
ptg27972259

ptg27972259

ptg27972259

Deitel® Ser ies
For Computer Science and Data
Science Series
Intro to Python for Computer Science and Data

Science: Learning to Program with AI, Big Data
and the Cloud

How To Program Series
Java™ How to Program, Early Objects Version, 11/E
Java™ How to Program, Late Objects Version, 11/E
C++ How to Program, 10/E
C How to Program, 8/E
Visual C#® How to Program, 6/E
Internet & World Wide Web How to Program, 5/E
Android™ How to Program, 3/E
Visual Basic® 2012 How to Program, 6/E

REVEL™ Interactive Multimedia
REVEL™ for Deitel Java™

VitalSource Web Books
http://bit.ly/DeitelOnVitalSource

Java™ How to Program, 10/E and 11/E
C++ How to Program, 9/E and 10/E
Visual C#® How to Program, 6/E
Android™ How to Program, 2/E and 3/E

Visual C#® 2012 How to Program, 5/E
Visual Basic® 2012 How to Program, 6/E
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E

Deitel® Developer Series
Python for Programmers
Java™ for Programmers, 4/E
C++11 for Programmers
C for Programmers with an Introduction to C11
C# 6 for Programmers
JavaScript for Programmers
Android™ 6 for Programmers: An App-Driven

Approach, 3/E
Swift™ for Programmers

LiveLessons Video Training
http://deitel.com/books/LiveLessons/

Java SE 9™ Fundamentals, 3/E
C++ Fundamentals
C# 6 Fundamentals
JavaScript Fundamentals
Java SE 8™ Fundamentals, 2/E
Android™ 6 App Development Fundamentals, 3/E
C# 2012 Fundamentals
Swift™ Fundamentals

To receive updates on Deitel publications, Resource Centers, training courses, partner offers and
more, please join the Deitel communities on

• Facebook®—http://facebook.com/DeitelFan

• Twitter®—@deitel

• LinkedIn®—http://linkedin.com/company/deitel-&-associates

• YouTube™—http://youtube.com/DeitelTV

• Instagram®—http://instagram.com/DeitelFan

To communicate with the authors, send e-mail to:

 deitel@deitel.com

For information on programming-languages corporate training seminars offered by Deitel & Asso-
ciates, Inc. worldwide, write to deitel@deitel.com or visit:

 http://www.deitel.com/training/

For continuing updates on Pearson/Deitel publications visit:

http://www.deitel.com
http://www.pearson.com/deitel

http://bit.ly/DeitelOnVitalSource
http://deitel.com/books/LiveLessons/
http://facebook.com/DeitelFan
http://linkedin.com/company/deitel-&-associates
http://youtube.com/DeitelTV
http://instagram.com/DeitelFan
mailto:deitel@deitel.com
mailto:deitel@deitel.com
http://www.deitel.com/training/
http://www.deitel.com
http://www.pearson.com/deitel

ptg27972259

ptg27972259

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include elec-
tronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com

Library of Congress Control Number: 2019933267

Copyright © 2019 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms, and
the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/.

Deitel and the double-thumbs-up bug are registered trademarks of Deitel and Associates, Inc.

Python logo courtesy of the Python Software Foundation.

Cover design by Paul Deitel, Harvey Deitel, and Chuti Prasertsith
Cover art by Agsandrew/Shutterstock

ISBN-13: 978-0-13-522433-5
ISBN-10: 0-13-522433-0

1 19

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com
http://www.pearsoned.com/permissions/

ptg27972259

In Memory of Marvin Minsky,
a founding father of
artificial intelligence

It was a privilege to be your student in two
artificial-intelligence graduate courses at M.I.T.
You inspired your students to think beyond limits.

Harvey Deitel

ptg27972259

This page intentionally left blank

ptg27972259

Preface xvii

Before You Begin xxxiii

1 Introduction to Computers and Python 1
1.1 Introduction 2
1.2 A Quick Review of Object Technology Basics 3
1.3 Python 5
1.4 It’s the Libraries! 7

1.4.1 Python Standard Library 7
1.4.2 Data-Science Libraries 8

1.5 Test-Drives: Using IPython and Jupyter Notebooks 9
1.5.1 Using IPython Interactive Mode as a Calculator 9
1.5.2 Executing a Python Program Using the IPython Interpreter 10
1.5.3 Writing and Executing Code in a Jupyter Notebook 12

1.6 The Cloud and the Internet of Things 16
1.6.1 The Cloud 16
1.6.2 Internet of Things 17

1.7 How Big Is Big Data? 17
1.7.1 Big Data Analytics 22
1.7.2 Data Science and Big Data Are Making a Difference: Use Cases 23

1.8 Case Study—A Big-Data Mobile Application 24
1.9 Intro to Data Science: Artificial Intelligence—at the Intersection of CS

and Data Science 26
1.10 Wrap-Up 29

2 Introduction to Python Programming 31
2.1 Introduction 32
2.2 Variables and Assignment Statements 32
2.3 Arithmetic 33
2.4 Function print and an Intro to Single- and Double-Quoted Strings 36
2.5 Triple-Quoted Strings 38
2.6 Getting Input from the User 39
2.7 Decision Making: The if Statement and Comparison Operators 41
2.8 Objects and Dynamic Typing 45
2.9 Intro to Data Science: Basic Descriptive Statistics 46
2.10 Wrap-Up 48

Contents

ptg27972259

viii Contents

3 Control Statements 49
3.1 Introduction 50
3.2 Control Statements 50
3.3 if Statement 51
3.4 if…else and if…elif…else Statements 52
3.5 while Statement 55
3.6 for Statement 55

3.6.1 Iterables, Lists and Iterators 56
3.6.2 Built-In range Function 57

3.7 Augmented Assignments 57
3.8 Sequence-Controlled Iteration; Formatted Strings 58
3.9 Sentinel-Controlled Iteration 59
3.10 Built-In Function range: A Deeper Look 60
3.11 Using Type Decimal for Monetary Amounts 61
3.12 break and continue Statements 64
3.13 Boolean Operators and, or and not 65
3.14 Intro to Data Science: Measures of Central Tendency—

Mean, Median and Mode 67
3.15 Wrap-Up 69

4 Functions 71
4.1 Introduction 72
4.2 Defining Functions 72
4.3 Functions with Multiple Parameters 75
4.4 Random-Number Generation 76
4.5 Case Study: A Game of Chance 78
4.6 Python Standard Library 81
4.7 math Module Functions 82
4.8 Using IPython Tab Completion for Discovery 83
4.9 Default Parameter Values 85
4.10 Keyword Arguments 85
4.11 Arbitrary Argument Lists 86
4.12 Methods: Functions That Belong to Objects 87
4.13 Scope Rules 87
4.14 import: A Deeper Look 89
4.15 Passing Arguments to Functions: A Deeper Look 90
4.16 Recursion 93
4.17 Functional-Style Programming 95
4.18 Intro to Data Science: Measures of Dispersion 97
4.19 Wrap-Up 98

5 Sequences: Lists and Tuples 101
5.1 Introduction 102
5.2 Lists 102

ptg27972259

Contents ix

5.3 Tuples 106
5.4 Unpacking Sequences 108
5.5 Sequence Slicing 110
5.6 del Statement 112
5.7 Passing Lists to Functions 113
5.8 Sorting Lists 115
5.9 Searching Sequences 116
5.10 Other List Methods 117
5.11 Simulating Stacks with Lists 119
5.12 List Comprehensions 120
5.13 Generator Expressions 121
5.14 Filter, Map and Reduce 122
5.15 Other Sequence Processing Functions 124
5.16 Two-Dimensional Lists 126
5.17 Intro to Data Science: Simulation and Static Visualizations 128

5.17.1 Sample Graphs for 600, 60,000 and 6,000,000 Die Rolls 128
5.17.2 Visualizing Die-Roll Frequencies and Percentages 129

5.18 Wrap-Up 135

6 Dictionaries and Sets 137
6.1 Introduction 138
6.2 Dictionaries 138

6.2.1 Creating a Dictionary 138
6.2.2 Iterating through a Dictionary 139
6.2.3 Basic Dictionary Operations 140
6.2.4 Dictionary Methods keys and values 141
6.2.5 Dictionary Comparisons 143
6.2.6 Example: Dictionary of Student Grades 143
6.2.7 Example: Word Counts 144
6.2.8 Dictionary Method update 146
6.2.9 Dictionary Comprehensions 146

6.3 Sets 147
6.3.1 Comparing Sets 148
6.3.2 Mathematical Set Operations 150
6.3.3 Mutable Set Operators and Methods 151
6.3.4 Set Comprehensions 152

6.4 Intro to Data Science: Dynamic Visualizations 152
6.4.1 How Dynamic Visualization Works 153
6.4.2 Implementing a Dynamic Visualization 155

6.5 Wrap-Up 158

7 Array-Oriented Programming with NumPy 159
7.1 Introduction 160
7.2 Creating arrays from Existing Data 160
7.3 array Attributes 161

ptg27972259

x Contents

7.4 Filling arrays with Specific Values 163
7.5 Creating arrays from Ranges 164
7.6 List vs. array Performance: Introducing %timeit 165
7.7 array Operators 167
7.8 NumPy Calculation Methods 169
7.9 Universal Functions 170
7.10 Indexing and Slicing 171
7.11 Views: Shallow Copies 173
7.12 Deep Copies 174
7.13 Reshaping and Transposing 175
7.14 Intro to Data Science: pandas Series and DataFrames 177

7.14.1 pandas Series 178
7.14.2 DataFrames 182

7.15 Wrap-Up 189

8 Strings: A Deeper Look 191
8.1 Introduction 192
8.2 Formatting Strings 193

8.2.1 Presentation Types 193
8.2.2 Field Widths and Alignment 194
8.2.3 Numeric Formatting 195
8.2.4 String’s format Method 195

8.3 Concatenating and Repeating Strings 196
8.4 Stripping Whitespace from Strings 197
8.5 Changing Character Case 197
8.6 Comparison Operators for Strings 198
8.7 Searching for Substrings 198
8.8 Replacing Substrings 199
8.9 Splitting and Joining Strings 200
8.10 Characters and Character-Testing Methods 202
8.11 Raw Strings 203
8.12 Introduction to Regular Expressions 203

8.12.1 re Module and Function fullmatch 204
8.12.2 Replacing Substrings and Splitting Strings 207
8.12.3 Other Search Functions; Accessing Matches 208

8.13 Intro to Data Science: Pandas, Regular Expressions and Data Munging 210
8.14 Wrap-Up 214

9 Files and Exceptions 217
9.1 Introduction 218
9.2 Files 219
9.3 Text-File Processing 219

9.3.1 Writing to a Text File: Introducing the with Statement 220
9.3.2 Reading Data from a Text File 221

ptg27972259

Contents xi

9.4 Updating Text Files 222
9.5 Serialization with JSON 223
9.6 Focus on Security: pickle Serialization and Deserialization 226
9.7 Additional Notes Regarding Files 226
9.8 Handling Exceptions 227

9.8.1 Division by Zero and Invalid Input 227
9.8.2 try Statements 228
9.8.3 Catching Multiple Exceptions in One except Clause 230
9.8.4 What Exceptions Does a Function or Method Raise? 230
9.8.5 What Code Should Be Placed in a try Suite? 230

9.9 finally Clause 231
9.10 Explicitly Raising an Exception 233
9.11 (Optional) Stack Unwinding and Tracebacks 233
9.12 Intro to Data Science: Working with CSV Files 235

9.12.1 Python Standard Library Module csv 235
9.12.2 Reading CSV Files into Pandas DataFrames 237
9.12.3 Reading the Titanic Disaster Dataset 238
9.12.4 Simple Data Analysis with the Titanic Disaster Dataset 239
9.12.5 Passenger Age Histogram 240

9.13 Wrap-Up 241

10 Object-Oriented Programming 243
10.1 Introduction 244
10.2 Custom Class Account 246

10.2.1 Test-Driving Class Account 246
10.2.2 Account Class Definition 248
10.2.3 Composition: Object References as Members of Classes 249

10.3 Controlling Access to Attributes 249
10.4 Properties for Data Access 250

10.4.1 Test-Driving Class Time 250
10.4.2 Class Time Definition 252
10.4.3 Class Time Definition Design Notes 255

10.5 Simulating “Private” Attributes 256
10.6 Case Study: Card Shuffling and Dealing Simulation 258

10.6.1 Test-Driving Classes Card and DeckOfCards 258
10.6.2 Class Card—Introducing Class Attributes 259
10.6.3 Class DeckOfCards 261
10.6.4 Displaying Card Images with Matplotlib 263

10.7 Inheritance: Base Classes and Subclasses 266
10.8 Building an Inheritance Hierarchy; Introducing Polymorphism 267

10.8.1 Base Class CommissionEmployee 268
10.8.2 Subclass SalariedCommissionEmployee 270
10.8.3 Processing CommissionEmployees and

SalariedCommissionEmployees Polymorphically 274

ptg27972259

xii Contents

10.8.4 A Note About Object-Based and Object-Oriented Programming 274
10.9 Duck Typing and Polymorphism 275
10.10 Operator Overloading 276

10.10.1 Test-Driving Class Complex 277
10.10.2 Class Complex Definition 278

10.11 Exception Class Hierarchy and Custom Exceptions 279
10.12 Named Tuples 280
10.13 A Brief Intro to Python 3.7’s New Data Classes 281

10.13.1 Creating a Card Data Class 282
10.13.2 Using the Card Data Class 284
10.13.3 Data Class Advantages over Named Tuples 286
10.13.4 Data Class Advantages over Traditional Classes 286

10.14 Unit Testing with Docstrings and doctest 287
10.15 Namespaces and Scopes 290
10.16 Intro to Data Science: Time Series and Simple Linear Regression 293
10.17 Wrap-Up 301

11 Natural Language Processing (NLP) 303
11.1 Introduction 304
11.2 TextBlob 305

11.2.1 Create a TextBlob 307
11.2.2 Tokenizing Text into Sentences and Words 307
11.2.3 Parts-of-Speech Tagging 307
11.2.4 Extracting Noun Phrases 308
11.2.5 Sentiment Analysis with TextBlob’s Default Sentiment Analyzer 309
11.2.6 Sentiment Analysis with the NaiveBayesAnalyzer 310
11.2.7 Language Detection and Translation 311
11.2.8 Inflection: Pluralization and Singularization 312
11.2.9 Spell Checking and Correction 313
11.2.10 Normalization: Stemming and Lemmatization 314
11.2.11 Word Frequencies 314
11.2.12 Getting Definitions, Synonyms and Antonyms from WordNet 315
11.2.13 Deleting Stop Words 317
11.2.14 n-grams 318

11.3 Visualizing Word Frequencies with Bar Charts and Word Clouds 319
11.3.1 Visualizing Word Frequencies with Pandas 319
11.3.2 Visualizing Word Frequencies with Word Clouds 321

11.4 Readability Assessment with Textatistic 324
11.5 Named Entity Recognition with spaCy 326
11.6 Similarity Detection with spaCy 327
11.7 Other NLP Libraries and Tools 328
11.8 Machine Learning and Deep Learning Natural Language Applications 328
11.9 Natural Language Datasets 329
11.10 Wrap-Up 330

ptg27972259

Contents xiii

12 Data Mining Twitter 331
12.1 Introduction 332
12.2 Overview of the Twitter APIs 334
12.3 Creating a Twitter Account 335
12.4 Getting Twitter Credentials—Creating an App 335
12.5 What’s in a Tweet? 337
12.6 Tweepy 340
12.7 Authenticating with Twitter Via Tweepy 341
12.8 Getting Information About a Twitter Account 342
12.9 Introduction to Tweepy Cursors: Getting an Account’s

Followers and Friends 344
12.9.1 Determining an Account’s Followers 344
12.9.2 Determining Whom an Account Follows 346
12.9.3 Getting a User’s Recent Tweets 346

12.10 Searching Recent Tweets 347
12.11 Spotting Trends: Twitter Trends API 349

12.11.1 Places with Trending Topics 350
12.11.2 Getting a List of Trending Topics 351
12.11.3 Create a Word Cloud from Trending Topics 352

12.12 Cleaning/Preprocessing Tweets for Analysis 353
12.13 Twitter Streaming API 354

12.13.1 Creating a Subclass of StreamListener 355
12.13.2 Initiating Stream Processing 357

12.14 Tweet Sentiment Analysis 359
12.15 Geocoding and Mapping 362

12.15.1 Getting and Mapping the Tweets 364
12.15.2 Utility Functions in tweetutilities.py 367
12.15.3 Class LocationListener 369

12.16 Ways to Store Tweets 370
12.17 Twitter and Time Series 370
12.18 Wrap-Up 371

13 IBM Watson and Cognitive Computing 373
13.1 Introduction: IBM Watson and Cognitive Computing 374
13.2 IBM Cloud Account and Cloud Console 375
13.3 Watson Services 376
13.4 Additional Services and Tools 379
13.5 Watson Developer Cloud Python SDK 381
13.6 Case Study: Traveler’s Companion Translation App 381

13.6.1 Before You Run the App 382
13.6.2 Test-Driving the App 383
13.6.3 SimpleLanguageTranslator.py Script Walkthrough 384

13.7 Watson Resources 394
13.8 Wrap-Up 395

ptg27972259

xiv Contents

14 Machine Learning: Classification, Regression
and Clustering 397

14.1 Introduction to Machine Learning 398
14.1.1 Scikit-Learn 399
14.1.2 Types of Machine Learning 400
14.1.3 Datasets Bundled with Scikit-Learn 402
14.1.4 Steps in a Typical Data Science Study 403

14.2 Case Study: Classification with k-Nearest Neighbors and the
Digits Dataset, Part 1 403
14.2.1 k-Nearest Neighbors Algorithm 404
14.2.2 Loading the Dataset 406
14.2.3 Visualizing the Data 409
14.2.4 Splitting the Data for Training and Testing 411
14.2.5 Creating the Model 412
14.2.6 Training the Model 412
14.2.7 Predicting Digit Classes 413

14.3 Case Study: Classification with k-Nearest Neighbors and the
Digits Dataset, Part 2 413
14.3.1 Metrics for Model Accuracy 414
14.3.2 K-Fold Cross-Validation 417
14.3.3 Running Multiple Models to Find the Best One 418
14.3.4 Hyperparameter Tuning 420

14.4 Case Study: Time Series and Simple Linear Regression 420
14.5 Case Study: Multiple Linear Regression with the

California Housing Dataset 425
14.5.1 Loading the Dataset 426
14.5.2 Exploring the Data with Pandas 428
14.5.3 Visualizing the Features 430
14.5.4 Splitting the Data for Training and Testing 434
14.5.5 Training the Model 434
14.5.6 Testing the Model 435
14.5.7 Visualizing the Expected vs. Predicted Prices 436
14.5.8 Regression Model Metrics 437
14.5.9 Choosing the Best Model 438

14.6 Case Study: Unsupervised Machine Learning, Part 1—
Dimensionality Reduction 438

14.7 Case Study: Unsupervised Machine Learning, Part 2—k-Means Clustering 442
14.7.1 Loading the Iris Dataset 444
14.7.2 Exploring the Iris Dataset: Descriptive Statistics with Pandas 446
14.7.3 Visualizing the Dataset with a Seaborn pairplot 447
14.7.4 Using a KMeans Estimator 450
14.7.5 Dimensionality Reduction with Principal Component Analysis 452
14.7.6 Choosing the Best Clustering Estimator 453

14.8 Wrap-Up 455

ptg27972259

Contents xv

15 Deep Learning 457
15.1 Introduction 458

15.1.1 Deep Learning Applications 460
15.1.2 Deep Learning Demos 461
15.1.3 Keras Resources 461

15.2 Keras Built-In Datasets 461
15.3 Custom Anaconda Environments 462
15.4 Neural Networks 463
15.5 Tensors 465
15.6 Convolutional Neural Networks for Vision; Multi-Classification

with the MNIST Dataset 467
15.6.1 Loading the MNIST Dataset 468
15.6.2 Data Exploration 469
15.6.3 Data Preparation 471
15.6.4 Creating the Neural Network 473
15.6.5 Training and Evaluating the Model 480
15.6.6 Saving and Loading a Model 485

15.7 Visualizing Neural Network Training with TensorBoard 486
15.8 ConvnetJS: Browser-Based Deep-Learning Training and Visualization 489
15.9 Recurrent Neural Networks for Sequences; Sentiment Analysis

with the IMDb Dataset 489
15.9.1 Loading the IMDb Movie Reviews Dataset 490
15.9.2 Data Exploration 491
15.9.3 Data Preparation 493
15.9.4 Creating the Neural Network 494
15.9.5 Training and Evaluating the Model 496

15.10 Tuning Deep Learning Models 497
15.11 Convnet Models Pretrained on ImageNet 498
15.12 Wrap-Up 499

16 Big Data: Hadoop, Spark, NoSQL and IoT 501
16.1 Introduction 502
16.2 Relational Databases and Structured Query Language (SQL) 506

16.2.1 A books Database 507
16.2.2 SELECT Queries 511
16.2.3 WHERE Clause 511
16.2.4 ORDER BY Clause 512
16.2.5 Merging Data from Multiple Tables: INNER JOIN 514
16.2.6 INSERT INTO Statement 514
16.2.7 UPDATE Statement 515
16.2.8 DELETE FROM Statement 516

16.3 NoSQL and NewSQL Big-Data Databases: A Brief Tour 517
16.3.1 NoSQL Key–Value Databases 517
16.3.2 NoSQL Document Databases 518

ptg27972259

xvi Contents

16.3.3 NoSQL Columnar Databases 518
16.3.4 NoSQL Graph Databases 519
16.3.5 NewSQL Databases 519

16.4 Case Study: A MongoDB JSON Document Database 520
16.4.1 Creating the MongoDB Atlas Cluster 521
16.4.2 Streaming Tweets into MongoDB 522

16.5 Hadoop 530
16.5.1 Hadoop Overview 531
16.5.2 Summarizing Word Lengths in Romeo and Juliet via MapReduce 533
16.5.3 Creating an Apache Hadoop Cluster in Microsoft

Azure HDInsight 533
16.5.4 Hadoop Streaming 535
16.5.5 Implementing the Mapper 536
16.5.6 Implementing the Reducer 537
16.5.7 Preparing to Run the MapReduce Example 537
16.5.8 Running the MapReduce Job 538

16.6 Spark 541
16.6.1 Spark Overview 541
16.6.2 Docker and the Jupyter Docker Stacks 542
16.6.3 Word Count with Spark 545
16.6.4 Spark Word Count on Microsoft Azure 548

16.7 Spark Streaming: Counting Twitter Hashtags Using the
pyspark-notebook Docker Stack 551
16.7.1 Streaming Tweets to a Socket 551
16.7.2 Summarizing Tweet Hashtags; Introducing Spark SQL 555

16.8 Internet of Things and Dashboards 560
16.8.1 Publish and Subscribe 561
16.8.2 Visualizing a PubNub Sample Live Stream with a

Freeboard Dashboard 562
16.8.3 Simulating an Internet-Connected Thermostat in Python 564
16.8.4 Creating the Dashboard with Freeboard.io 566
16.8.5 Creating a Python PubNub Subscriber 567

16.9 Wrap-Up 571

Index 573

ptg27972259

“There’s gold in them thar hills!”1

Welcome to Python for Programmers! In this book, you’ll learn hands-on with today’s most
compelling, leading-edge computing technologies, and you’ll program in Python—one of
the world’s most popular languages and the fastest growing among them.

Developers often quickly discover that they like Python. They appreciate its expressive
power, readability, conciseness and interactivity. They like the world of open-source soft-
ware development that’s generating a rapidly growing base of reusable software for an
enormous range of application areas.

For many decades, some powerful trends have been in place. Computer hardware has
rapidly been getting faster, cheaper and smaller. Internet bandwidth has rapidly been get-
ting larger and cheaper. And quality computer software has become ever more abundant
and essentially free or nearly free through the “open source” movement. Soon, the “Inter-
net of Things” will connect tens of billions of devices of every imaginable type. These will
generate enormous volumes of data at rapidly increasing speeds and quantities.

In computing today, the latest innovations are “all about the data”—data science,
data analytics, big data, relational databases (SQL), and NoSQL and NewSQL databases,
each of which we address along with an innovative treatment of Python programming.

Jobs Requiring Data Science Skills
In 2011, McKinsey Global Institute produced their report, “Big data: The next frontier
for innovation, competition and productivity.” In it, they said, “The United States alone
faces a shortage of 140,000 to 190,000 people with deep analytical skills as well as 1.5 mil-
lion managers and analysts to analyze big data and make decisions based on their find-
ings.”2 This continues to be the case. The August 2018 “LinkedIn Workforce Report” says
the United States has a shortage of over 150,000 people with data science skills.3 A 2017
report from IBM, Burning Glass Technologies and the Business-Higher Education
Forum, says that by 2020 in the United States there will be hundreds of thousands of new
jobs requiring data science skills.4

1. Source unknown, frequently misattributed to Mark Twain.
2. https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digi-

tal/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/

MGI_big_data_full_report.ashx (page 3).
3. https://economicgraph.linkedin.com/resources/linkedin-workforce-report-august-2018.
4. https://www.burning-glass.com/wp-content/uploads/The_Quant_Crunch.pdf (page 3).

Preface

https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digi-tal/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_full_report.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digi-tal/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_full_report.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digi-tal/Our%20Insights/Big%20data%20The%20next%20frontier%20for%20innovation/MGI_big_data_full_report.ashx
https://economicgraph.linkedin.com/resources/linkedin-workforce-report-august-2018
https://www.burning-glass.com/wp-content/uploads/The_Quant_Crunch.pdf

ptg27972259

xviii Preface

Modular Architecture
The book’s modular architecture (please see the Table of Contents graphic on the book’s
inside front cover) helps us meet the diverse needs of various professional audiences.

Chapters 1–10 cover Python programming. These chapters each include a brief Intro
to Data Science section introducing artificial intelligence, basic descriptive statistics, mea-
sures of central tendency and dispersion, simulation, static and dynamic visualization,
working with CSV files, pandas for data exploration and data wrangling, time series and
simple linear regression. These help you prepare for the data science, AI, big data and
cloud case studies in Chapters 11–16, which present opportunities for you to use real-
world datasets in complete case studies.

After covering Python Chapters 1–5 and a few key parts of Chapters 6–7, you’ll be
able to handle significant portions of the case studies in Chapters 11–16. The “Chapter
Dependencies” section of this Preface will help trainers plan their professional courses in
the context of the book’s unique architecture.

Chapters 11–16 are loaded with cool, powerful, contemporary examples. They pres-
ent hands-on implementation case studies on topics such as natural language processing,
data mining Twitter, cognitive computing with IBM’s Watson, supervised machine
learning with classification and regression, unsupervised machine learning with cluster-
ing, deep learning with convolutional neural networks, deep learning with recurrent
neural networks, big data with Hadoop, Spark and NoSQL databases, the Internet of
Things and more. Along the way, you’ll acquire a broad literacy of data science terms and
concepts, ranging from brief definitions to using concepts in small, medium and large pro-
grams. Browsing the book’s detailed Table of Contents and Index will give you a sense of
the breadth of coverage.

Key Features

KIS (Keep It Simple), KIS (Keep it Small), KIT (Keep it Topical)
• Keep it simple—In every aspect of the book, we strive for simplicity and clarity.

For example, when we present natural language processing, we use the simple and
intuitive TextBlob library rather than the more complex NLTK. In our deep
learning presentation, we prefer Keras to TensorFlow. In general, when multiple
libraries could be used to perform similar tasks, we use the simplest one.

• Keep it small—Most of the book’s 538 examples are small—often just a few lines
of code, with immediate interactive IPython feedback. We also include 40 larger
scripts and in-depth case studies.

• Keep it topical—We read scores of recent Python-programming and data science
books, and browsed, read or watched about 15,000 current articles, research
papers, white papers, videos, blog posts, forum posts and documentation pieces.
This enabled us to “take the pulse” of the Python, computer science, data science,
AI, big data and cloud communities.

Immediate-Feedback: Exploring, Discovering and Experimenting with IPython
• The ideal way to learn from this book is to read it and run the code examples in

parallel. Throughout the book, we use the IPython interpreter, which provides

ptg27972259

 Key Features xix

a friendly, immediate-feedback interactive mode for quickly exploring, discover-
ing and experimenting with Python and its extensive libraries.

• Most of the code is presented in small, interactive IPython sessions. For each
code snippet you write, IPython immediately reads it, evaluates it and prints the
results. This instant feedback keeps your attention, boosts learning, facilitates
rapid prototyping and speeds the software-development process.

• Our books always emphasize the live-code approach, focusing on complete,
working programs with live inputs and outputs. IPython’s “magic” is that it turns
even snippets into code that “comes alive” as you enter each line. This promotes
learning and encourages experimentation.

Python Programming Fundamentals
• First and foremost, this book provides rich Python coverage.

• We discuss Python’s programming models—procedural programming, func-
tional-style programming and object-oriented programming.

• We use best practices, emphasizing current idiom.

• Functional-style programming is used throughout the book as appropriate. A
chart in Chapter 4 lists most of Python’s key functional-style programming capa-
bilities and the chapters in which we initially cover most of them.

538 Code Examples
• You’ll get an engaging, challenging and entertaining introduction to Python with

538 real-world examples ranging from individual snippets to substantial computer
science, data science, artificial intelligence and big data case studies.

• You’ll attack significant tasks with AI, big data and cloud technologies like nat-
ural language processing, data mining Twitter, machine learning, deep learn-
ing, Hadoop, MapReduce, Spark, IBM Watson, key data science libraries
(NumPy, pandas, SciPy, NLTK, TextBlob, spaCy, Textatistic, Tweepy, Scikit-
learn, Keras), key visualization libraries (Matplotlib, Seaborn, Folium) and
more.

Avoid Heavy Math in Favor of English Explanations
• We capture the conceptual essence of the mathematics and put it to work in our

examples. We do this by using libraries such as statistics, NumPy, SciPy, pandas
and many others, which hide the mathematical complexity. So, it’s straightfor-
ward for you to get many of the benefits of mathematical techniques like linear
regression without having to know the mathematics behind them. In the
machine-learning and deep-learning examples, we focus on creating objects that
do the math for you “behind the scenes.”

Visualizations
• 67 static, dynamic, animated and interactive visualizations (charts, graphs, pic-

tures, animations etc.) help you understand concepts.

ptg27972259

xx Preface

• Rather than including a treatment of low-level graphics programming, we focus
on high-level visualizations produced by Matplotlib, Seaborn, pandas and
Folium (for interactive maps).

• We use visualizations as a pedagogic tool. For example, we make the law of large
numbers “come alive” in a dynamic die-rolling simulation and bar chart. As the
number of rolls increases, you’ll see each face’s percentage of the total rolls grad-
ually approach 16.667% (1/6th) and the sizes of the bars representing the per-
centages equalize.

• Visualizations are crucial in big data for data exploration and communicating
reproducible research results, where the data items can number in the millions, bil-
lions or more. A common saying is that a picture is worth a thousand words5—in
big data, a visualization could be worth billions, trillions or even more items in a
database. Visualizations enable you to “fly 40,000 feet above the data” to see it “in
the large” and to get to know your data. Descriptive statistics help but can be mis-
leading. For example, Anscombe’s quartet6 demonstrates through visualizations
that significantly different datasets can have nearly identical descriptive statistics.

• We show the visualization and animation code so you can implement your own.
We also provide the animations in source-code files and as Jupyter Notebooks,
so you can conveniently customize the code and animation parameters, re-exe-
cute the animations and see the effects of the changes.

Data Experiences
• Our Intro to Data Science sections and case studies in Chapters 11–16 provide

rich data experiences.

• You’ll work with many real-world datasets and data sources. There’s an enor-
mous variety of free open datasets available online for you to experiment with.
Some of the sites we reference list hundreds or thousands of datasets.

• Many libraries you’ll use come bundled with popular datasets for experimentation.

• You’ll learn the steps required to obtain data and prepare it for analysis, analyze
that data using many techniques, tune your models and communicate your
results effectively, especially through visualization.

GitHub
• GitHub is an excellent venue for finding open-source code to incorporate into

your projects (and to contribute your code to the open-source community). It’s
also a crucial element of the software developer’s arsenal with version control
tools that help teams of developers manage open-source (and private) projects.

• You’ll use an extraordinary range of free and open-source Python and data science
libraries, and free, free-trial and freemium offerings of software and cloud ser-
vices. Many of the libraries are hosted on GitHub.

5. https://en.wikipedia.org/wiki/A_picture_is_worth_a_thousand_words.
6. https://en.wikipedia.org/wiki/Anscombe%27s_quartet.

https://en.wikipedia.org/wiki/A_picture_is_worth_a_thousand_words
https://en.wikipedia.org/wiki/Anscombe%27s_quartet

ptg27972259

 Key Features xxi

Hands-On Cloud Computing
• Much of big data analytics occurs in the cloud, where it’s easy to scale dynamically

the amount of hardware and software your applications need. You’ll work with
various cloud-based services (some directly and some indirectly), including Twit-
ter, Google Translate, IBM Watson, Microsoft Azure, OpenMapQuest, geopy,
Dweet.io and PubNub.

• We encourage you to use free, free trial or freemium cloud services. We prefer those
that don’t require a credit card because you don’t want to risk accidentally running
up big bills. If you decide to use a service that requires a credit card, ensure that
the tier you’re using for free will not automatically jump to a paid tier.

Database, Big Data and Big Data Infrastructure
• According to IBM (Nov. 2016), 90% of the world’s data was created in the last two

years.7 Evidence indicates that the speed of data creation is rapidly accelerating.

• According to a March 2016 AnalyticsWeek article, within five years there will be
over 50 billion devices connected to the Internet and by 2020 we’ll be producing
1.7 megabytes of new data every second for every person on the planet!8

• We include a treatment of relational databases and SQL with SQLite.

• Databases are critical big data infrastructure for storing and manipulating the
massive amounts of data you’ll process. Relational databases process structured
data—they’re not geared to the unstructured and semi-structured data in big data
applications. So, as big data evolved, NoSQL and NewSQL databases were cre-
ated to handle such data efficiently. We include a NoSQL and NewSQL over-
view and a hands-on case study with a MongoDB JSON document database.
MongoDB is the most popular NoSQL database.

• We discuss big data hardware and software infrastructure in Chapter 16, “Big
Data: Hadoop, Spark, NoSQL and IoT (Internet of Things).”

Artificial Intelligence Case Studies
• In case study Chapters 11–15, we present artificial intelligence topics, including

natural language processing, data mining Twitter to perform sentiment analy-
sis, cognitive computing with IBM Watson, supervised machine learning,
unsupervised machine learning and deep learning. Chapter 16 presents the big
data hardware and software infrastructure that enables computer scientists and
data scientists to implement leading-edge AI-based solutions.

Built-In Collections: Lists, Tuples, Sets, Dictionaries
• There’s little reason today for most application developers to build custom data

structures. The book features a rich two-chapter treatment of Python’s built-in
data structures—lists, tuples, dictionaries and sets—with which most data-
structuring tasks can be accomplished.

7. https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-

engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf.
8. https://analyticsweek.com/content/big-data-facts/.

http://Dweet.io
https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf
https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf
https://analyticsweek.com/content/big-data-facts/

ptg27972259

xxii Preface

Array-Oriented Programming with NumPy Arrays and Pandas Series/DataFrames
• We also focus on three key data structures from open-source libraries—NumPy

arrays, pandas Series and pandas DataFrames. These are used extensively in data
science, computer science, artificial intelligence and big data. NumPy offers as
much as two orders of magnitude higher performance than built-in Python lists.

• We include in Chapter 7 a rich treatment of NumPy arrays. Many libraries, such
as pandas, are built on NumPy. The Intro to Data Science sections in Chapters
7–9 introduce pandas Series and DataFrames, which along with NumPy arrays
are then used throughout the remaining chapters.

File Processing and Serialization
• Chapter 9 presents text-file processing, then demonstrates how to serialize

objects using the popular JSON (JavaScript Object Notation) format. JSON is
used frequently in the data science chapters.

• Many data science libraries provide built-in file-processing capabilities for load-
ing datasets into your Python programs. In addition to plain text files, we process
files in the popular CSV (comma-separated values) format using the Python
Standard Library’s csv module and capabilities of the pandas data science library.

Object-Based Programming
• We emphasize using the huge number of valuable classes that the Python open-

source community has packaged into industry standard class libraries. You’ll
focus on knowing what libraries are out there, choosing the ones you’ll need for
your apps, creating objects from existing classes (usually in one or two lines of
code) and making them “jump, dance and sing.” This object-based program-
ming enables you to build impressive applications quickly and concisely, which
is a significant part of Python’s appeal.

• With this approach, you’ll be able to use machine learning, deep learning and
other AI technologies to quickly solve a wide range of intriguing problems, includ-
ing cognitive computing challenges like speech recognition and computer vision.

Object-Oriented Programming
• Developing custom classes is a crucial object-oriented programming skill, along

with inheritance, polymorphism and duck typing. We discuss these in Chapter 10.

• Chapter 10 includes a discussion of unit testing with doctest and a fun card-
shuffling-and-dealing simulation.

• Chapters 11–16 require only a few straightforward custom class definitions. In
Python, you’ll probably use more of an object-based programming approach
than full-out object-oriented programming.

Reproducibility
• In the sciences in general, and data science in particular, there’s a need to repro-

duce the results of experiments and studies, and to communicate those results
effectively. Jupyter Notebooks are a preferred means for doing this.

ptg27972259

 Chapter Dependencies xxiii

• We discuss reproducibility throughout the book in the context of programming
techniques and software such as Jupyter Notebooks and Docker.

Performance
• We use the %timeit profiling tool in several examples to compare the perfor-

mance of different approaches to performing the same tasks. Other performance-
related discussions include generator expressions, NumPy arrays vs. Python lists,
performance of machine-learning and deep-learning models, and Hadoop and
Spark distributed-computing performance.

Big Data and Parallelism
• In this book, rather than writing your own parallelization code, you’ll let libraries

like Keras running over TensorFlow, and big data tools like Hadoop and Spark
parallelize operations for you. In this big data/AI era, the sheer processing require-
ments of massive data applications demand taking advantage of true parallelism
provided by multicore processors, graphics processing units (GPUs), tensor
processing units (TPUs) and huge clusters of computers in the cloud. Some big
data tasks could have thousands of processors working in parallel to analyze mas-
sive amounts of data expeditiously.

Chapter Dependencies
If you’re a trainer planning your syllabus for a professional training course or a developer
deciding which chapters to read, this section will help you make the best decisions. Please
read the one-page color Table of Contents on the book’s inside front cover—this will
quickly familiarize you with the book’s unique architecture. Teaching or reading the chap-
ters in order is easiest. However, much of the content in the Intro to Data Science sections
at the ends of Chapters 1–10 and the case studies in Chapters 11–16 requires only Chap-
ters 1–5 and small portions of Chapters 6–10 as discussed below.

Part 1: Python Fundamentals Quickstart
We recommend that you read all the chapters in order:

• Chapter 1, Introduction to Computers and Python, introduces concepts that lay
the groundwork for the Python programming in Chapters 2–10 and the big data,
artificial-intelligence and cloud-based case studies in Chapters 11–16. The chapter
also includes test-drives of the IPython interpreter and Jupyter Notebooks.

• Chapter 2, Introduction to Python Programming, presents Python program-
ming fundamentals with code examples illustrating key language features.

• Chapter 3, Control Statements, presents Python’s control statements and intro-
duces basic list processing.

• Chapter 4, Functions, introduces custom functions, presents simulation tech-
niques with random-number generation and introduces tuple fundamentals.

• Chapter 5, Sequences: Lists and Tuples, presents Python’s built-in list and tuple
collections in more detail and begins introducing functional-style programming.

ptg27972259

xxiv Preface

Part 2: Python Data Structures, Strings and Files
The following summarizes inter-chapter dependencies for Python Chapters 6–9 and
assumes that you’ve read Chapters 1–5.

• Chapter 6, Dictionaries and Sets—The Intro to Data Science section in this
chapter is not dependent on the chapter’s contents.

• Chapter 7, Array-Oriented Programming with NumPy—The Intro to Data
Science section requires dictionaries (Chapter 6) and arrays (Chapter 7).

• Chapter 8, Strings: A Deeper Look—The Intro to Data Science section requires
raw strings and regular expressions (Sections 8.11–8.12), and pandas Series and
DataFrame features from Section 7.14’s Intro to Data Science.

• Chapter 9, Files and Exceptions—For JSON serialization, it’s useful to under-
stand dictionary fundamentals (Section 6.2). Also, the Intro to Data Science sec-
tion requires the built-in open function and the with statement (Section 9.3),
and pandas DataFrame features from Section 7.14’s Intro to Data Science.

Part 3: Python High-End Topics
The following summarizes inter-chapter dependencies for Python Chapter 10 and
assumes that you’ve read Chapters 1–5.

• Chapter 10, Object-Oriented Programming—The Intro to Data Science sec-
tion requires pandas DataFrame features from Intro to Data Science Section 7.14.
Trainers wanting to cover only classes and objects can present Sections 10.1–
10.6. Trainers wanting to cover more advanced topics like inheritance, polymor-
phism and duck typing, can present Sections 10.7–10.9. Sections 10.10–10.15
provide additional advanced perspectives.

Part 4: AI, Cloud and Big Data Case Studies
The following summary of inter-chapter dependencies for Chapters 11–16 assumes that
you’ve read Chapters 1–5. Most of Chapters 11–16 also require dictionary fundamentals
from Section 6.2.

• Chapter 11, Natural Language Processing (NLP), uses pandas DataFrame fea-
tures from Section 7.14’s Intro to Data Science.

• Chapter 12, Data Mining Twitter, uses pandas DataFrame features from
Section 7.14’s Intro to Data Science, string method join (Section 8.9), JSON fun-
damentals (Section 9.5), TextBlob (Section 11.2) and Word clouds (Section 11.3).
Several examples require defining a class via inheritance (Chapter 10).

• Chapter 13, IBM Watson and Cognitive Computing, uses built-in function
open and the with statement (Section 9.3).

• Chapter 14, Machine Learning: Classification, Regression and Clustering, uses
NumPy array fundamentals and method unique (Chapter 7), pandas DataFrame
features from Section 7.14’s Intro to Data Science and Matplotlib function sub-
plots (Section 10.6).

• Chapter 15, Deep Learning, requires NumPy array fundamentals (Chapter 7),
string method join (Section 8.9), general machine-learning concepts from

ptg27972259

 Jupyter Notebooks xxv

Chapter 14 and features from Chapter 14’s Case Study: Classification with k-
Nearest Neighbors and the Digits Dataset.

• Chapter 16, Big Data: Hadoop, Spark, NoSQL and IoT, uses string method
split (Section 6.2.7), Matplotlib FuncAnimation from Section 6.4’s Intro to Data
Science, pandas Series and DataFrame features from Section 7.14’s Intro to Data
Science, string method join (Section 8.9), the json module (Section 9.5), NLTK
stop words (Section 11.2.13) and from Chapter 12, Twitter authentication,
Tweepy’s StreamListener class for streaming tweets, and the geopy and folium
libraries. A few examples require defining a class via inheritance (Chapter 10), but
you can simply mimic the class definitions we provide without reading Chapter 10.

Jupyter Notebooks
For your convenience, we provide the book’s code examples in Python source code (.py)
files for use with the command-line IPython interpreter and as Jupyter Notebooks
(.ipynb) files that you can load into your web browser and execute.

Jupyter Notebooks is a free, open-source project that enables you to combine text,
graphics, audio, video, and interactive coding functionality for entering, editing, execut-
ing, debugging, and modifying code quickly and conveniently in a web browser. Accord-
ing to the article, “What Is Jupyter?”:

Jupyter has become a standard for scientific research and data analysis. It pack-
ages computation and argument together, letting you build “computational nar-
ratives”; … and it simplifies the problem of distributing working software to
teammates and associates.9

In our experience, it’s a wonderful learning environment and rapid prototyping tool. For
this reason, we use Jupyter Notebooks rather than a traditional IDE, such as Eclipse,
Visual Studio, PyCharm or Spyder. Academics and professionals already use Jupyter
extensively for sharing research results. Jupyter Notebooks support is provided through
the traditional open-source community mechanisms10 (see “Getting Jupyter Help” later
in this Preface). See the Before You Begin section that follows this Preface for software
installation details and see the test-drives in Section 1.5 for information on running the
book’s examples.

Collaboration and Sharing Results
Working in teams and communicating research results are both important for developers
in or moving into data-analytics positions in industry, government or academia:

• The notebooks you create are easy to share among team members simply by
copying the files or via GitHub.

• Research results, including code and insights, can be shared as static web pages
via tools like nbviewer (https://nbviewer.jupyter.org) and GitHub—both
automatically render notebooks as web pages.

9. https://www.oreilly.com/ideas/what-is-jupyter.
10. https://jupyter.org/community.

https://nbviewer.jupyter.org
https://www.oreilly.com/ideas/what-is-jupyter
https://jupyter.org/community

ptg27972259

xxvi Preface

Reproducibility: A Strong Case for Jupyter Notebooks
In data science, and in the sciences in general, experiments and studies should be repro-
ducible. This has been written about in the literature for many years, including

• Donald Knuth’s 1992 computer science publication—Literate Programming.11

• The article “Language-Agnostic Reproducible Data Analysis Using Literate Pro-
gramming,”12 which says, “Lir (literate, reproducible computing) is based on the
idea of literate programming as proposed by Donald Knuth.”

Essentially, reproducibility captures the complete environment used to produce
results—hardware, software, communications, algorithms (especially code), data and the
data’s provenance (origin and lineage).

Docker
In Chapter 16, we’ll use Docker—a tool for packaging software into containers that bun-
dle everything required to execute that software conveniently, reproducibly and portably
across platforms. Some software packages we use in Chapter 16 require complicated setup
and configuration. For many of these, you can download free preexisting Docker contain-
ers. These enable you to avoid complex installation issues and execute software locally on
your desktop or notebook computers, making Docker a great way to help you get started
with new technologies quickly and conveniently.

Docker also helps with reproducibility. You can create custom Docker containers that
are configured with the versions of every piece of software and every library you used in
your study. This would enable other developers to recreate the environment you used,
then reproduce your work, and will help you reproduce your own results. In Chapter 16,
you’ll use Docker to download and execute a container that’s preconfigured for you to
code and run big data Spark applications using Jupyter Notebooks.

Special Feature: IBM Watson Analytics and Cognitive Computing
Early in our research for this book, we recognized the rapidly growing interest in IBM’s
Watson. We investigated competitive services and found Watson’s “no credit card
required” policy for its “free tiers” to be among the most friendly for our readers.

IBM Watson is a cognitive-computing platform being employed across a wide range
of real-world scenarios. Cognitive-computing systems simulate the pattern-recognition
and decision-making capabilities of the human brain to “learn” as they consume more
data.13,14,15 We include a significant hands-on Watson treatment. We use the free Watson
Developer Cloud: Python SDK, which provides APIs that enable you to interact with
Watson’s services programmatically. Watson is fun to use and a great platform for letting
your creative juices flow. You’ll demo or use the following Watson APIs: Conversation,
Discovery, Language Translator, Natural Language Classifier, Natural Language

11. Knuth, D., “Literate Programming” (PDF), The Computer Journal, British Computer Society, 1992.
12. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164023.
13. http://whatis.techtarget.com/definition/cognitive-computing.
14. https://en.wikipedia.org/wiki/Cognitive_computing.
15. https://www.forbes.com/sites/bernardmarr/2016/03/23/what-everyone-should-know-

about-cognitive-computing.

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164023
http://whatis.techtarget.com/definition/cognitive-computing
https://en.wikipedia.org/wiki/Cognitive_computing
https://www.forbes.com/sites/bernardmarr/2016/03/23/what-everyone-should-know-about-cognitive-computing
https://www.forbes.com/sites/bernardmarr/2016/03/23/what-everyone-should-know-about-cognitive-computing

ptg27972259

 Teaching Approach xxvii

Understanding, Personality Insights, Speech to Text, Text to Speech, Tone Analyzer
and Visual Recognition.

Watson’s Lite Tier Services and a Cool Watson Case Study
IBM encourages learning and experimentation by providing free lite tiers for many of its
APIs.16 In Chapter 13, you’ll try demos of many Watson services.17 Then, you’ll use the
lite tiers of Watson’s Text to Speech, Speech to Text and Translate services to implement
a “traveler’s assistant” translation app. You’ll speak a question in English, then the app
will transcribe your speech to English text, translate the text to Spanish and speak the
Spanish text. Next, you’ll speak a Spanish response (in case you don’t speak Spanish, we
provide an audio file you can use). Then, the app will quickly transcribe the speech to
Spanish text, translate the text to English and speak the English response. Cool stuff!

Teaching Approach
Python for Programmers contains a rich collection of examples drawn from many fields.
You’ll work through interesting, real-world examples using real-world datasets. The book
concentrates on the principles of good software engineering and stresses program clarity.

Using Fonts for Emphasis
We place the key terms and the index’s page reference for each defining occurrence in bold
text for easier reference. We refer to on-screen components in the bold Helvetica font (for
example, the File menu) and use the Lucida font for Python code (for example, x = 5).

Syntax Coloring
For readability, we syntax color all the code. Our syntax-coloring conventions are as fol-
lows:

comments appear in green
keywords appear in dark blue
constants and literal values appear in light blue
errors appear in red
all other code appears in black

538 Code Examples
The book’s 538 examples contain approximately 4000 lines of code. This is a relatively
small amount for a book this size and is due to the fact that Python is such an expressive
language. Also, our coding style is to use powerful class libraries to do most of the work
wherever possible.

160 Tables/Illustrations/Visualizations
We include abundant tables, line drawings, and static, dynamic and interactive visualiza-
tions.

16. Always check the latest terms on IBM’s website, as the terms and services may change.
17. https://console.bluemix.net/catalog/.

https://console.bluemix.net/catalog/

ptg27972259

xxviii Preface

Programming Wisdom
We integrate into the discussions programming wisdom from the authors’ combined nine
decades of programming and teaching experience, including:

• Good programming practices and preferred Python idioms that help you pro-
duce clearer, more understandable and more maintainable programs.

• Common programming errors to reduce the likelihood that you’ll make them.

• Error-prevention tips with suggestions for exposing bugs and removing them
from your programs. Many of these tips describe techniques for preventing bugs
from getting into your programs in the first place.

• Performance tips that highlight opportunities to make your programs run faster
or minimize the amount of memory they occupy.

• Software engineering observations that highlight architectural and design issues
for proper software construction, especially for larger systems.

Software Used in the Book
The software we use is available for Windows, macOS and Linux and is free for download
from the Internet. We wrote the book’s examples using the free Anaconda Python distri-
bution. It includes most of the Python, visualization and data science libraries you’ll need,
as well as the IPython interpreter, Jupyter Notebooks and Spyder, considered one of the
best Python data science IDEs. We use only IPython and Jupyter Notebooks for program
development in the book. The Before You Begin section following this Preface discusses
installing Anaconda and a few other items you’ll need for working with our examples.

Python Documentation
You’ll find the following documentation especially helpful as you work through the book:

• The Python Language Reference:
 https://docs.python.org/3/reference/index.html

• The Python Standard Library:
 https://docs.python.org/3/library/index.html

• Python documentation list:
 https://docs.python.org/3/

Getting Your Questions Answered
Popular Python and general programming online forums include:

• python-forum.io

• https://www.dreamincode.net/forums/forum/29-python/

• StackOverflow.com

Also, many vendors provide forums for their tools and libraries. Many of the libraries
you’ll use in this book are managed and maintained at github.com. Some library main-

https://docs.python.org/3/reference/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/
http://python-forum.io
https://www.dreamincode.net/forums/forum/29-python/
http://StackOverflow.com
http://github.com

ptg27972259

 Getting Jupyter Help xxix

tainers provide support through the Issues tab on a given library’s GitHub page. If you
cannot find an answer to your questions online, please see our web page for the book at

http://www.deitel.com18

Getting Jupyter Help
Jupyter Notebooks support is provided through:

• Project Jupyter Google Group:
 https://groups.google.com/forum/#!forum/jupyter

• Jupyter real-time chat room:
 https://gitter.im/jupyter/jupyter

• GitHub
 https://github.com/jupyter/help

• StackOverflow:
 https://stackoverflow.com/questions/tagged/jupyter

• Jupyter for Education Google Group (for instructors teaching with Jupyter):
 https://groups.google.com/forum/#!forum/jupyter-education

Supplements
To get the most out of the presentation, you should execute each code example in parallel
with reading the corresponding discussion in the book. On the book’s web page at

http://www.deitel.com

we provide:

• Downloadable Python source code (.py files) and Jupyter Notebooks (.ipynb
files) for the book’s code examples.

• Getting Started videos showing how to use the code examples with IPython and
Jupyter Notebooks. We also introduce these tools in Section 1.5.

• Blog posts and book updates.

For download instructions, see the Before You Begin section that follows this Preface.

Keeping in Touch with the Authors
For answers to questions or to report an error, send an e-mail to us at

deitel@deitel.com

or interact with us via social media:

• Facebook® (http://www.deitel.com/deitelfan)

• Twitter® (@deitel)

• LinkedIn® (http://linkedin.com/company/deitel-&-associates)

• YouTube® (http://youtube.com/DeitelTV)

18. Our website is undergoing a major upgrade. If you do not find something you need, please write to
us directly at deitel@deitel.com.

http://www.deitel.com
https://groups.google.com/forum/#!forum/jupyter
https://gitter.im/jupyter/jupyter
https://github.com/jupyter/help
https://stackoverflow.com/questions/tagged/jupyter
https://groups.google.com/forum/#!forum/jupyter-education
http://www.deitel.com
mailto:deitel@deitel.com
http://www.deitel.com/deitelfan
http://linkedin.com/company/deitel-&-associates
http://youtube.com/DeitelTV
mailto:deitel@deitel.com

ptg27972259

xxx Preface

Acknowledgments
We’d like to thank Barbara Deitel for long hours devoted to Internet research on this proj-
ect. We’re fortunate to have worked with the dedicated team of publishing professionals
at Pearson. We appreciate the efforts and 25-year mentorship of our friend and colleague
Mark L. Taub, Vice President of the Pearson IT Professional Group. Mark and his team
publish our professional books, LiveLessons video products and Learning Paths in the Safari
service (https://learning.oreilly.com/). They also sponsor our Safari live online train-
ing seminars. Julie Nahil managed the book’s production. We selected the cover art and
Chuti Prasertsith designed the cover.

We wish to acknowledge the efforts of our reviewers. Patricia Byron-Kimball and
Meghan Jacoby recruited the reviewers and managed the review process. Adhering to a
tight schedule, the reviewers scrutinized our work, providing countless suggestions for
improving the accuracy, completeness and timeliness of the presentation.

As you read the book, we’d appreciate your comments, criticisms, corrections and
suggestions for improvement. Please send all correspondence to:

deitel@deitel.com

We’ll respond promptly.

Reviewers

Book Reviewers
Daniel Chen, Data Scientist, Lander Analytics
Garrett Dancik, Associate Professor of Com-

puter Science/Bioinformatics, Eastern Con-
necticut State University

Pranshu Gupta, Assistant Professor, Computer
Science, DeSales University

David Koop, Assistant Professor, Data Science
Program Co-Director, U-Mass Dartmouth

Ramon Mata-Toledo, Professor, Computer Sci-
ence, James Madison University

Shyamal Mitra, Senior Lecturer, Computer Sci-
ence, University of Texas at Austin

Alison Sanchez, Assistant Professor in Econom-
ics, University of San Diego

José Antonio González Seco, IT Consultant
Jamie Whitacre, Independent Data Science

Consultant
Elizabeth Wickes, Lecturer, School of Informa-

tion Sciences, University of Illinois

Proposal Reviewers
Dr. Irene Bruno, Associate Professor in the

Department of Information Sciences and
Technology, George Mason University

Lance Bryant, Associate Professor, Department
of Mathematics, Shippensburg University

Daniel Chen, Data Scientist, Lander Analytics
Garrett Dancik, Associate Professor of Com-

puter Science/Bioinformatics, Eastern Con-
necticut State University

Dr. Marsha Davis, Department Chair of Mathe-
matical Sciences, Eastern Connecticut State
University

Roland DePratti, Adjunct Professor of Com-
puter Science, Eastern Connecticut State
University

Shyamal Mitra, Senior Lecturer, Computer Sci-
ence, University of Texas at Austin

Dr. Mark Pauley, Senior Research Fellow, Bioin-
formatics, School of Interdisciplinary Infor-
matics, University of Nebraska at Omaha

Sean Raleigh, Associate Professor of Mathemat-
ics, Chair of Data Science, Westminster
College

Alison Sanchez, Assistant Professor in Econom-
ics, University of San Diego

Dr. Harvey Siy, Associate Professor of Com-
puter Science, Information Science and Tech-
nology, University of Nebraska at Omaha

Jamie Whitacre, Independent Data Science
Consultant

https://learning.oreilly.com/
mailto:deitel@deitel.com

ptg27972259

 About the Authors xxxi

Welcome again to the exciting open-source world of Python programming. We hope
you enjoy this look at leading-edge computer-applications development with Python, IPy-
thon, Jupyter Notebooks, data science, AI, big data and the cloud. We wish you great suc-
cess!

Paul and Harvey Deitel

About the Authors
Paul J. Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is an MIT
graduate with 38 years of experience in computing. Paul is one of the world’s most expe-
rienced programming-languages trainers, having taught professional courses to software
developers since 1992. He has delivered hundreds of programming courses to industry cli-
ents internationally, including Cisco, IBM, Siemens, Sun Microsystems (now Oracle),
Dell, Fidelity, NASA at the Kennedy Space Center, the National Severe Storm Labora-
tory, White Sands Missile Range, Rogue Wave Software, Boeing, Nortel Networks, Puma,
iRobot and many more. He and his co-author, Dr. Harvey M. Deitel, are the world’s best-
selling programming-language textbook/professional book/video authors.

Dr. Harvey M. Deitel, Chairman and Chief Strategy Officer of Deitel & Associates,
Inc., has 58 years of experience in computing. Dr. Deitel earned B.S. and M.S. degrees in
Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston University—
he studied computing in each of these programs before they spun off Computer Science
programs. He has extensive college teaching experience, including earning tenure and serv-
ing as the Chairman of the Computer Science Department at Boston College before
founding Deitel & Associates, Inc., in 1991 with his son, Paul. The Deitels’ publications
have earned international recognition, with more than 100 translations published in Jap-
anese, German, Russian, Spanish, French, Polish, Italian, Simplified Chinese, Traditional
Chinese, Korean, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has delivered hun-
dreds of programming courses to academic, corporate, government and military clients.

About Deitel® & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate training organization, specializing in computer pro-
gramming languages, object technology, mobile app development and Internet and web
software technology. The company’s training clients include some of the world’s largest
companies, government agencies, branches of the military and academic institutions. The
company offers instructor-led training courses delivered at client sites worldwide on major
programming languages.

Through its 44-year publishing partnership with Pearson/Prentice Hall, Deitel &
Associates, Inc., publishes leading-edge programming textbooks and professional books in
print and e-book formats, LiveLessons video courses (available for purchase at https://
www.informit.com), Learning Paths and live online training seminars in the Safari service
(https://learning.oreilly.com) and Revel™ interactive multimedia courses.

To contact Deitel & Associates, Inc. and the authors, or to request a proposal on-site,
instructor-led training, write to:

deitel@deitel.com

https://www.informit.com
https://www.informit.com
https://learning.oreilly.com
mailto:deitel@deitel.com

ptg27972259

xxxii Preface

To learn more about Deitel on-site corporate training, visit

http://www.deitel.com/training

Individuals wishing to purchase Deitel books can do so at

https://www.amazon.com

Bulk orders by corporations, the government, the military and academic institutions
should be placed directly with Pearson. For more information, visit

https://www.informit.com/store/sales.aspx

http://www.deitel.com/training
https://www.amazon.com
https://www.informit.com/store/sales.aspx

ptg27972259

This section contains information you should review before using this book. We’ll post
updates at: http://www.deitel.com.

Font and Naming Conventions
We show Python code and commands and file and folder names in a sans-serif font,
and on-screen components, such as menu names, in a bold sans-serif font. We use italics
for emphasis and bold occasionally for strong emphasis.

Getting the Code Examples
You can download the examples.zip file containing the book’s examples from our Python
for Programmers web page at:

http://www.deitel.com

Click the Download Examples link to save the file to your local computer. Most web
browsers place the file in your user account’s Downloads folder. When the download com-
pletes, locate it on your system, and extract its examples folder into your user account’s
Documents folder:

• Windows: C:\Users\YourAccount\Documents\examples

• macOS or Linux: ~/Documents/examples

Most operating systems have a built-in extraction tool. You also may use an archive tool
such as 7-Zip (www.7-zip.org) or WinZip (www.winzip.com).

Structure of the examples Folder
You’ll execute three kinds of examples in this book:

• Individual code snippets in the IPython interactive environment.

• Complete applications, which are known as scripts.

• Jupyter Notebooks—a convenient interactive, web-browser-based environment
in which you can write and execute code and intermix the code with text, images
and video.

We demonstrate each in Section 1.5’s test drives.
The examples folder contains one subfolder per chapter. These are named ch##,

where ## is the two-digit chapter number 01 to 16—for example, ch01. Except for Chap-
ters 13, 15 and 16, each chapter’s folder contains the following items:

• snippets_ipynb—A folder containing the chapter’s Jupyter Notebook files.

Before You Begin

http://www.deitel.com
http://www.deitel.com
http://www.7-zip.org
http://www.winzip.com

ptg27972259

xxxiv Before You Begin

• snippets_py—A folder containing Python source code files in which each code
snippet we present is separated from the next by a blank line. You can copy and
paste these snippets into IPython or into new Jupyter Notebooks that you create.

• Script files and their supporting files.

Chapter 13 contains one application. Chapters 15 and 16 explain where to find the files
you need in the ch15 and ch16 folders, respectively.

Installing Anaconda
We use the easy-to-install Anaconda Python distribution with this book. It comes with
almost everything you’ll need to work with our examples, including:

• the IPython interpreter,

• most of the Python and data science libraries we use,

• a local Jupyter Notebooks server so you can load and execute our notebooks, and

• various other software packages, such as the Spyder Integrated Development
Environment (IDE)—we use only IPython and Jupyter Notebooks in this book.

Download the Python 3.x Anaconda installer for Windows, macOS or Linux from:

https://www.anaconda.com/download/

When the download completes, run the installer and follow the on-screen instructions. To
ensure that Anaconda runs correctly, do not move its files after you install it.

Updating Anaconda
Next, ensure that Anaconda is up to date. Open a command-line window on your system
as follows:

• On macOS, open a Terminal from the Applications folder’s Utilities subfolder.

• On Windows, open the Anaconda Prompt from the start menu. When doing this
to update Anaconda (as you’ll do here) or to install new packages (discussed
momentarily), execute the Anaconda Prompt as an administrator by right-click-
ing, then selecting More > Run as administrator. (If you cannot find the Anaconda
Prompt in the start menu, simply search for it in the Type here to search field at
the bottom of your screen.)

• On Linux, open your system’s Terminal or shell (this varies by Linux distribution).

In your system’s command-line window, execute the following commands to update
Anaconda’s installed packages to their latest versions:

1. conda update conda

2. conda update --all

Package Managers
The conda command used above invokes the conda package manager—one of the two key
Python package managers you’ll use in this book. The other is pip. Packages contain the files
required to install a given Python library or tool. Throughout the book, you’ll use conda to

https://www.anaconda.com/download/

ptg27972259

 Installing the Prospector Static Code Analysis Tool xxxv

install additional packages, unless those packages are not available through conda, in which
case you’ll use pip. Some people prefer to use pip exclusively as it currently supports more
packages. If you ever have trouble installing a package with conda, try pip instead.

Installing the Prospector Static Code Analysis Tool
You may want to analyze you Python code using the Prospector analysis tool, which
checks your code for common errors and helps you improve it. To install Prospector and
the Python libraries it uses, run the following command in the command-line window:

pip install prospector

Installing jupyter-matplotlib
We implement several animations using a visualization library called Matplotlib. To use
them in Jupyter Notebooks, you must install a tool called ipympl. In the Terminal, Ana-
conda Command Prompt or shell you opened previously, execute the following com-
mands1 one at a time:

conda install -c conda-forge ipympl
conda install nodejs
jupyter labextension install @jupyter-widgets/jupyterlab-manager
jupyter labextension install jupyter-matplotlib

Installing the Other Packages
Anaconda comes with approximately 300 popular Python and data science packages for
you, such as NumPy, Matplotlib, pandas, Regex, BeautifulSoup, requests, Bokeh, SciPy,
SciKit-Learn, Seaborn, Spacy, sqlite, statsmodels and many more. The number of addi-
tional packages you’ll need to install throughout the book will be small and we’ll provide
installation instructions as necessary. As you discover new packages, their documentation
will explain how to install them.

Get a Twitter Developer Account
If you intend to use our “Data Mining Twitter” chapter and any Twitter-based examples
in subsequent chapters, apply for a Twitter developer account. Twitter now requires reg-
istration for access to their APIs. To apply, fill out and submit the application at

https://developer.twitter.com/en/apply-for-access

Twitter reviews every application. At the time of this writing, personal developer accounts
were being approved immediately and company-account applications were taking from
several days to several weeks. Approval is not guaranteed.

Internet Connection Required in Some Chapters
While using this book, you’ll need an Internet connection to install various additional
Python libraries. In some chapters, you’ll register for accounts with cloud-based services,
mostly to use their free tiers. Some services require credit cards to verify your identity. In

1. https://github.com/matplotlib/jupyter-matplotlib.

https://developer.twitter.com/en/apply-for-access
https://github.com/matplotlib/jupyter-matplotlib

ptg27972259

xxxvi Before You Begin

a few cases, you’ll use services that are not free. In these cases, you’ll take advantage of
monetary credits provided by the vendors so you can try their services without incurring
charges. Caution: Some cloud-based services incur costs once you set them up. When
you complete our case studies using such services, be sure to promptly delete the
resources you allocated.

Slight Differences in Program Outputs
When you execute our examples, you might notice some differences between the results
we show and your own results:

• Due to differences in how calculations are performed with floating-point num-
bers (like –123.45, 7.5 or 0.0236937) across operating systems, you might see
minor variations in outputs—especially in digits far to the right of the decimal
point.

• When we show outputs that appear in separate windows, we crop the windows
to remove their borders.

Getting Your Questions Answered
Online forums enable you to interact with other Python programmers and get your
Python questions answered. Popular Python and general programming forums include:

• python-forum.io

• StackOverflow.com

• https://www.dreamincode.net/forums/forum/29-python/

Also, many vendors provide forums for their tools and libraries. Most of the libraries you’ll
use in this book are managed and maintained at github.com. Some library maintainers
provide support through the Issues tab on a given library’s GitHub page. If you cannot
find an answer to your questions online, please see our web page for the book at

http://www.deitel.com2

You’re now ready to begin reading Python for Programmers. We hope you enjoy the
book!

2. Our website is undergoing a major upgrade. If you do not find something you need, please write to
us directly at deitel@deitel.com.

https://www.dreamincode.net/forums/forum/29-python/
http://github.com
http://www.deitel.com

ptg27972259

1
Introduction to Computers

and Python

O b j e c t i v e s
In this chapter you’ll:
■ Learn about exciting recent developments in computing.
■ Review object-oriented programming basics.
■ Understand the strengths of Python.
■ Be introduced to key Python and data-science libraries you’ll

use in this book.
■ Test-drive the IPython interpreter’s interactive mode for

executing Python code.
■ Execute a Python script that animates a bar chart.
■ Create and test-drive a web-browser-based Jupyter Notebook

for executing Python code.
■ Learn how big “big data” is and how quickly it’s getting even

bigger.
■ Read a big-data case study on a popular mobile navigation

app.
■ Be introduced to artificial intelligence—at the intersection of

computer science and data science.

ptg27972259

2 Chapter 1 Introduction to Computers and Python
O

u
tl

in
e

1.1 Introduction
Welcome to Python—one of the world’s most widely used computer programming lan-
guages and, according to the Popularity of Programming Languages (PYPL) Index, the
world’s most popular.1

Here, we introduce terminology and concepts that lay the groundwork for the Python
programming you’ll learn in Chapters 2–10 and the big-data, artificial-intelligence and
cloud-based case studies we present in Chapters 11–16.

We’ll review object-oriented programming terminology and concepts. You’ll learn why
Python has become so popular. We’ll introduce the Python Standard Library and various
data-science libraries that help you avoid “reinventing the wheel.” You’ll use these libraries
to create software objects that you’ll interact with to perform significant tasks with modest
numbers of instructions.

Next, you’ll work through three test-drives showing how to execute Python code:

• In the first, you’ll use IPython to execute Python instructions interactively and
immediately see their results.

• In the second, you’ll execute a substantial Python application that will display an
animated bar chart summarizing rolls of a six-sided die as they occur. You’ll see
the “Law of Large Numbers” in action. In Chapter 6, you’ll build this application
with the Matplotlib visualization library.

• In the last, we’ll introduce Jupyter Notebooks using JupyterLab—an interactive,
web-browser-based tool in which you can conveniently write and execute Python
instructions. Jupyter Notebooks enable you to include text, images, audios, vid-
eos, animations and code.

In the past, most computer applications ran on standalone computers (that is, not net-
worked together). Today’s applications can be written with the aim of communicating
among the world’s billions of computers via the Internet. We’ll introduce the Cloud and

1.1 Introduction
1.2 A Quick Review of Object

Technology Basics
1.3 Python
1.4 It’s the Libraries!

1.4.1 Python Standard Library
1.4.2 Data-Science Libraries

1.5 Test-Drives: Using IPython and
Jupyter Notebooks

1.5.1 Using IPython Interactive Mode as a
Calculator

1.5.2 Executing a Python Program Using
the IPython Interpreter

1.5.3 Writing and Executing Code in a
Jupyter Notebook

1.6 The Cloud and the Internet of Things
1.6.1 The Cloud
1.6.2 Internet of Things

1.7 How Big Is Big Data?
1.7.1 Big Data Analytics
1.7.2 Data Science and Big Data Are Making

a Difference: Use Cases
1.8 Case Study—A Big-Data Mobile

Application
1.9 Intro to Data Science: Artificial

Intelligence—at the Intersection of
CS and Data Science

1.10 Wrap-Up

1. https://pypl.github.io/PYPL.html (as of January 2019).

https://pypl.github.io/PYPL.html

ptg27972259

1.2 A Quick Review of Object Technology Basics 3

the Internet of Things (IoT), laying the groundwork for the contemporary applications
you’ll develop in Chapters 11–16.

You’ll learn just how big “big data” is and how quickly it’s getting even bigger. Next,
we’ll present a big-data case study on the Waze mobile navigation app, which uses many
current technologies to provide dynamic driving directions that get you to your destina-
tion as quickly and as safely as possible. As we walk through those technologies, we’ll men-
tion where you’ll use many of them in this book. The chapter closes with our first Intro to
Data Science section in which we discuss a key intersection between computer science and
data science—artificial intelligence.

1.2 A Quick Review of Object Technology Basics
As demands for new and more powerful software are soaring, building software quickly,
correctly and economically is important. Objects, or more precisely, the classes objects come
from, are essentially reusable software components. There are date objects, time objects,
audio objects, video objects, automobile objects, people objects, etc. Almost any noun can
be reasonably represented as a software object in terms of attributes (e.g., name, color and
size) and behaviors (e.g., calculating, moving and communicating). Software-development
groups can use a modular, object-oriented design-and-implementation approach to be
much more productive than with earlier popular techniques like “structured program-
ming.” Object-oriented programs are often easier to understand, correct and modify.

Automobile as an Object
To help you understand objects and their contents, let’s begin with a simple analogy. Sup-
pose you want to drive a car and make it go faster by pressing its accelerator pedal. What must
happen before you can do this? Well, before you can drive a car, someone has to design it.
A car typically begins as engineering drawings, similar to the blueprints that describe the
design of a house. These drawings include the design for an accelerator pedal. The pedal
hides from the driver the complex mechanisms that make the car go faster, just as the brake
pedal “hides” the mechanisms that slow the car, and the steering wheel “hides” the mech-
anisms that turn the car. This enables people with little or no knowledge of how engines,
braking and steering mechanisms work to drive a car easily.

Just as you cannot cook meals in the blueprint of a kitchen, you cannot drive a car’s
engineering drawings. Before you can drive a car, it must be built from the engineering
drawings that describe it. A completed car has an actual accelerator pedal to make it go
faster, but even that’s not enough—the car won’t accelerate on its own (hopefully!), so the
driver must press the pedal to accelerate the car.

Methods and Classes
Let’s use our car example to introduce some key object-oriented programming concepts.
Performing a task in a program requires a method. The method houses the program state-
ments that perform its tasks. The method hides these statements from its user, just as the
accelerator pedal of a car hides from the driver the mechanisms of making the car go faster.
In Python, a program unit called a class houses the set of methods that perform the class’s
tasks. For example, a class that represents a bank account might contain one method to

ptg27972259

4 Chapter 1 Introduction to Computers and Python

deposit money to an account, another to withdraw money from an account and a third to
inquire what the account’s balance is. A class is similar in concept to a car’s engineering
drawings, which house the design of an accelerator pedal, steering wheel, and so on.

Instantiation
Just as someone has to build a car from its engineering drawings before you can drive a car,
you must build an object of a class before a program can perform the tasks that the class’s
methods define. The process of doing this is called instantiation. An object is then referred
to as an instance of its class.

Reuse
Just as a car’s engineering drawings can be reused many times to build many cars, you can
reuse a class many times to build many objects. Reuse of existing classes when building new
classes and programs saves time and effort. Reuse also helps you build more reliable and
effective systems because existing classes and components often have undergone extensive
testing, debugging and performance tuning. Just as the notion of interchangeable parts was
crucial to the Industrial Revolution, reusable classes are crucial to the software revolution
that has been spurred by object technology.

In Python, you’ll typically use a building-block approach to create your programs. To
avoid reinventing the wheel, you’ll use existing high-quality pieces wherever possible. This
software reuse is a key benefit of object-oriented programming.

Messages and Method Calls
When you drive a car, pressing its gas pedal sends a message to the car to perform a task—
that is, to go faster. Similarly, you send messages to an object. Each message is implemented
as a method call that tells a method of the object to perform its task. For example, a pro-
gram might call a bank-account object’s deposit method to increase the account’s balance.

Attributes and Instance Variables
A car, besides having capabilities to accomplish tasks, also has attributes, such as its color,
its number of doors, the amount of gas in its tank, its current speed and its record of total
miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are repre-
sented as part of its design in its engineering diagrams (which, for example, include an
odometer and a fuel gauge). As you drive an actual car, these attributes are carried along
with the car. Every car maintains its own attributes. For example, each car knows how
much gas is in its own gas tank, but not how much is in the tanks of other cars.

An object, similarly, has attributes that it carries along as it’s used in a program. These
attributes are specified as part of the object’s class. For example, a bank-account object has
a balance attribute that represents the amount of money in the account. Each bank-
account object knows the balance in the account it represents, but not the balances of the
other accounts in the bank. Attributes are specified by the class’s instance variables. A
class’s (and its object’s) attributes and methods are intimately related, so classes wrap
together their attributes and methods.

Inheritance
A new class of objects can be created conveniently by inheritance—the new class (called
the subclass) starts with the characteristics of an existing class (called the superclass), pos-

ptg27972259

1.3 Python 5

sibly customizing them and adding unique characteristics of its own. In our car analogy,
an object of class “convertible” certainly is an object of the more general class “automo-
bile,” but more specifically, the roof can be raised or lowered.

Object-Oriented Analysis and Design (OOAD)
Soon you’ll be writing programs in Python. How will you create the code for your pro-
grams? Perhaps, like many programmers, you’ll simply turn on your computer and start
typing. This approach may work for small programs (like the ones we present in the early
chapters of the book), but what if you were asked to create a software system to control
thousands of automated teller machines for a major bank? Or suppose you were asked to
work on a team of 1,000 software developers building the next generation of the U.S. air
traffic control system? For projects so large and complex, you should not simply sit down
and start writing programs.

To create the best solutions, you should follow a detailed analysis process for deter-
mining your project’s requirements (i.e., defining what the system is supposed to do), then
develop a design that satisfies them (i.e., specifying how the system should do it). Ideally,
you’d go through this process and carefully review the design (and have your design
reviewed by other software professionals) before writing any code. If this process involves
analyzing and designing your system from an object-oriented point of view, it’s called an
object-oriented analysis-and-design (OOAD) process. Languages like Python are object-
oriented. Programming in such a language, called object-oriented programming (OOP),
allows you to implement an object-oriented design as a working system.

1.3 Python
Python is an object-oriented scripting language that was released publicly in 1991. It was
developed by Guido van Rossum of the National Research Institute for Mathematics and
Computer Science in Amsterdam.

Python has rapidly become one of the world’s most popular programming languages.
It’s now particularly popular for educational and scientific computing,2 and it recently
surpassed the programming language R as the most popular data-science programming
language.3,4,5 Here are some reasons why Python is popular and everyone should consider
learning it:6,7,8

• It’s open source, free and widely available with a massive open-source community.

• It’s easier to learn than languages like C, C++, C# and Java, enabling novices and
professional developers to get up to speed quickly.

2. https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017.
3. https://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-data-

science.html.
4. https://www.r-bloggers.com/data-science-job-report-2017-r-passes-sas-but-python-

leaves-them-both-behind/.
5. https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017.
6. https://dbader.org/blog/why-learn-python.
7. https://simpleprogrammer.com/2017/01/18/7-reasons-why-you-should-learn-python/.
8. https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017.

https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017
https://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-data-science.html
https://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-data-science.html
https://www.r-bloggers.com/data-science-job-report-2017-r-passes-sas-but-python-leaves-them-both-behind/
https://www.r-bloggers.com/data-science-job-report-2017-r-passes-sas-but-python-leaves-them-both-behind/
https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017
https://dbader.org/blog/why-learn-python
https://simpleprogrammer.com/2017/01/18/7-reasons-why-you-should-learn-python/
https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017

ptg27972259

6 Chapter 1 Introduction to Computers and Python

• It’s easier to read than many other popular programming languages.

• It’s widely used in education.9

• It enhances developer productivity with extensive standard libraries and third-
party open-source libraries, so programmers can write code faster and perform
complex tasks with minimal code. We’ll say more about this in Section 1.4.

• There are massive numbers of free open-source Python applications.

• It’s popular in web development (e.g., Django, Flask).

• It supports popular programming paradigms—procedural, functional-style and
object-oriented.10 We’ll begin introducing functional-style programming fea-
tures in Chapter 4 and use them in subsequent chapters.

• It simplifies concurrent programming—with asyncio and async/await, you’re
able to write single-threaded concurrent code11, greatly simplifying the inher-
ently complex processes of writing, debugging and maintaining that code.12

• There are lots of capabilities for enhancing Python performance.

• It’s used to build anything from simple scripts to complex apps with massive
numbers of users, such as Dropbox, YouTube, Reddit, Instagram and Quora.13

• It’s popular in artificial intelligence, which is enjoying explosive growth, in part
because of its special relationship with data science.

• It’s widely used in the financial community.14

• There’s an extensive job market for Python programmers across many disciplines,
especially in data-science-oriented positions, and Python jobs are among the
highest paid of all programming jobs.15,16

• R is a popular open-source programming language for statistical applications and
visualization. Python and R are the two most widely data-science languages.

Anaconda Python Distribution
We use the Anaconda Python distribution because it’s easy to install on Windows, macOS
and Linux and supports the latest versions of Python, the IPython interpreter (introduced
in Section 1.5.1) and Jupyter Notebooks (introduced in Section 1.5.3). Anaconda also
includes other software packages and libraries commonly used in Python programming
and data science, allowing you to focus on Python and data science, rather than software

9. Tollervey, N., Python in Education: Teach, Learn, Program (O’Reilly Media, Inc., 2015).
10. https://en.wikipedia.org/wiki/Python_(programming_language).
11. https://docs.python.org/3/library/asyncio.html.
12. https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017.
13. https://www.hartmannsoftware.com/Blog/Articles_from_Software_Fans/Most-Famous-

Software-Programs-Written-in-Python.
14. Kolanovic, M. and R. Krishnamachari, Big Data and AI Strategies: Machine Learning and Alternative

Data Approach to Investing (J.P. Morgan, 2017).
15. https://www.infoworld.com/article/3170838/developer/get-paid-10-programming-lan-

guages-to-learn-in-2017.html.
16. https://medium.com/@ChallengeRocket/top-10-of-programming-languages-with-the-

highest-salaries-in-2017-4390f468256e.

https://en.wikipedia.org/wiki/Python_(programming_language)
https://docs.python.org/3/library/asyncio.html
https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017
https://www.hartmannsoftware.com/Blog/Articles_from_Software_Fans/Most-Famous-Software-Programs-Written-in-Python
https://www.hartmannsoftware.com/Blog/Articles_from_Software_Fans/Most-Famous-Software-Programs-Written-in-Python
https://www.infoworld.com/article/3170838/developer/get-paid-10-programming-lan-guages-to-learn-in-2017.html
https://www.infoworld.com/article/3170838/developer/get-paid-10-programming-lan-guages-to-learn-in-2017.html
https://medium.com/@ChallengeRocket/top-10-of-programming-languages-with-the-highest-salaries-in-2017-4390f468256e
https://medium.com/@ChallengeRocket/top-10-of-programming-languages-with-the-highest-salaries-in-2017-4390f468256e

ptg27972259

1.4 It’s the Libraries! 7

installation issues. The IPython interpreter17 has features that help you explore, discover
and experiment with Python, the Python Standard Library and the extensive set of third-
party libraries.

Zen of Python
We adhere to Tim Peters’ The Zen of Python, which summarizes Python creator Guido van
Rossum’s design principles for the language. This list can be viewed in IPython with the
command import this. The Zen of Python is defined in Python Enhancement Proposal
(PEP) 20. “A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment.”18

1.4 It’s the Libraries!
Throughout the book, we focus on using existing libraries to help you avoid “reinventing
the wheel,” thus leveraging your program-development efforts. Often, rather than devel-
oping lots of original code—a costly and time-consuming process—you can simply create
an object of a pre-existing library class, which takes only a single Python statement. So,
libraries will help you perform significant tasks with modest amounts of code. In this
book, you’ll use a broad range of Python standard libraries, data-science libraries and
third-party libraries.

1.4.1 Python Standard Library
The Python Standard Library provides rich capabilities for text/binary data processing,
mathematics, functional-style programming, file/directory access, data persistence, data
compression/archiving, cryptography, operating-system services, concurrent program-
ming, interprocess communication, networking protocols, JSON/XML/other Internet
data formats, multimedia, internationalization, GUI, debugging, profiling and more. The
following table lists some of the Python Standard Library modules that we use in examples.

17. https://ipython.org/.
18. https://www.python.org/dev/peps/pep-0001/.

Some of the Python Standard Library modules we use in the book

collections—Additional data structures
beyond lists, tuples, dictionaries and sets.

csv—Processing comma-separated value files.
datetime, time—Date and time manipulations.
decimal—Fixed-point and floating-point arith-

metic, including monetary calculations.
doctest—Simple unit testing via validation tests

and expected results embedded in docstrings.
json—JavaScript Object Notation (JSON) pro-

cessing for use with web services and NoSQL
document databases.

math—Common math constants and operations.

os—Interacting with the operating system.
queue—First-in, first-out data structure.
random—Pseudorandom numbers.
re—Regular expressions for pattern matching.
sqlite3—SQLite relational database access.
statistics—Mathematical statistics functions

like mean, median, mode and variance.
string—String processing.
sys—Command-line argument processing;

standard input, standard output and standard
error streams.

timeit—Performance analysis.

https://ipython.org/
https://www.python.org/dev/peps/pep-0001/

ptg27972259

8 Chapter 1 Introduction to Computers and Python

1.4.2 Data-Science Libraries
Python has an enormous and rapidly growing community of open-source developers in
many fields. One of the biggest reasons for Python’s popularity is the extraordinary range
of open-source libraries developed by its open-source community. One of our goals is to
create examples and implementation case studies that give you an engaging, challenging
and entertaining introduction to Python programming, while also involving you in hands-
on data science, key data-science libraries and more. You’ll be amazed at the substantial
tasks you can accomplish in just a few lines of code. The following table lists various pop-
ular data-science libraries. You’ll use many of these as you work through our data-science
examples. For visualization, we’ll use Matplotlib, Seaborn and Folium, but there are many
more. For a nice summary of Python visualization libraries see http://pyviz.org/.

Popular Python libraries used in data science

Scientific Computing and Statistics
NumPy (Numerical Python)—Python does not have a built-in array data structure. It uses lists,
which are convenient but relatively slow. NumPy provides the high-performance ndarray data struc-
ture to represent lists and matrices, and it also provides routines for processing such data structures.

SciPy (Scientific Python)—Built on NumPy, SciPy adds routines for scientific processing, such as
integrals, differential equations, additional matrix processing and more. scipy.org controls SciPy
and NumPy.

StatsModels—Provides support for estimations of statistical models, statistical tests and statistical
data exploration.

Data Manipulation and Analysis
Pandas—An extremely popular library for data manipulations. Pandas makes abundant use of
NumPy’s ndarray. Its two key data structures are Series (one dimensional) and DataFrames (two
dimensional).

Visualization
Matplotlib—A highly customizable visualization and plotting library. Supported plots include regu-
lar, scatter, bar, contour, pie, quiver, grid, polar axis, 3D and text.

Seaborn—A higher-level visualization library built on Matplotlib. Seaborn adds a nicer look-and-
feel, additional visualizations and enables you to create visualizations with less code.

Machine Learning, Deep Learning and Reinforcement Learning
scikit-learn—Top machine-learning library. Machine learning is a subset of AI. Deep learning is a
subset of machine learning that focuses on neural networks.

Keras—One of the easiest to use deep-learning libraries. Keras runs on top of TensorFlow (Google),
CNTK (Microsoft’s cognitive toolkit for deep learning) or Theano (Université de Montréal).

TensorFlow—From Google, this is the most widely used deep learning library. TensorFlow works
with GPUs (graphics processing units) or Google’s custom TPUs (Tensor processing units) for per-
formance. TensorFlow is important in AI and big data analytics—where processing demands are
huge. You’ll use the version of Keras that’s built into TensorFlow.

OpenAI Gym—A library and environment for developing, testing and comparing reinforcement-
learning algorithms.

http://pyviz.org/
http://scipy.org

ptg27972259

1.5 Test-Drives: Using IPython and Jupyter Notebooks 9

1.5 Test-Drives: Using IPython and Jupyter Notebooks
In this section, you’ll test-drive the IPython interpreter19 in two modes:

• In interactive mode, you’ll enter small bits of Python code called snippets and
immediately see their results.

• In script mode, you’ll execute code loaded from a file that has the .py extension
(short for Python). Such files are called scripts or programs, and they’re generally
longer than the code snippets you’ll use in interactive mode.

Then, you’ll learn how to use the browser-based environment known as the Jupyter Note-
book for writing and executing Python code.20

1.5.1 Using IPython Interactive Mode as a Calculator
Let’s use IPython interactive mode to evaluate simple arithmetic expressions.

Entering IPython in Interactive Mode
First, open a command-line window on your system:

• On macOS, open a Terminal from the Applications folder’s Utilities subfolder.

• On Windows, open the Anaconda Command Prompt from the start menu.

• On Linux, open your system’s Terminal or shell (this varies by Linux distribu-
tion).

In the command-line window, type ipython, then press Enter (or Return). You’ll see text
like the following, this varies by platform and by IPython version:

Natural Language Processing (NLP)
NLTK (Natural Language Toolkit)—Used for natural language processing (NLP) tasks.

TextBlob—An object-oriented NLP text-processing library built on the NLTK and pattern NLP
libraries. TextBlob simplifies many NLP tasks.

Gensim—Similar to NLTK. Commonly used to build an index for a collection of documents, then
determine how similar another document is to each of those in the index.

19. Before reading this section, follow the instructions in the Before You Begin section to install the
Anaconda Python distribution, which contains the IPython interpreter.

20. Jupyter supports many programming languages by installing their "kernels." For more information
see https://github.com/jupyter/jupyter/wiki/Jupyter-kernels.

Python 3.7.0 | packaged by conda-forge | (default, Jan 20 2019, 17:24:52)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]:

Popular Python libraries used in data science

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

ptg27972259

10 Chapter 1 Introduction to Computers and Python

The text "In [1]:" is a prompt, indicating that IPython is waiting for your input. You can
type ? for help or begin entering snippets, as you’ll do momentarily.

Evaluating Expressions
In interactive mode, you can evaluate expressions:

After you type 45 + 72 and press Enter, IPython reads the snippet, evaluates it and prints its
result in Out[1].21 Then IPython displays the In [2] prompt to show that it’s waiting for
you to enter your second snippet. For each new snippet, IPython adds 1 to the number in
the square brackets. Each In [1] prompt in the book indicates that we’ve started a new
interactive session. We generally do that for each new section of a chapter.

Let’s evaluate a more complex expression:

Python uses the asterisk (*) for multiplication and the forward slash (/) for division. As in
mathematics, parentheses force the evaluation order, so the parenthesized expression
(12.7 - 4) evaluates first, giving 8.7. Next, 5 * 8.7 evaluates giving 43.5. Then, 43.5 / 2

evaluates, giving the result 21.75, which IPython displays in Out[2]. Whole numbers, like
5, 4 and 2, are called integers. Numbers with decimal points, like 12.7, 43.5 and 21.75,
are called floating-point numbers.

Exiting Interactive Mode
To leave interactive mode, you can:

• Type the exit command at the current In [] prompt and press Enter to exit
immediately.

• Type the key sequence <Ctrl> + d (or <control> + d) . This displays the prompt
"Do you really want to exit ([y]/n)?". The square brackets around y indicate
that it’s the default response—pressing Enter submits the default response and
exits.

• Type <Ctrl> + d (or <control> + d) twice (macOS and Linux only).

1.5.2 Executing a Python Program Using the IPython Interpreter
In this section, you’ll execute a script named RollDieDynamic.py that you’ll write in
Chapter 6. The .py extension indicates that the file contains Python source code. The
script RollDieDynamic.py simulates rolling a six-sided die. It presents a colorful animated
visualization that dynamically graphs the frequencies of each die face.

In [1]: 45 + 72
Out[1]: 117

In [2]:

21. In the next chapter, you’ll see that there are some cases in which Out[] is not displayed.

In [2]: 5 * (12.7 - 4) / 2
Out[2]: 21.75

ptg27972259

1.5 Test-Drives: Using IPython and Jupyter Notebooks 11

Changing to This Chapter’s Examples Folder
You’ll find the script in the book’s ch01 source-code folder. In the Before You Begin sec-
tion you extracted the examples folder to your user account’s Documents folder. Each
chapter has a folder containing that chapter’s source code. The folder is named ch##,
where ## is a two-digit chapter number from 01 to 17. First, open your system’s command-
line window. Next, use the cd (“change directory”) command to change to the ch01 folder:

• On macOS/Linux, type cd ~/Documents/examples/ch01, then press Enter.

• On Windows, type cd C:\Users\YourAccount\Documents\examples\ch01, then
press Enter.

Executing the Script
To execute the script, type the following command at the command line, then press Enter:

ipython RollDieDynamic.py 6000 1

The script displays a window, showing the visualization. The numbers 6000 and 1 tell this
script the number of times to roll dice and how many dice to roll each time. In this case,
we’ll update the chart 6000 times for 1 die at a time.

For a six-sided die, the values 1 through 6 should each occur with “equal likeli-
hood”—the probability of each is 1/6th or about 16.667%. If we roll a die 6000 times,
we’d expect about 1000 of each face. Like coin tossing, die rolling is random, so there could
be some faces with fewer than 1000, some with 1000 and some with more than 1000. We
took the screen captures below during the script’s execution. This script uses randomly
generated die values, so your results will differ. Experiment with the script by changing the
value 1 to 100, 1000 and 10000. Notice that as the number of die rolls gets larger, the
frequencies zero in on 16.667%. This is a phenomenon of the “Law of Large Numbers.”

Creating Scripts
Typically, you create your Python source code in an editor that enables you to type text.
Using the editor, you type a program, make any necessary corrections and save it to your
computer. Integrated development environments (IDEs) provide tools that support the
entire software-development process, such as editors, debuggers for locating logic errors

Roll the dice 6000 times and roll 1 die each time:
ipython RollDieDynamic.py 6000 1

ptg27972259

12 Chapter 1 Introduction to Computers and Python

that cause programs to execute incorrectly and more. Some popular Python IDEs include
Spyder (which comes with Anaconda), PyCharm and Visual Studio Code.

Problems That May Occur at Execution Time
Programs often do not work on the first try. For example, an executing program might try
to divide by zero (an illegal operation in Python). This would cause the program to display
an error message. If this occurred in a script, you’d return to the editor, make the necessary
corrections and re-execute the script to determine whether the corrections fixed the prob-
lem(s).

Errors such as division by zero occur as a program runs, so they’re called runtime
errors or execution-time errors. Fatal runtime errors cause programs to terminate imme-
diately without having successfully performed their jobs. Non-fatal runtime errors allow
programs to run to completion, often producing incorrect results.

1.5.3 Writing and Executing Code in a Jupyter Notebook
The Anaconda Python Distribution that you installed in the Before You Begin section
comes with the Jupyter Notebook—an interactive, browser-based environment in which
you can write and execute code and intermix the code with text, images and video. Jupyter
Notebooks are broadly used in the data-science community in particular and the broader
scientific community in general. They’re the preferred means of doing Python-based data
analytics studies and reproducibly communicating their results. The Jupyter Notebook
environment supports a growing number of programming languages.

For your convenience, all of the book’s source code also is provided in Jupyter Note-
books that you can simply load and execute. In this section, you’ll use the JupyterLab
interface, which enables you to manage your notebook files and other files that your note-
books use (like images and videos). As you’ll see, JupyterLab also makes it convenient to
write code, execute it, see the results, modify the code and execute it again.

You’ll see that coding in a Jupyter Notebook is similar to working with IPython—in
fact, Jupyter Notebooks use IPython by default. In this section, you’ll create a notebook,
add the code from Section 1.5.1 to it and execute that code.

Opening JupyterLab in Your Browser
To open JupyterLab, change to the ch01 examples folder in your Terminal, shell or Ana-
conda Command Prompt (as in Section 1.5.2), type the following command, then press
Enter (or Return):

jupyter lab

This executes the Jupyter Notebook server on your computer and opens JupyterLab in
your default web browser, showing the ch01 folder’s contents in the File Browser tab

at the left side of the JupyterLab interface:

ptg27972259

1.5 Test-Drives: Using IPython and Jupyter Notebooks 13

The Jupyter Notebook server enables you to load and run Jupyter Notebooks in your web
browser. From the JupyterLab Files tab, you can double-click files to open them in the
right side of the window where the Launcher tab is currently displayed. Each file you open
appears as a separate tab in this part of the window. If you accidentally close your browser,
you can reopen JupyterLab by entering the following address in your web browser

http://localhost:8888/lab

Creating a New Jupyter Notebook
In the Launcher tab under Notebook, click the Python 3 button to create a new Jupyter
Notebook named Untitled.ipynb in which you can enter and execute Python 3 code.
The file extension .ipynb is short for IPython Notebook—the original name of the Jupy-
ter Notebook.

Renaming the Notebook
Rename Untitled.ipynb as TestDrive.ipynb:

1. Right-click the Untitled.ipynb tab and select Rename Notebook….

2. Change the name to TestDrive.ipynb and click RENAME.

The top of JupyterLab should now appear as follows:

http://localhost:8888/lab

ptg27972259

14 Chapter 1 Introduction to Computers and Python

Evaluating an Expression
The unit of work in a notebook is a cell in which you can enter code snippets. By default, a
new notebook contains one cell—the rectangle in the TestDrive.ipynb notebook—but you
can add more. To the cell’s left, the notation []: is where the Jupyter Notebook will display
the cell’s snippet number after you execute the cell. Click in the cell, then type the expression

45 + 72

To execute the current cell’s code, type Ctrl + Enter (or control + Enter). JupyterLab exe-
cutes the code in IPython, then displays the results below the cell:

Adding and Executing Another Cell
Let’s evaluate a more complex expression. First, click the + button in the toolbar above the
notebook’s first cell—this adds a new cell below the current one:

Click in the new cell, then type the expression

5 * (12.7 - 4) / 2

and execute the cell by typing Ctrl + Enter (or control + Enter):

Saving the Notebook
If your notebook has unsaved changes, the X in the notebook’s tab will change to . To
save the notebook, select the File menu in JupyterLab (not at the top of your browser’s
window), then select Save Notebook.

ptg27972259

1.5 Test-Drives: Using IPython and Jupyter Notebooks 15

Notebooks Provided with Each Chapter’s Examples
For your convenience, each chapter’s examples also are provided as ready-to-execute note-
books without their outputs. This enables you to work through them snippet-by-snippet
and see the outputs appear as you execute each snippet.

So that we can show you how to load an existing notebook and execute its cells, let’s
reset the TestDrive.ipynb notebook to remove its output and snippet numbers. This will
return it to a state like the notebooks we provide for the subsequent chapters’ examples.
From the Kernel menu select Restart Kernel and Clear All Outputs…, then click the
RESTART button. The preceding command also is helpful whenever you wish to re-exe-
cute a notebook’s snippets. The notebook should now appear as follows:

From the File menu, select Save Notebook, then click the TestDrive.ipynb tab’s X button
to close the notebook.

Opening and Executing an Existing Notebook
When you launch JupyterLab from a given chapter’s examples folder, you’ll be able to open
notebooks from that folder or any of its subfolders. Once you locate a specific notebook,
double-click it to open it. Open the TestDrive.ipynb notebook again now. Once a note-
book is open, you can execute each cell individually, as you did earlier in this section, or you
can execute the entire notebook at once. To do so, from the Run menu select Run All Cells.
The notebook will execute the cells in order, displaying each cell’s output below that cell.

Closing JupyterLab
When you’re done with JupyterLab, you can close its browser tab, then in the Terminal,
shell or Anaconda Command Prompt from which you launched JupyterLab, type Ctrl + c
(or control + c) twice.

JupyterLab Tips
While working in JupyterLab, you might find these tips helpful:

• If you need to enter and execute many snippets, you can execute the current cell
and add a new one below it by typing Shift + Enter, rather than Ctrl + Enter (or
control + Enter).

• As you get into the later chapters, some of the snippets you’ll enter in Jupyter
Notebooks will contain many lines of code. To display line numbers within each
cell, select Show line numbers from JupyterLab’s View menu.

More Information on Working with JupyterLab
JupyterLab has many more features that you’ll find helpful. We recommend that you read
the Jupyter team’s introduction to JupyterLab at:

https://jupyterlab.readthedocs.io/en/stable/index.html

https://jupyterlab.readthedocs.io/en/stable/index.html

ptg27972259

16 Chapter 1 Introduction to Computers and Python

For a quick overview, click Overview under GETTING STARTED. Also, under USER GUIDE
read the introductions to The JupyterLab Interface, Working with Files, Text Editor and
Notebooks for many additional features.

1.6 The Cloud and the Internet of Things

1.6.1 The Cloud
More and more computing today is done “in the cloud”—that is, distributed across the Inter-
net worldwide. Many apps you use daily are dependent on cloud-based services that use mas-
sive clusters of computing resources (computers, processors, memory, disk drives, etc.) and
databases that communicate over the Internet with each other and the apps you use. A service
that provides access to itself over the Internet is known as a web service. As you’ll see, using
cloud-based services in Python often is as simple as creating a software object and interacting
with it. That object then uses web services that connect to the cloud on your behalf.

Throughout the Chapters 11–16 examples, you’ll work with many cloud-based ser-
vices:

• In Chapters 12 and 16, you’ll use Twitter’s web services (via the Python library
Tweepy) to get information about specific Twitter users, search for tweets from
the last seven days and receive streams of tweets as they occur—that is, in real
time.

• In Chapters 11 and 12, you’ll use the Python library TextBlob to translate text
between languages. Behind the scenes, TextBlob uses the Google Translate web
service to perform those translations.

• In Chapter 13, you’ll use the IBM Watson’s Text to Speech, Speech to Text and
Translate services. You’ll implement a traveler’s assistant translation app that
enables you to speak a question in English, transcribes the speech to text, trans-
lates the text to Spanish and speaks the Spanish text. The app then allows you to
speak a Spanish response (in case you don’t speak Spanish, we provide an audio
file you can use), transcribes the speech to text, translates the text to English and
speaks the English response. Via IBM Watson demos, you’ll also experiment with
many other Watson cloud-based services in Chapter 13.

• In Chapter 16, you’ll work with Microsoft Azure’s HDInsight service and other
Azure web services as you implement big-data applications using Apache Hadoop
and Spark. Azure is Microsoft’s set of cloud-based services.

• In Chapter 16, you’ll use the Dweet.io web service to simulate an Internet-
connected thermostat that publishes temperature readings online. You’ll also use
a web-based service to create a “dashboard” that visualizes the temperature read-
ings over time and warns you if the temperature gets too low or too high.

• In Chapter 16, you’ll use a web-based dashboard to visualize a simulated stream
of live sensor data from the PubNub web service. You’ll also create a Python app
that visualizes a PubNub simulated stream of live stock-price changes.

In most cases, you’ll create Python objects that interact with web services on your behalf,
hiding the details of how to access these services over the Internet.

http://Dweet.io

ptg27972259

1.7 How Big Is Big Data? 17

Mashups
The applications-development methodology of mashups enables you to rapidly develop
powerful software applications by combining (often free) complementary web services and
other forms of information feeds—as you’ll do in our IBM Watson traveler’s assistant
translation app. One of the first mashups combined the real-estate listings provided by
http://www.craigslist.org with the mapping capabilities of Google Maps to offer
maps that showed the locations of homes for sale or rent in a given area.

ProgrammableWeb (http://www.programmableweb.com/) provides a directory of
over 20,750 web services and almost 8,000 mashups. They also provide how-to guides and
sample code for working with web services and creating your own mashups. According to
their website, some of the most widely used web services are Facebook, Google Maps, Twit-
ter and YouTube.

1.6.2 Internet of Things
The Internet is no longer just a network of computers—it’s an Internet of Things (IoT).
A thing is any object with an IP address and the ability to send, and in some cases receive,
data automatically over the Internet. Such things include:

• a car with a transponder for paying tolls,

• monitors for parking-space availability in a garage,

• a heart monitor implanted in a human,

• water quality monitors,

• a smart meter that reports energy usage,

• radiation detectors,

• item trackers in a warehouse,

• mobile apps that can track your movement and location,

• smart thermostats that adjust room temperatures based on weather forecasts and
activity in the home, and

• intelligent home appliances.

According to statista.com, there are already over 23 billion IoT devices in use today, and
there could be over 75 billion IoT devices in 2025.22

1.7 How Big Is Big Data?
For computer scientists and data scientists, data is now as important as writing programs.
According to IBM, approximately 2.5 quintillion bytes (2.5 exabytes) of data are created
daily,23 and 90% of the world’s data was created in the last two years.24 According to IDC,

22. https://www.statista.com/statistics/471264/iot-number-of-connected-devices-

worldwide/.
23. https://www.ibm.com/blogs/watson/2016/06/welcome-to-the-world-of-a-i/.
24. https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-

engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf.

http://www.craigslist.org
http://www.programmableweb.com/
http://statista.com
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.ibm.com/blogs/watson/2016/06/welcome-to-the-world-of-a-i/
https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf
https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf

ptg27972259

18 Chapter 1 Introduction to Computers and Python

the global data supply will reach 175 zettabytes (equal to 175 trillion gigabytes or 175 bil-
lion terabytes) annually by 2025.25 Consider the following examples of various popular
data measures.

Megabytes (MB)
One megabyte is about one million (actually 220) bytes. Many of the files we use on a daily
basis require one or more MBs of storage. Some examples include:

• MP3 audio files—High-quality MP3s range from 1 to 2.4 MB per minute.26

• Photos—JPEG format photos taken on a digital camera can require about 8 to
10 MB per photo.

• Video—Smartphone cameras can record video at various resolutions. Each min-
ute of video can require many megabytes of storage. For example, on one of our
iPhones, the Camera settings app reports that 1080p video at 30 frames-per-sec-
ond (FPS) requires 130 MB/minute and 4K video at 30 FPS requires 350 MB/
minute.

Gigabytes (GB)
One gigabyte is about 1000 megabytes (actually 230 bytes). A dual-layer DVD can store
up to 8.5 GB27, which translates to:

• as much as 141 hours of MP3 audio,

• approximately 1000 photos from a 16-megapixel camera,

• approximately 7.7 minutes of 1080p video at 30 FPS, or

• approximately 2.85 minutes of 4K video at 30 FPS.

The current highest-capacity Ultra HD Blu-ray discs can store up to 100 GB of video.28

Streaming a 4K movie can use between 7 and 10 GB per hour (highly compressed).

Terabytes (TB)
One terabyte is about 1000 gigabytes (actually 240 bytes). Recent disk drives for desktop
computers come in sizes up to 15 TB,29 which is equivalent to:

• approximately 28 years of MP3 audio,

• approximately 1.68 million photos from a 16-megapixel camera,

25. https://www.networkworld.com/article/3325397/storage/idc-expect-175-zettabytes-

of-data-worldwide-by-2025.html.
26. https://www.audiomountain.com/tech/audio-file-size.html.
27. https://en.wikipedia.org/wiki/DVD.
28. https://en.wikipedia.org/wiki/Ultra_HD_Blu-ray.
29. https://www.zdnet.com/article/worlds-biggest-hard-drive-meet-western-digitals-

15tb-monster/.

https://www.networkworld.com/article/3325397/storage/idc-expect-175-zettabytes-of-data-worldwide-by-2025.html
https://www.networkworld.com/article/3325397/storage/idc-expect-175-zettabytes-of-data-worldwide-by-2025.html
https://www.audiomountain.com/tech/audio-file-size.html
https://en.wikipedia.org/wiki/DVD
https://en.wikipedia.org/wiki/Ultra_HD_Blu-ray
https://www.zdnet.com/article/worlds-biggest-hard-drive-meet-western-digitals-15tb-monster/
https://www.zdnet.com/article/worlds-biggest-hard-drive-meet-western-digitals-15tb-monster/

ptg27972259

1.7 How Big Is Big Data? 19

• approximately 226 hours of 1080p video at 30 FPS and

• approximately 84 hours of 4K video at 30 FPS.

Nimbus Data now has the largest solid-state drive (SSD) at 100 TB, which can store 6.67
times the 15-TB examples of audio, photos and video listed above.30

Petabytes, Exabytes and Zettabytes
There are nearly four billion people online creating about 2.5 quintillion bytes of data each
day31—that’s 2500 petabytes (each petabyte is about 1000 terabytes) or 2.5 exabytes (each
exabyte is about 1000 petabytes). According to a March 2016 AnalyticsWeek article, within
five years there will be over 50 billion devices connected to the Internet (most of them
through the Internet of Things, which we discuss in Sections 1.6.2 and 16.8) and by 2020
we’ll be producing 1.7 megabytes of new data every second for every person on the planet.32

At today’s numbers (approximately 7.7 billion people33), that’s about

• 13 petabytes of new data per second,

• 780 petabytes per minute,

• 46,800 petabytes (46.8 exabytes) per hour and

• 1,123 exabytes per day—that’s 1.123 zettabytes (ZB) per day (each zettabyte is
about 1000 exabytes).

That’s the equivalent of over 5.5 million hours (over 600 years) of 4K video every day or
approximately 116 billion photos every day!

Additional Big-Data Stats
For an entertaining real-time sense of big data, check out https://www.internetlives-
tats.com, with various statistics, including the numbers so far today of

• Google searches.

• Tweets.

• Videos viewed on YouTube.

• Photos uploaded on Instagram.

You can click each statistic to drill down for more information. For instance, they say over
250 billion tweets were sent in 2018.

Some other interesting big-data facts:

• Every hour, YouTube users upload 24,000 hours of video, and almost 1 billion
hours of video are watched on YouTube every day.34

• Every second, there are 51,773 GBs (or 51.773 TBs) of Internet traffic, 7894
tweets sent, 64,332 Google searches and 72,029 YouTube videos viewed.35

30. https://www.cinema5d.com/nimbus-data-100tb-ssd-worlds-largest-ssd/.
31. https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-

engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf.
32. https://analyticsweek.com/content/big-data-facts/.
33. https://en.wikipedia.org/wiki/World_population.
34. https://www.brandwatch.com/blog/youtube-stats/.
35. http://www.internetlivestats.com/one-second.

https://www.internetlives-tats.com
https://www.internetlives-tats.com
https://www.cinema5d.com/nimbus-data-100tb-ssd-worlds-largest-ssd/
https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf
https://public.dhe.ibm.com/common/ssi/ecm/wr/en/wrl12345usen/watson-customer-engagement-watson-marketing-wr-other-papers-and-reports-wrl12345usen-20170719.pdf
https://analyticsweek.com/content/big-data-facts/
https://en.wikipedia.org/wiki/World_population
https://www.brandwatch.com/blog/youtube-stats/
http://www.internetlivestats.com/one-second

ptg27972259

20 Chapter 1 Introduction to Computers and Python

• On Facebook each day there are 800 million “likes,”36 60 million emojis are
sent,37 and there are over two billion searches of the more than 2.5 trillion Face-
book posts since the site’s inception.38

• In June 2017, Will Marshall, CEO of Planet, said the company has 142 satellites
that image the whole planet’s land mass once per day. They add one million
images and seven TBs of new data each day. Together with their partners, they’re
using machine learning on that data to improve crop yields, see how many ships
are in a given port and track deforestation. With respect to Amazon deforestation,
he said: “Used to be we’d wake up after a few years and there’s a big hole in the
Amazon. Now we can literally count every tree on the planet every day.”39

Domo, Inc. has a nice infographic called “Data Never Sleeps 6.0” showing how much
data is generated every minute, including:40

• 473,400 tweets sent.

• 2,083,333 Snapchat photos shared.

• 97,222 hours of Netflix video viewed.

• 12,986,111 million text messages sent.

• 49,380 Instagram posts.

• 176,220 Skype calls.

• 750,000 Spotify songs streamed.

• 3,877,140 Google searches.

• 4,333,560 YouTube videos watched.

Computing Power Over the Years
Data is getting more massive and so is the computing power for processing it. The perfor-
mance of today’s processors is often measured in terms of FLOPS (floating-point opera-
tions per second). In the early to mid-1990s, the fastest supercomputer speeds were
measured in gigaflops (109 FLOPS). By the late 1990s, Intel produced the first teraflop
(1012 FLOPS) supercomputers. In the early-to-mid 2000s, speeds reached hundreds of
teraflops, then in 2008, IBM released the first petaflop (1015 FLOPS) supercomputer.
Currently, the fastest supercomputer—the IBM Summit, located at the Department of
Energy’s (DOE) Oak Ridge National Laboratory (ORNL)—is capable of 122.3 peta-
flops.41

Distributed computing can link thousands of personal computers via the Internet to
produce even more FLOPS. In late 2016, the Folding@home network—a distributed net-
work in which people volunteer their personal computers’ resources for use in disease

36. https://newsroom.fb.com/news/2017/06/two-billion-people-coming-together-on-

facebook.
37. https://mashable.com/2017/07/17/facebook-world-emoji-day/.
38. https://techcrunch.com/2016/07/27/facebook-will-make-you-talk/.
39. https://www.bloomberg.com/news/videos/2017-06-30/learning-from-planet-s-shoe-

boxed-sized-satellites-video, June 30, 2017.
40. https://www.domo.com/learn/data-never-sleeps-6.
41. https://en.wikipedia.org/wiki/FLOPS.

https://newsroom.fb.com/news/2017/06/two-billion-people-coming-together-on-facebook
https://newsroom.fb.com/news/2017/06/two-billion-people-coming-together-on-facebook
https://mashable.com/2017/07/17/facebook-world-emoji-day/
https://techcrunch.com/2016/07/27/facebook-will-make-you-talk/
https://www.bloomberg.com/news/videos/2017-06-30/learning-from-planet-s-shoe-boxed-sized-satellites-video
https://www.bloomberg.com/news/videos/2017-06-30/learning-from-planet-s-shoe-boxed-sized-satellites-video
https://www.domo.com/learn/data-never-sleeps-6
https://en.wikipedia.org/wiki/FLOPS

ptg27972259

1.7 How Big Is Big Data? 21

research and drug design42—was capable of over 100 petaflops.43 Companies like IBM are
now working toward supercomputers capable of exaflops (1018 FLOPS).44

The quantum computers now under development theoretically could operate at
18,000,000,000,000,000,000 times the speed of today’s “conventional computers”!45

This number is so extraordinary that in one second, a quantum computer theoretically
could do staggeringly more calculations than the total that have been done by all comput-
ers since the world’s first computer appeared. This almost unimaginable computing power
could wreak havoc with blockchain-based cryptocurrencies like Bitcoin. Engineers are
already rethinking blockchain to prepare for such massive increases in computing power.46

The history of supercomputing power is that it eventually works its way down from
research labs, where extraordinary amounts of money have been spent to achieve those per-
formance numbers, into “reasonably priced” commercial computer systems and even
desktop computers, laptops, tablets and smartphones.

Computing power’s cost continues to decline, especially with cloud computing. Peo-
ple used to ask the question, “How much computing power do I need on my system to
deal with my peak processing needs?” Today, that thinking has shifted to “Can I quickly
carve out on the cloud what I need temporarily for my most demanding computing
chores?” You pay for only what you use to accomplish a given task.

Processing the World’s Data Requires Lots of Electricity
Data from the world’s Internet-connected devices is exploding, and processing that data
requires tremendous amounts of energy. According to a recent article, energy use for pro-
cessing data in 2015 was growing at 20% per year and consuming approximately three to
five percent of the world’s power. The article says that total data-processing power con-
sumption could reach 20% by 2025.47

Another enormous electricity consumer is the blockchain-based cryptocurrency Bit-
coin. Processing just one Bitcoin transaction uses approximately the same amount of
energy as powering the average American home for a week! The energy use comes from
the process Bitcoin “miners” use to prove that transaction data is valid.48

According to some estimates, a year of Bitcoin transactions consumes more energy
than many countries.49 Together, Bitcoin and Ethereum (another popular blockchain-
based platform and cryptocurrency) consume more energy per year than Israel and almost
as much as Greece.50

Morgan Stanley predicted in 2018 that “the electricity consumption required to cre-
ate cryptocurrencies this year could actually outpace the firm’s projected global electric

42. https://en.wikipedia.org/wiki/Folding@home.
43. https://en.wikipedia.org/wiki/FLOPS.
44. https://www.ibm.com/blogs/research/2017/06/supercomputing-weather-model-exascale/.
45. https://medium.com/@n.biedrzycki/only-god-can-count-that-fast-the-world-of-quan-

tum-computing-406a0a91fcf4.
46. https://singularityhub.com/2017/11/05/is-quantum-computing-an-existential-threat-

to-blockchain-technology/.
47. https://www.theguardian.com/environment/2017/dec/11/tsunami-of-data-could-

consume-fifth-global-electricity-by-2025.
48. https://motherboard.vice.com/en_us/article/ywbbpm/bitcoin-mining-electricity-

consumption-ethereum-energy-climate-change.
49. https://digiconomist.net/bitcoin-energy-consumption.
50. https://digiconomist.net/ethereum-energy-consumption.

https://en.wikipedia.org/wiki/Folding@home
https://en.wikipedia.org/wiki/FLOPS
https://www.ibm.com/blogs/research/2017/06/supercomputing-weather-model-exascale/
https://medium.com/@n.biedrzycki/only-god-can-count-that-fast-the-world-of-quan-tum-computing-406a0a91fcf4
https://medium.com/@n.biedrzycki/only-god-can-count-that-fast-the-world-of-quan-tum-computing-406a0a91fcf4
https://singularityhub.com/2017/11/05/is-quantum-computing-an-existential-threat-to-blockchain-technology/
https://singularityhub.com/2017/11/05/is-quantum-computing-an-existential-threat-to-blockchain-technology/
https://www.theguardian.com/environment/2017/dec/11/tsunami-of-data-could-consume-fifth-global-electricity-by-2025
https://www.theguardian.com/environment/2017/dec/11/tsunami-of-data-could-consume-fifth-global-electricity-by-2025
https://motherboard.vice.com/en_us/article/ywbbpm/bitcoin-mining-electricity-consumption-ethereum-energy-climate-change
https://motherboard.vice.com/en_us/article/ywbbpm/bitcoin-mining-electricity-consumption-ethereum-energy-climate-change
https://digiconomist.net/bitcoin-energy-consumption
https://digiconomist.net/ethereum-energy-consumption

ptg27972259

22 Chapter 1 Introduction to Computers and Python

vehicle demand—in 2025.”51 This situation is unsustainable, especially given the huge
interest in blockchain-based applications, even beyond the cryptocurrency explosion. The
blockchain community is working on fixes.52,53

Big-Data Opportunities
The big-data explosion is likely to continue exponentially for years to come. With 50 bil-
lion computing devices on the horizon, we can only imagine how many more there will
be over the next few decades. It’s crucial for businesses, governments, the military and even
individuals to get a handle on all this data.

It’s interesting that some of the best writings about big data, data science, artificial
intelligence and more are coming out of distinguished business organizations, such as J.P.
Morgan, McKinsey and more. Big data’s appeal to big business is undeniable given the
rapidly accelerating accomplishments. Many companies are making significant invest-
ments and getting valuable results through technologies in this book, such as big data,
machine learning, deep learning and natural-language processing. This is forcing compet-
itors to invest as well, rapidly increasing the need for computing professionals with data-
science and computer science experience. This growth is likely to continue for many years.

1.7.1 Big Data Analytics
Data analytics is a mature and well-developed academic and professional discipline. The
term “data analysis” was coined in 1962,54 though people have been analyzing data using
statistics for thousands of years going back to the ancient Egyptians.55 Big data analytics
is a more recent phenomenon—the term “big data” was coined around 2000.56

Consider four of the V’s of big data57,58:

1. Volume—the amount of data the world is producing is growing exponentially.

2. Velocity—the speed at which that data is being produced, the speed at which it
moves through organizations and the speed at which data changes are growing
quickly.59,60,61

51. https://www.morganstanley.com/ideas/cryptocurrencies-global-utilities.
52. https://www.technologyreview.com/s/609480/bitcoin-uses-massive-amounts-of-energy-

but-theres-a-plan-to-fix-it/.
53. http://mashable.com/2017/12/01/bitcoin-energy/.
54. https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-

science/.
55. https://www.flydata.com/blog/a-brief-history-of-data-analysis/.
56. https://bits.blogs.nytimes.com/2013/02/01/the-origins-of-big-data-an-

etymological-detective-story/.
57. https://www.ibmbigdatahub.com/infographic/four-vs-big-data.
58. There are lots of articles and papers that add many other “V-words” to this list.
59. https://www.zdnet.com/article/volume-velocity-and-variety-understanding-the-

three-vs-of-big-data/.
60. https://whatis.techtarget.com/definition/3Vs.
61. https://www.forbes.com/sites/brentdykes/2017/06/28/big-data-forget-volume-and-

variety-focus-on-velocity.

https://www.morganstanley.com/ideas/cryptocurrencies-global-utilities
https://www.technologyreview.com/s/609480/bitcoin-uses-massive-amounts-of-energy-but-theres-a-plan-to-fix-it/
https://www.technologyreview.com/s/609480/bitcoin-uses-massive-amounts-of-energy-but-theres-a-plan-to-fix-it/
http://mashable.com/2017/12/01/bitcoin-energy/
https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/
https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/
https://www.flydata.com/blog/a-brief-history-of-data-analysis/
https://bits.blogs.nytimes.com/2013/02/01/the-origins-of-big-data-an-etymological-detective-story/
https://bits.blogs.nytimes.com/2013/02/01/the-origins-of-big-data-an-etymological-detective-story/
https://www.ibmbigdatahub.com/infographic/four-vs-big-data
https://www.zdnet.com/article/volume-velocity-and-variety-understanding-the-three-vs-of-big-data/
https://www.zdnet.com/article/volume-velocity-and-variety-understanding-the-three-vs-of-big-data/
https://whatis.techtarget.com/definition/3Vs
https://www.forbes.com/sites/brentdykes/2017/06/28/big-data-forget-volume-and-variety-focus-on-velocity
https://www.forbes.com/sites/brentdykes/2017/06/28/big-data-forget-volume-and-variety-focus-on-velocity

ptg27972259

1.7 How Big Is Big Data? 23

3. Variety—data used to be alphanumeric (that is, consisting of alphabetic charac-
ters, digits, punctuation and some special characters)—today it also includes im-
ages, audios, videos and data from an exploding number of Internet of Things
sensors in our homes, businesses, vehicles, cities and more.

4. Veracity—the validity of the data—is it complete and accurate? Can we trust that
data when making crucial decisions? Is it real?

Most data is now being created digitally in a variety of types, in extraordinary volumes
and moving at astonishing velocities. Moore’s Law and related observations have enabled
us to store data economically and to process and move it faster—and all at rates growing
exponentially over time. Digital data storage has become so vast in capacity, cheap and
small that we can now conveniently and economically retain all the digital data we’re cre-
ating.62 That’s big data.

The following Richard W. Hamming quote—although from 1962—sets the tone for
the rest of this book:

“The purpose of computing is insight, not numbers.”63

Data science is producing new, deeper, subtler and more valuable insights at a remarkable
pace. It’s truly making a difference. Big data analytics is an integral part of the answer. We
address big data infrastructure in Chapter 16 with hands-on case studies on NoSQL data-
bases, Hadoop MapReduce programming, Spark, real-time Internet of Things (IoT)
stream programming and more.

To get a sense of big data’s scope in industry, government and academia, check out
the high-resolution graphic.64 You can click to zoom for easier readability:

http://mattturck.com/wp-content/uploads/2018/07/
Matt_Turck_FirstMark_Big_Data_Landscape_2018_Final.png

1.7.2 Data Science and Big Data Are Making a Difference: Use Cases
The data-science field is growing rapidly because it’s producing significant results that are
making a difference. We enumerate data-science and big data use cases in the following
table. We expect that the use cases and our examples throughout the book will inspire you
to pursue new use cases in your career. Big-data analytics has resulted in improved profits,
better customer relations, and even sports teams winning more games and championships
while spending less on players.65,66,67

62. http://www.lesk.com/mlesk/ksg97/ksg.html. [The following article pointed us to this Michael
Lesk article: https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-
of-data-science/.]

63. Hamming, R. W., Numerical Methods for Scientists and Engineers (New York, NY., McGraw Hill,
1962). [The following article pointed us to Hamming’s book and his quote that we cited: https://
www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/.]

64. Turck, M., and J. Hao, “Great Power, Great Responsibility: The 2018 Big Data & AI Landscape,”
http://mattturck.com/bigdata2018/.

65. Sawchik, T., Big Data Baseball: Math, Miracles, and the End of a 20-Year Losing Streak (New York,
Flat Iron Books, 2015).

66. Ayres, I., Super Crunchers (Bantam Books, 2007), pp. 7–10.
67. Lewis, M., Moneyball: The Art of Winning an Unfair Game (W. W. Norton & Company, 2004).

http://mattturck.com/wp-content/uploads/2018/07/Matt_Turck_FirstMark_Big_Data_Landscape_2018_Final.png
http://mattturck.com/wp-content/uploads/2018/07/Matt_Turck_FirstMark_Big_Data_Landscape_2018_Final.png
http://www.lesk.com/mlesk/ksg97/ksg.html
https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/
https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/
https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/
https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/
http://mattturck.com/bigdata2018/

ptg27972259

24 Chapter 1 Introduction to Computers and Python

1.8 Case Study—A Big-Data Mobile Application
Google’s Waze GPS navigation app, with its 90 million monthly active users,68 is one of
the most successful big-data apps. Early GPS navigation devices and apps relied on static

Data-science use cases

anomaly detection
assisting people with disabilities
auto-insurance risk prediction
automated closed captioning
automated image captions
automated investing
autonomous ships
brain mapping
caller identification
cancer diagnosis/treatment
carbon emissions reduction
classifying handwriting
computer vision
credit scoring
crime: predicting locations
crime: predicting recidivism
crime: predictive policing
crime: prevention
CRISPR gene editing
crop-yield improvement
customer churn
customer experience
customer retention
customer satisfaction
customer service
customer service agents
customized diets
cybersecurity
data mining
data visualization
detecting new viruses
diagnosing breast cancer
diagnosing heart disease
diagnostic medicine
disaster-victim identification
drones
dynamic driving routes
dynamic pricing
electronic health records
emotion detection
energy-consumption reduction

facial recognition
fitness tracking
fraud detection
game playing
genomics and healthcare
Geographic Information Sys-

tems (GIS)
GPS Systems
health outcome improvement
hospital readmission reduction
human genome sequencing
identity-theft prevention
immunotherapy
insurance pricing
intelligent assistants
Internet of Things (IoT) and

medical device monitoring
Internet of Things and weather

forecasting
inventory control
language translation
location-based services
loyalty programs
malware detection
mapping
marketing
marketing analytics
music generation
natural-language translation
new pharmaceuticals
opioid abuse prevention
personal assistants
personalized medicine
personalized shopping
phishing elimination
pollution reduction
precision medicine
predicting cancer survival
predicting disease outbreaks
predicting health outcomes
predicting student enrollments

predicting weather-sensitive
product sales

predictive analytics
preventative medicine
preventing disease outbreaks
reading sign language
real-estate valuation
recommendation systems
reducing overbooking
ride sharing
risk minimization
robo financial advisors
security enhancements
self-driving cars
sentiment analysis
sharing economy
similarity detection
smart cities
smart homes
smart meters
smart thermostats
smart traffic control
social analytics
social graph analysis
spam detection
spatial data analysis
sports recruiting and coaching
stock market forecasting
student performance assess-

ment
summarizing text
telemedicine
terrorist attack prevention
theft prevention
travel recommendations
trend spotting
visual product search
voice recognition
voice search
weather forecasting

68. https://www.waze.com/brands/drivers/.

https://www.waze.com/brands/drivers/

ptg27972259

1.8 Case Study—A Big-Data Mobile Application 25

maps and GPS coordinates to determine the best route to your destination. They could
not adjust dynamically to changing traffic situations.

Waze processes massive amounts of crowdsourced data—that is, the data that’s con-
tinuously supplied by their users and their users’ devices worldwide. They analyze this data
as it arrives to determine the best route to get you to your destination in the least amount
of time. To accomplish this, Waze relies on your smartphone’s Internet connection. The
app automatically sends location updates to their servers (assuming you allow it to). They
use that data to dynamically re-route you based on current traffic conditions and to tune
their maps. Users report other information, such as roadblocks, construction, obstacles,
vehicles in breakdown lanes, police locations, gas prices and more. Waze then alerts other
drivers in those locations.

Waze uses many technologies to provide its services. We’re not privy to how Waze is
implemented, but we infer below a list of technologies they probably use. You’ll use many
of these in Chapters 11–16. For example,

• Most apps created today use at least some open-source software. You’ll take
advantage of many open-source libraries and tools throughout this book.

• Waze communicates information over the Internet between their servers and
their users’ mobile devices. Today, such data often is transmitted in JSON
(JavaScript Object Notation) format, which we’ll introduce in Chapter 9 and use
in subsequent chapters. The JSON data is typically hidden from you by the
libraries you use.

• Waze uses speech synthesis to speak driving directions and alerts to you, and
speech recognition to understand your spoken commands. We use IBM Wat-
son’s speech-synthesis and speech-recognition capabilities in Chapter 13.

• Once Waze converts a spoken natural-language command to text, it must deter-
mine the correct action to perform, which requires natural language processing
(NLP). We present NLP in Chapter 11 and use it in several subsequent chapters.

• Waze displays dynamically updated visualizations such as alerts and maps. Waze
also enables you to interact with the maps by moving them or zooming in and
out. We create dynamic visualizations with Matplotlib and Seaborn throughout
the book, and we display interactive maps with Folium in Chapters 12 and 16.

• Waze uses your phone as a streaming Internet of Things (IoT) device. Each phone
is a GPS sensor that continuously streams data over the Internet to Waze. In
Chapter 16, we introduce IoT and work with simulated IoT streaming sensors.

• Waze receives IoT streams from millions of phones at once. It must process, store
and analyze that data immediately to update your device’s maps, to display and
speak relevant alerts and possibly to update your driving directions. This requires
massively parallel processing capabilities implemented with clusters of computers
in the cloud. In Chapter 16, we’ll introduce various big-data infrastructure tech-
nologies for receiving streaming data, storing that big data in appropriate data-
bases and processing the data with software and hardware that provide massively
parallel processing capabilities.

• Waze uses artificial-intelligence capabilities to perform the data-analysis tasks
that enable it to predict the best routes based on the information it receives. In

ptg27972259

26 Chapter 1 Introduction to Computers and Python

Chapters 14 and 15 we use machine learning and deep learning, respectively, to
analyze massive amounts of data and make predictions based on that data.

• Waze probably stores its routing information in a graph database. Such databases
can efficiently calculate shortest routes. We introduce graph databases, such as
Neo4J, in Chapter 16.

• Many cars are now equipped with devices that enable them to “see” cars and
obstacles around them. These are used, for example, to help implement auto-
mated braking systems and are a key part of self-driving car technology. Rather
than relying on users to report obstacles and stopped cars on the side of the road,
navigation apps could take advantage of cameras and other sensors by using deep-
learning computer-vision techniques to analyze images “on the fly” and automat-
ically report those items. We introduce deep learning for computer vision in
Chapter 15.

1.9 Intro to Data Science: Artificial Intelligence—at the
Intersection of CS and Data Science
When a baby first opens its eyes, does it “see” its parent’s faces? Does it understand any
notion of what a face is—or even what a simple shape is? Babies must “learn” the world
around them. That’s what artificial intelligence (AI) is doing today. It’s looking at massive
amounts of data and learning from it. AI is being used to play games, implement a wide
range of computer-vision applications, enable self-driving cars, enable robots to learn to
perform new tasks, diagnose medical conditions, translate speech to other languages in
near real time, create chatbots that can respond to arbitrary questions using massive data-
bases of knowledge, and much more. Who’d have guessed just a few years ago that artifi-
cially intelligent self-driving cars would be allowed on our roads—or even become
common? Yet, this is now a highly competitive area. The ultimate goal of all this learning
is artificial general intelligence—an AI that can perform intelligence tasks as well as
humans. This is a scary thought to many people.

Artificial-Intelligence Milestones
Several artificial-intelligence milestones, in particular, captured people’s attention and
imagination, made the general public start thinking that AI is real and made businesses
think about commercializing AI:

• In a 1997 match between IBM’s DeepBlue computer system and chess Grand-
master Gary Kasparov, DeepBlue became the first computer to beat a reigning
world chess champion under tournament conditions.69 IBM loaded DeepBlue
with hundreds of thousands of grandmaster chess games.70 DeepBlue was capable
of using brute force to evaluate up to 200 million moves per second!71 This is big
data at work. IBM received the Carnegie Mellon University Fredkin Prize, which

69. https://en.wikipedia.org/wiki/Deep_Blue_versus_Garry_Kasparov.
70. https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer).
71. https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer).

https://en.wikipedia.org/wiki/Deep_Blue_versus_Garry_Kasparov
https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)

ptg27972259

1.9 Artificial Intelligence—at the Intersection of CS and Data Science 27

in 1980 offered $100,000 to the creators of the first computer to beat a world
chess champion.72

• In 2011, IBM’s Watson beat the two best human Jeopardy! players in a $1 mil-
lion match. Watson simultaneously used hundreds of language-analysis tech-
niques to locate correct answers in 200 million pages of content (including all of
Wikipedia) requiring four terabytes of storage.73,74 Watson was trained with
machine learning and reinforcement-learning techniques.75 Chapter 13 dis-
cusses IBM Watson and Chapter 14 discusses machine-learning.

• Go—a board game created in China thousands of years ago76—is widely consid-
ered to be one of the most complex games ever invented with 10170 possible
board configurations.77 To give you a sense of how large a number that is, it’s
believed that there are (only) between 1078 and 1087 atoms in the known uni-
verse!78,79 In 2015, AlphaGo—created by Google’s DeepMind group—used
deep learning with two neural networks to beat the European Go champion Fan Hui.
Go is considered to be a far more complex game than chess. Chapter 15 discusses
neural networks and deep learning.

• More recently, Google generalized its AlphaGo AI to create AlphaZero—a game-
playing AI that teaches itself to play other games. In December 2017, AlphaZero
learned the rules of and taught itself to play chess in less than four hours using
reinforcement learning. It then beat the world champion chess program, Stock-
fish 8, in a 100-game match—winning or drawing every game. After training
itself in Go for just eight hours, AlphaZero was able to play Go vs. its AlphaGo
predecessor, winning 60 of 100 games.80

A Personal Anecdote
When one of the authors, Harvey Deitel, was an undergraduate student at MIT in the
mid-1960s, he took a graduate-level artificial-intelligence course with Marvin Minsky (to
whom this book is dedicated), one of the founders of artificial intelligence (AI). Harvey:

Professor Minsky required a major term project. He told us to think about what
intelligence is and to make a computer do something intelligent. Our grade in the
course would be almost solely dependent on the project. No pressure!

I researched the standardized IQ tests that schools administer to help evaluate
their students’ intelligence capabilities. Being a mathematician at heart, I decided

72. https://articles.latimes.com/1997/jul/30/news/mn-17696.
73. https://www.techrepublic.com/article/ibm-watson-the-inside-story-of-how-the-

jeopardy-winning-supercomputer-was-born-and-what-it-wants-to-do-next/.
74. https://en.wikipedia.org/wiki/Watson_(computer).
75. https://www.aaai.org/Magazine/Watson/watson.php, AI Magazine, Fall 2010.
76. http://www.usgo.org/brief-history-go.
77. https://www.pbs.org/newshour/science/google-artificial-intelligence-beats-

champion-at-worlds-most-complicated-board-game.
78. https://www.universetoday.com/36302/atoms-in-the-universe/.
79. https://en.wikipedia.org/wiki/Observable_universe#Matter_content.
80. https://www.theguardian.com/technology/2017/dec/07/alphazero-google-deepmind-ai-

beats-champion-program-teaching-itself-to-play-four-hours.

https://articles.latimes.com/1997/jul/30/news/mn-17696
https://www.techrepublic.com/article/ibm-watson-the-inside-story-of-how-the-jeopardy-winning-supercomputer-was-born-and-what-it-wants-to-do-next/
https://www.techrepublic.com/article/ibm-watson-the-inside-story-of-how-the-jeopardy-winning-supercomputer-was-born-and-what-it-wants-to-do-next/
https://en.wikipedia.org/wiki/Watson_(computer)
https://www.aaai.org/Magazine/Watson/watson.php
http://www.usgo.org/brief-history-go
https://www.pbs.org/newshour/science/google-artificial-intelligence-beats-champion-at-worlds-most-complicated-board-game
https://www.pbs.org/newshour/science/google-artificial-intelligence-beats-champion-at-worlds-most-complicated-board-game
https://www.universetoday.com/36302/atoms-in-the-universe/
https://en.wikipedia.org/wiki/Observable_universe#Matter_content
https://www.theguardian.com/technology/2017/dec/07/alphazero-google-deepmind-ai-beats-champion-program-teaching-itself-to-play-four-hours
https://www.theguardian.com/technology/2017/dec/07/alphazero-google-deepmind-ai-beats-champion-program-teaching-itself-to-play-four-hours

ptg27972259

28 Chapter 1 Introduction to Computers and Python

to tackle the popular IQ-test problem of predicting the next number in a sequence
of numbers of arbitrary length and complexity. I used interactive Lisp running on
an early Digital Equipment Corporation PDP-1 and was able to get my sequence
predictor running on some pretty complex stuff, handling challenges well beyond
what I recalled seeing on IQ tests. Lisp’s ability to manipulate arbitrarily long lists
recursively was exactly what I needed to meet the project’s requirements. Python
offers recursion and generalized list processing (Chapter 5).

I tried the sequence predictor on many of my MIT classmates. They would make up
number sequences and type them into my predictor. The PDP-1 would “think” for a
while—often a long while—and almost always came up with the right answer.

Then I hit a snag. One of my classmates typed in the sequence 14, 23, 34 and 42.
My predictor went to work on it, and the PDP-1 chugged away for a long time,
failing to predict the next number. I couldn’t get it either. My classmate told me to
think about it overnight, and he’d reveal the answer the next day, claiming that it
was a simple sequence. My efforts were to no avail.

The following day he told me the next number was 57, but I didn’t understand
why. So he told me to think about it overnight again, and the following day he
said the next number was 125. That didn’t help a bit—I was stumped. He said
that the sequence was the numbers of the two-way crosstown streets of Manhat-
tan. I cried, “foul,” but he said it met my criterion of predicting the next number
in a numerical sequence. My world view was mathematics—his was broader.

Over the years, I’ve tried that sequence on friends, relatives and professional col-
leagues. A few who spent time in Manhattan got it right. My sequence predictor
needed a lot more than just mathematical knowledge to handle problems like this,
requiring (a possibly vast) world knowledge.

Watson and Big Data Open New Possibilities
When Paul and I started working on this Python book, we were immediately
drawn to IBM’s Watson using big data and artificial-intelligence techniques like
natural language processing (NLP) and machine learning to beat two of the
world’s best human Jeopardy! players. We realized that Watson could probably
handle problems like the sequence predictor because it was loaded with the world’s
street maps and a whole lot more. That whet our appetite for digging in deep on
big data and today’s artificial-intelligence technologies, and helped shape Chap-
ters 11–16 of this book.

It’s notable that all of the data-science implementation case studies in Chapters 11–
16 either are rooted in artificial intelligence technologies or discuss the big data hardware
and software infrastructure that enables computer scientists and data scientists to imple-
ment leading-edge AI-based solutions effectively.

AI: A Field with Problems But No Solutions
For many decades, AI has been viewed as a field with problems but no solutions. That’s
because once a particular problem is solved people say, “Well, that’s not intelligence, it’s just
a computer program that tells the computer exactly what to do.” However, with machine
learning (Chapter 14) and deep learning (Chapter 15) we’re not pre-programming solutions

ptg27972259

1.10 Wrap-Up 29

to specific problems. Instead, we’re letting our computers solve problems by learning from
data—and, typically, lots of it.

Many of the most interesting and challenging problems are being pursued with deep
learning. Google alone has thousands of deep-learning projects underway and that num-
ber is growing quickly.81, 82 As you work through this book, we’ll introduce you to many
edge-of-the-practice artificial intelligence, big data and cloud technologies.

1.10 Wrap-Up
In this chapter, we introduced terminology and concepts that lay the groundwork for the
Python programming you’ll learn in Chapters 2–10 and the big-data, artificial-intelligence
and cloud-based case studies we present in Chapters 11–16.

We reviewed object-oriented programming concepts and discussed why Python has
become so popular. We introduced the Python Standard Library and various data-science
libraries that help you avoid “reinventing the wheel.” In subsequent chapters, you’ll use
these libraries to create software objects that you’ll interact with to perform significant
tasks with modest numbers of instructions.

You worked through three test-drives showing how to execute Python code with the
IPython interpreter and Jupyter Notebooks. We introduced the Cloud and the Internet
of Things (IoT), laying the groundwork for the contemporary applications you’ll develop
in Chapters 11–16.

We discussed just how big “big data” is and how quickly it’s getting even bigger, and
presented a big-data case study on the Waze mobile navigation app, which uses many cur-
rent technologies to provide dynamic driving directions that get you to your destination
as quickly and as safely as possible. We mentioned where in this book you’ll use many of
those technologies. The chapter closed with our first Intro to Data Science section in
which we discussed a key intersection between computer science and data science—artifi-
cial intelligence.

81. http://theweek.com/speedreads/654463/google-more-than-1000-artificial-intelli-

gence-projects-works.
82. https://www.zdnet.com/article/google-says-exponential-growth-of-ai-is-changing-

nature-of-compute/.

http://theweek.com/speedreads/654463/google-more-than-1000-artificial-intelli-gence-projects-works
http://theweek.com/speedreads/654463/google-more-than-1000-artificial-intelli-gence-projects-works
https://www.zdnet.com/article/google-says-exponential-growth-of-ai-is-changing-nature-of-compute/
https://www.zdnet.com/article/google-says-exponential-growth-of-ai-is-changing-nature-of-compute/

ptg27972259

This page intentionally left blank

ptg27972259

2
Introduction to Python

Programming

O b j e c t i v e s
In this chapter, you’ll:
■ Continue using IPython interactive mode to enter code

snippets and see their results immediately.
■ Write simple Python statements and scripts.
■ Create variables to store data for later use.
■ Become familiar with built-in data types.
■ Use arithmetic operators and comparison operators, and

understand their precedence.
■ Use single-, double- and triple-quoted strings.
■ Use built-in function print to display text.
■ Use built-in function input to prompt the user to enter data

at the keyboard and get that data for use in the program.
■ Convert text to integer values with built-in function int.
■ Use comparison operators and the if statement to decide

whether to execute a statement or group of statements.
■ Learn about objects and Python’s dynamic typing.
■ Use built-in function type to get an object’s type.

ptg27972259

32 Chapter 2 Introduction to Python Programming
O

u
tl

in
e

2.1 Introduction
In this chapter, we introduce Python programming and present examples illustrating key
language features. We assume you’ve read the IPython Test-Drive in Chapter 1, which
introduced the IPython interpreter and used it to evaluate simple arithmetic expressions.

2.2 Variables and Assignment Statements
You’ve used IPython’s interactive mode as a calculator with expressions such as

Let’s create a variable named x that stores the integer 7:

Snippet [2] is a statement. Each statement specifies a task to perform. The preceding
statement creates x and uses the assignment symbol (=) to give x a value. Most statements
stop at the end of the line, though it’s possible for statements to span more than one line.
The following statement creates the variable y and assigns to it the value 3:

You can now use the values of x and y in expressions:

Calculations in Assignment Statements
The following statement adds the values of variables x and y and assigns the result to the
variable total, which we then display:

The = symbol is not an operator. The right side of the = symbol always executes first, then
the result is assigned to the variable on the symbol’s left side.

Python Style
The Style Guide for Python Code1 helps you write code that conforms to Python’s coding
conventions. The style guide recommends inserting one space on each side of the assign-
ment symbol = and binary operators like + to make programs more readable.

2.1 Introduction
2.2 Variables and Assignment Statements
2.3 Arithmetic
2.4 Function print and an Intro to

Single- and Double-Quoted Strings
2.5 Triple-Quoted Strings
2.6 Getting Input from the User

2.7 Decision Making: The if Statement
and Comparison Operators

2.8 Objects and Dynamic Typing
2.9 Intro to Data Science: Basic

Descriptive Statistics
2.10 Wrap-Up

In [1]: 45 + 72
Out[1]: 117

In [2]: x = 7

In [3]: y = 3

In [4]: x + y
Out[4]: 10

In [5]: total = x + y

In [6]: total
Out[6]: 10

ptg27972259

2.3 Arithmetic 33

Variable Names
A variable name, such as x, is an identifier. Each identifier may consist of letters, digits and
underscores (_) but may not begin with a digit. Python is case sensitive, so number and
Number are different identifiers because one begins with a lowercase letter and the other
begins with an uppercase letter.

Types
Each value in Python has a type that indicates the kind of data the value represents. You
can view a value’s type with Python’s built-in type function, as in:

The variable x contains the integer value 7 (from snippet [2]), so Python displays int
(short for integer). The value 10.5 is a floating-point number, so Python displays float.

2.3 Arithmetic
The following table summarizes the arithmetic operators, which include some symbols
not used in algebra.

Multiplication (*)
Python uses the asterisk (*) multiplication operator:

Exponentiation (**)
The exponentiation (**) operator raises one value to the power of another:

1. https://www.python.org/dev/peps/pep-0008/.

In [7]: type(x)
Out[7]: int

In [8]: type(10.5)
Out[8]: float

Python
operation

Arithmetic
operator

Algebraic
expression

Python
expression

Addition + f + 7 f + 7

Subtraction – p – c p - c

Multiplication * b · m b * m

Exponentiation ** xy x ** y

True division / or or x / y

Floor division // or or x // y

Remainder (modulo) % r mod s r % s

In [1]: 7 * 4
Out[1]: 28

In [2]: 2 ** 10
Out[2]: 1024

x y⁄ x
y-- x y÷

x y⁄ x
y-- x y÷

https://www.python.org/dev/peps/pep-0008/

ptg27972259

34 Chapter 2 Introduction to Python Programming

To calculate the square root, you can use the exponent 1/2 (that is, 0.5):

True Division (/) vs. Floor Division (//)
True division (/) divides a numerator by a denominator and yields a floating-point num-
ber with a decimal point, as in:

Floor division (//) divides a numerator by a denominator, yielding the highest integer
that’s not greater than the result. Python truncates (discards) the fractional part:

In true division, -13 divided by 4 gives -3.25:

Floor division gives the closest integer that’s not greater than -3.25—which is -4:

Exceptions and Tracebacks
Dividing by zero with / or // is not allowed and results in an exception—a sign that a
problem occurred:

Python reports an exception with a traceback. This traceback indicates that an exception
of type ZeroDivisionError occurred—most exception names end with Error. In interac-
tive mode, the snippet number that caused the exception is specified by the 10 in the line

<ipython-input-10-cd759d3fcf39> in <module>()

The line that begins with ----> shows the code that caused the exception. Sometimes
snippets have more than one line of code—the 1 to the right of ----> indicates that line
1 within the snippet caused the exception. The last line shows the exception that occurred,
followed by a colon (:) and an error message with more information about the exception:

ZeroDivisionError: division by zero

The “Files and Exceptions” chapter discusses exceptions in detail.

In [3]: 9 ** (1 / 2)
Out[3]: 3.0

In [4]: 7 / 4
Out[4]: 1.75

In [5]: 7 // 4
Out[5]: 1

In [6]: 3 // 5
Out[6]: 0

In [7]: 14 // 7
Out[7]: 2

In [8]: -13 / 4
Out[8]: -3.25

In [9]: -13 // 4
Out[9]: -4

In [10]: 123 / 0

ZeroDivisionError Traceback (most recent call last)
<ipython-input-10-cd759d3fcf39> in <module>()
----> 1 123 / 0

ZeroDivisionError: division by zero

ptg27972259

2.3 Arithmetic 35

An exception also occurs if you try to use a variable that you have not yet created. The
following snippet tries to add 7 to the undefined variable z, resulting in a NameError:

Remainder Operator
Python’s remainder operator (%) yields the remainder after the left operand is divided by
the right operand:

In this case, 17 divided by 5 yields a quotient of 3 and a remainder of 2. This operator is
most commonly used with integers, but also can be used with other numeric types:

Straight-Line Form
Algebraic notations such as

generally are not acceptable to compilers or interpreters. For this reason, algebraic expres-
sions must be typed in straight-line form using Python’s operators. The expression above
must be written as a / b (or a // b for floor division) so that all operators and operands
appear in a horizontal straight line.

Grouping Expressions with Parentheses
Parentheses group Python expressions, as they do in algebraic expressions. For example,
the following code multiplies 10 times the quantity 5 + 3:

Without these parentheses, the result is different:

The parentheses are redundant (unnecessary) if removing them yields the same result.

Operator Precedence Rules
Python applies the operators in arithmetic expressions according to the following rules of
operator precedence. These are generally the same as those in algebra:

1. Expressions in parentheses evaluate first, so parentheses may force the order of
evaluation to occur in any sequence you desire. Parentheses have the highest level
of precedence. In expressions with nested parentheses, such as (a / (b - c)), the
expression in the innermost parentheses (that is, b - c) evaluates first.

In [11]: z + 7

NameError Traceback (most recent call last)
<ipython-input-11-f2cdbf4fe75d> in <module>()
----> 1 z + 7

NameError: name 'z' is not defined

In [12]: 17 % 5
Out[12]: 2

In [13]: 7.5 % 3.5
Out[13]: 0.5

a
b
--

In [14]: 10 * (5 + 3)
Out[14]: 80

In [15]: 10 * 5 + 3
Out[15]: 53

ptg27972259

36 Chapter 2 Introduction to Python Programming

2. Exponentiation operations evaluate next. If an expression contains several expo-
nentiation operations, Python applies them from right to left.

3. Multiplication, division and modulus operations evaluate next. If an expression
contains several multiplication, true-division, floor-division and modulus opera-
tions, Python applies them from left to right. Multiplication, division and mod-
ulus are “on the same level of precedence.”

4. Addition and subtraction operations evaluate last. If an expression contains sev-
eral addition and subtraction operations, Python applies them from left to right.
Addition and subtraction also have the same level of precedence.

For the complete list of operators and their precedence (in lowest-to-highest order), see

https://docs.python.org/3/reference/expressions.html#operator-
precedence

Operator Grouping
When we say that Python applies certain operators from left to right, we are referring to
the operators’ grouping. For example, in the expression

a + b + c

the addition operators (+) group from left to right as if we parenthesized the expression as
(a + b) + c. All Python operators of the same precedence group left-to-right except for the
exponentiation operator (**), which groups right-to-left.

Redundant Parentheses
You can use redundant parentheses to group subexpressions to make the expression
clearer. For example, the second-degree polynomial

y = a * x ** 2 + b * x + c

can be parenthesized, for clarity, as

y = (a * (x ** 2)) + (b * x) + c

Breaking a complex expression into a sequence of statements with shorter, simpler expres-
sions also can promote clarity.

Operand Types
Each arithmetic operator may be used with integers and floating-point numbers. If both
operands are integers, the result is an integer—except for the true-division (/) operator,
which always yields a floating-point number. If both operands are floating-point numbers,
the result is a floating-point number. Expressions containing an integer and a floating-
point number are mixed-type expressions—these always produce floating-point results.

2.4 Function print and an Intro to Single- and Double-
Quoted Strings
The built-in print function displays its argument(s) as a line of text:

In [1]: print('Welcome to Python!')
Welcome to Python!

https://docs.python.org/3/reference/expressions.html#operator-precedence
https://docs.python.org/3/reference/expressions.html#operator-precedence

ptg27972259

2.4 Function print and an Intro to Single- and Double-Quoted Strings 37

In this case, the argument 'Welcome to Python!' is a string—a sequence of characters
enclosed in single quotes ('). Unlike when you evaluate expressions in interactive mode,
the text that print displays here is not preceded by Out[1]. Also, print does not display
a string’s quotes, though we’ll soon show how to display quotes in strings.

You also may enclose a string in double quotes ("), as in:

Python programmers generally prefer single quotes. When print completes its task, it
positions the screen cursor at the beginning of the next line.

Printing a Comma-Separated List of Items
The print function can receive a comma-separated list of arguments, as in:

It displays each argument separated from the next by a space, producing the same output
as in the two preceding snippets. Here we showed a comma-separated list of strings, but
the values can be of any type. We’ll show in the next chapter how to prevent automatic
spacing between values or use a different separator than space.

Printing Many Lines of Text with One Statement
When a backslash (\) appears in a string, it’s known as the escape character. The backslash
and the character immediately following it form an escape sequence. For example, \n rep-
resents the newline character escape sequence, which tells print to move the output cur-
sor to the next line. The following snippet uses three newline characters to create several
lines of output:i

Other Escape Sequences
The following table shows some common escape sequences.

In [2]: print("Welcome to Python!")
Welcome to Python!

In [3]: print('Welcome', 'to', 'Python!')
Welcome to Python!

In [4]: print('Welcome\nto\n\nPython!')
Welcome
to

Python!

Escape sequence Description

\n Insert a newline character in a string. When the string is displayed, for each
newline, move the screen cursor to the beginning of the next line.

\t Insert a horizontal tab. When the string is displayed, for each tab, move the
screen cursor to the next tab stop.

\\ Insert a backslash character in a string.

\" Insert a double quote character in a string.

\' Insert a single quote character in a string.

ptg27972259

38 Chapter 2 Introduction to Python Programming

Ignoring a Line Break in a Long String
You may also split a long string (or a long statement) over several lines by using the \ con-
tinuation character as the last character on a line to ignore the line break:

The interpreter reassembles the string’s parts into a single string with no line break.
Though the backslash character in the preceding snippet is inside a string, it’s not the
escape character because another character does not follow it.

Printing the Value of an Expression
Calculations can be performed in print statements:

2.5 Triple-Quoted Strings
Earlier, we introduced strings delimited by a pair of single quotes (') or a pair of double
quotes ("). Triple-quoted strings begin and end with three double quotes (""") or three
single quotes ('''). The Style Guide for Python Code recommends three double quotes
("""). Use these to create:

• multiline strings,

• strings containing single or double quotes and

• docstrings, which are the recommended way to document the purposes of certain
program components.

Including Quotes in Strings
In a string delimited by single quotes, you may include double-quote characters:

but not single quotes:

unless you use the \' escape sequence:

Snippet [2] displayed a syntax error due to a single quote inside a single-quoted string. IPy-
thon displays information about the line of code that caused the syntax error and points to
the error with a ^ symbol. It also displays the message SyntaxError: invalid syntax.

A string delimited by double quotes may include single quote characters:

In [5]: print('this is a longer string, so we \
 ...: split it over two lines')
this is a longer string, so we split it over two lines

In [6]: print('Sum is', 7 + 3)
Sum is 10

In [1]: print('Display "hi" in quotes')
Display "hi" in quotes

In [2]: print('Display 'hi' in quotes')
 File "<ipython-input-2-19bf596ccf72>", line 1
 print('Display 'hi' in quotes')
 ^
SyntaxError: invalid syntax

In [3]: print('Display \'hi\' in quotes')
Display 'hi' in quotes

In [4]: print("Display the name O'Brien")
Display the name O'Brien

ptg27972259

2.6 Getting Input from the User 39

but not double quotes, unless you use the \" escape sequence:

To avoid using \' and \" inside strings, you can enclose such strings in triple quotes:

Multiline Strings
The following snippet assigns a multiline triple-quoted string to triple_quoted_string:

IPython knows that the string is incomplete because we did not type the closing """ before
we pressed Enter. So, IPython displays a continuation prompt ...: at which you can
input the multiline string’s next line. This continues until you enter the ending """ and
press Enter. The following displays triple_quoted_string:

Python stores multiline strings with embedded newline characters. When we evaluate
triple_quoted_string rather than printing it, IPython displays it in single quotes with a
\n character where you pressed Enter in snippet [7]. The quotes IPython displays indicate
that triple_quoted_string is a string—they’re not part of the string’s contents:

2.6 Getting Input from the User
The built-in input function requests and obtains user input:

The snippet executes as follows:

• First, input displays its string argument—a prompt—to tell the user what to type
and waits for the user to respond. We typed Paul and pressed Enter. We use bold
text to distinguish the user’s input from the prompt text that input displays.

• Function input then returns those characters as a string that the program can use.
Here we assigned that string to the variable name.

Snippet [2] shows name’s value. Evaluating name displays its value in single quotes as
'Paul' because it’s a string. Printing name (in snippet [3]) displays the string without the
quotes. If you enter quotes, they’re part of the string, as in:

In [5]: print("Display \"hi\" in quotes")
Display "hi" in quotes

In [6]: print("""Display "hi" and 'bye' in quotes""")
Display "hi" and 'bye' in quotes

In [7]: triple_quoted_string = """This is a triple-quoted
 ...: string that spans two lines"""

In [8]: print(triple_quoted_string)
This is a triple-quoted
string that spans two lines

In [9]: triple_quoted_string
Out[9]: 'This is a triple-quoted\nstring that spans two lines'

In [1]: name = input("What's your name? ")
What's your name? Paul

In [2]: name
Out[2]: 'Paul'

In [3]: print(name)
Paul

ptg27972259

40 Chapter 2 Introduction to Python Programming

Function input Always Returns a String
Consider the following snippets that attempt to read two numbers and add them:

Rather than adding the integers 7 and 3 to produce 10, Python “adds” the string values '7'
and '3', producing the string '73'. This is known as string concatenation. It creates a new
string containing the left operand’s value followed by the right operand’s value.

Getting an Integer from the User
If you need an integer, convert the string to an integer using the built-in int function:

We could have combined the code in snippets [10] and [11]:

Variables value and another_value now contain integers. Adding them produces an inte-
ger result (rather than concatenating them):

If the string passed to int cannot be converted to an integer, a ValueError occurs:

In [4]: name = input("What's your name? ")
What's your name? 'Paul'

In [5]: name
Out[5]: "'Paul'"

In [6]: print(name)
'Paul'

In [7]: value1 = input('Enter first number: ')
Enter first number: 7

In [8]: value2 = input('Enter second number: ')
Enter second number: 3

In [9]: value1 + value2
Out[9]: '73'

In [10]: value = input('Enter an integer: ')
Enter an integer: 7

In [11]: value = int(value)

In [12]: value
Out[12]: 7

In [13]: another_value = int(input('Enter another integer: '))
Enter another integer: 13

In [14]: another_value
Out[14]: 13

In [15]: value + another_value
Out[15]: 20

In [16]: bad_value = int(input('Enter another integer: '))
Enter another integer: hello

ValueError Traceback (most recent call last)
<ipython-input-16-cd36e6cf8911> in <module>()
----> 1 bad_value = int(input('Enter another integer: '))

ValueError: invalid literal for int() with base 10: 'hello'

ptg27972259

2.7 Decision Making: The if Statement and Comparison Operators 41

Function int also can convert a floating-point value to an integer:

To convert strings to floating-point numbers, use the built-in float function.

2.7 Decision Making: The if Statement and Comparison
Operators
A condition is a Boolean expression with the value True or False. The following deter-
mines whether 7 is greater than 4 and whether 7 is less than 4:

True and False are Python keywords. Using a keyword as an identifier causes a Syntax-
Error. True and False are each capitalized.

You’ll often create conditions using the comparison operators in the following table:

Operators >, <, >= and <= all have the same precedence. Operators == and != both have
the same precedence, which is lower than that of >, <, >= and <=. A syntax error occurs
when any of the operators ==, !=, >= and <= contains spaces between its pair of symbols:

Another syntax error occurs if you reverse the symbols in the operators !=, >= and <= (by
writing them as =!, => and =<).

Making Decisions with the if Statement: Introducing Scripts
We now present a simple version of the if statement, which uses a condition to decide
whether to execute a statement (or a group of statements). Here we’ll read two integers
from the user and compare them using six consecutive if statements, one for each com-

In [17]: int(10.5)
Out[17]: 10

In [1]: 7 > 4
Out[1]: True

In [2]: 7 < 4
Out[2]: False

Algebraic
operator

Python
operator

Sample
condition Meaning

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

= == x == y x is equal to y

≠ != x != y x is not equal to y

In [3]: 7 > = 4
 File "<ipython-input-3-5c6e2897f3b3>", line 1
 7 > = 4
 ^
SyntaxError: invalid syntax

ptg27972259

42 Chapter 2 Introduction to Python Programming

parison operator. If the condition in a given if statement is True, the corresponding print
statement executes; otherwise, it’s skipped.

IPython interactive mode is helpful for executing brief code snippets and seeing
immediate results. When you have many statements to execute as a group, you typically
write them as a script stored in a file with the .py (short for Python) extension—such as
fig02_01.py for this example’s script. Scripts are also called programs. For instructions on
locating and executing the scripts in this book, see Chapter 1’s IPython Test-Drive.

Each time you execute this script, three of the six conditions are True. To show this,
we execute the script three times—once with the first integer less than the second, once
with the same value for both integers and once with the first integer greater than the second.
The three sample executions appear after the script

Each time we present a script like the one below, we introduce it before the figure,
then explain the script’s code after the figure. We show line numbers for your conve-
nience—these are not part of Python. IDEs enable you to choose whether to display line
numbers. To run this example, change to this chapter’s ch02 examples folder, then enter:

ipython fig02_01.py

or, if you’re in IPython already, you can use the command:

run fig02_01.py

1 # fig02_01.py
2 """Comparing integers using if statements and comparison operators."""
3
4 print('Enter two integers, and I will tell you',
5 'the relationships they satisfy.')
6
7 # read first integer
8 number1 = int(input('Enter first integer: '))
9

10 # read second integer
11 number2 = int(input('Enter second integer: '))
12
13 if number1 == number2:
14 print(number1, 'is equal to', number2)
15
16 if number1 != number2:
17 print(number1, 'is not equal to', number2)
18
19 if number1 < number2:
20 print(number1, 'is less than', number2)
21
22 if number1 > number2:
23 print(number1, 'is greater than', number2)
24
25 if number1 <= number2:
26 print(number1, 'is less than or equal to', number2)
27
28 if number1 >= number2:
29 print(number1, 'is greater than or equal to', number2)

ptg27972259

2.7 Decision Making: The if Statement and Comparison Operators 43

Comments
Line 1 begins with the hash character (#), which indicates that the rest of the line is a com-
ment:

fig02_01.py

For easy reference, we begin each script with a comment indicating the script’s file name.
A comment also can begin to the right of the code on a given line and continue until the
end of that line.

Docstrings
The Style Guide for Python Code states that each script should start with a docstring that
explains the script’s purpose, such as the one in line 2:

"""Comparing integers using if statements and comparison opera-
tors."""

For more complex scripts, the docstring often spans many lines. In later chapters, you’ll
use docstrings to describe script components you define, such as new functions and new
types called classes. We’ll also discuss how to access docstrings with the IPython help
mechanism.

Blank Lines
Line 3 is a blank line. You use blank lines and space characters to make code easier to read.
Together, blank lines, space characters and tab characters are known as white space.
Python ignores most white space—you’ll see that some indentation is required.

Enter two integers and I will tell you the relationships they satisfy.
Enter first integer: 37
Enter second integer: 42
37 is not equal to 42
37 is less than 42
37 is less than or equal to 42

Enter two integers and I will tell you the relationships they satisfy.
Enter first integer: 7
Enter second integer: 7
7 is equal to 7
7 is less than or equal to 7
7 is greater than or equal to 7

Enter two integers and I will tell you the relationships they satisfy.
Enter first integer: 54
Enter second integer: 17
54 is not equal to 17
54 is greater than 17
54 is greater than or equal to 17

ptg27972259

44 Chapter 2 Introduction to Python Programming

Splitting a Lengthy Statement Across Lines
Lines 4–5

print('Enter two integers, and I will tell you',
 'the relationships they satisfy.')

display instructions to the user. These are too long to fit on one line, so we broke them
into two strings. Recall that you can display several values by passing to print a comma-
separated list—print separates each value from the next with a space.

Typically, you write statements on one line. You may spread a lengthy statement over
several lines with the \ continuation character. Python also allows you to split long code
lines in parentheses without using continuation characters (as in lines 4–5). This is the pre-
ferred way to break long code lines according to the Style Guide for Python Code. Always
choose breaking points that make sense, such as after a comma in the preceding call to
print or before an operator in a lengthy expression.

Reading Integer Values from the User
Next, lines 8 and 11 use the built-in input and int functions to prompt for and read two
integer values from the user.

if Statements
The if statement in lines 13–14

if number1 == number2:
 print(number1, 'is equal to', number2)

uses the == comparison operator to determine whether the values of variables number1 and
number2 are equal. If so, the condition is True, and line 14 displays a line of text indicating
that the values are equal. If any of the remaining if statements’ conditions are True (lines
16, 19, 22, 25 and 28), the corresponding print displays a line of text.

Each if statement consists of the keyword if, the condition to test, and a colon (:)
followed by an indented body called a suite. Each suite must contain one or more state-
ments. Forgetting the colon (:) after the condition is a common syntax error.

Suite Indentation
Python requires you to indent the statements in suites. The Style Guide for Python Code
recommends four-space indents—we use that convention throughout this book. You’ll see
in the next chapter that incorrect indentation can cause errors.

Confusing == and =
Using the assignment symbol (=) instead of the equality operator (==) in an if statement’s
condition is a common syntax error. To help avoid this, read == as “is equal to” and = as
“is assigned.” You’ll see in the next chapter that using == in place of = in an assignment
statement can lead to subtle problems.

Chaining Comparisons
You can chain comparisons to check whether a value is in a range. The following compar-
ison determines whether x is in the range 1 through 5, inclusive:

In [1]: x = 3

ptg27972259

2.8 Objects and Dynamic Typing 45

Precedence of the Operators We’ve Presented So Far
The precedence of the operators introduced in this chapter is shown below:

The table lists the operators top-to-bottom in decreasing order of precedence. When writ-
ing expressions containing multiple operators, confirm that they evaluate in the order you
expect by referring to the operator precedence chart at

https://docs.python.org/3/reference/expressions.html#operator-
precedence

2.8 Objects and Dynamic Typing
Values such as 7 (an integer), 4.1 (a floating-point number) and 'dog' are all objects.
Every object has a type and a value:

An object’s value is the data stored in the object. The snippets above show objects of built-
in types int (for integers), float (for floating-point numbers) and str (for strings).

Variables Refer to Objects
Assigning an object to a variable binds (associates) that variable’s name to the object. As
you’ve seen, you can then use the variable in your code to access the object’s value:

In [2]: 1 <= x <= 5
Out[2]: True

In [3]: x = 10

In [4]: 1 <= x <= 5
Out[4]: False

Operators Grouping Type

() left to right parentheses

** right to left exponentiation

* / // % left to right multiplication, true division, floor division, remainder

+ – left to right addition, subtraction

> <= < >= left to right less than, less than or equal, greater than, greater than or equal

== != left to right equal, not equal

In [1]: type(7)
Out[1]: int

In [2]: type(4.1)
Out[2]: float

In [3]: type('dog')
Out[3]: str

In [4]: x = 7

In [5]: x + 10
Out[5]: 17

https://docs.python.org/3/reference/expressions.html#operator-precedence
https://docs.python.org/3/reference/expressions.html#operator-precedence

ptg27972259

46 Chapter 2 Introduction to Python Programming

After snippet [4]’s assignment, the variable x refers to the integer object containing 7. As
shown in snippet [6], snippet [5] does not change x’s value. You can change x as follows:

Dynamic Typing
Python uses dynamic typing—it determines the type of the object a variable refers to while
executing your code. We can show this by rebinding the variable x to different objects and
checking their types:

Garbage Collection
Python creates objects in memory and removes them from memory as necessary. After
snippet [10], the variable x now refers to a float object. The integer object from snippet
[7] is no longer bound to a variable. As we’ll discuss in a later chapter, Python automati-
cally removes such objects from memory. This process—called garbage collection—helps
ensure that memory is available for new objects you create.

2.9 Intro to Data Science: Basic Descriptive Statistics
In data science, you’ll often use statistics to describe and summarize your data. Here, we
begin by introducing several such descriptive statistics, including:

• minimum—the smallest value in a collection of values.

• maximum—the largest value in a collection of values.

• range—the range of values from the minimum to the maximum.

• count—the number of values in a collection.

• sum—the total of the values in a collection.

We’ll look at determining the count and sum in the next chapter. Measures of dispersion
(also called measures of variability), such as range, help determine how spread out values
are. Other measures of dispersion that we’ll present in later chapters include variance and
standard deviation.

In [6]: x
Out[6]: 7

In [7]: x = x + 10

In [8]: x
Out[8]: 17

In [9]: type(x)
Out[9]: int

In [10]: x = 4.1

In [11]: type(x)
Out[11]: float

In [12]: x = 'dog'

In [13]: type(x)
Out[13]: str

ptg27972259

2.9 Intro to Data Science: Basic Descriptive Statistics 47

Determining the Minimum of Three Values
First, let’s show how to determine the minimum of three values manually. The following
script prompts for and inputs three values, uses if statements to determine the minimum
value, then displays it.

After inputting the three values, we process one value at a time:

• First, we assume that number1 contains the smallest value, so line 8 assigns it to
the variable minimum. Of course, it’s possible that number2 or number3 contains
the actual smallest value, so we still must compare each of these with minimum.

• The first if statement (lines 10–11) then tests number2 < minimum and if this con-
dition is True assigns number2 to minimum.

• The second if statement (lines 13–14) then tests number3 < minimum, and if this
condition is True assigns number3 to minimum.

Now, minimum contains the smallest value, so we display it. We executed the script three
times to show that it always finds the smallest value regardless of whether the user enters
it first, second or third.

1 # fig02_02.py
2 """Find the minimum of three values."""
3
4 number1 = int(input('Enter first integer: '))
5 number2 = int(input('Enter second integer: '))
6 number3 = int(input('Enter third integer: '))
7
8 minimum = number1
9

10 if number2 < minimum:
11 minimum = number2
12
13 if number3 < minimum:
14 minimum = number3
15
16 print('Minimum value is', minimum)

Enter first integer: 12
Enter second integer: 27
Enter third integer: 36
Minimum value is 12

Enter first integer: 27
Enter second integer: 12
Enter third integer: 36
Minimum value is 12

Enter first integer: 36
Enter second integer: 27
Enter third integer: 12
Minimum value is 12

ptg27972259

48 Chapter 2 Introduction to Python Programming

Determining the Minimum and Maximum with Built-In Functions min and max
Python has many built-in functions for performing common tasks. Built-in functions min
and max calculate the minimum and maximum, respectively, of a collection of values:

The functions min and max can receive any number of arguments.

Determining the Range of a Collection of Values
The range of values is simply the minimum through the maximum value. In this case, the
range is 12 through 36. Much data science is devoted to getting to know your data.
Descriptive statistics is a crucial part of that, but you also have to understand how to inter-
pret the statistics. For example, if you have 100 numbers with a range of 12 through 36,
those numbers could be distributed evenly over that range. At the opposite extreme, you
could have clumping with 99 values of 12 and one 36, or one 12 and 99 values of 36.

Functional-Style Programming: Reduction
Throughout this book, we introduce various functional-style programming capabilities.
These enable you to write code that can be more concise, clearer and easier to debug—
that is, find and correct errors. The min and max functions are examples of a functional-
style programming concept called reduction. They reduce a collection of values to a single
value. Other reductions you’ll see include the sum, average, variance and standard devia-
tion of a collection of values. You’ll also see how to define custom reductions.

Upcoming Intro to Data Science Sections
In the next two chapters, we’ll continue our discussion of basic descriptive statistics with
measures of central tendency, including mean, median and mode, and measures of dispersion,
including variance and standard deviation.

2.10 Wrap-Up
This chapter continued our discussion of arithmetic. You used variables to store values for
later use. We introduced Python’s arithmetic operators and showed that you must write
all expressions in straight-line form. You used the built-in function print to display data.
We created single-, double- and triple-quoted strings. You used triple-quoted strings to
create multiline strings and to embed single or double quotes in strings.

You used the input function to prompt for and get input from the user at the key-
board. We used the functions int and float to convert strings to numeric values. We pre-
sented Python’s comparison operators. Then, you used them in a script that read two
integers from the user and compared their values using a series of if statements.

We discussed Python’s dynamic typing and used the built-in function type to display
an object’s type. Finally, we introduced the basic descriptive statistics minimum and max-
imum and used them to calculate the range of a collection of values. In the next chapter,
we present Python’s control statements.

In [1]: min(36, 27, 12)
Out[1]: 12

In [2]: max(36, 27, 12)
Out[2]: 36

ptg27972259

3
Control Statements

O b j e c t i v e s
In this chapter, you’ll:
■ Make decisions with if, if…else and if…elif…else.
■ Execute statements repeatedly with while and for.
■ Shorten assignment expressions with augmented

assignments.
■ Use the for statement and the built-in range function to

repeat actions for a sequence of values.
■ Perform sentinel-controlled iteration with while.
■ Create compound conditions with the Boolean operators and,
or and not.

■ Stop looping with break.
■ Force the next iteration of a loop with continue.
■ Use functional-style programming features to write scripts that

are more concise, clearer, easier to debug and easier to
parallelize.

ptg27972259

50 Chapter 3 Control Statements
O

u
tl

in
e

3.1 Introduction
In this chapter, we present Python’s control statements—if, if…else, if…elif…else,
while, for, break and continue. You’ll use the for statement to perform sequence-
controlled iteration—you’ll see that the number of items in a sequence of item determines
the for statement’s number of iterations. You’ll use the built-in function range to generate
sequences of integers.

We’ll show sentinel-controlled iteration with the while statement. You’ll use the
Python Standard Library’s Decimal type for precise monetary calculations. We’ll format
data in f-strings (that is, format strings) using various format specifiers. We’ll also show
the Boolean operators and, or and not for creating compound conditions. In the Intro to
Data Science section, we’ll consider measures of central tendency—mean, median and
mode—using the Python Standard Library’s statistics module.

3.2 Control Statements
Python provides three selection statements that execute code based on a condition that
evaluates to either True or False:

• The if statement performs an action if a condition is True or skips the action if
the condition is False.

• The if…else statement performs an action if a condition is True or performs a
different action if the condition is False.

• The if…elif…else statement performs one of many different actions,
depending on the truth or falsity of several conditions.

Anywhere a single action can be placed, a group of actions can be placed.
Python provides two iteration statements—while and for:

• The while statement repeats an action (or a group of actions) as long as a condi-
tion remains True.

• The for statement repeats an action (or a group of actions) for every item in a
sequence of items.

3.1 Introduction
3.2 Control Statements
3.3 if Statement
3.4 if…else and if…elif…else

Statements
3.5 while Statement
3.6 for Statement

3.6.1 Iterables, Lists and Iterators
3.6.2 Built-In range Function

3.7 Augmented Assignments
3.8 Sequence-Controlled Iteration;

Formatted Strings

3.9 Sentinel-Controlled Iteration
3.10 Built-In Function range: A Deeper

Look
3.11 Using Type Decimal for Monetary

Amounts
3.12 break and continue Statements
3.13 Boolean Operators and, or and not
3.14 Intro to Data Science: Measures of

Central Tendency—Mean, Median
and Mode

3.15 Wrap-Up

ptg27972259

3.3 if Statement 51

Keywords
The words if, elif, else, while, for, True and False are Python keywords. Using a key-
word as an identifier such as a variable name is a syntax error. The following table lists
Python’s keywords.

3.3 if Statement
Let’s execute a Python if statement:

The condition grade >= 60 is True, so the indented print statement in the if’s suite dis-
plays 'Passed'.

Suite Indentation
Indenting a suite is required; otherwise, an IndentationError syntax error occurs:

An IndentationError also occurs if you have more than one statement in a suite and
those statements do not have the same indentation:

Sometimes error messages may not be clear. The fact that Python calls attention to the line
is usually enough for you to figure out what’s wrong. Apply indentation conventions uni-
formly throughout your code—programs that are not uniformly indented are hard to read.

Python keywords

and as assert async await

break class continue def del

elif else except False finally

for from global if import

in is lambda None nonlocal

not or pass raise return

True try while with yield

In [1]: grade = 85

In [2]: if grade >= 60:
 ...: print('Passed')
 ...:
Passed

In [3]: if grade >= 60:
 ...: print('Passed') # statement is not indented properly
 File "<ipython-input-3-f42783904220>", line 2
 print('Passed') # statement is not indented properly
 ^
IndentationError: expected an indented block

In [4]: if grade >= 60:
 ...: print('Passed') # indented 4 spaces
 ...: print('Good job!) # incorrectly indented only two spaces
 File <ipython-input-4-8c0d75c127bf>, line 3
 print('Good job!) # incorrectly indented only two spaces
 ^
IndentationError: unindent does not match any outer indentation level

ptg27972259

52 Chapter 3 Control Statements

Every Expression Can Be Interpreted as Either True or False
You can base decisions on any expression. A nonzero value is True. Zero is False:

Strings containing characters are True and empty strings ('', "" or """""") are False.

Confusing == and =
Using the equality operator == instead of = in an assignment statement can lead to subtle
problems. For example, in this session, snippet [1] defined grade with the assignment:

grade = 85

If instead we accidentally wrote:

grade == 85

then grade would be undefined and we’d get a NameError. If grade had been defined
before the preceding statement, then grade == 85 would simply evaluate to True or False,
and not perform an assignment. This is a logic error.

3.4 if…else and if…elif…else Statements
The if…else statement executes different suites, based on whether a condition is True or
False:

The condition above is True, so the if suite displays 'Passed'. Note that when you press
Enter after typing print('Passed'), IPython indents the next line four spaces. You must
delete those four spaces so that the else: suite correctly aligns under the i in if.

The following code assigns 57 to the variable grade, then shows the if…else state-
ment again to demonstrate that only the else suite executes when the condition is False:

In [5]: if 1:
 ...: print('Nonzero values are true, so this will print')
 ...:
Nonzero values are true, so this will print

In [6]: if 0:
 ...: print('Zero is false, so this will not print')

In [7]:

In [1]: grade = 85

In [2]: if grade >= 60:
 ...: print('Passed')
 ...: else:
 ...: print('Failed')
 ...:
Passed

In [3]: grade = 57

In [4]: if grade >= 60:
 ...: print('Passed')
 ...: else:
 ...: print('Failed')
 ...:
Failed

ptg27972259

3.4 if…else and if…elif…else Statements 53

Use the up and down arrow keys to navigate backwards and forwards through the current
interactive session’s snippets. Pressing Enter re-executes the snippet that’s displayed. Let’s
set grade to 99, press the up arrow key twice to recall the code from snippet [4], then press
Enter to re-execute that code as snippet [6]. Every recalled snippet that you execute gets a
new ID:

Conditional Expressions
Sometimes the suites in an if…else statement assign different values to a variable, based
on a condition, as in:

We can then print or evaluate that variable:

You can write statements like snippet [8] using a concise conditional expression:

The parentheses are not required, but they make it clear that the statement assigns the con-
ditional expression’s value to result. First, Python evaluates the condition grade >= 60:

• If it’s True, snippet [10] assigns to result the value of the expression to the left
of if, namely 'Passed'. The else part does not execute.

• If it’s False, snippet [10] assigns to result the value of the expression to the
right of else, namely 'Failed'.

In interactive mode, you also can evaluate the conditional expression directly, as in:

Multiple Statements in a Suite
The following code shows two statements in the else suite of an if…else statement:

In [5]: grade = 99

In [6]: if grade >= 60:
 ...: print('Passed')
 ...: else:
 ...: print('Failed')
 ...:
Passed

In [7]: grade = 87

In [8]: if grade >= 60:
 ...: result = 'Passed'
 ...: else:
 ...: result = 'Failed'
 ...:

In [9]: result
Out[9]: 'Passed'

In [10]: result = ('Passed' if grade >= 60 else 'Failed')

In [11]: result
Out[11]: 'Passed'

In [12]: 'Passed' if grade >= 60 else 'Failed'
Out[12]: 'Passed'

In [13]: grade = 49

ptg27972259

54 Chapter 3 Control Statements

In this case, grade is less than 60, so both statements in the else’s suite execute.
If you do not indent the second print, then it’s not in the else’s suite. So, that state-

ment always executes, possibly creating strange incorrect output:

if…elif…else Statement
You can test for many cases using the if…elif…else statement. The following code dis-
plays “A” for grades greater than or equal to 90, “B” for grades in the range 80–89, “C”
for grades 70–79, “D” for grades 60–69 and “F” for all other grades. Only the action for
the first True condition executes. Snippet [18] displays C, because grade is 77:

The first condition—grade >= 90—is False, so print('A') is skipped. The second con-
dition—grade >= 80—also is False, so print('B') is skipped. The third condition—
grade >= 70—is True, so print('C') executes. Then all the remaining code in the
if…elif…else statement is skipped. An if…elif…else is faster than separate if
statements, because condition testing stops as soon as a condition is True.

else Is Optional
The else in the if…elif…else statement is optional. Including it enables you to handle
values that do not satisfy any of the conditions. When an if…elif statement without an
else tests a value that does not make any of its conditions True, the program does not exe-

In [14]: if grade >= 60:
 ...: print('Passed')
 ...: else:
 ...: print('Failed')
 ...: print('You must take this course again')
 ...:
Failed
You must take this course again

In [15]: grade = 100

In [16]: if grade >= 60:
 ...: print('Passed')
 ...: else:
 ...: print('Failed')
 ...: print('You must take this course again')
 ...:
Passed
You must take this course again

In [17]: grade = 77

In [18]: if grade >= 90:
 ...: print('A')
 ...: elif grade >= 80:
 ...: print('B')
 ...: elif grade >= 70:
 ...: print('C')
 ...: elif grade >= 60:
 ...: print('D')
 ...: else:
 ...: print('F')
 ...:
C

ptg27972259

3.5 while Statement 55

cute any of the statement’s suites—the next statement in sequence after the if…elif

statement executes. If you specify the else, you must place it after the last elif; otherwise,
a SyntaxError occurs.

Logic Errors
The incorrectly indented code segment in snippet [16] is an example of a nonfatal logic
error. The code executes, but it produces incorrect results. For a fatal logic error in a script,
an exception occurs (such as a ZeroDivisionError from an attempt to divide by 0), so
Python displays a traceback, then terminates the script. A fatal error in interactive mode ter-
minates only the current snippet—then IPython waits for your next input.

3.5 while Statement
The while statement allows you to repeat one or more actions while a condition remains
True. Let’s use a while statement to find the first power of 3 larger than 50:

Snippet [3] evaluates product to see its value, 81, which is the first power of 3 larger than 50.
Something in the while statement’s suite must change product’s value, so the condi-

tion eventually becomes False. Otherwise, an infinite loop occurs. In applications exe-
cuted from a Terminal, Anaconda Command Prompt or shell, type Ctrl + c or control + c
to terminate an infinite loop. IDEs typically have a toolbar button or menu option for
stopping a program’s execution.

3.6 for Statement
The for statement allows you to repeat an action or several actions for each item in a
sequence of items. For example, a string is a sequence of individual characters. Let’s dis-
play 'Programming' with its characters separated by two spaces:

The for statement executes as follows:

• Upon entering the statement, it assigns the 'P' in 'Programming' to the target
variable between keywords for and in—in this case, character.

• Next, the statement in the suite executes, displaying character’s value followed
by two spaces—we’ll say more about this momentarily.

• After executing the suite, Python assigns to character the next item in the
sequence (that is, the 'r' in 'Programming'), then executes the suite again.

In [1]: product = 3

In [2]: while product <= 50:
 ...: product = product * 3
 ...:

In [3]: product
Out[3]: 81

In [1]: for character in 'Programming':
 ...: print(character, end=' ')
 ...:
P r o g r a m m i n g

ptg27972259

56 Chapter 3 Control Statements

• This continues while there are more items in the sequence to process. In this case,
the statement terminates after displaying the letter 'g', followed by two spaces.

Using the target variable in the suite, as we did here to display its value, is common but
not required.

Function print’s end Keyword Argument
The built-in function print displays its argument(s), then moves the cursor to the next
line. You can change this behavior with the argument end, as in

print(character, end=' ')

which displays character’s value followed by two spaces. So, all the characters display hor-
izontally on the same line. Python calls end a keyword argument, but end itself is not a
Python keyword. Keyword arguments are sometimes called named arguments. The end
keyword argument is optional. If you do not include it, print uses a newline ('\n') by
default. The Style Guide for Python Code recommends placing no spaces around a keyword
argument’s =.

Function print’s sep Keyword Argument
You can use the keyword argument sep (short for separator) to specify the string that
appears between the items that print displays. When you do not specify this argument,
print uses a space character by default. Let’s display three numbers, each separated from
the next by a comma and a space, rather than just a space:

To remove the default spaces, use sep='' (that is, an empty string).

3.6.1 Iterables, Lists and Iterators
The sequence to the right of the for statement’s in keyword must be an iterable—that is,
an object from which the for statement can take one item at a time until no more items
remain. Python has other iterable sequence types besides strings. One of the most com-
mon is a list, which is a comma-separated collection of items enclosed in square brackets
([and]). The following code totals five integers in a list:

Each sequence has an iterator. The for statement uses the iterator “behind the scenes”
to get each consecutive item until there are no more to process. The iterator is like a book-
mark—it always knows where it is in the sequence, so it can return the next item when it’s
called upon to do so. We cover lists in detail in the “Sequences: Lists and Tuples” chapter.
There, you’ll see that the order of the items in a list matters and that a list’s items are
mutable (that is, modifiable).

In [2]: print(10, 20, 30, sep=', ')
10, 20, 30

In [3]: total = 0

In [4]: for number in [2, -3, 0, 17, 9]:
 ...: total = total + number
 ...:

In [5]: total
Out[5]: 25

ptg27972259

3.7 Augmented Assignments 57

3.6.2 Built-In range Function
Let’s use a for statement and the built-in range function to iterate precisely 10 times, dis-
playing the values from 0 through 9:

The function call range(10) creates an iterable object that represents a sequence of consec-
utive integers starting from 0 and continuing up to, but not including, the argument value
(10)—in this case, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The for statement exits when it finishes process-
ing the last integer that range produces. Iterators and iterable objects are two of Python’s
functional-style programming features. We’ll introduce more of these throughout the book.

Off-By-One Errors
A common type of off-by-one error occurs when you assume that range’s argument value
is included in the generated sequence. For example, if you provide 9 as range’s argument
when trying to produce the sequence 0 through 9, range generates only 0 through 8.

3.7 Augmented Assignments
Augmented assignments abbreviate assignment expressions in which the same variable
name appears on the left and right of the assignment’s =, as total does in:

for number in [1, 2, 3, 4, 5]:
 total = total + number

Snippet [2] reimplements this using an addition augmented assignment (+=) statement:

The += expression in snippet [2] first adds number’s value to the current total, then stores
the new value in total. The table below shows sample augmented assignments:

In [6]: for counter in range(10):
 ...: print(counter, end=' ')
 ...:
0 1 2 3 4 5 6 7 8 9

In [1]: total = 0

In [2]: for number in [1, 2, 3, 4, 5]:
 ...: total += number # add number to total
 ...:

In [3]: total
Out[3]: 15

Augmented assignment Sample expression Explanation Assigns

Assume: c = 3, d = 5, e = 4, f = 2, g = 9, h = 12

+= c += 7 c = c + 7 10 to c

-= d -= 4 d = d - 4 1 to d

*= e *= 5 e = e * 5 20 to e

**= f **= 3 f = f ** 3 8 to f

/= g /= 2 g = g / 2 4.5 to g

//= g //= 2 g = g // 2 4 to g

%= h %= 9 h = h % 9 3 to h

ptg27972259

58 Chapter 3 Control Statements

3.8 Sequence-Controlled Iteration; Formatted Strings
This section and the next solve two class-averaging problems. Consider the following
requirements statement:

A class of ten students took a quiz. Their grades (integers in the range 0 – 100) are
98, 76, 71, 87, 83, 90, 57, 79, 82, 94. Determine the class average on the quiz.

The following script for solving this problem keeps a running total of the grades, calculates
the average and displays the result. We placed the 10 grades in a list, but you could input
the grades from a user at the keyboard (as we’ll do in the next example) or read them from
a file (as you’ll see how to do in the “Files and Exceptions” chapter). We show how to read
data from SQL and NoSQL databases in Chapter 16.

Lines 5–6 create the variables total and grade_counter and initialize each to 0. Line 7

grades = [98, 76, 71, 87, 83, 90, 57, 79, 82, 94] # list of 10 grades

creates the variable grades and initializes it with a list of 10 integer grades.
The for statement processes each grade in the list grades. Line 11 adds the current

grade to the total. Then, line 12 adds 1 to the variable grade_counter to keep track of
the number of grades processed so far. Iteration terminates when all 10 grades in the list
have been processed. The Style Guide for Python Code recommends placing a blank line
above and below each control statement (as in lines 8 and 13). When the for statement
terminates, line 15 calculates the average and line 16 displays it. Later in this chapter, we
use functional-style programming to calculate the average of a list’s items more concisely.

Introduction to Formatted Strings
Line 16 uses the following simple f-string (short for formatted string) to format this
script’s result by inserting the value of average into a string:

f'Class average is {average}'

The letter f before the string’s opening quote indicates it’s an f-string. You specify where
to insert values by using placeholders delimited by curly braces ({ and }). The placeholder

1 # class_average.py
2 """Class average program with sequence-controlled iteration."""
3
4 # initialization phase
5 total = 0 # sum of grades
6 grade_counter = 0
7 grades = [98, 76, 71, 87, 83, 90, 57, 79, 82, 94] # list of 10 grades
8
9 # processing phase

10 for grade in grades:
11 total += grade # add current grade to the running total
12 grade_counter += 1 # indicate that one more grade was processed
13
14 # termination phase
15 average = total / grade_counter
16 print(f'Class average is {average}')

Class average is 81.7

ptg27972259

3.9 Sentinel-Controlled Iteration 59

{average}

converts the variable average’s value to a string representation, then replaces {average}
with that replacement text. Replacement-text expressions may contain values, variables or
other expressions, such as calculations or function calls. In line 16, we could have used
total / grade_counter in place of average, eliminating the need for line 15.

3.9 Sentinel-Controlled Iteration
Let’s generalize the class-average problem. Consider the following requirements statement:

Develop a class-averaging program that processes an arbitrary number of grades
each time the program executes.

The requirements statement does not state what the grades are or how many there are, so
we’re going to have the user enter the grades. The program processes an arbitrary number
of grades. The user enters grades one at a time until all the grades have been entered, then
enters a sentinel value (also called a signal value, a dummy value or a flag value) to indicate
that there are no more grades.

Implementing Sentinel-Controlled Iteration
The following script solves the class average problem with sentinel-controlled iteration.
Notice that we test for the possibility of division by zero. If undetected, this would cause
a fatal logic error. In the “Files and Exceptions” chapter, we write programs that recognize
such exceptions and take appropriate actions.

1 # class_average_sentinel.py
2 """Class average program with sentinel-controlled iteration."""
3
4 # initialization phase
5 total = 0 # sum of grades
6 grade_counter = 0 # number of grades entered
7
8 # processing phase
9 grade = int(input('Enter grade, -1 to end: ')) # get one grade

10
11 while grade != -1:
12 total += grade
13 grade_counter += 1
14 grade = int(input('Enter grade, -1 to end: '))
15
16 # termination phase
17 if grade_counter != 0:
18 average = total / grade_counter
19 print(f'Class average is {average:.2f}')
20 else:
21 print('No grades were entered')

Enter grade, -1 to end: 97
Enter grade, -1 to end: 88
Enter grade, -1 to end: 72
Enter grade, -1 to end: -1
Class average is 85.67

ptg27972259

60 Chapter 3 Control Statements

Program Logic for Sentinel-Controlled Iteration
In sentinel-controlled iteration, the program reads the first value (line 9) before reaching
the while statement. The value input in line 9 determines whether the program’s flow of
control should enter the while’s suite (lines 12–14). If the condition in line 11 is False,
the user entered the sentinel value (-1), so the suite does not execute because the user did
not enter any grades. If the condition is True, the suite executes, adding the grade value
to the total and incrementing the grade_counter.

Next, line 14 inputs another grade from the user and the condition (line 11) is tested
again, using the most recent grade entered by the user. The value of grade is always input
immediately before the program tests the while condition, so we can determine whether
the value just input is the sentinel before processing that value as a grade.

When the sentinel value is input, the loop terminates, and the program does not add
–1 to total. In a sentinel-controlled loop that performs user input, any prompts (lines 9
and 14) should remind the user of the sentinel value.

Formatting the Class Average with Two Decimal Places
This example formatted the class average with two digits to the right of the decimal point.
In an f-string, you can optionally follow a replacement-text expression with a colon (:) and
a format specifier that describes how to format the replacement text. The format specifier
.2f (line 19) formats the average as a floating-point number (f) with two digits to the right
of the decimal point (.2). In this example, the sum of the grades was 257, which, when
divided by 3, yields 85.666666666…. Formatting the average with .2f rounds it to the
hundredths position, producing the replacement text 85.67. An average with only one digit
to the right of the decimal point would be formatted with a trailing zero (e.g., 85.50). The
chapter “Strings: A Deeper Look” discusses many more string-formatting features.

3.10 Built-In Function range: A Deeper Look
Function range also has two- and three-argument versions. As you’ve seen, range’s one-
argument version produces a sequence of consecutive integers from 0 up to, but not
including, the argument’s value. Function range’s two-argument version produces a
sequence of consecutive integers from its first argument’s value up to, but not including,
the second argument’s value, as in:

Function range’s three-argument version produces a sequence of integers from its first
argument’s value up to, but not including, the second argument’s value, incrementing by
the third argument’s value, which is known as the step:

If the third argument is negative, the sequence progresses from the first argument’s value
down to, but not including the second argument’s value, decrementing by the third argu-
ment’s value, as in:

In [1]: for number in range(5, 10):
 ...: print(number, end=' ')
 ...:
5 6 7 8 9

In [2]: for number in range(0, 10, 2):
 ...: print(number, end=' ')
 ...:
0 2 4 6 8

ptg27972259

3.11 Using Type Decimal for Monetary Amounts 61

3.11 Using Type Decimal for Monetary Amounts
In this section, we introduce Decimal capabilities for precise monetary calculations. If
you’re in banking or other fields that require “to-the-penny” accuracy, you should inves-
tigate Decimal’s capabilities in depth.

For most scientific and other mathematical applications that use numbers with deci-
mal points, Python’s built-in floating-point numbers work well. For example, when we
speak of a “normal” body temperature of 98.6, we do not need to be precise to a large
number of digits. When we view the temperature on a thermometer and read it as 98.6,
the actual value may be 98.5999473210643. The point here is that calling this number
98.6 is adequate for most body-temperature applications.

Floating-point values are stored in binary format (we introduced binary in the first
chapter and discuss it in depth in the online “Number Systems” appendix). Some floating-
point values are represented only approximately when they’re converted to binary. For
example, consider the variable amount with the dollars-and-cents value 112.31. If you dis-
play amount, it appears to have the exact value you assigned to it:

However, if you print amount with 20 digits of precision to the right of the decimal point,
you can see that the actual floating-point value in memory is not exactly 112.31—it’s only
an approximation:

Many applications require precise representation of numbers with decimal points.
Institutions like banks that deal with millions or even billions of transactions per day have
to tie out their transactions “to the penny.” Floating-point numbers can represent some
but not all monetary amounts with to-the-penny precision.

The Python Standard Library1 provides many predefined capabilities you can use in
your Python code to avoid “reinventing the wheel.” For monetary calculations and other
applications that require precise representation and manipulation of numbers with deci-
mal points, the Python Standard Library provides type Decimal, which uses a special cod-
ing scheme to solve the problem of to-the-penny precision. That scheme requires
additional memory to hold the numbers and additional processing time to perform calcu-
lations but provides the precision required for monetary calculations. Banks also have to
deal with other issues such as using a fair rounding algorithm when they’re calculating daily
interest on accounts. Type Decimal offers such capabilities.2

In [3]: for number in range(10, 0, -2):
 ...: print(number, end=' ')
 ...:
10 8 6 4 2

In [1]: amount = 112.31

In [2]: print(amount)
112.31

In [3]: print(f'{amount:.20f}')
112.31000000000000227374

1. https://docs.python.org/3.7/library/index.html.
2. For more decimal module features, visit https://docs.python.org/3.7/library/decimal.html.

https://docs.python.org/3.7/library/index.html
https://docs.python.org/3.7/library/decimal.html

ptg27972259

62 Chapter 3 Control Statements

Importing Type Decimal from the decimal Module
We’ve used several built-in types—int (for integers, like 10), float (for floating-point
numbers, like 7.5) and str (for strings like 'Python'). The Decimal type is not built into
Python. Rather, it’s part of the Python Standard Library, which is divided into groups of
related capabilities called modules. The decimal module defines type Decimal and its
capabilities.

To use type Decimal, you must first import the entire decimal module, as in

import decimal

and refer to the Decimal type as decimal.Decimal, or you must indicate a specific capa-
bility to import using from…import, as we do here:

This imports only the type Decimal from the decimal module so that you can use it in
your code. We’ll discuss other import forms beginning in the next chapter.

Creating Decimals
You typically create a Decimal from a string:

We’ll soon use these variables principal and rate in a compound-interest calculation.

Decimal Arithmetic
Decimals support the standard arithmetic operators +, -, *, /, //, ** and %, as well as the
corresponding augmented assignments:

You may perform arithmetic between Decimals and integers, but not between Decimals
and floating-point numbers.

In [4]: from decimal import Decimal

In [5]: principal = Decimal('1000.00')

In [6]: principal
Out[6]: Decimal('1000.00')

In [7]: rate = Decimal('0.05')

In [8]: rate
Out[8]: Decimal('0.05')

In [9]: x = Decimal('10.5')

In [10]: y = Decimal('2')

In [11]: x + y
Out[11]: Decimal('12.5')

In [12]: x // y
Out[12]: Decimal('5')

In [13]: x += y

In [14]: x
Out[14]: Decimal('12.5')

ptg27972259

3.11 Using Type Decimal for Monetary Amounts 63

Compound-Interest Problem Requirements Statement
Let’s compute compound interest using the Decimal type for precise monetary calcula-
tions. Consider the following requirements statement:

A person invests $1000 in a savings account yielding 5% interest. Assuming that
the person leaves all interest on deposit in the account, calculate and display the
amount of money in the account at the end of each year for 10 years. Use the fol-
lowing formula for determining these amounts:

a = p(1 + r)n

where
p is the original amount invested (i.e., the principal),
r is the annual interest rate,
n is the number of years and
a is the amount on deposit at the end of the nth year.

Calculating Compound Interest
To solve this problem, let’s use variables principal and rate that we defined in snippets
[5] and [7], and a for statement that performs the interest calculation for each of the 10
years the money remains on deposit. For each year, the loop displays a formatted string
containing the year number and the amount on deposit at the end of that year:

The algebraic expression (1 + r)n from the requirements statement is written as

(1 + rate) ** year

where variable rate represents r and variable year represents n.

Formatting the Year and Amount on Deposit
The statement

print(f'{year:>2}{amount:>10.2f}')

uses an f-string with two placeholders to format the loop’s output.
The placeholder

{year:>2}

uses the format specifier >2 to indicate that year’s value should be right aligned (>) in a
field of width 2—the field width specifies the number of character positions to use when
displaying the value. For the single-digit year values 1–9, the format specifier >2 displays

In [15]: for year in range(1, 11):
 ...: amount = principal * (1 + rate) ** year
 ...: print(f'{year:>2}{amount:>10.2f}')
 ...:
 1 1050.00
 2 1102.50
 3 1157.62
 4 1215.51
 5 1276.28
 6 1340.10
 7 1407.10
 8 1477.46
 9 1551.33
10 1628.89

ptg27972259

64 Chapter 3 Control Statements

a space character followed by the value, thus right aligning the years in the first column.
The following diagram shows the numbers 1 and 10 each formatted in a field width of 2:

You can left align values with <.
The format specifier 10.2f in the placeholder

{amount:>10.2f}

formats amount as a floating-point number (f) right aligned (>) in a field width of 10 with
a decimal point and two digits to the right of the decimal point (.2). Formatting the
amounts this way aligns their decimal points vertically, as is typical with monetary amounts.
In the 10 character positions, the three rightmost characters are the number’s decimal
point followed by the two digits to its right. The remaining seven character positions are
the leading spaces and the digits to the decimal point’s left. In this example, all the dollar
amounts have four digits to the left of the decimal point, so each number is formatted with
three leading spaces. The following diagram shows the formatting for the value 1050.00:

3.12 break and continue Statements
The break and continue statements alter a loop’s flow of control. Executing a break state-
ment in a while or for immediately exits that statement. In the following code, range pro-
duces the integer sequence 0–99, but the loop terminates when number is 10:

In a script, execution would continue with the next statement after the for loop. The
while and for statements each have an optional else clause that executes only if the loop
terminates normally—that is, not as a result of a break.

Executing a continue statement in a while or for loop skips the remainder of the
loop’s suite. In a while, the condition is then tested to determine whether the loop should
continue executing. In a for, the loop processes the next item in the sequence (if any):

1

01

field width 2

leading space

In [1]: for number in range(100):
 ...: if number == 10:
 ...: break
 ...: print(number, end=' ')
 ...:
0 1 2 3 4 5 6 7 8 9

In [2]: for number in range(10):
 ...: if number == 5:
 ...: continue
 ...: print(number, end=' ')
 ...:
0 1 2 3 4 6 7 8 9

1 .50 0 00

field width 10

two digits to right
of decimal point

leading spaces
decimal point

ptg27972259

3.13 Boolean Operators and, or and not 65

3.13 Boolean Operators and, or and not
The conditional operators >, <, >=, <=, == and != can be used to form simple conditions
such as grade >= 60. To form more complex conditions that combine simple conditions,
use the and, or and not Boolean operators.

Boolean Operator and
To ensure that two conditions are both True before executing a control statement’s suite,
use the Boolean and operator to combine the conditions. The following code defines two
variables, then tests a condition that’s True if and only if both simple conditions are True—
if either (or both) of the simple conditions is False, the entire and expression is False:

The if statement has two simple conditions:

• gender == 'Female' determines whether a person is a female and

• age >= 65 determines whether that person is a senior citizen.

The simple condition to the left of the and operator evaluates first because == has higher
precedence than and. If necessary, the simple condition to the right of and evaluates next,
because >= has higher precedence than and. (We’ll discuss shortly why the right side of an
and operator evaluates only if the left side is True.) The entire if statement condition is
True if and only if both of the simple conditions are True. The combined condition can
be made clearer by adding redundant parentheses

(gender == 'Female') and (age >= 65)

The table below summarizes the and operator by showing all four possible combinations
of False and True values for expression1 and expression2—such tables are called truth tables:

Boolean Operator or
Use the Boolean or operator to test whether one or both of two conditions are True. The
following code tests a condition that’s True if either or both simple conditions are True—
the entire condition is False only if both simple conditions are False:

In [1]: gender = 'Female'

In [2]: age = 70

In [3]: if gender == 'Female' and age >= 65:
 ...: print('Senior female')
 ...:
Senior female

expression1 expression2 expression1 and expression2

False False False

False True False

True False False

True True True

In [4]: semester_average = 83

ptg27972259

66 Chapter 3 Control Statements

Snippet [6] also contains two simple conditions:

• semester_average >= 90 determines whether a student’s average was an A (90 or
above) during the semester, and

• final_exam >= 90 determines whether a student’s final-exam grade was an A.

The truth table below summarizes the Boolean or operator. Operator and has higher pre-
cedence than or.

Improving Performance with Short-Circuit Evaluation
Python stops evaluating an and expression as soon as it knows whether the entire condition
is False. Similarly, Python stops evaluating an or expression as soon as it knows whether
the entire condition is True. This is called short-circuit evaluation. So the condition

gender == 'Female' and age >= 65

stops evaluating immediately if gender is not equal to 'Female' because the entire expres-
sion must be False. If gender is equal to 'Female', execution continues, because the
entire expression will be True if the age is greater than or equal to 65.

Similarly, the condition

semester_average >= 90 or final_exam >= 90

stops evaluating immediately if semester_average is greater than or equal to 90 because
the entire expression must be True. If semester_average is less than 90, execution con-
tinues, because the expression could still be True if the final_exam is greater than or equal
to 90.

In expressions that use and, make the condition that’s more likely to be False the left-
most condition. In or operator expressions, make the condition that’s more likely to be
True the leftmost condition. These techniques can reduce a program’s execution time.

Boolean Operator not
The Boolean operator not “reverses” the meaning of a condition—True becomes False
and False becomes True. This is a unary operator—it has only one operand. You place
the not operator before a condition to choose a path of execution if the original condition
(without the not operator) is False, such as in the following code:

In [5]: final_exam = 95

In [6]: if semester_average >= 90 or final_exam >= 90:
 ...: print('Student gets an A')
 ...:
Student gets an A

expression1 expression2 expression1 or expression2

False False False

False True True

True False True

True True True

ptg27972259

3.14 Measures of Central Tendency—Mean, Median and Mode 67

Often, you can avoid using not by expressing the condition in a more “natural” or conve-
nient manner. For example, the preceding if statement can also be written as follows:

The truth table below summarizes the not operator.

The following table shows the precedence and grouping of the operators introduced
so far, from top to bottom, in decreasing order of precedence.

3.14 Intro to Data Science: Measures of Central
Tendency—Mean, Median and Mode
Here we continue our discussion of using statistics to analyze data with several additional
descriptive statistics, including:

• mean—the average value in a set of values.

• median—the middle value when all the values are arranged in sorted order.

• mode—the most frequently occurring value.

These are measures of central tendency—each is a way of producing a single value that
represents a “central” value in a set of values, i.e., a value which is in some sense typical of
the others.

In [7]: grade = 87

In [8]: if not grade == -1:
 ...: print('The next grade is', grade)
 ...:
The next grade is 87

In [9]: if grade != -1:
 ...: print('The next grade is', grade)
 ...:
The next grade is 87

expression not expression

False True

True False

Operators Grouping

() left to right

** right to left

* / // % left to right

+ - left to right

< <= > >= == != left to right

not left to right

and left to right

or left to right

ptg27972259

68 Chapter 3 Control Statements

Let’s calculate the mean, median and mode on a list of integers. The following session
creates a list called grades, then uses the built-in sum and len functions to calculate the
mean “by hand”—sum calculates the total of the grades (397) and len returns the number
of grades (5):

The previous chapter mentioned the descriptive statistics count and sum—implemented in
Python as the built-in functions len and sum. Like functions min and max (introduced in
the preceding chapter), sum and len are both examples of functional-style programming
reductions—they reduce a collection of values to a single value—the sum of those values
and the number of values, respectively. In Section 3.8’s class-average example, we could
have deleted lines 10–15 of the script and replaced average in line 16 with snippet [2]’s
calculation.

The Python Standard Library’s statistics module provides functions for calculat-
ing the mean, median and mode—these, too, are reductions. To use these capabilities, first
import the statistics module:

Then, you can access the module’s functions with “statistics.” followed by the name
of the function to call. The following calculates the grades list’s mean, median and mode,
using the statistics module’s mean, median and mode functions:

Each function’s argument must be an iterable—in this case, the list grades. To confirm
that the median and mode are correct, you can use the built-in sorted function to get a
copy of grades with its values arranged in increasing order:

The grades list has an odd number of values (5), so median returns the middle value (85).
If the list’s number of values is even, median returns the average of the two middle values.
Studying the sorted values, you can see that 85 is the mode because it occurs most fre-
quently (twice). The mode function causes a StatisticsError for lists like

[85, 93, 45, 89, 85, 93]

in which there are two or more “most frequent” values. Such a set of values is said to be
bimodal. Here, both 85 and 93 occur twice.

In [1]: grades = [85, 93, 45, 89, 85]

In [2]: sum(grades) / len(grades)
Out[2]: 79.4

In [3]: import statistics

In [4]: statistics.mean(grades)
Out[4]: 79.4

In [5]: statistics.median(grades)
Out[5]: 85

In [6]: statistics.mode(grades)
Out[6]: 85

In [7]: sorted(grades)
Out[7]: [45, 85, 85, 89, 93]

ptg27972259

3.15 Wrap-Up 69

3.15 Wrap-Up
In this chapter, we discussed Python’s control statements, including if, if…else,
if…elif…else, while, for, break and continue. You saw that the for statement per-
forms sequence-controlled iteration—it processes each item in an iterable, such as a range
of integers, a string or a list. You used the built-in function range to generate sequences of
integers from 0 up to, but not including, its argument, and to determine how many times
a for statement iterates.

You used sentinel-controlled iteration with the while statement to create a loop that
continues executing until a sentinel value is encountered. You used built-in function
range’s two-argument version to generate sequences of integers from the first argument’s
value up to, but not including, the second argument’s value. You also used the three-argu-
ment version in which the third argument indicated the step between integers in a range.

We introduced the Decimal type for precise monetary calculations and used it to cal-
culate compound interest. You used f-strings and various format specifiers to create for-
matted output. We introduced the break and continue statements for altering the flow
of control in loops. We discussed the Boolean operators and, or and not for creating con-
ditions that combine simple conditions.

Finally, we continued our discussion of descriptive statistics by introducing measures
of central tendency—mean, median and mode—and calculating them with functions
from the Python Standard Library’s statistics module.

In the next chapter, you’ll create custom functions and use existing functions from
Python’s math and random modules. We show several predefined functional-programming
reductions and you’ll see additional functional-programming capabilities.

ptg27972259

This page intentionally left blank

ptg27972259

4
Functions

O b j e c t i v e s
In this chapter, you’ll
■ Create custom functions.
■ Import and use Python Standard Library modules, such as
random and math, to reuse code and avoid “reinventing the
wheel.”

■ Pass data between functions.
■ Generate a range of random numbers.
■ See simulation techniques using random-number generation.
■ Seed the random number generator to ensure reproducibility.
■ Pack values into a tuple and unpack values from a tuple.
■ Return multiple values from a function via a tuple.
■ Understand how an identifier’s scope determines where in

your program you can use it.
■ Create functions with default parameter values.
■ Call functions with keyword arguments.
■ Create functions that can receive any number of arguments.
■ Use methods of an object.
■ Write and use a recursive function.

ptg27972259

72 Chapter 4 Functions
O

u
tl

in
e

4.1 Introduction
In this chapter, we continue our discussion of Python fundamentals with custom func-
tions and related topics. We’ll use the Python Standard Library’s random module and ran-
dom-number generation to simulate rolling a six-sided die. We’ll combine custom
functions and random-number generation in a script that implements the dice game craps.
In that example, we’ll also introduce Python’s tuple sequence type and use tuples to return
more than one value from a function. We’ll discuss seeding the random number generator
to ensure reproducibility.

You’ll import the Python Standard Library’s math module, then use it to learn about
IPython tab completion, which speeds your coding and discovery processes. You’ll create
functions with default parameter values, call functions with keyword arguments and
define functions with arbitrary argument lists. We’ll demonstrate calling methods of
objects. We’ll also discuss how an identifier’s scope determines where in your program you
can use it.

We’ll take a deeper look at importing modules. You’ll see that arguments are passed-
by-reference to functions. We’ll also demonstrate a recursive function and begin present-
ing Python’s functional-style programming capabilities.

In the Intro to Data Science section, we’ll continue our discussion of descriptive sta-
tistics by introducing measures of dispersion—variance and standard deviation—and cal-
culating them with functions from the Python Standard Library’s statistics module.

4.2 Defining Functions
You’ve called many built-in functions (int, float, print, input, type, sum, len, min and
max) and a few functions from the statistics module (mean, median and mode). Each per-
formed a single, well-defined task. You’ll often define and call custom functions. The fol-
lowing session defines a square function that calculates the square of its argument. Then
it calls the function twice—once to square the int value 7 (producing the int value 49)
and once to square the float value 2.5 (producing the float value 6.25):

4.1 Introduction
4.2 Defining Functions
4.3 Functions with Multiple Parameters
4.4 Random-Number Generation
4.5 Case Study: A Game of Chance
4.6 Python Standard Library
4.7 math Module Functions
4.8 Using IPython Tab Completion for

Discovery
4.9 Default Parameter Values

4.10 Keyword Arguments
4.11 Arbitrary Argument Lists

4.12 Methods: Functions That Belong to
Objects

4.13 Scope Rules
4.14 import: A Deeper Look
4.15 Passing Arguments to Functions: A

Deeper Look
4.16 Recursion
4.17 Functional-Style Programming
4.18 Intro to Data Science: Measures of

Dispersion
4.19 Wrap-Up

ptg27972259

4.2 Defining Functions 73

The statements defining the function in the first snippet are written only once, but may
be called “to do their job” from many points throughout a program and as often as you
like. Calling square with a non-numeric argument like 'hello' causes a TypeError
because the exponentiation operator (**) works only with numeric values.

Defining a Custom Function
A function definition (like square in snippet [1]) begins with the def keyword, followed
by the function name (square), a set of parentheses and a colon (:). Like variable identi-
fiers, by convention function names should begin with a lowercase letter and in multiword
names underscores should separate each word.

The required parentheses contain the function’s parameter list—a comma-separated
list of parameters representing the data that the function needs to perform its task. Func-
tion square has only one parameter named number—the value to be squared. If the paren-
theses are empty, the function does not use parameters to perform its task.

The indented lines after the colon (:) are the function’s block, which consists of an
optional docstring followed by the statements that perform the function’s task. We’ll soon
point out the difference between a function’s block and a control statement’s suite.

Specifying a Custom Function’s Docstring
The Style Guide for Python Code says that the first line in a function’s block should be a
docstring that briefly explains the function’s purpose:

"""Calculate the square of number."""

To provide more detail, you can use a multiline docstring—the style guide recommends
starting with a brief explanation, followed by a blank line and the additional details.

Returning a Result to a Function’s Caller
When a function finishes executing, it returns control to its caller—that is, the line of code
that called the function. In square’s block, the return statement:

return number ** 2

first squares number, then terminates the function and gives the result back to the caller.
In this example, the first caller is in snippet [2], so IPython displays the result in Out[2].
The second caller is in snippet [3], so IPython displays the result in Out[3].

Function calls also can be embedded in expressions. The following code calls square
first, then print displays the result:

In [1]: def square(number):
 ...: """Calculate the square of number."""
 ...: return number ** 2
 ...:

In [2]: square(7)
Out[2]: 49

In [3]: square(2.5)
Out[3]: 6.25

In [4]: print('The square of 7 is', square(7))
The square of 7 is 49

ptg27972259

74 Chapter 4 Functions

There are two other ways to return control from a function to its caller:

• Executing a return statement without an expression terminates the function and
implicitly returns the value None to the caller. The Python documentation states
that None represents the absence of a value. None evaluates to False in conditions.

• When there’s no return statement in a function, it implicitly returns the value
None after executing the last statement in the function’s block.

Local Variables
Though we did not define variables in square’s block, it is possible to do so. A function’s
parameters and variables defined in its block are all local variables—they can be used only
inside the function and exist only while the function is executing. Trying to access a local
variable outside its function’s block causes a NameError, indicating that the variable is not
defined.

Accessing a Function’s Docstring via IPython’s Help Mechanism
IPython can help you learn about the modules and functions you intend to use in your
code, as well as IPython itself. For example, to view a function’s docstring to learn how to
use the function, type the function’s name followed by a question mark (?):

For our square function, the information displayed includes:

• The function’s name and parameter list—known as its signature.

• The function’s docstring.

• The name of the file containing the function’s definition. For a function in an
interactive session, this line shows information for the snippet that defined the
function—the 1 in "<ipython-input-1-7268c8ff93a9>" means snippet [1].

• The type of the item for which you accessed IPython’s help mechanism—in this
case, a function.

If the function’s source code is accessible from IPython—such as a function defined in the
current session or imported into the session from a .py file—you can use ?? to display the
function’s full source-code definition:

If the source code is not accessible from IPython, ?? simply shows the docstring.
If the docstring fits in the window, IPython displays the next In [] prompt. If a doc-

string is too long to fit, IPython indicates that there’s more by displaying a colon (:) at the

In [5]: square?
Signature: square(number)
Docstring: Calculate the square of number.
File: ~/Documents/examples/ch04/<ipython-input-1-7268c8ff93a9>
Type: function

In [6]: square??
Signature: square(number)
Source:
def square(number):
 """Calculate the square of number."""
 return number ** 2
File: ~/Documents/examples/ch04/<ipython-input-1-7268c8ff93a9>
Type: function

ptg27972259

4.3 Functions with Multiple Parameters 75

bottom of the window—press the Space key to display the next screen. You can navigate
backwards and forwards through the docstring with the up and down arrow keys, respec-
tively. IPython displays (END) at the end of the docstring. Press q (for “quit”) at any : or
the (END) prompt to return to the next In [] prompt. To get a sense of IPython’s features,
type ? at any In [] prompt, press Enter, then read the help documentation overview.

4.3 Functions with Multiple Parameters
Let’s define a maximum function that determines and returns the largest of three values—
the following session calls the function three times with integers, floating-point numbers
and strings, respectively.

We did not place blank lines above and below the if statements, because pressing return
on a blank line in interactive mode completes the function’s definition.

You also may call maximum with mixed types, such as ints and floats:

The call maximum(13.5, 'hello', 7) results in TypeError because strings and numbers
cannot be compared to one another with the greater-than (>) operator.

Function maximum’s Definition
Function maximum specifies three parameters in a comma-separated list. Snippet [2]’s argu-
ments 12, 27 and 36 are assigned to the parameters value1, value2 and value3, respectively.

To determine the largest value, we process one value at a time:

• Initially, we assume that value1 contains the largest value, so we assign it to the
local variable max_value. Of course, it’s possible that value2 or value3 contains
the actual largest value, so we still must compare each of these with max_value.

• The first if statement then tests value2 > max_value, and if this condition is
True assigns value2 to max_value.

• The second if statement then tests value3 > max_value, and if this condition is
True assigns value3 to max_value.

In [1]: def maximum(value1, value2, value3):
 ...: """Return the maximum of three values."""
 ...: max_value = value1
 ...: if value2 > max_value:
 ...: max_value = value2
 ...: if value3 > max_value:
 ...: max_value = value3
 ...: return max_value
 ...:

In [2]: maximum(12, 27, 36)
Out[2]: 36

In [3]: maximum(12.3, 45.6, 9.7)
Out[3]: 45.6

In [4]: maximum('yellow', 'red', 'orange')
Out[4]: 'yellow'

In [5]: maximum(13.5, -3, 7)
Out[5]: 13.5

ptg27972259

76 Chapter 4 Functions

Now, max_value contains the largest value, so we return it. When control returns to the
caller, the parameters value1, value2 and value3 and the variable max_value in the func-
tion’s block—which are all local variables—no longer exist.

Python’s Built-In max and min Functions
For many common tasks, the capabilities you need already exist in Python. For example,
built-in max and min functions know how to determine the largest and smallest of their
two or more arguments, respectively:

Each of these functions also can receive an iterable argument, such as a list or a string.
Using built-in functions or functions from the Python Standard Library’s modules rather
than writing your own can reduce development time and increase program reliability, por-
tability and performance. For a list of Python’s built-in functions and modules, see

https://docs.python.org/3/library/index.html

4.4 Random-Number Generation
We now take a brief diversion into a popular type of programming application—simula-
tion and game playing. You can introduce the element of chance via the Python Standard
Library’s random module.

Rolling a Six-Sided Die
Let’s produce 10 random integers in the range 1–6 to simulate rolling a six-sided die:

First, we import random so we can use the module’s capabilities. The randrange function
generates an integer from the first argument value up to, but not including, the second
argument value. Let’s use the up arrow key to recall the for statement, then press Enter to
re-execute it. Notice that different values are displayed:

Sometimes, you may want to guarantee reproducibility of a random sequence—for
debugging, for example. At the end of this section, we’ll use the random module’s seed
function to do this.

Rolling a Six-Sided Die 6,000,000 Times
If randrange truly produces integers at random, every number in its range has an equal
probability (or chance or likelihood) of being returned each time we call it. To show that

In [6]: max('yellow', 'red', 'orange', 'blue', 'green')
Out[6]: 'yellow'

In [7]: min(15, 9, 27, 14)
Out[7]: 9

In [1]: import random

In [2]: for roll in range(10):
 ...: print(random.randrange(1, 7), end=' ')
 ...:
4 2 5 5 4 6 4 6 1 5

In [3]: for roll in range(10):
 ...: print(random.randrange(1, 7), end=' ')
 ...:
4 5 4 5 1 4 1 4 6 5

https://docs.python.org/3/library/index.html

ptg27972259

4.4 Random-Number Generation 77

the die faces 1–6 occur with equal likelihood, the following script simulates 6,000,000 die
rolls. When you run the script, each die face should occur approximately 1,000,000 times,
as in the sample output.

The script uses nested control statements (an if…elif statement nested in the for
statement) to determine the number of times each die face appears. The for statement
iterates 6,000,000 times. We used Python’s underscore (_) digit separator to make the
value 6000000 more readable. The expression range(6,000,000) would be incorrect.

1 # fig04_01.py
2 """Roll a six-sided die 6,000,000 times."""
3 import random
4
5 # face frequency counters
6 frequency1 = 0
7 frequency2 = 0
8 frequency3 = 0
9 frequency4 = 0

10 frequency5 = 0
11 frequency6 = 0
12
13 # 6,000,000 die rolls
14 for roll in range(6_000_000): # note underscore separators
15 face = random.randrange(1, 7)
16
17 # increment appropriate face counter
18 if face == 1:
19 frequency1 += 1
20 elif face == 2:
21 frequency2 += 1
22 elif face == 3:
23 frequency3 += 1
24 elif face == 4:
25 frequency4 += 1
26 elif face == 5:
27 frequency5 += 1
28 elif face == 6:
29 frequency6 += 1
30
31 print(f'Face{"Frequency":>13}')
32 print(f'{1:>4}{frequency1:>13}')
33 print(f'{2:>4}{frequency2:>13}')
34 print(f'{3:>4}{frequency3:>13}')
35 print(f'{4:>4}{frequency4:>13}')
36 print(f'{5:>4}{frequency5:>13}')
37 print(f'{6:>4}{frequency6:>13}')

Face Frequency
 1 998686
 2 1001481
 3 999900
 4 1000453
 5 999953
 6 999527

ptg27972259

78 Chapter 4 Functions

Commas separate arguments in function calls, so Python would treat range(6,000,000)
as a call to range with the three arguments 6, 0 and 0.

For each die roll, the script adds 1 to the appropriate counter variable. Run the pro-
gram, and observe the results. This program might take a few seconds to complete execu-
tion. As you’ll see, each execution produces different results. Note that we did not provide
an else clause in the if…elif statement.

Seeding the Random-Number Generator for Reproducibility
Function randrange actually generates pseudorandom numbers, based on an internal cal-
culation that begins with a numeric value known as a seed. Repeatedly calling randrange
produces a sequence of numbers that appear to be random, because each time you start a
new interactive session or execute a script that uses the random module’s functions, Python
internally uses a different seed value.1 When you’re debugging logic errors in programs that
use randomly generated data, it can be helpful to use the same sequence of random num-
bers until you’ve eliminated the logic errors, before testing the program with other values.
To do this, you can use the random module’s seed function to seed the random-number
generator yourself—this forces randrange to begin calculating its pseudorandom number
sequence from the seed you specify. In the following session, snippets [5] and [8] produce
the same results, because snippets [4] and [7] use the same seed (32):

Snippet [6] generates different values because it simply continues the pseudorandom num-
ber sequence that began in snippet [5].

4.5 Case Study: A Game of Chance
In this section, we simulate the popular dice game known as “craps.” Here is the require-
ments statement:

You roll two six-sided dice, each with faces containing one, two, three, four, five
and six spots, respectively. When the dice come to rest, the sum of the spots on the
two upward faces is calculated. If the sum is 7 or 11 on the first roll, you win. If

1. According to the documentation, Python bases the seed value on the system clock or an operating-
system-dependent randomness source. For applications requiring secure random numbers, such as
cryptography, the documentation recommends using the secrets module, rather than the random
module.

In [4]: random.seed(32)

In [5]: for roll in range(10):
 ...: print(random.randrange(1, 7), end=' ')
 ...:
1 2 2 3 6 2 4 1 6 1
In [6]: for roll in range(10):
 ...: print(random.randrange(1, 7), end=' ')
 ...:
1 3 5 3 1 5 6 4 3 5
In [7]: random.seed(32)

In [8]: for roll in range(10):
 ...: print(random.randrange(1, 7), end=' ')
 ...:
1 2 2 3 6 2 4 1 6 1

ptg27972259

4.5 Case Study: A Game of Chance 79

the sum is 2, 3 or 12 on the first roll (called “craps”), you lose (i.e., the “house”
wins). If the sum is 4, 5, 6, 8, 9 or 10 on the first roll, that sum becomes your
“point.” To win, you must continue rolling the dice until you “make your point”
(i.e., roll that same point value). You lose by rolling a 7 before making your point.

The following script simulates the game and shows several sample executions, illustrating
winning on the first roll, losing on the first roll, winning on a subsequent roll and losing
on a subsequent roll.

1 # fig04_02.py
2 """Simulating the dice game Craps."""
3 import random
4
5 def roll_dice():
6 """Roll two dice and return their face values as a tuple."""
7 die1 = random.randrange(1, 7)
8 die2 = random.randrange(1, 7)
9 return (die1, die2) # pack die face values into a tuple

10
11 def display_dice(dice):
12 """Display one roll of the two dice."""
13 die1, die2 = dice # unpack the tuple into variables die1 and die2
14 print(f'Player rolled {die1} + {die2} = {sum(dice)}')
15
16 die_values = roll_dice() # first roll
17 display_dice(die_values)
18
19 # determine game status and point, based on first roll
20 sum_of_dice = sum(die_values)
21
22 if sum_of_dice in (7, 11): # win
23 game_status = 'WON'
24 elif sum_of_dice in (2, 3, 12): # lose
25 game_status = 'LOST'
26 else: # remember point
27 game_status = 'CONTINUE'
28 my_point = sum_of_dice
29 print('Point is', my_point)
30
31 # continue rolling until player wins or loses
32 while game_status == 'CONTINUE':
33 die_values = roll_dice()
34 display_dice(die_values)
35 sum_of_dice = sum(die_values)
36
37 if sum_of_dice == my_point: # win by making point
38 game_status = 'WON'
39 elif sum_of_dice == 7: # lose by rolling 7
40 game_status = 'LOST'
41
42 # display "wins" or "loses" message
43 if game_status == 'WON':
44 print('Player wins')
45 else:
46 print('Player loses')

ptg27972259

80 Chapter 4 Functions

Function roll_dice—Returning Multiple Values Via a Tuple
Function roll_dice (lines 5–9) simulates rolling two dice on each roll. The function is
defined once, then called from several places in the program (lines 16 and 33). The empty
parameter list indicates that roll_dice does not require arguments to perform its task.

The built-in and custom functions you’ve called so far each return one value. Some-
times it’s useful to return more than one value, as in roll_dice, which returns both die
values (line 9) as a tuple—an immutable (that is, unmodifiable) sequences of values. To
create a tuple, separate its values with commas, as in line 9:

(die1, die2)

This is known as packing a tuple. The parentheses are optional, but we recommend using
them for clarity. We discuss tuples in depth in the next chapter.

Function display_dice
To use a tuple’s values, you can assign them to a comma-separated list of variables, which
unpacks the tuple. To display each roll of the dice, the function display_dice (defined
in lines 11–14 and called in lines 17 and 34) unpacks the tuple argument it receives (line
13). The number of variables to the left of = must match the number of elements in the
tuple; otherwise, a ValueError occurs. Line 14 prints a formatted string containing both
die values and their sum. We calculate the sum of the dice by passing the tuple to the built-
in sum function—like a list, a tuple is a sequence.

Note that functions roll_dice and display_dice each begin their blocks with a doc-
string that states what the function does. Also, both functions contain local variables die1
and die2. These variables do not “collide,” because they belong to different functions’
blocks. Each local variable is accessible only in the block that defined it.

Player rolled 2 + 5 = 7
Player wins

Player rolled 1 + 2 = 3
Player loses

Player rolled 5 + 4 = 9
Point is 9
Player rolled 4 + 4 = 8
Player rolled 2 + 3 = 5
Player rolled 5 + 4 = 9
Player wins

Player rolled 1 + 5 = 6
Point is 6
Player rolled 1 + 6 = 7
Player loses

ptg27972259

4.6 Python Standard Library 81

First Roll
When the script begins executing, lines 16–17 roll the dice and display the results. Line
20 calculates the sum of the dice for use in lines 22–29. You can win or lose on the first
roll or any subsequent roll. The variable game_status keeps track of the win/loss status.

The in operator in line 22

sum_of_dice in (7, 11)

tests whether the tuple (7, 11) contains sum_of_dice’s value. If this condition is True,
you rolled a 7 or an 11. In this case, you won on the first roll, so the script sets game_status
to 'WON'. The operator’s right operand can be any iterable. There’s also a not in operator
to determine whether a value is not in an iterable. The preceding concise condition is
equivalent to

(sum_of_dice == 7) or (sum_of_dice == 11)

Similarly, the condition in line 24

sum_of_dice in (2, 3, 12)

tests whether the tuple (2, 3, 12) contains sum_of_dice’s value. If so, you lost on the first
roll, so the script sets game_status to 'LOST'.

For any other sum of the dice (4, 5, 6, 8, 9 or 10):

• line 27 sets game_status to 'CONTINUE' so you can continue rolling

• line 28 stores the sum of the dice in my_point to keep track of what you must roll
to win and

• line 29 displays my_point.

Subsequent Rolls
If game_status is equal to 'CONTINUE' (line 32), you did not win or lose, so the while
statement’s suite (lines 33–40) executes. Each loop iteration calls roll_dice, displays the
die values and calculates their sum. If sum_of_dice is equal to my_point (line 37) or 7 (line
39), the script sets game_status to 'WON' or 'LOST', respectively, and the loop terminates.
Otherwise, the while loop continues executing with the next roll.

Displaying the Final Results
When the loop terminates, the script proceeds to the if…else statement (lines 43–46),
which prints 'Player wins' if game_status is 'WON', or 'Player loses' otherwise.

4.6 Python Standard Library
Typically, you write Python programs by combining functions and classes (that is, custom
types) that you create with preexisting functions and classes defined in modules, such as
those in the Python Standard Library and other libraries. A key programming goal is to
avoid “reinventing the wheel.”

A module is a file that groups related functions, data and classes. The type Decimal
from the Python Standard Library’s decimal module is actually a class. We introduced
classes briefly in Chapter 1 and discuss them in detail in the “Object-Oriented Program-
ming” chapter. A package groups related modules. In this book, you’ll work with many
preexisting modules and packages, and you’ll create your own modules—in fact, every

ptg27972259

82 Chapter 4 Functions

Python source-code (.py) file you create is a module. Creating packages is beyond this
book’s scope. They’re typically used to organize a large library’s functionality into smaller
subsets that are easier to maintain and can be imported separately for convenience. For
example, the matplotlib visualization library that we use in Section 5.17 has extensive
functionality (its documentation is over 2300 pages), so we’ll import only the subsets we
need in our examples (pyplot and animation).

The Python Standard Library is provided with the core Python language. Its packages
and modules contain capabilities for a wide variety of everyday programming tasks.2 You
can see a complete list of the standard library modules at

https://docs.python.org/3/library/

You’ve already used capabilities from the decimal, statistics and random modules.
In the next section, you’ll use mathematics capabilities from the math module. You’ll see
many other Python Standard Library modules throughout the book’s examples, including
many of those in the following table:

4.7 math Module Functions
The math module defines functions for performing various common mathematical calcu-
lations. Recall from the previous chapter that an import statement of the following form
enables you to use a module’s definitions via the module’s name and a dot (.):

For example, the following snippet calculates the square root of 900 by calling the math
module’s sqrt function, which returns its result as a float value:

2. The Python Tutorial refers to this as the “batteries included” approach.

Some popular Python Standard Library modules

collections—Data structures beyond lists,
tuples, dictionaries and sets.

Cryptography modules—Encrypting data for
secure transmission.

csv—Processing comma-separated value files
(like those in Excel).

datetime—Date and time manipulations. Also
modules time and calendar.

decimal—Fixed-point and floating-point arith-
metic, including monetary calculations.

doctest—Embed validation tests and expected
results in docstrings for simple unit testing.

gettext and locale—Internationalization and
localization modules.

json—JavaScript Object Notation (JSON) pro-
cessing used with web services and NoSQL
document databases.

math—Common math constants and operations.
os—Interacting with the operating system.
profile, pstats, timeit—Performance analysis.
random—Pseudorandom numbers.
re—Regular expressions for pattern matching.
sqlite3—SQLite relational database access.
statistics—Mathematical statistics functions

such as mean, median, mode and variance.
string—String processing.
sys—Command-line argument processing;

standard input, standard output and standard
error streams.

tkinter—Graphical user interfaces (GUIs) and
canvas-based graphics.

turtle—Turtle graphics.
webbrowser—For conveniently displaying web

pages in Python apps.

In [1]: import math

In [2]: math.sqrt(900)
Out[2]: 30.0

https://docs.python.org/3/library/

ptg27972259

4.8 Using IPython Tab Completion for Discovery 83

Similarly, the following snippet calculates the absolute value of -10 by calling the math
module’s fabs function, which returns its result as a float value:

Some math module functions are summarized below—you can view the complete list at

https://docs.python.org/3/library/math.html

4.8 Using IPython Tab Completion for Discovery
You can view a module’s documentation in IPython interactive mode via tab comple-
tion—a discovery feature that speeds your coding and discovery processes. After you type
a portion of an identifier and press Tab, IPython completes the identifier for you or pro-
vides a list of identifiers that begin with what you’ve typed so far. This may vary based on
your operating system platform and what you have imported into your IPython session:

In [3]: math.fabs(-10)
Out[3]: 10.0

Function Description Example

ceil(x) Rounds x to the smallest integer not less than x ceil(9.2) is 10.0
ceil(-9.8) is -9.0

floor(x) Rounds x to the largest integer not greater than x floor(9.2) is 9.0
floor(-9.8) is -10.0

sin(x) Trigonometric sine of x (x in radians) sin(0.0) is 0.0

cos(x) Trigonometric cosine of x (x in radians) cos(0.0) is 1.0

tan(x) Trigonometric tangent of x (x in radians) tan(0.0) is 0.0

exp(x) Exponential function ex exp(1.0) is 2.718282
exp(2.0) is 7.389056

log(x) Natural logarithm of x (base e) log(2.718282) is 1.0
log(7.389056) is 2.0

log10(x) Logarithm of x (base 10) log10(10.0) is 1.0
log10(100.0) is 2.0

pow(x, y) x raised to power y (x y) pow(2.0, 7.0) is 128.0
pow(9.0, .5) is 3.0

sqrt(x) square root of x sqrt(900.0) is 30.0
sqrt(9.0) is 3.0

fabs(x) Absolute value of x—always returns a float.
Python also has the built-in function abs, which
returns an int or a float, based on its argument.

fabs(5.1) is 5.1
fabs(-5.1) is 5.1

fmod(x, y) Remainder of x/y as a floating-point number fmod(9.8, 4.0) is 1.8

In [1]: import math

In [2]: ma<Tab>
 map %macro %%markdown
 math %magic %matplotlib
 max() %man

https://docs.python.org/3/library/math.html

ptg27972259

84 Chapter 4 Functions

You can scroll through the identifiers with the up and down arrow keys. As you do, IPy-
thon highlights an identifier and shows it to the right of the In [] prompt.

Viewing Identifiers in a Module
To view a list of identifiers defined in a module, type the module’s name and a dot (.),
then press Tab:

If there are more identifiers to display than are currently shown, IPython displays the >
symbol (on some platforms) at the right edge, in this case to the right of factorial(). You
can use the up and down arrow keys to scroll through the list. In the list of identifiers:

• Those followed by parentheses are functions (or methods, as you’ll see later).

• Single-word identifiers (such as Employee) that begin with an uppercase letter
and multiword identifiers in which each word begins with an uppercase letter
(such as CommissionEmployee) represent class names (there are none in the pre-
ceding list). This naming convention, which the Style Guide for Python Code rec-
ommends, is known as CamelCase because the uppercase letters stand out like a
camel’s humps.

• Lowercase identifiers without parentheses, such as pi (not shown in the preced-
ing list) and e, are variables. The identifier pi evaluates to 3.141592653589793,
and the identifier e evaluates to 2.718281828459045. In the math module, pi and
e represent the mathematical constants π and e, respectively.

Python does not have constants, although many objects in Python are immutable (non-
modifiable). So even though pi and e are real-world constants, you must not assign new val-
ues to them, because that would change their values. To help distinguish constants from
other variables, the style guide recommends naming your custom constants with all capital
letters.

Using the Currently Highlighted Function
As you navigate through the identifiers, if you wish to use a currently highlighted function,
simply start typing its arguments in parentheses. IPython then hides the autocompletion
list. If you need more information about the currently highlighted item, you can view its
docstring by typing a question mark (?) following the name and pressing Enter to view the
help documentation. The following shows the fabs function’s docstring:

The builtin_function_or_method shown above indicates that fabs is part of a Python
Standard Library module. Such modules are considered to be built into Python. In this
case, fabs is a built-in function from the math module.

In [3]: math.<Tab>
 acos() atan() copysign() e expm1()
 acosh() atan2() cos() erf() fabs()
 asin() atanh() cosh() erfc() factorial() >
 asinh() ceil() degrees() exp() floor()

In [4]: math.fabs?
Docstring:
fabs(x)

Return the absolute value of the float x.
Type: builtin_function_or_method

ptg27972259

4.9 Default Parameter Values 85

4.9 Default Parameter Values
When defining a function, you can specify that a parameter has a default parameter value.
When calling the function, if you omit the argument for a parameter with a default param-
eter value, the default value for that parameter is automatically passed. Let’s define a func-
tion rectangle_area with default parameter values:

You specify a default parameter value by following a parameter’s name with an = and a
value—in this case, the default parameter values are 2 and 3 for length and width, respec-
tively. Any parameters with default parameter values must appear in the parameter list to
the right of parameters that do not have defaults.

The following call to rectangle_area has no arguments, so IPython uses both default
parameter values as if you had called rectangle_area(2, 3):

The following call to rectangle_area has only one argument. Arguments are assigned to
parameters from left to right, so 10 is used as the length. The interpreter passes the default
parameter value 3 for the width as if you had called rectangle_area(10, 3):

The following call to rectangle_area has arguments for both length and width, so
IPython ignores the default parameter values:

4.10 Keyword Arguments
When calling functions, you can use keyword arguments to pass arguments in any order.
To demonstrate keyword arguments, we redefine the rectangle_area function—this
time without default parameter values:

Each keyword argument in a call has the form parametername=value. The following call
shows that the order of keyword arguments does not matter—they do not need to match
the corresponding parameters’ positions in the function definition:

In each function call, you must place keyword arguments after a function’s positional argu-
ments—that is, any arguments for which you do not specify the parameter name. Such
arguments are assigned to the function’s parameters left-to-right, based on the argument’s

In [1]: def rectangle_area(length=2, width=3):
 ...: """Return a rectangle's area."""
 ...: return length * width
 ...:

In [2]: rectangle_area()
Out[2]: 6

In [3]: rectangle_area(10)
Out[3]: 30

In [4]: rectangle_area(10, 5)
Out[4]: 50

In [1]: def rectangle_area(length, width):
 ...: """Return a rectangle's area."""
 ...: return length * width
 ...:

In [2]: rectangle_area(width=5, length=10)
Out[3]: 50

ptg27972259

86 Chapter 4 Functions

positions in the argument list. Keyword arguments are also helpful for improving the read-
ability of function calls, especially for functions with many arguments.

4.11 Arbitrary Argument Lists
Functions with arbitrary argument lists, such as built-in functions min and max, can
receive any number of arguments. Consider the following min call:

min(88, 75, 96, 55, 83)

The function’s documentation states that min has two required parameters (named arg1
and arg2) and an optional third parameter of the form *args, indicating that the function
can receive any number of additional arguments. The * before the parameter name tells
Python to pack any remaining arguments into a tuple that’s passed to the args parameter.
In the call above, parameter arg1 receives 88, parameter arg2 receives 75 and parameter
args receives the tuple (96, 55, 83).

Defining a Function with an Arbitrary Argument List
Let’s define an average function that can receive any number of arguments:

The parameter name args is used by convention, but you may use any identifier. If the
function has multiple parameters, the *args parameter must be the rightmost parameter.

Now, let’s call average several times with arbitrary argument lists of different lengths:

To calculate the average, divide the sum of the args tuple’s elements (returned by built-in
function sum) by the tuple’s number of elements (returned by built-in function len). Note
in our average definition that if the length of args is 0, a ZeroDivisionError occurs. In
the next chapter, you’ll see how to access a tuple’s elements without unpacking them.

Passing an Iterable’s Individual Elements as Function Arguments
You can unpack a tuple’s, list’s or other iterable’s elements to pass them as individual func-
tion arguments. The * operator, when applied to an iterable argument in a function call,
unpacks its elements. The following code creates a five-element grades list, then uses the
expression *grades to unpack its elements as average’s arguments:

The call shown above is equivalent to average(88, 75, 96, 55, 83).

In [1]: def average(*args):
 ...: return sum(args) / len(args)
 ...:

In [2]: average(5, 10)
Out[2]: 7.5

In [3]: average(5, 10, 15)
Out[3]: 10.0

In [4]: average(5, 10, 15, 20)
Out[4]: 12.5

In [5]: grades = [88, 75, 96, 55, 83]

In [6]: average(*grades)
Out[6]: 79.4

ptg27972259

4.12 Methods: Functions That Belong to Objects 87

4.12 Methods: Functions That Belong to Objects
A method is simply a function that you call on an object using the form

object_name.method_name(arguments)

For example, the following session creates the string variable s and assigns it the string
object 'Hello'. Then the session calls the object’s lower and upper methods, which pro-
duce new strings containing all-lowercase and all-uppercase versions of the original string,
leaving s unchanged:

The Python Standard Library reference at

https://docs.python.org/3/library/index.html

describes the methods of built-in types and the types in the Python Standard Library. In
the “Object-Oriented Programming” chapter, you’ll create custom types called classes and
define custom methods that you can call on objects of those classes.

4.13 Scope Rules
Each identifier has a scope that determines where you can use it in your program. For that
portion of the program, the identifier is said to be “in scope.”

Local Scope
A local variable’s identifier has local scope. It’s “in scope” only from its definition to the
end of the function’s block. It “goes out of scope” when the function returns to its caller.
So, a local variable can be used only inside the function that defines it.

Global Scope
Identifiers defined outside any function (or class) have global scope—these may include
functions, variables and classes. Variables with global scope are known as global variables.
Identifiers with global scope can be used in a .py file or interactive session anywhere after
they’re defined.

Accessing a Global Variable from a Function
You can access a global variable’s value inside a function:

In [1]: s = 'Hello'

In [2]: s.lower() # call lower method on string object s
Out[2]: 'hello'

In [3]: s.upper()
Out[3]: 'HELLO'

In [4]: s
Out[4]: 'Hello'

In [1]: x = 7

In [2]: def access_global():
 ...: print('x printed from access_global:', x)
 ...:

In [3]: access_global()
x printed from access_global: 7

https://docs.python.org/3/library/index.html

ptg27972259

88 Chapter 4 Functions

However, by default, you cannot modify a global variable in a function—when you first
assign a value to a variable in a function’s block, Python creates a new local variable:

In function try_to_modify_global’s block, the local x shadows the global x, making it
inaccessible in the scope of the function’s block. Snippet [6] shows that global variable x
still exists and has its original value (7) after function try_to_modify_global executes.

To modify a global variable in a function’s block, you must use a global statement to
declare that the variable is defined in the global scope:

Blocks vs. Suites
You’ve now defined function blocks and control statement suites. When you create a vari-
able in a block, it’s local to that block. However, when you create a variable in a control
statement’s suite, the variable’s scope depends on where the control statement is defined:

• If the control statement is in the global scope, then any variables defined in the
control statement have global scope.

• If the control statement is in a function’s block, then any variables defined in the
control statement have local scope.

We’ll continue our scope discussion in the “Object-Oriented Programming” chapter
when we introduce custom classes.

Shadowing Functions
In the preceding chapters, when summing values, we stored the sum in a variable named
total. The reason we did this is that sum is a built-in function. If you define a variable
named sum, it shadows the built-in function, making it inaccessible in your code. When
you execute the following assignment, Python binds the identifier sum to the int object
containing 15. At this point, the identifier sum no longer references the built-in function.
So, when you try to use sum as a function, a TypeError occurs:

In [4]: def try_to_modify_global():
 ...: x = 3.5
 ...: print('x printed from try_to_modify_global:', x)
 ...:

In [5]: try_to_modify_global()
x printed from try_to_modify_global: 3.5

In [6]: x
Out[6]: 7

In [7]: def modify_global():
 ...: global x
 ...: x = 'hello'
 ...: print('x printed from modify_global:', x)
 ...:

In [8]: modify_global()
x printed from modify_global: hello

In [9]: x
Out[9]: 'hello'

In [10]: sum = 10 + 5

ptg27972259

4.14 import: A Deeper Look 89

Statements at Global Scope
In the scripts you’ve seen so far, we’ve written some statements outside functions at the
global scope and some statements inside function blocks. Script statements at global scope
execute as soon as they’re encountered by the interpreter, whereas statements in a block
execute only when the function is called.

4.14 import: A Deeper Look
You’ve imported modules (such as math and random) with a statement like:

import module_name

then accessed their features via each module’s name and a dot (.). Also, you’ve imported
a specific identifier from a module (such as the decimal module’s Decimal type) with a
statement like:

from module_name import identifier

then used that identifier without having to precede it with the module name and a dot (.).

Importing Multiple Identifiers from a Module
Using the from…import statement you can import a comma-separated list of identifiers
from a module then use them in your code without having to precede them with the mod-
ule name and a dot (.):

Trying to use a function that’s not imported causes a NameError, indicating that the name
is not defined.

Caution: Avoid Wildcard Imports
You can import all identifiers defined in a module with a wildcard import of the form

from modulename import *

This makes all of the module’s identifiers available for use in your code. Importing a mod-
ule’s identifiers with a wildcard import can lead to subtle errors—it’s considered a danger-
ous practice that you should avoid. Consider the following snippets:

In [11]: sum
Out[11]: 15

In [12]: sum([10, 5])

TypeError Traceback (most recent call last)
<ipython-input-12-1237d97a65fb> in <module>()
----> 1 sum([10, 5])

TypeError: 'int' object is not callable

In [1]: from math import ceil, floor

In [2]: ceil(10.3)
Out[2]: 11

In [3]: floor(10.7)
Out[3]: 10

ptg27972259

90 Chapter 4 Functions

Initially, we assign the string 'hello' to a variable named e. After executing snippet [5]
though, the variable e is replaced, possibly by accident, with the math module’s constant
e, representing the mathematical floating-point value e.

Binding Names for Modules and Module Identifiers
Sometimes it’s helpful to import a module and use an abbreviation for it to simplify your
code. The import statement’s as clause allows you to specify the name used to reference
the module’s identifiers. For example, in Section 3.14 we could have imported the sta-
tistics module and accessed its mean function as follows:

As you’ll see in later chapters, import…as is frequently used to import Python libraries
with convenient abbreviations, like stats for the statistics module. As another exam-
ple, we’ll use the numpy module which typically is imported with

import numpy as np

Library documentation often mentions popular shorthand names.
Typically, when importing a module, you should use import or import…as state-

ments, then access the module through the module name or the abbreviation following
the as keyword, respectively. This ensures that you do not accidentally import an identi-
fier that conflicts with one in your code.

4.15 Passing Arguments to Functions: A Deeper Look
Let’s take a closer look at how arguments are passed to functions. In many programming
languages, there are two ways to pass arguments—pass-by-value and pass-by-reference
(sometimes called call-by-value and call-by-reference, respectively):

• With pass-by-value, the called function receives a copy of the argument’s value
and works exclusively with that copy. Changes to the function’s copy do not
affect the original variable’s value in the caller.

• With pass-by-reference, the called function can access the argument’s value in the
caller directly and modify the value if it’s mutable.

Python arguments are always passed by reference. Some people call this pass-by-object-
reference, because “everything in Python is an object.”3 When a function call provides an
argument, Python copies the argument object’s reference—not the object itself—into the

In [4]: e = 'hello'

In [5]: from math import *

In [6]: e
Out[6]: 2.718281828459045

In [7]: import statistics as stats

In [8]: grades = [85, 93, 45, 87, 93]

In [9]: stats.mean(grades)
Out[9]: 80.6

3. Even the functions you defined in this chapter and the classes (custom types) you’ll define in later
chapters are objects in Python.

ptg27972259

4.15 Passing Arguments to Functions: A Deeper Look 91

corresponding parameter. This is important for performance. Functions often manipulate
large objects—frequently copying them would consume large amounts of computer mem-
ory and significantly slow program performance.

Memory Addresses, References and “Pointers”
You interact with an object via a reference, which behind the scenes is that object’s address
(or location) in the computer’s memory—sometimes called a “pointer” in other languages.
After an assignment like

x = 7

the variable x does not actually contain the value 7. Rather, it contains a reference to an
object containing 7 stored elsewhere in memory. You might say that x “points to” (that is,
references) the object containing 7, as in the diagram below:

Built-In Function id and Object Identities
Let’s consider how we pass arguments to functions. First, let’s create the integer variable x
mentioned above—shortly we’ll use x as a function argument:

Now x refers to (or “points to”) the integer object containing 7. No two separate objects
can reside at the same address in memory, so every object in memory has a unique address.
Though we can’t see an object’s address, we can use the built-in id function to obtain a
unique int value which identifies only that object while it remains in memory (you’ll likely
get a different value when you run this on your computer):

The integer result of calling id is known as the object’s identity.4 No two objects in mem-
ory can have the same identity. We’ll use object identities to demonstrate that objects are
passed by reference.

Passing an Object to a Function
Let’s define a cube function that displays its parameter’s identity, then returns the param-
eter’s value cubed:

Next, let’s call cube with the argument x, which refers to the integer object containing 7:

In [1]: x = 7

In [2]: id(x)
Out[2]: 4350477840

4. According to the Python documentation, depending on the Python implementation you’re using, an
object’s identity may be the object’s actual memory address, but this is not required.

In [3]: def cube(number):
 ...: print('id(number):', id(number))
 ...: return number ** 3
 ...:

In [4]: cube(x)
id(number): 4350477840
Out[4]: 343

7
x

Variable Object

ptg27972259

92 Chapter 4 Functions

The identity displayed for cube’s parameter number—4350477840—is the same as that dis-
played for x previously. Since every object has a unique identity, both the argument x and
the parameter number refer to the same object while cube executes. So when function cube
uses its parameter number in its calculation, it gets the value of number from the original
object in the caller.

Testing Object Identities with the is Operator
You also can prove that the argument and the parameter refer to the same object with
Python’s is operator, which returns True if its two operands have the same identity:

Immutable Objects as Arguments
When a function receives as an argument a reference to an immutable (unmodifiable)
object—such as an int, float, string or tuple—even though you have direct access to
the original object in the caller, you cannot modify the original immutable object’s value.
To prove this, first let’s have cube display id(number) before and after assigning a new
object to the parameter number via an augmented assignment:

When we call cube(x), the first print statement shows that id(number) initially is the
same as id(x) in snippet [2]. Numeric values are immutable, so the statement

number **= 3

actually creates a new object containing the cubed value, then assigns that object’s reference
to parameter number. Recall that if there are no more references to the original object, it
will be garbage collected. Function cube’s second print statement shows the new object’s
identity. Object identities must be unique, so number must refer to a different object. To
show that x was not modified, we display its value and identity again:

Mutable Objects as Arguments
In the next chapter, we’ll show that when a reference to a mutable object like a list is passed
to a function, the function can modify the original object in the caller.

In [5]: def cube(number):
 ...: print('number is x:', number is x) # x is a global variable
 ...: return number ** 3
 ...:

In [6]: cube(x)
number is x: True
Out[6]: 343

In [7]: def cube(number):
 ...: print('id(number) before modifying number:', id(number))
 ...: number **= 3
 ...: print('id(number) after modifying number:', id(number))
 ...: return number
 ...:

In [8]: cube(x)
id(number) before modifying number: 4350477840
id(number) after modifying number: 4396653744
Out[8]: 343

In [9]: print(f'x = {x}; id(x) = {id(x)}')
x = 7; id(x) = 4350477840

ptg27972259

4.16 Recursion 93

4.16 Recursion
Let’s write a program to perform a famous mathematical calculation. Consider the factorial
of a positive integer n, which is written n! and pronounced “n factorial.” This is the product

n · (n – 1) · (n – 2) · … · 1

with 1! equal to 1 and 0! defined to be 1. For example, 5! is the product 5 · 4 · 3 · 2 · 1,
which is equal to 120.

Iterative Factorial Approach
You can calculate 5! iteratively with a for statement, as in:

Recursive Problem Solving
Recursive problem-solving approaches have several elements in common. When you call
a recursive function to solve a problem, it’s actually capable of solving only the simplest
case(s), or base case(s). If you call the function with a base case, it immediately returns a
result. If you call the function with a more complex problem, it typically divides the prob-
lem into two pieces—one that the function knows how to do and one that it does not
know how to do. To make recursion feasible, this latter piece must be a slightly simpler or
smaller version of the original problem. Because this new problem resembles the original
problem, the function calls a fresh copy of itself to work on the smaller problem—this is
referred to as a recursive call and is also called the recursion step. This concept of separat-
ing the problem into two smaller portions is a form of the divide-and-conquer approach
introduced earlier in the book.

The recursion step executes while the original function call is still active (i.e., it has
not finished executing). It can result in many more recursive calls as the function divides
each new subproblem into two conceptual pieces. For the recursion to eventually termi-
nate, each time the function calls itself with a simpler version of the original problem, the
sequence of smaller and smaller problems must converge on a base case. When the function
recognizes the base case, it returns a result to the previous copy of the function. A sequence
of returns ensues until the original function call returns the final result to the caller.

Recursive Factorial Approach
You can arrive at a recursive factorial representation by observing that n! can be written as:

n! = n · (n – 1)!

For example, 5! is equal to 5 · 4!, as in:

5! = 5 · 4 · 3 · 2 · 1
5! = 5 · (4 · 3 · 2 · 1)
5! = 5 · (4!)

In [1]: factorial = 1

In [2]: for number in range(5, 0, -1):
 ...: factorial *= number
 ...:

In [3]: factorial
Out[3]: 120

ptg27972259

94 Chapter 4 Functions

Visualizing Recursion
The evaluation of 5! would proceed as shown below. The left column shows how the suc-
cession of recursive calls proceeds until 1! (the base case) is evaluated to be 1, which termi-
nates the recursion. The right column shows from bottom to top the values returned from
each recursive call to its caller until the final value is calculated and returned.

Implementing a Recursive Factorial Function
The following session uses recursion to calculate and display the factorials of the integers
0 through 10:

Snippet [4]’s recursive function factorial first determines whether the terminating
condition number <= 1 is True. If this condition is True (the base case), factorial returns

In [4]: def factorial(number):
 ...: """Return factorial of number."""
 ...: if number <= 1:
 ...: return 1
 ...: return number * factorial(number - 1) # recursive call
 ...:

In [5]: for i in range(11):
 ...: print(f'{i}! = {factorial(i)}')
 ...:
0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800

(a) Sequence of recursive calls

5 * 4!

4 * 3!

3 * 2!

2 * 1!

5!

1

(b) Values returned from each recursive call

Final value = 120

5! = 5 * 24 = 120 is returned

4! = 4 * 6 = 24 is returned

3! = 3 * 2 = 6 is returned

2! = 2 * 1 = 2 is returned

1 returned

5 * 4!

4 * 3!

3 * 2!

2 * 1!

5!

1

ptg27972259

4.17 Functional-Style Programming 95

1 and no further recursion is necessary. If number is greater than 1, the second return state-
ment expresses the problem as the product of number and a recursive call to factorial that
evaluates factorial(number - 1). This is a slightly smaller problem than the original cal-
culation, factorial(number). Note that function factorial must receive a nonnegative
argument. We do not test for this case.

The loop in snippet [5] calls the factorial function for the values from 0 through
10. The output shows that factorial values grow quickly. Python does not limit the size of an
integer, unlike many other programming languages.

Indirect Recursion
A recursive function may call another function, which may, in turn, make a call back to
the recursive function. This is known as an indirect recursive call or indirect recursion.
For example, function A calls function B, which makes a call back to function A. This is
still recursion because the second call to function A is made while the first call to function
A is active. That is, the first call to function A has not yet finished executing (because it is
waiting on function B to return a result to it) and has not returned to function A’s original
caller.

Stack Overflow and Infinite Recursion
Of course, the amount of memory in a computer is finite, so only a certain amount of
memory can be used to store activation records on the function-call stack. If more recur-
sive function calls occur than can have their activation records stored on the stack, a fatal
error known as stack overflow occurs. This typically is the result of infinite recursion,
which can be caused by omitting the base case or writing the recursion step incorrectly so
that it does not converge on the base case. This error is analogous to the problem of an
infinite loop in an iterative (nonrecursive) solution.

4.17 Functional-Style Programming
Like other popular languages, such as Java and C#, Python is not a purely functional lan-
guage. Rather, it offers “functional-style” features that help you write code which is less
likely to contain errors, more concise and easier to read, debug and modify. Functional-
style programs also can be easier to parallelize to get better performance on today’s multi-
core processors. The chart below lists most of Python’s key functional-style programming
capabilities and shows in parentheses the chapters in which we initially cover many of
them.

Functional-style programming topics

avoiding side effects (4)
closures
declarative programming (4)
decorators (10)
dictionary comprehensions (6)
filter/map/reduce (5)
functools module
generator expressions (5)

generator functions
higher-order functions (5)
immutability (4)
internal iteration (4)
iterators (3)
itertools module (16)
lambda expressions (5)

lazy evaluation (5)
list comprehensions (5)
operator module (5, 11, 16)
pure functions (4)
range function (3, 4)
reductions (3, 5)
set comprehensions (6)

ptg27972259

96 Chapter 4 Functions

We cover most of these features throughout the book—many with code examples and
others from a literacy perspective. You’ve already used list, string and built-in function
range iterators with the for statement, and several reductions (functions sum, len, min and
max). We discuss declarative programming, immutability and internal iteration below.

What vs. How
As the tasks you perform get more complicated, your code can become harder to read,
debug and modify, and more likely to contain errors. Specifying how the code works can
become complex.

Functional-style programming lets you simply say what you want to do. It hides many
details of how to perform each task. Typically, library code handles the how for you. As
you’ll see, this can eliminate many errors.

Consider the for statement in many other programming languages. Typically, you
must specify all the details of counter-controlled iteration: a control variable, its initial
value, how to increment it and a loop-continuation condition that uses the control vari-
able to determine whether to continue iterating. This style of iteration is known as exter-
nal iteration and is error-prone. For example, you might provide an incorrect initializer,
increment or loop-continuation condition. External iteration mutates (that is, modifies)
the control variable, and the for statement’s suite often mutates other variables as well.
Every time you modify variables you could introduce errors. Functional-style program-
ming emphasizes immutability. That is, it avoids operations that modify variables’ values.
We’ll say more in the next chapter.

Python’s for statement and range function hide most counter-controlled iteration
details. You specify what values range should produce and the variable that should receive
each value as it’s produced. Function range knows how to produce those values. Similarly,
the for statement knows how to get each value from range and how to stop iterating when
there are no more values. Specifying what, but not how, is an important aspect of internal
iteration—a key functional-style programming concept.

The Python built-in functions sum, min and max each use internal iteration. To total
the elements of the list grades, you simply declare what you want to do—that is,
sum(grades). Function sum knows how to iterate through the list and add each element to
the running total. Stating what you want done rather than programming how to do it is
known as declarative programming.

Pure Functions
In pure functional programming language you focus on writing pure functions. A pure
function’s result depends only on the argument(s) you pass to it. Also, given a particular
argument (or arguments), a pure function always produces the same result. For example,
built-in function sum’s return value depends only on the iterable you pass to it. Given a list
[1, 2, 3], sum always returns 6 no matter how many times you call it. Also, a pure function
does not have side effects. For example, even if you pass a mutable list to a pure function,
the list will contain the same values before and after the function call. When you call the
pure function sum, it does not modify its argument.

In [1]: values = [1, 2, 3]

In [2]: sum(values)
Out[2]: 6

ptg27972259

4.18 Intro to Data Science: Measures of Dispersion 97

In the next chapter, we’ll continue using functional-style programming concepts.
Also, you’ll see that functions are objects that you can pass to other functions as data.

4.18 Intro to Data Science: Measures of Dispersion
In our discussion of descriptive statistics, we’ve considered the measures of central ten-
dency—mean, median and mode. These help us categorize typical values in a group—
such as the mean height of your classmates or the most frequently purchased car brand (the
mode) in a given country.

When we’re talking about a group, the entire group is called the population. Some-
times a population is quite large, such as the people likely to vote in the next U.S. presi-
dential election, which is a number in excess of 100,000,000 people. For practical reasons,
the polling organizations trying to predict who will become the next president work with
carefully selected small subsets of the population known as samples. Many of the polls in
the 2016 election had sample sizes of about 1000 people.

In this section, we continue discussing basic descriptive statistics. We introduce mea-
sures of dispersion (also called measures of variability) that help you understand how
spread out the values are. For example, in a class of students, there may be a bunch of stu-
dents whose height is close to the average, with smaller numbers of students who are con-
siderably shorter or taller.

For our purposes, we’ll calculate each measure of dispersion both by hand and with
functions from the module statistics, using the following population of 10 six-sided die
rolls:

1, 3, 4, 2, 6, 5, 3, 4, 5, 2

Variance
To determine the variance,5 we begin with the mean of these values—3.5. You obtain this
result by dividing the sum of the face values, 35, by the number of rolls, 10. Next, we sub-
tract the mean from every die value (this produces some negative results):

-2.5, -0.5, 0.5, -1.5, 2.5, 1.5, -0.5, 0.5, 1.5, -1.5

Then, we square each of these results (yielding only positives):

6.25, 0.25, 0.25, 2.25, 6.25, 2.25, 0.25, 0.25, 2.25, 2.25

In [3]: sum(values) # same call always returns same result
Out[3]: 6

In [4]: values
Out[5]: [1, 2, 3]

5. For simplicity, we’re calculating the population variance. There is a subtle difference between the pop-
ulation variance and the sample variance. Instead of dividing by n (the number of die rolls in our ex-
ample), sample variance divides by n – 1. The difference is pronounced for small samples and
becomes insignificant as the sample size increases. The statistics module provides the functions
pvariance and variance to calculate the population variance and sample variance, respectively.
Similarly, the statistics module provides the functions pstdev and stdev to calculate the popu-
lation standard deviation and sample standard deviation, respectively.

ptg27972259

98 Chapter 4 Functions

Finally, we calculate the mean of these squares, which is 2.25 (22.5 / 10)—this is the pop-
ulation variance. Squaring the difference between each die value and the mean of all die
values emphasizes outliers—the values that are farthest from the mean. As we get deeper
into data analytics, sometimes we’ll want to pay careful attention to outliers, and some-
times we’ll want to ignore them. The following code uses the statistics module’s
pvariance function to confirm our manual result:

Standard Deviation
The standard deviation is the square root of the variance (in this case, 1.5), which tones
down the effect of the outliers. The smaller the variance and standard deviation are, the
closer the data values are to the mean and the less overall dispersion (that is, spread) there
is between the values and the mean. The following code calculates the population stan-
dard deviation with the statistics module’s pstdev function, confirming our manual
result:

Passing the pvariance function’s result to the math module’s sqrt function confirms
our result of 1.5:

Advantage of Population Standard Deviation vs. Population Variance
Suppose you’ve recorded the March Fahrenheit temperatures in your area. You might have
31 numbers such as 19, 32, 28 and 35. The units for these numbers are degrees. When
you square your temperatures to calculate the population variance, the units of the popu-
lation variance become “degrees squared.” When you take the square root of the popula-
tion variance to calculate the population standard deviation, the units once again become
degrees, which are the same units as your temperatures.

4.19 Wrap-Up
In this chapter, we created custom functions. We imported capabilities from the random
and math modules. We introduced random-number generation and used it to simulate
rolling a six-sided die. We packed multiple values into tuples to return more than one
value from a function. We also unpacked a tuple to access its values. We discussed using
the Python Standard Library’s modules to avoid “reinventing the wheel.”

We created functions with default parameter values and called functions with key-
word arguments. We also defined functions with arbitrary argument lists. We called meth-
ods of objects. We discussed how an identifier’s scope determines where in your program
you can use it.

In [1]: import statistics

In [2]: statistics.pvariance([1, 3, 4, 2, 6, 5, 3, 4, 5, 2])
Out[2]: 2.25

In [3]: statistics.pstdev([1, 3, 4, 2, 6, 5, 3, 4, 5, 2])
Out[3]: 1.5

In [4]: import math

In [5]: math.sqrt(statistics.pvariance([1, 3, 4, 2, 6, 5, 3, 4, 5, 2]))
Out[5]: 1.5

ptg27972259

4.19 Wrap-Up 99

We presented more about importing modules. You saw that arguments are passed-by-
reference to functions, and how the function-call stack and stack frames support the func-
tion-call-and-return mechanism. We also presented a recursive function and began intro-
ducing Python’s functional-style programming capabilities. We’ve introduced basic list
and tuple capabilities over the last two chapters—in the next chapter, we’ll discuss them
in detail.

Finally, we continued our discussion of descriptive statistics by introducing measures
of dispersion—variance and standard deviation—and calculating them with functions
from the Python Standard Library’s statistics module.

For some types of problems, it’s useful to have functions call themselves. A recursive
function calls itself, either directly or indirectly through another function.

ptg27972259

This page intentionally left blank

ptg27972259

5
Sequences: Lists and Tuples

O b j e c t i v e s
In this chapter, you’ll:
■ Create and initialize lists and tuples.
■ Refer to elements of lists, tuples and strings.
■ Sort and search lists, and search tuples.
■ Pass lists and tuples to functions and methods.
■ Use list methods to perform common manipulations, such as

searching for items, sorting a list, inserting items and
removing items.

■ Use additional Python functional-style programming
capabilities, including lambdas and the functional-style
programming operations filter, map and reduce.

■ Use functional-style list comprehensions to create lists quickly
and easily, and use generator expressions to generate values
on demand.

■ Use two-dimensional lists.
■ Enhance your analysis and presentation skills with the

Seaborn and Matplotlib visualization libraries.

ptg27972259

102 Chapter 5 Sequences: Lists and Tuples
O

u
tl

in
e

5.1 Introduction
In the last two chapters, we briefly introduced the list and tuple sequence types for repre-
senting ordered collections of items. Collections are prepackaged data structures consist-
ing of related data items. Examples of collections include your favorite songs on your
smartphone, your contacts list, a library’s books, your cards in a card game, your favorite
sports team’s players, the stocks in an investment portfolio, patients in a cancer study and
a shopping list. Python’s built-in collections enable you to store and access data conve-
niently and efficiently. In this chapter, we discuss lists and tuples in more detail.

We’ll demonstrate common list and tuple manipulations. You’ll see that lists (which
are modifiable) and tuples (which are not) have many common capabilities. Each can hold
items of the same or different types. Lists can dynamically resize as necessary, growing and
shrinking at execution time. We discuss one-dimensional and two-dimensional lists.

In the preceding chapter, we demonstrated random-number generation and simu-
lated rolling a six-sided die. We conclude this chapter with our next Intro to Data Science
section, which uses the visualization libraries Seaborn and Matplotlib to interactively
develop static bar charts containing the die frequencies. In the next chapter’s Intro to Data
Science section, we’ll present an animated visualization in which the bar chart changes
dynamically as the number of die rolls increases—you’ll see the law of large numbers “in
action.”

5.2 Lists
Here, we discuss lists in more detail and explain how to refer to particular list elements.
Many of the capabilities shown in this section apply to all sequence types.

Creating a List
Lists typically store homogeneous data, that is, values of the same data type. Consider the
list c, which contains five integer elements:

5.1 Introduction
5.2 Lists
5.3 Tuples
5.4 Unpacking Sequences
5.5 Sequence Slicing
5.6 del Statement
5.7 Passing Lists to Functions
5.8 Sorting Lists
5.9 Searching Sequences

5.10 Other List Methods
5.11 Simulating Stacks with Lists

5.12 List Comprehensions
5.13 Generator Expressions
5.14 Filter, Map and Reduce
5.15 Other Sequence Processing

Functions
5.16 Two-Dimensional Lists
5.17 Intro to Data Science: Simulation and

Static Visualizations
5.17.1 Sample Graphs for 600, 60,000 and

6,000,000 Die Rolls
5.17.2 Visualizing Die-Roll Frequencies and

Percentages
5.18 Wrap-Up

In [1]: c = [-45, 6, 0, 72, 1543]

In [2]: c
Out[2]: [-45, 6, 0, 72, 1543]

ptg27972259

5.2 Lists 103

They also may store heterogeneous data, that is, data of many different types. For exam-
ple, the following list contains a student’s first name (a string), last name (a string), grade
point average (a float) and graduation year (an int):

['Mary', 'Smith', 3.57, 2022]

Accessing Elements of a List
You reference a list element by writing the list’s name followed by the element’s index (that
is, its position number) enclosed in square brackets ([], known as the subscription oper-
ator). The following diagram shows the list c labeled with its element names:

The first element in a list has the index 0. So, in the five-element list c, the first element is
named c[0] and the last is c[4]:

Determining a List’s Length
To get a list’s length, use the built-in len function:

Accessing Elements from the End of the List with Negative Indices
Lists also can be accessed from the end by using negative indices:

So, list c’s last element (c[4]), can be accessed with c[-1] and its first element with c[-5]:

Indices Must Be Integers or Integer Expressions
An index must be an integer or integer expression (or a slice, as we’ll soon see):

In [3]: c[0]
Out[3]: -45

In [4]: c[4]
Out[4]: 1543

In [5]: len(c)
Out[5]: 5

In [6]: c[-1]
Out[6]: 1543

In [7]: c[-5]
Out[7]: -45

In [8]: a = 1

In [9]: b = 2

Position number (2) of this
element within the sequence

Values of the
list’s elements

Names of the
list’s elements

-45 6 0 154372

c[0] c[1] c[2] c[4]c[3]

Element names
with negative indicies

Element names
with positive indices

-45 6 0 154372

c[-4]c[-5] c[-3] c[-1]c[-2]

c[0] c[1] c[2] c[4]c[3]

ptg27972259

104 Chapter 5 Sequences: Lists and Tuples

Using a non-integer index value causes a TypeError.

Lists Are Mutable
Lists are mutable—their elements can be modified:

You’ll soon see that you also can insert and delete elements, changing the list’s length.

Some Sequences Are Immutable
Python’s string and tuple sequences are immutable—they cannot be modified. You can
get the individual characters in a string, but attempting to assign a new value to one of the
characters causes a TypeError:

Attempting to Access a Nonexistent Element
Using an out-of-range list, tuple or string index causes an IndexError:

Using List Elements in Expressions
List elements may be used as variables in expressions:

Appending to a List with +=
Let’s start with an empty list [], then use a for statement and += to append the values 1
through 5 to the list—the list grows dynamically to accommodate each item:

In [10]: c[a + b]
Out[10]: 72

In [11]: c[4] = 17

In [12]: c
Out[12]: [-45, 6, 0, 72, 17]

In [13]: s = 'hello'

In [14]: s[0]
Out[14]: 'h'

In [15]: s[0] = 'H'

TypeError Traceback (most recent call last)
<ipython-input-15-812ef2514689> in <module>()
----> 1 s[0] = 'H'

TypeError: 'str' object does not support item assignment

In [16]: c[100]

IndexError Traceback (most recent call last)
<ipython-input-16-9a31ea1e1a13> in <module>()
----> 1 c[100]

IndexError: list index out of range

In [17]: c[0] + c[1] + c[2]
Out[17]: -39

In [18]: a_list = []

ptg27972259

5.2 Lists 105

When the left operand of += is a list, the right operand must be an iterable; otherwise, a
TypeError occurs. In snippet [19]’s suite, the square brackets around number create a one-
element list, which we append to a_list. If the right operand contains multiple elements,
+= appends them all. The following appends the characters of 'Python' to the list let-
ters:

If the right operand of += is a tuple, its elements also are appended to the list. Later in the
chapter, we’ll use the list method append to add items to a list.

Concatenating Lists with +
You can concatenate two lists, two tuples or two strings using the + operator. The result
is a new sequence of the same type containing the left operand’s elements followed by the
right operand’s elements. The original sequences are unchanged:

A TypeError occurs if the + operator’s operands are difference sequence types—for exam-
ple, concatenating a list and a tuple is an error.

Using for and range to Access List Indices and Values
List elements also can be accessed via their indices and the subscription operator ([]):

The function call range(len(concatenated_list)) produces a sequence of integers rep-
resenting concatenated_list’s indices (in this case, 0 through 4). When looping in this
manner, you must ensure that indices remain in range. Soon, we’ll show a safer way to
access element indices and values using built-in function enumerate.

In [19]: for number in range(1, 6):
 ...: a_list += [number]
 ...:

In [20]: a_list
Out[20]: [1, 2, 3, 4, 5]

In [21]: letters = []

In [22]: letters += 'Python'

In [23]: letters
Out[23]: ['P', 'y', 't', 'h', 'o', 'n']

In [24]: list1 = [10, 20, 30]

In [25]: list2 = [40, 50]

In [26]: concatenated_list = list1 + list2

In [27]: concatenated_list
Out[27]: [10, 20, 30, 40, 50]

In [28]: for i in range(len(concatenated_list)):
 ...: print(f'{i}: {concatenated_list[i]}')
 ...:
0: 10
1: 20
2: 30
3: 40
4: 50

ptg27972259

106 Chapter 5 Sequences: Lists and Tuples

Comparison Operators
You can compare entire lists element-by-element using comparison operators:

5.3 Tuples
As discussed in the preceding chapter, tuples are immutable and typically store heteroge-
neous data, but the data can be homogeneous. A tuple’s length is its number of elements
and cannot change during program execution.

Creating Tuples
To create an empty tuple, use empty parentheses:

Recall that you can pack a tuple by separating its values with commas:

When you output a tuple, Python always displays its contents in parentheses. You may
surround a tuple’s comma-separated list of values with optional parentheses:

In [29]: a = [1, 2, 3]

In [30]: b = [1, 2, 3]

In [31]: c = [1, 2, 3, 4]

In [32]: a == b # True: corresponding elements in both are equal
Out[32]: True

In [33]: a == c # False: a and c have different elements and lengths
Out[33]: False

In [34]: a < c # True: a has fewer elements than c
Out[34]: True

In [35]: c >= b # True: elements 0-2 are equal but c has more elements
Out[35]: True

In [1]: student_tuple = ()

In [2]: student_tuple
Out[2]: ()

In [3]: len(student_tuple)
Out[3]: 0

In [4]: student_tuple = 'John', 'Green', 3.3

In [5]: student_tuple
Out[5]: ('John', 'Green', 3.3)

In [6]: len(student_tuple)
Out[6]: 3

In [7]: another_student_tuple = ('Mary', 'Red', 3.3)

In [8]: another_student_tuple
Out[8]: ('Mary', 'Red', 3.3)

ptg27972259

5.3 Tuples 107

The following code creates a one-element tuple:

The comma (,) that follows the string 'red' identifies a_singleton_tuple as a tuple—
the parentheses are optional. If the comma were omitted, the parentheses would be redun-
dant, and a_singleton_tuple would simply refer to the string 'red' rather than a tuple.

Accessing Tuple Elements
A tuple’s elements, though related, are often of multiple types. Usually, you do not iterate
over them. Rather, you access each individually. Like list indices, tuple indices start at 0.
The following code creates time_tuple representing an hour, minute and second, displays
the tuple, then uses its elements to calculate the number of seconds since midnight—note
that we perform a different operation with each value in the tuple:

Assigning a value to a tuple element causes a TypeError.

Adding Items to a String or Tuple
As with lists, the += augmented assignment statement can be used with strings and tuples,
even though they’re immutable. In the following code, after the two assignments, tuple1
and tuple2 refer to the same tuple object:

Concatenating the tuple (40, 50) to tuple1 creates a new tuple, then assigns a reference
to it to the variable tuple1—tuple2 still refers to the original tuple:

For a string or tuple, the item to the right of += must be a string or tuple, respectively—
mixing types causes a TypeError.

In [9]: a_singleton_tuple = ('red',) # note the comma

In [10]: a_singleton_tuple
Out[10]: ('red',)

In [11]: time_tuple = (9, 16, 1)

In [12]: time_tuple
Out[12]: (9, 16, 1)

In [13]: time_tuple[0] * 3600 + time_tuple[1] * 60 + time_tuple[2]
Out[13]: 33361

In [14]: tuple1 = (10, 20, 30)

In [15]: tuple2 = tuple1

In [16]: tuple2
Out[16]: (10, 20, 30)

In [17]: tuple1 += (40, 50)

In [18]: tuple1
Out[18]: (10, 20, 30, 40, 50)

In [19]: tuple2
Out[19]: (10, 20, 30)

ptg27972259

108 Chapter 5 Sequences: Lists and Tuples

Appending Tuples to Lists
You can use += to append a tuple to a list:

Tuples May Contain Mutable Objects
Let’s create a student_tuple with a first name, last name and list of grades:

Even though the tuple is immutable, its list element is mutable:

In the double-subscripted name student_tuple[2][1], Python views student_tuple[2] as
the element of the tuple containing the list [98, 75, 87], then uses [1] to access the list
element containing 75. The assignment in snippet [24] replaces that grade with 85.

5.4 Unpacking Sequences
The previous chapter introduced tuple unpacking. You can unpack any sequence’s ele-
ments by assigning the sequence to a comma-separated list of variables. A ValueError
occurs if the number of variables to the left of the assignment symbol is not identical to
the number of elements in the sequence on the right:

The following code unpacks a string, a list and a sequence produced by range:

In [20]: numbers = [1, 2, 3, 4, 5]

In [21]: numbers += (6, 7)

In [22]: numbers
Out[22]: [1, 2, 3, 4, 5, 6, 7]

In [23]: student_tuple = ('Amanda', 'Blue', [98, 75, 87])

In [24]: student_tuple[2][1] = 85

In [25]: student_tuple
Out[25]: ('Amanda', 'Blue', [98, 85, 87])

In [1]: student_tuple = ('Amanda', [98, 85, 87])

In [2]: first_name, grades = student_tuple

In [3]: first_name
Out[3]: 'Amanda'

In [4]: grades
Out[4]: [98, 85, 87]

In [5]: first, second = 'hi'

In [6]: print(f'{first} {second}')
h i

In [7]: number1, number2, number3 = [2, 3, 5]

In [8]: print(f'{number1} {number2} {number3}')
2 3 5

In [9]: number1, number2, number3 = range(10, 40, 10)

In [10]: print(f'{number1} {number2} {number3}')
10 20 30

ptg27972259

5.4 Unpacking Sequences 109

Swapping Values Via Packing and Unpacking
You can swap two variables’ values using sequence packing and unpacking:

Accessing Indices and Values Safely with Built-in Function enumerate
Earlier, we called range to produce a sequence of index values, then accessed list elements
in a for loop using the index values and the subscription operator ([]). This is error-prone
because you could pass the wrong arguments to range. If any value produced by range is
an out-of-bounds index, using it as an index causes an IndexError.

The preferred mechanism for accessing an element’s index and value is the built-in
function enumerate. This function receives an iterable and creates an iterator that, for each
element, returns a tuple containing the element’s index and value. The following code uses
the built-in function list to create a list containing enumerate’s results:

Similarly the built-in function tuple creates a tuple from a sequence:

The following for loop unpacks each tuple returned by enumerate into the variables
index and value and displays them:

Creating a Primitive Bar Chart
The following script creates a primitive bar chart where each bar’s length is made of aster-
isks (*) and is proportional to the list’s corresponding element value. We use the function
enumerate to access the list’s indices and values safely. To run this example, change to this
chapter’s ch05 examples folder, then enter:

ipython fig05_01.py

or, if you’re in IPython already, use the command:

run fig05_01.py

In [11]: number1 = 99

In [12]: number2 = 22

In [13]: number1, number2 = (number2, number1)

In [14]: print(f'number1 = {number1}; number2 = {number2}')
number1 = 22; number2 = 99

In [15]: colors = ['red', 'orange', 'yellow']

In [16]: list(enumerate(colors))
Out[16]: [(0, 'red'), (1, 'orange'), (2, 'yellow')]

In [17]: tuple(enumerate(colors))
Out[17]: ((0, 'red'), (1, 'orange'), (2, 'yellow'))

In [18]: for index, value in enumerate(colors):
 ...: print(f'{index}: {value}')
 ...:
0: red
1: orange
2: yellow

ptg27972259

110 Chapter 5 Sequences: Lists and Tuples

The for statement uses enumerate to get each element’s index and value, then dis-
plays a formatted line containing the index, the element value and the corresponding bar
of asterisks. The expression

"*" * value

creates a string consisting of value asterisks. When used with a sequence, the multiplica-
tion operator (*) repeats the sequence—in this case, the string "*"—value times. Later in
this chapter, we’ll use the open-source Seaborn and Matplotlib libraries to display a
publication-quality bar chart visualization.

5.5 Sequence Slicing
You can slice sequences to create new sequences of the same type containing subsets of the
original elements. Slice operations can modify mutable sequences—those that do not
modify a sequence work identically for lists, tuples and strings.

Specifying a Slice with Starting and Ending Indices
Let’s create a slice consisting of the elements at indices 2 through 5 of a list:

The slice copies elements from the starting index to the left of the colon (2) up to, but not
including, the ending index to the right of the colon (6). The original list is not modified.

Specifying a Slice with Only an Ending Index
If you omit the starting index, 0 is assumed. So, the slice numbers[:6] is equivalent to the
slice numbers[0:6]:

1 # fig05_01.py
2 """Displaying a bar chart"""
3 numbers = [19, 3, 15, 7, 11]
4
5 print('\nCreating a bar chart from numbers:')
6 print(f'Index{"Value":>8} Bar')
7
8 for index, value in enumerate(numbers):
9 print(f'{index:>5}{value:>8} {"*" * value}')

Creating a bar chart from numbers:
Index Value Bar
 0 19 *******************
 1 3 ***
 2 15 ***************
 3 7 *******
 4 11 ***********

In [1]: numbers = [2, 3, 5, 7, 11, 13, 17, 19]

In [2]: numbers[2:6]
Out[2]: [5, 7, 11, 13]

In [3]: numbers[:6]
Out[3]: [2, 3, 5, 7, 11, 13]

ptg27972259

5.5 Sequence Slicing 111

Specifying a Slice with Only a Starting Index
If you omit the ending index, Python assumes the sequence’s length (8 here), so snippet
[5]’s slice contains the elements of numbers at indices 6 and 7:

Specifying a Slice with No Indices
Omitting both the start and end indices copies the entire sequence:

Though slices create new objects, slices make shallow copies of the elements—that is, they
copy the elements’ references but not the objects they point to. So, in the snippet above,
the new list’s elements refer to the same objects as the original list’s elements, rather than
to separate copies. In the “Array-Oriented Programming with NumPy” chapter, we’ll
explain deep copying, which actually copies the referenced objects themselves, and we’ll
point out when deep copying is preferred.

Slicing with Steps
The following code uses a step of 2 to create a slice with every other element of numbers:

We omitted the start and end indices, so 0 and len(numbers) are assumed, respectively.

Slicing with Negative Indices and Steps
You can use a negative step to select slices in reverse order. The following code concisely
creates a new list in reverse order:

This is equivalent to:

Modifying Lists Via Slices
You can modify a list by assigning to a slice of it—the rest of the list is unchanged. The
following code replaces numbers’ first three elements, leaving the rest unchanged:

In [4]: numbers[0:6]
Out[4]: [2, 3, 5, 7, 11, 13]

In [5]: numbers[6:]
Out[5]: [17, 19]

In [6]: numbers[6:len(numbers)]
Out[6]: [17, 19]

In [7]: numbers[:]
Out[7]: [2, 3, 5, 7, 11, 13, 17, 19]

In [8]: numbers[::2]
Out[8]: [2, 5, 11, 17]

In [9]: numbers[::-1]
Out[9]: [19, 17, 13, 11, 7, 5, 3, 2]

In [10]: numbers[-1:-9:-1]
Out[10]: [19, 17, 13, 11, 7, 5, 3, 2]

In [11]: numbers[0:3] = ['two', 'three', 'five']

In [12]: numbers
Out[12]: ['two', 'three', 'five', 7, 11, 13, 17, 19]

ptg27972259

112 Chapter 5 Sequences: Lists and Tuples

The following deletes only the first three elements of numbers by assigning an empty
list to the three-element slice:

The following assigns a list’s elements to a slice of every other element of numbers:

Let’s delete all the elements in numbers, leaving the existing list empty:

Deleting numbers’ contents (snippet [19]) is different from assigning numbers a new
empty list [] (snippet [22]). To prove this, we display numbers’ identity after each oper-
ation. The identities are different, so they represent separate objects in memory:

When you assign a new object to a variable (as in snippet [21]), the original object will be
garbage collected if no other variables refer to it.

5.6 del Statement
The del statement also can be used to remove elements from a list and to delete variables
from the interactive session. You can remove the element at any valid index or the ele-
ment(s) from any valid slice.

Deleting the Element at a Specific List Index
Let’s create a list, then use del to remove its last element:

In [13]: numbers[0:3] = []

In [14]: numbers
Out[14]: [7, 11, 13, 17, 19]

In [15]: numbers = [2, 3, 5, 7, 11, 13, 17, 19]

In [16]: numbers[::2] = [100, 100, 100, 100]

In [17]: numbers
Out[17]: [100, 3, 100, 7, 100, 13, 100, 19]

In [18]: id(numbers)
Out[18]: 4434456648

In [19]: numbers[:] = []

In [20]: numbers
Out[20]: []

In [21]: id(numbers)
Out[21]: 4434456648

In [22]: numbers = []

In [23]: numbers
Out[23]: []

In [24]: id(numbers)
Out[24]: 4406030920

In [1]: numbers = list(range(0, 10))

In [2]: numbers
Out[2]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

ptg27972259

5.7 Passing Lists to Functions 113

Deleting a Slice from a List
The following deletes the list’s first two elements:

The following uses a step in the slice to delete every other element from the entire list:

Deleting a Slice Representing the Entire List
The following code deletes all of the list’s elements:

Deleting a Variable from the Current Session
The del statement can delete any variable. Let’s delete numbers from the interactive ses-
sion, then attempt to display the variable’s value, causing a NameError:

5.7 Passing Lists to Functions
In the last chapter, we mentioned that all objects are passed by reference and demonstrated
passing an immutable object as a function argument. Here, we discuss references further
by examining what happens when a program passes a mutable list object to a function.

Passing an Entire List to a Function
Consider the function modify_elements, which receives a reference to a list and multiplies
each of the list’s element values by 2:

In [3]: del numbers[-1]

In [4]: numbers
Out[4]: [0, 1, 2, 3, 4, 5, 6, 7, 8]

In [5]: del numbers[0:2]

In [6]: numbers
Out[6]: [2, 3, 4, 5, 6, 7, 8]

In [7]: del numbers[::2]

In [8]: numbers
Out[8]: [3, 5, 7]

In [9]: del numbers[:]

In [10]: numbers
Out[10]: []

In [11]: del numbers

In [12]: numbers

NameError Traceback (most recent call last)
<ipython-input-12-426f8401232b> in <module>()
----> 1 numbers

NameError: name 'numbers' is not defined

ptg27972259

114 Chapter 5 Sequences: Lists and Tuples

Function modify_elements’ items parameter receives a reference to the original list, so the
statement in the loop’s suite modifies each element in the original list object.

Passing a Tuple to a Function
When you pass a tuple to a function, attempting to modify the tuple’s immutable elements
results in a TypeError:

Recall that tuples may contain mutable objects, such as lists. Those objects still can be
modified when a tuple is passed to a function.

A Note Regarding Tracebacks
The previous traceback shows the two snippets that led to the TypeError. The first is snip-
pet [7]’s function call. The second is snippet [1]’s function definition. Line numbers pre-
cede each snippet’s code. We’ve demonstrated mostly single-line snippets. When an
exception occurs in such a snippet, it’s always preceded by ----> 1, indicating that line 1
(the snippet’s only line) caused the exception. Multiline snippets like the definition of
modify_elements show consecutive line numbers starting at 1. The notation ----> 4
above indicates that the exception occurred in line 4 of modify_elements. No matter how
long the traceback is, the last line of code with ----> caused the exception.

In [1]: def modify_elements(items):
 ...: """"Multiplies all element values in items by 2."""
 ...: for i in range(len(items)):
 ...: items[i] *= 2
 ...:

In [2]: numbers = [10, 3, 7, 1, 9]

In [3]: modify_elements(numbers)

In [4]: numbers
Out[4]: [20, 6, 14, 2, 18]

In [5]: numbers_tuple = (10, 20, 30)

In [6]: numbers_tuple
Out[6]: (10, 20, 30)

In [7]: modify_elements(numbers_tuple)

TypeError Traceback (most recent call last)
<ipython-input-7-9339741cd595> in <module>()
----> 1 modify_elements(numbers_tuple)

<ipython-input-1-27acb8f8f44c> in modify_elements(items)
 2 """"Multiplies all element values in items by 2."""
 3 for i in range(len(items)):
----> 4 items[i] *= 2
 5
 6

TypeError: 'tuple' object does not support item assignment

ptg27972259

5.8 Sorting Lists 115

5.8 Sorting Lists
Sorting enables you to arrange data either in ascending or descending order.

Sorting a List in Ascending Order
List method sort modifies a list to arrange its elements in ascending order:

Sorting a List in Descending Order
To sort a list in descending order, call list method sort with the optional keyword argu-
ment reverse set to True (False is the default):

Built-In Function sorted
Built-in function sorted returns a new list containing the sorted elements of its argument
sequence—the original sequence is unmodified. The following code demonstrates function
sorted for a list, a string and a tuple:

In [1]: numbers = [10, 3, 7, 1, 9, 4, 2, 8, 5, 6]

In [2]: numbers.sort()

In [3]: numbers
Out[3]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

In [4]: numbers.sort(reverse=True)

In [5]: numbers
Out[5]: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

In [6]: numbers = [10, 3, 7, 1, 9, 4, 2, 8, 5, 6]

In [7]: ascending_numbers = sorted(numbers)

In [8]: ascending_numbers
Out[8]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

In [9]: numbers
Out[9]: [10, 3, 7, 1, 9, 4, 2, 8, 5, 6]

In [10]: letters = 'fadgchjebi'

In [11]: ascending_letters = sorted(letters)

In [12]: ascending_letters
Out[12]: ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

In [13]: letters
Out[13]: 'fadgchjebi'

In [14]: colors = ('red', 'orange', 'yellow', 'green', 'blue')

In [15]: ascending_colors = sorted(colors)

In [16]: ascending_colors
Out[16]: ['blue', 'green', 'orange', 'red', 'yellow']

In [17]: colors
Out[17]: ('red', 'orange', 'yellow', 'green', 'blue')

ptg27972259

116 Chapter 5 Sequences: Lists and Tuples

Use the optional keyword argument reverse with the value True to sort the elements in
descending order.

5.9 Searching Sequences
Often, you’ll want to determine whether a sequence (such as a list, tuple or string) contains
a value that matches a particular key value. Searching is the process of locating a key.

List Method index
List method index takes as an argument a search key—the value to locate in the list—then
searches through the list from index 0 and returns the index of the first element that
matches the search key:

A ValueError occurs if the value you’re searching for is not in the list.

Specifying the Starting Index of a Search
Using method index’s optional arguments, you can search a subset of a list’s elements. You
can use *= to multiply a sequence—that is, append a sequence to itself multiple times. After
the following snippet, numbers contains two copies of the original list’s contents:

The following code searches the updated list for the value 5 starting from index 7 and
continuing through the end of the list:

Specifying the Starting and Ending Indices of a Search
Specifying the starting and ending indices causes index to search from the starting index
up to but not including the ending index location. The call to index in snippet [5]:

numbers.index(5, 7)

assumes the length of numbers as its optional third argument and is equivalent to:

numbers.index(5, 7, len(numbers))

The following looks for the value 7 in the range of elements with indices 0 through 3:

Operators in and not in
Operator in tests whether its right operand’s iterable contains the left operand’s value:

In [1]: numbers = [3, 7, 1, 4, 2, 8, 5, 6]

In [2]: numbers.index(5)
Out[2]: 6

In [3]: numbers *= 2

In [4]: numbers
Out[4]: [3, 7, 1, 4, 2, 8, 5, 6, 3, 7, 1, 4, 2, 8, 5, 6]

In [5]: numbers.index(5, 7)
Out[5]: 14

In [6]: numbers.index(7, 0, 4)
Out[6]: 1

In [7]: 1000 in numbers
Out[7]: False

ptg27972259

5.10 Other List Methods 117

Similarly, operator not in tests whether its right operand’s iterable does not contain the
left operand’s value:

Using Operator in to Prevent a ValueError
You can use the operator in to ensure that calls to method index do not result in ValueEr-
rors for search keys that are not in the corresponding sequence:

Built-In Functions any and all
Sometimes you simply need to know whether any item in an iterable is True or whether
all the items are True. The built-in function any returns True if any item in its iterable
argument is True. The built-in function all returns True if all items in its iterable argu-
ment are True. Recall that nonzero values are True and 0 is False. Non-empty iterable
objects also evaluate to True, whereas any empty iterable evaluates to False. Functions any
and all are additional examples of internal iteration in functional-style programming.

5.10 Other List Methods
Lists also have methods that add and remove elements. Consider the list color_names:

Inserting an Element at a Specific List Index
Method insert adds a new item at a specified index. The following inserts 'red' at index
0:

Adding an Element to the End of a List
You can add a new item to the end of a list with method append:

In [8]: 5 in numbers
Out[8]: True

In [9]: 1000 not in numbers
Out[9]: True

In [10]: 5 not in numbers
Out[10]: False

In [11]: key = 1000

In [12]: if key in numbers:
 ...: print(f'found {key} at index {numbers.index(search_key)}')
 ...: else:
 ...: print(f'{key} not found')
 ...:
1000 not found

In [1]: color_names = ['orange', 'yellow', 'green']

In [2]: color_names.insert(0, 'red')

In [3]: color_names
Out[3]: ['red', 'orange', 'yellow', 'green']

In [4]: color_names.append('blue')

In [5]: color_names
Out[5]: ['red', 'orange', 'yellow', 'green', 'blue']

ptg27972259

118 Chapter 5 Sequences: Lists and Tuples

Adding All the Elements of a Sequence to the End of a List
Use list method extend to add all the elements of another sequence to the end of a list:

This is the equivalent of using +=. The following code adds all the characters of a string
then all the elements of a tuple to a list:

Rather than creating a temporary variable, like t, to store a tuple before appending it
to a list, you might want to pass a tuple directly to extend. In this case, the tuple’s paren-
theses are required, because extend expects one iterable argument:

A TypeError occurs if you omit the required parentheses.

Removing the First Occurrence of an Element in a List
Method remove deletes the first element with a specified value—a ValueError occurs if
remove’s argument is not in the list:

Emptying a List
To delete all the elements in a list, call method clear:

This is the equivalent of the previously shown slice assignment

color_names[:] = []

In [6]: color_names.extend(['indigo', 'violet'])

In [7]: color_names
Out[7]: ['red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'violet']

In [8]: sample_list = []

In [9]: s = 'abc'

In [10]: sample_list.extend(s)

In [11]: sample_list
Out[11]: ['a', 'b', 'c']

In [12]: t = (1, 2, 3)

In [13]: sample_list.extend(t)

In [14]: sample_list
Out[14]: ['a', 'b', 'c', 1, 2, 3]

In [15]: sample_list.extend((4, 5, 6)) # note the extra parentheses

In [16]: sample_list
Out[16]: ['a', 'b', 'c', 1, 2, 3, 4, 5, 6]

In [17]: color_names.remove('green')

In [18]: color_names
Out[18]: ['red', 'orange', 'yellow', 'blue', 'indigo', 'violet']

In [19]: color_names.clear()

In [20]: color_names
Out[20]: []

ptg27972259

5.11 Simulating Stacks with Lists 119

Counting the Number of Occurrences of an Item
List method count searches for its argument and returns the number of times it is found:

Reversing a List’s Elements
List method reverse reverses the contents of a list in place, rather than creating a reversed
copy, as we did with a slice previously:

Copying a List
List method copy returns a new list containing a shallow copy of the original list:

This is equivalent to the previously demonstrated slice operation:

copied_list = color_names[:]

5.11 Simulating Stacks with Lists
The preceding chapter introduced the function-call stack. Python does not have a built-in
stack type, but you can think of a stack as a constrained list. You push using list method
append, which adds a new element to the end of the list. You pop using list method pop
with no arguments, which removes and returns the item at the end of the list.

Let’s create an empty list called stack, push (append) two strings onto it, then pop the
strings to confirm they’re retrieved in last-in, first-out (LIFO) order:

In [21]: responses = [1, 2, 5, 4, 3, 5, 2, 1, 3, 3,
 ...: 1, 4, 3, 3, 3, 2, 3, 3, 2, 2]
 ...:

In [22]: for i in range(1, 6):
 ...: print(f'{i} appears {responses.count(i)} times in responses')
 ...:
1 appears 3 times in responses
2 appears 5 times in responses
3 appears 8 times in responses
4 appears 2 times in responses
5 appears 2 times in responses

In [23]: color_names = ['red', 'orange', 'yellow', 'green', 'blue']

In [24]: color_names.reverse()

In [25]: color_names
Out[25]: ['blue', 'green', 'yellow', 'orange', 'red']

In [26]: copied_list = color_names.copy()

In [27]: copied_list
Out[27]: ['blue', 'green', 'yellow', 'orange', 'red']

In [1]: stack = []

In [2]: stack.append('red')

In [3]: stack
Out[3]: ['red']

In [4]: stack.append('green')

ptg27972259

120 Chapter 5 Sequences: Lists and Tuples

For each pop snippet, the value that pop removes and returns is displayed. Popping from
an empty stack causes an IndexError, just like accessing a nonexistent list element with
[]. To prevent an IndexError, ensure that len(stack) is greater than 0 before calling pop.
You can run out of memory if you keep pushing items faster than you pop them.

You also can use a list to simulate another popular collection called a queue in which
you insert at the back and delete from the front. Items are retrieved from queues in first-
in, first-out (FIFO) order.

5.12 List Comprehensions
Here, we continue discussing functional-style features with list comprehensions—a concise
and convenient notation for creating new lists. List comprehensions can replace many for
statements that iterate over existing sequences and create new lists, such as:

Using a List Comprehension to Create a List of Integers
We can accomplish the same task in a single line of code with a list comprehension:

In [5]: stack
Out[5]: ['red', 'green']

In [6]: stack.pop()
Out[6]: 'green'

In [7]: stack
Out[7]: ['red']

In [8]: stack.pop()
Out[8]: 'red'

In [9]: stack
Out[9]: []

In [10]: stack.pop()

IndexError Traceback (most recent call last)
<ipython-input-10-50ea7ec13fbe> in <module>()
----> 1 stack.pop()

IndexError: pop from empty list

In [1]: list1 = []

In [2]: for item in range(1, 6):
 ...: list1.append(item)
 ...:

In [3]: list1
Out[3]: [1, 2, 3, 4, 5]

In [4]: list2 = [item for item in range(1, 6)]

In [5]: list2
Out[5]: [1, 2, 3, 4, 5]

ptg27972259

5.13 Generator Expressions 121

Like snippet [2]’s for statement, the list comprehension’s for clause

for item in range(1, 6)

iterates over the sequence produced by range(1, 6). For each item, the list comprehen-
sion evaluates the expression to the left of the for clause and places the expression’s value
(in this case, the item itself) in the new list. Snippet [4]’s particular comprehension could
have been expressed more concisely using the function list:

list2 = list(range(1, 6))

Mapping: Performing Operations in a List Comprehension’s Expression
A list comprehension’s expression can perform tasks, such as calculations, that map ele-
ments to new values (possibly of different types). Mapping is a common functional-style
programming operation that produces a result with the same number of elements as the
original data being mapped. The following comprehension maps each value to its cube
with the expression item ** 3:

Filtering: List Comprehensions with if Clauses
Another common functional-style programming operation is filtering elements to select
only those that match a condition. This typically produces a list with fewer elements than
the data being filtered. To do this in a list comprehension, use the if clause. The following
includes in list4 only the even values produced by the for clause:

List Comprehension That Processes Another List’s Elements
The for clause can process any iterable. Let’s create a list of lowercase strings and use a list
comprehension to create a new list containing their uppercase versions:

5.13 Generator Expressions
A generator expression is similar to a list comprehension, but creates an iterable generator
object that produces values on demand. This is known as lazy evaluation. List comprehen-
sions use greedy evaluation—they create lists immediately when you execute them. For
large numbers of items, creating a list can take substantial memory and time. So generator

In [6]: list3 = [item ** 3 for item in range(1, 6)]

In [7]: list3
Out[7]: [1, 8, 27, 64, 125]

In [8]: list4 = [item for item in range(1, 11) if item % 2 == 0]

In [9]: list4
Out[9]: [2, 4, 6, 8, 10]

In [10]: colors = ['red', 'orange', 'yellow', 'green', 'blue']

In [11]: colors2 = [item.upper() for item in colors]

In [12]: colors2
Out[12]: ['RED', 'ORANGE', 'YELLOW', 'GREEN', 'BLUE']

In [13]: colors
Out[13]: ['red', 'orange', 'yellow', 'green', 'blue']

ptg27972259

122 Chapter 5 Sequences: Lists and Tuples

expressions can reduce your program’s memory consumption and improve performance if
the whole list is not needed at once.

Generator expressions have the same capabilities as list comprehensions, but you
define them in parentheses instead of square brackets. The generator expression in snippet
[2] squares and returns only the odd values in numbers:

To show that a generator expression does not create a list, let’s assign the preceding
snippet’s generator expression to a variable and evaluate the variable:

The text "generator object <genexpr>" indicates that square_of_odds is a generator
object that was created from a generator expression (genexpr).

5.14 Filter, Map and Reduce
The preceding section introduced several functional-style features—list comprehensions,
filtering and mapping. Here we demonstrate the built-in filter and map functions for fil-
tering and mapping, respectively. We continue discussing reductions in which you process
a collection of elements into a single value, such as their count, total, product, average,
minimum or maximum.

Filtering a Sequence’s Values with the Built-In filter Function
Let’s use built-in function filter to obtain the odd values in numbers:

Like data, Python functions are objects that you can assign to variables, pass to other func-
tions and return from functions. Functions that receive other functions as arguments are
a functional-style capability called higher-order functions. For example, filter’s first
argument must be a function that receives one argument and returns True if the value
should be included in the result. The function is_odd returns True if its argument is odd.
The filter function calls is_odd once for each value in its second argument’s iterable
(numbers). Higher-order functions may also return a function as a result.

In [1]: numbers = [10, 3, 7, 1, 9, 4, 2, 8, 5, 6]

In [2]: for value in (x ** 2 for x in numbers if x % 2 != 0):
 ...: print(value, end=' ')
 ...:
9 49 1 81 25

In [3]: squares_of_odds = (x ** 2 for x in numbers if x % 2 != 0)

In [3]: squares_of_odds
Out[3]: <generator object <genexpr> at 0x1085e84c0>

In [1]: numbers = [10, 3, 7, 1, 9, 4, 2, 8, 5, 6]

In [2]: def is_odd(x):
 ...: """Returns True only if x is odd."""
 ...: return x % 2 != 0
 ...:

In [3]: list(filter(is_odd, numbers))
Out[3]: [3, 7, 1, 9, 5]

ptg27972259

5.14 Filter, Map and Reduce 123

Function filter returns an iterator, so filter’s results are not produced until you
iterate through them. This is another example of lazy evaluation. In snippet [3], function
list iterates through the results and creates a list containing them. We can obtain the
same results as above by using a list comprehension with an if clause:

Using a lambda Rather than a Function
For simple functions like is_odd that return only a single expression’s value, you can use a
lambda expression (or simply a lambda) to define the function inline where it’s needed—
typically as it’s passed to another function:

We pass filter’s return value (an iterator) to function list here to convert the results to
a list and display them.

A lambda expression is an anonymous function—that is, a function without a name. In
the filter call

filter(lambda x: x % 2 != 0, numbers)

the first argument is the lambda

lambda x: x % 2 != 0

A lambda begins with the lambda keyword followed by a comma-separated parameter list,
a colon (:) and an expression. In this case, the parameter list has one parameter named x.
A lambda implicitly returns its expression’s value. So any simple function of the form

def function_name(parameter_list):
 return expression

may be expressed as a more concise lambda of the form

lambda parameter_list: expression

Mapping a Sequence’s Values to New Values
Let’s use built-in function map with a lambda to square each value in numbers:

Function map’s first argument is a function that receives one value and returns a new
value—in this case, a lambda that squares its argument. The second argument is an iterable
of values to map. Function map uses lazy evaluation. So, we pass to the list function the
iterator that map returns. This enables us to iterate through and create a list of the mapped
values. Here’s an equivalent list comprehension:

In [4]: [item for item in numbers if is_odd(item)]
Out[4]: [3, 7, 1, 9, 5]

In [5]: list(filter(lambda x: x % 2 != 0, numbers))
Out[5]: [3, 7, 1, 9, 5]

In [6]: numbers
Out[6]: [10, 3, 7, 1, 9, 4, 2, 8, 5, 6]

In [7]: list(map(lambda x: x ** 2, numbers))
Out[7]: [100, 9, 49, 1, 81, 16, 4, 64, 25, 36]

In [8]: [item ** 2 for item in numbers]
Out[8]: [100, 9, 49, 1, 81, 16, 4, 64, 25, 36]

ptg27972259

124 Chapter 5 Sequences: Lists and Tuples

Combining filter and map
You can combine the preceding filter and map operations as follows:

There is a lot going on in snippet [9], so let’s take a closer look at it. First, filter returns
an iterable representing only the odd values of numbers. Then map returns an iterable rep-
resenting the squares of the filtered values. Finally, list uses map’s iterable to create the
list. You might prefer the following list comprehension to the preceding snippet:

For each value of x in numbers, the expression x ** 2 is performed only if the condition
x % 2 != 0 is True.

Reduction: Totaling the Elements of a Sequence with sum
As you know reductions process a sequence’s elements into a single value. You’ve per-
formed reductions with the built-in functions len, sum, min and max. You also can create
custom reductions using the functools module’s reduce function. See https://
docs.python.org/3/library/functools.html for a code example. When we investigate
big data and Hadoop in Chapter 16, we’ll demonstrate MapReduce programming, which
is based on the filter, map and reduce operations in functional-style programming.

5.15 Other Sequence Processing Functions
Python provides other built-in functions for manipulating sequences.

Finding the Minimum and Maximum Values Using a Key Function
We’ve previously shown the built-in reduction functions min and max using arguments,
such as ints or lists of ints. Sometimes you’ll need to find the minimum and maximum
of more complex objects, such as strings. Consider the following comparison:

The letter 'R' “comes after” 'o' in the alphabet, so you might expect 'Red' to be less than
'orange' and the condition above to be False. However, strings are compared by their
characters’ underlying numerical values, and lowercase letters have higher numerical values
than uppercase letters. You can confirm this with built-in function ord, which returns the
numerical value of a character:

Consider the list colors, which contains strings with uppercase and lowercase letters:

In [9]: list(map(lambda x: x ** 2,
 ...: filter(lambda x: x % 2 != 0, numbers)))
 ...:
Out[9]: [9, 49, 1, 81, 25]

In [10]: [x ** 2 for x in numbers if x % 2 != 0]
Out[10]: [9, 49, 1, 81, 25]

In [1]: 'Red' < 'orange'
Out[1]: True

In [2]: ord('R')
Out[2]: 82

In [3]: ord('o')
Out[3]: 111

In [4]: colors = ['Red', 'orange', 'Yellow', 'green', 'Blue']

https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html

ptg27972259

5.15 Other Sequence Processing Functions 125

Let’s assume that we’d like to determine the minimum and maximum strings using alpha-
betical order, not numerical (lexicographical) order. If we arrange colors alphabetically

'Blue', 'green', 'orange', 'Red', 'Yellow'

you can see that 'Blue' is the minimum (that is, closest to the beginning of the alphabet),
and 'Yellow' is the maximum (that is, closest to the end of the alphabet).

Since Python compares strings using numerical values, you must first convert each
string to all lowercase or all uppercase letters. Then their numerical values will also repre-
sent alphabetical ordering. The following snippets enable min and max to determine the
minimum and maximum strings alphabetically:

The key keyword argument must be a one-parameter function that returns a value. In this
case, it’s a lambda that calls string method lower to get a string’s lowercase version. Func-
tions min and max call the key argument’s function for each element and use the results to
compare the elements.

Iterating Backward Through a Sequence
Built-in function reversed returns an iterator that enables you to iterate over a sequence’s
values backward. The following list comprehension creates a new list containing the
squares of numbers’ values in reverse order:

Combining Iterables into Tuples of Corresponding Elements
Built-in function zip enables you to iterate over multiple iterables of data at the same time.
The function receives as arguments any number of iterables and returns an iterator that
produces tuples containing the elements at the same index in each. For example, snippet
[11]’s call to zip produces the tuples ('Bob', 3.5), ('Sue', 4.0) and ('Amanda', 3.75)
consisting of the elements at index 0, 1 and 2 of each list, respectively:

We unpack each tuple into name and gpa and display them. Function zip’s shortest argu-
ment determines the number of tuples produced. Here both have the same length.

In [5]: min(colors, key=lambda s: s.lower())
Out[5]: 'Blue'

In [6]: max(colors, key=lambda s: s.lower())
Out[6]: 'Yellow'

In [7]: numbers = [10, 3, 7, 1, 9, 4, 2, 8, 5, 6]

In [7]: reversed_numbers = [item for item in reversed(numbers)]

In [8]: reversed_numbers
Out[8]: [36, 25, 64, 4, 16, 81, 1, 49, 9, 100]

In [9]: names = ['Bob', 'Sue', 'Amanda']

In [10]: grade_point_averages = [3.5, 4.0, 3.75]

In [11]: for name, gpa in zip(names, grade_point_averages):
 ...: print(f'Name={name}; GPA={gpa}')
 ...:
Name=Bob; GPA=3.5
Name=Sue; GPA=4.0
Name=Amanda; GPA=3.75

ptg27972259

126 Chapter 5 Sequences: Lists and Tuples

5.16 Two-Dimensional Lists
Lists can contain other lists as elements. A typical use of such nested (or multidimensional)
lists is to represent tables of values consisting of information arranged in rows and col-
umns. To identify a particular table element, we specify two indices—by convention, the
first identifies the element’s row, the second the element’s column.

Lists that require two indices to identify an element are called two-dimensional lists
(or double-indexed lists or double-subscripted lists). Multidimensional lists can have
more than two indices. Here, we introduce two-dimensional lists.

Creating a Two-Dimensional List
Consider a two-dimensional list with three rows and four columns (i.e., a 3-by-4 list) that
might represent the grades of three students who each took four exams in a course:

Writing the list as follows makes its row and column tabular structure clearer:

a = [[77, 68, 86, 73], # first student's grades
 [96, 87, 89, 81], # second student's grades
 [70, 90, 86, 81]] # third student's grades

Illustrating a Two-Dimensional List
The diagram below shows the list a, with its rows and columns of exam grade values:

Identifying the Elements in a Two-Dimensional List
The following diagram shows the names of list a’s elements:

Every element is identified by a name of the form a[i][j]—a is the list’s name, and i and
j are the indices that uniquely identify each element’s row and column, respectively. The
element names in row 0 all have 0 as the first index. The element names in column 3 all
have 3 as the second index.

In [1]: a = [[77, 68, 86, 73], [96, 87, 89, 81], [70, 90, 86, 81]]

Row 0

Row 1

Row 2

77

96

70

68

87

90

86

89

86

73

Column 0 Column 1 Column 2 Column 3

81

81

Row 0

Row 1

Row 2

Column index
Row index
List name

a[0][0]

a[1][0]

a[2][0]

a[0][1]

a[1][1]

a[2][1]

a[0][2]

a[1][2]

a[2][2]

a[0][3]

Column 0 Column 1 Column 2 Column 3

a[1][3]

a[2][3]

ptg27972259

5.16 Two-Dimensional Lists 127

In the two-dimensional list a:

• 77, 68, 86 and 73 initialize a[0][0], a[0][1], a[0][2] and a[0][3], respectively,

• 96, 87, 89 and 81 initialize a[1][0], a[1][1], a[1][2] and a[1][3], respectively,
and

• 70, 90, 86 and 81 initialize a[2][0], a[2][1], a[2][2] and a[2][3], respectively.

A list with m rows and n columns is called an m-by-n list and has m × n elements.
The following nested for statement outputs the rows of the preceding two-dimen-

sional list one row at a time:

How the Nested Loops Execute
Let’s modify the nested loop to display the list’s name and the row and column indices and
value of each element:

The outer for statement iterates over the two-dimensional list’s rows one row at a time.
During each iteration of the outer for statement, the inner for statement iterates over each
column in the current row. So in the first iteration of the outer loop, row 0 is

[77, 68, 86, 73]

and the nested loop iterates through this list’s four elements a[0][0]=77, a[0][1]=68,
a[0][2]=86 and a[0][3]=73.

In the second iteration of the outer loop, row 1 is

[96, 87, 89, 81]

and the nested loop iterates through this list’s four elements a[1][0]=96, a[1][1]=87,
a[1][2]=89 and a[1][3]=81.

In the third iteration of the outer loop, row 2 is

[70, 90, 86, 81]

and the nested loop iterates through this list’s four elements a[2][0]=70, a[2][1]=90,
a[2][2]=86 and a[2][3]=81.

In the “Array-Oriented Programming with NumPy” chapter, we’ll cover the NumPy
library’s ndarray collection and the Pandas library’s DataFrame collection. These enable

In [2]: for row in a:
 ...: for item in row:
 ...: print(item, end=' ')
 ...: print()
 ...:
77 68 86 73
96 87 89 81
70 90 86 81

In [3]: for i, row in enumerate(a):
 ...: for j, item in enumerate(row):
 ...: print(f'a[{i}][{j}]={item} ', end=' ')
 ...: print()
 ...:
a[0][0]=77 a[0][1]=68 a[0][2]=86 a[0][3]=73
a[1][0]=96 a[1][1]=87 a[1][2]=89 a[1][3]=81
a[2][0]=70 a[2][1]=90 a[2][2]=86 a[2][3]=81

ptg27972259

128 Chapter 5 Sequences: Lists and Tuples

you to manipulate multidimensional collections more concisely and conveniently than the
two-dimensional list manipulations you’ve seen in this section.

5.17 Intro to Data Science: Simulation and Static
Visualizations
The last few chapters’ Intro to Data Science sections discussed basic descriptive statistics.
Here, we focus on visualizations, which help you “get to know” your data. Visualizations
give you a powerful way to understand data that goes beyond simply looking at raw data.

We use two open-source visualization libraries—Seaborn and Matplotlib—to display
static bar charts showing the final results of a six-sided-die-rolling simulation. The Seaborn
visualization library is built over the Matplotlib visualization library and simplifies many
Matplotlib operations. We’ll use aspects of both libraries, because some of the Seaborn
operations return objects from the Matplotlib library. In the next chapter’s Intro to Data
Science section, we’ll make things “come alive” with dynamic visualizations.

5.17.1 Sample Graphs for 600, 60,000 and 6,000,000 Die Rolls
The screen capture below shows a vertical bar chart that for 600 die rolls summarizes the
frequencies with which each of the six faces appear, and their percentages of the total. Sea-
born refers to this type of graph as a bar plot:

Here we expect about 100 occurrences of each die face. However, with such a small
number of rolls, none of the frequencies is exactly 100 (though several are close) and most
of the percentages are not close to 16.667% (about 1/6th). As we run the simulation for
60,000 die rolls, the bars will become much closer in size. At 6,000,000 die rolls, they’ll
appear to be exactly the same size. This is the “law of large numbers” at work. The next
chapter will show the lengths of the bars changing dynamically.

We’ll discuss how to control the plot’s appearance and contents, including:

• the graph title inside the window (Rolling a Six-Sided Die 600 Times),

• the descriptive labels Die Value for the x-axis and Frequency for the y-axis,

ptg27972259

5.17 Intro to Data Science: Simulation and Static Visualizations 129

• the text displayed above each bar, representing the frequency and percentage of the
total rolls, and

• the bar colors.

We’ll use various Seaborn default options. For example, Seaborn determines the text labels
along the x-axis from the die face values 1–6 and the text labels along the y-axis from the
actual die frequencies. Behind the scenes, Matplotlib determines the positions and sizes of
the bars, based on the window size and the magnitudes of the values the bars represent. It
also positions the Frequency axis’s numeric labels based on the actual die frequencies that
the bars represent. There are many more features you can customize. You should tweak
these attributes to your personal preferences.

The first screen capture below shows the results for 60,000 die rolls—imagine trying
to do this by hand. In this case, we expect about 10,000 of each face. The second screen
capture below shows the results for 6,000,000 rolls—surely something you’d never do by
hand! In this case, we expect about 1,000,000 of each face, and the frequency bars appear
to be identical in length (they’re close but not exactly the same length). Note that with
more die rolls, the frequency percentages are much closer to the expected 16.667%.

5.17.2 Visualizing Die-Roll Frequencies and Percentages
In this section, you’ll interactively develop the bar plots shown in the preceding section.

Launching IPython for Interactive Matplotlib Development
IPython has built-in support for interactively developing Matplotlib graphs, which you
also need to develop Seaborn graphs. Simply launch IPython with the command:

ipython --matplotlib

Importing the Libraries
First, let’s import the libraries we’ll use:

In [1]: import matplotlib.pyplot as plt

In [2]: import numpy as np

ptg27972259

130 Chapter 5 Sequences: Lists and Tuples

1. The matplotlib.pyplot module contains the Matplotlib library’s graphing ca-
pabilities that we use. This module typically is imported with the name plt.

2. The NumPy (Numerical Python) library includes the function unique that we’ll
use to summarize the die rolls. The numpy module typically is imported as np.

3. The random module contains Python’s random-number generation functions.

4. The seaborn module contains the Seaborn library’s graphing capabilities we use.
This module typically is imported with the name sns. Search for why this curious
abbreviation was chosen.

Rolling the Die and Calculating Die Frequencies
Next, let’s use a list comprehension to create a list of 600 random die values, then use
NumPy’s unique function to determine the unique roll values (most likely all six possible
face values) and their frequencies:

The NumPy library provides the high-performance ndarray collection, which is typically
much faster than lists.1 Though we do not use ndarray directly here, the NumPy unique
function expects an ndarray argument and returns an ndarray. If you pass a list (like
rolls), NumPy converts it to an ndarray for better performance. The ndarray that
unique returns we’ll simply assign to a variable for use by a Seaborn plotting function.

Specifying the keyword argument return_counts=True tells unique to count each
unique value’s number of occurrences. In this case, unique returns a tuple of two one-
dimensional ndarrays containing the sorted unique values and the corresponding fre-
quencies, respectively. We unpack the tuple’s ndarrays into the variables values and fre-
quencies. If return_counts is False, only the list of unique values is returned.

Creating the Initial Bar Plot
Let’s create the bar plot’s title, set its style, then graph the die faces and frequencies:

Snippet [7]’s f-string includes the number of die rolls in the bar plot’s title. The comma
(,) format specifier in

{len(rolls):,}

displays the number with thousands separators—so, 60000 would be displayed as 60,000.
By default, Seaborn plots graphs on a plain white background, but it provides several

styles to choose from ('darkgrid', 'whitegrid', 'dark', 'white' and 'ticks'). Snippet

In [3]: import random

In [4]: import seaborn as sns

In [5]: rolls = [random.randrange(1, 7) for i in range(600)]

In [6]: values, frequencies = np.unique(rolls, return_counts=True)

1. We’ll run a performance comparison in Chapter 7 where we discuss ndarray in depth.

In [7]: title = f'Rolling a Six-Sided Die {len(rolls):,} Times'

In [8]: sns.set_style('whitegrid')

In [9]: axes = sns.barplot(x=values, y=frequencies, palette='bright')

ptg27972259

5.17 Intro to Data Science: Simulation and Static Visualizations 131

[8] specifies the 'whitegrid' style, which displays light-gray horizontal lines in the verti-
cal bar plot. These help you see more easily how each bar’s height corresponds to the
numeric frequency labels at the bar plot’s left side.

Snippet [9] graphs the die frequencies using Seaborn’s barplot function. When you
execute this snippet, the following window appears (because you launched IPython with
the --matplotlib option):

Seaborn interacts with Matplotlib to display the bars by creating a Matplotlib Axes object,
which manages the content that appears in the window. Behind the scenes, Seaborn uses
a Matplotlib Figure object to manage the window in which the Axes will appear. Func-
tion barplot’s first two arguments are ndarrays containing the x-axis and y-axis values,
respectively. We used the optional palette keyword argument to choose Seaborn’s pre-
defined color palette 'bright'. You can view the palette options at:

https://seaborn.pydata.org/tutorial/color_palettes.html

Function barplot returns the Axes object that it configured. We assign this to the variable
axes so we can use it to configure other aspects of our final plot. Any changes you make
to the bar plot after this point will appear immediately when you execute the corresponding
snippet.

Setting the Window Title and Labeling the x- and y-Axes
The next two snippets add some descriptive text to the bar plot:

Snippet [10] uses the axes object’s set_title method to display the title string cen-
tered above the plot. This method returns a Text object containing the title and its location
in the window, which IPython simply displays as output for confirmation. You can ignore
the Out[]s in the snippets above.

Snippet [11] add labels to each axis. The set method receives keyword arguments for
the Axes object’s properties to set. The method displays the xlabel text along the x-axis,

In [10]: axes.set_title(title)
Out[10]: Text(0.5,1,'Rolling a Six-Sided Die 600 Times')

In [11]: axes.set(xlabel='Die Value', ylabel='Frequency')
Out[11]: [Text(92.6667,0.5,'Frequency'), Text(0.5,58.7667,'Die Value')]

https://seaborn.pydata.org/tutorial/color_palettes.html

ptg27972259

132 Chapter 5 Sequences: Lists and Tuples

and the ylabel text along the y-axis, and returns a list of Text objects containing the labels
and their locations. The bar plot now appears as follows:

Finalizing the Bar Plot
The next two snippets complete the graph by making room for the text above each bar,
then displaying it:

To make room for the text above the bars, snippet [12] scales the y-axis by 10%. We
chose this value via experimentation. The Axes object’s set_ylim method has many
optional keyword arguments. Here, we use only top to change the maximum value repre-
sented by the y-axis. We multiplied the largest frequency by 1.10 to ensure that the y-axis
is 10% taller than the tallest bar.

Finally, snippet [13] displays each bar’s frequency value and percentage of the total
rolls. The axes object’s patches collection contains two-dimensional colored shapes that
represent the plot’s bars. The for statement uses zip to iterate through the patches and
their corresponding frequency values. Each iteration unpacks into bar and frequency
one of the tuples zip returns. The for statement’s suite operates as follows:

• The first statement calculates the center x-coordinate where the text will appear.
We calculate this as the sum of the bar’s left-edge x-coordinate (bar.get_x())
and half of the bar’s width (bar.get_width() / 2.0).

• The second statement gets the y-coordinate where the text will appear—
bar.get_y() represents the bar’s top.

• The third statement creates a two-line string containing that bar’s frequency and
the corresponding percentage of the total die rolls.

In [12]: axes.set_ylim(top=max(frequencies) * 1.10)
Out[12]: (0.0, 122.10000000000001)

In [13]: for bar, frequency in zip(axes.patches, frequencies):
 ...: text_x = bar.get_x() + bar.get_width() / 2.0
 ...: text_y = bar.get_height()
 ...: text = f'{frequency:,}\n{frequency / len(rolls):.3%}'
 ...: axes.text(text_x, text_y, text,
 ...: fontsize=11, ha='center', va='bottom')
 ...:

ptg27972259

5.17 Intro to Data Science: Simulation and Static Visualizations 133

• The last statement calls the Axes object’s text method to display the text above
the bar. This method’s first two arguments specify the text’s x–y position, and the
third argument is the text to display. The keyword argument ha specifies the hor-
izontal alignment—we centered text horizontally around the x-coordinate. The
keyword argument va specifies the vertical alignment—we aligned the bottom of
the text with at the y-coordinate. The final bar plot is shown below:

Rolling Again and Updating the Bar Plot—Introducing IPython Magics
Now that you’ve created a nice bar plot, you probably want to try a different number of
die rolls. First, clear the existing graph by calling Matplotlib’s cla (clear axes) function:

IPython provides special commands called magics for conveniently performing vari-
ous tasks. Let’s use the %recall magic to get snippet [5], which created the rolls list, and
place the code at the next In [] prompt:

You can now edit the snippet to change the number of rolls to 60000, then press Enter to
create a new list:

Next, recall snippets [6] through [13]. This displays all the snippets in the specified
range in the next In [] prompt. Press Enter to re-execute these snippets:

In [14]: plt.cla()

In [15]: %recall 5

In [16]: rolls = [random.randrange(1, 7) for i in range(600)]

In [16]: rolls = [random.randrange(1, 7) for i in range(60000)]

In [17]: %recall 6-13

In [18]: values, frequencies = np.unique(rolls, return_counts=True)
 ...: title = f'Rolling a Six-Sided Die {len(rolls):,} Times'
 ...: sns.set_style('whitegrid')
 ...: axes = sns.barplot(x=values, y=frequencies, palette='bright')
 ...: axes.set_title(title)
 ...: axes.set(xlabel='Die Value', ylabel='Frequency')
 ...: axes.set_ylim(top=max(frequencies) * 1.10)

ptg27972259

134 Chapter 5 Sequences: Lists and Tuples

The updated bar plot is shown below:

Saving Snippets to a File with the %save Magic
Once you’ve interactively created a plot, you may want to save the code to a file so you can
turn it into a script and run it in the future. Let’s use the %save magic to save snippets 1
through 13 to a file named RollDie.py. IPython indicates the file to which the lines were
written, then displays the lines that it saved:

 ...: for bar, frequency in zip(axes.patches, frequencies):
 ...: text_x = bar.get_x() + bar.get_width() / 2.0
 ...: text_y = bar.get_height()
 ...: text = f'{frequency:,}\n{frequency / len(rolls):.3%}'
 ...: axes.text(text_x, text_y, text,
 ...: fontsize=11, ha='center', va='bottom')
 ...:

In [19]: %save RollDie.py 1-13
The following commands were written to file `RollDie.py`:
import matplotlib.pyplot as plt
import numpy as np
import random
import seaborn as sns
rolls = [random.randrange(1, 7) for i in range(600)]
values, frequencies = np.unique(rolls, return_counts=True)
title = f'Rolling a Six-Sided Die {len(rolls):,} Times'
sns.set_style("whitegrid")
axes = sns.barplot(values, frequencies, palette='bright')
axes.set_title(title)
axes.set(xlabel='Die Value', ylabel='Frequency')
axes.set_ylim(top=max(frequencies) * 1.10)
for bar, frequency in zip(axes.patches, frequencies):
 text_x = bar.get_x() + bar.get_width() / 2.0
 text_y = bar.get_height()
 text = f'{frequency:,}\n{frequency / len(rolls):.3%}'
 axes.text(text_x, text_y, text,
 fontsize=11, ha='center', va='bottom')

ptg27972259

5.18 Wrap-Up 135

Command-Line Arguments; Displaying a Plot from a Script
Provided with this chapter’s examples is an edited version of the RollDie.py file you saved
above. We added comments and a two modifications so you can run the script with an
argument that specifies the number of die rolls, as in:

ipython RollDie.py 600

The Python Standard Library’s sys module enables a script to receive command-line
arguments that are passed into the program. These include the script’s name and any values
that appear to the right of it when you execute the script. The sys module’s argv list con-
tains the arguments. In the command above, argv[0] is the string 'RollDie.py' and
argv[1] is the string '600'. To control the number of die rolls with the command-line
argument’s value, we modified the statement that creates the rolls list as follows:

rolls = [random.randrange(1, 7) for i in range(int(sys.argv[1]))]

Note that we converted the argv[1] string to an int.
Matplotlib and Seaborn do not automatically display the plot for you when you create

it in a script. So at the end of the script we added the following call to Matplotlib’s show
function, which displays the window containing the graph:

plt.show()

5.18 Wrap-Up
This chapter presented more details of the list and tuple sequences. You created lists,
accessed their elements and determined their length. You saw that lists are mutable, so you
can modify their contents, including growing and shrinking the lists as your programs exe-
cute. You saw that accessing a nonexistent element causes an IndexError. You used for
statements to iterate through list elements.

We discussed tuples, which like lists are sequences, but are immutable. You unpacked
a tuple’s elements into separate variables. You used enumerate to create an iterable of
tuples, each with a list index and corresponding element value.

You learned that all sequences support slicing, which creates new sequences with subsets
of the original elements. You used the del statement to remove elements from lists and delete
variables from interactive sessions. We passed lists, list elements and slices of lists to func-
tions. You saw how to search and sort lists, and how to search tuples. We used list methods
to insert, append and remove elements, and to reverse a list’s elements and copy lists.

We showed how to simulate stacks with lists. We used the concise list-comprehension
notation to create new lists. We used additional built-in methods to sum list elements, iter-
ate backward through a list, find the minimum and maximum values, filter values and map
values to new values. We showed how nested lists can represent two-dimensional tables in
which data is arranged in rows and columns. You saw how nested for loops process two-
dimensional lists.

The chapter concluded with an Intro to Data Science section that presented a die-roll-
ing simulation and static visualizations. A detailed code example used the Seaborn and
Matplotlib visualization libraries to create a static bar plot visualization of the simulation’s
final results. In the next Intro to Data Science section, we use a die-rolling simulation with
a dynamic bar plot visualization to make the plot “come alive.”

ptg27972259

136 Chapter 5 Sequences: Lists and Tuples

In the next chapter, “Dictionaries and Sets,” we’ll continue our discussion of Python’s
built-in collections. We’ll use dictionaries to store unordered collections of key–value pairs
that map immutable keys to values, just as a conventional dictionary maps words to defi-
nitions. We’ll use sets to store unordered collections of unique elements.

 In the “Array-Oriented Programming with NumPy” chapter, we’ll discuss NumPy’s
ndarray collection in more detail. You’ll see that while lists are fine for small amounts of
data, they are not efficient for the large amounts of data you’ll encounter in big data ana-
lytics applications. For such cases, the NumPy library’s highly optimized ndarray collec-
tion should be used. ndarray (n-dimensional array) can be much faster than lists. We’ll
run Python profiling tests to see just how much faster. As you’ll see, NumPy also includes
many capabilities for conveniently and efficiently manipulating arrays of many dimen-
sions. In big data analytics applications, the processing demands can be humongous, so
everything we can do to improve performance significantly matters. In our “Big Data:
Hadoop, Spark, NoSQL and IoT” chapter, you’ll use one of the most popular high-per-
formance big-data databases—MongoDB.2

2. The database’s name is rooted in the word “humongous.”

ptg27972259

6
Dictionaries and Sets

O b j e c t i v e s
In this chapter, you’ll:
■ Use dictionaries to represent unordered collections of key–

value pairs.
■ Use sets to represent unordered collections of unique values.
■ Create, initialize and refer to elements of dictionaries and sets.
■ Iterate through a dictionary’s keys, values and key–value pairs.
■ Add, remove and update a dictionary’s key–value pairs.
■ Use dictionary and set comparison operators.
■ Combine sets with set operators and methods.
■ Use operators in and not in to determine if a dictionary

contains a key or a set contains a value.
■ Use the mutable set operations to modify a set’s contents.
■ Use comprehensions to create dictionaries and sets quickly

and conveniently.
■ Learn how to build dynamic visualizations.
■ Enhance your understanding of mutability and immutability.

ptg27972259

138 Chapter 6 Dictionaries and Sets
O

u
tl

in
e

6.1 Introduction
We’ve discussed three built-in sequence collections—strings, lists and tuples. Now, we
consider the built-in non-sequence collections—dictionaries and sets. A dictionary is an
unordered collection which stores key–value pairs that map immutable keys to values, just
as a conventional dictionary maps words to definitions. A set is an unordered collection of
unique immutable elements.

6.2 Dictionaries
A dictionary associates keys with values. Each key maps to a specific value. The following
table contains examples of dictionaries with their keys, key types, values and value types:

Unique Keys
A dictionary’s keys must be immutable (such as strings, numbers or tuples) and unique
(that is, no duplicates). Multiple keys can have the same value, such as two different inven-
tory codes that have the same quantity in stock.

6.2.1 Creating a Dictionary
You can create a dictionary by enclosing in curly braces, {}, a comma-separated list of key–
value pairs, each of the form key: value. You can create an empty dictionary with {}.

Let’s create a dictionary with the country-name keys 'Finland', 'South Africa' and
'Nepal' and their corresponding Internet country code values 'fi', 'za' and 'np':

6.1 Introduction
6.2 Dictionaries

6.2.1 Creating a Dictionary
6.2.2 Iterating through a Dictionary
6.2.3 Basic Dictionary Operations
6.2.4 Dictionary Methods keys and

values
6.2.5 Dictionary Comparisons
6.2.6 Example: Dictionary of Student Grades
6.2.7 Example: Word Counts
6.2.8 Dictionary Method update
6.2.9 Dictionary Comprehensions

6.3 Sets
6.3.1 Comparing Sets
6.3.2 Mathematical Set Operations
6.3.3 Mutable Set Operators and Methods
6.3.4 Set Comprehensions

6.4 Intro to Data Science: Dynamic
Visualizations

6.4.1 How Dynamic Visualization Works
6.4.2 Implementing a Dynamic

Visualization
6.5 Wrap-Up

Keys Key type Values Value type

Country names str Internet country codes str

Decimal numbers int Roman numerals str

States str Agricultural products list of str

Hospital patients str Vital signs tuple of ints and floats

Baseball players str Batting averages float

Metric measurements str Abbreviations str

Inventory codes str Quantity in stock int

ptg27972259

6.2 Dictionaries 139

When you output a dictionary, its comma-separated list of key–value pairs is always
enclosed in curly braces. Because dictionaries are unordered collections, the display order
can differ from the order in which the key–value pairs were added to the dictionary. In
snippet [2]’s output the key–value pairs are displayed in the order they were inserted, but
do not write code that depends on the order of the key–value pairs.

Determining if a Dictionary Is Empty
The built-in function len returns the number of key–value pairs in a dictionary:

You can use a dictionary as a condition to determine if it’s empty—a non-empty diction-
ary evaluates to True:

An empty dictionary evaluates to False. To demonstrate this, in the following code we
call method clear to delete the dictionary’s key–value pairs, then in snippet [6] we recall
and re-execute snippet [4]:

6.2.2 Iterating through a Dictionary
The following dictionary maps month-name strings to int values representing the num-
bers of days in the corresponding month. Note that multiple keys can have the same value:

Again, the dictionary’s string representation shows the key–value pairs in their insertion
order, but this is not guaranteed because dictionaries are unordered. We’ll show how to
process keys in sorted order later in this chapter.

In [1]: country_codes = {'Finland': 'fi', 'South Africa': 'za',
 ...: 'Nepal': 'np'}
 ...:

In [2]: country_codes
Out[2]: {'Finland': 'fi', 'South Africa': 'za', 'Nepal': 'np'}

In [3]: len(country_codes)
Out[3]: 3

In [4]: if country_codes:
 ...: print('country_codes is not empty')
 ...: else:
 ...: print('country_codes is empty')
 ...:
country_codes is not empty

In [5]: country_codes.clear()

In [6]: if country_codes:
 ...: print('country_codes is not empty')
 ...: else:
 ...: print('country_codes is empty')
 ...:
country_codes is empty

In [1]: days_per_month = {'January': 31, 'February': 28, 'March': 31}

In [2]: days_per_month
Out[2]: {'January': 31, 'February': 28, 'March': 31}

ptg27972259

140 Chapter 6 Dictionaries and Sets

The following for statement iterates through days_per_month’s key–value pairs. Dic-
tionary method items returns each key–value pair as a tuple, which we unpack into month
and days:

6.2.3 Basic Dictionary Operations
For this section, let’s begin by creating and displaying the dictionary roman_numerals. We
intentionally provide the incorrect value 100 for the key 'X', which we’ll correct shortly:

Accessing the Value Associated with a Key
Let’s get the value associated with the key 'V':

Updating the Value of an Existing Key–Value Pair
You can update a key’s associated value in an assignment statement, which we do here to
replace the incorrect value associated with the key 'X':

Adding a New Key–Value Pair
Assigning a value to a nonexistent key inserts the key–value pair in the dictionary:

String keys are case sensitive. Assigning to a nonexistent key inserts a new key–value pair.
This may be what you intend, or it could be a logic error.

Removing a Key–Value Pair
You can delete a key–value pair from a dictionary with the del statement:

You also can remove a key–value pair with the dictionary method pop, which returns the
value for the removed key:

In [3]: for month, days in days_per_month.items():
 ...: print(f'{month} has {days} days')
 ...:
January has 31 days
February has 28 days
March has 31 days

In [1]: roman_numerals = {'I': 1, 'II': 2, 'III': 3, 'V': 5, 'X': 100}

In [2]: roman_numerals
Out[2]: {'I': 1, 'II': 2, 'III': 3, 'V': 5, 'X': 100}

In [3]: roman_numerals['V']
Out[3]: 5

In [4]: roman_numerals['X'] = 10

In [5]: roman_numerals
Out[5]: {'I': 1, 'II': 2, 'III': 3, 'V': 5, 'X': 10}

In [6]: roman_numerals['L'] = 50

In [7]: roman_numerals
Out[7]: {'I': 1, 'II': 2, 'III': 3, 'V': 5, 'X': 10, 'L': 50}

In [8]: del roman_numerals['III']

In [9]: roman_numerals
Out[9]: {'I': 1, 'II': 2, 'V': 5, 'X': 10, 'L': 50}

ptg27972259

6.2 Dictionaries 141

Attempting to Access a Nonexistent Key
Accessing a nonexistent key results in a KeyError:

You can prevent this error by using dictionary method get, which normally returns its
argument’s corresponding value. If that key is not found, get returns None. IPython does
not display anything when None is returned in snippet [13]. If you specify a second argu-
ment to get, it returns that value if the key is not found:

Testing Whether a Dictionary Contains a Specified Key
Operators in and not in can determine whether a dictionary contains a specified key:

6.2.4 Dictionary Methods keys and values
Earlier, we used dictionary method items to iterate through tuples of a dictionary’s key–
value pairs. Similarly, methods keys and values can be used to iterate through only a dic-
tionary’s keys or values, respectively:

In [10]: roman_numerals.pop('X')
Out[10]: 10

In [11]: roman_numerals
Out[11]: {'I': 1, 'II': 2, 'V': 5, 'L': 50}

In [12]: roman_numerals['III']

KeyError Traceback (most recent call last)
<ipython-input-12-ccd50c7f0c8b> in <module>()
----> 1 roman_numerals['III']

KeyError: 'III'

In [13]: roman_numerals.get('III')

In [14]: roman_numerals.get('III', 'III not in dictionary')
Out[14]: 'III not in dictionary'

In [15]: roman_numerals.get('V')
Out[15]: 5

In [16]: 'V' in roman_numerals
Out[16]: True

In [17]: 'III' in roman_numerals
Out[17]: False

In [18]: 'III' not in roman_numerals
Out[18]: True

In [1]: months = {'January': 1, 'February': 2, 'March': 3}

In [2]: for month_name in months.keys():
 ...: print(month_name, end=' ')
 ...:
January February March

ptg27972259

142 Chapter 6 Dictionaries and Sets

Dictionary Views
Dictionary methods items, keys and values each return a view of a dictionary’s data.
When you iterate over a view, it “sees” the dictionary’s current contents—it does not have
its own copy of the data.

To show that views do not maintain their own copies of a dictionary’s data, let’s first
save the view returned by keys into the variable months_view, then iterate through it:

Next, let’s add a new key–value pair to months and display the updated dictionary:

Now, let’s iterate through months_view again. The key we added above is indeed dis-
played:

Do not modify a dictionary while iterating through a view. According to Section
4.10.1 of the Python Standard Library documentation,1 either you’ll get a RuntimeError
or the loop might not process all of the view’s values.

Converting Dictionary Keys, Values and Key–Value Pairs to Lists
You might occasionally need lists of a dictionary’s keys, values or key–value pairs. To
obtain such a list, pass the view returned by keys, values or items to the built-in list
function. Modifying these lists does not modify the corresponding dictionary:

In [3]: for month_number in months.values():
 ...: print(month_number, end=' ')
 ...:
1 2 3

In [4]: months_view = months.keys()

In [5]: for key in months_view:
 ...: print(key, end=' ')
 ...:
January February March

In [6]: months['December'] = 12

In [7]: months
Out[7]: {'January': 1, 'February': 2, 'March': 3, 'December': 12}

In [8]: for key in months_view:
 ...: print(key, end=' ')
 ...:
January February March December

1. https://docs.python.org/3/library/stdtypes.html#dictionary-view-objects.

In [9]: list(months.keys())
Out[9]: ['January', 'February', 'March', 'December']

In [10]: list(months.values())
Out[10]: [1, 2, 3, 12]

In [11]: list(months.items())
Out[11]: [('January', 1), ('February', 2), ('March', 3), ('December', 12)]

https://docs.python.org/3/library/stdtypes.html#dictionary-view-objects

ptg27972259

6.2 Dictionaries 143

Processing Keys in Sorted Order
To process keys in sorted order, you can use built-in function sorted as follows:

6.2.5 Dictionary Comparisons
The comparison operators == and != can be used to determine whether two dictionaries
have identical or different contents. An equals (==) comparison evaluates to True if both
dictionaries have the same key–value pairs, regardless of the order in which those key–value
pairs were added to each dictionary:

6.2.6 Example: Dictionary of Student Grades
The following script represents an instructor’s grade book as a dictionary that maps each
student’s name (a string) to a list of integers containing that student’s grades on three
exams. In each iteration of the loop that displays the data (lines 13–17), we unpack a key–
value pair into the variables name and grades containing one student’s name and the cor-
responding list of three grades. Line 14 uses built-in function sum to total a given student’s
grades, then line 15 calculates and displays that student’s average by dividing total by the
number of grades for that student (len(grades)). Lines 16–17 keep track of the total of
all four students’ grades and the number of grades for all the students, respectively. Line
19 prints the class average of all the students’ grades on all the exams.

In [12]: for month_name in sorted(months.keys()):
 ...: print(month_name, end=' ')
 ...:
February December January March

In [1]: country_capitals1 = {'Belgium': 'Brussels',
 ...: 'Haiti': 'Port-au-Prince'}
 ...:

In [2]: country_capitals2 = {'Nepal': 'Kathmandu',
 ...: 'Uruguay': 'Montevideo'}
 ...:

In [3]: country_capitals3 = {'Haiti': 'Port-au-Prince',
 ...: 'Belgium': 'Brussels'}
 ...:

In [4]: country_capitals1 == country_capitals2
Out[4]: False

In [5]: country_capitals1 == country_capitals3
Out[5]: True

In [6]: country_capitals1 != country_capitals2
Out[6]: True

1 # fig06_01.py
2 """Using a dictionary to represent an instructor's grade book."""
3 grade_book = {
4 'Susan': [92, 85, 100],
5 'Eduardo': [83, 95, 79],
6 'Azizi': [91, 89, 82],
7 'Pantipa': [97, 91, 92]
8 }

ptg27972259

144 Chapter 6 Dictionaries and Sets

6.2.7 Example: Word Counts2
The following script builds a dictionary to count the number of occurrences of each word
in a string. Lines 4–5 create a string text that we’ll break into words—a process known as
tokenizing a string. Python automatically concatenates strings separated by whitespace in
parentheses. Line 7 creates an empty dictionary. The dictionary’s keys will be the unique
words, and its values will be integer counts of how many times each word appears in text.

9
10 all_grades_total = 0
11 all_grades_count = 0
12
13 for name, grades in grade_book.items():
14 total = sum(grades)
15 print(f'Average for {name} is {total/len(grades):.2f}')
16 all_grades_total += total
17 all_grades_count += len(grades)
18
19 print(f"Class's average is: {all_grades_total / all_grades_count:.2f}")

Average for Susan is 92.33
Average for Eduardo is 85.67
Average for Azizi is 87.33
Average for Pantipa is 93.33
Class's average is: 89.67

2. Techniques like word frequency counting are often used to analyze published works. For example,
some people believe that the works of William Shakespeare actually might have been written by Sir
Francis Bacon, Christopher Marlowe or others. Comparing the word frequencies of their works with
those of Shakespeare can reveal writing-style similarities. We’ll look at other document-analysis tech-
niques in the “Natural Language Processing (NLP)” chapter.

1 # fig06_02.py
2 """Tokenizing a string and counting unique words."""
3
4 text = ('this is sample text with several words '
5 'this is more sample text with some different words')
6
7 word_counts = {}
8
9 # count occurrences of each unique word

10 for word in text.split():
11 if word in word_counts:
12 word_counts[word] += 1 # update existing key-value pair
13 else:
14 word_counts[word] = 1 # insert new key-value pair
15
16 print(f'{"WORD":<12}COUNT')
17
18 for word, count in sorted(word_counts.items()):
19 print(f'{word:<12}{count}')
20
21 print('\nNumber of unique words:', len(word_counts))

ptg27972259

6.2 Dictionaries 145

Line 10 tokenizes text by calling string method split, which separates the words
using the method’s delimiter string argument. If you do not provide an argument, split
uses a space. The method returns a list of tokens (that is, the words in text). Lines 10–14
iterate through the list of words. For each word, line 11 determines whether that word (the
key) is already in the dictionary. If so, line 12 increments that word’s count; otherwise, line
14 inserts a new key–value pair for that word with an initial count of 1.

Lines 16–21 summarize the results in a two-column table containing each word and
its corresponding count. The for statement in lines 18 and 19 iterates through the
dictionary’s key–value pairs. It unpacks each key and value into the variables word and
count, then displays them in two columns. Line 21 displays the number of unique words.

Python Standard Library Module collections
The Python Standard Library already contains the counting functionality that we imple-
mented using the dictionary and the loop in lines 10–14. The module collections con-
tains the type Counter, which receives an iterable and summarizes its elements. Let’s
reimplement the preceding script in fewer lines of code with Counter:

WORD COUNT
different 1
is 2
more 1
sample 2
several 1
some 1
text 2
this 2
with 2
words 2
Number of unique words: 10

In [1]: from collections import Counter

In [2]: text = ('this is sample text with several words '
 ...: 'this is more sample text with some different words')
 ...:

In [3]: counter = Counter(text.split())

In [4]: for word, count in sorted(counter.items()):
 ...: print(f'{word:<12}{count}')
 ...:
different 1
is 2
more 1
sample 2
several 1
some 1
text 2
this 2
with 2
words 2

In [5]: print('Number of unique keys:', len(counter.keys()))
Number of unique keys: 10

ptg27972259

146 Chapter 6 Dictionaries and Sets

Snippet [3] creates the Counter, which summarizes the list of strings returned by
text.split(). In snippet [4], Counter method items returns each string and its associ-
ated count as a tuple. We use built-in function sorted to get a list of these tuples in ascend-
ing order. By default sorted orders the tuples by their first elements. If those are identical,
then it looks at the second element, and so on. The for statement iterates over the result-
ing sorted list, displaying each word and count in two columns.

6.2.8 Dictionary Method update
You may insert and update key–value pairs using dictionary method update. First, let’s
create an empty country_codes dictionary:

The following update call receives a dictionary of key–value pairs to insert or update:

Method update can convert keyword arguments into key–value pairs to insert. The
following call automatically converts the parameter name Australia into the string key
'Australia' and associates the value 'ar' with that key:

Snippet [4] provided an incorrect country code for Australia. Let’s correct this by
using another keyword argument to update the value associated with 'Australia':

Method update also can receive an iterable object containing key–value pairs, such as a list
of two-element tuples.

6.2.9 Dictionary Comprehensions
Dictionary comprehensions provide a convenient notation for quickly generating dic-
tionaries, often by mapping one dictionary to another. For example, in a dictionary with
unique values, you can reverse the key–value pairs:

Curly braces delimit a dictionary comprehension, and the expression to the left of the for
clause specifies a key–value pair of the form key: value. The comprehension iterates
through months.items(), unpacking each key–value pair tuple into the variables name and

In [1]: country_codes = {}

In [2]: country_codes.update({'South Africa': 'za'})

In [3]: country_codes
Out[3]: {'South Africa': 'za'}

In [4]: country_codes.update(Australia='ar')

In [5]: country_codes
Out[5]: {'South Africa': 'za', 'Australia': 'ar'}

In [6]: country_codes.update(Australia='au')

In [7]: country_codes
Out[7]: {'South Africa': 'za', 'Australia': 'au'}

In [1]: months = {'January': 1, 'February': 2, 'March': 3}

In [2]: months2 = {number: name for name, number in months.items()}

In [3]: months2
Out[3]: {1: 'January', 2: 'February', 3: 'March'}

ptg27972259

6.3 Sets 147

number. The expression number: name reverses the key and value, so the new dictionary
maps the month numbers to the month names.

What if months contained duplicate values? As these become the keys in months2,
attempting to insert a duplicate key simply updates the existing key’s value. So if 'Febru-
ary' and 'March' both mapped to 2 originally, the preceding code would have produced

{1: 'January', 2: 'March'}

A dictionary comprehension also can map a dictionary’s values to new values. The fol-
lowing comprehension converts a dictionary of names and lists of grades into a dictionary
of names and grade-point averages. The variables k and v commonly mean key and value:

The comprehension unpacks each tuple returned by grades.items() into k (the
name) and v (the list of grades). Then, the comprehension creates a new key–value pair
with the key k and the value of sum(v) / len(v), which averages the list’s elements.

6.3 Sets
A set is an unordered collection of unique values. Sets may contain only immutable
objects, like strings, ints, floats and tuples that contain only immutable elements.
Though sets are iterable, they are not sequences and do not support indexing and slicing
with square brackets, []. Dictionaries also do not support slicing.

Creating a Set with Curly Braces
The following code creates a set of strings named colors:

Notice that the duplicate string 'red' was ignored (without causing an error). An import-
ant use of sets is duplicate elimination, which is automatic when creating a set. Also, the
resulting set’s values are not displayed in the same order as they were listed in snippet [1].
Though the color names are displayed in sorted order, sets are unordered. You should not
write code that depends on the order of their elements.

Determining a Set’s Length
You can determine the number of items in a set with the built-in len function:

Checking Whether a Value Is in a Set
You can check whether a set contains a particular value using the in and not in operators:

In [4]: grades = {'Sue': [98, 87, 94], 'Bob': [84, 95, 91]}

In [5]: grades2 = {k: sum(v) / len(v) for k, v in grades.items()}

In [6]: grades2
Out[6]: {'Sue': 93.0, 'Bob': 90.0}

In [1]: colors = {'red', 'orange', 'yellow', 'green', 'red', 'blue'}

In [2]: colors
Out[2]: {'blue', 'green', 'orange', 'red', 'yellow'}

In [3]: len(colors)
Out[3]: 5

In [4]: 'red' in colors
Out[4]: True

ptg27972259

148 Chapter 6 Dictionaries and Sets

Iterating Through a Set
Sets are iterable, so you can process each set element with a for loop:

Sets are unordered, so there’s no significance to the iteration order.

Creating a Set with the Built-In set Function
You can create a set from another collection of values by using the built-in set function—
here we create a list that contains several duplicate integer values and use that list as set’s
argument:

If you need to create an empty set, you must use the set function with empty parentheses,
rather than empty braces, {}, which represent an empty dictionary:

Python displays an empty set as set() to avoid confusion with Python’s string represen-
tation of an empty dictionary ({}).

Frozenset: An Immutable Set Type
Sets are mutable—you can add and remove elements, but set elements must be immutable.
Therefore, a set cannot have other sets as elements. A frozenset is an immutable set—it
cannot be modified after you create it, so a set can contain frozensets as elements. The
built-in function frozenset creates a frozenset from any iterable.

6.3.1 Comparing Sets
Various operators and methods can be used to compare sets. The following sets contain
the same values, so == returns True and != returns False.

In [5]: 'purple' in colors
Out[5]: False

In [6]: 'purple' not in colors
Out[6]: True

In [7]: for color in colors:
 ...: print(color.upper(), end=' ')
 ...:
RED GREEN YELLOW BLUE ORANGE

In [8]: numbers = list(range(10)) + list(range(5))

In [9]: numbers
Out[9]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4]

In [10]: set(numbers)
Out[10]: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

In [11]: set()
Out[11]: set()

In [1]: {1, 3, 5} == {3, 5, 1}
Out[1]: True

In [2]: {1, 3, 5} != {3, 5, 1}
Out[2]: False

ptg27972259

6.3 Sets 149

The < operator tests whether the set to its left is a proper subset of the one to its
right—that is, all the elements in the left operand are in the right operand, and the sets are
not equal:

The <= operator tests whether the set to its left is an improper subset of the one to its
right—that is, all the elements in the left operand are in the right operand, and the sets
might be equal:

You may also check for an improper subset with the set method issubset:

The > operator tests whether the set to its left is a proper superset of the one to its
right—that is, all the elements in the right operand are in the left operand, and the left
operand has more elements:

The >= operator tests whether the set to its left is an improper superset of the one to
its right—that is, all the elements in the right operand are in the left operand, and the sets
might be equal:

You may also check for an improper superset with the set method issuperset:

In [3]: {1, 3, 5} < {3, 5, 1}
Out[3]: False

In [4]: {1, 3, 5} < {7, 3, 5, 1}
Out[4]: True

In [5]: {1, 3, 5} <= {3, 5, 1}
Out[5]: True

In [6]: {1, 3} <= {3, 5, 1}
Out[6]: True

In [7]: {1, 3, 5}.issubset({3, 5, 1})
Out[7]: True

In [8]: {1, 2}.issubset({3, 5, 1})
Out[8]: False

In [9]: {1, 3, 5} > {3, 5, 1}
Out[9]: False

In [10]: {1, 3, 5, 7} > {3, 5, 1}
Out[10]: True

In [11]: {1, 3, 5} >= {3, 5, 1}
Out[11]: True

In [12]: {1, 3, 5} >= {3, 1}
Out[12]: True

In [13]: {1, 3} >= {3, 1, 7}
Out[13]: False

In [14]: {1, 3, 5}.issuperset({3, 5, 1})
Out[14]: True

In [15]: {1, 3, 5}.issuperset({3, 2})
Out[15]: False

ptg27972259

150 Chapter 6 Dictionaries and Sets

The argument to issubset or issuperset can be any iterable. When either of these meth-
ods receives a non-set iterable argument, it first converts the iterable to a set, then performs
the operation.

6.3.2 Mathematical Set Operations
This section presents the set type’s mathematical operators |, &, - and ^ and the corre-
sponding methods.

Union
The union of two sets is a set consisting of all the unique elements from both sets. You can
calculate the union with the | operator or with the set type’s union method:

The operands of the binary set operators, like |, must both be sets. The corresponding set
methods may receive any iterable object as an argument—we passed a list. When a math-
ematical set method receives a non-set iterable argument, it first converts the iterable to a
set, then applies the mathematical operation. Again, though the new sets’ string represen-
tations show the values in ascending order, you should not write code that depends on this.

Intersection
The intersection of two sets is a set consisting of all the unique elements that the two sets
have in common. You can calculate the intersection with the & operator or with the set
type’s intersection method:

Difference
The difference between two sets is a set consisting of the elements in the left operand that
are not in the right operand. You can calculate the difference with the - operator or with
the set type’s difference method:

Symmetric Difference
The symmetric difference between two sets is a set consisting of the elements of both sets
that are not in common with one another. You can calculate the symmetric difference with
the ^ operator or with the set type’s symmetric_difference method:

In [1]: {1, 3, 5} | {2, 3, 4}
Out[1]: {1, 2, 3, 4, 5}

In [2]: {1, 3, 5}.union([20, 20, 3, 40, 40])
Out[2]: {1, 3, 5, 20, 40}

In [3]: {1, 3, 5} & {2, 3, 4}
Out[3]: {3}

In [4]: {1, 3, 5}.intersection([1, 2, 2, 3, 3, 4, 4])
Out[4]: {1, 3}

In [5]: {1, 3, 5} - {2, 3, 4}
Out[5]: {1, 5}

In [6]: {1, 3, 5, 7}.difference([2, 2, 3, 3, 4, 4])
Out[6]: {1, 5, 7}

ptg27972259

6.3 Sets 151

Disjoint
Two sets are disjoint if they do not have any common elements. You can determine this
with the set type’s isdisjoint method:

6.3.3 Mutable Set Operators and Methods
The operators and methods presented in the preceding section each result in a new set.
Here we discuss operators and methods that modify an existing set.

Mutable Mathematical Set Operations
Like operator |, union augmented assignment |= performs a set union operation, but |=
modifies its left operand:

Similarly, the set type’s update method performs a union operation modifying the set on
which it’s called—the argument can be any iterable:

The other mutable set methods are:

• intersection augmented assignment &=

• difference augmented assignment -=

• symmetric difference augmented assignment ^=

and their corresponding methods with iterable arguments are:

• intersection_update

• difference_update

• symmetric_difference_update

In [7]: {1, 3, 5} ^ {2, 3, 4}
Out[7]: {1, 2, 4, 5}

In [8]: {1, 3, 5, 7}.symmetric_difference([2, 2, 3, 3, 4, 4])
Out[8]: {1, 2, 4, 5, 7}

In [9]: {1, 3, 5}.isdisjoint({2, 4, 6})
Out[9]: True

In [10]: {1, 3, 5}.isdisjoint({4, 6, 1})
Out[10]: False

In [1]: numbers = {1, 3, 5}

In [2]: numbers |= {2, 3, 4}

In [3]: numbers
Out[3]: {1, 2, 3, 4, 5}

In [4]: numbers.update(range(10))

In [5]: numbers
Out[5]: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

ptg27972259

152 Chapter 6 Dictionaries and Sets

Methods for Adding and Removing Elements
Set method add inserts its argument if the argument is not already in the set; otherwise, the
set remains unchanged:

Set method remove removes its argument from the set—a KeyError occurs if the value
is not in the set:

Method discard also removes its argument from the set but does not cause an exception
if the value is not in the set.

You also can remove an arbitrary set element and return it with pop, but sets are unor-
dered, so you do not know which element will be returned:

A KeyError occurs if the set is empty when you call pop.
Finally, method clear empties the set on which it’s called:

6.3.4 Set Comprehensions
Like dictionary comprehensions, you define set comprehensions in curly braces. Let’s cre-
ate a new set containing only the unique even values in the list numbers:

6.4 Intro to Data Science: Dynamic Visualizations
The preceding chapter’s Intro to Data Science section introduced visualization. We sim-
ulated rolling a six-sided die and used the Seaborn and Matplotlib visualization libraries
to create a publication-quality static bar plot showing the frequencies and percentages of
each roll value. In this section, we make things “come alive” with dynamic visualizations.

In [6]: numbers.add(17)

In [7]: numbers.add(3)

In [8]: numbers
Out[8]: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 17}

In [9]: numbers.remove(3)

In [10]: numbers
Out[10]: {0, 1, 2, 4, 5, 6, 7, 8, 9, 17}

In [11]: numbers.pop()
Out[11]: 0

In [12]: numbers
Out[12]: {1, 2, 4, 5, 6, 7, 8, 9, 17}

In [13]: numbers.clear()

In [14]: numbers
Out[14]: set()

In [1]: numbers = [1, 2, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 10]

In [2]: evens = {item for item in numbers if item % 2 == 0}

In [3]: evens
Out[3]: {2, 4, 6, 8, 10}

ptg27972259

6.4 Intro to Data Science: Dynamic Visualizations 153

The Law of Large Numbers
When we introduced random-number generation, we mentioned that if the random mod-
ule’s randrange function indeed produces integers at random, then every number in the
specified range has an equal probability (or likelihood) of being chosen each time the func-
tion is called. For a six-sided die, each value 1 through 6 should occur one-sixth of the
time, so the probability of any one of these values occurring is 1/6th or about 16.667%.

In the next section, we create and execute a dynamic (that is, animated) die-rolling
simulation script. In general, you’ll see that the more rolls we attempt, the closer each die
value’s percentage of the total rolls gets to 16.667% and the heights of the bars gradually
become about the same. This is a manifestation of the law of large numbers.

6.4.1 How Dynamic Visualization Works
The plots produced with Seaborn and Matplotlib in the previous chapter’s Intro to Data
Science section help you analyze the results for a fixed number of die rolls after the simu-
lation completes. This section’s enhances that code with the Matplotlib animation mod-
ule’s FuncAnimation function, which updates the bar plot dynamically. You’ll see the bars,
die frequencies and percentages “come alive,” updating continuously as the rolls occur.

Animation Frames
FuncAnimation drives a frame-by-frame animation. Each animation frame specifies
everything that should change during one plot update. Stringing together many of these
updates over time creates the animation effect. You decide what each frame displays with
a function you define and pass to FuncAnimation.

Each animation frame will:

• roll the dice a specified number of times (from 1 to as many as you’d like), updat-
ing die frequencies with each roll,

• clear the current plot,

• create a new set of bars representing the updated frequencies, and

• create new frequency and percentage text for each bar.

Generally, displaying more frames-per-second yields smoother animation. For example,
video games with fast-moving elements try to display at least 30 frames-per-second and
often more. Though you’ll specify the number of milliseconds between animation frames,
the actual number of frames-per-second can be affected by the amount of work you per-
form in each frame and the speed of your computer’s processor. This example displays an
animation frame every 33 milliseconds—yielding approximately 30 (1000 / 33) frames-
per-second. Try larger and smaller values to see how they affect the animation. Experimen-
tation is important in developing the best visualizations.

Running RollDieDynamic.py
In the previous chapter’s Intro to Data Science section, we developed the static visualiza-
tion interactively so you could see how the code updates the bar plot as you execute each
statement. The actual bar plot with the final frequencies and percentages was drawn only
once.

ptg27972259

154 Chapter 6 Dictionaries and Sets

For this dynamic visualization, the screen results update frequently so that you can see
the animation. Many things change continuously—the lengths of the bars, the frequencies
and percentages above the bars, the spacing and labels on the axes and the total number of
die rolls shown in the plot’s title. For this reason, we present this visualization as a script,
rather than interactively developing it.

The script takes two command-line arguments:

• number_of_frames—The number of animation frames to display. This value
determines the total number of times that FuncAnimation updates the graph. For
each animation frame, FuncAnimation calls a function that you define (in this
example, update) to specify how to change the plot.

• rolls_per_frame—The number of times to roll the die in each animation frame.
We’ll use a loop to roll the die this number of times, summarize the results, then
update the graph with bars and text representing the new frequencies.

To understand how we use these two values, consider the following command:

ipython RollDieDynamic.py 6000 1

In this case, FuncAnimation calls our update function 6000 times, rolling one die per
frame for a total of 6000 rolls. This enables you to see the bars, frequencies and percentages
update one roll at a time. On our system, this animation took about 3.33 minutes (6000
frames / 30 frames-per-second / 60 seconds-per-minute) to show you only 6000 die rolls.

Displaying animation frames to the screen is a relatively slow input–output-bound
operation compared to the die rolls, which occur at the computer’s super fast CPU speeds.
If we roll only one die per animation frame, we won’t be able to run a large number of rolls
in a reasonable amount of time. Also, for small numbers of rolls, you’re unlikely to see the
die percentages converge on their expected 16.667% of the total rolls.

To see the law of large numbers in action, you can increase the execution speed by
rolling the die more times per animation frame. Consider the following command:

ipython RollDieDynamic.py 10000 600

In this case, FuncAnimation will call our update function 10,000 times, performing 600
rolls-per-frame for a total of 6,000,000 rolls. On our system, this took about 5.55 minutes
(10,000 frames / 30 frames-per-second / 60 seconds-per-minute), but displayed approxi-
mately 18,000 rolls-per-second (30 frames-per-second * 600 rolls-per-frame), so we could
quickly see the frequencies and percentages converge on their expected values of about
1,000,000 rolls per face and 16.667% per face.

Experiment with the numbers of rolls and frames until you feel that the program is
helping you visualize the results most effectively. It’s fun and informative to watch it run
and to tweak it until you’re satisfied with the animation quality.

Sample Executions
We took the following four screen captures during each of two sample executions. In the
first, the screens show the graph after just 64 die rolls, then again after 604 of the 6000
total die rolls. Run this script live to see over time how the bars update dynamically. In the
second execution, the screen captures show the graph after 7200 die rolls and again after
166,200 out of the 6,000,000 rolls. With more rolls, you can see the percentages closing
in on their expected values of 16.667% as predicted by the law of large numbers.

ptg27972259

6.4 Intro to Data Science: Dynamic Visualizations 155

6.4.2 Implementing a Dynamic Visualization
The script we present in this section uses the same Seaborn and Matplotlib features shown
in the previous chapter’s Intro to Data Science section. We reorganized the code for use
with Matplotlib’s animation capabilities.

Importing the Matplotlib animation Module
We focus primarily on the new features used in this example. Line 3 imports the Matplot-
lib animation module.

Execute 6000 animation frames rolling the die once per frame:
ipython RollDieDynamic.py 6000 1

Execute 10,000 animation frames rolling the die 600 times per frame:
ipython RollDieDynamic.py 10000 600

ptg27972259

156 Chapter 6 Dictionaries and Sets

Function update
Lines 9–27 define the update function that FuncAnimation calls once per animation
frame. This function must provide at least one argument. Lines 9–10 show the beginning
of the function definition. The parameters are:

• frame_number—The next value from FuncAnimation’s frames argument, which
we’ll discuss momentarily. Though FuncAnimation requires the update function
to have this parameter, we do not use it in this update function.

• rolls—The number of die rolls per animation frame.

• faces—The die face values used as labels along the graph’s x-axis.

• frequencies—The list in which we summarize the die frequencies.

We discuss the rest of the function’s body in the next several subsections.

Function update: Rolling the Die and Updating the frequencies List
Lines 12–13 roll the die rolls times and increment the appropriate frequencies element
for each roll. Note that we subtract 1 from the die value (1 through 6) before incrementing
the corresponding frequencies element—as you’ll see, frequencies is a six-element list
(defined in line 36), so its indices are 0 through 5.

Function update: Configuring the Bar Plot and Text
Line 16 in function update calls the matplotlib.pyplot module’s cla (clear axes) func-
tion to remove the existing bar plot elements before drawing new ones for the current ani-
mation frame. We discussed the code in lines 17–27 in the previous chapter’s Intro to
Data Science section. Lines 17–20 create the bars, set the bar plot’s title, set the x- and y-
axis labels and scale the plot to make room for the frequency and percentage text above
each bar. Lines 23–27 display the frequency and percentage text.

1 # RollDieDynamic.py
2 """Dynamically graphing frequencies of die rolls."""
3 from matplotlib import animation
4 import matplotlib.pyplot as plt
5 import random
6 import seaborn as sns
7 import sys
8

9 def update(frame_number, rolls, faces, frequencies):
10 """Configures bar plot contents for each animation frame."""

11 # roll die and update frequencies
12 for i in range(rolls):
13 frequencies[random.randrange(1, 7) - 1] += 1
14

15 # reconfigure plot for updated die frequencies
16 plt.cla() # clear old contents contents of current Figure
17 axes = sns.barplot(faces, frequencies, palette='bright') # new bars
18 axes.set_title(f'Die Frequencies for {sum(frequencies):,} Rolls')
19 axes.set(xlabel='Die Value', ylabel='Frequency')
20 axes.set_ylim(top=max(frequencies) * 1.10) # scale y-axis by 10%
21

ptg27972259

6.4 Intro to Data Science: Dynamic Visualizations 157

Variables Used to Configure the Graph and Maintain State
Lines 30 and 31 use the sys module’s argv list to get the script’s command-line argu-
ments. Line 33 specifies the Seaborn 'whitegrid' style. Line 34 calls the matplot-
lib.pyplot module’s figure function to get the Figure object in which FuncAnimation
displays the animation. The function’s argument is the window’s title. As you’ll soon see,
this is one of FuncAnimation’s required arguments. Line 35 creates a list containing the
die face values 1–6 to display on the plot’s x-axis. Line 36 creates the six-element frequen-
cies list with each element initialized to 0—we update this list’s counts with each die roll.

Calling the animation Module’s FuncAnimation Function
Lines 39–41 call the Matplotlib animation module’s FuncAnimation function to update
the bar chart dynamically. The function returns an object representing the animation.
Though this is not used explicitly, you must store the reference to the animation; other-
wise, Python immediately terminates the animation and returns its memory to the system.

FuncAnimation has two required arguments:

• figure—the Figure object in which to display the animation, and

• update—the function to call once per animation frame.

In this case, we also pass the following optional keyword arguments:

• repeat—False terminates the animation after the specified number of frames. If
True (the default), when the animation completes it restarts from the beginning.

• frames—The total number of animation frames, which controls how many times
FunctAnimation calls update. Passing an integer is equivalent to passing a
range—for example, 600 means range(600). FuncAnimation passes one value
from this range as the first argument in each call to update.

22 # display frequency & percentage above each patch (bar)
23 for bar, frequency in zip(axes.patches, frequencies):
24 text_x = bar.get_x() + bar.get_width() / 2.0
25 text_y = bar.get_height()
26 text = f'{frequency:,}\n{frequency / sum(frequencies):.3%}'
27 axes.text(text_x, text_y, text, ha='center', va='bottom')
28

29 # read command-line arguments for number of frames and rolls per frame
30 number_of_frames = int(sys.argv[1])
31 rolls_per_frame = int(sys.argv[2])
32
33 sns.set_style('whitegrid') # white background with gray grid lines
34 figure = plt.figure('Rolling a Six-Sided Die') # Figure for animation
35 values = list(range(1, 7)) # die faces for display on x-axis
36 frequencies = [0] * 6 # six-element list of die frequencies
37

38 # configure and start animation that calls function update
39 die_animation = animation.FuncAnimation(
40 figure, update, repeat=False, frames=number_of_frames, interval=33,
41 fargs=(rolls_per_frame, values, frequencies))
42
43 plt.show() # display window

ptg27972259

158 Chapter 6 Dictionaries and Sets

• interval—The number of milliseconds (33, in this case) between animation
frames (the default is 200). After each call to update, FuncAnimation waits 33
milliseconds before making the next call.

• fargs (short for “function arguments”)—A tuple of other arguments to pass to
the function you specified in FuncAnimation’s second argument. The arguments
you specify in the fargs tuple correspond to update’s parameters rolls, faces
and frequencies (line 9).

For a list of FuncAnimation’s other optional arguments, see

https://matplotlib.org/api/_as_gen/
matplotlib.animation.FuncAnimation.html

Finally, line 43 displays the window.

6.5 Wrap-Up
In this chapter, we discussed Python’s dictionary and set collections. We said what a dic-
tionary is and presented several examples. We showed the syntax of key–value pairs and
showed how to use them to create dictionaries with comma-separated lists of key–value
pairs in curly braces, {}. You also created dictionaries with dictionary comprehensions.

You used square brackets, [], to retrieve the value corresponding to a key, and to
insert and update key–value pairs. You also used the dictionary method update to change
a key’s associated value. You iterated through a dictionary’s keys, values and items.

You created sets of unique immutable values. You compared sets with the comparison
operators, combined sets with set operators and methods, changed sets’ values with the
mutable set operations and created sets with set comprehensions. You saw that sets are
mutable. Frozensets are immutable, so they can be used as set and frozenset elements.

In the Intro to Data Science section, we continued our visualization introduction by
presenting the die-rolling simulation with a dynamic bar plot to make the law of large
numbers “come alive.” In addition, to the Seaborn and Matplotlib features shown in the
previous chapter’s Intro to Data Science section, we used Matplotlib’s FuncAnimation
function to control a frame-by-frame animation. FuncAnimation called a function we
defined that specified what to display in each animation frame.

In the next chapter, we discuss array-oriented programming with the popular NumPy
library. As you’ll see, NumPy’s ndarray collection can be up to two orders of magnitude
faster than performing many of the same operations with Python’s built-in lists. This
power will come in handy for today’s big data applications.

https://matplotlib.org/api/_as_gen/matplotlib.animation.FuncAnimation.html
https://matplotlib.org/api/_as_gen/matplotlib.animation.FuncAnimation.html

ptg27972259

7
Array-Oriented Programming

with NumPy

O b j e c t i v e s
In this chapter you’ll:
■ Learn how arrays differ from lists.
■ Use the numpy module’s high-performance ndarrays.
■ Compare list and ndarray performance with the IPython
%timeit magic.

■ Use ndarrays to store and retrieve data efficiently.
■ Create and initialize ndarrays.
■ Refer to individual ndarray elements.
■ Iterate through ndarrays.
■ Create and manipulate multidimensional ndarrays.
■ Perform common ndarray manipulations.
■ Create and manipulate pandas one-dimensional Series and

two-dimensional DataFrames.
■ Customize Series and DataFrame indices.
■ Calculate basic descriptive statistics for data in a Series and

a DataFrame.
■ Customize floating-point number precision in pandas output

formatting.

ptg27972259

160 Chapter 7 Array-Oriented Programming with NumPy
O

u
tl

in
e

7.1 Introduction
The NumPy (Numerical Python) library first appeared in 2006 and is the preferred
Python array implementation. It offers a high-performance, richly functional n-dimen-
sional array type called ndarray, which from this point forward we’ll refer to by its syn-
onym, array. NumPy is one of the many open-source libraries that the Anaconda Python
distribution installs. Operations on arrays are up to two orders of magnitude faster than
those on lists. In a big-data world in which applications may do massive amounts of pro-
cessing on vast amounts of array-based data, this performance advantage can be critical.
According to libraries.io, over 450 Python libraries depend on NumPy. Many popular
data science libraries such as Pandas, SciPy (Scientific Python) and Keras (for deep learn-
ing) are built on or depend on NumPy.

In this chapter, we explore array’s basic capabilities. Lists can have multiple dimen-
sions. You generally process multi-dimensional lists with nested loops or list comprehen-
sions with multiple for clauses. A strength of NumPy is “array-oriented programming,”
which uses functional-style programming with internal iteration to make array manipula-
tions concise and straightforward, eliminating the kinds of bugs that can occur with the
external iteration of explicitly programmed loops.

In this chapter’s Intro to Data Science section, we begin our multi-section introduc-
tion to the pandas library that you’ll use in many of the data science case study chapters.
Big data applications often need more flexible collections than NumPy’s arrays—collec-
tions that support mixed data types, custom indexing, missing data, data that’s not struc-
tured consistently and data that needs to be manipulated into forms appropriate for the
databases and data analysis packages you use. We’ll introduce pandas array-like one-
dimensional Series and two-dimensional DataFrames and begin demonstrating their
powerful capabilities. After reading this chapter, you’ll be familiar with four array-like col-
lections—lists, arrays, Series and DataFrames. We’ll add a fifth—tensors—in the “Deep
Learning” chapter.

7.2 Creating arrays from Existing Data
The NumPy documentation recommends importing the numpy module as np so that you
can access its members with "np.":

7.1 Introduction
7.2 Creating arrays from Existing Data
7.3 array Attributes
7.4 Filling arrays with Specific Values
7.5 Creating arrays from Ranges
7.6 List vs. array Performance:

Introducing %timeit
7.7 array Operators
7.8 NumPy Calculation Methods
7.9 Universal Functions

7.10 Indexing and Slicing
7.11 Views: Shallow Copies
7.12 Deep Copies
7.13 Reshaping and Transposing
7.14 Intro to Data Science: pandas

Series and DataFrames
7.14.1 pandas Series
7.14.2 DataFrames

7.15 Wrap-Up

In [1]: import numpy as np

http://libraries.io

ptg27972259

7.3 array Attributes 161

The numpy module provides various functions for creating arrays. Here we use the
array function, which receives as an argument an array or other collection of elements
and returns a new array containing the argument’s elements. Let’s pass a list:

The array function copies its argument’s contents into the array. Let’s look at the type
of object that function array returns and display its contents:

Note that the type is numpy.ndarray, but all arrays are output as “array.” When output-
ting an array, NumPy separates each value from the next with a comma and a space and
right-aligns all the values using the same field width. It determines the field width based
on the value that occupies the largest number of character positions. In this case, the value
11 occupies the two character positions, so all the values are formatted in two-character
fields. That’s why there’s a leading space between the [and 2.

Multidimensional Arguments
The array function copies its argument’s dimensions. Let’s create an array from a two-
row-by-three-column list:

NumPy auto-formats arrays, based on their number of dimensions, aligning the columns
within each row.

7.3 array Attributes
An array object provides attributes that enable you to discover information about its
structure and contents. In this section we’ll use the following arrays:

NumPy does not display trailing 0s to the right of the decimal point in floating-point
values.

In [2]: numbers = np.array([2, 3, 5, 7, 11])

In [3]: type(numbers)
Out[3]: numpy.ndarray

In [4]: numbers
Out[4]: array([2, 3, 5, 7, 11])

In [5]: np.array([[1, 2, 3], [4, 5, 6]])
Out[5]:
array([[1, 2, 3],
 [4, 5, 6]])

In [1]: import numpy as np

In [2]: integers = np.array([[1, 2, 3], [4, 5, 6]])

In [3]: integers
Out[3]:
array([[1, 2, 3],
 [4, 5, 6]])

In [4]: floats = np.array([0.0, 0.1, 0.2, 0.3, 0.4])

In [5]: floats
Out[5]: array([0. , 0.1, 0.2, 0.3, 0.4])

ptg27972259

162 Chapter 7 Array-Oriented Programming with NumPy

Determining an array’s Element Type
The array function determines an array’s element type from its argument’s elements.
You can check the element type with an array’s dtype attribute:

As you’ll see in the next section, various array-creation functions receive a dtype keyword
argument so you can specify an array’s element type.

For performance reasons, NumPy is written in the C programming language and uses
C’s data types. By default, NumPy stores integers as the NumPy type int64 values—
which correspond to 64-bit (8-byte) integers in C—and stores floating-point numbers as
the NumPy type float64 values—which correspond to 64-bit (8-byte) floating-point val-
ues in C. In our examples, most commonly you’ll see the types int64, float64, bool (for
Boolean) and object for non-numeric data (such as strings). The complete list of sup-
ported types is at https://docs.scipy.org/doc/numpy/user/basics.types.html.

Determining an array’s Dimensions
The attribute ndim contains an array’s number of dimensions and the attribute shape
contains a tuple specifying an array’s dimensions:

Here, integers has 2 rows and 3 columns (6 elements) and floats is one-dimensional,
so snippet [11] shows a one-element tuple (indicated by the comma) containing floats’
number of elements (5).

Determining an array’s Number of Elements and Element Size
You can view an array’s total number of elements with the attribute size and the number
of bytes required to store each element with itemsize:

In [6]: integers.dtype
Out[6]: dtype('int64') # int32 on some platforms

In [7]: floats.dtype
Out[7]: dtype('float64')

In [8]: integers.ndim
Out[8]: 2

In [9]: floats.ndim
Out[9]: 1

In [10]: integers.shape
Out[10]: (2, 3)

In [11]: floats.shape
Out[11]: (5,)

In [12]: integers.size
Out[12]: 6

In [13]: integers.itemsize # 4 if C compiler uses 32-bit ints
Out[13]: 8

In [14]: floats.size
Out[14]: 5

In [15]: floats.itemsize
Out[15]: 8

https://docs.scipy.org/doc/numpy/user/basics.types.html

ptg27972259

7.4 Filling arrays with Specific Values 163

Note that integers’ size is the product of the shape tuple’s values—two rows of three
elements each for a total of six elements. In each case, itemsize is 8 because integers con-
tains int64 values and floats contains float64 values, which each occupy 8 bytes.

Iterating Through a Multidimensional array’s Elements
You’ll generally manipulate arrays using concise functional-style programming tech-
niques. However, because arrays are iterable, you can use external iteration if you’d like:

You can iterate through a multidimensional array as if it were one-dimensional by
using its flat attribute:

7.4 Filling arrays with Specific Values
NumPy provides functions zeros, ones and full for creating arrays containing 0s, 1s or
a specified value, respectively. By default, zeros and ones create arrays containing
float64 values. We’ll show how to customize the element type momentarily. The first
argument to these functions must be an integer or a tuple of integers specifying the desired
dimensions. For an integer, each function returns a one-dimensional array with the spec-
ified number of elements:

For a tuple of integers, these functions return a multidimensional array with the spec-
ified dimensions. You can specify the array’s element type with the zeros and ones func-
tion’s dtype keyword argument:

The array returned by full contains elements with the second argument’s value and type:

In [16]: for row in integers:
 ...: for column in row:
 ...: print(column, end=' ')
 ...: print()
 ...:
1 2 3
4 5 6

In [17]: for i in integers.flat:
 ...: print(i, end=' ')
 ...:
1 2 3 4 5 6

In [1]: import numpy as np

In [2]: np.zeros(5)
Out[2]: array([0., 0., 0., 0., 0.])

In [3]: np.ones((2, 4), dtype=int)
Out[3]:
array([[1, 1, 1, 1],
 [1, 1, 1, 1]])

In [4]: np.full((3, 5), 13)
Out[4]:
array([[13, 13, 13, 13, 13],
 [13, 13, 13, 13, 13],
 [13, 13, 13, 13, 13]])

ptg27972259

164 Chapter 7 Array-Oriented Programming with NumPy

7.5 Creating arrays from Ranges
NumPy provides optimized functions for creating arrays from ranges. We focus on sim-
ple evenly spaced integer and floating-point ranges, but NumPy also supports nonlinear
ranges.1

Creating Integer Ranges with arange
Let’s use NumPy’s arange function to create integer ranges—similar to using built-in
function range. In each case, arange first determines the resulting array’s number of ele-
ments, allocates the memory, then stores the specified range of values in the array:

Though you can create arrays by passing ranges as arguments, always use arange as it’s
optimized for arrays. Soon we’ll show how to determine the execution time of various
operations so you can compare their performance.

Creating Floating-Point Ranges with linspace
You can produce evenly spaced floating-point ranges with NumPy’s linspace function.
The function’s first two arguments specify the starting and ending values in the range, and
the ending value is included in the array. The optional keyword argument num specifies
the number of evenly spaced values to produce—this argument’s default value is 50:

Reshaping an array
You also can create an array from a range of elements, then use array method reshape
to transform the one-dimensional array into a multidimensional array. Let’s create an
array containing the values from 1 through 20, then reshape it into four rows by five col-
umns:

Note the chained method calls in the preceding snippet. First, arange produces an array
containing the values 1–20. Then we call reshape on that array to get the 4-by-5 array
that was displayed.

1. https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html.

In [1]: import numpy as np

In [2]: np.arange(5)
Out[2]: array([0, 1, 2, 3, 4])

In [3]: np.arange(5, 10)
Out[3]: array([5, 6, 7, 8, 9])

In [4]: np.arange(10, 1, -2)
Out[4]: array([10, 8, 6, 4, 2])

In [5]: np.linspace(0.0, 1.0, num=5)
Out[5]: array([0. , 0.25, 0.5 , 0.75, 1.])

In [6]: np.arange(1, 21).reshape(4, 5)
Out[6]:
array([[1, 2, 3, 4, 5],
 [6, 7, 8, 9, 10],
 [11, 12, 13, 14, 15],
 [16, 17, 18, 19, 20]])

https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html

ptg27972259

7.6 List vs. array Performance: Introducing %timeit 165

You can reshape any array, provided that the new shape has the same number of ele-
ments as the original. So a six-element one-dimensional array can become a 3-by-2 or 2-
by-3 array, and vice versa, but attempting to reshape a 15-element array into a 4-by-4
array (16 elements) causes a ValueError.

Displaying Large arrays
When displaying an array, if there are 1000 items or more, NumPy drops the middle
rows, columns or both from the output. The following snippets generate 100,000 ele-
ments. The first case shows all four rows but only the first and last three of the 25,000 col-
umns. The notation ... represents the missing data. The second case shows the first and
last three of the 100 rows, and the first and last three of the 1000 columns:

7.6 List vs. array Performance: Introducing %timeit
Most array operations execute significantly faster than corresponding list operations. To
demonstrate, we’ll use the IPython %timeit magic command, which times the average
duration of operations. Note that the times displayed on your system may vary from what
we show here.

Timing the Creation of a List Containing Results of 6,000,000 Die Rolls
We’ve demonstrated rolling a six-sided die 6,000,000 times. Here, let’s use the random
module’s randrange function with a list comprehension to create a list of six million die
rolls and time the operation using %timeit. Note that we used the line-continuation char-
acter (\) to split the statement in snippet [2] over two lines:

By default, %timeit executes a statement in a loop, and it runs the loop seven times.
If you do not indicate the number of loops, %timeit chooses an appropriate value. In our
testing, operations that on average took more than 500 milliseconds iterated only once,
and operations that took fewer than 500 milliseconds iterated 10 times or more.

In [7]: np.arange(1, 100001).reshape(4, 25000)
Out[7]:
array([[1, 2, 3, ..., 24998, 24999, 25000],
 [25001, 25002, 25003, ..., 49998, 49999, 50000],
 [50001, 50002, 50003, ..., 74998, 74999, 75000],
 [75001, 75002, 75003, ..., 99998, 99999, 100000]])

In [8]: np.arange(1, 100001).reshape(100, 1000)
Out[8]:
array([[1, 2, 3, ..., 998, 999, 1000],
 [1001, 1002, 1003, ..., 1998, 1999, 2000],
 [2001, 2002, 2003, ..., 2998, 2999, 3000],
 ...,
 [97001, 97002, 97003, ..., 97998, 97999, 98000],
 [98001, 98002, 98003, ..., 98998, 98999, 99000],
 [99001, 99002, 99003, ..., 99998, 99999, 100000]])

In [1]: import random

In [2]: %timeit rolls_list = \
 ...: [random.randrange(1, 7) for i in range(0, 6_000_000)]
6.29 s ± 119 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

ptg27972259

166 Chapter 7 Array-Oriented Programming with NumPy

After executing the statement, %timeit displays the statement’s average execution
time, as well as the standard deviation of all the executions. On average, %timeit indicates
that it took 6.29 seconds (s) to create the list with a standard deviation of 119 milliseconds
(ms). In total, the preceding snippet took about 44 seconds to run the snippet seven times.

Timing the Creation of an array Containing Results of 6,000,000 Die Rolls
Now, let’s use the randint function from the numpy.random module to create an array
of 6,000,000 die rolls

On average, %timeit indicates that it took only 72.4 milliseconds with a standard deviation
of 635 microseconds (μs) to create the array. In total, the preceding snippet took just
under half a second to execute on our computer—about 1/100th of the time snippet [2]
took to execute. The operation is two orders of magnitude faster with array!

60,000,000 and 600,000,000 Die Rolls
Now, let’s create an array of 60,000,000 die rolls:

On average, it took only 873 milliseconds to create the array.
Finally, let’s do 600,000,000 million die rolls:

It took about 10 seconds to create 600,000,000 elements with NumPy vs. about 6 seconds
to create only 6,000,000 elements with a list comprehension.

Based on these timing studies, you can see clearly why arrays are preferred over lists
for compute-intensive operations. In the data science case studies, we’ll enter the perfor-
mance-intensive worlds of big data and AI. We’ll see how clever hardware, software, com-
munications and algorithm designs combine to meet the often enormous computing
challenges of today’s applications.

Customizing the %timeit Iterations
The number of iterations within each %timeit loop and the number of loops are custom-
izable with the -n and -r options. The following executes snippet [4]’s statement three
times per loop and runs the loop twice:2

Other IPython Magics
IPython provides dozens of magics for a variety of tasks—for a complete list, see the IPy-
thon magics documentation.3 Here are a few helpful ones:

In [3]: import numpy as np

In [4]: %timeit rolls_array = np.random.randint(1, 7, 6_000_000)
72.4 ms ± 635 μs per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [5]: %timeit rolls_array = np.random.randint(1, 7, 60_000_000)
873 ms ± 29.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [6]: %timeit rolls_array = np.random.randint(1, 7, 600_000_000)
10.1 s ± 232 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [7]: %timeit -n3 -r2 rolls_array = np.random.randint(1, 7, 6_000_000)
85.5 ms ± 5.32 ms per loop (mean ± std. dev. of 2 runs, 3 loops each)

2. For most readers, using %timeit’s default settings should be fine.
3. http://ipython.readthedocs.io/en/stable/interactive/magics.html.

http://ipython.readthedocs.io/en/stable/interactive/magics.html

ptg27972259

7.7 array Operators 167

• %load to read code into IPython from a local file or URL.

• %save to save snippets to a file.

• %run to execute a .py file from IPython.

• %precision to change the default floating-point precision for IPython outputs.

• %cd to change directories without having to exit IPython first.

• %edit to launch an external editor—handy if you need to modify more complex
snippets.

• %history to view a list of all snippets and commands you’ve executed in the cur-
rent IPython session.

7.7 array Operators
NumPy provides many operators which enable you to write simple expressions that per-
form operations on entire arrays. Here, we demonstrate arithmetic between arrays and
numeric values and between arrays of the same shape.

Arithmetic Operations with arrays and Individual Numeric Values
First, let’s perform element-wise arithmetic with arrays and numeric values by using arith-
metic operators and augmented assignments. Element-wise operations are applied to every
element, so snippet [4] multiplies every element by 2 and snippet [5] cubes every element.
Each returns a new array containing the result:

Snippet [6] shows that the arithmetic operators did not modify numbers. Operators + and
* are commutative, so snippet [4] could also be written as 2 * numbers.

Augmented assignments modify every element in the left operand.

Broadcasting
Normally, the arithmetic operations require as operands two arrays of the same size and
shape. When one operand is a single value, called a scalar, NumPy performs the element-

In [1]: import numpy as np

In [2]: numbers = np.arange(1, 6)

In [3]: numbers
Out[3]: array([1, 2, 3, 4, 5])

In [4]: numbers * 2
Out[4]: array([2, 4, 6, 8, 10])

In [5]: numbers ** 3
Out[5]: array([1, 8, 27, 64, 125])

In [6]: numbers # numbers is unchanged by the arithmetic operators
Out[6]: array([1, 2, 3, 4, 5])

In [7]: numbers += 10

In [8]: numbers
Out[8]: array([11, 12, 13, 14, 15])

ptg27972259

168 Chapter 7 Array-Oriented Programming with NumPy

wise calculations as if the scalar were an array of the same shape as the other operand, but
with the scalar value in all its elements. This is called broadcasting. Snippets [4], [5] and
[7] each use this capability. For example, snippet [4] is equivalent to:

numbers * [2, 2, 2, 2, 2]

Broadcasting also can be applied between arrays of different sizes and shapes,
enabling some concise and powerful manipulations. We’ll show more examples of broad-
casting later in the chapter when we introduce NumPy’s universal functions.

Arithmetic Operations Between arrays
You may perform arithmetic operations and augmented assignments between arrays of
the same shape. Let’s multiply the one-dimensional arrays numbers and numbers2 (created
below) that each contain five elements:

The result is a new array formed by multiplying the arrays element-wise in each operand—
11 * 1.1, 12 * 2.2, 13 * 3.3, etc. Arithmetic between arrays of integers and floating-point
numbers results in an array of floating-point numbers.

Comparing arrays
You can compare arrays with individual values and with other arrays. Comparisons are
performed element-wise. Such comparisons produce arrays of Boolean values in which
each element’s True or False value indicates the comparison result:

Snippet [13] uses broadcasting to determine whether each element of numbers is greater
than or equal to 13. The remaining snippets compare the corresponding elements of each
array operand.

In [9]: numbers2 = np.linspace(1.1, 5.5, 5)

In [10]: numbers2
Out[10]: array([1.1, 2.2, 3.3, 4.4, 5.5])

In [11]: numbers * numbers2
Out[11]: array([12.1, 26.4, 42.9, 61.6, 82.5])

In [12]: numbers
Out[12]: array([11, 12, 13, 14, 15])

In [13]: numbers >= 13
Out[13]: array([False, False, True, True, True])

In [14]: numbers2
Out[14]: array([1.1, 2.2, 3.3, 4.4, 5.5])

In [15]: numbers2 < numbers
Out[15]: array([True, True, True, True, True])

In [16]: numbers == numbers2
Out[16]: array([False, False, False, False, False])

In [17]: numbers == numbers
Out[17]: array([True, True, True, True, True])

ptg27972259

7.8 NumPy Calculation Methods 169

7.8 NumPy Calculation Methods
An array has various methods that perform calculations using its contents. By default,
these methods ignore the array’s shape and use all the elements in the calculations. For
example, calculating the mean of an array totals all of its elements regardless of its shape,
then divides by the total number of elements. You can perform these calculations on each
dimension as well. For example, in a two-dimensional array, you can calculate each row’s
mean and each column’s mean.

Consider an array representing four students’ grades on three exams:

We can use methods to calculate sum, min, max, mean, std (standard deviation) and var
(variance)—each is a functional-style programming reduction:

Calculations by Row or Column
Many calculation methods can be performed on specific array dimensions, known as the
array’s axes. These methods receive an axis keyword argument that specifies which
dimension to use in the calculation, giving you a quick way to perform calculations by row
or column in a two-dimensional array.

Assume that you want to calculate the average grade on each exam, represented by the
columns of grades. Specifying axis=0 performs the calculation on all the row values
within each column:

In [1]: import numpy as np

In [2]: grades = np.array([[87, 96, 70], [100, 87, 90],
 ...: [94, 77, 90], [100, 81, 82]])
 ...:

In [3]: grades
Out[3]:
array([[87, 96, 70],
 [100, 87, 90],
 [94, 77, 90],
 [100, 81, 82]])

In [4]: grades.sum()
Out[4]: 1054

In [5]: grades.min()
Out[5]: 70

In [6]: grades.max()
Out[6]: 100

In [7]: grades.mean()
Out[7]: 87.83333333333333

In [8]: grades.std()
Out[8]: 8.792357792739987

In [9]: grades.var()
Out[9]: 77.30555555555556

In [10]: grades.mean(axis=0)
Out[10]: array([95.25, 85.25, 83.])

ptg27972259

170 Chapter 7 Array-Oriented Programming with NumPy

So 95.25 above is the average of the first column’s grades (87, 100, 94 and 100), 85.25 is
the average of the second column’s grades (96, 87, 77 and 81) and 83 is the average of the
third column’s grades (70, 90, 90 and 82). Again, NumPy does not display trailing 0s to
the right of the decimal point in '83.'. Also note that it does display all element values in
the same field width, which is why '83.' is followed by two spaces.

Similarly, specifying axis=1 performs the calculation on all the column values within
each individual row. To calculate each student’s average grade for all exams, we can use:

This produces four averages—one each for the values in each row. So 84.33333333 is the
average of row 0’s grades (87, 96 and 70), and the other averages are for the remaining rows.

NumPy arrays have many more calculation methods. For the complete list, see

https://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html

7.9 Universal Functions
NumPy offers dozens of standalone universal functions (or ufuncs) that perform various
element-wise operations. Each performs its task using one or two array or array-like (such
as lists) arguments. Some of these functions are called when you use operators like + and
* on arrays. Each returns a new array containing the results.

Let’s create an array and calculate the square root of its values, using the sqrt uni-
versal function:

Let’s add two arrays with the same shape, using the add universal function:

The expression np.add(numbers, numbers2) is equivalent to:

numbers + numbers2

Broadcasting with Universal Functions
Let’s use the multiply universal function to multiply every element of numbers2 by the
scalar value 5:

The expression np.multiply(numbers2, 5) is equivalent to:

numbers2 * 5

In [11]: grades.mean(axis=1)
Out[11]: array([84.33333333, 92.33333333, 87. , 87.66666667])

In [1]: import numpy as np

In [2]: numbers = np.array([1, 4, 9, 16, 25, 36])

In [3]: np.sqrt(numbers)
Out[3]: array([1., 2., 3., 4., 5., 6.])

In [4]: numbers2 = np.arange(1, 7) * 10

In [5]: numbers2
Out[5]: array([10, 20, 30, 40, 50, 60])

In [6]: np.add(numbers, numbers2)
Out[6]: array([11, 24, 39, 56, 75, 96])

In [7]: np.multiply(numbers2, 5)
Out[7]: array([50, 100, 150, 200, 250, 300])

https://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html

ptg27972259

7.10 Indexing and Slicing 171

Let’s reshape numbers2 into a 2-by-3 array, then multiply its values by a one-dimen-
sional array of three elements:

This works because numbers4 has the same length as each row of numbers3, so NumPy can
apply the multiply operation by treating numbers4 as if it were the following array:

array([[2, 4, 6],
 [2, 4, 6]])

If a universal function receives two arrays of different shapes that do not support
broadcasting, a ValueError occurs. You can view the broadcasting rules at:

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

Other Universal Functions
The NumPy documentation lists universal functions in five categories—math, trigonom-
etry, bit manipulation, comparison and floating point. The following table lists some
functions from each category. You can view the complete list, their descriptions and more
information about universal functions at:

https://docs.scipy.org/doc/numpy/reference/ufuncs.html

7.10 Indexing and Slicing
One-dimensional arrays can be indexed and sliced using the same syntax and techniques
we demonstrated in the “Sequences: Lists and Tuples” chapter. Here, we focus on array-
specific indexing and slicing capabilities.

Indexing with Two-Dimensional arrays
To select an element in a two-dimensional array, specify a tuple containing the element’s
row and column indices in square brackets (as in snippet [4]):

In [8]: numbers3 = numbers2.reshape(2, 3)

In [9]: numbers3
Out[9]:
array([[10, 20, 30],
 [40, 50, 60]])

In [10]: numbers4 = np.array([2, 4, 6])

In [11]: np.multiply(numbers3, numbers4)
Out[11]:
array([[20, 80, 180],
 [80, 200, 360]])

NumPy universal functions

Math—add, subtract, multiply, divide, remainder, exp, log, sqrt, power, and more.
Trigonometry—sin, cos, tan, hypot, arcsin, arccos, arctan, and more.
Bit manipulation—bitwise_and, bitwise_or, bitwise_xor, invert, left_shift and right_shift.
Comparison—greater, greater_equal, less, less_equal, equal, not_equal, logical_and,
logical_or, logical_xor, logical_not, minimum, maximum, and more.
Floating point—floor, ceil, isinf, isnan, fabs, trunc, and more.

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
https://docs.scipy.org/doc/numpy/reference/ufuncs.html

ptg27972259

172 Chapter 7 Array-Oriented Programming with NumPy

Selecting a Subset of a Two-Dimensional array’s Rows
To select a single row, specify only one index in square brackets:

To select multiple sequential rows, use slice notation:

To select multiple non-sequential rows, use a list of row indices:

Selecting a Subset of a Two-Dimensional array’s Columns
You can select subsets of the columns by providing a tuple specifying the row(s) and col-
umn(s) to select. Each can be a specific index, a slice or a list. Let’s select only the elements
in the first column:

The 0 after the comma indicates that we’re selecting only column 0. The : before the
comma indicates which rows within that column to select. In this case, : is a slice repre-
senting all rows. This also could be a specific row number, a slice representing a subset of
the rows or a list of specific row indices to select, as in snippets [5]–[7].

You can select consecutive columns using a slice:

In [1]: import numpy as np

In [2]: grades = np.array([[87, 96, 70], [100, 87, 90],
 ...: [94, 77, 90], [100, 81, 82]])
 ...:

In [3]: grades
Out[3]:
array([[87, 96, 70],
 [100, 87, 90],
 [94, 77, 90],
 [100, 81, 82]])

In [4]: grades[0, 1] # row 0, column 1
Out[4]: 96

In [5]: grades[1]
Out[5]: array([100, 87, 90])

In [6]: grades[0:2]
Out[6]:
array([[87, 96, 70],
 [100, 87, 90]])

In [7]: grades[[1, 3]]
Out[7]:
array([[100, 87, 90],
 [100, 81, 82]])

In [8]: grades[:, 0]
Out[8]: array([87, 100, 94, 100])

In [9]: grades[:, 1:3]
Out[9]:
array([[96, 70],
 [87, 90],
 [77, 90],
 [81, 82]])

ptg27972259

7.11 Views: Shallow Copies 173

or specific columns using a list of column indices:

7.11 Views: Shallow Copies
The previous chapter introduced view objects—that is, objects that “see” the data in other
objects, rather than having their own copies of the data. Views are shallow copies. Various
array methods and slicing operations produce views of an array’s data.

The array method view returns a new array object with a view of the original array
object’s data. First, let’s create an array and a view of that array:

We can use the built-in id function to see that numbers and numbers2 are different objects:

To prove that numbers2 views the same data as numbers, let’s modify an element in
numbers, then display both arrays:

Similarly, changing a value in the view also changes that value in the original array:

In [10]: grades[:, [0, 2]]
Out[10]:
array([[87, 70],
 [100, 90],
 [94, 90],
 [100, 82]])

In [1]: import numpy as np

In [2]: numbers = np.arange(1, 6)

In [3]: numbers
Out[3]: array([1, 2, 3, 4, 5])

In [4]: numbers2 = numbers.view()

In [5]: numbers2
Out[5]: array([1, 2, 3, 4, 5])

In [6]: id(numbers)
Out[6]: 4462958592

In [7]: id(numbers2)
Out[7]: 4590846240

In [8]: numbers[1] *= 10

In [9]: numbers2
Out[9]: array([1, 20, 3, 4, 5])

In [10]: numbers
Out[10]: array([1, 20, 3, 4, 5])

In [11]: numbers2[1] /= 10

In [12]: numbers
Out[12]: array([1, 2, 3, 4, 5])

In [13]: numbers2
Out[13]: array([1, 2, 3, 4, 5])

ptg27972259

174 Chapter 7 Array-Oriented Programming with NumPy

Slice Views
Slices also create views. Let’s make numbers2 a slice that views only the first three elements
of numbers:

Again, we can confirm that numbers and numbers2 are different objects with id:

We can confirm that numbers2 is a view of only the first three numbers elements by
attempting to access numbers2[3], which produces an IndexError:

Now, let’s modify an element both arrays share, then display them. Again, we see
that numbers2 is a view of numbers:

7.12 Deep Copies
Though views are separate array objects, they save memory by sharing element data from
other arrays. However, when sharing mutable values, sometimes it’s necessary to create a
deep copy with independent copies of the original data. This is especially important in
multi-core programming, where separate parts of your program could attempt to modify
your data at the same time, possibly corrupting it.

The array method copy returns a new array object with a deep copy of the original
array object’s data. First, let’s create an array and a deep copy of that array:

In [14]: numbers2 = numbers[0:3]

In [15]: numbers2
Out[15]: array([1, 2, 3])

In [16]: id(numbers)
Out[16]: 4462958592

In [17]: id(numbers2)
Out[17]: 4590848000

In [18]: numbers2[3]

IndexError Traceback (most recent call last)
<ipython-input-18-582053f52daa> in <module>()
----> 1 numbers2[3]

IndexError: index 3 is out of bounds for axis 0 with size 3

In [19]: numbers[1] *= 20

In [20]: numbers
Out[20]: array([1, 2, 3, 4, 5])

In [21]: numbers2
Out[21]: array([1, 40, 3])

In [1]: import numpy as np

In [2]: numbers = np.arange(1, 6)

In [3]: numbers
Out[3]: array([1, 2, 3, 4, 5])

In [4]: numbers2 = numbers.copy()

ptg27972259

7.13 Reshaping and Transposing 175

To prove that numbers2 has a separate copy of the data in numbers, let’s modify an
element in numbers, then display both arrays:

As you can see, the change appears only in numbers.

Module copy—Shallow vs. Deep Copies for Other Types of Python Objects
In previous chapters, we covered shallow copying. In this chapter, we’ve covered how to
deep copy array objects using their copy method. If you need deep copies of other types of
Python objects, pass them to the copy module’s deepcopy function.

7.13 Reshaping and Transposing
We’ve used array method reshape to produce two-dimensional arrays from one-dimen-
sional ranges. NumPy provides various other ways to reshape arrays.

reshape vs. resize
The array methods reshape and resize both enable you to change an array’s dimensions.
Method reshape returns a view (shallow copy) of the original array with the new dimen-
sions. It does not modify the original array:

Method resize modifies the original array’s shape:

In [5]: numbers2
Out[5]: array([1, 2, 3, 4, 5])

In [6]: numbers[1] *= 10

In [7]: numbers
Out[7]: array([1, 20, 3, 4, 5])

In [8]: numbers2
Out[8]: array([1, 2, 3, 4, 5])

In [1]: import numpy as np

In [2]: grades = np.array([[87, 96, 70], [100, 87, 90]])

In [3]: grades
Out[3]:
array([[87, 96, 70],
 [100, 87, 90]])

In [4]: grades.reshape(1, 6)
Out[4]: array([[87, 96, 70, 100, 87, 90]])

In [5]: grades
Out[5]:
array([[87, 96, 70],
 [100, 87, 90]])

In [6]: grades.resize(1, 6)

In [7]: grades
Out[7]: array([[87, 96, 70, 100, 87, 90]])

ptg27972259

176 Chapter 7 Array-Oriented Programming with NumPy

flatten vs. ravel
You can take a multidimensional array and flatten it into a single dimension with the
methods flatten and ravel. Method flatten deep copies the original array’s data:

To confirm that grades and flattened do not share the data, let’s modify an element of
flattened, then display both arrays:

Method ravel produces a view of the original array, which shares the grades array’s
data:

To confirm that grades and raveled share the same data, let’s modify an element of rav-
eled, then display both arrays:

In [8]: grades = np.array([[87, 96, 70], [100, 87, 90]])

In [9]: grades
Out[9]:
array([[87, 96, 70],
 [100, 87, 90]])

In [10]: flattened = grades.flatten()

In [11]: flattened
Out[11]: array([87, 96, 70, 100, 87, 90])

In [12]: grades
Out[12]:
array([[87, 96, 70],
 [100, 87, 90]])

In [13]: flattened[0] = 100

In [14]: flattened
Out[14]: array([100, 96, 70, 100, 87, 90])

In [15]: grades
Out[15]:
array([[87, 96, 70],
 [100, 87, 90]])

In [16]: raveled = grades.ravel()

In [17]: raveled
Out[17]: array([87, 96, 70, 100, 87, 90])

In [18]: grades
Out[18]:
array([[87, 96, 70],
 [100, 87, 90]])

In [19]: raveled[0] = 100

In [20]: raveled
Out[20]: array([100, 96, 70, 100, 87, 90])

In [21]: grades
Out[21]:
array([[100, 96, 70],
 [100, 87, 90]])

ptg27972259

7.14 Intro to Data Science: pandas Series and DataFrames 177

Transposing Rows and Columns
You can quickly transpose an array’s rows and columns—that is “flip” the array, so the
rows become the columns and the columns become the rows. The T attribute returns a trans-
posed view (shallow copy) of the array. The original grades array represents two students’
grades (the rows) on three exams (the columns). Let’s transpose the rows and columns to
view the data as the grades on three exams (the rows) for two students (the columns):

Transposing does not modify the original array:

Horizontal and Vertical Stacking
You can combine arrays by adding more columns or more rows—known as horizontal
stacking and vertical stacking. Let’s create another 2-by-3 array of grades:

Let’s assume grades2 represents three additional exam grades for the two students in
the grades array. We can combine grades and grades2 with NumPy’s hstack (horizon-
tal stack) function by passing a tuple containing the arrays to combine. The extra paren-
theses are required because hstack expects one argument:

Next, let’s assume that grades2 represents two more students’ grades on three exams. In
this case, we can combine grades and grades2 with NumPy’s vstack (vertical stack)
function:

7.14 Intro to Data Science: pandas Series and
DataFrames
NumPy’s array is optimized for homogeneous numeric data that’s accessed via integer
indices. Data science presents unique demands for which more customized data structures
are required. Big data applications must support mixed data types, customized indexing,
missing data, data that’s not structured consistently and data that needs to be manipulated
into forms appropriate for the databases and data analysis packages you use.

In [22]: grades.T
Out[22]:
array([[100, 100],
 [96, 87],
 [70, 90]])

In [23]: grades
Out[23]:
array([[100, 96, 70],
 [100, 87, 90]])

In [24]: grades2 = np.array([[94, 77, 90], [100, 81, 82]])

In [25]: np.hstack((grades, grades2))
Out[25]:
array([[100, 96, 70, 94, 77, 90],
 [100, 87, 90, 100, 81, 82]])

In [26]: np.vstack((grades, grades2))
Out[26]:
array([[100, 96, 70],
 [100, 87, 90],
 [94, 77, 90],
 [100, 81, 82]])

ptg27972259

178 Chapter 7 Array-Oriented Programming with NumPy

Pandas is the most popular library for dealing with such data. It provides two key col-
lections that you’ll use in several of our Intro to Data Science sections and throughout the
data science case studies—Series for one-dimensional collections and DataFrames for
two-dimensional collections. You can use pandas’ MultiIndex to manipulate multi-
dimensional data in the context of Series and DataFrames.

Wes McKinney created pandas in 2008 while working in industry. The name pandas
is derived from the term “panel data,” which is data for measurements over time, such as
stock prices or historical temperature readings. McKinney needed a library in which the
same data structures could handle both time- and non-time-based data with support for
data alignment, missing data, common database-style data manipulations, and more.4

NumPy and pandas are intimately related. Series and DataFrames use arrays “under
the hood.” Series and DataFrames are valid arguments to many NumPy operations. Sim-
ilarly, arrays are valid arguments to many Series and DataFrame operations.

Pandas is a massive topic—the PDF of its documentation5 is over 2000 pages. In this
and the next chapters’ Intro to Data Science sections, we present an introduction to pan-
das. We discuss its Series and DataFrames collections, and use them in support of data
preparation. You’ll see that Series and DataFrames make it easy for you to perform com-
mon tasks like selecting elements a variety of ways, filter/map/reduce operations (central
to functional-style programming and big data), mathematical operations, visualization
and more.

7.14.1 pandas Series
A Series is an enhanced one-dimensional array. Whereas arrays use only zero-based
integer indices, Series support custom indexing, including even non-integer indices like
strings. Series also offer additional capabilities that make them more convenient for
many data-science oriented tasks. For example, Series may have missing data, and many
Series operations ignore missing data by default.

Creating a Series with Default Indices
By default, a Series has integer indices numbered sequentially from 0. The following cre-
ates a Series of student grades from a list of integers:

The initializer also may be a tuple, a dictionary, an array, another Series or a single value.
We’ll show a single value momentarily.

Displaying a Series
Pandas displays a Series in two-column format with the indices left aligned in the left col-
umn and the values right aligned in the right column. After listing the Series elements,
pandas shows the data type (dtype) of the underlying array’s elements:

4. McKinney, Wes. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, pp.
123–165. Sebastopol, CA: OReilly Media, 2018.

5. For the latest pandas documentation, see http://pandas.pydata.org/pandas-docs/stable/.

In [1]: import pandas as pd

In [2]: grades = pd.Series([87, 100, 94])

http://pandas.pydata.org/pandas-docs/stable/

ptg27972259

7.14 Intro to Data Science: pandas Series and DataFrames 179

Note how easy it is to display a Series in this format, compared to the corresponding
code for displaying a list in the same two-column format.

Creating a Series with All Elements Having the Same Value
You can create a Series of elements that all have the same value:

The second argument is a one-dimensional iterable object (such as a list, an array or a
range) containing the Series’ indices. The number of indices determines the number of
elements.

Accessing a Series’ Elements
You can access a Series’s elements by via square brackets containing an index:

Producing Descriptive Statistics for a Series
Series provides many methods for common tasks including producing various descriptive
statistics. Here we show count, mean, min, max and std (standard deviation):

Each of these is a functional-style reduction. Calling Series method describe produces
all these stats and more:

In [3]: grades
Out[3]:
0 87
1 100
2 94
dtype: int64

In [4]: pd.Series(98.6, range(3))
Out[4]:
0 98.6
1 98.6
2 98.6
dtype: float64

In [5]: grades[0]
Out[5]: 87

In [6]: grades.count()
Out[6]: 3

In [7]: grades.mean()
Out[7]: 93.66666666666667

In [8]: grades.min()
Out[8]: 87

In [9]: grades.max()
Out[9]: 100

In [10]: grades.std()
Out[10]: 6.506407098647712

In [11]: grades.describe()
Out[11]:
count 3.000000
mean 93.666667
std 6.506407

ptg27972259

180 Chapter 7 Array-Oriented Programming with NumPy

The 25%, 50% and 75% are quartiles:

• 50% represents the median of the sorted values.

• 25% represents the median of the first half of the sorted values.

• 75% represents the median of the second half of the sorted values.

For the quartiles, if there are two middle elements, then their average is that quartile’s
median. We have only three values in our Series, so the 25% quartile is the average of 87
and 94, and the 75% quartile is the average of 94 and 100. Together, the interquartile
range is the 75% quartile minus the 25% quartile, which is another measure of dispersion,
like standard deviation and variance. Of course, quartiles and interquartile range are more
useful in larger datasets.

Creating a Series with Custom Indices
You can specify custom indices with the index keyword argument:

In this case, we used string indices, but you can use other immutable types, including inte-
gers not beginning at 0 and nonconsecutive integers. Again, notice how nicely and con-
cisely pandas formats a Series for display.

Dictionary Initializers
If you initialize a Series with a dictionary, its keys become the Series’ indices, and its
values become the Series’ element values:

Accessing Elements of a Series Via Custom Indices
In a Series with custom indices, you can access individual elements via square brackets
containing a custom index value:

min 87.000000
25% 90.500000
50% 94.000000
75% 97.000000
max 100.000000
dtype: float64

In [12]: grades = pd.Series([87, 100, 94], index=['Wally', 'Eva', 'Sam'])

In [13]: grades
Out[13]:
Wally 87
Eva 100
Sam 94
dtype: int64

In [14]: grades = pd.Series({'Wally': 87, 'Eva': 100, 'Sam': 94})

In [15]: grades
Out[15]:
Wally 87
Eva 100
Sam 94
dtype: int64

In [16]: grades['Eva']
Out[16]: 100

ptg27972259

7.14 Intro to Data Science: pandas Series and DataFrames 181

If the custom indices are strings that could represent valid Python identifiers, pandas auto-
matically adds them to the Series as attributes that you can access via a dot (.), as in:

Series also has built-in attributes. For example, the dtype attribute returns the underly-
ing array’s element type:

and the values attribute returns the underlying array:

Creating a Series of Strings
If a Series contains strings, you can use its str attribute to call string methods on the
elements. First, let’s create a Series of hardware-related strings:

Note that pandas also right-aligns string element values and that the dtype for strings is
object.

Let’s call string method contains on each element to determine whether the value of
each element contains a lowercase 'a':

Pandas returns a Series containing bool values indicating the contains method’s result
for each element—the element at index 2 ('Wrench') does not contain an 'a', so its ele-
ment in the resulting Series is False. Note that pandas handles the iteration internally
for you—another example of functional-style programming. The str attribute provides
many string-processing methods that are similar to those in Python’s string type. For a list,
see: https://pandas.pydata.org/pandas-docs/stable/api.html#string-handling.

The following uses string method upper to produce a new Series containing the
uppercase versions of each element in hardware:

In [17]: grades.Wally
Out[17]: 87

In [18]: grades.dtype
Out[18]: dtype('int64')

In [19]: grades.values
Out[19]: array([87, 100, 94])

In [20]: hardware = pd.Series(['Hammer', 'Saw', 'Wrench'])

In [21]: hardware
Out[21]:
0 Hammer
1 Saw
2 Wrench
dtype: object

In [22]: hardware.str.contains('a')
Out[22]:
0 True
1 True
2 False
dtype: bool

In [23]: hardware.str.upper()
Out[23]:
0 HAMMER
1 SAW
2 WRENCH
dtype: object

https://pandas.pydata.org/pandas-docs/stable/api.html#string-handling

ptg27972259

182 Chapter 7 Array-Oriented Programming with NumPy

7.14.2 DataFrames
A DataFrame is an enhanced two-dimensional array. Like Series, DataFrames can have
custom row and column indices, and offer additional operations and capabilities that
make them more convenient for many data-science oriented tasks. DataFrames also sup-
port missing data. Each column in a DataFrame is a Series. The Series representing each
column may contain different element types, as you’ll soon see when we discuss loading
datasets into DataFrames.

Creating a DataFrame from a Dictionary
Let’s create a DataFrame from a dictionary that represents student grades on three exams:

Pandas displays DataFrames in tabular format with the indices left aligned in the index col-
umn and the remaining columns’ values right aligned. The dictionary’s keys become the
column names and the values associated with each key become the element values in the
corresponding column. Shortly, we’ll show how to “flip” the rows and columns. By
default, the row indices are auto-generated integers starting from 0.

Customizing a DataFrame’s Indices with the index Attribute
We could have specified custom indices with the index keyword argument when we cre-
ated the DataFrame, as in:

pd.DataFrame(grades_dict, index=['Test1', 'Test2', 'Test3'])

Let’s use the index attribute to change the DataFrame’s indices from sequential integers
to labels:

When specifying the indices, you must provide a one-dimensional collection that has the
same number of elements as there are rows in the DataFrame; otherwise, a ValueError
occurs. Series also provides an index attribute for changing an existing Series’ indices.

In [1]: import pandas as pd

In [2]: grades_dict = {'Wally': [87, 96, 70], 'Eva': [100, 87, 90],
 ...: 'Sam': [94, 77, 90], 'Katie': [100, 81, 82],
 ...: 'Bob': [83, 65, 85]}
 ...:

In [3]: grades = pd.DataFrame(grades_dict)

In [4]: grades
Out[4]:
 Wally Eva Sam Katie Bob
0 87 100 94 100 83
1 96 87 77 81 65
2 70 90 90 82 85

In [5]: grades.index = ['Test1', 'Test2', 'Test3']

In [6]: grades
Out[6]:
 Wally Eva Sam Katie Bob
Test1 87 100 94 100 83
Test2 96 87 77 81 65
Test3 70 90 90 82 85

ptg27972259

7.14 Intro to Data Science: pandas Series and DataFrames 183

Accessing a DataFrame’s Columns
One benefit of pandas is that you can quickly and conveniently look at your data in many
different ways, including selecting portions of the data. Let’s start by getting Eva’s grades
by name, which displays her column as a Series:

If a DataFrame’s column-name strings are valid Python identifiers, you can use them
as attributes. Let’s get Sam’s grades with the Sam attribute:

Selecting Rows via the loc and iloc Attributes
Though DataFrames support indexing capabilities with [], the pandas documentation rec-
ommends using the attributes loc, iloc, at and iat, which are optimized to access Data-
Frames and also provide additional capabilities beyond what you can do only with []. Also,
the documentation states that indexing with [] often produces a copy of the data, which
is a logic error if you attempt to assign new values to the DataFrame by assigning to the
result of the [] operation.

You can access a row by its label via the DataFrame’s loc attribute. The following lists
all the grades in the row 'Test1':

You also can access rows by integer zero-based indices using the iloc attribute (the i
in iloc means that it’s used with integer indices). The following lists all the grades in the
second row:

In [7]: grades['Eva']
Out[7]:
Test1 100
Test2 87
Test3 90
Name: Eva, dtype: int64

In [8]: grades.Sam
Out[8]:
Test1 94
Test2 77
Test3 90
Name: Sam, dtype: int64

In [9]: grades.loc['Test1']
Out[9]:
Wally 87
Eva 100
Sam 94
Katie 100
Bob 83
Name: Test1, dtype: int64

In [10]: grades.iloc[1]
Out[10]:
Wally 96
Eva 87
Sam 77
Katie 81
Bob 65
Name: Test2, dtype: int64

ptg27972259

184 Chapter 7 Array-Oriented Programming with NumPy

Selecting Rows via Slices and Lists with the loc and iloc Attributes
The index can be a slice. When using slices containing labels with loc, the range specified
includes the high index ('Test3'):

When using slices containing integer indices with iloc, the range you specify excludes
the high index (2):

To select specific rows, use a list rather than slice notation with loc or iloc:

Selecting Subsets of the Rows and Columns
So far, we’ve selected only entire rows. You can focus on small subsets of a DataFrame by
selecting rows and columns using two slices, two lists or a combination of slices and lists.

Suppose you want to view only Eva’s and Katie’s grades on Test1 and Test2. We can
do that by using loc with a slice for the two consecutive rows and a list for the two non-
consecutive columns:

The slice 'Test1':'Test2' selects the rows for Test1 and Test2. The list ['Eva',
'Katie'] selects only the corresponding grades from those two columns.

Let’s use iloc with a list and a slice to select the first and third tests and the first three
columns for those tests:

In [11]: grades.loc['Test1':'Test3']
Out[11]:
 Wally Eva Sam Katie Bob
Test1 87 100 94 100 83
Test2 96 87 77 81 65
Test3 70 90 90 82 85

In [12]: grades.iloc[0:2]
Out[12]:
 Wally Eva Sam Katie Bob
Test1 87 100 94 100 83
Test2 96 87 77 81 65

In [13]: grades.loc[['Test1', 'Test3']]
Out[13]:
 Wally Eva Sam Katie Bob
Test1 87 100 94 100 83
Test3 70 90 90 82 85

In [14]: grades.iloc[[0, 2]]
Out[14]:
 Wally Eva Sam Katie Bob
Test1 87 100 94 100 83
Test3 70 90 90 82 85

In [15]: grades.loc['Test1':'Test2', ['Eva', 'Katie']]
Out[15]:
 Eva Katie
Test1 100 100
Test2 87 81

In [16]: grades.iloc[[0, 2], 0:3]
Out[16]:
 Wally Eva Sam
Test1 87 100 94
Test3 70 90 90

ptg27972259

7.14 Intro to Data Science: pandas Series and DataFrames 185

Boolean Indexing
One of pandas’ more powerful selection capabilities is Boolean indexing. For example,
let’s select all the A grades—that is, those that are greater than or equal to 90:

Pandas checks every grade to determine whether its value is greater than or equal to
90 and, if so, includes it in the new DataFrame. Grades for which the condition is False
are represented as NaN (not a number) in the new DataFrame. NaN is pandas’ notation for
missing values.

Let’s select all the B grades in the range 80–89:

Pandas Boolean indices combine multiple conditions with the Python operator & (bitwise
AND), not the and Boolean operator. For or conditions, use | (bitwise OR). NumPy also
supports Boolean indexing for arrays, but always returns a one-dimensional array con-
taining only the values that satisfy the condition.

Accessing a Specific DataFrame Cell by Row and Column
You can use a DataFrame’s at and iat attributes to get a single value from a DataFrame.
Like loc and iloc, at uses labels and iat uses integer indices. In each case, the row and
column indices must be separated by a comma. Let’s select Eva’s Test2 grade (87) and
Wally’s Test3 grade (70)

You also can assign new values to specific elements. Let’s change Eva’s Test2 grade to
100 using at, then change it back to 87 using iat:

In [17]: grades[grades >= 90]
Out[17]:
 Wally Eva Sam Katie Bob
Test1 NaN 100.0 94.0 100.0 NaN
Test2 96.0 NaN NaN NaN NaN
Test3 NaN 90.0 90.0 NaN NaN

In [18]: grades[(grades >= 80) & (grades < 90)]
Out[18]:
 Wally Eva Sam Katie Bob
Test1 87.0 NaN NaN NaN 83.0
Test2 NaN 87.0 NaN 81.0 NaN
Test3 NaN NaN NaN 82.0 85.0

In [19]: grades.at['Test2', 'Eva']
Out[19]: 87

In [20]: grades.iat[2, 0]
Out[20]: 70

In [21]: grades.at['Test2', 'Eva'] = 100

In [22]: grades.at['Test2', 'Eva']
Out[22]: 100

In [23]: grades.iat[1, 2] = 87

In [24]: grades.iat[1, 2]
Out[24]: 87.0

http://grades.at['Test2'
http://grades.at['Test2'
http://grades.at['Test2'

ptg27972259

186 Chapter 7 Array-Oriented Programming with NumPy

Descriptive Statistics
Both Series and DataFrames have a describe method that calculates basic descriptive sta-
tistics for the data and returns them as a DataFrame. In a DataFrame, the statistics are cal-
culated by column (again, soon you’ll see how to flip rows and columns):

As you can see, describe gives you a quick way to summarize your data. It nicely demon-
strates the power of array-oriented programming with a clean, concise functional-style call.
Pandas handles internally all the details of calculating these statistics for each column. You
might be interested in seeing similar statistics on test-by-test basis so you can see how all
the students performs on Tests 1, 2 and 3—we’ll show how to do that shortly.

By default, pandas calculates the descriptive statistics with floating-point values and
displays them with six digits of precision. You can control the precision and other default
settings with pandas’ set_option function:

For student grades, the most important of these statistics is probably the mean. You
can calculate that for each student simply by calling mean on the DataFrame:

In a moment, we’ll show how to get the average of all the students’ grades on each test in
one line of additional code.

In [25]: grades.describe()
Out[25]:
 Wally Eva Sam Katie Bob
count 3.000000 3.000000 3.000000 3.000000 3.000000
mean 84.333333 92.333333 87.000000 87.666667 77.666667
std 13.203535 6.806859 8.888194 10.692677 11.015141
min 70.000000 87.000000 77.000000 81.000000 65.000000
25% 78.500000 88.500000 83.500000 81.500000 74.000000
50% 87.000000 90.000000 90.000000 82.000000 83.000000
75% 91.500000 95.000000 92.000000 91.000000 84.000000
max 96.000000 100.000000 94.000000 100.000000 85.000000

In [26]: pd.set_option('precision', 2)

In [27]: grades.describe()
Out[27]:
 Wally Eva Sam Katie Bob
count 3.00 3.00 3.00 3.00 3.00
mean 84.33 92.33 87.00 87.67 77.67
std 13.20 6.81 8.89 10.69 11.02
min 70.00 87.00 77.00 81.00 65.00
25% 78.50 88.50 83.50 81.50 74.00
50% 87.00 90.00 90.00 82.00 83.00
75% 91.50 95.00 92.00 91.00 84.00
max 96.00 100.00 94.00 100.00 85.00

In [28]: grades.mean()
Out[28]:
Wally 84.33
Eva 92.33
Sam 87.00
Katie 87.67
Bob 77.67
dtype: float64

ptg27972259

7.14 Intro to Data Science: pandas Series and DataFrames 187

Transposing the DataFrame with the T Attribute
You can quickly transpose the rows and columns—so the rows become the columns, and
the columns become the rows—by using the T attribute:

T returns a transposed view (not a copy) of the DataFrame.
Let’s assume that rather than getting the summary statistics by student, you want to

get them by test. Simply call describe on grades.T, as in:

To see the average of all the students’ grades on each test, just call mean on the T attribute:

Sorting by Rows by Their Indices
You’ll often sort data for easier readability. You can sort a DataFrame by its rows or col-
umns, based on their indices or values. Let’s sort the rows by their indices in descending
order using sort_index and its keyword argument ascending=False (the default is to sort
in ascending order). This returns a new DataFrame containing the sorted data:

Sorting by Column Indices
Now let’s sort the columns into ascending order (left-to-right) by their column names.
Passing the axis=1 keyword argument indicates that we wish to sort the column indices,
rather than the row indices—axis=0 (the default) sorts the row indices:

In [29]: grades.T
Out[29]:
 Test1 Test2 Test3
Wally 87 96 70
Eva 100 87 90
Sam 94 77 90
Katie 100 81 82
Bob 83 65 85

In [30]: grades.T.describe()
Out[30]:
 Test1 Test2 Test3
count 5.00 5.00 5.00
mean 92.80 81.20 83.40
std 7.66 11.54 8.23
min 83.00 65.00 70.00
25% 87.00 77.00 82.00
50% 94.00 81.00 85.00
75% 100.00 87.00 90.00
max 100.00 96.00 90.00

In [31]: grades.T.mean()
Out[31]:
Test1 92.8
Test2 81.2
Test3 83.4
dtype: float64

In [32]: grades.sort_index(ascending=False)
Out[32]:
 Wally Eva Sam Katie Bob
Test3 70 90 90 82 85
Test2 96 87 77 81 65
Test1 87 100 94 100 83

ptg27972259

188 Chapter 7 Array-Oriented Programming with NumPy

Sorting by Column Values
Let’s assume we want to see Test1’s grades in descending order so we can see the students’
names in highest-to-lowest grade order. We can call the method sort_values as follows:

The by and axis keyword arguments work together to determine which values will be
sorted. In this case, we sort based on the column values (axis=1) for Test1.

Of course, it might be easier to read the grades and names if they were in a column,
so we can sort the transposed DataFrame instead. Here, we did not need to specify the axis
keyword argument, because sort_values sorts data in a specified column by default:

Finally, since you’re sorting only Test1’s grades, you might not want to see the other
tests at all. So, let’s combine selection with sorting:

Copy vs. In-Place Sorting
By default the sort_index and sort_values return a copy of the original DataFrame,
which could require substantial memory in a big data application. You can sort the Data-
Frame in place, rather than copying the data. To do so, pass the keyword argument
inplace=True to either sort_index or sort_values.

We’ve shown many pandas Series and DataFrame features. In the next chapter’s
Intro to Data Science section, we’ll use Series and DataFrames for data munging—clean-
ing and preparing data for use in your database or analytics software.

In [33]: grades.sort_index(axis=1)
Out[33]:
 Bob Eva Katie Sam Wally
Test1 83 100 100 94 87
Test2 65 87 81 77 96
Test3 85 90 82 90 70

In [34]: grades.sort_values(by='Test1', axis=1, ascending=False)
Out[34]:
 Eva Katie Sam Wally Bob
Test1 100 100 94 87 83
Test2 87 81 77 96 65
Test3 90 82 90 70 85

In [35]: grades.T.sort_values(by='Test1', ascending=False)
Out[35]:
 Test1 Test2 Test3
Eva 100 87 90
Katie 100 81 82
Sam 94 77 90
Wally 87 96 70
Bob 83 65 85

In [36]: grades.loc['Test1'].sort_values(ascending=False)
Out[36]:
Katie 100
Eva 100
Sam 94
Wally 87
Bob 83
Name: Test1, dtype: int64

ptg27972259

7.15 Wrap-Up 189

7.15 Wrap-Up
This chapter explored the use of NumPy’s high-performance ndarrays for storing and
retrieving data, and for performing common data manipulations concisely and with
reduced chance of errors with functional-style programming. We refer to ndarrays simply
by their synonym, arrays.

The chapter examples demonstrated how to create, initialize and refer to individual
elements of one- and two-dimensional arrays. We used attributes to determine an array’s
size, shape and element type. We showed functions that create arrays of 0s, 1s, specific
values or ranges values. We compared list and array performance with the IPython
%timeit magic and saw that arrays are up to two orders of magnitude faster.

We used array operators and NumPy universal functions to perform element-wise
calculations on every element of arrays that have the same shape. You also saw that
NumPy uses broadcasting to perform element-wise operations between arrays and scalar
values, and between arrays of different shapes. We introduced various built-in array
methods for performing calculations using all elements of an array, and we showed how
to perform those calculations row-by-row or column-by-column. We demonstrated vari-
ous array slicing and indexing capabilities that are more powerful than those provided by
Python’s built-in collections. We demonstrated various ways to reshape arrays. We dis-
cussed how to shallow copy and deep copy arrays and other Python objects.

In the Intro to Data Science section, we began our multisection introduction to the
popular pandas library that you’ll use in many of the data science case study chapters. You
saw that many big data applications need more flexible collections than NumPy’s arrays,
collections that support mixed data types, custom indexing, missing data, data that’s not
structured consistently and data that needs to be manipulated into forms appropriate for
the databases and data analysis packages you use.

We showed how to create and manipulate pandas array-like one-dimensional Series
and two-dimensional DataFrames. We customized Series and DataFrame indices. You
saw pandas’ nicely formatted outputs and customized the precision of floating-point val-
ues. We showed various ways to access and select data in Series and DataFrames. We used
method describe to calculate basic descriptive statistics for Series and DataFrames. We
showed how to transpose DataFrame rows and columns via the T attribute. You saw several
ways to sort DataFrames using their index values, their column names, the data in their
rows and the data in their columns. You’re now familiar with four powerful array-like col-
lections—lists, arrays, Series and DataFrames—and the contexts in which to use them.
We’ll add a fifth—tensors—in the “Deep Learning” chapter.

In the next chapter, we take a deeper look at strings, string formatting and string
methods. We also introduce regular expressions, which we’ll use to match patterns in text.
The capabilities you’ll see will help you prepare for the “Natural Language Processing
(NLP)” chapter and other key data science chapters. In the next chapter’s Intro to Data
Science section, we’ll introduce pandas data munging—preparing data for use in your
database or analytics software. In subsequent chapters, we’ll use pandas for basic time-
series analysis and introduce pandas visualization capabilities.

ptg27972259

This page intentionally left blank

ptg27972259

8
Strings: A Deeper Look

O b j e c t i v e s
In this chapter, you’ll:
■ Understand text processing.
■ Use string methods.
■ Format string content.
■ Concatenate and repeat strings.
■ Strip whitespace from the ends of strings.
■ Change characters from lowercase to uppercase and vice versa.
■ Compare strings with the comparison operators.
■ Search strings for substrings and replace substrings.
■ Split strings into tokens.
■ Concatenate strings into a single string with a specified

separator between items.
■ Create and use regular expressions to match patterns in

strings, replace substrings and validate data.
■ Use regular expression metacharacters, quantifiers, character

classes and grouping.
■ Understand how critical string manipulations are to natural

language processing.
■ Understand the data science terms data munging, data

wrangling and data cleaning, and use regular expressions to
munge data into preferred formats.

ptg27972259

192 Chapter 8 Strings: A Deeper Look
O

u
tl

in
e

8.1 Introduction
We’ve introduced strings, basic string formatting and several string operators and methods.
You saw that strings support many of the same sequence operations as lists and tuples, and
that strings, like tuples, are immutable. Now, we take a deeper look at strings and introduce
regular expressions and the re module, which we’ll use to match patterns1 in text. Regular
expressions are particularly important in today’s data rich applications. The capabilities
presented here will help you prepare for the “Natural Language Processing (NLP)” chapter
and other key data science chapters. In the NLP chapter, we’ll look at other ways to have
computers manipulate and even “understand” text. The table below shows many string-
processing and NLP-related applications. In the Intro to Data Science section, we briefly
introduce data cleaning/munging/wrangling with Pandas Series and DataFrames.

8.1 Introduction
8.2 Formatting Strings

8.2.1 Presentation Types
8.2.2 Field Widths and Alignment
8.2.3 Numeric Formatting
8.2.4 String’s format Method

8.3 Concatenating and Repeating Strings
8.4 Stripping Whitespace from Strings
8.5 Changing Character Case
8.6 Comparison Operators for Strings
8.7 Searching for Substrings
8.8 Replacing Substrings
8.9 Splitting and Joining Strings

8.10 Characters and Character-Testing
Methods

8.11 Raw Strings
8.12 Introduction to Regular Expressions

8.12.1 re Module and Function
fullmatch

8.12.2 Replacing Substrings and Splitting
Strings

8.12.3 Other Search Functions; Accessing
Matches

8.13 Intro to Data Science: Pandas,
Regular Expressions and Data
Munging

8.14 Wrap-Up

1. We’ll see in the data science case study chapters that searching for patterns in text is a crucial part of
machine learning.

String and NLP applications

Anagrams
Automated grading of written

homework
Automated teaching systems
Categorizing articles
Chatbots
Compilers and interpreters
Creative writing
Cryptography
Document classification
Document similarity
Document summarization
Electronic book readers
Fraud detection
Grammar checkers

Inter-language translation
Legal document preparation
Monitoring social media posts
Natural language

understanding
Opinion analysis
Page-composition software
Palindromes
Parts-of-speech tagging
Project Gutenberg free books
Reading books, articles, docu-

mentation and absorbing
knowledge

Search engines
Sentiment analysis

Spam classification
Speech-to-text engines
Spell checkers
Steganography
Text editors
Text-to-speech engines
Web scraping
Who authored Shakespeare’s

works?
Word clouds
Word games
Writing medical diagnoses

from x-rays, scans, blood
tests

and many more…

ptg27972259

8.2 Formatting Strings 193

8.2 Formatting Strings
Proper text formatting makes data easier to read and understand. Here, we present many
text-formatting capabilities.

8.2.1 Presentation Types
You’ve seen basic string formatting with f-strings. When you specify a placeholder for a
value in an f-string, Python assumes the value should be displayed as a string unless you
specify another type. In some cases, the type is required. For example, let’s format the
float value 17.489 rounded to the hundredths position:

Python supports precision only for floating-point and Decimal values. Formatting is type
dependent—if you try to use .2f to format a string like 'hello', a ValueError occurs. So
the presentation type f in the format specifier .2f is required. It indicates what type is
being formatted so Python can determine whether the other formatting information is
allowed for that type. Here, we show some common presentation types. You can view the
complete list at

https://docs.python.org/3/library/string.html#formatspec

Integers
The d presentation type formats integer values as strings:

There also are integer presentation types (b, o and x or X) that format integers using the
binary, octal or hexadecimal number systems.2

Characters
The c presentation type formats an integer character code as the corresponding character:

Strings
The s presentation type is the default. If you specify s explicitly, the value to format must
be a variable that references a string, an expression that produces a string or a string literal,
as in the first placeholder below. If you do not specify a presentation type, as in the second
placeholder below, non-string values like the integer 7 are converted to strings:

In this snippet, "hello" is enclosed in double quotes. Recall that you cannot place single
quotes inside a single-quoted string.

In [1]: f'{17.489:.2f}'
Out[1]: '17.49'

In [2]: f'{10:d}'
Out[2]: '10'

2. See the online appendix “Number Systems” for information about the binary, octal and hexadecimal
number systems.

In [3]: f'{65:c} {97:c}'
Out[3]: 'A a'

In [4]: f'{"hello":s} {7}'
Out[4]: 'hello 7'

https://docs.python.org/3/library/string.html#formatspec

ptg27972259

194 Chapter 8 Strings: A Deeper Look

Floating-Point and Decimal Values
You’ve used the f presentation type to format floating-point and Decimal values. For
extremely large and small values of these types, Exponential (scientific) notation can be
used to format the values more compactly. Let’s show the difference between f and e for
a large value, each with three digits of precision to the right of the decimal point:

For the e presentation type in snippet [5], the formatted value 1.000e+25 is equivalent to

1.000 x 1025

If you prefer a capital E for the exponent, use the E presentation type rather than e.

8.2.2 Field Widths and Alignment
Previously you used field widths to format text in a specified number of character positions.
By default, Python right0-aligns numbers and left-aligns other values such as strings—we
enclose the results below in brackets ([]) so you can see how the values align in the field:

Snippet [2] shows that Python formats float values with six digits of precision to the
right of the decimal point by default. For values that have fewer characters than the field
width, the remaining character positions are filled with spaces. Values with more charac-
ters than the field width use as many character positions as they need.

Explicitly Specifying Left and Right Alignment in a Field
Recall that you can specify left and right alignment with < and >:

Centering a Value in a Field
In addition, you can center values:

In [5]: from decimal import Decimal

In [6]: f'{Decimal("10000000000000000000000000.0"):.3f}'
Out[6]: '10000000000000000000000000.000'

In [7]: f'{Decimal("10000000000000000000000000.0"):.3e}'
Out[7]: '1.000e+25'

In [1]: f'[{27:10d}]'
Out[1]: '[27]'

In [2]: f'[{3.5:10f}]'
Out[2]: '[3.500000]'

In [3]: f'[{"hello":10}]'
Out[3]: '[hello]'

In [4]: f'[{27:<15d}]'
Out[4]: '[27]'

In [5]: f'[{3.5:<15f}]'
Out[5]: '[3.500000]'

In [6]: f'[{"hello":>15}]'
Out[6]: '[hello]'

In [7]: f'[{27:^7d}]'
Out[7]: '[27]'

ptg27972259

8.2 Formatting Strings 195

Centering attempts to spread the remaining unoccupied character positions equally to the
left and right of the formatted value. Python places the extra space to the right if an odd
number of character positions remain.

8.2.3 Numeric Formatting
There are a variety of numeric formatting capabilities.

Formatting Positive Numbers with Signs
Sometimes it’s desirable to force the sign on a positive number:

The + before the field width specifies that a positive number should be preceded by a +. A
negative number always starts with a -. To fill the remaining characters of the field with
0s rather than spaces, place a 0 before the field width (and after the + if there is one):

Using a Space Where a + Sign Would Appear in a Positive Value
A space indicates that positive numbers should show a space character in the sign position.
This is useful for aligning positive and negative values for display purposes:

Note that the two numbers with a space in their format specifiers align. If a field width is
specified, the space should appear before the field width.

Grouping Digits
You can format numbers with thousands separators by using a comma (,), as follows:

8.2.4 String’s format Method
Python’s f-strings were added to the language in version 3.6. Before that, formatting was
performed with the string method format. In fact, f-string formatting is based on the for-
mat method’s capabilities. We show you the format method here because you’ll encounter
it in code written prior to Python 3.6. You’ll often see the format method in the Python
documentation and in the many Python books and articles written before f-strings were

In [8]: f'[{3.5:^7.1f}]'
Out[8]: '[3.5]'

In [9]: f'[{"hello":^7}]'
Out[9]: '[hello]'

In [1]: f'[{27:+10d}]'
Out[1]: '[+27]'

In [2]: f'[{27:+010d}]'
Out[2]: '[+000000027]'

In [3]: print(f'{27:d}\n{27: d}\n{-27: d}')
27
 27
-27

In [4]: f'{12345678:,d}'
Out[4]: '12,345,678'

In [5]: f'{123456.78:,.2f}'
Out[5]: '123,456.78'

ptg27972259

196 Chapter 8 Strings: A Deeper Look

introduced. However, we recommend using the newer f-string formatting that we’ve pre-
sented to this point.

You call method format on a format string containing curly brace ({}) placeholders,
possibly with format specifiers. You pass to the method the values to be formatted. Let’s
format the float value 17.489 rounded to the hundredths position:

In a placeholder, if there’s a format specifier, you precede it by a colon (:), as in f-strings.
The result of the format call is a new string containing the formatted results.

Multiple Placeholders
A format string may contain multiple placeholders, in which case the format method’s
arguments correspond to the placeholders from left to right:

Referencing Arguments By Position Number
The format string can reference specific arguments by their position in the format
method’s argument list, starting with position 0:

Note that we used the position number 0 ('Happy') twice—you can reference each argu-
ment as often as you like and in any order.

Referencing Keyword Arguments
You can reference keyword arguments by their keys in the placeholders:

8.3 Concatenating and Repeating Strings
In earlier chapters, we used the + operator to concatenate strings and the * operator to
repeat strings. You also can perform these operations with augmented assignments. Strings
are immutable, so each operation assigns a new string object to the variable:

In [1]: '{:.2f}'.format(17.489)
Out[1]: '17.49'

In [2]: '{} {}'.format('Amanda', 'Cyan')
Out[2]: 'Amanda Cyan'

In [3]: '{0} {0} {1}'.format('Happy', 'Birthday')
Out[3]: 'Happy Happy Birthday'

In [4]: '{first} {last}'.format(first='Amanda', last='Gray')
Out[4]: 'Amanda Gray'

In [5]: '{last} {first}'.format(first='Amanda', last='Gray')
Out[5]: 'Gray Amanda'

In [1]: s1 = 'happy'

In [2]: s2 = 'birthday'

In [3]: s1 += ' ' + s2

In [4]: s1
Out[4]: 'happy birthday'

In [5]: symbol = '>'

In [6]: symbol *= 5

ptg27972259

8.4 Stripping Whitespace from Strings 197

8.4 Stripping Whitespace from Strings
There are several string methods for removing whitespace from the ends of a string. Each
returns a new string leaving the original unmodified. Strings are immutable, so each
method that appears to modify a string returns a new one.

Removing Leading and Trailing Whitespace
Let’s use string method strip to remove the leading and trailing whitespace from a string:

Removing Leading Whitespace
Method lstrip removes only leading whitespace:

Removing Trailing Whitespace
Method rstrip removes only trailing whitespace:

As the outputs demonstrate, these methods remove all kinds of whitespace, including
spaces, newlines and tabs.

8.5 Changing Character Case
In earlier chapters, you used string methods lower and upper to convert strings to all low-
ercase or all uppercase letters. You also can change a string’s capitalization with methods
capitalize and title.

Capitalizing Only a String’s First Character
Method capitalize copies the original string and returns a new string with only the first
letter capitalized (this is sometimes called sentence capitalization):

Capitalizing the First Character of Every Word in a String
Method title copies the original string and returns a new string with only the first char-
acter of each word capitalized (this is sometimes called book-title capitalization):

In [7]: symbol
Out[7]: '>>>>>'

In [1]: sentence = '\t \n This is a test string. \t\t \n'

In [2]: sentence.strip()
Out[2]: 'This is a test string.'

In [3]: sentence.lstrip()
Out[3]: 'This is a test string. \t\t \n'

In [4]: sentence.rstrip()
Out[4]: '\t \n This is a test string.'

In [1]: 'happy birthday'.capitalize()
Out[1]: 'Happy birthday'

In [2]: 'strings: a deeper look'.title()
Out[2]: 'Strings: A Deeper Look'

ptg27972259

198 Chapter 8 Strings: A Deeper Look

8.6 Comparison Operators for Strings
Strings may be compared with the comparison operators. Recall that strings are compared
based on their underlying integer numeric values. So uppercase letters compare as less than
lowercase letters because uppercase letters have lower integer values. For example, 'A' is
65 and 'a' is 97. You’ve seen that you can check character codes with ord:

Let’s compare the strings 'Orange' and 'orange' using the comparison operators:

8.7 Searching for Substrings
You can search in a string for one or more adjacent characters—known as a substring—to
count the number of occurrences, determine whether a string contains a substring, or
determine the index at which a substring resides in a string. Each method shown in this
section compares characters lexicographically using their underlying numeric values.

Counting Occurrences
String method count returns the number of times its argument occurs in the string on
which the method is called:

If you specify as the second argument a start_index, count searches only the slice
string[start_index:]—that is, from start_index through end of the string:

If you specify as the second and third arguments the start_index and end_index, count
searches only the slice string[start_index:end_index]—that is, from start_index up to, but
not including, end_index:

In [1]: print(f'A: {ord("A")}; a: {ord("a")}')
A: 65; a: 97

In [2]: 'Orange' == 'orange'
Out[2]: False

In [3]: 'Orange' != 'orange'
Out[3]: True

In [4]: 'Orange' < 'orange'
Out[4]: True

In [5]: 'Orange' <= 'orange'
Out[5]: True

In [6]: 'Orange' > 'orange'
Out[6]: False

In [7]: 'Orange' >= 'orange'
Out[7]: False

In [1]: sentence = 'to be or not to be that is the question'

In [2]: sentence.count('to')
Out[2]: 2

In [3]: sentence.count('to', 12)
Out[3]: 1

In [4]: sentence.count('that', 12, 25)
Out[4]: 1

ptg27972259

8.8 Replacing Substrings 199

Like count, each of the other string methods presented in this section has start_index and
end_index arguments for searching only a slice of the original string.

Locating a Substring in a String
String method index searches for a substring within a string and returns the first index at
which the substring is found; otherwise, a ValueError occurs:

String method rindex performs the same operation as index, but searches from the end
of the string and returns the last index at which the substring is found; otherwise, a Value-
Error occurs:

String methods find and rfind perform the same tasks as index and rindex but, if the
substring is not found, return -1 rather than causing a ValueError.

Determining Whether a String Contains a Substring
If you need to know only whether a string contains a substring, use operator in or not in:

Locating a Substring at the Beginning or End of a String
String methods startswith and endswith return True if the string starts with or ends with
a specified substring:

8.8 Replacing Substrings
A common text manipulation is to locate a substring and replace its value. Method
replace takes two substrings. It searches a string for the substring in its first argument and
replaces each occurrence with the substring in its second argument. The method returns a
new string containing the results. Let’s replace tab characters with commas:

In [5]: sentence.index('be')
Out[5]: 3

In [6]: sentence.rindex('be')
Out[6]: 16

In [7]: 'that' in sentence
Out[7]: True

In [8]: 'THAT' in sentence
Out[8]: False

In [9]: 'THAT' not in sentence
Out[9]: True

In [10]: sentence.startswith('to')
Out[10]: True

In [11]: sentence.startswith('be')
Out[11]: False

In [12]: sentence.endswith('question')
Out[12]: True

In [13]: sentence.endswith('quest')
Out[13]: False

ptg27972259

200 Chapter 8 Strings: A Deeper Look

Method replace can receive an optional third argument specifying the maximum number
of replacements to perform.

8.9 Splitting and Joining Strings
When you read a sentence, your brain breaks it into individual words, or tokens, each of
which conveys meaning. Interpreters like IPython tokenize statements, breaking them
into individual components such as keywords, identifiers, operators and other elements of
a programming language. Tokens typically are separated by whitespace characters such as
blank, tab and newline, though other characters may be used—the separators are known
as delimiters.

Splitting Strings
We showed previously that string method split with no arguments tokenizes a string by
breaking it into substrings at each whitespace character, then returns a list of tokens. To
tokenize a string at a custom delimiter (such as each comma-and-space pair), specify the
delimiter string (such as, ', ') that split uses to tokenize the string:

If you provide an integer as the second argument, it specifies the maximum number of
splits. The last token is the remainder of the string after the maximum number of splits:

There is also an rsplit method that performs the same task as split but processes
the maximum number of splits from the end of the string toward the beginning.

Joining Strings
String method join concatenates the strings in its argument, which must be an iterable
containing only string values; otherwise, a TypeError occurs. The separator between the
concatenated items is the string on which you call join. The following code creates strings
containing comma-separated lists of values:

The next snippet joins the results of a list comprehension that creates a list of strings:

In the “Files and Exceptions” chapter, you’ll see how to work with files that contain
comma-separated values. These are known as CSV files and are a common format for stor-

In [1]: values = '1\t2\t3\t4\t5'

In [2]: values.replace('\t', ',')
Out[2]: '1,2,3,4,5'

In [1]: letters = 'A, B, C, D'

In [2]: letters.split(', ')
Out[2]: ['A', 'B', 'C', 'D']

In [3]: letters.split(', ', 2)
Out[3]: ['A', 'B', 'C, D']

In [4]: letters_list = ['A', 'B', 'C', 'D']

In [5]: ','.join(letters_list)
Out[5]: 'A,B,C,D'

In [6]: ','.join([str(i) for i in range(10)])
Out[6]: '0,1,2,3,4,5,6,7,8,9'

ptg27972259

8.9 Splitting and Joining Strings 201

ing data that can be loaded by spreadsheet applications like Microsoft Excel or Google
Sheets. In the data science case study chapters, you’ll see that many key libraries, such as
NumPy, Pandas and Seaborn, provide built-in capabilities for working with CSV data.

String Methods partition and rpartition
String method partition splits a string into a tuple of three strings based on the method’s
separator argument. The three strings are

• the part of the original string before the separator,

• the separator itself, and

• the part of the string after the separator.

This might be useful for splitting more complex strings. Consider a string representing a
student’s name and grades:

'Amanda: 89, 97, 92'

Let’s split the original string into the student’s name, the separator ': ' and a string rep-
resenting the list of grades:

To search for the separator from the end of the string instead, use method rpartition to
split. For example, consider the following URL string:

'http://www.deitel.com/books/PyCDS/table_of_contents.html'

Let’s use rpartition split 'table_of_contents.html' from the rest of the URL:

String Method splitlines
In the “Files and Exceptions” chapter, you’ll read text from a file. If you read large amounts
of text into a string, you might want to split the string into a list of lines based on newline
characters. Method splitlines returns a list of new strings representing the lines of text
split at each newline character in the original string. Recall that Python stores multiline
strings with embedded \n characters to represent the line breaks, as shown in snippet [13]:

In [7]: 'Amanda: 89, 97, 92'.partition(': ')
Out[7]: ('Amanda', ': ', '89, 97, 92')

In [8]: url = 'http://www.deitel.com/books/PyCDS/table_of_contents.html'

In [9]: rest_of_url, separator, document = url.rpartition('/')

In [10]: document
Out[10]: 'table_of_contents.html'

In [11]: rest_of_url
Out[11]: 'http://www.deitel.com/books/PyCDS'

In [12]: lines = """This is line 1
 ...: This is line2
 ...: This is line3"""

In [13]: lines
Out[13]: 'This is line 1\nThis is line2\nThis is line3'

In [14]: lines.splitlines()
Out[14]: ['This is line 1', 'This is line2', 'This is line3']

http://www.deitel.com/books/PyCDS/table_of_contents.html'
http://'table_of_contents.html'
http://www.deitel.com/books/PyCDS/table_of_contents.html'
http://'table_of_contents.html'
http://www.deitel.com/books/PyCDS'

ptg27972259

202 Chapter 8 Strings: A Deeper Look

Passing True to splitlines keeps the newlines at the end of each string:

8.10 Characters and Character-Testing Methods
Many programming languages have separate string and character types. In Python, a char-
acter is simply a one-character string.

Python provides string methods for testing whether a string matches certain charac-
teristics. For example, string method isdigit returns True if the string on which you call
the method contains only the digit characters (0–9). You might use this when validating
user input that must contain only digits:

and the string method isalnum returns True if the string on which you call the method is
alphanumeric—that is, it contains only digits and letters:

The table below shows many of the character-testing methods. Each method returns False
if the condition described is not satisfied:

In [15]: lines.splitlines(True)
Out[15]: ['This is line 1\n', 'This is line2\n', 'This is line3']

In [1]: '-27'.isdigit()
Out[1]: False

In [2]: '27'.isdigit()
Out[2]: True

In [3]: 'A9876'.isalnum()
Out[3]: True

In [4]: '123 Main Street'.isalnum()
Out[4]: False

String Method Description

isalnum() Returns True if the string contains only alphanumeric characters (i.e., dig-
its and letters).

isalpha() Returns True if the string contains only alphabetic characters (i.e., letters).

isdecimal() Returns True if the string contains only decimal integer characters (that is,
base 10 integers) and does not contain a + or - sign.

isdigit() Returns True if the string contains only digits (e.g., '0', '1', '2').

isidentifier() Returns True if the string represents a valid identifier.

islower() Returns True if all alphabetic characters in the string are lowercase charac-
ters (e.g., 'a', 'b', 'c').

isnumeric() Returns True if the characters in the string represent a numeric value
without a + or - sign and without a decimal point.

isspace() Returns True if the string contains only whitespace characters.

istitle() Returns True if the first character of each word in the string is the only
uppercase character in the word.

isupper() Returns True if all alphabetic characters in the string are uppercase charac-
ters (e.g., 'A', 'B', 'C').

ptg27972259

8.11 Raw Strings 203

8.11 Raw Strings
Recall that backslash characters in strings introduce escape sequences—like \n for newline
and \t for tab. So, if you wish to include a backslash in a string, you must use two back-
slash characters \\. This makes some strings difficult to read. For example, Microsoft Win-
dows uses backslashes to separate folder names when specifying a file’s location. To
represent a file’s location on Windows, you might write:

For such cases, raw strings—preceded by the character r—are more convenient. They
treat each backslash as a regular character, rather than the beginning of an escape sequence:

Python converts the raw string to a regular string that still uses the two backslash characters
in its internal representation, as shown in the last snippet. Raw strings can make your code
more readable, particularly when using the regular expressions that we discuss in the next
section. Regular expressions often contain many backslash characters.

8.12 Introduction to Regular Expressions
Sometimes you’ll need to recognize patterns in text, like phone numbers, e-mail addresses,
ZIP Codes, web page addresses, Social Security numbers and more. A regular expression
string describes a search pattern for matching characters in other strings.

Regular expressions can help you extract data from unstructured text, such as social
media posts. They’re also important for ensuring that data is in the correct format before
you attempt to process it.3

Validating Data
Before working with text data, you’ll often use regular expressions to validate the data. For
example, you can check that:

• A U.S. ZIP Code consists of five digits (such as 02215) or five digits followed by
a hyphen and four more digits (such as 02215-4775).

• A string last name contains only letters, spaces, apostrophes and hyphens.

• An e-mail address contains only the allowed characters in the allowed order.

• A U.S. Social Security number contains three digits, a hyphen, two digits, a
hyphen and four digits, and adheres to other rules about the specific numbers that
can be used in each group of digits.

In [1]: file_path = 'C:\\MyFolder\\MySubFolder\\MyFile.txt'

In [2]: file_path
Out[2]: 'C:\\MyFolder\\MySubFolder\\MyFile.txt'

In [3]: file_path = r'C:\MyFolder\MySubFolder\MyFile.txt'

In [4]: file_path
Out[4]: 'C:\\MyFolder\\MySubFolder\\MyFile.txt'

3. The topic of regular expressions might feel more challenging than most other Python features you’ve
used. After mastering this subject, you’ll often write more concise code than with conventional
string-processing techniques, speeding the code-development process. You’ll also deal with “fringe”
cases you might not ordinarily think about, possibly avoiding subtle bugs.

ptg27972259

204 Chapter 8 Strings: A Deeper Look

You’ll rarely need to create your own regular expressions for common items like these.
Websites like

• https://regex101.com

• http://www.regexlib.com

• https://www.regular-expressions.info

and others offer repositories of existing regular expressions that you can copy and use.
Many sites like these also provide interfaces in which you can test regular expressions to
determine whether they’ll meet your needs.

Other Uses of Regular Expressions
In addition to validating data, regular expressions often are used to:

• Extract data from text (sometimes known as scraping)—For example, locating all
URLs in a web page. [You might prefer tools like BeautifulSoup, XPath and
lxml.]

• Clean data—For example, removing data that’s not required, removing duplicate
data, handling incomplete data, fixing typos, ensuring consistent data formats,
dealing with outliers and more.

• Transform data into other formats—For example, reformatting data that was col-
lected as tab-separated or space-separated values into comma-separated values
(CSV) for an application that requires data to be in CSV format.

8.12.1 re Module and Function fullmatch
To use regular expressions, import the Python Standard Library’s re module:

One of the simplest regular expression functions is fullmatch, which checks whether the
entire string in its second argument matches the pattern in its first argument.

Matching Literal Characters
Let’s begin by matching literal characters—that is, characters that match themselves:

The function’s first argument is the regular expression pattern to match. Any string can be
a regular expression. The variable pattern’s value, '02215', contains only literal digits that
match themselves in the specified order. The second argument is the string that should
entirely match the pattern.

If the second argument matches the pattern in the first argument, fullmatch returns
an object containing the matching text, which evaluates to True. We’ll say more about this
object later. In snippet [4], even though the second argument contains the same digits as
the regular expression, they’re in a different order. So there’s no match, and fullmatch
returns None, which evaluates to False.

In [1]: import re

In [2]: pattern = '02215'

In [3]: 'Match' if re.fullmatch(pattern, '02215') else 'No match'
Out[3]: 'Match'

In [4]: 'Match' if re.fullmatch(pattern, '51220') else 'No match'
Out[4]: 'No match'

https://regex101.com
http://www.regexlib.com
https://www.regular-expressions.info

ptg27972259

8.12 Introduction to Regular Expressions 205

Metacharacters, Character Classes and Quantifiers
Regular expressions typically contain various special symbols called metacharacters, which
are shown in the table below:

The \ metacharacter begins each of the predefined character classes, each matching
a specific set of characters. Let’s validate a five-digit ZIP Code:

In the regular expression \d{5}, \d is a character class representing a digit (0–9). A char-
acter class is a regular expression escape sequence that matches one character. To match more
than one, follow the character class with a quantifier. The quantifier {5} repeats \d five
times, as if we had written \d\d\d\d\d, to match five consecutive digits. In snippet [6],
fullmatch returns None because '9876' contains only four consecutive digit characters.

Other Predefined Character Classes
The table below shows some common predefined character classes and the groups of char-
acters they match. To match any metacharacter as its literal value, precede it by a backslash
(\). For example, \\ matches a backslash (\) and \$ matches a dollar sign ($).

Custom Character Classes
Square brackets, [], define a custom character class that matches a single character. For
example, [aeiou] matches a lowercase vowel, [A-Z] matches an uppercase letter, [a-z]
matches a lowercase letter and [a-zA-Z] matches any lowercase or uppercase letter.

Let’s validate a simple first name with no spaces or punctuation. We’ll ensure that it
begins with an uppercase letter (A–Z) followed by any number of lowercase letters (a–z):

Regular expression metacharacters

[] {} () \ * + ^ $? . |

In [5]: 'Valid' if re.fullmatch(r'\d{5}', '02215') else 'Invalid'
Out[5]: 'Valid'

In [6]: 'Valid' if re.fullmatch(r'\d{5}', '9876') else 'Invalid'
Out[6]: 'Invalid'

Character class Matches

\d Any digit (0–9).

\D Any character that is not a digit.

\s Any whitespace character (such as spaces, tabs and newlines).

\S Any character that is not a whitespace character.

\w Any word character (also called an alphanumeric character)—that is,
any uppercase or lowercase letter, any digit or an underscore

\W Any character that is not a word character.

In [7]: 'Valid' if re.fullmatch('[A-Z][a-z]*', 'Wally') else 'Invalid'
Out[7]: 'Valid'

In [8]: 'Valid' if re.fullmatch('[A-Z][a-z]*', 'eva') else 'Invalid'
Out[8]: 'Invalid'

ptg27972259

206 Chapter 8 Strings: A Deeper Look

A first name might contain many letters. The * quantifier matches zero or more occurrences
of the subexpression to its left (in this case, [a-z]). So [A-Z][a-z]* matches an uppercase
letter followed by zero or more lowercase letters, such as 'Amanda', 'Bo' or even 'E'.

When a custom character class starts with a caret (^), the class matches any character
that’s not specified. So [^a-z] matches any character that’s not a lowercase letter:

Metacharacters in a custom character class are treated as literal characters—that is, the
characters themselves. So [*+$] matches a single *, + or $ character:

* vs. + Quantifier
If you want to require at least one lowercase letter in a first name, you can replace the *
quantifier in snippet [7] with +, which matches at least one occurrence of a subexpression:

Both * and + are greedy—they match as many characters as possible. So the regular expres-
sion [A-Z][a-z]+ matches 'Al', 'Eva', 'Samantha', 'Benjamin' and any other words
that begin with a capital letter followed at least one lowercase letter.

Other Quantifiers
The ? quantifier matches zero or one occurrences of a subexpression:

The regular expression labell?ed matches labelled (the U.K. English spelling) and
labeled (the U.S. English spelling), but not the misspelled word labellled. In each snip-
pet above, the first five literal characters in the regular expression (label) match the first
five characters of the second arguments. Then l? indicates that there can be zero or one
more l characters before the remaining literal ed characters.

You can match at least n occurrences of a subexpression with the {n,} quantifier. The
following regular expression matches strings containing at least three digits:

In [9]: 'Match' if re.fullmatch('[^a-z]', 'A') else 'No match'
Out[9]: 'Match'

In [10]: 'Match' if re.fullmatch('[^a-z]', 'a') else 'No match'
Out[10]: 'No match'

In [11]: 'Match' if re.fullmatch('[*+$]', '*') else 'No match'
Out[11]: 'Match'

In [12]: 'Match' if re.fullmatch('[*+$]', '!') else 'No match'
Out[12]: 'No match'

In [13]: 'Valid' if re.fullmatch('[A-Z][a-z]+', 'Wally') else 'Invalid'
Out[13]: 'Valid'

In [14]: 'Valid' if re.fullmatch('[A-Z][a-z]+', 'E') else 'Invalid'
Out[14]: 'Invalid'

In [15]: 'Match' if re.fullmatch('labell?ed', 'labelled') else 'No match'
Out[15]: 'Match'

In [16]: 'Match' if re.fullmatch('labell?ed', 'labeled') else 'No match'
Out[16]: 'Match'

In [17]: 'Match' if re.fullmatch('labell?ed', 'labellled') else 'No
match'
Out[17]: 'No match'

ptg27972259

8.12 Introduction to Regular Expressions 207

You can match between n and m (inclusive) occurrences of a subexpression with the
{n,m} quantifier. The following regular expression matches strings containing 3 to 6 dig-
its:

8.12.2 Replacing Substrings and Splitting Strings
The re module provides function sub for replacing patterns in a string, and function
split for breaking a string into pieces, based on patterns.

Function sub—Replacing Patterns
By default, the re module’s sub function replaces all occurrences of a pattern with the
replacement text you specify. Let’s convert a tab-delimited string to comma-delimited:

The sub function receives three required arguments:

• the pattern to match (the tab character '\t')

• the replacement text (', ') and

• the string to be searched ('1\t2\t3\t4')

and returns a new string. The keyword argument count can be used to specify the maxi-
mum number of replacements:

Function split
The split function tokenizes a string, using a regular expression to specify the delimiter,
and returns a list of strings. Let’s tokenize a string by splitting it at any comma that’s fol-
lowed by 0 or more whitespace characters—\s is the whitespace character class and * indi-
cates zero or more occurrences of the preceding subexpression:

In [18]: 'Match' if re.fullmatch(r'\d{3,}', '123') else 'No match'
Out[18]: 'Match'

In [19]: 'Match' if re.fullmatch(r'\d{3,}', '1234567890') else 'No match'
Out[19]: 'Match'

In [20]: 'Match' if re.fullmatch(r'\d{3,}', '12') else 'No match'
Out[20]: 'No match'

In [21]: 'Match' if re.fullmatch(r'\d{3,6}', '123') else 'No match'
Out[21]: 'Match'

In [22]: 'Match' if re.fullmatch(r'\d{3,6}', '123456') else 'No match'
Out[22]: 'Match'

In [23]: 'Match' if re.fullmatch(r'\d{3,6}', '1234567') else 'No match'
Out[23]: 'No match'

In [24]: 'Match' if re.fullmatch(r'\d{3,6}', '12') else 'No match'
Out[24]: 'No match'

In [1]: import re

In [2]: re.sub(r'\t', ', ', '1\t2\t3\t4')
Out[2]: '1, 2, 3, 4'

In [3]: re.sub(r'\t', ', ', '1\t2\t3\t4', count=2)
Out[3]: '1, 2, 3\t4'

ptg27972259

208 Chapter 8 Strings: A Deeper Look

Use the keyword argument maxsplit to specify the maximum number of splits:

In this case, after the 3 splits, the fourth string contains the rest of the original string.

8.12.3 Other Search Functions; Accessing Matches
Earlier we used the fullmatch function to determine whether an entire string matched a
regular expression. There are several other searching functions. Here, we discuss the
search, match, findall and finditer functions, and show how to access the matching
substrings.

Function search—Finding the First Match Anywhere in a String
Function search looks in a string for the first occurrence of a substring that matches a reg-
ular expression and returns a match object (of type SRE_Match) that contains the matching
substring. The match object’s group method returns that substring:

Function search returns None if the string does not contain the pattern:

You can search for a match only at the beginning of a string with function match.

Ignoring Case with the Optional flags Keyword Argument
Many re module functions receive an optional flags keyword argument that changes how
regular expressions are matched. For example, matches are case sensitive by default, but by
using the re module’s IGNORECASE constant, you can perform a case-insensitive search:

Here, 'SAM' matches the pattern 'Sam' because both have the same letters, even though
'SAM' contains only uppercase letters.

Metacharacters That Restrict Matches to the Beginning or End of a String
The ̂ metacharacter at the beginning of a regular expression (and not inside square brack-
ets) is an anchor indicating that the expression matches only the beginning of a string:

In [4]: re.split(r',\s*', '1, 2, 3,4, 5,6,7,8')
Out[4]: ['1', '2', '3', '4', '5', '6', '7', '8']

In [5]: re.split(r',\s*', '1, 2, 3,4, 5,6,7,8', maxsplit=3)
Out[5]: ['1', '2', '3', '4, 5,6,7,8']

In [1]: import re

In [2]: result = re.search('Python', 'Python is fun')

In [3]: result.group() if result else 'not found'
Out[3]: 'Python'

In [4]: result2 = re.search('fun!', 'Python is fun')

In [5]: result2.group() if result2 else 'not found'
Out[5]: 'not found'

In [6]: result3 = re.search('Sam', 'SAM WHITE', flags=re.IGNORECASE)

In [7]: result3.group() if result3 else 'not found'
Out[7]: 'SAM'

In [8]: result = re.search('^Python', 'Python is fun')

ptg27972259

8.12 Introduction to Regular Expressions 209

Similarly, the $ metacharacter at the end of a regular expression is an anchor indicat-
ing that the expression matches only the end of a string:

Function findall and finditer—Finding All Matches in a String
Function findall finds every matching substring in a string and returns a list of the match-
ing substrings. Let’s extract all the U.S. phone numbers from a string. For simplicity we’ll
assume that U.S. phone numbers have the form ###-###-####:

Function finditer works like findall, but returns a lazy iterable of match objects. For
large numbers of matches, using finditer can save memory because it returns one match
at a time, whereas findall returns all the matches at once:

Capturing Substrings in a Match
You can use parentheses metacharacters—(and)—to capture substrings in a match. For
example, let’s capture as separate substrings the name and e-mail address in the string
text:

The regular expression specifies two substrings to capture, each denoted by the metachar-
acters (and). These metacharacters do not affect whether the pattern is found in the
string text—the match function returns a match object only if the entire pattern is found
in the string text.

In [9]: result.group() if result else 'not found'
Out[9]: 'Python'

In [10]: result = re.search('^fun', 'Python is fun')

In [11]: result.group() if result else 'not found'
Out[11]: 'not found'

In [12]: result = re.search('Python$', 'Python is fun')

In [13]: result.group() if result else 'not found'
Out[13]: 'not found'

In [14]: result = re.search('fun$', 'Python is fun')

In [15]: result.group() if result else 'not found'
Out[15]: 'fun'

In [16]: contact = 'Wally White, Home: 555-555-1234, Work: 555-555-4321'

In [17]: re.findall(r'\d{3}-\d{3}-\d{4}', contact)
Out[17]: ['555-555-1234', '555-555-4321']

In [18]: for phone in re.finditer(r'\d{3}-\d{3}-\d{4}', contact):
 ...: print(phone.group())
 ...:
555-555-1234
555-555-4321

In [19]: text = 'Charlie Cyan, e-mail: demo1@deitel.com'

In [20]: pattern = r'([A-Z][a-z]+ [A-Z][a-z]+), e-mail: (\w+@\w+\.\w{3})'

In [21]: result = re.search(pattern, text)

mailto:demo1@deitel.com'

ptg27972259

210 Chapter 8 Strings: A Deeper Look

Let’s consider the regular expression:

• '([A-Z][a-z]+ [A-Z][a-z]+)' matches two words separated by a space. Each
word must have an initial capital letter.

• ', e-mail: ' contains literal characters that match themselves.

• (\w+@\w+\.\w{3}) matches a simple e-mail address consisting of one or more
alphanumeric characters (\w+), the @ character, one or more alphanumeric char-
acters (\w+), a dot (\.) and three alphanumeric characters (\w{3}). We preceded
the dot with \ because a dot (.) is a regular expression metacharacter that matches
one character.

The match object’s groups method returns a tuple of the captured substrings:

The match object’s group method returns the entire match as a single string:

You can access each captured substring by passing an integer to the group method. The
captured substrings are numbered from 1 (unlike list indices, which start at 0):

8.13 Intro to Data Science: Pandas, Regular Expressions
and Data Munging
Data does not always come in forms ready for analysis. It could, for example, be in the
wrong format, incorrect or even missing. Industry experience has shown that data scien-
tists can spend as much as 75% of their time preparing data before they begin their studies.
Preparing data for analysis is called data munging or data wrangling. These are syn-
onyms—from this point forward, we’ll say data munging.

Two of the most important steps in data munging are data cleaning and transforming
data into the optimal formats for your database systems and analytics software. Some com-
mon data cleaning examples are:

• deleting observations with missing values,

• substituting reasonable values for missing values,

• deleting observations with bad values,

• substituting reasonable values for bad values,

• tossing outliers (although sometimes you’ll want to keep them),

• duplicate elimination (although sometimes duplicates are valid),

• dealing with inconsistent data,

• and more.

In [22]: result.groups()
Out[22]: ('Charlie Cyan', 'demo1@deitel.com')

In [23]: result.group()
Out[23]: 'Charlie Cyan, e-mail: demo1@deitel.com'

In [24]: result.group(1)
Out[24]: 'Charlie Cyan'

In [25]: result.group(2)
Out[25]: 'demo1@deitel.com'

mailto:'demo1@deitel.com'
mailto:demo1@deitel.com'
mailto:'demo1@deitel.com'

ptg27972259

8.13 Intro to Data Science: Pandas, Regular Expressions and Data Munging 211

You’re probably already thinking that data cleaning is a difficult and messy process where
you could easily make bad decisions that would negatively impact your results. This is cor-
rect. When you get to the data science case studies in the later chapters, you’ll see that data
science is more of an empirical science, like medicine, and less of a theoretical science, like
theoretical physics. Empirical sciences base their conclusions on observations and experi-
ence. For example, many medicines that effectively solve medical problems today were
developed by observing the effects that early versions of these medicines had on lab animals
and eventually humans, and gradually refining ingredients and dosages. The actions data
scientists take can vary per project, be based on the quality and nature of the data and be
affected by evolving organization and professional standards.

Some common data transformations include:

• removing unnecessary data and features (we’ll say more about features in the data
science case studies),

• combining related features,

• sampling data to obtain a representative subset (we’ll see in the data science case
studies that random sampling is particularly effective for this and we’ll say why),

• standardizing data formats,

• grouping data,

• and more.

It’s always wise to hold onto your original data. We’ll show simple examples of cleaning
and transforming data in the context of Pandas Series and DataFrames.

Cleaning Your Data
Bad data values and missing values can significantly impact data analysis. Some data sci-
entists advise against any attempts to insert “reasonable values.” Instead, they advocate
clearly marking missing data and leaving it up to the data analytics package to handle the
issue. Others offer strong cautions.4

Let’s consider a hospital that records patients’ temperatures (and probably other vital
signs) four times per day. Assume that the data consists of a name and four float values,
such as

['Brown, Sue', 98.6, 98.4, 98.7, 0.0]

The preceding patient’s first three recorded temperatures are 99.7, 98.4 and 98.7. The
last temperature was missing and recorded as 0.0, perhaps because the sensor malfunc-
tioned. The average of the first three values is 98.57, which is close to normal. However,
if you calculate the average temperature including the missing value for which 0.0 was sub-
stituted, the average is only 73.93, clearly a questionable result. Certainly, doctors would
not want to take drastic remedial action on this patient—it’s crucial to “get the data right.”

4. This footnote was abstracted from a comment sent to us July 20, 2018 by one of the book’s reviewers,
Dr. Alison Sanchez of the University of San Diego School of Business. She commented: “Be cautious
when mentioning 'substituting reasonable values' for missing or bad values. A stern warning: 'Sub-
stituting' values that increase statistical significance or give more 'reasonable' or 'better' results is not
permitted. 'Substituting' data should not turn into 'fudging' data. The first rule readers should learn
is not to eliminate or change values that contradict their hypotheses. 'Substituting reasonable values'
does not mean readers should feel free to change values to get the results they want.”

ptg27972259

212 Chapter 8 Strings: A Deeper Look

One common way to clean the data is to substitute a reasonable value for the missing
temperature, such as the average of the patient’s other readings. Had we done that above,
then the patient’s average temperature would remain 98.57—a much more likely average
temperature, based on the other readings.

Data Validation
Let’s begin by creating a Series of five-digit ZIP Codes from a dictionary of city-name/five-
digit-ZIP-Code key–value pairs. We intentionally entered an invalid ZIP Code for Miami:

Though zips looks like a two-dimensional array, it’s actually one-dimensional. The “sec-
ond column” represents the Series’ ZIP Code values (from the dictionary’s values), and
the “first column” represents their indices (from the dictionary’s keys).

We can use regular expressions with Pandas to validate data. The str attribute of a
Series provides string-processing and various regular expression methods. Let’s use the
str attribute’s match method to check whether each ZIP Code is valid:

Method match applies the regular expression \d{5} to each Series element, attempting to
ensure that the element is comprised of exactly five digits. You do not need to loop explic-
itly through all the ZIP Codes—match does this for you. This is another example of func-
tional-style programming with internal rather than external iteration. The method returns
a new Series containing True for each valid element. In this case, the ZIP Code for Miami
did not match, so its element is False.

There are several ways to deal with invalid data. One is to catch it at its source and
interact with the source to correct the value. That’s not always possible. For example, the
data could be coming from high-speed sensors in the Internet of Things. In that case, we
would not be able to correct it at the source, so we could apply data cleaning techniques.
In the case of the bad Miami ZIP Code of 3310, we might look for Miami ZIP Codes
beginning with 3310. There are two—33101 and 33109—and we could pick one of those.

Sometimes, rather than matching an entire value to a pattern, you’ll want to know
whether a value contains a substring that matches the pattern. In this case, use method
contains instead of match. Let’s create a Series of strings, each containing a U.S. city,
state and ZIP Code, then determine whether each string contains a substring matching the
pattern ' [A-Z]{2} ' (a space, followed by two uppercase letters, followed by a space):

In [1]: import pandas as pd

In [2]: zips = pd.Series({'Boston': '02215', 'Miami': '3310'})

In [3]: zips
Out[3]:
Boston 02215
Miami 3310
dtype: object

In [4]: zips.str.match(r'\d{5}')
Out[4]:
Boston True
Miami False
dtype: bool

In [5]: cities = pd.Series(['Boston, MA 02215', 'Miami, FL 33101'])

ptg27972259

8.13 Intro to Data Science: Pandas, Regular Expressions and Data Munging 213

We did not specify the index values, so the Series uses zero-based indexes by default
(snippet [6]). Snippet [7] uses contains to show that both Series elements contain sub-
strings that match ' [A-Z]{2} '. Snippet [8] uses match to show that neither element’s
value matches that pattern in its entirety, because each has other characters in its complete
value.

Reformatting Your Data
We’ve discussed data cleaning. Now let’s consider munging data into a different format.
As a simple example, assume that an application requires U.S. phone numbers in the for-
mat ###-###-####, with hyphens separating each group of digits. The phone numbers
have been provided to us as 10-digit strings without hyphens. Let’s create the DataFrame:

In this DataFrame, we specified column indices via the columns keyword argument but did
not specify row indices, so the rows are indexed from 0. Also, the output shows the column
values right aligned by default. This differs from Python formatting in which numbers in
a field are right aligned by default but non-numeric values are left aligned by default.

Now, let’s munge the data with a little more functional-style programming. We can
map the phone numbers to the proper format by calling the Series method map on the
DataFrame’s 'Phone' column. Method map’s argument is a function that receives a value
and returns the mapped value. The function get_formatted_phone maps 10 consecutive
digits into the format ###-###-####:

In [6]: cities
Out[6]:
0 Boston, MA 02215
1 Miami, FL 33101
dtype: object

In [7]: cities.str.contains(r' [A-Z]{2} ')
Out[7]:
0 True
1 True
dtype: bool

In [8]: cities.str.match(r' [A-Z]{2} ')
Out[8]:
0 False
1 False
dtype: bool

In [9]: contacts = [['Mike Green', 'demo1@deitel.com', '5555555555'],
 ...: ['Sue Brown', 'demo2@deitel.com', '5555551234']]
 ...:

In [10]: contactsdf = pd.DataFrame(contacts,
 ...: columns=['Name', 'Email', 'Phone'])
 ...:

In [11]: contactsdf
Out[11]:
 Name Email Phone
0 Mike Green demo1@deitel.com 5555555555
1 Sue Brown demo2@deitel.com 5555551234

mailto:'demo1@deitel.com'
mailto:'demo2@deitel.com'
mailto:demo1@deitel.com
mailto:demo2@deitel.com

ptg27972259

214 Chapter 8 Strings: A Deeper Look

The regular expression in the block’s first statement matches only 10 consecutive digits. It
captures substrings containing the first three digits, the next three digits and the last four
digits. The return statement operates as follows:

• If result is None, we simply return value unmodified.

• Otherwise, we call result.groups() to get a tuple containing the captured sub-
strings and pass that tuple to string method join to concatenate the elements,
separating each from the next with '-' to form the mapped phone number.

Series method map returns a new Series containing the results of calling its function
argument for each value in the column. Snippet [15] displays the result, including the col-
umn’s name and type:

Once you’ve confirmed that the data is in the correct format, you can update it in the
original DataFrame by assigning the new Series to the 'Phone' column:

We’ll continue our pandas discussion in the next chapter’s Intro to Data Science section,
and we’ll use pandas in several later chapters.

8.14 Wrap-Up
In this chapter, we presented various string formatting and processing capabilities. You
formatted data in f-strings and with the string method format. We showed the augmented
assignments for concatenating and repeating strings. You used string methods to remove
whitespace from the beginning and end of strings and to change their case. We discussed
additional methods for splitting strings and for joining iterables of strings. We introduced
various character-testing methods.

We showed raw strings that treat backslashes (\) as literal characters rather than the
beginning of escape sequences. These were particularly useful for defining regular expres-
sions, which often contain many backslashes.

In [12]: import re

In [13]: def get_formatted_phone(value):
 ...: result = re.fullmatch(r'(\d{3})(\d{3})(\d{4})', value)
 ...: return '-'.join(result.groups()) if result else value
 ...:
 ...:

In [14]: formatted_phone = contactsdf['Phone'].map(get_formatted_phone)

In [15]: formatted_phone
0 555-555-5555
1 555-555-1234
Name: Phone, dtype: object

In [16]: contactsdf['Phone'] = formatted_phone

In [17]: contactsdf
Out[17]:
 Name Email Phone
0 Mike Green demo1@deitel.com 555-555-5555
1 Sue Brown demo2@deitel.com 555-555-1234

mailto:demo1@deitel.com
mailto:demo2@deitel.com

ptg27972259

8.14 Wrap-Up 215

Next, we introduced the powerful pattern-matching capabilities of regular expressions
with functions from the re module. We used the fullmatch function to ensure that an
entire string matched a pattern, which is useful for validating data. We showed how to use
the replace function to search for and replace substrings. We used the split function to
tokenize strings based on delimiters that match a regular expression pattern. Then we
showed various ways to search for patterns in strings and to access the resulting matches.

In the Intro to Data Science section, we introduced the synonyms data munging and
data wrangling and showed q sample data munging operation, namely transforming data.
We continued our discussion of Panda’s Series and DataFrames by using regular expres-
sions to validate and munge data.

In the next chapter, we’ll continue using various string-processing capabilities as we
introduce reading text from files and writing text to files. We’ll use the csv module for
manipulating comma-separated value (CSV) files. We’ll also introduce exception handling
so we can process exceptions as they occur, rather than displaying a traceback.

ptg27972259

This page intentionally left blank

ptg27972259

9
Files and Exceptions

O b j e c t i v e s
In this chapter, you’ll:
■ Understand the notions of files and persistent data.
■ Read, write and update files.
■ Read and write CSV files, a common format for machine-

learning datasets.
■ Serialize objects into the JSON data-interchange format—

commonly used to transmit over the Internet—and deserialize
JSON into objects.

■ Use the with statement to ensure that resources are properly
released, avoiding “resource leaks.”

■ Use the try statement to delimit code in which exceptions
may occur and handle those exceptions with associated
except clauses.

■ Use the try statement’s else clause to execute code when
no exceptions occur in the try suite.

■ Use the try statement’s finally clause to execute code
regardless of whether an exception occurs in the try.

■ raise exceptions to indicate runtime problems.
■ Understand the traceback of functions and methods that led

to an exception.
■ Use pandas to load into a DataFrame and process the Titanic

Disaster CSV dataset.

ptg27972259

218 Chapter 9 Files and Exceptions
O

u
tl

in
e

9.1 Introduction
Variables, lists, tuples, dictionaries, sets, arrays, pandas Series and pandas DataFrames
offer only temporary data storage. The data is lost when a local variable “goes out of scope”
or when the program terminates. Files provide long-term retention of typically large
amounts of data, even after the program that created the data terminates, so data main-
tained in files is persistent. Computers store files on secondary storage devices, including
solid-state drives, hard disks and more. In this chapter, we explain how Python programs
create, update and process data files.

We consider text files in several popular formats—plain text, JSON (JavaScript Object
Notation) and CSV (comma-separated values). We’ll use JSON to serialize and deserialize
objects to facilitate saving those objects to secondary storage and transmitting them over the
Internet. Be sure to read this chapter’s Intro to Data Science section in which we’ll use both
the Python Standard Library’s csv module and pandas to load and manipulate CSV data.
In particular, we’ll look at the CSV version of the Titanic disaster dataset. We’ll use many
popular datasets in upcoming data-science case-study chapters on natural language process-
ing, data mining Twitter, IBM Watson, machine learning, deep learning and big data.

As part of our continuing emphasis on Python security, we’ll discuss the security vul-
nerabilities of serializing and deserializing data with the Python Standard Library’s pickle
module. We recommend JSON serialization in preference to pickle.

We also introduce exception handling. An exception indicates an execution-time
problem. You’ve seen exceptions of types ZeroDivisionError, NameError, ValueError,
StatisticsError, TypeError, IndexError, KeyError and RuntimeError. We’ll show
how to deal with exceptions as they occur by using try statements and associated except
clauses to handle exceptions. We’ll also discuss the try statement’s else and finally
clauses. The features presented here help you write robust, fault-tolerant programs that can
deal with problems and continue executing or terminate gracefully.

9.1 Introduction
9.2 Files
9.3 Text-File Processing

9.3.1 Writing to a Text File: Introducing the
with Statement

9.3.2 Reading Data from a Text File
9.4 Updating Text Files
9.5 Serialization with JSON
9.6 Focus on Security: pickle

Serialization and Deserialization
9.7 Additional Notes Regarding Files
9.8 Handling Exceptions

9.8.1 Division by Zero and Invalid Input
9.8.2 try Statements
9.8.3 Catching Multiple Exceptions in One

except Clause
9.8.4 What Exceptions Does a Function or

Method Raise?

9.8.5 What Code Should Be Placed in a
try Suite?

9.9 finally Clause
9.10 Explicitly Raising an Exception
9.11 (Optional) Stack Unwinding and

Tracebacks
9.12 Intro to Data Science: Working with

CSV Files
9.12.1 Python Standard Library Module csv
9.12.2 Reading CSV Files into Pandas

DataFrames
9.12.3 Reading the Titanic Disaster Dataset
9.12.4 Simple Data Analysis with the Titanic

Disaster Dataset
9.12.5 Passenger Age Histogram

9.13 Wrap-Up

ptg27972259

9.2 Files 219

Programs typically request and release resources (such as files) during program execu-
tion. Often, these are in limited supply or can be used only by one program at a time. We
show how to guarantee that after a program uses a resource, it’s released for use by other
programs, even if an exception has occurred. You’ll use the with statement for this purpose.

9.2 Files
Python views a text file as a sequence of characters and a binary file (for images, videos
and more) as a sequence of bytes. As in lists and arrays, the first character in a text file and
byte in a binary file is located at position 0, so in a file of n characters or bytes, the highest
position number is n – 1. The diagram below shows a conceptual view of a file:

For each file you open, Python creates a file object that you’ll use to interact with the file.

End of File
Every operating system provides a mechanism to denote the end of a file. Some represent
it with an end-of-file marker (as in the preceding figure), while others might maintain a
count of the total characters or bytes in the file. Programming languages generally hide
these operating-system details from you.

Standard File Objects
When a Python program begins execution, it creates three standard file objects:

• sys.stdin—the standard input file object

• sys.stdout—the standard output file object, and

• sys.stderr—the standard error file object.

Though these are considered file objects, they do not read from or write to files by default.
The input function implicitly uses sys.stdin to get user input from the keyboard. Func-
tion print implicitly outputs to sys.stdout, which appears in the command line. Python
implicitly outputs program errors and tracebacks to sys.stderr, which also appears in the
command line. You must import the sys module if you need to refer to these objects
explicitly in your code, but this is rare.

9.3 Text-File Processing
In this section, we’ll write a simple text file that might be used by an accounts-receivable
system to track the money owed by a company’s clients. We’ll then read that text file to
confirm that it contains the data. For each client, we’ll store the client’s account number,
last name and account balance owed to the company. Together, these data fields represent
a client record. Python imposes no structure on a file, so notions such as records do not
exist natively in Python. Programmers must structure files to meet their applications’
requirements. We’ll create and maintain this file in order by account number. In this
sense, the account number may be thought of as a record key. For this chapter, we assume
that you launch IPython from the ch09 examples folder.

0 1 2 3 4 5 6 7 8 9 ...

...

n-1

end-of-file marker

ptg27972259

220 Chapter 9 Files and Exceptions

9.3.1 Writing to a Text File: Introducing the with Statement
Let’s create an accounts.txt file and write five client records to the file. Generally, records
in text files are stored one per line, so we end each record with a newline character:

You can also write to a file with print (which automatically outputs a \n), as in

print('100 Jones 24.98', file=accounts)

The with Statement
Many applications acquire resources, such as files, network connections, database connec-
tions and more. You should release resources as soon as they’re no longer needed. This
practice ensures that other applications can use the resources. Python’s with statement:

• acquires a resource (in this case, the file object for accounts.txt) and assigns its
corresponding object to a variable (accounts in this example),

• allows the application to use the resource via that variable, and

• calls the resource object’s close method to release the resource when program
control reaches the end of the with statement’s suite.

Built-In Function open
The built-in open function opens the file accounts.txt and associates it with a file object.
The mode argument specifies the file-open mode, indicating whether to open a file for
reading from the file, for writing to the file or both. The mode 'w' opens the file for writ-
ing, creating the file if it does not exist. If you do not specify a path to the file, Python
creates it in the current folder (ch09). Be careful—opening a file for writing deletes all the
existing data in the file. By convention, the .txt file extension indicates a plain text file.

Writing to the File
The with statement assigns the object returned by open to the variable accounts in the as
clause. In the with statement’s suite, we use the variable accounts to interact with the file.
In this case, we call the file object’s write method five times to write five records to the
file, each as a separate line of text ending in a newline. At the end of the with statement’s
suite, the with statement implicitly calls the file object’s close method to close the file.

Contents of accounts.txt File
After executing the previous snippet, your ch09 directory contains the file accounts.txt
with the following contents, which you can view by opening the file in a text editor:

100 Jones 24.98
200 Doe 345.67
300 White 0.00
400 Stone -42.16
500 Rich 224.62

In the next section, you’ll read the file and display its contents.

In [1]: with open('accounts.txt', mode='w') as accounts:
 ...: accounts.write('100 Jones 24.98\n')
 ...: accounts.write('200 Doe 345.67\n')
 ...: accounts.write('300 White 0.00\n')
 ...: accounts.write('400 Stone -42.16\n')
 ...: accounts.write('500 Rich 224.62\n')
 ...:

ptg27972259

9.3 Text-File Processing 221

9.3.2 Reading Data from a Text File
We just created the text file accounts.txt and wrote data to it. Now let’s read that data
from the file sequentially from beginning to end. The following session reads records from
the file accounts.txt and displays the contents of each record in columns with the
Account and Name columns left aligned and the Balance column right aligned, so the dec-
imal points align vertically:

If the contents of a file should not be modified, open the file for reading only. This
prevents the program from accidentally modifying the file. You open a file for reading by
passing the 'r' file-open mode as function open’s second argument. If you do not specify
the folder in which to store the file, open assumes the file is in the current folder.

Iterating through a file object, as shown in the preceding for statement, reads one line
at a time from the file and returns it as a string. For each record (that is, line) in the file,
string method split returns tokens in the line as a list, which we unpack into the variables
account, name and balance.1 The last statement in the for statement’s suite displays these
variables in columns using field widths.

File Method readlines
The file object’s readlines method also can be used to read an entire text file. The method
returns each line as a string in a list of strings. For small files, this works well, but iterating
over the lines in a file object, as shown above, can be more efficient.2 Calling readlines
for a large file can be a time-consuming operation, which must complete before you can
begin using the list of strings. Using the file object in a for statement enables your pro-
gram to process each text line as it’s read.

Seeking to a Specific File Position
While reading through a file, the system maintains a file-position pointer representing the
location of the next character to read. Sometimes it’s necessary to process a file sequentially
from the beginning several times during a program’s execution. Each time, you must repo-
sition the file-position pointer to the beginning of the file, which you can do either by clos-
ing and reopening the file, or by calling the file object’s seek method, as in

file_object.seek(0)

The latter approach is faster.

In [1]: with open('accounts.txt', mode='r') as accounts:
 ...: print(f'{"Account":<10}{"Name":<10}{"Balance":>10}')
 ...: for record in accounts:
 ...: account, name, balance = record.split()
 ...: print(f'{account:<10}{name:<10}{balance:>10}')
 ...:
Account Name Balance
100 Jones 24.98
200 Doe 345.67
300 White 0.00
400 Stone -42.16
500 Rich 224.62

1. When splitting strings on spaces (the default), split automatically discards the newline character.
2. https://docs.python.org/3/tutorial/inputoutput.html#methods-of-file-objects.

https://docs.python.org/3/tutorial/inputoutput.html#methods-of-file-objects

ptg27972259

222 Chapter 9 Files and Exceptions

9.4 Updating Text Files
Formatted data written to a text file cannot be modified without the risk of destroying
other data. If the name 'White' needs to be changed to 'Williams' in accounts.txt, the
old name cannot simply be overwritten. The original record for White is stored as

300 White 0.00

If you overwrite the name 'White' with the name 'Williams', the record becomes

300 Williams00

The new last name contains three more characters than the original one, so the characters
beyond the second “i” in 'Williams' overwrite other characters in the line. The problem
is that in the formatted input–output model, records and their fields can vary in size. For
example, 7, 14, –117, 2074 and 27383 are all integers and are stored in the same number
of “raw data” bytes internally (typically 4 or 8 bytes in today’s systems). However, when
these integers are output as formatted text, they become different-sized fields. For exam-
ple, 7 is one character, 14 is two characters and 27383 is five characters.

To make the preceding name change, we can:

• copy the records before 300 White 0.00 into a temporary file,

• write the updated and correctly formatted record for account 300 to this file,

• copy the records after 300 White 0.00 to the temporary file,

• delete the old file and

• rename the temporary file to use the original file’s name.

This can be cumbersome because it requires processing every record in the file, even if you
need to update only one record. Updating a file as described above is more efficient when
an application needs to update many records in one pass of the file.3

Updating accounts.txt
Let’s use a with statement to update the accounts.txt file to change account 300’s name
from 'White' to 'Williams' as described above:

For readability, we opened the file objects (snippets [1] and [2]), then specified their vari-
able names in the first line of snippet [3]. This with statement manages two resource objects,

3. In the chapter, “Big Data: Hadoop, Spark, NoSQL and IoT,” you’ll see that database systems solve
this “update in place” problem efficiently.

In [1]: accounts = open('accounts.txt', 'r')

In [2]: temp_file = open('temp_file.txt', 'w')

In [3]: with accounts, temp_file:
 ...: for record in accounts:
 ...: account, name, balance = record.split()
 ...: if account != '300':
 ...: temp_file.write(record)
 ...: else:
 ...: new_record = ' '.join([account, 'Williams', balance])
 ...: temp_file.write(new_record + '\n')
 ...:

ptg27972259

9.5 Serialization with JSON 223

specified in a comma-separated list after with. The for statement unpacks each record into
account, name and balance. If the account is not '300', we write record (which contains
a newline) to temp_file. Otherwise, we assemble the new record containing 'Williams' in
place of 'White' and write it to the file. After snippet [3], temp_file.txt contains:

100 Jones 24.98
200 Doe 345.67
300 Williams 0.00
400 Stone -42.16
500 Rich 224.62

os Module File-Processing Functions
At this point, we have the old accounts.txt file and the new temp_file.txt. To com-
plete the update, let’s delete the old accounts.txt file, then rename temp_file.txt as
accounts.txt. The os module4 provides functions for interacting with the operating sys-
tem, including several that manipulate your system’s files and directories. Now that we’ve
created the temporary file, let’s use the remove function5 to delete the original file:

Next, let’s use the rename function to rename the temporary file as 'accounts.txt':

9.5 Serialization with JSON
Many libraries we’ll use to interact with cloud-based services, such as Twitter, IBM Wat-
son and others, communicate with your applications via JSON objects. JSON (JavaScript
Object Notation) is a text-based, human-and-computer-readable, data-interchange for-
mat used to represent objects as collections of name–value pairs. JSON can even represent
objects of custom classes like those you’ll build in the next chapter.

JSON has become the preferred data format for transmitting objects across platforms.
This is especially true for invoking cloud-based web services, which are functions and
methods that you call over the Internet. You’ll become proficient at working with JSON
data. In the “Data Mining Twitter” chapter, you’ll access JSON objects containing tweets
and their metadata. In the “IBM Watson and Cognitive Computing” chapter, you’ll
access data in the JSON responses returned by Watson services. In the “Big Data: Hadoop,
Spark, NoSQL and IoT” chapter, we’ll store JSON tweet objects that we obtain from
Twitter in MongoDB, a popular NoSQL database. In that chapter, we’ll also work with
other web services that send and receive data as JSON objects.

JSON Data Format
JSON objects are similar to Python dictionaries. Each JSON object contains a comma-
separated list of property names and values, in curly braces. For example, the following key–
value pairs might represent a client record:

{"account": 100, "name": "Jones", "balance": 24.98}

4. https://docs.python.org/3/library/os.html.

In [4]: import os

In [5]: os.remove('accounts.txt')

5. Use remove with caution—it does not warn you that you’re permanently deleting the file.

In [6]: os.rename('temp_file.txt', 'accounts.txt')

https://docs.python.org/3/library/os.html

ptg27972259

224 Chapter 9 Files and Exceptions

JSON also supports arrays which, like Python lists, are comma-separated values in square
brackets. For example, the following is an acceptable JSON array of numbers:

[100, 200, 300]

Values in JSON objects and arrays can be:

• strings in double quotes (like "Jones"),

• numbers (like 100 or 24.98),

• JSON Boolean values (represented as true or false in JSON),

• null (to represent no value, like None in Python),

• arrays (like [100, 200, 300]), and

• other JSON objects.

Python Standard Library Module json
The json module enables you to convert objects to JSON (JavaScript Object Notation)
text format. This is known as serializing the data. Consider the following dictionary,
which contains one key–value pair consisting of the key 'accounts' with its associated
value being a list of dictionaries representing two accounts. Each account dictionary con-
tains three key–value pairs for the account number, name and balance:

Serializing an Object to JSON
Let’s write that object in JSON format to a file:

Snippet [3] opens the file accounts.json and uses the json module’s dump function to
serialize the dictionary accounts_dict into the file. The resulting file contains the follow-
ing text, which we reformatted slightly for readability:

{"accounts":
 [{"account": 100, "name": "Jones", "balance": 24.98},
 {"account": 200, "name": "Doe", "balance": 345.67}]}

Note that JSON delimits strings with double-quote characters.

Deserializing the JSON Text
The json module’s load function reads the entire JSON contents of its file object argu-
ment and converts the JSON into a Python object. This is known as deserializing the data.
Let’s reconstruct the original Python object from this JSON text:

In [1]: accounts_dict = {'accounts': [
 ...: {'account': 100, 'name': 'Jones', 'balance': 24.98},
 ...: {'account': 200, 'name': 'Doe', 'balance': 345.67}]}

In [2]: import json

In [3]: with open('accounts.json', 'w') as accounts:
 ...: json.dump(accounts_dict, accounts)
 ...:

In [4]: with open('accounts.json', 'r') as accounts:
 ...: accounts_json = json.load(accounts)
 ...:
 ...:

ptg27972259

9.5 Serialization with JSON 225

We can now interact with the loaded object. For example, we can display the dictionary:

As you’d expect, you can access the dictionary’s contents. Let’s get the list of diction-
aries associated with the 'accounts' key:

Now, let’s get the individual account dictionaries:

Though we did not do so here, you can modify the dictionary as well. For example,
you could add accounts to or remove accounts from the list, then write the dictionary back
into the JSON file.

Displaying the JSON Text
The json module’s dumps function (dumps is short for “dump string”) returns a Python
string representation of an object in JSON format. Using dumps with load, you can read
the JSON from the file and display it in a nicely indented format—sometimes called
“pretty printing” the JSON. When the dumps function call includes the indent keyword
argument, the string contains newline characters and indentation for pretty printing—you
also can use indent with the dump function when writing to a file:

In [5]: accounts_json
Out[5]:
{'accounts': [{'account': 100, 'name': 'Jones', 'balance': 24.98},
 {'account': 200, 'name': 'Doe', 'balance': 345.67}]}

In [6]: accounts_json['accounts']
Out[6]:
[{'account': 100, 'name': 'Jones', 'balance': 24.98},
 {'account': 200, 'name': 'Doe', 'balance': 345.67}]

In [7]: accounts_json['accounts'][0]
Out[7]: {'account': 100, 'name': 'Jones', 'balance': 24.98}

In [8]: accounts_json['accounts'][1]
Out[8]: {'account': 200, 'name': 'Doe', 'balance': 345.67}

In [9]: with open('accounts.json', 'r') as accounts:
 ...: print(json.dumps(json.load(accounts), indent=4))
 ...:
{
 "accounts": [
 {
 "account": 100,
 "name": "Jones",
 "balance": 24.98
 },
 {
 "account": 200,
 "name": "Doe",
 "balance": 345.67
 }
]
}

ptg27972259

226 Chapter 9 Files and Exceptions

9.6 Focus on Security: pickle Serialization and
Deserialization
The Python Standard Library’s pickle module can serialize objects into in a Python-spe-
cific data format. Caution: The Python documentation provides the following warnings
about pickle:

• “Pickle files can be hacked. If you receive a raw pickle file over the network, don’t
trust it! It could have malicious code in it, that would run arbitrary Python when
you try to de-pickle it. However, if you are doing your own pickle writing and
reading, you’re safe (provided no one else has access to the pickle file, of
course.)”6

• “Pickle is a protocol which allows the serialization of arbitrarily complex Python
objects. As such, it is specific to Python and cannot be used to communicate with
applications written in other languages. It is also insecure by default: deserializing
pickle data coming from an untrusted source can execute arbitrary code, if the
data was crafted by a skilled attacker.”7

We do not recommend using pickle, but it’s been used for many years, so you’re likely
to encounter it in legacy code—old code that’s often no longer supported.

9.7 Additional Notes Regarding Files
The following table summarizes the various file-open modes for text files, including the
modes for reading and writing we’ve introduced. The writing and appending modes create
the file if it does not exist. The reading modes raise a FileNotFoundError if the file does
not exist. Each text-file mode has a corresponding binary-file mode specified with b, as in
'rb' or 'wb+'. You’d use these modes, for example, if you were reading or writing binary
files, such as images, audio, video, compressed ZIP files and many other popular custom
file formats.

6. https://wiki.python.org/moin/UsingPickle.
7. https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files.

Mode Description

'r' Open a text file for reading. This is the default if you do not specify the file-open
mode when you call open.

'w' Open a text file for writing. Existing file contents are deleted.

'a' Open a text file for appending at the end, creating the file if it does not exist. New
data is written at the end of the file.

'r+' Open a text file reading and writing.

'w+' Open a text file reading and writing. Existing file contents are deleted.

'a+' Open a text file reading and appending at the end. New data is written at the end
of the file. If the file does not exist, it is created.

https://wiki.python.org/moin/UsingPickle
https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files

ptg27972259

9.8 Handling Exceptions 227

Other File Object Methods
Here are a few more useful file-object methods.

• For a text file, the read method returns a string containing the number of char-
acters specified by the method’s integer argument. For a binary file, the method
returns the specified number of bytes. If no argument is specified, the method
returns the entire contents of the file.

• The readline method returns one line of text as a string, including the newline
character if there is one. This method returns an empty string when it encounters
the end of the file.

• The writelines method receives a list of strings and writes its contents to a file.

The classes that Python uses to create file objects are defined in the Python Standard
Library’s io module (https://docs.python.org/3/library/io.html).

9.8 Handling Exceptions
Various types of exceptions can occur when you work with files, including:

• A FileNotFoundError occurs if you attempt to open a non-existent file for read-
ing with the 'r' or 'r+' modes.

• A PermissionsError occurs if you attempt an operation for which you do not
have permission. This might occur if you try to open a file that your account is
not allowed to access or create a file in a folder where your account does not have
permission to write, such as where your computer’s operating system is stored.

• A ValueError (with the error message 'I/O operation on closed file.') occurs
when you attempt to write to a file that has already been closed.

9.8.1 Division by Zero and Invalid Input
Let’s revisit two exceptions that you saw earlier in the book.

Division By Zero
Recall that attempting to divide by 0 results in a ZeroDivisionError:

In this case, the interpreter is said to raise an exception of type ZeroDivisionError. When
an exception is raised in IPython, it:

• terminates the snippet,

• displays the exception’s traceback, then

• shows the next In [] prompt so you can input the next snippet.

If an exception occurs in a script, it terminates and IPython displays the traceback.

In [1]: 10 / 0

ZeroDivisionError Traceback (most recent call last)
<ipython-input-1-a243dfbf119d> in <module>()
----> 1 10 / 0

ZeroDivisionError: division by zero

In [2]:

https://docs.python.org/3/library/io.html

ptg27972259

228 Chapter 9 Files and Exceptions

Invalid Input
Recall that the int function raises a ValueError if you attempt to convert to an integer a
string (like 'hello') that does not represent a number:

9.8.2 try Statements
Now let’s see how to handle these exceptions so that you can enable code to continue pro-
cessing. Consider the following script and sample execution. Its loop attempts to read two
integers from the user, then display the first number divided by the second. The script uses
exception handling to catch and handle (i.e., deal with) any ZeroDivisionErrors and
ValueErrors that arise—in this case, allowing the user to re-enter the input.

try Clause
Python uses try statements (like lines 6–16) to enable exception handling. The try state-
ment’s try clause (lines 6–9) begins with keyword try, followed by a colon (:) and a suite
of statements that might raise exceptions.

In [2]: value = int(input('Enter an integer: '))
Enter an integer: hello

ValueError Traceback (most recent call last)
<ipython-input-2-b521605464d6> in <module>()
----> 1 value = int(input('Enter an integer: '))

ValueError: invalid literal for int() with base 10: 'hello'

In [3]:

1 # dividebyzero.py
2 """Simple exception handling example."""
3
4 while True:
5 # attempt to convert and divide values
6 try:
7 number1 = int(input('Enter numerator: '))
8 number2 = int(input('Enter denominator: '))
9 result = number1 / number2

10 except ValueError: # tried to convert non-numeric value to int
11 print('You must enter two integers\n')
12 except ZeroDivisionError: # denominator was 0
13 print('Attempted to divide by zero\n')
14 else: # executes only if no exceptions occur
15 print(f'{number1:.3f} / {number2:.3f} = {result:.3f}')
16 break # terminate the loop

Enter numerator: 100
Enter denominator: 0
Attempted to divide by zero

Enter numerator: 100
Enter denominator: hello
You must enter two integers

Enter numerator: 100
Enter denominator: 7
100.000 / 7.000 = 14.286

ptg27972259

9.8 Handling Exceptions 229

except Clause
A try clause may be followed by one or more except clauses (lines 10–11 and 12–13) that
immediately follow the try clause’s suite. These also are known as exception handlers. Each
except clause specifies the type of exception it handles. In this example, each exception
handler just displays a message indicating the problem that occurred.

else Clause
After the last except clause, an optional else clause (lines 14–16) specifies code that
should execute only if the code in the try suite did not raise exceptions. If no exceptions
occur in this example’s try suite, line 15 displays the division result and line 16 terminates
the loop.

Flow of Control for a ZeroDivisionError
Now let’s consider this example’s flow of control, based on the first three lines of the sam-
ple output:

• First, the user enters 100 for the numerator in response to line 7 in the try suite.

• Next, the user enters 0 for the denominator in response to line 8 in the try suite.

• At this point, we have two integer values, so line 9 attempts to divide 100 by 0,
causing Python to raise a ZeroDivisionError. The point in the program at
which an exception occurs is often referred to as the raise point.

When an exception occurs in a try suite, it terminates immediately. If there are any
except handlers following the try suite, program control transfers to the first one. If there
are no except handlers, a process called stack unwinding occurs, which we discuss later in
the chapter.

In this example, there are except handlers, so the interpreter searches for the first one
that matches the type of the raised exception:

• The except clause at lines 10–11 handles ValueErrors. This does not match the
type ZeroDivisionError, so that except clause’s suite does not execute and pro-
gram control transfers to the next except handler.

• The except clause at lines 12–13 handles ZeroDivisionErrors. This is a match,
so that except clause’s suite executes, displaying "Attempted to divide by zero".

When an except clause successfully handles the exception, program execution resumes
with the finally clause (if there is one), then with the next statement after the try state-
ment. In this example, we reach the end of the loop, so execution resumes with the next
loop iteration. Note that after an exception is handled, program control does not return to
the raise point. Rather, control resumes after the try statement. We’ll discuss the finally
clause shortly.

Flow of Control for a ValueError
Now let’s consider the flow of control, based on the next three lines of the sample output:

• First, the user enters 100 for the numerator in response to line 7 in the try suite.

• Next, the user enters hello for the denominator in response to line 8 in the try
suite. The input is not a valid integer, so the int function raises a ValueError.

ptg27972259

230 Chapter 9 Files and Exceptions

The exception terminates the try suite and program control transfers to the first
except handler. In this case, the except clause at lines 10–11 is a match, so its suite exe-
cutes, displaying "You must enter two integers". Then, program execution resumes with
the next statement after the try statement. Again, that’s the end of the loop, so execution
resumes with the next loop iteration.

Flow of Control for a Successful Division
Now let’s consider the flow of control, based on the last three lines of the sample output:

• First, the user enters 100 for the numerator in response to line 7 in the try suite.

• Next, the user enters 7 for the denominator in response to line 8 in the try suite.

• At this point, we have two valid integer values and the denominator is not 0, so
line 9 successfully divides 100 by 7.

When no exceptions occur in the try suite, program execution resumes with the else
clause (if there is one); otherwise, program execution resumes with the next statement after
the try statement. In this example’s else clause, we display the division result, then ter-
minate the loop, and the program terminates.

9.8.3 Catching Multiple Exceptions in One except Clause
It’s relatively common for a try clause to be followed by several except clauses to handle
various types of exceptions. If several except suites are identical, you can catch those
exception types by specifying them as a tuple in a single except handler, as in:

except (type1, type2, …) as variable_name:

The as clause is optional. Typically, programs do not need to reference the caught excep-
tion object directly. If you do, you can use the variable in the as clause to reference the
exception object in the except suite.

9.8.4 What Exceptions Does a Function or Method Raise?
Exceptions may surface via statements in a try suite, via functions or methods called
directly or indirectly from a try suite, or via the Python interpreter as it executes the code
(for example, ZeroDivisionErrors).

Before using any function or method, read its online API documentation, which spec-
ifies what exceptions are thrown (if any) by the function or method and indicates reasons
why such exceptions may occur. Next, read the online API documentation for each excep-
tion type to see potential reasons why such an exception occurs.

9.8.5 What Code Should Be Placed in a try Suite?
Place in a try suite a significant logical section of a program in which several statements
can raise exceptions, rather than wrapping a separate try statement around every state-
ment that raises an exception. However, for proper exception-handling granularity, each
try statement should enclose a section of code small enough that, when an exception
occurs, the specific context is known and the except handlers can process the exception
properly. If many statements in a try suite raise the same exception types, multiple try
statements may be required to determine each exception’s context.

ptg27972259

9.9 finally Clause 231

9.9 finally Clause
Operating systems typically can prevent more than one program from manipulating a file
at once. When a program finishes processing a file, the program should close it to release
the resource so other programs can access it. Closing the file helps prevent a resource leak.

The finally Clause of the try Statement
A try statement may have a finally clause after any except clauses or the else clause.
The finally clause is guaranteed to execute.8 In other languages that have finally, this
makes the finally suite an ideal location to place resource-deallocation code for resources
acquired in the corresponding try suite. In Python, we prefer the with statement for this
purpose and place other kinds of “clean up” code in the finally suite.

Example
The following IPython session demonstrates that the finally clause always executes,
regardless of whether an exception occurs in the corresponding try suite. First, let’s con-
sider a try statement in which no exceptions occur in the try suite:

The preceding try suite displays a message but does not raise any exceptions. When pro-
gram control successfully reaches the end of the try suite, the except clause is skipped,
the else clause executes and the finally clause displays a message showing that it always
executes. When the finally clause terminates, program control continues with the next
statement after the try statement. In an IPython session, the next In [] prompt appears.

Now let’s consider a try statement in which an exception occurs in the try suite:

8. The only reason a finally suite will not execute if program control enters the corresponding try
suite is if the application terminates first, for example by calling the sys module’s exit function.

In [1]: try:
 ...: print('try suite with no exceptions raised')
 ...: except:
 ...: print('this will not execute')
 ...: else:
 ...: print('else executes because no exceptions in the try suite')
 ...: finally:
 ...: print('finally always executes')
 ...:
try suite with no exceptions raised
else executes because no exceptions in the try suite
finally always executes

In [2]:

In [2]: try:
 ...: print('try suite that raises an exception')
 ...: int('hello')
 ...: print('this will not execute')
 ...: except ValueError:
 ...: print('a ValueError occurred')
 ...: else:
 ...: print('else will not execute because an exception occurred')
 ...: finally:
 ...: print('finally always executes')
 ...:

ptg27972259

232 Chapter 9 Files and Exceptions

This try suite begins by displaying a message. The second statement attempts to convert
the string 'hello' to an integer, which causes the int function to raise a ValueError. The
try suite immediately terminates, skipping its last print statement. The except clause
catches the ValueError exception and displays a message. The else clause does not exe-
cute because an exception occurred. Then, the finally clause displays a message showing
that it always executes. When the finally clause terminates, program control continues
with the next statement after the try statement. In an IPython session, the next In []

prompt appears.

Combining with Statements and try…except Statements
Most resources that require explicit release, such as files, network connections and data-
base connections, have potential exceptions associated with processing those resources. For
example, a program that processes a file might raise IOErrors. For this reason, robust file-
processing code normally appears in a try suite containing a with statement to guarantee
that the resource gets released. The code is in a try suite, so you can catch in except han-
dlers any exceptions that occur and you do not need a finally clause because the with
statement handles resource deallocation.

To demonstrate this, first let’s assume you’re asking the user to supply the name of a
file and they provide that name incorrectly, such as gradez.txt rather than the file we cre-
ated earlier grades.txt. In this case, the open call raises a FileNotFoundError by attempt-
ing to open a non-existent file:

To catch exceptions like FileNotFoundError that occur when you try to open a file for
reading, wrap the with statement in a try suite, as in:

try suite that raises an exception
a ValueError occurred
finally always executes

In [3]:

In [3]: open('gradez.txt')

FileNotFoundError Traceback (most recent call last)
<ipython-input-3-b7f41b2d5969> in <module>()
----> 1 open('gradez.txt')

FileNotFoundError: [Errno 2] No such file or directory: 'gradez.txt'

In [4]: try:
 ...: with open('gradez.txt', 'r') as accounts:
 ...: print(f'{"ID":<3}{"Name":<7}{"Grade"}')
 ...: for record in accounts:
 ...: student_id, name, grade = record.split()
 ...: print(f'{student_id:<3}{name:<7}{grade}')
 ...: except FileNotFoundError:
 ...: print('The file name you specified does not exist')
 ...:
The file name you specified does not exist

ptg27972259

9.10 Explicitly Raising an Exception 233

9.10 Explicitly Raising an Exception
You’ve seen various exceptions raised by your Python code. Sometimes you might need to
write functions that raise exceptions to inform callers of errors that occur. The raise state-
ment explicitly raises an exception. The simplest form of the raise statement is

raise ExceptionClassName

The raise statement creates an object of the specified exception class. Optionally, the
exception class name may be followed by parentheses containing arguments to initialize
the exception object—typically to provide a custom error message string. Code that raises
an exception first should release any resources acquired before the exception occurred. In
the next section, we’ll show an example of raising an exception.

In most cases, when you need to raise an exception, it’s recommended that you use
one of Python’s many built-in exception types9 listed at:

https://docs.python.org/3/library/exceptions.html

9.11 (Optional) Stack Unwinding and Tracebacks
Each exception object stores information indicating the precise series of function calls that
led to the exception. This is helpful when debugging your code. Consider the following
function definitions—function1 calls function2 and function2 raises an Exception:

Calling function1 results in the following traceback. For emphasis, we placed in bold the
parts of the traceback indicating the lines of code that led to the exception:

9. You may be tempted to create custom exception classes that are specific to your application. We’ll say
more about custom exceptions in the next chapter.

In [1]: def function1():
 ...: function2()
 ...:

In [2]: def function2():
 ...: raise Exception('An exception occurred')
 ...:

In [3]: function1()

Exception Traceback (most recent call last)
<ipython-input-3-c0b3cafe2087> in <module>()
----> 1 function1()

<ipython-input-1-a9f4faeeeb0c> in function1()
 1 def function1():
----> 2 function2()
 3

<ipython-input-2-c65e19d6b45b> in function2()
 1 def function2():
----> 2 raise Exception('An exception occurred')

Exception: An exception occurred

https://docs.python.org/3/library/exceptions.html

ptg27972259

234 Chapter 9 Files and Exceptions

Traceback Details
The traceback shows the type of exception that occurred (Exception) followed by the
complete function call stack that led to the raise point. The stack’s bottom function call is
listed first and the top is last, so the interpreter displays the following text as a reminder:

Traceback (most recent call last)

In this traceback, the following text indicates the bottom of the function-call stack—
the function1 call in snippet [3] (indicated by ipython-input-3):

<ipython-input-3-c0b3cafe2087> in <module>()
----> 1 function1()

Next, we see that function1 called function2 from line 2 in snippet [1]:

<ipython-input-1-a9f4faeeeb0c> in function1()
 1 def function1():
----> 2 function2()
 3

Finally, we see the raise point—in this case, line 2 in snippet [2] raised the exception:

<ipython-input-2-c65e19d6b45b> in function2()
 1 def function2():
----> 2 raise Exception('An exception occurred')

Stack Unwinding
In our previous exception-handling examples, the raise point occurred in a try suite, and
the exception was handled in one of the try statement’s corresponding except handlers.
When an exception is not caught in a given function, stack unwinding occurs. Let’s con-
sider stack unwinding in the context of this example:

• In function2, the raise statement raises an exception. This is not in a try suite,
so function2 terminates, its stack frame is removed from the function-call stack,
and control returns to the statement in function1 that called function2.

• In function1, the statement that called function2 is not in a try suite, so func-
tion1 terminates, its stack frame is removed from the function-call stack, and
control returns to the statement that called function1—snippet [3] in the IPy-
thon session.

• The call in snippet [3] call is not in a try suite, so that function call terminates.
Because the exception was not caught (known as an uncaught exception), IPy-
thon displays the traceback, then awaits your next input. If this occurred in a typ-
ical script, the script would terminate.10

Tip for Reading Tracebacks
You’ll often call functions and methods that belong to libraries of code you did not write.
Sometimes those functions and methods raise exceptions. When reading a traceback, start
from the end of the traceback and read the error message first. Then, read upward through
the traceback, looking for the first line that indicates code you wrote in your program.
Typically, this is the location in your code that led to the exception.

10. In more advanced applications that use threads, an uncaught exception terminates only the thread in
which the exception occurs, not necessarily the entire application.

ptg27972259

9.12 Intro to Data Science: Working with CSV Files 235

Exceptions in finally Suites
Raising an exception in a finally suite can lead to subtle, hard-to-find problems. If an
exception occurs and is not processed by the time the finally suite executes, stack
unwinding occurs. If the finally suite raises a new exception that the suite does not catch,
the first exception is lost, and the new exception is passed to the next enclosing try state-
ment. For this reason, a finally suite should always enclose in a try statement any code
that may raise an exception, so that the exceptions will be processed within that suite.

9.12 Intro to Data Science: Working with CSV Files
Throughout this book, you’ll work with many datasets as we present data-science concepts.
CSV (comma-separated values) is a particularly popular file format. In this section, we’ll
demonstrate CSV file processing with a Python Standard Library module and pandas.

9.12.1 Python Standard Library Module csv
The csv module11 provides functions for working with CSV files. Many other Python
libraries also have built-in CSV support.

Writing to a CSV File
Let’s create an accounts.csv file using CSV format. The csv module’s documentation
recommends opening CSV files with the additional keyword argument newline='' to
ensure that newlines are processed properly:

The .csv file extension indicates a CSV-format file. The csv module’s writer function
returns an object that writes CSV data to the specified file object. Each call to the writer’s
writerow method receives an iterable to store in the file. Here we’re using lists. By default,
writerow delimits values with commas, but you can specify custom delimiters.12 After the
preceding snippet, accounts.csv contains:

100,Jones,24.98
200,Doe,345.67
300,White,0.00
400,Stone,-42.16
500,Rich,224.62

CSV files generally do not contain spaces after commas, but some people use them to
enhance readability. The writerow calls above can be replaced with one writerows call
that outputs a comma-separated list of iterables representing the records.

11. https://docs.python.org/3/library/csv.html.

In [1]: import csv

In [2]: with open('accounts.csv', mode='w', newline='') as accounts:
 ...: writer = csv.writer(accounts)
 ...: writer.writerow([100, 'Jones', 24.98])
 ...: writer.writerow([200, 'Doe', 345.67])
 ...: writer.writerow([300, 'White', 0.00])
 ...: writer.writerow([400, 'Stone', -42.16])
 ...: writer.writerow([500, 'Rich', 224.62])
 ...:

12. https://docs.python.org/3/library/csv.html#csv-fmt-params.

https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html#csv-fmt-params

ptg27972259

236 Chapter 9 Files and Exceptions

If you write data that contains commas within a given string, writerow encloses that
string in double quotes. For example, consider the following Python list:

[100, 'Jones, Sue', 24.98]

The single-quoted string 'Jones, Sue' contains a comma separating the last name and
first name. In this case, writerow would output the record as

100,"Jones, Sue",24.98

The quotes around "Jones, Sue" indicate that this is a single value. Programs reading this
from a CSV file would break the record into three pieces—100, 'Jones, Sue' and 24.98.

Reading from a CSV File
Now let’s read the CSV data from the file. The following snippet reads records from the
file accounts.csv and displays the contents of each record, producing the same output we
showed earlier:

The csv module’s reader function returns an object that reads CSV-format data from the
specified file object. Just as you can iterate through a file object, you can iterate through
the reader object one record of comma-delimited values at a time. The preceding for
statement returns each record as a list of values, which we unpack into the variables
account, name and balance, then display.

Caution: Commas in CSV Data Fields
Be careful when working with strings containing embedded commas, such as the name
'Jones, Sue'. If you accidentally enter this as the two strings 'Jones' and 'Sue', then
writerow would, of course, create a CSV record with four fields, not three. Programs that
read CSV files typically expect every record to have the same number of fields; otherwise,
problems occur. For example, consider the following two lists:

[100, 'Jones', 'Sue', 24.98]
[200, 'Doe' , 345.67]

The first list contains four values and the second contains only three. If these two records
were written into the CSV file, then read into a program using the previous snippet, the
following statement would fail when we attempt to unpack the four-field record into only
three variables:

account, name, balance = record

In [3]: with open('accounts.csv', 'r', newline='') as accounts:
 ...: print(f'{"Account":<10}{"Name":<10}{"Balance":>10}')
 ...: reader = csv.reader(accounts)
 ...: for record in reader:
 ...: account, name, balance = record
 ...: print(f'{account:<10}{name:<10}{balance:>10}')
 ...:
Account Name Balance
100 Jones 24.98
200 Doe 345.67
300 White 0.0
400 Stone -42.16
500 Rich 224.62

ptg27972259

9.12 Intro to Data Science: Working with CSV Files 237

Caution: Missing Commas and Extra Commas in CSV Files
Be careful when preparing and processing CSV files. For example, suppose your file is
composed of records, each with four comma-separated int values, such as:

100,85,77,9

If you accidentally omit one of these commas, as in:

100,8577,9

then the record has only three fields, one with the invalid value 8577.
If you put two adjacent commas where only one is expected, as in:

100,85,,77,9

then you have five fields rather than four, and one of the fields erroneously would be empty.
Each of these comma-related errors could confuse programs trying to process the record.

9.12.2 Reading CSV Files into Pandas DataFrames
In the Intro to Data Science sections in the previous two chapters, we introduced many
pandas fundamentals. Here, we demonstrate pandas’ ability to load files in CSV format,
then perform some basic data-analysis tasks.

Datasets
In the data-science case studies, we’ll use various free and open datasets to demonstrate
machine learning and natural language processing concepts. There’s an enormous variety
of free datasets available online. The popular Rdatasets repository provides links to over
1100 free datasets in comma-separated values (CSV) format. These were originally pro-
vided with the R programming language for people learning about and developing statis-
tical software, though they are not specific to R. They are now available on GitHub at:

https://vincentarelbundock.github.io/Rdatasets/datasets.html

This repository is so popular that there’s a pydataset module specifically for accessing
Rdatasets. For instructions on installing pydataset and accessing datasets with it, see:

https://github.com/iamaziz/PyDataset

Another large source of datasets is:

https://github.com/awesomedata/awesome-public-datasets

A commonly used machine-learning dataset for beginners is the Titanic disaster data-
set, which lists all the passengers and whether they survived when the ship Titanic struck
an iceberg and sank April 14–15, 1912. We’ll use it here to show how to load a dataset,
view some of its data and display some descriptive statistics. We’ll dig deeper into a variety
of popular datasets in the data-science chapters later in the book.

Working with Locally Stored CSV Files
You can load a CSV dataset into a DataFrame with the pandas function read_csv. The
following loads and displays the CSV file accounts.csv that you created earlier in this
chapter:

In [1]: import pandas as pd

https://vincentarelbundock.github.io/Rdatasets/datasets.html
https://github.com/iamaziz/PyDataset
https://github.com/awesomedata/awesome-public-datasets

ptg27972259

238 Chapter 9 Files and Exceptions

The names argument specifies the DataFrame’s column names. Without this argument,
read_csv assumes that the CSV file’s first row is a comma-delimited list of column names.

To save a DataFrame to a file using CSV format, call DataFrame method to_csv:

The index=False keyword argument indicates that the row names (0–4 at the left of the
DataFrame’s output in snippet [3]) are not written to the file. The resulting file contains
the column names as the first row:

account,name,balance
100,Jones,24.98
200,Doe,345.67
300,White,0.0
400,Stone,-42.16
500,Rich,224.62

9.12.3 Reading the Titanic Disaster Dataset
The Titanic disaster dataset is one of the most popular machine-learning datasets. The
dataset is available in many formats, including CSV.

Loading the Titanic Dataset via a URL
If you have a URL representing a CSV dataset, you can load it into a DataFrame with
read_csv. Let’s load the Titanic Disaster dataset directly from GitHub:

Viewing Some of the Rows in the Titanic Dataset
This dataset contains over 1300 rows, each representing one passenger. According to
Wikipedia, there were approximately 1317 passengers and 815 of them died.13 For large
datasets, displaying the DataFrame shows only the first 30 rows, followed by “…” and the
last 30 rows. To save space, let’s view the first five and last five rows with DataFrame meth-
ods head and tail. Both methods return five rows by default, but you can specify the
number of rows to display as an argument:

In [2]: df = pd.read_csv('accounts.csv',
 ...: names=['account', 'name', 'balance'])
 ...:

In [3]: df
Out[3]:
 account name balance
0 100 Jones 24.98
1 200 Doe 345.67
2 300 White 0.00
3 400 Stone -42.16
4 500 Rich 224.62

In [4]: df.to_csv('accounts_from_dataframe.csv', index=False)

In [1]: import pandas as pd

In [2]: titanic = pd.read_csv('https://vincentarelbundock.github.io/' +
 ...: 'Rdatasets/csv/carData/TitanicSurvival.csv')
 ...:

13. https://en.wikipedia.org/wiki/Passengers_of_the_RMS_Titanic.

In [3]: pd.set_option('precision', 2) # format for floating-point values

https://vincentarelbundock.github.io/'
https://en.wikipedia.org/wiki/Passengers_of_the_RMS_Titanic

ptg27972259

9.12 Intro to Data Science: Working with CSV Files 239

Note that pandas adjusts each column’s width, based on the widest value in the column
or based on the column name, whichever is wider. Also, note the value in the age column
of row 1305 is NaN (not a number), indicating a missing value in the dataset.

Customizing the Column Names
The first column in this dataset has a strange name ('Unnamed: 0'). We can clean that up
by setting the column names. Let’s change 'Unnamed: 0' to 'name' and let’s shorten 'pas-
sengerClass' to 'class':

9.12.4 Simple Data Analysis with the Titanic Disaster Dataset
Now, you can use pandas to perform some simple analysis. For example, let’s look at some
descriptive statistics. When you call describe on a DataFrame containing both numeric
and non-numeric columns, describe calculates these statistics only for the numeric col-
umns—in this case, just the age column:

In [4]: titanic.head()
Out[4]:
 Unnamed: 0 survived sex age passengerClass
0 Allen, Miss. Elisabeth Walton yes female 29.00 1st
1 Allison, Master. Hudson Trevor yes male 0.92 1st
2 Allison, Miss. Helen Loraine no female 2.00 1st
3 Allison, Mr. Hudson Joshua Crei no male 30.00 1st
4 Allison, Mrs. Hudson J C (Bessi no female 25.00 1st

In [5]: titanic.tail()
Out[5]:
 Unnamed: 0 survived sex age passengerClass
1304 Zabour, Miss. Hileni no female 14.50 3rd
1305 Zabour, Miss. Thamine no female NaN 3rd
1306 Zakarian, Mr. Mapriededer no male 26.50 3rd
1307 Zakarian, Mr. Ortin no male 27.00 3rd
1308 Zimmerman, Mr. Leo no male 29.00 3rd

In [6]: titanic.columns = ['name', 'survived', 'sex', 'age', 'class']

In [7]: titanic.head()
Out[7]:
 name survived sex age class
0 Allen, Miss. Elisabeth Walton yes female 29.00 1st
1 Allison, Master. Hudson Trevor yes male 0.92 1st
2 Allison, Miss. Helen Loraine no female 2.00 1st
3 Allison, Mr. Hudson Joshua Crei no male 30.00 1st
4 Allison, Mrs. Hudson J C (Bessi no female 25.00 1st

In [8]: titanic.describe()
Out[8]:
 age
count 1046.00
mean 29.88
std 14.41
min 0.17
25% 21.00
50% 28.00
75% 39.00
max 80.00

ptg27972259

240 Chapter 9 Files and Exceptions

Note the discrepancy in the count (1046) vs. the dataset’s number of rows (1309—
the last row’s index was 1308 when we called tail). Only 1046 (the count above) of the
records contained an age value. The rest were missing and marked as NaN, as in row 1305.
When performing calculations, Pandas ignores missing data (NaN) by default. For the 1046
people with valid ages, the average (mean) age was 29.88 years old. The youngest passenger
(min) was just over two months old (0.17 * 12 is 2.04), and the oldest (max) was 80. The
median age was 28 (indicated by the 50% quartile). The 25% quartile is the median age in
the first half of the passengers (sorted by age), and the 75% quartile is the median of the
second half of passengers.

Let’s say you want to determine some statistics about people who survived. We can
compare the survived column to 'yes' to get a new Series containing True/False val-
ues, then use describe to summarize the results:

For non-numeric data, describe displays different descriptive statistics:

• count is the total number of items in the result.

• unique is the number of unique values (2) in the result—True (survived) and
False (died).

• top is the most frequently occurring value in the result.

• freq is the number of occurrences of the top value.

9.12.5 Passenger Age Histogram
Visualization is a nice way to get to know your data. Pandas has many built-in visualization
capabilities that are implemented with Matplotlib. To use them, first enable Matplotlib
support in IPython:

A histogram visualizes the distribution of numerical data over a range of values. A Data-
Frame’s hist method automatically analyzes each numerical column’s data and produces
a corresponding histogram. To view histograms of each numerical data column, call hist
on your DataFrame:

The Titanic dataset contains only one numerical data column, so the diagram shows one
histogram for the age distribution. For datasets with multiple numerical columns, hist
creates a separate histogram for each numerical column.

In [9]: (titanic.survived == 'yes').describe()
Out[9]:
count 1309
unique 2
top False
freq 809
Name: survived, dtype: object

In [10]: %matplotlib

In [11]: histogram = titanic.hist()

ptg27972259

9.13 Wrap-Up 241

9.13 Wrap-Up
In this chapter, we introduced text-file processing and exception handling. Files are used
to store data persistently. We discussed file objects and mentioned that Python views a file
as a sequence of characters or bytes. We also mentioned the standard file objects that are
automatically created for you when a Python program begins executing.

We showed how to create, read, write and update text files. We considered several
popular file formats—plain text, JSON (JavaScript Object Notation) and CSV (comma-
separated values). We used the built-in open function and the with statement to open a
file, write to or read from the file and automatically close the file to prevent resource leaks
when the with statement terminates. We used the Python Standard Library’s json module
to serialize objects into JSON format and store them in a file, load JSON objects from a
file, deserialize them into Python objects and pretty-print a JSON object for readability.

We discussed how exceptions indicate execution-time problems and listed the various
exceptions you’ve already seen. We showed how to deal with exceptions by wrapping code
in try statements that provide except clauses to handle specific types of exceptions that
may occur in the try suite, making your programs more robust and fault-tolerant.

We discussed the try statement’s finally clause for executing code if program flow
entered the corresponding try suite. You can use either the with statement or a try state-
ment’s finally clause for this purpose—we prefer the with statement.

In the Intro to Data Science section, we used both the Python Standard Library’s csv
module and capabilities of the pandas library to load, manipulate and store CSV data.
Finally, we loaded the Titanic disaster dataset into a pandas DataFrame, changed some col-
umn names for readability, displayed the head and tail of the dataset, and performed sim-
ple analysis of the data. In the next chapter, we’ll discuss Python’s object-oriented
programming capabilities.

ptg27972259

This page intentionally left blank

ptg27972259

10
Object-Oriented

Programming

O b j e c t i v e s
In this chapter, you’ll:
■ Create custom classes and objects of those classes.
■ Understand the benefits of crafting valuable classes.
■ Control access to attributes.
■ Appreciate the value of object orientation.
■ Use Python special methods __repr__, __str__ and
__format__ to get an object’s string representations.

■ Use Python special methods to overload (redefine) operators
to use them with objects of new classes.

■ Inherit methods, properties and attributes from existing
classes into new classes, then customize those classes.

■ Understand the inheritance notions of base classes
(superclasses) and derived classes (subclasses).

■ Understand duck typing and polymorphism that enable
“programming in the general.”

■ Understand class object from which all classes inherit
fundamental capabilities.

■ Compare composition and inheritance.
■ Build test cases into docstrings and run these tests with
doctest,

■ Understand namespaces and how they affect scope.

ptg27972259

244 Chapter 10 Object-Oriented Programming
O

u
tl

in
e

10.1 Introduction
Section 1.2 introduced the basic terminology and concepts of object-oriented program-
ming. Everything in Python is an object, so you’ve been using objects constantly through-
out this book. Just as houses are built from blueprints, objects are built from classes—one
of the core technologies of object-oriented programming. Building a new object from even
a large class is simple—you typically write one statement.

Crafting Valuable Classes
You’ve already used lots of classes created by other people. In this chapter you’ll create your
own custom classes. You’ll focus on “crafting valuable classes” that help you meet the
requirements of the applications you’ll build. You’ll use object-oriented programming
with its core technologies of classes, objects, inheritance and polymorphism. Software
applications are becoming larger and more richly functional. Object-oriented program-
ming makes it easier for you to design, implement, test, debug and update such edge-of-
the-practice applications. Read Sections 10.1 through 10.9 for a code-intensive introduc-
tion to these technologies. Most people can skip Sections 10.10 through 10.15, which
provide additional perspectives on these technologies and present additional related fea-
tures.

10.1 Introduction
10.2 Custom Class Account

10.2.1 Test-Driving Class Account
10.2.2 Account Class Definition
10.2.3 Composition: Object References as

Members of Classes
10.3 Controlling Access to Attributes
10.4 Properties for Data Access

10.4.1 Test-Driving Class Time
10.4.2 Class Time Definition
10.4.3 Class Time Definition Design Notes

10.5 Simulating “Private” Attributes
10.6 Case Study: Card Shuffling and

Dealing Simulation
10.6.1 Test-Driving Classes Card and

DeckOfCards
10.6.2 Class Card—Introducing Class

Attributes
10.6.3 Class DeckOfCards
10.6.4 Displaying Card Images with

Matplotlib
10.7 Inheritance: Base Classes and

Subclasses
10.8 Building an Inheritance Hierarchy;

Introducing Polymorphism
10.8.1 Base Class CommissionEmployee
10.8.2 Subclass

SalariedCommissionEmployee

10.8.3 Processing Commission-
Employees and Salaried-
CommissionEmployees
Polymorphically

10.8.4 A Note About Object-Based and
Object-Oriented Programming

10.9 Duck Typing and Polymorphism
10.10 Operator Overloading

10.10.1 Test-Driving Class Complex
10.10.2 Class Complex Definition

10.11 Exception Class Hierarchy and
Custom Exceptions

10.12 Named Tuples
10.13 A Brief Intro to Python 3.7’s New

Data Classes
10.13.1 Creating a Card Data Class
10.13.2 Using the Card Data Class
10.13.3 Data Class Advantages over Named

Tuples
10.13.4 Data Class Advantages over

Traditional Classes
10.14 Unit Testing with Docstrings and

doctest
10.15 Namespaces and Scopes
10.16 Intro to Data Science: Time Series

and Simple Linear Regression
10.17 Wrap-Up

ptg27972259

10.1 Introduction 245

Class Libraries and Object-Based Programming
The vast majority of object-oriented programming you’ll do in Python is object-based
programming in which you primarily create and use objects of existing classes. You’ve been
doing this throughout the book with built-in types like int, float, str, list, tuple, dict
and set, with Python Standard Library types like Decimal, and with NumPy arrays, Mat-
plotlib Figures and Axes, and pandas Series and DataFrames.

To take maximum advantage of Python you must familiarize yourself with lots of pre-
existing classes. Over the years, the Python open-source community has crafted an enor-
mous number of valuable classes and packaged them into class libraries. This makes it easy
for you to reuse existing classes rather than “reinventing the wheel.” Widely used open-
source library classes are more likely to be thoroughly tested, bug free, performance tuned
and portable across a wide range of devices, operating systems and Python versions. You’ll
find abundant Python libraries on the Internet at sites like GitHub, BitBucket, Source-
Forge and more—most easily installed with conda or pip. This is a key reason for Python’s
popularity. The vast majority of the classes you’ll need are likely to be freely available in
open-source libraries.

Creating Your Own Custom Classes
Classes are new data types. Each Python Standard Library class and third-party library
class is a custom type built by someone else. In this chapter, you’ll develop application-
specific classes, like CommissionEmployee, Time, Card, DeckOfCards and more.

Most applications you’ll build for your own use will commonly use either no custom
classes or just a few. If you become part of a development team in industry, you may work
on applications that contain hundreds, or even thousands, of classes. You can contribute
your custom classes to the Python open-source community, but you are not obligated to
do so. Organizations often have policies and procedures related to open-sourcing code.

Inheritance
Perhaps most exciting is the notion that new classes can be formed through inheritance
and composition from classes in abundant class libraries. Eventually, software will be con-
structed predominantly from standardized, reusable components just as hardware is con-
structed from interchangeable parts today. This will help meet the challenges of
developing ever more powerful software.

When creating a new class, instead of writing all new code, you can designate that the
new class is to be formed initially by inheriting the attributes (variables) and methods (the
class version of functions) of a previously defined base class (also called a superclass). The
new class is called a derived class (or subclass). After inheriting, you then customize the
derived class to meet the specific needs of your application. To minimize the customiza-
tion effort, you should always try to inherit from the base class that’s closest to your needs.
To do that effectively, you should familiarize yourself with the class libraries that are
geared to the kinds of applications you’ll be building.

Polymorphism
We explain and demonstrate polymorphism, which enables you to conveniently program
“in the general” rather than “in the specific.” You simply send the same method call to
objects possibly of many different types. Each object responds by “doing the right thing.”
So the same method call takes on “many forms,” hence the term “poly-morphism.” We’ll

ptg27972259

246 Chapter 10 Object-Oriented Programming

explain how to implement polymorphism through inheritance and a Python feature called
duck typing. We’ll explain both and show examples of each.

An Entertaining Case Study: Card-Shuffling-and-Dealing Simulation
You’ve already used a random-numbers-based die-rolling simulation and used those tech-
niques to implement the popular dice game craps. Here, we present a card-shuffling-and-
dealing simulation, which you can use to implement your favorite card games. You’ll use
Matplotlib with attractive public-domain card images to display the full deck of cards both
before and after the deck is shuffled.

Data Classes
Python 3.7’s new data classes help you build classes faster by using a more concise notation
and by autogenerating portions of the classes. The Python community’s early reaction to
data classes has been positive. As with any major new feature, it may take time before it’s
widely used. We present class development with both the older and newer technologies.

Other Concepts Introduced in This Chapter
Other concepts we present include:

• How to specify that certain identifiers should be used only inside a class and not
be accessible to clients of the class.

• Special methods for creating string representations of your classes’ objects and
specifying how objects of your classes work with Python’s built-in operators (a
process called operator overloading).

• An introduction to the Python exception class hierarchy and creating custom
exception classes.

• Testing code with the Python Standard Library’s doctest module.

• How Python uses namespaces to determine the scopes of identifiers.

10.2 Custom Class Account
Let’s begin with a bank Account class that holds an account holder’s name and balance.
An actual bank account class would likely include lots of other information, such as
address, birth date, telephone number, account number and more. The Account class
accepts deposits that increase the balance and withdrawals that decrease the balance.

10.2.1 Test-Driving Class Account
Each new class you create becomes a new data type that can be used to create objects. This
is one reason why Python is said to be an extensible language. Before we look at class
Account’s definition, let’s demonstrate its capabilities.

Importing Classes Account and Decimal
To use the new Account class, launch your IPython session from the ch10 examples folder,
then import class Account:

In [1]: from account import Account

ptg27972259

10.2 Custom Class Account 247

Class Account maintains and manipulates the account balance as a Decimal, so we also
import class Decimal:

Create an Account Object with a Constructor Expression
To create a Decimal object, we can write:

value = Decimal('12.34')

This is known as a constructor expression because it builds and initializes an object of the
class, similar to the way a house is constructed from a blueprint then painted with the
buyer’s preferred colors. Constructor expressions create new objects and initialize their
data using argument(s) specified in parentheses. The parentheses following the class name
are required, even if there are no arguments.

Let’s use a constructor expression to create an Account object and initialize it with an
account holder’s name (a string) and balance (a Decimal):

Getting an Account’s Name and Balance
Let’s access the Account object’s name and balance attributes:

Depositing Money into an Account
An Account’s deposit method receives a positive dollar amount and adds it to the balance:

Account Methods Perform Validation
Class Account’s methods validate their arguments. For example, if a deposit amount is
negative, deposit raises a ValueError:

In [2]: from decimal import Decimal

In [3]: account1 = Account('John Green', Decimal('50.00'))

In [4]: account1.name
Out[4]: 'John Green'

In [5]: account1.balance
Out[5]: Decimal('50.00')

In [6]: account1.deposit(Decimal('25.53'))

In [7]: account1.balance
Out[7]: Decimal('75.53')

In [8]: account1.deposit(Decimal('-123.45'))

ValueError Traceback (most recent call last)
<ipython-input-8-27dc468365a7> in <module>()
----> 1 account1.deposit(Decimal('-123.45'))

~/Documents/examples/ch10/account.py in deposit(self, amount)
 21 # if amount is less than 0.00, raise an exception
 22 if amount < Decimal('0.00'):
---> 23 raise ValueError('Deposit amount must be positive.')
 24
 25 self.balance += amount

ValueError: Deposit amount must be positive.

ptg27972259

248 Chapter 10 Object-Oriented Programming

10.2.2 Account Class Definition
Now, let’s look at Account’s class definition, which is located in the file account.py.

Defining a Class
A class definition begins with the keyword class (line 5) followed by the class’s name and
a colon (:). This line is called the class header. The Style Guide for Python Code recom-
mends that you begin each word in a multi-word class name with an uppercase letter (for
example, CommissionEmployee). Every statement in a class’s suite is indented.

Each class typically provides a descriptive docstring (line 6). When provided, it must
appear in the line or lines immediately following the class header. To view any class’s doc-
string in IPython, type the class name and a question mark, then press Enter:

The identifier Account is both the class name and the name used in a constructor expres-
sion to create an Account object and invoke the class’s __init__ method. For this reason,
IPython’s help mechanism shows both the class’s docstring ("Docstring:") and the
__init__ method’s docstring ("Init docstring:").

Initializing Account Objects: Method __init__
The constructor expression in snippet [3] from the preceding section:

account1 = Account('John Green', Decimal('50.00'))

creates a new object, then initializes its data by calling the class’s __init__ method. Each
new class you create can provide an __init__ method that specifies how to initialize an
object’s data attributes. Returning a value other than None from __init__ results in a
TypeError. Recall that None is returned by any function or method that does not contain
a return statement. Class Account’s __init__ method (lines 8–16) initializes an Account
object’s name and balance attributes if the balance is valid:

1 # account.py
2 """Account class definition."""
3 from decimal import Decimal
4
5 class Account:
6 """Account class for maintaining a bank account balance."""
7

In [9]: Account?
Init signature: Account(name, balance)
Docstring: Account class for maintaining a bank account balance.
Init docstring: Initialize an Account object.
File: ~/Documents/examples/ch10/account.py
Type: type

8 def __init__(self, name, balance):
9 """Initialize an Account object."""

10
11 # if balance is less than 0.00, raise an exception
12 if balance < Decimal('0.00'):
13 raise ValueError('Initial balance must be >= to 0.00.')
14
15 self.name = name
16 self.balance = balance
17

ptg27972259

10.3 Controlling Access to Attributes 249

When you call a method for a specific object, Python implicitly passes a reference to
that object as the method’s first argument. For this reason, all methods of a class must
specify at least one parameter. By convention most Python programmers call a method’s
first parameter self. A class’s methods must use that reference (self) to access the object’s
attributes and other methods. Class Account’s __init__ method also specifies parameters
for the name and balance.

The if statement validates the balance parameter. If balance is less than 0.00,
__init__ raises a ValueError, which terminates the __init__ method. Otherwise, the
method creates and initializes the new Account object’s name and balance attributes.

When an object of class Account is created, it does not yet have any attributes. They’re
added dynamically via assignments of the form:

self.attribute_name = value

Python classes may define many special methods, like __init__, each identified by
leading and trailing double-underscores (__) in the method name. Python class object,
which we’ll discuss later in this chapter, defines the special methods that are available for
all Python objects.

Method deposit
The Account class’s deposit method adds a positive amount to the account’s balance
attribute. If the amount argument is less than 0.00, the method raises a ValueError, indi-
cating that only positive deposit amounts are allowed. If the amount is valid, line 25 adds
it to the object’s balance attribute.

10.2.3 Composition: Object References as Members of Classes
An Account has a name, and an Account has a balance. Recall that “everything in Python
is an object.” This means that an object’s attributes are references to objects of other
classes. For example, an Account object’s name attribute is a reference to a string object and
an Account object’s balance attribute is a reference to a Decimal object. Embedding ref-
erences to objects of other types is a form of software reusability known as composition
and is sometimes referred to as the “has a” relationship. Later in this chapter, we’ll discuss
inheritance, which establishes “is a” relationships.

10.3 Controlling Access to Attributes
Class Account’s methods validate their arguments to ensure that the balance is always
valid—that is, always greater than or equal to 0.00. In the previous example, we used the
attributes name and balance only to get the values of those attributes. It turns out that we

18 def deposit(self, amount):
19 """Deposit money to the account."""
20
21 # if amount is less than 0.00, raise an exception
22 if amount < Decimal('0.00'):
23 raise ValueError('amount must be positive.')
24
25 self.balance += amount

ptg27972259

250 Chapter 10 Object-Oriented Programming

also can use those attributes to modify their values. Consider the Account object in the fol-
lowing IPython session:

Initially, account1 contains a valid balance. Now, let’s set the balance attribute to an
invalid negative value, then display the balance:

Snippet [6]’s output shows that account1’s balance is now negative. As you can see,
unlike methods, data attributes cannot validate the values you assign to them.

Encapsulation
A class’s client code is any code that uses objects of the class. Most object-oriented pro-
gramming languages enable you to encapsulate (or hide) an object’s data from the client
code. Such data in these languages is said to be private data.

Leading Underscore (_) Naming Convention
Python does not have private data. Instead, you use naming conventions to design classes
that encourage correct use. By convention, Python programmers know that any attribute
name beginning with an underscore (_) is for a class’s internal use only. Client code should
use the class’s methods and—as you’ll see in the next section—the class’s properties to
interact with each object’s internal-use data attributes. Attributes whose identifiers do not
begin with an underscore (_) are considered publicly accessible for use in client code. In the
next section, we’ll define a Time class and use these naming conventions. However, even
when we use these conventions, attributes are always accessible.

10.4 Properties for Data Access
Let’s develop a Time class that stores the time in 24-hour clock format with hours in the
range 0–23, and minutes and seconds each in the range 0–59. For this class, we’ll provide
properties, which look like data attributes to client-code programmers, but control the
manner in which they get and modify an object’s data. This assumes that other program-
mers follow Python conventions to correctly use objects of your class.

10.4.1 Test-Driving Class Time
Before we look at class Time’s definition, let’s demonstrate its capabilities. First, ensure that
you’re in the ch10 folder, then import class Time from timewithproperties.py:

In [1]: from account import Account

In [2]: from decimal import Decimal

In [3]: account1 = Account('John Green', Decimal('50.00'))

In [4]: account1.balance
Out[4]: Decimal('50.00')

In [5]: account1.balance = Decimal('-1000.00')

In [6]: account1.balance
Out[6]: Decimal('-1000.00')

In [1]: from timewithproperties import Time

ptg27972259

10.4 Properties for Data Access 251

Creating a Time Object
Next, let’s create a Time object. Class Time’s __init__ method has hour, minute and sec-
ond parameters, each with a default argument value of 0. Here, we specify the hour and
minute—second defaults to 0:

Displaying a Time Object
Class Time defines two methods that produce string representations of Time object. When
you evaluate a variable in IPython as in snippet [3], IPython calls the object’s __repr__
special method to produce a string representation of the object. Our __repr__ implemen-
tation creates a string in the following format:

We’ll also provide the __str__ special method, which is called when an object is converted
to a string, such as when you output the object with print.1 Our __str__ implementation
creates a string in 12-hour clock format:

Getting an Attribute Via a Property
Class time provides hour, minute and second properties, which provide the convenience
of data attributes for getting and modifying an object’s data. However, as you’ll see, prop-
erties are implemented as methods, so they may contain additional logic, such as specify-
ing the format in which to return a data attribute’s value or validating a new value before
using it to modify a data attribute. Here, we get the wake_up object’s hour value:

Though this snippet appears to simply get an hour data attribute’s value, it’s actually a call
to an hour method that returns the value of a data attribute (which we named _hour, as
you’ll see in the next section).

Setting the Time
You can set a new time with the Time object’s set_time method. Like method __init__,
method set_time provides hour, minute and second parameters, each with a default of 0:

Setting an Attribute via a Property
Class Time also supports setting the hour, minute and second values individually via its
properties. Let’s change the hour value to 6:

In [2]: wake_up = Time(hour=6, minute=30)

In [3]: wake_up
Out[3]: Time(hour=6, minute=30, second=0)

1. If a class does not provide __str__ and an object of the class is converted to a string, the class’s
__repr__ method is called instead.

In [4]: print(wake_up)
6:30:00 AM

In [5]: wake_up.hour
Out[5]: 6

In [6]: wake_up.set_time(hour=7, minute=45)

In [7]: wake_up
Out[7]: Time(hour=7, minute=45, second=0)

ptg27972259

252 Chapter 10 Object-Oriented Programming

Though snippet [8] appears to simply assign a value to a data attribute, it’s actually a call
to an hour method that takes 6 as an argument. The method validates the value, then
assigns it to a corresponding data attribute (which we named _hour, as you’ll see in the
next section).

Attempting to Set an Invalid Value
To prove that class Time’s properties validate the values you assign to them, let’s try to
assign an invalid value to the hour property, which results in a ValueError:

10.4.2 Class Time Definition
Now that we’ve seen class Time in action, let’s look at its definition.

Class Time: __init__ Method with Default Parameter Values
Class Time’s __init__ method specifies hour, minute and second parameters, each with a
default argument of 0. Similar to class Account’s __init__ method, recall that the self
parameter is a reference to the Time object being initialized. The statements containing
self.hour, self.minute and self.second appear to create hour, minute and second
attributes for the new Time object (self). However, these statements actually call methods
that implement the class’s hour, minute and second properties (lines 13–50). Those meth-
ods then create attributes named _hour, _minute and _second that are meant for use only
inside the class:

In [8]: wake_up.hour = 6

In [9]: wake_up
Out[9]: Time(hour=6, minute=45, second=0)

In [10]: wake_up.hour = 100

ValueError Traceback (most recent call last)
<ipython-input-10-1fce0716ef14> in <module>()
----> 1 wake_up.hour = 100

~/Documents/examples/ch10/timewithproperties.py in hour(self, hour)
 20 """Set the hour."""
 21 if not (0 <= hour < 24):
---> 22 raise ValueError(f'Hour ({hour}) must be 0-23')
 23
 24 self._hour = hour

ValueError: Hour (100) must be 0-23

1 # timewithproperties.py
2 """Class Time with read-write properties."""
3
4 class Time:
5 """Class Time with read-write properties."""
6
7 def __init__(self, hour=0, minute=0, second=0):
8 """Initialize each attribute."""
9 self.hour = hour # 0-23

10 self.minute = minute # 0-59
11 self.second = second # 0-59
12

ptg27972259

10.4 Properties for Data Access 253

Class Time: hour Read-Write Property
Lines 13–24 define a publicly accessible read-write property named hour that manipulates
a data attribute named _hour. The single-leading-underscore (_) naming convention indi-
cates that client code should not access _hour directly. As you saw in the previous section’s
snippets [5] and [8], properties look like data attributes to programmers working with
Time objects. However, notice that properties are implemented as methods. Each property
defines a getter method which gets (that is, returns) a data attribute’s value and can option-
ally define a setter method which sets a data attribute’s value:

The @property decorator precedes the property’s getter method, which receives only
a self parameter. Behind the scenes, a decorator adds code to the decorated function—in
this case to make the hour function work with attribute syntax. The getter method’s name
is the property name. This getter method returns the _hour data attribute’s value. The fol-
lowing client-code expression invokes the getter method:

wake_up.hour

You also can use the getter method inside the class, as you’ll see shortly.
A decorator of the form @property_name.setter (in this case, @hour.setter) pre-

cedes the property’s setter method. The method receives two parameters—self and a
parameter (hour) representing the value being assigned to the property. If the hour param-
eter’s value is valid, this method assigns it to the self object’s _hour attribute; otherwise,
the method raises a ValueError. The following client-code expression invokes the setter by
assigning a value to the property:

wake_up.hour = 8

We also invoked this setter inside the class at line 9 of __init__:

self.hour = hour

Using the setter enabled us to validate __init__’s hour argument before creating and ini-
tializing the object’s _hour attribute, which occurs the first time the hour property’s setter
executes as a result of line 9. A read-write property has both a getter and a setter. A read-
only property has only a getter.

Class Time: minute and second Read-Write Properties
Lines 26–37 and 39–50 define read-write minute and second properties. Each property’s
setter ensures that its second argument is in the range 0–59 (the valid range of values for
minutes and seconds):

13 @property
14 def hour(self):
15 """Return the hour."""
16 return self._hour
17
18 @hour.setter
19 def hour(self, hour):
20 """Set the hour."""
21 if not (0 <= hour < 24):
22 raise ValueError(f'Hour ({hour}) must be 0-23')
23
24 self._hour = hour
25

ptg27972259

254 Chapter 10 Object-Oriented Programming

Class Time: Method set_time
We provide method set_time as a convenient way to change all three attributes with a sin-
gle method call. Lines 54–56 invoke the setters for the hour, minute and second properties:

Class Time: Special Method __repr__
When you pass an object to built-in function repr—which happens implicitly when you
evaluate a variable in an IPython session—the corresponding class’s __repr__ special
method is called to get a string representation of the object:

The Python documentation indicates that __repr__ returns the “official” string represen-
tation of the object. Typically this string looks like a constructor expression that creates
and initializes the object,2 as in:

26 @property
27 def minute(self):
28 """Return the minute."""
29 return self._minute
30
31 @minute.setter
32 def minute(self, minute):
33 """Set the minute."""
34 if not (0 <= minute < 60):
35 raise ValueError(f'Minute ({minute}) must be 0-59')
36
37 self._minute = minute
38
39 @property
40 def second(self):
41 """Return the second."""
42 return self._second
43
44 @second.setter
45 def second(self, second):
46 """Set the second."""
47 if not (0 <= second < 60):
48 raise ValueError(f'Second ({second}) must be 0-59')
49
50 self._second = second
51

52 def set_time(self, hour=0, minute=0, second=0):
53 """Set values of hour, minute, and second."""
54 self.hour = hour
55 self.minute = minute
56 self.second = second
57

58 def __repr__(self):
59 """Return Time string for repr()."""
60 return (f'Time(hour={self.hour}, minute={self.minute}, ' +
61 f'second={self.second})')
62

2. https://docs.python.org/3/reference/datamodel.html.

https://docs.python.org/3/reference/datamodel.html

ptg27972259

10.4 Properties for Data Access 255

'Time(hour=6, minute=30, second=0)'

which is similar to the constructor expression in the previous section’s snippet [2]. Python
has a built-in function eval that could receive the preceding string as an argument and use
it to create and initialize a Time object containing values specified in the string.

Class Time: Special Method __str__
For our class Time we also define the __str__ special method. This method is called
implicitly when you convert an object to a string with the built-in function str, such as
when you print an object or call str explicitly. Our implementation of __str__ creates a
string in 12-hour clock format, such as '7:59:59 AM' or '12:30:45 PM':

10.4.3 Class Time Definition Design Notes
Let’s consider some class-design issues in the context of our Time class.

Interface of a Class
Class Time’s properties and methods define the class’s public interface—that is, the set of
properties and methods programmers should use to interact with objects of the class.

Attributes Are Always Accessible
Though we provided a well-defined interface, Python does not prevent you from directly
manipulating the data attributes _hour, _minute and _second, as in:

After snippet [4], the wake_up object contains invalid data. Unlike many other object-ori-
ented programming languages, such as C++, Java and C#, data attributes in Python cannot
be hidden from client code. The Python tutorial says, “nothing in Python makes it pos-
sible to enforce data hiding—it is all based upon convention.”3

Internal Data Representation
We chose to represent the time as three integer values for hours, minutes and seconds. It
would be perfectly reasonable to represent the time internally as the number of seconds
since midnight. Though we’d have to reimplement the properties hour, minute and sec-

63 def __str__(self):
64 """Print Time in 12-hour clock format."""
65 return (('12' if self.hour in (0, 12) else str(self.hour % 12)) +
66 f':{self.minute:0>2}:{self.second:0>2}' +
67 (' AM' if self.hour < 12 else ' PM'))

In [1]: from timewithproperties import Time

In [2]: wake_up = Time(hour=7, minute=45, second=30)

In [3]: wake_up._hour
Out[3]: 7

In [4]: wake_up._hour = 100

In [5]: wake_up
Out[5]: Time(hour=100, minute=45, second=30)

3. https://docs.python.org/3/tutorial/classes.html#random-remarks.

https://docs.python.org/3/tutorial/classes.html#random-remarks

ptg27972259

256 Chapter 10 Object-Oriented Programming

ond, programmers could use the same interface and get the same results without being
aware of these changes. We leave it to you to make this change and show that client code
using Time objects does not need to change.

Evolving a Class’s Implementation Details
When you design a class, carefully consider the class’s interface before making that class
available to other programmers. Ideally, you’ll design the interface such that existing code
will not break if you update the class’s implementation details—that is, the internal data
representation or how its method bodies are implemented.

If Python programmers follow convention and do not access attributes that begin
with leading underscores, then class designers can evolve class implementation details
without breaking client code.

Properties
It may seem that providing properties with both setters and getters has no benefit over
accessing the data attributes directly, but there are subtle differences. A getter seems to
allow clients to read the data at will, but the getter can control the formatting of the data.
A setter can scrutinize attempts to modify the value of a data attribute to prevent the data
from being set to an invalid value.

Utility Methods
Not all methods need to serve as part of a class’s interface. Some serve as utility methods
used only inside the class and are not intended to be part of the class’s public interface used
by client code. Such methods should be named with a single leading underscore. In other
object-oriented languages like C++, Java and C#, such methods typically are implemented
as private methods.

Module datetime
In professional Python development, rather than building your own classes to represent
times and dates, you’ll typically use the Python Standard Library’s datetime module capa-
bilities. For more details about the datetime module, see:

https://docs.python.org/3/library/datetime.html

10.5 Simulating “Private” Attributes
In programming languages such as C++, Java and C#, classes state explicitly which class
members are publicly accessible. Class members that may not be accessed outside a class
definition are private and visible only within the class that defines them. Python program-
mers often use “private” attributes for data or utility methods that are essential to a class’s
inner workings but are not part of the class’s public interface.

As you’ve seen, Python objects’ attributes are always accessible. However, Python has
a naming convention for “private” attributes. Suppose we want to create an object of class
Time and to prevent the following assignment statement:

wake_up._hour = 100

that would set the hour to an invalid value. Rather than _hour, we can name the attribute
__hour with two leading underscores. This convention indicates that __hour is “private”

https://docs.python.org/3/library/datetime.html

ptg27972259

10.5 Simulating “Private” Attributes 257

and should not be accessible to the class’s clients. To help prevent clients from accessing
“private” attributes, Python renames them by preceding the attribute name with
_ClassName, as in _Time__hour. This is called name mangling. If you try assign to __hour,
as in

wake_up.__hour = 100

Python raises an AttributeError, indicating that the class does not have an __hour attri-
bute. We’ll show this momentarily.

IPython Auto-Completion Shows Only “Public” Attributes
In addition, IPython does not show attributes with one or two leading underscores when
you try to auto-complete an expression like

wake_up.

by pressing Tab. Only attributes that are part of the wake_up object’s “public” interface are
displayed in the IPython auto-completion list.

Demonstrating “Private” Attributes
To demonstrate name mangling, consider class PrivateClass with one “public” data
attribute public_data and one “private” data attribute __private_data:

Let’s create an object of class PrivateData to demonstrate these data attributes:

Snippet [3] shows that we can access the public_data attribute directly:

However, when we attempt to access __private_data directly in snippet [4], we get an
AttributeError indicating that the class does not have an attribute by that name:

This occurs because python changed the attribute’s name. Unfortunately, the attribute
__private_data is still indirectly accessible.

1 # private.py
2 """Class with public and private attributes."""
3
4 class PrivateClass:
5 """Class with public and private attributes."""
6
7 def __init__(self):
8 """Initialize the public and private attributes."""
9 self.public_data = "public" # public attribute

10 self.__private_data = "private" # private attribute

In [1]: from private import PrivateClass

In [2]: my_object = PrivateClass()

In [3]: my_object.public_data
Out[3]: 'public'

In [4]: my_object.__private_data

AttributeError Traceback (most recent call last)
<ipython-input-4-d896bfdf2053> in <module>()
----> 1 my_object.__private_data

AttributeError: 'PrivateClass' object has no attribute '__private_data'

ptg27972259

258 Chapter 10 Object-Oriented Programming

10.6 Case Study: Card Shuffling and Dealing Simulation
Our next example presents two custom classes that you can use to shuffle and deal a deck
of cards. Class Card represents a playing card that has a face ('Ace', '2', '3', …, 'Jack',
'Queen', 'King') and a suit ('Hearts', 'Diamonds', 'Clubs', 'Spades'). Class DeckOf-
Cards represents a deck of 52 playing cards as a list of Card objects. First, we’ll test-drive
these classes in an IPython session to demonstrate card shuffling and dealing capabilities
and displaying the cards as text. Then we’ll look at the class definitions. Finally, we’ll use
another IPython session to display the 52 cards as images using Matplotlib. We’ll show
you where to get nice-looking public-domain card images.

10.6.1 Test-Driving Classes Card and DeckOfCards
Before we look at classes Card and DeckOfCards, let’s use an IPython session to demon-
strate their capabilities.

Creating, Shuffling and Dealing the Cards
First, import class DeckOfCards from deck.py and create an object of the class:

DeckOfCards method __init__ creates the 52 Card objects in order by suit and by face
within each suit. You can see this by printing the deck_of_cards object, which calls the
DeckOfCards class’s __str__ method to get the deck’s string representation. Read each
row left-to-right to confirm that all the cards are displayed in order from each suit (Hearts,
Diamonds, Clubs and Spades):

Next, let’s shuffle the deck and print the deck_of_cards object again. We did not specify
a seed for reproducibility, so each time you shuffle, you’ll get different results:

In [1]: from deck import DeckOfCards

In [2]: deck_of_cards = DeckOfCards()

In [3]: print(deck_of_cards)
Ace of Hearts 2 of Hearts 3 of Hearts 4 of Hearts
5 of Hearts 6 of Hearts 7 of Hearts 8 of Hearts
9 of Hearts 10 of Hearts Jack of Hearts Queen of Hearts
King of Hearts Ace of Diamonds 2 of Diamonds 3 of Diamonds
4 of Diamonds 5 of Diamonds 6 of Diamonds 7 of Diamonds
8 of Diamonds 9 of Diamonds 10 of Diamonds Jack of Diamonds
Queen of Diamonds King of Diamonds Ace of Clubs 2 of Clubs
3 of Clubs 4 of Clubs 5 of Clubs 6 of Clubs
7 of Clubs 8 of Clubs 9 of Clubs 10 of Clubs
Jack of Clubs Queen of Clubs King of Clubs Ace of Spades
2 of Spades 3 of Spades 4 of Spades 5 of Spades
6 of Spades 7 of Spades 8 of Spades 9 of Spades
10 of Spades Jack of Spades Queen of Spades King of Spades

In [4]: deck_of_cards.shuffle()

In [5]: print(deck_of_cards)
King of Hearts Queen of Clubs Queen of Diamonds 10 of Clubs
5 of Hearts 7 of Hearts 4 of Hearts 2 of Hearts

ptg27972259

10.6 Case Study: Card Shuffling and Dealing Simulation 259

Dealing Cards
We can deal one Card at a time by calling method deal_card. IPython calls the returned
Card object’s __repr__ method to produce the string output shown in the Out[] prompt:

Class Card’s Other Features
To demonstrate class Card’s __str__ method, let’s deal another card and pass it to the
built-in str function:

Each Card has a corresponding image file name, which you can get via the image_name
read-only property. We’ll use this soon when we display the Cards as images:

10.6.2 Class Card—Introducing Class Attributes
Each Card object contains three string properties representing that Card’s face, suit and
image_name (a file name containing a corresponding image). As you saw in the preceding
section’s IPython session, class Card also provides methods for initializing a Card and for
getting various string representations.

Class Attributes FACES and SUITS
Each object of a class has its own copies of the class’s data attributes. For example, each
Account object has its own name and balance. Sometimes, an attribute should be shared
by all objects of a class. A class attribute (also called a class variable) represents class-wide
information. It belongs to the class, not to a specific object of that class. Class Card defines
two class attributes (lines 5–7):

• FACES is a list of the card face names.

• SUITS is a list of the card suit names.

5 of Clubs 8 of Diamonds 3 of Hearts 10 of Hearts
8 of Spades 5 of Spades Queen of Spades Ace of Clubs
8 of Clubs 7 of Spades Jack of Diamonds 10 of Spades
4 of Diamonds 8 of Hearts 6 of Spades King of Spades
9 of Hearts 4 of Spades 6 of Clubs King of Clubs
3 of Spades 9 of Diamonds 3 of Clubs Ace of Spades
Ace of Hearts 3 of Diamonds 2 of Diamonds 6 of Hearts
King of Diamonds Jack of Spades Jack of Clubs 2 of Spades
5 of Diamonds 4 of Clubs Queen of Hearts 9 of Clubs
10 of Diamonds 2 of Clubs Ace of Diamonds 7 of Diamonds
9 of Spades Jack of Hearts 6 of Diamonds 7 of Clubs

In [6]: deck_of_cards.deal_card()
Out[6]: Card(face='King', suit='Hearts')

In [7]: card = deck_of_cards.deal_card()

In [8]: str(card)
Out[8]: 'Queen of Clubs'

In [9]: card.image_name
Out[9]: 'Queen_of_Clubs.png'

ptg27972259

260 Chapter 10 Object-Oriented Programming

You define a class attribute by assigning a value to it inside the class’s definition, but
not inside any of the class’s methods or properties (in which case, they’d be local variables).
FACES and SUITS are constants that are not meant to be modified. Recall that the Style
Guide for Python Code recommends naming your constants with all capital letters.4

We’ll use elements of these lists to initialize each Card we create. However, we do not
need a separate copy of each list in every Card object. Class attributes can be accessed
through any object of the class, but are typically accessed through the class’s name (as in,
Card.FACES or Card.SUITS). Class attributes exist as soon as you import their class’s defi-
nition.

Card Method __init__
When you create a Card object, method __init__ defines the object’s _face and _suit
data attributes:

Read-Only Properties face, suit and image_name
Once a Card is created, its face, suit and image_name do not change, so we implement
these as read-only properties (lines 14–17, 19–22 and 24–27). Properties face and suit
return the corresponding data attributes _face and _suit. A property is not required to
have a corresponding data attribute. To demonstrate this, the Card property image_name’s
value is created dynamically by getting the Card object’s string representation with
str(self), replacing any spaces with underscores and appending the '.png' filename
extension. So, 'Ace of Spades' becomes 'Ace_of_Spades.png'. We’ll use this file name
to load a PNG-format image representing the Card. PNG (Portable Network Graphics) is
a popular image format for web-based images.

1 # card.py
2 """Card class that represents a playing card and its image file name."""
3
4 class Card:
5 FACES = ['Ace', '2', '3', '4', '5', '6',
6 '7', '8', '9', '10', 'Jack', 'Queen', 'King']
7 SUITS = ['Hearts', 'Diamonds', 'Clubs', 'Spades']
8

4. Recall that Python does not have true constants, so FACES and SUITS are still modifiable.

9 def __init__(self, face, suit):
10 """Initialize a Card with a face and suit."""
11 self._face = face
12 self._suit = suit
13

14 @property
15 def face(self):
16 """Return the Card's self._face value."""
17 return self._face
18
19 @property
20 def suit(self):
21 """Return the Card's self._suit value."""
22 return self._suit

ptg27972259

10.6 Case Study: Card Shuffling and Dealing Simulation 261

Methods That Return String Representations of a Card
Class Card provides three special methods that return string representations. As in class
Time, method __repr__ returns a string representation that looks like a constructor expres-
sion for creating and initializing a Card object:

Method __str__ returns a string of the format 'face of suit', such as 'Ace of Hearts':

When the preceding section’s IPython session printed the entire deck, you saw that
the Cards were displayed in four left-aligned columns. As you’ll see in the __str__ method
of class DeckOfCards, we use f-strings to format the Cards in fields of 19 characters each.
Class Card’s special method __format__ is called when a Card object is formatted as a
string, such as in an f-string:

This method’s second argument is the format string used to format the object. To use the
format parameter’s value as the format specifier, enclose the parameter name in braces to
the right of the colon. In this case, we’re formatting the Card object’s string representation
returned by str(self). We’ll discuss __format__ again when we present the __str__
method in class DeckOfCards.

10.6.3 Class DeckOfCards
Class DeckOfCards has a class attribute NUMBER_OF_CARDS, representing the number of
Cards in a deck, and creates two data attributes:

• _current_card keeps track of which Card will be dealt next (0–51) and

• _deck (line 12) is a list of 52 Card objects.

Method __init__
DeckOfCards method __init__ initializes a _deck of Cards. The for statement fills the list
_deck by appending new Card objects, each initialized with two strings—one from the list

23
24 @property
25 def image_name(self):
26 """Return the Card's image file name."""
27 return str(self).replace(' ', '_') + '.png'
28

29 def __repr__(self):
30 """Return string representation for repr()."""
31 return f"Card(face='{self.face}', suit='{self.suit}')"
32

33 def __str__(self):
34 """Return string representation for str()."""
35 return f'{self.face} of {self.suit}'
36

37 def __format__(self, format):
38 """Return formatted string representation for str()."""
39 return f'{str(self):{format}}'

ptg27972259

262 Chapter 10 Object-Oriented Programming

Card.FACES and one from Card.SUITS. The calculation count % 13 always results in a
value from 0 to 12 (the 13 indices of Card.FACES), and the calculation count // 13 always
results in a value from 0 to 3 (the four indices of Card.SUITS). When the _deck list is ini-
tialized, it contains the Cards with faces 'Ace' through 'King' in order for all the Hearts,
then the Diamonds, then the Clubs, then the Spades.

Method shuffle
Method shuffle resets _current_card to 0, then shuffles the Cards in _deck using the
random module’s shuffle function:

Method deal_card
Method deal_card deals one Card from _deck. Recall that _current_card indicates the
index (0–51) of the next Card to be dealt (that is, the Card at the top of the deck). Line 26
tries to get the _deck element at index _current_card. If successful, the method incre-
ments _current_card by 1, then returns the Card being dealt; otherwise, the method
returns None to indicate there are no more Cards to deal.

1 # deck.py
2 """Deck class represents a deck of Cards."""
3 import random
4 from card import Card
5
6 class DeckOfCards:
7 NUMBER_OF_CARDS = 52 # constant number of Cards
8
9 def __init__(self):

10 """Initialize the deck."""
11 self._current_card = 0
12 self._deck = []
13
14 for count in range(DeckOfCards.NUMBER_OF_CARDS):
15 self._deck.append(Card(Card.FACES[count % 13],
16 Card.SUITS[count // 13]))
17

18 def shuffle(self):
19 """Shuffle deck."""
20 self._current_card = 0
21 random.shuffle(self._deck)
22

23 def deal_card(self):
24 """Return one Card."""
25 try:
26 card = self._deck[self._current_card]
27 self._current_card += 1
28 return card
29 except:
30 return None
31

ptg27972259

10.6 Case Study: Card Shuffling and Dealing Simulation 263

Method __str__
Class DeckOfCards also defines special method __str__ to get a string representation of
the deck in four columns with each Card left aligned in a field of 19 characters. When line
37 formats a given Card, its __format__ special method is called with format specifier
'<19' as the method’s format argument. Method __format__ then uses '<19' to create
the Card’s formatted string representation.

10.6.4 Displaying Card Images with Matplotlib
So far, we’ve displayed Cards as text. Now, let’s display Card images. For this demonstra-
tion, we downloaded public-domain5 card images from Wikimedia Commons:

https://commons.wikimedia.org/wiki/
Category:SVG_English_pattern_playing_cards

These are located in the ch10 examples folder’s card_images subfolder. First, let’s create a
DeckOfCards:

Enable Matplotlib in IPython
Next, enable Matplotlib support in IPython by using the %matplotlib magic:

Create the Base Path for Each Image
Before displaying each image, we must load it from the card_images folder. We’ll use the
pathlib module’s Path class to construct the full path to each image on our system. Snip-
pet [5] creates a Path object for the current folder (the ch10 examples folder), which is
represented by '.', then uses Path method joinpath to append the subfolder containing
the card images:

32 def __str__(self):
33 """Return a string representation of the current _deck."""
34 s = ''
35
36 for index, card in enumerate(self._deck):
37 s += f'{self._deck[index]:<19}'
38 if (index + 1) % 4 == 0:
39 s += '\n'
40
41 return s

5. https://creativecommons.org/publicdomain/zero/1.0/deed.en.

In [1]: from deck import DeckOfCards

In [2]: deck_of_cards = DeckOfCards()

In [3]: %matplotlib
Using matplotlib backend: Qt5Agg

In [4]: from pathlib import Path

In [5]: path = Path('.').joinpath('card_images')

https://commons.wikimedia.org/wiki/Category:SVG_English_pattern_playing_cards
https://commons.wikimedia.org/wiki/Category:SVG_English_pattern_playing_cards
https://creativecommons.org/publicdomain/zero/1.0/deed.en

ptg27972259

264 Chapter 10 Object-Oriented Programming

Import the Matplotlib Features
Next, let’s import the Matplotlib modules we’ll need to display the images. We’ll use a
function from matplotlib.image to load the images:

Create the Figure and Axes Objects
The following snippet uses Matplotlib function subplots to create a Figure object in
which we’ll display the images as 52 subplots with four rows (nrows) and 13 columns
(ncols). The function returns a tuple containing the Figure and an array of the subplots’
Axes objects. We unpack these into variables figure and axes_list:

When you execute this statement in IPython, the Matplotlib window appears immediately
with 52 empty subplots.

Configure the Axes Objects and Display the Images
Next, we iterate through all the Axes objects in axes_list. Recall that ravel provides a
one-dimensional view of a multidimensional array. For each Axes object, we perform the
following tasks:

• We’re not plotting data, so we do not need axis lines and labels for each image.
The first two statements in the loop hide the x- and y-axes.

• The third statement deals a Card and gets its image_name.

• The fourth statement uses Path method joinpath to append the image_name to
the Path, then calls Path method resolve to determine the full path to the image
on our system. We pass the resulting Path object to the built-in str function to
get the string representation of the image’s location. Then, we pass that string to
the matplotlib.image module’s imread function, which loads the image.

• The last statement calls Axes method imshow to display the current image in the
current subplot.

Maximize the Image Sizes
At this point, all the images are displayed. To make the cards as large as possible, you can
maximize the window, then call the Matplotlib Figure object’s tight_layout method.
This removes most of the extra white space in the window:

The following image shows the contents of the resulting window:

In [6]: import matplotlib.pyplot as plt

In [7]: import matplotlib.image as mpimg

In [8]: figure, axes_list = plt.subplots(nrows=4, ncols=13)

In [9]: for axes in axes_list.ravel():
 ...: axes.get_xaxis().set_visible(False)
 ...: axes.get_yaxis().set_visible(False)
 ...: image_name = deck_of_cards.deal_card().image_name
 ...: img = mpimg.imread(str(path.joinpath(image_name).resolve()))
 ...: axes.imshow(img)
 ...:

In [10]: figure.tight_layout()

ptg27972259

10.6 Case Study: Card Shuffling and Dealing Simulation 265

Shuffle and Re-Deal the Deck
To see the images shuffled, call method shuffle, then re-execute snippet [9]’s code:

In [11]: deck_of_cards.shuffle()

In [12]: for axes in axes_list.ravel():
 ...: axes.get_xaxis().set_visible(False)
 ...: axes.get_yaxis().set_visible(False)
 ...: image_name = deck_of_cards.deal_card().image_name
 ...: img = mpimg.imread(str(path.joinpath(image_name).resolve()))
 ...: axes.imshow(img)
 ...:

ptg27972259

266 Chapter 10 Object-Oriented Programming

10.7 Inheritance: Base Classes and Subclasses
Often, an object of one class is an object of another class as well. For example, a CarLoan is
a Loan as are HomeImprovementLoans and MortgageLoans. Class CarLoan can be said to
inherit from class Loan. In this context, class Loan is a base class, and class CarLoan is a sub-
class. A CarLoan is a specific type of Loan, but it’s incorrect to claim that every Loan is a Car-
Loan—the Loan could be of any type. The following table lists simple examples of base classes
and subclasses—base classes tend to be “more general” and subclasses “more specific”:

Because every subclass object is an object of its base class, and one base class can have
many subclasses, the set of objects represented by a base class is often larger than the set of
objects represented by any of its subclasses. For example, the base class Vehicle represents
all vehicles, including cars, trucks, boats, bicycles and so on. By contrast, subclass Car rep-
resents a smaller, more specific subset of vehicles.

CommunityMember Inheritance Hierarchy
Inheritance relationships form tree-like hierarchical structures. A base class exists in a hierar-
chical relationship with its subclasses. Let’s develop a sample class hierarchy (shown in the
following diagram), also called an inheritance hierarchy. A university community has thou-
sands of members, including employees, students and alumni. Employees are either faculty
or staff members. Faculty members are either administrators (e.g., deans and department
chairpersons) or teachers. The hierarchy could contain many other classes. For example, stu-
dents can be graduate or undergraduate students. Undergraduate students can be freshmen,
sophomores, juniors or seniors. With single inheritance, a class is derived from one base class.
With multiple inheritance, a subclass inherits from two or more base classes. Single inheri-
tance is straightforward. Multiple inheritance is beyond the scope of this book. Before you
use it, search online for the “diamond problem in Python multiple inheritance.”

Base class Subclasses

Student GraduateStudent, UndergraduateStudent

Shape Circle, Triangle, Rectangle, Sphere, Cube

Loan CarLoan, HomeImprovementLoan, MortgageLoan

Employee Faculty, Staff

BankAccount CheckingAccount, SavingsAccount

CommunityMember

Administrator

StaffFaculty

Teacher

Student AlumEmployee

ptg27972259

10.8 Building an Inheritance Hierarchy; Introducing Polymorphism 267

Each arrow in the hierarchy represents an is-a relationship. As we follow the arrows
upward in this class hierarchy, we can state, for example, that “an Employee is a
CommunityMember” and “a Teacher is a Faculty member.” CommunityMember is the direct
base class of Employee, Student and Alum and is an indirect base class of all the other classes
in the diagram. Starting from the bottom, you can follow the arrows and apply the is-a
relationship up to the topmost superclass. For example, Administrator is a Faculty mem-
ber, is an Employee, is a CommunityMember and, of course, ultimately is an object.

Shape Inheritance Hierarchy
Now consider the Shape inheritance hierarchy in the following class diagram, which
begins with base class Shape, followed by subclasses TwoDimensionalShape and ThreeDim-
ensionalShape. Each Shape is either a TwoDimensionalShape or a ThreeDimensional-
Shape. The third level of this hierarchy contains specific types of TwoDimensionalShapes
and ThreeDimensionalShapes. Again, we can follow the arrows from the bottom of the
diagram to the topmost base class in this class hierarchy to identify several is-a relation-
ships. For example, a Triangle is a TwoDimensionalShape and is a Shape, while a Sphere
is a ThreeDimensionalShape and is a Shape. This hierarchy could contain many other
classes. For example, ellipses and trapezoids also are TwoDimensionalShapes, and cones
and cylinders also are ThreeDimensionalShapes.

“is a” vs. “has a”
Inheritance produces “is-a” relationships in which an object of a subclass type may also
be treated as an object of the base-class type. You’ve also seen “has-a” (composition) rela-
tionships in which a class has references to one or more objects of other classes as members.

10.8 Building an Inheritance Hierarchy; Introducing
Polymorphism
Let’s use a hierarchy containing types of employees in a company’s payroll app to discuss
the relationship between a base class and its subclass. All employees of the company have
a lot in common, but commission employees (who will be represented as objects of a base
class) are paid a percentage of their sales, while salaried commission employees (who will be
represented as objects of a subclass) receive a percentage of their sales plus a base salary.

First, we present base class CommissionEmployee. Next, we create a subclass Salaried-
CommissionEmployee that inherits from class CommissionEmployee. Then, we use an IPy-
thon session to create a SalariedCommissionEmployee object and demonstrate that it has
all the capabilities of the base class and the subclass, but calculates its earnings differently.

ThreeDimensionalShape

TetrahedronCubeSphereSquare TriangleCircle

Shape

TwoDimensionalShape

ptg27972259

268 Chapter 10 Object-Oriented Programming

10.8.1 Base Class CommissionEmployee
Consider class CommissionEmployee, which provides the following features:

• Method __init__ (lines 8–15), which creates the data attributes _first_name,
_last_name and _ssn (Social Security number), and uses the setters of proper-
ties gross_sales and commission_rate to create their corresponding data attri-
butes.

• Read-only properties first_name (lines 17–19), last_name (lines 21–23) and
ssn (line 25–27), which return the corresponding data attributes.

• Read-write properties gross_sales (lines 29–39) and commission_rate (lines
41–52), in which the setters perform data validation.

• Method earnings (lines 54–56), which calculates and returns a CommissionEm-
ployee’s earnings.

• Method __repr__ (lines 58–64), which returns a string representation of a Com-
missionEmployee.

1 # commmissionemployee.py
2 """CommissionEmployee base class."""
3 from decimal import Decimal
4
5 class CommissionEmployee:
6 """An employee who gets paid commission based on gross sales."""
7
8 def __init__(self, first_name, last_name, ssn,
9 gross_sales, commission_rate):

10 """Initialize CommissionEmployee's attributes."""
11 self._first_name = first_name
12 self._last_name = last_name
13 self._ssn = ssn
14 self.gross_sales = gross_sales # validate via property
15 self.commission_rate = commission_rate # validate via property
16
17 @property
18 def first_name(self):
19 return self._first_name
20
21 @property
22 def last_name(self):
23 return self._last_name
24
25 @property
26 def ssn(self):
27 return self._ssn
28
29 @property
30 def gross_sales(self):
31 return self._gross_sales
32

ptg27972259

10.8 Building an Inheritance Hierarchy; Introducing Polymorphism 269

Properties first_name, last_name and ssn are read-only. We chose not to validate
them, though we could have. For example, we could validate the first and last names—
perhaps by ensuring that they’re of a reasonable length. We could validate the Social Secu-
rity number to ensure that it contains nine digits, with or without dashes (for example, to
ensure that it’s in the format ###-##-#### or #########, where each # is a digit).

All Classes Inherit Directly or Indirectly from Class object
You use inheritance to create new classes from existing ones. In fact, every Python class
inherits from an existing class. When you do not explicitly specify the base class for a new
class, Python assumes that the class inherits directly from class object. The Python class
hierarchy begins with class object, the direct or indirect base class of every class. So, class
CommissionEmployee’s header could have been written as

class CommissionEmployee(object):

The parentheses after CommissionEmployee indicate inheritance and may contain a single
class for single inheritance or a comma-separated list of base classes for multiple inheri-
tance. Once again, multiple inheritance is beyond the scope of this book.

33 @gross_sales.setter
34 def gross_sales(self, sales):
35 """Set gross sales or raise ValueError if invalid."""
36 if sales < Decimal('0.00'):
37 raise ValueError('Gross sales must be >= to 0')
38
39 self._gross_sales = sales
40
41 @property
42 def commission_rate(self):
43 return self._commission_rate
44
45 @commission_rate.setter
46 def commission_rate(self, rate):
47 """Set commission rate or raise ValueError if invalid."""
48 if not (Decimal('0.0') < rate < Decimal('1.0')):
49 raise ValueError(
50 'Interest rate must be greater than 0 and less than 1')
51
52 self._commission_rate = rate
53
54 def earnings(self):
55 """Calculate earnings."""
56 return self.gross_sales * self.commission_rate
57
58 def __repr__(self):
59 """Return string representation for repr()."""
60 return ('CommissionEmployee: ' +
61 f'{self.first_name} {self.last_name}\n' +
62 f'social security number: {self.ssn}\n' +
63 f'gross sales: {self.gross_sales:.2f}\n' +
64 f'commission rate: {self.commission_rate:.2f}')

ptg27972259

270 Chapter 10 Object-Oriented Programming

Class CommissionEmployee inherits all the methods of class object. Class object
does not have any data attributes. Two of the many methods inherited from object are
__repr__ and __str__. So every class has these methods that return string representations
of the objects on which they’re called. When a base-class method implementation is inap-
propriate for a derived class, that method can be overridden (i.e., redefined) in the derived
class with an appropriate implementation. Method __repr__ (lines 58–64) overrides the
default implementation inherited into class CommissionEmployee from class object.6

Testing Class CommissionEmployee
Let’s quickly test some of CommissionEmployee’s features. First, create and display a Com-
missionEmployee:

Next, let’s calculate and display the CommissionEmployee’s earnings:

Finally, let’s change the CommissionEmployee’s gross sales and commission rate, then
recalculate the earnings:

10.8.2 Subclass SalariedCommissionEmployee
With single inheritance, the subclass starts essentially the same as the base class. The real
strength of inheritance comes from the ability to define in the subclass additions, replace-
ments or refinements for the features inherited from the base class.

Many of a SalariedCommissionEmployee’s capabilities are similar, if not identical, to
those of class CommissionEmployee. Both types of employees have first name, last name,
Social Security number, gross sales and commission rate data attributes, and properties
and methods to manipulate that data. To create class SalariedCommissionEmployee with-
out using inheritance, we could have copied class CommissionEmployee’s code and pasted it
into class SalariedCommissionEmployee. Then we could have modified the new class to

6. See https://docs.python.org/3/reference/datamodel.html for object’s overridable methods.

In [1]: from commissionemployee import CommissionEmployee

In [2]: from decimal import Decimal

In [3]: c = CommissionEmployee('Sue', 'Jones', '333-33-3333',
 ...: Decimal('10000.00'), Decimal('0.06'))
 ...:

In [4]: c
Out[4]:
CommissionEmployee: Sue Jones
social security number: 333-33-3333
gross sales: 10000.00
commission rate: 0.06

In [5]: print(f'{c.earnings():,.2f}')
600.00

In [6]: c.gross_sales = Decimal('20000.00')

In [7]: c.commission_rate = Decimal('0.1')

In [8]: print(f'{c.earnings():,.2f}')
2,000.00

https://docs.python.org/3/reference/datamodel.html

ptg27972259

10.8 Building an Inheritance Hierarchy; Introducing Polymorphism 271

include a base salary data attribute, and the properties and methods that manipulate the
base salary, including a new earnings method. This copy-and-paste approach is often error-
prone. Worse yet, it can spread many physical copies of the same code (including errors)
throughout a system, making your code less maintainable. Inheritance enables us to
“absorb” the features of a class without duplicating code. Let’s see how.

Declaring Class SalariedCommissionEmployee
We now declare the subclass SalariedCommissionEmployee, which inherits most of its
capabilities from class CommissionEmployee (line 6). A SalariedCommissionEmployee is
a CommissionEmployee (because inheritance passes on the capabilities of class Commis-
sionEmployee), but class SalariedCommissionEmployee also has the following features:

• Method __init__ (lines 10–15), which initializes all the data inherited from class
CommissionEmployee (we’ll say more about this momentarily), then uses the
base_salary property’s setter to create a _base_salary data attribute.

• Read-write property base_salary (lines 17–27), in which the setter performs
data validation.

• A customized version of method earnings (lines 29–31).

• A customized version of method __repr__ (lines 33–36).

1 # salariedcommissionemployee.py
2 """SalariedCommissionEmployee derived from CommissionEmployee."""
3 from commissionemployee import CommissionEmployee
4 from decimal import Decimal
5
6 class SalariedCommissionEmployee(CommissionEmployee):
7 """An employee who gets paid a salary plus
8 commission based on gross sales."""
9

10 def __init__(self, first_name, last_name, ssn,
11 gross_sales, commission_rate, base_salary):
12 """Initialize SalariedCommissionEmployee's attributes."""
13 super().__init__(first_name, last_name, ssn,
14 gross_sales, commission_rate)
15 self.base_salary = base_salary # validate via property
16
17 @property
18 def base_salary(self):
19 return self._base_salary
20
21 @base_salary.setter
22 def base_salary(self, salary):
23 """Set base salary or raise ValueError if invalid."""
24 if salary < Decimal('0.00'):
25 raise ValueError('Base salary must be >= to 0')
26
27 self._base_salary = salary
28
29 def earnings(self):
30 """Calculate earnings."""
31 return super().earnings() + self.base_salary
32

ptg27972259

272 Chapter 10 Object-Oriented Programming

Inheriting from Class CommissionEmployee
To inherit from a class, you must first import its definition (line 3). Line 6

class SalariedCommissionEmployee(CommissionEmployee):

specifies that class SalariedCommissionEmployee inherits from CommissionEmployee.
Though you do not see class CommissionEmployee’s data attributes, properties and meth-
ods in class SalariedCommissionEmployee, they’re nevertheless part of the new class, as
you’ll soon see.

Method __init__ and Built-In Function super
Each subclass __init__ must explicitly call its base class’s __init__ to initialize the data attri-
butes inherited from the base class. This call should be the first statement in the subclass’s
__init__ method. SalariedCommissionEmployee’s __init__ method explicitly calls class
CommissionEmployee’s __init__ method (lines 13–14) to initialize the base-class portion
of a SalariedCommissionEmployee object (that is, the five inherited data attributes from
class CommissionEmployee). The notation super().__init__ uses the built-in function
super to locate and call the base class’s __init__ method, passing the five arguments that
initialize the inherited data attributes.

Overriding Method earnings
Class SalariedCommissionEmployee’s earnings method (lines 29–31) overrides class
CommissionEmployee’s earnings method (Section 10.8.1, lines 54–56) to calculate the
earnings of a SalariedCommissionEmployee. The new version obtains the portion of the
earnings based on commission alone by calling CommissionEmployee’s earnings method
with the expression super().earnings() (line 31). SalariedCommissionEmployee’s
earnings method then adds the base_salary to this value to calculate the total earnings.
By having SalariedCommissionEmployee’s earnings method invoke CommissionEm-
ployee’s earnings method to calculate part of a SalariedCommissionEmployee’s earnings,
we avoid duplicating the code and reduce code-maintenance problems.

Overriding Method __repr__
SalariedCommissionEmployee’s __repr__ method (lines 33–36) overrides class Commis-
sionEmployee’s __repr__ method (Section 10.8.1, lines 58–64) to return a String repre-
sentation that’s appropriate for a SalariedCommissionEmployee. The subclass creates part
of the string representation by concatenating 'Salaried' and the string returned by
super().__repr__(), which calls CommissionEmployee’s __repr__ method. The overrid-
den method then concatenates the base salary information and returns the resulting string.

Testing Class SalariedCommissionEmployee
Let’s test class SalariedCommissionEmployee to show that it indeed inherited capabilities
from class CommissionEmployee. First, let’s create a SalariedCommissionEmployee and
print all of its properties:

33 def __repr__(self):
34 """Return string representation for repr()."""
35 return ('Salaried' + super().__repr__() +
36 f'\nbase salary: {self.base_salary:.2f}')

ptg27972259

10.8 Building an Inheritance Hierarchy; Introducing Polymorphism 273

Notice that the SalariedCommissionEmployee object has all of the properties of classes
CommissionEmployee and SalariedCommissionEmployee.

Next, let’s calculate and display the SalariedCommissionEmployee’s earnings.
Because we call method earnings on a SalariedCommissionEmployee object, the subclass
version of the method executes:

Now, let’s modify the gross_sales, commission_rate and base_salary properties,
then display the updated data via the SalariedCommissionEmployee’s __repr__ method:

Again, because this method is called on a SalariedCommissionEmployee object, the sub-
class version of the method executes. Finally, let’s calculate and display the Salaried-
CommissionEmployee’s updated earnings:

Testing the “is a” Relationship
Python provides two built-in functions—issubclass and isinstance—for testing “is a”
relationships. Function issubclass determines whether one class is derived from another:

Function isinstance determines whether an object has an “is a” relationship with a
specific type. Because SalariedCommissionEmployee inherits from CommissionEmployee,
both of the following snippets return True, confirming the “is a” relationship

In [9]: from salariedcommissionemployee import SalariedCommissionEmployee

In [10]: s = SalariedCommissionEmployee('Bob', 'Lewis', '444-44-4444',
 ...: Decimal('5000.00'), Decimal('0.04'), Decimal('300.00'))
 ...:

In [11]: print(s.first_name, s.last_name, s.ssn, s.gross_sales,
 ...: s.commission_rate, s.base_salary)
Bob Lewis 444-44-4444 5000.00 0.04 300.00

In [12]: print(f'{s.earnings():,.2f}')
500.00

In [13]: s.gross_sales = Decimal('10000.00')

In [14]: s.commission_rate = Decimal('0.05')

In [15]: s.base_salary = Decimal('1000.00')

In [16]: print(s)
SalariedCommissionEmployee: Bob Lewis
social security number: 444-44-4444
gross sales: 10000.00
commission rate: 0.05
base salary: 1000.00

In [17]: print(f'{s.earnings():,.2f}')
1,500.00

In [18]: issubclass(SalariedCommissionEmployee, CommissionEmployee)
Out[18]: True

In [19]: isinstance(s, CommissionEmployee)
Out[19]: True

In [20]: isinstance(s, SalariedCommissionEmployee)
Out[20]: True

ptg27972259

274 Chapter 10 Object-Oriented Programming

10.8.3 Processing CommissionEmployees and
SalariedCommissionEmployees Polymorphically
With inheritance, every object of a subclass also may be treated as an object of that sub-
class’s base class. We can take advantage of this “subclass-object-is-a-base-class-object”
relationship to perform some interesting manipulations. For example, we can place objects
related through inheritance into a list, then iterate through the list and treat each element
as a base-class object. This allows a variety of objects to be processed in a general way. Let’s
demonstrate this by placing the CommissionEmployee and SalariedCommissionEmployee
objects in a list, then for each element displaying its string representation and earnings:

As you can see, the correct string representation and earnings are displayed for each
employee. This is called polymorphism—a key capability of object-oriented programming
(OOP).

10.8.4 A Note About Object-Based and Object-Oriented Programming
Inheritance with method overriding is a powerful way to build software components that
are like existing components but need to be customized to your application’s unique needs.
In the Python open-source world, there are a huge number of well-developed class libraries
for which your programming style is:

• know what libraries are available,

• know what classes are available,

• make objects of existing classes, and

• send them messages (that is, call their methods).

This style of programming is called object-based programming (OBP). When you do com-
position with objects of known classes, you’re still doing object-based programming. Add-
ing inheritance with overriding to customize methods to the unique needs of your
applications and possibly process objects polymorphically is called object-oriented program-
ming (OOP). If you do composition with objects of inherited classes, that’s also object-ori-
ented programming.

In [21]: employees = [c, s]

In [22]: for employee in employees:
 ...: print(employee)
 ...: print(f'{employee.earnings():,.2f}\n')
 ...:
CommissionEmployee: Sue Jones
social security number: 333-33-3333
gross sales: 20000.00
commission rate: 0.10
2,000.00

SalariedCommissionEmployee: Bob Lewis
social security number: 444-44-4444
gross sales: 10000.00
commission rate: 0.05
base salary: 1000.00
1,500.00

ptg27972259

10.9 Duck Typing and Polymorphism 275

10.9 Duck Typing and Polymorphism
Most other object-oriented programming languages require inheritance-based “is a” rela-
tionships to achieve polymorphic behavior. Python is more flexible. It uses a concept
called duck typing, which the Python documentation describes as:

A programming style which does not look at an object’s type to determine if it has
the right interface; instead, the method or attribute is simply called or used (“If it
looks like a duck and quacks like a duck, it must be a duck.”).7

So, when processing an object at execution time, its type does not matter. As long as the
object has the data attribute, property or method (with the appropriate parameters) you
wish to access, the code will work.

Let’s reconsider the loop at the end of Section 10.8.3, which processes a list of
employees:

for employee in employees:
 print(employee)
 print(f'{employee.earnings():,.2f}\n')

In Python, this loop works properly as long as employees contains only objects that:

• can be displayed with print (that is, they have a string representation) and

• have an earnings method which can be called with no arguments.

All classes inherit from object directly or indirectly, so they all inherit the default methods
for obtaining string representations that print can display. If a class has an earnings
method that can be called with no arguments, we can include objects of that class in the
list employees, even if the object’s class does not have an “is a” relationship with class Com-
missionEmployee. To demonstrate this, consider class WellPaidDuck:

WellPaidDuck objects, which clearly are not meant to be employees, will work with
the preceding loop. To prove this, let’s create objects of our classes CommissionEmployee,
SalariedCommissionEmployee and WellPaidDuck and place them in a list:

7. https://docs.python.org/3/glossary.html#term-duck-typing.

In [1]: class WellPaidDuck:
 ...: def __repr__(self):
 ...: return 'I am a well-paid duck'
 ...: def earnings(self):
 ...: return Decimal('1_000_000.00')
 ...:

In [2]: from decimal import Decimal

In [3]: from commissionemployee import CommissionEmployee

In [4]: from salariedcommissionemployee import SalariedCommissionEmployee

In [5]: c = CommissionEmployee('Sue', 'Jones', '333-33-3333',
 ...: Decimal('10000.00'), Decimal('0.06'))
 ...:

In [6]: s = SalariedCommissionEmployee('Bob', 'Lewis', '444-44-4444',
 ...: Decimal('5000.00'), Decimal('0.04'), Decimal('300.00'))
 ...:

https://docs.python.org/3/glossary.html#term-duck-typing

ptg27972259

276 Chapter 10 Object-Oriented Programming

Now, let’s process the list using the loop from Section 10.8.3. As you can see in the output,
Python is able to use duck typing to polymorphically process all three objects in the list:

10.10 Operator Overloading
You’ve seen that you can interact with objects by accessing their attributes and properties
and by calling their methods. Method-call notation can be cumbersome for certain kinds
of operations, such as arithmetic. In these cases, it would be more convenient to use
Python’s rich set of built-in operators.

This section shows how to use operator overloading to define how Python’s operators
should handle objects of your own types. You’ve already used operator overloading fre-
quently across wide ranges of types. For example, you’ve used:

• the + operator for adding numeric values, concatenating lists, concatenating
strings and adding a value to every element in a NumPy array.

• the [] operator for accessing elements in lists, tuples, strings and arrays and for
accessing the value for a specific key in a dictionary.

• the * operator for multiplying numeric values, repeating a sequence and multi-
plying every element in a NumPy array by a specific value.

You can overload most operators. For every overloadable operator, class object
defines a special method, such as __add__ for the addition (+) operator or __mul__ for the
multiplication (*) operator. Overriding these methods enables you to define how a given
operator works for objects of your custom class. For a complete list of special methods, see

https://docs.python.org/3/reference/datamodel.html#special-method-
names

In [7]: d = WellPaidDuck()

In [8]: employees = [c, s, d]

In [9]: for employee in employees:
 ...: print(employee)
 ...: print(f'{employee.earnings():,.2f}\n')
 ...:
CommissionEmployee: Sue Jones
social security number: 333-33-3333
gross sales: 10000.00
commission rate: 0.06
600.00

SalariedCommissionEmployee: Bob Lewis
social security number: 444-44-4444
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00
500.00

I am a well-paid duck
1,000,000.00

https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#special-method-names

ptg27972259

10.10 Operator Overloading 277

Operator Overloading Restrictions
There are some restrictions on operator overloading:

• The precedence of an operator cannot be changed by overloading. However,
parentheses can be used to force evaluation order in an expression.

• The left-to-right or right-to-left grouping of an operator cannot be changed by
overloading.

• The “arity” of an operator—that is, whether it’s a unary or binary operator—can-
not be changed.

• You cannot create new operators—only existing operators can be overloaded.

• The meaning of how an operator works on objects of built-in types cannot be
changed. You cannot, for example, change + so that it subtracts two integers.

• Operator overloading works only with objects of custom classes or with a mixture
of an object of a custom class and an object of a built-in type.

Complex Numbers
To demonstrate operator overloading, we’ll define a class named Complex that represents
complex numbers.8 Complex numbers, like –3 + 4i and 6.2 – 11.73i, have the form

realPart + imaginaryPart * i

where i is . Like ints, floats and Decimals, complex numbers are arithmetic types.
In this section, we’ll create a class Complex that overloads just the + addition operator and
the += augmented assignment, so we can add Complex objects using Python’s mathemat-
ical notations.

10.10.1 Test-Driving Class Complex
First, let’s use class Complex to demonstrate its capabilities. We’ll discuss the class’s details
in the next section. Import class Complex from complexnumber.py:

Next, create and display a couple of Complex objects. Snippets [3] and [5] implicitly call
the Complex class’s __repr__ method to get a string representation of each object:

We chose the __repr__ string format shown in snippets [3] and [5] to mimic the
__repr__ strings produced by Python’s built-in complex type.9

8. Python has built-in support for complex values, so this class is simply for demonstration purposes.

In [1]: from complexnumber import Complex

In [2]: x = Complex(real=2, imaginary=4)

In [3]: x
Out[3]: (2 + 4i)

In [4]: y = Complex(real=5, imaginary=-1)

In [5]: y
Out[5]: (5 - 1i)

1–

ptg27972259

278 Chapter 10 Object-Oriented Programming

Now, let’s use the + operator to add the Complex objects x and y. This expression adds
the real parts of the two operands (2 and 5) and the imaginary parts of the two operands
(4i and -1i), then returns a new Complex object containing the result:

The + operator does not modify either of its operands:

Finally, let’s use the += operator to add y to x and store the result in x. The += operator
modifies its left operand but not its right operand:

10.10.2 Class Complex Definition
Now that we’ve seen class Complex in action, let’s look at its definition to see how those
capabilities were implemented.

Method __init__
The class’s __init__ method receives parameters to initialize the real and imaginary data
attributes:

Overloaded + Operator
The following overridden special method __add__ defines how to overload the + operator
for use with two Complex objects:

9. Python uses j rather than i for . For example, 3+4j (with no spaces around the operator) creates
a complex object with real and imag attributes. The __repr__ string for this complex value is
'(3+4j)'.

1–

In [6]: x + y
Out[6]: (7 + 3i)

In [7]: x
Out[7]: (2 + 4i)

In [8]: y
Out[8]: (5 - 1i)

In [9]: x += y

In [10]: x
Out[10]: (7 + 3i)

In [11]: y
Out[11]: (5 - 1i)

1 # complexnumber.py
2 """Complex class with overloaded operators."""
3
4 class Complex:
5 """Complex class that represents a complex number
6 with real and imaginary parts."""
7
8 def __init__(self, real, imaginary):
9 """Initialize Complex class's attributes."""

10 self.real = real
11 self.imaginary = imaginary
12

ptg27972259

10.11 Exception Class Hierarchy and Custom Exceptions 279

Methods that overload binary operators must provide two parameters—the first (self) is
the left operand and the second (right) is the right operand. Class Complex’s __add__
method takes two Complex objects as arguments and returns a new Complex object con-
taining the sum of the operands’ real parts and the sum of the operands’ imaginary parts.

We do not modify the contents of either of the original operands. This matches our
intuitive sense of how this operator should behave. Adding two numbers does not modify
either of the original values.

Overloaded += Augmented Assignment
Lines 18–22 overload special method __iadd__ to define how the += operator adds two
Complex objects:

Augmented assignments modify their left operands, so method __iadd__ modifies the
self object, which represents the left operand, then returns self.

Method __repr__
Lines 24–28 return the string representation of a Complex number.

10.11 Exception Class Hierarchy and Custom Exceptions
In the previous chapter, we introduced exception handling. Every exception is an object
of a class in Python’s exception class hierarchy10 or an object of a class that inherits from
one of those classes. Exception classes inherit directly or indirectly from base class Base-
Exception and are defined in module exceptions.

Python defines four primary BaseException subclasses—SystemExit, KeyboardIn-
terrupt, GeneratorExit and Exception:

• SystemExit terminates program execution (or terminates an interactive session)
and when uncaught does not produce a traceback like other exception types.

• KeyboardInterrupt exceptions occur when the user types the interrupt com-
mand—Ctrl + C (or control + C) on most systems.

13 def __add__(self, right):
14 """Overrides the + operator."""
15 return Complex(self.real + right.real,
16 self.imaginary + right.imaginary)
17

18 def __iadd__(self, right):
19 """Overrides the += operator."""
20 self.real += right.real
21 self.imaginary += right.imaginary
22 return self
23

24 def __repr__(self):
25 """Return string representation for repr()."""
26 return (f'({self.real} ' +
27 ('+' if self.imaginary >= 0 else '-') +
28 f' {abs(self.imaginary)}i)')

10. https://docs.python.org/3/library/exceptions.html.

https://docs.python.org/3/library/exceptions.html

ptg27972259

280 Chapter 10 Object-Oriented Programming

• GeneratorExit exceptions occur when a generator closes—normally when a gen-
erator finishes producing values or when its close method is called explicitly.

• Exception is the base class for most common exceptions you’ll encounter. You’ve
seen exceptions of the Exception subclasses ZeroDivisionError, NameError,
ValueError, StatisticsError, TypeError, IndexError, KeyError, Runtime-
Error and AttributeError. Often, StandardErrors can be caught and handled,
so the program can continue running.

Catching Base-Class Exceptions
One of the benefits of the exception class hierarchy is that an except handler can catch
exceptions of a particular type or can use a base-class type to catch those base-class excep-
tions and all related subclass exceptions. For example, an except handler that specifies the
base class Exception can catch objects of any subclass of Exception. Placing an except
handler that catches type Exception before other except handlers is a logic error, because
all exceptions would be caught before other exception handlers could be reached. Thus,
subsequent exception handlers are unreachable.

Custom Exception Classes
When you raise an exception from your code, you should generally use one of the existing
exception classes from the Python Standard Library. However, using the inheritance tech-
niques presented earlier in this chapter, you can create your own custom exception classes
that derive directly or indirectly from class Exception. Generally, that’s discouraged, espe-
cially among novice programmers. Before creating custom exception classes, look for an
appropriate existing exception class in the Python exception hierarchy. Define new excep-
tion classes only if you need to catch and handle the exceptions differently from other
existing exception types. That should be rare.

10.12 Named Tuples
You’ve used tuples to aggregate several data attributes into a single object. The Python
Standard Library’s collections module also provides named tuples that enable you to
reference a tuple’s members by name rather than by index number.

Let’s create a simple named tuple that might be used to represent a card in a deck of
cards. First, import function namedtuple:

Function namedtuple creates a subclass of the built-in tuple type. The function’s first
argument is your new type’s name and the second is a list of strings representing the iden-
tifiers you’ll use to reference the new type’s members:

We now have a new tuple type named Card that we can use anywhere a tuple can be used.
Let’s create a Card object, access its members by name and display its string representation:

In [1]: from collections import namedtuple

In [2]: Card = namedtuple('Card', ['face', 'suit'])

In [3]: card = Card(face='Ace', suit='Spades')

In [4]: card.face
Out[4]: 'Ace'

ptg27972259

10.13 A Brief Intro to Python 3.7’s New Data Classes 281

Other Named Tuple Features
Each named tuple type has additional methods. The type’s _make class method (that is, a
method called on the class) receives an iterable of values and returns an object of the named
tuple type:

This could be useful, for example, if you have a named tuple type representing records in
a CSV file. As you read and tokenize CSV records, you could convert them into named
tuple objects.

For a given object of a named tuple type, you can get an OrderedDict dictionary rep-
resentation of the object’s member names and values. An OrderedDict remembers the
order in which its key–value pairs were inserted in the dictionary:

For additional named tuple features see:

https://docs.python.org/3/library/
collections.html#collections.namedtuple

10.13 A Brief Intro to Python 3.7’s New Data Classes
Though named tuples allow you to reference their members by name, they’re still just
tuples, not classes. For some of the benefits of named tuples, plus the capabilities that tra-
ditional Python classes provide, you can use Python 3.7’s new data classes11 from the
Python Standard Library’s dataclasses module.

Data classes are among Python 3.7’s most important new features. They help you
build classes faster by using more concise notation and by autogenerating “boilerplate” code
that’s common in most classes. They could become the preferred way to define many
Python classes. In this section, we’ll present data-class fundamentals. At the end of the sec-
tion, we’ll provide links to more information.

Data Classes Autogenerate Code
Most classes you’ll define provide an __init__ method to create and initialize an object’s
attributes and a __repr__ method to specify an object’s custom string representation. If a
class has many data attributes, creating these methods can be tedious.

Data classes autogenerate the data attributes and the __init__ and __repr__ methods
for you. This can be particularly useful for classes that primarily aggregate related data

In [5]: card.suit
Out[5]: 'Spades'

In [6]: card
Out[6]: Card(face='Ace', suit='Spades')

In [7]: values = ['Queen', 'Hearts']

In [8]: card = Card._make(values)

In [9]: card
Out[9]: Card(face='Queen', suit='Hearts')

In [10]: card._asdict()
Out[10]: OrderedDict([('face', 'Queen'), ('suit', 'Hearts')])

11. https://www.python.org/dev/peps/pep-0557/.

https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://www.python.org/dev/peps/pep-0557/

ptg27972259

282 Chapter 10 Object-Oriented Programming

items. For example, in an application that processes CSV records, you might want a class
that represents each record’s fields as data attributes in an object. Data classes also can be
generated dynamically from a list of field names.

Data classes also autogenerate method __eq__, which overloads the == operator. Any
class that has an __eq__ method also implicitly supports !=. All classes inherit class
object’s default __ne__ (not equals) method implementation, which returns the opposite
of __eq__ (or NotImplemented if the class does not define __eq__). Data classes do not
automatically generate methods for the <, <=, > and >= comparison operators, but they can.

10.13.1 Creating a Card Data Class
Let’s reimplement class Card from Section 10.6.2 as a data class. The new class is defined
in carddataclass.py. As you’ll see, defining a data class requires some new syntax. In the
subsequent subsections, we’ll use our new Card data class in class DeckOfCards to show
that it’s interchangeable with the original Card class, then discuss some of the benefits of
data classes over named tuples and traditional Python classes.

Importing from the dataclasses and typing Modules
The Python Standard Library’s dataclasses module defines decorators and functions for
implementing data classes. We’ll use the @dataclass decorator (imported at line 4) to
specify that a new class is a data class and causes various code to be written for you. Recall
that our original Card class defined class variables FACES and SUITS, which are lists of the
strings used to initialize Cards. We use ClassVar and List from the Python Standard
Library’s typing module (imported at line 5) to indicate that FACES and SUITS are class
variables that refer to lists. We’ll say more about these momentarily:

Using the @dataclass Decorator
To specify that a class is a data class, precede its definition with the @dataclass decorator:12

Optionally, the @dataclass decorator may specify parentheses containing arguments that
help the data class determine what autogenerated methods to include. For example, the
decorator @dataclass(order=True) would cause the data class to autogenerate over-
loaded comparison operator methods for <, <=, > and >=. This might be useful, for exam-
ple, if you need to sort your data-class objects.

Variable Annotations: Class Attributes
Unlike regular classes, data classes declare both class attributes and data attributes inside
the class, but outside the class’s methods. In a regular class, only class attributes are declared

1 # carddataclass.py
2 """Card data class with class attributes, data attributes,
3 autogenerated methods and explicitly defined methods."""
4 from dataclasses import dataclass
5 from typing import ClassVar, List
6

7 @dataclass
8 class Card:

12. https://docs.python.org/3/library/dataclasses.html#module-level-decorators-

classes-and-functions.

https://docs.python.org/3/library/dataclasses.html#module-level-decorators-classes-and-functions
https://docs.python.org/3/library/dataclasses.html#module-level-decorators-classes-and-functions

ptg27972259

10.13 A Brief Intro to Python 3.7’s New Data Classes 283

this way, and data attributes typically are created in __init__. Data classes require addi-
tional information, or hints, to distinguish class attributes from data attributes, which also
affects the autogenerated methods’ implementation details.

Lines 9–11 define and initialize the class attributes FACES and SUITS:

In lines 9 and 11, The notation

: ClassVar[List[str]]

is a variable annotation13,14 (sometimes called a type hint) specifying that FACES is a class
attribute (ClassVar) which refers to a list of strings (List[str]). SUITS also is a class attri-
bute which refers to a list of strings.

Class variables are initialized in their definitions and are specific to the class, not indi-
vidual objects of the class. Methods __init__, __repr__ and __eq__, however, are for use
with objects of the class. When a data class generates these methods, it inspects all the vari-
able annotations and includes only the data attributes in the method implementations.

Variable Annotations: Data Attributes
Normally, we create an object’s data attributes in the class’s __init__ method (or methods
called by __init__) via assignments of the form self.attribute_name = value. Because a
data class autogenerates its __init__ method, we need another way to specify data attri-
butes in a data class’s definition. We cannot simply place their names inside the class,
which generates a NameError, as in:

9 FACES: ClassVar[List[str]] = ['Ace', '2', '3', '4', '5', '6', '7',
10 '8', '9', '10', 'Jack', 'Queen', 'King']
11 SUITS: ClassVar[List[str]] = ['Hearts', 'Diamonds', 'Clubs', 'Spades']
12

13. https://www.python.org/dev/peps/pep-0526/.
14. Variable annotations are a recent language feature and are optional for regular classes. You will not

see them in most legacy Python code.

In [1]: from dataclasses import dataclass

In [2]: @dataclass
 ...: class Demo:
 ...: x # attempting to create a data attribute x
 ...:

NameError Traceback (most recent call last)
<ipython-input-2-79ffe37b1ba2> in <module>()
----> 1 @dataclass
 2 class Demo:
 3 x # attempting to create a data attribute x
 4

<ipython-input-2-79ffe37b1ba2> in Demo()
 1 @dataclass
 2 class Demo:
----> 3 x # attempting to create a data attribute x
 4

NameError: name 'x' is not defined

https://www.python.org/dev/peps/pep-0526/

ptg27972259

284 Chapter 10 Object-Oriented Programming

Like class attributes, each data attribute must be declared with a variable annotation.
Lines 13–14 define the data attributes face and suit. The variable annotation ": str"

indicates that each should refer to string objects:

Defining a Property and Other Methods
Data classes are classes, so they may contain properties and methods and participate in
class hierarchies. For this Card data class, we defined the same read-only image_name prop-
erty and custom special methods __str__ and __format__ as in our original Card class ear-
lier in the chapter:

Variable Annotation Notes
You can specify variable annotations using built-in type names (like str, int and float),
class types or types defined by the typing module (such as ClassVar and List shown ear-
lier). Even with type annotations, Python is still a dynamically typed language. So, type
annotations are not enforced at execution time. So, even though a Card’s face is meant to
be a string, you can assign any type of object to face.

10.13.2 Using the Card Data Class
Let’s demonstrate the new Card data class. First, create a Card:

Next, let’s use Card’s autogenerated __repr__ method to display the Card:

Our custom __str__ method, which print calls when passing it a Card object, returns a
string of the form 'face of suit':

Let’s access our data class’s attributes and read-only property:

13 face: str
14 suit: str

15 @property
16 def image_name(self):
17 """Return the Card's image file name."""
18 return str(self).replace(' ', '_') + '.png'
19
20 def __str__(self):
21 """Return string representation for str()."""
22 return f'{self.face} of {self.suit}'
23
24 def __format__(self, format):
25 """Return formatted string representation."""
26 return f'{str(self):{format}}'

In [1]: from carddataclass import Card

In [2]: c1 = Card(Card.FACES[0], Card.SUITS[3])

In [3]: c1
Out[3]: Card(face='Ace', suit='Spades')

In [4]: print(c1)
Ace of Spades

In [5]: c1.face
Out[5]: 'Ace'

ptg27972259

10.13 A Brief Intro to Python 3.7’s New Data Classes 285

Next, let’s demonstrate that Card objects can be compared via the autogenerated == oper-
ator and inherited != operator. First, create two additional Card objects—one identical to
the first and one different:

Now, compare the objects using == and !=:

Our Card data class is interchangeable with the Card class developed earlier in this
chapter. To demonstrate this, we created the deck2.py file containing a copy of class
DeckOfCards from earlier in the chapter and imported the Card data class into the file. The
following snippets import class DeckOfCards, create an object of the class and print it.
Recall that print implicitly calls the DeckOfCards __str__ method, which formats each
Card in a field of 19 characters, resulting in a call to each Card’s __format__ method. Read
each row left-to-right to confirm that all the Cards are displayed in order from each suit
(Hearts, Diamonds, Clubs and Spades):

In [6]: c1.suit
Out[6]: 'Spades'

In [7]: c1.image_name
Out[7]: 'Ace_of_Spades.png'

In [8]: c2 = Card(Card.FACES[0], Card.SUITS[3])

In [9]: c2
Out[9]: Card(face='Ace', suit='Spades')

In [10]: c3 = Card(Card.FACES[0], Card.SUITS[0])

In [11]: c3
Out[11]: Card(face='Ace', suit='Hearts')

In [12]: c1 == c2
Out[12]: True

In [13]: c1 == c3
Out[13]: False

In [14]: c1 != c3
Out[14]: True

In [15]: from deck2 import DeckOfCards # uses Card data class

In [16]: deck_of_cards = DeckOfCards()

In [17]: print(deck_of_cards)
Ace of Hearts 2 of Hearts 3 of Hearts 4 of Hearts
5 of Hearts 6 of Hearts 7 of Hearts 8 of Hearts
9 of Hearts 10 of Hearts Jack of Hearts Queen of Hearts
King of Hearts Ace of Diamonds 2 of Diamonds 3 of Diamonds
4 of Diamonds 5 of Diamonds 6 of Diamonds 7 of Diamonds
8 of Diamonds 9 of Diamonds 10 of Diamonds Jack of Diamonds
Queen of Diamonds King of Diamonds Ace of Clubs 2 of Clubs
3 of Clubs 4 of Clubs 5 of Clubs 6 of Clubs
7 of Clubs 8 of Clubs 9 of Clubs 10 of Clubs
Jack of Clubs Queen of Clubs King of Clubs Ace of Spades
2 of Spades 3 of Spades 4 of Spades 5 of Spades
6 of Spades 7 of Spades 8 of Spades 9 of Spades
10 of Spades Jack of Spades Queen of Spades King of Spades

ptg27972259

286 Chapter 10 Object-Oriented Programming

10.13.3 Data Class Advantages over Named Tuples
Data classes offer several advantages over named tuples15:

• Although each named tuple technically represents a different type, a named tuple
is a tuple and all tuples can be compared to one another. So, objects of different
named tuple types could compare as equal if they have the same number of mem-
bers and the same values for those members. Comparing objects of different data
classes always returns False, as does comparing a data class object to a tuple
object.

• If you have code that unpacks a tuple, adding more members to that tuple breaks
the unpacking code. Data class objects cannot be unpacked. So you can add more
data attributes to a data class without breaking existing code.

• A data class can be a base class or a subclass in an inheritance hierarchy.

10.13.4 Data Class Advantages over Traditional Classes
Data classes also offer various advantages over the traditional Python classes you saw earlier
in this chapter:

• A data class autogenerates __init__, __repr__ and __eq__, saving you time.

• A data class can autogenerate the special methods that overload the <, <=, > and
>= comparison operators.

• When you change data attributes defined in a data class, then use it in a script or
interactive session, the autogenerated code updates automatically. So, you have
less code to maintain and debug.

• The required variable annotations for class attributes and data attributes enable
you to take advantage of static code analysis tools. So, you might be able to elim-
inate additional errors before they can occur at execution time.

• Some static code analysis tools and IDEs can inspect variable annotations and
issue warnings if your code uses the wrong type. This can help you locate logic
errors in your code before you execute it.

More Information
Data classes have additional capabilities, such as creating “frozen” instances which do not
allow you to assign values to a data class object’s attributes after the object is created. For
a complete list of data class benefits and capabilities, see

https://www.python.org/dev/peps/pep-0557/

and

https://docs.python.org/3/library/dataclasses.html

15. https://www.python.org/dev/peps/pep-0526/.

https://www.python.org/dev/peps/pep-0557/
https://docs.python.org/3/library/dataclasses.html
https://www.python.org/dev/peps/pep-0526/

ptg27972259

10.14 Unit Testing with Docstrings and doctest 287

10.14 Unit Testing with Docstrings and doctest
A key aspect of software development is testing your code to ensure that it works correctly.
Even with extensive testing, however, your code may still contain bugs. According to the
famous Dutch computer scientist Edsger Dijkstra, “Testing shows the presence, not the
absence of bugs.”16

Module doctest and the testmod Function
The Python Standard Library provides the doctest module to help you test your code and
conveniently retest it after you make modifications. When you execute the doctest mod-
ule’s testmod function, it inspects your functions’, methods’ and classes' docstrings look-
ing for sample Python statements preceded by >>>, each followed on the next line by the
given statement’s expected output (if any).17 The testmod function then executes those
statements and confirms that they produce the expected output. If they do not, testmod
reports errors indicating which tests failed so you can locate and fix the problems in your
code. Each test you define in a docstring typically tests a specific unit of code, such as a
function, a method or a class. Such tests are called unit tests.

Modified Account Class
The file accountdoctest.py contains the class Account from this chapter’s first example.
We modified the __init__ method’s docstring to include four tests which can be used to
ensure that the method works correctly:

• The test in line 11 creates a sample Account object named account1. This state-
ment does not produce any output.

• The test in line 12 shows what the value of account1’s name attribute should be
if line 11 executed successfully. The sample output is shown in line 13.

• The test in line 14 shows what the value of account1’s balance attribute should
be if line 11 executed successfully. The sample output is shown in line 15.

• The test in line 18 creates an Account object with an invalid initial balance. The
sample output shows that a ValueError exception should occur in this case. For
exceptions, the doctest module’s documentation recommends showing just the
first and last lines of the traceback.18

You can intersperse your tests with descriptive text, such as line 17.

16. J. N. Buxton and B. Randell, eds, Software Engineering Techniques, April 1970, p. 16. Report on a
conference sponsored by the NATO Science Committee, Rome, Italy, 27–31 October 1969

17. The notation >>> mimics the standard python interpreter’s input prompts.
18. https://docs.python.org/3/library/doctest.html?highlight=doctest#module-doctest.

1 # accountdoctest.py
2 """Account class definition."""
3 from decimal import Decimal
4
5 class Account:
6 """Account class for demonstrating doctest."""
7

https://docs.python.org/3/library/doctest.html?highlight=doctest#module-doctest

ptg27972259

288 Chapter 10 Object-Oriented Programming

Module __main__
When you load any module, Python assigns a string containing the module’s name to a
global attribute of the module called __name__. When you execute a Python source file
(such as accountdoctest.py) as a script, Python uses the string '__main__' as the mod-
ule’s name. You can use __name__ in an if statement like lines 40–42 to specify code that
should execute only if the source file is executed as a script. In this example, line 41 imports
the doctest module and line 42 calls the module’s testmod function to execute the doc-
string unit tests.

Running Tests
Run the file accountdoctest.py as a script to execute the tests. By default, if you call
testmod with no arguments, it does not show test results for successful tests. In that case, if
you get no output, all the tests executed successfully. In this example, line 42 calls testmod
with the keyword argument verbose=True. This tells testmod to produce verbose output
showing every test’s results:

8 def __init__(self, name, balance):
9 """Initialize an Account object.

10
11 >>> account1 = Account('John Green', Decimal('50.00'))
12 >>> account1.name
13 'John Green'
14 >>> account1.balance
15 Decimal('50.00')
16
17 The balance argument must be greater than or equal to 0.
18 >>> account2 = Account('John Green', Decimal('-50.00'))
19 Traceback (most recent call last):
20 ...
21 ValueError: Initial balance must be >= to 0.00.
22 """
23
24 # if balance is less than 0.00, raise an exception
25 if balance < Decimal('0.00'):
26 raise ValueError('Initial balance must be >= to 0.00.')
27
28 self.name = name
29 self.balance = balance
30
31 def deposit(self, amount):
32 """Deposit money to the account."""
33
34 # if amount is less than 0.00, raise an exception
35 if amount < Decimal('0.00'):
36 raise ValueError('amount must be positive.')
37
38 self.balance += amount
39
40 if __name__ == '__main__':
41 import doctest
42 doctest.testmod(verbose=True)

ptg27972259

10.14 Unit Testing with Docstrings and doctest 289

In verbose mode, testmod shows for each test what it’s "Trying" to do and what it’s
"Expecting" as a result, followed by "ok" if the test is successful. After completing the
tests in verbose mode, testmod shows a summary of the results.

To demonstrate a failed test, “comment out” lines 25–26 in accountdoctest.py by
preceding each with a #, then run accountdoctest.py as a script. To save space, we show
just the portions of the doctest output indicating the failed test:

Trying:
 account1 = Account('John Green', Decimal('50.00'))
Expecting nothing
ok
Trying:
 account1.name
Expecting:
 'John Green'
ok
Trying:
 account1.balance
Expecting:
 Decimal('50.00')
ok
Trying:
 account2 = Account('John Green', Decimal('-50.00'))
Expecting:
 Traceback (most recent call last):
 ...
 ValueError: Initial balance must be >= to 0.00.
ok
3 items had no tests:
 __main__
 __main__.Account
 __main__.Account.deposit
1 items passed all tests:
 4 tests in __main__.Account.__init__
4 tests in 4 items.
4 passed and 0 failed.
Test passed.

...
**
File "accountdoctest.py", line 18, in __main__.Account.__init__
Failed example:
 account2 = Account('John Green', Decimal('-50.00'))
Expected:
 Traceback (most recent call last):
 ...
 ValueError: Initial balance must be >= to 0.00.
Got nothing
**
1 items had failures:
 1 of 4 in __main__.Account.__init__
4 tests in 4 items.
3 passed and 1 failed.
Test Failed 1 failures.

ptg27972259

290 Chapter 10 Object-Oriented Programming

In this case, we see that line 18’s test failed. The testmod function was expecting a traceback
indicating that a ValueError was raised due to the invalid initial balance. That exception
did not occur, so the test failed. As the programmer responsible for defining this class, this
failing test would be an indication that something is wrong with the validation code in
your __init__ method.

IPython %doctest_mode Magic
A convenient way to create doctests for existing code is to use an IPython interactive ses-
sion to test your code, then copy and paste that session into a docstring. IPython’s In []

and Out[] prompts are not compatible with doctest, so IPython provides the magic
%doctest_mode to display prompts in the correct doctest format. The magic toggles
between the two prompt styles. The first time you execute %doctest_mode, IPython
switches to >>> prompts for input and no output prompts. The second time you execute
%doctest_mode, IPython switches back to In [] and Out[] prompts.

10.15 Namespaces and Scopes
In the “Functions” chapter, we showed that each identifier has a scope that determines
where you can use it in your program, and we introduced the local and global scopes. Here
we continue our discussion of scopes with an introduction to namespaces.

Scopes are determined by namespaces, which associate identifiers with objects and are
implemented “under the hood” as dictionaries. All namespaces are independent of one
another. So, the same identifier may appear in multiple namespaces. There are three pri-
mary namespaces—local, global and built-in.

Local Namespace
Each function and method has a local namespace that associates local identifiers (such as,
parameters and local variables) with objects. The local namespace exists from the moment
the function or method is called until it terminates and is accessible only to that function
or method. In a function’s or method’s suite, assigning to a variable that does not exist cre-
ates a local variable and adds it to the local namespace. Identifiers in the local namespace
are in scope from the point at which you define them until the function or method termi-
nates.

Global Namespace
Each module has a global namespace that associates a module’s global identifiers (such as
global variables, function names and class names) with objects. Python creates a module’s
global namespace when it loads the module. A module’s global namespace exists and its
identifiers are in scope to the code within that module until the program (or interactive ses-
sion) terminates. An IPython session has its own global namespace for all the identifiers
you create in that session.

Each module’s global namespace also has an identifier called __name__ containing the
module’s name, such as 'math' for the math module or 'random' for the random module.
As you saw in the previous section’s doctest example, __name__ contains '__main__' for
a .py file that you run as a script.

ptg27972259

10.15 Namespaces and Scopes 291

Built-In Namespace
The built-in namespace contains associates identifiers for Python’s built-in functions
(such as, input and range) and types (such as, int, float and str) with objects that define
those functions and types. Python creates the built-in namespace when the interpreter
starts executing. The built-in namespace’s identifiers remain in scope for all code until the
program (or interactive session) terminates.19

Finding Identifiers in Namespaces
When you use an identifier, Python searches for that identifier in the currently accessible
namespaces, proceeding from local to global to built-in. To help you understand the name-
space search order, consider the following IPython session:

The identifiers you define in an IPython session are placed in the session’s global
namespace. When snippet [3] calls print_variables, Python searches the local, global
and built-in namespaces as follows:

• Snippet [3] is not in a function or method, so the session’s global namespace and
the built-in namespace are currently accessible. Python first searches the session’s
global namespace, which contains print_variables. So print_variables is in
scope and Python uses the corresponding object to call print_variables.

• As print_variables begins executing, Python creates the function’s local name-
space. When function print_variables defines the local variable y, Python adds
y to the function’s local namespace. The variable y is now in scope until the func-
tion finishes executing.

• Next, print_variables calls the built-in function print, passing y as the argu-
ment. To execute this call, Python must resolve the identifiers y and print. The
identifier y is defined in the local namespace, so it’s in scope and Python will use
the corresponding object (the string 'local y in print_variables') as print’s
argument. To call the function, Python must find print’s corresponding object.
First, it looks in the local namespace, which does not define print. Next, it looks
in the session’s global namespace, which does not define print. Finally, it looks
in the built-in namespace, which does define print. So, print is in scope and
Python uses the corresponding object to call print.

• Next, print_variables calls the built-in function print again with the argu-
ment z, which is not defined in the local namespace. So, Python looks in the

19. This assumes you do not shadow the built-in functions or types by redefining their identifiers in a
local or global namespace. We discussed shadowing in the “Functions” chapter.

In [1]: z = 'global z'

In [2]: def print_variables():
 ...: y = 'local y in print_variables'
 ...: print(y)
 ...: print(z)
 ...:

In [3]: print_variables()
local y in print_variables
global z

ptg27972259

292 Chapter 10 Object-Oriented Programming

global namespace. The argument z is defined in the global namespace, so z is in
scope and Python will use the corresponding object (the string 'global z') as
print’s argument. Again, Python finds the identifier print in the built-in name-
space and uses the corresponding object to call print.

• At this point, we reach the end of the print_variables function’s suite, so the
function terminates and its local namespace no longer exists, meaning the local
variable y is now undefined.

To prove that y is undefined, let’s try to display y:

In this case, there’s no local namespace, so Python searches for y in the session’s global
namespace. The identifier y is not defined there, so Python searches for y in the built-in
namespace. Again, Python does not find y. There are no more namespaces to search, so
Python raises a NameError, indicating that y is not defined.

The identifiers print_variables and z still exist in the session’s global namespace, so
we can continue using them. For example, let’s evaluate z to see its value:

Nested Functions
One namespace we did not cover in the preceding discussion is the enclosing namespace.
Python allows you to define nested functions inside other functions or methods. For
example, if a function or method performs the same task several times, you might define
a nested function to avoid repeating code in the enclosing function. When you access an
identifier inside a nested function, Python searches the nested function’s local namespace
first, then the enclosing function’s namespace, then the global namespace and finally the
built-in namespace. This is sometimes referred to as the LEGB (local, enclosing, global,
built-in) rule.

Class Namespace
A class has a namespace in which its class attributes are stored. When you access a class
attribute, Python looks for that attribute first in the class’s namespace, then in the base
class’s namespace, and so on, until either it finds the attribute or it reaches class object. If
the attribute is not found, a NameError occurs.

Object Namespace
Each object has its own namespace containing the object’s methods and data attributes.
The class’s __init__ method starts with an empty object (self) and adds each attribute
to the object’s namespace. Once you define an attribute in an object’s namespace, clients
using the object may access the attribute’s value.

In [4]: y

NameError Traceback (most recent call last)
<ipython-input-4-9063a9f0e032> in <module>()
----> 1 y

NameError: name 'y' is not defined

In [5]: z
Out[5]: 'global z'

ptg27972259

10.16 Intro to Data Science: Time Series and Simple Linear Regression 293

10.16 Intro to Data Science: Time Series and Simple
Linear Regression
We’ve looked at sequences, such as lists, tuples and arrays. In this section, we’ll discuss
time series, which are sequences of values (called observations) associated with points in
time. Some examples are daily closing stock prices, hourly temperature readings, the
changing positions of a plane in flight, annual crop yields and quarterly company profits.
Perhaps the ultimate time series is the stream of time-stamped tweets coming from Twitter
users worldwide. In the “Data Mining Twitter” chapter, we’ll study Twitter data in depth.

In this section, we’ll use a technique called simple linear regression to make predic-
tions from time series data. We’ll use the 1895 through 2018 January average high tem-
peratures in New York City to predict future average January high temperatures and to
estimate the average January high temperatures for years preceding 1895.

In the “Machine Learning” chapter, we’ll revisit this example using the scikit-learn
library. In the “Deep Learning” chapter, we’ll use recurrent neural networks (RNNs) to ana-
lyze time series.

In later chapters, we’ll see that time series are popular in financial applications and
with the Internet of Things (IoT), which we’ll discuss in the “Big Data: Hadoop, Spark,
NoSQL and IoT” chapter.

In this section, we’ll display graphs with Seaborn and pandas, which both use Mat-
plotlib, so launch IPython with Matplotlib support:

ipython --matplotlib

Time Series
The data we’ll use is a time series in which the observations are ordered by year. Univariate
time series have one observation per time, such as the average of the January high tempera-
tures in New York City for a particular year. Multivariate time series have two or more
observations per time, such as temperature, humidity and barometric pressure readings in
a weather application. Here, we’ll analyze a univariate time series.

Two tasks often performed with time series are:

• Time series analysis, which looks at existing time series data for patterns, helping
data analysts understand the data. A common analysis task is to look for season-
ality in the data. For example, in New York City, the monthly average high tem-
perature varies significantly based on the seasons (winter, spring, summer or fall).

• Time series forecasting, which uses past data to predict the future.

We’ll perform time series forecasting in this section.

Simple Linear Regression
Using a technique called simple linear regression, we’ll make predictions by finding a lin-
ear relationship between the months (January of each year) and New York City’s average
January high temperatures. Given a collection of values representing an independent vari-
able (the month/year combination) and a dependent variable (the average high tempera-
ture for that month/year), simple linear regression describes the relationship between these
variables with a straight line, known as the regression line.

ptg27972259

294 Chapter 10 Object-Oriented Programming

Linear Relationships
To understand the general concept of a linear relationship, consider Fahrenheit and Cel-
sius temperatures. Given a Fahrenheit temperature, we can calculate the corresponding
Celsius temperature using the following formula:

c = 5 / 9 * (f - 32)

In this formula, f (the Fahrenheit temperature) is the independent variable, and c (the Cel-
sius temperature) is the dependent variable—each value of c depends on the value of f used
in the calculation.

Plotting Fahrenheit temperatures and their corresponding Celsius temperatures pro-
duces a straight line. To show this, let’s first create a lambda for the preceding formula and
use it to calculate the Celsius equivalents of the Fahrenheit temperatures 0–100 in 10-
degree increments. We store each Fahrenheit/Celsius pair as a tuple in temps:

Next, let’s place the data in a DataFrame, then use its plot method to display the lin-
ear relationship between the Fahrenheit and Celsius temperatures. The plot method’s
style keyword argument controls the data’s appearance. The period in the string '.-'
indicates that each point should appear as a dot, and the dash indicates that lines should
connect the dots. We manually set the y-axis label to 'Celsius' because the plot method
shows 'Celsius' only in the graph’s upper-left corner legend, by default.

In [1]: c = lambda f: 5 / 9 * (f - 32)

In [2]: temps = [(f, c(f)) for f in range(0, 101, 10)]

In [3]: import pandas as pd

In [4]: temps_df = pd.DataFrame(temps, columns=['Fahrenheit', 'Celsius'])

In [5]: axes = temps_df.plot(x='Fahrenheit', y='Celsius', style='.-')

In [6]: y_label = axes.set_ylabel('Celsius')

ptg27972259

10.16 Intro to Data Science: Time Series and Simple Linear Regression 295

Components of the Simple Linear Regression Equation
The points along any straight line (in two dimensions) like those shown in the preceding
graph can be calculated with the equation:

y = mx + b

where

• m is the line’s slope,

• b is the line’s intercept with the y-axis (at x = 0),

• x is the independent variable (the date in this example), and

• y is the dependent variable (the temperature in this example).

In simple linear regression, y is the predicted value for a given x.

Function linregress from the SciPy’s stats Module
Simple linear regression determines the slope (m) and intercept (b) of a straight line that
best fits your data. Consider the following diagram, which shows a few of the time-series
data points we’ll process in this section and a corresponding regression line. We added ver-
tical lines to indicate each data point’s distance from the regression line:

The simple linear regression algorithm iteratively adjusts the slope and intercept and, for
each adjustment, calculates the square of each point’s distance from the line. The “best fit”
occurs when the slope and intercept values minimize the sum of those squared distances.
This is known as an ordinary least squares calculation.20

The SciPy (Scientific Python) library is widely used for engineering, science and
math in Python. This library’s linregress function (from the scipy.stats module) per-
forms simple linear regression for you. After calling linregress, you’ll plug the resulting
slope and intercept into the y = mx + b equation to make predictions.

20. https://en.wikipedia.org/wiki/Ordinary_least_squares.

https://en.wikipedia.org/wiki/Ordinary_least_squares

ptg27972259

296 Chapter 10 Object-Oriented Programming

Pandas
In the three previous Intro to Data Science sections, you used pandas to work with data.
You’ll continue using pandas throughout the rest of the book. In this example, we’ll load
the data for New York City’s 1895–2018 average January high temperatures from a CSV
file into a DataFrame. We’ll then format the data for use in this example.

Seaborn Visualization
We’ll use Seaborn to plot the DataFrame’s data with a regression line that shows the aver-
age high-temperature trend over the period 1895–2018.

Getting Weather Data from NOAA
Let’s get the data for our study. The National Oceanic and Atmospheric Administration
(NOAA)21 offers lots of public historical data including time series for average high tem-
peratures in specific cities over various time intervals.

We obtained the January average high temperatures for New York City from 1895
through 2018 from NOAA’s “Climate at a Glance” time series at:

https://www.ncdc.noaa.gov/cag/

On that web page, you can select temperature, precipitation and other data for the entire
U.S., regions within the U.S., states, cities and more. Once you’ve set the area and time
frame, click Plot to display a diagram and view a table of the selected data. At the top of
that table are links for downloading the data in several formats including CSV, which we
discussed in the “Files and Exceptions” chapter. NOAA’s maximum date range available
at the time of this writing was 1895–2018. For your convenience, we provided the data in
the ch10 examples folder in the file ave_hi_nyc_jan_1895-2018.csv. If you download the
data on your own, delete the rows above the line containing "Date,Value,Anomaly".

This data contains three columns per observation:

• Date—A value of the form 'YYYYMM’ (such as '201801'). MM is always 01 because
we downloaded data for only January of each year.

• Value—A floating-point Fahrenheit temperature.

• Anomaly—The difference between the value for the given date and average values
for all dates. We do not use the Anomaly value in this example, so we’ll ignore it.

Loading the Average High Temperatures into a DataFrame
Let’s load and display the New York City data from ave_hi_nyc_jan_1895-2018.csv:

We can look at the DataFrame’s head and tail to get a sense of the data:

21. http://www.noaa.gov.

In [7]: nyc = pd.read_csv('ave_hi_nyc_jan_1895-2018.csv')

In [8]: nyc.head()
Out[8]:
 Date Value Anomaly
0 189501 34.2 -3.2
1 189601 34.7 -2.7
2 189701 35.5 -1.9
3 189801 39.6 2.2
4 189901 36.4 -1.0

https://www.ncdc.noaa.gov/cag/
http://www.noaa.gov

ptg27972259

10.16 Intro to Data Science: Time Series and Simple Linear Regression 297

Cleaning the Data
We’ll soon use Seaborn to graph the Date-Value pairs and a regression line. When plotting
data from a DataFrame, Seaborn labels a graph’s axes using the DataFrame’s column
names. For readability, let’s rename the 'Value' column as 'Temperature':

Seaborn labels the tick marks on the x-axis with Date values. Since this example pro-
cesses only January temperatures, the x-axis labels will be more readable if they do not con-
tain 01 (for January), we’ll remove it from each Date. First, let’s check the column’s type:

The values are integers, so we can divide by 100 to truncate the last two digits. Recall that
each column in a DataFrame is a Series. Calling Series method floordiv performs inte-
ger division on every element of the Series:

Calculating Basic Descriptive Statistics for the Dataset
For some quick statistics on the dataset’s temperatures, call describe on the Temperature
column. We can see that there are 124 observations, the mean value of the observations is
37.60, and the lowest and highest observations are 26.10 and 47.60 degrees, respectively:

In [9]: nyc.tail()
Out[9]:
 Date Value Anomaly
119 201401 35.5 -1.9
120 201501 36.1 -1.3
121 201601 40.8 3.4
122 201701 42.8 5.4
123 201801 38.7 1.3

In [10]: nyc.columns = ['Date', 'Temperature', 'Anomaly']

In [11]: nyc.head(3)
Out[11]:
 Date Temperature Anomaly
0 189501 34.2 -3.2
1 189601 34.7 -2.7
2 189701 35.5 -1.9

In [12]: nyc.Date.dtype
Out[12]: dtype('int64')

In [13]: nyc.Date = nyc.Date.floordiv(100)

In [14]: nyc.head(3)
Out[14]:
 Date Temperature Anomaly
0 1895 34.2 -3.2
1 1896 34.7 -2.7
2 1897 35.5 -1.9

In [15]: pd.set_option('precision', 2)

In [16]: nyc.Temperature.describe()
Out[16]:
count 124.00
mean 37.60
std 4.54

ptg27972259

298 Chapter 10 Object-Oriented Programming

Forecasting Future January Average High Temperatures
The SciPy (Scientific Python) library is widely used for engineering, science and math in
Python. Its stats module provides function linregress, which calculates a regression
line’s slope and intercept for a given set of data points:

Function linregress receives two one-dimensional arrays22 of the same length represent-
ing the data points’ x- and y-coordinates. The keyword arguments x and y represent the
independent and dependent variables, respectively. The object returned by linregress
contains the regression line’s slope and intercept:

We can use these values with the simple linear regression equation for a straight line,
y = mx + b, to predict the average January temperature in New York City for a given year.
Let’s predict the average Fahrenheit temperature for January of 2019. In the following cal-
culation, linear_regression.slope is m, 2019 is x (the date value for which you’d like to
predict the temperature), and linear_regression.intercept is b:

We also can approximate what the average temperature might have been in the years
before 1895. For example, let’s approximate the average temperature for January of 1890:

For this example, we had data for 1895–2018. You should expect that the further you go
outside this range, the less reliable the predictions will be.

Plotting the Average High Temperatures and a Regression Line
Next, let’s use Seaborn’s regplot function to plot each data point with the dates on the
x-axis and the temperatures on the y-axis. The regplot function creates the scatter plot or
scattergram below in which the scattered dots represent the Temperatures for the given
Dates, and the straight line displayed through the points is the regression line:

min 26.10
25% 34.58
50% 37.60
75% 40.60
max 47.60
Name: Temperature, dtype: float64

In [17]: from scipy import stats

In [18]: linear_regression = stats.linregress(x=nyc.Date,
 ...: y=nyc.Temperature)
 ...:

22. These arguments also can be one-dimensional array-like objects, such as lists or pandas Series.

In [19]: linear_regression.slope
Out[19]: 0.00014771361132966167

In [20]: linear_regression.intercept
Out[20]: 8.694845520062952

In [21]: linear_regression.slope * 2019 + linear_regression.intercept
Out[21]: 38.51837136113298

In [22]: linear_regression.slope * 1890 + linear_regression.intercept
Out[22]: 36.612865774980335

ptg27972259

10.16 Intro to Data Science: Time Series and Simple Linear Regression 299

First, close the prior Matplotlib window if you have not done so already—otherwise,
regplot will use the existing window that already contains a graph. Function regplot’s x
and y keyword arguments are one-dimensional arrays23 of the same length representing
the x-y coordinate pairs to plot. Recall that pandas automatically creates attributes for each
column name if the name can be a valid Python identifier:24

The regression line’s slope (lower at the left and higher at the right) indicates a warm-
ing trend over the last 124 years. In this graph, the y-axis represents a 21.5-degree tempera-
ture range between the minimum of 26.1 and the maximum of 47.6, so the data appears
to be spread significantly above and below the regression line, making it difficult to see the
linear relationship. This is a common issue in data analytics visualizations. When you have
axes that reflect different kinds of data (dates and temperatures in this case), how do you
reasonably determine their respective scales? In the preceding graph, this is purely an issue
of the graph’s height—Seaborn and Matplotlib auto-scale the axes, based on the data’s
range of values. We can scale the y-axis range of values to emphasize the linear relationship.
Here, we scaled the y-axis from a 21.5-degree range to a 60-degree range (from 10 to 70
degrees):

23. These arguments also can be one-dimensional array-like objects, such as lists or pandas Series.

In [23]: import seaborn as sns

In [24]: sns.set_style('whitegrid')

In [25]: axes = sns.regplot(x=nyc.Date, y=nyc.Temperature)

24. For readers with a more statistics background, the shaded area surrounding the regression line is the
95% confidence interval for the regression line (https://en.wikipedia.org/wiki/Simple_lin-
ear_regression#Confidence_intervals). To draw the diagram without a confidence interval, add
the keyword argument ci=None to the regplot function’s argument list.

In [26]: axes.set_ylim(10, 70)
Out[26]: (10, 70)

https://en.wikipedia.org/wiki/Simple_lin-ear_regression#Confidence_intervals
https://en.wikipedia.org/wiki/Simple_lin-ear_regression#Confidence_intervals

ptg27972259

300 Chapter 10 Object-Oriented Programming

Getting Time Series Datasets
Here are some popular sites where you can find time series to use in your studies:

Sources time-series dataset

https://data.gov/
This is the U.S. government’s open data portal. Searching for “time series” yields over 7200
time-series datasets.

https://www.ncdc.noaa.gov/cag/
The National Oceanic and Atmospheric Administration (NOAA) Climate at a Glance portal
provides both global and U.S. weather-related time series.

https://www.esrl.noaa.gov/psd/data/timeseries/
NOAA’s Earth System Research Laboratory (ESRL) portal provides monthly and seasonal cli-
mate-related time series.

https://www.quandl.com/search
Quandl provides hundreds of free financial-related time series, as well as fee-based time series.

https://datamarket.com/data/list/?q=provider:tsdl
The Time Series Data Library (TSDL) provides links to hundreds of time series datasets across
many industries.

http://archive.ics.uci.edu/ml/datasets.html
The University of California Irvine (UCI) Machine Learning Repository contains dozens of
time-series datasets for a variety of topics.

http://inforumweb.umd.edu/econdata/econdata.html
The University of Maryland’s EconData service provides links to thousands of economic time
series from various U.S. government agencies.

https://data.gov/
https://www.ncdc.noaa.gov/cag/
https://www.esrl.noaa.gov/psd/data/timeseries/
https://www.quandl.com/search
https://datamarket.com/data/list/?q=provider:tsdl
http://archive.ics.uci.edu/ml/datasets.html
http://inforumweb.umd.edu/econdata/econdata.html

ptg27972259

10.17 Wrap-Up 301

10.17 Wrap-Up
In this chapter, we discussed the details of crafting valuable classes. You saw how to define
a class, create objects of the class, access an object’s attributes and call its methods. You
defined the special method __init__ to create and initialize a new object’s data attributes.

We discussed controlling access to attributes and using properties. We showed that all
object attributes may be accessed directly by a client. We discussed identifiers with single
leading underscores (_), which indicate attributes that are not meant to be accessed by cli-
ent code. We showed how to implement “private” attributes via the double-leading-
underscore (__) naming convention, which tells Python to mangle an attribute’s name.

We implemented a card shuffling and dealing simulation consisting of a Card class
and a DeckOfCards class that maintained a list of Cards, and displayed the deck both as
strings and as card images using Matplotlib. We introduced special methods __repr__,
__str__ and __format__ for creating string representations of objects.

Next, we looked at Python’s capabilities for creating base classes and subclasses. We
showed how to create a subclass that inherits many of its capabilities from its superclass,
then adds more capabilities, possibly by overriding the base class’s methods. We created a
list containing both base class and subclass objects to demonstrate Python’s polymorphic
programming capabilities.

We introduced operator overloading for defining how Python’s built-in operators
work with objects of custom class types. You saw that overloaded operator methods are
implemented by overriding various special methods that all classes inherit from class
object. We discussed the Python exception class hierarchy and creating custom exception
classes.

We showed how to create a named tuple that enables you to access tuple elements via
attribute names rather than index numbers. Next, we introduced Python 3.7’s new data
classes, which can autogenerate various boilerplate code commonly provided in class defi-
nitions, such as the __init__, __repr__ and __eq__ special methods.

You saw how to write unit tests for your code in docstrings, then execute those tests
conveniently via the doctest module’s testmod function. Finally, we discussed the various
namespaces that Python uses to determine the scopes of identifiers.

In the next part of the book, we present a series of implementation case studies that
use a mix of AI and big-data technologies. We explore natural language processing, data
mining Twitter, IBM Watson and cognitive computing, supervised and unsupervised
machine learning, and deep learning with convolutional neural networks and recurrent
neural networks. We discuss big-data software and hardware infrastructure, including
NoSQL databases, Hadoop and Spark with a major emphasis on performance. You’re
about to see some really cool stuff!

ptg27972259

This page intentionally left blank

ptg27972259

11
Natural Language
Processing (NLP)

O b j e c t i v e s
In this chapter you’ll:
■ Perform natural language processing (NLP) tasks, which are

fundamental to many of the forthcoming data science case
study chapters.

■ Run lots of NLP demos.
■ Use the TextBlob, NLTK, Textatistic and spaCy NLP libraries

and their pretrained models to perform various NLP tasks.
■ Tokenize text into words and sentences.
■ Use parts-of-speech tagging.
■ Use sentiment analysis to determine whether text is positive,

negative or neutral.
■ Detect the language of text and translate between languages

using TextBlob’s Google Translate support.
■ Get word roots via stemming and lemmatization.
■ Use TextBlob’s spell checking and correction capabilities.
■ Get word definitions, synonyms and antonyms.
■ Remove stop words from text.
■ Create word clouds.
■ Determine text readability with Textatistic.
■ Use the spaCy library for named entity recognition and

similarity detection.

ptg27972259

304 Chapter 11 Natural Language Processing (NLP)
O

u
tl

in
e

11.1 Introduction
Your alarm wakes you, and you hit the “Alarm Off” button. You reach for your smart-
phone and read your text messages and check the latest news clips. You listen to TV hosts
interviewing celebrities. You speak to family, friends and colleagues and listen to their
responses. You have a hearing-impaired friend with whom you communicate via sign lan-
guage and who enjoys close-captioned video programs. You have a blind colleague who
reads braille, listens to books being read by a computerized book reader and listens to a
screen reader speak about what’s on his computer screen. You read emails, distinguishing
junk from important communications and send email. You read novels or works of non-
fiction. You drive, observing road signs like “Stop,” “Speed Limit 35” and “Road Under
Construction.” You give your car verbal commands, like “call home,” “play classical music”
or ask questions like, “Where’s the nearest gas station?” You teach a child how to speak and
read. You send a sympathy card to a friend. You read books. You read newspapers and mag-
azines. You take notes during a class or meeting. You learn a foreign language to prepare
for travel abroad. You receive a client email in Spanish and run it through a free translation
program. You respond in English knowing that your client can easily translate your email
back to Spanish. You are uncertain about the language of an email, but language detection
software instantly figures that out for you and translates the email to English.

These are examples of natural language communications in text, voice, video, sign lan-
guage, braille and other forms with languages like English, Spanish, French, Russian, Chi-
nese, Japanese and hundreds more. In this chapter, you’ll master many natural language
processing (NLP) capabilities through a series of hands-on demos and IPython sessions.
You’ll use many of these NLP capabilities in the upcoming data science case study chapters.

Natural language processing is performed on text collections, composed of Tweets,
Facebook posts, conversations, movie reviews, Shakespeare’s plays, historic documents,

11.1 Introduction
11.2 TextBlob

11.2.1 Create a TextBlob
11.2.2 Tokenizing Text into Sentences and

Words
11.2.3 Parts-of-Speech Tagging
11.2.4 Extracting Noun Phrases
11.2.5 Sentiment Analysis with TextBlob’s

Default Sentiment Analyzer
11.2.6 Sentiment Analysis with the

NaiveBayesAnalyzer
11.2.7 Language Detection and Translation
11.2.8 Inflection: Pluralization and

Singularization
11.2.9 Spell Checking and Correction

11.2.10 Normalization: Stemming and
Lemmatization

11.2.11 Word Frequencies
11.2.12 Getting Definitions, Synonyms and

Antonyms from WordNet
11.2.13 Deleting Stop Words
11.2.14 n-grams

11.3 Visualizing Word Frequencies with
Bar Charts and Word Clouds

11.3.1 Visualizing Word Frequencies with
Pandas

11.3.2 Visualizing Word Frequencies with
Word Clouds

11.4 Readability Assessment with
Textatistic

11.5 Named Entity Recognition with
spaCy

11.6 Similarity Detection with spaCy
11.7 Other NLP Libraries and Tools
11.8 Machine Learning and Deep Learning

Natural Language Applications
11.9 Natural Language Datasets

11.10 Wrap-Up

ptg27972259

11.2 TextBlob 305

news items, meeting logs, and so much more. A text collection is known as a corpus, the
plural of which is corpora.

Natural language lacks mathematical precision. Nuances of meaning make natural
language understanding difficult. A text’s meaning can be influenced by its context and
the reader’s “world view.” Search engines, for example, can get to “know you” through
your prior searches. The upside is better search results. The downside could be invasion of
privacy.

11.2 TextBlob1
TextBlob is an object-oriented NLP text-processing library that is built on the NLTK and
pattern NLP libraries and simplifies many of their capabilities. Some of the NLP tasks
TextBlob can perform include:

• Tokenization—splitting text into pieces called tokens, which are meaningful
units, such as words and numbers.

• Parts-of-speech (POS) tagging—identifying each word’s part of speech, such as
noun, verb, adjective, etc.

• Noun phrase extraction—locating groups of words that represent nouns, such as
“red brick factory.”2

• Sentiment analysis—determining whether text has positive, neutral or negative
sentiment.

• Inter-language translation and language detection powered by Google Trans-
late.

• Inflection3—pluralizing and singularizing words. There are other aspects of
inflection that are not part of TextBlob.

• Spell checking and spelling correction.

• Stemming—reducing words to their stems by removing prefixes or suffixes. For
example, the stem of “varieties” is “varieti.”

• Lemmatization—like stemming, but produces real words based on the original
words’ context. For example, the lemmatized form of “varieties” is “variety.”

• Word frequencies—determining how often each word appears in a corpus.

• WordNet integration for finding word definitions, synonyms and antonyms.

• Stop word elimination—removing common words, such as a, an, the, I, we, you
and more to analyze the important words in a corpus.

• n-grams—producing sets of consecutive words in a corpus for use in identifying
words that frequently appear adjacent to one another.

1. https://textblob.readthedocs.io/en/latest/.
2. The phrase “red brick factory” illustrates why natural language is such a difficult subject. Is a “red

brick factory” a factory that makes red bricks? Is it a red factory that makes bricks of any color? Is it
a factory built of red bricks that makes products of any type? In today’s music world, it could even
be the name of a rock band or the name of a game on your smartphone.

3. https://en.wikipedia.org/wiki/Inflection.

https://textblob.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Inflection

ptg27972259

306 Chapter 11 Natural Language Processing (NLP)

Many of these capabilities are used as part of more complex NLP tasks. In this section,
we’ll perform these NLP tasks using TextBlob and NLTK.

Installing the TextBlob Module
To install TextBlob, open your Anaconda Prompt (Windows), Terminal (macOS/Linux)
or shell (Linux), then execute the following command:

conda install -c conda-forge textblob

Windows users might need to run the Anaconda Prompt as an Administrator for proper
software installation privileges. To do so, right-click Anaconda Prompt in the start menu
and select More > Run as administrator.

Once installation completes, execute the following command to download the NLTK
corpora used by TextBlob:

ipython -m textblob.download_corpora

These include:

• The Brown Corpus (created at Brown University4) for parts-of-speech tagging.

• Punkt for English sentence tokenization.

• WordNet for word definitions, synonyms and antonyms.

• Averaged Perceptron Tagger for parts-of-speech tagging.

• conll2000 for breaking text into components, like nouns, verbs, noun phrases
and more—known as chunking the text. The name conll2000 is from the con-
ference that created the chunking data—Conference on Computational Natural
Language Learning.

• Movie Reviews for sentiment analysis.

Project Gutenberg
A great source of text for analysis is the free e-books at Project Gutenberg:

https://www.gutenberg.org

The site contains over 57,000 e-books in various formats, including plain text files. These
are out of copyright in the United States. For information about Project Gutenberg’s
Terms of Use and copyright in other countries, see:

https://www.gutenberg.org/wiki/Gutenberg:Terms_of_Use

In some of this section’s examples, we use the plain-text e-book file for Shakespeare’s
Romeo and Juliet, which you can find at:

https://www.gutenberg.org/ebooks/1513

Project Gutenberg does not allow programmatic access to its e-books. You’re required to
copy the books for that purpose.5 To download Romeo and Juliet as a plain-text e-book,
right click the Plain Text UTF-8 link on the book’s web page, then select Save Link As…
(Chrome/FireFox), Download Linked File As… (Safari) or Save target as (Microsoft Edge)
option to save the book to your system. Save it as RomeoAndJuliet.txt in the ch11 exam-

4. https://en.wikipedia.org/wiki/Brown_Corpus.
5. https://www.gutenberg.org/wiki/Gutenberg:Information_About_Robot_Access_to_our_Pages.

https://www.gutenberg.org
https://www.gutenberg.org/wiki/Gutenberg:Terms_of_Use
https://www.gutenberg.org/ebooks/1513
https://en.wikipedia.org/wiki/Brown_Corpus
https://www.gutenberg.org/wiki/Gutenberg:Information_About_Robot_Access_to_our_Pages

ptg27972259

11.2 TextBlob 307

ples folder to ensure that our code examples will work correctly. For analysis purposes, we
removed the Project Gutenberg text before "THE TRAGEDY OF ROMEO AND JULIET", as well
as the Project Guttenberg information at the end of the file starting with:

End of the Project Gutenberg EBook of Romeo and Juliet,
by William Shakespeare

11.2.1 Create a TextBlob
TextBlob6 is the fundamental class for NLP with the textblob module. Let’s create a
TextBlob containing two sentences:

TextBlobs—and, as you’ll see shortly, Sentences and Words—support string methods and
can be compared with strings. They also provide methods for various NLP tasks. Sen-
tences, Words and TextBlobs inherit from BaseBlob, so they have many common methods
and properties.

11.2.2 Tokenizing Text into Sentences and Words
Natural language processing often requires tokenizing text before performing other NLP
tasks. TextBlob provides convenient properties for accessing the sentences and words in
TextBlobs. Let’s use the sentence property to get a list of Sentence objects:

The words property returns a WordList object containing a list of Word objects, rep-
resenting each word in the TextBlob with the punctuation removed:

11.2.3 Parts-of-Speech Tagging
Parts-of-speech (POS) tagging is the process of evaluating words based on their context
to determine each word’s part of speech. There are eight primary English parts of speech—
nouns, pronouns, verbs, adjectives, adverbs, prepositions, conjunctions and interjections
(words that express emotion and that are typically followed by punctuation, like “Yes!” or
“Ha!”). Within each category there are many subcategories.

6. http://textblob.readthedocs.io/en/latest/api_reference.html#textblob.blob.TextBlob.

In [1]: from textblob import TextBlob

In [2]: text = 'Today is a beautiful day. Tomorrow looks like bad weather.'

In [3]: blob = TextBlob(text)

In [4]: blob
Out[4]: TextBlob("Today is a beautiful day. Tomorrow looks like bad
weather.")

In [5]: blob.sentences
Out[5]:
[Sentence("Today is a beautiful day."),
 Sentence("Tomorrow looks like bad weather.")]

In [6]: blob.words
Out[6]: WordList(['Today', 'is', 'a', 'beautiful', 'day', 'Tomorrow',
'looks', 'like', 'bad', 'weather'])

http://textblob.readthedocs.io/en/latest/api_reference.html#textblob.blob.TextBlob

ptg27972259

308 Chapter 11 Natural Language Processing (NLP)

Some words have multiple meanings. For example, the words “set” and “run” have
hundreds of meanings each! If you look at the dictionary.com definitions of the word
“run,” you’ll see that it can be a verb, a noun, an adjective or a part of a verb phrase. An
important use of POS tagging is determining a word’s meaning among its possibly many
meanings. This is important for helping computers “understand” natural language.

The tags property returns a list of tuples, each containing a word and a string repre-
senting its part-of-speech tag:

By default, TextBlob uses a PatternTagger to determine parts-of-speech. This class uses
the parts-of-speech tagging capabilities of the pattern library:

https://www.clips.uantwerpen.be/pattern

You can view the library’s 63 parts-of-speech tags at

https://www.clips.uantwerpen.be/pages/MBSP-tags

In the preceding snippet’s output:

• Today, day and weather are tagged as NN—a singular noun or mass noun.

• is and looks are tagged as VBZ—a third person singular present verb.

• a is tagged as DT—a determiner.7

• beautiful and bad are tagged as JJ—an adjective.

• Tomorrow is tagged as NNP—a proper singular noun.

• like is tagged as IN—a subordinating conjunction or preposition.

11.2.4 Extracting Noun Phrases
Let’s say you’re preparing to purchase a water ski so you’re researching them online. You
might search for “best water ski.” In this case, “water ski” is a noun phrase. If the search
engine does not parse the noun phrase properly, you probably will not get the best search
results. Go online and try searching for “best water,” “best ski” and “best water ski” and
see what you get.

In [7]: blob
Out[7]: TextBlob("Today is a beautiful day. Tomorrow looks like bad
weather.")

In [8]: blob.tags
Out[8]:
[('Today', 'NN'),
 ('is', 'VBZ'),
 ('a', 'DT'),
 ('beautiful', 'JJ'),
 ('day', 'NN'),
 ('Tomorrow', 'NNP'),
 ('looks', 'VBZ'),
 ('like', 'IN'),
 ('bad', 'JJ'),
 ('weather', 'NN')]

7. https://en.wikipedia.org/wiki/Determiner.

http://dictionary.com
https://www.clips.uantwerpen.be/pattern
https://www.clips.uantwerpen.be/pages/MBSP-tags
https://en.wikipedia.org/wiki/Determiner

ptg27972259

11.2 TextBlob 309

A TextBlob’s noun_phrases property returns a WordList object containing a list of
Word objects—one for each noun phrase in the text:

Note that a Word representing a noun phrase can contain multiple words. A WordList is
an extension of Python’s built-in list type. WordLists provide additional methods for
stemming, lemmatizing, singularizing and pluralizing.

11.2.5 Sentiment Analysis with TextBlob’s Default Sentiment Analyzer
One of the most common and valuable NLP tasks is sentiment analysis, which determines
whether text is positive, neutral or negative. For instance, companies might use this to
determine whether people are speaking positively or negatively online about their prod-
ucts. Consider the positive word “good” and the negative word “bad.” Just because a sen-
tence contains “good” or “bad” does not mean the sentence’s sentiment necessarily is
positive or negative. For example, the sentence

The food is not good.

clearly has negative sentiment. Similarly, the sentence

The movie was not bad.

clearly has positive sentiment, though perhaps not as positive as something like

The movie was excellent!

Sentiment analysis is a complex machine-learning problem. However, libraries like
TextBlob have pretrained machine learning models for performing sentiment analysis.

Getting the Sentiment of a TextBlob
A TextBlob’s sentiment property returns a Sentiment object indicating whether the text
is positive or negative and whether it’s objective or subjective:

In the preceding output, the polarity indicates sentiment with a value from -1.0 (nega-
tive) to 1.0 (positive) with 0.0 being neutral. The subjectivity is a value from 0.0
(objective) to 1.0 (subjective). Based on the values for our TextBlob, the overall sentiment
is close to neutral, and the text is mostly subjective.

Getting the polarity and subjectivity from the Sentiment Object
The values displayed above probably provide more precision that you need in most cases.
This can detract from numeric output’s readability. The IPython magic %precision
allows you to specify the default precision for standalone float objects and float objects

In [9]: blob
Out[9]: TextBlob("Today is a beautiful day. Tomorrow looks like bad
weather.")

In [10]: blob.noun_phrases
Out[10]: WordList(['beautiful day', 'tomorrow', 'bad weather'])

In [11]: blob
Out[11]: TextBlob("Today is a beautiful day. Tomorrow looks like bad
weather.")

In [12]: blob.sentiment
Out[12]: Sentiment(polarity=0.07500000000000007,
subjectivity=0.8333333333333333)

ptg27972259

310 Chapter 11 Natural Language Processing (NLP)

in built-in types like lists, dictionaries and tuples. Let’s use the magic to round the polarity
and subjectivity values to three digits to the right of the decimal point:

Getting the Sentiment of a Sentence
You also can get the sentiment at the individual sentence level. Let’s use the sentence
property to get a list of Sentence8 objects, then iterate through them and display each Sen-
tence’s sentiment property:

This might explain why the entire TextBlob’s sentiment is close to 0.0 (neutral)—one
sentence is positive (0.85) and the other negative (-0.6999999999999998).

11.2.6 Sentiment Analysis with the NaiveBayesAnalyzer
By default, a TextBlob and the Sentences and Words you get from it determine sentiment
using a PatternAnalyzer, which uses the same sentiment analysis techniques as in the Pat-
tern library. The TextBlob library also comes with a NaiveBayesAnalyzer9 (module text-
blob.sentiments), which was trained on a database of movie reviews. Naive Bayes10 is a
commonly used machine learning text-classification algorithm. The following uses the
analyzer keyword argument to specify a TextBlob’s sentiment analyzer. Recall from ear-
lier in this ongoing IPython session that text contains 'Today is a beautiful day.
Tomorrow looks like bad weather.':

Let’s use the TextBlob’s sentiment property to display the text’s sentiment using the
NaiveBayesAnalyzer:

In [13]: %precision 3
Out[13]: '%.3f'

In [14]: blob.sentiment.polarity
Out[14]: 0.075

In [15]: blob.sentiment.subjectivity
Out[15]: 0.833

8. http://textblob.readthedocs.io/en/latest/api_reference.html#textblob.blob.Sentence.

In [16]: for sentence in blob.sentences:
 ...: print(sentence.sentiment)
 ...:
Sentiment(polarity=0.85, subjectivity=1.0)
Sentiment(polarity=-0.6999999999999998, subjectivity=0.6666666666666666)

9. https://textblob.readthedocs.io/en/latest/api_reference.html#module-

textblob.en.sentiments.
10. https://en.wikipedia.org/wiki/Naive_Bayes_classifier.

In [17]: from textblob.sentiments import NaiveBayesAnalyzer

In [18]: blob = TextBlob(text, analyzer=NaiveBayesAnalyzer())

In [19]: blob
Out[19]: TextBlob("Today is a beautiful day. Tomorrow looks like bad
weather.")

In [20]: blob.sentiment
Out[20]: Sentiment(classification='neg', p_pos=0.47662917962091056,
p_neg=0.5233708203790892)

http://textblob.readthedocs.io/en/latest/api_reference.html#textblob.blob.Sentence
https://textblob.readthedocs.io/en/latest/api_reference.html#module-textblob.en.sentiments
https://textblob.readthedocs.io/en/latest/api_reference.html#module-textblob.en.sentiments
https://en.wikipedia.org/wiki/Naive_Bayes_classifier

ptg27972259

11.2 TextBlob 311

In this case, the overall sentiment is classified as negative (classification='neg'). The
Sentiment object’s p_pos indicates that the TextBlob is 47.66% positive, and its p_neg
indicates that the TextBlob is 52.34% negative. Since the overall sentiment is just slightly
more negative we’d probably view this TextBlob’s sentiment as neutral overall.

Now, let’s get the sentiment of each Sentence:

Notice that rather than polarity and subjectivity, the Sentiment objects we get from
the NaiveBayesAnalyzer contain a classification—'pos' (positive) or 'neg' (negative)—
and p_pos (percentage positive) and p_neg (percentage negative) values from 0.0 to 1.0.
Once again, we see that the first sentence is positive and the second is negative.

11.2.7 Language Detection and Translation
Inter-language translation is a challenging problem in natural language processing and
artificial intelligence. With advances in machine learning, artificial intelligence and natural
language processing, services like Google Translate (100+ languages) and Microsoft Bing
Translator (60+ languages) can translate between languages instantly.

Inter-language translation also is great for people traveling to foreign countries. They
can use translation apps to translate menus, road signs and more. There are even efforts at
live speech translation so that you’ll be able to converse in real time with people who do
not know your natural language.11,12 Some smartphones, can now work together with in-
ear headphones to provide near-live translation of many languages.13,14,15 In the “IBM
Watson and Cognitive Computing” chapter, we develop a script that does near real-time
inter-language translation among languages supported by Watson.

The TextBlob library uses Google Translate to detect a text’s language and translate
TextBlobs, Sentences and Words into other languages.16 Let’s use detect_language
method to detect the language of the text we’re manipulating ('en' is English):

In [21]: for sentence in blob.sentences:
 ...: print(sentence.sentiment)
 ...:
Sentiment(classification='pos', p_pos=0.8117563121751951,
p_neg=0.18824368782480477)
Sentiment(classification='neg', p_pos=0.174363226578349,
p_neg=0.8256367734216521)

11. https://www.skype.com/en/features/skype-translator/.
12. https://www.microsoft.com/en-us/translator/business/live/.
13. https://www.telegraph.co.uk/technology/2017/10/04/googles-new-headphones-can-

translate-foreign-languages-real/.
14. https://store.google.com/us/product/google_pixel_buds?hl=en-US.
15. http://www.chicagotribune.com/bluesky/originals/ct-bsi-google-pixel-buds-review-

20171115-story.html.
16. These features require an Internet connection.

In [22]: blob
Out[22]: TextBlob("Today is a beautiful day. Tomorrow looks like bad
weather.")

In [23]: blob.detect_language()
Out[23]: 'en'

https://www.skype.com/en/features/skype-translator/
https://www.microsoft.com/en-us/translator/business/live/
https://www.telegraph.co.uk/technology/2017/10/04/googles-new-headphones-can-translate-foreign-languages-real/
https://www.telegraph.co.uk/technology/2017/10/04/googles-new-headphones-can-translate-foreign-languages-real/
https://store.google.com/us/product/google_pixel_buds?hl=en-US
http://www.chicagotribune.com/bluesky/originals/ct-bsi-google-pixel-buds-review-20171115-story.html
http://www.chicagotribune.com/bluesky/originals/ct-bsi-google-pixel-buds-review-20171115-story.html

ptg27972259

312 Chapter 11 Natural Language Processing (NLP)

Next, let’s use the translate method to translate the text to Spanish ('es') then
detect the language on the result. The to keyword argument specifies the target language.

Next, let’s translate our TextBlob to simplified Chinese (specified as 'zh' or 'zh-CN')
then detect the language on the result:

Method detect_language’s output always shows simplified Chinese as 'zh-CN', even
though the translate function can receive simplified Chinese as 'zh' or 'zh-CN'.

In each of the preceding cases, Google Translate automatically detects the source lan-
guage. You can specify a source language explicitly by passing the from_lang keyword
argument to the translate method, as in

chinese = blob.translate(from_lang='en', to='zh')

Google Translate uses iso-639-117 language codes listed at

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

For the supported languages, you’d use these codes as the values of the from_lang and to
keyword arguments. Google Translate’s list of supported languages is at:

https://cloud.google.com/translate/docs/languages

Calling translate without arguments translates from the detected source language to
English:

Note the slight difference in the English results.

11.2.8 Inflection: Pluralization and Singularization
Inflections are different forms of the same words, such as singular and plural (like “person”
and “people”) and different verb tenses (like “run” and “ran”). When you’re calculating
word frequencies, you might first want to convert all inflected words to the same form for

In [24]: spanish = blob.translate(to='es')

In [25]: spanish
Out[25]: TextBlob("Hoy es un hermoso dia. Mañana parece mal tiempo.")

In [26]: spanish.detect_language()
Out[26]: 'es'

In [27]: chinese = blob.translate(to='zh')

In [28]: chinese
Out[28]: TextBlob(" ")

In [29]: chinese.detect_language()
Out[29]: 'zh-CN'

17. ISO is the International Organization for Standardization (https://www.iso.org/).

In [30]: spanish.translate()
Out[30]: TextBlob("Today is a beautiful day. Tomorrow seems like bad
weather.")

In [31]: chinese.translate()
Out[31]: TextBlob("Today is a beautiful day. Tomorrow looks like bad
weather.")

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://cloud.google.com/translate/docs/languages
https://www.iso.org/

ptg27972259

11.2 TextBlob 313

more accurate word frequencies. Words and WordLists each support converting words to
their singular or plural forms. Let’s pluralize and singularize a couple of Word objects:

Pluralizing and singularizing are sophisticated tasks which, as you can see above, are
not as simple as adding or removing an “s” or “es” at the end of a word.

You can do the same with a WordList:

Note that the word “fish” is the same in both its singular and plural forms.

11.2.9 Spell Checking and Correction
For natural language processing tasks, it’s important that the text be free of spelling errors.
Software packages for writing and editing text, like Microsoft Word, Google Docs and
others automatically check your spelling as you type and typically display a red line under
misspelled words. Other tools enable you to manually invoke a spelling checker.

You can check a Word’s spelling with its spellcheck method, which returns a list of
tuples containing possible correct spellings and a confidence value. Let’s assume we meant
to type the word “they” but we misspelled it as “theyr.” The spell checking results show
two possible corrections with the word 'they' having the highest confidence value:

Note that the word with the highest confidence value might not be the correct word for
the given context.

TextBlobs, Sentences and Words all have a correct method that you can call to cor-
rect spelling. Calling correct on a Word returns the correctly spelled word that has the
highest confidence value (as returned by spellcheck):

In [1]: from textblob import Word

In [2]: index = Word('index')

In [3]: index.pluralize()
Out[3]: 'indices'

In [4]: cacti = Word('cacti')

In [5]: cacti.singularize()
Out[5]: 'cactus'

In [6]: from textblob import TextBlob

In [7]: animals = TextBlob('dog cat fish bird').words

In [8]: animals.pluralize()
Out[8]: WordList(['dogs', 'cats', 'fish', 'birds'])

In [1]: from textblob import Word

In [2]: word = Word('theyr')

In [3]: %precision 2
Out[3]: '%.2f'

In [4]: word.spellcheck()
Out[4]: [('they', 0.57), ('their', 0.43)]

In [5]: word.correct() # chooses word with the highest confidence value
Out[5]: 'they'

ptg27972259

314 Chapter 11 Natural Language Processing (NLP)

Calling correct on a TextBlob or Sentence checks the spelling of each word. For each
incorrect word, correct replaces it with the correctly spelled one that has the highest con-
fidence value:

11.2.10 Normalization: Stemming and Lemmatization
Stemming removes a prefix or suffix from a word leaving only a stem, which may or may
not be a real word. Lemmatization is similar, but factors in the word’s part of speech and
meaning and results in a real word.

Stemming and lemmatization are normalization operations, in which you prepare
words for analysis. For example, before calculating statistics on words in a body of text,
you might convert all words to lowercase so that capitalized and lowercase words are not
treated differently. Sometimes, you might want to use a word’s root to represent the word’s
many forms. For example, in a given application, you might want to treat all of the fol-
lowing words as “program”: program, programs, programmer, programming and pro-
grammed (and perhaps U.K. English spellings, like programmes as well).

Words and WordLists each support stemming and lemmatization via the methods
stem and lemmatize. Let’s use both on a Word:

11.2.11 Word Frequencies
Various techniques for detecting similarity between documents rely on word frequencies.
As you’ll see here, TextBlob automatically counts word frequencies. First, let’s load the e-
book for Shakespeare’s Romeo and Juliet into a TextBlob. To do so, we’ll use the Path class
from the Python Standard Library’s pathlib module:

Use the file RomeoAndJuliet.txt18 that you downloaded earlier. We assume here that you
started your IPython session from that folder. When you read a file with Path’s read_text
method, it closes the file immediately after it finishes reading the file.

In [6]: from textblob import Word

In [7]: sentence = TextBlob('Ths sentense has missplled wrds.')

In [8]: sentence.correct()
Out[8]: TextBlob("The sentence has misspelled words.")

In [1]: from textblob import Word

In [2]: word = Word('varieties')

In [3]: word.stem()
Out[3]: 'varieti'

In [4]: word.lemmatize()
Out[4]: 'variety'

In [1]: from pathlib import Path

In [2]: from textblob import TextBlob

In [3]: blob = TextBlob(Path('RomeoAndJuliet.txt').read_text())

18. Each Project Gutenberg e-book includes additional text, such as their licensing information, that’s
not part of the e-book itself. For this example, we used a text editor to remove that text from our copy
of the e-book.

ptg27972259

11.2 TextBlob 315

You can access the word frequencies through the TextBlob’s word_counts dictionary.
Let’s get the counts of several words in the play:

If you already have tokenized a TextBlob into a WordList, you can count specific
words in the list via the count method:

11.2.12 Getting Definitions, Synonyms and Antonyms from WordNet
WordNet19 is a word database created by Princeton University. The TextBlob library uses
the NLTK library’s WordNet interface, enabling you to look up word definitions, and get
synonyms and antonyms. For more information, check out the NLTK WordNet interface
documentation at:

https://www.nltk.org/api/nltk.corpus.reader.html#module-
nltk.corpus.reader.wordnet

Getting Definitions
First, let’s create a Word:

The Word class’s definitions property returns a list of all the word’s definitions in
the WordNet database:

The database does not necessarily contain every dictionary definition of a given word.
There’s also a define method that enables you to pass a part of speech as an argument so
you can get definitions matching only that part of speech.

Getting Synonyms
You can get a Word’s synsets—that is, its sets of synonyms—via the synsets property. The
result is a list of Synset objects:

In [4]: blob.word_counts['juliet']
Out[4]: 190

In [5]: blob.word_counts['romeo']
Out[5]: 315

In [6]: blob.word_counts['thou']
Out[6]: 278

In [7]: blob.words.count('joy')
Out[7]: 14

In [8]: blob.noun_phrases.count('lady capulet')
Out[8]: 46

19. https://wordnet.princeton.edu/.

In [1]: from textblob import Word

In [2]: happy = Word('happy')

In [3]: happy.definitions
Out[3]:
['enjoying or showing or marked by joy or pleasure',
 'marked by good fortune',
 'eagerly disposed to act or to be of service',
 'well expressed and to the point']

https://www.nltk.org/api/nltk.corpus.reader.html#module-nltk.corpus.reader.wordnet
https://www.nltk.org/api/nltk.corpus.reader.html#module-nltk.corpus.reader.wordnet
https://wordnet.princeton.edu/

ptg27972259

316 Chapter 11 Natural Language Processing (NLP)

Each Synset represents a group of synonyms. In the notation happy.a.01:

• happy is the original Word’s lemmatized form (in this case, it’s the same).

• a is the part of speech, which can be a for adjective, n for noun, v for verb, r for
adverb or s for adjective satellite. Many adjective synsets in WordNet have satel-
lite synsets that represent similar adjectives.

• 01 is a 0-based index number. Many words have multiple meanings, and this is
the index number of the corresponding meaning in the WordNet database.

There’s also a get_synsets method that enables you to pass a part of speech as an argu-
ment so you can get Synsets matching only that part of speech.

You can iterate through the synsets list to find the original word’s synonyms. Each
Synset has a lemmas method that returns a list of Lemma objects representing the syn-
onyms. A Lemma’s name method returns the synonymous word as a string. In the following
code, for each Synset in the synsets list, the nested for loop iterates through that Syn-
set’s Lemmas (if any). Then we add the synonym to the set named synonyms. We used a
set collection because it automatically eliminates any duplicates we add to it:

Getting Antonyms
If the word represented by a Lemma has antonyms in the WordNet database, invoking the
Lemma’s antonyms method returns a list of Lemmas representing the antonyms (or an empty
list if there are no antonyms in the database). In snippet [4] you saw there were four Syn-
sets for 'happy'. First, let’s get the Lemmas for the Synset at index 0 of the synsets list:

In this case, lemmas returned a list of one Lemma element. We can now check whether the
database has any corresponding antonyms for that Lemma:

The result is list of Lemmas representing the antonym(s). Here, we see that the one antonym
for 'happy' in the database is 'unhappy'.

In [4]: happy.synsets
Out[4]:
[Synset('happy.a.01'),
 Synset('felicitous.s.02'),
 Synset('glad.s.02'),
 Synset('happy.s.04')]

In [5]: synonyms = set()

In [6]: for synset in happy.synsets:
 ...: for lemma in synset.lemmas():
 ...: synonyms.add(lemma.name())
 ...:

In [7]: synonyms
Out[7]: {'felicitous', 'glad', 'happy', 'well-chosen'}

In [8]: lemmas = happy.synsets[0].lemmas()

In [9]: lemmas
Out[9]: [Lemma('happy.a.01.happy')]

In [10]: lemmas[0].antonyms()
Out[10]: [Lemma('unhappy.a.01.unhappy')]

ptg27972259

11.2 TextBlob 317

11.2.13 Deleting Stop Words
Stop words are common words in text that are often removed from text before analyzing
it because they typically do not provide useful information. The following table shows
NLTK’s list of English stop words, which is returned by the NLTK stopwords module’s
words function20 (which we’ll use momentarily):

The NLTK library has lists of stop words for several other natural languages as well.
Before using NLTK’s stop-words lists, you must download them, which you do with the
nltk module’s download function:

For this example, we’ll load the 'english' stop words list. First import stopwords
from the nltk.corpus module, then use stopwords method words to load the 'english'
stop words list:

Next, let’s create a TextBlob from which we’ll remove stop words:

NLTK’s English stop words list

['a', 'about', 'above', 'after', 'again', 'against', 'ain', 'all', 'am', 'an', 'and',

'any', 'are', 'aren', "aren't", 'as', 'at', 'be', 'because', 'been', 'before', 'being',

'below', 'between', 'both', 'but', 'by', 'can', 'couldn', "couldn't", 'd', 'did', 'didn',

"didn't", 'do', 'does', 'doesn', "doesn't", 'doing', 'don', "don't", 'down', 'during',

'each', 'few', 'for', 'from', 'further', 'had', 'hadn', "hadn't", 'has', 'hasn', "hasn't",

'have', 'haven', "haven't", 'having', 'he', 'her', 'here', 'hers', 'herself', 'him', 'him-

self', 'his', 'how', 'i', 'if', 'in', 'into', 'is', 'isn', "isn't", 'it', "it's", 'its',

'itself', 'just', 'll', 'm', 'ma', 'me', 'mightn', "mightn't", 'more', 'most', 'mustn',

"mustn't", 'my', 'myself', 'needn', "needn't", 'no', 'nor', 'not', 'now', 'o', 'of', 'off',

'on', 'once', 'only', 'or', 'other', 'our', 'ours', 'ourselves', 'out', 'over', 'own',

're', 's', 'same', 'shan', "shan't", 'she', "she's", 'should', "should've", 'shouldn',

"shouldn't", 'so', 'some', 'such', 't', 'than', 'that', "that'll", 'the', 'their',

'theirs', 'them', 'themselves', 'then', 'there', 'these', 'they', 'this', 'those',

'through', 'to', 'too', 'under', 'until', 'up', 've', 'very', 'was', 'wasn', "wasn't",

'we', 'were', 'weren', "weren't", 'what', 'when', 'where', 'which', 'while', 'who', 'whom',

'why', 'will', 'with', 'won', "won't", 'wouldn', "wouldn't", 'y', 'you', "you'd", "you'll",

"you're", "you've", 'your', 'yours', 'yourself', 'yourselves']

20. https://www.nltk.org/book/ch02.html.

In [1]: import nltk

In [2]: nltk.download('stopwords')
[nltk_data] Downloading package stopwords to
[nltk_data] C:\Users\PaulDeitel\AppData\Roaming\nltk_data...
[nltk_data] Unzipping corpora\stopwords.zip.
Out[2]: True

In [3]: from nltk.corpus import stopwords

In [4]: stops = stopwords.words('english')

In [5]: from textblob import TextBlob

In [6]: blob = TextBlob('Today is a beautiful day.')

https://www.nltk.org/book/ch02.html

ptg27972259

318 Chapter 11 Natural Language Processing (NLP)

Finally, to remove the stop words, let’s use the TextBlob’s words in a list comprehen-
sion that adds each word to the resulting list only if the word is not in stops:

11.2.14 n-grams
An n-gram21 is a sequence of n text items, such as letters in words or words in a sentence.
In natural language processing, n-grams can be used to identify letters or words that fre-
quently appear adjacent to one another. For text-based user input, this can help predict
the next letter or word a user will type—such as when completing items in IPython with
tab-completion or when entering a message to a friend in your favorite smartphone mes-
saging app. For speech-to-text, n-grams might be used to improve the quality of the tran-
scription. N-grams are a form of co-occurrence in which words or letters appear near each
other in a body of text.

TextBlob’s ngrams method produces a list of WordList n-grams of length three by
default—known as trigrams. You can pass the keyword argument n to produce n-grams of
any desired length. The output shows that the first trigram contains the first three words
in the sentence ('Today', 'is' and 'a'). Then, ngrams creates a trigram starting with the
second word ('is', 'a' and 'beautiful') and so on until it creates a trigram containing
the last three words in the TextBlob:

The following produces n-grams consisting of five words:

In [7]: [word for word in blob.words if word not in stops]
Out[7]: ['Today', 'beautiful', 'day']

21. https://en.wikipedia.org/wiki/N-gram.

In [1]: from textblob import TextBlob

In [2]: text = 'Today is a beautiful day. Tomorrow looks like bad weather.'

In [3]: blob = TextBlob(text)

In [4]: blob.ngrams()
Out[4]:
[WordList(['Today', 'is', 'a']),
 WordList(['is', 'a', 'beautiful']),
 WordList(['a', 'beautiful', 'day']),
 WordList(['beautiful', 'day', 'Tomorrow']),
 WordList(['day', 'Tomorrow', 'looks']),
 WordList(['Tomorrow', 'looks', 'like']),
 WordList(['looks', 'like', 'bad']),
 WordList(['like', 'bad', 'weather'])]

In [5]: blob.ngrams(n=5)
Out[5]:
[WordList(['Today', 'is', 'a', 'beautiful', 'day']),
 WordList(['is', 'a', 'beautiful', 'day', 'Tomorrow']),
 WordList(['a', 'beautiful', 'day', 'Tomorrow', 'looks']),
 WordList(['beautiful', 'day', 'Tomorrow', 'looks', 'like']),
 WordList(['day', 'Tomorrow', 'looks', 'like', 'bad']),
 WordList(['Tomorrow', 'looks', 'like', 'bad', 'weather'])]

https://en.wikipedia.org/wiki/N-gram

ptg27972259

11.3 Visualizing Word Frequencies with Bar Charts and Word Clouds 319

11.3 Visualizing Word Frequencies with Bar Charts and
Word Clouds
Earlier, we obtained frequencies for a few words in Romeo and Juliet. Sometimes frequency
visualizations enhance your corpus analyses. There’s often more than one way to visualize
data, and sometimes one is superior to others. For example, you might be interested in
word frequencies relative to one another, or you may just be interested in relative uses of
words in a corpus. In this section, we’ll look at two ways to visualize word frequencies:

• A bar chart that quantitatively visualizes the top 20 words in Romeo and Juliet as
bars representing each word and its frequency.

• A word cloud that qualitatively visualizes more frequently occurring words in big-
ger fonts and less frequently occurring words in smaller fonts.

11.3.1 Visualizing Word Frequencies with Pandas
Let’s visualize Romeo and Juliet’s top 20 words that are not stop words. To do this, we’ll
use features from TextBlob, NLTK and pandas. Pandas visualization capabilities are based
on Matplotlib, so launch IPython with the following command for this session:

ipython --matplotlib

Loading the Data
First, let’s load Romeo and Juliet. Launch IPython from the ch11 examples folder before
executing the following code so you can access the e-book file RomeoAndJuliet.txt that
you downloaded earlier in the chapter:

Next, load the NLTK stopwords:

Getting the Word Frequencies
To visualize the top 20 words, we need each word and its frequency. Let’s call the
blob.word_counts dictionary’s items method to get a list of word-frequency tuples:

Eliminating the Stop Words
Next, let’s use a list comprehension to eliminate any tuples containing stop words:

The expression item[0] gets the word from each tuple so we can check whether it’s in
stop_words.

Sorting the Words by Frequency
To determine the top 20 words, let’s sort the tuples in items in descending order by fre-
quency. We can use built-in function sorted with a key argument to sort the tuples by

In [1]: from pathlib import Path

In [2]: from textblob import TextBlob

In [3]: blob = TextBlob(Path('RomeoAndJuliet.txt').read_text())

In [4]: from nltk.corpus import stopwords

In [5]: stop_words = stopwords.words('english')

In [6]: items = blob.word_counts.items()

In [7]: items = [item for item in items if item[0] not in stop_words]

ptg27972259

320 Chapter 11 Natural Language Processing (NLP)

the frequency element in each tuple. To specify the tuple element to sort by, use the
itemgetter function from the Python Standard Library’s operator module:

As sorted orders items’ elements, it accesses the element at index 1 in each tuple via the
expression itemgetter(1). The reverse=True keyword argument indicates that the
tuples should be sorted in descending order.

Getting the Top 20 Words
Next, we use a slice to get the top 20 words from sorted_items. When TextBlob
tokenizes a corpus, it splits all contractions at their apostrophes and counts the total num-
ber of apostrophes as one of the “words.” Romeo and Juliet has many contractions. If you
display sorted_items[0], you’ll see that they are the most frequently occurring “word”
with 867 of them.22 We want to display only words, so we ignore element 0 and get a slice
containing elements 1 through 20 of sorted_items:

Convert top20 to a DataFrame
Next, let’s convert the top20 list of tuples to a pandas DataFrame so we can visualize it con-
veniently:

In [8]: from operator import itemgetter

In [9]: sorted_items = sorted(items, key=itemgetter(1), reverse=True)

22. In some locales this does not happen and element 0 is indeed 'romeo'.

In [10]: top20 = sorted_items[1:21]

In [11]: import pandas as pd

In [12]: df = pd.DataFrame(top20, columns=['word', 'count'])

In [13]: df
Out[13]:
 word count
0 romeo 315
1 thou 278
2 juliet 190
3 thy 170
4 capulet 163
5 nurse 149
6 love 148
7 thee 138
8 lady 117
9 shall 110
10 friar 105
11 come 94
12 mercutio 88
13 lawrence 82
14 good 80
15 benvolio 79
16 tybalt 79
17 enter 75
18 go 75
19 night 73

ptg27972259

11.3 Visualizing Word Frequencies with Bar Charts and Word Clouds 321

Visualizing the DataFrame
To visualize the data, we’ll use the bar method of the DataFrame’s plot property. The
arguments indicate which column’s data should be displayed along the x- and y-axes, and
that we do not want to display a legend on the graph:

The bar method creates and displays a Matplotlib bar chart.
When you look at the initial bar chart that appears, you’ll notice that some of the

words are truncated. To fix that, use Matplotlib’s gcf (get current figure) function to get
the Matplotlib figure that pandas displayed, then call the figure’s tight_layout method.
This compresses the bar chart to ensure all its components fit:

The final graph is shown below:

11.3.2 Visualizing Word Frequencies with Word Clouds
Next, we’ll build a word cloud that visualizes the top 200 words in Romeo and Juliet. You
can use the open source wordcloud module’s23 WordCloud class to generate word clouds
with just a few lines of code. By default, wordcloud creates rectangular word clouds, but
as you’ll see the library can create word clouds with arbitrary shapes.

In [14]: axes = df.plot.bar(x='word', y='count', legend=False)

In [15]: import matplotlib.pyplot as plt

In [16]: plt.gcf().tight_layout()

i

23. https://github.com/amueller/word_cloud.

https://github.com/amueller/word_cloud

ptg27972259

322 Chapter 11 Natural Language Processing (NLP)

Installing the wordcloud Module
To install wordcloud, open your Anaconda Prompt (Windows), Terminal (macOS/
Linux) or shell (Linux) and enter the command:

conda install -c conda-forge wordcloud

Windows users might need to run the Anaconda Prompt as an Administrator for proper
software installation privileges. To do so, right-click Anaconda Prompt in the start menu
and select More > Run as administrator.

Loading the Text
First, let’s load Romeo and Juliet. Launch IPython from the ch11 examples folder before
executing the following code so you can access the e-book file RomeoAndJuliet.txt you
downloaded earlier:

Loading the Mask Image that Specifies the Word Cloud’s Shape
To create a word cloud of a given shape, you can initialize a WordCloud object with an
image known as a mask. The WordCloud fills non-white areas of the mask image with text.
We’ll use a heart shape in this example, provided as mask_heart.png in the ch11 examples
folder. More complex masks require more time to create the word cloud.

Let’s load the mask image by using the imread function from the imageio module
that comes with Anaconda:

This function returns the image as a NumPy array, which is required by WordCloud.

Configuring the WordCloud Object
Next, let’s create and configure the WordCloud object:

The default WordCloud width and height in pixels is 400x200, unless you specify width
and height keyword arguments or a mask image. For a mask image, the WordCloud size is
the image’s size. WordCloud uses Matplotlib under the hood. WordCloud assigns random
colors from a color map. You can supply the colormap keyword argument and use one of
Matplotlib’s named color maps. For a list of color map names and their colors, see:

https://matplotlib.org/examples/color/colormaps_reference.html

The mask keyword argument specifies the mask_image we loaded previously. By default,
the word is drawn on a black background, but we customized this with the background_-
color keyword argument by specifying a 'white' background. For a complete list of
WordCloud’s keyword arguments, see

In [1]: from pathlib import Path

In [2]: text = Path('RomeoAndJuliet.txt').read_text()

In [3]: import imageio

In [4]: mask_image = imageio.imread('mask_heart.png')

In [5]: from wordcloud import WordCloud

In [6]: wordcloud = WordCloud(colormap='prism', mask=mask_image,
 ...: background_color='white')
 ...:

https://matplotlib.org/examples/color/colormaps_reference.html

ptg27972259

11.3 Visualizing Word Frequencies with Bar Charts and Word Clouds 323

http://amueller.github.io/word_cloud/generated/
wordcloud.WordCloud.html

Generating the Word Cloud
WordCloud’s generate method receives the text to use in the word cloud as an argument
and creates the word cloud, which it returns as a WordCloud object:

Before creating the word cloud, generate first removes stop words from the text argument
using the wordcloud module’s built-in stop-words list. Then generate calculates the word
frequencies for the remaining words. The method uses a maximum of 200 words in the
word cloud by default, but you can customize this with the max_words keyword argument.

Saving the Word Cloud as an Image File
Finally, we use WordCloud’s to_file method to save the word cloud image into the spec-
ified file:

You can now go to the ch11 examples folder and double-click the RomeoAndJu-
liet.png image file on your system to view it—your version might have the words in dif-
ferent positions and different colors:

Generating a Word Cloud from a Dictionary
If you already have a dictionary of key–value pairs representing word counts, you can pass
it to WordCloud’s fit_words method. This method assumes you’ve already removed the
stop words.

In [7]: wordcloud = wordcloud.generate(text)

In [8]: wordcloud = wordcloud.to_file('RomeoAndJulietHeart.png')

http://amueller.github.io/word_cloud/generated/wordcloud.WordCloud.html
http://amueller.github.io/word_cloud/generated/wordcloud.WordCloud.html

ptg27972259

324 Chapter 11 Natural Language Processing (NLP)

Displaying the Image with Matplotlib
If you’d like to display the image on the screen, you can use the IPython magic

%matplotlib

to enable interactive Matplotlib support in IPython, then execute the following state-
ments:

import matplotlib.pyplot as plt
plt.imshow(wordcloud)

11.4 Readability Assessment with Textatistic
An interesting use of natural language processing is assessing text readability, which is
affected by the vocabulary used, sentence structure, sentence length, topic and more.
While writing this book, we used the paid tool Grammarly to help tune the writing and
ensure the text’s readability for a wide audience.

In this section, we’ll use the Textatistic library24 to assess readability.25 There are
many formulas used in natural language processing to calculate readability. Textatistic uses
five popular readability formulas—Flesch Reading Ease, Flesch-Kincaid, Gunning Fog,
Simple Measure of Gobbledygook (SMOG) and Dale-Chall.

Install Textatistic
To install Textatistic, open your Anaconda Prompt (Windows), Terminal (macOS/
Linux) or shell (Linux), then execute the following command:

pip install textatistic

Windows users might need to run the Anaconda Prompt as an Administrator for proper
software installation privileges. To do so, right-click Anaconda Prompt in the start menu
and select More > Run as administrator.

Calculating Statistics and Readability Scores
First, let’s load Romeo and Juliet into the text variable:

Calculating statistics and readability scores requires a Textatistic object that’s ini-
tialized with the text you want to assess:

Textatistic method dict returns a dictionary containing various statistics and the
readability scores26:

24. https://github.com/erinhengel/Textatistic.
25. Some other Python readability assessment libraries include readability-score, textstat, readability and

pylinguistics.

In [1]: from pathlib import Path

In [2]: text = Path('RomeoAndJuliet.txt').read_text()

In [3]: from textatistic import Textatistic

In [4]: readability = Textatistic(text)

In [5]: %precision 3
Out[5]: '%.3f'

https://github.com/erinhengel/Textatistic

ptg27972259

11.4 Readability Assessment with Textatistic 325

Each of the values in the dictionary is also accessible via a Textatistic property of
the same name as the keys shown in the preceding output. The statistics produced include:

• char_count—The number of characters in the text.

• word_count—The number of words in the text.

• sent_count—The number of sentences in the text.

• sybl_count—The number of syllables in the text.

• notdalechall_count—A count of the words that are not on the Dale-Chall list,
which is a list of words understood by 80% of 5th graders.27 The higher this
number is compared to the total word count, the less readable the text is consid-
ered to be.

• polysyblword_count—The number of words with three or more syllables.

• flesch_score—The Flesch Reading Ease score, which can be mapped to a grade
level. Scores over 90 are considered readable by 5th graders. Scores under 30
require a college degree. Ranges in between correspond to the other grade levels.

• fleschkincaid_score—The Flesch-Kincaid score, which corresponds to a spe-
cific grade level.

• gunningfog_score—The Gunning Fog index value, which corresponds to a spe-
cific grade level.

• smog_score—The Simple Measure of Gobbledygook (SMOG), which corre-
sponds to the years of education required to understand text. This measure is con-
sidered particularly effective for healthcare materials.28

• dalechall_score—The Dale-Chall score, which can be mapped to grade levels
from 4 and below to college graduate (grade 16) and above. This score considered
to be most reliable for a broad range of text types.29,30

26. Each Project Gutenberg e-book includes additional text, such as their licensing information, that’s
not part of the e-book itself. For this example, we used a text editor to remove that text from our copy
of the e-book.

In [6]: readability.dict()
Out[6]:
{'char_count': 115141,
 'word_count': 26120,
 'sent_count': 3218,
 'sybl_count': 30166,
 'notdalechall_count': 5823,
 'polysyblword_count': 549,
 'flesch_score': 100.892,
 'fleschkincaid_score': 1.203,
 'gunningfog_score': 4.087,
 'smog_score': 5.489,
 'dalechall_score': 7.559}

27. http://www.readabilityformulas.com/articles/dale-chall-readability-word-list.php.
28. https://en.wikipedia.org/wiki/SMOG.
29. https://en.wikipedia.org/wiki/Readability#The_Dale%E2%80%93Chall_formula.
30. http://www.readabilityformulas.com/articles/how-do-i-decide-which-readability-

formula-to-use.php.

http://www.readabilityformulas.com/articles/dale-chall-readability-word-list.php
https://en.wikipedia.org/wiki/SMOG
https://en.wikipedia.org/wiki/Readability#The_Dale%E2%80%93Chall_formula
http://www.readabilityformulas.com/articles/how-do-i-decide-which-readability-formula-to-use.php
http://www.readabilityformulas.com/articles/how-do-i-decide-which-readability-formula-to-use.php

ptg27972259

326 Chapter 11 Natural Language Processing (NLP)

For more details on each of the readability scores produced here and several others, see

https://en.wikipedia.org/wiki/Readability

The Textatistic documentation also shows the readability formulas used:

http://www.erinhengel.com/software/textatistic/

11.5 Named Entity Recognition with spaCy
NLP can determine what a text is about. A key aspect of this is named entity recognition,
which attempts to locate and categorize items like dates, times, quantities, places, people,
things, organizations and more. In this section, we’ll use the named entity recognition
capabilities in the spaCy NLP library31,32 to analyze text.

Install spaCy
To install spaCy, open your Anaconda Prompt (Windows), Terminal (macOS/Linux) or
shell (Linux), then execute the following command:

conda install -c conda-forge spacy

Windows users might need to run the Anaconda Prompt as an Administrator for proper
software installation privileges. To do so, right-click Anaconda Prompt in the start menu
and select More > Run as administrator.

Once the install completes, you also need to execute the following command, so
spaCy can download additional components it needs for processing English (en) text:

python -m spacy download en

Loading the Language Model
The first step in using spaCy is to load the language model representing the natural lan-
guage of the text you’re analyzing. To do this, you’ll call the spacy module’s load func-
tion. Let’s load the English model that we downloaded above:

The spaCy documentation recommends the variable name nlp.

Creating a spaCy Doc
Next, you use the nlp object to create a spaCy Doc object33 representing the document to
process. Here we used a sentence from the introduction to the World Wide Web in many
of our books:

31. https://spacy.io/.
32. You may also want to check out Textacy (https://github.com/chartbeat-labs/textacy)—an

NLP library built on spaCy that supports additional NLP tasks.

In [1]: import spacy

In [2]: nlp = spacy.load('en')

33. https://spacy.io/api/doc.

In [3]: document = nlp('In 1994, Tim Berners-Lee founded the ' +
 ...: 'World Wide Web Consortium (W3C), devoted to ' +
 ...: 'developing web technologies')
 ...:

https://en.wikipedia.org/wiki/Readability
http://www.erinhengel.com/software/textatistic/
https://spacy.io/
https://github.com/chartbeat-labs/textacy
https://spacy.io/api/doc

ptg27972259

11.6 Similarity Detection with spaCy 327

Getting the Named Entities
The Doc object’s ents property returns a tuple of Span objects representing the named
entities found in the Doc. Each Span has many properties.34 Let’s iterate through the Spans
and display the text and label_ properties:

Each Span’s text property returns the entity as a string, and the label_ property returns
a string indicating the entity’s kind. Here, spaCy found three entities representing a DATE
(1994), a PERSON (Tim Berners-Lee) and an ORG (organization; the World Wide Web Con-
sortium). For more spaCy information and to take a look at its Quickstart guide, see

https://spacy.io/usage/models#section-quickstart

11.6 Similarity Detection with spaCy
Similarity detection is the process of analyzing documents to determine how alike they
are. One possible similarity detection technique is word frequency counting. For example,
some people believe that the works of William Shakespeare actually might have been writ-
ten by Sir Francis Bacon, Christopher Marlowe or others.35 Comparing the word frequen-
cies of their works with those of Shakespeare can reveal writing-style similarities.

Various machine-learning techniques we’ll discuss in later chapters can be used to
study document similarity. However, as is often the case in Python, there are libraries such
as spaCy and Gensim that can do this for you. Here, we’ll use spaCy’s similarity detection
features to compare Doc objects representing Shakespeare’s Romeo and Juliet with Christo-
pher Marlowe’s Edward the Second. You can download Edward the Second from Project
Gutenberg as we did for Romeo and Juliet earlier in the chapter.36

Loading the Language Model and Creating a spaCy Doc
As in the preceding section, we first load the English model:

Creating the spaCy Docs
Next, we create two Doc objects—one for Romeo and Juliet and one for Edward the Second:

34. https://spacy.io/api/span.

In [4]: for entity in document.ents:
 ...: print(f'{entity.text}: {entity.label_}')
 ...:
1994: DATE
Tim Berners-Lee: PERSON
the World Wide Web Consortium: ORG

35. https://en.wikipedia.org/wiki/Shakespeare_authorship_question.
36. Each Project Gutenberg e-book includes additional text, such as their licensing information, that’s

not part of the e-book itself. For this example, we used a text editor to remove that text from our
copies of the e-books.

In [1]: import spacy

In [2]: nlp = spacy.load('en')

In [3]: from pathlib import Path

In [4]: document1 = nlp(Path('RomeoAndJuliet.txt').read_text())

In [5]: document2 = nlp(Path('EdwardTheSecond.txt').read_text())

https://spacy.io/usage/models#section-quickstart
https://spacy.io/api/span
https://en.wikipedia.org/wiki/Shakespeare_authorship_question

ptg27972259

328 Chapter 11 Natural Language Processing (NLP)

Comparing the Books’ Similarity
Finally, we use the Doc class’s similarity method to get a value from 0.0 (not similar) to
1.0 (identical) indicating how similar the documents are:

spaCy believes these two documents have significant similarities. For comparison purposes,
we created a Doc representing a current news story and compared it with Romeo and Juliet.
As expected, spaCy returned a low value indicating little similarity between them. Try copy-
ing a current news article into a text file, then performing the similarity comparison yourself.

11.7 Other NLP Libraries and Tools
We’ve shown you various NLP libraries, but it’s always a good idea to investigate the range
of options available to you so you can leverage the best tools for your tasks. Below are some
additional mostly free and open source NLP libraries and APIs:

• Gensim—Similarity detection and topic modeling.

• Google Cloud Natural Language API—Cloud-based API for NLP tasks such as
named entity recognition, sentiment analysis, parts-of-speech analysis and visu-
alization, determining content categories and more.

• Microsoft Linguistic Analysis API.

• Bing sentiment analysis—Microsoft’s Bing search engine now uses sentiment in
its search results. At the time of this writing, sentiment analysis in search results
is available only in the United States.

• PyTorch NLP—Deep learning library for NLP.

• Stanford CoreNLP—A Java NLP library, which also provides a Python wrapper.
Includes corefererence resolution, which finds all references to the same thing.

• Apache OpenNLP—Another Java-based NLP library for common tasks, includ-
ing coreference resolution. Python wrappers are available.

• PyNLPl (pineapple)—Python NLP library, includes basic and more sophisti-
cated NLP capabilities.

• SnowNLP—Python library that simplifies Chinese text processing.

• KoNLPy—Korean language NLP.

• stop-words—Python library with stop words for many languages. We used
NLTK’s stop words lists in this chapter.

• TextRazor—A paid cloud-based NLP API that provides a free tier.

11.8 Machine Learning and Deep Learning Natural
Language Applications
There are many natural language applications that require machine learning and deep
learning techniques. We’ll discuss some of the following in our machine learning and deep
learning chapters:

In [6]: document1.similarity(document2)
Out[6]: 0.9349950179100041

ptg27972259

11.9 Natural Language Datasets 329

• Answering natural language questions—For example, our publisher Pearson
Education, has a partnership with IBM Watson that uses Watson as a virtual
tutor. Students ask Watson natural language questions and get answers.

• Summarizing documents—analyzing documents and producing short summa-
ries (also called abstracts) that can, for example, be included with search results
and can help you decide what to read.

• Speech synthesis (speech-to-text) and speech recognition (text-to-speech)—We
use these in our “IBM Watson” chapter, along with inter-language text-to-text
translation, to develop a near real-time inter-language voice-to-voice translator.

• Collaborative filtering—used to implement recommender systems (“if you liked
this movie, you might also like…”).

• Text classification—for example, classifying news articles by categories, such as
world news, national news, local news, sports, business, entertainment, etc.

• Topic modeling—finding the topics discussed in documents.

• Sarcasm detection—often used with sentiment analysis.

• Text simplification—making text more concise and easier to read.

• Speech to sign language and vice versa—to enable a conversation with a hearing-
impaired person.

• Lip reader technology—for people who can’t speak, convert lip movement to text
or speech to enable conversation.

• Closed captioning—adding text captions to video.

11.9 Natural Language Datasets
There’s a tremendous number of text data sources available to you for working with nat-
ural language processing:

• Wikipedia—some or all of Wikipedia (https://meta.wikimedia.org/wiki/
Datasets).

• IMDB (Internet Movie Database)—various movie and TV datasets are available.

• UCIs text datasets—many datasets, including the Spambase dataset.

• Project Gutenberg—50,000+ free e-books that are out-of-copyright in the U.S.

• Jeopardy! dataset—200,000+ questions from the Jeopardy! TV show. A mile-
stone in AI occurred in 2011 when IBM Watson famously beat two of the world’s
best Jeopardy! players.

• Natural language processing datasets: https://machinelearningmastery.com/
datasets-natural-language-processing/.

• NLTK data: https://www.nltk.org/data.html.

• Sentiment labeled sentences data set (from sources including IMDB.com, ama-
zon.com, yelp.com.)

https://meta.wikimedia.org/wiki/Datasets
https://meta.wikimedia.org/wiki/Datasets
https://machinelearningmastery.com/datasets-natural-language-processing/
https://machinelearningmastery.com/datasets-natural-language-processing/
https://www.nltk.org/data.html
http://IMDB.com
http://ama-zon.com
http://ama-zon.com
http://yelp.com

ptg27972259

330 Chapter 11 Natural Language Processing (NLP)

• Registry of Open Data on AWS—a searchable directory of datasets hosted on
Amazon Web Services (https://registry.opendata.aws).

• Amazon Customer Reviews Dataset—130+ million product reviews (https://
registry.opendata.aws/amazon-reviews/).

• Pitt.edu corpora (http://mpqa.cs.pitt.edu/corpora/).

11.10 Wrap-Up
In this chapter, you performed a broad range of natural language processing (NLP) tasks
using several NLP libraries. You saw that NLP is performed on text collections known as
corpora. We discussed nuances of meaning that make natural language understanding dif-
ficult.

We focused on the TextBlob NLP library, which is built on the NLTK and pattern
libraries, but easier to use. You created TextBlobs and tokenized them into Sentences and
Words. You determined the part of speech for each word in a TextBlob, and you extracted
noun phrases.

We demonstrated how to evaluate the positive or negative sentiment of TextBlobs
and Sentences with the TextBlob library’s default sentiment analyzer and with the Naive-
BayesAnalyzer. You used the TextBlob library’s integration with Google Translate to
detect the language of text and perform inter-language translation.

We showed various other NLP tasks, including singularization and pluralization, spell
checking and correction, normalization with stemming and lemmatization, and getting
word frequencies. You obtained word definitions, synonyms and antonyms from Word-
Net. You also used NLTK’s stop words list to eliminate stop words from text, and you cre-
ated n-grams containing groups of consecutive words.

We showed how to visualize word frequencies quantitatively as a bar chart using pan-
das’ built-in plotting capabilities. Then, we used the wordcloud library to visualize word
frequencies qualitatively as word clouds. You performed readability assessments using the
Textatistic library. Finally, you used spaCy to locate named entities and to perform simi-
larity detection among documents. In the next chapter, you’ll continue using natural lan-
guage processing as we introduce data mining tweets using the Twitter APIs.

https://registry.opendata.aws
https://registry.opendata.aws/amazon-reviews/
https://registry.opendata.aws/amazon-reviews/
http://$$$Pitt.edu
http://mpqa.cs.pitt.edu/corpora/

ptg27972259

12
Data Mining Twitter

O b j e c t i v e s
In this chapter, you’ll:
■ Understand Twitter’s impact on businesses, brands,

reputation, sentiment analysis, predictions and more.
■ Use Tweepy, one of the most popular Python Twitter API

clients for data mining Twitter.
■ Use the Twitter Search API to download past tweets that meet

your criteria.
■ Use the Twitter Streaming API to sample the stream of live

tweets as they’re happening.
■ See that the tweet objects returned by Twitter contain valuable

information beyond the tweet text.
■ Use the natural language processing techniques from the last

chapter to clean and preprocess tweets to prepare them for
analysis.

■ Perform sentiment analysis on tweets.
■ Spot trends with Twitter’s Trends API.
■ Map tweets using folium and OpenStreetMap.
■ Understand various ways to store tweets using techniques

discussed throughout this book.

ptg27972259

332 Chapter 12 Data Mining Twitter
O

u
tl

in
e

12.1 Introduction
We’re always trying to predict the future. Will it rain on our upcoming picnic? Will the
stock market or individual securities go up or down, and when and by how much? How
will people vote in the next election? What’s the chance that a new oil exploration venture
will strike oil and if so how much would it likely produce? Will a baseball team win more
games if it changes its batting philosophy to “swing for the fences?” How much customer
traffic does an airline anticipate over the next many months? And hence how should the
company buy oil commodity futures to guarantee that it will have the supply it needs and
hopefully at a minimal cost? What track is a hurricane likely to take and how powerful will
it likely become (category 1, 2, 3, 4 or 5)? That kind of information is crucial to emergency
preparedness efforts. Is a financial transaction likely to be fraudulent? Will a mortgage
default? Is a disease likely to spread rapidly and, if so, to what geographic area?

Prediction is a challenging and often costly process, but the potential rewards are
great. With the technologies in this and the upcoming chapters, we’ll see how AI, often in
concert with big data, is rapidly improving prediction capabilities.

In this chapter we concentrate on data mining Twitter, looking for the sentiment in
tweets. Data mining is the process of searching through large collections of data, often big
data, to find insights that can be valuable to individuals and organizations. The sentiment
that you data mine from tweets could help predict the results of an election, the revenues
a new movie is likely to generate and the success of a company’s marketing campaign. It
could also help companies spot weaknesses in competitors’ product offerings.

You’ll connect to Twitter via web services. You’ll use Twitter’s Search API to tap into
the enormous base of past tweets. You’ll use Twitter’s Streaming API to sample the flood
of new tweets as they happen. With the Twitter Trends API, you’ll see what topics are

12.1 Introduction
12.2 Overview of the Twitter APIs
12.3 Creating a Twitter Account
12.4 Getting Twitter Credentials—

Creating an App
12.5 What’s in a Tweet?
12.6 Tweepy
12.7 Authenticating with Twitter Via

Tweepy
12.8 Getting Information About a Twitter

Account
12.9 Introduction to Tweepy Cursors:

Getting an Account’s Followers and
Friends

12.9.1 Determining an Account’s Followers
12.9.2 Determining Whom an Account

Follows
12.9.3 Getting a User’s Recent Tweets

12.10 Searching Recent Tweets

12.11 Spotting Trends: Twitter Trends API
12.11.1 Places with Trending Topics
12.11.2 Getting a List of Trending Topics
12.11.3 Create a Word Cloud from Trending

Topics
12.12 Cleaning/Preprocessing Tweets for

Analysis
12.13 Twitter Streaming API

12.13.1 Creating a Subclass of
StreamListener

12.13.2 Initiating Stream Processing
12.14 Tweet Sentiment Analysis
12.15 Geocoding and Mapping

12.15.1 Getting and Mapping the Tweets
12.15.2 Utility Functions in

tweetutilities.py
12.15.3 Class LocationListener

12.16 Ways to Store Tweets
12.17 Twitter and Time Series
12.18 Wrap-Up

ptg27972259

12.1 Introduction 333

trending. You’ll find that much of what we presented in the “Natural Language Processing
(NLP)” chapter will be useful in building Twitter applications.

As you’ve seen throughout this book, because of powerful libraries, you’ll often per-
form significant tasks with just a few lines of code. This is why Python and its robust open-
source community are appealing.

Twitter has displaced the major news organizations as the first source for newsworthy
events. Most Twitter posts are public and happen in real-time as events unfold globally.
People speak frankly about any subject and tweet about their personal and business lives.
They comment on the social, entertainment and political scenes and whatever else comes
to mind. With their mobile phones, they take and post photos and videos of events as they
happen. You’ll commonly hear the terms Twitterverse and Twittersphere to mean the
hundreds of millions of users who have anything to do with sending, receiving and ana-
lyzing tweets.

What Is Twitter?
Twitter was founded in 2006 as a microblogging company and today is one of the most
popular sites on the Internet. Its concept is simple. People write short messages called
tweets, initially limited to 140 characters but recently increased for most languages to 280
characters. Anyone can generally choose to follow anyone else. This is different from the
closed, tight communities on other social media platforms such as Facebook, LinkedIn
and many others, where the “following relationships” must be reciprocal.

Twitter Statistics
Twitter has hundreds of millions of users and hundreds of millions of tweets are sent every
day with many thousands sent per second.1 Searching online for “Internet statistics” and
“Twitter statistics” will help you put these numbers in perspective. Some “tweeters” have
more than 100 million followers. Dedicated tweeters generally post several per day to keep
their followers engaged. Tweeters with the largest followings are typically entertainers and
politicians. Developers can tap into the live stream of tweets as they’re happening. This
has been likened to “drinking from a fire hose,” because the tweets come at you so quickly.

Twitter and Big Data
Twitter has become a favorite big data source for researchers and business people world-
wide. Twitter allows regular users free access to a small portion of the more recent tweets.
Through special arrangements with Twitter, some third-party businesses (and Twitter
itself) offer paid access to much larger portions the all-time tweets database.

Cautions
You can’t always trust everything you read on the Internet, and tweets are no exception.
For example, people might use false information to try to manipulate financial markets or
influence political elections. Hedge funds often trade securities based in part on the tweet
streams they follow, but they’re cautious. That’s one of the challenges of building business-
critical or mission-critical systems based on social media content.

Going forward, we use web services extensively. Internet connections can be lost, ser-
vices can change and some services are not available in all countries. This is the real world

1. http://www.internetlivestats.com/twitter-statistics/.

http://www.internetlivestats.com/twitter-statistics/

ptg27972259

334 Chapter 12 Data Mining Twitter

of cloud-based programming. We cannot program with the same reliability as desktop
apps when using web services.

12.2 Overview of the Twitter APIs
Twitter’s APIs are cloud-based web services, so an Internet connection is required to exe-
cute the code in this chapter. Web services are methods that you call in the cloud, as you’ll
do with the Twitter APIs in this chapter, the IBM Watson APIs in the next chapter and
other APIs you’ll use as computing becomes more cloud-based. Each API method has a
web service endpoint, which is represented by a URL that’s used to invoke that method
over the Internet.

Twitter’s APIs include many categories of functionality, some free and some paid.
Most have rate limits that restrict the number of times you can use them in 15-minute
intervals. In this chapter, you’ll use the Tweepy library to invoke methods from the fol-
lowing Twitter APIs:

• Authentication API—Pass your Twitter credentials (discussed shortly) to Twit-
ter so you can use the other APIs.

• Accounts and Users API—Access information about an account.

• Tweets API—Search through past tweets, access tweet streams to tap into tweets
happening now and more.

• Trends API—Find locations of trending topics and get lists of trending topics by
location.

See the extensive list of Twitter API categories, subcategories and individual methods at:

https://developer.twitter.com/en/docs/api-reference-index.html

Rate Limits: A Word of Caution
Twitter expects developers to use its services responsibly. Each Twitter API method has a
rate limit, which is the maximum number of requests (that is, calls) you can make during
a 15-minute window. Twitter may block you from using its APIs if you continue to call a
given API method after that method’s rate limit has been reached.

Before using any API method, read its documentation and understand its rate limits.2

We’ll configure Tweepy to wait when it encounters rate limits. This helps prevent you
from exceeding the rate-limit restrictions. Some methods list both user rate limits and app
rate limits. All of this chapter’s examples use app rate limits. User rate limits are for apps
that enable individual users to log into Twitter, like third-party apps that interact with
Twitter on your behalf, such as smartphone apps from other vendors.

For details on rate limiting, see

https://developer.twitter.com/en/docs/basics/rate-limiting

For specific rate limits on individual API methods, see

https://developer.twitter.com/en/docs/basics/rate-limits

and each API method’s documentation.

2. Keep in mind that Twitter could change these limits in the future.

https://developer.twitter.com/en/docs/api-reference-index.html
https://developer.twitter.com/en/docs/basics/rate-limiting
https://developer.twitter.com/en/docs/basics/rate-limits

ptg27972259

12.3 Creating a Twitter Account 335

Other Restrictions
Twitter is a goldmine for data mining and they allow you to do a lot with their free ser-
vices. You’ll be amazed at the valuable applications you can build and how these will help
you improve your personal and career endeavors. However, if you do not follow Twitter’s
rules and regulations, your developer account could be terminated. You should carefully
read the following and the documents they link to:

• Terms of Service: https://twitter.com/tos

• Developer Agreement: https://developer.twitter.com/en/developer-

terms/agreement-and-policy.html

• Developer Policy: https://developer.twitter.com/en/developer-terms/

policy.html

• Other restrictions: https://developer.twitter.com/en/developer-terms/

more-on-restricted-use-cases

You’ll see later in this chapter that you can search tweets only for the last seven days
and get only a limited number of tweets using the free Twitter APIs. Some books and arti-
cles say you can get around those limits by scraping tweets directly from twitter.com.
However, the Terms of Service explicitly say that “scraping the Services without the prior
consent of Twitter is expressly prohibited.”

12.3 Creating a Twitter Account
Twitter requires you to apply for a developer account to be able to use their APIs. Go to

https://developer.twitter.com/en/apply-for-access

and submit your application. You’ll have to register for one as part of this process if you
do not already have one. You’ll be asked questions about the purpose of your account. You
must carefully read and agree to Twitter’s terms to complete the application, then confirm
your email address.

Twitter reviews every application. Approval is not guaranteed. At the time of this writ-
ing, personal-use accounts were approved immediately. For company accounts, the process
was taking from a few days to several weeks, according to the Twitter developer forums.

12.4 Getting Twitter Credentials—Creating an App
Once you have a Twitter developer account, you must obtain credentials for interacting
with the Twitter APIs. To do so, you’ll create an app. Each app has separate credentials.
To create an app, log into

https://developer.twitter.com

and perform the following steps:

1. At the top-right of the page, click the drop-down menu for your account and se-
lect Apps.

2. Click Create an app.

3. In the App name field, specify your app’s name. If you send tweets via the API,
this app name will be the tweets’ sender. It also will be shown to users if you create

https://twitter.com/tos
https://developer.twitter.com/en/developer-terms/agreement-and-policy.html
https://developer.twitter.com/en/developer-terms/agreement-and-policy.html
https://developer.twitter.com/en/developer-terms/policy.html
https://developer.twitter.com/en/developer-terms/policy.html
https://developer.twitter.com/en/developer-terms/more-on-restricted-use-cases
https://developer.twitter.com/en/developer-terms/more-on-restricted-use-cases
http://twitter.com
https://developer.twitter.com/en/apply-for-access
https://developer.twitter.com
http://1.At
http://3.In

ptg27972259

336 Chapter 12 Data Mining Twitter

applications that require a user to log in via Twitter. We will not do either in this
chapter, so a name like "YourName Test App" is fine for use with this chapter.

4. In the Application description field, enter a description for your app. When creat-
ing Twitter-based apps that will be used by other people, this would describe
what your app does. For this chapter, you can use "Learning to use the Twitter
API."

5. In the Website URL field, enter your website. When creating Twitter-based apps,
this is supposed to be the website where you host your app. You can use your
Twitter URL: https://twitter.com/YourUserName, where YourUserName is
your Twitter account screen name. For example, https://twitter.com/nasa
corresponds to the NASA screen name @nasa.

6. The Tell us how this app will be used field is a description of at least 100 characters
that helps Twitter employees understand what your app does. We entered "I am
new to Twitter app development and am simply learning how to use the Twit-
ter APIs for educational purposes."

7. Leave the remaining fields empty and click Create, then carefully review the
(lengthy) developer terms and click Create again.

Getting Your Credentials
After you complete Step 7 above, Twitter displays a web page for managing your app. At
the top of the page are App details, Keys and tokens and Permissions tabs. Click the Keys
and tokens tab to view your app’s credentials. Initially, the page shows the Consumer API
keys—the API key and the API secret key. Click Create to get an access token and access
token secret. All four of these will be used to authenticate with Twitter so that you may
invoke its APIs.

Storing Your Credentials
As a good practice, do not include your API keys and access tokens (or any other creden-
tials, like usernames and passwords) directly in your source code, as that would expose
them to anyone reading the code. You should store your keys in a separate file and never
share that file with anyone.3

The code you’ll execute in subsequent sections assumes that you place your consumer
key, consumer secret, access token and access token secret values into the file keys.py
shown below. You can find this file in the ch12 examples folder:

Edit this file, replacing YourConsumerKey, YourConsumerSecret, YourAccessToken and
YourAccessTokenSecret with your consumer key, consumer secret, access token and
access token secret values. Then, save the file.

3. Good practice would be to use an encryption library such as bcrypt (https://github.com/pyca/
bcrypt/) to encrypt your keys, access tokens or any other credentials you use in your code, then read
them in and decrypt them only as you pass them to Twitter.

consumer_key='YourConsumerKey'
consumer_secret='YourConsumerSecret'
access_token='YourAccessToken'
access_token_secret='YourAccessTokenSecret'

http://4.In
http://5.In
https://twitter.com/
https://twitter.com/nasa
https://github.com/pyca/bcrypt/
https://github.com/pyca/bcrypt/

ptg27972259

12.5 What’s in a Tweet? 337

OAuth 2.0
The consumer key, consumer secret, access token and access token secret are each part of
the OAuth 2.0 authentication process4,5—sometimes called the OAuth dance—that Twit-
ter uses to enable access to its APIs. The Tweepy library enables you to provide the con-
sumer key, consumer secret, access token and access token secret and handles the OAuth
2.0 authentication details for you.

12.5 What’s in a Tweet?
The Twitter API methods return JSON objects. JSON (JavaScript Object Notation) is a
text-based data-interchange format used to represent objects as collections of name–value
pairs. It’s commonly used when invoking web services. JSON is both a human-readable
and computer-readable format that makes data easy to send and receive across the Internet.

JSON objects are similar to Python dictionaries. Each JSON object contains a list of
property names and values, in the following curly braced format:

{propertyName1: value1, propertyName2: value2}

As in Python, JSON lists are comma-separated values in square brackets:

[value1, value2, value3]

For your convenience, Tweepy handles the JSON for you behind the scenes, converting
JSON to Python objects using classes defined in the Tweepy library.

Key Properties of a Tweet Object
A tweet (also called a status update) may contain a maximum of 280 characters, but the
tweet objects returned by the Twitter APIs contain many metadata attributes that describe
aspects of the tweet, such as:

• when it was created,

• who created it,

• lists of the hashtags, urls, @-mentions and media (such as images and videos,
which are specified via their URLs) included in the tweet,

• and more.

The following table lists a few key attributes of a tweet object:

4. https://developer.twitter.com/en/docs/basics/authentication/overview.
5. https://oauth.net/.

Attribute Description

created_at The creation date and time in UTC (Coordinated Universal Time) format.

entities Twitter extracts hashtags, urls, user_mentions (that is, @username mentions),
media (such as images and videos), symbols and polls from tweets and places
them into the entities dictionary as lists that you can access with these keys.

extended_tweet For tweets over 140 characters, contains details such as the tweet’s full_text
and entities

https://developer.twitter.com/en/docs/basics/authentication/overview
https://oauth.net/

ptg27972259

338 Chapter 12 Data Mining Twitter

Sample Tweet JSON
Let’s look at sample JSON for the following tweet from the @nasa account:

@NoFear1075 Great question, Anthony! Throughout its seven-year mis-
sion, our Parker #SolarProbe spacecraft... https://t.co/xKd6ym8waT'

We added line numbers and reformatted some of the JSON due to wrapping. Note that
some fields in Tweet JSON are not supported in every Twitter API method; such differ-
ences are explained in the online documentation for each method.

favorite_count Number of times other users favorited the tweet.

coordinates The coordinates (latitude and longitude) from which the tweet was sent. This is
often null (None in Python) because many users disable sending location data.

place Users can associate a place with a tweet. If they do, this will be a place object:
https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/

geo-objects#place-dictionary; otherwise, it’ll be null (None in Python).

id The integer ID of the tweet. Twitter recommends using id_str for portability.

id_str The string representation of the tweet’s integer ID.

lang Language of the tweet, such as 'en' for English or 'fr' for French.

retweet_count Number of times other users retweeted the tweet.

text The text of the tweet. If the tweet uses the new 280-character limit and con-
tains more than 140 characters, this property will be truncated and the trun-
cated property will be set to true. This might also occur if a 140-character
tweet was retweeted and became more than 140 characters as a result.

user The User object representing the user that posted the tweet. For the User object
JSON properties, see: https://developer.twitter.com/en/docs/tweets/
data-dictionary/overview/user-object.

Attribute (Cont.) Description

1 {'created_at': 'Wed Sep 05 18:19:34 +0000 2018',
2 'id': 1037404890354606082,
3 'id_str': '1037404890354606082',
4 'text': '@NoFear1075 Great question, Anthony! Throughout its seven-year

 mission, our Parker #SolarProbe spacecraft… https://t.co/xKd6ym8waT',
5 'truncated': True,
6 'entities': {'hashtags': [{'text': 'SolarProbe', 'indices': [84, 95]}],
7 'symbols': [],
8 'user_mentions': [{'screen_name': 'NoFear1075',
9 'name': 'Anthony Perrone',

10 'id': 284339791,
11 'id_str': '284339791',
12 'indices': [0, 11]}],
13 'urls': [{'url': 'https://t.co/xKd6ym8waT',
14 'expanded_url': 'https://twitter.com/i/web/status/
 1037404890354606082',
15 'display_url': 'twitter.com/i/web/status/1…',
16 'indices': [117, 140]}]},
17 'source': 'Twitter Web
 Client',

https://t.co/xKd6ym8waT'
https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/geo-objects#place-dictionary
https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/geo-objects#place-dictionary
https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/user-object
https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/user-object
https://t.co/xKd6ym8waT'
https://t.co/xKd6ym8waT'
https://twitter.com/i/web/status/
https://twitter.com/i/web/status/
http://'twitter.com/i/web/status/1$$$�'
http://twitter.com"

ptg27972259

12.5 What’s in a Tweet? 339

18 'in_reply_to_status_id': 1037390542424956928,
19 'in_reply_to_status_id_str': '1037390542424956928',
20 'in_reply_to_user_id': 284339791,
21 'in_reply_to_user_id_str': '284339791',
22 'in_reply_to_screen_name': 'NoFear1075',
23 'user': {'id': 11348282,
24 'id_str': '11348282',
25 'name': 'NASA',
26 'screen_name': 'NASA',
27 'location': '',
28 'description': 'Explore the universe and discover our home planet with
 @NASA. We usually post in EST (UTC-5)',
29 'url': 'https://t.co/TcEE6NS8nD',
30 'entities': {'url': {'urls': [{'url': 'https://t.co/TcEE6NS8nD',
31 'expanded_url': 'http://www.nasa.gov',
32 'display_url': 'nasa.gov',
33 'indices': [0, 23]}]},
34 'description': {'urls': []}},
35 'protected': False,
36 'followers_count': 29486081,
37 'friends_count': 287,
38 'listed_count': 91928,
39 'created_at': 'Wed Dec 19 20:20:32 +0000 2007',
40 'favourites_count': 3963,
41 'time_zone': None,
42 'geo_enabled': False,
43 'verified': True,
44 'statuses_count': 53147,
45 'lang': 'en',
46 'contributors_enabled': False,
47 'is_translator': False,
48 'is_translation_enabled': False,
49 'profile_background_color': '000000',
50 'profile_background_image_url': 'http://abs.twimg.com/images/themes/
 theme1/bg.png',
51 'profile_background_image_url_https': 'https://abs.twimg.com/images/
 themes/theme1/bg.png',
52 'profile_image_url': 'http://pbs.twimg.com/profile_images/188302352/
 nasalogo_twitter_normal.jpg',
53 'profile_image_url_https': 'https://pbs.twimg.com/profile_images/
 188302352/nasalogo_twitter_normal.jpg',
54 'profile_banner_url': 'https://pbs.twimg.com/profile_banners/11348282/
 1535145490',
55 'profile_link_color': '205BA7',
56 'profile_sidebar_border_color': '000000',
57 'profile_sidebar_fill_color': 'F3F2F2',
58 'profile_text_color': '000000',
59 'profile_use_background_image': True,
60 'has_extended_profile': True,
61 'default_profile': False,
62 'default_profile_image': False,
63 'following': True,
64 'follow_request_sent': False,
65 'notifications': False,
66 'translator_type': 'regular'},

https://t.co/TcEE6NS8nD'
https://t.co/TcEE6NS8nD'
http://www.nasa.gov'
http://'nasa.gov'
http://abs.twimg.com/images/themes/
http://abs.twimg.com/images/themes/
https':'https://abs.twimg.com/images/
https':'https://abs.twimg.com/images/
http://pbs.twimg.com/profile_images/188302352/
http://pbs.twimg.com/profile_images/188302352/
https':'https://pbs.twimg.com/profile_images/
https':'https://pbs.twimg.com/profile_images/
https://pbs.twimg.com/profile_banners/11348282/
https://pbs.twimg.com/profile_banners/11348282/

ptg27972259

340 Chapter 12 Data Mining Twitter

Twitter JSON Object Resources
For a complete, more readable list of the tweet object attributes, see:

https://developer.twitter.com/en/docs/tweets/data-dictionary/
overview/tweet-object.html

For additional details that were added when Twitter moved from a limit of 140 to 280
characters per tweet, see

https://developer.twitter.com/en/docs/tweets/data-dictionary/
overview/intro-to-tweet-json.html#extendedtweet

For a general overview of all the JSON objects that Twitter APIs return, and links to the
specific object details, see

https://developer.twitter.com/en/docs/tweets/data-dictionary/
overview/intro-to-tweet-json

12.6 Tweepy
We’ll use the Tweepy library6 (http://www.tweepy.org/)—one of the most popular
Python libraries for interacting with the Twitter APIs. Tweepy makes it easy to access
Twitter’s capabilities and hides from you the details of processing the JSON objects
returned by the Twitter APIs. You can view Tweepy’s documentation7 at

http://docs.tweepy.org/en/latest/

For additional information and the Tweepy source code, visit

https://github.com/tweepy/tweepy

Installing Tweepy
To install Tweepy, open your Anaconda Prompt (Windows), Terminal (macOS/Linux)
or shell (Linux), then execute the following command:

pip install tweepy==3.7

67 'geo': None,
68 'coordinates': None,
69 'place': None,
70 'contributors': None,
71 'is_quote_status': False,
72 'retweet_count': 7,
73 'favorite_count': 19,
74 'favorited': False,
75 'retweeted': False,
76 'possibly_sensitive': False,
77 'lang': 'en'}

6. Other Python libraries recommended by Twitter include Birdy, python-twitter, Python Twitter
Tools, TweetPony, TwitterAPI, twitter-gobject, TwitterSearch and twython. See https://develop-
er.twitter.com/en/docs/developer-utilities/twitter-libraries.html for details.

7. The Tweepy documentation is a work in progress. At the time of this writing, Tweepy does not have
documentation for their classes corresponding to the JSON objects the Twitter APIs return. Tweepy’s
classes use the same attribute names and structure as the JSON objects. You can determine the correct
attribute names to access by looking at Twitter’s JSON documentation. We’ll explain any attribute
we use in our code and provide footnotes with links to the Twitter JSON descriptions.

https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/tweet-object.html
https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/tweet-object.html
https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/intro-to-tweet-json.html#extendedtweet
https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/intro-to-tweet-json.html#extendedtweet
https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/intro-to-tweet-json
https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/intro-to-tweet-json
http://www.tweepy.org/
http://docs.tweepy.org/en/latest/
https://github.com/tweepy/tweepy
https://develop-er.twitter.com/en/docs/developer-utilities/twitter-libraries.html
https://develop-er.twitter.com/en/docs/developer-utilities/twitter-libraries.html

ptg27972259

12.7 Authenticating with Twitter Via Tweepy 341

Windows users might need to run the Anaconda Prompt as an Administrator for proper
software installation privileges. To do so, right-click Anaconda Prompt in the start menu
and select More > Run as administrator.

Installing geopy
As you work with Tweepy, you’ll also use functions from our tweetutilities.py file
(provided with this chapter’s example code). One of the utility functions in that file
depends on the geopy library (https://github.com/geopy/geopy), which we’ll discuss in
Section 12.15. To install geopy, execute:

conda install -c conda-forge geopy

12.7 Authenticating with Twitter Via Tweepy
In the next several sections, you’ll invoke various cloud-based Twitter APIs via Tweepy.
Here you’ll begin by using Tweepy to authenticate with Twitter and create a Tweepy API
object, which is your gateway to using the Twitter APIs over the Internet. In subsequent
sections, you’ll work with various Twitter APIs by invoking methods on your API object.

Before you can invoke any Twitter API, you must use your API key, API secret key,
access token and access token secret to authenticate with Twitter.8 Launch IPython from
the ch12 examples folder, then import the tweepy module and the keys.py file that you
modified earlier in this chapter. You can import any .py file as a module by using the file’s
name without the .py extension in an import statement:

When you import keys.py as a module, you can individually access each of the four vari-
ables defined in that file as keys.variable_name.

Creating and Configuring an OAuthHandler to Authenticate with Twitter
Authenticating with Twitter via Tweepy involves two steps. First, create an object of the
tweepy module’s OAuthHandler class, passing your API key and API secret key to its con-
structor. A constructor is a function that has the same name as the class (in this case,
OAuthHandler) and receives the arguments used to configure the new object:

Specify your access token and access token secret by calling the OAuthHandler object’s
set_access_token method:

8. You may wish to create apps that enable users to log into their Twitter accounts, manage them, post
tweets, read tweets from other users, search for tweets, etc. For details on user authentication see the
Tweepy Authentication tutorial at http://docs.tweepy.org/en/latest/auth_tutorial.html.

In [1]: import tweepy

In [2]: import keys

In [3]: auth = tweepy.OAuthHandler(keys.consumer_key,
 ...: keys.consumer_secret)
 ...:

In [4]: auth.set_access_token(keys.access_token,
 ...: keys.access_token_secret)
 ...:

https://github.com/geopy/geopy
http://docs.tweepy.org/en/latest/auth_tutorial.html

ptg27972259

342 Chapter 12 Data Mining Twitter

Creating an API Object
Now, create the API object that you’ll use to interact with Twitter:

We specified three arguments in this call to the API constructor:

• auth is the OAuthHandler object containing your credentials.

• The keyword argument wait_on_rate_limit=True tells Tweepy to wait 15 min-
utes each time it reaches a given API method’s rate limit. This ensures that you
do not violate Twitter’s rate-limit restrictions.

• The keyword argument wait_on_rate_limit_notify=True tells Tweepy that, if
it needs to wait due to rate limits, it should notify you by displaying a message at
the command line.

You’re now ready to interact with Twitter via Tweepy. Note that the code examples
in the next several sections are presented as a continuing IPython session, so the authori-
zation process you went through here need not be repeated.

12.8 Getting Information About a Twitter Account
After authenticating with Twitter, you can use the Tweepy API object’s get_user method
to get a tweepy.models.User object containing information about a user’s Twitter
account. Let’s get a User object for NASA’s @nasa Twitter account:

The get_user method calls the Twitter API’s users/show method.9 Each Twitter method
you call through Tweepy has a rate limit. You can call Twitter’s users/show method up
to 900 times every 15 minutes to get information on specific user accounts. As we mention
other Twitter API methods, we’ll provide a footnote with a link to each method’s docu-
mentation in which you can view its rate limits.

The tweepy.models classes each correspond to the JSON that Twitter returns. For
example, the User class corresponds to a Twitter user object:

https://developer.twitter.com/en/docs/tweets/data-dictionary/
overview/user-object

Each tweepy.models class has a method that reads the JSON and turns it into an object
of the corresponding Tweepy class.

Getting Basic Account Information
Let’s access some User object properties to display information about the @nasa account:

• The id property is the account ID number created by Twitter when the user
joined Twitter.

• The name property is the name associated with the user’s account.

In [5]: api = tweepy.API(auth, wait_on_rate_limit=True,
 ...: wait_on_rate_limit_notify=True)
 ...:

In [6]: nasa = api.get_user('nasa')

9. https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/

api-reference/get-users-show.

https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/user-object
https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/user-object
https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-users-show
https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-users-show

ptg27972259

12.8 Getting Information About a Twitter Account 343

• The screen_name property is the user’s Twitter handle (@nasa). Both the name
and screen_name could be created names to protect a user’s privacy.

• The description property is the description from the user’s profile.

Getting the Most Recent Status Update
The User object’s status property returns a tweepy.models.Status object, which corre-
sponds to a Twitter tweet object:

https://developer.twitter.com/en/docs/tweets/data-dictionary/
overview/tweet-object

The Status object’s text property contains the text of the account’s most recent tweet:

The text property was originally for tweets up to 140 characters. The … above indicates
that the tweet text was truncated. When Twitter increased the limit to 280 characters, they
added an extended_tweet property (demonstrated later) for accessing the text and other
information from tweets between 141 and 280 characters. In this case, Twitter sets text
to a truncated version of the extended_tweet’s text. Also, retweeting often results in trun-
cation because a retweet adds characters that could exceed the character limit.

Getting the Number of Followers
You can view an account’s number of followers with the followers_count property:

Though this number is large, there are accounts with over 100 million followers.10

Getting the Number of Friends
Similarly, you can view an account’s number of friends (that is, the number of accounts
an account follows) with the friends_count property:

In [7]: nasa.id
Out[7]: 11348282

In [8]: nasa.name
Out[8]: 'NASA'

In [9]: nasa.screen_name
Out[9]: 'NASA'

In [10]: nasa.description
Out[10]: 'Explore the universe and discover our home planet with @NASA.
We usually post in EST (UTC-5)'

In [11]: nasa.status.text
Out[11]: 'The interaction of a high-velocity young star with the cloud of
gas and dust may have created this unusually sharp-... https://t.co/
J6uUf7MYMI'

In [12]: nasa.followers_count
Out[12]: 29453541

10. https://friendorfollow.com/twitter/most-followers/.

In [13]: nasa.friends_count
Out[13]: 287

https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/tweet-object
https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/tweet-object
https://t.co/J6uUf7MYMI'
https://t.co/J6uUf7MYMI'
https://friendorfollow.com/twitter/most-followers/

ptg27972259

344 Chapter 12 Data Mining Twitter

Getting Your Own Account’s Information
You can use the properties in this section on your own account as well. To do so, call the
Tweepy API object’s me method, as in:

me = api.me()

This returns a User object for the account you used to authenticate with Twitter in the
preceding section.

12.9 Introduction to Tweepy Cursors: Getting an
Account’s Followers and Friends
When invoking Twitter API methods, you often receive as results collections of objects,
such as tweets in your Twitter timeline, tweets in another account’s timeline or lists of
tweets that match specified search criteria. A timeline consists of tweets sent by that user
and by that user’s friends—that is, other accounts that the user follows.

Each Twitter API method’s documentation discusses the maximum number of items
the method can return in one call—this is known as a page of results. When you request
more results than a given method can return, Twitter’s JSON responses indicate that there
are more pages to get. Tweepy’s Cursor class handles these details for you. A Cursor
invokes a specified method and checks whether Twitter indicated that there is another
page of results. If so, the Cursor automatically calls the method again to get those results.
This continues, subject to the method’s rate limits, until there are no more results to pro-
cess. If you configure the API object to wait when rate limits are reached (as we did), the
Cursor will adhere to the rate limits and wait as needed between calls. The following sub-
sections discuss Cursor fundamentals. For more details, see the Cursor tutorial at:

http://docs.tweepy.org/en/latest/cursor_tutorial.html

12.9.1 Determining an Account’s Followers
Let’s use a Tweepy Cursor to invoke the API object’s followers method, which calls the
Twitter API’s followers/list method11 to obtain an account’s followers. Twitter returns
these in groups of 20 by default, but you can request up to 200 at a time. For demonstra-
tion purposes, we’ll grab 10 of NASA’s followers.

Method followers returns tweepy.models.User objects containing information
about each follower. Let’s begin by creating a list in which we’ll store the User objects:

Creating a Cursor
Next, let’s create a Cursor object that will call the followers method for NASA’s account,
which is specified with the screen_name keyword argument:

The Cursor’s constructor receives as its argument the name of the method to call—
api.followers indicates that the Cursor will call the api object’s followers method. If
the Cursor constructor receives any additional keyword arguments, like screen_name,

11. https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/

api-reference/get-followers-list.

In [14]: followers = []

In [15]: cursor = tweepy.Cursor(api.followers, screen_name='nasa')

http://docs.tweepy.org/en/latest/cursor_tutorial.html
https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-followers-list
https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-followers-list

ptg27972259

12.9 Getting an Account’s Followers and Friends 345

these will be passed to the method specified in the constructor’s first argument. So, this
Cursor specifically gets followers for the @nasa Twitter account.

Getting Results
Now, we can use the Cursor to get some followers. The following for statement iterates
through the results of the expression cursor.items(10). The Cursor’s items method ini-
tiates the call to api.followers and returns the followers method’s results. In this case,
we pass 10 to the items method to request only 10 results:

The preceding snippet displays the followers in ascending order by calling the built-in
sorted function. The function’s second argument is the function used to determine how
the elements of followers are sorted. In this case, we used a lambda that converts every fol-
lower name to lowercase letters so we can perform a case-insensitive sort.

Automatic Paging
If the number of results requested is more than can be returned by one call to followers,
the items method automatically “pages” through the results by making multiple calls to
api.followers. Recall that followers returns up to 20 followers at a time by default, so
the preceding code needs to call followers only once. To get up to 200 followers at a time,
we can create the Cursor with the count keyword argument, as in:

cursor = tweepy.Cursor(api.followers, screen_name='nasa', count=200)

If you do not specify an argument to the items method, The Cursor attempts to get
all of the account’s followers. For large numbers of followers, this could take a significant
amount of time due to Twitter’s rate limits. The Twitter API’s followers/list method
can return a maximum of 200 followers at a time and Twitter allows a maximum of 15
calls every 15 minutes. Thus, you can only get 3000 followers every 15 minutes using
Twitter’s free APIs. Recall that we configured the API object to automatically wait when
it hits a rate limit, so if you try to get all followers and an account has more than 3000,
Tweepy will automatically pause for 15 minutes after every 3000 followers and display a
message. At the time of this writing, NASA has over 29.5 million followers. At 12,000 fol-
lowers per hour, it would take over 100 days to get all of NASA’s followers.

Note that for this example, we could have called the followers method directly,
rather than using a Cursor, since we’re getting only a small number of followers. We used
a Cursor here to show how you’ll typically call followers. In some later examples, we’ll
call API methods directly to get just a few results, rather than using Cursors.

Getting Follower IDs Rather Than Followers
Though you can get complete User objects for a maximum of 200 followers at a time, you
can get many more Twitter ID numbers by calling the API object’s followers_ids

In [16]: for account in cursor.items(10):
 ...: followers.append(account.screen_name)
 ...:

In [17]: print('Followers:',
 ...: ' '.join(sorted(followers, key=lambda s: s.lower())))
 ...:
Followers: abhinavborra BHood1976 Eshwar12341 Harish90469614 heshamkisha
Highyaan2407 JiraaJaarra KimYooJ91459029 Lindsey06771483 Wendy_UAE_NL

ptg27972259

346 Chapter 12 Data Mining Twitter

method. This calls the Twitter API’s followers/ids method, which returns up to 5000
ID numbers at a time (again, these rate limits could change).12 You can invoke this
method up to 15 times every 15 minutes, so you can get 75,000 account ID numbers per
rate-limit interval. This is particularly useful when combined with the API object’s
lookup_users method. This calls the Twitter API’s users/lookup method13 which can
return up to 100 User objects at a time and can be called up to 300 times every 15 minutes.
So using this combination, you could get up to 30,000 User objects per rate-limit interval.

12.9.2 Determining Whom an Account Follows
The API object’s friends method calls the Twitter API’s friends/list method14 to get
a list of User objects representing an account’s friends. Twitter returns these in groups of
20 by default, but you can request up to 200 at a time, just as we discussed for method
followers. Twitter allows you to call the friends/list method up to 15 times every 15
minutes. Let’s get 10 of NASA’s friend accounts:

12.9.3 Getting a User’s Recent Tweets
The API method user_timeline returns tweets from the timeline of a specific account. A
timeline includes that account’s tweets and tweets from that account’s friends. The
method calls the Twitter API’s statuses/user_timeline method15, which returns the
most recent 20 tweets, but can return up to 200 at a time. This method can return only
an account’s 3200 most recent tweets. Applications using this method may call it up to
1500 times every 15 minutes.

Method user_timeline returns Status objects with each one representing a tweet.
Each Status’s user property refers to a tweepy.models.User object containing informa-
tion about the user who sent that tweet, such as that user’s screen_name. A Status’s text

12. https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/

api-reference/get-followers-ids.
13. https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/

api-reference/get-users-lookup.
14. https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/

api-reference/get-friends-list.

In [18]: friends = []

In [19]: cursor = tweepy.Cursor(api.friends, screen_name='nasa')

In [20]: for friend in cursor.items(10):
 ...: friends.append(friend.screen_name)
 ...:

In [21]: print('Friends:',
 ...: ' '.join(sorted(friends, key=lambda s: s.lower())))
 ...:
Friends: AFSpace Astro2fish Astro_Kimiya AstroAnnimal AstroDuke
NASA3DPrinter NASASMAP Outpost_42 POTUS44 VicGlover

15. https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-status-

es-user_timeline.

https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-followers-ids
https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-followers-ids
https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-users-lookup
https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-users-lookup
https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-friends-list
https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-friends-list
https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-status-es-user_timeline
https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-status-es-user_timeline

ptg27972259

12.10 Searching Recent Tweets 347

property contains the tweet’s text. Let’s display the screen_name and text for three
tweets from @nasa:

These tweets were truncated (as indicated by …), meaning that they probably use the
newer 280-character tweet limit. We’ll use the extended_tweet property shortly to access
full text for such tweets.

In the preceding snippets, we chose to call the user_timeline method directly and
use the count keyword argument to specify the number of tweets to retrieve. If you wish
to get more than the maximum number of tweets per call (200), then you should use a
Cursor to call user_timeline as demonstrated previously. Recall that a Cursor automat-
ically pages through the results by calling the method multiple times, if necessary.

Grabbing Recent Tweets from Your Own Timeline
You can call the API method home_timeline, as in:

api.home_timeline()

to get tweets from your home timeline16—that is, your tweets and tweets from the people
you follow. This method calls Twitter’s statuses/home_timeline method.17 By default,
home_timeline returns the most recent 20 tweets, but can get up to 200 at a time. Again,
for more than 200 tweets from your home timeline, you should use a Tweepy Cursor to
call home_timeline.

12.10 Searching Recent Tweets
The Tweepy API method search returns tweets that match a query string. According to
the method’s documentation, Twitter maintains its search index only for the previous
seven days’ tweets, and a search is not guaranteed to return all matching tweets. Method
search calls Twitter’s search/tweets method18, which returns 15 tweets at a time by
default, but can return up to 100.

In [22]: nasa_tweets = api.user_timeline(screen_name='nasa', count=3)

In [23]: for tweet in nasa_tweets:
 ...: print(f'{tweet.user.screen_name}: {tweet.text}\n')
 ...:
NASA: Your Gut in Space: Microorganisms in the intestinal tract play an
especially important role in human health. But wh… https://t.co/
uLOsUhwn5p

NASA: We need your help! Want to see panels at @SXSW related to space
exploration? There are a number of exciting panels… https://t.co/
ycqMMdGKUB

NASA: “You are as good as anyone in this town, but you are no better than
any of them,” says retired @NASA_Langley mathem… https://t.co/nhMD4n84Nf

16. Specifically for the account you used to authenticate with Twitter.
17. https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-

statuses-home_timeline.
18. https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-

tweets.

https://t.co/uLOsUhwn5p
https://t.co/uLOsUhwn5p
https://t.co/ycqMMdGKUB
https://t.co/ycqMMdGKUB
https://t.co/nhMD4n84Nf
https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-home_timeline
https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-home_timeline
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-tweets

ptg27972259

348 Chapter 12 Data Mining Twitter

Utility Function print_tweets from tweetutilities.py
For this section, we created a utility function print_tweets that receives the results of a
call to API method search and for each tweet displays the user’s screen_name and the
tweet’s text. If the tweet is not in English and the tweet.lang is not 'und' (undefined),
we’ll also translate the tweet to English using TextBlob, as you did in the “Natural Lan-
guage Processing (NLP)” chapter. To use this function, import it from tweetutili-
ties.py:

Just the print_tweets function’s definition from that file is shown below:

Searching for Specific Words
Let’s search for three recent tweets about NASA’s Mars Opportunity Rover. The search
method’s q keyword argument specifies the query string, which indicates what to search
for and the count keyword argument specifies the number of tweets to return:

As with other methods, if you plan to request more results than can be returned by one
call to search, you should use a Cursor object.

Searching with Twitter Search Operators
You can use various Twitter search operators in your query strings to refine your search
results. The following table shows several Twitter search operators. Multiple operators can
be combined to construct more complex queries. To see all the operators, visit

https://twitter.com/search-home

and click the operators link.

In [24]: from tweetutilities import print_tweets

def print_tweets(tweets):
 """For each Tweepy Status object in tweets, display the
 user's screen_name and tweet text. If the language is not
 English, translate the text with TextBlob."""
 for tweet in tweets:
 print(f'{tweet.screen_name}:', end=' ')

 if 'en' in tweet.lang:
 print(f'{tweet.text}\n')
 elif 'und' not in tweet.lang: # translate to English first
 print(f'\n ORIGINAL: {tweet.text}')
 print(f'TRANSLATED: {TextBlob(tweet.text).translate()}\n')

In [25]: tweets = api.search(q='Mars Opportunity Rover', count=3)

In [26]: print_tweets(tweets)
Jacker760: NASA set a deadline on the Mars Rover opportunity! As the dust
on Mars settles the Rover will start to regain power… https://t.co/
KQ7xaFgrzr

Shivak32637174: RT @Gadgets360: NASA 'Cautiously Optimistic' of Hearing
Back From Opportunity Rover as Mars Dust Storm Settles
https://t.co/O1iTTwRvFq

ladyanakina: NASA’s Opportunity Rover Still Silent on #Mars. https://
t.co/njcyP6zCm3

https://twitter.com/search-home
https://t.co/KQ7xaFgrzr
https://t.co/KQ7xaFgrzr
https://t.co/O1iTTwRvFq
https://t.co/njcyP6zCm3
https://t.co/njcyP6zCm3

ptg27972259

12.11 Spotting Trends: Twitter Trends API 349

Let’s use the from and since operators to get three tweets from NASA since Septem-
ber 1, 2018—you should use a date within seven days before you execute this code:

Searching for a Hashtag
Tweets often contain hashtags that begin with # to indicate something of importance, like
a trending topic. Let’s get two tweets containing the hashtag #collegefootball:

12.11 Spotting Trends: Twitter Trends API
If a topic “goes viral,” you could have thousands or even millions of people tweeting about
it at once. Twitter refers to these as trending topics and maintains lists of the trending top-
ics worldwide. Via the Twitter Trends API, you can get lists of locations with trending
topics and lists of the top 50 trending topics for each location.

Example Finds tweets containing

python twitter Implicit logical and operator—Finds tweets containing python and twitter.

python OR twitter Logical OR operator—Finds tweets containing python or twitter or both.

python ? ? (question mark)—Finds tweets asking questions about python.

planets -mars - (minus sign)—Finds tweets containing planets but not mars.

python :) :) (happy face)—Finds positive sentiment tweets containing python.

python :(:((sad face)—Finds negative sentiment tweets containing python.

since:2018-09-01 Finds tweets on or after the specified date, which must be in the form
YYYY-MM-DD.

near:"New York City" Finds tweets that were sent near "New York City".

from:nasa Finds tweets from the account @nasa.

to:nasa Finds tweets to the account @nasa.

In [27]: tweets = api.search(q='from:nasa since:2018-09-01', count=3)

In [28]: print_tweets(tweets)
NASA: @WYSIW Our missions detect active burning fires, track the transport
of fire smoke, provide info for fire managemen… https://t.co/jx2iUoMlIy

NASA: Scarring of the landscape is evident in the wake of the Mendocino
Complex fire, the largest #wildfire in California… https://t.co/Nboo5GD90m

NASA: RT @NASAglenn: To celebrate the #NASA60th anniversary, we're
exploring our history. In this image, Research Pilot Bill Swann prepares
for a…

In [29]: tweets = api.search(q='#collegefootball', count=2)

In [30]: print_tweets(tweets)
dmcreek: So much for #FAU giving #OU a game. #Oklahoma #FloridaAtlantic
#CollegeFootball #LWOS

theangrychef: It’s game day folks! And our BBQ game is strong. #bbq
#atlanta #collegefootball #gameday @ Smoke Ring https://t.co/J4lkKhCQE7

https://t.co/jx2iUoMlIy
https://t.co/Nboo5GD90m
https://t.co/J4lkKhCQE7

ptg27972259

350 Chapter 12 Data Mining Twitter

12.11.1 Places with Trending Topics
The Tweepy API’s trends_available method calls the Twitter API’s trends/avail-
able19 method to get a list of all locations for which Twitter has trending topics. Method
trends_available returns a list of dictionaries representing these locations. When we exe-
cuted this code, there were 467 locations with trending topics:

The dictionary in each list element returned by trends_available has various infor-
mation, including the location’s name and woeid (discussed below):

The Twitter Trends API’s trends/place method (discussed momentarily) uses
Yahoo! Where on Earth IDs (WOEIDs) to look up trending topics. The WOEID 1 rep-
resents worldwide. Other locations have unique WOEID values greater than 1. We’ll use
WOEID values in the next two subsections to get worldwide trending topics and trending
topics for a specific city. The following table shows WOEID values for several landmarks,
cities, states and continents. Note that although these are all valid WOEIDs, Twitter does
not necessarily have trending topics for all these locations.

19. https://developer.twitter.com/en/docs/trends/locations-with-trending-topics/api-

reference/get-trends-available.

In [31]: trends_available = api.trends_available()

In [32]: len(trends_available)
Out[32]: 467

In [33]: trends_available[0]
Out[33]:
{'name': 'Worldwide',
 'placeType': {'code': 19, 'name': 'Supername'},
 'url': 'http://where.yahooapis.com/v1/place/1',
 'parentid': 0,
 'country': '',
 'woeid': 1,
 'countryCode': None}

In [34]: trends_available[1]
Out[34]:
{'name': 'Winnipeg',
 'placeType': {'code': 7, 'name': 'Town'},
 'url': 'http://where.yahooapis.com/v1/place/2972',
 'parentid': 23424775,
 'country': 'Canada',
 'woeid': 2972,
 'countryCode': 'CA'}

Place WOEID Place WOEID

Statue of Liberty 23617050 Iguazu Falls 468785

Los Angeles, CA 2442047 United States 23424977

Washington, D.C. 2514815 North America 24865672

Paris, France 615702 Europe 24865675

https://developer.twitter.com/en/docs/trends/locations-with-trending-topics/api-reference/get-trends-available
https://developer.twitter.com/en/docs/trends/locations-with-trending-topics/api-reference/get-trends-available
http://where.yahooapis.com/v1/place/1'
http://where.yahooapis.com/v1/place/1'
http://where.yahooapis.com/v1/place/2972'
http://where.yahooapis.com/v1/place/2972'

ptg27972259

12.11 Spotting Trends: Twitter Trends API 351

You also can search for locations close to a location that you specify with latitude and
longitude values. To do so, call the Tweepy API’s trends_closest method, which invokes
the Twitter API’s trends/closest method.20

12.11.2 Getting a List of Trending Topics
The Tweepy API’s trends_place method calls the Twitter Trends API’s trends/place
method21 to get the top 50 trending topics for the location with the specified WOEID.
You can get the WOEIDs from the woeid attribute in each dictionary returned by the
trends_available or trends_closest methods discussed in the previous section, or you
can find a location’s Yahoo! Where on Earth ID (WOEID) by searching for a city/town,
state, country, address, zip code or landmark at

http://www.woeidlookup.com

You also can look up WOEID’s programmatically using Yahoo!’s web services via Python
libraries like woeid22:

https://github.com/Ray-SunR/woeid

Worldwide Trending Topics
Let’s get today’s worldwide trending topics (your results will differ):

Method trends_place returns a one-element list containing a dictionary. The diction-
ary’s 'trends' key refers to a list of dictionaries representing each trend:

Each trend dictionary has name, url, promoted_content (indicating the tweet is an adver-
tisement), query and tweet_volume keys (shown below). The following trend is in Span-
ish—#BienvenidoSeptiembre means “Welcome September”:

For trends with more than 10,000 tweets, the tweet_volume is the number of tweets;
otherwise, it’s None. Let’s use a list comprehension to filter the list so that it contains only
trends with more than 10,000 tweets:

Next, let’s sort the trends in descending order by tweet_volume:

20. https://developer.twitter.com/en/docs/trends/locations-with-trending-topics/api-

reference/get-trends-closest.
21. https://developer.twitter.com/en/docs/trends/trends-for-location/api-reference/

get-trends-place.
22. You’ll need a Yahoo! API key as described in the woeid module’s documentation.

In [35]: world_trends = api.trends_place(id=1)

In [36]: trends_list = world_trends[0]['trends']

In [37]: trends_list[0]
Out[37]:
{'name': '#BienvenidoSeptiembre',
 'url': 'http://twitter.com/search?q=%23BienvenidoSeptiembre',
 'promoted_content': None,
 'query': '%23BienvenidoSeptiembre',
 'tweet_volume': 15186}

In [38]: trends_list = [t for t in trends_list if t['tweet_volume']]

In [39]: from operator import itemgetter

In [40]: trends_list.sort(key=itemgetter('tweet_volume'), reverse=True)

http://www.woeidlookup.com
https://github.com/Ray-SunR/woeid
https://developer.twitter.com/en/docs/trends/locations-with-trending-topics/api-reference/get-trends-closest
https://developer.twitter.com/en/docs/trends/locations-with-trending-topics/api-reference/get-trends-closest
https://developer.twitter.com/en/docs/trends/trends-for-location/api-reference/get-trends-place
https://developer.twitter.com/en/docs/trends/trends-for-location/api-reference/get-trends-place
http://twitter.com/search?q=%23BienvenidoSeptiembre'
http://twitter.com/search?q=%23BienvenidoSeptiembre'

ptg27972259

352 Chapter 12 Data Mining Twitter

Now, let’s display the names of the top five trending topics:

New York City Trending Topics
Now, let’s get the top five trending topics for New York City (WOEID 2459115). The
following code performs the same tasks as above, but for the different WOEID:

12.11.3 Create a Word Cloud from Trending Topics
In the “Natural Language Processing” chapter, we used the WordCloud library to create
word clouds. Let’s use it again here, to visualize New York City’s trending topics that have
more than 10,000 tweets each. First, let’s create a dictionary of key–value pairs consisting
of the trending topic names and tweet_volumes:

Next, let’s create a WordCloud from the topics dictionary’s key–value pairs, then out-
put the word cloud to the image file TrendingTwitter.png (shown after the code). The
argument prefer_horizontal=0.5 suggests that 50% of the words should be horizontal,
though the software may ignore that to fit the content:

In [41]: for trend in trends_list[:5]:
 ...: print(trend['name'])
 ...:
#HBDJanaSenaniPawanKalyan
#BackToHogwarts
Khalil Mack
#ItalianGP
Alisson

In [42]: nyc_trends = api.trends_place(id=2459115) # New York City WOEID

In [43]: nyc_list = nyc_trends[0]['trends']

In [44]: nyc_list = [t for t in nyc_list if t['tweet_volume']]

In [45]: nyc_list.sort(key=itemgetter('tweet_volume'), reverse=True)

In [46]: for trend in nyc_list[:5]:
 ...: print(trend['name'])
 ...:
#IDOL100M
#TuesdayThoughts
#HappyBirthdayLiam
NAFTA
#USOpen

In [47]: topics = {}

In [48]: for trend in nyc_list:
 ...: topics[trend['name']] = trend['tweet_volume']
 ...:

In [49]: from wordcloud import WordCloud

In [50]: wordcloud = WordCloud(width=1600, height=900,
 ...: prefer_horizontal=0.5, min_font_size=10, colormap='prism',
 ...: background_color='white')
 ...:

In [51]: wordcloud = wordcloud.fit_words(topics)

ptg27972259

12.12 Cleaning/Preprocessing Tweets for Analysis 353

The resulting word cloud is shown below—yours will differ based on the trending
topics the day you run the code:

12.12 Cleaning/Preprocessing Tweets for Analysis
Data cleaning is one of the most common tasks that data scientists perform. Depending
on how you intend to process tweets, you’ll need to use natural language processing to nor-
malize them by performing some or all of the data cleaning tasks in the following table.
Many of these can be performed using the libraries introduced in the “Natural Language
Processing (NLP)” chapter:

tweet-preprocessor Library and TextBlob Utility Functions
In this section, we’ll use the tweet-preprocessor library

https://github.com/s/preprocessor

to perform some basic tweet cleaning. It can automatically remove any combination of:

• URLs,

• @-mentions (like @nasa),

• hashtags (like #mars),

• Twitter reserved words (like, RT for retweet and FAV for favorite, which is similar
to a “like” on other social networks),

• emojis (all or just smileys) and

• numbers

The following table shows the module’s constants representing each option:

In [52]: wordcloud = wordcloud.to_file('TrendingTwitter.png')

Tweet cleaning tasks

Converting all text to the same case
Removing # symbol from hashtags
Removing @-mentions
Removing duplicates
Removing excess whitespace
Removing hashtags
Removing punctuation

Removing stop words
Removing RT (retweet) and FAV (favorite)
Removing URLs
Stemming
Lemmatization
Tokenization

https://github.com/s/preprocessor

ptg27972259

354 Chapter 12 Data Mining Twitter

Installing tweet-preprocessor
To install tweet-preprocessor, open your Anaconda Prompt (Windows), Terminal
(macOS/Linux) or shell (Linux), then issue the following command:

pip install tweet-preprocessor

Windows users might need to run the Anaconda Prompt as an administrator for proper
software installation privileges. To do so, right-click Anaconda Prompt in the start menu
and select More > Run as administrator.

Cleaning a Tweet
Let’s do some basic tweet cleaning that we’ll use in a later example in this chapter. The
tweet-preprocessor library’s module name is preprocessor. Its documentation recom-
mends that you import the module as follows:

To set the cleaning options you’d like to use call the module’s set_options function.
In this case, we’d like to remove URLs and Twitter reserved words:

Now let’s clean a sample tweet containing a reserved word (RT) and a URL:

12.13 Twitter Streaming API
Twitter’s free Streaming API sends to your app randomly selected tweets dynamically as
they occur—up to a maximum of one percent of the tweets per day. According to Inter-
netLiveStats.com, there are approximately 6000 tweets per second, which is over 500
million tweets per day.23 So the Streaming API gives you access to approximately five mil-
lion tweets per day. Twitter used to allow free access to 10% of streaming tweets, but this
service—called the fire hose—is now available only as a paid service. In this section, we’ll
use a class definition and an IPython session to walk through the steps for processing

Option Option constant

@-Mentions (e.g., @nasa) OPT.MENTION

Emoji OPT.EMOJI

Hashtag (e.g., #mars) OPT.HASHTAG

Number OPT.NUMBER

Reserved Words (RT and FAV) OPT.RESERVED

Smiley OPT.SMILEY

URL OPT.URL

In [1]: import preprocessor as p

In [2]: p.set_options(p.OPT.URL, p.OPT.RESERVED)

In [3]: tweet_text = 'RT A sample retweet with a URL https://nasa.gov'

In [4]: p.clean(tweet_text)
Out[4]: 'A sample retweet with a URL'

23. http://www.internetlivestats.com/twitter-statistics/.

http://Inter-netLiveStats.com
http://Inter-netLiveStats.com
https://nasa.gov'
http://www.internetlivestats.com/twitter-statistics/

ptg27972259

12.13 Twitter Streaming API 355

streaming tweets. Note that the code for receiving a tweet stream requires creating a custom
class that inherits from another class. These topics are covered in Chapter 10.

12.13.1 Creating a Subclass of StreamListener
The Streaming API returns tweets as they happen that match your search criteria. Rather
than connecting to Twitter on each method call, a stream uses a persistent connection to
push (that is, send) tweets to your app. The rate at which those tweets arrive varies tremen-
dously, based on your search criteria. The more popular a topic is, the more likely it is that
the tweets will arrive quickly.

You create a subclass of Tweepy’s StreamListener class to process the tweet stream.
An object of this class is the listener that’s notified when each new tweet (or other message
sent by Twitter24) arrives. Each message Twitter sends results in a call to a StreamLis-
tener method. The following table summarizes several such methods. StreamListener
already defines each method, so you redefine only the methods you need—this is known
as overriding. For additional StreamListener methods, see:

https://github.com/tweepy/tweepy/blob/master/tweepy/streaming.py

Class TweetListener
Our StreamListener subclass TweetListener is defined in tweetlistener.py. We dis-
cuss the TweetListener’s components here. Line 6 indicates that class TweetListener is
a subclass of tweepy.StreamListener. This ensures that our new class has class Stream-
Listener’s default method implementations.

24. For details on the messages, see https://developer.twitter.com/en/docs/tweets/filter-
realtime/guides/streaming-message-types.html.

Method Description

on_connect(self) Called when you successfully connect to the Twitter stream.
This is for statements that should execute only if your app is
connected to the stream.

on_status(self, status) Called when a tweet arrives—status is an object of Tweepy’s
Status.

on_limit(self, track) Called when a limit notice arrives. This occurs if your search
matches more tweets than Twitter can deliver based on its cur-
rent streaming rate limits. In this case, the limit notice contains
the number of matching tweets that could not be delivered.

on_error(self, status_code) Called in response to error codes sent by Twitter.

on_timeout(self) Called if the connection times out—that is, the Twitter server is
not responding.

on_warning(self, notice) Called if Twitter sends a disconnect warning to indicate that the
connection might be closed. For example, Twitter maintains a
queue of the tweets it’s pushing to your app. If the app does not
read the tweets fast enough, on_warning’s notice argument will
contain a warning message indicating that the connection will
terminate if the queue becomes full.

https://github.com/tweepy/tweepy/blob/master/tweepy/streaming.py
https://developer.twitter.com/en/docs/tweets/filter-realtime/guides/streaming-message-types.html
https://developer.twitter.com/en/docs/tweets/filter-realtime/guides/streaming-message-types.html

ptg27972259

356 Chapter 12 Data Mining Twitter

Class TweetListener: __init__ Method
The following lines define the TweetListener class’s __init__ method, which is called
when you create a new TweetListener object. The api parameter is the Tweepy API
object that TweetListener will use to interact with Twitter. The limit parameter is the
total number of tweets to process—10 by default. We added this parameter to enable you
to control the number of tweets to receive. As you’ll soon see, we terminate the stream
when that limit is reached. If you set limit to None, the stream will not terminate auto-
matically. Line 11 creates an instance variable to keep track of the number of tweets pro-
cessed so far, and line 12 creates a constant to store the limit. If you’re not familiar with
__init__ and super() from previous chapters, line 13 ensures that the api object is stored
properly for use by your listener object.

Class TweetListener: on_connect Method
Method on_connect is called when your app successfully connects to the Twitter stream.
We override the default implementation to display a “Connection successful” message.

Class TweetListener: on_status Method
Method on_status is called by Tweepy when each tweet arrives. This method’s second
parameter receives a Tweepy Status object representing the tweet. Lines 23–26 get the
tweet’s text. First, we assume the tweet uses the new 280-character limit, so we attempt to
access the tweet’s extended_tweet property and get its full_text. An exception will
occur if the tweet does not have an extended_tweet property. In this case, we get the text
property instead. Lines 28–30 then display the screen_name of the user who sent the
tweet, the lang (that is language) of the tweet and the tweet_text. If the language is not
English ('en'), lines 32–33 use a TextBlob to translate the tweet and display it in English.
We increment self.tweet_count (line 36), then compare it to self.TWEET_LIMIT in the
return statement. If on_status returns True, the stream remains open. When on_status
returns False, Tweepy disconnects from the stream.

1 # tweetlistener.py
2 """tweepy.StreamListener subclass that processes tweets as they arrive."""
3 import tweepy
4 from textblob import TextBlob
5
6 class TweetListener(tweepy.StreamListener):
7 """Handles incoming Tweet stream."""
8

9 def __init__(self, api, limit=10):
10 """Create instance variables for tracking number of tweets."""
11 self.tweet_count = 0
12 self.TWEET_LIMIT = limit
13 super().__init__(api) # call superclass's init
14

15 def on_connect(self):
16 """Called when your connection attempt is successful, enabling
17 you to perform appropriate application tasks at that point."""
18 print('Connection successful\n')
19

ptg27972259

12.13 Twitter Streaming API 357

12.13.2 Initiating Stream Processing
Let’s use an IPython session to test our new TweetListener.

Authenticating
First, you must authenticate with Twitter and create a Tweepy API object:

Creating a TweetListener
Next, create an object of the TweetListener class and initialize it with the api object:

We did not specify the limit argument, so this TweetListener terminates after 10 tweets.

Creating a Stream
A Tweepy Stream object manages the connection to the Twitter stream and passes the
messages to your TweetListener. The Stream constructor’s auth keyword argument

20 def on_status(self, status):
21 """Called when Twitter pushes a new tweet to you."""
22 # get the tweet text
23 try:
24 tweet_text = status.extended_tweet.full_text
25 except:
26 tweet_text = status.text
27
28 print(f'Screen name: {status.user.screen_name}:')
29 print(f' Language: {status.lang}')
30 print(f' Status: {tweet_text}')
31
32 if status.lang != 'en':
33 print(f' Translated: {TextBlob(tweet_text).translate()}')
34
35 print()
36 self.tweet_count += 1 # track number of tweets processed
37
38 # if TWEET_LIMIT is reached, return False to terminate streaming
39 return self.tweet_count != self.TWEET_LIMIT

In [1]: import tweepy

In [2]: import keys

In [3]: auth = tweepy.OAuthHandler(keys.consumer_key,
 ...: keys.consumer_secret)
 ...:

In [4]: auth.set_access_token(keys.access_token,
 ...: keys.access_token_secret)
 ...:

In [5]: api = tweepy.API(auth, wait_on_rate_limit=True,
 ...: wait_on_rate_limit_notify=True)
 ...:

In [6]: from tweetlistener import TweetListener

In [7]: tweet_listener = TweetListener(api)

ptg27972259

358 Chapter 12 Data Mining Twitter

receives the api object’s auth property, which contains the previously configured OAuth-
Handler object. The listener keyword argument receives your listener object:

Starting the Tweet Stream
The Stream object’s filter method begins the streaming process. Let’s track tweets about
the NASA Mars rovers. Here, we use the track parameter to pass a list of search terms:

The Streaming API will return full tweet JSON objects for tweets that match any of
the terms, not just in the tweet’s text, but also in @-mentions, hashtags, expanded URLs
and other information that Twitter maintains in a tweet object’s JSON. So, you might not
see the search terms you’re tracking if you look only at the tweet’s text.

Asynchronous vs. Synchronous Streams
The is_async=True argument indicates that filter should initiate an asynchronous
tweet stream. This allows your code to continue executing while your listener waits to
receive tweets and is useful if you decide to terminate the stream early. When you execute
an asynchronous tweet stream in IPython, you’ll see the next In [] prompt and can ter-
minate the tweet stream by setting the Stream object’s running property to False, as in:

tweet_stream.running=False

Without the is_async=True argument, filter initiates a synchronous tweet stream. In
this case, IPython would display the next In [] prompt after the stream terminates. Asyn-
chronous streams are particularly handy in GUI applications so your users can continue
to interact with other parts of the application while tweets arrive. The following shows a
portion of the output consisting of two tweets:

Other filter Method Parameters
Method filter also has parameters for refining your tweet searches by Twitter user ID
numbers (to follow tweets from specific users) and by location. For details, see:

https://developer.twitter.com/en/docs/tweets/filter-realtime/guides/
basic-stream-parameters

In [8]: tweet_stream = tweepy.Stream(auth=api.auth,
 ...: listener=tweet_listener)
 ...:

In [9]: tweet_stream.filter(track=['Mars Rover'], is_async=True)

Connection successful

Screen name: bevjoy:
 Language: en
 Status: RT @SPACEdotcom: With Mars Dust Storm Clearing, Opportunity
Rover Could Finally Wake Up https://t.co/OIRP9UyB8C https://t.co/
gTfFR3RUkG

Screen name: tourmaline1973:
 Language: en
 Status: RT @BennuBirdy: Our beloved Mars rover isn't done yet, but
she urgently needs our support! Spread the word that you want to keep
calling ou…

...

https://developer.twitter.com/en/docs/tweets/filter-realtime/guides/basic-stream-parameters
https://developer.twitter.com/en/docs/tweets/filter-realtime/guides/basic-stream-parameters
https://t.co/OIRP9UyB8C
https://t.co/gTfFR3RUkG
https://t.co/gTfFR3RUkG

ptg27972259

12.14 Tweet Sentiment Analysis 359

Twitter Restrictions Note
Marketers, researchers and others frequently store tweets they receive from the Streaming
API. If you’re storing tweets, Twitter requires you to delete any message or location data
for which you receive a deletion message. This will occur if a user deletes a tweet or the
tweets location data after Twitter pushes that tweet to you. In each case, your listener’s
on_delete method will be called. For deletion rules and message details, see

https://developer.twitter.com/en/docs/tweets/filter-realtime/guides/
streaming-message-types

12.14 Tweet Sentiment Analysis
In the “Natural Language Processing (NLP)” chapter, we demonstrated sentiment analysis
on sentences. Many researchers and companies perform sentiment analysis on tweets. For
example, political researchers might check tweet sentiment during elections season to
understand how people feel about specific politicians and issues. Companies might check
tweet sentiment to see what people are saying about their products and competitors’ prod-
ucts.

In this section, we’ll use the techniques introduced in the preceding section to create
a script (sentimentlistener.py) that enables you to check the sentiment on a specific
topic. The script will keep totals of all the positive, neutral and negative tweets it processes
and display the results.

The script receives two command-line arguments representing the topic of the tweets
you wish to receive and the number of tweets for which to check the sentiment—only
those tweets that are not eliminated are counted. For viral topics, there are large numbers
of retweets, which we are not counting, so it could take some time get the number of
tweets you specify. You can run the script from the ch12 folder as follows:

ipython sentimentlistener.py football 10

which produces output like the following. Positive tweets are preceded by a +, negative
tweets by a - and neutral tweets by a space:

- ftblNeutral: Awful game of football. So boring slow hoofball complete
waste of another 90 minutes of my life that I'll never get back #BURMUN

+ TBulmer28: I’ve seen 2 successful onside kicks within a 40 minute span.
I love college football

+ CMayADay12: The last normal Sunday for the next couple months. Don’t
text me don’t call me. I am busy. Football season is finally here?

 rpimusic: My heart legitimately hurts for Kansas football fans

+ DSCunningham30: @LeahShieldsWPSD It's awsome that u like college
football, but my favorite team is ND - GO IRISH!!!

 damanr: I’m bummed I don’t know enough about football to roast
@samesfandiari properly about the Raiders

+ jamesianosborne: @TheRochaSays @WatfordFC @JackHind Haha.... just when
you think an American understands Football.... so close. Wat…

https://developer.twitter.com/en/docs/tweets/filter-realtime/guides/streaming-message-types
https://developer.twitter.com/en/docs/tweets/filter-realtime/guides/streaming-message-types

ptg27972259

360 Chapter 12 Data Mining Twitter

The script (sentimentlistener.py) is presented below. We focus only on the new capa-
bilities in this example.

Imports
Lines 4–8 import the keys.py file and the libraries used throughout the script:

Class SentimentListener: __init__ Method
In addition to the API object that interacts with Twitter, the __init__ method receives
three additional parameters:

• sentiment_dict—a dictionary in which we’ll keep track of the tweet sentiments,

• topic—the topic we’re searching for so we can ensure that it appears in the tweet
text and

• limit—the number of tweets to process (not including the ones we eliminate).

Each of these is stored in the current SentimentListener object (self).

+ Tshanerbeer: @PennStateFball @PennStateOnBTN Ah yes, welcome back
college football. You've been missed.

- cougarhokie: @hokiehack @skiptyler I can verify the badness of that
football

+ Unite_Reddevils: @Pablo_di_Don Well make yourself clear it's football
not soccer we follow European football not MLS soccer

Tweet sentiment for "football"
Positive: 6
 Neutral: 2
Negative: 2

1 # sentimentlisener.py
2 """Script that searches for tweets that match a search string
3 and tallies the number of positive, neutral and negative tweets."""
4 import keys
5 import preprocessor as p
6 import sys
7 from textblob import TextBlob
8 import tweepy
9

10 class SentimentListener(tweepy.StreamListener):
11 """Handles incoming Tweet stream."""
12
13 def __init__(self, api, sentiment_dict, topic, limit=10):
14 """Configure the SentimentListener."""
15 self.sentiment_dict = sentiment_dict
16 self.tweet_count = 0
17 self.topic = topic
18 self.TWEET_LIMIT = limit
19
20 # set tweet-preprocessor to remove URLs/reserved words
21 p.set_options(p.OPT.URL, p.OPT.RESERVED)
22 super().__init__(api) # call superclass's init
23

ptg27972259

12.14 Tweet Sentiment Analysis 361

Method on_status
When a tweet is received, method on_status:

• gets the tweet’s text (lines 27–30)

• skips the tweet if it’s a retweet (lines 33–34)

• cleans the tweet to remove URLs and reserved words like RT and FAV (line 36)

• skips the tweet if it does not have the topic in the tweet text (lines 39–40)

• uses a TextBlob to check the tweet’s sentiment and updates the sentiment_dict
accordingly (lines 43–52)

• prints the tweet text (line 55) preceded by + for positive sentiment, space for neu-
tral sentiment or - for negative sentiment and

• checks whether we’ve processed the specified number of tweets yet (lines 57–60).

24 def on_status(self, status):
25 """Called when Twitter pushes a new tweet to you."""
26 # get the tweet's text
27 try:
28 tweet_text = status.extended_tweet.full_text
29 except:
30 tweet_text = status.text
31
32 # ignore retweets
33 if tweet_text.startswith('RT'):
34 return
35
36 tweet_text = p.clean(tweet_text) # clean the tweet
37
38 # ignore tweet if the topic is not in the tweet text
39 if self.topic.lower() not in tweet_text.lower():
40 return
41
42 # update self.sentiment_dict with the polarity
43 blob = TextBlob(tweet_text)
44 if blob.sentiment.polarity > 0:
45 sentiment = '+'
46 self.sentiment_dict['positive'] += 1
47 elif blob.sentiment.polarity == 0:
48 sentiment = ' '
49 self.sentiment_dict['neutral'] += 1
50 else:
51 sentiment = '-'
52 self.sentiment_dict['negative'] += 1
53
54 # display the tweet
55 print(f'{sentiment} {status.user.screen_name}: {tweet_text}\n')
56
57 self.tweet_count += 1 # track number of tweets processed
58
59 # if TWEET_LIMIT is reached, return False to terminate streaming
60 return self.tweet_count != self.TWEET_LIMIT
61

ptg27972259

362 Chapter 12 Data Mining Twitter

Main Application
The main application is defined in the function main (lines 62–87; discussed after the fol-
lowing code), which is called by lines 90–91 when you execute the file as a script. So
sentimentlistener.py can be imported into IPython or other modules to use class Sen-
timentListener as we did with TweetListener in the previous section:

Lines 72–73 get the command-line arguments. Line 74 creates the sentiment_dict
dictionary that keeps track of the tweet sentiments. Lines 75–76 create the SentimentLis-
tener. Line 79 creates the Stream object. We once again initiate the stream by calling
Stream method filter (line 82). However, this example uses a synchronous stream so
that lines 84–87 display the sentiment report only after the specified number of tweets
(limit) are processed. In this call to filter, we also provided the keyword argument lan-
guages, which specifies a list of language codes. The one language code 'en' indicates
Twitter should return only English language tweets.

12.15 Geocoding and Mapping
In this section, we’ll collect streaming tweets, then plot the locations of those tweets. Most
tweets do not include latitude and longitude coordinates, because Twitter disables this by
default for all users. Those who wish to include their precise location in tweets must opt
into that feature. Though most tweets do not include precise location information, a large

62 def main():
63 # configure the OAuthHandler
64 auth = tweepy.OAuthHandler(keys.consumer_key, keys.consumer_secret)
65 auth.set_access_token(keys.access_token, keys.access_token_secret)
66
67 # get the API object
68 api = tweepy.API(auth, wait_on_rate_limit=True,
69 wait_on_rate_limit_notify=True)
70
71 # create the StreamListener subclass object
72 search_key = sys.argv[1]
73 limit = int(sys.argv[2]) # number of tweets to tally
74 sentiment_dict = {'positive': 0, 'neutral': 0, 'negative': 0}
75 sentiment_listener = SentimentListener(api,
76 sentiment_dict, search_key, limit)
77
78 # set up Stream
79 stream = tweepy.Stream(auth=api.auth, listener=sentiment_listener)
80
81 # start filtering English tweets containing search_key
82 stream.filter(track=[search_key], languages=['en'], is_async=False)
83
84 print(f'Tweet sentiment for "{search_key}"')
85 print('Positive:', sentiment_dict['positive'])
86 print(' Neutral:', sentiment_dict['neutral'])
87 print('Negative:', sentiment_dict['negative'])
88
89 # call main if this file is executed as a script
90 if __name__ == '__main__':
91 main()

ptg27972259

12.15 Geocoding and Mapping 363

percentage include the user’s home location information; however, even that is sometimes
invalid, such as “Far Away” or a fictitious location from a user’s favorite movie.

In this section, for simplicity, we’ll use the location property of the tweet’s User
object to plot that user’s location on an interactive map. The map will let you zoom in and
out and drag to move the map around so you can look at different areas (known as pan-
ning). For each tweet, we’ll display a map marker that you can click to see a popup con-
taining the user’s screen name and tweet text.

We’ll ignore retweets and tweets that do not contain the search topic. For other
tweets, we’ll track the percentage of tweets with location information. When we get the
latitude and longitude information for those locations, we’ll also track the percentage of
those tweets that had invalid location data.

geopy Library
We’ll use the geopy library (https://github.com/geopy/geopy) to translate locations
into latitude and longitude coordinates—known as geocoding—so we can place markers
on a map. The library supports dozens of geocoding web services, many of which have free
or lite tiers. For this example, we’ll use the OpenMapQuest geocoding service (discussed
shortly). You installed geopy in Section 12.6.

OpenMapQuest Geocoding API
We’ll use the OpenMapQuest Geocoding API to convert locations, such as Boston, MA
into their latitudes and longitudes, such as 42.3602534 and -71.0582912, for plotting on
maps. OpenMapQuest currently allows 15,000 transactions per month on their free tier.
To use the service, first sign up at

https://developer.mapquest.com/

Once logged in, go to

https://developer.mapquest.com/user/me/apps

and click Create a New Key, fill in the App Name field with a name of your choosing, leave
the Callback URL empty and click Create App to create an API key. Next, click your app’s
name in the web page to see your consumer key. In the keys.py file you used earlier in the
chapter, store the consumer key by replacing YourKeyHere in the line

mapquest_key = 'YourKeyHere'

As we did earlier in the chapter, we’ll import keys.py to access this key.

Folium Library and Leaflet.js JavaScript Mapping Library
For the maps in this example, we’ll use the folium library

https://github.com/python-visualization/folium

which uses the popular Leaflet.js JavaScript mapping library to display maps. The maps
that folium produces are saved as HTML files that you can view in your web browser. To
install folium, execute the following command:

pip install folium

https://github.com/geopy/geopy
https://developer.mapquest.com/
https://developer.mapquest.com/user/me/apps
https://github.com/python-visualization/folium

ptg27972259

364 Chapter 12 Data Mining Twitter

Maps from OpenStreetMap.org
By default, Leaflet.js uses open source maps from OpenStreetMap.org. These maps are
copyrighted by the OpenStreetMap.org contributors. To use these maps25, they require
the following copyright notice:

Map data © OpenStreetMap contributors

and they state:

You must make it clear that the data is available under the Open Database
License. This can be achieved by providing a “License” or “Terms” link which
links to www.openstreetmap.org/copyright or www.opendatacommons.org/
licenses/odbl.

12.15.1 Getting and Mapping the Tweets
Let’s interactively develop the code that plots tweet locations. We’ll use utility functions
from our tweetutilities.py file and class LocationListener in locationlistener.py.
We’ll explain the details of the utility functions and class in the subsequent sections.

Get the API Object
As in the other streaming examples, let’s authenticate with Twitter and get the Tweepy
API object. In this case, we do this via the get_API utility function in tweetutilities.py:

Collections Required By LocationListener
Our LocationListener class requires two collections: A list (tweets) to store the tweets
we collect and a dictionary (counts) to track the total number of tweets we collect and the
number that have location data:

Creating the LocationListener
For this example, the LocationListener will collect 50 tweets about 'football':

The LocationListener will use our utility function get_tweet_content to extract
the screen name, tweet text and location from each tweet, place that data in a dictionary.

Configure and Start the Stream of Tweets
Next, let’s set up our Stream to look for English language 'football' tweets:

25. https://wiki.osmfoundation.org/wiki/Licence/Licence_and_Legal_FAQ.

In [1]: from tweetutilities import get_API

In [2]: api = get_API()

In [3]: tweets = []

In [4]: counts = {'total_tweets': 0, 'locations': 0}

In [5]: from locationlistener import LocationListener

In [6]: location_listener = LocationListener(api, counts_dict=counts,
 ...: tweets_list=tweets, topic='football', limit=50)
 ...:

In [7]: import tweepy

http://OpenStreetMap.org
http://OpenStreetMap.org
http://OpenStreetMap.org
http://www.openstreetmap.org/copyright
http://www.opendatacommons.org/licenses/odbl
http://www.opendatacommons.org/licenses/odbl
https://wiki.osmfoundation.org/wiki/Licence/Licence_and_Legal_FAQ

ptg27972259

12.15 Geocoding and Mapping 365

Now wait to receive the tweets. Though we do not show them here (to save space), the
LocationListener displays each tweet’s screen name and text so you can see the live
stream. If you’re not receiving any (perhaps because it is not football season), you might
want to type Ctrl + C to terminate the previous snippet then try again with a different
search term.

Displaying the Location Statistics
When the next In [] prompt displays, we can check how many tweets we processed, how
many had locations and the percentage that had locations:

In this particular execution, 79.4% of the tweets contained location data.

Geocoding the Locations
Now, let’s use our get_geocodes utility function from tweetutilities.py to geocode the
location of each tweet stored in the list tweets:

Sometimes the OpenMapQuest geocoding service times out, meaning that it cannot
handle your request immediately and you need to try again. In that case, our function get_-
geocodes displays a message, waits for a short time, then retries the geocoding request.

As you’ll soon see, for each tweet with a valid location, the get_geocodes function
adds to the tweet’s dictionary in the tweets list two new keys—'latitude' and 'longi-
tude'. For the corresponding values, the function uses the tweet’s coordinates that Open-
MapQuest returns.

Displaying the Bad Location Statistics
When the next In [] prompt displays, we can check the percentage of tweets that had
invalid location data:

In this case, of the 50 tweets with location data, 7 (14%) had invalid locations.

In [8]: stream = tweepy.Stream(auth=api.auth, listener=location_listener)

In [9]: stream.filter(track=['football'], languages=['en'], is_async=False)

In [10]: counts['total_tweets']
Out[10]: 63

In [11]: counts['locations']
Out[11]: 50

In [12]: print(f'{counts["locations"] / counts["total_tweets"]:.1%}')
79.4%

In [13]: from tweetutilities import get_geocodes

In [14]: bad_locations = get_geocodes(tweets)
Getting coordinates for tweet locations...
OpenMapQuest service timed out. Waiting.
OpenMapQuest service timed out. Waiting.
Done geocoding

In [15]: bad_locations
Out[15]: 7

In [16]: print(f'{bad_locations / counts["locations"]:.1%}')
14.0%

ptg27972259

366 Chapter 12 Data Mining Twitter

Cleaning the Data
Before we plot the tweet locations on a map, let’s use a pandas DataFrame to clean the data.
When you create a DataFrame from the tweets list, it will contain the value NaN for the
'latitude' and 'longitude' of any tweet that did not have a valid location. We can
remove any such rows by calling the DataFrame’s dropna method:

Creating a Map with Folium
Now, let’s create a folium Map on which we’ll plot the tweet locations:

The location keyword argument specifies a sequence containing latitude and longi-
tude coordinates for the map’s center point. The values above are the geographic center of
the continental United States (http://bit.ly/CenterOfTheUS). It’s possible that some of
the tweets we plot will be outside the U.S. In this case, you will not see them initially when
you open the map. You can zoom in and out using the + and - buttons at the top-left of the
map, or you can pan the map by dragging it with the mouse to see anywhere in the world.

The zoom_start keyword argument specifies the map’s initial zoom level, lower val-
ues show more of the world and higher values show less. On our system, 5 displays the
entire continental United States. The detect_retina keyword argument enables folium
to detect high-resolution screens. When it does, it requests higher-resolution maps from
OpenStreetMap.org and changes the zoom level accordingly.

Creating Popup Markers for the Tweet Locations
Next, let’s iterate through the DataFrame and add to the Map folium Popup objects con-
taining each tweet’s text. In this case, we’ll use method itertuples to create tuples from
each row of the DataFrame. Each tuple will contain a property for each DataFrame column:

First, we create a string (text) containing the user’s screen_name and tweet text sep-
arated by a colon. This will be displayed on the map if you click the corresponding marker.
The second statement creates a folium Popup to display the text. The third statement cre-
ates a folium Marker object using a tuple to specify the Marker’s latitude and longitude.
The popup keyword argument associates the tweet’s Popup object with the new Marker.
Finally, the last statement calls the Marker’s add_to method to specify the Map that will
display the Marker.

In [17]: import pandas as pd

In [18]: df = pd.DataFrame(tweets)

In [19]: df = df.dropna()

In [20]: import folium

In [21]: usmap = folium.Map(location=[39.8283, -98.5795],
 ...: tiles='Stamen Terrain',
 ...: zoom_start=5, detect_retina=True)
 ...:

In [22]: for t in df.itertuples():
 ...: text = ': '.join([t.screen_name, t.text])
 ...: popup = folium.Popup(text, parse_html=True)
 ...: marker = folium.Marker((t.latitude, t.longitude),
 ...: popup=popup)
 ...: marker.add_to(usmap)
 ...:

http://bit.ly/CenterOfTheUS
http://OpenStreetMap.org

ptg27972259

12.15 Geocoding and Mapping 367

Saving the Map
The last step is to call the Map’s save method to store the map in an HTML file, which
you can then double click to open in your web browser:

The resulting map follows. The Markers on your map will differ:

12.15.2 Utility Functions in tweetutilities.py
Here we present the utility functions get_tweet_content and get_geo_codes used in the
preceding section’s IPython session. In each case, the line numbers start from 1 for discus-
sion purposes. These are both defined in tweetutilities.py, which is included in the
ch12 examples folder.

get_tweet_content Utility Function
Function get_tweet_content receives a Status object (tweet) and creates a dictionary
containing the tweet’s screen_name (line 4), text (lines 7–10) and location (lines 12–
13). The location is included only if the location keyword argument is True. For the
tweet’s text, we try to use the full_text property of an extended_tweet. If it’s not avail-
able, we use the text property:

In [23]: usmap.save('tweet_map.html')

1 def get_tweet_content(tweet, location=False):
2 """Return dictionary with data from tweet (a Status object)."""
3 fields = {}
4 fields['screen_name'] = tweet.user.screen_name
5
6 # get the tweet's text
7 try:
8 fields['text'] = tweet.extended_tweet.full_text
9 except:

10 fields['text'] = tweet.text
11

Map data © OpenStreetMap contributors.
The data is available under the Open Database License www.openstreetmap.org/copyright.

http://'tweet_map.html'
http://www.openstreetmap.org/copyright

ptg27972259

368 Chapter 12 Data Mining Twitter

get_geocodes Utility Function
Function get_geocodes receives a list of dictionaries containing tweets and geocodes their
locations. If geocoding is successful for a tweet, the function adds the latitude and longi-
tude to the tweet’s dictionary in tweet_list. This code requires class OpenMapQuest from
the geopy module, which we import into the file tweetutilities.py as follows:

from geopy import OpenMapQuest

The function operates as follows:

• Line 5 creates the OpenMapQuest object we’ll use to geocode locations. The
api_key keyword argument is loaded from the keys.py file you edited earlier.

• Line 6 initializes bad_locations which we use to keep track of the number of
invalid locations in the tweet objects we collected.

• In the loop, lines 9–18 attempt to geocode the current tweet’s location. Sometimes
the OpenMapQuest geocoding service will time out, meaning that it’s temporarily
unavailable. This can happen if you make too many requests too quickly. So, the
while loop continues executing as long as processed is False. In each iteration, this
loop calls the OpenMapQuest object’s geocode method with the tweet’s location
string as an argument. If successful, processed is set to True and the loop terminates.

12 if location:
13 fields['location'] = tweet.user.location
14
15 return fields

1 def get_geocodes(tweet_list):
2 """Get the latitude and longitude for each tweet's location.
3 Returns the number of tweets with invalid location data."""
4 print('Getting coordinates for tweet locations...')
5 geo = OpenMapQuest(api_key=keys.mapquest_key) # geocoder
6 bad_locations = 0
7
8 for tweet in tweet_list:
9 processed = False

10 delay = .1 # used if OpenMapQuest times out to delay next call
11 while not processed:
12 try: # get coordinates for tweet['location']
13 geo_location = geo.geocode(tweet['location'])
14 processed = True
15 except: # timed out, so wait before trying again
16 print('OpenMapQuest service timed out. Waiting.')
17 time.sleep(delay)
18 delay += .1
19
20 if geo_location:
21 tweet['latitude'] = geo_location.latitude
22 tweet['longitude'] = geo_location.longitude
23 else:
24 bad_locations += 1 # tweet['location'] was invalid
25
26 print('Done geocoding')
27 return bad_locations

ptg27972259

12.15 Geocoding and Mapping 369

Otherwise, lines 16–18 display a time-out message, wait for delay seconds and
increase the delay in case we get another time out. Line 17 calls the Python Stan-
dard Library time module’s sleep method to pause the code execution.

• After the while loop terminates, lines 20–24 check whether location data was
returned and, if so, add it to the tweet’s dictionary. Otherwise, line 24 increments
the bad_locations counter.

• Finally, the function prints a message that it’s done geocoding and returns the
bad_locations value.

12.15.3 Class LocationListener
Class LocationListener performs many of the same tasks we demonstrated in the prior
streaming examples, so we’ll focus on just a few lines in this class:

1 # locationlistener.py
2 """Receives tweets matching a search string and stores a list of
3 dictionaries containing each tweet's screen_name/text/location."""
4 import tweepy
5 from tweetutilities import get_tweet_content
6
7 class LocationListener(tweepy.StreamListener):
8 """Handles incoming Tweet stream to get location data."""
9

10 def __init__(self, api, counts_dict, tweets_list, topic, limit=10):
11 """Configure the LocationListener."""
12 self.tweets_list = tweets_list
13 self.counts_dict = counts_dict
14 self.topic = topic
15 self.TWEET_LIMIT = limit
16 super().__init__(api) # call superclass's init
17
18 def on_status(self, status):
19 """Called when Twitter pushes a new tweet to you."""
20 # get each tweet's screen_name, text and location
21 tweet_data = get_tweet_content(status, location=True)
22
23 # ignore retweets and tweets that do not contain the topic
24 if (tweet_data['text'].startswith('RT') or
25 self.topic.lower() not in tweet_data['text'].lower()):
26 return
27
28 self.counts_dict['total_tweets'] += 1 # original tweet
29
30 # ignore tweets with no location
31 if not status.user.location:
32 return
33
34 self.counts_dict['locations'] += 1 # tweet with location
35 self.tweets_list.append(tweet_data) # store the tweet
36 print(f'{status.user.screen_name}: {tweet_data["text"]}\n')
37
38 # if TWEET_LIMIT is reached, return False to terminate streaming
39 return self.counts_dict['locations'] != self.TWEET_LIMIT

ptg27972259

370 Chapter 12 Data Mining Twitter

In this case, the __init__ method receives a counts dictionary that we use to keep
track of the total number of tweets processed and a tweet_list in which we store the dic-
tionaries returned by the get_tweet_content utility function.

Method on_status:

• Calls get_tweet_content to get the screen name, text and location of each tweet.

• Ignores the tweet if it is a retweet or if the text does not include the topic we’re
searching for—we’ll use only original tweets containing the search string.

• Adds 1 to the value of the 'total_tweets' key in the counts dictionary to track
the number of original tweets we process.

• Ignores tweets that have no location data.

• Adds 1 to the value of the 'locations' key in the counts dictionary to indicate
that we found a tweet with a location.

• Appends to the tweets_list the tweet_data dictionary that get_tweet_con-
tent returned.

• Displays the tweet’s screen name and tweet text so you can see that the app is
making progress.

• Checks whether the TWEET_LIMIT has been reached and, if so, returns False to
terminate the stream.

12.16 Ways to Store Tweets
For analysis, you’ll commonly store tweets in:

• CSV files—A file format that we introduced in the “Files and Exceptions” chap-
ter.

• pandas DataFrames in memory—CSV files can be loaded easily into DataFrames
for cleaning and manipulation.

• SQL databases—Such as MySQL, a free and open source relational database
management system (RDBMS).

• NoSQL databases—Twitter returns tweets as JSON documents, so the natural way
to store them is in a NoSQL JSON document database, such as MongoDB.
Tweepy generally hides the JSON from the developer. If you’d like to manipulate
the JSON directly, use the techniques we present in the “Big Data: Hadoop, Spark,
NoSQL and IoT” chapter, where we’ll look at the PyMongo library.

12.17 Twitter and Time Series
A time series is a sequence of values with timestamps. Some examples are daily closing
stock prices, daily high temperatures at a given location, monthly U.S. job-creation num-
bers, quarterly earnings for a given company and more. Tweets are natural for time-series
analysis because they’re time stamped. In the “Machine Learning” chapter, we’ll use a
technique called simple linear regression to make predictions with time series. We’ll take
another look at time series in the “Deep Learning” chapter when we discuss recurrent neu-
ral networks.

ptg27972259

12.18 Wrap-Up 371

12.18 Wrap-Up
In this chapter, we explored data mining Twitter, perhaps the most open and accessible of
all the social media sites, and one of the most commonly used big-data sources. You cre-
ated a Twitter developer account and connected to Twitter using your account credentials.
We discussed Twitter’s rate limits and some additional rules, and the importance of con-
forming to them.

We looked at the JSON representation of a tweet. We used Tweepy—one of the most
widely used Twitter API clients—to authenticate with Twitter and access its APIs. We saw
that tweets returned by the Twitter APIs contain much metadata in addition to a tweet’s
text. We determined an account’s followers and whom an account follows, and looked at
a user’s recent tweets.

We used Tweepy Cursors to conveniently request successive pages of results from var-
ious Twitter APIs. We used Twitter’s Search API to download past tweets that met spec-
ified criteria. We used Twitter’s Streaming API to tap into the flow of live tweets as they
happened. We used the Twitter Trends API to determine trending topics for various loca-
tions and created a word cloud from trending topics.

We used the tweet-preprocessor library to clean and preprocess tweets to prepare them
for analysis, and performed sentiment analysis on tweets. We used the folium library to
create a map of tweet locations and interacted with it to see the tweets at particular loca-
tions. We enumerated common ways to store tweets and noted that tweets are a natural
form of time series data. In the next chapter, we’ll present IBM’s Watson and its cognitive
computing capabilities.

ptg27972259

This page intentionally left blank

ptg27972259

13
IBM Watson and Cognitive

Computing

O b j e c t i v e s
In this chapter, you’ll:
■ See Watson’s range of services and use their Lite tier to

become familiar with them at no charge.
■ Try lots of demos of Watson services.
■ Understand what cognitive computing is and how you can

incorporate it into your applications.
■ Register for an IBM Cloud account and get credentials to use

various services.
■ Install the Watson Developer Cloud Python SDK to interact

with Watson services.
■ Develop a traveler’s companion language translator app by

using Python to weave together a mashup of the Watson
Speech to Text, Language Translator and Text to Speech
services.

■ Check out additional resources, such as IBM Watson
Redbooks that will help you jump start your custom Watson
application development.

ptg27972259

374 Chapter 13 IBM Watson and Cognitive Computing
O

u
tl

in
e

13.1 Introduction: IBM Watson and Cognitive Computing
In Chapter 1, we discussed some key IBM artificial-intelligence accomplishments, includ-
ing beating the two best human Jeopardy! players in a $1 million match. Watson won the
competition and IBM donated the prize money to charity. Watson simultaneously exe-
cuted hundreds of language-analysis algorithms to locate correct answers in 200 million
pages of content (including all of Wikipedia) requiring four terabytes of storage.1,2 IBM
researchers trained Watson using machine-learning and reinforcement-learning tech-
niques—we discuss machine learning in the next chapter.3

Early in our research for this book, we recognized the rapidly growing importance of
Watson, so we placed Google Alerts on Watson and related topics. Through those alerts
and the newsletters and blogs we follow, we accumulated 900+ current Watson-related
articles, documentation pieces and videos. We investigated many competitive services and
found Watson’s “no credit card required” policy and free Lite tier services4 to be among
friendliest to people who’d like to experiment with Watson’s services at no charge.

IBM Watson is a cloud-based cognitive-computing platform being employed across
a wide range of real-world scenarios. Cognitive-computing systems simulate the pattern-
recognition and decision-making capabilities of the human brain to “learn” as they con-
sume more data.5,6,7 We overview Watson’s broad range of web services and provide a
hands-on Watson treatment, demonstrating many Watson capabilities. The table on the
next page shows just a few of the ways in which organizations are using Watson.

Watson offers an intriguing set of capabilities that you can incorporate into your
applications. In this chapter, you’ll set up an IBM Cloud account8 and use the Lite tier and
IBM’s Watson demos to experiment with various web services, such as natural language
translation, speech-to-text, text-to-speech, natural language understanding, chatbots,
analyzing text for tone and visual object recognition in images and video. We’ll briefly
overview some additional Watson services and tools.

13.1 Introduction: IBM Watson and
Cognitive Computing

13.2 IBM Cloud Account and Cloud
Console

13.3 Watson Services
13.4 Additional Services and Tools
13.5 Watson Developer Cloud Python

SDK

13.6 Case Study: Traveler’s Companion
Translation App

13.6.1 Before You Run the App
13.6.2 Test-Driving the App
13.6.3 SimpleLanguageTranslator.py

Script Walkthrough
13.7 Watson Resources
13.8 Wrap-Up

1. https://www.techrepublic.com/article/ibm-watson-the-inside-story-of-how-the-

jeopardy-winning-supercomputer-was-born-and-what-it-wants-to-do-next/.
2. https://en.wikipedia.org/wiki/Watson_(computer).
3. https://www.aaai.org/Magazine/Watson/watson.php, AI Magazine, Fall 2010.
4. Always check the latest terms on IBM’s website as the terms and services may change.
5. http://whatis.techtarget.com/definition/cognitive-computing.
6. https://en.wikipedia.org/wiki/Cognitive_computing.
7. https://www.forbes.com/sites/bernardmarr/2016/03/23/what-everyone-should-know-

about-cognitive-computing.
8. IBM Cloud previously was called Bluemix. You’ll still see “bluemix” in many of this chapter’s URLs.

https://www.techrepublic.com/article/ibm-watson-the-inside-story-of-how-the-jeopardy-winning-supercomputer-was-born-and-what-it-wants-to-do-next/
https://www.techrepublic.com/article/ibm-watson-the-inside-story-of-how-the-jeopardy-winning-supercomputer-was-born-and-what-it-wants-to-do-next/
https://en.wikipedia.org/wiki/Watson_(computer)
https://www.aaai.org/Magazine/Watson/watson.php
http://whatis.techtarget.com/definition/cognitive-computing
https://en.wikipedia.org/wiki/Cognitive_computing
https://www.forbes.com/sites/bernardmarr/2016/03/23/what-everyone-should-know-about-cognitive-computing
https://www.forbes.com/sites/bernardmarr/2016/03/23/what-everyone-should-know-about-cognitive-computing

ptg27972259

13.2 IBM Cloud Account and Cloud Console 375

You’ll install the Watson Developer Cloud Python Software Development Kit (SDK)
for programmatic access to Watson services from your Python code. Then, in our hands-on
implementation case study, you’ll develop a traveler’s companion translation app by quickly
and conveniently mashing up several Watson services. The app enables English-only and
Spanish-only speakers to communicate with one another verbally, despite the language bar-
rier. You’ll transcribe English and Spanish audio recordings to text, translate the text to the
other language, then synthesize and play English and Spanish audio from the translated text.

Watson is a dynamic and evolving set of capabilities. During the time we worked on
this book, new services were added and existing services were updated and/or removed
multiple times. The descriptions of the Watson services and the steps we present were
accurate as of the time of this writing. We’ll post updates as necessary on the book’s web
page at www.deitel.com.

13.2 IBM Cloud Account and Cloud Console
You’ll need a free IBM Cloud account to access Watson’s Lite tier services. Each service’s
description web page lists the service’s tiered offerings and what you get with each tier.
Though the Lite tier services limit your use, they typically offer what you’ll need to famil-
iarize yourself with Watson features and begin using them to develop apps. The limits are
subject to change, so rather than list them here, we point you to each service’s web page.
IBM increased the limits significantly on some services while we were writing this book.
Paid tiers are available for use in commercial-grade applications.

To get a free IBM Cloud account, follow the instructions at:

https://console.bluemix.net/docs/services/watson/index.html#about

You’ll receive an e-mail. Follow its instructions to confirm your account. Then you can
log in to the IBM Cloud console. Once there, you can go to the Watson dashboard at:

https://console.bluemix.net/developer/watson/dashboard

Watson use cases

ad targeting
artificial intelligence
augmented intelligence
augmented reality
chatbots
closed captioning
cognitive computing
conversational interfaces
crime prevention
customer support
detecting cyberbullying
drug development
education
facial recognition
finance

fraud prevention
game playing
genetics
healthcare
image processing
IoT (Internet of Things)
language translation
machine learning
malware detection
medical diagnosis and treatment
medical imaging
music
natural language processing
natural language understanding
object recognition

personal assistants
predictive maintenance
product recommendations
robots and drones
self-driving cars
sentiment and mood analysis
smart homes
sports
supply-chain management
threat detection
virtual reality
voice analysis
weather forecasting
workplace safety

http://www.deitel.com
https://console.bluemix.net/docs/services/watson/index.html#about
https://console.bluemix.net/developer/watson/dashboard

ptg27972259

376 Chapter 13 IBM Watson and Cognitive Computing

where you can:

• Browse the Watson services.

• Link to the services you’ve already registered to use.

• Look at the developer resources, including the Watson documentation, SDKs
and various resources for learning Watson.

• View the apps you’ve created with Watson.

Later, you’ll register for and get your credentials to use various Watson services. You can
view and manage your list of services and your credentials in the IBM Cloud dashboard at:

https://console.bluemix.net/dashboard/apps

You can also click Existing Services in the Watson dashboard to get to this list.

13.3 Watson Services
This section overviews many of Watson’s services and provides links to the details for each.
Be sure to run the demos to see the services in action. For links to each Watson service’s
documentation and API reference, visit:

https://console.bluemix.net/developer/watson/documentation

We provide footnotes with links to each service’s details. When you’re ready to use a par-
ticular service, click the Create button on its details page to set up your credentials.

Watson Assistant
The Watson Assistant service9 helps you build chatbots and virtual assistants that enable
users to interact via natural language text. IBM provides a web interface that you can use
to train the Watson Assistant service for specific scenarios associated with your app. For
example, a weather chatbot could be trained to respond to questions like, “What is the
weather forecast for New York City?” In a customer service scenario, you could create
chatbots that answer customer questions and route customers to the correct department,
if necessary. Try the demo at the following site to see some sample interactions:

https://www.ibm.com/watson/services/conversation/demo/
index.html#demo

Visual Recognition
The Visual Recognition service10 enables apps to locate and understand information in
images and video, including colors, objects, faces, text, food and inappropriate content.
IBM provides predefined models (used in the service’s demo), or you can train and use
your own (as you’ll do in the “Deep Learning” chapter). Try the following demo with the
images provided and upload some of your own:

https://watson-visual-recognition-duo-dev.ng.bluemix.net/

9. https://console.bluemix.net/catalog/services/watson-assistant-formerly-

conversation.
10. https://console.bluemix.net/catalog/services/visual-recognition.

https://console.bluemix.net/dashboard/apps
https://console.bluemix.net/developer/watson/documentation
https://www.ibm.com/watson/services/conversation/demo/index.html#demo
https://www.ibm.com/watson/services/conversation/demo/index.html#demo
https://watson-visual-recognition-duo-dev.ng.bluemix.net/
https://console.bluemix.net/catalog/services/watson-assistant-formerly-conversation
https://console.bluemix.net/catalog/services/watson-assistant-formerly-conversation
https://console.bluemix.net/catalog/services/visual-recognition

ptg27972259

13.3 Watson Services 377

Speech to Text
The Speech to Text service,11 which we’ll use in building this chapter’s app, converts
speech audio files to text transcriptions of the audio. You can give the service keywords to
“listen” for, and it tells you whether it found them, what the likelihood of a match was and
where the match occurred in the audio. The service can distinguish among multiple speak-
ers. You could use this service to help implement voice-controlled apps, transcribe live
audio and more. Try the following demo with its sample audio clips or upload your own:

https://speech-to-text-demo.ng.bluemix.net/

Text to Speech
The Text to Speech service,12 which we’ll also use in building this chapter’s app, enables
you to synthesize speech from text. You can use Speech Synthesis Markup Language
(SSML) to embed instructions in the text for control over voice inflection, cadence, pitch
and more. Currently, this service supports English (U.S. and U.K.), French, German, Ital-
ian, Spanish, Portuguese and Japanese. Try the following demo with its plain sample text,
its sample text that includes SSML and text that you provide:

https://text-to-speech-demo.ng.bluemix.net/

Language Translator
The Language Translator service,13 which we’ll also use in building in this chapter’s app,
has two key components:

• translating text between languages and

• identifying text as being written in one of over 60 languages.

Translation is supported to and from English and many languages, as well as between
other languages. Try translating text into various languages with the following demo:

https://language-translator-demo.ng.bluemix.net/

Natural Language Understanding
The Natural Language Understanding service14 analyzes text and produces information
including the text’s overall sentiment and emotion and keywords ranked by their rele-
vance. Among other things, the service can identify

• people, places, job titles, organizations, companies and quantities.

• categories and concepts like sports, government and politics.

• parts of speech like subjects and verbs.

You also can train the service for industry- and application-specific domains with Watson
Knowledge Studio (discussed shortly). Try the following demo with its sample text, with
text that you paste in or by providing a link to an article or document online:

https://natural-language-understanding-demo.ng.bluemix.net/

11. https://console.bluemix.net/catalog/services/speech-to-text.
12. https://console.bluemix.net/catalog/services/text-to-speech.
13. https://console.bluemix.net/catalog/services/language-translator.
14. https://console.bluemix.net/catalog/services/natural-language-understanding.

https://speech-to-text-demo.ng.bluemix.net/
https://text-to-speech-demo.ng.bluemix.net/
https://language-translator-demo.ng.bluemix.net/
https://natural-language-understanding-demo.ng.bluemix.net/
https://console.bluemix.net/catalog/services/speech-to-text
https://console.bluemix.net/catalog/services/text-to-speech
https://console.bluemix.net/catalog/services/language-translator
https://console.bluemix.net/catalog/services/natural-language-understanding

ptg27972259

378 Chapter 13 IBM Watson and Cognitive Computing

Discovery
The Watson Discovery service15 shares many features with the Natural Language Under-
standing service but also enables enterprises to store and manage documents. So, for exam-
ple, organizations can use Watson Discovery to store all their text documents and be able
to use natural language understanding across the entire collection. Try this service’s demo,
which enables you to search recent news articles for companies:

https://discovery-news-demo.ng.bluemix.net/

Personality Insights
The Personality Insights service16 analyzes text for personality traits. According to the ser-
vice description, it can help you “gain insight into how and why people think, act, and feel
the way they do. This service applies linguistic analytics and personality theory to infer
attributes from a person’s unstructured text.” This information could be used to target
product advertising at the people most likely to purchase those products. Try the following
demo with tweets from various Twitter accounts or documents built into the demo, with
text documents that you paste into the demo or with your own Twitter account:

https://personality-insights-livedemo.ng.bluemix.net/

Tone Analyzer
The Tone Analyzer service17 analyzes text for its tone in three categories:

• emotions—anger, disgust, fear, joy, sadness.

• social propensities—openness, conscientiousness, extroversion, agreeableness
and emotional range.

• language style—analytical, confident, tentative.

Try the following demo with sample tweets, a sample product review, a sample e-mail or
text you provide. You’ll see the tone analyses at both the document and sentence levels:

https://tone-analyzer-demo.ng.bluemix.net/

Natural Language Classifier
You train the Natural Language Classifier service18 with sentences and phrases that are
specific to your application and classify each sentence or phrase. For example, you might
classify “I need help with your product” as “tech support” and “My bill is incorrect” as
“billing.” Once you’ve trained your classifier, the service can receive sentences and phrases,
then use Watson’s cognitive computing capabilities and your classifier to return the best
matching classifications and their match probabilities. You might then use the returned
classifications and probabilities to determine the next steps in your app. For example, in a
customer service app where someone is calling in with a question about a particular prod-
uct, you might use Speech to Text to convert a question into text, use the Natural Lan-
guage Classifier service to classify the text, then route the call to the appropriate person or
department. This service does not offer a Lite tier. In the following demo, enter a question

15. https://console.bluemix.net/catalog/services/discovery.
16. https://console.bluemix.net/catalog/services/personality-insights.
17. https://console.bluemix.net/catalog/services/tone-analyzer.
18. https://console.bluemix.net/catalog/services/natural-language-classifier.

https://discovery-news-demo.ng.bluemix.net/
https://personality-insights-livedemo.ng.bluemix.net/
https://tone-analyzer-demo.ng.bluemix.net/
https://console.bluemix.net/catalog/services/discovery
https://console.bluemix.net/catalog/services/personality-insights
https://console.bluemix.net/catalog/services/tone-analyzer
https://console.bluemix.net/catalog/services/natural-language-classifier

ptg27972259

13.4 Additional Services and Tools 379

about the weather—the service will respond by indicating whether your question was
about the temperature or the weather conditions:

https://natural-language-classifier-demo.ng.bluemix.net/

Synchronous and Asynchronous Capabilities
Many of the APIs we discuss throughout the book are synchronous—when you call a
function or method, the program waits for the function or method to return before mov-
ing on to the next task. Asynchronous programs can start a task, continue doing other
things, then be notified when the original task completes and returns its results. Many
Watson services offer both synchronous and asynchronous APIs.

The Speech to Text demo is a good example of asynchronous APIs. The demo pro-
cesses sample audio of two people speaking. As the service transcribes the audio, it returns
intermediate transcription results, even if it has not yet been able to distinguish among the
speakers. The demo displays these intermediate results in parallel with the service’s con-
tinued work. Sometimes the demo displays “Detecting speakers” while the service figures
out who is speaking. Eventually, the service sends updated transcription results for distin-
guishing among the speakers, and the demo then replaces the prior transcription results.

With today’s multi-core computers and multi-computer clusters, the asynchronous
APIs can help you improve program performance. However, programming with them can
be more complicated than programming with synchronous APIs. When we discuss install-
ing the Watson Developer Cloud Python SDK, we provide a link to the SDK’s code exam-
ples on GitHub, where you can see examples that use synchronous and asynchronous
versions of several services. Each service’s API reference provides the complete details.

13.4 Additional Services and Tools
In this section, we overview several Watson advanced services and tools.

Watson Studio
Watson Studio19 is the new Watson interface for creating and managing your Watson
projects and for collaborating with your team members on those projects. You can add
data, prepare your data for analysis, create Jupyter Notebooks for interacting with your
data, create and train models and work with Watson’s deep-learning capabilities. Watson
Studio offers a single-user Lite tier. Once you’ve set up your Watson Studio Lite access by
clicking Create on the service’s details web page

https://console.bluemix.net/catalog/services/data-science-experience

you can access Watson Studio at

https://dataplatform.cloud.ibm.com/

Watson Studio contains preconfigured projects.20 Click Create a project to view them:

• Standard—“Work with any type of asset. Add services for analytical assets as you
need them.”

19. https://console.bluemix.net/catalog/services/data-science-experience.
20. https://dataplatform.cloud.ibm.com/.

https://natural-language-classifier-demo.ng.bluemix.net/
https://console.bluemix.net/catalog/services/data-science-experience
https://dataplatform.cloud.ibm.com/
https://console.bluemix.net/catalog/services/data-science-experience
https://dataplatform.cloud.ibm.com/

ptg27972259

380 Chapter 13 IBM Watson and Cognitive Computing

• Data Science—“Analyze data to discover insights and share your findings with
others.”

• Visual Recognition—“Tag and classify visual content using the Watson Visual
Recognition service.”

• Deep Learning—“Build neural networks and deploy deep learning models.”

• Modeler—“Build modeler flows to train SPSS models or design deep neural net-
works.”

• Business Analytics—“Create visual dashboards from your data to gain insights
faster.”

• Data Engineering—“Combine, cleanse, analyze, and shape data using Data
Refinery.”

• Streams Flow—“Ingest and analyze streaming data using the Streaming Analytics
service.”

Knowledge Studio
Various Watson services work with predefined models, but also allow you to provide cus-
tom models that are trained for specific industries or applications. Watson’s Knowledge
Studio21 helps you build custom models. It allows enterprise teams to work together to
create and train new models, which can then be deployed for use by Watson services.

Machine Learning
The Watson Machine Learning service22 enables you to add predictive capabilities to
your apps via popular machine-learning frameworks, including Tensorflow, Keras, scikit-
learn and others. You’ll use scikit-learn and Keras in the next two chapters.

Knowledge Catalog
The Watson Knowledge Catalog23,24 is an advanced enterprise-level tool for securely
managing, finding and sharing your organization’s data. The tool offers:

• Central access to an enterprise’s local and cloud-based data and machine learning
models.

• Watson Studio support so users can find and access data, then easily use it in
machine-learning projects.

• Security policies that ensure only the people who should have access to specific
data actually do.

• Support for over 100 data cleaning and wrangling operations.

• And more.

21. https://console.bluemix.net/catalog/services/knowledge-studio.
22. https://console.bluemix.net/catalog/services/machine-learning.
23. https://medium.com/ibm-watson/introducing-ibm-watson-knowledge-catalog-

cf42c13032c1.
24. https://dataplatform.cloud.ibm.com/docs/content/catalog/overview-wkc.html.

https://console.bluemix.net/catalog/services/knowledge-studio
https://console.bluemix.net/catalog/services/machine-learning
https://medium.com/ibm-watson/introducing-ibm-watson-knowledge-catalog-cf42c13032c1
https://medium.com/ibm-watson/introducing-ibm-watson-knowledge-catalog-cf42c13032c1
https://dataplatform.cloud.ibm.com/docs/content/catalog/overview-wkc.html

ptg27972259

13.5 Watson Developer Cloud Python SDK 381

Cognos Analytics
The IBM Cognos Analytics25 service, which has a 30-day free trial, uses AI and machine
learning to discover and visualize information in your data, without any programming on
your part. It also provides a natural-language interface that enables you to ask questions
which Cognos Analytics answers based on the knowledge it gathers from your data.

13.5 Watson Developer Cloud Python SDK
In this section, you’ll install the modules required for the next section’s full-implementa-
tion Watson case study. For your coding convenience, IBM provides the Watson Devel-
oper Cloud Python SDK (software development kit). Its watson_developer_cloud
module contains classes that you’ll use to interact with Watson services. You’ll create
objects for each service you need, then interact with the service by calling the object’s
methods.

To install the SDK26 open an Anaconda Prompt (Windows; open as Administrator),
Terminal (macOS/Linux) or shell (Linux), then execute the following command27:

pip install --upgrade watson-developer-cloud

Modules We’ll Need for Audio Recording and Playback
You’ll also need two additional modules for audio recording (PyAudio) and playback
(PyDub). To install these, use the following commands28:

pip install pyaudio
pip install pydub

SDK Examples
On GitHub, IBM provides sample code demonstrating how to access Watson services
using the Watson Developer Cloud Python SDK’s classes. You can find the examples at:

https://github.com/watson-developer-cloud/python-sdk/tree/master/
examples

13.6 Case Study: Traveler’s Companion Translation App
Suppose you’re traveling in a Spanish-speaking country, but you do not speak Spanish,
and you need to communicate with someone who does not speak English. You could use
a translation app to speak in English, and the app could translate that, then speak it in
Spanish. The Spanish-speaking person could then respond, and the app could translate
that and speak it to you in English.

Here, you’ll use three powerful IBM Watson services to implement such a traveler’s
companion translation app,29 enabling people who speak different languages to converse

25. https://www.ibm.com/products/cognos-analytics.
26. For detailed installation instructions and troubleshooting tips, see https://github.com/watson-

developer-cloud/python-sdk/blob/develop/README.md.
27. Windows users might need to install Microsoft’s C++ build tools from https://visualstudio.mi-

crosoft.com/visual-cpp-build-tools/, then install the watson-developer-cloud module.
28. Mac users might need to first execute conda install -c conda-forge portaudio.
29. These services could change in the future. If they do, we’ll post updates on the book’s web page at

http://www.deitel.com/books/IntroToPython.

https://github.com/watson-developer-cloud/python-sdk/tree/master/examples
https://github.com/watson-developer-cloud/python-sdk/tree/master/examples
https://www.ibm.com/products/cognos-analytics
https://github.com/watson-developer-cloud/python-sdk/blob/develop/README.md
https://github.com/watson-developer-cloud/python-sdk/blob/develop/README.md
https://visualstudio.mi-crosoft.com/visual-cpp-build-tools/
https://visualstudio.mi-crosoft.com/visual-cpp-build-tools/
http://www.deitel.com/books/IntroToPython

ptg27972259

382 Chapter 13 IBM Watson and Cognitive Computing

in near real time. Combining services like this is known as creating a mashup. This app
also uses simple file-processing capabilities that we introduced in the “Files and Excep-
tions” chapter.

13.6.1 Before You Run the App
You’ll build this app using the Lite (free) tiers of several IBM Watson services. Before exe-
cuting the app, make sure that you’ve registered for an IBM Cloud account, as we dis-
cussed earlier in the chapter, so you can get credentials for each of the three services the
app uses. Once you have your credentials (described below), you’ll insert them in our
keys.py file (located in the ch13 examples folder) that we import into the example. Never
share your credentials.

As you configure the services below, each service’s credentials page also shows you the
service’s URL. These are the default URLs used by the Watson Developer Cloud Python
SDK, so you do not need to copy them. In Section 13.6.3, we present the SimpleLan-
guageTranslator.py script and a detailed walkthrough of the code.

Registering for the Speech to Text Service
This app uses the Watson Speech to Text service to transcribe English and Spanish audio
files to English and Spanish text, respectively. To interact with the service, you must get a
username and password. To do so:

1. Create a Service Instance: Go to https://console.bluemix.net/catalog/
services/speech-to-text and click the Create button on the bottom of the
page. This auto-generates an API key for you and takes you to a tutorial for work-
ing with the Speech to Text service.

2. Get Your Service Credentials: To see your API key, click Manage at the top-left
of the page. To the right of Credentials, click Show credentials, then copy the API
Key, and paste it into the variable speech_to_text_key’s string in the keys.py
file provided in this chapter’s ch13 examples folder.

Registering for the Text to Speech Service
In this app, you’ll use the Watson Text to Speech service to synthesize speech from text.
This service also requires you to get a username and password. To do so:

1. Create a Service Instance: Go to https://console.bluemix.net/catalog/ser-
vices/text-to-speech and click the Create button on the bottom of the page.
This auto-generates an API key for you and takes you to a tutorial for working
with the Text to Speech service.

2. Get Your Service Credentials: To see your API key, click Manage at the top-left
of the page. To the right of Credentials, click Show credentials, then copy the API
Key and paste it into the variable text_to_speech_key’s string in the keys.py file
provided in this chapter’s ch13 examples folder.

Registering for the Language Translator Service
In this app, you’ll use the Watson Language Translator service to pass text to Watson and
receive back the text translated into another language. This service requires you to get an
API key. To do so:

https://console.bluemix.net/catalog/services/speech-to-text
https://console.bluemix.net/catalog/services/speech-to-text
https://console.bluemix.net/catalog/ser-vices/text-to-speech
https://console.bluemix.net/catalog/ser-vices/text-to-speech

ptg27972259

13.6 Case Study: Traveler’s Companion Translation App 383

1. Create a Service Instance: Go to https://console.bluemix.net/catalog/
services/language-translator and click the Create button on the bottom of
the page. This auto-generates an API key for you and takes you to a page to man-
age your instance of the service.

2. Get Your Service Credentials: To the right of Credentials, click Show credentials,
then copy the API Key and paste it into the variable translate_key’s string in the
keys.py file provided in this chapter’s ch13 examples folder.

Retrieving Your Credentials
To view your credentials at any time, click the appropriate service instance at:

https://console.bluemix.net/dashboard/apps

13.6.2 Test-Driving the App
Once you’ve added your credentials to the script, open an Anaconda Prompt (Windows),
a Terminal (macOS/Linux) or a shell (Linux). Run the script30 by executing the following
command from the ch13 examples folder:

ipython SimpleLanguageTranslator.py

Processing the Question
The app performs 10 steps, which we point out via comments in the code. When the app
begins executing:

Step 1 prompts for and records a question. First, the app displays:

Press Enter then ask your question in English

and waits for you to press Enter. When you do, the app displays:

Recording 5 seconds of audio

Speak your question. We said, “Where is the closest bathroom?” After five seconds, the
app displays:

Recording complete

Step 2 interacts with Watson’s Speech to Text service to transcribe your audio to text
and displays the result:

English: where is the closest bathroom

Step 3 then uses Watson’s Language Translator service to translate the English text to
Spanish and displays the translated text returned by Watson:

Spanish: ¿Dónde está el baño más cercano?

Step 4 passes this Spanish text to Watson’s Text to Speech service to convert the text
to an audio file.

Step 5 plays the resulting Spanish audio file.

30. The pydub.playback module we use in this app issues a warning when you run our script. The warn-
ing has to do with module features we don’t use and can be ignored. To eliminate this warning, you
can install ffmpeg for Windows, macOS or Linux from https://www.ffmpeg.org.

https://console.bluemix.net/catalog/services/language-translator
https://console.bluemix.net/catalog/services/language-translator
https://console.bluemix.net/dashboard/apps
https://www.ffmpeg.org

ptg27972259

384 Chapter 13 IBM Watson and Cognitive Computing

Processing the Response
At this point, we’re ready to process the Spanish speaker’s response.

Step 6 displays:

Press Enter then speak the Spanish answer

and waits for you to press Enter. When you do, the app displays:

Recording 5 seconds of audio

and the Spanish speaker records a response. We do not speak Spanish, so we used Watson’s
Text to Speech service to prerecord Watson saying the Spanish response “El baño más cercano
está en el restaurante,” then played that audio loud enough for our computer’s microphone
to record it. We provided this prerecorded audio for you as SpokenResponse.wav in the ch13
folder. If you use this file, play it quickly after pressing Enter above as the app records for only
5 seconds.31 To ensure that the audio loads and plays quickly, you might want to play it once
before you press Enter to begin recording. After five seconds, the app displays:

Recording complete

Step 7 interacts with Watson’s Speech to Text service to transcribe the Spanish audio
to text and displays the result:

Spanish response: el baño más cercano está en el restaurante

Step 8 then uses Watson’s Language Translator service to translate the Spanish text
to English and displays the result:

English response: The nearest bathroom is in the restaurant

Step 9 passes the English text to Watson’s Text to Speech service to convert the text
to an audio file.

Step 10 then plays the resulting English audio.

13.6.3 SimpleLanguageTranslator.py Script Walkthrough
In this section, we present the SimpleLanguageTranslator.py script’s source code, which
we’ve divided into small consecutively numbered pieces. Let’s use a top-down approach as
we did in the “Control Statements” chapter. Here’s the top:

Create a translator app that enables English and Spanish speakers to communicate.

The first refinement is:

Translate a question spoken in English into Spanish speech.
Translate the answer spoken in Spanish into English speech.

We can break the first line of the second refinement into five steps:

Step 1: Prompt for then record English speech into an audio file.
Step 2: Transcribe the English speech to English text.
Step 3: Translate the English text into Spanish text.
Step 4: Synthesize the Spanish text into Spanish speech and save it into an audio file.
Step 5: Play the Spanish audio file.

31. For simplicity, we set the app to record five seconds of audio. You can control the duration with the
variable SECONDS in function record_audio. It’s possible to create a recorder that begins recording
once it detects sound and stops recording after a period of silence, but the code is more complicated.

ptg27972259

13.6 Case Study: Traveler’s Companion Translation App 385

We can break the second line of the second refinement into five steps:

Step 6: Prompt for then record Spanish speech into an audio file.
Step 7: Transcribe the Spanish speech to Spanish text.
Step 8: Translate the Spanish text into English text.
Step 9: Synthesize the English text into English speech and save it into an audio file.
Step 10: Play the English audio.

This top-down development makes the benefits of the divide-and-conquer approach clear,
focusing our attention on small pieces of a more significant problem.

In this section’s script, we implement the 10 steps specified in the second refinement.
Steps 2 and 7 use the Watson Speech to Text service, Steps 3 and 8 use the Watson Lan-
guage Translator service, and Steps 4 and 9 use the Watson Text to Speech service.

Importing Watson SDK Classes
Lines 4–6 import classes from the watson_developer_cloud module that was installed
with the Watson Developer Cloud Python SDK. Each of these classes uses the Watson cre-
dentials you obtained earlier to interact with a corresponding Watson service:

• Class SpeechToTextV132 enables you to pass an audio file to the Watson Speech
to Text service and receive a JSON33 document containing the text transcription.

• Class LanguageTranslatorV3 enables you to pass text to the Watson Language
Translator service and receive a JSON document containing the translated text.

• Class TextToSpeechV1 enables you to pass text to the Watson Text to Speech ser-
vice and receive audio of the text spoken in a specified language.

Other Imported Modules
Line 7 imports the keys.py file containing your Watson credentials. Lines 8–11 import
modules that support this app’s audio-processing capabilities:

• The pyaudio module enables us to record audio from the microphone.

• pydub and pydub.playback modules enable us to load and play audio files.

• The Python Standard Library’s wave module enables us to save WAV (Waveform
Audio File Format) files. WAV is a popular audio format originally developed by
Microsoft and IBM. This app uses the wave module to save the recorded audio
to a .wav file that we send to Watson’s Speech to Text service for transcription.

32. The V1 in the class name indicates the service’s version number. As IBM revises its services, it adds
new classes to the watson_developer_cloud module, rather than modifying the existing classes.
This ensures that existing apps do not break when the services are updated. The Speech to Text and
Text to Speech services are each Version 1 (V1) and the Language Translator service is Version 3 (V3)
at the time of this writing.

33. We introduced JSON in the previous chapter, “Data Mining Twitter.”

1 # SimpleLanguageTranslator.py
2 """Use IBM Watson Speech to Text, Language Translator and Text to Speech
3 APIs to enable English and Spanish speakers to communicate."""
4 from watson_developer_cloud import SpeechToTextV1
5 from watson_developer_cloud import LanguageTranslatorV3
6 from watson_developer_cloud import TextToSpeechV1

ptg27972259

386 Chapter 13 IBM Watson and Cognitive Computing

Main Program: Function run_translator
Let’s look at the main part of the program defined in function run_translator (lines 13–
54), which calls the functions defined later in the script. For discussion purposes, we broke
run_translator into the 10 steps it performs. In Step 1 (lines 15–17), we prompt in
English for the user to press Enter, then speak a question. Function record_audio then
records audio for five seconds and stores it in the file english.wav:

In Step 2, we call function speech_to_text, passing the file english.wav for tran-
scription and telling the Speech to Text service to transcribe the text using its predefined
model 'en-US_BroadbandModel'.34 We then display the transcribed text:

In Step 3, we call function translate, passing the transcribed text from Step 2 as the
text to translate. Here we tell the Language Translator service to translate the text using its
predefined model 'en-es' to translate from English (en) to Spanish (es). We then display
the Spanish translation:

In Step 4, we call function text_to_speech, passing the Spanish text from Step 3 for
the Text to Speech service to speak using its voice 'es-US_SofiaVoice'. We also specify
the file in which the audio should be saved:

7 import keys # contains your API keys for accessing Watson services
8 import pyaudio # used to record from mic
9 import pydub # used to load a WAV file

10 import pydub.playback # used to play a WAV file
11 import wave # used to save a WAV file
12

13 def run_translator():
14 """Calls the functions that interact with Watson services."""
15 # Step 1: Prompt for then record English speech into an audio file
16 input('Press Enter then ask your question in English')
17 record_audio('english.wav')
18

19 # Step 2: Transcribe the English speech to English text
20 english = speech_to_text(
21 file_name='english.wav', model_id='en-US_BroadbandModel')
22 print('English:', english)
23

34. For most languages, the Watson Speech to Text service supports broadband and narrowband models.
Each has to do with the audio quality. For audio captured at 16 kHZ and higher, IBM recommends
using the broadband models. In this app, we capture the audio at 44.1 kHZ.

24 # Step 3: Translate the English text into Spanish text
25 spanish = translate(text_to_translate=english, model='en-es')
26 print('Spanish:', spanish)
27

28 # Step 4: Synthesize the Spanish text into Spanish speech
29 text_to_speech(text_to_speak=spanish, voice_to_use='es-US_SofiaVoice',
30 file_name='spanish.wav')
31

ptg27972259

13.6 Case Study: Traveler’s Companion Translation App 387

In Step 5, we call function play_audio to play the file 'spanish.wav', which con-
tains the Spanish audio for the text we translated in Step 3.

Finally, Steps 6–10 repeat what we did in Steps 1–5, but for Spanish speech to
English speech:

• Step 6 records the Spanish audio.

• Step 7 transcribes the Spanish audio to Spanish text using the Speech to Text ser-
vice’s predefined model 'es-ES_BroadbandModel'.

• Step 8 translates the Spanish text to English text using the Language Translator
Service’s 'es-en' (Spanish-to-English) model.

• Step 9 creates the English audio using the Text to Speech Service’s voice 'en-
US_AllisonVoice'.

• Step 10 plays the English audio.

Now let’s implement the functions we call from Steps 1 through 10.

Function speech_to_text
To access Watson’s Speech to Text service, function speech_to_text (lines 56–87) creates
a SpeechToTextV1 object named stt (short for speech-to-text), passing as the argument
the API key you set up earlier. The with statement (lines 62–65) opens the audio file spec-
ified by the file_name parameter and assigns the resulting file object to audio_file. The
open mode 'rb' indicates that we’ll read (r) binary data (b)—audio files are stored as bytes
in binary format. Next, lines 64–65 use the SpeechToTextV1 object’s recognize method
to invoke the Speech to Text service. The method receives three keyword arguments:

32 # Step 5: Play the Spanish audio file
33 play_audio(file_name='spanish.wav')
34

35 # Step 6: Prompt for then record Spanish speech into an audio file
36 input('Press Enter then speak the Spanish answer')
37 record_audio('spanishresponse.wav')
38
39 # Step 7: Transcribe the Spanish speech to Spanish text
40 spanish = speech_to_text(
41 file_name='spanishresponse.wav', model_id='es-ES_BroadbandModel')
42 print('Spanish response:', spanish)
43
44 # Step 8: Translate the Spanish text into English text
45 english = translate(text_to_translate=spanish, model='es-en')
46 print('English response:', english)
47
48 # Step 9: Synthesize the English text into English speech
49 text_to_speech(text_to_speak=english,
50 voice_to_use='en-US_AllisonVoice',
51 file_name='englishresponse.wav')
52
53 # Step 10: Play the English audio
54 play_audio(file_name='englishresponse.wav')
55

ptg27972259

388 Chapter 13 IBM Watson and Cognitive Computing

• audio is the file (audio_file) to pass to the Speech to Text service.

• content_type is the media type of the file’s contents—'audio/wav' indicates
that this is an audio file stored in WAV format.35

• model indicates which spoken language model the service will use to recognize the
speech and transcribe it to text. This app uses predefined models—either 'en-
US_BroadbandModel' (for English) or 'es-ES_BroadbandModel' (for Spanish).

The recognize method returns a DetailedResponse object. Its getResult method
returns a JSON document containing the transcribed text, which we store in result. The
JSON will look similar to the following but depends on the question you ask:

35. Media types were formerly known as MIME (Multipurpose Internet Mail Extensions) types—a
standard that specifies data formats, which programs can use to interpret data correctly.

56 def speech_to_text(file_name, model_id):
57 """Use Watson Speech to Text to convert audio file to text."""
58 # create Watson Speech to Text client
59 stt = SpeechToTextV1(iam_apikey=keys.speech_to_text_key)
60
61 # open the audio file
62 with open(file_name, 'rb') as audio_file:
63 # pass the file to Watson for transcription
64 result = stt.recognize(audio=audio_file,
65 content_type='audio/wav', model=model_id).get_result()
66
67 # Get the 'results' list. This may contain intermediate and final
68 # results, depending on method recognize's arguments. We asked
69 # for only final results, so this list contains one element.
70 results_list = result['results']
71
72 # Get the final speech recognition result--the list's only element.
73 speech_recognition_result = results_list[0]
74
75 # Get the 'alternatives' list. This may contain multiple alternative
76 # transcriptions, depending on method recognize's arguments. We did
77 # not ask for alternatives, so this list contains one element.
78 alternatives_list = speech_recognition_result['alternatives']
79
80 # Get the only alternative transcription from alternatives_list.
81 first_alternative = alternatives_list[0]
82
83 # Get the 'transcript' key's value, which contains the audio's
84 # text transcription.
85 transcript = first_alternative['transcript']
86
87 return transcript # return the audio's text transcription
88

ptg27972259

13.6 Case Study: Traveler’s Companion Translation App 389

The JSON contains nested dictionaries and lists. To simplify navigating this data
structure, lines 70–85 use separate small statements to “pick off” one piece at a time until
we get the transcribed text—"where is the closest bathroom ", which we then return.
The boxes around portions of the JSON and the line numbers in each box correspond to
the statements in lines 70–85. The statements operate as follows:

• Line 70 assigns to results_list the list associated with the key 'results':

 results_list = result['results']

Depending on the arguments you pass to method recognize, this list may con-
tain intermediate and final results. Intermediate results might be useful, for exam-
ple, if you were transcribing live audio, such as a newscast. We asked for only final
results, so this list contains one element.36

• Line 73 assigns to speech_recognition_result the final speech-recognition
result—the only element in results_list:

 speech_recognition_result = results_list[0]

• Line 78

 alternatives_list = speech_recognition_result['alternatives']

assigns to alternatives_list the list associated with the key 'alternatives'.
This list may contain multiple alternative transcriptions, depending on method
recognize’s arguments. The arguments we passed result in a one-element list.

• Line 81 assigns to first_alternative the only element in alternatives_list:

 first_alternative = alternatives_list[0]

• Line 85 assigns to transcript the 'transcript' key’s value, which contains the
audio’s text transcription:

 transcript = first_alternative['transcript']

• Finally, line 87 returns the audio’s text transcription.

{
 "results": [Line 70
 { Line 73
 "alternatives": [Line 78
 { Line 81
 "confidence": 0.983,
 "transcript": "where is the closest bathroom " Line 85
 }
],
 "final": true
 }
],
 "result_index": 0
}

36. For method recognize’s arguments and JSON response details, see https://www.ibm.com/wat-
son/developercloud/speech-to-text/api/v1/python.html?python#recognize-sessionless.

https://www.ibm.com/wat-son/developercloud/speech-to-text/api/v1/python.html?python#recognize-sessionless
https://www.ibm.com/wat-son/developercloud/speech-to-text/api/v1/python.html?python#recognize-sessionless

ptg27972259

390 Chapter 13 IBM Watson and Cognitive Computing

Lines 70–85 could be replaced with the denser statement

return result['results'][0]['alternatives'][0]['transcript']

but we prefer the separate simpler statements.

Function translate
To access the Watson Language Translator service, function translate (lines 89–111)
first creates a LanguageTranslatorV3 object named language_translator, passing as
arguments the service version ('2018-05-31'37), the API Key you set up earlier and the
service’s URL. Lines 93–94 use the LanguageTranslatorV3 object’s translate method
to invoke the Language Translator service, passing two keyword arguments:

• text is the string to translate to another language.

• model_id is the predefined model that the Language Translator service will use
to understand the original text and translate it into the appropriate language. In
this app, model will be one of IBM’s predefined translation models—'en-es' (for
English to Spanish) or 'es-en' (for Spanish to English).

The method returns a DetailedResponse. That object’s getResult method returns a
JSON document, like:

37. According to the Language Translator service’s API reference, '2018-05-31' is the current version
string at the time of this writing. IBM changes the version string only if they make API changes that
are not backward compatible. Even when they do, the service will respond to your calls using the API
version you specify in the version string. For more details, see https://www.ibm.com/watson/de-
velopercloud/language-translator/api/v3/python.html?python#versioning.

89 def translate(text_to_translate, model):
90 """Use Watson Language Translator to translate English to Spanish
91 (en-es) or Spanish to English (es-en) as specified by model."""
92 # create Watson Translator client
93 language_translator = LanguageTranslatorV3(version='2018-05-31',
94 iam_apikey=keys.translate_key)
95
96 # perform the translation
97 translated_text = language_translator.translate(
98 text=text_to_translate, model_id=model).get_result()
99
100 # Get 'translations' list. If method translate's text argument has
101 # multiple strings, the list will have multiple entries. We passed
102 # one string, so the list contains only one element.
103 translations_list = translated_text['translations']
104
105 # get translations_list's only element
106 first_translation = translations_list[0]
107
108 # get 'translation' key's value, which is the translated text
109 translation = first_translation['translation']
110
111 return translation # return the translated string
112

https://www.ibm.com/watson/de-velopercloud/language-translator/api/v3/python.html?python#versioning
https://www.ibm.com/watson/de-velopercloud/language-translator/api/v3/python.html?python#versioning

ptg27972259

13.6 Case Study: Traveler’s Companion Translation App 391

The JSON you get as a response depends on the question you asked and, again, contains
nested dictionaries and lists. Lines 103–109 use small statements to pick off the translated
text "¿Dónde está el baño más cercano? ". The boxes around portions of the JSON
and the line numbers in each box correspond to the statements in lines 103–109. The
statements operate as follows:

• Line 103 gets the 'translations' list:

 translations_list = translated_text['translations']

If method translate’s text argument has multiple strings, the list will have mul-
tiple entries. We passed only one string, so the list contains only one element.

• Line 106 gets translations_list’s only element:

 first_translation = translations_list[0]

• Line 109 gets the 'translation' key’s value, which is the translated text:

 translation = first_translation['translation']

• Line 111 returns the translated string.

Lines 103–109 could be replaced with the more concise statement

return translated_text['translations'][0]['translation']

but again, we prefer the separate simpler statements.

Function text_to_speech
To access the Watson Text to Speech service, function text_to_speech (lines 113–122)
creates a TextToSpeechV1 object named tts (short for text-to-speech), passing as the argu-
ment the API key you set up earlier. The with statement opens the file specified by
file_name and associates the file with the name audio_file. The mode 'wb' opens the
file for writing (w) in binary (b) format. We’ll write into that file the contents of the audio
returned by the Speech to Text service.

{
 "translations": [Line 103
 { Line 106
 "translation": "¿Dónde está el baño más cercano? " Line 109
 }
],
 "word_count": 5,
 "character_count": 30
}

113 def text_to_speech(text_to_speak, voice_to_use, file_name):
114 """Use Watson Text to Speech to convert text to specified voice
115 and save to a WAV file."""
116 # create Text to Speech client
117 tts = TextToSpeechV1(iam_apikey=keys.text_to_speech_key)
118
119 # open file and write the synthesized audio content into the file
120 with open(file_name, 'wb') as audio_file:
121 audio_file.write(tts.synthesize(text_to_speak,
122 accept='audio/wav', voice=voice_to_use).get_result().content)
123

ptg27972259

392 Chapter 13 IBM Watson and Cognitive Computing

Lines 121–122 call two methods. First, we invoke the Speech to Text service by call-
ing the TextToSpeechV1 object’s synthesize method, passing three arguments:

• text_to_speak is the string to speak.

• the keyword argument accept is the media type indicating the audio format the
Speech to Text service should return—again, 'audio/wav' indicates an audio file
in WAV format.

• the keyword argument voice is one of the Speech to Text service’s predefined
voices. In this app, we’ll use 'en-US_AllisonVoice' to speak English text and
'es-US_SofiaVoice' to speak Spanish text. Watson provides many male and
female voices across various languages.38

Watson’s DetailedResponse contains the spoken text audio file, accessible via
get_result. We access the returned file’s content attribute to get the bytes of the audio
and pass them to the audio_file object’s write method to output the bytes to a .wav file.

Function record_audio
The pyaudio module enables you to record audio from the microphone. The function
record_audio (lines 124–154) defines several constants (lines 126–130) used to configure
the stream of audio information coming from your computer’s microphone. We used the
settings from the pyaudio module’s online documentation:

• FRAME_RATE—44100 frames-per-second represents 44.1 kHz, which is common
for CD-quality audio.

• CHUNK—1024 is the number of frames streamed into the program at a time.

• FORMAT—pyaudio.paInt16 is the size of each frame (in this case, 16-bit or 2-byte
integers).

• CHANNELS—2 is the number of samples per frame.

• SECONDS—5 is the number of seconds for which we’ll record audio in this app.

38. For a complete list, see https://www.ibm.com/watson/developercloud/text-to-speech/api/
v1/python.html?python#get-voice. Try experimenting with other voices.

124 def record_audio(file_name):
125 """Use pyaudio to record 5 seconds of audio to a WAV file."""
126 FRAME_RATE = 44100 # number of frames per second
127 CHUNK = 1024 # number of frames read at a time
128 FORMAT = pyaudio.paInt16 # each frame is a 16-bit (2-byte) integer
129 CHANNELS = 2 # 2 samples per frame
130 SECONDS = 5 # total recording time
131
132 recorder = pyaudio.PyAudio() # opens/closes audio streams
133
134 # configure and open audio stream for recording (input=True)
135 audio_stream = recorder.open(format=FORMAT, channels=CHANNELS,
136 rate=FRAME_RATE, input=True, frames_per_buffer=CHUNK)
137 audio_frames = [] # stores raw bytes of mic input
138 print('Recording 5 seconds of audio')
139

https://www.ibm.com/watson/developercloud/text-to-speech/api/v1/python.html?python#get-voice
https://www.ibm.com/watson/developercloud/text-to-speech/api/v1/python.html?python#get-voice

ptg27972259

13.6 Case Study: Traveler’s Companion Translation App 393

Line 132 creates the PyAudio object from which we’ll obtain the input stream to
record audio from the microphone. Lines 135–136 use the PyAudio object’s open method
to open the input stream, using the constants FORMAT, CHANNELS, FRAME_RATE and CHUNK
to configure the stream. Setting the input keyword argument to True indicates that the
stream will be used to receive audio input. The open method returns a pyaudio Stream
object for interacting with the stream.

Lines 141–142 use the Stream object’s read method to get 1024 (that is, CHUNK)
frames at a time from the input stream, which we then append to the audio_frames list.
To determine the total number of loop iterations required to produce 5 seconds of audio
using CHUNK frames at a time, we multiply the FRAME_RATE by SECONDS, then divide the
result by CHUNK. Once reading is complete, line 145 calls the Stream object’s stop_stream
method to terminate recording, line 146 calls the Stream object’s close method to close
the Stream, and line 147 calls the PyAudio object’s terminate method to release the
underlying audio resources that were being used to manage the audio stream.

The with statement in lines 150–154 uses the wave module’s open function to open
the WAV file specified by file_name for writing in binary format ('wb’). Lines 151–153
configure the WAV file’s number of channels, sample width (obtained from the PyAudio
object’s get_sample_size method) and frame rate. Then line 154 writes the audio con-
tent to the file. The expression b''.join(audio_frames) concatenates all the frames’
bytes into a byte string. Prepending a string with b indicates that it’s a string of bytes rather
than a string of characters.

Function play_audio
To play the audio files returned by Watson’s Text to Speech service, we use features of the
pydub and pydub.playback modules. First, from the pydub module, line 158 uses the
AudioSegment class’s from_wav method to load a WAV file. The method returns a new
AudioSegment object representing the audio file. To play the AudioSegment, line 159 calls
the pydub.playback module’s play function, passing the AudioSegment as an argument.

140 # read 5 seconds of audio in CHUNK-sized pieces
141 for i in range(0, int(FRAME_RATE * SECONDS / CHUNK)):
142 audio_frames.append(audio_stream.read(CHUNK))
143
144 print('Recording complete')
145 audio_stream.stop_stream() # stop recording
146 audio_stream.close()
147 recorder.terminate() # release underlying resources used by PyAudio
148
149 # save audio_frames to a WAV file
150 with wave.open(file_name, 'wb') as output_file:
151 output_file.setnchannels(CHANNELS)
152 output_file.setsampwidth(recorder.get_sample_size(FORMAT))
153 output_file.setframerate(FRAME_RATE)
154 output_file.writeframes(b''.join(audio_frames))
155

156 def play_audio(file_name):
157 """Use the pydub module (pip install pydub) to play a WAV file."""
158 sound = pydub.AudioSegment.from_wav(file_name)
159 pydub.playback.play(sound)
160

ptg27972259

394 Chapter 13 IBM Watson and Cognitive Computing

Executing the run_translator Function
We call the run_translator function when you execute SimpleLanguageTranslator.py
as a script:

Hopefully, the fact that we took a divide-and-conquer approach on this substantial
case study script made it manageable. Many of the steps matched up nicely with some key
Watson services, enabling us to quickly create a powerful mashup application.

13.7 Watson Resources
IBM provides a wide range of developer resources to help you familiarize yourself with
their services and begin using them to build applications.

Watson Services Documentation
The Watson Services documentation is at:

https://console.bluemix.net/developer/watson/documentation

For each service, there are documentation and API reference links. Each service’s docu-
mentation typically includes some or all of the following:

• a getting started tutorial.

• a video overview of the service.

• a link to a service demo.

• links to more specific how-to and tutorial documents.

• sample apps.

• additional resources, such as more advanced tutorials, videos, blog posts and more.

Each service’s API reference shows all the details of interacting with the service using
any of several languages, including Python. Click the Python tab to see the Python-specific
documentation and corresponding code samples for the Watson Developer Cloud Python
SDK. The API reference explains all the options for invoking a given service, the kinds of
responses it can return, sample responses, and more.

Watson SDKs
We used the Watson Developer Cloud Python SDK to develop this chapter’s script. There
are SDKs for many other languages and platforms. The complete list is located at:

https://console.bluemix.net/developer/watson/sdks-and-tools

Learning Resources
On the Learning Resources page

https://console.bluemix.net/developer/watson/learning-resources

you’ll find links to:

• Blog posts on Watson features and how Watson and AI are being used in industry.

• Watson’s GitHub repository (developer tools, SDKs and sample code).

161 if __name__ == '__main__':
162 run_translator()

https://console.bluemix.net/developer/watson/documentation
https://console.bluemix.net/developer/watson/sdks-and-tools
https://console.bluemix.net/developer/watson/learning-resources

ptg27972259

13.8 Wrap-Up 395

• The Watson YouTube channel (discussed below).

• Code patterns, which IBM refers to as “roadmaps for solving complex program-
ming challenges.” Some are implemented in Python, but you may still find the
other code patterns helpful in designing and implementing your Python apps.

Watson Videos
The Watson YouTube channel

https://www.youtube.com/user/IBMWatsonSolutions/

contains hundreds of videos showing you how to use all aspects of Watson. There are also
spotlight videos showing how Watson is being used.

IBM Redbooks
The following IBM Redbooks publications cover IBM Cloud and Watson services in
detail, helping you develop your Watson skills.

• Essentials of Application Development on IBM Cloud:
http://www.redbooks.ibm.com/abstracts/sg248374.html

• Building Cognitive Applications with IBM Watson Services: Volume 1 Getting
Started: http://www.redbooks.ibm.com/abstracts/sg248387.html

• Building Cognitive Applications with IBM Watson Services: Volume 2 Conver-
sation (now called Watson Assistant): http://www.redbooks.ibm.com/

abstracts/sg248394.html

• Building Cognitive Applications with IBM Watson Services: Volume 3 Visual
Recognition: http://www.redbooks.ibm.com/abstracts/sg248393.html

• Building Cognitive Applications with IBM Watson Services: Volume 4 Natural
Language Classifier: http://www.redbooks.ibm.com/abstracts/sg248391.html

• Building Cognitive Applications with IBM Watson Services: Volume 5 Lan-
guage Translator: http://www.redbooks.ibm.com/abstracts/sg248392.html

• Building Cognitive Applications with IBM Watson Services: Volume 6 Speech
to Text and Text to Speech:
http://www.redbooks.ibm.com/abstracts/sg248388.html

• Building Cognitive Applications with IBM Watson Services: Volume 7 Natural
Language Understanding:
http://www.redbooks.ibm.com/abstracts/sg248398.html

13.8 Wrap-Up
In this chapter, we introduced IBM’s Watson cognitive-computing platform and over-
viewed its broad range of services. You saw that Watson offers intriguing capabilities that
you can integrate into your applications. IBM encourages learning and experimentation
via its free Lite tiers. To take advantage of that, you set up an IBM Cloud account. You
tried Watson demos to experiment with various services, such as natural language transla-
tion, speech-to-text, text-to-speech, natural language understanding, chatbots, analyzing
text for tone and visual object recognition in images and video.

https://www.youtube.com/user/IBMWatsonSolutions/
http://www.redbooks.ibm.com/abstracts/sg248374.html
http://www.redbooks.ibm.com/abstracts/sg248387.html
http://www.redbooks.ibm.com/abstracts/sg248394.html
http://www.redbooks.ibm.com/abstracts/sg248394.html
http://www.redbooks.ibm.com/abstracts/sg248393.html
http://www.redbooks.ibm.com/abstracts/sg248391.html
http://www.redbooks.ibm.com/abstracts/sg248392.html
http://www.redbooks.ibm.com/abstracts/sg248388.html
http://www.redbooks.ibm.com/abstracts/sg248398.html

ptg27972259

396 Chapter 13 IBM Watson and Cognitive Computing

You installed the Watson Developer Cloud Python SDK for programmatic access to
Watson services from your Python code. In the traveler’s companion translation app, we
mashed up several Watson services to enable English-only and Spanish-only speakers to
communicate easily with one another verbally. We transcribed English and Spanish audio
recordings to text, translated the text to the other language, then synthesized English and
Spanish audio from the translated text. Finally, we discussed various Watson resources,
including documentation, blogs, the Watson GitHub repository, the Watson YouTube
channel, code patterns implemented in Python (and other languages) and IBM Redbooks.

ptg27972259

14
Machine Learning:

Classification, Regression
and Clustering

O b j e c t i v e s
In this chapter you’ll:
■ Use scikit-learn with popular datasets to perform machine

learning studies.
■ Use Seaborn and Matplotlib to visualize and explore data.
■ Perform supervised machine learning with k-nearest neighbors

classification and linear regression.
■ Perform multi-classification with Digits dataset.
■ Divide a dataset into training, test and validation sets.
■ Tune model hyperparameters with k-fold cross-validation.
■ Measure model performance.
■ Display a confusion matrix showing classification prediction

hits and misses.
■ Perform multiple linear regression with the California Housing

dataset.
■ Perform dimensionality reduction with PCA and t-SNE on the

Iris and Digits datasets to prepare them for two-dimensional
visualizations.

■ Perform unsupervised machine learning with k-means
clustering and the Iris dataset.

ptg27972259

398 Chapter 14 Machine Learning: Classification, Regression and Clustering
O

u
tl

in
e

14.1 Introduction to Machine Learning
In this chapter and the next, we’ll present machine learning—one of the most exciting and
promising subfields of artificial intelligence. You’ll see how to quickly solve challenging
and intriguing problems that novices and most experienced programmers probably would
not have attempted just a few years ago. Machine learning is a big, complex topic that
raises lots of subtle issues. Our goal here is to give you a friendly, hands-on introduction
to a few of the simpler machine-learning techniques.

What Is Machine Learning?
Can we really make our machines (that is, our computers) learn? In this and the next chap-
ter, we’ll show exactly how that magic happens. What’s the “secret sauce” of this new
application-development style? It’s data and lots of it. Rather than programming expertise
into our applications, we program them to learn from data. We’ll present many Python-
based code examples that build working machine-learning models then use them to make
remarkably accurate predictions.

Prediction
Wouldn’t it be fantastic if you could improve weather forecasting to save lives, minimize
injuries and property damage? What if we could improve cancer diagnoses and treatment

14.1 Introduction to Machine Learning
14.1.1 Scikit-Learn
14.1.2 Types of Machine Learning
14.1.3 Datasets Bundled with Scikit-Learn
14.1.4 Steps in a Typical Data Science Study

14.2 Case Study: Classification with k-
Nearest Neighbors and the Digits
Dataset, Part 1

14.2.1 k-Nearest Neighbors Algorithm
14.2.2 Loading the Dataset
14.2.3 Visualizing the Data
14.2.4 Splitting the Data for Training and

Testing
14.2.5 Creating the Model
14.2.6 Training the Model
14.2.7 Predicting Digit Classes

14.3 Case Study: Classification with k-
Nearest Neighbors and the Digits
Dataset, Part 2

14.3.1 Metrics for Model Accuracy
14.3.2 K-Fold Cross-Validation
14.3.3 Running Multiple Models to Find the

Best One
14.3.4 Hyperparameter Tuning

14.4 Case Study: Time Series and Simple
Linear Regression

14.5 Case Study: Multiple Linear Regression
with the California Housing Dataset

14.5.1 Loading the Dataset
14.5.2 Exploring the Data with Pandas
14.5.3 Visualizing the Features
14.5.4 Splitting the Data for Training and

Testing
14.5.5 Training the Model
14.5.6 Testing the Model
14.5.7 Visualizing the Expected vs. Predicted

Prices
14.5.8 Regression Model Metrics
14.5.9 Choosing the Best Model

14.6 Case Study: Unsupervised Machine
Learning, Part 1—Dimensionality
Reduction

14.7 Case Study: Unsupervised Machine
Learning, Part 2—k-Means Clustering

14.7.1 Loading the Iris Dataset
14.7.2 Exploring the Iris Dataset: Descriptive

Statistics with Pandas
14.7.3 Visualizing the Dataset with a

Seaborn pairplot
14.7.4 Using a KMeans Estimator
14.7.5 Dimensionality Reduction with

Principal Component Analysis
14.7.6 Choosing the Best Clustering

Estimator
14.8 Wrap-Up

ptg27972259

14.1 Introduction to Machine Learning 399

regimens to save lives, or improve business forecasts to maximize profits and secure peo-
ple’s jobs? What about detecting fraudulent credit-card purchases and insurance claims?
How about predicting customer “churn,” what prices houses are likely to sell for, ticket
sales of new movies, and anticipated revenue of new products and services? How about
predicting the best strategies for coaches and players to use to win more games and cham-
pionships? All of these kinds of predictions are happening today with machine learning.

Machine Learning Applications
Here’s a table of some popular machine-learning applications:

14.1.1 Scikit-Learn
We’ll use the popular scikit-learn machine learning library. Scikit-learn, also called sklearn,
conveniently packages the most effective machine-learning algorithms as estimators. Each
is encapsulated, so you don’t see the intricate details and heavy mathematics of how these
algorithms work. You should feel comfortable with this—you drive your car without
knowing the intricate details of how engines, transmissions, braking systems and steering
systems work. Think about this the next time you step into an elevator and select your des-
tination floor, or turn on your television and select the program you’d like to watch. Do
you really understand the internal workings of your smart phone’s hardware and software?

With scikit-learn and a small amount of Python code, you’ll create powerful models
quickly for analyzing data, extracting insights from the data and most importantly making
predictions. You’ll use scikit-learn to train each model on a subset of your data, then test
each model on the rest to see how well your model works. Once your models are trained,
you’ll put them to work making predictions based on data they have not seen. You’ll often
be amazed at the results. All of a sudden your computer that you’ve used mostly on rote
chores will take on characteristics of intelligence.

Scikit-learn has tools that automate training and testing your models. Although you can
specify parameters to customize the models and possibly improve their performance, in this
chapter, we’ll typically use the models’ default parameters, yet still obtain impressive results.

Machine learning applications

Anomaly detection
Chatbots
Classifying emails as spam or
not spam
Classifying news articles as
sports, financial, politics, etc.
Computer vision and image
classification
Credit-card fraud detection
Customer churn prediction
Data compression
Data exploration
Data mining social media (like
Facebook, Twitter, LinkedIn)

Detecting objects in scenes
Detecting patterns in data
Diagnostic medicine
Facial recognition
Insurance fraud detection
Intrusion detection in com-
puter networks
Handwriting recognition
Marketing: Divide customers
into clusters
Natural language translation
(English to Spanish, French to
Japanese, etc.)
Predict mortgage loan defaults

Recommender systems (“peo-
ple who bought this product
also bought…”)
Self-Driving cars (more gener-
ally, autonomous vehicles)
Sentiment analysis (like classi-
fying movie reviews as posi-
tive, negative or neutral)
Spam filtering
Time series predictions like
stock-price forecasting and
weather forecasting
Voice recognition

ptg27972259

400 Chapter 14 Machine Learning: Classification, Regression and Clustering

There also are tools like auto-sklearn (https://automl.github.io/auto-sklearn), which
automates many of the tasks you perform with scikit-learn.

Which Scikit-Learn Estimator Should You Choose for Your Project
It’s difficult to know in advance which model(s) will perform best on your data, so you
typically try many models and pick the one that performs best. As you’ll see, scikit-learn
makes this convenient for you. A popular approach is to run many models and pick the
best one(s). How do we evaluate which model performed best?

You’ll want to experiment with lots of different models on different kinds of datasets.
You’ll rarely get to know the details of the complex mathematical algorithms in the sklearn
estimators, but with experience, you’ll become familiar with which algorithms may be best
for particular types of datasets and problems. Even with that experience, it’s unlikely that
you’ll be able to intuit the best model for each new dataset. So scikit-learn makes it easy
for you to “try ’em all.” It takes at most a few lines of code for you to create and use each
model. The models report their performance so you can compare the results and pick the
model(s) with the best performance.

14.1.2 Types of Machine Learning
We’ll present the two main types of machine learning—supervised machine learning, which
works with labeled data, and unsupervised machine learning, which works with unlabeled data.

If, for example, you’re developing a computer vision application to recognize dogs and
cats, you’ll train your model on lots of dog photos labeled “dog” and cat photos labeled
“cat.” If your model is effective, when you put it to work processing unlabeled photos it will
recognize dogs and cats it has never seen before. The more photos you train with, the greater
the chance that your model will accurately predict which new photos are dogs and which
are cats. In this era of big data and massive, economical computer power, you should be
able to build some pretty accurate models with the techniques you’re about to see.

How can looking at unlabeled data be useful? Online booksellers sell lots of books.
They record enormous amounts of (unlabeled) book purchase transaction data. They
noticed early on that people who bought certain books were likely to purchase other books
on the same or similar topics. That led to their recommendation systems. Now, when you
browse a bookseller site for a particular book, you’re likely to see recommendations like,
“people who bought this book also bought these other books.” Recommendation systems
are big business today, helping to maximize product sales of all kinds.

Supervised Machine Learning
Supervised machine learning falls into two categories—classification and regression. You
train machine-learning models on datasets that consist of rows and columns. Each row
represents a data sample. Each column represents a feature of that sample. In supervised
machine learning, each sample has an associated label called a target (like “dog” or “cat”).
This is the value you’re trying to predict for new data that you present to your models.

Datasets
You’ll work with some “toy” datasets, each with a small number of samples with a limited
number of features. You’ll also work with several richly featured real-world datasets, one
containing a few thousand samples and one containing tens of thousands of samples. In the

https://automl.github.io/auto-sklearn

ptg27972259

14.1 Introduction to Machine Learning 401

world of big data, datasets commonly have, millions and billions of samples, or even more.
There’s an enormous number of free and open datasets available for data science stud-

ies. Libraries like scikit-learn package up popular datasets for you to experiment with and
provide mechanisms for loading datasets from various repositories (such as openml.org).
Governments, businesses and other organizations worldwide offer datasets on a vast range
of subjects. You’ll work with several popular free datasets, using a variety of machine learn-
ing techniques.

Classification
We’ll use one of the simplest classification algorithms, k-nearest neighbors, to analyze the
Digits dataset bundled with scikit-learn. Classification algorithms predict the discrete
classes (categories) to which samples belong. Binary classification uses two classes, such as
“spam” or “not spam” in an email classification application. Multi-classification uses more
than two classes, such as the 10 classes, 0 through 9, in the Digits dataset. A classification
scheme looking at movie descriptions might try to classify them as “action,” “adventure,”
“fantasy,” “romance,” “history” and the like.

Regression
Regression models predict a continuous output, such as the predicted temperature output
in the weather time series analysis from Chapter 10’s Intro to Data Science section. In this
chapter, we’ll revisit that simple linear regression example, this time implementing it using
scikit-learn’s LinearRegression estimator. Next, we use a LinearRegression estimator
to perform multiple linear regression with the California Housing dataset that’s bundled
with scikit-learn. We’ll predict the median house value of a U. S. census block of homes,
considering eight features per block, such as the average number of rooms, median house
age, average number of bedrooms and median income. The LinearRegression estimator,
by default, uses all the numerical features in a dataset to make more sophisticated predic-
tions than you can with a single-feature simple linear regression.

Unsupervised Machine Learning
Next, we’ll introduce unsupervised machine learning with clustering algorithms. We’ll use
dimensionality reduction (with scikit-learn’s TSNE estimator) to compress the Digits dataset’s
64 features down to two for visualization purposes. This will enable us to see how nicely
the Digits data “cluster up.” This dataset contains handwritten digits like those the post
office’s computers must recognize to route each letter to its designated zip code. This is a
challenging computer-vision problem, given that each person’s handwriting is unique.
Yet, we’ll build this clustering model with just a few lines of code and achieve impressive
results. And we’ll do this without having to understand the inner workings of the cluster-
ing algorithm. This is the beauty of object-based programming. We’ll see this kind of con-
venient object-based programming again in the next chapter, where we’ll build powerful
deep learning models using the open source Keras library.

K-Means Clustering and the Iris Dataset
We’ll present the simplest unsupervised machine-learning algorithm, k-means clustering,
and use it on the Iris dataset that’s also bundled with scikit-learn. We’ll use dimensionality
reduction (with scikit-learn’s PCA estimator) to compress the Iris dataset’s four features to

http://openml.org

ptg27972259

402 Chapter 14 Machine Learning: Classification, Regression and Clustering

two for visualization purposes. We’ll show the clustering of the three Iris species in the
dataset and graph each cluster’s centroid, which is the cluster’s center point. Finally, we’ll
run multiple clustering estimators to compare their ability to divide the Iris dataset’s sam-
ples effectively into three clusters.

You normally specify the desired number of clusters, k. K-means works through the
data trying to divide it into that many clusters. As with many machine learning algorithms,
k-means is iterative and gradually zeros in on the clusters to match the number you specify.

K-means clustering can find similarities in unlabeled data. This can ultimately help
with assigning labels to that data so that supervised learning estimators can then process
it. Given that it’s tedious and error-prone for humans to have to assign labels to unlabeled
data, and given that the vast majority of the world’s data is unlabeled, unsupervised
machine learning is an important tool.

Big Data and Big Computer Processing Power
The amount of data that’s available today is already enormous and continues to grow
exponentially. The data produced in the world in the last few years equals the amount pro-
duced up to that point since the dawn of civilization. We commonly talk about big data,
but “big” may not be a strong enough term to describe truly how huge data is getting.

People used to say “I’m drowning in data and I don’t know what to do with it.” With
machine learning, we now say, “Flood me with big data so I can use machine-learning
technology to extract insights and make predictions from it.”

This is occurring at a time when computing power is exploding and computer memory
and secondary storage are exploding in capacity while costs dramatically decline. All of this
enables us to think differently about the solution approaches. We now can program com-
puters to learn from data, and lots of it. It’s now all about predicting from data.

14.1.3 Datasets Bundled with Scikit-Learn
The following table lists scikit-learn’s bundled datasets.1 It also provides capabilities for
loading datasets from other sources, such as the 20,000+ datasets available at openml.org.

1. http://scikit-learn.org/stable/datasets/index.html.

Datasets bundled with scikit-learn

"Toy" datasets
Boston house prices
Iris plants
Diabetes
Optical recognition of handwritten digits
Linnerrud
Wine recognition
Breast cancer Wisconsin (diagnostic)

Real-world datasets
Olivetti faces
20 newsgroups text
Labeled Faces in the Wild face recognition
Forest cover types
RCV1
Kddcup 99
California Housing

http://openml.org
http://scikit-learn.org/stable/datasets/index.html

ptg27972259

14.2 Classification with k-Nearest Neighbors and the Digits Dataset, Part 1 403

14.1.4 Steps in a Typical Data Science Study
We’ll perform the steps of a typical machine-learning case study, including:

• loading the dataset

• exploring the data with pandas and visualizations

• transforming your data (converting non-numeric data to numeric data because
scikit-learn requires numeric data; in the chapter, we use datasets that are “ready
to go,” but we’ll discuss the issue again in the “Deep Learning” chapter)

• splitting the data for training and testing

• creating the model

• training and testing the model

• tuning the model and evaluating its accuracy

• making predictions on live data that the model hasn’t seen before.

In the “Array-Oriented Programming with NumPy” and “Strings: A Deeper Look” chap-
ters’ Intro to Data Science sections, we discussed using pandas to deal with missing and
erroneous values. These are important steps in cleaning your data before using it for
machine learning.

14.2 Case Study: Classification with k-Nearest
Neighbors and the Digits Dataset, Part 1
To process mail efficiently and route each letter to the correct destination, postal service
computers must be able to scan handwritten names, addresses and zip codes and recognize
the letters and digits. As you’ll see in this chapter, powerful libraries like scikit-learn enable
even novice programmers to make such machine-learning problems manageable. In the
next chapter, we’ll use even more powerful computer-vision capabilities when we present
the deep learning technology of convolutional neural networks.

Classification Problems
In this section, we’ll look at classification in supervised machine learning, which attempts
to predict the distinct class2 to which a sample belongs. For example, if you have images
of dogs and images of cats, you can classify each image as a “dog” or a “cat.” This is a binary
classification problem because there are two classes.

We’ll use the Digits dataset3 bundled with scikit-learn, which consists of 8-by-8 pixel
images representing 1797 hand-written digits (0 through 9). Our goal is to predict which
digit an image represents. Since there are 10 possible digits (the classes), this is a multi-
classification problem. You train a classification model using labeled data—we know in
advance each digit’s class. In this case study, we’ll use one of the simplest machine-learning
classification algorithms, k-nearest neighbors (k-NN), to recognize handwritten digits.

2. Note that the term “class” in this case means “category,” not the Python concept of a class.
3. http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-

handwritten-digits-dataset.

http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset
http://scikit-learn.org/stable/datasets/index.html#optical-recognition-of-handwritten-digits-dataset

ptg27972259

404 Chapter 14 Machine Learning: Classification, Regression and Clustering

The following low-resolution digit visualization of a 5 was produced with Matplotlib
from one digit’s 8-by-8 pixel raw data. We’ll show how to display images like this with
Matplotlib momentarily:

Researchers created the images in this dataset from the MNIST database’s tens of thou-
sands of 32-by-32 pixel images that were produced in the early 1990s. At today’s high-
definition camera and scanner resolutions, such images can be captured with much higher
resolutions.

Our Approach
We’ll cover this case study over two sections. In this section, we’ll begin with the basic
steps of a machine learning case study:

• Decide the data from which to train a model.

• Load and explore the data.

• Split the data for training and testing.

• Select and build the model.

• Train the model.

• Make predictions.

As you’ll see, in scikit-learn each of these steps requires at most a few lines of code. In the
next section, we’ll

• Evaluate the results.

• Tune the model.

• Run several classification models to choose the best one(s).

We’ll visualize the data using Matplotlib and Seaborn, so launch IPython with Mat-
plotlib support:

ipython --matplotlib

14.2.1 k-Nearest Neighbors Algorithm
Scikit-learn supports many classification algorithms, including the simplest—k-nearest
neighbors (k-NN). This algorithm attempts to predict a test sample’s class by looking at
the k training samples that are nearest (in distance) to the test sample. For example, con-

ptg27972259

14.2 Classification with k-Nearest Neighbors and the Digits Dataset, Part 1 405

sider the following diagram in which the filled dots represent four sample classes—A, B,
C and D. For this discussion, we’ll use these letters as the class names:

We want to predict the classes to which the new samples X, Y and Z belong. Let’s
assume we’d like to make these predictions using each sample’s three nearest neighbors—
three is k in the k-nearest neighbors algorithm:

• Sample X’s three nearest neighbors are all class D dots, so we’d predict that X’s
class is D.

• Sample Y’s three nearest neighbors are all class B dots, so we’d predict that Y’s
class is B.

• For Z, the choice is not as clear, because it appears between the B and C dots. Of
the three nearest neighbors, one is class B and two are class C. In the k-nearest
neighbors algorithm, the class with the most “votes” wins. So, based on two C
votes to one B vote, we’d predict that Z’s class is C. Picking an odd k value in the
kNN algorithm avoids ties by ensuring there’s never an equal number of votes.

Hyperparameters and Hyperparameter Tuning
In machine learning, a model implements a machine-learning algorithm. In scikit-learn,
models are called estimators. There are two parameter types in machine learning:

• those the estimator calculates as it learns from the data you provide and

• those you specify in advance when you create the scikit-learn estimator object
that represents the model.

The parameters specified in advance are called hyperparameters.
In the k-nearest neighbors algorithm, k is a hyperparameter. For simplicity, we’ll use

scikit-learn’s default hyperparameter values. In real-world machine-learning studies, you’ll

X

Y

Zy-
ax

is

x-axis

A

D

B

C

ptg27972259

406 Chapter 14 Machine Learning: Classification, Regression and Clustering

want to experiment with different values of k to produce the best possible models for your
studies. This process is called hyperparameter tuning. Later we’ll use hyperparameter tun-
ing to choose the value of k that enables the k-nearest neighbors algorithm to make the
best predictions for the Digits dataset. Scikit-learn also has automated hyperparameter tun-
ing capabilities.

14.2.2 Loading the Dataset
The load_digits function from the sklearn.datasets module returns a scikit-learn
Bunch object containing the digits data and information about the Digits dataset (called
metadata):

Bunch is a subclass of dict that has additional attributes for interacting with the dataset.

Displaying the Description
The Digits dataset bundled with scikit-learn is a subset of the UCI (University of Califor-
nia Irvine) ML hand-written digits dataset at:

http://archive.ics.uci.edu/ml/datasets/
Optical+Recognition+of+Handwritten+Digits

The original UCI dataset contains 5620 samples—3823 for training and 1797 for testing.
The version of the dataset bundled with scikit-learn contains only the 1797 testing samples.
A Bunch’s DESCR attribute contains a description of the dataset. According to the Digits
dataset’s description4, each sample has 64 features (as specified by Number of Attributes)
that represent an 8-by-8 image with pixel values in the range 0–16 (specified by Attribute
Information). This dataset has no missing values (as specified by Missing Attribute Val-
ues). The 64 features may seem like a lot, but real-world datasets can sometimes have hun-
dreds, thousands or even millions of features.

In [1]: from sklearn.datasets import load_digits

In [2]: digits = load_digits()

4. We highlighted some key information in bold.

In [3]: print(digits.DESCR)
.. _digits_dataset:

Optical recognition of handwritten digits dataset
--

Data Set Characteristics:

 :Number of Instances: 5620
 :Number of Attributes: 64
 :Attribute Information: 8x8 image of integer pixels in the range
 0..16.
 :Missing Attribute Values: None
 :Creator: E. Alpaydin (alpaydin '@' boun.edu.tr)
 :Date: July; 1998

This is a copy of the test set of the UCI ML hand-written digits datasets
http://archive.ics.uci.edu/ml/datasets/
 Optical+Recognition+of+Handwritten+Digits

http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
http://boun.edu.tr
http://archive.ics.uci.edu/ml/datasets/
http://archive.ics.uci.edu/ml/datasets/

ptg27972259

14.2 Classification with k-Nearest Neighbors and the Digits Dataset, Part 1 407

Checking the Sample and Target Sizes
The Bunch object’s data and target attributes are NumPy arrays:

• The data array contains the 1797 samples (the digit images), each with 64 fea-
tures, having values in the range 0–16, representing pixel intensities. With Mat-
plotlib, we’ll visualize these intensities in grayscale shades from white (0) to black
(16):

• The target array contains the images’ labels—that is, the classes indicating
which digit each image represents. The array is called target because, when you
make predictions, you’re aiming to “hit the target” values. To see labels of sam-
ples throughout the dataset, let’s display the target values of every 100th sample:

We can confirm the number of samples and features (per sample) by looking at the
data array’s shape attribute, which shows that there are 1797 rows (samples) and 64 col-
umns (features):

The data set contains images of hand-written digits: 10 classes where
each class refers to a digit.

Preprocessing programs made available by NIST were used to extract
normalized bitmaps of handwritten digits from a preprinted form. From a
total of 43 people, 30 contributed to the training set and different 13
to the test set. 32x32 bitmaps are divided into nonoverlapping blocks of
4x4 and the number of on pixels are counted in each block. This generates
an input matrix of 8x8 where each element is an integer in the range
0..16. This reduces dimensionality and gives invariance to small
distortions.

For info on NIST preprocessing routines, see M. D. Garris, J. L. Blue, G.
T. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet, and C.
L. Wilson, NIST Form-Based Handprint Recognition System, NISTIR 5469,
1994.

.. topic:: References

 - C. Kaynak (1995) Methods of Combining Multiple Classifiers and Their
 Applications to Handwritten Digit Recognition, MSc Thesis, Institute
 of Graduate Studies in Science and Engineering, Bogazici University.
 - E. Alpaydin, C. Kaynak (1998) Cascading Classifiers, Kybernetika.
 - Ken Tang and Ponnuthurai N. Suganthan and Xi Yao and A. Kai Qin.
 Linear dimensionality reduction using relevance weighted LDA. School
 of Electrical and Electronic Engineering Nanyang Technological
 University. 2005.
 - Claudio Gentile. A New Approximate Maximal Margin Classification
 Algorithm. NIPS. 2000.

In [4]: digits.target[::100]
Out[4]: array([0, 4, 1, 7, 4, 8, 2, 2, 4, 4, 1, 9, 7, 3, 2, 1, 2, 5])

In [5]: digits.data.shape
Out[5]: (1797, 64)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ptg27972259

408 Chapter 14 Machine Learning: Classification, Regression and Clustering

You can confirm that the number of target values matches the number of samples by look-
ing at the target array’s shape:

A Sample Digit Image
Each image is two-dimensional—it has a width and a height in pixels. The Bunch object
returned by load_digits contains an images attribute—an array in which each element
is a two-dimensional 8-by-8 array representing a digit image’s pixel intensities. Though
the original dataset represents each pixel as an integer value from 0–16, scikit-learn stores
these values as floating-point values (NumPy type float64). For example, here’s the two-
dimensional array representing the sample image at index 13:

and here’s the image represented by this two-dimensional array—we’ll soon show the code
for displaying this image:

Preparing the Data for Use with Scikit-Learn
Scikit-learn’s machine-learning algorithms require samples to be stored in a two-dimen-
sional array of floating-point values (or two-dimensional array-like collection, such as a list
of lists or a pandas DataFrame):

• Each row represents one sample.

• Each column in a given row represents one feature for that sample.

To represent every sample as one row, multi-dimensional data like the two-dimensional
image array shown in snippet [7] must be flattened into a one-dimensional array.

If you were working with a data containing categorical features (typically represented
as strings, such as 'spam' or 'not-spam'), you’d also have to preprocess those features into
numerical values—known as one-hot encoding, which we cover in the next chapter.
Scikit-learn’s sklearn.preprocessing module provides capabilities for converting cate-
gorical data to numeric data. The Digits dataset has no categorical features.

In [6]: digits.target.shape
Out[6]: (1797,)

In [7]: digits.images[13]
Out[7]:
array([[0., 2., 9., 15., 14., 9., 3., 0.],
 [0., 4., 13., 8., 9., 16., 8., 0.],
 [0., 0., 0., 6., 14., 15., 3., 0.],
 [0., 0., 0., 11., 14., 2., 0., 0.],
 [0., 0., 0., 2., 15., 11., 0., 0.],
 [0., 0., 0., 0., 2., 15., 4., 0.],
 [0., 1., 5., 6., 13., 16., 6., 0.],
 [0., 2., 12., 12., 13., 11., 0., 0.]])

ptg27972259

14.2 Classification with k-Nearest Neighbors and the Digits Dataset, Part 1 409

For your convenience, the load_digits function returns the preprocessed data ready
for machine learning. The Digits dataset is numerical, so load_digits simply flattens each
image’s two-dimensional array into a one-dimensional array. For example, the 8-by-8
array digits.images[13] shown in snippet [7] corresponds to the 1-by-64 array dig-
its.data[13] shown below:

In this one-dimensional array, the first eight elements are the two-dimensional array’s row
0, the next eight elements are the two-dimensional array’s row 1, and so on.

14.2.3 Visualizing the Data
You should always familiarize yourself with your data. This process is called data explora-
tion. For the digit images, you can get a sense of what they look like by displaying them
with the Matplotlib implot function. The following image shows the dataset’s first 24
images. To see how difficult a problem handwritten digit recognition is, consider the vari-
ations among the images of the 3s in the first, third and fourth rows, and look at the images
of the 2s in the first, third and fourth rows.

Creating the Diagram
Let’s look at the code that displayed these 24 digits. The following call to function sub-
plots creates a 6-by-4 inch Figure (specified by the figsize(6, 4) keyword argument)
containing 24 subplots arranged in 4 rows (nrows=4) and 6 columns (ncols=6). Each sub-
plot has its own Axes object, which we’ll use to display one digit image:

In [8]: digits.data[13]
Out[8]:
array([0., 2., 9., 15., 14., 9., 3., 0., 0., 4., 13., 8., 9.,
 16., 8., 0., 0., 0., 0., 6., 14., 15., 3., 0., 0., 0.,
 0., 11., 14., 2., 0., 0., 0., 0., 0., 2., 15., 11., 0.,
 0., 0., 0., 0., 0., 2., 15., 4., 0., 0., 1., 5., 6.,
 13., 16., 6., 0., 0., 2., 12., 12., 13., 11., 0., 0.])

In [9]: import matplotlib.pyplot as plt

In [10]: figure, axes = plt.subplots(nrows=4, ncols=6, figsize=(6, 4))

ptg27972259

410 Chapter 14 Machine Learning: Classification, Regression and Clustering

Function subplots returns the Axes objects in a two-dimensional NumPy array. Initially,
the Figure appears as shown below with labels (which we’ll remove) on every subplot’s x-
and y-axes:

Displaying Each Image and Removing the Axes Labels
Next, use a for statement with the built-in zip function to iterate in parallel through the
24 Axes objects, the first 24 images in digits.images and the first 24 values in dig-
its.target:

Recall that NumPy array method ravel creates a one-dimensional view of a multidimen-
sional array. Also, recall that zip produces tuples containing elements from the same index
in each of zip’s arguments and that the argument with the fewest elements determines how
many tuples zip returns.

Each iteration of the loop:

• Unpacks one tuple from the zipped items into three variables representing the
Axes object, image and target value.

• Calls the Axes object’s imshow method to display one image. The keyword argu-
ment cmap=plt.cm.gray_r determines the colors displayed in the image. The
value plt.cm.gray_r is a color map—a group of colors that are typically chosen
to work well together. This particular color map enables us to display the image’s
pixels in grayscale, with 0 as white, 16 as black and the values in between as grad-
ually darkening shades of gray. For Matplotlib’s color map names see https://
matplotlib.org/examples/color/colormaps_reference.html. Each can be
accessed through the plt.cm object or via a string, like 'gray_r'.

• Calls the Axes object’s set_xticks and set_yticks methods with empty lists to
indicate that the x- and y-axes should not have tick marks.

In [11]: for item in zip(axes.ravel(), digits.images, digits.target):
 ...: axes, image, target = item
 ...: axes.imshow(image, cmap=plt.cm.gray_r)
 ...: axes.set_xticks([]) # remove x-axis tick marks
 ...: axes.set_yticks([]) # remove y-axis tick marks
 ...: axes.set_title(target)
 ...: plt.tight_layout()
 ...:
 ...:

https://matplotlib.org/examples/color/colormaps_reference.html
https://matplotlib.org/examples/color/colormaps_reference.html

ptg27972259

14.2 Classification with k-Nearest Neighbors and the Digits Dataset, Part 1 411

• Calls the Axes object’s set_title method to display the target value above the
image—this shows the actual value that the image represents.

After the loop, we call tight_layout to remove the extra whitespace at the Figure’s top,
right, bottom and left, so the rows and columns of digit images can fill more of the Figure.

14.2.4 Splitting the Data for Training and Testing
You typically train a machine-learning model with a subset of a dataset. Typically, the
more data you have for training, the better you can train the model. It’s important to set
aside a portion of your data for testing, so you can evaluate a model’s performance using
data that the model has not yet seen. Once you’re confident that the model is performing
well, you can use it to make predictions using new data it hasn’t seen.

We first break the data into a training set and a testing set to prepare to train and test
the model. The function train_test_split from the sklearn.model_selection module
shuffles the data to randomize it, then splits the samples in the data array and the target
values in the target array into training and testing sets. This helps ensure that the training
and testing sets have similar characteristics. The shuffling and splitting is performed con-
veniently for you by a ShuffleSplit object from the sklearn.model_selection module.
Function train_test_split returns a tuple of four elements in which the first two are the
samples split into training and testing sets, and the last two are the corresponding target
values split into training and testing sets. By convention, uppercase X is used to represent
the samples, and lowercase y is used to represent the target values:

We assume the data has balanced classes—that is, the samples are divided evenly among
the classes. This is the case for each of scikit-learn’s bundled classification datasets. Unbal-
anced classes could lead to incorrect results.

In the “Functions” chapter, you saw how to seed a random-number generator for
reproducibility. In machine-learning studies, this helps others confirm your results by
working with the same randomly selected data. Function train_test_split provides the
keyword argument random_state for reproducibility. When you run the code in the future
with the same seed value, train_test_split will select the same data for the training set
and the same data for the testing set. We chose the seed value (11) arbitrarily.

Training and Testing Set Sizes
Looking at X_train’s and X_test’s shapes, you can see that, by default, train_test_split
reserves 75% of the data for training and 25% for testing:

In [12]: from sklearn.model_selection import train_test_split

In [13]: X_train, X_test, y_train, y_test = train_test_split(
 ...: digits.data, digits.target, random_state=11)
 ...:

In [14]: X_train.shape
Out[14]: (1347, 64)

In [15]: X_test.shape
Out[15]: (450, 64)

ptg27972259

412 Chapter 14 Machine Learning: Classification, Regression and Clustering

To specify different splits, you can set the sizes of the testing and training sets with the
train_test_split function’s keyword arguments test_size and train_size. Use float-
ing-point values from 0.0 through 1.0 to specify the percentages of the data to use for each.
You can use integer values to set the precise numbers of samples. If you specify one of these
keyword arguments, the other is inferred. For example, the statement

X_train, X_test, y_train, y_test = train_test_split(
 digits.data, digits.target, random_state=11, test_size=0.20)

specifies that 20% of the data is for testing, so train_size is inferred to be 0.80.

14.2.5 Creating the Model
The KNeighborsClassifier estimator (module sklearn.neighbors) implements the k-
nearest neighbors algorithm. First, we create the KNeighborsClassifier estimator object:

To create an estimator, you simply create an object. The internal details of how this object
implements the k-nearest neighbors algorithm are hidden in the object. You’ll simply call
its methods. This is the essence of Python object-based programming.

14.2.6 Training the Model
Next, we invoke the KNeighborsClassifier object’s fit method, which loads the sample
training set (X_train) and target training set (y_train) into the estimator:

For most, scikit-learn estimators, the fit method loads the data into the estimator
then uses that data to perform complex calculations behind the scenes that learn from the
data and train the model. The KNeighborsClassifier’s fit method just loads the data
into the estimator, because k-NN actually has no initial learning process. The estimator is
said to be lazy because its work is performed only when you use it to make predictions. In
this and the next chapter, you’ll use lots of models that have significant training phases. In
the real-world machine-learning applications, it can sometimes take minutes, hours, days
or even months to train your models. We’ll see in the next chapter, “Deep Learning,” that
special-purpose, high-performance hardware called GPUs and TPUs can significantly
reduce model training time.

As shown in snippet [18]’s output, the fit method returns the estimator, so IPython
displays its string representation, which includes the estimator’s default settings. The
n_neighbors value corresponds to k in the k-nearest neighbors algorithm. By default, a
KNeighborsClassifier looks at the five nearest neighbors to make its predictions. For
simplicity, we generally use the default estimator settings. For KNeighborsClassifier,
these are described at:

http://scikit-learn.org/stable/modules/generated/
sklearn.neighbors.KNeighborsClassifier.html

In [16]: from sklearn.neighbors import KNeighborsClassifier

In [17]: knn = KNeighborsClassifier()

In [18]: knn.fit(X=X_train, y=y_train)
Out[18]:
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
 metric_params=None, n_jobs=None, n_neighbors=5, p=2,
 weights='uniform')

http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

ptg27972259

14.3 Classification with k-Nearest Neighbors and the Digits Dataset, Part 2 413

Many of these settings are beyond the scope of this book. In Part 2 of this case study, we’ll
discuss how to choose the best value for n_neighbors.

14.2.7 Predicting Digit Classes
Now that we’ve loaded the data into the KNeighborsClassifier, we can use it with the
test samples to make predictions. Calling the estimator’s predict method with X_test as
an argument returns an array containing the predicted class of each test image:

Let’s look at the predicted digits vs. expected digits for the first 20 test samples:

As you can see, in the first 20 elements, only the predicted and expected arrays’ values
at index 18 do not match. We expected a 3, but the model predicted a 5.

Let’s use a list comprehension to locate all the incorrect predictions for the entire test
set—that is, the cases in which the predicted and expected values do not match:

The list comprehension uses zip to create tuples containing the corresponding elements
in predicted and expected. We include a tuple in the result only if its p (the predicted
value) and e (the expected value) differ—that is, the predicted value was incorrect. In this
example, the estimator incorrectly predicted only 10 of the 450 test samples. So the pre-
diction accuracy of this estimator is an impressive 97.78%, even though we used only the
estimator’s default parameters.

14.3 Case Study: Classification with k-Nearest
Neighbors and the Digits Dataset, Part 2
In this section, we continue the digit classification case study. We’ll:

• evaluate the k-NN classification estimator’s accuracy,

In [19]: predicted = knn.predict(X=X_test)

In [20]: expected = y_test

In [21]: predicted[:20]
Out[21]: array([0, 4, 9, 9, 3, 1, 4, 1, 5, 0, 4, 9, 4, 1, 5, 3, 3, 8, 5, 6])

In [22]: expected[:20]
Out[22]: array([0, 4, 9, 9, 3, 1, 4, 1, 5, 0, 4, 9, 4, 1, 5, 3, 3, 8, 3, 6])

In [23]: wrong = [(p, e) for (p, e) in zip(predicted, expected) if p != e]

In [24]: wrong
Out[24]:
[(5, 3),
 (8, 9),
 (4, 9),
 (7, 3),
 (7, 4),
 (2, 8),
 (9, 8),
 (3, 8),
 (3, 8),
 (1, 8)]

ptg27972259

414 Chapter 14 Machine Learning: Classification, Regression and Clustering

• execute multiple estimators and can compare their results so you can choose the
best one(s), and

• show how to tune k-NN’s hyperparameter k to get the best performance out of a
KNeighborsClassifier.

14.3.1 Metrics for Model Accuracy
Once you’ve trained and tested a model, you’ll want to measure its accuracy. Here, we’ll look
at two ways of doing this—a classification estimator’s score method and a confusion matrix.

Estimator Method score
Each estimator has a score method that returns an indication of how well the estimator
performs for the test data you pass as arguments. For classification estimators, this method
returns the prediction accuracy for the test data:

The kNeighborsClassifier’s with its default k (that is, n_neighbors=5) achieved
97.78% prediction accuracy. Shortly, we’ll perform hyperparameter tuning to try to deter-
mine the optimal value for k, hoping that we get even better accuracy.

Confusion Matrix
Another way to check a classification estimator’s accuracy is via a confusion matrix, which
shows the correct and incorrect predicted values (also known as the hits and misses) for a
given class. Simply call the function confusion_matrix from the sklearn.metrics mod-
ule, passing the expected classes and the predicted classes as arguments, as in:

The y_true keyword argument specifies the test samples’ actual classes. People looked
at the dataset’s images and labeled them with specific classes (the digit values). The y_pred
keyword argument specifies the predicted digits for those test images.

Below is the confusion matrix produced by the preceding call. The correct predictions
are shown on the diagonal from top-left to bottom-right. This is called the principal diago-
nal. The nonzero values that are not on the principal diagonal indicate incorrect predictions:

In [25]: print(f'{knn.score(X_test, y_test):.2%}')
97.78%

In [26]: from sklearn.metrics import confusion_matrix

In [27]: confusion = confusion_matrix(y_true=expected, y_pred=predicted)

In [28]: confusion
Out[28]:
array([[45, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 45, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 54, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 42, 0, 1, 0, 1, 0, 0],
 [0, 0, 0, 0, 49, 0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0, 38, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 42, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0, 45, 0, 0],
 [0, 1, 1, 2, 0, 0, 0, 0, 39, 1],
 [0, 0, 0, 0, 1, 0, 0, 0, 1, 41]])

ptg27972259

14.3 Classification with k-Nearest Neighbors and the Digits Dataset, Part 2 415

Each row represents one distinct class—that is, one of the digits 0–9. The columns
within a row specify how many of the test samples were classified into each distinct class.
For example, row 0:

[45, 0, 0, 0, 0, 0, 0, 0, 0, 0]

represents the digit 0 class. The columns represent the ten possible target classes 0 through
9. Because we’re working with digits, the classes (0–9) and the row and column index
numbers (0–9) happen to match. According to row 0, 45 test samples were classified as the
digit 0, and none of the test samples were misclassified as any of the digits 1 through 9. So
100% of the 0s were correctly predicted.

On the other hand, consider row 8 which represents the results for the digit 8:

[0, 1, 1, 2, 0, 0, 0, 0, 39, 1]

• The 1 at column index 1 indicates that one 8 was incorrectly classified as a 1.

• The 1 at column index 2 indicates that one 8 was incorrectly classified as a 2.

• The 2 at column index 3 indicates that two 8s were incorrectly classified as 3s.

• The 39 at column index 8 indicates that 39 8s were correctly classified as 8s.

• The 1 at column index 9 indicates that one 8 was incorrectly classified as a 9.

So the algorithm correctly predicted 88.63% (39 of 44) of the 8s. Earlier we saw that the
overall prediction accuracy of this estimator was 97.78%. The lower prediction accuracy
for 8s indicates that they’re apparently harder to recognize than the other digits.

Classification Report
The sklearn.metrics module also provides function classification_report, which
produces a table of classification metrics5 based on the expected and predicted values:

In [29]: from sklearn.metrics import classification_report

In [30]: names = [str(digit) for digit in digits.target_names]

In [31]: print(classification_report(expected, predicted,
 ...: target_names=names))
 ...:
 precision recall f1-score support

 0 1.00 1.00 1.00 45
 1 0.98 1.00 0.99 45
 2 0.98 1.00 0.99 54
 3 0.95 0.95 0.95 44
 4 0.98 0.98 0.98 50
 5 0.97 1.00 0.99 38
 6 1.00 1.00 1.00 42
 7 0.96 1.00 0.98 45
 8 0.97 0.89 0.93 44
 9 0.98 0.95 0.96 43

5. http://scikit-learn.org/stable/modules/model_evaluation.html#precision-recall-

and-f-measures.

http://scikit-learn.org/stable/modules/model_evaluation.html#precision-recall-and-f-measures
http://scikit-learn.org/stable/modules/model_evaluation.html#precision-recall-and-f-measures

ptg27972259

416 Chapter 14 Machine Learning: Classification, Regression and Clustering

In the report:

• precision is the total number of correct predictions for a given digit divided by
the total number of predictions for that digit. You can confirm the precision by
looking at each column in the confusion matrix. For example, if you look at col-
umn index 7, you’ll see 1s in rows 3 and 4, indicating that one 3 and one 4 were
incorrectly classified as 7s and a 45 in row 7 indicating the 45 images were cor-
rectly classified as 7s. So the precision for the digit 7 is 45/47 or 0.96.

• recall is the total number of correct predictions for a given digit divided by the
total number of samples that should have been predicted as that digit. You can
confirm the recall by looking at each row in the confusion matrix. For example,
if you look at row index 8, you’ll see three 1s and a 2 indicating that some 8s were
incorrectly classified as other digits and a 39 indicating that 39 images were cor-
rectly classified. So the recall for the digit 8 is 39/44 or 0.89.

• f1-score—This is the average of the precision and the recall.

• support—The number of samples with a given expected value. For example, 50
samples were labeled as 4s, and 38 samples were labeled as 5s.

For details on the averages displayed at the bottom of the report, see:

http://scikit-learn.org/stable/modules/generated/
sklearn.metrics.classification_report.html

Visualizing the Confusion Matrix
A heat map displays values as colors, often with values of higher magnitude displayed as
more intense colors. Seaborn’s graphing functions work with two-dimensional data.
When using a pandas DataFrame as the data source, Seaborn automatically labels its visu-
alizations using the column names and row indices. Let’s convert the confusion matrix
into a DataFrame, then graph it:

The Seaborn function heatmap creates a heat map from the specified DataFrame. The
keyword argument annot=True (short for “annotation”) displays a color bar to the right
of the diagram, showing how the values correspond to the heat map’s colors. The
cmap='nipy_spectral_r' keyword argument specifies which color map to use. We used
the nipy_spectral_r color map with the colors shown in the heat map’s color bar. When
you display a confusion matrix as a heat map, the principal diagonal and the incorrect pre-
dictions stand out nicely.

 micro avg 0.98 0.98 0.98 450
 macro avg 0.98 0.98 0.98 450
weighted avg 0.98 0.98 0.98 450

In [32]: import pandas as pd

In [33]: confusion_df = pd.DataFrame(confusion, index=range(10),
 ...: columns=range(10))
 ...:

In [34]: import seaborn as sns

In [35]: axes = sns.heatmap(confusion_df, annot=True,
 ...: cmap='nipy_spectral_r')
 ...:

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html

ptg27972259

14.3 Classification with k-Nearest Neighbors and the Digits Dataset, Part 2 417

14.3.2 K-Fold Cross-Validation
K-fold cross-validation enables you to use all of your data for both training and testing, to
get a better sense of how well your model will make predictions for new data by repeatedly
training and testing the model with different portions of the dataset. K-fold cross-valida-
tion splits the dataset into k equal-size folds (this k is unrelated to k in the k-nearest neigh-
bors algorithm). You then repeatedly train your model with k – 1 folds and test the model
with the remaining fold. For example, consider using k = 10 with folds numbered 1
through 10. With 10 folds, we’d do 10 successive training and testing cycles:

• First, we’d train with folds 1–9, then test with fold 10.

• Next, we’d train with folds 1–8 and 10, then test with fold 9.

• Next, we’d train with folds 1–7 and 9–10, then test with fold 8.

This training and testing cycle continues until each fold has been used to test the model.

KFold Class
Scikit-learn provides the KFold class and the cross_val_score function (both in the mod-
ule sklearn.model_selection) to help you perform the training and testing cycles
described above. Let’s perform k-fold cross-validation with the Digits dataset and the
KNeighborsClassifier created earlier. First, create a KFold object:

The keyword arguments are:

• n_splits=10, which specifies the number of folds.

• random_state=11, which seeds the random number generator for reproducibility.

• shuffle=True, which causes the KFold object to randomize the data by shuffling
it before splitting it into folds. This is particularly important if the samples might

In [36]: from sklearn.model_selection import KFold

In [37]: kfold = KFold(n_splits=10, random_state=11, shuffle=True)

ptg27972259

418 Chapter 14 Machine Learning: Classification, Regression and Clustering

be ordered or grouped. For example, the Iris dataset we’ll use later in this chapter
has 150 samples of three Iris species—the first 50 are Iris setosa, the next 50 are
Iris versicolor and the last 50 are Iris virginica. If we do not shuffle the samples,
then the training data might contain none of a particular Iris species and the test
data might be all of one species.

Using the KFold Object with Function cross_val_score
Next, use function cross_val_score to train and test your model:

The keyword arguments are:

• estimator=knn, which specifies the estimator you’d like to validate.

• X=digits.data, which specifies the samples to use for training and testing.

• y=digits.target, which specifies the target predictions for the samples.

• cv=kfold, which specifies the cross-validation generator that defines how to split
the samples and targets for training and testing.

Function cross_val_score returns an array of accuracy scores—one for each fold. As
you can see below, the model was quite accurate. Its lowest accuracy score was 0.97777778
(97.78%) and in one case it was 100% accurate in predicting an entire fold:

Once you have the accuracy scores, you can get an overall sense of the model’s accu-
racy by calculating the mean accuracy score and the standard deviation among the 10 accu-
racy scores (or whatever number of folds you choose):

On average, the model was 98.72% accurate—even better than the 97.78% we achieved
when we trained the model with 75% of the data and tested the model with 25% earlier.

14.3.3 Running Multiple Models to Find the Best One
It’s difficult to know in advance which machine learning model(s) will perform best for a
given dataset, especially when they hide the details of how they operate from their users.
Even though the KNeighborsClassifier predicts digit images with a high degree of accu-
racy, it’s possible that other scikit-learn estimators are even more accurate. Scikit-learn
provides many models with which you can quickly train and test your data. This encour-
ages you to run multiple models to determine which is the best for a particular machine
learning study.

In [38]: from sklearn.model_selection import cross_val_score

In [39]: scores = cross_val_score(estimator=knn, X=digits.data,
 ...: y=digits.target, cv=kfold)
 ...:

In [40]: scores
Out[40]:
array([0.97777778, 0.99444444, 0.98888889, 0.97777778, 0.98888889,
 0.99444444, 0.97777778, 0.98882682, 1. , 0.98324022])

In [41]: print(f'Mean accuracy: {scores.mean():.2%}')
Mean accuracy: 98.72%

In [42]: print(f'Accuracy standard deviation: {scores.std():.2%}')
Accuracy standard deviation: 0.75%

ptg27972259

14.3 Classification with k-Nearest Neighbors and the Digits Dataset, Part 2 419

Let’s use the techniques from the preceding section to compare several classification
estimators—KNeighborsClassifier, SVC and GaussianNB (there are more). Though we
have not studied the SVC and GaussianNB estimators, scikit-learn nevertheless makes it easy
for you to test-drive them by using their default settings.6 First, let’s import the other two
estimators:

Next, let’s create the estimators. The following dictionary contains key–value pairs for
the existing KNeighborsClassifier we created earlier, plus new SVC and GaussianNB esti-
mators:

Now, we can execute the models:

This loop iterates through items in the estimators dictionary and for each key-value pair
performs the following tasks:

• Unpacks the key into estimator_name and value into estimator_object.

• Creates a KFold object that shuffles the data and produces 10 folds. The keyword
argument random_state is particularly important here because it ensures that
each estimator works with identical folds, so we’re comparing “apples to apples.”

• Evaluates the current estimator_object using cross_val_score.

• Prints the estimator’s name, followed by the mean and standard deviation of the
accuracy scores’ computed for each of the 10 folds.

Based on the results, it appears that we can get slightly better accuracy from the SVC esti-
mator—at least when using the estimator’s default settings. It’s possible that by tuning
some of the estimators’ settings, we could get even better results. The KNeighborsClassi-
fier and SVC estimators’ accuracies are nearly identical so we might want to perform
hyperparameter tuning on each to determine the best.

6. To avoid a warning in the current scikit-learn version at the time of this writing (version 0.20), we
supplied one keyword argument when creating the SVC estimator. This argument’s value will become
the default in scikit-learn version 0.22.

In [43]: from sklearn.svm import SVC

In [44]: from sklearn.naive_bayes import GaussianNB

In [45]: estimators = {
 ...: 'KNeighborsClassifier': knn,
 ...: 'SVC': SVC(gamma='scale'),
 ...: 'GaussianNB': GaussianNB()}
 ...:

In [46]: for estimator_name, estimator_object in estimators.items():
 ...: kfold = KFold(n_splits=10, random_state=11, shuffle=True)
 ...: scores = cross_val_score(estimator=estimator_object,
 ...: X=digits.data, y=digits.target, cv=kfold)
 ...: print(f'{estimator_name:>20}: ' +
 ...: f'mean accuracy={scores.mean():.2%}; ' +
 ...: f'standard deviation={scores.std():.2%}')
 ...:
KNeighborsClassifier: mean accuracy=98.72%; standard deviation=0.75%
 SVC: mean accuracy=99.00%; standard deviation=0.85%
 GaussianNB: mean accuracy=84.48%; standard deviation=3.47%

ptg27972259

420 Chapter 14 Machine Learning: Classification, Regression and Clustering

Scikit-Learn Estimator Diagram
The scikit-learn documentation provides a helpful diagram for choosing the right estima-
tor, based on the kind and size of your data and the machine learning task you wish to
perform:

https://scikit-learn.org/stable/tutorial/machine_learning_map/
index.html

14.3.4 Hyperparameter Tuning
Earlier in this section, we mentioned that k in the k-nearest neighbors algorithm is a hyper-
parameter of the algorithm. Hyperparameters are set before using the algorithm to train
your model. In real-world machine learning studies, you’ll want to use hyperparameter
tuning to choose hyperparameter values that produce the best possible predictions.

To determine the best value for k in the kNN algorithm, try different values of k then
compare the estimator’s performance with each. We can do this using techniques similar
to comparing estimators. The following loop creates KNeighborsClassifiers with odd k
values from 1 through 19 (again, we use odd k values in kNN to avoid ties) and performs
k-fold cross-validation on each. As you can see from the accuracy scores and standard devi-
ations, the k value 1 in kNN produces the most accurate predictions for the Digits dataset.
You can also see that accuracy tends to decrease for higher k values:

Machine learning is not without its costs, especially as we head toward big data and
deep learning. You must “know your data” and “know your tools.” For example, compute
time grows rapidly with k, because k-NN needs to perform more calculations to find the
nearest neighbors. There is also function cross_validate, which does cross-validation
and times the results.

14.4 Case Study: Time Series and Simple Linear
Regression
In the previous section, we demonstrated classification in which each sample was associ-
ated with a distinct class. Here, we continue our discussion of simple linear regression—

In [47]: for k in range(1, 20, 2):
 ...: kfold = KFold(n_splits=10, random_state=11, shuffle=True)
 ...: knn = KNeighborsClassifier(n_neighbors=k)
 ...: scores = cross_val_score(estimator=knn,
 ...: X=digits.data, y=digits.target, cv=kfold)
 ...: print(f'k={k:<2}; mean accuracy={scores.mean():.2%}; ' +
 ...: f'standard deviation={scores.std():.2%}')
 ...:
k=1 ; mean accuracy=98.83%; standard deviation=0.58%
k=3 ; mean accuracy=98.78%; standard deviation=0.78%
k=5 ; mean accuracy=98.72%; standard deviation=0.75%
k=7 ; mean accuracy=98.44%; standard deviation=0.96%
k=9 ; mean accuracy=98.39%; standard deviation=0.80%
k=11; mean accuracy=98.39%; standard deviation=0.80%
k=13; mean accuracy=97.89%; standard deviation=0.89%
k=15; mean accuracy=97.89%; standard deviation=1.02%
k=17; mean accuracy=97.50%; standard deviation=1.00%
k=19; mean accuracy=97.66%; standard deviation=0.96%

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

ptg27972259

14.4 Case Study: Time Series and Simple Linear Regression 421

the simplest of the regression algorithms—that began in Chapter 10’s Intro to Data Sci-
ence section. Recall that given a collection of numeric values representing an independent
variable and a dependent variable, simple linear regression describes the relationship
between these variables with a straight line, known as the regression line.

Previously, we performed simple linear regression on a time series of average New
York City January high-temperature data for 1895 through 2018. In that example, we
used Seaborn’s regplot function to create a scatter plot of the data with a corresponding
regression line. We also used the scipy.stats module’s linregress function to calculate
the regression line’s slope and intercept. We then used those values to predict future tem-
peratures and estimate past temperatures.

In this section, we’ll

• use a scikit-learn estimator to reimplement the simple linear regression we showed
in Chapter 10,

• use Seaborn’s scatterplot function to plot the data and Matplotlib’s plot func-
tion to display the regression line, then

• use the coefficient and intercept values calculated by the scikit-learn estimator to
make predictions.

Later, we’ll look at multiple linear regression (also simply called linear regression).
For your convenience, we provide the temperature data in the ch14 examples folder

in a CSV file named ave_hi_nyc_jan_1895-2018.csv. Once again, launch IPython with
the --matplotlib option:

ipython --matplotlib

Loading the Average High Temperatures into a DataFrame
As we did in Chapter 10, let’s load the data from ave_hi_nyc_jan_1895-2018.csv,
rename the 'Value' column to 'Temperature', remove 01 from the end of each date value
and display a few data samples:

Splitting the Data for Training and Testing
In this example, we’ll use the LinearRegression estimator from sklearn.linear_model.
By default, this estimator uses all the numeric features in a dataset, performing a multiple
linear regression (which we’ll discuss in the next section). Here, we perform simple linear

In [1]: import pandas as pd

In [2]: nyc = pd.read_csv('ave_hi_nyc_jan_1895-2018.csv')

In [3]: nyc.columns = ['Date', 'Temperature', 'Anomaly']

In [4]: nyc.Date = nyc.Date.floordiv(100)

In [5]: nyc.head(3)
Out[5]:
 Date Temperature Anomaly
0 1895 34.2 -3.2
1 1896 34.7 -2.7
2 1897 35.5 -1.9

ptg27972259

422 Chapter 14 Machine Learning: Classification, Regression and Clustering

regression using one feature as the independent variable. So, we’ll need to select one feature
(the Date) from the dataset.

When you select one column from a two-dimensional DataFrame, the result is a one-
dimensional Series. However, scikit-learn estimators require their training and testing
data to be two-dimensional arrays (or two-dimensional array-like data, such as lists of lists
or pandas DataFrames). To use one-dimensional data with an estimator, you must trans-
form it from one dimension containing n elements, into two dimensions containing n rows
and one column as you’ll see below.

As we did in the previous case study, let’s split the data into training and testing sets.
Once again, we used the keyword argument random_state for reproducibility:

The expression nyc.Date returns the Date column’s Series, and the Series’ values attri-
bute returns the NumPy array containing that Series’ values. To transform this one-
dimensional array into two dimensions, we call the array’s reshape method. Normally,
two arguments are the precise number of rows and columns. However, the first argument
-1 tells reshape to infer the number of rows, based on the number of columns (1) and the
number of elements (124) in the array. The transformed array will have only one column,
so reshape infers the number of rows to be 124, because the only way to fit 124 elements
into an array with one column is by distributing them over 124 rows.

We can confirm the 75%–25% train-test split by checking the shapes of X_train and
X_test:

Training the Model
Scikit-learn does not have a separate class for simple linear regression because it’s just a spe-
cial case of multiple linear regression, so let’s train a LinearRegression estimator:

After training the estimator, fit returns the estimator, and IPython displays its string rep-
resentation. For descriptions of the default settings, see:

http://scikit-learn.org/stable/modules/generated/
sklearn.linear_model.LinearRegression.html

In [6]: from sklearn.model_selection import train_test_split

In [7]: X_train, X_test, y_train, y_test = train_test_split(
 ...: nyc.Date.values.reshape(-1, 1), nyc.Temperature.values,
 ...: random_state=11)
 ...:

In [8]: X_train.shape
Out[8]: (93, 1)

In [9]: X_test.shape
Out[9]: (31, 1)

In [10]: from sklearn.linear_model import LinearRegression

In [11]: linear_regression = LinearRegression()

In [12]: linear_regression.fit(X=X_train, y=y_train)
Out[12]:
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,
 normalize=False)

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

ptg27972259

14.4 Case Study: Time Series and Simple Linear Regression 423

To find the best fitting regression line for the data, the LinearRegression estimator
iteratively adjusts the slope and intercept values to minimize the sum of the squares of the
data points’ distances from the line. In Chapter 10’s Intro to Data Science section, we gave
some insight into how the slope and intercept values are discovered.

Now, we can get the slope and intercept used in the y = mx + b calculation to make
predictions. The slope is stored in the estimator’s coeff_ attribute (m in the equation) and
the intercept is stored in the estimator’s intercept_ attribute (b in the equation):

We’ll use these later to plot the regression line and make predictions for specific dates.

Testing the Model
Let’s test the model using the data in X_test and check some of the predictions through-
out the dataset by displaying the predicted and expected values for every fifth element—
we discuss how to assess the regression model’s accuracy in Section 14.5.8:

Predicting Future Temperatures and Estimating Past Temperatures
Let’s use the coefficient and intercept values to predict the January 2019 average high tem-
perature and to estimate what the average high temperature was in January of 1890. The
lambda in the following snippet implements the equation for a line

y = mx + b

using the coef_ as m and the intercept_ as b.

In [13]: linear_regression.coef_
Out[13]: array([0.01939167])

In [14]: linear_regression.intercept_
Out[14]: -0.30779820252656265

In [15]: predicted = linear_regression.predict(X_test)

In [16]: expected = y_test

In [17]: for p, e in zip(predicted[::5], expected[::5]):
 ...: print(f'predicted: {p:.2f}, expected: {e:.2f}')
 ...:
predicted: 37.86, expected: 31.70
predicted: 38.69, expected: 34.80
predicted: 37.00, expected: 39.40
predicted: 37.25, expected: 45.70
predicted: 38.05, expected: 32.30
predicted: 37.64, expected: 33.80
predicted: 36.94, expected: 39.70

In [18]: predict = (lambda x: linear_regression.coef_ * x +
 ...: linear_regression.intercept_)
 ...:

In [19]: predict(2019)
Out[19]: array([38.84399018])

In [20]: predict(1890)
Out[20]: array([36.34246432])

ptg27972259

424 Chapter 14 Machine Learning: Classification, Regression and Clustering

Visualizing the Dataset with the Regression Line
Next, let’s create a scatter plot of the dataset using Seaborn’s scatterplot function and
Matplotlib’s plot function. First, use scatterplot with the nyc DataFrame to display the
data points:

The keyword arguments are:

• data, which specifies the DataFrame (nyc) containing the data to display.

• x and y, which specify the names of nyc’s columns that are the source of the data
along the x- and y-axes, respectively. In this case, x is the 'Date' and y is the
'Temperature'. The corresponding values from each column form x-y coordi-
nate pairs used to plot the dots.

• hue, which specifies which column’s data should be used to determine the dot
colors. In this case, we use the 'Temperature' column. Color is not particularly
important in this example, but we wanted to add some visual interest to the
graph.

• palette, which specifies a Matplotlib color map from which to choose the dots’
colors.

• legend=False, which specifies that scatterplot should not show a legend for
the graph—the default is True, but we do not need a legend for this example.

As we did in Chapter 10, let’s scale the y-axis range of values so you’ll be able to see the
linear relationship better once we display the regression line:

Next, let’s display the regression line. First, create an array containing the minimum
and maximum date values in nyc.Date. These are the x-coordinates of the regression line’s
start and end points:

Passing the array x to the predict lambda from snippet [16] produces an array con-
taining the corresponding predicted values, which we’ll use as the y-coordinates:

Finally, we can use Matplotlib’s plot function to plot a line based on the x and y
arrays, which represent the x- and y-coordinates of the points, respectively:

The resulting scatterplot and regression line are shown below. This graph is nearly identi-
cal to the one you saw in Chapter 10’s Intro to Data Science section.

In [21]: import seaborn as sns

In [22]: axes = sns.scatterplot(data=nyc, x='Date', y='Temperature',
 ...: hue='Temperature', palette='winter', legend=False)
 ...:

In [23]: axes.set_ylim(10, 70)
Out[23]: (10, 70)

In [24]: import numpy as np

In [25]: x = np.array([min(nyc.Date.values), max(nyc.Date.values)])

In [26]: y = predict(x)

In [27]: import matplotlib.pyplot as plt

In [28]: line = plt.plot(x, y)

ptg27972259

14.5 Multiple Linear Regression with the California Housing Dataset 425

Overfitting/Underfitting
When creating a model, a key goal is to ensure that it is capable of making accurate pre-
dictions for data it has not yet seen. Two common problems that prevent accurate predic-
tions are overfitting and underfitting:

• Underfitting occurs when a model is too simple to make predictions, based on
its training data. For example, you may use a linear model, such as simple linear
regression, when in fact, the problem really requires a non-linear model. For
example, temperatures vary significantly throughout the four seasons. If you’re
trying to create a general model that can predict temperatures year-round, a sim-
ple linear regression model will underfit the data.

• Overfitting occurs when your model is too complex. The most extreme case,
would be a model that memorizes its training data. That may be acceptable if
your new data looks exactly like your training data, but ordinarily that’s not the
case. When you make predictions with an overfit model, new data that matches
the training data will produce perfect predictions, but the model will not know
what to do with data it has never seen.

For additional information on underfitting and overfitting, see

• https://en.wikipedia.org/wiki/Overfitting

• https://machinelearningmastery.com/overfitting-and-underfitting-

with-machine-learning-algorithms/

14.5 Case Study: Multiple Linear Regression with the
California Housing Dataset
In Chapter 10’s Intro to Data Science section, we performed simple linear regression on a
small weather data time series using pandas, Seaborn’s regplot function and the SciPy’s
stats module’s linregress function. In the previous section, we reimplemented that

https://en.wikipedia.org/wiki/Overfitting
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/

ptg27972259

426 Chapter 14 Machine Learning: Classification, Regression and Clustering

same example using scikit-learn’s LinearRegression estimator, Seaborn’s scatterplot
function and Matplotlib’s plot function. Now, we’ll perform linear regression with a
much larger real-world dataset.

The California Housing dataset7 bundled with scikit-learn has 20,640 samples, each
with eight numerical features. We’ll perform a multiple linear regression that uses all eight
numerical features to make more sophisticated housing price predictions than if we were
to use only a single feature or a subset of the features. Once again, scikit-learn will do most
of the work for you—LinearRegression performs multiple linear regression by default.

We’ll visualize some of the data using Matplotlib and Seaborn, so launch IPython
with Matplotlib support:

ipython --matplotlib

14.5.1 Loading the Dataset
According to the California Housing Prices dataset’s description in scikit-learn, “This
dataset was derived from the 1990 U.S. census, using one row per census block group. A
block group is the smallest geographical unit for which the U.S. Census Bureau publishes
sample data (a block group typically has a population of 600 to 3,000 people).” The data-
set has 20,640 samples—one per block group—with eight features each:

• median income—in tens of thousands, so 8.37 would represent $83,700

• median house age—in the dataset, the maximum value for this feature is 52

• average number of rooms

• average number of bedrooms

• block population

• average house occupancy

• house block latitude

• house block longitude

Each sample also has as its target a corresponding median house value in hundreds of thou-
sands, so 3.55 would represent $355,000. In the dataset, the maximum value for this fea-
ture is 5, which represents $500,000.

It’s reasonable to expect that more bedrooms or more rooms or higher income would
mean higher house value. By combining these features to make predictions, we’re more
likely to get more accurate predictions.

Loading the Data
Let’s load the dataset and familiarize ourselves with it. The fetch_california_housing
function from the sklearn.datasets module returns a Bunch object containing the data
and other information about the dataset:

7. http://lib.stat.cmu.edu/datasets. Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregres-
sions, Statistics and Probability Letters, 33 (1997) 291-297. Submitted to the StatLib Datasets Ar-
chive by Kelley Pace (kpace@unix1.sncc.lsu.edu). [9/Nov/99].

In [1]: from sklearn.datasets import fetch_california_housing

In [2]: california = fetch_california_housing()

http://lib.stat.cmu.edu/datasets
mailto:kpace@unix1.sncc.lsu.edu

ptg27972259

14.5 Multiple Linear Regression with the California Housing Dataset 427

Displaying the Dataset’s Description
Let’s look at the dataset’s description. The DESCR information includes:

• Number of Instances—this dataset contains 20,640 samples.

• Number of Attributes—there are 8 features (attributes) per sample.

• Attribute Information—feature descriptions.

• Missing Attribute Values—none are missing in this dataset.

According to the description, the target variable in this dataset is the median house value—
this is the value we’ll be trying to predict via multiple linear regression.

In [3]: print(california.DESCR)
.. _california_housing_dataset:

California Housing dataset

Data Set Characteristics:

 :Number of Instances: 20640

 :Number of Attributes: 8 numeric, predictive attributes and
 the target

 :Attribute Information:
 - MedInc median income in block
 - HouseAge median house age in block
 - AveRooms average number of rooms
 - AveBedrms average number of bedrooms
 - Population block population
 - AveOccup average house occupancy
 - Latitude house block latitude
 - Longitude house block longitude

 :Missing Attribute Values: None

This dataset was obtained from the StatLib repository.
http://lib.stat.cmu.edu/datasets/

The target variable is the median house value for California districts.

This dataset was derived from the 1990 U.S. census, using one row per
census block group. A block group is the smallest geographical unit for
which the U.S. Census Bureau publishes sample data (a block group
typically has a population of 600 to 3,000 people).

It can be downloaded/loaded using the
:func:`sklearn.datasets.fetch_california_housing` function.

.. topic:: References

 - Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions,
 Statistics and Probability Letters, 33 (1997) 291-297

http://lib.stat.cmu.edu/datasets/The

ptg27972259

428 Chapter 14 Machine Learning: Classification, Regression and Clustering

Again, the Bunch object’s data and target attributes are NumPy arrays containing
the 20,640 samples and their target values respectively. We can confirm the number of
samples (rows) and features (columns) by looking at the data array’s shape attribute,
which shows that there are 20,640 rows and 8 columns:

Similarly, you can see that the number of target values—that is, the median house val-
ues—matches the number of samples by looking at the target array’s shape:

The Bunch’s feature_names attribute contains the names that correspond to each column
in the data array:

14.5.2 Exploring the Data with Pandas
Let’s use a pandas DataFrame to explore the data further. We’ll also use the DataFrame
with Seaborn in the next section to visualize some of the data. First, let’s import pandas
and set some options:

In the preceding set_option calls:

• 'precision' is the maximum number of digits to display to the right of each dec-
imal point.

• 'max_columns' is the maximum number of columns to display when you output
the DataFrame’s string representation. By default, if pandas cannot fit all of the
columns left-to-right, it cuts out columns in the middle and displays an ellipsis
(…) instead. The 'max_columns' setting enables pandas to show all the columns
using multiple rows of output. As you’ll see momentarily, we’ll have nine col-
umns in the DataFrame—the eight dataset features in california.data and an
additional column for the target median house values (california.target).

In [4]: california.data.shape
Out[4]: (20640, 8)

In [5]: california.target.shape
Out[5]: (20640,)

In [6]: california.feature_names
Out[6]:
['MedInc',
 'HouseAge',
 'AveRooms',
 'AveBedrms',
 'Population',
 'AveOccup',
 'Latitude',
 'Longitude']

In [7]: import pandas as pd

In [8]: pd.set_option('precision', 4)

In [9]: pd.set_option('max_columns', 9)

In [10]: pd.set_option('display.width', None)

ptg27972259

14.5 Multiple Linear Regression with the California Housing Dataset 429

• 'display.width' specifies the width in characters of your Command Prompt
(Windows), Terminal (macOS/Linux) or shell (Linux). The value None tells pan-
das to auto-detect the display width when formatting string representations of
Series and DataFrames.

Next, let’s create a DataFrame from the Bunch’s data, target and feature_names arrays.
The first snippet below creates the initial DataFrame using the data in california.data
and with the column names specified by california.feature_names. The second state-
ment adds a column for the median house values stored in california.target:

We can peek at some of the data using the head function. Notice that pandas displays
the DataFrame’s first six columns, then skips a line of output and displays the remaining
columns. The \ to the right of the column head "AveOccup" indicates that there are more
columns displayed below. You’ll see the \ only if the window in which IPython is running
is too narrow to display all the columns left-to-right:

Let’s get a sense of the data in each column by calculating the DataFrame’s summary
statistics. Note that the median income and house values (again, measured in hundreds of
thousands) are from 1990 and are significantly higher today:

In [11]: california_df = pd.DataFrame(california.data,
 ...: columns=california.feature_names)
 ...:

In [12]: california_df['MedHouseValue'] = pd.Series(california.target)

In [13]: california_df.head()
Out[13]:
 MedInc HouseAge AveRooms AveBedrms Population AveOccup \
0 8.3252 41.0 6.9841 1.0238 322.0 2.5556
1 8.3014 21.0 6.2381 0.9719 2401.0 2.1098
2 7.2574 52.0 8.2881 1.0734 496.0 2.8023
3 5.6431 52.0 5.8174 1.0731 558.0 2.5479
4 3.8462 52.0 6.2819 1.0811 565.0 2.1815

 Latitude Longitude MedHouseValue
0 37.88 -122.23 4.526
1 37.86 -122.22 3.585
2 37.85 -122.24 3.521
3 37.85 -122.25 3.413
4 37.85 -122.25 3.422

In [14]: california_df.describe()
Out[14]:
 MedInc HouseAge AveRooms AveBedrms Population \
count 20640.0000 20640.0000 20640.0000 20640.0000 20640.0000
mean 3.8707 28.6395 5.4290 1.0967 1425.4767
std 1.8998 12.5856 2.4742 0.4739 1132.4621
min 0.4999 1.0000 0.8462 0.3333 3.0000
25% 2.5634 18.0000 4.4407 1.0061 787.0000
50% 3.5348 29.0000 5.2291 1.0488 1166.0000
75% 4.7432 37.0000 6.0524 1.0995 1725.0000
max 15.0001 52.0000 141.9091 34.0667 35682.0000

ptg27972259

430 Chapter 14 Machine Learning: Classification, Regression and Clustering

14.5.3 Visualizing the Features
It’s helpful to visualize your data by plotting the target value against each feature—in this
case, to see how the median home value relates to each feature. To make our visualizations
clearer, let’s use DataFrame method sample to randomly select 10% of the 20,640 samples
for graphing purposes:

The keyword argument frac specifies the fraction of the data to select (0.1 for 10%), and
the keyword argument random_state enables you to seed the random number generator.
The integer seed value (17), which we chose arbitrarily, is crucial for reproducibility. Each
time you use the same seed value, method sample selects the same random subset of the
DataFrame’s rows. Then, when we graph the data, you should get the same results.

Next, we’ll use Matplotlib and Seaborn to display scatter plots of each of the eight fea-
tures. Both libraries can display scatter plots. Seaborn’s are more attractive and require less
code, so we’ll use Seaborn to create the following scatter plots. First, we import both librar-
ies and use Seaborn function set to scale each diagram’s fonts to two time their default
size:

The following snippet displays the scatter plots.8 Each shows one feature along the x-
axis and the median home value (california.target) along the y-axis, so we can see how
each feature and the median house values relate to one another. We display each scatter
plot in a separate window. The windows are displayed in the order the features were listed
in snippet [6] with the most recently displayed window in the foreground:

 AveOccup Latitude Longitude MedHouseValue
count 20640.0000 20640.0000 20640.0000 20640.0000
mean 3.0707 35.6319 -119.5697 2.0686
std 10.3860 2.1360 2.0035 1.1540
min 0.6923 32.5400 -124.3500 0.1500
25% 2.4297 33.9300 -121.8000 1.1960
50% 2.8181 34.2600 -118.4900 1.7970
75% 3.2823 37.7100 -118.0100 2.6472
max 1243.3333 41.9500 -114.3100 5.0000

In [15]: sample_df = california_df.sample(frac=0.1, random_state=17)

In [16]: import matplotlib.pyplot as plt

In [17]: import seaborn as sns

In [18]: sns.set(font_scale=2)

In [19]: sns.set_style('whitegrid')

8. When you execute this code in IPython, each window will be displayed in front of the previous one.
As you close each, you’ll see the one behind it.

In [20]: for feature in california.feature_names:
 ...: plt.figure(figsize=(16, 9))
 ...: sns.scatterplot(data=sample_df, x=feature,
 ...: y='MedHouseValue', hue='MedHouseValue',
 ...: palette='cool', legend=False)
 ...:

ptg27972259

14.5 Multiple Linear Regression with the California Housing Dataset 431

For each feature name, the snippet first creates a 16-inch-by-9-inch Matplotlib Fig-
ure—we’re plotting many data points, so we chose to use a larger window. If this window
is larger than your screen, Matplotlib fits the Figure to the screen. Seaborn uses the cur-
rent Figure to display the scatter plot. If you do not create a Figure first, Seaborn will
create one. We created the Figure first here so we could display a large window for a scat-
ter plot containing over 2000 points.

Next, the snippet creates a Seaborn scatterplot in which the x-axis shows the cur-
rent feature, the y-axis shows the 'MedHouseValue' (median house values), and the 'Med-
HouseValue' determines the dot colors (hue). Some interesting things to notice in these
graphs:

• The graphs showing the latitude and longitude each have two areas of especially
significant density. If you search online for the latitude and longitude values
where those dense areas appear, you’ll see that these represent the greater Los
Angeles and greater San Francisco areas where house prices tend to be higher.

• In each graph, there is a horizontal line of dots at the y-axis value 5, which rep-
resents the median house value $500,000. The highest home value that could be
chosen on the 1990 census form was “$500,000 or more.”9 So any block group
with a median house value over $500,000 is listed in the dataset as 5. Being able
to spot characteristics like this is a compelling reason to do data exploration and
visualization.

• In the HouseAge graph, there is a vertical line of dots at the x-axis value 52. The
highest home age that could be chosen on the 1990 census form was 52, so any
block group with a median house age over 52 is listed in the dataset as 52.

9. https://www.census.gov/prod/1/90dec/cph4/appdxe.pdf.

‘

https://www.census.gov/prod/1/90dec/cph4/appdxe.pdf

ptg27972259

432 Chapter 14 Machine Learning: Classification, Regression and Clustering

ptg27972259

14.5 Multiple Linear Regression with the California Housing Dataset 433

ptg27972259

434 Chapter 14 Machine Learning: Classification, Regression and Clustering

14.5.4 Splitting the Data for Training and Testing
Once again, to prepare for training and testing the model, let’s break the data into training
and testing sets using the train_test_split function then check their sizes:

We used train_test_split’s keyword argument random_state to seed the random num-
ber generator for reproducibility.

14.5.5 Training the Model
Next, we’ll train the model. By default, a LinearRegression estimator uses all the features
in the dataset’s data array to perform a multiple linear regression. An error occurs if any
of the features are categorical rather than numeric. If a dataset contains categorical data,
you either must preprocess the categorical features into numerical ones (which you’ll do
in the next chapter) or must exclude the categorical features from the training process. A
benefit of working with scikit-learn’s bundled datasets is that they’re already in the correct
format for machine learning using scikit-learn’s models.

As you saw in the previous two snippets, X_train and X_test each contain 8 col-
umns—one per feature. Let’s create a LinearRegression estimator and invoke its fit
method to train the estimator using X_train and y_train:

In [21]: from sklearn.model_selection import train_test_split

In [22]: X_train, X_test, y_train, y_test = train_test_split(
 ...: california.data, california.target, random_state=11)
 ...:

In [23]: X_train.shape
Out[23]: (15480, 8)

In [24]: X_test.shape
Out[24]: (5160, 8)

In [25]: from sklearn.linear_model import LinearRegression

In [26]: linear_regression = LinearRegression()

ptg27972259

14.5 Multiple Linear Regression with the California Housing Dataset 435

Multiple linear regression produces separate coefficients for each feature (stored in
coeff_) in the dataset and one intercept (stored in intercept_):

For positive coefficients, the median house value increases as the feature value increases. For
negative coefficients, the median house value decreases as the feature value increases. Note
that the population coefficient has a negative exponent (e-06), so the coefficient’s value is
actually -0.000005756822009298454. This is close to zero, so a block group’s population
apparently has little effect the median house value.

You can use these values with the following equation to make predictions:

y = m1x1 + m2x2 + … mnxn + b

where

• m1, m2, …, mn are the feature coefficients,

• b is the intercept,

• x1, x2, …, xn are the feature values (that is, the values of the independent vari-
ables), and

• y is the predicted value (that is, the dependent variable).

14.5.6 Testing the Model
Now, let’s test the model by calling the estimator’s predict method with the test samples
as an argument. As we’ve done in each of the previous examples, we store the array of pre-
dictions in predicted and the array of expected values in expected:

Let’s look at the first five predictions and their corresponding expected values:

In [27]: linear_regression.fit(X=X_train, y=y_train)
Out[27]:
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,
 normalize=False)

In [28]: for i, name in enumerate(california.feature_names):
 ...: print(f'{name:>10}: {linear_regression.coef_[i]}')
 ...:
 MedInc: 0.4377030215382206
 HouseAge: 0.009216834565797713
 AveRooms: -0.10732526637360985
 AveBedrms: 0.611713307391811
Population: -5.756822009298454e-06
 AveOccup: -0.0033845664657163703
 Latitude: -0.419481860964907
 Longitude: -0.4337713349874016

In [29]: linear_regression.intercept_
Out[29]: -36.88295065605547

In [30]: predicted = linear_regression.predict(X_test)

In [31]: expected = y_test

In [32]: predicted[:5]
Out[32]: array([1.25396876, 2.34693107, 2.03794745, 1.8701254 ,
2.53608339])

ptg27972259

436 Chapter 14 Machine Learning: Classification, Regression and Clustering

With classification, we saw that the predictions were distinct classes that matched existing
classes in the dataset. With regression, it’s tough to get exact predictions, because you have
continuous outputs. Every possible value of x1, x2 … xn in the calculation

y = m1x1 + m2x2 + … mnxn + b

predicts a value.

14.5.7 Visualizing the Expected vs. Predicted Prices
Let’s look at the expected vs. predicted median house values for the test data. First, let’s
create a DataFrame containing columns for the expected and predicted values:

Now let’s plot the data as a scatter plot with the expected (target) prices along the x-
axis and the predicted prices along the y-axis:

Next, let’s set the x- and y-axes’ limits to use the same scale along both axes:

Now, let’s plot a line that represents perfect predictions (note that this is not a regression
line). The following snippet displays a line between the points representing the lower-left
corner of the graph (start, start) and the upper-right corner of the graph (end, end). The
third argument ('k--') indicates the line’s style. The letter k represents the color black,
and the -- indicates that plot should draw a dashed line:

If every predicted value were to match the expected value, then all the dots would be plot-
ted along the dashed line. In the following diagram, it appears that as the expected median
house value increases, more of the predicted values fall below the line. So the model seems
to predict lower median house values as the expected median house value increases.

In [33]: expected[:5]
Out[33]: array([0.762, 1.732, 1.125, 1.37 , 1.856])

In [34]: df = pd.DataFrame()

In [35]: df['Expected'] = pd.Series(expected)

In [36]: df['Predicted'] = pd.Series(predicted)

In [37]: figure = plt.figure(figsize=(9, 9))

In [38]: axes = sns.scatterplot(data=df, x='Expected', y='Predicted',
 ...: hue='Predicted', palette='cool', legend=False)
 ...:

In [39]: start = min(expected.min(), predicted.min())

In [40]: end = max(expected.max(), predicted.max())

In [41]: axes.set_xlim(start, end)
Out[41]: (-0.6830978604144491, 7.155719818496834)

In [42]: axes.set_ylim(start, end)
Out[42]: (-0.6830978604144491, 7.155719818496834)

In [43]: line = plt.plot([start, end], [start, end], 'k--')

ptg27972259

14.5 Multiple Linear Regression with the California Housing Dataset 437

14.5.8 Regression Model Metrics
Scikit-learn provides many metrics functions for evaluating how well estimators predict
results and for comparing estimators to choose the best one(s) for your particular study.
These metrics vary by estimator type. For example, the sklearn.metrics functions con-
fusion_matrix and classification_report used in the Digits dataset classification case
study are two of many metrics functions specifically for evaluating classification estimators.

Among the many metrics for regression estimators is the model’s coefficient of deter-
mination, which is also called the R2 score. To calculate an estimator’s R2 score, call the
sklearn.metrics module’s r2_score function with the arrays representing the expected
and predicted results:

R2 scores range from 0.0 to 1.0 with 1.0 being the best. An R2 score of 1.0 indicates that
the estimator perfectly predicts the dependent variable’s value, given the independent vari-
able(s) value(s). An R2 score of 0.0 indicates the model cannot make predictions with any
accuracy, based on the independent variables’ values.

Another common metric for regression models is the mean squared error, which

• calculates the difference between each expected and predicted value—this is
called the error,

• squares each difference and

• calculates the average of the squared values.

To calculate an estimator’s mean squared error, call function mean_squared_error (from
module sklearn.metrics) with the arrays representing the expected and predicted results:

In [44]: from sklearn import metrics

In [45]: metrics.r2_score(expected, predicted)
Out[45]: 0.6008983115964333

In [46]: metrics.mean_squared_error(expected, predicted)
Out[46]: 0.5350149774449119

ptg27972259

438 Chapter 14 Machine Learning: Classification, Regression and Clustering

When comparing estimators with the mean squared error metric, the one with the value
closest to 0 best fits your data. In the next section, we’ll run several regression estimators
using the California Housing dataset. For the list of scikit-learn’s metrics functions by esti-
mator category, see

https://scikit-learn.org/stable/modules/model_evaluation.html

14.5.9 Choosing the Best Model
As we did in the classification case study, let’s try several estimators to determine whether
any produces better results than the LinearRegression estimator. In this example, we’ll
use the linear_regression estimator we already created as well as ElasticNet, Lasso and
Ridge regression estimators (all from the sklearn.linear_model module). For informa-
tion about these estimators, see

https://scikit-learn.org/stable/modules/linear_model.html

Once again, we’ll run the estimators using k-fold cross-validation with a KFold object
and the cross_val_score function. Here, we pass to cross_val_score the additional
keyword argument scoring='r2', which indicates that the function should report the R2

scores for each fold—again, 1.0 is the best, so it appears that LinearRegression and Ridge
are the best models for this dataset:

14.6 Case Study: Unsupervised Machine Learning,
Part 1—Dimensionality Reduction
In our data science presentations, we’ve focused on getting to know your data. Unsuper-
vised machine learning and visualization can help you do this by finding patterns and rela-
tionships among unlabeled samples.

In [47]: from sklearn.linear_model import ElasticNet, Lasso, Ridge

In [48]: estimators = {
 ...: 'LinearRegression': linear_regression,
 ...: 'ElasticNet': ElasticNet(),
 ...: 'Lasso': Lasso(),
 ...: 'Ridge': Ridge()
 ...: }

In [49]: from sklearn.model_selection import KFold, cross_val_score

In [50]: for estimator_name, estimator_object in estimators.items():
 ...: kfold = KFold(n_splits=10, random_state=11, shuffle=True)
 ...: scores = cross_val_score(estimator=estimator_object,
 ...: X=california.data, y=california.target, cv=kfold,
 ...: scoring='r2')
 ...: print(f'{estimator_name:>16}: ' +
 ...: f'mean of r2 scores={scores.mean():.3f}')
 ...:
LinearRegression: mean of r2 scores=0.599
 ElasticNet: mean of r2 scores=0.423
 Lasso: mean of r2 scores=0.285
 Ridge: mean of r2 scores=0.599

https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/linear_model.html

ptg27972259

14.6 Unsupervised Machine Learning, Part 1—Dimensionality Reduction 439

For datasets like the univariate time series we used earlier in this chapter, visualizing
the data is easy. In that case, we had two variables—date and temperature—so we plotted
the data in two dimensions with one variable along each axis. Using Matplotlib, Seaborn
and other visualization libraries, you also can plot datasets with three variables using 3D
visualizations. But how do you visualize data with more than three dimensions? For exam-
ple, in the Digits dataset, every sample has 64 features and a target value. In big data, sam-
ples can have hundreds, thousands or even millions of features.

To visualize a dataset with many features (that is, many dimensions), we’ll first reduce
the data to two or three dimensions. This requires an unsupervised machine learning tech-
nique called dimensionality reduction. When you graph the resulting information, you
might see patterns in the data that will help you choose the most appropriate machine
learning algorithms to use. For example, if the visualization contains clusters of points, it
might indicate that there are distinct classes of information within the dataset. So a classi-
fication algorithm might be appropriate. Of course, you’d first need to determine the class
of the samples in each cluster. This might require studying the samples in a cluster to see
what they have in common.

Dimensionality reduction also serves other purposes. Training estimators on big data
with significant numbers of dimensions can take hours, days, weeks or longer. It’s also dif-
ficult for humans to think about data with large numbers of dimensions. This is called the
curse of dimensionality. If the data has closely correlated features, some could be elimi-
nated via dimensionality reduction to improve the training performance. This, however,
might reduce the accuracy of the model.

Recall that the Digits dataset is already labeled with 10 classes representing the digits
0–9. Let’s ignore those labels and use dimensionality reduction to reduce the dataset’s fea-
tures to two dimensions, so we can visualize the resulting data.

Loading the Digits Dataset
Launch IPython with:

ipython --matplotlib

then load the dataset:

Creating a TSNE Estimator for Dimensionality Reduction
Next, we’ll use the TSNE estimator (from the sklearn.manifold module) to perform
dimensionality reduction. This estimator uses an algorithm called t-distributed Stochastic
Neighbor Embedding (t-SNE)10 to analyze a dataset’s features and reduce them to the
specified number of dimensions. We first tried the popular PCA (principal components
analysis) estimator but did not like the results we were getting, so we switched to TSNE.
We’ll show PCA later in this case study.

In [1]: from sklearn.datasets import load_digits

In [2]: digits = load_digits()

10. The algorithm’s details are beyond this book’s scope. For more information, see https://scikit-
learn.org/stable/modules/manifold.html#t-sne.

https://scikit-learn.org/stable/modules/manifold.html#t-sne
https://scikit-learn.org/stable/modules/manifold.html#t-sne

ptg27972259

440 Chapter 14 Machine Learning: Classification, Regression and Clustering

Let’s create a TSNE object for reducing a dataset’s features to two dimensions, as spec-
ified by the keyword argument n_components. As with the other estimators we’ve pre-
sented, we used the random_state keyword argument to ensure the reproducibility of the
“render sequence” when we display the digit clusters:

Transforming the Digits Dataset’s Features into Two Dimensions
Dimensionality reduction in scikit-learn typically involves two steps—training the estima-
tor with the dataset, then using the estimator to transform the data into the specified num-
ber of dimensions. These steps can be performed separately with the TSNE methods fit
and transform, or they can be performed in one statement using the fit_transform
method:11

TSNE’s fit_transform method takes some time to train the estimator then perform the
reduction. On our system, this took about 20 seconds. When the method completes its
task, it returns an array with the same number of rows as digits.data, but only two col-
umns. You can confirm this by checking reduced_data’s shape:

Visualizing the Reduced Data
Now that we’ve reduced the original dataset to only two dimensions, let’s use a scatter plot
to display the data. In this case, rather than Seaborn’s scatterplot function, we’ll use
Matplotlib’s scatter function, because it returns a collection of the plotted items. We’ll
use that feature in a second scatter plot momentarily:

Function scatter’s first two arguments are reduced_data’s columns (0 and 1) con-
taining the data for the x- and y-axes. The keyword argument c='black' specifies the color
of the dots. We did not label the axes, because they do not correspond to specific features
of the original dataset. The new features produced by the TSNE estimator could be quite
different from the dataset’s original features.

In [3]: from sklearn.manifold import TSNE

In [4]: tsne = TSNE(n_components=2, random_state=11)

In [5]: reduced_data = tsne.fit_transform(digits.data)

11. Every call to fit_transform trains the estimator. If you intend to reuse the estimator to reduce the
dimensions of samples multiple times, use fit to once train the estimator, then use transform to
perform the reductions. We’ll use this technique with PCA later in this case study.

In [6]: reduced_data.shape
Out[6]: (1797, 2)

In [7]: import matplotlib.pyplot as plt

In [8]: dots = plt.scatter(reduced_data[:, 0], reduced_data[:, 1],
 ...: c='black')
 ...:

ptg27972259

14.6 Unsupervised Machine Learning, Part 1—Dimensionality Reduction 441

The following diagram shows the resulting scatter plot. There are clearly clusters of
related data points, though there appear to be 11 main clusters, rather than 10. There also
are “loose” data points that do not appear to be part of specific clusters. Based on our
earlier study of the Digits dataset this makes sense because some digits were difficult to
classify.

Visualizing the Reduced Data with Different Colors for Each Digit
Though the preceding diagram shows clusters, we do not know whether all the items in
each cluster represent the same digit. If they do not, then the clusters are not helpful. Let’s
use the known targets in the Digits dataset to color all the dots so we can see whether
these clusters indeed represent specific digits:

In this case, scatter’s keyword argument c=digits.target specifies that the target val-
ues determine the dot colors. We also added the keyword argument

cmap=plt.cm.get_cmap('nipy_spectral_r', 10)

which specifies a color map to use when coloring the dots. In this case, we know we’re col-
oring 10 digits, so we use get_cmap method of Matplotlib’s cm object (from module mat-
plotlib.pyplot) to load a color map ('nipy_spectral_r') and select 10 distinct colors
from the color map.

The following statement adds a color bar key to the right of the diagram so you can
see which digit each color represents:

Voila! We see 10 clusters corresponding to the digits 0–9. Again, there are a few smaller
groups of dots standing alone. Based on this, we might decide that a supervised-learning
approach like k-nearest neighbors would work well with this data. As an experiment, you

In [9]: dots = plt.scatter(reduced_data[:, 0], reduced_data[:, 1],
 ...: c=digits.target, cmap=plt.cm.get_cmap('nipy_spectral_r', 10))
 ...:
 ...:

In [10]: colorbar = plt.colorbar(dots)

ptg27972259

442 Chapter 14 Machine Learning: Classification, Regression and Clustering

might want to investigate Matplotlib’s Axes3D, which provides x-, y- and z-axes for plot-
ting in three-dimensional graphs.

14.7 Case Study: Unsupervised Machine Learning,
Part 2—k-Means Clustering
In this section, we introduce perhaps the simplest unsupervised machine learning algo-
rithms—k-means clustering. This algorithm analyzes unlabeled samples and attempts to
place them in clusters that appear to be related. The k in “k-means” represents the number
of clusters you’d like to see imposed on your data.

The algorithm organizes samples into the number of clusters you specify in advance,
using distance calculations similar to the k-nearest neighbors clustering algorithm. Each
cluster of samples is grouped around a centroid—the cluster’s center point. Initially, the
algorithm chooses k centroids at random from the dataset’s samples. Then the remaining
samples are placed in the cluster whose centroid is the closest. The centroids are iteratively
recalculated and the samples re-assigned to clusters until, for all clusters, the distances from
a given centroid to the samples in its cluster are minimized. The algorithm’s results are:

• a one-dimensional array of labels indicating the cluster to which each sample
belongs and

• a two-dimensional array of centroids representing the center of each cluster.

Iris Dataset
We’ll work with the popular Iris dataset12 bundled with scikit-learn, which is commonly
analyzed with both classification and clustering. Although this dataset is labeled, we’ll
ignore those labels here to demonstrate clustering. Then, we’ll use the labels to determine
how well the k-means algorithm clustered the samples.

12. Fisher, R.A., “The use of multiple measurements in taxonomic problems,” Annual Eugenics, 7, Part
II, 179-188 (1936); also in “Contributions to Mathematical Statistics” (John Wiley, NY, 1950).

ptg27972259

14.7 Unsupervised Machine Learning, Part 2—k-Means Clustering 443

The Iris dataset is referred to as a “toy dataset” because it has only 150 samples and
four features. The dataset describes 50 samples for each of three Iris flower species—Iris
setosa, Iris versicolor and Iris virginica. Photos of these are shown below. Each sample’s fea-
tures are the sepal length, sepal width, petal length and petal width, all measured in centi-
meters. The sepals are the larger outer parts of each flower that protect the smaller inside
petals before the flower buds bloom.

Iris setosa: https://commons.wikimedia.org/wiki/File:Wild_iris_KEFJ_(9025144383).jpg.
Credit: Courtesy of Nation Park services.

Iris versicolor: https://commons.wikimedia.org/wiki/Iris_versicolor#/media/
File:IrisVersicolor-FoxRoost-Newfoundland.jpg.
Credit: Courtesy of Jefficus,
https://commons.wikimedia.org/w/index.php?title=User:Jefficus&action=edit&redlink=1

https://commons.wikimedia.org/wiki/File:Wild_iris_KEFJ_(9025144383).jpg
https://commons.wikimedia.org/wiki/Iris_versicolor#/media/File:IrisVersicolor-FoxRoost-Newfoundland.jpg
https://commons.wikimedia.org/wiki/Iris_versicolor#/media/File:IrisVersicolor-FoxRoost-Newfoundland.jpg
https://commons.wikimedia.org/w/index.php?title=User:Jefficus&action=edit&redlink=1

ptg27972259

444 Chapter 14 Machine Learning: Classification, Regression and Clustering

14.7.1 Loading the Iris Dataset
Launch IPython with ipython --matplotlib, then use the sklearn.datasets module’s
load_iris function to get a Bunch containing the dataset:

The Bunch’s DESCR attribute indicates that there are 150 samples (Number of
Instances), each with four features (Number of Attributes). There are no missing values
in this dataset. The dataset classifies the samples by labeling them with the integers 0, 1
and 2, representing Iris setosa, Iris versicolor and Iris virginica, respectively. We’ll ignore the
labels and let the k-means clustering algorithm try to determine the samples’ classes. We
show some key DESCR information in bold.:

In [1]: from sklearn.datasets import load_iris

In [2]: iris = load_iris()

In [3]: print(iris.DESCR)
.. _iris_dataset:

Iris plants dataset

Data Set Characteristics:

 :Number of Instances: 150 (50 in each of three classes)
 :Number of Attributes: 4 numeric, predictive attributes and the class
 :Attribute Information:
 - sepal length in cm
 - sepal width in cm
 - petal length in cm
 - petal width in cm

Iris virginica: https://commons.wikimedia.org/wiki/File:IMG_7911-Iris_virginica.jpg.
Credit: Christer T Johansson.

https://commons.wikimedia.org/wiki/File:IMG_7911-Iris_virginica.jpg

ptg27972259

14.7 Unsupervised Machine Learning, Part 2—k-Means Clustering 445

 - class:
 - Iris-Setosa
 - Iris-Versicolour
 - Iris-Virginica

 :Summary Statistics:

 ============== ==== ==== ======= ===== ====================
 Min Max Mean SD Class Correlation
 ============== ==== ==== ======= ===== ====================
 sepal length: 4.3 7.9 5.84 0.83 0.7826
 sepal width: 2.0 4.4 3.05 0.43 -0.4194
 petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
 petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
 ============== ==== ==== ======= ===== ====================

 :Missing Attribute Values: None
 :Class Distribution: 33.3% for each of 3 classes.
 :Creator: R.A. Fisher
 :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
 :Date: July, 1988

The famous Iris database, first used by Sir R.A. Fisher. The dataset is
taken from Fisher's paper. Note that it's the same as in R, but not as in
the UCI Machine Learning Repository, which has two wrong data points.

This is perhaps the best known database to be found in the pattern
recognition literature. Fisher's paper is a classic in the field and
is referenced frequently to this day. (See Duda & Hart, for example.)
The data set contains 3 classes of 50 instances each, where each class
refers to a type of iris plant. One class is linearly separable from the
other 2; the latter are NOT linearly separable from each other.

.. topic:: References

 - Fisher, R.A. "The use of multiple measurements in taxonomic
 problems"
 Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions
 to Mathematical Statistics" (John Wiley, NY, 1950).
 - Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene
 Analysis.
 (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
 - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
 Structure and Classification Rule for Recognition in Partially
 Exposed Environments". IEEE Transactions on Pattern Analysis and
 Machine Intelligence, Vol. PAMI-2, No. 1, 67-71.
 - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE
 Transactions on Information Theory, May 1972, 431-433.
 - See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS
 II conceptual clustering system finds 3 classes in the data.
 - Many, many more ...

mailto:MARSHALL%PLU@io.arc.nasa.gov

ptg27972259

446 Chapter 14 Machine Learning: Classification, Regression and Clustering

Checking the Numbers of Samples, Features and Targets
You can confirm the number of samples and features per sample via the data array’s shape,
and you can confirm the number of targets via the target array’s shape:

The array target_names contains the names for the target array’s numeric labels—
dtype='<U10' indicates that the elements are strings with a maximum of 10 characters:

The array feature_names contains a list of string names for each column in the data array:

14.7.2 Exploring the Iris Dataset: Descriptive Statistics with Pandas
Let’s use a DataFrame to explore the Iris dataset. As we did in the California Housing case
study, let’s set the pandas options for formatting the column-based outputs:

Create a DataFrame containing the data array’s contents, using the contents of the
feature_names array as the column names:

Next, add a column containing each sample’s species name. The list comprehension in the
following snippet uses each value in the target array to look up the corresponding species
name in the target_names array:

Let’s use pandas’ to look at a few samples. Once again notice that pandas displays a \ to
the right of the column heads to indicate that there are more columns displayed below:

In [4]: iris.data.shape
Out[4]: (150, 4)

In [5]: iris.target.shape
Out[5]: (150,)

In [6]: iris.target_names
Out[6]: array(['setosa', 'versicolor', 'virginica'], dtype='<U10')

In [7]: iris.feature_names
Out[7]:
['sepal length (cm)',
 'sepal width (cm)',
 'petal length (cm)',
 'petal width (cm)']

In [8]: import pandas as pd

In [9]: pd.set_option('max_columns', 5)

In [10]: pd.set_option('display.width', None)

In [11]: iris_df = pd.DataFrame(iris.data, columns=iris.feature_names)

In [12]: iris_df['species'] = [iris.target_names[i] for i in iris.target]

In [13]: iris_df.head()
Out[13]:
 sepal length (cm) sepal width (cm) petal length (cm) \
0 5.1 3.5 1.4
1 4.9 3.0 1.4
2 4.7 3.2 1.3
3 4.6 3.1 1.5
4 5.0 3.6 1.4

ptg27972259

14.7 Unsupervised Machine Learning, Part 2—k-Means Clustering 447

Let’s calculate some descriptive statistics for the numerical columns:

Calling the describe method on the 'species' column confirms that it contains
three unique values. Here, we know in advance of working with this data that there are
three classes to which the samples belong, though this is not always the case in unsuper-
vised machine learning.

14.7.3 Visualizing the Dataset with a Seaborn pairplot
Let’s visualize the features in this dataset. One way to learn more about your data is to see
how the features relate to one another. The dataset has four features. We cannot graph one
against the other three in a single graph. However, we can plot pairs of features against one
another. Snippet [20] uses Seaborn function pairplot to create a grid of graphs plotting
each feature against itself and the other specified features:

 petal width (cm) species
0 0.2 setosa
1 0.2 setosa
2 0.2 setosa
3 0.2 setosa
4 0.2 setosa

In [14]: pd.set_option('precision', 2)

In [15]: iris_df.describe()
Out[15]:
 sepal length (cm) sepal width (cm) petal length (cm) \
count 150.00 150.00 150.00
mean 5.84 3.06 3.76
std 0.83 0.44 1.77
min 4.30 2.00 1.00
25% 5.10 2.80 1.60
50% 5.80 3.00 4.35
75% 6.40 3.30 5.10
max 7.90 4.40 6.90

 petal width (cm)
count 150.00
mean 1.20
std 0.76
min 0.10
25% 0.30
50% 1.30
75% 1.80
max 2.50

In [16]: iris_df['species'].describe()
Out[16]:
count 150
unique 3
top setosa
freq 50
Name: species, dtype: object

In [17]: import seaborn as sns

ptg27972259

448 Chapter 14 Machine Learning: Classification, Regression and Clustering

The keyword arguments are:

• data—The DataFrame13 containing the data to plot.

• vars—A sequence containing the names of the variables to plot. For a Data-
Frame, these are the names of the columns to plot. Here, we use the first four
DataFrame columns, representing the sepal length, sepal width, petal length and
petal width, respectively.

• hue—The DataFrame column that’s used to determine colors of the plotted data.
In this case, we’ll color the data by Iris species.

The preceding call to pairplot produces the following 4-by-4 grid of graphs:

The graphs along the top-left-to-bottom-right diagonal, show the distribution of just
the feature plotted in that column, with the range of values (left-to-right) and the number
of samples with those values (top-to-bottom). Consider the sepal-length distributions:

In [18]: sns.set(font_scale=1.1)

In [19]: sns.set_style('whitegrid')

In [20]: grid = sns.pairplot(data=iris_df, vars=iris_df.columns[0:4],
 ...: hue='species')
 ...:

13. This also may be a two-dimensional array or list.

ptg27972259

14.7 Unsupervised Machine Learning, Part 2—k-Means Clustering 449

The tallest shaded area indicates that the range of sepal length values (shown along the x-
axis) for Iris setosa is approximately 4–6 centimeters and that most Iris setosa samples are in
the middle of that range (approximately 5 centimeters). Similarly, the rightmost shaded
area indicates that the range of sepal length values for Iris virginica is approximately 4–8.5
centimeters and that the majority of Iris virginica samples have sepal length values between
6 and 7 centimeters.

The other graphs in a column show scatter plots of the other features against the fea-
ture on the x-axis. In the first column, the other three graphs plot the sepal width, petal
length and petal width, respectively, along the y-axis and the sepal length along the x-axis.

When you run this code, you’ll see in the full color output that using separate colors
for each Iris species shows how the species relate to one another on a feature-by-feature
basis. Interestingly, all the scatter plots clearly separate the Iris setosa blue dots from the
other species’ orange and green dots, indicating that Iris setosa is indeed in a “class by itself.”
We also can see that the other two species can sometimes be confused with one another, as
indicated by the overlapping orange and green dots. For example, if you look at the scatter
plot for sepal width vs. sepal length, you’ll see the Iris versicolor and Iris virginica dots are
intermixed. This indicates that it would be difficult to distinguish between these two species
if we had only the sepal measurements available to us.

Displaying the pairplot in One Color
If you remove the hue keyword argument, pairplot function uses only one color to plot
all the data because it does not know how to distinguish the species:

As you can see in the resulting pair plot on the next page, in this case, the graphs along
the diagonal are histograms showing the distributions of all the values for that feature,
regardless of the species. As you study each scatter plot, it appears that there may be only
two distinct clusters, even though for this dataset we know there are three species. If you
do not know the number of clusters in advance, you might ask a domain expert who is
thoroughly familiar with the data. Such a person might know that there are three species
in the dataset, which would be valuable information as we try to perform machine learning
on the data.

The pairplot diagrams work well for a small number of features or a subset of features
so that you have a small number of rows and columns, and for a relatively small number
of samples so you can see the data points. As the number of features and samples increases,
each scatter plot quickly becomes too small to read. For larger datasets, you may choose to
plot a subset of the features and potentially a randomly selected subset of the samples to
get a feel for your data.

di

In [21]: grid = sns.pairplot(data=iris_df, vars=iris_df.columns[0:4])

ptg27972259

450 Chapter 14 Machine Learning: Classification, Regression and Clustering

14.7.4 Using a KMeans Estimator
In this section, we’ll use k-means clustering via scikit-learn’s KMeans estimator (from the
sklearn.cluster module) to place each sample in the Iris dataset into a cluster. As with
the other estimators you’ve used, the KMeans estimator hides from you the algorithm’s
complex mathematical details, making it straightforward to use.

Creating the Estimator
Let’s create the KMeans object:

The keyword argument n_clusters specifies the k-means clustering algorithm’s hyperpa-
rameter k, which KMeans requires to calculate the clusters and label each sample. When you
train a KMeans estimator, the algorithm calculates for each cluster a centroid representing
the cluster’s center data point.

The default value for the n_clusters parameter is 8. Often, you’ll rely on domain
experts knowledgeable about the data to help choose an appropriate k value. However,
with hyperparameter tuning, you can estimate the appropriate k, as we’ll do later. In this
case, we know there are three species, so we’ll use n_clusters=3 to see how well KMeans
does in labeling the Iris samples. Once again, we used the random_state keyword argu-
ment for reproducibility.

In [22]: from sklearn.cluster import KMeans

In [23]: kmeans = KMeans(n_clusters=3, random_state=11)

ptg27972259

14.7 Unsupervised Machine Learning, Part 2—k-Means Clustering 451

Fitting the Model
Next, we’ll train the estimator by calling the KMeans object’s fit method. This step per-
forms the k-means algorithm discussed earlier:

As with the other estimator’s, the fit method returns the estimator object and IPython
displays its string representation. You can see the KMeans default arguments at:

https://scikit-learn.org/stable/modules/generated/
sklearn.cluster.KMeans.html

When the training completes, the KMeans object contains:

• A labels_ array with values from 0 to n_clusters - 1 (in this example, 0–2),
indicating the clusters to which the samples belong.

• A cluster_centers_ array in which each row represents a centroid.

Comparing the Computer Cluster Labels to the Iris Dataset’s Target Values
Because the Iris dataset is labeled, we can look at its target array values to get a sense of
how well the k-means algorithm clustered the samples for the three Iris species. With unla-
beled data, we’d need to depend on a domain expert to help evaluate whether the predicted
classes make sense.

In this dataset, the first 50 samples are Iris setosa, the next 50 are Iris versicolor, and the
last 50 are Iris virginica. The Iris dataset’s target array represents these with the values 0–
2. If the KMeans estimator chose the clusters perfectly, then each group of 50 elements in
the estimator’s labels_ array should have a distinct label. As you study the results below,
note that the KMeans estimator uses the values 0 through k – 1 to label clusters, but these
are not related to the Iris dataset’s target array.

Let’s use slicing to see how each group of 50 Iris samples was clustered. The following
snippet shows that the first 50 samples were all placed in cluster 1:

The next 50 samples should be placed into a second cluster. The following snippet
shows that most were placed in cluster 0, but two samples were placed in cluster 2:

Similarly, the last 50 samples should be placed into a third cluster. The following
snippet shows that many of these samples were placed in cluster 2, but 14 of the samples
were placed in cluster 0, indicating that the algorithm thought they belonged to a different
cluster:

In [24]: kmeans.fit(iris.data)
Out[24]:
KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,
 n_clusters=3, n_init=10, n_jobs=None, precompute_distances='auto',
 random_state=11, tol=0.0001, verbose=0)

In [25]: print(kmeans.labels_[0:50])
[1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

In [26]: print(kmeans.labels_[50:100])
[0 0 2 0 2 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

In [27]: print(kmeans.labels_[100:150])
[2 0 2 2 2 2 0 2 2 2 2 2 2 0 0 2 2 2 2 0 2 0 2 0 2 2 0 0 2 2 2 2 2 0 2 2
 2 2 0 2 2 2 0 2 2 2 0 2 2 0]

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

ptg27972259

452 Chapter 14 Machine Learning: Classification, Regression and Clustering

The results of these three snippets confirm what we saw in the pairplot diagrams earlier
in this section—that Iris setosa is “in a class by itself” and that there is some confusion
between Iris versicolor and Iris virginica.

14.7.5 Dimensionality Reduction with Principal Component Analysis
Next, we’ll use the PCA estimator (from the sklearn.decomposition module) to perform
dimensionality reduction. This estimator uses an algorithm called principal component
analysis14 to analyze a dataset’s features and reduce them to the specified number of
dimensions. For the Iris dataset, we first tried the TSNE estimator shown earlier but did not
like the results we were getting. So we switched to PCA for the following demonstration.

Creating the PCA Object
Like the TSNE estimator, a PCA estimator uses the keyword argument n_components to
specify the number of dimensions:

Transforming the Iris Dataset’s Features into Two Dimensions
Let’s train the estimator and produce the reduced data by calling the PCA estimator’s
methods fit and transform methods:

When the method completes its task, it returns an array with the same number of rows as
iris.data, but only two columns. Let’s confirm this by checking iris_pca’s shape:

Note that we separately called the PCA estimator’s fit and transform methods, rather
than fit_transform, which we used with the TSNE estimator. In this example, we’re going
to reuse the trained estimator (produced with fit) to perform a second transform to
reduce the cluster centroids from four dimensions to two. This will enable us to plot the
centroid locations on each cluster.

Visualizing the Reduced Data
Now that we’ve reduced the original dataset to only two dimensions, let’s use a scatter plot
to display the data. In this case, we’ll use Seaborn’s scatterplot function. First, let’s trans-
form the reduced data into a DataFrame and add a species column that we’ll use to deter-
mine the dot colors:

14. The algorithm’s details are beyond this book’s scope. For more information, see https://scikit-
learn.org/stable/modules/decomposition.html#pca.

In [28]: from sklearn.decomposition import PCA

In [29]: pca = PCA(n_components=2, random_state=11)

In [30]: pca.fit(iris.data)
Out[30]:
PCA(copy=True, iterated_power='auto', n_components=2, random_state=11,
 svd_solver='auto', tol=0.0, whiten=False)

In [31]: iris_pca = pca.transform(iris.data)

In [32]: iris_pca.shape
Out[32]: (150, 2)

In [33]: iris_pca_df = pd.DataFrame(iris_pca,
 ...: columns=['Component1', 'Component2'])
 ...:

https://scikit-learn.org/stable/modules/decomposition.html#pca
https://scikit-learn.org/stable/modules/decomposition.html#pca

ptg27972259

14.7 Unsupervised Machine Learning, Part 2—k-Means Clustering 453

Next, let’s scatterplot the data in Seaborn:

Each centroid in the KMeans object’s cluster_centers_ array has the same number
of features as the original dataset (four in this case). To plot the centroids, we must reduce
their dimensions. You can think of a centroid as the “average” sample in its cluster. So each
centroid should be transformed using the same PCA estimator we used to reduce the other
samples in that cluster:

Now, we’ll plot the centroids of the three clusters as larger black dots. Rather than trans-
form the iris_centers array into a DataFrame first, let’s use Matplotlib’s scatter func-
tion to plot the three centroids:

The keyword argument s=100 specifies the size of the plotted points, and the keyword
argument c='k' specifies that the points should be displayed in black.

14.7.6 Choosing the Best Clustering Estimator
As we did in the classification and regression case studies, let’s run multiple clustering algo-
rithms and see how well they cluster the three species of Iris flowers. Here we’ll attempt to

In [34]: iris_pca_df['species'] = iris_df.species

In [35]: axes = sns.scatterplot(data=iris_pca_df, x='Component1',
 ...: y='Component2', hue='species', legend='brief',
 ...: palette='cool')
 ...:

In [36]: iris_centers = pca.transform(kmeans.cluster_centers_)

In [37]: import matplotlib.pyplot as plt

In [38]: dots = plt.scatter(iris_centers[:,0], iris_centers[:,1],
 ...: s=100, c='k')
 ...:

ptg27972259

454 Chapter 14 Machine Learning: Classification, Regression and Clustering

cluster the Iris dataset’s samples using the kmeans object we created earlier15 and objects
of scikit-learn’s DBSCAN, MeanShift, SpectralClustering and AgglomerativeCluster-
ing estimators. Like KMeans, you specify the number of clusters in advance for the Spec-
tralClustering and AgglomerativeClustering estimators:

Each iteration of the following loop calls one estimator’s fit method with iris.data
as an argument, then uses NumPy’s unique function to get the cluster labels and counts
for the three groups of 50 samples and displays the results. Recall that for the DBSCAN and
MeanShift estimators, we did not specify the number of clusters in advance. Interestingly,
DBSCAN correctly predicted three clusters (labeled -1, 0 and 1), though it placed 84 of the
100 Iris virginica and Iris versicolor samples in the same cluster. The MeanShift estimator,
on the other hand, predicted only two clusters (labeled as 0 and 1), and placed 99 of the
100 Iris virginica and Iris versicolor samples in the same cluster:

15. We’re running KMeans here on the small Iris dataset. If you experience performance problems with
KMeans on larger datasets, consider using the MiniBatchKMeans estimator. The scikit-learn docu-
mentation indicates that MiniBatchKMeans is faster on large datasets and the results are almost as
good.

In [39]: from sklearn.cluster import DBSCAN, MeanShift,\
 ...: SpectralClustering, AgglomerativeClustering

In [40]: estimators = {
 ...: 'KMeans': kmeans,
 ...: 'DBSCAN': DBSCAN(),
 ...: 'MeanShift': MeanShift(),
 ...: 'SpectralClustering': SpectralClustering(n_clusters=3),
 ...: 'AgglomerativeClustering':
 ...: AgglomerativeClustering(n_clusters=3)
 ...: }

In [41]: import numpy as np

In [42]: for name, estimator in estimators.items():
 ...: estimator.fit(iris.data)
 ...: print(f'\n{name}:')
 ...: for i in range(0, 101, 50):
 ...: labels, counts = np.unique(
 ...: estimator.labels_[i:i+50], return_counts=True)
 ...: print(f'{i}-{i+50}:')
 ...: for label, count in zip(labels, counts):
 ...: print(f' label={label}, count={count}')
 ...:

KMeans:
0-50:
 label=1, count=50
50-100:
 label=0, count=48
 label=2, count=2
100-150:
 label=0, count=14
 label=2, count=36

ptg27972259

14.8 Wrap-Up 455

Though these algorithms label every sample, the labels simply indicate the clusters.
What do you do with the cluster information once you have it? If your goal is to use the
data in supervised machine learning, typically you’d study the samples in each cluster to
try to determine how they’re related and label them accordingly. As we’ll see in the next
chapter, unsupervised learning is commonly used in deep-learning applications. Some
examples of unlabeled data processed with unsupervised learning include tweets from
Twitter, Facebook posts, videos, photos, news articles, customers’ product reviews, view-
ers’ movie reviews and more.

14.8 Wrap-Up
In this chapter we began our study of machine learning, using the popular scikit-learn
library. We saw that machine learning is divided into two types. Supervised machine learn-
ing, which works with labeled data and unsupervised machine learning which works with

DBSCAN:
0-50:
 label=-1, count=1
 label=0, count=49
50-100:
 label=-1, count=6
 label=1, count=44
100-150:
 label=-1, count=10
 label=1, count=40

MeanShift:
0-50:
 label=1, count=50
50-100:
 label=0, count=49
 label=1, count=1
100-150:
 label=0, count=50

SpectralClustering:
0-50:
 label=2, count=50
50-100:
 label=1, count=50
100-150:
 label=0, count=35
 label=1, count=15

AgglomerativeClustering:
0-50:
 label=1, count=50
50-100:
 label=0, count=49
 label=2, count=1
100-150:
 label=0, count=15
 label=2, count=35

ptg27972259

456 Chapter 14 Machine Learning: Classification, Regression and Clustering

unlabeled data. Throughout this chapter, we continued emphasizing visualizations using
Matplotlib and Seaborn, particularly for getting to know your data.

We discussed how scikit-learn conveniently packages machine-learning algorithms as
estimators. Each is encapsulated so you can create your models quickly with a small
amount of code, even if you don’t know the intricate details of how these algorithms work.

We looked at supervised machine learning with classification, then regression. We
used one of the simplest classification algorithms, k-nearest neighbors, to analyze the Dig-
its dataset bundled with scikit-learn. You saw that classification algorithms predicts the
classes to which samples belong. Binary classification uses two classes (such as “spam” or
“not spam”) and multi-classification uses more than two classes (such as the 10 classes in
the Digits dataset).

We performed the steps of a typical machine-learning case study, including loading
the dataset, exploring the data with pandas and visualizations, splitting the data for train-
ing and testing, creating the model, training the model and making predictions. We dis-
cussed why you should partition your data into a training set and a testing set. You saw
ways to evaluate a classification estimator’s accuracy via a confusion matrix and a classifi-
cation report.

We mentioned that it’s difficult to know in advance which model(s) will perform best
on your data, so you typically try many models and pick the one that performs best. We
showed that it’s easy to run multiple estimators. We also used hyperparameter tuning with
k-fold cross-validation to choose the best value of k for the k-NN algorithm.

We revisited the time series and simple linear regression example from Chapter 10’s
Intro to Data Science section, this time implementing it using a scikit-learn LinearRe-
gression estimator. Next, we used a LinearRegression estimator to perform multiple
linear regression with the California Housing dataset that’s bundled with scikit-learn. You
saw that the LinearRegression estimator, by default, uses all the numerical features in a
dataset to make more sophisticated predictions than you can with simple linear regression.
Again, we ran multiple scikit-learn estimators to compare how they performed and choose
the best one.

Next, we introduced an unsupervised machine learning and mentioned that it’s typi-
cally accomplished with clustering algorithms. We used introduced dimensionality reduc-
tion (with scikit-learn’s TSNE estimator) and used it to compress the Digits dataset’s 64
features down to two for visualization purposes. This enabled us to see the clustering of
the digits data.

We presented one of the simplest unsupervised machine learning algorithms, k-means
clustering, and demonstrated clustering on the Iris dataset that’s also bundled with scikit-
learn. We used dimensionality reduction (with scikit-learn’s PCA estimator) to compress
the Iris dataset’s four features to two for visualization purposes to show the clustering of
the three Iris species in the dataset and their centroids. Finally, we ran multiple clustering
estimators to compare their ability to label the Iris dataset’s samples into three clusters.

In the next chapter, we’ll continue our study of machine learning technologies with
deep learning. We’ll tackle some fascinating and challenging problems.

ptg27972259

15
Deep Learning

O b j e c t i v e s
In this chapter you’ll:
■ Understand what a neural network is and how it enables deep

learning.
■ Create Keras neural networks.
■ Understand Keras layers, activation functions, loss functions

and optimizers.
■ Use a Keras convolutional neural network (CNN) trained on

the MNIST dataset to recognize handwritten digits.
■ Use a Keras recurrent neural network (RNN) trained on the

IMDb dataset to perform binary classification of positive and
negative movie reviews.

■ Use TensorBoard to visualize the progress of training deep-
learning networks.

■ Learn which pretrained neural networks come with Keras.
■ Understand the value of using models pretrained on the

massive ImageNet dataset for computer vision apps.

ptg27972259

458 Chapter 15 Deep Learning
O

u
tl

in
e

15.1 Introduction
One of AI’s most exciting areas is deep learning, a powerful subset of machine learning
that has produced impressive results in computer vision and many other areas over the last
few years. The availability of big data, significant processor power, faster Internet speeds
and advancements in parallel computing hardware and software are making it possible for
more organizations and individuals to pursue resource-intensive deep-learning solutions.

Keras and TensorFlow
In the previous chapter, Scikit-learn enabled you to define machine-learning models con-
veniently with one statement. Deep learning models require more sophisticated setups,
typically connecting multiple objects, called layers. We’ll build our deep learning models
with Keras, which offers a friendly interface to Google’s TensorFlow—the most widely
used deep-learning library.1 François Chollet of the Google Mind team developed Keras
to make deep-learning capabilities more accessible. His book Deep Learning with Python is
a must read.2 Google has thousands of TensorFlow and Keras projects underway internally
and that number is growing quickly.3,4

15.1 Introduction
15.1.1 Deep Learning Applications
15.1.2 Deep Learning Demos
15.1.3 Keras Resources

15.2 Keras Built-In Datasets
15.3 Custom Anaconda Environments
15.4 Neural Networks
15.5 Tensors
15.6 Convolutional Neural Networks for

Vision; Multi-Classification with the
MNIST Dataset

15.6.1 Loading the MNIST Dataset
15.6.2 Data Exploration
15.6.3 Data Preparation
15.6.4 Creating the Neural Network
15.6.5 Training and Evaluating the Model
15.6.6 Saving and Loading a Model

15.7 Visualizing Neural Network Training
with TensorBoard

15.8 ConvnetJS: Browser-Based Deep-
Learning Training and Visualization

15.9 Recurrent Neural Networks for
Sequences; Sentiment Analysis with
the IMDb Dataset

15.9.1 Loading the IMDb Movie Reviews
Dataset

15.9.2 Data Exploration
15.9.3 Data Preparation
15.9.4 Creating the Neural Network
15.9.5 Training and Evaluating the Model

15.10 Tuning Deep Learning Models
15.11 Convnet Models Pretrained on

ImageNet
15.12 Wrap-Up

1. Keras also serves as a friendlier interface to Microsoft’s CNTK and the Université de Montréal’s
Theano (which ceased development in 2017). Other popular deep learning frameworks include Caffe
(http://caffe.berkeleyvision.org/), Apache MXNet (https://mxnet.apache.org/) and Py-
Torch (https://pytorch.org/).

2. Chollet, François. Deep Learning with Python. Shelter Island, NY: Manning Publications, 2018.
3. http://theweek.com/speedreads/654463/google-more-than-1000-artificial-intelligence-

projects-works.
4. https://www.zdnet.com/article/google-says-exponential-growth-of-ai-is-changing-

nature-of-compute/.

http://caffe.berkeleyvision.org/
https://mxnet.apache.org/
https://pytorch.org/
http://theweek.com/speedreads/654463/google-more-than-1000-artificial-intelligence-projects-works
http://theweek.com/speedreads/654463/google-more-than-1000-artificial-intelligence-projects-works
https://www.zdnet.com/article/google-says-exponential-growth-of-ai-is-changing-nature-of-compute/
https://www.zdnet.com/article/google-says-exponential-growth-of-ai-is-changing-nature-of-compute/

ptg27972259

15.1 Introduction 459

Models
Deep learning models are complex and require an extensive mathematical background to
understand their inner workings. As we’ve done throughout the book, we’ll avoid heavy
mathematics here, preferring English explanations.

Keras is to deep learning as Scikit-learn is to machine learning. Each encapsulates the
sophisticated mathematics, so developers need only define, parameterize and manipulate
objects. With Keras, you build your models from pre-existing components and quickly
parameterize those components to your unique requirements. This is what we’ve been
referring to as object-based programming throughout the book.

Experiment with Your Models
Machine learning and deep learning are empirical rather than theoretical fields. You’ll
experiment with many models, tweaking them in various ways until you find the models
that perform best for your applications. Keras facilitates such experimentation.

Dataset Sizes
Deep learning works well when you have lots of data, but it also can be effective for smaller
datasets when combined with techniques like transfer learning5,6 and data augmenta-
tion7,8. Transfer learning uses existing knowledge from a previously trained model as the
foundation for a new model. Data augmentation adds data to a dataset by deriving new
data from existing data. For example, in an image dataset, you might rotate the images left
and right so the model can learn about objects in different orientations. In general,
though, the more data you have, the better you’ll be able to train a deep learning model.

Processing Power
Deep learning can require significant processing power. Complex models trained on big-
data datasets can take hours, days or even more to train. The models we present in this
chapter can be trained in minutes to just less than an hour on computers with conven-
tional CPUs. You’ll need only a reasonably current personal computer. We’ll discuss the
special high-performance hardware called GPUs (Graphics Processing Units) and TPUs
(Tensor Processing Units) developed by NVIDIA and Google to meet the extraordinary
processing demands of edge-of-the-practice deep-learning applications.

Bundled Datasets
Keras comes packaged with some popular datasets. You’ll work with two of these datasets
in the chapter’s examples. You can find many Keras studies online for each of these data-
sets, including ones that take different approaches.

In the “Machine Learning” chapter, you worked with Scikit-learn’s Digits dataset,
which contained 1797 handwritten-digit images that were selected from the much larger

5. https://towardsdatascience.com/transfer-learning-from-pre-trained-models-

f2393f124751.
6. https://medium.com/nanonets/nanonets-how-to-use-deep-learning-when-you-have-

limited-data-f68c0b512cab.
7. https://towardsdatascience.com/data-augmentation-and-images-7aca9bd0dbe8.
8. https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-

part-2-data-augmentation-c26971dc8ced.

https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751
https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751
https://medium.com/nanonets/nanonets-how-to-use-deep-learning-when-you-have-limited-data-f68c0b512cab
https://medium.com/nanonets/nanonets-how-to-use-deep-learning-when-you-have-limited-data-f68c0b512cab
https://towardsdatascience.com/data-augmentation-and-images-7aca9bd0dbe8
https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced
https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced

ptg27972259

460 Chapter 15 Deep Learning

MNIST dataset (60,000 training images and 10,000 test images).9 In this chapter you’ll
work with the full MNIST dataset. You’ll build a Keras convolutional neural network
(CNN or convnet) model that will achieve high performance recognizing digit images in
the test set. Convnets are especially appropriate for computer vision tasks, such as recog-
nizing handwritten digits and characters or recognizing objects (including faces) in images
and videos. You’ll also work with a Keras recurrent neural network. In that example, you’ll
perform sentiment analysis using the IMDb Movie reviews dataset, in which the reviews
in the training and testing sets are labeled as positive or negative.

Future of Deep Learning
Newer automated deep learning capabilities are making it even easier to build deep-learn-
ing solutions. These include Auto-Keras10 from Texas A&M University’s DATA Lab,
Baidu’s EZDL11 and Google’s AutoML12.

15.1.1 Deep Learning Applications
Deep learning is being used in a wide range of applications, such as:

• Game playing

• Computer vision: Object recognition, pattern recognition, facial recognition

• Self-driving cars

• Robotics

• Improving customer experiences

• Chatbots

• Diagnosing medical conditions

• Google Search

• Facial recognition

• Automated image captioning and video closed captioning

• Enhancing image resolution

• Speech recognition

• Language translation

• Predicting election results

• Predicting earthquakes and weather

• Google Sunroof to determine whether you can put solar panels on your roof

• Generative applications—Generating original images, processing existing images
to look like a specified artist’s style, adding color to black-and-white images and
video, creating music, creating text (books, poetry) and much more.

9. “The MNIST Database.” MNIST Handwritten Digit Database, Yann LeCun, Corinna Cortes and
Chris Burges. http://yann.lecun.com/exdb/mnist/.

10. https://autokeras.com/.
11. https://ai.baidu.com/ezdl/.
12. https://cloud.google.com/automl/.

http://yann.lecun.com/exdb/mnist/
https://autokeras.com/
https://ai.baidu.com/ezdl/
https://cloud.google.com/automl/

ptg27972259

15.2 Keras Built-In Datasets 461

15.1.2 Deep Learning Demos
Check out these four deep-learning demos and search online for lots more, including prac-
tical applications like we mentioned in the preceding section:

• DeepArt.io—Turn a photo into artwork by applying an art style to the photo.
https://deepart.io/.

• DeepWarp Demo—Analyzes a person’s photo and makes the person’s eyes move
in different directions. https://sites.skoltech.ru/sites/compvision_wiki/
static_pages/projects/deepwarp/.

• Image-to-Image Demo—Translates a line drawing into a picture. https://
affinelayer.com/pixsrv/.

• Google Translate Mobile App (download from an app store to your smart-
phone)—Translate text in a photo to another language (e.g., take a photo of a
sign or a restaurant menu in Spanish and translate the text to English).

15.1.3 Keras Resources
Here are some resources you might find valuable as you study deep learning:

• To get your questions answered, go to the Keras team’s slack channel at https://
kerasteam.slack.com.

• For articles and tutorials, visit https://blog.keras.io.

• The Keras documentation is at http://keras.io.

• If you’re looking for term projects, directed study projects, capstone course proj-
ects or thesis topics, visit arXiv (pronounced “archive,” where the X represents the
Greek letter “chi”) at https://arXiv.org. People post their research papers here
in parallel with going through peer review for formal publication, hoping for fast
feedback. So, this site gives you access to extremely current research.

15.2 Keras Built-In Datasets
Here are some of Keras’s datasets (from the module tensorflow.keras.datasets13) for
practicing deep learning. We’ll use a couple of these in the chapter’s examples:

• MNIST14 database of handwritten digits—Used for classifying handwritten
digit images, this dataset contains 28-by-28 grayscale digit images labeled as 0
through 9 with 60,000 images for training and 10,000 for testing. We use this
dataset in Section 15.6, where we study convolutional neural networks.

13. In the standalone Keras library, the module names begin with keras rather than tensorflow.keras.
14. “The MNIST Database.” MNIST Handwritten Digit Database, Yann LeCun, Corinna Cortes and

Chris Burges. http://yann.lecun.com/exdb/mnist/.

http://$$$DeepArt.io�Turn
https://deepart.io/
https://sites.skoltech.ru/sites/compvision_wiki/static_pages/projects/deepwarp/
https://sites.skoltech.ru/sites/compvision_wiki/static_pages/projects/deepwarp/
https://affinelayer.com/pixsrv/
https://affinelayer.com/pixsrv/
https://kerasteam.slack.com
https://kerasteam.slack.com
https://blog.keras.io
http://keras.io
https://arXiv.org
http://yann.lecun.com/exdb/mnist/

ptg27972259

462 Chapter 15 Deep Learning

• Fashion-MNIST15 database of fashion articles—Used for classifying clothing
images, this dataset contains 28-by-28 grayscale images of clothing labeled in 10
categories16 with 60,000 for training and 10,000 for testing. Once you build a
model for use with MNIST, you can reuse that model with Fashion-MNIST by
changing a few statements.

• IMDb Movie reviews17—Used for sentiment analysis, this dataset contains
reviews labeled as positive (1) or negative (0) sentiment with 25,000 reviews for
training and 25,000 for testing. We use this dataset in Section 15.9, where we
study recurrent neural networks.

• CIFAR1018 small image classification—Used for small-image classification, this
dataset contains 32-by-32 color images labeled in 10 categories with 50,000
images for training and 10,000 for testing.

• CIFAR10019 small image classification—Also, used for small-image classifica-
tion, this dataset contains 32-by-32 color images labeled in 100 categories with
50,000 images for training and 10,000 for testing.

15.3 Custom Anaconda Environments
Before running this chapter’s examples, you’ll need to install the libraries we use. In this
chapter’s examples, we’ll use the TensorFlow deep-learning library’s version of Keras.20 At
the time of this writing, TensorFlow does not yet support Python 3.7. So, you’ll need
Python 3.6.x to execute this chapter’s examples. We’ll show you how to set up a custom
environment for working with Keras and TensorFlow.

Environments in Anaconda
The Anaconda Python distribution makes it easy to create custom environments. These
are separate configurations in which you can install different libraries and different library
versions. This can help with reproducibility if your code depends on specific Python or
library versions.21

The default environment in Anaconda is called the base environment. This is created
for you when you install Anaconda. All the Python libraries that come with Anaconda are
installed into the base environment and, unless you specify otherwise, any additional
libraries you install also are placed there. Custom environments give you control over the
specific libraries you wish to install for your specific tasks.

15. Han Xiao and Kashif Rasul and Roland Vollgraf, Fashion-MNIST: a Novel Image Dataset for Bench-
marking Machine Learning Algorithms, arXiv, cs.LG/1708.07747.

16. https://keras.io/datasets/#fashion-mnist-database-of-fashion-articles.
17. Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher

Potts. (2011). Learning Word Vectors for Sentiment Analysis. The 49th Annual Meeting of the As-
sociation for Computational Linguistics (ACL 2011).

18. https://www.cs.toronto.edu/~kriz/cifar.html.
19. https://www.cs.toronto.edu/~kriz/cifar.html.
20. There’s also a standalone version that enables you to choose between TensorFlow, Microsoft’s CNTK

or the Université de Montréal’s Theano (which ceased development in 2017).
21. In the next chapter, we’ll introduce Docker as another reproducibility mechanism and as a conve-

nient way to install complex environments for use on your local computer.

https://keras.io/datasets/#fashion-mnist-database-of-fashion-articles
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

ptg27972259

15.4 Neural Networks 463

Creating an Anaconda Environment
The conda create command creates an environment. Let’s create a TensorFlow environ-
ment and name it tf_env (you can name it whatever you like). Run the following com-
mand in your Terminal, shell or Anaconda Command Prompt:22,23

conda create -n tf_env tensorflow anaconda ipython jupyterlab
scikit-learn matplotlib seaborn h5py pydot graphviz

This will determine the listed libraries’ dependencies, then display all the libraries that will
be installed in the new environment. There are many dependencies, so this may take a few
minutes. When you see the prompt:

Proceed ([y]/n)?

press Enter to create the environment and install the libraries.24

Activating an Alternate Anaconda Environment
To use a custom environment, execute the conda activate command:

conda activate tf_env

This affects only the current Terminal, shell or Anaconda Command Prompt. When a
custom environment is activated and you install more libraries, they become part of the
activated environment, not the base environment. If you open separate Terminals, shells
or Anaconda Command Prompts, they’ll use Anaconda’s base environment by default.

Deactivating an Alternate Anaconda Environment
When you’re done with a custom environment, you can return to the base environment
in the current Terminal, shell or Anaconda Command Prompt by executing:

conda deactivate

Jupyter Notebooks and JupyterLab
This chapter’s examples are provided only as Jupyter Notebooks, which will make it easier
for you to experiment with the examples. You can tweak the options we present and re-
execute the notebooks. For this chapter, you should launch JupyterLab from the ch15
examples folder (as discussed in Section 1.5.3).

15.4 Neural Networks
Deep learning is a form of machine learning that uses artificial neural networks to learn.
An artificial neural network (or just neural network) is a software construct that operates
similarly to how scientists believe our brains work. Our biological nervous systems are con-
trolled via neurons25 that communicate with one another along pathways called synapses26.

22. Windows users should run the Anaconda Command Prompt as Administrator,
23. If you have a computer with an NVIDIA GPU that’s compatible with TensorFlow, you can replace

the tensorflow library with tensorflow-gpu to get better performance. For more information, see
https://www.tensorflow.org/install/gpu. Some AMD GPUs also can be used with Tensor-
Flow: http://timdettmers.com/2018/11/05/which-gpu-for-deep-learning/.

24. When we created our custom environment, conda installed Python 3.6.7, which was the most recent
Python version compatible with the tensorflow library.

25. https://en.wikipedia.org/wiki/Neuron.
26. https://en.wikipedia.org/wiki/Synapse.

https://www.tensorflow.org/install/gpu
http://timdettmers.com/2018/11/05/which-gpu-for-deep-learning/
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Synapse

ptg27972259

464 Chapter 15 Deep Learning

As we learn, the specific neurons that enable us to perform a given task, like walking, com-
municate with one another more efficiently. These neurons activate anytime we need to
walk.27

Artificial Neurons
In a neural network, interconnected artificial neurons simulate the human brain’s neurons
to help the network learn. The connections between specific neurons are reinforced during
the learning process with the goal of achieving a specific result. In supervised deep learn-
ing—which we’ll use in this chapter—we aim to predict the target labels supplied with
data samples. To do this, we’ll train a general neural network model that we can then use
to make predictions on unseen data.28

Artificial Neural Network Diagram
The following diagram shows a three-layer neural network. Each circle represents a neu-
ron, and the lines between them simulate the synapses. The output of a neuron becomes
the input of another neuron, hence the term neural network. This particular diagram
shows a fully connected network—every neuron in a given layer is connected to all the
neurons in the next layer:

Learning Is an Iterative Process
When you were a baby, you did not learn to walk instantaneously. You learned that pro-
cess over time with repetition. You built up the smaller components of the movements that
enabled you to walk—learning to stand, learning to balance to remain standing, learning
to lift your foot and move it forward, etc. And you got feedback from your environment.
When you walked successfully your parents smiled and clapped. When you fell, you might
have bumped your head and felt pain.

Similarly, we train neural networks iteratively over time. Each iteration is known as
an epoch and processes every sample in the training dataset once. There’s no “correct”
number of epochs. This is a hyperparameter that may need tuning, based on your training
data and your model. The inputs to the network are the features in the training samples.
Some layers learn new features from previous layers’ outputs and others interpret those fea-
tures to make predictions.

27. https://www.sciencenewsforstudents.org/article/learning-rewires-brain.
28. As in machine learning, you can create unsupervised deep learning networks—these are beyond this

chapter’s scope.

Input layer Hidden layer Output layer

Neuron

syn
apse

https://www.sciencenewsforstudents.org/article/learning-rewires-brain

ptg27972259

15.5 Tensors 465

How Artificial Neurons Decide Whether to Activate Synapses
During the training phase, the network calculates values called weights for every connec-
tion between the neurons in one layer and those in the next. On a neuron-by-neuron basis,
each of its inputs is multiplied by that connection’s weight, then the sum of those weighted
inputs is passed to the neuron’s activation function. This function’s output determines
which neurons to activate based on the inputs—just like the neurons in your brain passing
information around in response to inputs coming from your eyes, nose, ears and more.
The following diagram shows a neuron receiving three inputs (the black dots) and produc-
ing an output (the hollow circle) that would be passed to all or some of neurons in the next
layer, depending on the types of the neural network’s layers:

The values w1, w2 and w3 are weights. In a new model that you train from scratch,
these values are initialized randomly by the model. As the network trains, it tries to mini-
mize the error rate between the network’s predicted labels and the samples’ actual labels.
The error rate is known as the loss, and the calculation that determines the loss is called
the loss function. Throughout training, the network determines the amount that each
neuron contributes to the overall loss, then goes back through the layers and adjusts the
weights in an effort to minimize that loss. This technique is called backpropagation. Opti-
mizing these weights occurs gradually—typically via a process called gradient descent.

15.5 Tensors
Deep learning frameworks generally manipulate data in the form of tensors. A “tensor” is
basically a multidimensional array. Frameworks like TensorFlow pack all your data into
one or more tensors, which they use to perform the mathematical calculations that enable
neural networks to learn. These tensors can become quite large as the number of dimen-
sions increases and as the richness of the data increases (for example, images, audios and
videos are richer than text). Chollet discusses the types of tensors typically encountered in
deep learning:29

• 0D (0-dimensional) tensor—This is one value and is known as a scalar.

• 1D tensor—This is similar to a one-dimensional array and is known as a vector.
A 1D tensor might represent a sequence, such as hourly temperature readings
from a sensor or the words of one movie review.

29. Chollet, François. Deep Learning with Python. Section 2.2. Shelter Island, NY: Manning Publica-
tions, 2018.

Inputs Neuron Output

w1

w2

w3

ptg27972259

466 Chapter 15 Deep Learning

• 2D tensor—This is similar to a two-dimensional array and is known as a matrix.
A 2D tensor could represent a grayscale image in which the tensor’s two dimen-
sions are the image’s width and height in pixels, and the value in each element is
the intensity of that pixel.

• 3D tensor—This is similar to a three-dimensional array and could be used to rep-
resent a color image. The first two dimensions would represent the width and
height of the image in pixels and the depth at each location might represent the
red, green and blue (RGB) components of a given pixel’s color. A 3D tensor also
could represent a collection of 2D tensors containing grayscale images.

• 4D tensor—A 4D tensor could be used to represent a collection of color images
in 3D tensors. It also could be used to represent one video. Each frame in a video
is essentially a color image.

• 5D tensor—This could be used to represent a collection of 4D tensors contain-
ing videos.

A tensor’s shape typically is represented as a tuple of values in which the number of ele-
ments specifies the tensor’s number of dimensions and each value in the tuple specifies the
size of the tensor’s corresponding dimension.

Let’s assume we’re creating a deep-learning network to identify and track objects in 4K
(high-resolution) videos that have 30 frames-per-second. Each frame in a 4K video is 3840-
by-2160 pixels. Let’s also assume the pixels are presented as red, green and blue components
of a color. So each frame would be a 3D tensor containing a total of 24,883,200 elements
(3840 * 2160 * 3) and each video would be a 4D tensor containing the sequence of frames.
If the videos are one minute long, you’d have 44,789,760,000 elements per tensor!

Over 600 hours of video are uploaded to YouTube every minute30 so, in just one min-
ute of uploads, Google could have a tensor containing 1,612,431,360,000,000 elements
to use in training deep-learning models—that’s big data. As you can see, tensors can
quickly become enormous, so manipulating them efficiently is crucial. This is one of the
key reasons that most deep learning is performed on GPUs. More recently Google created
TPUs (Tensor Processing Units) that are specifically designed to perform tensor manipu-
lations, executing faster than GPUs.

High-Performance Processors
Powerful processors are needed for real-world deep learning because the size of tensors can
be enormous and large-tensor operations can place crushing demands on processors. The
processors most commonly used for deep learning are:

• NVIDIA GPUs (Graphics Processing Units)—Originally developed by compa-
nies like NVIDIA for computer gaming, GPUs are much faster than conventional
CPUs for processing large amounts of data, thus enabling developers to train, val-
idate and test deep-learning models more efficiently—and thus experiment with
more of them. GPUs are optimized for the mathematical matrix operations typi-
cally performed on tensors, an essential aspect of how deep learning works “under
the hood.” NVIDIA’s Volta Tensor Cores are specifically designed for deep learn-

30. https://www.inc.com/tom-popomaronis/youtube-analyzed-trillions-of-data-points-in-

2018-revealing-5-eye-opening-behavioral-statistics.html.

https://www.inc.com/tom-popomaronis/youtube-analyzed-trillions-of-data-points-in-2018-revealing-5-eye-opening-behavioral-statistics.html
https://www.inc.com/tom-popomaronis/youtube-analyzed-trillions-of-data-points-in-2018-revealing-5-eye-opening-behavioral-statistics.html

ptg27972259

15.6 Multi-Classification with the MNIST Dataset 467

ing.31,32 Many NVIDIA GPUs are compatible with TensorFlow, and hence
Keras, and can enhance the performance of your deep-learning models.33

• Google TPUs (Tensor Processing Units)—Recognizing that deep learning is cru-
cial to its future, Google developed TPUs (Tensor Processing Units), which they
now use in their Cloud TPU service, which “can provide up to 11.5 petaflops of
performance in a single pod”34 (that’s 11.5 quadrillion floating-point operations
per second). Also, TPUs are designed to be especially energy efficient. This is a
key concern for companies like Google with already massive computing clusters
that are growing exponentially and consuming vast amounts of energy.

15.6 Convolutional Neural Networks for Vision; Multi-
Classification with the MNIST Dataset
In the “Machine Learning” chapter, we classified handwritten digits using the 8-by-8-
pixel, low-resolution images from the Digits dataset bundled with Scikit-learn. That data-
set is based on a subset of the higher-resolution MNIST handwritten digits dataset. Here,
we’ll use MNIST to explore deep learning with a convolutional neural network35 (also
called a convnet or CNN). Convnets are common in computer-vision applications, such
as recognizing handwritten digits and characters, and recognizing objects in images and
video. They’re also used in non-vision applications, such as natural-language processing
and recommender systems.

The Digits dataset has only 1797 samples, whereas MNIST has 70,000 labeled digit
image samples—60,000 for training and 10,000 for testing. Each sample is a grayscale 28-
by-28 pixel image (784 total features) represented as a NumPy array. Each pixel is a value
from 0 to 255 representing the intensity (or shade) of that pixel—the Digits dataset uses
less granular shading with values from 0 to 16. MNIST’s labels are integer values in the
range 0 through 9, indicating the digit each image represents.

The machine-learning model you used in the previous chapter produced as its output
a digit image’s predicted class—an integer in the range 0–9. The convnet model we’ll build
will perform probabilistic classification.36 For each digit image, the model will output an
array of 10 probabilities, each indicating the likelihood that the digit belongs to a partic-
ular one of the classes 0 through 9. The class with the highest probability is the predicted
value.

Reproducibility in Keras and Deep Learning
We’ve discussed the importance of reproducibility throughout the book. In deep learning,
reproducibility is more difficult because the libraries heavily parallelize operations that per-
form floating-point calculations. Each time operations execute, they may execute in a dif-
ferent order. This can produce differences in your results. Getting reproducible results in

31. https://www.nvidia.com/en-us/data-center/tensorcore/.
32. https://devblogs.nvidia.com/tensor-core-ai-performance-milestones/.
33. https://www.tensorflow.org/install/gpu.
34. https://cloud.google.com/tpu/.
35. https://en.wikipedia.org/wiki/Convolutional_neural_network.
36. https://en.wikipedia.org/wiki/Probabilistic_classification.

https://www.nvidia.com/en-us/data-center/tensorcore/
https://devblogs.nvidia.com/tensor-core-ai-performance-milestones/
https://www.tensorflow.org/install/gpu
https://cloud.google.com/tpu/
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Probabilistic_classification

ptg27972259

468 Chapter 15 Deep Learning

Keras requires a combination of environment settings and code settings that are described
in the Keras FAQ:

https://keras.io/getting-started/faq/#how-can-i-obtain-reproducible-
results-using-keras-during-development

Basic Keras Neural Network
A Keras neural network consists of the following components:

• A network (also called a model)—A sequence of layers containing the neurons
used to learn from the samples. Each layer’s neurons receive inputs, process them
(via an activation function) and produce outputs. The data is fed into the network
via an input layer that specifies the dimensions of the sample data. This is fol-
lowed by hidden layers of neurons that implement the learning and an output
layer that produces the predictions. The more layers you stack, the deeper the net-
work is, hence the term deep learning.

• A loss function—This produces a measure of how well the network predicts the
target values. Lower loss values indicate better predictions.

• An optimizer—This attempts to minimize the values produced by the loss func-
tion to tune the network to make better predictions.

Launch JupyterLab
This section assumes that you’ve activated the tf_env Anaconda environment you created
in Section 15.3 and launched JupyterLab from the ch15 examples folder. You can either
open the MNIST_CNN.ipynb file in JupyterLab and execute the code in the cells we pro-
vided, or you can create a new notebook and enter the code on your own. If you prefer,
you can work at the command line in IPython, however, placing your code in a Jupyter
Notebook makes it significantly easier for you to re-execute this chapter’s examples.

As a reminder, you can reset a Jupyter Notebook and remove its outputs by selecting
Restart Kernel and Clear All Outputs… from JupyterLab’s Kernel menu. This terminates the
notebook’s execution and removes its outputs. You might do this if your model is not per-
forming well and you want to try different hyperparameters or possibly restructure your
neural network.37 You can then re-execute the notebook one cell at a time or execute the
entire notebook by selecting Run All from JupyterLab’s Run menu.

15.6.1 Loading the MNIST Dataset
Let’s import the tensorflow.keras.datasets.mnist module so we can load the dataset:

Note that because we’re using the version of Keras built into TensorFlow, the Keras mod-
ule names begin with "tensorflow.". In the standalone Keras version, the module names
begin with "keras.", so keras.datasets would be used above. Keras uses TensorFlow to
execute the deep-learning models.

The mnist module’s load_data function loads the MNIST training and testing sets:

37. We found that we sometimes had to execute this menu option twice to clear the outputs.

[1]: from tensorflow.keras.datasets import mnist

[2]: (X_train, y_train), (X_test, y_test) = mnist.load_data()

https://keras.io/getting-started/faq/#how-can-i-obtain-reproducible-results-using-keras-during-development
https://keras.io/getting-started/faq/#how-can-i-obtain-reproducible-results-using-keras-during-development

ptg27972259

15.6 Multi-Classification with the MNIST Dataset 469

When you call load_data it will download the MNIST data to your system. The function
returns a tuple of two elements containing the training and testing sets. Each element is
itself a tuple containing the samples and labels, respectively.

15.6.2 Data Exploration
Let’s get to know the data before working with it. First, we check the dimensions of the
training set images (X_train), training set labels (y_train), testing set images (X_test)
and testing set labels (y_test):

You can see from X_train’s and X_test’s shapes that the images are higher resolution than
those in Scikit-learn’s Digits dataset (which are 8-by-8).

Visualizing Digits
Let’s visualize some of the digit images. First, enable Matplotlib in the notebook, import
Matplotlib and Seaborn and set the font scale:

The IPython magic

%matplotlib inline

indicates that Matplotlib-based graphics should be displayed in the notebook rather than in
separate windows. For more IPython magics, you can use in Jupyter Notebooks, see:

https://ipython.readthedocs.io/en/stable/interactive/magics.html

Next, we’ll display a randomly selected set of 24 MNIST training set images. Recall
from the “Array-Oriented Programming with NumPy” chapter that you can pass a
sequence of indexes as a NumPy array’s subscript to select only the array elements at those
indexes. We’ll use that capability here to select the elements at the same indexes in both
the X_train and y_train arrays. This ensures that we display the correct label for each ran-
domly selected image.

NumPy’s choice function (from the numpy.random module) randomly selects the
number of elements specified in its second argument (24) from the array of values in its
first argument (in this case, an array containing X_train’s range of indices). The function

[3]: X_train.shape
[3]: (60000, 28, 28)

[4]: y_train.shape
[4]: (60000,)

[5]: X_test.shape
[5]: (10000, 28, 28)

[6]: y_test.shape
[6]: (10000,)

[7]: %matplotlib inline

[8]: import matplotlib.pyplot as plt

[9]: import seaborn as sns

[10]: sns.set(font_scale=2)

https://ipython.readthedocs.io/en/stable/interactive/magics.html

ptg27972259

470 Chapter 15 Deep Learning

returns an array containing the selected values, which we store in index. The expressions
X_train[index] and y_train[index] use index to get the corresponding elements from
both arrays. The rest of this cell is the visualization code from the previous chapter’s Digits
case study:

You can see in the output below that MNIST’s digit images have higher resolution than
those in Scikit-learn’s Digits dataset.

Looking at the digits, you can see why handwritten digit recognition is a challenge:

• Some people write “open” 4s (like the ones in the first and third rows), and some
write “closed” 4s (like the one in the second row). Though each 4 has some sim-
ilar features, they’re all different from one another.

• The 3 in the second row looks strange—more like a merged 6 and 7. Compare
this to the much clearer 3 in the fourth row.

• The 5 in the second row could easily be confused with a 6.

• Also, people write their digits at different angles, as you can see with the four 6s
in the third and fourth rows—two are upright, one leans left and one leans right.

[11]: import numpy as np
 index = np.random.choice(np.arange(len(X_train)), 24, replace=False)
 figure, axes = plt.subplots(nrows=4, ncols=6, figsize=(16, 9))

 for item in zip(axes.ravel(), X_train[index], y_train[index]):
 axes, image, target = item
 axes.imshow(image, cmap=plt.cm.gray_r)
 axes.set_xticks([]) # remove x-axis tick marks
 axes.set_yticks([]) # remove y-axis tick marks
 axes.set_title(target)
 plt.tight_layout()

ptg27972259

15.6 Multi-Classification with the MNIST Dataset 471

If you run the preceding snippet multiple times, you can see additional randomly selected
digits.38 You’ll probably find that—if not for the labels displayed above each digit—it
would be difficult for you to identify some of the digits. We’ll soon see how accurately our
first convnet will predict the digits in the MNIST test set.

15.6.3 Data Preparation
Recall from the “Machine Learning” chapter that Scikit-learn’s bundled datasets were pre-
processed into the shapes its models required. In real-world studies, you’ll generally have
to do some or all of the data preparation. The MNIST dataset requires some preparation
for use in a Keras convnet.

Reshaping the Image Data
Keras convnets require NumPy array inputs in which each sample has the shape:

(width, height, channels)

For MNIST, each image’s width and height are 28 pixels, and each pixel has one channel
(the grayscale shade of the pixel from 0 to 255), so each sample’s shape will be:

(28, 28, 1)

Full-color images with RGB (red/green/blue) values for each pixel, would have three chan-
nels—one channel each for the red, green and blue components of a color.

As the neural network learns from the images, it creates many more channels. Rather
than shade or color, the learned channels will represent more complex features, like edges,
curves and lines, that will eventually enable the network to recognize digits based on these
additional features and how they’re combined.

Let’s reshape the 60,000 training and 10,000 testing set images into the correct
dimensions for use in our convnet and confirm their new shapes. Recall that NumPy array
method reshape receives a tuple representing the array’s new shape:

Normalizing the Image Data
Numeric features in data samples may have value ranges that vary widely. Deep learning
networks perform better on data that is scaled either into the range 0.0 to 1.0, or to a range
for which the data’s mean is 0.0 and its standard deviation is 1.0.39 Getting your data into
one of these forms is known as normalization.

38. If you do run the cell multiple times, the snippet number next to the cell will increment each time,
as it does in IPython at the command line.

[12]: X_train = X_train.reshape((60000, 28, 28, 1))

[13]: X_train.shape
[13]: (60000, 28, 28, 1)

[14]: X_test = X_test.reshape((10000, 28, 28, 1))

[15]: X_test.shape
[15]: (10000, 28, 28, 1)

39. S. Ioffe and Szegedy, C.. “Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift.” https://arxiv.org/abs/1502.03167.

https://arxiv.org/abs/1502.03167

ptg27972259

472 Chapter 15 Deep Learning

In MNIST, each pixel is an integer in the range 0–255. The following statements con-
vert the values to 32-bit (4-byte) floating-point numbers using the NumPy array method
astype, then divide every element in the resulting array by 255, producing normalized val-
ues in the range 0.0–1.0:

One-Hot Encoding: Converting the Labels From Integers to Categorical Data
As we mentioned, the convnet’s prediction for each digit will be an array of 10 probabili-
ties, indicating the likelihood that the digit belongs to a particular one of the classes 0
through 9. When we evaluate the model’s accuracy, Keras compares the model’s predic-
tions to the labels. To do that, Keras requires both to have the same shape. The MNIST
label for each digit, however, is one integer value in the range 0–9. So, we must transform
the labels into categorical data—that is, arrays of categories that match the format of the
predictions. To do this, we’ll use a process called one-hot encoding,40 which converts data
into arrays of 1.0s and 0.0s in which only one element is 1.0 and the rest are 0.0s. For
MNIST, the one-hot-encoded values will be 10-element arrays representing the categories
0 through 9. One-hot encoding also can be applied to other types of data.

We know precisely which category each digit belongs to, so the categorical represen-
tation of a digit label will consist of a 1.0 at that digit’s index and 0.0s for all the other
elements (again, Keras uses floating-point numbers internally). So, a 7’s categorical repre-
sentation is:

[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

and a 3’s representation is:

[0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

The tensorflow.keras.utils module provides function to_categorical to per-
form one-hot encoding. The function counts the unique categories then, for each item
being encoded, creates an array of that length with a 1.0 in the correct position. Let’s trans-
form y_train and y_test from one-dimensional arrays containing the values 0–9 into
two-dimensional arrays of categorical data. After doing so, the rows of these arrays will look
like those shown above. Snippet [21] outputs one sample’s categorical data for the digit 5
(recall that NumPy shows the decimal point, but not trailing 0s on floating-point values):

[16]: X_train = X_train.astype('float32') / 255

[17]: X_test = X_test.astype('float32') / 255

40. This term comes from certain digital circuits in which a group of bits is allowed to have only one bit
turned on (that is, to have the value 1). https://en.wikipedia.org/wiki/One-hot.

[18]: from tensorflow.keras.utils import to_categorical

[19]: y_train = to_categorical(y_train)

[20]: y_train.shape
[20]: (60000, 10)

[21]: y_train[0]
[21]: array([0., 0., 0., 0., 0., 1., 0., 0., 0., 0.],
dtype=float32)

[22]: y_test = to_categorical(y_test)

https://en.wikipedia.org/wiki/One-hot

ptg27972259

15.6 Multi-Classification with the MNIST Dataset 473

15.6.4 Creating the Neural Network
Now that we’ve prepared the data, we’ll configure a convolutional neural network. We
begin with the Keras Sequential model from the tensorflow.keras.models module:

The resulting network will execute its layers sequentially—the output of one layer
becomes the input to the next. This is known as a feed-forward network. As you’ll see
when we discuss recurrent neural networks, not all neural network operate this way.

Adding Layers to the Network
A typical convolutional neural network consists of several layers—an input layer that
receives the training samples, hidden layers that learn from the samples and an output layer
that produces the prediction probabilities. We’ll create a basic convnet here. Let’s import
from the tensorflow.keras.layers module the layer classes we’ll use in this example:

We discuss each below.

Convolution
We’ll begin our network with a convolution layer, which uses the relationships between
pixels that are close to one another to learn useful features (or patterns) in small areas of
each sample. These features become inputs to subsequent layers.

The small areas that convolution learns from are called kernels or patches. Let’s exam-
ine convolution on a 6-by-6 image. Consider the following diagram in which the 3-by-3
shaded square represents the kernel—the numbers are simply position numbers showing
the order in which the kernels are visited and processed:

[23]: y_test.shape
[23]: (10000, 10)

[24]: from tensorflow.keras.models import Sequential

[25]: cnn = Sequential()

[26]: from tensorflow.keras.layers import Conv2D, Dense, Flatten,
 MaxPooling2D

Kernel

6-by-6 before convolution

4-by-4 after convolution

1 432

Input to the convolutional layer Output from the convolutional layer

5 876

9 121110

13 161514

11
22

33
44

ptg27972259

474 Chapter 15 Deep Learning

You can think of the kernel as a “sliding window” that the convolution layer moves
one pixel at a time left-to-right across the image. When the kernel reaches the right edge,
the convolution layer moves the kernel one pixel down and repeats this left-to-right pro-
cess. Kernels typically are 3-by-3,41 though we found convnets that used 5-by-5 and 7-by-
7 for higher-resolution images. Kernel-size is a tunable hyperparameter.

Initially, the kernel is in the upper-left corner of the original image—kernel position
1 (the shaded square) in the input layer above. The convolution layer performs mathemat-
ical calculations using those nine features to “learn” about them, then outputs one new fea-
ture to position 1 in the layer’s output. By looking at features near one another, the
network begins to recognize features like edges, straight lines and curves.

Next, the convolution layer moves the kernel one pixel to the right (known as the
stride) to position 2 in the input layer. This new position overlaps with two of the three
columns in the previous position, so that the convolution layer can learn from all the fea-
tures that touch one another. The layer learns from the nine features in kernel position 2
and outputs one new feature in position 2 of the output, as in:

For a 6-by-6 image and a 3-by-3 kernel, the convolution layer does this two more
times to produce features for positions 3 and 4 of the layer’s output. Then, the convolution
layer moves the kernel one pixel down and begins the left-to-right process again for the
next four kernel positions, producing outputs in positions 5–8, then 9–12 and finally 13–
16. The complete pass of the image left-to-right and top-to-bottom is called a filter. For a
3-by-3 kernel, the filter dimensions (4-by-4 in our sample above) will be two less than the
input dimensions (6-by-6). For each 28-by-28 MNIST image, the filter will be 26-by-26.

The number of filters in the convolutional layer is commonly 32 or 64 when process-
ing small images like those in MNIST, and each filter produces different results. The num-
ber of filters depends on the image dimensions—higher-resolution images have more
features, so they require more filters. If you study the code the Keras team used to produce
their pretrained convnets,42 you’ll find that they used 64, 128 or even 256 filters in their

41. https://www.quora.com/How-can-I-decide-the-kernel-size-output-maps-and-layers-of-

CNN.
42. https://github.com/keras-team/keras-applications/tree/master/keras_applications.

Kernel

6-by-6 before convolution

4-by-4 after convolution

1 432

Input to the convolutional layer Output from the convolutional layer

5 876

9 121110

13 161514

11
22

33
44

https://www.quora.com/How-can-I-decide-the-kernel-size-output-maps-and-layers-of-CNN
https://www.quora.com/How-can-I-decide-the-kernel-size-output-maps-and-layers-of-CNN
https://github.com/keras-team/keras-applications/tree/master/keras_applications

ptg27972259

15.6 Multi-Classification with the MNIST Dataset 475

first convolutional layers. Based on their convnets and the fact that the MNIST images are
small, we’ll use 64 filters in our first convolutional layer. The set of filters produced by a
convolution layer is called a feature map.

Subsequent convolution layers combine features from previous feature maps to recog-
nize larger features and so on. If we were doing facial recognition, early layers might rec-
ognize lines, edges and curves, and subsequent layers might begin combining those into
larger features like eyes, eyebrows, noses, ears and mouths. Once the network learns a fea-
ture, because of convolution, it can recognize that feature anywhere in the image. This is
one of the reasons that convnets are used for object recognition in images.

Adding a Convolution Layer
Let’s add a Conv2D convolution layer to our model:

The Conv2D layer is configured with the following arguments:

• filters=64—The number of filters in the resulting feature map.

• kernel_size=(3, 3)—The size of the kernel used in each filter.

• activation='relu'—The 'relu' (Rectified Linear Unit) activation function is
used to produce this layer’s output. 'relu' is the most widely used activation
function in today’s deep learning networks43 and is good for performance because
it’s easy to calculate.44 It’s commonly recommended for convolutional layers.45

Because this is the first layer in the model, we also pass the input_shape=(28, 28,1) argu-
ment to specify the shape of each sample. This automatically creates an input layer to load
the samples and pass them into the Conv2D layer, which is actually the first hidden layer.
In Keras, each subsequent layer infers its input_shape from the previous layer’s output
shape, making it easy to stack layers.

Dimensionality of the First Convolution Layer’s Output
In the preceding convolutional layer, the input samples are 28-by-28-by-1—that is, 784
features each. We specified 64 filters and a 3-by-3 kernel size for the layer, so the output
for each image is 26-by-26-by-64 for a total of 43,264 features in the feature map—a sig-
nificant increase in dimensionality and an enormous number compared to the numbers of
features we processed in the “Machine Learning” chapter’s models. As each layer adds
more features, the resulting feature maps’ dimensionality becomes significantly larger. This
is one of the reasons that deep learning studies often require tremendous processing power.

Overfitting
Recall from the previous chapter, that overfitting can occur when your model is too complex
compared to what it is modeling. In the most extreme case, a model memorizes its training

[27]: cnn.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu',
 input_shape=(28, 28, 1)))

43. Chollet, François. Deep Learning with Python. p. 72. Shelter Island, NY: Manning Publications,
2018.

44. https://towardsdatascience.com/exploring-activation-functions-for-neural-

networks-73498da59b02.
45. https://www.quora.com/How-should-I-choose-a-proper-activation-function-for-the-

neural-network.

https://towardsdatascience.com/exploring-activation-functions-for-neural-networks-73498da59b02
https://towardsdatascience.com/exploring-activation-functions-for-neural-networks-73498da59b02
https://www.quora.com/How-should-I-choose-a-proper-activation-function-for-the-neural-network
https://www.quora.com/How-should-I-choose-a-proper-activation-function-for-the-neural-network

ptg27972259

476 Chapter 15 Deep Learning

data. When you make predictions with an overfit model, they will be accurate if new data
matches the training data, but the model could perform poorly with data it has never seen.

Overfitting tends to occur in deep learning as the dimensionality of the layers becomes
too large.46,47,48 This causes the network to learn specific features of the training-set digit
images, rather than learning the general features of digit images. Some techniques to pre-
vent overfitting include training for fewer epochs, data augmentation, dropout and L1 or
L2 regularization.49,50 We’ll discuss dropout later in the chapter.

Higher dimensionality also increases (and sometimes explodes) computation time. If
you’re performing the deep learning on CPUs rather than GPUs or TPUs, the training
could become intolerably slow.

Adding a Pooling Layer
To reduce overfitting and computation time, a convolution layer is often followed by one
or more layers that reduce the dimensionality of the convolution layer’s output. A pooling
layer compresses (or down-samples) the results by discarding features, which helps make the
model more general. The most common pooling technique is called max pooling, which
examines a 2-by-2 square of features and keeps only the maximum feature. To understand
pooling, let’s once again assume a 6-by-6 set of features. In the following diagram, the
numeric values in the 6-by-6 square represent the features that we wish to compress and
the 2-by-2 blue square in position 1 represents the initial pool of features to examine:

The max pooling layer first looks at the pool in position 1 above, then outputs the max-
imum feature from that pool—9 in our diagram. Unlike convolution, there’s no overlap
between pools. The pool moves by its width—for a 2-by-2 pool, the stride is 2. For the sec-
ond pool, represented by the orange 2-by-2 square, the layer outputs 7. For the third pool,
the layer outputs 9. Once the pool reaches the right edge, the pooling layer moves the pool

46. https://cs231n.github.io/convolutional-networks/.
47. https://medium.com/@cxu24/why-dimensionality-reduction-is-important-dd60b5611543.
48. https://towardsdatascience.com/preventing-deep-neural-network-from-overfitting-

953458db800a.
49. https://towardsdatascience.com/deep-learning-3-more-on-cnns-handling-overfitting-

2bd5d99abe5d.
50. https://www.kdnuggets.com/2015/04/preventing-overfitting-neural-networks.html.

Pool

6-by-6 before 2-by-2 max pooling is applied

3-by-3 after 2-by-2 max pooling is applied

9 97

Input to the pooling layer Output from the pooling layer

7 89

9 77

9 2

4 5

2 3

1 7

4 9

5 3

1 7

3 4

2 4

9 5

7 3

1 6

8 9

1 6

1 3

5 8

2 4

3 7

11
22

33

https://cs231n.github.io/convolutional-networks/
https://medium.com/@cxu24/why-dimensionality-reduction-is-important-dd60b5611543
https://towardsdatascience.com/preventing-deep-neural-network-from-overfitting-953458db800a
https://towardsdatascience.com/preventing-deep-neural-network-from-overfitting-953458db800a
https://towardsdatascience.com/deep-learning-3-more-on-cnns-handling-overfitting-2bd5d99abe5d
https://towardsdatascience.com/deep-learning-3-more-on-cnns-handling-overfitting-2bd5d99abe5d
https://www.kdnuggets.com/2015/04/preventing-overfitting-neural-networks.html

ptg27972259

15.6 Multi-Classification with the MNIST Dataset 477

down by its height—2 rows—then continues from left-to-right. Because every group of four
features is reduced to one, 2-by-2 pooling compresses the number of features by 75%.

Let’s add a MaxPooling2D layer to our model:

This reduces the previous layer’s output from 26-by-26-by-64 to 13-by-13-by-64.51

Though pooling is a common technique to reduce overfitting, some research suggests
that additional convolutional layers which use larger strides for their kernels can reduce
dimensionality and overfitting without discarding features.52

Adding Another Convolutional Layer and Pooling Layer
Convnets often have many convolution and pooling layers. The Keras team’s convnets
tend to double the number of filters in subsequent convolutional layers to enable the
model to learn more relationships between the features.53 So, let’s add a second convolu-
tion layer with 128 filters, followed by a second pooling layer to once again reduce the
dimensionality by 75%:

The input to the second convolution layer is the 13-by-13-by-64 output of the first
pooling layer. So, the output of snippet [29] will be 11-by-11-by-128. For odd dimen-
sions like 11-by-11, Keras pooling layers round down by default (in this case to 10-by-10),
so this pooling layer’s output will be 5-by-5-by-128.

Flattening the Results
At this point, the previous layer’s output is three-dimensional (5-by-5-by-128), but the
final output of our model will be a one-dimensional array of 10 probabilities that classify
the digits. To prepare for the one-dimensional final predictions, we first need to flatten the
previous layer’s three-dimensional output. A Keras Flatten layer reshapes its input to one
dimension. In this case, the Flatten layer’s output will be 1-by-3200 (that is, 5 * 5 * 128):

Adding a Dense Layer to Reduce the Number of Features
The layers before the Flatten layer learned digit features. Now we need to take all those
features and learn the relationships among them so our model can classify which digit each
image represents. Learning the relationships among features and performing classification
is accomplished with fully connected Dense layers, like those shown in the neural network
diagram earlier in the chapter. The following Dense layer creates 128 neurons (units) that
learn from the 3200 outputs of the previous layer:

Many convnets contain at least one Dense layer like the one above. Convnets geared to
more complex image datasets with higher-resolution images like ImageNet—a dataset of

[28]: cnn.add(MaxPooling2D(pool_size=(2, 2)))

51. Another technique for reducing overfitting is to add Dropout layers.
52. Tobias, Jost, Dosovitskiy, Alexey, Brox, Thomas, Riedmiller, and Martin. “Striving for Simplicity:

The All Convolutional Net.” April 13, 2015. https://arxiv.org/abs/1412.6806.
53. https://github.com/keras-team/keras-applications/tree/master/keras_applications.

[29]: cnn.add(Conv2D(filters=128, kernel_size=(3, 3), activation='relu'))

[30]: cnn.add(MaxPooling2D(pool_size=(2, 2)))

[31]: cnn.add(Flatten())

[32]: cnn.add(Dense(units=128, activation='relu'))

https://arxiv.org/abs/1412.6806
https://github.com/keras-team/keras-applications/tree/master/keras_applications

ptg27972259

478 Chapter 15 Deep Learning

over 14 million images54—often have several Dense layers, commonly with 4096 neurons.
You can see such configurations in several of Keras’s pretrained ImageNet convnets55—
we list these in Section 15.11.

Adding Another Dense Layer to Produce the Final Output
Our final layer is a Dense layer that classifies the inputs into neurons representing the
classes 0 through 9. The softmax activation function converts the values of these remain-
ing 10 neurons into classification probabilities. The neuron that produces the highest
probability represents the prediction for a given digit image:

Printing the Model’s Summary
A model’s summary method shows you the model’s layers. Some interesting things to note
are the output shapes of the various layers and the number of parameters. The parameters
are the weights that the network learns during training.56,57 This is a relatively small net-
work, yet it will need to learn nearly 500,000 parameters! And this is for tiny images that
have less than one quarter of the resolution of the icons on most smartphone home screens.
Imagine how many features a network would have to learn to process high-resolution 4K
video frames or the super-high-resolution images produced by today’s digital cameras. In
the Output Shape, None simply means that the model does not know in advance how many
training samples you’re going to provide—this is known only when you start the training.

54. http://www.image-net.org.
55. https://github.com/keras-team/keras-applications/tree/master/keras_applications.

[33]: cnn.add(Dense(units=10, activation='softmax'))

56. https://hackernoon.com/everything-you-need-to-know-about-neural-networks-

8988c3ee4491.
57. https://www.kdnuggets.com/2018/06/deep-learning-best-practices-weight-

initialization.html.

[34]: cnn.summary()

Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None, 26, 26, 64) 640

max_pooling2d_1 (MaxPooling2 (None, 13, 13, 64) 0

conv2d_2 (Conv2D) (None, 11, 11, 128) 73856

max_pooling2d_2 (MaxPooling2 (None, 5, 5, 128) 0

flatten_1 (Flatten) (None, 3200) 0

dense_1 (Dense) (None, 128) 409728

dense_2 (Dense) (None, 10) 1290
===
Total params: 485,514
Trainable params: 485,514
Non-trainable params: 0

http://www.image-net.org
https://github.com/keras-team/keras-applications/tree/master/keras_applications
https://hackernoon.com/everything-you-need-to-know-about-neural-networks-8988c3ee4491
https://hackernoon.com/everything-you-need-to-know-about-neural-networks-8988c3ee4491
https://www.kdnuggets.com/2018/06/deep-learning-best-practices-weight-initialization.html
https://www.kdnuggets.com/2018/06/deep-learning-best-practices-weight-initialization.html

ptg27972259

15.6 Multi-Classification with the MNIST Dataset 479

Also, note that there are no “non-trainable” parameters. By default, Keras trains all
parameters, but it is possible to prevent training for specific layers, which is typically done
when you’re tuning your networks or using another model’s learned parameters in a new
model (a process called transfer learning).58

Visualizing a Model’s Structure
You can visualize the model summary using the plot_model function from the module
tensorflow.keras.utils:

After storing the visualization in convnet.png, we use module IPython.display’s Image
class to show the image in the notebook. Keras assigns the layer names in the image:59

58. https://keras.io/getting-started/faq/#how-can-i-freeze-keras-layers.

[35]: from tensorflow.keras.utils import plot_model
 from IPython.display import Image
 plot_model(cnn, to_file='convnet.png', show_shapes=True,
 show_layer_names=True)
 Image(filename='convnet.png')

https://keras.io/getting-started/faq/#how-can-i-freeze-keras-layers

ptg27972259

480 Chapter 15 Deep Learning

Compiling the Model
Once you’ve added all the layers you complete the model by calling its compile method:

The arguments are:

• optimizer='adam'—The optimizer this model will use to adjust the weights
throughout the neural network as it learns. There are many optimizers60—
'adam' performs well across a wide variety of models.61,62

• loss='categorical_crossentropy'—This is the loss function used by the opti-
mizer in multi-classification networks like our convnet, which will predict 10
classes. As the neural network learns, the optimizer attempts to minimize the val-
ues returned by the loss function. The lower the loss, the better the neural net-
work is at predicting what each image is. For binary classification (which we’ll use
later in this chapter), Keras provides 'binary_crossentropy', and for regres-
sion, 'mean_squared_error'. For other loss functions, see https://keras.io/
losses/.

• metrics=['accuracy']—This is a list of the metrics that the network will pro-
duce to help you evaluate the model. Accuracy is a commonly used metric in clas-
sification models. In this example, we’ll use the accuracy metric to check the
percentage of correct predictions. For a list of other metrics, see https://
keras.io/metrics/.

15.6.5 Training and Evaluating the Model
Similar to Scikit-learn’s models, we train a Keras model by calling its fit method:

• As in Scikit-learn, the first two arguments are the training data and the categorical
target labels.

• epochs specifies the number of times the model should process the entire set of
training data. As we mentioned earlier, neural networks are trained iteratively.

• batch_size specifies the number of samples to process at a time during each
epoch. Most models specify a power of 2 from 32 to 512. Larger batch sizes can
decrease model accuracy.63 We chose 64. You can try different values to see how
they affect the model’s performance.

59. The node with the large integer value 112430057960 at the top of the diagram appears to be a bug
in the current version of Keras. This node represents the input layer and should say “InputLayer”.

[36]: cnn.compile(optimizer='adam',
 loss='categorical_crossentropy',
 metrics=['accuracy'])

60. For more Keras optimizers, see https://keras.io/optimizers/.
61. https://medium.com/octavian-ai/which-optimizer-and-learning-rate-should-i-use-

for-deep-learning-5acb418f9b2.
62. https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-

networks-and-ways-to-optimize-gradient-95ae5d39529f.
63. Keskar, Nitish Shirish, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy and Ping Tak Peter

Tang. “On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima.” CoRR
abs/1609.04836 (2016). https://arxiv.org/abs/1609.04836.

https://keras.io/losses/
https://keras.io/losses/
https://keras.io/metrics/
https://keras.io/metrics/
https://keras.io/optimizers/
https://medium.com/octavian-ai/which-optimizer-and-learning-rate-should-i-use-for-deep-learning-5acb418f9b2
https://medium.com/octavian-ai/which-optimizer-and-learning-rate-should-i-use-for-deep-learning-5acb418f9b2
https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f
https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f
https://arxiv.org/abs/1609.04836

ptg27972259

15.6 Multi-Classification with the MNIST Dataset 481

• In general, some samples should be used to validate the model. If you specify val-
idation data, after each epoch, the model will use it to make predictions and dis-
play the validation loss and accuracy. You can study these values to tune your layers
and the fit method’s hyperparameters, or possibly change the layer composition
of your model. Here, we used the validation_split argument to indicate that
the model should reserve the last 10% (0.1) of the training samples for valida-
tion64—in this case, 6000 samples will be used for validation. If you have separate
validation data, you can use the validation_data argument (as you’ll see in
Section 15.9) to specify a tuple containing arrays of samples and target labels. In
general, it’s better to get randomly selected validation data. You can use scikit-
learn’s train_test_split function for this purpose (as we’ll do later in this chap-
ter), then pass the randomly selected data with the validation_data argument.

In the following output, we highlighted the training accuracy (acc) and validation accu-
racy (val_acc) in bold:

In Section 15.7, we’ll introduce TensorBoard—a TensorFlow tool for visualizing data from
your deep-learning models. In particular, we’ll view charts showing how the training and
validation accuracy and loss values change through the epochs. In Section 15.8, we’ll
demonstrate Andrej Karpathy’s ConvnetJS tool, which trains convnets in your web
browser and dynamically visualizes the layers’ outputs, including what each convolutional
layer “sees” as it learns. Also run his MNIST and CIFAR10 models. These will help you
better understand neural networks’ complex operations.

As the training proceeds, the fit method outputs information showing you the prog-
ress of each epoch, how long the epoch took to execute (in this case, each took 63–70 sec-
onds), and the evaluation metrics for that pass. During the last epoch of this model, the
accuracy reached 99.48% for the training samples (acc) and 99.27% for the validation
samples (val_acc). Those are impressive numbers, given that we have not yet tried to tune
the hyperparameters or tweak the number and types of the layers, which could lead to even

64. https://keras.io/getting-started/faq/#how-is-the-validation-split-computed.

[37]: cnn.fit(X_train, y_train, epochs=5, batch_size=64,
 validation_split=0.1)
Train on 54000 samples, validate on 6000 samples
Epoch 1/5
54000/54000 [==============================] - 68s 1ms/step - loss:
0.1407 - acc: 0.9580 - val_loss: 0.0452 - val_acc: 0.9867
Epoch 2/5
54000/54000 [==============================] - 64s 1ms/step - loss:
0.0426 - acc: 0.9867 - val_loss: 0.0409 - val_acc: 0.9878
Epoch 3/5
54000/54000 [==============================] - 69s 1ms/step - loss:
0.0299 - acc: 0.9902 - val_loss: 0.0325 - val_acc: 0.9912
Epoch 4/5
54000/54000 [==============================] - 70s 1ms/step - loss:
0.0197 - acc: 0.9935 - val_loss: 0.0335 - val_acc: 0.9903
Epoch 5/5
54000/54000 [==============================] - 63s 1ms/step - loss:
0.0155 - acc: 0.9948 - val_loss: 0.0297 - val_acc: 0.9927
[37]: <tensorflow.python.keras.callbacks.History at 0x7f105ba0ada0>

https://keras.io/getting-started/faq/#how-is-the-validation-split-computed

ptg27972259

482 Chapter 15 Deep Learning

better (or worse) results. Like machine learning, deep learning is an empirical science that
benefits from lots of experimentation.

Evaluating the Model
Now we can check the accuracy of the model on data the model has not yet seen. To do
so, we call the model’s model’s evaluate method, which displays as its output, how long
it took to process the test samples (four seconds and 366 microseconds in this case):

According to the preceding output, our convnet model is 99.17% accurate when predict-
ing the labels for unseen data—and, at this point, we have not tried to tune the model.
With a little online research, you can find models that can predict MNIST with nearly
100% accuracy. Try experimenting with different numbers of layers, types of layers and
layer parameters and observe how those changes affect your results.

Making Predictions
The model’s predict method predicts the classes of the digit images in its argument array
(X_test):

We can check what the first sample digit should be by looking at y_test[0]:

According to this output, the first sample is the digit 7, because the categorical represen-
tation of the test sample’s label specifies a 1.0 at index 7—recall that we created this rep-
resentation via one-hot encoding.

Let’s check the probabilities returned by the predict method for the first test sample:

According to the output, predictions[0] indicates that our model believes this digit is a
7 with nearly 100% certainty. Not all predictions have this level of certainty.

[38]: loss, accuracy = cnn.evaluate(X_test, y_test)
10000/10000 [==============================] - 4s 366us/step

[39]: loss
[39]: 0.026809450998473768

[40]: accuracy
[40]: 0.9917

[41]: predictions = cnn.predict(X_test)

[42]: y_test[0]
[42]: array([0., 0., 0., 0., 0., 0., 0., 1., 0., 0.], dtype=float32)

[43]: for index, probability in enumerate(predictions[0]):
 print(f'{index}: {probability:.10%}')
0: 0.0000000201%
1: 0.0000001355%
2: 0.0000186951%
3: 0.0000015494%
4: 0.0000000003%
5: 0.0000000012%
6: 0.0000000000%
7: 99.9999761581%
8: 0.0000005577%
9: 0.0000011416%

ptg27972259

15.6 Multi-Classification with the MNIST Dataset 483

Locating the Incorrect Predictions
Next, we’d like to view some of the incorrectly predicted images to get a sense of the ones
our model has trouble with. For example, if it’s always mispredicting 8s, perhaps we need
more 8s in our training data.

Before we can view incorrect predictions, we need to locate them. Consider predic-
tions[0] above. To determine whether the prediction was correct, we must compare the
index of the largest probability in predictions[0] to the index of the element containing
1.0 in y_test[0]. If these index values are the same, then the prediction was correct; oth-
erwise, it was incorrect. NumPy’s argmax function determines the index of the highest val-
ued element in its array argument. Let’s use that to locate the incorrect predictions. In the
following snippet, p is the predicted value array, and e is the expected value array (the
expected values are the labels for the dataset’s test images):

In this snippet, we first reshape the samples from the shape (28, 28, 1) that Keras required
for learning back to (28, 28), which Matplotlib requires to display the images. Next, we
populate the list incorrect_predictions using the for statement. We zip the rows that
represent each sample in the arrays predictions and y_test, then enumerate those so we
can capture their indexes. If the argmax results for p and e are different, then the prediction
was incorrect, and we append a tuple to incorrect_predictions containing that sample’s
index, image, the predicted value and the expected value. We can confirm the total
number of incorrect predictions (out of 10,000 images in the test set) with:

Visualizing Incorrect Predictions
The following snippet displays 24 of the incorrect images labeled with each image’s index,
predicted value (p) and expected value (e):

Before reading the expected values, look at each digit and write down what digit you think
it is. This is an important part of getting to know your data:

[44]: images = X_test.reshape((10000, 28, 28))
 incorrect_predictions = []

 for i, (p, e) in enumerate(zip(predictions, y_test)):
 predicted, expected = np.argmax(p), np.argmax(e)

 if predicted != expected:
 incorrect_predictions.append(
 (i, images[i], predicted, expected))

[45]: len(incorrect_predictions)
[45]: 83

[46]: figure, axes = plt.subplots(nrows=4, ncols=6, figsize=(16, 12))

 for axes, item in zip(axes.ravel(), incorrect_predictions):
 index, image, predicted, expected = item
 axes.imshow(image, cmap=plt.cm.gray_r)
 axes.set_xticks([]) # remove x-axis tick marks
 axes.set_yticks([]) # remove y-axis tick marks
 axes.set_title(
 f'index: {index}\np: {predicted}; e: {expected}')
 plt.tight_layout()

ptg27972259

484 Chapter 15 Deep Learning

Displaying the Probabilities for Several Incorrect Predictions
Let’s look at the probabilities of some incorrect predictions. The following function dis-
plays the probabilities for the specified prediction array:

Though the 8 (at index 495) in the first line of the image output looks like an 8, our model
had trouble with it. As you can see in the following output, the model predicted this image
as a 0, but also thought there was 16% chance it was a 6 and a 23% chance it was an 8:

The 2 (at index 583) in the first row was predicted to be a 7 with 62.7% certainty,
but the model also thought there was a 36.4% chance it was a 2:

[47]: def display_probabilities(prediction):
 for index, probability in enumerate(prediction):
 print(f'{index}: {probability:.10%}')

[48]: display_probabilities(predictions[495])
0: 59.7235262394%
1: 0.0000015465%
2: 0.8047289215%
3: 0.0001740813%
4: 0.0016636326%
5: 0.0030567855%
6: 16.1390662193%
7: 0.0000001781%
8: 23.3022540808%
9: 0.0255270657%

[49]: display_probabilities(predictions[583])
0: 0.0000003016%
1: 0.0000005715%

ptg27972259

15.6 Multi-Classification with the MNIST Dataset 485

The 6 (at index 625) at the beginning of the second row was predicted to be a 4,
though that was far from certain. In this case, the probability of a 4 (51.6%) was only
slightly higher than the probability of a 6 (48.38%):

15.6.6 Saving and Loading a Model
Neural network models can require significant training time. Once you’ve designed and
tested a model that suits your needs, you can save its state. This allows you to load it later
to make more predictions. Sometimes models are loaded and further trained for new prob-
lems. For example, layers in our model already know how to recognize features such as
lines and curves, which could be useful in handwritten character recognition (as in the
EMNIST dataset) as well. So you could potentially load the existing model and use it as
the basis for a more robust model. This process is called transfer learning65,66—you trans-
fer an existing model’s knowledge into a new model. A Keras model’s save method stores
the model’s architecture and state information in a format called Hierarchical Data For-
mat (HDF5). Such files use the .h5 file extension by default:

You can load a saved model with the load_model function from the tensor-
flow.keras.models module:

from tensorflow.keras.models import load_model
cnn = load_model('mnist_cnn.h5')

You can then invoke its methods. For example, if you’ve acquired more data, you could
call predict to make additional predictions on new data, or you could call fit to start
training with the additional data.

2: 36.4056706429%
3: 0.0176281916%
4: 0.0000561930%
5: 0.0000000003%
6: 0.0000000019%
7: 62.7455413342%
8: 0.8310816251%
9: 0.0000114385%

[50]: display_probabilities(predictions[625])
0: 0.0008245181%
1: 0.0000041209%
2: 0.0012774357%
3: 0.0000000009%
4: 51.6223073006%
5: 0.0000001779%
6: 48.3754962683%
7: 0.0000000085%
8: 0.0000048182%
9: 0.0000785786%

65. https://towardsdatascience.com/transfer-learning-from-pre-trained-models-

f2393f124751.
66. https://medium.com/nanonets/nanonets-how-to-use-deep-learning-when-you-have-lim-

ited-data-f68c0b512cab.

[51]: cnn.save('mnist_cnn.h5')

https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751
https://towardsdatascience.com/transfer-learning-from-pre-trained-models-f2393f124751
https://medium.com/nanonets/nanonets-how-to-use-deep-learning-when-you-have-lim-ited-data-f68c0b512cab
https://medium.com/nanonets/nanonets-how-to-use-deep-learning-when-you-have-lim-ited-data-f68c0b512cab

ptg27972259

486 Chapter 15 Deep Learning

Keras provides several additional functions that enable you to save and load various
aspects of your models. For more information, see

https://keras.io/getting-started/faq/#how-can-i-save-a-keras-model

15.7 Visualizing Neural Network Training with
TensorBoard
With deep learning networks, there’s so much complexity and so much going on internally
that’s hidden from you that it’s difficult to know and fully understand all the details. This
creates challenges in testing, debugging and updating models and algorithms. Deep learn-
ing learns the features but there may be enormous numbers of them, and they may not be
apparent to you.

Google provides the TensorBoard67,68 tool for visualizing neural networks imple-
mented in TensorFlow and Keras. Just as a car’s dashboard visualizes data from your car’s
sensors, such as your speed, engine temperature and the amount of gas remaining, a Ten-
sorBoard dashboard visualizes data from a deep learning model that can give you insights
into how well your model is learning and potentially help you tune its hyperparameters.
Here, we’ll introduce TensorBoard.

Executing TensorBoard
TensorBoard monitors a folder on your system looking for files containing the data it will
visualize in a web browser. Here, you’ll create that folder, execute the TensorBoard server,
then access it via a web browser. Perform the following steps:

1. Change to the ch15 folder in your Terminal, shell or Anaconda Command
Prompt.

2. Ensure that your custom Anaconda environment tf_env is activated:

 conda activate tf_env

3. Execute the following command to create a subfolder named logs in which your
deep-learning models will write the information that TensorBoard will visualize:

 mkdir logs

4. Execute TensorBoard

 tensorboard --logdir=logs

5. You can now access TensorBoard in your web browser at

 http://localhost:6006

If you connect to TensorBoard before executing any models, it will initially display a page
indicating “No dashboards are active for the current data set.”69

67. https://github.com/tensorflow/tensorboard/blob/master/README.md.
68. https://www.tensorflow.org/guide/summaries_and_tensorboard.
69. TensorBoard does not currently work with Microsoft’s Edge browser.

https://keras.io/getting-started/faq/#how-can-i-save-a-keras-model
https://github.com/tensorflow/tensorboard/blob/master/README.md
https://www.tensorflow.org/guide/summaries_and_tensorboard

ptg27972259

15.7 Visualizing Neural Network Training with TensorBoard 487

The TensorBoard Dashboard
TensorBoard monitors the folder you specified looking for files output by the model
during training. When TensorBoard sees updates, it loads the data into the dashboard:

You can view the data as you train or after training completes. The dashboard above
shows the TensorBoard SCALARS tab, which displays charts for individual values that
change over time, such as the training accuracy (acc) and training loss (loss) shown in the
first row, and the validation accuracy (val_acc) and validation_loss (val_loss) shown in
the second row. The diagrams visualize a 10-epoch run of our MNIST convnet, which we
provided in the notebook MNIST_CNN_TensorBoard.ipynb. The epochs are displayed
along the x-axes starting from 0 for the first epoch. The accuracy and loss values are dis-
played on the y-axes. Looking at the training and validation accuracies, you can see in the
first 5 epochs similar results to the five-epoch run in the previous section.

For the 10-epoch run, the training accuracy continued to improve through the 9th
epoch, then decreased slightly. This might be the point at which we’re starting to overfit,
but we might need to train longer to find out. For the validation accuracy, you can see that
it jumped up quickly, then was relatively flat for five epochs before jumping up then
decreasing. For the training loss, you can see that it drops quickly, then continuously
declines through the ninth epoch, before a slight increase. The validation loss dropped
quickly then bounced around. We could run this model for more epochs to see whether
results improve, but based on these diagrams, it appears that around the sixth epoch we
get a nice combination of training and validation accuracy with minimal validation loss.

Normally these diagrams are stacked vertically in the dashboard. We used the search
field (above the diagrams) to show any that had the name “mnist” in their folder name—
we’ll configure that in a moment. TensorBoard can load data from multiple models at
once and you can choose which to visualize. This makes it easy to compare several different
models or multiple runs of the same model.

ptg27972259

488 Chapter 15 Deep Learning

Copy the MNIST Convnet’s Notebook
To create the new notebook for this example:

1. Right-click the MNIST_CNN.ipynb notebook in JupyterLab’s File Browser tab and
select Duplicate to make a copy of the notebook.

2. Right-click the new notebook named MNIST_CNN-Copy1.ipynb, then select Re-
name, enter the name MNIST_CNN_TensorBoard.ipynb and press Enter.

Open the notebook by double-clicking its name.

Configuring Keras to Write the TensorBoard Log Files
To use TensorBoard, before you fit the model, you need to configure a TensorBoard
object (module tensorflow.keras.callbacks), which the model will use to write data
into a specified folder that TensorBoard monitors. This object is known as a callback in
Keras. In the notebook, click to the left of snippet that calls the model’s fit method, then
type a, which is the shortcut for adding a new code cell above the current cell (use b for
below). In the new cell, enter the following code to create the TensorBoard object:

The arguments are:

• log_dir—The name of the folder in which this model’s log files will be written.
The notation './logs/' indicates that we’re creating a new folder within the logs
folder you created previously, and we follow that with 'mnist' and the current
time. This ensures that each new execution of the notebook will have its own log
folder. That will enable you to compare multiple executions in TensorBoard.

• histogram_freq—The frequency in epochs that Keras will output to the model’s
log files. In this case, we’ll write data to the logs for every epoch.

• write_graph—When this is true, a graph of the model will be output. You can
view the graph in the GRAPHS tab in TensorBoard.

Updating Our Call to fit
Finally, we need to modify the original fit method call in snippet 37. For this example, we
set the number of epochs to 10, and we added the callbacks argument, which is a list of
callback objects70:

You can now re-execute the notebook by selecting Kernel > Restart Kernel and Run All Cells
in JupyterLab. After the first epoch completes, you’ll start to see data in TensorBoard.

from tensorflow.keras.callbacks import TensorBoard
import time

tensorboard_callback = TensorBoard(log_dir=f'./logs/mnist{time.time()}',
 histogram_freq=1, write_graph=True)

cnn.fit(X_train, y_train, epochs=10, batch_size=64,
 validation_split=0.1, callbacks=[tensorboard_callback])

70. You can view Keras’s other callbacks at https://keras.io/callbacks/.

https://keras.io/callbacks/

ptg27972259

15.8 ConvnetJS: Browser-Based Deep-Learning Training and Visualization 489

15.8 ConvnetJS: Browser-Based Deep-Learning Training
and Visualization
In this section, we’ll overview Andrej Karpathy’s JavaScript-based ConvnetJS tool for
training and visualizing convolutional neural networks in your web browser:71

https://cs.stanford.edu/people/karpathy/convnetjs/

You can run the ConvnetJS sample convolutional neural networks or create your own.
We’ve used the tool on several desktop, tablet and phone browsers.

The ConvnetJS MNIST demo trains a convolutional neural network using the
MNIST dataset we presented in Section 15.6. The demo presents a scrollable dashboard that
updates dynamically as the model trains and contains several sections.

Training Stats
This section contains a Pause button that enables you to stop the learning and “freeze” the
current dashboard visualizations. Once you pause the demo, the button text changes to
resume. Clicking the button again continues training. This section also presents training
statistics, including the training and validation accuracy and a graph of the training loss.

Instantiate a Network and Trainer
In this section, you’ll find the JavaScript code that creates the convolutional neural net-
work. The default network has similar layers to the convnet in Section 15.6. The Conv-
netJS documentation72 shows the supported layer types and how to configure them. You
can experiment with different layer configurations in the provided textbox and begin
training an updated network by clicking the change network button.

Network Visualization
This key section shows one training image at a time and how the network processes that
image through each layer. Click the Pause button to inspect all the layers’ outputs for a
given digit to get a sense of what the network “sees” as it learns. The network’s last layer
produces the probabilistic classifications. It shows 10 squares—9 black and 1 white, indi-
cating the predicted class of the current digit image.

Example Predictions on Test Set
The final section shows a random selection of the test set images and the top three possible
classes for each digit. The one with the highest probability is shown on a green bar and the
other two are displayed on red bars. The length of each bar is a visual indication of that
class’s probability.

15.9 Recurrent Neural Networks for Sequences;
Sentiment Analysis with the IMDb Dataset
In the MNIST CNN network, we focused on stacked layers that were applied sequentially.
Non-sequential models are possible, as you’ll see here with recurrent neural networks. In
this section, we use Keras’s bundled IMDb (the Internet Movie Database) movie reviews

71. You also can download ConvnetJS from GitHub at https://github.com/karpathy/convnetjs.
72. https://cs.stanford.edu/people/karpathy/convnetjs/docs.html.

https://cs.stanford.edu/people/karpathy/convnetjs/
https://github.com/karpathy/convnetjs
https://cs.stanford.edu/people/karpathy/convnetjs/docs.html

ptg27972259

490 Chapter 15 Deep Learning

dataset73 to perform binary classification, predicting whether a given review’s sentiment
is positive or negative.

We’ll use a recurrent neural network (RNN), which processes sequences of data, such
as time series or text in sentences. The term “recurrent” comes from the fact that the neural
network contains loops in which the output of a given layer becomes the input to that same
layer in the next time step. In a time series, a time step is the next point in time. In a text
sequence, a “time step” would be the next word in a sequence of words.

The looping in RNNs enables them to learn and remember relationships among the
data in the sequence. For example, consider the following sentences we used in the “Nat-
ural Language Processing” chapter. The sentence

The food is not good.

clearly has negative sentiment. Similarly, the sentence
The movie was good.

has positive sentiment, though not as positive as
The movie was excellent!

In the first sentence, the word “good” on its own has positive sentiment. However, when
preceded by “not,” which appears earlier in the sequence, the sentiment becomes negative.
RNNs take into account the relationships among the earlier and later parts of a sequence.

In the preceding example, the words that determined sentiment were adjacent. How-
ever, when determining the meaning of text there can be many words to consider and an
arbitrary number of words in between them. In this section, we’ll use a Long Short-Term
Memory (LSTM) layer, which makes the neural network recurrent and is optimized to
handle learning from sequences like the ones we described above.

RNNs have been used for many tasks including:74,75,76

• predictive text input—displaying possible next words as you type,

• sentiment analysis,

• responding to questions with the predicted best answers from a corpus,

• inter-language translation, and

• automated closed captioning in video.

15.9.1 Loading the IMDb Movie Reviews Dataset
The IMDb movie reviews dataset included with Keras contains 25,000 training samples
and 25,000 testing samples, each labeled with its positive (1) or negative (0) sentiment.
Let’s import the tensorflow.keras.datasets.imdb module so we can load the dataset:

73. Maas, Andrew L. and Daly, Raymond E. and Pham, Peter T. and Huang, Dan and Ng, Andrew
Y. and Potts, Christopher, "Learning Word Vectors for Sentiment Analysis," Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, June
2011. Portland, Oregon, USA. Association for Computational Linguistics, pp. 142–150. http://
www.aclweb.org/anthology/P11-1015.

74. https://www.analyticsindiamag.com/overview-of-recurrent-neural-networks-and-

their-applications/.
75. https://en.wikipedia.org/wiki/Recurrent_neural_network#Applications.
76. http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

[1]: from tensorflow.keras.datasets import imdb

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://www.analyticsindiamag.com/overview-of-recurrent-neural-networks-and-their-applications/
https://www.analyticsindiamag.com/overview-of-recurrent-neural-networks-and-their-applications/
https://en.wikipedia.org/wiki/Recurrent_neural_network#Applications
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

ptg27972259

15.9 Sentiment Analysis with the IMDb Dataset 491

The imdb module’s load_data function returns the IMDb training and testing sets.
There are over 88,000 unique words in the dataset. The load_data function enables you
to specify the number of unique words to import as part of the training and testing data.
In this case, we loaded only the top 10,000 most frequently occurring words due to the
memory limitations of our system and the fact that we’re (intentionally) training on a
CPU rather than a GPU (because most of our readers will not have access to systems with
GPUs and TPUs). The more data you load, the longer training will take, but more data
may help produce better models:

The load_data function returns a tuple of two elements containing the training and test-
ing sets. Each element is itself a tuple containing the samples and labels, respectively. In a
given review, load_data replaces any words outside the top 10,000 with a placeholder
value, which we’ll discuss shortly.

15.9.2 Data Exploration
Let’s check the dimensions of the training set samples (X_train), training set labels
(y_train), testing set samples (X_test) and testing set labels (y_test):

The arrays y_train and y_test are one-dimensional arrays containing 1s and 0s,
indicating whether each review is positive or negative. Based on the preceding outputs,
X_train and X_test also appear to be one-dimensional. However, their elements actually
are lists of integers, each representing one review’s contents, as shown in snippet [9]:77

Keras deep learning models require numeric data, so the Keras team preprocessed the
IMDb dataset for you.

[2]: number_of_words = 10000

[3]: (X_train, y_train), (X_test, y_test) = imdb.load_data(
 num_words=number_of_words)

[4]: X_train.shape
[4]: (25000,)

[5]: y_train.shape
[5]: (25000,)

[6]: X_test.shape
[6]: (25000,)

[7]: y_test.shape
[7]: (25000,)

[8]: %pprint
[8]: Pretty printing has been turned OFF

[9]: X_train[123]
[9]: [1, 307, 5, 1301, 20, 1026, 2511, 87, 2775, 52, 116, 5, 31, 7, 4,
91, 1220, 102, 13, 28, 110, 11, 6, 137, 13, 115, 219, 141, 35, 221, 956,
54, 13, 16, 11, 2714, 61, 322, 423, 12, 38, 76, 59, 1803, 72, 8, 2, 23,
5, 967, 12, 38, 85, 62, 358, 99]

77. Here we used the %pprint magic to turn off pretty printing so the following snippet’s output could
be displayed horizontally rather than vertically to save space. You can turn pretty printing back on by
re-executing the %pprint magic.

ptg27972259

492 Chapter 15 Deep Learning

Movie Review Encodings
Because the movie reviews are numerically encoded, to view their original text, you need
to know the word to which each number corresponds. Keras’s IMDb dataset provides a
dictionary that maps the words to their indexes. Each word’s corresponding value is its fre-
quency ranking among all the words in the entire set of reviews. So the word with the rank-
ing 1 is the most frequently occurring word (calculated by the Keras team from the
dataset), the word with ranking 2 is the second most frequently occurring word, and so on.

Though the dictionary values begin with 1 as the most frequently occurring word, in
each encoded review (like X_train[123] shown previously), the ranking values are offset
by 3. So any review containing the most frequently occurring word will have the value 4
wherever that word appears in the review. Keras reserves the values 0, 1 and 2 in each
encoded review for the following purposes:

• The value 0 in a review represents padding. Keras deep learning algorithms expect
all the training samples to have the same dimensions, so some reviews may need
to be expanded to a given length and some shortened to that length. Reviews that
need to be expanded are padded with 0s.

• The value 1 represents a token that Keras uses internally to indicate the start of a
text sequence for learning purposes.

• The value 2 in a review represents an unknown word—typically a word that was
not loaded because you called load_data with the num_words argument. In this
case, any review that contained words with frequency rankings greater than
num_words would have those words’ numeric values replaced with 2. This is all
handled by Keras when you load the data.

Because each review’s numeric values are offset by 3, we’ll have to account for this when
we decode the review.

Decoding a Movie Review
Let’s decode a review. First, get the word-to-index dictionary by calling the function
get_word_index from the tensorflow.keras.datasets.imdb module:

The word 'great' might appear in a positive movie review, so let’s see whether it’s in the
dictionary:

According to the output, 'great' is the dataset’s 84th most frequent word. If you look up
a word that’s not in the dictionary, you’ll get an exception.

To transform the frequency ratings into words, let’s first reverse the word_to_index
dictionary’s mapping, so we can look up every word by its frequency rating. The following
dictionary comprehension reverses the mapping:

Recall that a dictionary’s items method enables us to iterate through tuples of key–value
pairs. We unpack each tuple into the variables word and index, then create an entry in the
new dictionary with the expression index: word.

[10]: word_to_index = imdb.get_word_index()

[11]: word_to_index['great']
[11]: 84

[12]: index_to_word = \
 {index: word for (word, index) in word_to_index.items()}

ptg27972259

15.9 Sentiment Analysis with the IMDb Dataset 493

The following list comprehension gets the top 50 words from the new dictionary—
recall that the most frequent word has the value 1:

Note that most of these are stop words. Depending on the application, you might want to
remove or keep the stop words. For example, if you were creating a predictive-text appli-
cation that suggests the next word in a sentence the user is typing, you’d want to keep the
stop words so they can be displayed as predictions.

Now, we can decode a review. We use the index_to_word dictionary’s two-argument
method get rather than the [] operator to get value for each key. If a value is not in the
dictionary, the get method returns its second argument, rather than raising an exception.
The argument i - 3 accounts for the offset in the encoded reviews of each review’s fre-
quency ratings. When the Keras reserved values 0–2 appear in a review, get returns '?';
otherwise, get returns the word with the key i - 3 in the index_to_word dictionary:

We can see from the y_train array that this review is classified as positive:

15.9.3 Data Preparation
The number of words per review varies, but the Keras requires all samples to have the same
dimensions. So, we need to perform some data preparation. In this case, we need to restrict
every review to the same number of words. Some reviews will need to be padded with addi-
tional data and others will need to be truncated. The pad_sequences utility function
(module tensorflow.keras.preprocessing.sequence) reshapes X_train’s samples (that
is, its rows) to the number of features specified by the maxlen argument (200) and returns
a two-dimensional array:

If a sample has more features, pad_sequences truncates it to the specified length. If a sam-
ple has fewer features, pad_sequences adds 0s to the beginning of the sequence to pad it
to the specified length. Let’s confirm X_train’s new shape:

[13]: [index_to_word[i] for i in range(1, 51)]
[13]: ['the', 'and', 'a', 'of', 'to', 'is', 'br', 'in', 'it', 'i',
'this', 'that', 'was', 'as', 'for', 'with', 'movie', 'but', 'film', 'on',
'not', 'you', 'are', 'his', 'have', 'he', 'be', 'one', 'all', 'at', 'by',
'an', 'they', 'who', 'so', 'from', 'like', 'her', 'or', 'just', 'about',
"it's", 'out', 'has', 'if', 'some', 'there', 'what', 'good', 'more']

[14]: ' '.join([index_to_word.get(i - 3, '?') for i in X_train[123]])
[14]: '? beautiful and touching movie rich colors great settings good
 acting and one of the most charming movies i have seen in a while i
 never saw such an interesting setting when i was in china my wife
 liked it so much she asked me to ? on and rate it so other would
 enjoy too'

[15]: y_train[123]
[15]: 1

[16]: words_per_review = 200

[17]: from tensorflow.keras.preprocessing.sequence import pad_sequences

[18]: X_train = pad_sequences(X_train, maxlen=words_per_review)

[19]: X_train.shape
[19]: (25000, 200)

ptg27972259

494 Chapter 15 Deep Learning

We also must reshape X_test for later in this example when we evaluate the model:

Splitting the Test Data into Validation and Test Data
In our convnet, we used the fit method’s validation_split argument to indicate that
10% of our training data should be set aside to validate the model as it trains. For this
example, we’ll manually split the 25,000 test samples into 20,000 test samples and 5,000
validation samples. We’ll then pass the 5,000 validation samples to the model’s fit
method via the argument validation_data. Let’s use Scikit-learn’s train_test_split
function from the previous chapter to split the test set:

Let’s also confirm the split by checking X_test’s and X_val’s shapes:

15.9.4 Creating the Neural Network
Next, we’ll configure the RNN. Once again, we begin with a Sequential model to which
we’ll add the layers that compose our network:

Next, let’s import the layers we’ll use in this model:

Adding an Embedding Layer
Previously, we used one-hot encoding to convert the MNIST dataset’s integer labels into
categorical data. The result for each label was a vector in which all but one element was 0.
We could do that for the index values that represent our words. However, this example
processes 10,000 unique words. That means we’d need a 10,000-by-10,000 array to rep-
resent all the words. That’s 100,000,000 elements, and almost all the array elements would
be 0. This is not an efficient way to encode the data. If we were to process all 88,000+
unique words in the dataset, we’d need an array of nearly eight billion elements!

To reduce dimensionality, RNNs that process text sequences typically begin with an
embedding layer that encodes each word in a more compact dense-vector representation.
The vectors produced by the embedding layer also capture the word’s context—that is,
how a given word relates to the words around it. So the embedding layer enables the RNN
to learn word relationships among the training data.

[20]: X_test = pad_sequences(X_test, maxlen=words_per_review)

[21]: X_test.shape
[21]: (25000, 200)

[22]: from sklearn.model_selection import train_test_split
 X_test, X_val, y_test, y_val = train_test_split(
 X_test, y_test, random_state=11, test_size=0.20)

[23]: X_test.shape
[23]: (20000, 200)

[24]: X_val.shape
[24]: (5000, 200)

[25]: from tensorflow.keras.models import Sequential

[26]: rnn = Sequential()

[27]: from tensorflow.keras.layers import Dense, LSTM

[28]: from tensorflow.keras.layers.embeddings import Embedding

ptg27972259

15.9 Sentiment Analysis with the IMDb Dataset 495

There are also predefined word embeddings, such as Word2Vec and GloVe. You can
load these into neural networks to save training time. They’re also sometimes used to add
basic word relationships to a model when smaller amounts of training data are available. This
can improve the model’s accuracy by allowing it to build upon previously learned word rela-
tionships, rather than trying to learn those relationships with insufficient amounts of data.

Let’s create an Embedding layer (module tensorflow.keras.layers):

The arguments are:

• input_dim—The number of unique words.

• output_dim—The size of each word embedding. If you load pre-existing embed-
dings78 like Word2Vec and GloVe, you must set this to match the size of the word
embeddings you load.

• input_length=words_per_review—The number of words in each input sample.

Adding an LSTM Layer
Next, we’ll add an LSTM layer:

The arguments are:

• units—The number of neurons in the layer. The more neurons the more the
network can remember. As a guideline, you can start with a value between the
length of the sequences you’re processing (200 in this example) and the number
of classes you’re trying to predict (2 in this example).79

• dropout—The percentage of neurons to randomly disable when processing the
layer’s input and output. Like the pooling layers in our convnet, dropout is a
proven technique80,81 that reduces overfitting. Keras provides a Dropout layer
that you can add to your models.

• recurrent_dropout—The percentage of neurons to randomly disable when the
layer’s output is fed back into the layer again to allow the network to learn from
what it has seen previously.

The mechanics of how the LSTM layer performs its task are beyond the scope of this book.
Chollet says: “you don’t need to understand anything about the specific architecture of an
LSTM cell; as a human, it shouldn’t be your job to understand it. Just keep in mind what
the LSTM cell is meant to do: allow past information to be reinjected at a later time.”82

[29]: rnn.add(Embedding(input_dim=number_of_words, output_dim=128,
 input_length=words_per_review))

78. https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html.

[30]: rnn.add(LSTM(units=128, dropout=0.2, recurrent_dropout=0.2))

79. https://towardsdatascience.com/choosing-the-right-hyperparameters-for-a-simple-

lstm-using-keras-f8e9ed76f046.
80. Yarin, Ghahramani, and Zoubin. “A Theoretically Grounded Application of Dropout in Recurrent

Neural Networks.” October 05, 2016. https://arxiv.org/abs/1512.05287.
81. Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.

“Dropout: A Simple Way to Prevent Neural Networks from Overfitting.” Journal of Machine Learn-
ing Research 15 (June 14, 2014): 1929-1958. http://jmlr.org/papers/volume15/srivas-
tava14a/srivastava14a.pdf.

82. Chollet, François. Deep Learning with Python. p. 204. Shelter Island, NY: Manning Publications, 2018.

https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html
https://towardsdatascience.com/choosing-the-right-hyperparameters-for-a-simple-lstm-using-keras-f8e9ed76f046
https://towardsdatascience.com/choosing-the-right-hyperparameters-for-a-simple-lstm-using-keras-f8e9ed76f046
https://arxiv.org/abs/1512.05287
http://jmlr.org/papers/volume15/srivas-tava14a/srivastava14a.pdf
http://jmlr.org/papers/volume15/srivas-tava14a/srivastava14a.pdf

ptg27972259

496 Chapter 15 Deep Learning

Adding a Dense Output Layer
Finally, we need to take the LSTM layer’s output and reduce it to one result indicating
whether a review is positive or negative, thus the value 1 for the units argument. Here we
use the 'sigmoid' activation function, which is preferred for binary classification.83 It
reduces arbitrary values into the range 0.0–1.0, producing a probability:

Compiling the Model and Displaying the Summary
Next, we compile the model. In this case, there are only two possible outputs, so we use
the binary_crossentropy loss function:

The following is the summary of our model. Notice that even though we have fewer layers
than our convnet, the RNN has nearly three times as many trainable parameters (the net-
work’s weights) as the convnet and more parameters means more training time. The large
number of parameters primarily comes from the number of words in the vocabulary (we
loaded 10,000) times the number of neurons in the Embedding layer’s output (128):

15.9.5 Training and Evaluating the Model
Let’s train our model.84 Notice for each epoch that the model takes significantly longer to
train than our convnet did. This is due to the larger numbers of parameters (weights) our
RNN model needs to learn. We bolded the accuracy (acc) and validation accuracy
(val_acc) values for readability—these represent the percentage of training samples and
the percentage of validation_data samples that the model predicts correctly.

83. Chollet, François. Deep Learning with Python. p.114. Shelter Island, NY: Manning Publications,
2018.

[31]: rnn.add(Dense(units=1, activation='sigmoid'))

[32]: rnn.compile(optimizer='adam',
 loss='binary_crossentropy',
 metrics=['accuracy'])

[33]: rnn.summary()

Layer (type) Output Shape Param #
===
embedding_1 (Embedding) (None, 200, 128) 1280000

lstm_1 (LSTM) (None, 128) 131584

dense_1 (Dense) (None, 1) 129
===
Total params: 1,411,713
Trainable params: 1,411,713
Non-trainable params: 0

84. At the time of this writing, TensorFlow displayed a warning when we executed this statement. This
is a known TensorFlow issue and, according to the forums, you can safely ignore the warning.

[34]: rnn.fit(X_train, y_train, epochs=10, batch_size=32,
 validation_data=(X_test, y_test))
Train on 25000 samples, validate on 5000 samples
Epoch 1/5
25000/25000 [==============================] - 299s 12ms/step - loss:
0.6574 - acc: 0.5868 - val_loss: 0.5582 - val_acc: 0.6964

ptg27972259

15.10 Tuning Deep Learning Models 497

Finally, we can evaluate the results using the test data. Function evaluate returns the
loss and accuracy values. In this case, the model was 85.99% accurate:

Note that the accuracy of this model seems low compared to our MNIST convnet’s
results, but this is a much more difficult problem. If you search online for other IMDb
sentiment-analysis binary-classification studies, you’ll find lots of results in the high 80s.
So we did reasonably well with our small recurrent neural network of only three layers.
You might want to study some online models and try to produce a better model.

15.10 Tuning Deep Learning Models
In Section 15.9.5, notice in the fit method’s output that both the testing accuracy
(85.99%) and validation accuracy (87.04%) were significantly less than the 90.83% train-
ing accuracy. Such disparities are usually the result of overfitting, so there is plenty of room
for improvement in our model.85,86 If you look at the output of each epoch, you’ll notice
both the training and validation accuracy continue to increase. Recall that training for too
many epochs can lead to overfitting, but it’s possible we have not yet trained enough. Per-
haps one hyperparameter tuning option for this model would be to increase the number
of epochs.

Some variables that affect your models’ performance include:

• having more or less data to train with

• having more or less to test with

• having more or less to validate with

• having more or fewer layers

• the types of layers you use

• the order of the layers

Epoch 2/5
25000/25000 [==============================] - 298s 12ms/step - loss:
0.4577 - acc: 0.7786 - val_loss: 0.3546 - val_acc: 0.8448
Epoch 3/5
25000/25000 [==============================] - 296s 12ms/step - loss:
0.3277 - acc: 0.8594 - val_loss: 0.3207 - val_acc: 0.8614
Epoch 4/5
25000/25000 [==============================] - 307s 12ms/step - loss:
0.2675 - acc: 0.8864 - val_loss: 0.3056 - val_acc: 0.8700
Epoch 5/5
25000/25000 [==============================] - 310s 12ms/step - loss:
0.2217 - acc: 0.9083 - val_loss: 0.3264 - val_acc: 0.8704
[34]: <tensorflow.python.keras.callbacks.History object at 0xb3ba882e8>

[35]: results = rnn.evaluate(X_test, y_test)
20000/20000 [==============================] - 42s 2ms/step

[36]: results
[36]: [0.3415240607559681, 0.8599]

85. https://towardsdatascience.com/deep-learning-overfitting-846bf5b35e24.
86. https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfit-

ting-in-machine-learning-820b091dc42.

https://towardsdatascience.com/deep-learning-overfitting-846bf5b35e24
https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfit-ting-in-machine-learning-820b091dc42
https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfit-ting-in-machine-learning-820b091dc42

ptg27972259

498 Chapter 15 Deep Learning

In our IMDb RNN example, some things we could tune include:

• trying different amounts of the training data—we used only the top 10,000
words

• different numbers of words per review—we used only 200,

• different numbers of neurons in our layers,

• more layers or

• possibly loading pre-trained word vectors rather than having our Embedding
layer learn them from scratch.

The compute time required to train models multiple times is significant so, in deep
learning, you generally do not tune hyperparameters with techniques like k-fold cross-val-
idation or grid search.87 There are various tuning techniques,88,89,90,91 but one particu-
larly promising area is automated machine learning (AutoML). For example, the Auto-
Keras92 library is specifically geared to automatically choosing the best configurations for
your Keras models. Google’s Cloud AutoML and Baidu’s EZDL are among various other
automated machine learning efforts.

15.11 Convnet Models Pretrained on ImageNet
With deep learning, rather than starting fresh on every project with costly training, vali-
dating and testing, you can use pretrained deep neural network models to:

• make new predictions,

• continue training them further with new data or

• transfer the weights learned by a model for a similar problem into a new model—
this is called transfer learning.

Keras Pretrained Convnet Models
Keras comes bundled with the following pretrained convnet models,93 each pretrained on
ImageNet94—a growing dataset of 14+ million images:

• Xception

• VGG16

• VGG19

87. https://www.quora.com/Is-cross-validation-heavily-used-in-deep-learning-or-is-it-

too-expensive-to-be-used.
88. https://towardsdatascience.com/what-are-hyperparameters-and-how-to-tune-the-hy-

perparameters-in-a-deep-neural-network-d0604917584a.
89. https://medium.com/machine-learning-bites/deeplearning-series-deep-neural-net-

works-tuning-and-optimization-39250ff7786d.
90. https://flyyufelix.github.io/2016/10/03/fine-tuning-in-keras-part1.html and https://

flyyufelix.github.io/2016/10/08/fine-tuning-in-keras-part2.html.
91. https://towardsdatascience.com/a-comprehensive-guide-on-how-to-fine-tune-deep-

neural-networks-using-keras-on-google-colab-free-daaaa0aced8f.
92. https://autokeras.com/.
93. https://keras.io/applications/.
94. http://www.image-net.org.

https://www.quora.com/Is-cross-validation-heavily-used-in-deep-learning-or-is-it-too-expensive-to-be-used
https://www.quora.com/Is-cross-validation-heavily-used-in-deep-learning-or-is-it-too-expensive-to-be-used
https://towardsdatascience.com/what-are-hyperparameters-and-how-to-tune-the-hy-perparameters-in-a-deep-neural-network-d0604917584a
https://towardsdatascience.com/what-are-hyperparameters-and-how-to-tune-the-hy-perparameters-in-a-deep-neural-network-d0604917584a
https://medium.com/machine-learning-bites/deeplearning-series-deep-neural-net-works-tuning-and-optimization-39250ff7786d
https://medium.com/machine-learning-bites/deeplearning-series-deep-neural-net-works-tuning-and-optimization-39250ff7786d
https://flyyufelix.github.io/2016/10/03/fine-tuning-in-keras-part1.html
https://flyyufelix.github.io/2016/10/08/fine-tuning-in-keras-part2.html
https://flyyufelix.github.io/2016/10/08/fine-tuning-in-keras-part2.html
https://towardsdatascience.com/a-comprehensive-guide-on-how-to-fine-tune-deep-neural-networks-using-keras-on-google-colab-free-daaaa0aced8f
https://towardsdatascience.com/a-comprehensive-guide-on-how-to-fine-tune-deep-neural-networks-using-keras-on-google-colab-free-daaaa0aced8f
https://autokeras.com/
https://keras.io/applications/
http://www.image-net.org

ptg27972259

15.12 Wrap-Up 499

• ResNet50

• Inception v3

• Inception-ResNet v2

• MobileNet v1

• DenseNet

• NASNet

• MobileNet v2

Reusing Pretrained Models
ImageNet is too big for efficient training on most computers, so most people interested in
using it start with one of the smaller pretrained models.

You can reuse just the architecture of each model and train it with new data, or you
can reuse the pretrained weights. For a few simple examples, see:

https://keras.io/applications/

ImageNet Challenge
In the end-of-chapter projects, you’ll research and use some of these bundled models.
You’ll also investigate the ImageNet Large Scale Visual Recognition Challenge for evaluating
object-detection and image-recognition models.95 This competition ran from 2010
through 2017. ImageNet now has a continuously running challenge on the Kaggle com-
petition site called the ImageNet Object Localization Challenge.96 The goal is to identify “all
objects within an image, so those images can then be classified and annotated.” ImageNet
releases the current participants leaderboard once per quarter.

A lot of what you’ve seen in the machine learning and deep learning chapters is what
the Kaggle competition website is all about. There’s no obvious optimal solution for many
machine learning and deep learning tasks. People’s creativity is really the only limit. On
Kaggle, companies and organizations fund competitions where they encourage people
worldwide to develop better-performing solutions than they’ve been able to do for some-
thing that’s important to their business or organization. Sometimes companies offer prize
money, which has been as high as $1,000,000 on the famous Netflix competition. Netflix
wanted to get a 10% or better improvement in their model for determining whether peo-
ple will like a movie, based on how they rated previous ones.97 They used the results to
help make better recommendations to members. Even if you do not win a Kaggle compe-
tition, it’s a great way to get experience working on problems of current interest.

15.12 Wrap-Up
In Chapter 16, you peered into the future of AI. Deep Learning has captured the imagi-
nation of the computer-science and data science-communities. This may be the most
important AI chapter in the book.

95. http://www.image-net.org/challenges/LSVRC/.
96. https://www.kaggle.com/c/imagenet-object-localization-challenge.
97. https://netflixprize.com/rules.html.

https://keras.io/applications/
http://www.image-net.org/challenges/LSVRC/
https://www.kaggle.com/c/imagenet-object-localization-challenge
https://netflixprize.com/rules.html

ptg27972259

500 Chapter 15 Deep Learning

We mentioned the key deep-learning platforms, indicating that Google’s TensorFlow
is the most widely used. We discussed why Keras, which presents a friendly interface to
TensorFlow, has become so popular.

We set up a custom Anaconda environment for TensorFlow, Keras and JupyterLab,
then used the environment to implement the Keras examples.

We explained what tensors are and why they’re crucial to deep learning. We discussed
the basics of neurons and multi-layered neural networks for building Keras deep-learning
models. We considered some popular types of layers and how to order them.

We introduced convolutional neural networks (convnets) and indicated that they’re
especially appropriate for computer-vision applications. We then built, trained, validated
and tested a convnet using the MNIST database of handwritten digits for which we
achieved 99.17% prediction accuracy. This is remarkable, given that we achieved it by
working with a only a basic model and without doing any hyperparameter tuning. You
can try more sophisticated models and tune the hyperparameters to try to achieve better
performance. We listed a variety of intriguing computer vision tasks.

We introduced TensorBoard for visualizing TensorFlow and Keras neural network
training and validation. We also discussed ConvnetJS, a browser-based convnet training
and visualization tool, which enables you to peek inside the training process.

Next, we presented recurrent neural networks (RNNs) for processing sequences of
data, such as time series or text in sentences. We used an RNN with the IMDb movie
reviews dataset to perform binary classification, predicting whether each review’s senti-
ment was positive or negative. We also discussed tuning deep learning models and how
high-performance hardware, like NVIDIA’s GPUs and Google’s TPUs, is making it pos-
sible for more people to tackle more substantial deep-learning studies.

Given how costly and time-consuming it is to train deep-learning models, we
explained the strategy of using pretrained models. We listed various Keras convnet image-
processing models that were trained on the massive ImageNet dataset, and discussed how
transfer learning enables you to use these models to create new ones quickly and effec-
tively. Deep learning is a large, complex topic. We focused on the basics in the chapter.

In the next chapter, we present the big data infrastructure that supports the kinds of
AI technologies we’ve discussed in Chapters 12 through 15. We’ll consider the Hadoop
and Spark platforms for big data batch processing and real-time streaming applications.
We’ll look at relational databases and the SQL language for querying them—these have
dominated the database field for many decades. We’ll discuss how big data presents chal-
lenges that relational databases don’t handle well, and consider how NoSQL databases are
designed to handle those challenges. We’ll conclude the book with a discussion of the
Internet of Things (IoT), which will surely be the world’s largest big-data source and will
present many opportunities for entrepreneurs to develop leading-edge businesses that will
truly make a difference in people’s lives.

ptg27972259

16
Big Data: Hadoop, Spark,

NoSQL and IoT

O b j e c t i v e s
In this chapter you’ll:
■ Understand what big data is and how quickly it’s getting

bigger.
■ Manipulate a SQLite relational database using Structured

Query Language (SQL).
■ Understand the four major types of NoSQL databases.
■ Store tweets in a MongoDB NoSQL JSON document database

and visualize them on a Folium map.
■ Understand Apache Hadoop and how it’s used in big-data

batch-processing applications.
■ Build a Hadoop MapReduce application on Microsoft’s Azure

HDInsight cloud service.
■ Understand Apache Spark and how it’s used in high-

performance, real-time big-data applications.
■ Use Spark streaming to process data in mini-batches.
■ Understand the Internet of Things (IoT) and the publish/

subscribe model.
■ Publish messages from a simulated Internet-connected device

and visualize its messages in a dashboard.
■ Subscribe to PubNub’s live Twitter and IoT streams and

visualize the data.

ptg27972259

502 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT
O

u
tl

in
e

16.1 Introduction
In Section 1.7, we introduced big data. In this capstone chapter, we discuss popular hard-
ware and software infrastructure for working with big data, and we develop complete
applications on several desktop and cloud-based big-data platforms.

Databases
Databases are critical big-data infrastructure for storing and manipulating the massive
amounts of data we’re creating. They’re also critical for securely and confidentially main-
taining that data, especially in the context of ever-stricter privacy laws such as HIPAA
(Health Insurance Portability and Accountability Act) in the United States and GDPR
(General Data Protection Regulation) for the European Union.

First, we’ll present relational databases, which store structured data in tables with a
fixed-size number of columns per row. You’ll manipulate relational databases via Struc-
tured Query Language (SQL).

Most data produced today is unstructured data, like the content of Facebook posts
and Twitter tweets, or semi-structured data like JSON and XML documents. Twitter
processes each tweet’s contents into a semi-structured JSON document with lots of meta-
data, as you saw in the “Data Mining Twitter” chapter. Relational databases are not geared
to the unstructured and semi-structured data in big-data applications. So, as big data

16.1 Introduction
16.2 Relational Databases and Structured

Query Language (SQL)
16.3.1 A books Database
16.3.2 SELECT Queries
16.3.3 WHERE Clause
16.3.4 ORDER BY Clause
16.3.5 Merging Data from Multiple Tables:

INNER JOIN
16.3.6 INSERT INTO Statement
16.3.7 UPDATE Statement
16.3.8 DELETE FROM Statement

16.3 NoSQL and NewSQL Big-Data
Databases: A Brief Tour

16.3.1 NoSQL Key–Value Databases
16.3.2 NoSQL Document Databases
16.3.3 NoSQL Columnar Databases
16.3.4 NoSQL Graph Databases
16.3.5 NewSQL Databases

16.4 Case Study: A MongoDB JSON
Document Database

16.4.1 Creating the MongoDB Atlas Cluster
16.4.2 Streaming Tweets into MongoDB

16.5 Hadoop
16.5.1 Hadoop Overview
16.6.2 Summarizing Word Lengths in Romeo

and Juliet via MapReduce
16.5.3 Creating an Apache Hadoop Cluster

in Microsoft Azure HDInsight

16.5.4 Hadoop Streaming
16.5.5 Implementing the Mapper
16.5.6 Implementing the Reducer
16.5.7 Preparing to Run the MapReduce

Example
16.5.8 Running the MapReduce Job

16.6 Spark
16.6.1 Spark Overview
16.6.2 Docker and the Jupyter Docker Stacks
16.6.3 Word Count with Spark
16.6.4 Spark Word Count on Microsoft

Azure
16.7 Spark Streaming: Counting Twitter

Hashtags Using the pyspark-
notebook Docker Stack

16.7.1 Streaming Tweets to a Socket
16.7.2 Summarizing Tweet Hashtags;

Introducing Spark SQL
16.8 Internet of Things and Dashboards

16.8.1 Publish and Subscribe
16.8.2 Visualizing a PubNub Sample Live

Stream with a Freeboard Dashboard
16.8.3 Simulating an Internet-Connected

Thermostat in Python
16.8.4 Creating the Dashboard with

Freeboard.io
16.8.5 Creating a Python PubNub Subscriber

16.9 Wrap-Up

http://Freeboard.io

ptg27972259

16.1 Introduction 503

evolved, new kinds of databases were created to handle such data efficiently. We’ll discuss
the four major types of these NoSQL databases—key–value, document, columnar and
graph databases. Also, we’ll overview NewSQL databases, which blend the benefits of rela-
tional and NoSQL databases. Many NoSQL and NewSQL vendors make it easy to get
started with their products through free tiers and free trials, and typically in cloud-based
environments that require minimal installation and setup. This makes it practical for you
to gain big-data experience before “diving in.”

Apache Hadoop
Much of today’s data is so large that it cannot fit on one system. As big data grew, we
needed distributed data storage and parallel processing capabilities to process the data
more efficiently. This led to complex technologies like Apache Hadoop for distributed
data processing with massive parallelism among clusters of computers where the intricate
details are handled for you automatically and correctly. We’ll discuss Hadoop, its archi-
tecture and how it’s used in big-data applications. We’ll guide you through configuring a
multi-node Hadoop cluster using the Microsoft Azure HDInsight cloud service, then use
it to execute a Hadoop MapReduce job that you’ll implement in Python. Though HDIn-
sight is not free, Microsoft gives you a generous new-account credit that should enable you
to run the chapter’s code examples without incurring additional charges.

Apache Spark
As big-data processing needs grow, the information-technology community is continually
looking for ways to increase performance. Hadoop executes tasks by breaking them into
pieces that do lots of disk I/O across many computers. Spark was developed as a way to
perform certain big-data tasks in memory for better performance.

We’ll discuss Apache Spark, its architecture and how it’s used in high-performance,
real-time big-data applications. You’ll implement a Spark application using functional-
style filter/map/reduce programming capabilities. First, you’ll build this example using a
Jupyter Docker stack that runs locally on your desktop computer, then you’ll implement
it using a cloud-based Microsoft Azure HDInsight multi-node Spark cluster.

We’ll introduce Spark streaming for processing streaming data in mini-batches. Spark
streaming gathers data for a short time interval you specify, then gives you that batch of
data to process. You’ll implement a Spark streaming application that processes tweets. In
that example, you’ll use Spark SQL to query data stored in a Spark DataFrame which,
unlike pandas DataFrames, may contain data distributed over many computers in a cluster.

Internet of Things
We’ll conclude with an introduction to the Internet of Things (IoT)—billions of devices
that are continuously producing data worldwide. We’ll introduce the publish/subscribe
model that IoT and other types of applications use to connect data users with data provid-
ers. First, without writing any code, you’ll build a web-based dashboard using Free-
board.io and a sample live stream from the PubNub messaging service. Next, you’ll
simulate an Internet-connected thermostat which publishes messages to the free Dweet.io
messaging service using the Python module Dweepy, then create a dashboard visualization
of the data with Freeboard.io. Finally, you’ll build a Python client that subscribes to a sam-
ple live stream from the PubNub service and dynamically visualizes the stream with Sea-
born and a Matplotlib FuncAnimation.

http://Free-board.io
http://Free-board.io
http://Dweet.io
http://Freeboard.io

ptg27972259

504 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

Experience Cloud and Desktop Big-Data Software
Cloud vendors focus on service-oriented architecture (SOA) technology in which they
provide “as-a-Service” capabilities that applications connect to and use in the cloud. Com-
mon services provided by cloud vendors include:1

You’ll get hands-on experience in this chapter with several cloud-based tools. In this
chapter’s examples, you’ll use the following platforms:

• A free MongoDB Atlas cloud-based cluster.

• A multi-node Hadoop cluster running on Microsoft’s Azure HDInsight cloud-
based service—for this you’ll use the credit that comes with a new Azure account.

• A free single-node Spark “cluster” running on your desktop computer, using a
Jupyter Docker-stack container.

• A multi-node Spark cluster, also running on Microsoft’s Azure HDInsight—for
this you’ll continue using your Azure new-account credit.

There are many other options, including cloud-based services from Amazon Web Ser-
vices, Google Cloud and IBM Watson, and the free desktop versions of the Hortonworks
and Cloudera platforms (there also are cloud-based paid versions of these). You also could
try a single-node Spark cluster running on the free cloud-based Databricks Community
Edition. Spark’s creators founded Databricks.

Always check the latest terms and conditions of each service you use. Some require
you to enable credit-card billing to use their clusters. Caution: Once you allocate Mic-
rosoft Azure HDInsight clusters (or other vendors’ clusters), they incur costs. When you
complete the case studies using services such as Microsoft Azure, be sure to delete your
cluster(s) and their other resources (like storage). This will help extend the life of your
Azure new-account credit.

Installation and setups vary across platforms and over time. Always follow each ven-
dor’s latest steps. If you have questions, the best sources for help are the vendor’s support
capabilities and forums. Also, check sites such as stackoverflow.com—other people may
have asked questions about similar problems and received answers from the developer
community.

Algorithms and Data
Algorithms and data are the core of Python programming. The first few chapters of this
book were mostly about algorithms. We introduced control statements and discussed algo-
rithm development. Data was small—primarily individual integers, floats and strings.

“As-a-Service” acronyms (note that several are the same)

Big data as a Service (BDaaS)
Hadoop as a Service (HaaS)
Hardware as a Service (HaaS)
Infrastructure as a Service (IaaS)

Platform as a Service (PaaS)
Software as a Service (SaaS)
Storage as a Service (SaaS)
Spark as a Service (SaaS)

1. For more “as-a-Service” acronyms, see https://en.wikipedia.org/wiki/Cloud_computing and
https://en.wikipedia.org/wiki/As_a_service.

http://stackoverflow.com
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/As_a_service

ptg27972259

16.1 Introduction 505

Chapters 5–9 emphasized structuring data into lists, tuples, dictionaries, sets, arrays and
files.

Data’s Meaning
But, what about the meaning of the data? Can we use the data to gain insights to better
diagnose cancers? Save lives? Improve patients’ quality of life? Reduce pollution? Conserve
water? Increase crop yields? Reduce damage from devastating storms and fires? Develop
better treatment regimens? Create jobs? Improve company profitability?

The data-science case studies of Chapters 11–15 all focused on AI. In this chapter, we
focus on the big-data infrastructure that supports AI solutions. As the data used with these
technologies continues growing exponentially, we want to learn from that data and do so
at blazing speed. We’ll accomplish these goals with a combination of sophisticated algo-
rithms, hardware, software and networking designs. We’ve presented various machine-
learning technologies, seeing that there are indeed great insights to be mined from data.
With more data, and especially with big data, machine learning can be even more effective.

Big-Data Sources
The following articles and sites provide links to hundreds of free big data sources:

Big-data sources

“Awesome-Public-Datasets,” GitHub.com,
https://github.com/caesar0301/awesome-public-datasets.

“AWS Public Datasets,” https://aws.amazon.com/public-datasets/.

“Big Data And AI: 30 Amazing (And Free) Public Data Sources For 2018,” by B. Marr,
https://www.forbes.com/sites/bernardmarr/2018/02/26/big-data-and-ai-30-amazing-and-

free-public-data-sources-for-2018/.

“Datasets for Data Mining and Data Science,” http://www.kdnuggets.com/datasets/index.html.

“Exploring Open Data Sets,” https://datascience.berkeley.edu/open-data-sets/.

“Free Big Data Sources,” Datamics, http://datamics.com/free-big-data-sources/.

Hadoop Illuminated, Chapter 16. Publicly Available Big Data Sets,
http://hadoopilluminated.com/hadoop_illuminated/Public_Bigdata_Sets.html.

“List of Public Data Sources Fit for Machine Learning,”
https://blog.bigml.com/list-of-public-data-sources-fit-for-machine-learning/.

“Open Data,” Wikipedia, https://en.wikipedia.org/wiki/Open_data.

“Open Data 500 Companies,” http://www.opendata500.com/us/list/.

“Other Interesting Resources/Big Data and Analytics Educational Resources and Research,” B.
Marr, http://computing.derby.ac.uk/bigdatares/?page_id=223.

“6 Amazing Sources of Practice Data Sets,”
https://www.jigsawacademy.com/6-amazing-sources-of-practice-data-sets/.

“20 Big Data Repositories You Should Check Out,” M. Krivanek,
http://www.datasciencecentral.com/profiles/blogs/20-free-big-data-sources-everyone-

should-check-out.

“70+ Websites to Get Large Data Repositories for Free,”
http://bigdata-madesimple.com/70-websites-to-get-large-data-repositories-for-free/.

http://GitHub.com
https://github.com/caesar0301/awesome-public-datasets
https://aws.amazon.com/public-datasets/
https://www.forbes.com/sites/bernardmarr/2018/02/26/big-data-and-ai-30-amazing-and-free-public-data-sources-for-2018/
https://www.forbes.com/sites/bernardmarr/2018/02/26/big-data-and-ai-30-amazing-and-free-public-data-sources-for-2018/
http://www.kdnuggets.com/datasets/index.html
https://datascience.berkeley.edu/open-data-sets/
http://datamics.com/free-big-data-sources/
http://hadoopilluminated.com/hadoop_illuminated/Public_Bigdata_Sets.html
https://blog.bigml.com/list-of-public-data-sources-fit-for-machine-learning/
https://en.wikipedia.org/wiki/Open_data
http://www.opendata500.com/us/list/
http://computing.derby.ac.uk/bigdatares/?page_id=223
https://www.jigsawacademy.com/6-amazing-sources-of-practice-data-sets/
http://www.datasciencecentral.com/profiles/blogs/20-free-big-data-sources-everyone-should-check-out
http://www.datasciencecentral.com/profiles/blogs/20-free-big-data-sources-everyone-should-check-out
http://bigdata-madesimple.com/70-websites-to-get-large-data-repositories-for-free/

ptg27972259

506 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

16.2 Relational Databases and Structured Query
Language (SQL)
Databases are crucial, especially for big data. In Chapter 9, we demonstrated sequential
text-file processing, working with data from CSV files and working with JSON. Both are
useful when most or all of a file’s data is to be processed. On the other hand, in transaction
processing we need to locate and, possibly, update an individual data item quickly.

A database is an integrated collection of data. A database management system
(DBMS) provides mechanisms for storing and organizing data in a manner consistent
with the database’s format. Database management systems allow for convenient access and
storage of data without concern for the internal representation of databases.

Relational database management systems (RDBMSs) store data in tables and define
relationships among the tables. Structured Query Language (SQL) is used almost univer-
sally with relational database systems to manipulate data and perform queries, which
request information that satisfies given criteria.2

Popular open-source RDBMSs include SQLite, PostgreSQL, MariaDB and MySQL.
These can be downloaded and used freely by anyone. All have support for Python. We’ll
use SQLite, which is bundled with Python. Some popular proprietary RDBMSs include
Microsoft SQL Server, Oracle, Sybase and IBM Db2.

Tables, Rows and Columns
A relational database is a logical table-based representation of data that allows the data to
be accessed without consideration of its physical structure. The following diagram shows
a sample Employee table that might be used in a personnel system:

“Ten Sources of Free Big Data on Internet,” A. Brown,
https://www.linkedin.com/pulse/ten-sources-free-big-data-internet-alan-brown.

“Top 20 Open Data Sources,”
https://www.linkedin.com/pulse/top-20-open-data-sources-zygimantas-jacikevicius.

“We’re Setting Data, Code and APIs Free,” NASA, https://open.nasa.gov/open-data/.

“Where Can I Find Large Datasets Open to the Public?” Quora,
https://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public.

2. The writing in this chapter assumes that SQL is pronounced as “see-quel.” Some prefer “ess que el.”

Big-data sources

23603

24568

34589

35761

47132

78321

Jones

Kerwin

Larson

Myers

Neumann

Stephens

Number

Primary key

Row

Column

Name

413

413

642

611

413

611

Department

1100

2000

1800

1400

9000

8500

Salary

New Jersey

New Jersey

Los Angeles

Orlando

New Jersey

Orlando

Location

https://www.linkedin.com/pulse/ten-sources-free-big-data-internet-alan-brown
https://www.linkedin.com/pulse/top-20-open-data-sources-zygimantas-jacikevicius
https://open.nasa.gov/open-data/
https://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public

ptg27972259

16.2 Relational Databases and Structured Query Language (SQL) 507

The table’s primary purpose is to store employees’ attributes. Tables are composed of
rows, each describing a single entity. Here, each row represents one employee. Rows are
composed of columns containing individual attribute values. The table above has six rows.
The Number column represents the primary key—a column (or group of columns) with a
value that’s unique for each row. This guarantees that each row can be identified by its pri-
mary key. Examples of primary keys are Social Security numbers, employee ID numbers
and part numbers in an inventory system—values in each of these are guaranteed to be
unique. In this case, the rows are listed in ascending order by primary key, but they could
be listed in descending order or no particular order at all.

Each column represents a different data attribute. Rows are unique (by primary key)
within a table, but particular column values may be duplicated between rows. For exam-
ple, three different rows in the Employee table’s Department column contain number 413.

Selecting Data Subsets
Different database users are often interested in different data and different relationships
among the data. Most users require only subsets of the rows and columns. Queries specify
which subsets of the data to select from a table. You use Structured Query Language (SQL)
to define queries. For example, you might select data from the Employee table to create a
result that shows where each department is located, presenting the data sorted in increas-
ing order by department number. This result is shown below. We’ll discuss SQL shortly.

SQLite
The code examples in the rest of Section 16.2 use the open-source SQLite database man-
agement system that’s included with Python, but most popular database systems have
Python support. Each typically provides a module that adheres to Python’s Database
Application Programming Interface (DB-API), which specifies common object and
method names for manipulating any database.

16.2.1 A books Database
In this section, we’ll present a books database containing information about several of our
books. We’ll set up the database in SQLite via the Python Standard Library’s sqlite3
module, using a script provided in the ch16 example’s folder’s sql subfolder. Then, we’ll
introduce the database’s tables. We’ll use this database in an IPython session to introduce
various database concepts, including operations that create, read, update and delete
data—the so-called CRUD operations. As we introduce the tables, we’ll use SQL and pan-
das DataFrames to show you each table’s contents. Then, in the next several sections, we’ll
discuss additional SQL features.

Creating the books Database
In your Anaconda Command Prompt, Terminal or shell, change to the ch16 examples
folder’s sql subfolder. The following sqlite3 command creates a SQLite database named

413
611
642

New Jersey
Orlando
Los Angeles

Department Location

ptg27972259

508 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

books.db and executes the books.sql SQL script, which defines how to create the data-
base’s tables and populates them with data:

sqlite3 books.db < books.sql

The notation < indicates that books.sql is input into the sqlite3 command. When the
command completes, the database is ready for use. Begin a new IPython session.

Connecting to the Database in Python
To work with the database in Python, first call sqlite3’s connect function to connect to
the database and obtain a Connection object:

authors Table
The database has three tables—authors, author_ISBN and titles. The authors table
stores all the authors and has three columns:

• id—The author’s unique ID number. This integer column is defined as autoincre-
mented—for each row inserted in the table, SQLite increases the id value by 1 to
ensure that each row has a unique value. This column is the table’s primary key.

• first—The author’s first name (a string).

• last—The author’s last name (a string).

Viewing the authors Table’s Contents
Let’s use a SQL query and pandas to view the authors table’s contents:

Pandas function read_sql executes a SQL query and returns a DataFrame containing
the query’s results. The function’s arguments are:

• a string representing the SQL query to execute,

• the SQLite database’s Connection object, and in this case

• an index_col keyword argument indicating which column should be used as the
DataFrame’s row indices (the author’s id values in this case).

As you’ll see momentarily, when index_col is not passed, index values starting from 0
appear to the left of the DataFrame’s rows.

In [1]: import sqlite3

In [2]: connection = sqlite3.connect('books.db')

In [3]: import pandas as pd

In [4]: pd.options.display.max_columns = 10

In [5]: pd.read_sql('SELECT * FROM authors', connection,
 ...: index_col=['id'])
 ...:
Out[5]:
 first last
id
1 Paul Deitel
2 Harvey Deitel
3 Abbey Deitel
4 Dan Quirk
5 Alexander Wald

ptg27972259

16.2 Relational Databases and Structured Query Language (SQL) 509

A SQL SELECT query gets rows and columns from one or more tables in a database.
In the query:

SELECT * FROM authors

the asterisk (*) is a wildcard indicating that the query should get all the columns from the
authors table. We’ll discuss SELECT queries in more detail shortly.

titles Table
The titles table stores all the books and has four columns:

• isbn—The book’s ISBN (a string) is this table’s primary key. ISBN is an abbre-
viation for “International Standard Book Number,” which is a numbering
scheme that publishers use to give every book a unique identification number.

• title—The book’s title (a string).

• edition—The book’s edition number (an integer).

• copyright—The book’s copyright year (a string).

Let’s use SQL and pandas to view the titles table’s contents:

author_ISBN Table
The author_ISBN table uses the following columns to associate authors from the authors
table with their books in the titles table:

• id—An author’s id (an integer).

• isbn—The book’s ISBN (a string).

The id column is a foreign key, which is a column in this table that matches a primary-
key column in another table—in particular, the authors table’s id column. The isbn col-
umn also is a foreign key—it matches the titles table’s isbn primary-key column. A
database might have many tables. A goal when designing a database is to minimize data
duplication among the tables. To do this, each table represents a specific entity, and foreign
keys help link the data in multiple tables. The primary keys and foreign keys are designated
when you create the database tables (in our case, in the books.sql script).

Together the id and isbn columns in this table form a composite primary key. Every
row in this table uniquely matches one author to one book’s ISBN. This table contains
many entries, so let’s use SQL and pandas to view just the first five rows:

In [6]: pd.read_sql('SELECT * FROM titles', connection)
Out[6]:
 isbn title edition copyright
0 0135404673 Intro to Python for CS and DS 1 2020
1 0132151006 Internet & WWW How to Program 5 2012
2 0134743350 Java How to Program 11 2018
3 0133976890 C How to Program 8 2016
4 0133406954 Visual Basic 2012 How to Program 6 2014
5 0134601548 Visual C# How to Program 6 2017
6 0136151574 Visual C++ How to Program 2 2008
7 0134448235 C++ How to Program 10 2017
8 0134444302 Android How to Program 3 2017
9 0134289366 Android 6 for Programmers 3 2016

ptg27972259

510 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

Every foreign-key value must appear as the primary-key value in a row of another table
so the DBMS can ensure that the foreign-key value is valid. This is known as the Rule of
Referential Integrity. For example, the DBMS ensures that the id value for a particular
author_ISBN row is valid by checking that there is a row in the authors table with that id
as the primary key.

Foreign keys also allow related data in multiple tables to be selected from those tables
and combined—this is known as joining the data. There is a one-to-many relationship
between a primary key and a corresponding foreign key—one author can write many
books, and similarly one book can be written by many authors. So a foreign key can appear
many times in its table but only once (as the primary key) in another table. For example,
in the books database, the ISBN 0134289366 appears in several author_ISBN rows because
this book has several authors, but it appears only once as a primary key in titles.

Entity-Relationship (ER) Diagram
The following entity-relationship (ER) diagram for the books database shows the data-
base’s tables and the relationships among them:

The first compartment in each box contains the table’s name, and the remaining compart-
ments contain the table’s columns. The names in italic are primary keys. A table’s primary
key uniquely identifies each row in the table. Every row must have a primary-key value, and
that value must be unique in the table. This is known as the Rule of Entity Integrity.
Again, for the author_ISBN table, the primary key is the combination of both columns—
this is known as a composite primary key.

The lines connecting the tables represent the relationships among the tables. Consider
the line between authors and author_ISBN. On the authors end there’s a 1, and on the
author_ISBN end there’s an infinity symbol (∞) . This indicates a one-to-many relationship.
For each author in the authors table, there can be an arbitrary number of ISBNs for books
written by that author in the author_ISBN table—that is, an author can write any number
of books, so an author’s id can appear in multiple rows of the author_ISBN table. The rela-
tionship line links the id column in the authors table (where id is the primary key) to the
id column in the author_ISBN table (where id is a foreign key). The line between the
tables links the primary key to the matching foreign key.

In [7]: df = pd.read_sql('SELECT * FROM author_ISBN', connection)

In [8]: df.head()
Out[8]:
 id isbn
0 1 0134289366
1 2 0134289366
2 5 0134289366
3 1 0135404673
4 2 0135404673

1 1
titles

copyright

edition

title

isbn

author_ISBN

isbn

id

authors

last

first

id

ptg27972259

16.2 Relational Databases and Structured Query Language (SQL) 511

The line between the titles and author_ISBN tables illustrates a one-to-many rela-
tionship—one book can be written by many authors. The line links the primary key isbn
in table titles to the corresponding foreign key in table author_ISBN. The relationships
in the entity-relationship diagram illustrate that the sole purpose of the author_ISBN table
is to provide a many-to-many relationship between the authors and titles tables—an
author can write many books, and a book can have many authors.

SQL Keywords
The following subsections continue our SQL presentation in the context of our books
database, demonstrating SQL queries and statements using the SQL keywords in the fol-
lowing table. Other SQL keywords are beyond this text’s scope:

16.2.2 SELECT Queries
The previous section used SELECT statements and the * wildcard character to get all the
columns from a table. Typically, you need only a subset of the columns, especially in big
data where you could have dozens, hundreds, thousands or more columns. To retrieve
only specific columns, specify a comma-separated list of column names. For example, let’s
retrieve only the columns first and last from the authors table:

16.2.3 WHERE Clause
You’ll often select rows in a database that satisfy certain selection criteria, especially in big
data where a database might contain millions or billions of rows. Only rows that satisfy
the selection criteria (formally called predicates) are selected. SQL’s WHERE clause specifies
a query’s selection criteria. Let’s select the title, edition and copyright for all books

SQL keyword Description

SELECT Retrieves data from one or more tables.

FROM Tables involved in the query. Required in every SELECT.

WHERE Criteria for selection that determine the rows to be retrieved, deleted or
updated. Optional in a SQL statement.

GROUP BY Criteria for grouping rows. Optional in a SELECT query.

ORDER BY Criteria for ordering rows. Optional in a SELECT query.

INNER JOIN Merge rows from multiple tables.

INSERT Insert rows into a specified table.

UPDATE Update rows in a specified table.

DELETE Delete rows from a specified table.

In [9]: pd.read_sql('SELECT first, last FROM authors', connection)
Out[9]:
 first last
0 Paul Deitel
1 Harvey Deitel
2 Abbey Deitel
3 Dan Quirk
4 Alexander Wald

ptg27972259

512 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

with copyright years greater than 2016. String values in SQL queries are delimited by sin-
gle (') quotes, as in '2016':

Pattern Matching: Zero or More Characters
The WHERE clause may can contain the operators <, >, <=, >=, =, <> (not equal) and LIKE.
Operator LIKE is used for pattern matching—searching for strings that match a given pat-
tern. A pattern that contains the percent (%) wildcard character searches for strings that
have zero or more characters at the percent character’s position in the pattern. For example,
let’s locate all authors whose last name starts with the letter D:

Pattern Matching: Any Character
An underscore (_) in the pattern string indicates a single wildcard character at that posi-
tion. Let’s select the rows of all the authors whose last names start with any character, fol-
lowed by the letter b, followed by any number of additional characters (specified by %):

16.2.4 ORDER BY Clause
The ORDER BY clause sorts a query’s results into ascending order (lowest to highest) or
descending order (highest to lowest), specified with ASC and DESC, respectively. The
default sorting order is ascending, so ASC is optional. Let’s sort the titles in ascending order:

In [10]: pd.read_sql("""SELECT title, edition, copyright
 ...: FROM titles
 ...: WHERE copyright > '2016'""", connection)
Out[10]:
 title edition copyright
0 Intro to Python for CS and DS 1 2020
1 Java How to Program 11 2018
2 Visual C# How to Program 6 2017
3 C++ How to Program 10 2017
4 Android How to Program 3 2017

In [11]: pd.read_sql("""SELECT id, first, last
 ...: FROM authors
 ...: WHERE last LIKE 'D%'""",
 ...: connection, index_col=['id'])
 ...:
Out[11]:
 first last
id
1 Paul Deitel
2 Harvey Deitel
3 Abbey Deitel

In [12]: pd.read_sql("""SELECT id, first, last
 ...: FROM authors
 ...: WHERE first LIKE '_b%'""",
 ...: connection, index_col=['id'])
 ...:
Out[12]:
 first last
id
3 Abbey Deitel

ptg27972259

16.2 Relational Databases and Structured Query Language (SQL) 513

Sorting By Multiple Columns
To sort by multiple columns, specify a comma-separated list of column names after the
ORDER BY keywords. Let’s sort the authors’ names by last name, then by first name for any
authors who have the same last name:

The sorting order can vary by column. Let’s sort the authors in descending order by
last name and ascending order by first name for any authors who have the same last name:

Combining the WHERE and ORDER BY Clauses
The WHERE and ORDER BY clauses can be combined in one query. Let’s get the isbn, title,
edition and copyright of each book in the titles table that has a title ending with
'How to Program' and sort them in ascending order by title.

In [13]: pd.read_sql('SELECT title FROM titles ORDER BY title ASC',
 ...: connection)
Out[13]:
 title
0 Android 6 for Programmers
1 Android How to Program
2 C How to Program
3 C++ How to Program
4 Internet & WWW How to Program
5 Intro to Python for CS and DS
6 Java How to Program
7 Visual Basic 2012 How to Program
8 Visual C# How to Program
9 Visual C++ How to Program

In [14]: pd.read_sql("""SELECT id, first, last
 ...: FROM authors
 ...: ORDER BY last, first""",
 ...: connection, index_col=['id'])
 ...:
Out[14]:
 first last
id
3 Abbey Deitel
2 Harvey Deitel
1 Paul Deitel
4 Dan Quirk
5 Alexander Wald

In [15]: pd.read_sql("""SELECT id, first, last
 ...: FROM authors
 ...: ORDER BY last DESC, first ASC""",
 ...: connection, index_col=['id'])
 ...:
Out[15]:
 first last
id
5 Alexander Wald
4 Dan Quirk
3 Abbey Deitel
2 Harvey Deitel
1 Paul Deitel

ptg27972259

514 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

16.2.5 Merging Data from Multiple Tables: INNER JOIN
Recall that the books database’s author_ISBN table links authors to their corresponding
titles. If we did not separate this information into individual tables, we’d need to include
author information with each entry in the titles table. This would result in storing dupli-
cate author information for authors who wrote multiple books.

You can merge data from multiple tables, referred to as joining the tables, with INNER
JOIN. Let’s produce a list of authors accompanied by the ISBNs for books written by each
author—because there are many results for this query, we show just the head of the result:

The INNER JOIN’s ON clause uses a primary-key column in one table and a foreign-key
column in the other to determine which rows to merge from each table. This query merges
the authors table’s first and last columns with the author_ISBN table’s isbn column
and sorts the results in ascending order by last then first.

Note the syntax authors.id (table_name.column_name) in the ON clause. This qual-
ified name syntax is required if the columns have the same name in both tables. This syn-
tax can be used in any SQL statement to distinguish columns in different tables that have
the same name. In some systems, table names qualified with the database name can be used
to perform cross-database queries. As always, the query can contain an ORDER BY clause.

16.2.6 INSERT INTO Statement
To this point, you’ve queried existing data. Sometimes you’ll execute SQL statements that
modify the database. To do so, you’ll use a sqlite3 Cursor object, which you obtain by
calling the Connection’s cursor method:

In [16]: pd.read_sql("""SELECT isbn, title, edition, copyright
 ...: FROM titles
 ...: WHERE title LIKE '%How to Program'
 ...: ORDER BY title""", connection)
Out[16]:
 isbn title edition copyright
0 0134444302 Android How to Program 3 2017
1 0133976890 C How to Program 8 2016
2 0134448235 C++ How to Program 10 2017
3 0132151006 Internet & WWW How to Program 5 2012
4 0134743350 Java How to Program 11 2018
5 0133406954 Visual Basic 2012 How to Program 6 2014
6 0134601548 Visual C# How to Program 6 2017
7 0136151574 Visual C++ How to Program 2 2008

In [17]: pd.read_sql("""SELECT first, last, isbn
 ...: FROM authors
 ...: INNER JOIN author_ISBN
 ...: ON authors.id = author_ISBN.id
 ...: ORDER BY last, first""", connection).head()
Out[17]:
 first last isbn
0 Abbey Deitel 0132151006
1 Abbey Deitel 0133406954
2 Harvey Deitel 0134289366
3 Harvey Deitel 0135404673
4 Harvey Deitel 0132151006

ptg27972259

16.2 Relational Databases and Structured Query Language (SQL) 515

The pandas method read_sql actually uses a Cursor behind the scenes to execute queries
and access the rows of the results.

The INSERT INTO statement inserts a row into a table. Let’s insert a new author named
Sue Red into the authors table by calling Cursor method execute, which executes its SQL
argument and returns the Cursor:

The SQL keywords INSERT INTO are followed by the table in which to insert the new row
and a comma-separated list of column names in parentheses. The list of column names is
followed by the SQL keyword VALUES and a comma-separated list of values in parentheses.
The values provided must match the column names specified both in order and type.

We do not specify a value for the id column because it’s an autoincremented column
in the authors table—this was specified in the script books.sql that created the table. For
every new row, SQLite assigns a unique id value that is the next value in the autoincre-
mented sequence (i.e., 1, 2, 3 and so on). In this case, Sue Red is assigned id number 6.
To confirm this, let’s query the authors table’s contents:

Note Regarding Strings That Contain Single Quotes
SQL delimits strings with single quotes ('). A string containing a single quote, such as
O’Malley, must have two single quotes in the position where the single quote appears (e.g.,
'O''Malley'). The first acts as an escape character for the second. Not escaping single-
quote characters in a string that’s part of a SQL statement is a SQL syntax error.

16.2.7 UPDATE Statement
An UPDATE statement modifies existing values. Let’s assume that Sue Red’s last name is
incorrect in the database and update it to 'Black':

The UPDATE keyword is followed by the table to update, the keyword SET and a comma-
separated list of column_name = value pairs indicating the columns to change and their
new values. The change will be applied to every row if you do not specify a WHERE clause.
The WHERE clause in this query indicates that we should update only rows in which the last
name is 'Red' and the first name is 'Sue'.

In [18]: cursor = connection.cursor()

In [19]: cursor = cursor.execute("""INSERT INTO authors (first, last)
 ...: VALUES ('Sue', 'Red')""")
 ...:

In [20]: pd.read_sql('SELECT id, first, last FROM authors',
 ...: connection, index_col=['id'])
 ...:
Out[20]:
 first last
id
1 Paul Deitel
2 Harvey Deitel
3 Abbey Deitel
4 Dan Quirk
5 Alexander Wald
6 Sue Red

In [21]: cursor = cursor.execute("""UPDATE authors SET last='Black'
 ...: WHERE last='Red' AND first='Sue'""")

ptg27972259

516 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

Of course, there could be multiple people with the same first and last name. To make
a change to only one row, it’s best to use the row’s unique primary key in the WHERE clause.
In this case, we could have specified:

WHERE id = 6

For statements that modify the database, the Cursor object’s rowcount attribute con-
tains an integer value representing the number of rows that were modified. If this value is
0, no changes were made. The following confirms that the UPDATE modified one row:

We also can confirm the update by listing the authors table’s contents:

16.2.8 DELETE FROM Statement
A SQL DELETE FROM statement removes rows from a table. Let’s remove Sue Black from
the authors table using her author ID:

The optional WHERE clause determines which rows to delete. If WHERE is omitted, all the
table’s rows are deleted. Here’s the authors table after the DELETE operation:

Closing the Database
When you no longer need access to the database, you should call the Connection’s close
method to disconnect from the database:

connection.close()

In [22]: cursor.rowcount
Out[22]: 1

In [23]: pd.read_sql('SELECT id, first, last FROM authors',
 ...: connection, index_col=['id'])
 ...:
Out[23]:
 first last
id
1 Paul Deitel
2 Harvey Deitel
3 Abbey Deitel
4 Dan Quirk
5 Alexander Wald
6 Sue Black

In [24]: cursor = cursor.execute('DELETE FROM authors WHERE id=6')

In [25]: cursor.rowcount
Out[25]: 1

In [26]: pd.read_sql('SELECT id, first, last FROM authors',
 ...: connection, index_col=['id'])
 ...:
Out[26]:
 first last
id
1 Paul Deitel
2 Harvey Deitel
3 Abbey Deitel
4 Dan Quirk
5 Alexander Wald

ptg27972259

16.3 NoSQL and NewSQL Big-Data Databases: A Brief Tour 517

SQL in Big Data
SQL’s importance is growing in big data. Later in this chapter, we’ll use Spark SQL to
query data in a Spark DataFrame for which the data may be distributed over many com-
puters in a Spark cluster. As you’ll see, Spark SQL looks much like the SQL presented in
this section.

16.3 NoSQL and NewSQL Big-Data Databases: A Brief
Tour
For decades, relational database management systems have been the standard in data pro-
cessing. However, they require structured data that fits into neat rectangular tables. As the
size of the data and the number of tables and relationships increases, relational databases
become more difficult to manipulate efficiently. In today’s big-data world, NoSQL and
NewSQL databases have emerged to deal with the kinds of data storage and processing
demands that traditional relational databases cannot meet. Big data requires massive data-
bases, often spread across data centers worldwide in huge clusters of commodity computers.
According to statista.com, there are currently over 8 million data centers worldwide.3

NoSQL originally meant what its name implies. With the growing importance of
SQL in big data—such as SQL on Hadoop and Spark SQL—NoSQL now is said to stand
for “Not Only SQL.” NoSQL databases are meant for unstructured data, like photos, vid-
eos and the natural language found in e-mails, text messages and social-media posts, and
semi-structured data like JSON and XML documents. Semi-structured data often wraps
unstructured data with additional information called metadata. For example, YouTube
videos are unstructured data, but YouTube also maintains metadata for each video, includ-
ing who posted it, when it was posted, a title, a description, tags that help people discover
the videos, privacy settings and more—all returned as JSON from the YouTube APIs.
This metadata adds structure to the unstructured video data, making it semi-structured.

The next several subsections overview the four NoSQL database categories—key–
value, document, columnar (also called column-based) and graph. In addition, we’ll over-
view NewSQL databases, which blend features of relational and NoSQL databases. In
Section 16.4, we’ll present a case study in which we store and manipulate a large number
of JSON tweet objects in a NoSQL document database, then summarize the data in an
interactive visualization displayed on a Folium map of the United States.

16.3.1 NoSQL Key–Value Databases
Like Python dictionaries, key–value databases4 store key–value pairs, but they’re opti-
mized for distributed systems and big-data processing. For reliability, they tend to repli-
cate data in multiple cluster nodes. Some key–value databases, such as Redis, are
implemented in memory for performance, and others store data on disk, such as HBase,
which runs on top of Hadoop’s HDFS distributed file system. Other popular key–value
databases include Amazon DynamoDB, Google Cloud Datastore and Couchbase. Dyna-
moDB and Couchbase are multi-model databases that also support documents. HBase is
also a column-oriented database.

3. https://www.statista.com/statistics/500458/worldwide-datacenter-and-it-sites/.
4. https://en.wikipedia.org/wiki/Key-value_database.

http://statista.com
https://www.statista.com/statistics/500458/worldwide-datacenter-and-it-sites/
https://en.wikipedia.org/wiki/Key-value_database

ptg27972259

518 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

16.3.2 NoSQL Document Databases
A document database5 stores semi-structured data, such as JSON or XML documents. In
document databases, you typically add indexes for specific attributes, so you can more effi-
ciently locate and manipulate documents. For example, let’s assume you’re storing JSON
documents produced by IoT devices and each document contains a type attribute. You
might add an index for this attribute so you can filter documents based on their types.
Without indexes, you can still perform that task, it will just be slower because you have to
search each document in its entirety to find the attribute.

The most popular document database (and most popular overall NoSQL database6)
is MongoDB, whose name derives from a sequence of letters embedded in the word
“humongous.” In an example, we’ll store a large number of tweets in MongoDB for pro-
cessing. Recall that Twitter’s APIs return tweets in JSON format, so they can be stored
directly in MongoDB. After obtaining the tweets we’ll summarize them in a pandas Data-
Frame and on a Folium map. Other popular document databases include Amazon Dyna-
moDB (also a key–value database), Microsoft Azure Cosmos DB and Apache CouchDB.

16.3.3 NoSQL Columnar Databases
In a relational database, a common query operation is to get a specific column’s value for
every row. Because data is organized into rows, a query that selects a specific column can
perform poorly. The database system must get every matching row, locate the required col-
umn and discard the rest of the row’s information. A columnar database7,8, also called a
column-oriented database, is similar to a relational database, but it stores structured data
in columns rather than rows. Because all of a column’s elements are stored together, select-
ing all the data for a given column is more efficient.

Consider our authors table in the books database:

In a relational database, all the data for a row is stored together. If we consider each row
as a Python tuple, the rows would be represented as (1, 'Paul', 'Deitel'), (2, 'Har-
vey', 'Deitel'), etc. In a columnar database, all the values for a given column would be
stored together, as in (1, 2, 3, 4, 5), ('Paul', 'Harvey', 'Abbey', 'Dan', 'Alexan-
der') and ('Deitel', 'Deitel', 'Deitel', 'Quirk', 'Wald'). The elements in each
column are maintained in row order, so the value at a given index in each column belongs
to the same row. Popular columnar databases include MariaDB ColumnStore and HBase.

5. https://en.wikipedia.org/wiki/Document-oriented_database.
6. https://db-engines.com/en/ranking.
7. https://en.wikipedia.org/wiki/Columnar_database.
8. https://www.predictiveanalyticstoday.com/top-wide-columnar-store-databases/.

 first last
id
1 Paul Deitel
2 Harvey Deitel
3 Abbey Deitel
4 Dan Quirk
5 Alexander Wald

https://en.wikipedia.org/wiki/Document-oriented_database
https://db-engines.com/en/ranking
https://en.wikipedia.org/wiki/Columnar_database
https://www.predictiveanalyticstoday.com/top-wide-columnar-store-databases/

ptg27972259

16.3 NoSQL and NewSQL Big-Data Databases: A Brief Tour 519

16.3.4 NoSQL Graph Databases
A graph models relationships between objects.9 The objects are called nodes (or vertices)
and the relationships are called edges. Edges are directional. For example, an edge repre-
senting an airline flight points from the origin city to the destination city, but not the
reverse. A graph database10 stores nodes, edges and their attributes.

If you use social networks, like Instagram, Snapchat, Twitter and Facebook, consider
your social graph, which consists of the people you know (nodes) and the relationships
between them (edges). Every person has their own social graph, and these are intercon-
nected. The famous “six degrees of separation” problem says that any two people in the
world are connected to one another by following a maximum of six edges in the worldwide
social graph.11 Facebook’s algorithms use the social graphs of their billions of monthly
active users12 to determine which stories should appear in each user’s news feed. By look-
ing at your interests, your friends, their interests and more, Facebook predicts the stories
they believe are most relevant to you.13

Many companies use similar techniques to create recommendation engines. When
you browse a product on Amazon, they use a graph of users and products to show you
comparable products people browsed before making a purchase. When you browse movies
on Netflix, they use a graph of users and movies they liked to suggest movies that might
be of interest to you.

One of the most popular graph databases is Neo4j. Many real-world use-cases for
graph databases are provided at:

https://neo4j.com/graphgists/

With most of the use-cases, sample graph diagrams produced by Neo4j are shown. These
visualize the relationships between the graph nodes. Check out Neo4j’s free PDF book,
Graph Databases.14

16.3.5 NewSQL Databases
Key advantages of relational databases include their security and transaction support. In
particular, relational databases typically use ACID (Atomicity, Consistency, Isolation,
Durability)15 transactions:

• Atomicity ensures that the database is modified only if all of a transaction’s steps
are successful. If you go to an ATM to withdraw $100, that money is not
removed from your account unless you have enough money to cover the with-
drawal and there is enough money in the ATM to satisfy your request.

• Consistency ensures that the database state is always valid. In the withdrawal exam-
ple above, your new account balance after the transaction will reflect precisely
what you withdrew from your account (and possibly ATM fees).

9. https://en.wikipedia.org/wiki/Graph_theory.
10. https://en.wikipedia.org/wiki/Graph_database.
11. https://en.wikipedia.org/wiki/Six_degrees_of_separation.
12. https://zephoria.com/top-15-valuable-facebook-statistics/.
13. https://newsroom.fb.com/news/2018/05/inside-feed-news-feed-ranking/.
14. https://neo4j.com/graph-databases-book-sx2.
15. https://en.wikipedia.org/wiki/ACID_(computer_science).

https://neo4j.com/graphgists/
https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Graph_database
https://en.wikipedia.org/wiki/Six_degrees_of_separation
https://zephoria.com/top-15-valuable-facebook-statistics/
https://newsroom.fb.com/news/2018/05/inside-feed-news-feed-ranking/
https://neo4j.com/graph-databases-book-sx2
https://en.wikipedia.org/wiki/ACID_(computer_science)

ptg27972259

520 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

• Isolation ensures that concurrent transactions occur as if they were performed
sequentially. For example, if two people share a joint bank account and both
attempt to withdraw money at the same time from two separate ATMs, one
transaction must wait until the other completes.

• Durability ensures that changes to the database survive even hardware failures.

If you research benefits and disadvantages of NoSQL databases, you’ll see that NoSQL
databases generally do not provide ACID support. The types of applications that use
NoSQL databases typically do not require the guarantees that ACID-compliant databases
provide. Many NoSQL databases typically adhere to the BASE (Basic Availability, Soft-
state, Eventual consistency) model, which focuses more on the database’s availability.
Whereas, ACID databases guarantee consistency when you write to the database, BASE
databases provide consistency at some later point in time.

NewSQL databases blend the benefits of both relational and NoSQL databases for
big-data processing tasks. Some popular NewSQL databases include VoltDB, MemSQL,
Apache Ignite and Google Spanner.

16.4 Case Study: A MongoDB JSON Document Database
MongoDB is a document database capable of storing and retrieving JSON documents.
Twitter’s APIs return tweets to you as JSON objects, which you can write directly into a
MongoDB database. In this section, you’ll:

• use Tweepy to stream tweets about the 100 U.S. senators and store them into a
MongoDB database,

• use pandas to summarize the top 10 senators by tweet activity and

• display an interactive Folium map of the United States with one popup marker
per state that shows the state name and both senators’ names, their political par-
ties and tweet counts.

You’ll use a free cloud-based MongoDB Atlas cluster, which requires no installation and
currently allows you to store up to 512MB of data. To store more, you can download the
MongoDB Community Server from:

https://www.mongodb.com/download-center/community

and run it locally or you can sign up for MongoDB’s paid Atlas service.

Installing the Python Libraries Required for Interacting with MongoDB
You’ll use the pymongo library to interact with MongoDB databases from your Python
code. You’ll also need the dnspython library to connect to a MongoDB Atlas Cluster. To
install these libraries, use the following commands:

conda install -c conda-forge pymongo
conda install -c conda-forge dnspython

keys.py
The ch16 examples folder’s TwitterMongoDB subfolder contains this example’s code and
keys.py file. Edit this file to include your Twitter credentials and your OpenMapQuest

https://www.mongodb.com/download-center/community

ptg27972259

16.4 Case Study: A MongoDB JSON Document Database 521

key from the “Data Mining Twitter” chapter. After we discuss creating a MongoDB Atlas
cluster, you’ll also need to add your MongoDB connection string to this file.

16.4.1 Creating the MongoDB Atlas Cluster
To sign up for a free account go to

https://mongodb.com

then enter your email address and click Get started free. On the next page, enter your name
and create a password, then read their terms of service. If you agree, click Get started free
on this page and you’ll be taken to the screen for setting up your cluster. Click Build my
first cluster to get started.

They walk you through the getting started steps with popup bubbles that describe and
point you to each task you need to complete. They provide default settings for their free
Atlas cluster (M0 as they refer to it), so just give your cluster a name in the Cluster Name
section, then click Create Cluster. At this point, they’ll take you to the Clusters page and
begin creating your new cluster, which takes several minutes.

Next, a Connect to Atlas popup tutorial will appear, showing a checklist of additional
steps required to get you up and running:

• Create your first database user—This enables you to log into your cluster.

• Whitelist your IP address—This is a security measure which ensures that only IP
addresses you verify are allowed to interact with your cluster. To connect to this
cluster from multiple locations (school, home, work, etc.), you’ll need to whitelist
each IP address from which you intend to connect.

• Connect to your cluster—In this step, you’ll locate your cluster’s connection
string, which will enable your Python code to connect to the server.

Creating Your First Database User
In the popup tutorial window, click Create your first database user to continue the tuto-
rial, then follow the on-screen prompts to view the cluster’s Security tab and click + ADD
NEW USER. In the Add New User dialog, create a username and password. Write these
down—you’ll need them momentarily. Click Add User to return to the Connect to Atlas
popup tutorial.

Whitelist Your IP Address
In the popup tutorial window, click Whitelist your IP address to continue the tutorial, then
follow the on-screen prompts to view the cluster’s IP Whitelist and click + ADD IP
ADDRESS. In the Add Whitelist Entry dialog, you can either add your computer’s current
IP address or allow access from anywhere, which they do not recommend for production
databases, but is OK for learning purposes. Click ALLOW ACCESS FROM ANYWHERE then
click Confirm to return to the Connect to Atlas popup tutorial.

Connect to Your Cluster
In the popup tutorial window, click Connect to your cluster to continue the tutorial, then
follow the on-screen prompts to view the cluster’s Connect to YourClusterName dialog.
Connecting to a MongoDB Atlas database from Python requires a connection string. To
get your connection string, click Connect Your Application, then click Short SRV connec-

https://mongodb.com

ptg27972259

522 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

tion string. Your connection string will appear below Copy the SRV address. Click COPY
to copy the string. Paste this string into the keys.py file as mongo_connection_string’s
value. Replace "<PASSWORD>" in the connection string with your password, and replace the
database name "test" with "senators", which will be the database name in this example.
At the bottom of the Connect to YourClusterName, click Close. You’re now ready to interact
with your Atlas cluster.

16.4.2 Streaming Tweets into MongoDB
First we’ll present an interactive IPython session that connects to the MongoDB database,
downloads current tweets via Twitter streaming and summarizes the top-10 senators by
tweet count. Next, we’ll present class TweetListener, which handles the incoming tweets
and stores their JSON in MongoDB. Finally, we’ll continue the IPython session by creat-
ing an interactive Folium map that displays information from the tweets we stored.

Use Tweepy to Authenticate with Twitter
First, let’s use Tweepy to authenticate with Twitter:

Next, configure the Tweepy API object to wait if our app reaches any Twitter rate limits.

Loading the Senators’ Data
We’ll use the information in the file senators.csv (located in the ch16 examples folder’s
TwitterMongoDB subfolder) to track tweets to, from and about every U.S. senator. The file
contains the senator’s two-letter state code, name, party, Twitter handle and Twitter ID.

Twitter enables you to follow specific users via their numeric Twitter IDs, but these
must be submitted as string representations of those numeric values. So, let’s load sena-
tors.csv into pandas, convert the TwitterID values to strings (using Series method
astype) and display several rows of data. In this case, we set 6 as the maximum number of
columns to display. Later we’ll add another column to the DataFrame and this setting will
ensure that all the columns are displayed, rather than a few with … in between:

In [1]: import tweepy, keys

In [2]: auth = tweepy.OAuthHandler(
 ...: keys.consumer_key, keys.consumer_secret)
 ...: auth.set_access_token(keys.access_token,
 ...: keys.access_token_secret)
 ...:

In [3]: api = tweepy.API(auth, wait_on_rate_limit=True,
 ...: wait_on_rate_limit_notify=True)
 ...:

In [4]: import pandas as pd

In [5]: senators_df = pd.read_csv('senators.csv')

In [6]: senators_df['TwitterID'] = senators_df['TwitterID'].astype(str)

In [7]: pd.options.display.max_columns = 6

ptg27972259

16.4 Case Study: A MongoDB JSON Document Database 523

Configuring the MongoClient
To store the tweet’s JSON as documents in a MongoDB database, you must first connect
to your MongoDB Atlas cluster via a pymongo MongoClient, which receives your cluster’s
connection string as its argument:

Now, we can get a pymongo Database object representing the senators database. The fol-
lowing statement creates the database if it does not exist:

Setting up Tweet Stream
Let’s specify the number of tweets to download and create the TweetListener. We pass
the db object representing the MongoDB database to the TweetListener so it can write
the tweets into the database. Depending on the rate at which people are tweeting about
the senators, it may take minutes to hours to get 10,000 tweets. For testing purposes, you
might want to use a smaller number:

Starting the Tweet Stream
Twitter live streaming allows you to track up to 400 keywords and follow up to 5,000
Twitter IDs at a time. In this case, let’s track the senators’ Twitter handles and follow the
senator’s Twitter IDs. This should give us tweets from, to and about each senator. To
show you progress, we display the screen name and time stamp for each tweet received,
and the total number of tweets so far. To save space, we show here only one of those tweet
outputs and replace the user’s screen name with XXXXXXX:

In [8]: senators_df.head()
Out[8]:
 State Name Party TwitterHandle TwitterID
0 AL Richard Shelby R SenShelby 21111098
1 AL Doug Jomes D SenDougJones 941080085121175552
2 AK Lisa Murkowski R lisamurkowski 18061669
3 AK Dan Sullivan R SenDanSullivan 2891210047
4 AZ Jon Kyl R SenJonKyl 24905240

In [9]: from pymongo import MongoClient

In [10]: atlas_client = MongoClient(keys.mongo_connection_string)

In [11]: db = atlas_client.senators

In [12]: from tweetlistener import TweetListener

In [13]: tweet_limit = 10000

In [14]: twitter_stream = tweepy.Stream(api.auth,
 ...: TweetListener(api, db, tweet_limit))
 ...:

In [15]: twitter_stream.filter(track=senators_df.TwitterHandle.tolist(),
 ...: follow=senators_df.TwitterID.tolist())
 ...:
 Screen name: XXXXXXX
 Created at: Sun Dec 16 17:19:19 +0000 2018
Tweets received: 1
...

ptg27972259

524 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

Class TweetListener
For this example, we slightly modified class TweetListener from the “Data Mining Twit-
ter” chapter. Much of the Twitter and Tweepy code shown below is identical to the code
you saw previously, so we’ll focus on only the new concepts here:

Previously, TweetListener overrode method on_status to receive Tweepy Status
objects representing tweets. Here, we override the on_data method instead (lines 21–31).
Rather than Status objects, on_data receives each tweet object’s raw JSON. Line 24 con-
verts the JSON string received by on_data into a Python JSON object. Each MongoDB
database contains one or more Collections of documents. In line 25, the expression

self.db.tweets

accesses the Database object db’s tweets Collection, creating it if it does not already
exist. Line 25 uses the tweets Collection’s insert_one method to store the JSON object
in the tweets collection.

1 # tweetlistener.py
2 """TweetListener downloads tweets and stores them in MongoDB."""
3 import json
4 import tweepy
5
6 class TweetListener(tweepy.StreamListener):
7 """Handles incoming Tweet stream."""
8
9 def __init__(self, api, database, limit=10000):

10 """Create instance variables for tracking number of tweets."""
11 self.db = database
12 self.tweet_count = 0
13 self.TWEET_LIMIT = limit # 10,000 by default
14 super().__init__(api) # call superclass's init
15
16 def on_connect(self):
17 """Called when your connection attempt is successful, enabling
18 you to perform appropriate application tasks at that point."""
19 print('Successfully connected to Twitter\n')
20
21 def on_data(self, data):
22 """Called when Twitter pushes a new tweet to you."""
23 self.tweet_count += 1 # track number of tweets processed
24 json_data = json.loads(data) # convert string to JSON
25 self.db.tweets.insert_one(json_data) # store in tweets collection
26 print(f' Screen name: {json_data["user"]["name"]}')
27 print(f' Created at: {json_data["created_at"]}')
28 print(f'Tweets received: {self.tweet_count}')
29
30 # if TWEET_LIMIT is reached, return False to terminate streaming
31 return self.tweet_count != self.TWEET_LIMIT
32
33 def on_error(self, status):
34 print(status)
35 return True

ptg27972259

16.4 Case Study: A MongoDB JSON Document Database 525

Counting Tweets for Each Senator
Next, we’ll perform a full-text search on the collection of tweets and count the number of
tweets containing each senator’s Twitter handle. To text search in MongoDB, you must
create a text index for the collection.16 This specifies which document field(s) to search.
Each text index is defined as a tuple containing the field name to search and the index type
('text'). MongoDB’s wildcard specifier ($**) indicates that every text field in a docu-
ment (a JSON tweet object in our case) should be indexed for a full-text search:

Once the index is defined, we can use the Collection’s count_documents method to
count the total number of documents in the collection that contain the specified text. Let’s
search the database’s tweets collection for every twitter handle in the senators_df Data-
Frame’s TwitterHandle column:

The JSON object passed to count_documents in this case indicates that we’re using the
index named text to search for the value of senator.

Show Tweet Counts for Each Senator
Let’s create a copy of the DataFrame senators_df that contains the tweet_counts as a new
column, then display the top-10 senators by tweet count:

16. For additional details on MongoDB index types, text indexes and operators, see: https://
docs.mongodb.com/manual/indexes, https://docs.mongodb.com/manual/core/index-text

and https://docs.mongodb.com/manual/reference/operator.

In [16]: db.tweets.create_index([('$**', 'text')])
Out[16]: '$**_text'

In [17]: tweet_counts = []

In [18]: for senator in senators_df.TwitterHandle:
 ...: tweet_counts.append(db.tweets.count_documents(
 ...: {"$text": {"$search": senator}}))
 ...:

In [19]: tweet_counts_df = senators_df.assign(Tweets=tweet_counts)

In [20]: tweet_counts_df.sort_values(by='Tweets',
 ...: ascending=False).head(10)
 ...:

Out[20]:
 State Name Party TwitterHandle TwitterID Tweets
78 SC Lindsey Graham R LindseyGrahamSC 432895323 1405
41 MA Elizabeth Warren D SenWarren 970207298 1249
8 CA Dianne Feinstein D SenFeinstein 476256944 1079
20 HI Brian Schatz D brianschatz 47747074 934
62 NY Chuck Schumer D SenSchumer 17494010 811
24 IL Tammy Duckworth D SenDuckworth 1058520120 656
13 CT Richard Blumenthal D SenBlumenthal 278124059 646
21 HI Mazie Hirono D maziehirono 92186819 628
86 UT Orrin Hatch R SenOrrinHatch 262756641 506
77 RI Sheldon Whitehouse D SenWhitehouse 242555999 350

https://docs.mongodb.com/manual/indexes
https://docs.mongodb.com/manual/indexes
https://docs.mongodb.com/manual/core/index-text
https://docs.mongodb.com/manual/reference/operator

ptg27972259

526 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

Get the State Locations for Plotting Markers
Next, we’ll use the techniques you learned in the “Data Mining Twitter” chapter to get
each state’s latitude and longitude coordinates. We’ll soon use these to place on a Folium
map popup markers that contain the names and numbers of tweets mentioning each
state’s senators.

The file state_codes.py contains a state_codes dictionary that maps two-letter
state codes to their full state names. We’ll use the full state names with geopy’s Open-
MapQuest geocode function to look up the location of each state.17 First, let’s import the
libraries we need and the state_codes dictionary:

Next, let’s get the geocoder object to translate location names into Location objects:

There are two senators from each state, so we can look up each state’s location once
and use the Location object for both senators from that state. Let’s get the unique state
names, then sort them into ascending order:

The next two snippets use code from the “Data Mining Twitter” chapter to look up
each state’s location. In snippet [28], we call the geocode function with the state name
followed by ', USA' to ensure that we get United States locations,18 since there are places
outside the United States with the same names as U.S. states. To show progress, we display
each new Location object’s string:

17. We use full state names because, during our testing, the two-letter state codes did not always return
correct locations.

In [21]: from geopy import OpenMapQuest

In [22]: import time

In [23]: from state_codes import state_codes

In [24]: geo = OpenMapQuest(api_key=keys.mapquest_key)

In [25]: states = tweet_counts_df.State.unique()

In [26]: states.sort()

18. When we initially performed the geocoding for Washington state, OpenMapQuest returned Wash-
ington, D.C.’s location. So we modified state_codes.py to use “Washington State” instead.

In [27]: locations = []

In [28]: for state in states:
 ...: processed = False
 ...: delay = .1
 ...: while not processed:
 ...: try:
 ...: locations.append(
 ...: geo.geocode(state_codes[state] + ', USA'))
 ...: print(locations[-1])
 ...: processed = True
 ...: except: # timed out, so wait before trying again
 ...: print('OpenMapQuest service timed out. Waiting.')
 ...: time.sleep(delay)
 ...: delay += .1
 ...:

ptg27972259

16.4 Case Study: A MongoDB JSON Document Database 527

Grouping the Tweet Counts by State
We’ll use the total number of tweets for the two senators in a state to color that state on
the map. Darker colors will represent the states with higher tweet counts. To prepare the
data for mapping, let’s use the pandas DataFrame method groupby to group the senators
by state and calculate the total tweets by state:

The as_index=False keyword argument in snippet [29] indicates that the state codes
should be values in a column of the resulting GroupBy object, rather than the indices for
the rows. The GroupBy object’s sum method totals the numeric data (the tweets by state).
Snippet [30] displays several rows of the GroupBy object so you can see some of the results.

Creating the Map
Next, let’s create the map. You may want to adjust the zoom. On our system, the following
snippet creates a map in which we initially can see only the continental United States.
Remember that Folium maps are interactive, so once the map is displayed, you can scroll
to zoom in and out or drag to see different areas, such as Alaska or Hawaii:

Creating a Choropleth to Color the Map
A choropleth shades areas in a map using the values you specify to determine color. Let’s
create a choropleth that colors the states by the number of tweets containing their senators’
Twitter handles. First, save Folium’s us-states.json file at

https://raw.githubusercontent.com/python-visualization/folium/
master/examples/data/us-states.json

to the folder containing this example. This file contains a JSON dialect called GeoJSON
(Geographic JSON) that describes the boundaries of shapes—in this case, the boundaries
of every U.S. state. The choropleth uses this information to shade each state. For more

Alaska, United States of America
Alabama, United States of America
Arkansas, United States of America
...

In [29]: tweets_counts_by_state = tweet_counts_df.groupby(
 ...: 'State', as_index=False).sum()
 ...:

In [30]: tweets_counts_by_state.head()
Out[30]:
 State Tweets
0 AK 27
1 AL 2
2 AR 47
3 AZ 47
4 CA 1135

In [31]: import folium

In [32]: usmap = folium.Map(location=[39.8283, -98.5795],
 ...: zoom_start=4, detect_retina=True,
 ...: tiles='Stamen Toner')
 ...:

https://raw.githubusercontent.com/python-visualization/folium/master/examples/data/us-states.json
https://raw.githubusercontent.com/python-visualization/folium/master/examples/data/us-states.json

ptg27972259

528 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

about GeoJSON, see http://geojson.org/.19 The following snippets create the chorop-
leth, then add it to the map:

In this case, we used the following arguments:

• geo_data='us-states.json'—This is the file containing the GeoJSON that
specifies the shapes to color.

• name='choropleth'—Folium displays the Choropleth as a layer over the map.
This is the name for that layer that will appear in the map’s layer controls, which
enable you to hide and show the layers. These controls appear when you click the
layers icon () on the map.

• data=tweets_counts_by_state—This is a pandas DataFrame (or Series) con-
taining the values that determine the Choropleth colors.

• columns=['State', 'Tweets']—When the data is a DataFrame, this is a list of
two columns representing the keys and the corresponding values used to color the
Choropleth.

• key_on='feature.id'—This is a variable in the GeoJSON file to which the
Choropleth binds the values in the columns argument.

• fill_color='YlOrRd'—This is a color map specifying the colors to use to fill in
the states. Folium provides 12 colormaps: 'BuGn', 'BuPu', 'GnBu', 'OrRd',
'PuBu', 'PuBuGn', 'PuRd', 'RdPu', 'YlGn', 'YlGnBu', 'YlOrBr' and 'YlOrRd'.
You should experiment with these to find the most effective and eye-pleasing
ones for your application(s).

• fill_opacity=0.7—A value from 0.0 (transparent) to 1.0 (opaque) specifying
the transparency of the fill colors displayed in the states.

• line_opacity=0.2—A value from 0.0 (transparent) to 1.0 (opaque) specifying
the transparency of lines used to delineate the states.

19. Folium provides several other GeoJSON files in its examples folder at https://github.com/
python-visualization/folium/tree/master/examples/data. You also can create your own at
http://geojson.io.

In [33]: choropleth = folium.Choropleth(
 ...: geo_data='us-states.json',
 ...: name='choropleth',
 ...: data=tweets_counts_by_state,
 ...: columns=['State', 'Tweets'],
 ...: key_on='feature.id',
 ...: fill_color='YlOrRd',
 ...: fill_opacity=0.7,
 ...: line_opacity=0.2,
 ...: legend_name='Tweets by State'
 ...:).add_to(usmap)
 ...:

In [34]: layer = folium.LayerControl().add_to(usmap)

http://geojson.org/
https://github.com/python-visualization/folium/tree/master/examples/data
https://github.com/python-visualization/folium/tree/master/examples/data
http://geojson.io

ptg27972259

16.4 Case Study: A MongoDB JSON Document Database 529

• legend_name='Tweets by State'—At the top of the map, the Choropleth dis-
plays a color bar (the legend) indicating the value range represented by the colors.
This legend_name text appears below the color bar to indicate what the colors
represent.

The complete list of Choropleth keyword arguments is documented at:

http://python-visualization.github.io/folium/
modules.html#folium.features.Choropleth

Creating the Map Markers for Each State
Next, we’ll create Markers for each state. To ensure that the senators are displayed in
descending order by the number of tweets in each state’s Marker, let’s sort
tweet_counts_df in descending order by the 'Tweets' column:

The loop in the following snippet creates the Markers. First,

sorted_df.groupby('State')

groups sorted_df by 'State'. A DataFrame’s groupby method maintains the original row
order in each group. Within a given group, the senator with the most tweets will be first,
because we sorted the senators in descending order by tweet count in snippet [35]:

We pass the grouped DataFrame to enumerate, so we can get an index for each group,
which we’ll use to look up each state’s Location in the locations list. Each group has a
name (the state code we grouped by) and a collection of items in that group (the two sen-
ators for that state). The loop operates as follows:

• We look up the full state name in the state_codes dictionary, then store it in the
strings list—we’ll use this list to assemble the Marker’s popup text.

• The nested loop walks through the items in the group collection, returning each
as a named tuple that contains a given senator’s data. We create a formatted string
for the current senator containing the person’s name, party and number of
tweets, then append that to the strings list.

In [35]: sorted_df = tweet_counts_df.sort_values(
 ...: by='Tweets', ascending=False)
 ...:

In [36]: for index, (name, group) in enumerate(sorted_df.groupby('State')):
 ...: strings = [state_codes[name]] # used to assemble popup text
 ...:
 ...: for s in group.itertuples():
 ...: strings.append(
 ...: f'{s.Name} ({s.Party}); Tweets: {s.Tweets}')
 ...:
 ...: text = '
'.join(strings)
 ...: marker = folium.Marker(
 ...: (locations[index].latitude, locations[index].longitude),
 ...: popup=text)
 ...: marker.add_to(usmap)
 ...:
 ...:

http://python-visualization.github.io/folium/modules.html#folium.features.Choropleth
http://python-visualization.github.io/folium/modules.html#folium.features.Choropleth

ptg27972259

530 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

• The Marker text can use HTML for formatting. We join the strings list’s ele-
ments, separating each from the next with an HTML
 element which creates
a new line in HTML.

• We create the Marker. The first argument is the Marker’s location as a tuple con-
taining the latitude and longitude. The popup keyword argument specifies the
text to display if the user clicks the Marker.

• We add the Marker to the map.

Displaying the Map
Finally, let’s save the map into an HTML file

Open the HTML file in your web browser to view and interact with the map. Recall that
you can drag the map to see Alaska and Hawaii. Here we show the popup text for the
South Carolina marker:

You could enhance this case study to use the sentiment-analysis techniques you
learned in previous chapters to rate as positive, neutral or negative the sentiment expressed
by people who send tweets (“tweeters”) mentioning each senator’s handle.

16.5 Hadoop
The next several sections show how Apache Hadoop and Apache Spark deal with big-data
storage and processing challenges via huge clusters of computers, massively parallel pro-
cessing, Hadoop MapReduce programming and Spark in-memory processing techniques.
Here, we discuss Apache Hadoop, a key big-data infrastructure technology that also serves
as the foundation for many recent advancements in big-data processing and an entire eco-
system of software tools that are continually evolving to support today’s big-data needs.

In [17]: usmap.save('SenatorsTweets.html')

http://'SenatorsTweets.html'

ptg27972259

16.5 Hadoop 531

16.5.1 Hadoop Overview
When Google was launched in 1998, the amount of online data was already enormous
with approximately 2.4 million websites20—truly big data. Today there are now nearly
two billion websites21 (almost a thousandfold increase) and Google is handling over two
trillion searches per year!22 Having used Google search since its inception, our sense is that
today’s responses are significantly faster.

When Google was developing their search engine, they knew that they needed to
return search results quickly. The only practical way to do this was to store and index the
entire Internet using a clever combination of secondary storage and main memory. Com-
puters of that time couldn’t hold that amount of data and could not analyze that amount
of data fast enough to guarantee prompt search-query responses. So Google developed a
clustering system, tying together vast numbers of computers—called nodes. Because hav-
ing more computers and more connections between them meant greater chance of hard-
ware failures, they also built in high levels of redundancy to ensure that the system would
continue functioning even if nodes within clusters failed. The data was distributed across
all these inexpensive “commodity computers.” To satisfy a search request, all the comput-
ers in the cluster searched in parallel the portion of the web they had locally. Then the
results of those searches were gathered up and reported back to the user.

To accomplish this, Google needed to develop the clustering hardware and software,
including distributed storage. Google publishes its designs, but did not open source its
software. Programmers at Yahoo!, working from Google’s designs in the “Google File Sys-
tem” paper,23 then built their own system. They open-sourced their work and the Apache
organization implemented the system as Hadoop. The name came from an elephant
stuffed animal that belonged to a child of one of Hadoop’s creators.

Two additional Google papers also contributed to the evolution of Hadoop—
“MapReduce: Simplified Data Processing on Large Clusters”24 and “Bigtable: A Distrib-
uted Storage System for Structured Data,”25 which was the basis for Apache HBase (a
NoSQL key–value and column-based database).26

HDFS, MapReduce and YARN
Hadoop’s key components are:

• HDFS (Hadoop Distributed File System) for storing massive amounts of data
throughout a cluster, and

• MapReduce for implementing the tasks that process the data.

20. http://www.internetlivestats.com/total-number-of-websites/.
21. http://www.internetlivestats.com/total-number-of-websites/.
22. http://www.internetlivestats.com/google-search-statistics/.
23. http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-

sosp2003.pdf.
24. http://static.googleusercontent.com/media/research.google.com/en//archive/

mapreduce-osdi04.pdf.
25. http://static.googleusercontent.com/media/research.google.com/en//archive/

bigtable-osdi06.pdf.
26. Many other influential big-data-related papers (including the ones we mentioned) can be found at:

https://bigdata-madesimple.com/research-papers-that-changed-the-world-of-big-data/.

http://www.internetlivestats.com/total-number-of-websites/
http://www.internetlivestats.com/total-number-of-websites/
http://www.internetlivestats.com/google-search-statistics/
http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf
http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf
http://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
http://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
http://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf
http://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf
https://bigdata-madesimple.com/research-papers-that-changed-the-world-of-big-data/

ptg27972259

532 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

Earlier in the book we introduced basic functional-style programming and filter/map/
reduce. Hadoop MapReduce is similar in concept, just on a massively parallel scale. A
MapReduce task performs two steps—mapping and reduction. The mapping step, which
also may include filtering, processes the original data across the entire cluster and maps it
into tuples of key–value pairs. The reduction step then combines those tuples to produce
the results of the MapReduce task. The key is how the MapReduce step is performed.
Hadoop divides the data into batches that it distributes across the nodes in the cluster—
anywhere from a few nodes to a Yahoo! cluster with 40,000 nodes and over 100,000
cores.27 Hadoop also distributes the MapReduce task’s code to the nodes in the cluster and
executes the code in parallel on every node. Each node processes only the batch of data
stored on that node. The reduction step combines the results from all the nodes to produce
the final result. To coordinate this, Hadoop uses YARN (“yet another resource negotia-
tor”) to manage all the resources in the cluster and schedule tasks for execution.

Hadoop Ecosystem
Though Hadoop began with HDFS and MapReduce, followed closely by YARN, it has
grown into a large ecosystem that includes Spark (discussed in Sections 16.6–16.7) and
many other Apache projects:28,29,30

• Ambari (https://ambari.apache.org)—Tools for managing Hadoop clusters.

• Drill (https://drill.apache.org)—SQL querying of non-relational data in
Hadoop and NoSQL databases.

• Flume (https://flume.apache.org)—A service for collecting and storing (in
HDFS and other storage) streaming event data, like high-volume server logs, IoT
messages and more.

• HBase (https://hbase.apache.org)—A NoSQL database for big data with
"billions of rows by31 millions of columns—atop clusters of commodity hard-
ware."

• Hive (https://hive.apache.org)—Uses SQL to interact with data in data
warehouses. A data warehouse aggregates data of various types from various
sources. Common operations include extracting data, transforming it and load-
ing (known as ETL) into another database, typically so you can analyze it and cre-
ate reports from it.

• Impala (https://impala.apache.org)—A database for real-time SQL-based
queries across distributed data stored in Hadoop HDFS or HBase.

• Kafka (https://kafka.apache.org)—Real-time messaging, stream processing
and storage, typically to transform and process high-volume streaming data, such
as website activity and streaming IoT data.

27. https://wiki.apache.org/hadoop/PoweredBy.
28. https://hortonworks.com/ecosystems/.
29. https://readwrite.com/2018/06/26/complete-guide-of-hadoop-ecosystem-components/.
30. https://www.janbasktraining.com/blog/introduction-architecture-components-hadoop-

ecosystem/.
31. We used the word “by” to replace “X” in the original text.

https://ambari.apache.org
https://drill.apache.org
https://flume.apache.org
https://hbase.apache.org
https://hive.apache.org
https://impala.apache.org
https://kafka.apache.org
https://wiki.apache.org/hadoop/PoweredBy
https://hortonworks.com/ecosystems/
https://readwrite.com/2018/06/26/complete-guide-of-hadoop-ecosystem-components/
https://www.janbasktraining.com/blog/introduction-architecture-components-hadoop-ecosystem/
https://www.janbasktraining.com/blog/introduction-architecture-components-hadoop-ecosystem/

ptg27972259

16.5 Hadoop 533

• Pig (https://pig.apache.org)—A scripting platform that converts data analy-
sis tasks from a scripting language called Pig Latin into MapReduce tasks.

• Sqoop (https://sqoop.apache.org)—Tool for moving structured, semi-struc-
tured and unstructured data between databases.

• Storm (https://storm.apache.org)—A real-time stream-processing system for
tasks such as data analytics, machine learning, ETL and more.

• ZooKeeper (https://zookeeper.apache.org)—A service for managing cluster
configurations and coordination between clusters.

• And more.

Hadoop Providers
Numerous cloud vendors provide Hadoop as a service, including Amazon EMR, Google
Cloud DataProc, IBM Watson Analytics Engine, Microsoft Azure HDInsight and others.
In addition, companies like Cloudera and Hortonworks (which at the time of this writing
are merging) offer integrated Hadoop-ecosystem components and tools via the major
cloud vendors. They also offer free downloadable environments that you can run on the
desktop32 for learning, development and testing before you commit to cloud-based host-
ing, which can incur significant costs. We introduce MapReduce programming in the
example in the following sections by using a Microsoft cloud-based Azure HDInsight clus-
ter, which provides Hadoop as a service.

Hadoop 3
Apache continues to evolve Hadoop. Hadoop 333 was released in December of 2017 with
many improvements, including better performance and significantly improved storage
efficiency.34

16.5.2 Summarizing Word Lengths in Romeo and Juliet via MapReduce
In the next several subsections, you’ll create a cloud-based, multi-node cluster of comput-
ers using Microsoft Azure HDInsight. Then, you’ll use the service’s capabilities to demon-
strate Hadoop MapReduce running on that cluster. The MapReduce task you’ll define
will determine the length of each word in RomeoAndJuliet.txt (from the “Natural Lan-
guage Processing” chapter), then summarize how many words of each length there are.
After defining the task’s mapping and reduction steps, you’ll submit the task to your
HDInsight cluster, and Hadoop will decide how to use the cluster of computers to per-
form the task.

16.5.3 Creating an Apache Hadoop Cluster in Microsoft Azure
HDInsight
Most major cloud vendors have support for Hadoop and Spark computing clusters that
you can configure to meet your application’s requirements. Multi-node cloud-based clus-

32. Check their significant system requirements first to ensure that you have the disk space and memory
required to run them.

33. For a list of features in Hadoop 3, see https://hadoop.apache.org/docs/r3.0.0/.
34. https://www.datanami.com/2018/10/18/is-hadoop-officially-dead/.

https://pig.apache.org
https://sqoop.apache.org
https://storm.apache.org
https://zookeeper.apache.org
https://hadoop.apache.org/docs/r3.0.0/
https://www.datanami.com/2018/10/18/is-hadoop-officially-dead/

ptg27972259

534 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

ters typically are paid services, though most vendors provide free trials or credits so you can
try out their services.

We want you to experience the process of setting up clusters and using them to per-
form tasks. So, in this Hadoop example, you’ll use Microsoft Azure’s HDInsight service
to create cloud-based clusters of computers in which to test our examples. Go to

https://azure.microsoft.com/en-us/free

to sign up for an account. Microsoft requires a credit card for identity verification.
Various services are always free and some you can continue to use for 12 months. For

information on these services see:

https://azure.microsoft.com/en-us/free/free-account-faq/

Microsoft also gives you a credit to experiment with their paid services, such as their
HDInsight Hadoop and Spark services. Once your credits run out or 30 days pass (which-
ever comes first), you cannot continue using paid services unless you authorize Microsoft
to charge your card.

Because you’ll use your new Azure account’s credit for these examples,35 we’ll discuss
how to configure a low-cost cluster that uses less computing resources than Microsoft allo-
cates by default.36 Caution: Once you allocate a cluster, it incurs costs whether you’re
using it or not. So, when you complete this case study, be sure to delete your cluster(s)
and other resources, so you don’t incur additional charges. For more information, see:

https://docs.microsoft.com/en-us/azure/azure-resource-manager/
resource-group-portal

For Azure-related documentation and videos, visit:

• https://docs.microsoft.com/en-us/azure/—the Azure documentation.

• https://channel9.msdn.com/—Microsoft’s Channel 9 video network.

• https://www.youtube.com/user/windowsazure—Microsoft’s Azure channel
on YouTube.

Creating an HDInsight Hadoop Cluster
The following link explains how to set up a cluster for Hadoop using the Azure HDInsight
service:

https://docs.microsoft.com/en-us/azure/hdinsight/hadoop/apache-
hadoop-linux-create-cluster-get-started-portal

While following their Create a Hadoop cluster steps, please note the following:

• In Step 1, you access the Azure portal by logging into your account at

 https://portal.azure.com

• In Step 2, Data + Analytics is now called Analytics, and the HDInsight icon and
icon color have changed from what is shown in the tutorial.

35. For Microsoft’s latest free account features, visit https://azure.microsoft.com/en-us/free/.
36. For Microsoft’s recommended cluster configurations, see https://docs.microsoft.com/en-us/

azure/hdinsight/hdinsight-component-versioning#default-node-configuration-and-

virtual-machine-sizes-for-clusters. If you configure a cluster that’s too small for a given sce-
nario, when you try to deploy the cluster you’ll receive an error.

https://azure.microsoft.com/en-us/free
https://azure.microsoft.com/en-us/free/free-account-faq/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-portal
https://docs.microsoft.com/en-us/azure/
https://channel9.msdn.com/
https://www.youtube.com/user/windowsazure
https://docs.microsoft.com/en-us/azure/hdinsight/hadoop/apache-hadoop-linux-create-cluster-get-started-portal
https://docs.microsoft.com/en-us/azure/hdinsight/hadoop/apache-hadoop-linux-create-cluster-get-started-portal
https://portal.azure.com
https://azure.microsoft.com/en-us/free/
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-component-versioning#default-node-configuration-and-virtual-machine-sizes-for-clusters
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-component-versioning#default-node-configuration-and-virtual-machine-sizes-for-clusters
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-component-versioning#default-node-configuration-and-virtual-machine-sizes-for-clusters

ptg27972259

16.5 Hadoop 535

• In Step 3, you must choose a cluster name that does not already exist. When you
enter your cluster name, Microsoft will check whether that name is available and
display a message if it is not. You must create a password. For the Resource group,
you’ll also need to click Create new and provide a group name. Leave all other
settings in this step as is.

• In Step 5: Under Select a Storage account, click Create new and provide a storage
account name containing only lowercase letters and numbers. Like the cluster
name, the storage account name must be unique.

When you get to the Cluster summary you’ll see that Microsoft initially configures the
cluster as Head (2 x D12 v2), Worker (4 x D4 v2). At the time of this writing, the estimated
cost-per-hour for this configuration was $3.11. This setup uses a total of 6 CPU nodes
with 40 cores—far more than we need for demonstration purposes.

You can edit this setup to use fewer CPUs and cores, which also saves money. Let’s
change the configuration to a four-CPU cluster with 16 cores that uses less powerful com-
puters. In the Cluster summary:

1. Click Edit to the right of Cluster size.

2. Change the Number of Worker nodes to 2.

3. Click Worker node size, then View all, select D3 v2 (this is the minimum CPU size
for Hadoop nodes) and click Select.

4. Click Head node size, then View all, select D3 v2 and click Select.

5. Click Next and click Next again to return to the Cluster summary. Microsoft will
validate the new configuration.

6. When the Create button is enabled, click it to deploy the cluster.

It takes 20–30 minutes for Microsoft to “spin up” your cluster. During this time, Micro-
soft is allocating all the resources and software the cluster requires.

After the changes above, our estimated cost for the cluster was $1.18 per hour, based
on average use for similarly configured clusters. Our actual charges were less than that. If
you encounter any problems configuring your cluster, Microsoft provides HDInsight
chat-based support at:

https://azure.microsoft.com/en-us/resources/knowledge-center/
technical-chat/

16.5.4 Hadoop Streaming
For languages like Python that are not natively supported in Hadoop, you must use
Hadoop streaming to implement your tasks. In Hadoop streaming, the Python scripts
that implement the mapping and reduction steps use the standard input stream and stan-
dard output stream to communicate with Hadoop. Usually, the standard input stream
reads from the keyboard and the standard output stream writes to the command line.
However, these can be redirected (as Hadoop does) to read from other sources and write to
other destinations. Hadoop uses the streams as follows:

• Hadoop supplies the input to the mapping script—called the mapper. This script
reads its input from the standard input stream.

https://azure.microsoft.com/en-us/resources/knowledge-center/technical-chat/
https://azure.microsoft.com/en-us/resources/knowledge-center/technical-chat/

ptg27972259

536 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

• The mapper writes its results to the standard output stream.

• Hadoop supplies the mapper’s output as the input to the reduction script—called
the reducer—which reads from the standard input stream.

• The reducer writes its results to the standard output stream.

• Hadoop writes the reducer’s output to the Hadoop file system (HDFS).

The mapper and reducer terminology used above should sound familiar to you from our
discussions of functional-style programming and filter, map and reduce in the “Sequences:
Lists and Tuples” chapter.

16.5.5 Implementing the Mapper
In this section, you’ll create a mapper script that takes lines of text as input from Hadoop
and maps them to key–value pairs in which each key is a word, and its corresponding value
is 1. The mapper sees each word individually so, as far as it is concerned, there’s only one
of each word. In the next section, the reducer will summarize these key–value pairs by key,
reducing the counts to a single count for each key. By default, Hadoop expects the map-
per’s output and the reducer’s input and output to be in the form of key–value pairs sep-
arated by a tab.

In the mapper script (length_mapper.py), the notation #! in line 1 tells Hadoop to
execute the Python code using python3, rather than the default Python 2 installation. This
line must come before all other comments and code in the file. At the time of this writing,
Python 2.7.12 and Python 3.5.2 were installed. Note that because the cluster does not
have Python 3.6 or higher, you cannot use f-strings in your code.

Generator function tokenize_input (lines 6–9) reads lines of text from the standard
input stream and for each returns a list of strings. For this example, we are not removing
punctuation or stop words as we did in the “Natural Language Processing” chapter.

When Hadoop executes the script, lines 13–15 iterate through the lists of strings from
tokenize_input. For each list (line) and for every string (word) in that list, line 15 out-
puts a key–value pair with the word’s length as the key, a tab (\t) and the value 1, indicat-
ing that there is one word (so far) of that length. Of course, there probably are many words
of that length. The MapReduce algorithm’s reduction step will summarize these key–value
pairs, reducing all those with the same key to a single key–value pair with the total count.

1 #!/usr/bin/env python3
2 # length_mapper.py
3 """Maps lines of text to key-value pairs of word lengths and 1."""
4 import sys
5
6 def tokenize_input():
7 """Split each line of standard input into a list of strings."""
8 for line in sys.stdin:
9 yield line.split()

10
11 # read each line in the the standard input and for every word
12 # produce a key-value pair containing the word, a tab and 1
13 for line in tokenize_input():
14 for word in line:
15 print(str(len(word)) + '\t1')

ptg27972259

16.5 Hadoop 537

16.5.6 Implementing the Reducer
In the reducer script (length_reducer.py), function tokenize_input (lines 8–11) is a
generator function that reads and splits the key–value pairs produced by the mapper.
Again, the MapReduce algorithm supplies the standard input. For each line,
tokenize_input strips any leading or trailing whitespace (such as the terminating new-
line) and yields a list containing the key and a value.

When the MapReduce algorithm executes this reducer, lines 14–19 use the groupby
function from the itertools module to group all word lengths of the same value:

• The first argument calls tokenize_input to get the lists representing the key–
value pairs.

• The second argument indicates that the key–value pairs should be grouped based
on the element at index 0 in each list—that is the key.

Line 16 totals all the counts for a given key. Line 17 outputs a new key–value pair consist-
ing of the word and its total. The MapReduce algorithm takes all the final word-count
outputs and writes them to a file in HDFS—the Hadoop file system.

16.5.7 Preparing to Run the MapReduce Example
Next, you’ll upload files to the cluster so you can execute the example. In a Command
Prompt, Terminal or shell, change to the folder containing your mapper and reducer
scripts and the RomeoAndJuliet.txt file. We assume all three are in this chapter’s ch16
examples folder, so be sure to copy your RomeoAndJuliet.txt file to this folder first.

Copying the Script Files to the HDInsight Hadoop Cluster
Enter the following command to upload the files. Be sure to replace YourClusterName with
the cluster name you specified when setting up the Hadoop cluster and press Enter only
after you’ve typed the entire command. The colon in the following command is required

1 #!/usr/bin/env python3
2 # length_reducer.py
3 """Counts the number of words with each length."""
4 import sys
5 from itertools import groupby
6 from operator import itemgetter
7
8 def tokenize_input():
9 """Split each line of standard input into a key and a value."""

10 for line in sys.stdin:
11 yield line.strip().split('\t')
12
13 # produce key-value pairs of word lengths and counts separated by tabs
14 for word_length, group in groupby(tokenize_input(), itemgetter(0)):
15 try:
16 total = sum(int(count) for word_length, count in group)
17 print(word_length + '\t' + str(total))
18 except ValueError:
19 pass # ignore word if its count was not an integer

ptg27972259

538 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

and indicates that you’ll supply your cluster password when prompted. At that prompt,
type the password you specified when setting up the cluster, then press Enter:

The first time you do this, you’ll be asked for security reasons to confirm that you trust
the target host (that is, Microsoft Azure).

Copying RomeoAndJuliet into the Hadoop File System
For Hadoop to read the contents of RomeoAndJuliet.txt and supply the lines of text to
your mapper, you must first copy the file into Hadoop’s file system. First, you must use
ssh37 to log into your cluster and access its command line. In a Command Prompt, Ter-
minal or shell, execute the following command. Be sure to replace YourClusterName with
your cluster name. Again, you’ll be prompted for your cluster password:

For this example, we’ll use the following Hadoop command to copy the text file into the
already existing folder /examples/data that the cluster provides for use with Microsoft’s
Azure Hadoop tutorials. Again, press Enter only when you’ve typed the entire command:

16.5.8 Running the MapReduce Job
Now you can run the MapReduce job for RomeoAndJuliet.txt on your cluster by execut-
ing the following command. For your convenience, we provided the text of this command
in the file yarn.txt with this example, so you can copy and paste it. We reformatted the
command here for readability:

The yarn command invokes the Hadoop’s YARN (“yet another resource negotiator”) tool
to manage and coordinate access to the Hadoop resources the MapReduce task uses. The
file hadoop-streaming.jar contains the Hadoop streaming utility that allows you to use
Python to implement the mapper and reducer. The two -D options set Hadoop properties
that enable it to sort the final key–value pairs by key (KeyFieldBasedComparator) in
descending order numerically (-n; the minus indicates descending order) rather than
alphabetically. The other command-line arguments are:

scp length_mapper.py length_reducer.py RomeoAndJuliet.txt
 sshuser@YourClusterName-ssh.azurehdinsight.net:

37. Windows users: If ssh does not work for you, install and enable it as described at https://
blogs.msdn.microsoft.com/powershell/2017/12/15/using-the-openssh-beta-in-windows-

10-fall-creators-update-and-windows-server-1709/. After completing the installation, log
out and log back in or restart your system to enable ssh.

ssh sshuser@YourClusterName-ssh.azurehdinsight.net

hadoop fs -copyFromLocal RomeoAndJuliet.txt
 /example/data/RomeoAndJuliet.txt

yarn jar /usr/hdp/current/hadoop-mapreduce-client/hadoop-streaming.jar
 -D mapred.output.key.comparator.class=
 org.apache.hadoop.mapred.lib.KeyFieldBasedComparator
 -D mapred.text.key.comparator.options=-n
 -files length_mapper.py,length_reducer.py
 -mapper length_mapper.py
 -reducer length_reducer.py
 -input /example/data/RomeoAndJuliet.txt
 -output /example/wordlengthsoutput

http://-ssh.azurehdinsight.net:
https://blogs.msdn.microsoft.com/powershell/2017/12/15/using-the-openssh-beta-in-windows-10-fall-creators-update-and-windows-server-1709/
https://blogs.msdn.microsoft.com/powershell/2017/12/15/using-the-openssh-beta-in-windows-10-fall-creators-update-and-windows-server-1709/
https://blogs.msdn.microsoft.com/powershell/2017/12/15/using-the-openssh-beta-in-windows-10-fall-creators-update-and-windows-server-1709/
http://-ssh.azurehdinsight.net

ptg27972259

16.5 Hadoop 539

• -files—A comma-separated list of file names. Hadoop copies these files to every
node in the cluster so they can be executed locally on each node.

• -mapper—The name of the mapper’s script file.

• -reducer—The name of the reducer’s script file

• -input—The file or directory of files to supply as input to the mapper.

• -output—The HDFS directory in which the output will be written. If this folder
already exists, an error will occur.

The following output shows some of the feedback that Hadoop produces as the
MapReduce job executes. We replaced chunks of the output with … to save space and
bolded several lines of interest including:

• The total number of “input paths to process”—the 1 source of input in this exam-
ple is the RomeoAndJuliet.txt file.

• The “number of splits”—2 in this example, based on the number of worker nodes
in our cluster.

• The percentage completion information.

• File System Counters, which include the numbers of bytes read and written.

• Job Counters, which show the number of mapping and reduction tasks used and
various timing information.

• Map-Reduce Framework, which shows various information about the steps per-
formed.

packageJobJar: [] [/usr/hdp/2.6.5.3004-13/hadoop-mapreduce/hadoop-
streaming-2.7.3.2.6.5.3004-13.jar] /tmp/streamjob2764990629848702405.jar
tmpDir=null
...
18/12/05 16:46:25 INFO mapred.FileInputFormat: Total input paths to
process : 1
18/12/05 16:46:26 INFO mapreduce.JobSubmitter: number of splits:2
...
18/12/05 16:46:26 INFO mapreduce.Job: The url to track the job: http://
hn0-paulte.y3nghy5db2kehav5m0opqrjxcb.cx.internal.cloudapp.net:8088/
proxy/application_1543953844228_0025/
...
18/12/05 16:46:35 INFO mapreduce.Job: map 0% reduce 0%
18/12/05 16:46:43 INFO mapreduce.Job: map 50% reduce 0%
18/12/05 16:46:44 INFO mapreduce.Job: map 100% reduce 0%
18/12/05 16:46:48 INFO mapreduce.Job: map 100% reduce 100%
18/12/05 16:46:50 INFO mapreduce.Job: Job job_1543953844228_0025
completed successfully
18/12/05 16:46:50 INFO mapreduce.Job: Counters: 49

File System Counters
FILE: Number of bytes read=156411
FILE: Number of bytes written=813764

...
Job Counters

Launched map tasks=2
Launched reduce tasks=1

...

http://hn0-paulte.y3nghy5db2kehav5m0opqrjxcb.cx.internal.cloudapp.net:8088/proxy/application_1543953844228_0025/..
http://hn0-paulte.y3nghy5db2kehav5m0opqrjxcb.cx.internal.cloudapp.net:8088/proxy/application_1543953844228_0025/..
http://hn0-paulte.y3nghy5db2kehav5m0opqrjxcb.cx.internal.cloudapp.net:8088/proxy/application_1543953844228_0025/..
http://hn0-paulte.y3nghy5db2kehav5m0opqrjxcb.cx.internal.cloudapp.net:8088/proxy/application_1543953844228_0025/..

ptg27972259

540 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

Viewing the Word Counts
Hadoop MapReduce saves its output into HDFS, so to see the actual word counts you
must look at the file in HDFS within the cluster by executing the following command:

Here are the results of the preceding command:

Map-Reduce Framework
Map input records=5260
Map output records=25956
Map output bytes=104493
Map output materialized bytes=156417
Input split bytes=346
Combine input records=0
Combine output records=0
Reduce input groups=19
Reduce shuffle bytes=156417
Reduce input records=25956
Reduce output records=19
Spilled Records=51912
Shuffled Maps =2
Failed Shuffles=0
Merged Map outputs=2
GC time elapsed (ms)=193
CPU time spent (ms)=4440
Physical memory (bytes) snapshot=1942798336
Virtual memory (bytes) snapshot=8463282176
Total committed heap usage (bytes)=3177185280

...
18/12/05 16:46:50 INFO streaming.StreamJob: Output directory: /example/
wordlengthsoutput

hdfs dfs -text /example/wordlengthsoutput/part-00000

18/12/05 16:47:19 INFO lzo.GPLNativeCodeLoader: Loaded native gpl library
18/12/05 16:47:19 INFO lzo.LzoCodec: Successfully loaded & initialized
native-lzo library [hadoop-lzo rev
b5efb3e531bc1558201462b8ab15bb412ffa6b89]
1 1140
2 3869
3 4699
4 5651
5 3668
6 2719
7 1624
8 1062
9 855
10 317
11 189
12 95
13 35
14 13
15 9
16 6
17 3
18 1
23 1

ptg27972259

16.6 Spark 541

Deleting Your Cluster So You Do Not Incur Charges
Caution: Be sure to delete your cluster(s) and associated resources (like storage) so you
don’t incur additional charges. In the Azure portal, click All resources to see your list of
resources, which will include the cluster you set up and the storage account you set up.
Both can incur charges if you do not delete them. Select each resource and click the Delete
button to remove it. You’ll be asked to confirm by typing yes. For more information, see:

https://docs.microsoft.com/en-us/azure/azure-resource-manager/
resource-group-portal

16.6 Spark
In this section, we’ll overview Apache Spark. We’ll use the Python PySpark library and
Spark’s functional-style filter/map/reduce capabilities to implement a simple word count
example that summarizes the word counts in Romeo and Juliet.

16.6.1 Spark Overview
When you process truly big data, performance is crucial. Hadoop is geared to disk-based
batch processing—reading the data from disk, processing the data and writing the results
back to disk. Many big-data applications demand better performance than is possible with
disk-intensive operations. In particular, fast streaming applications that require either real-
time or near-real-time processing won’t work in a disk-based architecture.

History
Spark was initially developed in 2009 at U. C. Berkeley and funded by DARPA (the
Defense Advanced Research Projects Agency). Initially, it was created as a distributed exe-
cution engine for high-performance machine learning.38 It uses an in-memory architec-
ture that “has been used to sort 100 TB of data 3X faster than Hadoop MapReduce on 1/
10th of the machines”39 and runs some workloads up to 100 times faster than Hadoop.40

Spark’s significantly better performance on batch-processing tasks is leading many com-
panies to replace Hadoop MapReduce with Spark.41,42,43

Architecture and Components
Though it was initially developed to run on Hadoop and use Hadoop components like
HDFS and YARN, Spark can run standalone on a single computer (typically for learning
and testing purposes), standalone on a cluster or using various cluster managers and dis-
tributed storage systems. For resource management, Spark runs on Hadoop YARN,
Apache Mesos, Amazon EC2 and Kubernetes, and it supports many distributed storage
systems, including HDFS, Apache Cassandra, Apache HBase and Apache Hive.44

38. https://gigaom.com/2014/06/28/4-reasons-why-spark-could-jolt-hadoop-into-

hyperdrive/.
39. https://spark.apache.org/faq.html.
40. https://spark.apache.org/.
41. https://bigdata-madesimple.com/is-spark-better-than-hadoop-map-reduce/.
42. https://www.datanami.com/2018/10/18/is-hadoop-officially-dead/.
43. https://blog.thecodeteam.com/2018/01/09/changing-face-data-analytics-fast-data-

displaces-big-data/.
44. http://spark.apache.org/.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-portal
https://gigaom.com/2014/06/28/4-reasons-why-spark-could-jolt-hadoop-into-hyperdrive/
https://gigaom.com/2014/06/28/4-reasons-why-spark-could-jolt-hadoop-into-hyperdrive/
https://spark.apache.org/faq.html
https://spark.apache.org/
https://bigdata-madesimple.com/is-spark-better-than-hadoop-map-reduce/
https://www.datanami.com/2018/10/18/is-hadoop-officially-dead/
https://blog.thecodeteam.com/2018/01/09/changing-face-data-analytics-fast-data-displaces-big-data/
https://blog.thecodeteam.com/2018/01/09/changing-face-data-analytics-fast-data-displaces-big-data/
http://spark.apache.org/

ptg27972259

542 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

At the core of Spark are resilient distributed datasets (RDDs), which you’ll use to
process distributed data using functional-style programming. In addition to reading data
from disk and writing data to disk, Hadoop uses replication for fault tolerance, which adds
even more disk-based overhead. RDDs eliminate this overhead by remaining in mem-
ory—using disk only if the data will not fit in memory—and by not replicating data. Spark
handles fault tolerance by remembering the steps used to create each RDD, so it can
rebuild a given RDD if a cluster node fails.45

Spark distributes the operations you specify in Python to the cluster’s nodes for par-
allel execution. Spark streaming enables you to process data as it’s received. Spark Data-
Frames, which are similar to pandas DataFrames, enable you to view RDDs as a collection
of named columns. You can use Spark DataFrames with Spark SQL to perform queries on
distributed data. Spark also includes Spark MLlib (the Spark Machine Learning Library),
which enables you to perform machine-learning algorithms, like those you learned in
Chapters 14 and 15. We’ll use RDDs, Spark streaming, DataFrames and Spark SQL in
the next few examples.

Providers
Hadoop providers typically also provide Spark support. In addition to the providers listed
in Section 16.5, there are Spark-specific vendors like Databricks. They provide a “zero-
management cloud platform built around Spark.”46 Their website also is an excellent
resource for learning Spark. The paid Databricks platform runs on Amazon AWS or Mic-
rosoft Azure. Databricks also provides a free Databricks Community Edition, which is a
great way to get started with both Spark and the Databricks environment.

16.6.2 Docker and the Jupyter Docker Stacks
In this section, we’ll show how to download and execute a Docker stack containing Spark
and the PySpark module for accessing Spark from Python. You’ll write the Spark exam-
ple’s code in a Jupyter Notebook. First, let’s overview Docker.

Docker
Docker is a tool for packaging software into containers (also called images) that bundle
everything required to execute that software across platforms. Some software packages we
use in this chapter require complicated setup and configuration. For many of these, there
are preexisting Docker containers that you can download for free and execute locally on
your desktop or notebook computers. This makes Docker a great way to help you get
started with new technologies quickly and conveniently.

Docker also helps with reproducibility in research and analytics studies. You can create
custom Docker containers that are configured with the versions of every piece of software
and every library you used in your study. This would enable others to recreate the envi-
ronment you used, then reproduce your work, and will help you reproduce your results at
a later time. We’ll use Docker in this section to download and execute a Docker container
that’s preconfigured to run Spark applications.

45. https://spark.apache.org/research.html.
46. https://databricks.com/product/faq.

https://spark.apache.org/research.html
https://databricks.com/product/faq

ptg27972259

16.6 Spark 543

Installing Docker
You can install Docker for Windows 10 Pro or macOS at:

https://www.docker.com/products/docker-desktop

On Windows 10 Pro, you must allow the "Docker for Windows.exe" installer to make
changes to your system to complete the installation process. To do so, click Yes when
Windows asks if you want to allow the installer to make changes to your system.47 Win-
dows 10 Home users must use Virtual Box as described at:

https://docs.docker.com/machine/drivers/virtualbox/

Linux users should install Docker Community Edition as described at:

https://docs.docker.com/install/overview/

For a general overview of Docker, read the Getting started guide at:

https://docs.docker.com/get-started/

Jupyter Docker Stacks
The Jupyter Notebooks team has preconfigured several Jupyter “Docker stacks” contain-
ers for common Python development scenarios. Each enables you to use Jupyter Note-
books to experiment with powerful capabilities without having to worry about complex
software setup issues. In each case, you can open JupyterLab in your web browser, open a
notebook in JupyterLab and start coding. JupyterLab also provides a Terminal window
that you can use in your browser like your computer’s Terminal, Anaconda Command
Prompt or shell. Everything we’ve shown you in IPython to this point can be executed
using IPython in JupyterLab’s Terminal window.

We’ll use the jupyter/pyspark-notebook Docker stack, which is preconfigured with
everything you need to create and test Apache Spark apps on your computer. When com-
bined with installing other Python libraries we’ve used throughout the book, you can
implement most of this book’s examples using this container. For more about the available
Docker stacks, visit:

https://jupyter-docker-stacks.readthedocs.io/en/latest/index.html

Run Jupyter Docker Stack
Before performing the next step, ensure that JupyterLab is not currently running on your
computer. Let’s download and run the jupyter/pyspark-notebook Docker stack. To
ensure that you do not lose your work when you close the Docker container, we’ll attach
a local file-system folder to the container and use it to save your notebook—Windows
users should replace \ with ^. :

docker run -p 8888:8888 -p 4040:4040 -it --user root \
 -v fullPathToTheFolderYouWantToUse:/home/jovyan/work \
 jupyter/pyspark-notebook:14fdfbf9cfc1 start.sh jupyter lab

47. Some Windows users might have to follow the instructions under Allow specific apps to make
changes to controlled folders at https://docs.microsoft.com/en-us/windows/security/

threat-protection/windows-defender-exploit-guard/customize-controlled-folders-ex-

ploit-guard.

https://www.docker.com/products/docker-desktop
https://docs.docker.com/machine/drivers/virtualbox/
https://docs.docker.com/install/overview/
https://docs.docker.com/get-started/
https://jupyter-docker-stacks.readthedocs.io/en/latest/index.html
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/customize-controlled-folders-ex-ploit-guard
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/customize-controlled-folders-ex-ploit-guard
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/customize-controlled-folders-ex-ploit-guard

ptg27972259

544 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

The first time you run the preceding command, Docker will download the Docker con-
tainer named:

jupyter/pyspark-notebook:14fdfbf9cfc1

The notation ":14fdfbf9cfc1" indicates the specific jupyter/pyspark-notebook con-
tainer to download. At the time of this writing, 14fdfbf9cfc1 was the newest version of
the container. Specifying the version as we did here helps with reproducibility. Without the
":14fdfbf9cfc1" in the command, Docker will download the latest version of the con-
tainer, which might contain different software versions and might not be compatible with
the code you’re trying to execute. The Docker container is nearly 6GB, so the initial down-
load time will depend on your Internet connection’s speed.

Opening JupyterLab in Your Browser
Once the container is downloaded and running, you’ll see a statement in your Command
Prompt, Terminal or shell window like:

Copy/paste this URL into your browser when you connect for the first
time, to login with a token:

 http://(bb00eb337630 or 127.0.0.1):8888/?token=
 9570295e90ee94ecef75568b95545b7910a8f5502e6f5680

Copy the long hexadecimal string (the string on your system will differ from this one):

9570295e90ee94ecef75568b95545b7910a8f5502e6f5680

then open http://localhost:8888/lab in your browser (localhost corresponds to
127.0.0.1 in the preceding output) and paste your token in the Password or token field.
Click Log in to be taken to the JupyterLab interface. If you accidentally close your browser,
go to http://localhost:8888/lab to continue your session.

When running in this Docker container, the work folder in the Files tab at the left side
of JupyterLab represents the folder you attached to the container in the docker run com-
mand’s -v option. From here, you can open the notebook files we provide for you. Any new
notebooks or other files you create will be saved to this folder by default. Because the Docker
container’s work folder is connected to a folder on your computer, any files you create in
JupyterLab will remain on your computer, even if you decide to delete the Docker container.

Accessing the Docker Container’s Command Line
Each Docker container has a command-line interface like the one you’ve used to run IPy-
thon throughout this book. Via this interface, you can install Python packages into the
Docker container and even use IPython as you’ve done previously.

Open a separate Anaconda Command Prompt, Terminal or shell and list the cur-
rently running Docker containers with the command:

docker ps

The output of this command is wide, so the lines of text will likely wrap, as in:

CONTAINER ID IMAGE COMMAND
 CREATED STATUS PORTS
 NAMES
f54f62b7e6d5 jupyter/pyspark-notebook:14fdfbf9cfc1 "tini -g --
/bin/bash" 2 minutes ago Up 2 minutes 0.0.0.0:8888->8888/tcp
 friendly_pascal

http://(bb00eb337630or127.0.0.1):8888/?token=
http://(bb00eb337630or127.0.0.1):8888/?token=

ptg27972259

16.6 Spark 545

In the last line of our system’s output under the column head NAMES in the third line is the
name that Docker randomly assigned to the running container—friendly_pascal—the
name on your system will differ. To access the container’s command line, execute the fol-
lowing command, replacing container_name with the running container’s name:

docker exec -it container_name /bin/bash

The Docker container uses Linux under the hood, so you’ll see a Linux prompt where you
can enter commands.

The app in this section will use features of the NLTK and TextBlob libraries you used
in the “Natural Language Processing” chapter. Neither is preinstalled in the Jupyter
Docker stacks. To install NLTK and TextBlob enter the command:

conda install -c conda-forge nltk textblob

Stopping and Restarting a Docker Container
Every time you start a container with docker run, Docker gives you a new instance that
does not contain any libraries you installed previously. For this reason, you should keep
track of your container name, so you can use it from another Anaconda Command
Prompt, Terminal or shell window to stop the container and restart it. The command

docker stop container_name

will shut down the container. The command

docker restart container_name

will restart the container. Docker also provides a GUI app called Kitematic that you can
use to manage your containers, including stopping and restarting them. You can get the
app from https://kitematic.com/ and access it through the Docker menu. The follow-
ing user guide overviews how to manage containers with the tool:

https://docs.docker.com/kitematic/userguide/

16.6.3 Word Count with Spark
In this section, we’ll use Spark’s filtering, mapping and reducing capabilities to implement
a simple word count example that summarizes the words in Romeo and Juliet. You can
work with the existing notebook named RomeoAndJulietCounter.ipynb in the Spark-
WordCount folder (into which you should copy your RomeoAndJuliet.txt file from the
“Natural Language Processing” chapter), or you can create a new notebook, then enter and
execute the snippets we show.

Loading the NLTK Stop Words
In this app, we’ll use techniques you learned in the “Natural Language Processing” chapter
to eliminate stop words from the text before counting the words’ frequencies. First, down-
load the NLTK stop words:

[1]: import nltk
 nltk.download('stopwords')
[nltk_data] Downloading package stopwords to /home/jovyan/nltk_data...
[nltk_data] Package stopwords is already up-to-date!
[1]: True

https://kitematic.com/
https://docs.docker.com/kitematic/userguide/

ptg27972259

546 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

Next, load the stop words:

Configuring a SparkContext
A SparkContext (from module pyspark) object gives you access to Spark’s capabilities in
Python. Many Spark environments create the SparkContext for you, but in the Jupyter
pyspark-notebook Docker stack, you must create this object.

First, let’s specify the configuration options by creating a SparkConf object (from
module pyspark). The following snippet calls the object’s setAppName method to specify
the Spark application’s name and calls the object’s setMaster method to specify the Spark
cluster’s URL. The URL 'local[*]' indicates that Spark is executing on your local com-
puter (as opposed to a cloud-based cluster), and the asterisk indicates that Spark should
run our code using the same number of threads as there are cores on the computer:

Threads enable a single node cluster to execute portions of the Spark tasks concurrently to
simulate the parallelism that Spark clusters provide. When we say that two tasks are oper-
ating concurrently, we mean that they’re both making progress at once—typically by exe-
cuting a task for a short burst of time, then allowing another task to execute. When we say
that two tasks are operating in parallel, we mean that they’re executing simultaneously,
which is one of the key benefits of Hadoop and Spark executing on cloud-based clusters
of computers.

Next, create the SparkContext, passing the SparkConf as its argument:

Reading the Text File and Mapping It to Words
You work with a SparkContext using functional-style programming techniques, like fil-
tering, mapping and reduction, applied to a resilient distributed dataset (RDD). An
RDD takes data stored throughout a cluster in the Hadoop file system and enables you to
specify a series of processing steps to transform the data in the RDD. These processing
steps are lazy (Chapter 5)—they do not perform any work until you indicate that Spark
should process the task.

The following snippet specifies three steps:

• SparkContext method textFile loads the lines of text from RomeoAndJu-
liet.txt and returns it as an RDD (from module pyspark) of strings that repre-
sent each line.

• RDD method map uses its lambda argument to remove all punctuation with Text-
Blob’s strip_punc function and to convert each line of text to lowercase. This
method returns a new RDD on which you can specify additional tasks to perform.

• RDD method flatMap uses its lambda argument to map each line of text into its
words and produces a single list of words, rather than the individual lines of text.
The result of flatMap is a new RDD representing all the words in Romeo and Juliet.

[2]: from nltk.corpus import stopwords
 stop_words = stopwords.words('english')

[3]: from pyspark import SparkConf
 configuration = SparkConf().setAppName('RomeoAndJulietCounter')\
 .setMaster('local[*]')

[4]: from pyspark import SparkContext
 sc = SparkContext(conf=configuration)

ptg27972259

16.6 Spark 547

Removing the Stop Words
Next, let’s use RDD method filter to create a new RDD with no stop words remaining:

Counting Each Remaining Word
Now that we have only the non-stop-words, we can count the number of occurrences of
each word. To do so, we first map each word to a tuple containing the word and a count
of 1. This is similar to what we did in Hadoop MapReduce. Spark will distribute the
reduction task across the cluster’s nodes. On the resulting RDD, we then call the method
reduceByKey, passing the operator module’s add function as an argument. This tells
method reduceByKey to add the counts for tuples that contain the same word (the key):

Locating Words with Counts Greater Than or Equal to 60
Since there are hundreds of words in Romeo and Juliet, let’s filter the RDD to keep only
those words with 60 or more occurrences:

Sorting and Displaying the Results
At this point, we’ve specified all the steps to count the words. When you call RDD method
collect, Spark initiates all the processing steps we specified above and returns a list con-
taining the final results—in this case, the tuples of words and their counts. From your per-
spective, everything appears to execute on one computer. However, if the SparkContext
is configured to use a cluster, Spark will divide the tasks among the cluster’s worker nodes
for you. In the following snippet, sort in descending order (reverse=True) the list of
tuples by their counts (itemgetter(1)).

The following snippet calls method collect to obtain the results and sorts those
results in descending order by word count:

Finally, let’s display the results. First, we determine the word with the most letters so
we can right-align all the words in a field of that length, then we display each word and its
count:

[5]: from textblob.utils import strip_punc
 tokenized = sc.textFile('RomeoAndJuliet.txt')\
 .map(lambda line: strip_punc(line, all=True).lower())\
 .flatMap(lambda line: line.split())

[6]: filtered = tokenized.filter(lambda word: word not in stop_words)

[7]: from operator import add
 word_counts = filtered.map(lambda word: (word, 1)).reduceByKey(add)

[8]: filtered_counts = word_counts.filter(lambda item: item[1] >= 60)

[9]: from operator import itemgetter
 sorted_items = sorted(filtered_counts.collect(),
 key=itemgetter(1), reverse=True)

[10]: max_len = max([len(word) for word, count in sorted_items])
 for word, count in sorted_items:
 print(f'{word:>{max_len}}: {count}')
[10]: romeo: 298
 thou: 277
 juliet: 178
 thy: 170S
 nurse: 146

ptg27972259

548 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

16.6.4 Spark Word Count on Microsoft Azure
As we said previously, we want to expose you to both tools you can use for free and real-
world development scenarios. In this section, you’ll implement the Spark word-count
example on a Microsoft Azure HDInsight Spark cluster.

Create an Apache Spark Cluster in HDInsight Using the Azure Portal
The following link explains how to set up a Spark cluster using the HDInsight service:

https://docs.microsoft.com/en-us/azure/hdinsight/spark/apache-spark-
jupyter-spark-sql-use-portal

While following the Create an HDInsight Spark cluster steps, note the same issues we listed
in the Hadoop cluster setup earlier in this chapter and for the Cluster type select Spark.

Again, the default cluster configuration provides more resources than you need for our
examples. So, in the Cluster summary, perform the steps shown in the Hadoop cluster
setup to change the number of worker nodes to 2 and to configure the worker and head
nodes to use D3 v2 computers. When you click Create, it takes 20 to 30 minutes to con-
figure and deploy your cluster.

Install Libraries into a Cluster
If your Spark code requires libraries that are not installed in the HDInsight cluster, you’ll
need to install them. To see what libraries are installed by default, you can use ssh to log
into your cluster (as we showed earlier in the chapter) and execute the command:

/usr/bin/anaconda/envs/py35/bin/conda list

Since your code will execute on multiple cluster nodes, libraries must be installed on
every node. Azure requires you to create a Linux shell script that specifies the commands
to install the libraries. When you submit that script to Azure, it validates the script, then
executes it on every node. Linux shell scripts are beyond this book’s scope, and the script
must be hosted on a web server from which Azure can download the file. So, we created

 capulet: 141
 love: 136
 thee: 135
 shall: 110
 lady: 109
 friar: 104
 come: 94
 mercutio: 83
 good: 80
 benvolio: 79
 enter: 75
 go: 75
 i’ll: 71
 tybalt: 69
 death: 69
 night: 68
 lawrence: 67
 man: 65
 hath: 64
 one: 60

https://docs.microsoft.com/en-us/azure/hdinsight/spark/apache-spark-jupyter-spark-sql-use-portal
https://docs.microsoft.com/en-us/azure/hdinsight/spark/apache-spark-jupyter-spark-sql-use-portal

ptg27972259

16.6 Spark 549

an install script for you that installs the libraries we use in the Spark examples. Perform the
following steps to install these libraries:

1. In the Azure portal, select your cluster.

2. In the list of items under the cluster’s search box, click Script Actions.

3. Click Submit new to configure the options for the library installation script. For
the Script type select Custom, for the Name specify libraries and for the Bash
script URI use:
http://deitel.com/bookresources/IntroToPython/install_libraries.sh

4. Check both Head and Worker to ensure that the script installs the libraries on all
the nodes.

5. Click Create.

When the cluster finishes executing the script, if it executed successfully, you’ll see a green
check next to the script name in the list of script actions. Otherwise, Azure will notify you
that there were errors.

Copying RomeoAndJuliet.txt to the HDInsight Cluster
As you did in the Hadoop demo, let’s use the scp command to upload to the cluster the
RomeoAndJuliet.txt file you used in the “Natural Language Processing” chapter. In a
Command Prompt, Terminal or shell, change to the folder containing the file (we assume
this chapter’s ch16 folder), then enter the following command. Replace YourClusterName
with the name you specified when creating your cluster and press Enter only when you’ve
typed the entire command. The colon is required and indicates that you’ll supply your
cluster password when prompted. At that prompt, type the password you specified when
setting up the cluster, then press Enter:

scp RomeoAndJuliet.txt sshuser@YourClusterName-ssh.azurehdinsight.net:

Next, use ssh to log into your cluster and access its command line. In a Command
Prompt, Terminal or shell, execute the following command. Be sure to replace YourClus-
terName with your cluster name. Again, you’ll be prompted for your cluster password:

ssh sshuser@YourClusterName-ssh.azurehdinsight.net

To work with the RomeoAndJuliet.txt file in Spark, first use the ssh session to copy
the file into the cluster’s Hadoop’s file system by executing the following command. Once
again, we’ll use the already existing folder /examples/data that Microsoft includes for use
with HDInsight tutorials. Again, press Enter only when you’ve typed the entire command:

hadoop fs -copyFromLocal RomeoAndJuliet.txt
 /example/data/RomeoAndJuliet.txt

Accessing Jupyter Notebooks in HDInsight
At the time of this writing, HDInsight uses the old Jupyter Notebook interface, rather than
the newer JupyterLab interface shown earlier. For a quick overview of the old interface see:

https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/
Notebook%20Basics.html

To access Jupyter Notebooks in HDInsight, in the Azure portal select All resources, then
your cluster. In the Overview tab, select Jupyter notebook under Cluster dashboards. This

http://deitel.com/bookresources/IntroToPython/install_libraries.sh
https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Notebook%20Basics.html
https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Notebook%20Basics.html

ptg27972259

550 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

opens a web browser window and asks you to log in. Use the username and password you
specified when setting up the cluster. If you did not specify a username, the default is
admin. Once you log in, Jupyter displays a folder containing PySpark and Scala subfold-
ers. These contain Python and Scala Spark tutorials.

Uploading the RomeoAndJulietCounter.ipynb Notebook
You can create new notebooks by clicking New and selecting PySpark3, or you can upload
existing notebooks from your computer. For this example, let’s upload the previous sec-
tion’s RomeoAndJulietCounter.ipynb notebook and modify it to work with Azure. To do
so, click the Upload button, navigate to the ch16 example folder’s SparkWordCount folder,
select RomeoAndJulietCounter.ipynb and click Open. This displays the file in the folder
with an Upload button to its right. Click that button to place the notebook in the current
folder. Next, click the notebook’s name to open it in a new browser tab. Jupyter will dis-
play a Kernel not found dialog. Select PySpark3 and click OK. Do not run any cells yet.

Modifying the Notebook to Work with Azure
Perform the following steps, executing each cell as you complete the step:

1. The HDInsight cluster will not allow NLTK to store the downloaded stop words
in NLTK’s default folder because it’s part of the system’s protected folders. In the
first cell, modify the call nltk.download('stopwords') as follows to store the
stop words in the current folder ('.'):

 nltk.download('stopwords', download_dir='.')

When you execute the first cell, Starting Spark application appears below the
cell while HDInsight sets up a SparkContext object named sc for you. When this
task is complete, the cell’s code executes and downloads the stop words.

2. In the second cell, before loading the stop words, you must tell NLTK that
they’re located in the current folder. Add the following statement after the
import statement to tell NLTK to search for its data in the current folder:

 nltk.data.path.append('.')

3. Because HDInsight sets up the SparkContext object for you, the third and fourth
cells of the original notebook are not needed, so you can delete them. To do so,
either click inside it and select Delete Cells from Jupyter’s Edit menu, or click in
the white margin to the cell’s left and type dd.

4. In the next cell, specify the location of RomeoAndJuliet.txt in the underlying
Hadoop file system. Replace the string 'RomeoAndJuliet.txt' with the string

 'wasb:///example/data/RomeoAndJuliet.txt'

The notation wasb:/// indicates that RomeoAndJuliet.txt is stored in a Win-
dows Azure Storage Blob (WASB)—Azure’s interface to the HDFS file system.

5. Because Azure currently uses Python 3.5.x, it does not support f-strings. So, in
the last cell, replace the f-string with the following older-style Python string for-
matting using the string method format:

 print('{:>{width}}: {}'.format(word, count, width=max_len))

You’ll see the same final results as in the previous section.

http://2.In
http://4.In

ptg27972259

16.7 Counting Twitter Hashtags Using the pyspark-notebook Docker Stack 551

Caution: Be sure to delete your cluster and other resources when you’re done with
them, so you do not incur charges. For more information, see:

https://docs.microsoft.com/en-us/azure/azure-resource-manager/
resource-group-portal

Note that when you delete your Azure resources, your notebooks will be deleted as well. You
can download the notebook you just executed by selecting File > Download as > Notebook
(.ipynb) in Jupyter.

16.7 Spark Streaming: Counting Twitter Hashtags Using
the pyspark-notebook Docker Stack
In this section, you’ll create and run a Spark streaming application in which you’ll receive
a stream of tweets on the topic(s) you specify and summarize the top-20 hashtags in a bar
chart that updates every 10 seconds. For this purpose of this example, you’ll use the Jupy-
ter Docker container from the first Spark example.

There are two parts to this example. First, using the techniques from the “Data Min-
ing Twitter” chapter, you’ll create a script that streams tweets from Twitter. Then, we’ll
use Spark streaming in a Jupyter Notebook to read the tweets and summarize the hashtags.

The two parts will communicate with one another via networking sockets—a low-
level view of client/server networking in which a client app communicates with a server app
over a network using techniques similar to file I/O. A program can read from a socket or
write to a socket similarly to reading from a file or writing to a file. The socket represents
one endpoint of a connection. In this case, the client will be a Spark application, and the
server will be a script that receives streaming tweets and sends them to the Spark app.

Launching the Docker Container and Installing Tweepy
For this example, you’ll install the Tweepy library into the Jupyter Docker container. Fol-
low Section 16.6.2’s instructions for launching the container and installing Python librar-
ies into it. Use the following command to install Tweepy:

pip install tweepy

16.7.1 Streaming Tweets to a Socket
The script starttweetstream.py contains a modified version of the TweetListener class
from the “Data Mining Twitter” chapter. It streams the specified number of tweets and
sends them to a socket on the local computer. When the tweet limit is reached, the script
closes the socket. You’ve already used Twitter streaming, so we’ll focus only on what’s
new. Ensure that the file keys.py (in the ch16 folder’s SparkHashtagSummarizer sub-
folder) contains your Twitter credentials.

Executing the Script in the Docker Container
In this example, you’ll use JupyterLab’s Terminal window to execute starttweet-
stream.py in one tab, then use a notebook to perform the Spark task in another tab. With
the Jupyter pyspark-notebook Docker container running, open

http://localhost:8888/lab

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-portal
http://localhost:8888/lab

ptg27972259

552 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

in your web browser. In JupyterLab, select File > New > Terminal to open a new tab con-
taining a Terminal. This is a Linux-based command line. Typing the ls command and
pressing Enter lists the current folder’s contents. By default, you’ll see the container’s work
folder.

To execute starttweetstream.py, you must first navigate to the SparkHashtagSum-
marizer folder with the command48:

cd work/SparkHashtagSummarizer

You can now execute the script with the command of the form

ipython starttweetstream.py number_of_tweets search_terms

where number_of_tweets specifies the total number of tweets to process and search_terms
one or more space-separated strings to use for filtering tweets. For example, the following
command would stream 1000 tweets about football:

ipython starttweetstream.py 1000 football

At this point, the script will display "Waiting for connection" and will wait until Spark
connects to begin streaming the tweets.

starttweetstream.py import Statements
For discussion purposes, we’ve divided starttweetstream.py into pieces. First, we
import the modules used in the script. The Python Standard Library’s socket module
provides the capabilities that enable Python apps to communicate via sockets.

Class TweetListener
Once again, you’ve seen most of the code in class TweetListener, so we focus only on
what’s new here:

• Method __init__ (lines 12–17) now receives a connection parameter represent-
ing the socket and stores it in the self.connection attribute. We use this socket
to send the hashtags to the Spark application.

• In method on_status (lines 24–44), lines 27–32 extract the hashtags from the
Tweepy Status object, convert them to lowercase and create a space-separated
string of the hashtags to send to Spark. The key statement is line 39:

 self.connection.send(hashtags_string.encode('utf-8'))

which uses the connection object’s send method to send the tweet text to what-
ever application is reading from that socket. Method send expects as its argument

48. Windows users should note that Linux uses / rather than \ to separate folders and that file and folder
names are case sensitive.

1 # starttweetstream.py
2 """Script to get tweets on topic(s) specified as script argument(s)
3 and send tweet text to a socket for processing by Spark."""
4 import keys
5 import socket
6 import sys
7 import tweepy
8

ptg27972259

16.7 Counting Twitter Hashtags Using the pyspark-notebook Docker Stack 553

a sequence of bytes. The string method call encode('utf-8') converts the string
to bytes. Spark will automatically read the bytes and reconstruct the strings.

Main Application
Lines 50–80 execute when you run the script. You’ve connected to Twitter to stream
tweets previously, so here we discuss only what’s new in this example.

Line 51 gets the number of tweets to process by converting the command-line argu-
ment sys.argv[1] to an integer. Recall that element 0 represents the script’s name.

9 class TweetListener(tweepy.StreamListener):
10 """Handles incoming Tweet stream."""
11
12 def __init__(self, api, connection, limit=10000):
13 """Create instance variables for tracking number of tweets."""
14 self.connection = connection
15 self.tweet_count = 0
16 self.TWEET_LIMIT = limit # 10,000 by default
17 super().__init__(api) # call superclass's init
18
19 def on_connect(self):
20 """Called when your connection attempt is successful, enabling
21 you to perform appropriate application tasks at that point."""
22 print('Successfully connected to Twitter\n')
23
24 def on_status(self, status):
25 """Called when Twitter pushes a new tweet to you."""
26 # get the hashtags
27 hashtags = []
28
29 for hashtag_dict in status.entities['hashtags']:
30 hashtags.append(hashtag_dict['text'].lower())
31
32 hashtags_string = ' '.join(hashtags) + '\n'
33 print(f'Screen name: {status.user.screen_name}:')
34 print(f' Hashtags: {hashtags_string}')
35 self.tweet_count += 1 # track number of tweets processed
36
37 try:
38 # send requires bytes, so encode the string in utf-8 format
39 self.connection.send(hashtags_string.encode('utf-8'))
40 except Exception as e:
41 print(f'Error: {e}')
42
43 # if TWEET_LIMIT is reached, return False to terminate streaming
44 return self.tweet_count != self.TWEET_LIMIT
45
46 def on_error(self, status):
47 print(status)
48 return True
49

50 if __name__ == '__main__':
51 tweet_limit = int(sys.argv[1]) # get maximum number of tweets

ptg27972259

554 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

Line 52 calls the socket module’s socket function, which returns a socket object that
we’ll use to wait for a connection from the Spark application.

Line 55 calls the socket object’s bind method with a tuple containing the hostname
or IP address of the computer and the port number on that computer. Together these rep-
resent where this script will wait for an initial connection from another app:

Line 58 calls the socket’s listen method, which causes the script to wait until a con-
nection is received. This is the statement that prevents the Twitter stream from starting
until the Spark application connects.

Once the Spark application connects, line 61 calls socket method accept, which
accepts the connection. This method returns a tuple containing a new socket object that
the script will use to communicate with the Spark application and the IP address of the
Spark application’s computer.

Next, we authenticate with Twitter and start the stream. Lines 73–74 set up the
stream, passing the socket object connection to the TweetListener so that it can use the
socket to send hashtags to the Spark application.

Finally, lines 79–80 call the close method on the socket objects to release their
resources.

52 client_socket = socket.socket() # create a socket
53

54 # app will use localhost (this computer) port 9876
55 client_socket.bind(('localhost', 9876))
56

57 print('Waiting for connection')
58 client_socket.listen() # wait for client to connect
59

60 # when connection received, get connection/client address
61 connection, address = client_socket.accept()
62 print(f'Connection received from {address}')
63

64 # configure Twitter access
65 auth = tweepy.OAuthHandler(keys.consumer_key, keys.consumer_secret)
66 auth.set_access_token(keys.access_token, keys.access_token_secret)
67
68 # configure Tweepy to wait if Twitter rate limits are reached
69 api = tweepy.API(auth, wait_on_rate_limit=True,
70 wait_on_rate_limit_notify=True)
71
72 # create the Stream
73 twitter_stream = tweepy.Stream(api.auth,
74 TweetListener(api, connection, tweet_limit))
75
76 # sys.argv[2] is the first search term
77 twitter_stream.filter(track=sys.argv[2:])
78

79 connection.close()
80 client_socket.close()

ptg27972259

16.7 Counting Twitter Hashtags Using the pyspark-notebook Docker Stack 555

16.7.2 Summarizing Tweet Hashtags; Introducing Spark SQL
In this section, you’ll use Spark streaming to read the hashtags sent via a socket by the
script starttweetstream.py and summarize the results. You can either create a new note-
book and enter the code you see here or load the hashtagsummarizer.ipynb notebook we
provide in the ch16 examples folder’s SparkHashtagSummarizer subfolder.

Importing the Libraries
First, let’s import the libraries used in this notebook. We’ll explain the pyspark classes as
we use them. From IPython, we imported the display module, which contains classes and
utility functions that you can use in Jupyter. In particular, we’ll use the clear_output
function to remove an existing chart before displaying a new one:

This Spark application summarizes hashtags in 10-second batches. After processing each
batch, it displays a Seaborn barplot. The IPython magic

%matplotlib inline

indicates that Matplotlib-based graphics should be displayed in the notebook rather than
in their own windows. Recall that Seaborn uses Matplotlib.

We’ve used several IPython magics throughout the book. There are many magics spe-
cifically for use in Jupyter Notebooks. For the complete list of magics see:

https://ipython.readthedocs.io/en/stable/interactive/magics.html

Utility Function to Get the SparkSession
As you’ll soon see, you can use Spark SQL to query data in resilient distributed datasets
(RDDs). Spark SQL uses a Spark DataFrame to get a table view of the underlying RDDs.
A SparkSession (module pyspark.sql) is used to create a DataFrame from an RDD.

There can be only one SparkSession object per Spark application. The following
function, which we borrowed from the Spark Streaming Programming Guide,49 defines the
correct way to get a SparkSession instance if it already exists or to create one if it does not
yet exist:50

[1]: from pyspark import SparkContext
 from pyspark.streaming import StreamingContext
 from pyspark.sql import Row, SparkSession
 from IPython import display
 import matplotlib.pyplot as plt
 import seaborn as sns
 %matplotlib inline

49. https://spark.apache.org/docs/latest/streaming-programming-guide.html#dataframe-

and-sql-operations.
50. Because this function was borrowed from the Spark Streaming Programming Guide’s DataFrame and

SQL Operations section (https://spark.apache.org/docs/latest/streaming-programming-
guide.html#dataframe-and-sql-operations), we did not rename it to use Python’s standard
function naming style, and we did not use single quotes to delimit strings.

https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://spark.apache.org/docs/latest/streaming-programming-guide.html#dataframe-and-sql-operations
https://spark.apache.org/docs/latest/streaming-programming-guide.html#dataframe-and-sql-operations
https://spark.apache.org/docs/latest/streaming-programming-guide.html#dataframe-and-sql-operations
https://spark.apache.org/docs/latest/streaming-programming-guide.html#dataframe-and-sql-operations

ptg27972259

556 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

Utility Function to Display a Barchart Based on a Spark DataFrame
We call function display_barplot after Spark processes each batch of hashtags. Each call
clears the previous Seaborn barplot, then displays a new one based on the Spark DataFrame
it receives. First, we call the Spark DataFrame’s toPandas method to convert it to a pandas
DataFrame for use with Seaborn. Next, we call the clear_output function from the IPy-
thon.display module. The keyword argument wait=True indicates that the function
should remove the prior graph (if there is one), but only once the new graph is ready to
display. The rest of the code in the function uses standard Seaborn techniques we’ve
shown previously. The function call sns.color_palette('cool', 20) selects twenty col-
ors from the Matplotlib 'cool' color palette:

Utility Function to Summarize the Top-20 Hashtags So Far
In Spark streaming, a DStream is a sequence of RDDs each representing a mini-batch of
data to process. As you’ll soon see, you can specify a function that is called to perform a
task for every RDD in the stream. In this app, the function count_tags will summarize
the hashtag counts in a given RDD, add them to the current totals (maintained by the
SparkSession), then display an updated top-20 barplot so that we can see how the top-
20 hashtags are changing over time.51 For discussion purposes, we’ve broken this function

[2]: def getSparkSessionInstance(sparkConf):
 """Spark Streaming Programming Guide's recommended method
 for getting an existing SparkSession or creating a new one."""
 if ("sparkSessionSingletonInstance" not in globals()):
 globals()["sparkSessionSingletonInstance"] = SparkSession \
 .builder \
 .config(conf=sparkConf) \
 .getOrCreate()
 return globals()["sparkSessionSingletonInstance"]

[3]: def display_barplot(spark_df, x, y, time, scale=2.0, size=(16, 9)):
 """Displays a Spark DataFrame's contents as a bar plot."""
 df = spark_df.toPandas()

 # remove prior graph when new one is ready to display
 display.clear_output(wait=True)
 print(f'TIME: {time}')

 # create and configure a Figure containing a Seaborn barplot
 plt.figure(figsize=size)
 sns.set(font_scale=scale)
 barplot = sns.barplot(data=df, x=x, y=y
 palette=sns.color_palette('cool', 20))

 # rotate the x-axis labels 90 degrees for readability
 for item in barplot.get_xticklabels():
 item.set_rotation(90)

 plt.tight_layout()
 plt.show()

51. When this function gets called the first time, you might see an exception’s error message display if no
tweets with hashtags have been received yet. This is because we simply display the error message in
the standard output. That message will disappear as soon as there are tweets with hashtags.

ptg27972259

16.7 Counting Twitter Hashtags Using the pyspark-notebook Docker Stack 557

into smaller pieces. First, we get the SparkSession by calling the utility function
getSparkSessionInstance with the SparkContext’s configuration information. Every
RDD has access to the SparkContext via the context attribute:

Next, we call the RDD’s map method to map the data in the RDD to Row objects
(from the pyspark.sql package). The RDDs in this example contain tuples of hashtags
and counts. The Row constructor uses the names of its keyword arguments to specify the
column names for each value in that row. In this case, tag[0] is the hashtag in the tuple,
and tag[1] is the total count for that hashtag:

The next statement creates a Spark DataFrame containing the Row objects. We’ll use
this with Spark SQL to query the data to get the top-20 hashtags with their total counts:

To query a Spark DataFrame, first create a table view, which enables Spark SQL to
query the DataFrame like a table in a relational database. Spark DataFrame method
createOrReplaceTempView creates a temporary table view for the DataFrame and names
the view for use in the from clause of a query:

Once you have a table view, you can query the data using Spark SQL.52 The following
statement uses the SparkSession instance’s sql method to perform a Spark SQL query
that selects the hashtag and total columns from the hashtags table view, orders the
selected rows by total in descending (desc) order, then returns the first 20 rows of the
result (limit 20). Spark SQL returns a new Spark DataFrame containing the results:

[4]: def count_tags(time, rdd):
 """Count hashtags and display top-20 in descending order."""
 try:
 # get SparkSession
 spark = getSparkSessionInstance(rdd.context.getConf())

 # map hashtag string-count tuples to Rows
 rows = rdd.map(
 lambda tag: Row(hashtag=tag[0], total=tag[1]))

 # create a DataFrame from the Row objects
 hashtags_df = spark.createDataFrame(rows)

 # create a temporary table view for use with Spark SQL
 hashtags_df.createOrReplaceTempView('hashtags')

 52. For details of Spark SQL’s syntax, seehttps://spark.apache.org/sql/.

 # use Spark SQL to get top 20 hashtags in descending order
 top20_df = spark.sql(
 """select hashtag, total
 from hashtags
 order by total, hashtag desc
 limit 20""")

https://spark.apache.org/sql/

ptg27972259

558 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

Finally, we pass the Spark DataFrame to our display_barplot utility function. The
hashtags and totals will be displayed on the x- and y-axes, respectively. We also display the
time at which count_tags was called:

Getting the SparkContext
The rest of the code in this notebook sets up Spark streaming to read text from the start-
tweetstream.py script and specifies how to process the tweets. First, we create the Spark-
Context for connecting to the Spark cluster:

Getting the StreamingContext
For Spark streaming, you must create a StreamingContext (module pyspark.streaming),
providing as arguments the SparkContext and how often in seconds to process batches of
streaming data. In this app, we’ll process batches every 10 seconds—this is the batch inter-
val:

Depending on how fast data is arriving, you may wish to shorten or lengthen your batch
intervals. For a discussion of this and other performance-related issues, see the Perfor-
mance Tuning section of the Spark Streaming Programming Guide:

https://spark.apache.org/docs/latest/streaming-programming-
guide.html#performance-tuning

Setting Up a Checkpoint for Maintaining State
By default, Spark streaming does not maintain state information as you process the stream
of RDDs. However, you can use Spark checkpointing to keep track of the streaming state.
Checkpointing enables:

• fault-tolerance for restarting a stream in cases of cluster node or Spark application
failures, and

• stateful transformations, such as summarizing the data received so far—as we’re
doing in this example.

StreamingContext method checkpoint sets up the checkpointing folder:

For a Spark streaming application in a cloud-based cluster, you’d specify a location within
HDFS to store the checkpoint folder. We’re running this example in the local Jupyter
Docker image, so we simply specified the name of a folder, which Spark will create in the
current folder (in our case, the ch16 folder’s SparkHashtagSummarizer). For more details
on checkpointing, see

https://spark.apache.org/docs/latest/streaming-programming-
guide.html#checkpointing

 display_barplot(top20_df, x='hashtag', y='total', time=time)
 except Exception as e:
 print(f'Exception: {e}')

[5]: sc = SparkContext()

[6]: ssc = StreamingContext(sc, 10)

[7]: ssc.checkpoint('hashtagsummarizer_checkpoint')

https://spark.apache.org/docs/latest/streaming-programming-guide.html#performance-tuning
https://spark.apache.org/docs/latest/streaming-programming-guide.html#performance-tuning
https://spark.apache.org/docs/latest/streaming-programming-guide.html#checkpointing
https://spark.apache.org/docs/latest/streaming-programming-guide.html#checkpointing

ptg27972259

16.7 Counting Twitter Hashtags Using the pyspark-notebook Docker Stack 559

Connecting to the Stream via a Socket
StreamingContext method socketTextStream connects to a socket from which a stream
of data will be received and returns a DStream that receives the data. The method’s argu-
ments are the hostname and port number to which the StreamingContext should con-
nect—these must match where the starttweetstream.py script is waiting for the
connection:

Tokenizing the Lines of Hashtags
We use functional-style programming calls on a DStream to specify the processing steps to
perform on the streaming data. The following call to DStream’s flatMap method tokenizes
a line of space-separated hashtags and returns a new DStream representing the individual
tags:

Mapping the Hashtags to Tuples of Hashtag-Count Pairs
Next, similar to the Hadoop mapper earlier in this chapter, we use DStream method map
to get a new DStream in which each hashtag is mapped to a hashtag-count pair (in this case
as a tuple) in which the count is initially 1:

Totaling the Hashtag Counts So Far
DStream method updateStateByKey receives a two-argument lambda that totals the
counts for a given key and adds them to the prior total for that key:

Specifying the Method to Call for Every RDD
Finally, we use DSteam method foreachRDD to specify that every processed RDD should
be passed to function count_tags, which then summarizes the top-20 hashtags so far and
displays a barplot:

Starting the Spark Stream
Now, that we’ve specified the processing steps, we call the StreamingContext’s start
method to connect to the socket and begin the streaming process.

The following shows a sample barplot produced while processing a stream of tweets
about “football.” Because football is a different sport in the United States and the rest of
the world the hashtags relate to both American football and what we call soccer—we
grayed out three hashtags that were not appropriate for publication:

[8]: stream = ssc.socketTextStream('localhost', 9876)

[9]: tokenized = stream.flatMap(lambda line: line.split())

[10]: mapped = tokenized.map(lambda hashtag: (hashtag, 1))

[11]: hashtag_counts = tokenized.updateStateByKey(
 lambda counts, prior_total: sum(counts) + (prior_total or 0))

[12]: hashtag_counts.foreachRDD(count_tags)

[13]: ssc.start() # start the Spark streaming

ptg27972259

560 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

16.8 Internet of Things and Dashboards
In the late 1960s, the Internet began as the ARPANET, which initially connected four
universities and grew to 10 nodes by the end of 1970.53 In the last 50 years, that has grown
to billions of computers, smartphones, tablets and an enormous range of other device types
connected to the Internet worldwide. Any device connected to the Internet is a “thing” in
the Internet of Things (IoT).

Each device has a unique Internet protocol address (IP address) that identifies it. The
explosion of connected devices exhausted the approximately 4.3 billion available IPv4
(Internet Protocol version 4) addresses54 and led to the development of IPv6, which sup-
ports approximately 3.4×1038 addresses (that’s a lot of zeros).55

“Top research firms such as Gartner and McKinsey predict a jump from the 6 billion
connected devices we have worldwide today, to 20–30 billion by 2020.”56 Various predic-
tions say that number could be 50 billion. Computer-controlled, Internet-connected
devices continue to proliferate. The following is a small subset IoT device types and appli-
cations.

53. https://en.wikipedia.org/wiki/ARPANET#History..
54. https://en.wikipedia.org/wiki/IPv4_address_exhaustion.
55. https://en.wikipedia.org/wiki/IPv6.
56. https://www.pubnub.com/developers/tech/how-pubnub-works/.

https://en.wikipedia.org/wiki/ARPANET#History
https://en.wikipedia.org/wiki/IPv4_address_exhaustion
https://en.wikipedia.org/wiki/IPv6
https://www.pubnub.com/developers/tech/how-pubnub-works/

ptg27972259

16.8 Internet of Things and Dashboards 561

IoT Issues
Though there’s a lot of excitement and opportunity in IoT, not everything is positive.
There are many security, privacy and ethical concerns. Unsecured IoT devices have been
used to perform distributed-denial-of-service (DDOS) attacks on computer systems.57

Home security cameras that you intend to protect your home could potentially be hacked
to allow others access to the video stream. Voice-controlled devices are always “listening”
to hear their trigger words. This leads to privacy and security concerns. Children have acci-
dentally ordered products on Amazon by talking to Alexa devices, and companies have cre-
ated TV ads that would activate Google Home devices by speaking their trigger words and
causing Google Assistant to read Wikipedia pages about a product to you.58 Some people
worry that these devices could be used to eavesdrop. Just recently, a judge ordered Amazon
to turn over Alexa recordings for use in a criminal case.59

This Section’s Examples
In this section, we discuss the publish/subscribe model that IoT and other types of appli-
cations use to communicate. First, without writing any code, you’ll build a web-based
dashboard using Freeboard.io and subscribe to a sample live stream from the PubNub ser-
vice. Next, you’ll simulate an Internet-connected thermostat which publishes messages to
the free Dweet.io service using the Python module Dweepy, then create a dashboard visu-
alization of it with Freeboard.io. Finally, you’ll build a Python client that subscribes to a
sample live stream from the PubNub service and dynamically visualizes the stream with
Seaborn and a Matplotlib FuncAnimation.

16.8.1 Publish and Subscribe
IoT devices (and many other types of devices and applications) commonly communicate
with one another and with applications via pub/sub (publisher/subscriber) systems. A
publisher is any device or application that sends a message to a cloud-based service, which
in turn sends that message to all subscribers. Typically each publisher specifies a topic or

IoT devices

activity trackers—Apple
Watch, FitBit, …
Amazon Dash ordering but-
tons
Amazon Echo (Alexa), Apple
HomePod (Siri), Google
Home (Google Assistant)
appliances—ovens, coffee
makers, refrigerators, …
driverless cars
earthquake sensors

healthcare—blood glucose
monitors for diabetics, blood
pressure monitors, electrocar-
diograms (EKG/ECG), elec-
troencephalograms (EEG),
heart monitors, ingestible sen-
sors, pacemakers, sleep track-
ers, …
sensors—chemical, gas, GPS,
humidity, light, motion, pres-
sure, temperature, …

smart home—lights, garage
openers, video cameras, door-
bells, irrigation controllers,
security devices, smart locks,
smart plugs, smoke detectors,
thermostats, air vents
tsunami sensors
tracking devices
wine cellar refrigerators
wireless network devices

57. https://threatpost.com/iot-security-concerns-peaking-with-no-end-in-sight/131308/.
58. https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/

istr-security-voice-activated-smart-speakers-en.pdf.
59. https://techcrunch.com/2018/11/14/amazon-echo-recordings-judge-murder-case/.

http://Freeboard.io
http://Dweet.io
http://Freeboard.io
https://threatpost.com/iot-security-concerns-peaking-with-no-end-in-sight/131308/
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/istr-security-voice-activated-smart-speakers-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/istr-security-voice-activated-smart-speakers-en.pdf
https://techcrunch.com/2018/11/14/amazon-echo-recordings-judge-murder-case/

ptg27972259

562 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

channel, and each subscriber specifies one or more topics or channels for which they’d like
to receive messages. There are many pub/sub systems in use today. In the remainder of this
section, we’ll use PubNub and Dweet.io. You also should investigate Apache Kafka—a
Hadoop ecosystem component that provides a high-performance publish/subscribe ser-
vice, real-time stream processing and storage of streamed data.

16.8.2 Visualizing a PubNub Sample Live Stream with a Freeboard
Dashboard
PubNub is a pub/sub service geared to real-time applications in which any software and
device connected to the Internet can communicate via small messages. Some of their com-
mon use-cases include IoT, chat, online multiplayer games, social apps and collaborative
apps. PubNub provides several live streams for learning purposes, including one that sim-
ulates IoT sensors (Section 16.8.5 lists the others).

One common use of live data streams is visualizing them for monitoring purposes. In
this section, you’ll connect PubNub’s live simulated sensor stream to a Freeboard.io web-
based dashboard. A car’s dashboard visualizes data from your car’s sensors, showing infor-
mation such as the outside temperature, your speed, engine temperature, the time and the
amount of gas remaining. A web-based dashboard does the same thing for data from var-
ious sources, including IoT devices.

Freeboard.io is a cloud-based dynamic dashboard visualization tool. You’ll see that,
without writing any code, you can easily connect Freeboard.io to various data streams and
visualize the data as it arrives. The following dashboard visualizes data from three of the
four simulated sensors in the PubNub simulated IoT sensors stream:

For each sensor, we used a Gauge (the semicircular visualizations) and a Sparkline (the
jagged lines) to visualize the data. When you complete this section, you’ll see the Gauges
and Sparklines frequently moving as new data arrives multiple times per second.

In addition to their paid service, Freeboard.io provides an open-source version (with
fewer options) on GitHub. They also provide tutorials that show how to add custom plug-
ins, so you can develop your own visualizations to add to their dashboards.

Signing up for Freeboard.io
For this example, register for a Freeboard.io 30-day trial at

https://freeboard.io/signup

http://Dweet.io
http://Freeboard.io
http://Freeboard.io
http://Freeboard.io
http://Freeboard.io
http://Freeboard.io
http://Freeboard.io
https://freeboard.io/signup

ptg27972259

16.8 Internet of Things and Dashboards 563

Once you’ve registered, the My Freeboards page appears. If you’d like, you can click the
Try a Tutorial button and visualize data from your smartphone.

Creating a New Dashboard
In the upper-right corner of the My Freeboards page, enter Sensor Dashboard in the enter
a name field, then click the Create New button to create a dashboard. This displays the
dashboard designer.

Adding a Data Source
If you add your data source(s) before designing your dashboard, you’ll be able to configure
each visualization as you add it:

1. Under DATASOURCES, click ADD to specify a new data source.

2. The DATASOURCE dialog’s TYPE drop-down list shows the currently supported
data sources, though you can develop plug-ins for new data sources as well.60 Se-
lect PubNub. The web page for each PubNub sample live stream specifies the
Channel and Subscribe key. Copy these values from PubNub’s Sensor Network
page at https://www.pubnub.com/developers/realtime-data-streams/sen-
sor-network/, then insert their values in the corresponding DATASOURCE dialog
fields. Provide a NAME for your data source, then click SAVE.

Adding a Pane for the Humidity Sensor
A Freeboard.io dashboard is divided into panes that group visualizations. Multiple panes
can be dragged to rearrange them. Click the + Add Pane button to add a new pane. Each
pane can have a title. To set it, click the wrench icon on the pane, specify Humidity for the
TITLE, then click SAVE.

Adding a Gauge to the Humidity Pane
To add visualizations to a pane, click its + button to display the WIDGET dialog. The TYPE
drop-down list shows several built-in widgets. Choose Gauge. To the right of the VALUE
field, click + DATASOURCE, then select the name of your data source. This displays the
available values from that data source. Click humidity to select the humidity sensor’s value.
For UNITS, specify %, then click SAVE. This displays the new visualization, which imme-
diately begins showing values from the sensor stream.

Notice that the humidity value has four digits of precision to the right of the decimal
point. PubNub supports JavaScript expressions, so you can use them to perform calcula-
tions or format data. For example, you can use JavaScript’s function Math.round to round
the humidity value to the closest integer. To do so, hover the mouse over the gauge and
click its wrench icon. Then, insert "Math.round(" before the text in the VALUE field and
")" after the text, then click SAVE.

Adding a Sparkline to the Humidity Pane
A sparkline is a line graph without axes that’s typically used to give you a sense of how a
data value is changing over time. Add a sparkline for the humidity sensor by clicking the

60. Some of the listed data sources are available only via Freeboard.io, not the open source Freeboard on
GitHub.

https://www.pubnub.com/developers/realtime-data-streams/sen-sor-network/
https://www.pubnub.com/developers/realtime-data-streams/sen-sor-network/
http://Freeboard.io
http://Freeboard.io

ptg27972259

564 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

humidity pane’s + button, then selecting Sparkline from the TYPE drop-down list. For the
VALUE, once again select your data source and humidity, then click SAVE.

Completing the Dashboard
Using the techniques above, add two more panes and drag them to the right of the first.
Name them Radiation Level and Ambient Temperature, respectively, and configure each
pane with a Gauge and Sparkline as shown above. For the Radiation Level gauge, specify
Millirads/Hour for the UNITS and 400 for the MAXIMUM. For the Ambient Temperature
gauge, specify Celsius for the UNITS and 50 for the MAXIMUM.

16.8.3 Simulating an Internet-Connected Thermostat in Python
Simulation is one of the most important applications of computers. We used simulation
with dice rolling in earlier chapters. With IoT, it’s common to use simulators to test your
applications, especially when you do not have access to actual devices and sensors while
developing applications. Many cloud vendors have IoT simulation capabilities, such as
IBM Watson IoT Platform and IOTIFY.io.

Here, you’ll create a script that simulates an Internet-connected thermostat publish-
ing periodic JSON messages—called dweets—to dweet.io. The name “dweet” is based on
“tweet”—a dweet is like a tweet from a device. Many of today’s Internet-connected secu-
rity systems include temperature sensors that can issue low-temperature warnings before
pipes freeze or high-temperature warnings to indicate there might be a fire. Our simulated
sensor will send dweets containing a location and temperature, as well as low- and high-
temperature notifications. These will be True only if the temperature reaches 3 degrees
Celsius or 35 degrees Celsius, respectively. In the next section, we’ll use freeboard.io to
create a simple dashboard that shows the temperature changes as the messages arrive, as
well as warning lights for low- and high-temperature warnings.

Installing Dweepy
To publish messages to dweet.io from Python, first install the Dweepy library:

pip install dweepy

The library is straightforward to use. You can view its documentation at:

https://github.com/paddycarey/dweepy

Invoking the simulator.py Script
The Python script simulator.py that simulates our thermostat is located in the ch16
example folder’s iot subfolder. You invoke the simulator with two command-line argu-
ments representing the number of total messages to simulate and the delay in seconds
between sending dweets:

ipython simulator.py 1000 1

Sending Dweets
The simulator.py is shown below. It uses random-number generation and Python tech-
niques that you’ve studied throughout this book, so we’ll focus just on a few lines of code
that publish messages to dweet.io via Dweepy. We’ve broken apart the script below for
discussion purposes.

http://IOTIFY.io
http://dweet.io
http://freeboard.io
http://dweet.io
https://github.com/paddycarey/dweepy
http://dweet.io

ptg27972259

16.8 Internet of Things and Dashboards 565

By default, dweet.io is a public service, so any app can publish or subscribe to mes-
sages. When publishing messages, you’ll want to specify a unique name for your device.
We used 'temperature-simulator-deitel-python' (line 17).61 Lines 18–21 define a
Python dictionary, which will store the current sensor information. Dweepy will convert
this into JSON when it sends the dweet.

Lines 25–53 produce the number of simulated message you specify. During each iter-
ation of the loop, we

• generate a random temperature change in the range –2 to +2 degrees and modify
the temperature,

• ensure that the temperature remains in the allowed range,

• check whether the low- or high-temperature sensor has been triggered and update
the thermostat dictionary accordingly,

• display how many messages have been generated so far,

• use Dweepy to send the message to dweet.io (line 52), and

• use the time module’s sleep function to wait the specified amount of time before
generating another message.

61. To truly guarantee a unique name, dweet.io can create one for you. The Dweepy documentation
explains how to do this.

1 # simulator.py
2 """A connected thermostat simulator that publishes JSON
3 messages to dweet.io"""
4 import dweepy
5 import sys
6 import time
7 import random
8
9 MIN_CELSIUS_TEMP = -25

10 MAX_CELSIUS_TEMP = 45
11 MAX_TEMP_CHANGE = 2
12
13 # get the number of messages to simulate and delay between them
14 NUMBER_OF_MESSAGES = int(sys.argv[1])
15 MESSAGE_DELAY = int(sys.argv[2])
16
17 dweeter = 'temperature-simulator-deitel-python' # provide a unique name
18 thermostat = {'Location': 'Boston, MA, USA',
19 'Temperature': 20,
20 'LowTempWarning': False,
21 'HighTempWarning': False}
22

23 print('Temperature simulator starting')
24
25 for message in range(NUMBER_OF_MESSAGES):
26 # generate a random number in the range -MAX_TEMP_CHANGE
27 # through MAX_TEMP_CHANGE and add it to the current temperature
28 thermostat['Temperature'] += random.randrange(
29 -MAX_TEMP_CHANGE, MAX_TEMP_CHANGE + 1)

http://dweet.io
http://dweet.io
http://dweet.io
http://dweet.io"""

ptg27972259

566 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

You do not need to register to use the service. On the first call to dweepy’s dweet_for
function to send a dweet (line 52), dweet.io creates the device name. The function
receives as arguments the device name (dweeter) and a dictionary representing the mes-
sage to send (thermostat). Once you execute the script, you can immediately begin track-
ing the messages on the dweet.io site by going to the following address in your web
browser:

https://dweet.io/follow/temperature-simulator-deitel-python

If you use a different device name, replace "temperature-simulator-deitel-python"
with the name you used. The web page contains two tabs. The Visual tab shows you the
individual data items, displaying a sparkline for any numerical values. The Raw tab shows
you the actual JSON messages that Dweepy sent to dweet.io.

16.8.4 Creating the Dashboard with Freeboard.io
The sites dweet.io and freeboard.io are run by the same company. In the dweet.io
webpage discussed in the preceding section, you can click the Create a Custom Dashboard
button to open a new browser tab, with a default dashboard already implemented for the
temperature sensor. By default, freeboard.io will configure a data source named Dweet
and auto-generate a dashboard containing one pane for each value in the dweet JSON.
Within each pane, a text widget will display the corresponding value as the messages arrive.

If you prefer to create your own dashboard, you can use the steps in Section 16.8.2 to
create a data source (this time selecting Dweepy) and create new panes and widgets, or you
can you modify the auto-generated dashboard.

30
31 # ensure that the temperature stays within range
32 if thermostat['Temperature'] < MIN_CELSIUS_TEMP:
33 thermostat['Temperature'] = MIN_CELSIUS_TEMP
34
35 if thermostat['Temperature'] > MAX_CELSIUS_TEMP:
36 thermostat['Temperature'] = MAX_CELSIUS_TEMP
37
38 # check for low temperature warning
39 if thermostat['Temperature'] < 3:
40 thermostat['LowTempWarning'] = True
41 else:
42 thermostat['LowTempWarning'] = False
43
44 # check for high temperature warning
45 if thermostat['Temperature'] > 35:
46 thermostat['HighTempWarning'] = True
47 else:
48 thermostat['HighTempWarning'] = False
49
50 # send the dweet to dweet.io via dweepy
51 print(f'Messages sent: {message + 1}\r', end='')
52 dweepy.dweet_for(dweeter, thermostat)
53 time.sleep(MESSAGE_DELAY)
54
55 print('Temperature simulator finished')

http://dweet.io
http://dweet.io
https://dweet.io/follow/temperature-simulator-deitel-python
http://dweet.io
http://Freeboard.io
http://dweet.io
http://freeboard.io
http://dweet.io
http://freeboard.io
http://dweet.io

ptg27972259

16.8 Internet of Things and Dashboards 567

Below are three screen captures of a dashboard consisting of four widgets:

• A Gauge widget showing the current temperature. For this widget’s VALUE setting,
we selected the data source’s Temperature field. We also set the UNITS to Celsius
and the MINIMUM and MAXIMUM values to -25 and 45 degrees, respectively.

• A Text widget to show the current temperature in Fahrenheit. For this widget, we
set the INCLUDE SPARKLINE and ANIMATE VALUE CHANGES to YES. For this
widget’s VALUE setting, we again selected the data source’s Temperature field,
then added to the end of the VALUE field

 * 9 / 5 + 32

to perform a calculation that converts the Celsius temperature to Fahrenheit. We
also specified Fahrenheit in the UNITS field.

• Finally, we added two Indicator Light widgets. For the first Indicator Light’s VALUE
setting, we selected the data source’s LowTempWarning field, set the TITLE to
Freeze Warning and set the ON TEXT value to LOW TEMPERATURE WARNING—ON
TEXT indicates the text to display when value is true. For the second Indicator
Light’s VALUE setting, we selected the data source’s HighTempWarning field, set the
TITLE to High Temperature Warning and set the ON TEXT value to HIGH TEM-
PERATURE WARNING.

16.8.5 Creating a Python PubNub Subscriber
PubNub provides the pubnub Python module for conveniently performing pub/sub oper-
ations. They also provide seven sample streams for you to experiment with—four real-time
streams and three simulated streams:62

62. https://www.pubnub.com/developers/realtime-data-streams/.

https://www.pubnub.com/developers/realtime-data-streams/

ptg27972259

568 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

• Twitter Stream—provides up to 50 tweets-per-second from the Twitter live
stream and does not require your Twitter credentials.

• Hacker News Articles—this site’s recent articles.

• State Capital Weather—provides weather data for the U.S. state capitals.

• Wikipedia Changes—a stream of Wikipedia edits.

• Game State Sync—simulated data from a multiplayer game.

• Sensor Network—simulated data from radiation, humidity, temperature and
ambient light sensors.

• Market Orders—simulated stock orders for five companies.

In this section, you’ll use the pubnub module to subscribe to their simulated Market
Orders stream, then visualize the changing stock prices as a Seaborn barplot, like:

Of course, you also can publish messages to streams. For details, see the pubnub mod-
ule’s documentation at https://www.pubnub.com/docs/python/pubnub-python-sdk.

To prepare for using PubNub in Python, execute the following command to install
the latest version of the pubnub module—the '>=4.1.2' ensures that at a minimum the
4.1.2 version of the pubnub module will be installed:

pip install "pubnub>=4.1.2"

The script stocklistener.py that subscribes to the stream and visualizes the stock prices
is defined in the ch16 folder’s pubnub subfolder. We break the script into pieces here for
discussion purposes.

Message Format
The simulated Market Orders stream returns JSON objects containing five key–value
pairs with the keys 'bid_price', 'order_quantity', 'symbol', 'timestamp' and
'trade_type'. For this example, we’ll use only the 'bid_price' and 'symbol'. The Pub-
Nub client returns the JSON data to you as a Python dictionary.

https://www.pubnub.com/docs/python/pubnub-python-sdk

ptg27972259

16.8 Internet of Things and Dashboards 569

Importing the Libraries
Lines 3–13 import the libraries used in this example. We discuss the PubNub types
imported in lines 10–13 as we encounter them below.

List and DataFrame Used for Storing Company Names and Prices
The list companies contains the names of the companies reported in the Market Orders
stream, and the pandas DataFrame companies_df is where we’ll store each company’s last
price. We’ll use this DataFrame with Seaborn to display a bar chart.

Class SensorSubscriberCallback
When you subscribe to a PubNub stream, you must add a listener that receives status noti-
fications and messages from the channel. This is similar to the Tweepy listeners you’ve
defined previously. To create your listener, you must define a subclass of SubscribeCall-
back (module pubnub.callbacks), which we discuss after the code:

1 # stocklistener.py
2 """Visualizing a PubNub live stream."""
3 from matplotlib import animation
4 import matplotlib.pyplot as plt
5 import pandas as pd
6 import random
7 import seaborn as sns
8 import sys
9

10 from pubnub.callbacks import SubscribeCallback
11 from pubnub.enums import PNStatusCategory
12 from pubnub.pnconfiguration import PNConfiguration
13 from pubnub.pubnub import PubNub
14

15 companies = ['Apple', 'Bespin Gas', 'Elerium', 'Google', 'Linen Cloth']
16
17 # DataFrame to store last stock prices
18 companies_df = pd.DataFrame(
19 {'company': companies, 'price' : [0, 0, 0, 0, 0]})
20

21 class SensorSubscriberCallback(SubscribeCallback):
22 """SensorSubscriberCallback receives messages from PubNub."""
23 def __init__(self, df, limit=1000):
24 """Create instance variables for tracking number of tweets."""
25 self.df = df # DataFrame to store last stock prices
26 self.order_count = 0
27 self.MAX_ORDERS = limit # 1000 by default
28 super().__init__() # call superclass's init
29
30 def status(self, pubnub, status):
31 if status.category == PNStatusCategory.PNConnectedCategory:
32 print('Connected to PubNub')
33 elif status.category == PNStatusCategory.PNAcknowledgmentCategory:
34 print('Disconnected from PubNub')
35

ptg27972259

570 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

Class SensorSubscriberCallback’s __init__ method stores the DataFrame in which
each new stock price will be placed. The PubNub client calls overridden method status
each time a new status message arrives. In this case, we’re checking for the notifications
that indicate that we’ve subscribed to or unsubscribed from a channel.

The PubNub client calls overridden method message (lines 36–45) when a new mes-
sage arrives from the channel. Lines 37 and 38 get the company name and price from the
message, which we print so you can see that messages are arriving. Line 40 uses the Data-
Frame method at to locate the appropriate company’s row and its 'price' column, then
assign that element the new price. Once the order_count reaches MAX_ORDERS, line 45 calls
the PubNub client’s unsubscribe_all method to unsubscribe from the channel.

Function Update
This example visualizes the stock prices using the animation techniques you learned in
Chapter 6’s Intro to Data Science section. Function update specifies how to draw one ani-
mation frame and is called repeatedly by the FuncAnimation we’ll define shortly. We use
Seaborn function barplot to visualize data from the companies_df DataFrame, using its
'company' column values on the x-axis and 'price' column values on the y-axis.

Configuring the Figure
In the main part of the script, we begin by setting the Seaborn plot style and creating the
Figure object in which the barplot will be displayed:

Configuring the FuncAnimation and Displaying the Window
Next, we set up the FuncAnimation that calls function update, then call Matplotlib’s show
method to display the Figure. Normally, this method blocks the script from continuing
until you close the Figure. Here, we pass the block=False keyword argument to allow the
script to continue so we can configure the PubNub client and subscribe to a channel.

36 def message(self, pubnub, message):
37 symbol = message.message['symbol']
38 bid_price = message.message['bid_price']
39 print(symbol, bid_price)
40 self.df.at[companies.index(symbol), 'price'] = bid_price
41 self.order_count += 1
42
43 # if MAX_ORDERS is reached, unsubscribe from PubNub channel
44 if self.order_count == self.MAX_ORDERS:
45 pubnub.unsubscribe_all()
46

47 def update(frame_number):
48 """Configures bar plot contents for each animation frame."""
49 plt.cla() # clear old barplot
50 axes = sns.barplot(
51 data=companies_df, x='company', y='price', palette='cool')
52 axes.set(xlabel='Company', ylabel='Price')
53 plt.tight_layout()
54

55 if __name__ == '__main__':
56 sns.set_style('whitegrid') # white background with gray grid lines
57 figure = plt.figure('Stock Prices') # Figure for animation
58

http://self.df.at[companies.index(

ptg27972259

16.9 Wrap-Up 571

Configuring the PubNub Client
Next, we configure the PubNub subscription key, which the PubNub client uses in com-
bination with the channel name to subscribe to the channel. The key is specified as an
attribute of the PNConfiguration object (module pubnub.pnconfiguration), which line
69 passes to the new PubNub client object (module pubnub.pubnub). Lines 70–72 create
the SensorSubscriberCallback object and pass it to the PubNub client’s add_listener
method to register it to receive messages from the channel. We use a command-line argu-
ment to specify the total number of messages to process.

Subscribing to the Channel
The following statement completes the subscription process, indicating that we wish to
receive messages from the channel named 'pubnub-market-orders'. The execute method
starts the stream.

Ensuring the Figure Remains on the Screen
The second call to Matplotlib’s show method ensures that the Figure remains on the
screen until you close its window.

16.9 Wrap-Up
In this chapter, we introduced big data, discussed how large data is getting and discussed
hardware and software infrastructure for working with big data. We introduced traditional
relational databases and Structured Query Language (SQL) and used the sqlite3 module
to create and manipulate a books database in SQLite. We also demonstrated loading SQL
query results into pandas DataFrames.

We discussed the four major types of NoSQL databases—key–value, document,
columnar and graph—and introduced NewSQL databases. We stored JSON tweet objects
as documents in a cloud-based MongoDB Atlas cluster, then summarized them in an
interactive visualization displayed on a Folium map.

59 # configure and start animation that calls function update
60 stock_animation = animation.FuncAnimation(
61 figure, update, repeat=False, interval=33)
62 plt.show(block=False) # display window
63

64 # set up pubnub-market-orders sensor stream key
65 config = PNConfiguration()
66 config.subscribe_key = 'sub-c-4377ab04-f100-11e3-bffd-02ee2ddab7fe'
67
68 # create PubNub client and register a SubscribeCallback
69 pubnub = PubNub(config)
70 pubnub.add_listener(
71 SensorSubscriberCallback(df=companies_df,
72 limit=int(sys.argv[1] if len(sys.argv) > 1 else 1000))
73

74 # subscribe to pubnub-sensor-network channel and begin streaming
75 pubnub.subscribe().channels('pubnub-market-orders').execute()
76

77 plt.show() # keeps graph on screen until you dismiss its window

ptg27972259

572 Chapter 16 Big Data: Hadoop, Spark, NoSQL and IoT

We introduced Hadoop and how it’s used in big-data applications. You configured a
multi-node Hadoop cluster using the Microsoft Azure HDInsight service, then created
and executed a Hadoop MapReduce task using Hadoop streaming.

We discussed Spark and how it’s used in high-performance, real-time big-data appli-
cations. You used Spark’s functional-style filter/map/reduce capabilities, first on a Jupyter
Docker stack that runs locally on your own computer, then again using a Microsoft Azure
HDInsight multi-node Spark cluster. Next, we introduced Spark streaming for processing
data in mini-batches. As part of that example, we used Spark SQL to query data stored in
Spark DataFrames.

The chapter concluded with an introduction to the Internet of Things (IoT) and the
publish/subscribe model. You used Freeboard.io to create a dashboard visualization of a
live sample stream from PubNub. You simulated an Internet-connected thermostat which
published messages to the free dweet.io service using the Python module Dweepy, then
used Freeboard.io to visualize the simulated device’s data. Finally, you subscribed to a
PubNub sample live stream using their Python module.

Thanks for reading Python for Programmers. We hope that you enjoyed the book and
that you found it entertaining and informative. Most of all we hope you feel empowered
to apply the technologies you’ve learned to the challenges you’ll face in your career.

http://Freeboard.io
http://dweet.io
http://Freeboard.io

ptg27972259

Symbols
^ regex metacharacter 206, 208
^ set difference operator 150
^= set symmetric difference

augmented assignment 151
_ (digit separator) 77
_ SQL wildcard character 512
, (comma) in singleton tuple 107
: (colon) 44
!= inequality operator 41, 45
? to access help in IPython 74
?? to access help in IPython (include

source code) 74
. regular expression metacharacter

210
\’ single-quote-character escape

sequence 37
’relu’ (Rectified Linear Unit)

activation function 475
\" double-quote-character escape

sequence 37
“is-a” relationships 267
(and) regex metacharacters 209
[] regex character class 205
[] subscription operator 103, 105
{} for creating a dictionary 138
{} placeholder in a format string

196
{n,} quantifier (regex) 206
{n,m} quantifier (regex) 207
@-mentions 337, 353
* multiplication operator 33, 45
* operator for unpacking an iterable

into function arguments 86
* quantifier (regex) 206
* SQL wildcard character 509
* string repetition operator 110, 196
** exponentiation operator 33, 45
*= for lists 116
/ true division operator 33, 45
// floor division operator 33, 45
\ continuation character 38, 44
\ escape character 37
\ regex metacharacter 205

\\ backslash character escape
sequence 37

\D regex character class 205
\d regex character class 205
\n newline escape sequence 37
\S regex character class 205
\s regex character class 205
\t horizontal tab 37
\t tab escape sequence 37
\W regex character class 205
\w regex character class 205
& bitwise AND operator 185
& set intersection operator 150
&= set intersection augmented

assignment 151
comment character 43
% remainder operator 33, 35, 45
% SQL wildcard character 512
+ addition operator 33, 45
– subtraction operator 33, 45
+ operator for sequence

concatenation 105
+ quantifier (regex) 206
- set difference operator 150
+ string concatenation operator 196
+= augmented assignment statement

57, 104
< less-than operator 41, 45
<= less-than-or-equal-to operator

41, 45
= assignment symbol 32, 44
-= set difference augmented

assignment 151
== equality operator 41, 44, 45
> greater-than operator 41, 45
>= greater-than-or-equal-to operator

41, 45
| (bitwise OR operator) 185
| set union operator 150
|= set union augmented assignment

151
$ regex metacharacter 209

Numerics
0D tensor 465

1D tensor 465
2D tensor 466
3D tensor 466
4D tensor 466
5D tensor 466

A
'a' file-open mode 226
'a+' file-open mode 226
abbreviating an assignment

expression 57
abs built-in function 83
absence of a value (None) 74
absolute value 83
accept method of a socket 554
access token (Twitter) 336, 341
access token secret (Twitter) 336,

341
Account class 246, 287
Accounts and Users API (Twitter)

334
accounts-receivable file 219
accuracy 496
accuracy of a model 480
ACID (Atomicity, Consistency,

Isolation, Durability) 519
acquire resources 220
activate a neuron 464
activation function 465, 468

relu (Rectified Linear Unit)
475

sigmoid 496
softmax 478

adam optimizer 480
add

method of set 152
universal function (NumPy)

170, 171
__add__ special method of class

object 276, 278
add_to method of class Marker 366
addition 33, 36

augmented assignment (+=) 57
adjective 308
algebraic expression 35

Index

ptg27972259

574 Index

alignment 194
all built-in function 117
alphabetic characters 202
AlphaGo 27
alphanumeric character 202, 205
AlphaZero 27
Amazon DynamoDB 517
Amazon EMR 533
Ambari 532
Anaconda Python distribution 6, 9

base environment 462
conda activate command 463
conda create command 463
conda deactivate command

463
environment 462
install xxxiv
installer xxxiv
NumPy preinstalled 160
packages installed xxxv
update xxxiv

Anaconda Command Prompt,

Windows xxxiv
analyze text for tone 378
anchor (regex) 208, 209
and Boolean operator 65, 66

truth table 65
animated visualization 153
animation frame 153, 154
animation module (Matplotlib)

153, 157
FuncAnimation function 153,

156, 157, 158
anomaly detection 24
anonymous function 123
Anscombe’s quartet xx
answering natural language

questions 329
antonyms 305, 315, 316
any built-in function 117
Apache Hadoop xix, 16, 503, 530
Apache HBase 531
Apache Ignite (NewSQL) 520
Apache Kafka 562
Apache Mesos 541
Apache OpenNLP 328
Apache Spark 16, 503
API class (Tweepy) 341, 342

followers method 344
followers_ids method 345
friends method 346
get_user method 342
home_timeline method 347
lookup_users method 346
me method 344
search method 347

API class (Tweepy) (cont.)
trends_available method

350
trends_closest method 351
trends_place method 351
user_timeline method 346

API key (Twitter) 336, 341
API reference (IBM Watson) 394
API secret key (Twitter) 336, 341
app rate limit (Twitter API) 334
append method of list 117, 119
approximating a floating-point

number 61
arange function (NumPy) 164
arbitrary argument list 86
arccos universal function (NumPy)

171
arcsin universal function (NumPy)

171
arctan universal function (NumPy)

171
*args parameter for arbitrary

argument lists 86
argv list of command-line

arguments 135
argv[0] first command-line

argument 135
arithmetic expressions 9
arithmetic on ndarray 167
arithmetic operator 33

Decimal 62
“arity” of an operator 277
ARPANET 560
array, JSON 224
array attributes (NumPy) 161
array function (NumPy) 161, 162
artificial general intelligence 26
artificial intelligence (AI) xxi, 26, 27
artificial neural network 463
artificial neuron in an artificial

neural network 464
as clause of a with statement 220
as-a-service

big data (BDaas) 504
Hadoop (Haas) 504
Hardware (Haas) 504
Infrastructure (Iaas) 504
platform (Paas) 504
software (Saas) 504
Spark (Saas) 504
storage (Saas) 504

ascending order
ASC in SQL 512
sort 115, 146

assignment symbol (=) 32, 44
assisting people with disabilities 24

asterisk (*) multiplication operator
33, 45

asterisk (*) SQL wildcard character
509

astype method of class Series 522
asynchronous 379
asynchronous tweet stream 358
at attribute of a DataFrame 185
atomicity 519
attribute 4

internal use only 250
of a class 3, 247
of an array 161
of an object 4
publicly accessible 250

AudioSegment class
from pydub module 393
from_wav method 393

augmented assignment
addition (+=) 57, 104

Authentication API (Twitter) 334
author_ISBN table of books

database 508, 509
authors table of books database

508
auto insurance risk prediction 24
autoincremented value 508, 515
Auto-Keras automated deep

learning library 460, 498
automated

closed captioning 24, 490
image captions 24
investing 24
machine learning (AutoML)

498
AutoML 460
autonomous ships 24
average time 166
Averaged Perceptron Tagger 306
Axes class (Matplotlib) 131

imshow method 264
set method 131
set_ylim method 132
text method 131, 133

Axes3D class (Matplotlib) 442
axis=1 keyword argument of

DataFrame method sort_index
187

Azure HDInsight (Microsoft) 503

B
b prefix for a byte string 393
backpropagation 465
backslash (\) escape character 37
bad data values 211

ptg27972259

Index 575

balanced classes in a dataset 411
bar chart 319, 321

static 102
bar method of a DataFrame’s plot

property 321
bar plot 128, 152, 153

barplot function (Seaborn)
131

BASE (Basic Availability, Soft-state,
Eventual consistency) 520

base-10 number system 83
base case 93
base class 245

direct 267
indirect 267

base e 83
base environment in Anaconda 462
BaseBlob class from the textblob

module 307
BaseException class 279
batch

interval in Spark streaming 558
of data in Hadoop 532
of streaming data in Spark 558

batch_size argument to a Keras
model’s fit method 480

BDaaS (Big data as a Service) 504
behavior of a class 3
big data 22, 160

analytics 23
analytics in the cloud xxi

bimodal set of values 68
binary classification 490, 496

machine learning 403
binary file 219
binary number system 193
binary_crossentropy loss

function 480, 496
bind a name to an object 45
bind method of a socket 554
Bing sentiment analysis 328
BitBucket 245
Bitcoin 21
bitwise

AND operator (&) 185
OR operator (|) 185

bitwise_and universal function
(NumPy) 171

bitwise_or universal function
(NumPy) 171

bitwise_xor universal function
(NumPy) 171

block
in a function 73, 74
vs. suite 73, 88

blockchain 21

books database 507
book-title capitalization 197
bool NumPy type 162
Boolean indexing (pandas) 185
Boolean operators 65

and 65
not 65, 66, 67
or 65, 66

Boolean values in JSON 224
brain mapping 24
break statement 64
broadcasting (NumPy) 168, 171
Brown Corpus (from Brown

University) 306
brute force computing 26
building-block approach 4
built-in functions

abs 83
all 117
any 117
enumerate 109, 110
eval 255
filter 122
float 41
frozenset 148
id 91
input 39
int 40, 41
len 68, 86, 103
list 109
map 123
max 48, 76, 86, 124
min 48, 76, 86, 124
open 220
ord 124
print 36
range 57, 60
repr 254
reversed 125
set 148
sorted 68, 115, 143
str 255
sum 68, 80, 86
super 272
tuple 109
zip 125

built-in namespace 291
built-in types

dict (dictionary) 138
float 45, 62
int 45, 62
set 138, 147
str 45, 62

Bunch class from sklearn.utils
426
data attribute 407, 428

Bunch class from sklearn.utils
(cont.)
DESCR attribute 406, 427
feature_names attribute 428
target attribute 407, 428

byte string 393

C
c presentation type 193
C programming language 162
cadence, voice 377
calendar module 82
California Housing dataset 426
call-by-reference 90
call-by-value 90
callback (Keras) 488
caller 73
caller identification 24
CamelCase naming convention 84
cancer diagnosis 24
capitalization

book title 197
sentence 197

capitalize method of a string 197
carbon emissions reduction 24
Card class 258, 259, 282
card images 258
caret (^) regex metacharacter 206
case insensitive 208
case-insensitive sort 345
case sensitive 33, 208
catching multiple exceptions in one

except clause 230
categorical data 472, 494
categorical features in machine

learning datasets 408
categorical_crossentropy loss

function 480
%cd magic 167
ceil (ceiling) function 83
ceil universal function (NumPy)

171
cell in a Jupyter Notebook 14
central nervous system 463
centroid 442, 450
chained method calls 164
channel in pub/sub systems 562
character class (regular expressions)

205
custom 205

chart xix
chatbots 376
checkpoint method of a

StreamingContext 558
checkpointing in Spark 558

ptg27972259

576 Index

chess 26
Chinese (simplified) 312
choice function from the

numpy.random module 469
choropleth 527
chunking text 306
CIFAR10 dataset (Keras) 462
CIFAR100 dataset (Keras) 462
cla function of

matplotlib.pyplot module
133, 156

class 3, 81
attribute 247
class keyword 248
client code 250
data attribute 248
definition 248
header 248
instance variable 4
library 245
method 281
namespace 292
object 249, 269
property 251, 253
@property decorator 253
@propertyname.setter

decorator 253
public interface 255
variable 259, 282

class attribute 259
in a data class 283

class average for arbitrary number of
grades 59

class average problem 58, 59
class libraries xxii
classification (machine learning)

400, 401, 403
algorithm 404
binary classification 403
handwritten digits 467
metrics 415
multi-classification 403
probabilities (deep learning) 478

classification report (scikit-learn)
f1-score 416
precision 416
recall 416
support 416

classification_report function
from the sklearn.metrics
module 415

classifier 378
classify handwriting 24
ClassVar type annotation from the

typing module 282, 283
cleaning data 204, 239, 366

clear axes 156
clear method

of dictionary 139
of list 118
of set 152

client of a class 250, 257
client/server app

client 551
server 551

client/server networking 551
close method

of a file object 220
of a socket 554
of a sqlite3 Connection 516
of an object that uses a system

resource 220
of class Stream 393

closed captioning 329, 490
closures 95
cloud xix, 16, 334, 374

IBM Cloud account 374
cloud-based services 16, 223
Cloudera CDH 533
cluster 531

node 531
clusters of computers 25
CNN (convolutional neural

network) 467
CNTK (Microsoft Cognitive

Toolkit) 8, 458, 462
code 5
coeff_ attribute of a

LinearRegression estimator
423

coefficient of determination (R2
score) 437

cognitive computing xxvi, 374, 378
Cognos Analytics (IBM) 381
collaborative filtering 329
collection

non-sequence 138
sequence 138
unordered 139

Collection class of the pymongo
module 524
count_documents method 525
insert_one method 524

collections 102
collections module 7, 82, 145,

280
namedtuple function 280

color map 410
Matplotlib 410

column
in a database table 507, 508
in a multi-dimensional list 126

columnar database (NoSQL) 517,
518
column-oriented database 517,

518
comma (,) format specifier 130
comma-separated list of arguments

73
comma-separated-value (CSV) files

82
command-line arguments 135

argv 135
argv[0] 135

comma-separated-value (CSV) files
7

comment 43
comment character (#) 43
CommissionEmployee class 268
common programming errors xxviii
comparison operators 41
compile method of class

Sequential 480
Complex class 277
complex condition 65
component 3, 245
composite primary key 509, 510
composition (“has a” relationship)

249, 274
compound interest 63
computer vision 24
computer-vision applications 26
concatenate sequences 105
concatenate strings separated by

whitespace 144
concurrent execution 546
concurrent programming 7
conda activate command 463
conda command xxxiv
conda create command 463
conda deactivate command 463
conda package manager xxxiv
condition 41

None evaluates to False 74
conditional

expression 53
operators 65

confidence interval 299
confusion matrix 414

as a heat map 416
confusion_matrix function of the

sklearn.metrics module 414
conjunction, subordinating 308
conll2000 (Conference on

Computational Natural
Language Learning 2000) 306

connect function from the sqlite3
module 508

ptg27972259

Index 577

Connection class (sqlite3 module)
508, 514
close method 516
cursor method 514

connection string (MongoDB) 523
consistency 519
constant 260
constants 84
constructor 341, 342
constructor expression 247, 248
Consumer API keys (Twitter) 336
container (Docker) xxvi, 542
contains method for a pandas

Series 212
continental United States 366
continuation character (\) 38, 44
continuation prompt ...: in

IPython 39
continue statement 64
control statements

for 55, 57
if 50, 51
if…elif…else 50, 54
if…else 50, 52
while 55

Conv2D class from the
tensorflow.keras.layers
module 475

converge on a base case 93
convert

floating-point value to an
integer 41

speech to text 377
string to floating-point number

41
string to integer 40

convnet (convolutional neural
network) 467, 471, 472, 473,
475, 482
pretrained models 498

convolution layer 473
filter 474

convolutional neural network
(CNN or convnet) 460, 467
model 473

co-occurrence 318
Coordinated Universal Time

(UTC) 337
coordinates (map) 363
copy method of list 119
copy method of ndarray 174
copy module 175
core Python language 82
co-reference resolution 328
corpus 305

corpora (plural of corpus) 305

correct method of class Sentence
313

correct method of class TextBlob
313

correct method of class Word 313
cos (cosine) function 83
cos universal function (NumPy)

171
Couchbase 517
CouchDB 518
count method

of class WordList 315
of list 119

count statistic 46, 68
count string method 198
count_documents method of class

Collection 525
Counter type for summarizing

iterables 145, 146
counting word frequencies 305
CPU (central processing unit) 476
crafting valuable classes 244
CraigsList 17
craps game 78
create classes from existing classes

269
create, read, update and delete

(CRUD) 507
createOrReplaceTempView

method of a Spark DataFrame
557

credentials (API keys) 335
credit scoring 24
crime

predicting locations 24
predicting recidivism 24
predictive policing 24
prevention 24

CRISPR gene editing 24
crop yield improvement 24
cross_val_score function

sklearn.model_selection
417, 418, 419, 438

cross-validation, k-fold 417
crowdsourced data 25
CRUD operations (create, read,

update and delete) 507
cryptocurrency 21
cryptography 7, 78

modules 82
CSV (comma-separated value)

format 218, 281, 282
csv module 7, 82, 235
csv module reader function

236

CSV (comma-separated value)
format (cont.)
csv module writer function

235
file 200
.csv file extension 235

curly braces in an f-string
replacement field 58

curse of dimensionality 439
cursor 37
Cursor class (sqlite3)

execute method 515
Cursor class (Tweepy) 344

items method 345
cursor method of a sqlite3

Connection 514
custom character class 205
custom exception classes 280
custom function 72
custom indices in a Series 180
custom models 380
customer

churn 24
experience 24
retention 24
satisfaction 24
service 24
service agents 24

customized diets 24
customized indexing (pandas) 177
cybersecurity 24

D
d presentation type 193
Dale-Chall readability formula 324
DARPA (the Defense Advanced

Research Projects Agency) 541
dashboard 486
data

attribute of a class 248
encapsulating 250
hiding 255

data attribute of a Bunch 407, 428
data augmentation 459, 476
data class 281

autogenerated methods 281
autogenerated overloaded

operator methods 282
class attribute 283

data cleaning 192, 210, 239, 353
data compression 7
data exploration 409, 431
data mining xix, 332, 333

Twitter 24, 332
data munging 192, 210

ptg27972259

578 Index

data preparation 178, 471, 493
data sampling 211
data science use cases 24
data science libraries

Gensim 9
Matplotlib 8
NLTK 9
NumPy 8
pandas 8
scikit-learn 8
SciPy 8
Seaborn 8
StatsModels 8
TensoFlow 8
TextBlob 9
Theano 8

data sources 329
data visualization 24
data warehouse 532
data wrangling 192, 210
database 502, 506, 511
Database Application Programming

Interface (DB-API) 507
Database class of the pymongo

module 523
database management system

(DBMS) 506
Databricks 542
@dataclass decorator from the

module dataclasses 282
dataclasses module 281, 282

@dataclass decorator 282
DataFrame (pandas) 178, 182, 192,

211, 213, 214, 366
at attribute 185
describe method 186
dropna method 366
groupby method 527, 529
head method 238
hist method 240
iat attribute 185
iloc attribute 183
index attribute 182
index keyword argument 182
itertuples method 366
loc attribute 183
plot method 294
plot property 321
sample method 430
sort_index method 187
sort_values method 188
sum method 527
T attribute 187
tail method 238
to_csv method 238
transpose rows and columns 187

DataFrame (Spark) 555, 557
createOrReplaceTempView

method 557
pyspark.sql module 555, 557

data-interchange format, JSON 223
dataset

California Housing 426
CIFAR10 462
CIFAR100 462
Digits 403
EMNIST 485
Fashion-MNIST 462
ImageNet 477, 478
IMDb Movie reviews 462
Iris 442
MNIST digits 461, 467
natural language 329
Titanic disaster 237, 238
UCI ML hand-written digits

406
date and time manipulations 7, 82
datetime module 7, 82, 256
DB-API (Database Application

Programming Interface) 507
Db2 (IBM) 506
DBMS (database management

system) 506
debug 48
debugging 4, 7
decimal integers 202
decimal module 7, 62, 82
Decimal type 61, 63

arithmetic operators 62
DeckOfCards class 258, 261
declarative programming 95, 96
decorator

@dataclass 282
@property 253
@propertyname.setter 253

decorators 95
decrement 60
deep copy 111, 174
deep learning xix, 8, 26, 328, 458,

459
Auto-Keras 460
CNTK 458, 462
epoch 464
EZDL 460
fully connected network 464
Keras 458
loss function 468
model 468
network 468
optimizer 468
TensorFlow 458
Theano 8, 458, 462

deep learning (IBM Watson) 379
deep learning EZDL 460
DeepBlue 26
deepcopy function from the module

copy 175
def keyword for defining a function

73
default parameter value 85
define a function 72
define method of class Word 315
definitions property of class Word

315
del statement 112, 140
DELETE FROM SQL statement 511,

516
delimiters 200
Dense class from the

tensorflow.keras.layers
module 477

dense-vector representation 494
dependent variable 293, 294, 421,

435
derived class 245
“derived-class-object-is-a-base-class-

object” relationship 274
descending sort 115

DESC 512
DESCR attribute of a Bunch 406, 427
describe method of a pandas

DataFrame 186
describe method of a pandas

Series 179
description property of a User

(Twitter) 343
descriptive statistics 46, 67, 97,

179, 186, 239
deserializing data 224
design process 5
detect_language method of a

TextBlob 311
detecting new viruses 24
determiner 308
diagnose medical conditions 26
diagnosing breast cancer 24
diagnosing heart disease 24
diagnostic medicine 24
dice game 78
dict method of class Textatistic

324
dictionary 95
dictionary built-in type 138

clear method 139
get method 141
immutable keys 138
items method 140
keys method 141

ptg27972259

Index 579

dictionary built-in type (cont.)
length 139
lists as values 143
modifying the value associated

with a key 140
pop method 140
process keys in sorted order 143
update a key’s associated value

140
update method 146
values method 141
view 142

dictionary comprehension 95, 146,
492

die rolling 77
visualization 129

die-rolling simulation xx
difference augmented assignment

(sets) 151
difference method of set 150
difference_update method of set

151
digit separator (_) 77
Digits dataset 403
Dijkstra 287
dimensionality 475

reduction 439, 476
direct base class 267
disaster victim identification 24
discard method of set 152
discovery with IPython tab

completion 83
disjoint 151
dispersion 98
display a line of text 36
distribution 448
divide and conquer 93, 394
divide by zero 12
divide universal function (NumPy)

171
dividing by zero is not allowed 34
division 10, 34, 36

by zero 59
floor 33, 45
true 33, 45

Doc class (spaCy) 326
ents property 327
similarity method 328

Docker xxiii, xxvi, 462, 542
container xxvi, 542
image 542

docstring 38, 43, 73
for a class 248
for a function 80
for testing 287
viewing in IPython 84

doctest module 7, 82, 287
testmod function 287

%doctest_mode IPython magic 290
document database 517, 518
document-analysis techniques 144
domain expert 449
double-indexed list 126
double quotes ("") 37
double-subscripted list 126
download function of the nltk

module 317
download the examples xxxiii
Drill 532
drones 24
dropna method of class DataFrame

366
dropout 476, 495

Dropout class from the
tensorflow.keras.layers.

embeddings module 495
DStream class

flatMap method 559
foreachRDD method 559
map method 559
updateStateByKey method

559
DStream class from the

pyspark.streaming module
556

dtype attribute of a pandas Series
181

dtype attribute of ndarray 162
duck typing 275
dummy value 59
dump function from the json

module 224
dumps function from the json

module 225
duplicate elimination 147
durability 519
Dweepy library 564
dweepy module

dweet_for function 566
dweet (message in dweet.io) 564
dweet_for function of the dweepy

module 566
Dweet.io 503, 561
Dweet.io web service 16
dynamic

driving routes 24
pricing 24
resizing 102
typing 46
visualization 152

dynamic die-rolling simulation xx
DynamoDB (Amazon) 517

E
E (or e) presentation type 194
edge in a graph 519
%edit magic 167
editor 11
ElasticNet estimator from

sklearn.linear_model 438
electronic health records 24
element of a sequence 102
element of chance 76
elif keyword 51
else in an if statement 51
else clause

of a loop 64
of a try statement 229, 230

Embedding class from the
tensorflow.keras.layers
module 495

embedding layer 494
EMNIST dataset 485
emotion 377

detection 24
empirical science 211
empty

list 104
set 148
string 52
tuple 106

encapsulation 250
enclosing namespace 292
encode a string as bytes 553
end index of a slice 110, 111
endpoint

of a connection 551
of a web service 334

endswith string method 199
energy consumption reduction 24
English parts of speech 307
entity-relationship (ER) diagram

510
ents property of a spaCy Doc 327
enumerate built-in function 109,

110
environment in Anaconda 462
epoch argument to a Keras model’s

fit method 480
epoch in deep learning 464
__eq__ special method of a class 282
__ne__ special method of a class 282
__eq__ special method of a class 282
equal to operator(==) 41
equal universal function (NumPy)

171
equation in straight-line form 35
error-prevention tips xxviii

http://dweet.io

ptg27972259

580 Index

escape character 37, 515
escape sequence 37, 203
estimator (model) in scikit-learn

405, 422
Ethereum 21
ETL (extract, transform, load) 532
eval built-in function 255
evaluate method of class

Sequential 482
evaluation order 10
evenly-spaced values 164
exabytes (EB) 19
exaflops 21
except clause 228, 229

catching multiple exceptions
230

exception 34, 218
handler 218, 229
uncaught 234

Exception class of exceptions 279
exception classes

custom 280
exceptions module 279
execute method of a sqlite3

Cursor 515
execution-time error 12
exp (exponential) function of

module math 83
exp universal function (NumPy)

171
expected values 154
exponential notation 194
exponentiation 33, 36, 45

operator (**) 33
extend method of list 118
extended_tweet property of a

Status (Twitter) 343
extensible language 246
external iteration 96, 160, 212
extracting data from text 204
EZDL automated deep learning

(Baidu) 460

F
f presentation type 194
f1-score in a scikit-learn

classification report 416
fabs (absolute value) function of

module math 83
fabs universal function (NumPy)

171
Facebook 333
Facial Recognition 24
factorial 93
factorial function 93, 94

False 41, 50, 51
fargs keyword argument of

FuncAnimation 158
Fashion-MNIST dataset (Keras)

462
fatal

logic error 55, 59
runtime error 12

fault tolerance 218
Spark streaming 558

feature in a dataset 211
feature map 475
feature_names attribute of a Bunch

428
feed-forward network 473
fetch_california_housing

function from
sklearn.datasets 426

field alignment 194
field width 63, 194
FIFO (first-in, first-out) order) 120
Figure class (Matplotlib) 131

tight_layout method 264
figure function of

matplotlib.pyplot module 157
file 218

contents deleted 226
file object 219, 220

close method 220
in a for statement 221
read method 227
readline method 227
readlines method 221
seek method 221
standard 219
write method 220
writelines method 227

file-open mode 220
'a' (append) 226
'a+' (read and append) 226
'r' (read) 221, 226
'r+' (read and write) 226
'w' (write) 220, 226
'w+' (read and write) 226

file-position pointer 221
file/directory access 7
FileNotFoundError 227, 232
fill with 0s 195
filter sequence 121, 122
filter built-in function 95, 122
filter in convolution 474
filter method of class Stream 358
filter method of the RDD class 547
filter/map/reduce operations 178
finally clause 231

finally suite raising an exception
235

find string method 199
findall function of the module re

209
finditer function of the module re

209
fire hose (Twitter) 354
first 120
first-in, first-out (FIFO) order 120
fit method

batch_size argument 480
epochargument 480
of a scikit-learn estimator 412,

434
of class Sequential 480
of the PCA estimator 452
of the TSNE estimator 440
validation_data argument

494
validation_split argument

481, 494
fit_transform method

of the PCA estimator 452
of the TSNE estimator 440

fitness tracking 24
flag value 59
flags keyword argument (regular

expressions) 208
flat attribute of ndarray 163
flatMap method of a DStream 559
flatMap method of the RDD class

546
Flatten class from the

tensorflow.keras.layers
module 477

flatten method of ndarray 176
Flesch Reading Ease readability

formula 324, 325
Flesch-Kincaid readability formula

324, 325
float function 41
float type 33, 45, 62
float64 NumPy type 162, 163
floating-point number 10, 33, 34,

45
floor division 33, 34, 45

operator (//) 34
floor function of module math 83
floor universal function (NumPy)

171
FLOPS (floating-point operations

per second) 20
flow of control 64
Flume 532

ptg27972259

Index 581

fmod (remainder) function of
module math 83

Folding@home network 20
folds in k-fold cross-validation 417
Folium xx
Folium mapping library 25, 363

Map class 366
Marker class 366
Popup class 366

followers method of class API 344
followers_count property of a

User (Twitter) 343
followers_ids method of class API

345
for clause of a list comprehension

121
for statement 50, 51, 55, 57

else clause 64
target 55

foreachRDD method of a DStream
559

foreign key 509, 510
format method

of a string 195, 550
format specifier 60, 63, 64, 193,

261
comma (,) 130

format string 196, 261
__format_ special method of class

object 261, 263
formatted input/output 222
formatted string (f-string) 58
formatted text 222
formatting

type dependent 193
formulating algorithms 58, 59
four V’s of big data 22
frame-by-frame animation

Matplotlib 153
frames keyword argument of

FuncAnimation 157
fraud detection 24
free open datasets xx
Freeboard.io 503, 561
freemium xx
friends method of class API 346
friends_count property of a User

(Twitter) 343
FROM SQL clause 511
from_wav method of class

AudioSegment 393
from…import statement 62, 89
frozenset

built-in function 148
built-in type 148

f-string (formatted string) 58, 60,
63, 193, 261
curly braces in a replacement

field 58
full function (NumPy) 163
fullmatch function of module re

204
fully connected network 464
FuncAnimation (Matplotlib

animation module) 153, 156,
157, 158
fargs keyword argument 158
frames keyword argument 157
interval keyword argument

158
repeat keyword argument 157

function 73, 74, 81, 87
anonymous 123
are objects 97, 122
block 73, 74
def keyword 73
definition 72, 73
docstring 80
name 73
nested 292
range 57, 60
recursive 99
signature 74
sorted 68
that calls itself 99

functional-style programming xix,
7, 48, 57, 58, 68, 95, 96, 117,
120, 121, 163, 178, 179, 181,
212, 213
reduction 48, 68

functools module 95, 124
reduce function 124

G
game playing 24, 76
garbage collected 92
garbage collection 46
Gary Kasparov 26
GaussianNB estimator from

sklearn.naive_bayes 419
gcf function of the module

matplotlib.pyplot 321
GDPR (General Data Protection

Regulation) 502
generate method of class

WordCloud 323
generator

expression 95, 121
function 95
object 121

GeneratorExit exception 279
genomics 24
Gensim 9
Gensim NLP library 327, 328
geocode a location 365
geocode method of class

OpenMapQuest (geopy) 368
geocoding 363, 368

OpenMapQuest geocoding
service 363

geographic center of the continental
United States 366

Geographic Information Systems
(GIS) 24

GeoJSON (Geographic JSON) 527
geopy library 341, 363

OpenMapQuest class 368
get method of dictionary 141
get_sample_size method of the

class PyAudio 393
get_synsets method of class Word

316
get_user method of class API 342
get_word_index function of the

tensorflow.keras.datasets.i

mdb module 492
getter method

decorator 253
of a property 253

gettext module 82
getting questions answered xxviii
gigabytes (GB) 18
gigaflops 20
GitHub xxv, 245
global

namespace 290
scope 87
variable 87

global keyword 88
GloVe word embeddings 495
Go board game 27
good programming practices xxviii
Google Cloud DataProc 533
Google Cloud Datastore 517
Google Cloud Natural Language

API 328
Google Maps 17
Google Spanner (NewSQL) 520
Google Translate 16, 305, 311
GPS (Global Positioning System)

24
GPS sensor 25
GPU (Graphics Processing Unit)

476
gradient descent 465
graph xix

ptg27972259

582 Index

graph database 517, 519
edge 519
node 519
vertices 519

Graphics Processing Unit (GPU)
459, 466

greater universal function
(NumPy) 171

greater_equal universal function
(NumPy) 171

greater-than operator (>) 41
greater-than-or-equal-to operator

(>=) 41
greedy evaluation 121
greedy quantifier 206
GROUP BY SQL clause 511
group method of a match object

(regular expressions) 208, 210
GroupBy class (pandas) 527
groupby function

of the itertools module 537
groupby method

of a DataFrame 527, 529
grouping (operators) 36, 67, 277
groups method of a match object

(regular expressions) 210
GUI 7
Guido van Rossum 5, 7
Gunning Fog readability formula

324, 325

H
h5 file extension for Hierarchical

Data Format files 485
Hadoop (Apache) xix, 124, 503,

530
as a Service (HaaS) 504
streaming 535
streaming mapper 535
streaming reducer 536
YARN (“yet another resource

negotiator”) 532, 538
yarn command 538

handle (or resolve) an exception
218, 228

hands-on 8
handwritten digits

classification 467
hard disk 218
Hardware as a Service (HaaS) 504
“has a” relationship (composition)

249
hash character (#) 43
hashtags 337, 349
HBase 517, 531, 532

HDFS (Hadoop Distributed File
System) 531, 558

HDInsight
(Microsoft Azure) 503

head method of a DataFrame 238
health outcome improvement 24
heat map 416
heatmap function (Seaborn

visualization library) 416
help in IPython 74
heterogeneous data 106
hexadecimal number system 193
hidden layer 468, 473, 475
Hierarchical Data Format 485
higher-order functions 95, 122
highest level of precedence 35
HIPAA (Health Insurance

Portability and Accountability
Act) 502

hist method of a DataFrame 240
histogram 109
%history magic 167
Hive 532
home timeline 347
home_timeline method of class API

347
homogeneous data 102, 103
homogeneous numeric data 177
horizontal stacking (ndarray) 177
horizontal tab (\t) 37
Hortonworks 533
hospital readmission reduction 24
hostname 554
hstack function (NumPy) 177
human genome sequencing 24
hyperparameter

in machine learning 405, 420
tuning 406, 420, 497
tuning (automated) 406

hypot universal function (NumPy)
171

I
__iadd__ special method of class

object 279
iat attribute of a DataFrame 185
IBM Cloud account 374, 375, 382
IBM Cloud console 375
IBM Cloud dashboard 376
IBM Cognos Analytics 381
IBM Db2 506
IBM DeepBlue 26
IBM Watson xxvi, 16, 27, 334, 374

Analytics Engine 533
API reference 394

IBM Watson (cont.)
dashboard 375
deep learning 379
GitHub repository 394
Knowledge Studio 380
Language Translator service

377, 382, 383, 384, 385,
390

Lite tier 374
lite tiers xxvii
machine learning 380
Machine Learning service 380
Natural Language Classifier

service 378
Natural Language

Understanding service 377
Personality Insights service 378
Python SDK xxvi, 375
service documentation 394
Speech to Text service 377,

382, 383, 384, 385, 386,
387, 391

Text to Speech service 377,
382, 383, 384, 385

Tone Analyzer service 378
use cases 374
Visual Recognition service 376
Watson Assistant service 376
Watson Developer Cloud

Python SDK 381, 385, 394
Watson Discovery service 378
Watson Knowledge Catalog

380
YouTube channel 395

id built-in function 91, 173
id property of a User (Twitter) 342
IDE (integrated development

environment) 11
identifiers 33
identity of an object 91
identity theft prevention 24
if clause of a list comprehension

121
if statement 41, 44, 50, 51
if…elif…else statement 50, 54
if…else statement 50, 52
IGNORECASE regular expression flag

208
iloc attribute of a DataFrame 183
image 376
image (Docker) 542
Image class of the IPython.display

module 479
imageio module

imread function 322
ImageNet dataset 477, 478

ptg27972259

Index 583

ImageNet Large Scale Visual
Recognition Challenge 499

ImageNet Object Localization
Challenge 499

imaginary part of a complex number
277

IMDb (the Internet Movie
Database) dataset 329, 489
imdb module from

tensorflow.keras.

datasets 462, 490
immunotherapy 24
immutability 95, 96
immutable 80, 84, 92

elements in a set 138, 147
frozenset type 148
keys in a dictionary 138
sequence 104
string 192, 197

Impala 532
implementation detail 256
import statement 62, 82
import…as statement 90
importing

all identifiers from a module 89
libraries 129
one identifier from a module 89

improper subset 149
improper superset 149
imread function of module

matplotlib.image 264
imread function of the module

imageio 322
imshow method of class Axes 264
in keyword in a for statement 50,

51, 55, 57
in operator 81, 141, 147
in place sort (pandas) 188
indentation 44, 51
IndentationError 51
independent variable 293, 294,

421, 422
index 103
index attribute of a DataFrame 182
index keyword argument for a

DataFrame 182
index keyword argument of a

pandas Series 180
index method of list 116
index string method 199
IndexError 104
indexing ndarray 171
indirect base class 267
indirect recursion 95
industry standard class libraries xxii
infinite loop 55

infinite recursion 95
infinity symbol 510
inflection 305, 312
inflection, voice 377
Infrastructure as a Service (IaaS) 504
inherit data members and methods

of a base class 245
inheritance 4, 269

hierarchy 266
single 269, 270

__init__ special method of a class
248

in-memory
architecture 541
processing 530

inner for structure 127
INNER JOIN SQL clause 511, 514
innermost pair of parentheses 35
input function 39
input layer 468, 473
input–output bound 154
INSERT INTO SQL statement 511,

515
insert method of list 117
insert_one method of class

Collection 524
install a Python package xxxiv
install Tweepy 340, 354
instance 4
instance variable 4
insurance pricing 24
int function 40, 41
int type 33, 45, 62
int64 NumPy type 162, 163
integer 10, 33, 45

presentations types 193
Integrated Development

Environment (IDE)
PyCharm 12
Spyder 12
Visual Studio Code 12

integrated development
environment (IDE) 11

intelligent assistants 24
intensity of a grayscale pixel 407
interactive maps xx
interactive mode (IPython) xix, 9,

32
exit 10

interactive visualization xix
intercept 295, 298
intercept_ attribute of a

LinearRegression estimator
423

interest rate 63
inter-language translation 305, 490

internal iteration 95, 96, 117, 160,
212

internal use only attributes 250
International Organization for

Standardization (ISO) 312
internationalization 7, 82
Internet of Things (IoT) 17, 23, 25,

212, 503, 560
medical device monitoring 24
Weather Forecasting 24

Internet Protocol (IP)
address 560

interpreter 6
interprocess communication 7
interquartile range 180
intersection augmented assignment

151
intersection method of set 150
intersection_update method of

set 151
interval keyword argument of

FuncAnimation 158
Inventory Control 24
invert universal function (NumPy)

171
io module 227
IoT (Internet of Things) 23, 503,

560
IOTIFY.io 564
IP address 17, 554
IPv4 (Internet Protocol version 4)

560
IPv6 (Internet Protocol version 6)

560
IPython xviii

? to access help 74
?? to access help (include source

code) 74
%doctest_mode magic 290
continuation prompt ...: 39
help 43, 74
interactive mode 9, 32
interpreter xxxiv, 9
navigate through snippets 53
script mode 9

ipython

command 9
--matplotlib option 129

IPython interactive mode xix
IPython interpreter 7
IPython magics 133, 166

%cd 167
%doctest_mode 290
%edit 167
%history 167
%load 167

http://IOTIFY.io

ptg27972259

584 Index

IPython magics (cont.)
%pprint 491
%precision 167
%recall 133
%run 167
%save 134, 167
%timeit 165

IPython magics documentation 166
IPython Notebook 13
IPython.display module

Image class 479
.ipynb extension for Jupyter

Notebooks 13
Iris dataset 442
Iris setosa 443
Iris versicolor 443
Iris virginica 443
“is-a” relationship 267
is operator 92
isalnum string method 202
isalpha string method 202
isdecimal string method 202
isdigit string method 202
isdisjoint method of set 151
isidentifier string method 202
isinf universal function (NumPy)

171
isinstance function 273
islower string method 202
isnan universal function (NumPy)

171
isnumeric string method 202
ISO (International Organization for

Standardization) 312
isolation 519
isspace string method 202
issubclass function 273
issubset method of set 149
issuperset method of set 149
istitle string method 202
isupper string method 202
itemgetter function from the

operator module 320
items method 146

of Counter 146
of Cursor 345
of dictionary 140

itemsize attribute of ndarray 162
iterable 56, 76, 105, 121
iterating over lines in a file 221
iteration statement 50
iterative (non-recursive) 93
iterator 56, 95, 123
itertools module 95, 537

groupby function 537

itertuples method of class
DataFrame 366

J
JavaScript Object Notation (JSON)

7, 337
Jeopardy! dataset 329
join string method 200
joining 510
joining database tables 510, 514
joinpath method of class Path 263,

264
JSON (JavaScript Object Notation)

25, 218, 223, 224, 337, 502,
518
array 224
Boolean values 224
data-interchange format 223
document 385
document database (NoSQL)

518
false 224
json module 224
JSON object 223
null 224
number 224
object 337, 520
string 224
true 224

json module 7, 82
dump function 224
dumps function 225
load function 224

JSON/XML/other Internet data
formats 7

Jupyter Docker stack container 504
Jupyter Notebooks xxii, xxiii, xxv,

2, 9, 12, 13
.ipynb extension 13
cell 14
reproducibility 12
server xxxiv
terminate execution 468

JupyterLab 2, 12
Terminal window 543

K
k-fold cross-validation 417, 498
Kafka 532
Keras 380

CIFAR10 dataset 462
CIFAR100 dataset 462
Fashion-MNIST dataset 462
IMDb movie reviews dataset 462
loss function 480

Keras (cont.)
metrics 480
MNIST digits dataset 461
optimizers 480
reproducibility 467
summary method of a model 478
TensorBoard callback 488

Keras deep learning library 458
kernel

in a convolutional layer 473
key 116
key–value

database 517
pair 138

KeyboardInterrupt exception 279
keys

API keys 335
credentials 335

keys method of dictionary 141
keyword 41, 44, 51

and 65, 66
argument 56, 85
break 64
class 248
continue 64
def 73
elif 51
else 51
False 50, 51
for 50, 51, 55, 55, 57
from 62
if 50, 51
if…elif…else 50, 54
if…else 50, 52
import 62, 62
in 50, 51, 55, 57
lambda 123
not 65, 66, 67
or 65, 66
True 50, 51
while 50, 51, 55

KFold class
sklearn.model_selection
417, 419, 438

Kitematic (Docker GUI app) 545
k-means clustering algorithm 442,

450
KMeans estimator from

sklearn.cluster 450
k-nearest neighbors (k-NN)

classification algorithm 404
KNeighborsClassifier estimator

from sklearn.neighbors 412
Knowledge Studio (IBM Watson)

380
KoNLPy 328

ptg27972259

Index 585

L
L1 regularization 476
L2 regularization 476
label_ property of a spaCy Span

327
labeled data 400, 403
lambda expression 95, 123, 345
lambda keyword 123
language codes 312
language detection 305
language translation 24, 305
Language Translator service (IBM

Watson) 377, 382, 383, 384,
385, 390

LanguageTranslatorV3 class
from the

watson_developer_cloud
module 385, 390

translate method 390
largest integer not greater than 83
Lasso estimator from

sklearn.linear_model 438
last-in, first-out (LIFO) order 119
latitude 363
Law of Large Numbers 2
law of large numbers xx, 102, 153,

154
layers 468
layers in a neural network 458, 464,

468
lazy estimator (scikit-learn) 412
lazy evaluation 95, 121, 123
Leaflet.js JavaScript mapping library

363, 364
leave interactive mode 10
left align (<) in string formatting 64,

194
left-to-right evaluation 36, 45
left_shift universal function

(NumPy) 171
leftmost condition 66
legacy code 226
LEGB (local, enclosing, global,

built-in) rule 292
lemmas method of class Synset 316
lemmatization 305, 309, 314
lemmatize method of class

Sentence 314
lemmatize method of class Word

314
len built-in function 68, 86, 103
length of a dictionary 139
less universal function (NumPy)

171

less_equal universal function
(NumPy) 171

less-than operator (<) 41
less-than-or-equal-to operator (<=)

41
lexicographical comparison 198
lexicographical order 125
libraries xix, 7
LIFO (last-in, first-out) order 119
LIKE operator (SQL) 512
linear regression xix, 293

multiple 421, 434
simple 420, 421

linear relationship 293, 294
LinearRegression estimator from

sklearn.linear_model 421,
422, 434
coeff_ attribute 423
intercept_ attribute 423

linguistic analytics 378
LinkedIn 333
linregress function of SciPy’s

stats module 295, 298
linspace function (NumPy) 164
Linux Terminal or shell xxxiv
lip reader technology 329
list 102

*= 116
append method 117, 119
clear method 118
copy method 119
extend method 118
index method 116
insert method 117
pop method 119
remove method 118
reverse method 119

list built-in function 109
list comprehension 95, 120, 130,

493
filter and map 124
for clause 121
if clause 121

list indexing in pandas 184
list method

sort 115
list of base-class objects 274
list sequence 56, 58
List type annotation from the

typing module 282, 283
listen method of a socket 554
listener for tweets from a stream 355
Lite tier (IBM Watson) 374
literal character 204
literal digits 204

load function from the json
module 224

load function of the spacy module
326

%load magic 167
load_data function of the

tensorflow.keras.datasets.m

nist module 468, 491
load_digits function from

sklearn.datasets 406
load_iris function from

sklearn.datasets 444
load_model function of the

tensorflow.keras.models
module 485

loc attribute of a DataFrame 183
local

namespace 290
scope 87
variable 74, 75, 87

locale module 82
localization 82
location-based services 24
log (natural logarithm) function of

module math 83
log universal function (NumPy)

171
log10 (logarithm) function of

module math 83
logarithm 83
logic error 11, 55

fatal 59
logical_and universal function

(NumPy) 171
logical_not universal function

(NumPy) 171
logical_or universal function

(NumPy) 171
logical_xor universal function

(NumPy) 171
Long Short-Term Memory (LSTM)

490
longitude 363
lookup_users method of class API

346
loss 465
loss function 465, 480

binary_crossentropy 480,
496

categorical_crossentropy
480

deep learning 468
Keras 480
mean_squared_error 480

lower method of a string 87, 125,
197

ptg27972259

586 Index

lowercase letter 33, 202
loyalty programs 24
LSTM (Long Short-Term Memory)

490
lstrip string method 197

M
m-by-n sequence 127
machine learning xix, 8, 26, 328,

398, 442, 459
411, 434

binary classification 403
classification 403
hyperparameter 405, 420
IBM Watson 380
k-nearest neighbors (k-NN)

algorithm 404
measure a model’s accuracy 414
model 405
multi-classification 403
preparing data 408
samples 407, 428
scikit-learn 403, 405, 426
target values 428
training set 411, 434
unsupervised 438

macOS Terminal xxxiv
magics (IPython) 133

%matplotlib inline 469
%pprint 491
%precision 309
%recall 133
%save 134
documentation 166

’__main__’ value 290
_make method of a named tuple 281
make your point (game of craps) 79
Malware Detection 24
many-to-many relationship 511
map 123

coordinates 363
marker 363
panning 363
sequence 121, 122
zoom 363

map built-in function 95, 123
Map class (Folium) 366

save method 367
map data to another format 213
map method

of a DStream 559
of a pandas Series 213
of the RDD class 546

mapper in Hadoop MapReduce
532, 535

mapping 24
MapReduce xix, 530, 531
MapReduce programming 124
MariaDB ColumnStore 506, 518
Marker class (folium) 366

add_to method 366
marketing 24

analytics 24
mashup 17, 382
mask image 322
massively parallel processing 25,

530, 532
match function of the module re 208
match method for a pandas Series

212
match object (regular expressions)

208, 209
math module 7, 82

exp function 83
fabs function 83
floor function 83
fmod function 83
log function 83
log10 function 83
pow function 83
sin function 83
sqrt function 82, 83
tan function 83

mathematical operators for sets 150
Matplotlib 25
%matplotlib inline magic 469
Matplotlib visualization library xx,

8, 102, 128, 129, 130, 152, 153,
155, 158, 321, 430
animation module 153, 157
Axes class 131
Axes3D 442
cla function 133
color maps 322, 410
Figure class 131
IPython interactive mode 129
show function 135

matplotlib.image module 264
imread function 264

matplotlib.pylot module
plot function 424

matplotlib.pyplot module 130
cla function 156
figure function 157
gcf function 321
subplots function 264

matrix 466
max

built-in function 48, 76, 86,
124

method of ndarray 169

max pooling 476
maximum statistic 46
maximum universal function

(NumPy) 171
MaxPooling2D class from the

tensorflow.keras.layers
module 477

McKinsey Global Institute xvii
me method of class API 344
mean 97
mean function (statistics

module) 68
mean method of ndarray 169
mean squared error 437
mean statistic 67
mean_squared_error loss function

480
measure a model’s accuracy 414
measures of central tendency 67, 97
measures of dispersion 46, 180

standard deviation 46
variance 46

measures of dispersion (spread) 97
measures of variability 46
measures of variability (statistics) 97
media type 388, 392
median 97, 180
median function (statistics

module) 68
median statistic 67
megabytes (MB) 18
MemSQL (NewSQL) 520
merge records from tables 514
Mesos 541
metacharacter (regular expressions)

205
metacharacters

^ 208
. 210
(and) 209
$ 209

metadata 406, 517
tweet 337

method 3, 87
call 4

metrics, Keras 480
Microsoft

Azure Cosmos DB 518
Azure HDInsight 503, 533
Bing Translator 311
Linguistic Analysis API 328
SQL Server 506

Microsoft Azure HDInsight 16
Microsoft CNTK 458, 462
Microsoft Cognitive Toolkit

(CNTK) 8

ptg27972259

Index 587

MIME (Multipurpose Internet Mail
Extensions) 388

min built-in function 48, 76, 86,
124

min method of ndarray 169
MiniBatchKMeans estimator 454
minimum statistic 46
minimum universal function

(NumPy) 171
missing values 211
mixed-type expression 36
MNIST handwritten digits dataset

Keras 461, 467
mnist module from

tensorflow.keras.datasets
468

mode statistic 67, 97
mode function (statistics

module) 68
model, deep learning 468
model in machine learning 405
modules 62, 81, 82

collections 145, 280
csv 235
dataclasses 281, 282
datetime 256
decimal 62, 82
doctest 287
dweepy 566
io 227
itertools 537
math 82
matplotlib.image 264
numpy 160
os 223
pandas 508
pathlib 263, 314
pickle 226
pubnub 568
pyaudio 385, 392
pydub 385, 393
pydub.playback 385, 393
pymongo 520
pyspark.sql 555, 557
pyspark.streaming 556, 558
secrets 78
sklearn.datasets 406, 426
sklearn.linear_model 421
sklearn.metrics 414
sklearn.model_selection

411
sklearn.preprocessing 408
socket 552
sqlite3 507, 508
statistics 68, 82

modules (cont.)
tensorflow.keras.datasets

461, 468, 490
tensorflow.keras.datasets.

imdb 490
tensorflow.keras.datasets.

mnist 468
tensorflow.keras.layers

473
tensorflow.keras.models

473
tensorflow.keras.preproces

sing.sequence 493
tensorflow.keras.utils 472
tweepy 341
typing 282
wave (for processing WAV files)

385, 393
modulo operator 33
monetary calculations 7, 82
monetary calculations with Decimal

type 61, 63
MongoClient class of the pymongo

module 523
MongoDB document database 370,

518
Atlas cluster 520
text index 525
text search 525
wildcard specifier ($**) 525

Moore’s Law 23
Movie Reviews dataset 306
__mul__ special method of class

object 276
multi-model database 517
multi-classification (machine

learning) 403
multicore processor 95
multidimentional sequences 126
MultiIndex collection in pandas

178
multimedia 7
multiple-exception catching 230
multiple inheritance 266, 269
multiple linear regression 421, 426,

427, 434
multiple speaker recognition in

Watson Speech to Text 377
multiplication 10
multiplication operator (*) 33, 36

for sequences 110
multiply a sequence 116
multiply universal function

(NumPy) 170, 171
multivariate time series 293
music generation 24

mutable (modifiable) 56
sequence 104

mutate a variable 96
MySQL database 506

N
Naive Bayes 310
NaiveBayesAnalyzer 310
name mangling 257
name property of a User (Twitter)

342
__name__ identifier 290
named entity recognition 326
named tuple 280

_make method 281
named tuples 280
namedtuple function of the module

collections 280
NameError 35, 74, 113
namespace 290

built-in 291
enclosing 292
for a class 292
for an object of a class 292
LEGB (local, enclosing, global,

built-in) rule 292
naming convention

for encouraging correct use of
attributes 250

single leading underscore 253
NaN (not a number) 185
National Oceanic and Atmospheric

Administration (NOAA) 296
natural language 25, 304
Natural Language Classifier service

(IBM Watson) 378
natural language datasets 329
natural language processing 25
natural language processing (NLP)

xix, 192, 353
datasets 329

natural language text 376
natural language translation 24
natural language understanding 305

service from IBM Watson 377
natural logarithm 83
navigate backward and forward

through IPython snippets 53
nbviewer xxv
ndarray 130, 160

arithmentic 167
copy method 174
dtype attribute 162
flat attribute 163
flatten method 176

ptg27972259

588 Index

ndarray (cont.)
indexing 171
itemsize attribute 162
max method 169
mean method 169
min method 169
ndim attribute 162
ravel method 176
reshape method 164, 175
resize method 175
shape attribute 162
size attribute 162
slicing 171
std method 169
sum method 169
var method 169
view method 173

ndarray collection (NumPy)
T attribute 177

ndim attribute of ndarray 162
negative sentiment 309
Neo4j 519
nested

control statements 77
for structure 127
functions 292
list 126
loop 127
parentheses 35

network (neural) 468
networking 7
neural network 8, 27, 463

deep learning 468
layer 464, 468
loss function 468
model 468
neuron 464
optimizer 468
weight 465

neuron 464
activation 464
in a neural network 464
in biology 463

neutral sentiment 309
new pharmaceuticals 24
newline character (\n) 37
NewSQL database 503, 517, 520

Apache Ignite 520
Google Spanner 520
MemSQL 520
VoltDB 520

n-grams 305, 318
ngrams method of class TextBlob

318

NLTK (Natural Language Toolkit)
NLP library 9, 305
corpora 306
data 329

node in a graph 519
nodes in a cluster 531
None value 74

evaluates to False in conditions
74

nonexistent element in a sequence
104

nonfatal logic error 55
nonfatal runtime error 12
nonsequence collections 138
normalization 314
normalized data 471
NoSQL database 370, 503, 517

column based 517
columnar database 517, 518
Couchbase 517
CouchDB 518
document database 517, 518
DynamoDB 517
Google Cloud Datastore 517
graph database 517, 519
HBase 517
key–value 517
MariaDB ColumnStore 506,

518
Microsoft Azure Cosmos DB

518
MongoDB 518
Redis 517

not Boolean operator 65, 66, 67
truth table 67

not in operator 81, 147
not_equal universal function

(NumPy) 171
notebook, terminate execution 468
not-equal-to operator (!=) 41
noun phrase 309

extraction 305
noun_phrases property of a

TextBlob 309
null in JSON 224
number systems

appendix (online) 193
binary 193
hexadecimal 193
octal 193

numbers format with their signs (+
195

numbers in JSON 224

NumPy (Numerical Python) library
xix, 8, 130, 136, 160
add universal function 170
arange function 164
array function 161, 162
broadcasting 168, 171
convert array to floating-point

values 472
full function 163
hstack function 177
linspace function 164
multiply universal function

170
numpy module 160
ones function 163
preinstalled in Anaconda 160
sqrt universal function 170
statistics functions 130
transpose rows and columns 177
type bool 162
type float64 162, 163
type int64 162, 163
type object 162
universal functions 170
unique function 130
vstack function 177
zeros function 163

numpy module 130
numpy.random module 166

choice function 469
randint function 166

NVIDIA GPU 463
NVIDIA Volta Tensor Cores 466

O
OAuth 2.0 337
OAuth dance 337
OAuthHandler class (Tweepy) 341

set_access_token method 341
object 2, 3, 46

identity 91
namespace 292
type 33, 45
value 45

object-based programming xxii
object-based programming (OBP)

245, 274
object class 249, 269

__add__ special method 276,
278

__format__ special method
261, 263

__iadd__ special method 279
__mul__ special method 276

ptg27972259

Index 589

object class (cont.)
__repr__ special method 251,

254, 261
__str__ special method 251,

255, 261
special methods for operator

overloading 276
object NumPy type 162
object-oriented analysis and design

(OOAD) 5
object-oriented language 5
object-oriented programming

(OOP) 2, 5, 274
object recognition 475
object-oriented programming xix
OBP (object-based programming)

245, 274
observations in a time series 293
octal number system 193
off-by-one error 57
ON clause 514
on_connect method of class

StreamListener 355, 356
on_delete method of class

StreamListener 359
on_error method of class

StreamListener 355
on_limit method of class

StreamListener 355
on_status method of class

StreamListener 355, 356
on_warning method of class

StreamListener 355
one-hot encoding 408, 472, 482,

494
one-to-many relationship 510
ones function (NumPy) 163
OOAD (object-oriented analysis

and design) 5
OOP (object-oriented

programming) 5, 274
open a file 219

for reading 221
for writing 220

open built-in function 220
open method 221

of the class PyAudio 393
open-source libraries 25, 245
OpenAI Gym 8
OpenMapQuest

API key 363
OpenMapQuest (geopy)

geocode method 368
OpenMapQuest class (geopy) 368
OpenMapQuest geocoding service

363

open-source libraries xx
open-source software 25
OpenStreetMap.org 364
operand 36
operator

grouping 36, 67, 277
precedence chart 45
precedence rules 35

operator module 95, 320
operator overloading 276

special method 276
optimizer

’adam’ 480
deep learning 468
Keras 480

or Boolean operator 65, 66
Oracle Corporation 506
ord built-in function 124
ORDER BY SQL clause 511, 512, 513
order of evaluation 35
ordered collections 102
OrderedDict class from the module

collections 281
ordering of records 511
ordinary least squares 295
os module 7, 82, 223

remove function 223
rename function 223

outer for statement 127
outliers 98, 204
output layer 468, 473
overfitting 425, 475, 495
overriding a method 355
overriding base-class methods in a

derived class 270

P
package 81
package manager

conda xxxiv
pip xxxiv

packing a tuple 80, 106
pad_sequences function of the

tensorflow.keras.preprocess

ing.sequence module 493
pairplot function (Seaborn

visualization library) 447
pandas xix, 8, 160, 178, 218, 235,

319
Boolean indexing 185
DataFrame 192, 211, 213, 214
DataFrame collection 178, 182
in place sort 188
list indexing 184
MultiIndex collection 178

pandas (cont.)
read_csv function 237
reductions 179
selecting portions of a

DataFrame 183
Series 178, 192, 211, 212
set_option function 186
slice indexing 184
visualization 240, 319

pandas module
GroupBy 527
read_sql function 508

panning a map 363
parallel processing 546
parallelism xxiii
parameter 73
parameter list 73
parentheses

() 35
nested 35
redundant 35

parentheses metacharacters, (and)
209

partition string method 201
parts-of-speech (POS) tagging 305,

307, 308
adjectives 307
adverbs 307
conjunctions 307
interjections 307
nouns 307
prepositions 307
pronouns 307
tags list 308
verbs 307

pass-by-object-reference 90
pass-by-reference 90
pass-by-value 90
patch in a convolutional layer 473
Path class 314

joinpath method 263, 264
read_text method 314
resolve method 264

Path class from module pathlib
263

pathlib module 314
Path class 263

pattern matching 7, 82, 512
pattern NLP library 9, 305, 308
PCA estimator

fit method 452
fit_transform method 452
sklearn.decomposition

module 452
transform method 452

http://OpenStreetMap.org

ptg27972259

590 Index

percent (%) SQL wildcard character
512

performance xxiii, xxviii
performance tuning 4
PermissionsError 227
persistent 218
persistent connection 355
personal assistants 24
Personality Insights service (IBM

Watson) 378
personality theory 378
personality traits 378
personalized medicine 24
personalized shopping 24
petabytes (PB) 19
petaflops 20
phishing elimination 24
pickle module 226
picture xix
Pig 533
Pig Latin 533
pip package manager xxxiv
pitch, voice 377
pixel intensity (grayscale) 407
placeholder in a format string 196
Platform as a Service (PaaS) 504
play function of module

pydub.playback 393
plot function of the

matplotlib.pylot module 424
plot method of a class DataFrame

294
plot property of a DataFrame 321
plot_model function of the

tensorflow.keras.utils.vis_

utils module 479
pluralizing words 305, 309
PNG (Portable Network Graphics)

260
polarity of Sentiment named

tuple 309, 310
pollution reduction 24
polymorphism 245, 274
pooling layer 476
pop method of dictionary built-in

type 140
pop method of list 119
pop method of set 152
Popular Python Data-Science

Libraries 8
Popularity of Programming

Languages (PYPL) Index 2
population 97
population standard deviation 98
population variance 97, 98
Popup class (folium) 366

position number 103
positive sentiment 309
PostgreSQL 506
pow (power) function of module

math 83
power universal function (NumPy)

171
%pprint magic 491
precedence 35
precedence not changed by

overloading 277
precedence rules 41, 45
precise monetary calculations 61, 63

Decimal type 61, 63
precision in a scikit-learn

classification report 416
%precision magic 167, 309
precision medicine 24
predefined word embeddings 495
predicate 511
predict method of a scikit-learn

estimator 413, 435
predict method of class

Sequential 482
predicted value in simple linear

regression 295
predicting

best answers to questions 490
cancer survival 24
disease outbreaks 24
student enrollments 24
weather-sensitive product sales

24
prediction accuracy 414
predictive analytics 24
predictive text input 490, 493
prepare data for machine learning

408
preposition 308
presentation type (string formatting)

193
c 193
d 193
e (or E) 194
f 194
integers in binary, octal or

hexadecimal number systems
193

pretrained convnet models 498
pretrained deep neural network

models 498
pretrained machine learning models

309
preventative medicine 24

preventing
disease outbreaks 24
opioid abuse 24

primary key 507, 508, 509, 510
composite 510

principal 63
principal components analysis

(PCA) 439, 452
principal diagonal 414
print built-in function 36
privacy

laws 502
private 256

attribute 257
data 250

probabilistic classification 467
probability 76, 153
problem solving 58, 59
procedural programming xix
process dictionary keys in sorted

order 143
profile module 82
profiling 7
program 9, 42
program “in the general” 245
program “in the specific” 245
program development 58, 59
ProgrammableWeb 17
Project Gutenberg 306
prompt 39
proper singular noun 308
proper subset 149
proper superset 149
property

getter method 253
name 253
of a class 251, 253
read-only 253
read-write 253
setter method 253

@property decorator 253
@propertyname.setter decorator

253
Prospector xxxv
protecting the environment 24
pseudorandom numbers 78
pstats module 82
pstdev function (statistics

module) 98
pub/sub system 561

channel 562
topic 562

public attribute 257
public domain

card images 258
images 263

ptg27972259

Index 591

public interface of a class 255
publicly accessible attributes 250
publish/subscribe model 503, 561
publisher of a message 561
PubNub 16
pubnub module 568
Punkt 306
pure function 95, 96
pushed tweets from the Twitter

Streaming API 355
pvariance function (statistics

module) 98
.py extension 10
PyAudio class

get_sample_size method 393
open method 393
terminate method 393

PyAudio class from module pyaudio
393

pyaudio module 385, 392
PyAudio class 393
Stream class 393

PyCharm 12
pydataset module 237
pydub module 385, 393
pydub.playback module 385, 393

play function 393
pylinguistics library 324
PyMongo 370
pymongo library 520
pymongo module

Collection 524
Database 523
MongoClient 523

PyNLPl 328
PySpark 541
pyspark module

SparkConf class 546
pyspark.sql module 555, 557

Row class 557
pyspark.streaming module

DStream class 556
StreamingContext class 558

Python 5
Python and data science libraries

xxxiv
Python SDK (IBM Watson) 375
Python Standard Library 7, 61, 62,

81, 82
calendar module 82
collections module 7, 82
copy module 175
cryptographic modules

module 82
csv module 7, 82
datetime module 7, 82

Python Standard Library (cont.)
decimal module 7, 82
doctest module 7, 82
gettext module 82
json module 7, 82
locale module 82
math module 7, 82
os module 7, 82
profile module 82
pstats module 82
queue module 7
random module 7, 82, 130
re module 7, 82
secrets module 78
socket module 552
sqlite3 module 7, 82, 507
statistics module 7, 68, 82
string module 7, 82
sys module 7, 82, 135
time module 7, 82
timeit module 7, 82
tkinter module 82
turtle module 82
webbrowser module 82

PyTorch NLP 328

Q
qualified name 514
quantifier

? 206
{n,} 206
{n,m} 207
* 206
+ 206
greedy 206
in regular expressions 205

quantum computers 21
quartiles 180
query 506, 507
query string 348
question mark (?) to access help in

IPython 74
questions

getting answered xxviii
queue data structure 120
queue module 7
quotes

double 37
single 37
triple-quoted string 38

R
'r' file-open mode 221, 226
R programming language 5, 6
'r+' file-open mode 226

R2 score (coefficient of
determination) 437

r2_score function
(sklearn.metrics module) 437

radians 83
raise an exception 227, 233
raise point 229, 234
raise statement 233
raise to a power 83
randint function from the

numpy.random module 166
random module 7, 76, 82, 130

randrange function 76
seed function 76, 78

random number 76
generation 7, 82

random sampling 211
randomness source 78
random-number generation 130
randrange function of module

random 76
range built-in function 57, 60, 164
range statistic 46
rate limit (Twitter API) 334, 342
ravel method of a NumPy array

410
ravel method of ndarray 176
raw data 222
raw string 203
Rdatasets repository

CSV files 237
RDD 555
RDD (resilient distributed dataset)

546, 556
RDD class 546

RDD class
filter method 547
flatMap method 546
map method 546
reduceByKey method 547

re module 7, 82, 192, 204
findall function 209
finditer function 209
fullmatch function 204
match function 208
search function 208
split function 207
sub function 207

read a file into a program 221
read method of a file object 227
read method of the class Stream

393
read_csv function (pandas) 237
read_sql function from the pandas

module 508

ptg27972259

592 Index

read_text method of class Path
314

readability 324
readability assessment 324
readability assessment libraries

readability library 324
readability-score library 324

readability formulas 324
Dale-Chall 324, 325
Flesch Reading Ease 324, 325
Flesch-Kincaid 324, 325
Gunning Fog 324, 325
Simple Measure of

Gobbledygook (SMOG)
324, 325

reader function of the csv module
236

reading sign language 24
readline method of a file object

227
readlines method of a file object

221
read-only property 253
read-write property 253

definition 253
real part of a complex number 277
real time 16
reasonable value 212
recall in a scikit-learn classification

report 416
%recall magic 133
%save magic 134
recognize method of class

SpeechToTextV1 387
recommender systems 24, 329
record 219
record key 219
recurrent neural network (RNN)

293, 370, 460, 489, 490
time step 490

recursion
recursion step 93
recursive call 93
recursive factorial function

94
visualizing 94

recursive call 95
recursive function 99
Redis 517
reduce dimensionality 476, 494
reduce function 95

of the functools module 124
reduceByKey method of class RDD

547
reducer in Hadoop MapReduce

532, 536

reducing carbon emissions 24
reducing program development

time 76
reduction 95, 122, 124

in functional-style programming
48, 68, 124

pandas 179
redundant parentheses 35, 36, 65
refer to an object 46
regplot function of the Seaborn

visualization library 298
regression xix, 400
regression line 293, 296, 298

slope 299
regular expression 7, 82, 203, 208

^ metacharacter 208
? quantifier 206
(metacharacter 209
) metacharacter 209
[] character class 205
{n,} quantifier 206
{n,m} quantifier 207
* quantifier 206
\ metacharacter 205
\d character clas 205
\D character class 205
\d character class 205
\S character class 205
\s character class 205
\W character class 205
\w character class 205
+ quantifier 206
$ metacharacter 209
anchor 208, 209
caret (^) metacharacter 206
character class 205
escape sequence 205
flags keyword argument 208
group method of a match object

210
groups method of a match

object 208, 210
IGNORECASE regular expression

flag 208
match object 208
metacharacter 205
parentheses metacharacters, (

and) 209
search pattern 203
validating data 203

regularization 476
reinforcement learning 27
reinventing the wheel 81
relational database 502, 506

relational database management
system (RDBMS) 370, 506

release resources 220
’relu’ (Rectified Linear Unit)

activation function 475
remainder (in arithmetic) 35
remainder operator (%) 33, 35, 36,

45
remainder universal function

(NumPy) 171
remove function of the os module

223
remove method of list 118
remove method of set 152
removing whitespace 197
rename function of the os module

223
repeat a string with multiplication

110
repeat keyword argument of

FuncAnimation 157
replace method 199
replacement text 59, 60
repr built-in function 254
__repr__ special method of class

object 251, 254, 261
reproducibility xxii, xxvi, 76, 411,

417, 430, 462, 542, 544
in Keras 467
Jupyter Notebooks 12

requirements statement 5, 59
compound interest 63
craps dice game 78

reshape method of ndarray 164,
175, 422

resilient distributed dataset (RDD)
542, 546, 555, 556

resize method of ndarray 175
resolve method of class Path 264
resource

acquire 220
release 220

resource leak 231
return statement 73
return_counts keyword argument

of NumPy unique function 130
reusable componentry 245
reusable software components 3
reuse 4
reverse keyword argument of list

method sort 115
reverse method of list 119
reversed built-in function

(reversing sequences) 125
rfind string method 199
ride sharing 24
Ridge estimator from

sklearn.linear_model 438

ptg27972259

Index 593

right align > (string formatting) 63,
194

right_shift universal function
(NumPy) 171

right-to-left evaluation 45
rindex string method 199
risk monitoring and minimization

24
robo advisers 24
robust application 218
rolling a six-sided die 77
rolling two dice 78, 80
Romeo and Juliet 321
round floating-point numbers for

output 60
rounding integers 83
Row class from the pyspark.sql

module 557
row in a database table 507, 510,

511, 512, 515
row of a two-dimensional list 126
rpartition string method 201
rsplit string method 200
rstrip string method 197
Rule of Entity Integrity 510
Rule of Referential Integrity 510
%run magic 167
running property of class Stream

358
runtime error 12

S
SalariedCommissionEmployee

class 270
sample method of a DataFrame 430
sample of a population 97
sample variance 97
samples (in machine learning) 407,

428
sampling data 211
sarcasm detection 329
%save magic 167
save method of class Map 367
save method of class Sequential

485
scalar 167
scalar value 465
scatter function (Matplotlib) 440
scatter plot 298, 430
scattergram 298
scatterplot function (Seaborn)

424, 431
scientific computing 5
scientific notation 194

scikit-learn (sklearn) machine-
learning library 8, 293, 380, 403,
405, 426, 459
estimator (model) 405, 422
fit method of an estimator

412, 434
predict method of an estimator

413, 435
score method of a classification

estimator 414
sklearn.linear_model

module 421
sklearn.metrics module 414
sklearn.model_selection

module 411
sklearn.preprocessing

module 408
SciPy xix, 8
scipy 295
SciPy (Scientific Python) library

295, 298
linregress function of the

stats module 295, 298
scipy.stats module 295
stats module 298

scipy.stats module 295
scope 87, 290

global 87
local 87

score method of a classification
estimator in scikit-learn 414

scraping 204
screen_name property of a User

(Twitter) 343
script 9, 42
script mode (IPython) 9
script with command-line

arguments 135
Seaborn visualization library xx, 8,

25, 128, 130, 152, 153, 155,
157, 158, 430
barplot function 131
heatmap function 416
module 130
pairplot function 447
predefined color palettes 131
regplot function 298
scatterplot function 424,

431
search a sequence 116
search function of the module re

208
search method of class API 347
search pattern (regular expressions)

203
seasonality 293

secondary storage device 218
secrets module 78
secure random numbers 78
security enhancements 24
seed function of module random 76,

78
seed the random-number generator

78
seek method of a file object 221
SELECT SQL keyword 509
selection criteria 511
selection statement 50
self in a method’s parameter list 249
self-driving cars 24, 26
semi-structured data 502, 517, 518
send a message to an object 4
send method of a socket 552
sentence capitalization 197
Sentence class (TextBlob) 307, 310

correct method 313
lemmatize method 314
stem method 314

sentence property of a TextBlob
307, 310

sentiment 309, 349, 377
sentiment analysis xxi, 24, 305,

309, 359, 490
sentiment in tweets 332
Sentiment named tuple

polarity 309, 310
subjectivity 309, 310
textblob module 309

sentiment property of a TextBlob
309, 310

sentinel-controlled iteration 59
sentinel value 59
separators, thousands 130
sequence 55, 102

+ operator for concatenation
105

concatenate 105
length 103
nonexistent element 104
of bytes 219
of characters 55, 219
of consecutive integers 57

sequence collections 138
sequence type string 192
Sequential class

compile method 480
evaluate method 482
fit method 480
predict method 482
save method 485
tensorflow.keras.models

module 473

ptg27972259

594 Index

serializing data 224
Series collection (pandas) 178,

192, 211, 212
astype method 522
built-in attributes 181
contains method 212
custom indices 180
describe method 179
descriptive statistics 179
dictionary initializer 180
dtype attribute 181
index keyword argument 180
integer indices 178
map method 213
match method 212
square brackets 180
str attribute 181, 212
string indices 180
values attribute 181

server in a client/server app 551
service documentation (IBM

Watson) 394
service-oriented architecture (SOA)

504
set built-in type 138, 147

add 152
clear 152
difference 150
difference_update 151
discard 152
disjoint 151
empty set 148
improper subset 149
improper superset 149
intersection 150
intersection_update 151
isdisjoint 151
issubset method 149
issuperset method 149
mathematical operators 150
pop 152
proper subset 149
proper superset 149
remove 152
set built-in function 148
symmetric_difference 150
symmetric_difference_updat

e 151
union 150
update 151

set comprehensions 95
set method of Axes (Matplotlib)

131
SET SQL clause 515
set_access_token method of class

OAuthHandler 341

set_option function (pandas) 186
set_options function (tweet-

preprocessor library) 354
set_ylim method of Axes

(Matplotlib) 132
setAppName method of class

SparkConf 546
setMaster method of class

SparkConf 546
sets of synonyms (synset) 315
setter method

decorator 253
of a property 253

shadow
a built-in identifier 291
a built-in or imported function

88
shadow a function name 88
Shakespeare 306, 314, 327
shallow copy 111, 173
shape attribute of ndarray 162
Shape class hierarchy 267
sharing economy 24
short-circuit evaluation 66
show function of Matplotlib 135
ShuffleSplit class from

sklearn.model_selection 411
side effects 95, 96
sigmoid activation function 496
signal value 59
signature of a function 74
similarity detection 24, 327
similarity method of class Doc

328
simple condition 66
simple linear regression 293, 370,

420, 421
Simple Measure of Gobbledygook

(SMOG) readability formula
324, 325

simplified Chinese 312
simulate an Internet-connected

device 503, 561
simulation 76
sin (sine) function of module math

83
sin universal function (NumPy)

171
single inheritance 266, 269, 270
single leading underscore naming

convention 253
single quote (') 37
singleton tuple 107
singular noun 308
singularizing words 305, 309
size attribute of ndarray 162

sklearn (scikit-learn) 399, 426
sklearn.cluster module

KMeansClassifier estimator
450

sklearn.datasets module 406,
426
fetch_california_housing

function 426
load_digits function 406
load_iris function 444

sklearn.decomposition module
PCA estimator 452

sklearn.linear_model module
421
ElasticNet estimator 438
Lasso estimator 438
LinearRegression estimator

421, 422, 434
Ridge estimator 438

sklearn.manifold module
TSNE estimator 439

sklearn.metrics module 414
classification_report

function 415
confusion_matrix function

414
r2_score function 437

sklearn.model_selection module
411
cross_val_score function

417, 418, 419, 438
KFold class 417, 419, 438
ShuffleSplit class 411
train_test_split function

411, 434, 494
sklearn.naive_bayes module

GaussianNB estimator 419
sklearn.neighbors module 412,

450
KNeighborsClassifier

estimator 412
sklearn.preprocessing module

408
sklearn.svm module

SVC estimator 419
sklearn.utils module

Bunch class 426
slice 110

end index 111
indexing in pandas 184
ndarray 171
start index 110
step 111

slope 295, 298
smart cities 24

ptg27972259

Index 595

smart homes 24
smart meters 24
smart thermostats 24
smart traffic control 24
snippet

navigate backward and forward
in IPython 53

snippet in IPython 9
SnowNLP 328
social analytics 24
social graph 519
social graph analysis 24
socket 551, 552

accept method 554
bind method 554
close method 554
listen method 554
send method 552

socket function 554
socket module 552
socketTextStream method of class

StreamingContext 559
softmax activation function 478
Software as a Service (SaaS) 504
software engineering observations

xxviii
solid-state drive 218
sort 115

ascending order 115, 146
descending order 115, 116

sort method of a list 115
sort_index method of a pandas

DataFrame 187
sort_values method of a pandas

DataFrame 188
sorted built-in function 115, 143,

345
sorted function 68
source code 10
SourceForge 245
spacy module

load function 326
spaCy NLP library 326

Doc class 326
ents property 327
label_ property of a Span 327
load function of the spacy

module 326
similarity method 328
Span class 327

spam detection 24
Span class (spaCy) 327

label_ property 327
text property 327

Spark (Apache) xix, 503, 530
as a Service (SaaS) 504
batches of streaming data 558
checkpointing 558
fault-tolerance in streaming 558
PySpark library 541
Spark SQL 503, 517, 555, 557

query 557
stateful transformations in

streaming 558
streaming 503, 542
streaming batch interval 558
table view of a DataFrame 557

SparkConf class from the pyspark
module 546
setAppName method 546
setMaster method 546

SparkContext class 546
textFile method 546

sparkline 563
SparkSession class from the

pyspark.sql module 555
spatial data analysis 24
special method 249, 276
special methods

__eq__ 282
__init__ 281
__ne__ 282
__repr__ 281

speech recognition 25, 329
speech synthesis 25, 329
Speech Synthesis Markup Language

(SSML) 377
speech to text 16
Speech to Text service (IBM

Watson) 377, 382, 383, 384,
385, 386, 387, 391

speech-to-text 329
SpeechToTextV1 class

recognize method 387
SpeechToTextV1 class from the

watson_developer_cloud
module 385, 387

spell checking 305
spellcheck method of class Word

313
spelling correction 305
split

function of module re 207
method 221
method of string 145
string method 200

splitlines string method 201
sports recruiting and coaching 24
spread 98

Spyder IDE 12
Spyder Integrated Development

Environment xxxiv
SQL (Structured Query Language)

506, 507, 511, 515
DELETE FROM statement 511,

516
FROM clause 511
GROUP BY clause 511
INNER JOIN clause 511, 514
INSERT INTO statement 511,

515
keyword 511
ON clause 514
ORDER BY clause 511, 512, 513
percent (%) wildcard character

512
query 508
SELECT query 509
SET clause 515
SQL on Hadoop 517
UPDATE statement 511
VALUES clause 515
WHERE clause 511

SQLite database management
system 506, 507

sqlite3 command (to create a
database) 507

sqlite3 module 7, 82, 507
connect function 508
Connection class 508, 514

Sqoop 533
sqrt (square root) function of

module math 82, 83
sqrt universal function (NumPy)

170, 171
square brackets 180
SRE_Match object 208
stack 119

overflow 95
unwinding 229, 234

standard deviation 46, 166, 180
standard deviation statistic 98
standard error file object 219
standard file objects 219
standard input file object 219
standard input stream 535
standard output file object 219
standard output stream 535
StandardError class of exceptions

280
standardized reusable component

245
Stanford CoreNLP 328
start index of a slice 110

ptg27972259

596 Index

start method of a
StreamingContext 559

startswith string method 199
stateful transformations (Spark

streaming) 558
statement 32
statement spread over several lines

44
statements

break 64
continue 64
del 112
for 50, 51, 55, 57
from…import 89
if 50, 51
if…elif…else 50, 54
if…else 50, 52
import 62, 82
import…as 90
nested 77
return 73
while 50, 51, 55
with 220

static bar chart 102
static code analysis tools 286
static visualization 128
statistics

count 46, 68
maximum 46
mean 67
measures of central tendency 67
measures of dispersion 46
measures of dispersion (spread)

97
measures of variability 46, 97
median 67
minimum 46
mode 67
range 46
standard deviation 46, 98
sum 46, 68
variance 46, 97

statistics module 7, 68, 82
mean function 68
median function 68
mode function 68
pstdev function 98
pvariance function 98

stats 298
Statsmodels 8
Status class (Twitter API)

extended_tweet property 343
text property 343

status property of a User (Twitter)
343

status update (Twitter) 337

std method of ndarray 169
stem method of class Sentence 314
stem method of class Word 314
stemming 305, 309, 314
step in a slice 111
step in function range 60
stock market forecasting 24
stop word 323

elimination 305
stop words 317, 328
stop_stream method of the class

Stream 393
Storage as a Service (SaaS) 504
Storm 533
str (string) type 45, 62
str attribute of a pandas Series

181, 212
str built-in function 255
__str__ special method of class

object 251, 255, 261
straight-line form 35
Stream class

close method 393
read method 393
stop_stream method 393

Stream class (Tweepy) 357, 358
filter method 358
running property 358

Stream class from module pyaudio
393

StreamingContext class
checkpoint method 558
pyspark.streaming module

558
socketTextStream method

559
start method 559

StreamListener class (Tweepy)
355
on_connect method 355, 356
on_delete method 359
on_error method 355
on_limit method 355
on_status method 355, 356
on_warning method 355

stride 474, 476
string built-in type

* string repetition operator 196
+ concatenation operator 196
byte string 393
capitalize method 197
concatenation 40
count method 198
encode as bytes 553
endswith method 199
find method 199

string built-in type (cont.)
format method 195, 550
in JSON 224
index method 199
isdigit method 202
join method 200
lower method 87, 125, 197
lstrip 197
of characters 37
partition method 201
repeat with multiplication 110
replace method 199
rfind method 199
rindex method 199
rpartition method 201
rsplit method 200
rstrip 197
split method 145, 200
splitlines method 201
startswith method 199
strip 197
title method 197
triple quoted 38
upper method 87, 197

string formatting
fill with 0s 195
left align (<) 194
numbers with their signs (+) 195
presentation type 193
right align (>) 194

string module 7, 82
string sequence type 192
strip string method 197
stripping whitespace 197
structured data 502, 517
Structured Query Language (SQL)

502, 506, 507, 511
student performance assessment 24
Style Guide for Python Code

blank lines above and below
control statements 58

class names 84, 248
constants 84
docstring for a function 73
naming constants 260
no spaces around = in keyword

arguments 56
spaces around binary operators

32, 43
split long line of code 44
suite indentation 44
triple-quoted strings 38

sub function of module re 207
subclass 4, 245
subjectivity of Sentiment named

tuple 309, 310

ptg27972259

Index 597

subordinating conjunction 308
subplots function of module

matplotlib.pyplot 264
subscribe to messages 561
subscription operator ([]) 103, 105
substring 198
subtract universal function

(NumPy) 171
subtraction 33, 36
suite 44

indentation 44
suite vs. block 73, 88
sum built-in function 68, 80, 86
sum method of a DataFrame 527
sum method of ndarray 169
sum statistic 46, 68
summarizing documents 329
summarizing text 24
summary method of a Keras model

478
super built-in function 272
superclass 4, 245
supercomputing 21
supervised 464
supervised deep learning 464
supervised machine learning 400,

403
support in a scikit-learn

classification report 416
SVC estimator from sklearn.svm

419
Sybase 506
symbols 337
symmetric difference augmented

assignment 151
symmetric_difference method of

set 150
symmetric_difference_update

method of set 151
synapse in biology 463
synapses 464
synchronous 379
synchronous tweet stream 358
synonyms 305, 315, 316
synset (set of synonyms) 315
Synset class, lemmas method 316
synsets property of class Word 315
syntax error 38
SyntaxError 38, 41
synthesize method of class

TextToSpeechV1 392
sys module 7, 82, 135

stderr file stream 219
stdin file stream 219
stdout file stream 219

SystemExit exception 279

T
T attribute of a NumPy ndarray

177
T attribute of a pandas DataFrame

187
tab completion 83
tab escape sequence \t 37
tab stop 37
table 126

in a database 506
table view of a Spark DataFrame 557
tables 506
tags property of a TextBlob 308
tail method of a DataFrame 238
tan (tangent) function of module

math 83
tan universal function (NumPy)

171
target attribute of a Bunch 407,

428
target in a for statement 55
target values (in machine learning)

428
t-distributed Stochastic Neighbor

Embedding (t-SNE) 439
telemedicine 24
tensor 160, 465

0D 465
1D 465
2D 466
3D 466
4D 466
5D 466

Tensor Processing Unit (TPU) 467
TensorBoard 481

dashboard 486
TensorBoard class from the

tensorflow.keras.callbacks
module 488

TensorBoard for neural network
visualization 486

TensorFlow 380
TensorFlow deep learning library 8,

458, 468
tensorflow.keras.callbacks

module
TensorBoard class 488

tensorflow.keras.datasets
module 461, 468, 490

tensorflow.keras.datasets.imd

b module 490
get_word_index function 492

tensorflow.keras.datasets.mni

st module 468
load_data function 468, 491

tensorflow.keras.layers module
473, 495
Conv2D class 475
Dense class 477
Embedding class 495
Flatten class 477
MaxPooling2D class 477

tensorflow.keras.layers.embed

dings module 495
Dropout class 495

tensorflow.keras.models module
473
load_model method 485
Sequential class 473

tensorflow.keras.preprocessin

g.sequence module 493
pad_sequences function 493

tensorflow.keras.utils module
472, 479

terabytes (TB) 18
teraflop 20
Terminal

macOS xxxiv
or shell Linux xxxiv

Terminal window in JupyterLab
543

terminate method of the class
PyAudio 393

terminate notebook execution 468
terrorist attack prevention 24
testing 4

unit test 287
unit testing 287

testing set 411, 434
testmod function of module

doctest 287
verbose output 288

text classification 329
text file 218, 219
text index 525
text method of Axes (Matplotlib)

131, 133
text property of a spaCy Span 327
text property of a Status (Twitter)

343
text search 525
text simplification 329
text to speech 16
Text to Speech service (IBM

Watson) 377, 382, 383, 384
Textacy NLP library 326
textatistic module 324

dict method of the
Textatistic class 324

readability assessment 324
Textatistic class 324

ptg27972259

598 Index

TextBlob 9, 16
TextBlob NLP library 305

BaseBlob class 307
compare TextBlobs to strings

307
correct method of the

TextBlob class 313
detect_language method of

the TextBlob class 311
inflection 305
inter-language translation 305
language detection 305
lemmatization 305
n-gram 305
ngrams method of the TextBlob

class 318
noun phrase extraction 305
noun_phrases property of the

TextBlob class 309
parts-of-speech (POS) tagging

305
pluralizing words 305
Sentence class 307, 310
sentence property of the

TextBlob class 307, 310
sentiment analysis 305
Sentiment named tuple 309
sentiment property of the

TextBlob class 309, 310
singularizing words 305
spell checking 305
spelling correction 305
stemming 305
stop word elimination 305
string methods of the TextBlob

class 307
tags property of the TextBlob

class 308
TextBlob class 307
textblob module 307
tokenization 305
translate method of the

TextBlob class 312
Word class 307, 309
word frequencies 305
word_counts dictionary of the

TextBlob class 315
WordList class 307, 309
WordNet antonyms 305
WordNet integration 305, 315
WordNet synonyms 305
WordNet word definitions 305
words property of the TextBlob

class 307
textblob.sentiments module 310
text-classification algorithm 310

textFile method of the
SparkContext class 546

TextRazor 328
textstat library 324
text-to-speech 329
TextToSpeechV1 class

from module
watson_developer_cloud
385, 391, 392

synthesize method 392
the cloud 16
The Jupyter Notebook 13
The Zen of Python 7
Theano 458, 462
Theano deep learning library 8
theft prevention 24
theoretical science 211
third person singular present verb

308
thousands separator 130, 195
thread 234, 546
three-dimensional graph 442
tight_layout method of a

Matplotlib figure 321
tight_layout method of class

Figure 264
Time class 250, 252
time module 7, 82
time series 293, 370

analysis 293
financial applications 293
forecasting 293
Internet of Things (IoT) 293
observations 293

time step in a recurrent neural
network 490

%timeit magic 165
timeit module 7, 82
%timeit profiling tool xxiii
timeline (Twitter) 344, 346
Titanic disaster dataset 218, 237,

238
title method of a string 197
titles table of books database 508
tkinter module 82
to_categorical function 472

of the
tensorflow.keras.utils
module 472

to_csv method of a DataFrame 238
to_file method of class WordCloud

323
token 200
tokenization 200, 305
tokenize a string 144, 145, 207
tokens 305

Tone Analyzer service (IBM
Watson) 378
emotion 378
language style 378
social propensities 378

topic in pub/sub systems 562
topic modeling 329
topical xviii
TPU (Tensor Processing Unit) 459,

466, 476
traceback 34, 55, 233
trailing zero 60
train_test_split function from

sklearn.model_selection
411, 434, 494

training accuracy 497
training set 411, 434
tranlation services

Microsoft Bing Translator 311
transcriptions of audio 377
transfer learning 459, 479, 485,

498
transform method of the PCA

estimator 452
transform method of the TSNE

estimator 440
transforming data 204, 210
translate method of a TextBlob

312
translate method of class

LanguageTranslatorV3 390
translate speech 26
translating text between languages

377
translation 16
translation services

311
transpose rows and columns in a

pandas DataFrame 187
transpose rows and columns of an

ndarray 177
travel recommendations 24
traveler’s companion app 381
Trend spotting 24
trending topics (Twitter) 333, 349
Trends API (Twitter) 334
trends_available method of class

API 350
trends_closest method of class

API 351
trends_place method of class API

351
trigonometric cosine 83
trigonometric sine 83
trigonometric tangent 83

ptg27972259

Index 599

trigrams 318
triple-quoted string 38
True 50, 51
True Boolean value 41
true division operator (/) 33, 34,

36, 45
trunc universal function (NumPy)

171
truncate 34
truth table 65
try clause 228
try statement 228
TSNE estimator

fit method 440
fit_transform method 440
sklearn.manifold module 439
transform method 440

tuple 80, 102, 106
arbitrary argument list 86
one-element 107
tuple built-in function 109

Turtle graphics
turtle module 82

Tweepy library 334, 340
API class 341, 342
Cursor 344
install 340, 354
OAuthHandler class 341
Stream class 357, 358
StreamListener class 355
wait_on_rate_limit 342
wait_on_rate_limit_notify

342
tweepy module 341
tweepy.models.Status object 343
tweepy.models.User object 342,

344
tweet 337

coordinates 338
created_at 337
entities 337
extended_tweet 337
favorite_count 338
id 338
id_str 338
lang 338
place 338
retweet_count 338
text 338
user 338

tweet object JSON (Twitter) 343
tweet-preprocessor library 353

set_options function 354
Tweets API (Twitter) 334
24-hour clock format 250

Twitter 333
data mining 332
history 333
rate limits 334
Streaming API 354, 355
timeline 344, 346
trending topics 349
Trends API 332

Twitter API 334
access token 336, 341
access token secret 336, 341
Accounts and Users API 334
API key 336, 341
API secret key 336, 341
app (for managing credentials)

335
app rate limit 334
Authentication API 334
Consumer API keys 336
credentials 335
fire hose 354
rate limit 334, 342
Trends API 334
tweet object JSON 343
Tweets API 334
user object JSON 342
user rate limit 334

Twitter Python libraries
Birdy 340
Python Twitter Tools 340
python-twitter 340
TweetPony 340
TwitterAPI 340
twitter-gobject 340
TwitterSearch 340
twython 340

Twitter search
operators 348

Twitter Trends API 349
Twitter web services 16
Twittersphere 333
Twitterverse 333
two-dimensional list 126
.txt file extension 220
type dependent formatting 193
type function 33
type hint 283
type of an object 45
TypeError 104, 107
types

float 33, 45
int 33, 45
str 45

typing module 282
ClassVar type annotation 282
List type annotation 282, 283

U
UCI ML hand-written digits dataset

406
ufuncs (universal functions in

NumPy) 170
unary operator 66
uncaught exception 234
Underfitting 425
underscore

_ SQL wildcard character 512
underscore character (_) 33
understand information in image

and video scenes 376
union augmented assignment 151
union method of set 150
unique function (NumPy) 130

return_counts keyword
argument 130

unit testing xxii, 7, 82, 287, 287,
288

United States
geographic center 366

univariate time series 293
universal functions (NumPy) 170

add 171
arccos 171
arcsin 171
arctan 171
bitwise_and 171
bitwise_or 171
bitwise_xor 171
ceil 171
cos 171
divide 171
equal 171
exp 171
fabs 171
floor 171
greater 171
greater_equal 171
hypot 171
invert 171
isinf 171
isnan 171
left_shift 171
less 171
less_equal 171
log 171
logical_and 171
logical_not 171
logical_or 171
logical_xor 171
maximum 171
minimum 171
multiply 171

ptg27972259

600 Index

universal functions (NumPy) (cont.)
not_equal 171
power 171
remainder 171
right_shift 171
sin 171
sqrt 171
subtract 171
tan 171
trunc 171
ufuncs 170

unlabeled data 400
unordered collection 139
unpack a tuple 80
unpacking a tuple 80, 108
unpacking an iterable into function

arguments 86
unstructured data 502, 517
unsupervised deep learning 464
unsupervised machine learning 400,

438
update 140
update Anaconda xxxiv
update method of a dictionary 146
update method of set 151
UPDATE SQL statement 511, 515,
updateStateByKey method of a

DStream 559
upper method of a string 87, 197
uppercase characters 202
uppercase letter 33
use cases 23

IBM Watson 374
User class (Twitter API)

description property 343
followers_count property 343
friends_count property 343
id property 342
name property 342
screen_name property 343
status property 343

user object JSON (Twitter) 342
user rate limit (Twitter API) 334
user_timeline method of class API

346
UTC (Coordinated Universal

Time) 337
utility method 256

V
V’s of big data 22
valid Python identifier 202
validate a first name 205
validate data 252

validating data (regular expressions)
203

validation accuracy 496
validation_data argument to a

Keras model’s fit method 494
validation_split argument to a

Keras model’s fit method 481,
494

value of an object 45
ValueError 108
ValueError exception 199
values attribute of a pandas Series

181
values method of dictionary 141
VALUES SQL clause 515
var method of ndarray 169
variable refers to an object 46
variable annotations 283
variance 46, 97, 180
variety (in big data) 23
vector 465
velocity (in big data) 22
veracity (in big data) 23
version control tools xx
vertical stacking (ndarray) 177
vertices in a graph 519
video 376
video closed captioning 329
view (shallow copy) 173
view into a dictionary 142
view method of ndarray 173
view object 173
virtual assistants 376
visual product search 24
Visual Recognition service (IBM

Watson) 376
Visual Studio Code 12
visualization xix, 25, 110

die rolling 129
dynamic 152
Folium 363
Matplotlib 128
pandas 240
Seaborn 128, 130

visualize the data 430
visualize word frequencies 319, 321
Visualizing 94
visualizing recursion 94
voice cadence 377
voice inflection 377
voice pitch 377
voice recognition 24
voice search 24
VoltDB (NewSQL database) 520
volume (in big data) 22
vstack function (NumPy) 177

W
'w' file-open mode 220, 226
'w+' file-open mode 226
wait_on_rate_limit (Tweepy)

342
wait_on_rate_limit_notify

(Tweepy) 342
Watson 374

dashboard 375
lite tiers xxvii

Watson (IBM) xix, xxvi
Watson Assistant service 376
Watson Developer Cloud

Python SDK xxvi
Watson Developer Cloud Python

SDK 375, 381, 385, 394
Watson Discovery service 378
Watson Knowledge Catalog 380
Watson Knowledge Studio 377
Watson Machine Learning service

380
Watson Studio 379

Business Analytics project 380
Data Engineering project 380
Data Science project 380
Deep Learning project 380
Modeler project 380
Standard project 379
Streams Flow project 380
Visual Recognition project 380

watson_developer_cloud module
381, 385
LanguageTranslatorV3 class

385, 390
SpeechToTextV1 class 385, 387
TextToSpeechV1 class 385,

391, 392
WAV (Waveform Audio File

Format) 385, 388, 392
.wav file 385
wave module 385, 393
Waze GPS navigation app 24
Weather Forecasting 24
web service 16, 223, 334, 374

endpoint 334
IBM Watson 374

web services 16
web-based dashboard 16
webbrowser module 82
weighted inputs 465
weights in a neural network 465
WHERE SQL clause 511, 513, 515,

516
while statement 50, 51, 55

else clause 64

ptg27972259

Index 601

whitespace 43
removing 197

whitespace character 200, 202
whitespace character class 207
Wikimedia Commons (public

domain images, audio and video)
263

Wikipedia 329
wildcard import 89
wildcard specifier ($**) 525
Windows Anaconda Prompt xxxiv
Windows Azure Storage Blob

(WASB) 550
with statement 220

as clause 220
WOEID (Yahoo! Where on Earth

ID) 350, 351
word character 205
Word class

correct method 313
define method 315
definitions property 315
get_synsets method 316
lemmatize method 314
spellcheck method 313
stem method 314
synsets property 315
textblob module 307, 309

word cloud 319

word definitions 305, 315
word embeddings 495

GloVe 495
Word2Vec 495

word frequencies 305, 315
visualization 319

word_counts dictionary of a
TextBlob 315

Word2Vec word embeddings 495
WordCloud class 321

fit_words method 323
generate method 323
to_file method 323

wordcloud module 321
WordList class 307

count method 315
from the textblob module 307,

309
WordNet 315

antonyms 305
synonyms 305
synset 315
Textblob integration 305
word definitions 305

words property of class TextBlob
307

write method of a file object 220
writelines method of a file object

227

writer function of the csv module
235

writerow method of a CSV writer
235

writerows method of a CSV writer
235

X
XML 502, 518

Y
Yahoo! 532
Yahoo! Where on Earth ID

(WOEID) 350, 351
YARN (Yet Another Resource

Negotiator) 532, 538
yarn command (Hadoop) 538

Z
Zen 7
Zen of Python 7

import this 7
ZeroDivisionError 34, 227, 229
zeros function (NumPy) 163
zettabytes (ZB) 19
zip built-in function 125, 132
ZooKeeper 533
zoom a map 363

ptg27972259

Expert-Led Video Training
on Python, Data Science,
AI, Big Data and the Cloud
From PAUL DEITEL

SAVE
40%*

CODE: VIDEO40

Save 40%*—Use coupon code VIDEO40

informit .com/Deitel
*Discount code VIDEO40 confers a 40% discount off the list price of featured video

when purchased on InformIT. Offer is subject to change.

Python Fundamentals LiveLessons integrates coverage of the core Python language,
Python Standard Library and key data science libraries with a range of data science
and artificial intelligence case studies, including:

• Natural language processing
• Data mining Twitter® for sentiment analysis
• IBM® Watson™ and cognitive computing
• Machine learning with classification, regression and clustering
• Deep learning with convolutional and recurrent neural networks
• Big data: Hadoop®, Spark™ and NoSQL
• Internet of Things (IoT)

You’ll receive a hands-on introduction to Python and data science with world-
renowned trainer Paul Deitel as he presents 500+ real-world examples, including
40 larger scripts and case studies. Quickly master the latest Python coding idioms
using the interactive IPython interpreter with code in Jupyter Notebooks, and
benefit from additional insights and programming-language comparisons based on
Paul’s 38 years of programming and teaching experience in Java, C, C++, C++, Swift,
iOS, Android and Internet and web programming.

Photo courtesy of Paul Deitel

http://informit.com/Deitel
http://informit.com

ptg27972259

Addison-Wesley • Adobe Press • Cisco Press • Microsoft Press • Pearson IT Certif ication • Prentice Hall • Que • Sams • Peachpit Press

Register Your Product at informit.com/register
Access additional benefits and save 35% on your next purchase

• Automatically receive a coupon for 35% off your next purchase, valid
for 30 days. Look for your code in your InformIT cart or the Manage
Codes section of your account page.

• Download available product updates.
• Access bonus material if available.*

• Check the box to hear from us and receive exclusive offers on new
editions and related products.

*Registration benefits vary by product. Benefits will be listed on your account page under
Registered Products.

InformIT.com—The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world’s
foremost education company. At InformIT.com, you can:

• Shop our books, eBooks, software, and video training
• Take advantage of our special offers and promotions (informit.com/promotions)
• Sign up for special offers and content newsletter (informit.com/newsletters)
• Access thousands of free chapters and video lessons

Connect with InformIT—Visit informit.com/community

Photo by izusek/gettyimages

http://informit.com/register
http://InformIT.com$$$�The
http://InformIT.com
http://informit.com/promotions
http://informit.com/newsletters
http://informit.com/community
http://informit.com/

ptg27972259

Reviewer Comments (Continued from the Inside Back Cover)

“Helps readers leverage the large number of existing libraries to accomplish tasks with minimal code. Concepts
are accompanied by rich Python examples that readers can adapt to implement their own solutions to data science
problems. I like that cloud services are used.”

 —David Koop, Assistant Professor, U-Mass Dartmouth
“I enjoyed the OOP chapter—doctest unit testing is nice because you can have the test in the actual docstring
so things are traveling together. The line-by-line explanations of the static and dynamic visualizations of the die
rolling example are just great.” —Daniel Chen, Data Scientist, Lander Analytics

“ A lucid exposition of the fundamentals of Python and Data Science. Thanks for pointing out seeding the
random number generator for reproducibility. I like the use of dictionary and set comprehensions for succinct
programming. ‘List vs. Array Performance: Introducing %timeit’ is convincing on why one should use ndarrays.
Good defensive programming. Great section on Pandas Series and DataFrames—one of the clearest
expositions that I have seen. The section on data wrangling is excellent. Natural Language Processing is an
excellent chapter! I learned a tremendous amount going through it.“
 —Shyamal Mitra, Senior Lecturer, University of Texas

“I like the discussion of exceptions and tracebacks. I really liked the Data Mining Twitter chapter; it focused on a
real data source and brought in a lot of techniques for analysis (e.g., visualization, NLP). I like that the Python
modules helped hide some of the complexity. Word clouds look cool.”
 —David Koop, Assistant Professor, U-Mass Dartmouth

“I love the book! The examples are definitely a high point.” —Dr. Irene Bruno, George Mason University
“I was very excited to see this book. I like its focus on data science and a general purpose language for writing
useful data science programs. The data science portion distinguishes this book from most other introductory
Python books.” —Dr. Harvey Siy, University of Nebraska at Omaha

“I’ve learned a lot in this review process, discovering the exciting field of AI. I’ve liked the Deep Learning chapter,
which has left me amazed with the things that have already been achieved in this field.”
 —José Antonio González Seco, Consultant

“ An impressive hands-on approach to programming meant for exploration and experimentation.”
 —Elizabeth Wickes, Lecturer, School of Information Sciences, University of Illinois at Urbana-Champaign

“I was impressed at how easy it was to get started with NLP using Python. A meaningful overview of deep learning
concepts, using Keras. I like the streaming example.” —David Koop, Assistant Professor, U-Mass Dartmouth

“Really like the use of f-strings, instead of the older string-formatting methods. Seeing how easy TextBlob is compared
to base NLTK was great. I never made word clouds with shapes before, but I can see this being a motivating
example for people getting started with NLP. I’m enjoying the case-study chapters in the latter parts of the book.
They are really practical. I really enjoyed working through all the Big Data examples, especially the IoT ones.”
 —Daniel Chen, Data Scientist, Lander Analytics

“I really liked the live IPython input-output. The thing that I like most about this product is that it is a Deitel & Deitel
book (I’m a big fan) that covers Python.” —Dr. Mark Pauley, University of Nebraska at Omaha

9780135224335_Deitel_Python_for_Programmers_Cover.indd 3 2/12/19 10:38 AM

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Contents
	Preface
	Before You Begin
	1 Introduction to Computers and Python
	1.1 Introduction
	1.2 A Quick Review of Object Technology Basics
	1.3 Python
	1.4 It’s the Libraries!
	1.4.1 Python Standard Library
	1.4.2 Data-Science Libraries

	1.5 Test-Drives: Using IPython and Jupyter Notebooks
	1.5.1 Using IPython Interactive Mode as a Calculator
	1.5.2 Executing a Python Program Using the IPython Interpreter
	1.5.3 Writing and Executing Code in a Jupyter Notebook

	1.6 The Cloud and the Internet of Things
	1.6.1 The Cloud
	1.6.2 Internet of Things

	1.7 How Big Is Big Data?
	1.7.1 Big Data Analytics
	1.7.2 Data Science and Big Data Are Making a Difference: Use Cases

	1.8 Case Study—A Big-Data Mobile Application
	1.9 Intro to Data Science: Artificial Intelligence—at the Intersection of CS and Data Science
	1.10 Wrap-Up

	2 Introduction to Python Programming
	2.1 Introduction
	2.2 Variables and Assignment Statements
	2.3 Arithmetic
	2.4 Function print and an Intro to Single- and Double-Quoted Strings
	2.5 Triple-Quoted Strings
	2.6 Getting Input from the User
	2.7 Decision Making: The if Statement and Comparison Operators
	2.8 Objects and Dynamic Typing
	2.9 Intro to Data Science: Basic Descriptive Statistics
	2.10 Wrap-Up

	3 Control Statements
	3.1 Introduction
	3.2 Control Statements
	3.3 if Statement
	3.4 if…else and if…elif…else Statements
	3.5 while Statement
	3.6 for Statement
	3.6.1 Iterables, Lists and Iterators
	3.6.2 Built-In range Function

	3.7 Augmented Assignments
	3.8 Sequence-Controlled Iteration; Formatted Strings
	3.9 Sentinel-Controlled Iteration
	3.10 Built-In Function range: A Deeper Look
	3.11 Using Type Decimal for Monetary Amounts
	3.12 break and continue Statements
	3.13 Boolean Operators and, or and not
	3.14 Intro to Data Science: Measures of Central Tendency— Mean, Median and Mode
	3.15 Wrap-Up

	4 Functions
	4.1 Introduction
	4.2 Defining Functions
	4.3 Functions with Multiple Parameters
	4.4 Random-Number Generation
	4.5 Case Study: A Game of Chance
	4.6 Python Standard Library
	4.7 math Module Functions
	4.8 Using IPython Tab Completion for Discovery
	4.9 Default Parameter Values
	4.10 Keyword Arguments
	4.11 Arbitrary Argument Lists
	4.12 Methods: Functions That Belong to Objects
	4.13 Scope Rules
	4.14 import: A Deeper Look
	4.15 Passing Arguments to Functions: A Deeper Look
	4.16 Recursion
	4.17 Functional-Style Programming
	4.18 Intro to Data Science: Measures of Dispersion
	4.19 Wrap-Up

	5 Sequences: Lists and Tuples
	5.1 Introduction
	5.2 Lists
	5.3 Tuples
	5.4 Unpacking Sequences
	5.5 Sequence Slicing
	5.6 del Statement
	5.7 Passing Lists to Functions
	5.8 Sorting Lists
	5.9 Searching Sequences
	5.10 Other List Methods
	5.11 Simulating Stacks with Lists
	5.12 List Comprehensions
	5.13 Generator Expressions
	5.14 Filter, Map and Reduce
	5.15 Other Sequence Processing Functions
	5.16 Two-Dimensional Lists
	5.17 Intro to Data Science: Simulation and Static Visualizations
	5.17.1 Sample Graphs for 600, 60,000 and 6,000,000 Die Rolls
	5.17.2 Visualizing Die-Roll Frequencies and Percentages

	5.18 Wrap-Up

	6 Dictionaries and Sets
	6.1 Introduction
	6.2 Dictionaries
	6.2.1 Creating a Dictionary
	6.2.2 Iterating through a Dictionary
	6.2.3 Basic Dictionary Operations
	6.2.4 Dictionary Methods keys and values
	6.2.5 Dictionary Comparisons
	6.2.6 Example: Dictionary of Student Grades
	6.2.7 Example: Word Counts
	6.2.8 Dictionary Method update
	6.2.9 Dictionary Comprehensions

	6.3 Sets
	6.3.1 Comparing Sets
	6.3.2 Mathematical Set Operations
	6.3.3 Mutable Set Operators and Methods
	6.3.4 Set Comprehensions

	6.4 Intro to Data Science: Dynamic Visualizations
	6.4.1 How Dynamic Visualization Works
	6.4.2 Implementing a Dynamic Visualization

	6.5 Wrap-Up

	7 Array-Oriented Programming with NumPy
	7.1 Introduction
	7.2 Creating arrays from Existing Data
	7.3 array Attributes
	7.4 Filling arrays with Specific Values
	7.5 Creating arrays from Ranges
	7.6 List vs. array Performance: Introducing %timeit
	7.7 array Operators
	7.8 NumPy Calculation Methods
	7.9 Universal Functions
	7.10 Indexing and Slicing
	7.11 Views: Shallow Copies
	7.12 Deep Copies
	7.13 Reshaping and Transposing
	7.14 Intro to Data Science: pandas Series and DataFrames
	7.14.1 pandas Series
	7.14.2 DataFrames

	7.15 Wrap-Up

	8 Strings: A Deeper Look
	8.1 Introduction
	8.2 Formatting Strings
	8.2.1 Presentation Types
	8.2.2 Field Widths and Alignment
	8.2.3 Numeric Formatting
	8.2.4 String’s format Method

	8.3 Concatenating and Repeating Strings
	8.4 Stripping Whitespace from Strings
	8.5 Changing Character Case
	8.6 Comparison Operators for Strings
	8.7 Searching for Substrings
	8.8 Replacing Substrings
	8.9 Splitting and Joining Strings
	8.10 Characters and Character-Testing Methods
	8.11 Raw Strings
	8.12 Introduction to Regular Expressions
	8.12.1 re Module and Function fullmatch
	8.12.2 Replacing Substrings and Splitting Strings
	8.12.3 Other Search Functions; Accessing Matches

	8.13 Intro to Data Science: Pandas, Regular Expressions and Data Munging
	8.14 Wrap-Up

	9 Files and Exceptions
	9.1 Introduction
	9.2 Files
	9.3 Text-File Processing
	9.3.1 Writing to a Text File: Introducing the with Statement
	9.3.2 Reading Data from a Text File

	9.4 Updating Text Files
	9.5 Serialization with JSON
	9.6 Focus on Security: pickle Serialization and Deserialization
	9.7 Additional Notes Regarding Files
	9.8 Handling Exceptions
	9.8.1 Division by Zero and Invalid Input
	9.8.2 try Statements
	9.8.3 Catching Multiple Exceptions in One except Clause
	9.8.4 What Exceptions Does a Function or Method Raise?
	9.8.5 What Code Should Be Placed in a try Suite?

	9.9 finally Clause
	9.10 Explicitly Raising an Exception
	9.11 (Optional) Stack Unwinding and Tracebacks
	9.12 Intro to Data Science: Working with CSV Files
	9.12.1 Python Standard Library Module csv
	9.12.2 Reading CSV Files into Pandas DataFrames
	9.12.3 Reading the Titanic Disaster Dataset
	9.12.4 Simple Data Analysis with the Titanic Disaster Dataset
	9.12.5 Passenger Age Histogram

	9.13 Wrap-Up

	10 Object-Oriented Programming
	10.1 Introduction
	10.2 Custom Class Account
	10.2.1 Test-Driving Class Account
	10.2.2 Account Class Definition
	10.2.3 Composition: Object References as Members of Classes

	10.3 Controlling Access to Attributes
	10.4 Properties for Data Access
	10.4.1 Test-Driving Class Time
	10.4.2 Class Time Definition
	10.4.3 Class Time Definition Design Notes

	10.5 Simulating “Private” Attributes
	10.6 Case Study: Card Shuffling and Dealing Simulation
	10.6.1 Test-Driving Classes Card and DeckOfCards
	10.6.2 Class Card—Introducing Class Attributes
	10.6.3 Class DeckOfCards
	10.6.4 Displaying Card Images with Matplotlib

	10.7 Inheritance: Base Classes and Subclasses
	10.8 Building an Inheritance Hierarchy; Introducing Polymorphism
	10.8.1 Base Class CommissionEmployee
	10.8.2 Subclass SalariedCommissionEmployee
	10.8.3 Processing CommissionEmployees and SalariedCommissionEmployees Polymorphically
	10.8.4 A Note About Object-Based and Object-Oriented Programming

	10.9 Duck Typing and Polymorphism
	10.10 Operator Overloading
	10.10.1 Test-Driving Class Complex
	10.10.2 Class Complex Definition

	10.11 Exception Class Hierarchy and Custom Exceptions
	10.12 Named Tuples
	10.13 A Brief Intro to Python 3.7’s New Data Classes
	10.13.1 Creating a Card Data Class
	10.13.2 Using the Card Data Class
	10.13.3 Data Class Advantages over Named Tuples
	10.13.4 Data Class Advantages over Traditional Classes

	10.14 Unit Testing with Docstrings and doctest
	10.15 Namespaces and Scopes
	10.16 Intro to Data Science: Time Series and Simple Linear Regression
	10.17 Wrap-Up

	11 Natural Language Processing (NLP)
	11.1 Introduction
	11.2 TextBlob
	11.2.1 Create a TextBlob
	11.2.2 Tokenizing Text into Sentences and Words
	11.2.3 Parts-of-Speech Tagging
	11.2.4 Extracting Noun Phrases
	11.2.5 Sentiment Analysis with TextBlob’s Default Sentiment Analyzer
	11.2.6 Sentiment Analysis with the NaiveBayesAnalyzer
	11.2.7 Language Detection and Translation
	11.2.8 Inflection: Pluralization and Singularization
	11.2.9 Spell Checking and Correction
	11.2.10 Normalization: Stemming and Lemmatization
	11.2.11 Word Frequencies
	11.2.12 Getting Definitions, Synonyms and Antonyms from WordNet
	11.2.13 Deleting Stop Words
	11.2.14 n-grams

	11.3 Visualizing Word Frequencies with Bar Charts and Word Clouds
	11.3.1 Visualizing Word Frequencies with Pandas
	11.3.2 Visualizing Word Frequencies with Word Clouds

	11.4 Readability Assessment with Textatistic
	11.5 Named Entity Recognition with spaCy
	11.6 Similarity Detection with spaCy
	11.7 Other NLP Libraries and Tools
	11.8 Machine Learning and Deep Learning Natural Language Applications
	11.9 Natural Language Datasets
	11.10 Wrap-Up

	12 Data Mining Twitter
	12.1 Introduction
	12.2 Overview of the Twitter APIs
	12.3 Creating a Twitter Account
	12.4 Getting Twitter Credentials—Creating an App
	12.5 What’s in a Tweet?
	12.6 Tweepy
	12.7 Authenticating with Twitter Via Tweepy
	12.8 Getting Information About a Twitter Account
	12.9 Introduction to Tweepy Cursors: Getting an Account’s Followers and Friends
	12.9.1 Determining an Account’s Followers
	12.9.2 Determining Whom an Account Follows
	12.9.3 Getting a User’s Recent Tweets

	12.10 Searching Recent Tweets
	12.11 Spotting Trends: Twitter Trends API
	12.11.1 Places with Trending Topics
	12.11.2 Getting a List of Trending Topics
	12.11.3 Create a Word Cloud from Trending Topics

	12.12 Cleaning/Preprocessing Tweets for Analysis
	12.13 Twitter Streaming API
	12.13.1 Creating a Subclass of StreamListener
	12.13.2 Initiating Stream Processing

	12.14 Tweet Sentiment Analysis
	12.15 Geocoding and Mapping
	12.15.1 Getting and Mapping the Tweets
	12.15.2 Utility Functions in tweetutilities.py
	12.15.3 Class LocationListener

	12.16 Ways to Store Tweets
	12.17 Twitter and Time Series
	12.18 Wrap-Up

	13 IBM Watson and Cognitive Computing
	13.1 Introduction: IBM Watson and Cognitive Computing
	13.2 IBM Cloud Account and Cloud Console
	13.3 Watson Services
	13.4 Additional Services and Tools
	13.5 Watson Developer Cloud Python SDK
	13.6 Case Study: Traveler’s Companion Translation App
	13.6.1 Before You Run the App
	13.6.2 Test-Driving the App
	13.6.3 SimpleLanguageTranslator.py Script Walkthrough

	13.7 Watson Resources
	13.8 Wrap-Up

	14 Machine Learning: Classification, Regression and Clustering
	14.1 Introduction to Machine Learning
	14.1.1 Scikit-Learn
	14.1.2 Types of Machine Learning
	14.1.3 Datasets Bundled with Scikit-Learn
	14.1.4 Steps in a Typical Data Science Study

	14.2 Case Study: Classification with k-Nearest Neighbors and the Digits Dataset, Part 1
	14.2.1 k-Nearest Neighbors Algorithm
	14.2.2 Loading the Dataset
	14.2.3 Visualizing the Data
	14.2.4 Splitting the Data for Training and Testing
	14.2.5 Creating the Model
	14.2.6 Training the Model
	14.2.7 Predicting Digit Classes

	14.3 Case Study: Classification with k-Nearest Neighbors and the Digits Dataset, Part 2
	14.3.1 Metrics for Model Accuracy
	14.3.2 K-Fold Cross-Validation
	14.3.3 Running Multiple Models to Find the Best One
	14.3.4 Hyperparameter Tuning

	14.4 Case Study: Time Series and Simple Linear Regression
	14.5 Case Study: Multiple Linear Regression with the California Housing Dataset
	14.5.1 Loading the Dataset
	14.5.2 Exploring the Data with Pandas
	14.5.3 Visualizing the Features
	14.5.4 Splitting the Data for Training and Testing
	14.5.5 Training the Model
	14.5.6 Testing the Model
	14.5.7 Visualizing the Expected vs. Predicted Prices
	14.5.8 Regression Model Metrics
	14.5.9 Choosing the Best Model

	14.6 Case Study: Unsupervised Machine Learning, Part 1— Dimensionality Reduction
	14.7 Case Study: Unsupervised Machine Learning, Part 2—k-Means Clustering
	14.7.1 Loading the Iris Dataset
	14.7.2 Exploring the Iris Dataset: Descriptive Statistics with Pandas
	14.7.3 Visualizing the Dataset with a Seaborn pairplot
	14.7.4 Using a KMeans Estimator
	14.7.5 Dimensionality Reduction with Principal Component Analysis
	14.7.6 Choosing the Best Clustering Estimator

	14.8 Wrap-Up

	15 Deep Learning
	15.1 Introduction
	15.1.1 Deep Learning Applications
	15.1.2 Deep Learning Demos
	15.1.3 Keras Resources

	15.2 Keras Built-In Datasets
	15.3 Custom Anaconda Environments
	15.4 Neural Networks
	15.5 Tensors
	15.6 Convolutional Neural Networks for Vision; Multi-Classification with the MNIST Dataset
	15.6.1 Loading the MNIST Dataset
	15.6.2 Data Exploration
	15.6.3 Data Preparation
	15.6.4 Creating the Neural Network
	15.6.5 Training and Evaluating the Model
	15.6.6 Saving and Loading a Model

	15.7 Visualizing Neural Network Training with TensorBoard
	15.8 ConvnetJS: Browser-Based Deep-Learning Training and Visualization
	15.9 Recurrent Neural Networks for Sequences; Sentiment Analysis with the IMDb Dataset
	15.9.1 Loading the IMDb Movie Reviews Dataset
	15.9.2 Data Exploration
	15.9.3 Data Preparation
	15.9.4 Creating the Neural Network
	15.9.5 Training and Evaluating the Model

	15.10 Tuning Deep Learning Models
	15.11 Convnet Models Pretrained on ImageNet
	15.12 Wrap-Up

	16 Big Data: Hadoop, Spark, NoSQL and IoT
	16.1Introduction
	16.2 Relational Databases and Structured Query Language (SQL)
	16.2.1 A books Database
	16.2.2 SELECT Queries
	16.2.3 WHERE Clause
	16.2.4 ORDER BY Clause
	16.2.5 Merging Data from Multiple Tables: INNER JOIN
	16.2.6 INSERT INTO Statement
	16.2.7 UPDATE Statement
	16.2.8 DELETE FROM Statement

	16.3 NoSQL and NewSQL Big-Data Databases: A Brief Tour
	16.3.1 NoSQL Key–Value Databases
	16.3.2 NoSQL Document Databases
	16.3.3 NoSQL Columnar Databases
	16.3.4 NoSQL Graph Databases
	16.3.5 NewSQL Databases

	16.4 Case Study: A MongoDB JSON Document Database
	16.4.1 Creating the MongoDB Atlas Cluster
	16.4.2 Streaming Tweets into MongoDB

	16.5 Hadoop
	16.5.1 Hadoop Overview
	16.5.2 Summarizing Word Lengths in Romeo and Juliet via MapReduce
	16.5.3 Creating an Apache Hadoop Cluster in Microsoft Azure HDInsight
	16.5.4 Hadoop Streaming
	16.5.5 Implementing the Mapper
	16.5.6 Implementing the Reducer
	16.5.7 Preparing to Run the MapReduce Example
	16.5.8 Running the MapReduce Job

	16.6 Spark
	16.6.1 Spark Overview
	16.6.2 Docker and the Jupyter Docker Stacks
	16.6.3 Word Count with Spark
	16.6.4 Spark Word Count on Microsoft Azure

	16.7 Spark Streaming: Counting Twitter Hashtags Using the pyspark-notebook Docker Stack
	16.7.1 Streaming Tweets to a Socket
	16.7.2 Summarizing Tweet Hashtags; Introducing Spark SQL

	16.8 Internet of Things and Dashboards
	16.8.1 Publish and Subscribe
	16.8.2 Visualizing a PubNub Sample Live Stream with a Freeboard Dashboard
	16.8.3 Simulating an Internet-Connected Thermostat in Python
	16.8.4 Creating the Dashboard with Freeboard.io
	16.8.5 Creating a Python PubNub Subscriber

	16.9 Wrap-Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

