train deep networks.
So, if you don’t have the time to work through the details
in this chapter, feel free to skim through it. If, however,
you wish to get a deeper understanding of these two al-
gorithms, then I encourage you to engage with the mate-
rial. These algorithms are at the core of deep learning and
understanding how they work is, possibly, the most direct
way of understanding its potentials and limitations. I have
attempted to present the material in this chapter in an

	 Learning Functions    187

accessible way, so if you are looking for a relatively gentle
but still comprehensive introduction to these algorithms,
then I believe that this will provide it for you. The chapter
begins by explaining the gradient descent algorithm, and
then explains how gradient descent can be used in con-
junction with the backpropagation algorithm to train a
neural network.

Gradient Descent

A very simple type of function is a linear mapping from a
single input to a single output. Table 6.1 presents a data-
set with a single input feature and a single output. Figure
6.1 presents a scatterplot of this data along with a plot of
the line that best fits this data. This line can be used as a
function to map from an input value to a prediction of the

Table 6.1.  A sample dataset with one input feature, x,
and an output (target) feature, y

X Y

0.72 0.54

0.45 0.56

0.23 0.38

0.76 0.57

0.14 0.17

188   chapter 6

output value. For example, if x = 0.9, then the response
returned by this linear function is y = 0.6746. The error (or
loss) of using this line as a model for the data is shown by
the dashed lines from the line to each datum.

In chapter 2, we described how a linear function can
be represented using the equation of a line:

y mx c= +

where m is the slope of the line, and c is the y-intercept,
which specifies where the line crosses the y-axis. For the

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

x = 0.9

y = 0.6746

Figure 6.1  Scatterplot of data with “best fit” line and the errors of the line
on each example plotted as vertical dashed line segments. The figure also
shows the mapping defined by the line for input x=0.9 to output y=0.6746.

	 Learning Functions    189

line in figure 6.1, c = 0 203. and m = 0 524. ; this is why the
function returns the value y = 0 6746. when x = 0 9. , as in
the following:

0 6746 0 524 0 9 0 203. . . .= () +×

The slope m and the y-intercept c are the parameters of
this model, and these parameters can be varied to fit the
model to the data.

The equation of a line has a close relationship with the
weighted sum operation used in a neuron. This becomes
apparent if we rewrite the equation of a line with model
parameters rewritten as weights (c w m w→ →0 1,):

y w w x= () + ()0 11× ×

Different lines (different linear models for the data) can
be created by varying either of these weights (or model pa-
rameters). Figure 6.2 illustrates how a line changes as the
intercept and slope of the line varies: the dashed line illus-
trates what happens if the y-intercept is increased, and the
dotted line shows what happens if the slope is decreased.
Changing the y-intercept w0 vertically translates the line,
whereas modifying the slope w1 rotates the line around
the point x y intercept= =()0, .

Each of these new lines defines a different func-
tion, mapping from x to y, and each function will have

190   chapter 6

a different error with respect to how well it matches the
data. Looking at figure 6.2, we can see that the full line,
w w0 10 203 0 524= =[]. , . , fits the data better than the

other two lines because on average it passes closer to the
data points. In other words, on average the error for this
line for each data point is less than those of the other two
lines. The total error of a model on a dataset can be mea-
sured by summing together the error the model makes on
each example in the dataset. The standard way to calculate
this total error is to use an equation known as the sum of
squared errors (SSE):

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

[w0 = 0.203, w1 = 0.524]
[w0 = 0.400, w1 = 0.524]
[w0 = 0.203, w1 = 0.300]

Figure 6.2  Plot illustrating how a line changes as the intercept w0() and
slope w1() are varied.

	 Learning Functions    191

SSE y yj j
j

n

= −()
=
∑1

2
2

1

ˆ

This equation tells us how to add together the errors of a
model on a dataset containing n examples. This equation
calculates for each of the n examples in the dataset the er-
ror of the model by subtracting the prediction of the target
value returned by the model from the correct target value
for that example, as specified in the dataset. In this equa-
tion y j is the correct output value for target feature listed
in the dataset for example j, and ŷ j is the estimate of the
target value returned by the model for the same example.
Each of these errors is then squared and these squared er-
rors are then summed. Squaring the errors ensures that
they are all positive, and therefore in the summation the
errors for examples where the function underestimated
the target do not cancel out the errors on examples where
it overestimated the target. The multiplication of the sum-
mation of the errors by 1 2/ , although not important for
the current discussion, will become useful later. The lower
the SSE of a function, the better the function models the
data. Consequently, the sum of squared errors can be used
as a fitness function to evaluate how well a candidate
function (in this situation a model instantiating a line)
matches the data.

192   chapter 6

Figure 6.3 shows how the error of a linear model var-
ies as the parameters of the model change. These plots
show the SSE of a linear model on the example single-
input–single-output dataset listed in table 6.1. For each
parameter there is a single best setting and as the param-
eter moves away from this setting (in either direction)
the error of the model increases. A consequence of this
is that the error profile of the model as each parameter
varies is convex (bowl-shaped). This convex shape is par-
ticularly apparent in the top and middle plots in figure 6.3,
which show that the SSE of the model is minimized when
w0 0 203= . (lowest point of the curve in the top plot),
and when w1 0 524= . (lowest point of the curve in the
middle plot).

If we plot the error of the model as both parame-
ters are varied, we generate a three-dimensional convex
bowl-shaped surface, known as an error surface. The
bowl-shaped mesh in the plot at the bottom of figure 6.3
illustrates this error surface. This error surface was cre-
ated by first defining a weight space. This weight space is
represented by the flat grid at the bottom of the plot. Each
coordinate in this weight space defines a different line be-
cause each coordinate specifies an intercept (a w0 value)
and slope (a w1 value). Consequently, moving across this
planar weight space is equivalent to moving between dif-
ferent models. The second step in constructing the error
surface is to associate an elevation with each line (i.e.,

0.2 0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

w0 (y intercept)

SS
E

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

w1 (slope)

SS
E

w0

w1

SS
E

Figure 6.3  Plots of the changes in the error (SSE) of a linear model as the
parameters of the model change. Top: the SSE profile of a linear model with a
fixed slope w1 0 524= . when w0 ranges across the interval 0.3 to 1. Middle:
the SSE profile of a linear model with a y-intercept fixed at w0 0 203= . when
w1 ranges across the interval 0 to 1. Bottom: the error surface of the linear
model when both w0 and w1 are varied.

194   chapter 6

coordinate) in the weight space. The elevation associated
with each weight space coordinate is the SSE of the model
defined by that coordinate; or, put more directly, the
height of the error surface above the weight space plane
is the SSE of the corresponding linear model when it is
used as a model for the dataset. The weight space coordi-
nates that correspond with the lowest point of the error
surface define the linear model that has the lowest SSE on
the dataset (i.e., the linear model that best fits the data).

The shape of the error surface in the plot on the right
of figure 6.3 indicates that there is only a single best linear
model for this dataset because there is a single point at
the bottom of the bowl that has a lower elevation (lower
error) than any other points on the surface. Moving away
from this best model (by varying the weights of the model)
necessarily involves moving to a model with a higher SSE.
Such a move is equivalent to moving to a new coordinate
in the weight space, which has a higher elevation associ-
ated with it on the error surface. A convex or bowl-shaped
error surface is incredibly useful for learning a linear func-
tion to model a dataset because it means that the learning
process can be framed as a search for the lowest point on
the error surface. The standard algorithm used to find this
lowest point is known as gradient descent.

The gradient descent algorithm begins by creat-
ing an initial model using a randomly selected a set of
weights. Next the SSE of this randomly initialized model

A convex or bowl-
shaped error surface
is incredibly useful
for learning a linear
function to model a
dataset because it
means that the learning
process can be framed
as a search for the
lowest point on the
error surface.

196   chapter 6

is calculated. Taken together, the guessed set of weights
and the SSE of the corresponding model define the ini-
tial starting point on the error surface for the search. It
is very likely that the randomly initialized model will be
a bad model, so it is very likely that the search will begin
at a location that has a high elevation on the error surface.
This bad start, however, is not a problem, because once
the search process is positioned on the error surface, the
process can find a better set of weights by simply following
the gradient of the error surface downhill until it reaches
the bottom of the error surface (the location where mov-
ing in any direction results in an increase in SSE). This is
why the algorithm is known as gradient descent: the gradi-
ent that the algorithm descends is the gradient of the error
surface of the model with respect to the data.

An important point is that the search does not pro-
gress from the starting location to the valley floor in one
weight update. Instead, it moves toward the bottom of the
error surface in an iterative manner, and during each itera-
tion the current set of weights are updated so as to move
to a nearby location in the weight space that has a lower
SSE. Reaching the bottom of the error surface can take
a large number of iterations. An intuitive way of under-
standing the process is to imagine a hiker who is caught
on the side of a hill when a thick fog descends. Their car
is parked at the bottom of the valley; however, due to the
fog they can only see a few feet in any direction. Assuming

	 Learning Functions    197

that the valley has a nice convex shape to it, they can still
find their way to their car, despite the fog, by repeatedly
taking small steps that move down the hill following the
local gradient at the position they are currently located.
A single run of a gradient descent search is illustrated in
the bottom plot of figure 6.3. The black curve plotted on
the error surface illustrates the path the search followed
down the surface, and the black line on the weight space
plots the corresponding weight updates that occurred dur-
ing the journey down the error surface. Technically, the
gradient descent algorithm is known as an optimization
algorithm because the goal of the algorithm is to find the
optimal set of weights.

The most important component of the gradient de-
scent algorithm is the rule that defines how the weights are
updated during each iteration of the algorithm. In order to
understand how this rule is defined it is first necessary to
understand that the error surface is made up of multiple
error gradients. For our simple example, the error surface
is created by combining two error curves. One error curve
is defined by the changes in the SSE as w0 changes, shown
in the top plot of figure 6.3. The other error curve is de-
fined by the changes in the SSE as w1 changes, shown in
the plot in the middle of figure 6.3. Notice that the gradi-
ent of each of these curves can vary along the curve, for
example, the w0 error curve has a steep gradient on the ex-
treme left and right of the plot, but the gradient becomes

198   chapter 6

somewhat shallower in the middle of the curve. Also, the
gradients of two different curves can vary dramatically; in
this particular example the w0 error curve generally has a
much steeper gradient than the w1 error curve.

The fact that the error surface is composed of mul-
tiple curves, each with a different gradient, is important
because the gradient descent algorithm moves down the
combined error surface by independently updating each
weight so as to move down the error curve associated
with that weight. In other words, during a single itera-
tion of the gradient descent algorithm, w0 is updated to
move down the w0 error curve and w1 is updated the move
down the w1 error curve. Furthermore, the amount each
weight is updated in an iteration is proportional to the
steepness of the gradient of the weight’s error curve, and
this gradient will vary from one iteration to the next as
the process moves down the error curve. For example, w0
will be updated by relatively large amounts in iterations
where the search process is located high up on either side
of the w0 error curve, but by smaller amounts in iterations
where the search process is nearer to the bottom of the w0
error curve.

The error curve associated with each weight is defined
by how the SSE changes with respect to the change in the
value of the weight. Calculus, and in particular differentia-
tion, is the field of mathematics that deals with rates of
change. For example, taking the derivative of a function,

	 Learning Functions    199

y f x= (), calculates the rate of change of y (the output)
for each unit change in x (the input). Furthermore, if a
function takes multiple inputs [y f x xn= …()1, ,] then it
is possible to calculate the rate of change of the output,
y, with respect to changes in each of these inputs, xi , by
taking the partial derivative of the function of with re-
spect to each input. The partial derivative of a function
with respect to a particular input is calculated by first as-
suming that all the other inputs are held constant (and so
their rate of change is 0 and they disappear from the cal-
culation) and then taking the derivative of what remains.
Finally, the rate of change of a function for a given input is
also known as the gradient of the function at the location
on the curve (defined by the function) that is specified by
the input. Consequently, the partial derivative of the SSE
with respect to a weight specifies how the output of the
SSE changes as that weight changes, and so it specifies
the gradient of the error curve of the weight. This is ex-
actly what is needed to define the gradient descent weight
update rule: the partial derivative of the SSE with respect
to a weight specifies how to calculate the gradient of the
weight’s error curve, and in turn this gradient specifies
how the weight should be updated to reduce the error (the
output of the SSE).

The partial derivative of a function with respect to a
particular variable is the derivative of the function when

200   chapter 6

all the other variables are held constant. As a result there
is a different partial derivative of a function with respect
to each variable, because a different set of terms are con-
sidered constant in the calculation of each of the partial
derivatives. Therefore, there is a different partial deriva-
tive of the SSE for each weight, although they all have a
similar form. This is why each of the weights is updated in-
dependently in the gradient descent algorithm: the weight
update rule is dependent on the partial derivative of the
SSE for each weight, and because there is a different par-
tial derivative for each weight, there is a separate weight
update rule for each weight. Again, although the partial
derivative for each weight is distinct, all of these deriva-
tives have the same form, and so the weight update rule
for each weight will also have the same form. This simpli-
fies the definition of the gradient descent algorithm. An-
other simplifying factor is that the SSE is defined relative
to a dataset with n examples. The relevance of this is that
the only variables in the SSE are the weights; the target
output y and the inputs x are all specified by the dataset
for each example, and so can be considered constants. As
a result, when calculating the partial derivative of the SSE
with respect to a weight, many of the terms in the equa-
tion that do not include the weight can be deleted because
they are considered constants.

The relationship between the output of the SSE and
each weight becomes more explicit if the SSE definition

	 Learning Functions    201

is rewritten so that the term ŷ j , denoting the output pre-
dicted by the model, is replaced by the structure of the
model generating the prediction. For the model with a
single input x1 and a dummy input, x0 1= ,this rewritten
version of the SSE is:

SSE y w x w xj j j
j

n

= × + ×()()−
=
∑1

2
0 0 1 1

2

1
, ,

This equation uses a double subscript on the inputs, the
first subscript j identifies the example (or row in the
dataset) and the second subscript specifies the feature (or
column in the dataset) of the input. For example, x j,1 rep-
resents feature 1 from example j. This definition of the
SSE can be generalized to a model with m inputs:

SSE y w xj i
i

m

j i
j

n

= − ×









==

∑∑1
2 0

2

1
,

Calculating the partial derivative of the SSE with re-
spect to a specific weight involves the application of the
chain rule from calculus and a number of standard dif-
ferentiation rules. The result of this derivation is the fol-
lowing equation (for simplicity of presentation we switch
back to the notation ŷ i to represent the output from the
model):

202   chapter 6

∂
∂

= () × −−SSE
w

y y x
i

j j jˆ ,

error of the

output of the

weighted sum

��� �� ii

wi

rate of change of

weighted sum

with respect to

change in

�

























=
∑
j

n

1

This partial derivative specifies how to calculate the
error gradient for weight wi for the dataset where xj i, is the
input associated with wi for each example in the dataset.
This calculation involves multiplying two terms, the error
of the output and the rate of change of the output (i.e., the
weighted sum) with respect to changes in the weight. One
way of understanding this calculation is that if changing
the weight changes the output of the weighted sum by a
large amount, then the gradient of the error with respect
to the weight is large (steep) because changing the weight
will result in big changes in the error. However, this gradi-
ent is the uphill gradient, and we wish to move the weights
so as to move down the error curve. So in the gradient
descent weight update rule (shown below) the “–” sign in
front of the input xj i, is dropped. Using t to represent the
iteration of the algorithm (an iteration involves a single
pass through the n examples in the dataset), the gradient
descent weight update rule is defined as:

	 Learning Functions    203

w w y y xi
t

i
t

j
t

j
t

j i
t

j

n

error gradient for wi

+

=
= + × () ×()−∑1

1

η ˆ ,

� ����� ����



















There are a number of notable factors about this
weight update rule. First, the rule specifies how the weight
wi should be updated after iteration t through the dataset.
This update is proportional to the gradient of the error
curve for the weight for that iteration (i.e., the summa-
tion term, which actually defines the partial derivative
of the SSE for that weight). Second, the weight update
rule can be used to update the weights for functions with
multiple inputs. This means that the gradient descent al-
gorithm can be used to descend error surfaces with more
than two weight coordinates. It is not possible to visual-
ize these error surfaces because they will have more than
three dimensions, but the basic principles of descending
an error surface using the error gradient generalizes to
learning functions with multiple inputs. Third, although
the weight update rule has a similar structure for each
weight, the rule does define a different update for each
weight during each iteration because the update is de-
pendent on the inputs in the dataset examples to which
the weight is applied. Fourth, the summation in the rule

204   chapter 6

indicates that, in each iteration of the gradient descent al-
gorithm, the current model should be applied to all n of
the examples in the dataset. This is one of the reasons why
training a deep learning network is such a computation-
ally expensive task. Typically for very large datasets, the
dataset is split up into batches of examples sampled from
the dataset, and each iteration of training is based on a
batch, rather than the entire dataset. Fifth, apart from the
modifications necessary to include the summation, this
rule is identical to the LMS (also known as the Widrow-
Hoff or delta) learning rule introduced in chapter 4, and
the rule implements the same logic: if the output of the
model is too large, then weights associated with positive
inputs should be reduced; if the output is too small, then
these weights should be increased. Moreover, the purpose
and function of the learning rate hyperparameter (η) is
the same as in the LMS rule: scale the weight adjustments
to ensure that the adjustments aren’t so large that the
algorithm misses (or steps over) the best set of weights.
Using this weight update rule, the gradient descent algo-
rithm can be summarized as follows:

1.	 Construct a model using an initial set of weights.

2.	 Repeat until the model performance is good enough.

a.	 Apply the current model to the examples in the
dataset.

	 Learning Functions    205

b.	 Adjust each weight using the weight update
rule.

3.	 Return the final model.

One consequence of the independent updating of
weights, and the fact that weight updates are proportional
to the local gradient on the associated error curve, is that
the path the gradient descent algorithm follows to the
lowest point on the error surface may not be a straight
line. This is because the gradient of each of the component
error curves may not be equal at each location on the error
surface (the gradient for one of the weights may be steeper
than the gradient for the other weight). As a result, one
weight may be updated by a larger amount than another
weight during a given iteration, and thus the descent to
the valley floor may not follow a direct route. Figure 6.4
illustrates this phenomenon. Figure 6.4 presents a set of
top-down views of a portion of a contour plot of an error
surface. This error surface is a valley that is quite long and
narrow with steeper sides and gentler sloping ends; the
steepness is reflected by the closeness of the contours. As
a result, the search initially moves across the valley before
turning toward the center of the valley. The plot on the
left illustrates the first iteration of the gradient descent
algorithm. The initial starting point is the location where
the three arrows, in this plot, meet. The lengths of the

206   chapter 6

dotted and dashed arrows represent the local gradients
of the w0 and w1 error curves, respectively. The dashed
arrow is longer than the dotted arrow reflecting the fact
that the local gradient of the w0 error curve is steeper than
that of the w1 error curve. In each iteration, each of the
weights is updated in proportion to the gradient of their
error curve; so in the first iteration, the update for w0 is
larger than for w1 and therefore the overall movement is
greater across the valley than along the valley. The thick
black arrow illustrates the overall movement in the un-
derlying weight space, resulting from the weight updates
in this first iteration. Similarly, the middle plot illustrates
the error gradients and overall weight update for the next
iteration of gradient descent. The plot on the right shows
the complete path of descent taken by the search process
from initial location to the global minimum (the lowest
point on the error surface).

Figure 6.4  Top-down views of a portion of a contour plot of an error surface,
illustrating the gradient descent path across the error surface. Each of the
thick arrows illustrates the overall movement of the weight vector for a
single iteration of the gradient descent algorithm. The length of dotted and
dashed arrows represent the local gradient of the w0 and w1 error curves,
respectively, for that iteration. The plot on the right shows the overall path
taken to the global minimum of the error surface.

	 Learning Functions    207

It is relatively straightforward to map the weight up-
date rule over to training a single neuron. In this mapping,
the weight w0 is the bias term for a neuron, and the other
weights are associated with the other inputs to the neu-
ron. The derivation of the partial derivative of the SSE
is dependent on the structure of the function that gen-
erates ŷ . The more complex this function is, the more
complex the partial derivative becomes. The fact that the
function a neuron defines includes both a weighted sum-
mation and an activation function means that the partial
derivative of the SSE with respect to a weight in a neuron
is more complex than the partial derivative given above.
The inclusion of the activation function within the neuron
results in an extra term in the partial derivative of the SSE.
This extra term is the derivative of the activation function
with respect to the output from the weighted summation
function. The derivative of the activation function is with
respect to the output of the weighted summation function
because this is the input that the activation function re-
ceives. The activation function does not receive the weight
directly. Instead, the changes in the weight only affect
the output of the activation function indirectly through
the effect that these weight changes have on the output
of the weighted summation. The main reason why the
logistic function was such a popular activation func-
tion in neural networks for so long was that it has a very
straightforward derivative with respect to its inputs. The

208   chapter 6

gradient descent weight update rule for a neuron using the
logistic function is as follows:

w w y y y yi
t

i
t

j
t

j
t

j
t

j
t+ = + × () × × −()()−1 1η ˆ ˆ ˆ

derivative of the

logisstic function

with respect to the

weighted summation

� ��� ���
× x j i,

tt

j

n

error gradient for wi



























=
∑

1

� ������� ��������































The fact that the weight update rule includes the derivative
of the activation function means that the weight update
rule will change if the activation function of the neuron is
changed. However, this change will simply involve updat-
ing the derivative of the activation function; the overall
structure of the rule will remain the same.

This extended weight update rule means that the gra-
dient descent algorithm can be used to train a single neu-
ron. It cannot, however, be used to train neural networks
with multiple layers of neurons because the definition of
the error gradient for a weight depends on the error of
the output of the function, the term y yj j− ˆ . Although it
is possible to calculate the error of the output of a neuron
in the output layer of the network by directly comparing

	 Learning Functions    209

the output with the expected output, it is not possible to
calculate this error term directly for the neurons in the
hidden layer of the network, and as a result it is not pos-
sible to calculate the error gradients for each weight. The
backpropagation algorithm is a solution to the problem of
calculating error gradients for the weights in the hidden
layers of the network.

Training a Neural Network Using Backpropagation

The term backpropagation has two different meanings.
The primary meaning is that it is an algorithm that can be
used to calculate, for each neuron in a network, the sen-
sitivity (gradient/rate-of-change) of the error of the net-
work to changes in the weights. Once the error gradient
for a weight has been calculated, the weight can then be
adjusted to reduce the overall error of the network using a
weight update rule similar to the gradient descent weight
update rule. In this sense, the backpropagation algorithm
is a solution to the credit assignment problem, introduced
in chapter 4. The second meaning of backpropagation is
that it is a complete algorithm for training a neural net-
work. This second meaning encompasses the first sense,
but also includes a learning rule that defines how the er-
ror gradients of the weights should be used to update the
weights within the network. Consequently, the algorithm

210   chapter 6

described by this second meaning involves a two-step pro-
cess: solve the credit assignment problem, and then use
the error gradients of the weights, calculated during credit
assignment, to update the weights in the network. It is
useful to distinguish between these two meanings of back-
propagation because there are a number of different learn-
ing rules that can be used to update the weights, once the
credit assignment problem has been resolved. The learn-
ing rule that is most commonly used with backpropaga-
tion is the gradient descent algorithm introduced earlier.
The description of the backpropagation algorithm given
here focuses on the first meaning of backpropagation, that
of the algorithm being a solution to the credit assignment
problem.

Backpropagation: The Two-Stage Algorithm
The backpropagation algorithm begins by initializing all
the weights of the network using random values. Note
that even a randomly initialized network can still generate
an output when an input is presented to the network, al-
though it is likely to be an output with a large error. Once
the network weights have been initialized, the network
can be trained by iteratively updating the weights so as
to reduce the error of the network, where the error of the
network is calculated in terms of the difference between
the output generated by the network in response to an
input pattern, and the expected output for that input, as

	 Learning Functions    211

defined in the training dataset. A crucial step in this itera-
tive weight adjustment process involves solving the credit
assignment problem, or, in other words, calculating the
error gradients for each weight in the network. The back-
propagation algorithm solves this problem using a two-
stage process. In first stage, known as the forward pass,
an input pattern is presented to the network, and the re-
sulting neuron activations flow forward through the net-
work until an output is generated. Figure 6.5 illustrates
the forward pass of the backpropagation algorithm. In
this figure, the weighted summation of inputs calculated
at each neuron (e.g., z1 represents the weighted summa-
tion of inputs calculated for neuron 1) and the outputs (or
activations, e.g., a1 represents the activation for neuron 1)
of each neuron is shown. The reason for listing the zi and
ai values for each neuron in this figure is to highlight the
fact that during the forward pass both of these values, for
each neuron, are stored in memory. The reason they are
stored in memory is that they are used in the backward
pass of the algorithm. The zi value for a neuron is used to
calculate the update to the weights on input connections
to the neuron. The ai value for a neuron is used to calculate
the update to the weights on the output connections from
a neuron. The specifics of how these values are used in the
backward pass will be described below.

The second stage, known as the backward pass, be-
gins by calculating an error gradient for each neuron in

212   chapter 6

the output layer. These error gradients represent the sen-
sitivity of the network error to changes in the weighted
summation calculation of the neuron, and they are often
denoted by the shorthand notation δ (pronounced delta)
with a subscript indicating the neuron. For example, δk is
the gradient of the network error with respect to small
changes in the weighted summation calculation of the
neuron k. It is important to recognize that there are two
different error gradients calculated in the backpropaga-
tion algorithm:

1.	 The first is the δ value for each neuron. The δ for each
neuron is the rate of change of the error of the network
with respect to changes in the weighted summation
calculation of the neuron. There is one δ for each
neuron. It is these δ error gradients that the algorithm
backpropagates.

2.	 The second is the error gradient of the network with
respect to changes in the weights of the network. There
is one of these error gradients for each weight in the
network. These are the error gradients that are used
to update the weights in the network. However, it is
necessary to first calculate the δ term for each neuron
(using backpropagation) in order to calculate the error
gradients for the weights.

	 Learning Functions    213

Note there is only a single δ per neuron, but there may be
many weights associated with that neuron, so the δ term
for a neuron may be used in the calculation of multiple
weight error gradients.

Once the δs for the output neurons have been calcu-
lated, the δs for the neurons in the last hidden layer are
then calculated. This is done by assigning a portion of the
δ from each output neuron to each hidden neuron that is
directly connected to it. This assignment of blame, from
output neuron to hidden neuron, is dependent on the
weight of the connection between the neurons, and the
activation of the hidden neuron during the forward pass
(this is why the activations are recorded in memory dur-
ing the forward pass). Once the blame assignment, from
the output layer, has been completed, the δ for each neu-
ron in the last hidden layer is calculated by summing the
portions of the δs assigned to the neuron from all of the
output neurons it connects to. The same process of blame
assignment and summing is then repeated to propagate
the error gradient back from the last layer of hidden neu-
rons to the neurons in the second last layer, and so on,
back to the input layer. It is this backward propagation of
δs through the network that gives the algorithm its name.
At the end of this backward pass there is a δ calculated
for each neuron in the network (i.e., the credit assignment
problem has been solved) and these δs can then be used
to update the weights in the network (using, for example,

214   chapter 6

the gradient descent algorithm introduced earlier). Figure
6.6 illustrates the backward pass of the backpropagation
algorithm. In this figure, the δs get smaller and smaller as
the backpropagation process gets further from the output
layer. This reflects the vanishing gradient problem dis-
cussed in chapter 4 that slows down the learning rate of
the early layers of the network.

In summary, the main steps within each iteration of
the backpropagation algorithm are as follows:

1.	 Present an input to the network and allow the neuron
activations to flow forward through the network until an
output is generated. Record both the weighted sum and
the activation of each neuron.

1

5 8

2 11

6 9

3 12

7 10

4

z1 a1

z2 a2

z3 a3

z4 a4

z5 a5

z6 a6

z7 a7

z8 a8

z9 a9

z10 a10

z11 a11

z12 a12

Forward pass: activations flow from inputs to outputs

Figure 6.5  The forward pass of the backpropagation algorithm.

	 Learning Functions    215

2.	 Calculate a δ (delta) error gradient for each neuron in
the output layer.

3.	 Backpropagate the δ error gradients to obtain a δ
(delta) error gradient for each neuron in the network.

4.	 Use the δ error gradients and a weight update
algorithm, such as gradient descent, to calculate the error
gradients for the weights and use these to update the
weights in the network.

The algorithm continues iterating through these steps
until the error of the network is reduced (or converged) to
an acceptable level.

1

5 8

2 11

6 9

3 12

7 10

4

δ1

δ2

δ3

δ4

δ5

δ6

δ7

δ8

δ9

δ10

δ11

δ12

Backward pass: error gradients (δs) flow from outputs to inputs

Figure 6.6  The backward pass of the backpropagation algorithm.

216   chapter 6

Backpropagation: Backpropagating the δ s
A δ term of a neuron describes the error gradient for the
network with respect to changes in the weighted summa-
tion of inputs calculated by the neuron. To help make this
more concrete, figure 6.7 (top) breaks open the processing
stages within a neuron k and uses the term zk to denote
the result of the weighted summation within the neuron.
The neuron in this figure receives inputs (or activations)
from three other neurons (h i j, ,), and zk is the weighted
sum of these activations. The output of the neuron, ak , is
then calculated by passing zk through a nonlinear activa-
tion function, ϕ, such as the logistic function. Using this
notation a δ for a neuron k is the rate of change of the
error of the network with respect to small changes in the
value of zk . Mathematically, this term is the partial deriva-
tive of the networks error with respect to zk :

δk
k

Error
z

= ∂
∂

No matter where in a network a neuron is located
(output layer or hidden layer), the δ for the neuron is cal-
culated as the product of two terms:

1.	 the rate of change of the network error in response to
changes in the neuron’s activation (output): ∂ ∂E ak/ ;

	 Learning Functions    217

Figure 6.7  Top: the forward propagation of activations through the
weighted sum and activation function of a neuron. Middle: The calculation of
the δ term for an output neuron (tk is the expected activation for the neuron
and ak is the actual activation). Bottom: The calculation of the δ term for a
hidden neuron. This figure is loosely inspired by figure 5.2 and figure 5.3 in
Reed and Marks II 1999.

218   chapter 6

2.	 the rate of change of the activation of the neuron with
respect to changes in the weighted sum of inputs to the
neuron: ∂ ∂a zk k/ .

δk
k

k

k

E
a

a
z

= ∂
∂

× ∂
∂

Figure 6.7 (middle) illustrates how this product is cal-
culated for neurons in the output layer of a network. The
first step is to calculate the rate of change of the error of
the network with respect to the output of the neuron, the
term ∂ ∂E ak/ . Intuitively, the larger the difference between
the activation of a neuron, ak , and the expected activation,
tk , the faster the error can be changed by changing the
activation of the neuron. So the rate of change of the error
of the network with respect to changes in the activation of
an output neuron k can be calculated by subtracting the
neuron’s activation (ak) from the expected activation (tk):

∂
∂

= −E
a

t a
k

k k

This term connects the error of the network to the out-
put of the neuron. The neuron’s δ, however, is the rate
of change of the error with respect to the input to the
activation function (zk), not the output of that function
(ak). Consequently, in order to calculate the δ for the

	 Learning Functions    219

neuron, the ∂ ∂E ak/ value must be propagated back
through the activation function to connect it to the in-
put to the activation function. This is done by multiplying
∂ ∂E ak/ by the rate of change of the activation function
with respect to the input value to the function, zk . In fig-
ure 6.7, the rate of change of the activation function with
respect to its input is denoted by the term: ∂ ∂a zk k/ . This
term is calculated by plugging the value zk (stored from
the forward pass through the network) into the equation
of the derivative of the activation function with respect
to zk . For example, the derivative of the logistic function
with respect to its input is:

∂ ()
∂

= () × − ()()logistic z
z

logistic z logistic z1

Figure 6.81 plots this function and shows that plugging a
zk value into this equation will result in a value between
0 and 0.25. For example, figure 6.8 shows that if zk = 0
then ∂ ∂ =a zk k/ .0 25. This is why the weighted summa-
tion value for each neuron (zk) is stored during the for-
ward pass of the algorithm.

The fact that the calculation of a neuron’s δ involves
a product that includes the derivative of the neuron’s ac-
tivation function makes it necessary to be able to take the
derivative of the neuron’s activation function. It is not
possible to take the derivative of a threshold activation

220   chapter 6

function because there is a discontinuity in the function
at the threshold. As a result, the backpropagation algo-
rithm does not work for networks composed of neurons
that use threshold activation functions. This is one of the
reasons why neural networks moved away from threshold
activation and started to use the logistic and tanh activa-
tion functions. The logistic and tanh functions both have
very simple derivatives and this made them particularly
suitable to backpropagation.

Figure 6.7 (bottom) illustrates how the δ for a neu-
ron in a hidden layer is calculated. This involves the same

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z

Ac
tiv

at
io

n(
z)

Logistic(z)

∂ logistic(z)
∂ z

max = 0.25

saturated = 0 saturated = 0

Figure 6.8  Plots of the logistic function and the derivative of the logistic
function.

	 Learning Functions    221

product of terms as was used for neurons in the output
layer. The difference is that the calculation of the ∂ ∂E ak/
is more complex for hidden units. For hidden neurons, it is
not possible to directly connect the output of the neuron
with the error of a network. The output of a hidden neu-
ron only indirectly affects the overall error of the network
through the variations that it causes in the downstream
neurons that receive the output as input, and the magni-
tude of these variations is dependent on the weight each
of these downstream neurons applies to the output. Fur-
thermore, this indirect effect on the network error is in
turn dependent on the sensitivity of the network error to
these later neurons, that is, their δ values. Consequently,
the sensitivity of the network error to the output of a hid-
den neuron can be calculated as a weighted sum of the δ
values of the neurons immediately downstream of the
neuron:

∂
∂

= ×
=
∑E

a
w

k
k i

i

N

i,
1

δ

As a result, the error terms (the δ values) for all the down-
stream neurons to which a neuron’s output is passed in
the forward pass must be calculated before the ∂ ∂E ak/ for
neuron k can be calculated. This, however, is not a prob-
lem because in the backward pass the algorithm is working
backward through the network and will have calculated

222   chapter 6

the δ terms for the downstream neurons before it reaches
neuron k.

For hidden neurons, the other term in the δ prod-
uct, ∂ ∂a zk k/ , is calculated in the same way as it is calcu-
lated for output neurons: the zk value for the neuron (the
weighted summation of inputs, stored during the forward
pass through the network) is plugged into the derivative
of the neuron’s activation function with respect to zk .

Backpropagation: Updating the Weights
The fundamental principle of the backpropagation algo-
rithm in adjusting the weights in a network is that each
weight in a network should be updated in proportion to the
sensitivity of the overall error of the network to changes
in that weight. The intuition is that if the overall error of
the network is not affected by a change in a weight, then
the error of the network is independent of that weight,
and, therefore, the weight did not contribute to the error.
The sensitivity of the network error to a change in an in-
dividual weight is measured in terms of the rate of change
of the network error in response to changes in that weight.

The overall error of a network is a function with mul-
tiple inputs: both the inputs to the network and all the
weights in the network. So, the rate of change of the er-
ror of a network in response to changes in a given net-
work weight is calculated by taking the partial derivative
of the network error with respect to that weight. In the

The fundamental
principle of the
backpropagation
algorithm in adjusting
the weights in a network
is that each weight in
a network should be
updated in proportion
to the sensitivity of the
overall error of the
network to changes
in that weight.

224   chapter 6

backpropagation algorithm, the partial derivative of the
network error for a given weight is calculated using the
chain rule. Using the chain rule, the partial derivative of
the network error with respect a weight w j k, on the con-
nection between a neuron j and a neuron k is calculated
as the product of two terms:

1.	 the first term describes the rate of change of the
weighted sum of inputs in neuron k with respect to
changes in the weight ∂ ∂z wk j k/ , ;

2.	 and the second term describes the rate of change of
the network error in response to changes in the weighted
sum of inputs calculated by the neuron k . (This second
term is the δk for neuron k .)

Figure 6.9 shows how the product of these two terms
connects a weight to the output error of the network.
The figure shows the processing of the last two neurons
(k and l) in a network with a single path of activation.
Neuron k receives a single input aj and the output from
neuron k is the sole input to neuron l. The output of neu-
ron l is the output of the network. There are two weights
in this portion of the network, w j k, and wk l, .

The calculations shown in figure 6.9 appear compli-
cated because they contain a number of different compo-
nents. However, as we will see, by stepping through these
calculations, each of the individual elements is actually

	 Learning Functions    225

easy to calculate; it’s just keeping track of all the different
elements that poses a difficulty.

Focusing on wk l, , this weight is applied to an input of
the output neuron of the network. There are two stages
of processing between this weight and the network out-
put (and error): the first is the weighted sum calculated
in neuron l; the second is the nonlinear function applied
to this weighted sum by the activation function of neuron
l . Working backward from the output, the δ l term is calcu-
lated using the calculation shown in the middle figure of
figure 6.7: the difference between the target activation for
the neuron and the actual activation is calculated and is
multiplied by the partial derivative of the neuron’s activa-
tion function with respect to its input (the weighted sum
zk), ∂ ∂a zl l/ . Assuming that the activation function used

aj
∑

aj × wj,k

wj,k
ϕ(zk)

zk ∑
ak × wk,l

wk,l
ϕ(zl)

zl
Output

δl
∂zl

∂wk,l
×

∂Error
∂wk,l

δk
∂zk

∂wj,k
×

∂Error
∂wj,k

Neuron k Neuron l

Figure 6.9  An illustration of how the product of derivatives connects
weights in the network to the error of the network.

226   chapter 6

by neuron l is the logistic function, the term ∂ ∂a zl l/ is
calculated by plugging in the value zl (stored during the
forward pass of the algorithm) into the derivation of the
logistic function:

∂
∂

= ∂ ()
∂

= () × − ()()a
z

logistic z
z

logistic z logistic zl

l

l

l
l l1

So the calculation of δ l under the assumption that neuron
l uses a logistic function is:

δ l l l l llogistic z logistic z t a= () × − ()() × ()−1

The δ l term connects the error of the network to the
input to the activation function (the weighted sum zl).
However, we wish to connect the error of the network back
to the weight wk l, . This is done by multiplying the δ l term
by the partial derivative of the weighted summation func-
tion with respect to weight wk l, : ∂ ∂z wl k l/ , . This partial
derivative describes how the output of the weighted sum
function zl changes as the weight wk l, changes. The fact
that the weighted summation function is a linear function
of weights and activations means that in the partial de-
rivative with respect to a particular weight all the terms in
the function that do not involve the specific weight go to
zero (are considered constants) and the partial derivative

	 Learning Functions    227

simplifies to just the input associated with that weight, in
this instance input ak .

∂
∂

=z
w

al

k l
k

,

This is why the activations for each neuron in the network
are stored in the forward pass. Taken together these two
terms, ∂ ∂z wl k l/ , and δ l , connect the weight wk l, to the
network error by first connecting the weight to zl , and
then connecting zl to the activation of the neuron, and
thereby to the network error. So, the error gradient of
the network with respect to changes in weight wk l, is
calculated as:

∂
∂

= ∂
∂

× = ×Error
w

z
w

a
k l

l

k l
l k l

, ,

δ δ

The other weight in the figure 6.9 network, wk l, , is
deeper in the network, and, consequently, there are more
processing steps between it and the network output (and
error). The δ term for neuron k is calculated, through
backpropagation (as shown at the bottom of figure 6.7),
using the following product of terms:

δ δk
k

k
k l l

a
z

w= ∂
∂

× ×(),

228   chapter 6

Assuming the activation function used by neuron k is the
logistic function, then the term ∂ ∂a zk k/ is calculated in
a similar way to ∂ ∂a zl l/ : the value zk is plugged into the
equation for the derivative of the logistic function. So,
written out in long form the calculation of δk is:

δ δk k k k l llogistic z logistic z w= () × − ()() × ×()1 ,

However, in order to connect the weight w j k, with the error
of the network, the term δk must be multiplied by the par-
tial derivative of the weighted summation function with
respect to the weight: ∂ ∂z wk j k/ , . As described above, the
partial derivative of a weighted sum function with respect
to a weight reduces to the input associated with the weight
w j k, (i.e., a j); and the gradient of the networks error with
respect to the hidden weight w j k, is calculated by multi-
plying aj by δk . Consequently, the product of the terms
(∂ ∂z wk j k/ , and δk) forms a chain connecting the weight
w j k, to the network error. For completeness, the product
of terms for w j k, , assuming logistic activation functions in
the neurons, is:

∂
∂

= ∂
∂

× = ×Error
w

z
w

a
j k

k

j k
k j k

, ,

δ δ

Although this discussion has been framed in the con-
text of a very simple network with only a single path of

	 Learning Functions    229

connections, it generalizes to more complex networks be-
cause the calculation of the δ terms for hidden units already
considers the multiple connections emanating from a neu-
ron. Once the gradient of the network error with respect
to a weight has been calculated (∂ = ×Error w aj k k j/ , δ),
the weight can be adjusted so as to reduce the weight of
the network using the gradient descent weight update
rule. Here is the weight update rule, specified using the
notation from backpropagation, for the weight on the con-
nection between neuron j and neuron k during iteration
t of the algorithm:

w w aj k
t

j k
t

k j, ,
+ = + × ×()1 η δ

Finally, an important caveat on training neural net-
works with backpropagation and gradient descent is that
the error surface of a neural network is much more com-
plex than that of a linear models. Figure 6.3 illustrated the
error surface of a linear model as a smooth convex bowl
with a single global minimum (a single best set of weights).
However, the error surface of a neural network is more like
a mountain range with multiple valleys and peaks. This is
because each of the neurons in a network includes a non-
linear function in its mapping of inputs to outputs, and so
the function implemented by the network is a nonlinear
function. Including a nonlinearity within the neurons of
a network increases the expressive power of the network

230   chapter 6

in terms of its ability to learn more complex functions.
However, the price paid for this is that the error surface
becomes more complex and the gradient descent algo-
rithm is no longer guaranteed to find the set of weights
that define the global minimum on the error surface; in-
stead it may get stuck within a minima (local minimum).
Fortunately, however, backpropagation and gradient de-
scent can still often find sets of weights that define useful
models, although searching for useful models may require
running the training process multiple times to explore dif-
ferent parts of the error surface landscape.

7

THE FUTURE OF DEEP LEARNING

On March 27, 2019, Yoshua Bengio, Geoffrey Hinton, and
Yann LeCun jointly received the ACM A.M. Turing award.
The award recognized the contributions they have made
to deep learning becoming the key technology driving the
modern artificial intelligence revolution. Often described
as the “Nobel Prize for Computing,” the ACM A.M Tur-
ing award carries a $1 million prize. Sometimes working
together, and at other times working independently or in
collaboration with others, these three researchers have,
over a number of decades of work, made numerous contri-
butions to deep learning, ranging from the popularization
of backpropagation in the 1980s, to the development of
convolutional neural networks, word embeddings, atten-
tion mechanisms in networks, and generative adversarial
networks (to list just some examples). The announcement
of the award noted the astonishing recent breakthroughs

232   chapter 7

that deep learning has led to in computer vision, robot-
ics, speech recognition, and natural language processing,
as well as the profound impact that these technologies
are having on society, with billions of people now using
deep learning based artificial intelligence on a daily basis
through smart phones applications. The announcement
also highlighted how deep learning has provided scien-
tists with powerful new tools that are resulting in scien-
tific breakthroughs in areas as diverse as medicine and
astronomy. The awarding of this prize to these research-
ers reflects the importance of deep learning to modern
science and society. The transformative effects of deep
learning on technology is set to increase over the com-
ing decades with the development and adoption of deep
learning continuing to be driven by the virtuous cycle of
ever larger datasets, the development of new algorithms,
and improved hardware. These trends are not stopping,
and how the deep learning community responds to them
will drive growth and innovations within the field over the
coming years.

Big Data Driving Algorithmic Innovations

Chapter 1 introduced the different types of machine learn-
ing: supervised, unsupervised, and reinforcement learn-
ing. Most of this book has focused on supervised learning,

	T he Future of Deep Learning    233

primarily because it is the most popular form of machine
learning. However, a difficulty with supervised learning
is that it can cost a lot of money and time to annotate
the dataset with the necessary target labels. As datasets
continue to grow, the data annotation cost is becoming
a barrier to the development of new applications. The
ImageNet dataset1 provides a useful example of the scale
of the annotation task involved in deep learning projects.
This data was released in 2010, and is the basis for the Ima-
geNet Large-Scale Visual Recognition Challenge (ILSVRC).
This is the challenge that the AlexNet CNN won in 2012
and the ResNet system won in 2015. As was discussed in
chapter 4, AlexNet winning the 2012 ILSVRC challenge
generated a lot of excitement about deep learning mod-
els. However, the AlexNet win would not have been pos-
sible without the creation of the ImageNet dataset. This
dataset contains more than fourteen million images that
have been manually annotated to indicate which objects
are present in each image; and more than one million of
the images have actually been annotated with the bound-
ing boxes of the objects in the image. Annotating data at
this scale required a significant research effort and budget,
and was achieved using crowdsourcing platforms. It is not
feasible to create annotated datasets of this size for every
application.

One response to this annotation challenge has
been a growing interest in unsupervised learning. The

As datasets continue
to grow, the data
annotation cost is
becoming a barrier to
the development of new
applications.

	T he Future of Deep Learning    235

autoencoder models used in Hinton’s pretraining (see
chapter 4) are one neural network approach to unsuper-
vised learning, and in recent years different types of au-
toencoders have been proposed. Another approach to this
problem is to train generative models. Generative models
attempt to learn the distribution of the data (or, to model
the process that generated the data). Similar to autoen-
coders, generative models are often used to learn a useful
representation of the data prior to training a supervised
model. Generative adversarial networks (GANs) are an ap-
proach to training generative models that has received a
lot of attention in recent years (Goodfellow et al. 2014). A
GAN consists of two neural networks, a generative model
and a discriminative model, and a sample of real data. The
models are trained in an adversarial manner. The task of
the discriminative model is to learn to discriminate be-
tween real data sampled from the dataset, and fake data
that has been synthesized by the generator. The task of
the generator is to learn to synthesize fake data that can
fool the discriminative model. Generative models trained
using a GAN can learn to synthesize fake images that
mimic an artistic style (Elgammal et al. 2017), and also to
synthesize medical images along with lesion annotations
(Frid-Adar et al. 2018). Learning to synthesize medical
images, along with the segmentation of the lesions in
the synthesized image, opens the possibility of automati-
cally generating massive labeled datasets that can be used

236   chapter 7

for supervised learning. A more worrying application of
GANs is the use of these networks to generate deep fakes:
a deep fake is a fake video of a person doing something
they never did that is created by swapping their face into a
video of someone else. Deep fakes are very hard to detect,
and have been used maliciously on a number of occasions
to embarrass public figures, or to spread fake news stories.

Another solution to the data labeling bottleneck is that
rather than training a new model from scratch for each
new application, we rather repurpose models that have
been trained on a similar task. Transfer learning is the ma-
chine learning challenge of using information (or repre-
sentations) learned on one task to aid learning on another
task. For transfer learning to work, the two tasks should
be from related domains. Image processing is an example
of a domain where transfer learning is often used to speed
up the training of models across different tasks. Transfer
learning is appropriate for image processing tasks because
low-level visual features, such as edges, are relatively stable
and useful across nearly all visual categories. Furthermore,
the fact that CNN models learn a hierarchy of visual fea-
ture, with the early layers in CNN learning functions that
detect these low-level visual features in the input, makes it
possible to repurpose the early layers of pretrained CNNs
across multiple image processing projects. For example,
imagine a scenario where a project requires an image clas-
sification model that can identify objects from specialized

	T he Future of Deep Learning    237

categories for which there are no samples in general image
datasets, such as ImageNet. Rather than training a new
CNN model from scratch, it is now relatively standard to
first download a state-of-the-art model (such as the Mi-
crosoft ResNet model) that has been trained on ImageNet,
then replace the later layers of the model with a new set
of layers, and finally to train this new hybrid-model on
a relatively small dataset that has been labeled with the
appropriate categories for the project. The later layers of
the state-of-the-art (general) model are replaced because
these layers contain the functions that combine the low-
level features into the task specific categories the model
was originally trained to identify. The fact that the early
layers of the model have already been trained to identify
the low-level visual features speeds up the training and re-
duces the amount of data needed to train the new project
specific model.

The increased interest in unsupervised learning, gen-
erative models, and transfer learning can all be understood
as a response to the challenge of annotating increasingly
large datasets.

The Emergence of New Models

The rate of emergence of new deep learning models is ac-
celerating every year. A recent example is capsule networks

238   chapter 7

(Hinton et al. 2018; Sabour et al. 2017). Capsule networks
are designed to address some of the limitations of CNNs.
One problem with CNNs, sometimes known as the Picasso
problem, is the fact that a CNN ignores the precise spatial
relationships between high-level components within an
object’s structure. What this means in practice is that a
CNN that has been trained to identify faces may learn to
identify the shapes of eyes, the nose, and the mouth, but
will not learn the required spatial relationships between
these parts. Consequently, the network can be fooled by
an image that contains these body parts, even if they are
not in the correct relative position to each other. This
problem arises because of the pooling layers in CNNs that
discard positional information.

At the core of capsule networks is the intuition that
the human brain learns to identify object types in a view-
point invariant manner. Essentially, for each object type
there is an object class that has a number of instantiation
parameters. The object class encodes information such as
the relative relationship of different object parts to each
other. The instantiation parameters control how the ab-
stract description of an object type can be mapped to the
specific instance of the object that is currently in view (for
example, its pose, scale, etc.).

A capsule is a set of neurons that learns to identify
whether a specific type of object or object part is present
at a particular location in an image. A capsule outputs an

	T he Future of Deep Learning    239

activity vector that represents the instantiation parame-
ters of the object instance, if one is present at the relevant
location. Capsules are embedded within convolutional
layers. However, capsule networks replace the pooling
process, which often defines the interface between convo-
lutional layers, with a process called dynamic routing. The
idea behind dynamic routing is that each capsule in one
layer in the network learns to predict which capsule in the
next layer is the most relevant capsule for it to forward its
output vector to.

At the time or writing, capsule networks have the state-
of-the-art performance on the MNIST handwritten digit
recognition dataset that the original CNNs were trained
on. However, by today’s standards, this is a relatively small
dataset, and capsule networks have not been scaled to
larger datasets. This is partly because the dynamic rout-
ing process slows down the training of capsule networks.
However, if capsule networks are successfully scaled, then
they may introduce an important new form of model that
extends the ability of neural networks to analyze images
in a manner much closer to the way humans do.

Another recent model that has garnered a lot of in-
terest is the transformer model (Vaswani et al. 2017).
The transformer model is an example of a growing trend
in deep learning where models are designed to have so-
phisticated internal attention mechanisms that enable a
model to dynamically select subsets of the input to focus

240   chapter 7

on when generating an output. The transformer model
has achieved state-of-the-art performance on machine
translation for some language pairs, and in the future this
architecture may replace the encoder-decoder architecture
described in chapter 5. The BERT (Bidirectional Encoder
Representations from Transformers) model has built on
the Transformer architecture (Devlin et al. 2018). The
BERT development is particularly interesting because at
its core is the idea of transfer learning (as discussed above
in relation to the data annotation bottleneck). The basic
approach to creating a natural language processing model
with BERT is to pretrain a model for a given language us-
ing a large unlabeled dataset (the fact that the dataset is
unlabeled means that it is relatively cheap to create). This
pretrained model can then be used as the basis to create a
models for specific tasks for the language (such as senti-
ment classification or question answering) by fine-tuning
the pretrained model using supervised learning and a
relatively small annotated dataset. The success of BERT
has shown this approach to be tractable and effective in
developing state-of-the-art natural language processing
systems.

New Forms of Hardware

Today’s deep learning is powered by graphics processing
units (GPUs): specialized hardware that is optimized to

	T he Future of Deep Learning    241

do fast matrix multiplications. The adoption, in the late
2000s, of commodity GPUs to speed up neural network
training was a key factor in many of the breakthroughs
that built momentum behind deep learning. In the last
ten years, hardware manufacturers have recognized the
importance of the deep learning market and have devel-
oped and released hardware specifically designed for deep
learning, and which supports deep learning libraries, such
as TensorFlow and PyTorch. As datasets and networks
continue to grow in size, the demand for faster hardware
continues. At the same time, however, there is a grow-
ing recognition of the energy costs associated with deep
learning, and people are beginning to look for hardware
solutions that have a reduced energy footprint.

Neuromorphic computing emerged in the late 1980s
from the work of Carver Mead.2 A neuromorphic chip is
composed of a very-large-scale integrated (VLSI) circuit,
connecting potentially millions of low-power units known
as spiking neurons. Compared with the artificial neurons
used in standard deep learning systems, the design of a
spiking neuron is closer to the behavior of biological neu-
rons. In particular, a spiking neuron does not fire in re-
sponse to the set of input activations propagated to it at a
particular time point. Instead, a spiking neuron maintains
an internal state (or activation potential) that changes
through time as it receives activation pulses. The activa-
tion potential increases when new activations are received,

242   chapter 7

and decays through time in the absence of incoming ac-
tivations. The neuron fires when its activation potential
surpasses a specific threshold. Due to the temporal decay
of the neuron’s activation potential, a spiking neuron only
fires if it receives the requisite number of input activations
within a time window (a spiking pattern). One advantage
of this temporal based processing is that spiking neurons
do not fire on every propagation cycle, and this reduces
the amount of energy the network consumes.

In comparison with traditional CPU design, neuro-
morphic chips have a number of distinctive characteristics,
including:

1.	 Basic building blocks: traditional CPUs are built using
transistor based logic gates (e.g., AND, OR, NAND gates),
whereas neuromorphic chips are built using spiking
neurons.

2.	 Neuromorphic chips have an analog aspect to them:
in a traditional digital computer, information is sent in
high-low electrical bursts in sync with a central clock; in
a neuromorphic chip, information is sent as patterns of
high-low signals that vary through time.

3.	 Architecture: the architecture of traditional CPUs
is based on the von Neumann architecture, which is
intrinsically centralized with all the information passing
through the CPU. A neuromorphic chip is designed to

	T he Future of Deep Learning    243

allow massive parallelism of information flow between
the spiking neurons. Spiking neurons communicate
directly with each other rather than via a central
information processing hub.

4.	 Information representation is distributed through
time: the information signals propagated through a
neuromorphic chip use a distributed representation,
similar to the distributed representations discussed in
chapter 4, with the distinction that in a neuromorphic
chip these representations are also distributed through
time. Distributed representations are more robust to
information loss than local representations, and this is
a useful property when passing information between
hundreds of thousands, or millions, of components,
some of which are likely to fail.

Currently there are a number of major research proj-
ects focused on neuromorphic computing. For example,
in 2013 the European Commission allocated one billion
euros in funding to the ten-year Human Brain Project.3
This project directly employs more than five hundred sci-
entists, and involves research from more than a hundred
research centers across Europe. One of the projects key ob-
jectives is the development of neuromorphic computing
platforms capable of running a simulation of a complete
human brain. A number of commercial neuromorphic

244   chapter 7

chips have also been developed. In 2014, IBM launched
the TrueNorth chip, which contained just over a million
neurons that are connected together by over 286 million
synapses. This chip uses approximately 1/10,000th the
power of a conventional microprocessor. In 2018, Intel
Labs announced the Loihi (pronounced low-ee-hee) neu-
romorphic chip. The Loihi chip has 131,072 neurons con-
nected together by 130,000,000 synapses. Neuromorphic
computing has the potential to revolutionize deep learn-
ing; however, it still faces a number of challenges, not least
of which is the challenge of developing the algorithms and
software patterns for programming this scale of massively
parallel hardware.

Finally, on a slightly longer time horizon, quantum
computing is another stream of hardware research that
has the potential to revolutionize deep learning. Quantum
computing chips are already in existence; for example, In-
tel has created a 49-qubit quantum test chip, code named
Tangle Lake. A qubit is the quantum equivalent of a binary
digit (bit) in traditional computing. A qubit can store more
than one bit of information; however, it is estimated that
it will require a system with one million or more qubits
before quantum computing will be useful for commercial
purposes. The current time estimate for scaling quantum
chips to this level is around seven years.

	T he Future of Deep Learning    245

The Challenge of Interpretability

Machine learning, and deep learning, are fundamentally
about making data-driven decisions. Although deep learn-
ing provides a powerful set of algorithms and techniques
to train models that can compete (and in some cases out-
perform) humans on a range of decision-making tasks,
there are many situations where a decision by itself is not
sufficient. Frequently, it is necessary to provide not only
a decision but also the reasoning behind a decision. This
is particularly true when the decision affects a person, be
it a medical diagnosis or a credit assessment. This concern
is reflected in privacy and ethics regulations in relation to
the use of personal data and algorithmic decision-making
pertaining to individuals. For example, Recital 714 of the
General Data Protection Regulations (GDPR) states that
individuals, affected by a decision made by an automated
decision-making process, have the right to an explanation
with regards to how the decision was reached.

Different machine learning models provide different
levels of interpretability with regard to how they reach a
specific decision. Deep learning models, however, are pos-
sibly the least interpretable. At one level of description,
a deep learning model is quite simple: it is composed of
simple processing units (neurons) that are connected to-
gether into a network. However, the scale of the networks
(in terms of the number of neurons and the connections

246   chapter 7

between them), the distributed nature of the represen-
tations, and the successive transformations of the input
data as the information flows deeper into the network,
makes it incredibly difficult to interpret, understand, and
therefore explain, how the network is using an input to
make a decision.

The legal status of the right to explanation within
GDPR is currently vague, and the specific implications
of it for machine learning and deep learning will need to
be worked out in the courts. This example does, however,
highlight the societal need for a better understanding of
how deep learning models use data. The ability to inter-
pret and understand the inner workings of a deep learn-
ing model is also important from a technical perspective.
For example, understanding how a model uses data can
reveal if a model has an unwanted bias in how it makes its
decisions, and also reveal the corner cases that the model
will fail on. The deep learning and the broader artificial
intelligence research communities are already responding
to this challenge. Currently, there are a number of proj-
ects and conferences focused on topics such as explainable
artificial intelligence, and human interpretability in ma-
chine learning.

Chis Olah and his colleagues summarize the main
techniques currently used to examine the inner workings
of deep learning models as: feature visualization, attribu-
tion, and dimensionality reduction (Olah et al. 2018). One

	T he Future of Deep Learning    247

way to understand how a network processes information is
to understand what inputs trigger particular behaviors in
a network, such as a neuron firing. Understanding the spe-
cific inputs that trigger the activation of a neuron enables
us to understand what the neuron has learned to detect in
the input. The goal of feature visualization is to generate
and visualize inputs that cause a specific activity within a
network. It turns out that optimization techniques, such
a backpropogation, can be used to generate these inputs.
The process starts with a random generated input and the
input is then iteratively updated until the target behavior
is triggered. Once the required necessary input has been
isolated, it can then be visualized in order to provide a bet-
ter understanding of what the network is detecting in the
input when it responds in a particular way. Attribution fo-
cuses on explaining the relationship between neurons, for
example, how the output of a neuron in one layer of the
network contributes to the overall output of the network.
This can be done by generating a saliency (or heat-map)
for the neurons in a network that captures how much
weight the network puts on the output of a neuron when
making a particular decision. Finally, much of the activity
within a deep learning network is based on the processing
of high-dimensional vectors. Visualizing data enables us
to use our powerful visual cortex to interpret the data and
the relationships within the data. However, it is very dif-
ficult to visualize data that has a dimensionality greater

248   chapter 7

than three. Consequently, visualization techniques that
are able to systematically reduce the dimensionality of
high-dimensional data and visualize the results are incred-
ibly useful tools for interpreting the flow of information
within a deep network. t-SNE5 is a well-known technique
that visualizes high-dimensional data by projecting each
datapoint into a two- or three-dimensional map (van der
Maaten and Hinton 2008). Research on interpreting deep
learning networks is still in its infancy, but in the com-
ing years, for both societal and technical reasons, this re-
search is likely to become a more central concern to the
broader deep learning community.

Final Thoughts

Deep learning is ideally suited for applications involving
large datasets of high-dimensional data. Consequently,
deep learning is likely to make a significant contribution
to some of the major scientific challenges of our age. In
the last two decades, breakthroughs in biological se-
quencing technology have made it possible to generate
high-precision DNA sequences. This genetic data has the
potential to be the foundation for the next generation of
personalized precision medicine. At the same time, inter-
national research projects, such as the Large Hadron Col-
lider and Earth orbit telescopes, generate huge amounts

One way to understand
how a network
processes information
is to understand what
inputs trigger particular
behaviors in a network,
such as a neuron firing.

250   chapter 7

of data on a daily basis. Analyzing this data can help us to
understand the physics of our universe at the smallest and
the biggest scales. In response to this flood of data, scien-
tists are, in ever increasing numbers, turning to machine
learning and deep learning to enable them to analyze
this data.

At a more mundane level, however, deep learning al-
ready directly affects our lives. It is likely, that for the last
few years, you have unknowingly been using deep learning
models on a daily basis. A deep learning model is prob-
ably being invoked every time you use an internet search
engine, a machine translation system, a face recognition
system on your camera or social media website, or use a
speech interface to a smart device. What is potentially
more worrying is that the trail of data and metadata that
you leave as you move through the online world is also
being processed and analzsed using deep learning models.
This is why it is so important to understand what deep
learning is, how it works, what is it capable of, and its cur-
rent limitations.

GLOSSARY

Activation Function
A function that takes as input the result of the weighted sum of the inputs to
a neuron and applies a nonlinear mapping to this weighted sum. Including an
activation function within the neurons of a network enables the network to
learn a nonlinear mapping. Examples of commonly used activation functions
include: logistic, tanh, and ReLU.

Artificial Intelligence
The field of research that is focused on developing computational systems
that can perform tasks and activities normally considered to require human
intelligence.

Backpropagation
Backpropagation is an algorithm used to train a neural network with hidden
layers of neurons. During training, the weights in a network are iteratively
updated to reduce the error of the network. In order to update the weights
on the links coming into a specific neuron in a network, it is necessary to first
calculate an estimate of the contribution of the output of that neuron to the
overall error of the network. The backpropagation algorithm is a solution to
calculating these estimates for each neuron in the network. Once these errors
estimates have been calculated for each neuron, the weights of the neurons
can be updated using an optimization algorithm such as gradient descent.
Backpropagation works in two phases: a forward pass and a backward pass. In
the forward pass, an example is presented to the network and the overall error
of the network is calculated at the output layer of the network by comparing
the output of the network with the expected output for the example specified
in the dataset. In the backward pass, the error of the network is shared back
through the network with each neuron receiving a portion of blame for the
error in proportion to the sensitivity of the error to changes in the output
of that neuron. The process of sharing back the errors through the network
is known as backpropagating the errors and this is where the algorithm gets
its name.

252   GLOSSARY

Convolutional Neural Network
A convolutional neural network is a network that has at least one convolu-
tional layer in it. A convolution layer is composed of a set of neurons that share
the same set of weights and whose combined receptive fields cover an entire
input. The union of the outputs of such a set of neurons is known as a fea-
ture map. In many convolutional neural networks, features maps are passed
through a ReLU activation layer and then a pooling layer.

Dataset
A collection of instances with each instances described in terms of a set of
features. In its most basic form, a dataset is organized in an n × m matrix,
where n is the number of instances (rows) and m is the number of features
(columns).

Deep Learning
Deep learning is the subfield of machine learning that designs and evaluates
training algorithms and architectures for modern neural network models. A
deep neural network is a network that has multiple (e.g., >2) layers of hidden
units (or neurons).

Feedforward Network
A feedforward network is a neural network where all the connections in the
network point forward to the neurons in subsequent layer. In other words,
there are no links backward from the output of a neuron to the input of a
neuron in an earlier layer.

Function
A function is a deterministic mapping from a set of input values to one or more
output values. In the context of machine learning, the term function is often
used interchangeably with the term model.

Gradient Descent
Gradient descent is an optimization algorithm for finding a function with the
minimum error with respect to modeling the patterns in a dataset. In the
context of training a neural network, gradient descent is used to find the set
of weights for a neuron that minimizes the error of the output of the neuron.
The gradient the algorithm descends is the error gradient of the neuron as its
weights are updated. The algorithm is frequently used in conjunction with
backpropagation to train neural networks with hidden layers of neurons.

	G LOSSARY    253

GPU (Graphical Processing Unit)
Specialized hardware that is optimized for fast matrix multiplication. Origi-
nally designed to increase the speed in graphics rendering but also found to
speed up the training of neural networks.

LSTM (Long Short-Term Memory)
A network designed to address the problem of vanishing gradients in recurrent
neural networks. The network is composed of a cell block where activations
flow through from one time-step to the next and a set of gates on the cell
block that control the flow of these activations. The gates are implemented
using layers of sigmoid and tanh activation functions. The standard LSTM
architecture has three such gates: the forget gate, the update gate, and the
output gate.

Machine Learning (ML)
The field of computer science research that focuses on developing and evalu-
ating algorithms that enable computers to learn from experience. Generally
the concept of experience is represented as a dataset of historic events, and
learning involves identifying and extracting useful patterns from a data-
set. A machine learning algorithm takes a dataset as input and returns a
model that encodes the patterns the algorithm extracted (or learned) from
the data.

Machine Learning Algorithm
A process that analyzes a dataset and returns as model (i.e., an instan-
tiation of a function as a computer program) that matches the patterns in
the data.

Model
In machine learning, a model is a computer program that encodes the patterns
the machine learning algorithm has extracted from a dataset. There are many
different types of machine learning models; however, deep learning is focused
on creating neural network models with multiple layers of hidden neurons. A
model is created (or trained) by running a machine learning algorithm on a
dataset. Once the model has been trained, it can then be used to analyze new
instances; the term inference is sometimes used to describe the process of ana-
lyzing a new instance using a trained model. In the context of machine learn-
ing, the terms model and function are often used interchangeably: a model is
an instantiation of a function as a computer program.

254   GLOSSARY

Neuromorphic Computing
Neuromorphic chips are composed of very large sets of spiking neurons archi-
tecture that are connected in a massively parallel manner.

Neural Network
A machine learning model that is implemented as a network of simple infor-
mation processing units called neurons. It is possible to create a variety of
different types of neural networks by modifying the connections between the
neurons in the network. Examples of popular types of neural networks in-
clude: feedforward, convolutional, and recurrent networks.

Neuron
In the context of deep learning (as opposed to brain science), a neuron is a
simple information processing algorithm that takes a number of numeric val-
ues as input and maps these values to a high- or low-output activation. This
mapping is typically implemented by first multiplying each input value by a
weight, then summing the results of these multiplications, and finally passing
the results of the weighted summation through an activation function.

Overfitting
Overfitting a dataset occurs if the model returned by a machine learning algo-
rithm is so complex that it is able to model small variations in the data caused
by the noise in the data sample.

Recurrent Neural Network
A recurrent neural network has a single layer of hidden neurons, the output
of which is fed back into this layer with the next input. This feedback (or re-
currence) within the network gives the network a memory that enables it to
process each input within the context of what it has previously processed.
Recurrent neural networks are ideally suited to processing sequential or time-
series data.

Reinforcement Learning
The goal of reinforcement learning is to enable an agent to learn a policy on
how it should act in a given environment. A policy is a function that maps
from an agent’s current observations of its environment and its own internal
state to an action. Typically used for online control tasks such as robot control
and game playing.

	G LOSSARY    255

ReLU Unit
A ReLU unit is a neuron that uses a rectified linear function as its activation
function.

Supervised Learning
A form of machine learning where the goal is to learn a function that maps
from a set of input attributes for an instance to an accurate estimate of the
missing value for the target attribute of the same instance.

Target Attribute
In supervised machine learning, a target attribute is the attribute that the
model is trained to estimate the value of.

Underfitting
Underfitting a dataset occurs if the model returned by a machine learning
algorithm is too simplistic to capture the real complexity of the relationship
between the inputs and outputs in a domain.

Unsupervised Learning
A form of machine learning where the goal is to identify regularities, such as
clusters of similar instances, in the data. Unlike supervised learning, there is
no target attribute in an unsupervised learning task.

Vanishing Gradient
The vanishing gradient problem describes the fact that as more layers are
added to a network it takes longer to train the network. This problem is caused
by the fact that when a neural network is trained using backpropagation and
gradient descent, the updating of the weights on links coming into a neuron
in the network is dependent on the gradient (or sensitivity) of the network
error with respect to the output of the neuron. Using backpropagation, the
process of sharing back the error gradients through a neuron involves a se-
quence of multiplications, often by values less than one. As a result, as the
error gradient is passed back through the network, the error gradient tends
to get smaller and smaller (i.e., vanish). As a direct consequence of this, the
updates to weights in the early layers of the network are very small and the
neurons in these layers take a long time to train.

NOTES

Chapter 1
1.  https://deepmind.com/research/alphago/.
2.  The Elo rating system is a method for calculating the skill level of
players in zero-sum games, such as Chess. It is named after its inventor,
Arpad Elo.
3.  Noise in data refers to corrupt or incorrect data. Noise in data can been
caused by broken sensors, or mistakes in data entry, and so on.
4.  By domain we mean the problem or task that we are trying to solve using
machine learning. For example, it could be spam filtering, house prices predic-
tion, or automatically classifying X-rays.
5.  There are some scenarios where more complex dataset representations are
required. For example, for time-series data, a dataset may require a three-
dimensional representation, composed of a series of two-dimensional matri-
ces, each describing the state of the system at a point in time, linked together
through time. The term tensor generalizes the concept of a matrix to higher
dimensions.

Chapter 2
1.  It turns out that the relationship between annual income and happiness
is linear up to a point, but that once your annual income goes beyond this
point more money won’t make you happier. A study by Kahneman and Deaton
(2010) found that in the US the general cutoff, after which increases in income
no longer increase emotional well-being, was around $75,000.
2.  This is the same dataset that appears in table 1.1 in chapter 1; it is repeated
here for convenience.

Chapter 3
1.  The origin is the location in a coordinate system where the axes cross. In a
two-dimensional coordinate system, it is where the x-axis and y-axis cross—in
other words, it is the location at coordinates x=0, y=0.
2.  In chapter 2, we used the same approach to merge the intercept parameter
of the linear model into the weights of the model.
3.  To highlight this column organization the weights have been indexed
column-row, rather than row-column.

https://deepmind.com/research/alphago/.

258   NOTES

4.  For further discussion on the size and growth of networks, see page 23 of
Goodfellow et al. 2016.

Chapter 4
1.  Figures 3.6 and 3.7 show the linear (straight line) decision boundary of
neuron that uses a threshold activation function.
2.  This illustration of the use of associative memory for pattern completion
and error correction is inspired from an example in chapter 42 of MacKay
2003.
3.  For example, Paul Werbos’s 1974 PhD thesis is credited with being the first
publication to describe the use of backpropagation of errors in the training of
artificial neural networks (Werbos 1974).
4.  The Hopfield network architecture, introduced at the start of this sec-
tion, also included recurrent connections (feedback loops between neurons).
However, the design of the Hopfield architecture is such that a Hopfield net-
work cannot process sequences. Consequently, it is not considered a full RNN
architecture.
5.  I originally came across this Churchland quote in Marcus 2003 (p. 25).
6.  Critique of paper “Deep Learning Conspiracy” (Nature 521, p. 436), cri-
tique posted by Jürgen Schmidhuber, June 2015, available at: http://people

.idsia.ch/~juergen/deep-learning-conspiracy.html.
7.  There are a number of other ways that autoencoders can be constrained to
preclude the possibility that the network will learn an uninformative identity
mapping from inputs to outputs; for example, noise can be injected into the in-
put patterns and the network can be trained to reconstruct the un-noisy data.
Alternatively, the units in the hidden (or encoding) layer can be restricted
to have binary values. Indeed, Hinton and his colleagues originally used net-
works called Restricted Boltzman Machines (RBMs) in their initial pretraining
work, which used binary units in the encoding layer.
8.  The number of layers trained during pretraining is a hyperparameter
that is set based on the intuition of the data scientist and trial-and-error
experimentation.
9.  As early as 1971, Alexey Ivakhnenko’s GMDH method had been shown to
be able to train a deep network (up to eight layers), but this method had been
largely overlooked by the research community.
10.  Glorot initialization is also known as Xavier initialization. Both of these
names are references to one of the authors (Xavier Glorot) of the first paper
that introduced this initialization procedure: Xavier Glorot and Yoshua Bengio,

“Understanding the Difficulty of Training Deep Feedforward Neural Networks,”

http://people.idsia.ch/~juergen/deep-learning-conspiracy.html.
http://people.idsia.ch/~juergen/deep-learning-conspiracy.html.

	NOT ES    259

in Proceedings of the 13th International Conference on Artificial Intelligence and
Statistics (AISTATS), 2010, pp. 249–256.
11.  Glorot initialization can also be defined as sampling the weights from
a Gaussian distribution with a mean of 0 and standard deviation set to the
square root of 2 divided by nj + nj+1. However, both of these definitions of
Glorot initialization have the same goal of ensuring a similar variance in acti-
vations and gradients across the layers in a network.
12.  https://developer.nvidia.com/cuda-zone.

Chapter 5
1.  The explanation of LSTM units presented here is inspired by an excellent
blog post by Christopher Olah, which explains LSTMs clearly and in detail; post
available at: http://colah.github.io/posts/2015–08-Understanding-LSTMs/.
2.  A sigmoid function is in fact a special case of the logistic function, and for
the purposes of this discussion the distinction is not relevant.
3.  If, for example, sigmoid units with an output range of 0 to 1 were used
then activations could only be either maintained or increased at each update
and eventually the cell state would become saturated with maximum values.

Chapter 6
1.  This figure also appears in chapter 4 but it is repeated here for convenience.

Chapter 7
1.  http://www.image-net.org.
2.  https://en.wikipedia.org/wiki/Carver_Mead.
3.  https://www.humanbrainproject.eu/en/.
4.  Recitals are a non-legally binding section of a regulation that seeks to clar-
ify the meaning of the legal text.
5.  Laurens van der Maaten and Geoffrey Hinton, “Visualizing Data using
t-SNE,” Journal of Machine Learning Research 9 (2008): 2579–2605.

https://developer.nvidia.com/cuda-zone.
http://colah.github.io/posts/2015–08-Understanding-LSTMs/.
http://www.image-net.org.
https://en.wikipedia.org/wiki/Carver_Mead.
https://www.humanbrainproject.eu/en/.

REFERENCES

Aizenberg, I. N., N. N. Aizenberg, and J. Vandewalles. 2000. Multi-Valued and
Universal Binary Neurons: Theory, Learning and Applications. Springer.

Chellapilla, K., S. Puri, and Patrice Simard. 2006. “High Performance Convo-
lutional Neural Networks for Document Processing.” In Tenth International
Workshop on Frontiers in Handwriting Recognition.

Churchland, P. M. 1996. The Engine of Reason, the Seat of the Soul: A Philosophi-
cal Journey into the Brain. MIT Press.

Dechter, R. 1986. “Learning While Searching in Constraint-Satisfaction-
Problems.” In Proceedings of the Fifth National Conference on Artificial
Intelligence (AAAI-86), pp. 178–183.

Devlin, J., M. W. Chang, K. Lee, and K. Toutanova. 2018. “Bert: Pre-training
of deep bidirectional transformers for language understanding.” arXiv pre-
print arXiv:1810.04805.

Elgammal, A., B. Liu, M. Elhoseiny, and M. Mazzone. 2017. “CAN: Creative
Adversarial Networks, Generating ‘Art’ by Learning about Styles and Deviat-
ing from Style Norms.” arXiv:1706.07068.

Elman, J. L. 1990. “Finding Structure in Time.” Cogn. Sci. 14: 179–211.

Frid-Adar, M., I. Diamant, E. Klang, M. Amitai, J. Goldberger, and H. Greens-
pan. 2018. “GAN-based Synthetic Medical Image Augmentation for Increased
CNN Performance in Liver Lesion Classification.” arXiv:1803.01229.

Fukushima, K. 1980. “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position.” Biol.
Cybern. 36: 193–202.

Glorot, X., and Y. Bengio. 2010. “Understanding the Difficulty of Train-
ing Deep Feedforward Neural Networks.” In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics (AISTATS),
pp. 249–256.

Glorot, X., A. Bordes, and Y. Bengio. 2011. “Deep Sparse Rectifier Neural Net-
works.” In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics (AISTATS), pp. 315–323.

262   REFERENCES

Goodfellow, I., Y. Bengio, and A. Courville. 2016. Deep Learning. MIT Press.

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and J. Bengio. 2014. “Generative Adversarial Nets.” In Advances in
Neural Information Processing Systems 27: 2672–2680.

He, K., X. Zhang, S. Ren, and J. Sun. 2016. “Deep Residual Learning for Image
Recognition.” In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, pp. 770–778. https://doi.org/10.1109/CVPR.2016.90.

Hebb, D. O. 1949. The Organization of Behavior: A Neuropsychological Theory.
John Wiley & Sons.

Herculano-Houzel, S. 2009. “The Human Brain in Numbers: A Linearly
Scaled-up Primate Brain.” Front. Hum. Neurosci. 3. https://doi.org/10.3389/
neuro.09.031.2009.

Hinton, G. E., S. Sabour, and N. Frosst. 2018. “Matrix Capsules with EM
Routing.” In Proceedings of the 7th International Conference on Learning Rep-
resentations (ICLR).

Hochreiter, S. 1991. Untersuchungen zu dynamischen neuronalen Netzen
(Diploma). Technische Universität München.

Hochreiter, S., Schmidhuber, J. 1997. “Long Short-Term Memory.” Neural
Comput. 9: 1735–1780.

Hopfield, J. J. 1982. “Neural Networks and Physical Systems with Emergent
Collective Computational Abilities.” Proc. Natl. Acad. Sci. 79: 2554–2558.
https://doi.org/10.1073/pnas.79.8.2554.

Hubel, D. H., and T. N. Wiesel. 1962. “Receptive Fields, Binocular Interaction
and Functional Architecture in the Cat’s Visual Cortex.” J. Physiol. Lond. 160:
106–154.

Hubel, D. H., and T. N. Wiesel. 1965. “Receptive Fields and Function Architec-
ture in Two Nonstriate Visual Areas (18 and 19) of the Cat.” J. Neurophysiol.
28: 229–289.

Ivakhnenko, A. G. 1971. “Polynomial Theory of Complex Systems.” IEEE
Trans. Syst. Man Cybern. 4: 364–378.

Kelleher, J. D., and B. Tierney. 2018. Data Science. MIT Press.

Krizhevsky, A., I. Sutskever, and G. E. Hinton. 2012. “Imagenet Classification
with Deep Convolutional Neural Networks.” In Advances in Neural Information
Processing Systems, pp. 1097–1105.

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.3389/neuro.09.031.2009.
https://doi.org/10.3389/neuro.09.031.2009.
https://doi.org/10.1073/pnas.79.8.2554.

	 REFERENCES    263

LeCun, Y. 1989. Generalization and Network Design Strategies (Technical
Report No. CRG-TR-89-4). University of Toronto Connectionist Research
Group.

Maas, A. L., A. Y. Hannun, and A. Y. Ng. 2013. “Rectifier Nonlinearities Im-
prove Neural Network Acoustic Models.” In Proceedings of the Thirteenth Inter-
national Conference on Machine Learning (ICML) Workshop on Deep Learning
for Audio, Speech and Language Processing, p. 3.

MacKay, D. J. C. 2003. Information Theory, Inference, and Learning Algorithms.
Cambridge University Press.

Marcus, G.F. 2003. The Algebraic Mind: Integrating Connectionism and Cognitive
Science. MIT Press.

McCulloch, W. S., and W. Pitts. 1943. “A Logical Calculus of the Ideas Imma-
nent in Nervous Activity.” Bull. Math. Biophys. 5: 115–133.

Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. “Efficient Estimation of
Word Representations in Vector Space.” arXiv:1301.3781.

Minsky, M., and S. Papert. 1969. Perceptrons. MIT Press.

Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller. 2013. “Playing Atari with Deep Reinforcement Learning.”
ArXiv13125602 Cs.

Nilsson, N. J. 1965. Learning Machines: Foundations of Trainable Pattern-
Classifying Systems, Series in Systems Science. McGraw-Hill.

Oh, K.-S., and K. Jung. 2004. “GPU Implementation of Neural Networks.”
Pattern Recognit. 36: 1311–1314.

Olah, C., A. Satyanarayan, I. Johnson, S. Carter, S. Ludwig, K. Ye, and A.
Mordvintsev. 2018. “The Building Blocks of Interpretability.” Distill. https://
doi.org/10.23915/distill.00010.

Reagen, B., R. Adolf, P. Whatmough, G.-Y. Wei, and D. Brooks. 2017. “Deep
Learning for Computer Architects.” Synth. Lect. Comput. Archit. 12: 1–123.
https://doi.org/10.2200/S00783ED1V01Y201706CAC041.

Reed, R. D., and R. J. Marks II. 1999. Neural Smithing: Supervised Learning in
Feedforward Artificial Neural Networks. MIT Press.

Rosenblatt, F. 1960. On the Convergence of Reinforcement Procedures in
Simple Perceptrons (Project PARA). (Report No. VG-1196-G-4). Cornell Aero-
nautical Laboratory, Inc., Buffalo, NY.

https://doi.org/10.23915/distill.00010.
https://doi.org/10.23915/distill.00010.
https://doi.org/10.2200/S00783ED1V01Y201706CAC041.

264   REFERENCES

Rosenblatt, F. 1962. Principles of Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms. Spartan Books.

Rosenblatt, Frank, 1958. “The Perceptron: A Probabilistic Model for Infor-
mation Storage and Organization in the Brain.” Psychol. Rev. 65: 386–408.
https://doi.org/10.1037/h0042519.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986a. “Learning Internal
Representations by Error Propagation.” In D. E. Rumelhart, J. L. McClelland,
and PDP Research Group, eds. Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, Vol. 1. MIT Press, pp. 318–362.

Rumelhart, D.E., J. L. McClelland, PDP Research Group, eds. 1986b. Parallel
Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1:
Foundations. MIT Press.

Rumelhart, D.E., J. L. McClelland, PDP Research Group, eds. 1986c. Parallel
Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 2:
Psychological and Biological Models. MIT Press.

Sabour, S., N. Frosst, and G. E. Hinton. 2017. “Dynamic Routing Between
Capsules.” In Proceedings of the 31st Conference on Neural Information Proc-
essing (NIPS). pp. 3856–3866.

Schmidhuber, J. 2015. “Deep Learning in Neural Networks: An Overview.”
Neural Netw. 61: 85–117.

Steinkraus, D., Patrice Simard, and I. Buck. 2005. “Using GPUs for Machine
Learning Algorithms.” In Eighth International Conference on Document Analy-
sis and Recognition (ICDAR’05). IEEE. https://doi.org/10.1109/ICDAR.2005

.251.

Sutskever, I., O. Vinyals, and Q. V. Le. 2014. “Sequence to Sequence Learning
with Neural Networks.” In Advances in Neural Information Processing Systems
(NIPS), pp. 3104–3112.

Taigman, Y., M. Yang, M. Ranzato, and L. Wolf. 2014. “DeepFace: Closing
the Gap to Human-Level Performance in Face Verification.” Presented at the
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 1701–1708.

van der Maaten, L., and G. E. Hinton. 2008. “Visualizing Data Using t-SNE.” J.
Mach. Learn. Res. 9, 2579–2605.

https://doi.org/10.1037/h0042519
https://doi.org/10.1109/ICDAR.2005.251.
https://doi.org/10.1109/ICDAR.2005.251.

	 REFERENCES    265

Vaswani, A., N. Shazer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kai-
ser, and I. Polosukhin. 2017. “Attention Is All You Need.” In Proceedings of
the 31st Conference on Neural Information Processing (NIPS), pp. 5998–6008.

Werbos, P. 1974. “Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences.” PhD diss., Harvard University.

Widrow, B., and M.E. Hoff. 1960. Adaptive Switching Circuits (Technical
Report No. 1553-1). Stanford Electronics Laboratories, Stanford University,
Stanford, California.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R.,
Bengio, Y. 2015. “Show, Attend and Tell: Neural Image Caption Generation
with Visual Attention.” In Proceedings of the 32nd International Conference on
Machine Learning, Proceedings of Machine Learning Research. PMLR, pp. 2048–
2057.

FURTHER READINGS

Books on Deep Learning and Neural Networks

Charniak, Eugene. 2018. Introduction to Deep Learning. MIT Press.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning.
MIT Press.

Hagan, Martin T., Howard B. Demuth, Mark Hudson Beale, and Orlando De
Jesús. 2014. Neural Network Design. 2nd ed.

Reagen, Brandon, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, and David
Brooks. 2017. “Deep Learning for Computer Architects.” Synthesis Lectures on
Computer Architecture 12 (4): 1–123.

Sejnowski, Terrence J. 2018. The Deep Learning Revolution. MIT Press.

Online Resources

Nielsen, Michael A. 2015. Neural Networks and Deep Learning. Determination
Press. Available at: http://neuralnetworksanddeeplearning.com.

Distill (an open access journal with many articles on deep learning and
machine learning). Available at: https://distill.pub.

Overview Journal Articles

LeCun, Yann, Yoshua Bengio, and Geoffrey E. Hintron. 2015. “Deep Learn-
ing.” Nature 521: 436–444.

Schmidhuber, Jürgen. 2015. “Deep Learning in Neural Networks: An Over-
view.” Neural Networks 61: 85–117.

http://neuralnetworksanddeeplearning.com.
https://distill.pub.

INDEX

Activation functions. See also specific
functions

backpropagation and, 127
common characteristics, 79
defined, 251
derivative plot, 220
element-wise application, 96
history of, 158
necessity of, 77–80, 82
neural network, 62
neuron, 70–79, 127, 150–151
φ notation, 96
shape of, 76, 79
weight adjustments, 207

Activation space, 59–61
Adaptive linear neuron (ADALINE)

network, 116–117
Aizenberg, I. N., 143
AlexNet, 102, 138, 169–170, 233
Algorithms, 7–8. See also

Backpropagation algorithm;
Gradient descent algorithm;
Least mean squares (LSM)
algorithm; Machine learning
(ML) algorithm

AlphaGo (Deep Mind), 2, 4
AND function, 119–119, 133
Artificial intelligence

background, 4, 6–8
challenges, 246
defined, 251
machine learning and, 4, 6
relationships, 6, 10

Assumptions, encoded, 18, 21

Attribution, 247
Autoencoders, 144, 145–148
Axon, 65–66

Backpropagation
in deep learning history, 102,

125–129
defined, 251
error gradients, 150–151
learning rule, 210
meanings of, 209–210
ReLUs, 152
RNNs, 175–176
training neural networks, 138,

209–210
the δ s, 216–222

Backpropagation algorithm
background, 125–126
backward pass, 126, 211–213, 215
blame assignment, 126, 213–214
credit assignment problem,

solving the, 125, 186, 209–210
described, 209–210
error gradients, 211–213
error propagation, 128–129
forward pass, 126, 211, 214
iteration steps, 213–214
threshold activation function

in, 127
training function, 127, 186
two-stage, 126, 210–215
weight adjustments, 126–127,

222–230
Backward pass, 126, 211–213, 215

270   INDEX

Baidu, 1
Bengio, Yoshua, 231
Bias

in artificial neurons, 88
inductive, 17–22
permissive, 20
preference, 19–20
restriction, 19

Bias term, 88–92
Bidirectional Encoder

Representations from
Transformers (BERT) model,
240

Big data
deep learning’s impact on, 35
driving algorithmic innovation,

232–237
emergence of, 23

Biological neurons, 241
Blame assignment, 123, 126,

213–214
BMI example, 32
Box, George, 40
Brain, human, 65–67, 238

Candidate functions, 25–26, 28
Capsule networks, 237–239
Cars, self-driving, 1
Cells, LSTM, 177–178, 180
Chain rule, 128
Chellapilla, K., 154
Chess, 2–4
Churchland, P. M., 140
Civil liberties, 37, 245
Complex cells, 135–136
Complex models, 62
Computer games. See Game playing
Computer power, growth of,

153–155

Compute unified device architecture
(CUDA), 154

Connectionism, 124, 129–141,
156–157

Connection weights, 70
Consumer devices, 37
Convolutional layer, 168–170
Convolutional neural network

(CNN)
architecture, 182
convolution operation, 165
in deep learning history, 133–143
defined, 252
design goal, 160
feature maps, 165–166, 168
functions, 160
kernels, 165, 168–169
limitations, 237–238
output, 165
pooling function, 166, 168–170,

238–239
processing stages, 163–164, 168
receptive field, 162–166
training, 153
translation invariance, 161–163
visual feature detection, 160–163,

168–170
Convolutional neural network

(CNN) models
pooling function, 238–239
transfer learning, 236–237
visual feature detection, 236,

238
Convolution mask, 165
Credit assignment problem, defined,

123
Credit assignment problem, solving

the. See also Loan decision
model

	 INDEX    271

algorithms in, 7
backpropagation algorithm, 125,

186, 209–210
dataset example, 6, 7, 27, 49, 51,

53
functions in the, 8, 10
modeling, 27, 46, 48–55, 73
weight adjustments, 51, 71,

210–211
Cybernetics, 102

Data
analyzing for customer

segmentation, 28
clustering, 28–29
extracting accurate functions

from, 14
learning patterns from, algorithm

for, 185
neural network training on, 122,

185
noise in, 16, 20
overfitting/underfitting, 20, 22
personal, protections for, 37,

245–246
underfitting, 77–78

Data annotation costs, 233
Data-driven decisions, enabling, 3
Data labeling bottleneck, 144, 236
Dataset analysis algorithms, 7–8
Dataset design, 25, 32, 34–35
Datasets

annotated, 233–235
credit assignment problem,

solving the, 6, 7, 27, 49, 51, 53
defined, 252
error of a model on, 190–191
feature selection, tradeoffs in,

24–25

growth, 241, 248
high-dimensional, 35
historic, creating, 30
large, 22–23, 35
in machine learning, 6–7
modeling, 194–196
parameters, modifying to fit the

model, 49–54
simplest form, 6–7, 24, 26
single input-output, 187–188

Dataset sizes, increases in, 153–155,
233–235

Dechter, Rina, 143
Decision boundaries, two-input

neurons, 84–91
Decision-making

automated, GDPR rights,
245–246

data-driven, 1, 3, 4–5
intuitive, 4, 22

Decision space, 59–60. See also
Activation space

Decoder, 142, 182–183
DeepBlue, 3
DeepFace, 23
Deep fakes, 235–236
Deep learning

benefits, 248–250
data-driven decision making, 1,

3, 4–5
defined, 252
development drivers, 232
emergence of, 23
era of, 143–144
examples, 1–2
power of, 183
relationships, 6, 10
success, factors in, 32–35
summary overview, 36–37

272   INDEX

term use, 143
usefulness, 4, 248
users of, 1–2

Deep learning, future of
big data driving algorithmic

innovation, 232–237
interpretability, challenge of,

244–248
new hardware, 240–244
new models, emergence of,

237–240
summary overview, 248, 250

Deep learning, history of
backpropagation, 103, 125–129
CNNs, 102
computer power, growth of,

153–155
connectionism, 124, 129–133
dataset sizes, increases in,

153–155
deep learning era, 103, 143–144
Elman network, 103, 139–140
Glorot initialization, 103, 148,

150
GPUs, 103, 153
Hebb’s postulate, 103, 104–105
layer-wise pretraining, 103
layer-wise pretraining using

autoencoders, 145–148
LMS algorithm, 103, 123
local vs. distributed

representations, 129–133
LSTM algorithm, 103, 113–116
McCulloch & Pitts model, 103,

104
neocognitron, 103
network architectures, 133–143,

173

perceptrons, multilayer, 124
perceptron training model, 103,

105–113, 116
periods in, 101
ReLU activation functions, 148,

150–152
RNNs, 103, 133–143, 173
seq2seq, 103, 142
summary overview, 155–158
themes within, 101–102
threshold logic units, 103,

104–105
timeline, 103
vanishing gradients, 103,

125–129
virtuous cycle, 153–155
weight initialization, 148,

150–152
XOR problem, 103, 116–123

Deep learning architectures. See
Capsule network; Convolutional
neural network (CNN);
Generative adversarial network
(GAN); Long short-term
memory (LSTM) network;
Recurrent neural network
(RNN); Transformer model

Deep learning-GPU relation, 97
Deep learning models

feature learning function, 36–37
new, emergence of, 237–240
training, 31
usefulness, 156

Deep learning networks
components, 68
defined, 39, 68
neuron hidden layers in,

67–68summary overview,
98–100

Deep learning (cont.)

	 INDEX    273

training, 97, 127–129, 147, 150,
170

DeepMind, 2, 31
Delta rule, 114, 204
δ s, backpropagating the, 216–222
Dendrite, 65–66
Dense layer, 169–170
Dimensionality reduction, 247
Discriminative models, 235
distributed representation,

129–132, 142, 243
Divide-and conquer strategy, 10,

79–82
DNA sequencing, 248
Dot product operation, 87–88

Earth orbit telescopes, 248
Elman, Jeffrey Locke, 139–140
Elman network, 103, 139–141
Elo rating, 3
Encoder, 142, 182–183
Encoder-decoder architecture,

182–183, 244
Error, calculating, 190–191
Error curves, 197–198
Error gradients, 211–211
Error signals, 128–129
Error surface, 192, 193, 194–196,

198
Ethics regulation, 245

Facebook, 1, 23, 156
Face recognition

CNNs for, 160–163, 168–169, 238
spatially invariant, 136
transfer learning for, 236

Face recognition function, 15
Face-recognition software, 23, 35,

156

Feature map, 165–166, 168
Feature selection, 32
Feature vector, 622
Feature visualization, 246–248
Feedforward network

defined, 252
dense layer, 168–169
fully connected, 133–134, 169
neuron inputs and outputs, 92
standard, 92, 169
training, 134, 151

Filter vector, 179
Fitness functions, 26–27
Forget gate, 177–178
Forward pass, 126, 211, 214
Fukushima, Kunihiko, 136–137
Fully connected networks, 133–134
Functions. See also specific functions

defined, 4, 14, 252
encoded, 12
equation of a line to define a,

18
examples, 15, 21
if-then-else rules, 19
in machine learning, 7–8
mathematical model vs., 40
models vs., 13
nonlinear as activation function,

77
partial derivatives, 199–200
rate of change, 199
representing, 8
simpler, 19
template structure defining,

18–19

Game playing, 2–4, 29, 31
Gates, LSTM networks, 177–178
Gene prediction function, 15

274   INDEX

General Data Protection Regulations
(GDPR), 245–246

Generative adversarial networks
(GANs), 235

Generative models, 235
Geometric spaces, 59–63
Glorot, X., 148
Glorot initialization, 103, 148, 150
Go, 2–4
Google, 1, 30, 156
Gradient descent, 260
Gradient descent algorithm

components, 197
defined, 252
descending error surfaces, 203,

205–206
error curves, 197–198, 205–206
goal of, 197
hiker example, 196–197
initial model, creating, 194, 196
simplifying factors, 200
summary, 204–205
training function, 185–186, 208
weight updates, 51, 53–56,

197–208
Graphical processing unit (GPU)

accelerating training, 92–98
adoption of, 240–241
in deep learning history, 103,

153–154
defined, 253
manufacturing, 98

Greedy layer-wise pretraining, 144,
147

Group method for data handling
(GMDH) network, 103, 122

Handwritten digit recognition, 160,
239

Happiness-income example, 41–43
Hardware energy costs, 241
Healthcare sector, 1
Hebb, Donald O., 104–105
Hebb’s postulate, 103, 104–105
Hiker example of gradient descent,

196–197
Hinge activation function, 73
Hinton, Geoffrey E., 125, 144, 231,

235
Hochreiter, Sepp, 128, 141
Hoff, Marcian, 113–114, 116
Hopfield, John, 124
Hopfield network, 103, 124–125
Hubel, D. H., 134–137
Human Brain Project, 243
Hyperparameter, 80, 100

IBM, 244
If-then-else rules, 19
ill-posed problem, 16–17
Image captioning systems,

automatic, 182
Image map, 170
ImageNet, 233, 236–237
ImageNet Large-Scale Visual

recognition Challenge (ILSVRC),
138, 169–170, 233

Image processing, 134–138,
236–237. See also Face
recognition

Image recognition, 136
Income-happiness relation, 41–43
Inductive bias, 17–22
Inference, 12, 14–15, 20, 29
Information flows

interpreting, 247
neural networks, 68, 70
RNNs, 139, 171, 173

	 INDEX    275

Information processing
neurons, artificial, 70–77
understanding, 246–247

Input gate, 177–178
Input-output mapping, 10–11
Input space

loan decision model, 57–58,
83–84

two-input neurons, 84, 85, 86
Input vector, 62
Intel Labs, 244
Intercept, 43, 46, 188–189
Interpretability, challenge of,

244–248
Intuition, 4, 22
Ivakhenko, Alexey, 122

Jung, K., 153

Kasparov, Gary, 3
Ke Jie, 2
Kernels, 165, 168–169

Language processing, 142, 240
Large Hadron Collider, 248
Layer-wise pretraining, 103,

144–148
Learning. See specific types of
Learning rate (ƞ), 110–112,

204
Least mean squares (LSM)

algorithm, 103, 113–116, 123,
185, 204

Least mean squares (LSM) rule,
123

LeCun, Yann, 138, 161, 166, 231
Line

best fit, 187
equation of a, 18, 41–43, 188–190

intercept-slope changing a,
189–190

mapping function, 187–189
Linear activation function. See

also Rectified linear activation
function

in deep learning history, 73
equation of a line representing,

188–189
Linearly separable functions,

117–119
Linear models

combining, 54–57, 62
credit solvency example, 44–48,

49, 54–60, 62–63
error variation, 192, 193, 194
income-happiness relation, 41–43
learning weights in, 49–54
modeling nonlinear relations,

77–78
with multiple inputs, 44–46
parameter setting, 46, 48–49,

61–62
summary overview, 61–63
templates, 41–44

Loan decision model. See also Credit
assignment problem

coordinate spaces, 59
dataset example, 6, 7
input space, 57–58, 83–84
two-input, 83–84
weights, adjusting, 84, 107–108

Localist representation, 129,
131–132, 243

“Logical Calculus of the Ideas
Immanent in Nervous Activity,
A” (McCulloch & Pitts), 104

Logistic activation function, 152
Logistic units, 75, 80, 235

276   INDEX

Loihi chip, 247
Long short-term memory (LSTM),

103, 141–142, 253
Long short-term memory (LSTM)

network cells, 177–178, 180
Long short-term memory (LSTM)

networks, 177–178, 181–183

MacHack-6 (MIT), 3
Machine learning (ML)

artificial intelligence and, 4, 6
benefits, 248–250
defined, 253
difficulty factors in, 16–17
feature selection and design, 32,

34
functions, 10–11
goal of, 8
reinforcement, 29–31
relationships, 6, 10
in situ, 30
summary overview, 36–37
supervised, 27–31
training model, 12–14
understanding, 6–9, 10–11

Machine learning (ML) algorithm
assumptions, 18, 21
bias in, 17–22
defined, 10, 253
ill-posed problems, solving, 17
sources of information to select

the best function, 17–18
success criterion, 21–22
template structure defining,

18–19
Machine learning (ML) models,

28–30, 143
Machine learning (ML) success

factors

candidate functions, 23, 25–26,
28

data, 23–25
fitness functions, 26–27
fitness measures, 24

Machine translation, 15, 35, 142,
181–182

Mapping
deterministic, 7
nonlinear, 76, 78, 79

Mathematical model, 40
Matrix multiplication, 72
max pooling, 166
McCulloch, Walter, 103–104
Mead, Carver, 241
Medical images, synthesizing, 235
Memory. See also Long short-term

memory (LSTM)
associative, 148–125
forward pass stored in, 211
RNN, 139, 170–177

Microsoft, 1
Microsoft Research, 170
Mikolov, Tomas, 181
Minsky, Marvin, 116–120, 122
MIT, 3
MNIST handwritten digit

recognition dataset, 239
Mobile phones, 1
Model parameters, 48–54, 9
Models

complex, 56, 62
defined, 12, 253
equation of a line defining, 41–44
fixed, 14
functions vs., 13
geometric spaces, 57–61
real-world correspondence, 40–41
templates, 40–43

	 INDEX    277

training, 12–14
usefulness, 40
variables in, 40–41

Natural language processing (NLP),
181–182

Neocognitron, 103, 136
Network architectures

convolutional neural, 133–143
in deep learning history, 133–143
encoder-decoder, 240
recurrent neural, 133–143

Network error, 210–213, 222–225
Neural machine translation, 156
Neural network

activation function, 62
artificial, 67–68, 70
compositional nature, 99
connection weights, 70
defined, 65, 262
depth, 97
designing, 157–158
functions, 78–79
geometric spaces, 57–61
graphic representation, 95, 96
human brain, analogy to the, 67
information flows, 68, 70
learning functions, 10
learning nonlinear mapping, 79
matrix representation, 95, 96, 98
modeling relationships, 78–79
neurons in complex models,

56–57
parameters, 82–83, 99–100
power of, 67, 79
schematic, 10
simple, topological illustration, 68
size, growth in, 97–98
structure, 8–9, 67–68

tailoring, 152
weighted sum calculations, 80–82

Neural network model
bias in, 22
data, overfitting vs. underfitting,

22
datasets, suitability to large,

22–23
function, 13, 185
training, 23, 80, 185

Neural network training
accelerating using GPUs, 92–98
backpropagation for, 209–210
on data, 122, 193
deep neural networks, 127–128,

185–186
hardware to speed up, 153–154
with multiple layers, 120, 208

Neural network training model, 23,
82, 185

Neuromorphic computing, 241–244,
254

Neurons
activation function, 61–62, 71–77,

127
artificial, 70–77, 91
changing parameters effect on

behavior, 82–91
defined, 76, 254
feedforward network, 92
function, 8, 56
hidden layers, 69
human brain, 65–67
information processing, 70
input-output mapping, 8, 70–71
parameters, 82
receptive fields, 134–137, 162
sensing, 68, 70
sequence of operations, 71–77

278   INDEX

structure, 65–66
threshold functions, 62
weight-output relation, 82

Neurons, two-input
decision boundaries, 84, 85, 90,

91
input space, 84, 85, 86
loan decision model equivalence,

84
Nilsson, N. J., 102
Noise in data, 20
Nonlinear activation function, 165
Nonlinear models, 77–78
NVIDIA, 154

Oh, K.-S., 153
Olah, Chis, 246
Optimization algorithm, 197
OR function, 117–118, 133
Organization of Behavior, The (Hebb),

104
Output gate, 177–178
Output vector, 180–181
Overfitting, 20, 22, 254

Parallel Distributed Processing
(PDP), 125 120–124, 126

Papert, Seymour, 117, 119–122
Perceptron

in deep learning history, 103
multilayer, 124
single layer, limitations of, 117,

119, 122–123
Perceptron convergence theorem,

112
Perceptron learning rule, 185
Perceptrons (Minsky & Papert),

116–117

Perceptron training model, 105–113,
116

Permissive bias, 20
Personal data protections, 245
φ symbol, 72, 94
Picasso problem, 237–238
Pitts, Walter, 103–105
Planar models, 44
Pooling function, 166, 168–172,

238–239
Positive linear activation function,

73
Preference bias, 19–20
Pretraining, term use, 146
Privacy rights, 37, 245
Problems, ill-posed, 16–17
Problem solving, neural networks,

79
PyTorch, 241

Quantum computing, 244
Qubit, 244
Quetelet, Adolphe, 33

Reasoning, inductive, 17
Receptive field, 134–137, 162–168
Recital 69, 245
Rectified linear activation function,

73, 74, 165–166
Rectified linear units (ReLUs), 80,

255
Rectifier activation function, 79, 80
Recurrent neural network (RNN)

constructing a, 180
in deep learning history, 133–143
defined, 254
depth, 171–172
functions, 170
hidden layers, 170–177

Neurons (cont.)

	 INDEX    279

information flows, 171, 173
layer connections, 175–176
memory buffer, 170–177
structure, 173
unrolled through time, 174
vanishing gradient problem in,

141, 175
Reinforcement learning, 29–31,

254
Representation learning, 132
Representations, localist vs.

distributed, 129–133
ResNet, 170, 233, 237
Restriction bias, 19
Robot control, 30
Rosenblatt, Frank, 106–113, 116
Rumelhart, D. E., 125

Saliency, 247
Schmidhuber, Jürgen, 127, 141
Sedol, Lee, 2
Sentence generation, 139–140,

181–182
seq2seq, 103, 181
seq2seq architecture, 142
Sequential data, 170
Simple cells, 135–136
Simplicity, 19
Skip-connections, 170
Slope parameter, 43, 188–189
Spam filtering, 15, 21
Speech recognition, 1, 15
Spiking neurons, 241–242
Steinkraus, D., 154
∑ symbol, 45, 72
Sum of squared errors (SSE),

190–192, 193, 194–203
Supervised learning, 27–30,

232–233, 255

Support vector machines (SVMs),
143

Tangle Lake chip, 244
Tanh activation function, 73, 74, 76,

79, 127, 150–151
Tanh layer, 180
Tan units, 179–180
Target attributes, 27–28, 255
Templates, 18–19
TensorFlow, 241
Threshold activation function,

73–75, 78–80, 83, 127
Threshold logic units, 103–105
Training model, 12–14, 31, 82
Transfer learning, 236–237
Transformer model, 239–240
TrueNorth chip (IBM), 243–244
T-SNE, 248
Tuning phase, 145–147
Two-input neurons. See Neurons,

two-input
Two-stage backpropagation

algorithm, 126, 210–215

Underfitting, 22, 77–78, 255
Units, 79. See also Neurons
Unsupervised learning, 28–30, 233,

237, 255
Update vector, 179

Vanishing gradient problem
in deep learning history, 103,

125–129, 143
defined, 129, 255
Elman network, 139
LSTM networks, 177
overcoming the, 147–148
in RNNs, 141, 176

280   INDEX

Variables in models, 40–41
Vectors, 62, 86–88
Very-large-scale integrated (VLSI)

circuit, 241
Virtuous cycle, 153–155
Visual cortex experiments, 134–136
Visual feature detection

CNNs for, 160–163, 168–169, 238
spatially invariant, 136
transfer learning for, 236

Visual feature detection function,
15, 236, 238

Visual feature detection software,
15, 23, 35, 156

Visualization techniques, 246–248

Weight adjustment
activation functions and, 207
backpropagation algorithm,

126–127, 222–230
credit assignment problem, 123,

210–211
Weight initialization, 148, 153, 155
Weighted sum, 46, 47, 48, 61–64, 71
Weighted sum calculations

bias term in, 88
neural networks, 80–82
in a neuron, 82
neuron layer, 92–97

Weighted summation function, 98
Weights

error gradients, adjusting, 209,
211

updating, 53–54
Weight space, 58–60, 192, 193, 194
Weight update rule, 197–208
Weight update strategy, 108–112
Weight vector, 86–89
Widrow, Bernard, 113–114, 116

Widrow-Hoff learning rule, 114, 204
Wiesel, T. N., 134–137
Williams, R. J., 125
word2vec models, 180–181

XOR function, 103, 119, 133
XOR problem, 103, 116–123

The MIT Press Essential Knowledge Series

Auctions, Timothy P. Hubbard and Harry J. Paarsch
The Book, Amaranth Borsuk
Carbon Capture, Howard J. Herzog
Cloud Computing, Nayan B. Ruparelia
Computational Thinking, Peter J. Denning and Matti Tedre
Computing: A Concise History, Paul E. Ceruzzi
The Conscious Mind, Zoltan E. Torey
Crowdsourcing, Daren C. Brabham
Data Science, John D. Kelleher and Brendan Tierney
Deep Learning, John D. Kelleher
Extremism, J. M. Berger
Food, Fabio Parasecoli
Free Will, Mark Balaguer
The Future, Nick Montfort
GPS, Paul E. Ceruzzi
Haptics, Lynette A. Jones
Information and Society, Michael Buckland
Information and the Modern Corporation, James W. Cortada
Intellectual Property Strategy, John Palfrey
The Internet of Things, Samuel Greengard
Machine Learning: The New AI, Ethem Alpaydin
Machine Translation, Thierry Poibeau
Memes in Digital Culture, Limor Shifman
Metadata, Jeffrey Pomerantz
The Mind–Body Problem, Jonathan Westphal
MOOCs, Jonathan Haber
Neuroplasticity, Moheb Costandi
Nihilism, Nolen Gertz
Open Access, Peter Suber
Paradox, Margaret Cuonzo
Photo Authentication, Hany Farid
Post-Truth, Lee McIntyre
Robots, John Jordan
School Choice, David R. Garcia
Self-Tracking, Gina Neff and Dawn Nafus
Sexual Consent, Milena Popova
Spaceflight, Michael J. Neufeld
Sustainability, Kent E. Portney
Synesthesia, Richard E. Cytowic
The Technological Singularity, Murray Shanahan
3D Printing, John Jordan
Understanding Beliefs, Nils J. Nilsson
Waves, Frederic Raichlen

JOHN D. KELLEHER is a Professor of Computer Science and the Academic
Leader of the Information, Communication and Entertainment (ICE) research
institute at the Technological University Dublin (TU Dublin). He has over
twenty years’ experience in research and teaching in the fields of artificial
intelligence, natural language processing, and machine learning. He has pub-
lished more than a hundred academic articles in these fields, and two MIT
Press books: Data Science (2018) and Fundamentals of Machine Learning for Pre-
dictive Data Analytics (2015). His research is supported by the ADAPT Research
Centre (https://www.adaptcentre.ie), which is funded by Science Foundation
Ireland (Grant 13/RC/2106) and is co-funded by the European Regional De-
velopment fund, and by PRECISE4Q project (https://precise4q.eu), which is
funded through the European Union’s Horizon 2020 research and innovation
program under grant agreement No. 777107.

https://www.adaptcentre.ie
https://precise4q.eu

	Contents
	Series Foreword
	Preface
	Acknowledgments
	1 Introduction to Deep Learning
	2 Conceptual Foundations
	3 Neural Networks: The Building Blocks of Deep Learning
	4 A Brief History of Deep Learning
	5 Convolutional and Recurrent Neural Networks
	6 Learning Functions
	7 The Future of Deep Learning
	Glossary
	Notes
	References
	Further Readings
	Index

