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PREFACE

My purpose in writing this book was to provide a clear, accessible treatment of discrete
mathematics for students majoring or minoring in computer science, mathematics, math-
ematics education, and engineering. The goal of the book is to lay the mathematical foun-
dation for computer science courses such as data structures, algorithms, relational database
theory, automata theory and formal languages, compiler design, and cryptography, and for
mathematics courses such as linear and abstract algebra, combinatorics, probability, logic
and set theory, and number theory. By combining discussion of theory and practice, I have
tried to show that mathematics has engaging and important applications as well as being
interesting and beautiful in its own right.

A good background in algebra is the only prerequisite; the course may be taken by stu-
dents either before or after a course in calculus. Previous editions of the book have been
used successfully by students at hundreds of institutions in North and South America,
Europe, the Middle East, Asia, and Australia.

Recent curricular recommendations from the Institute for Electrical and Electronic
Engineers Computer Society (IEEE-CS) and the Association for Computing Machinery
(ACM) include discrete mathematics as the largest portion of “core knowledge” for com-
puter science students and state that students should take at least a one-semester course in
the subject as part of their first-year studies, with a two-semester course preferred when
possible. This book includes the topics recommended by those organizations and can be
used effectively for either a one-semester or a two-semester course.

At one time, most of the topics in discrete mathematics were taught only to upper-level
undergraduates. Discovering how to present these topics in ways that can be understood by
first- and second-year students was the major and most interesting challenge of writing this
book. The presentation was developed over a long period of experimentation during which
my students were in many ways my teachers. Their questions, comments, and written work
showed me what concepts and techniques caused them difficulty, and their reaction to my
exposition showed me what worked to build their understanding and to encourage their
interest. Many of the changes in this edition have resulted from continuing interaction with
students.

Themes of a Discrete Mathematics Course

Discrete mathematics describes processes that consist of a sequence of individual steps.
This contrasts with calculus, which describes processes that change in a continuous fash-
ion. Whereas the ideas of calculus were fundamental to the science and technology of the
industrial revolution, the ideas of discrete mathematics underlie the science and technol-
ogy of the computer age. The main themes of a first course in discrete mathematics are
logic and proof, induction and recursion, discrete structures, combinatorics and discrete
probability, algorithms and their analysis, and applications and modeling.

xiii
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PREFACE

Logicand Proof Probably the most important goal of a first course in discrete mathemat-
ics is to help students develop the ability to think abstractly. This means learning to use
logically valid forms of argument and avoid common logical errors, appreciating what it
means to reason from definitions, knowing how to use both direct and indirect arguments
to derive new results from those already known to be true, and being able to work with
symbolic representations as if they were concrete objects.

Induction and Recursion  An exciting development of recent years has been the increased
appreciation for the power and beauty of “recursive thinking.” To think recursively means
to address a problem by assuming that similar problems of a smaller nature have already
been solved and figuring out how to put those solutions together to solve the larger prob-
lem. Such thinking is widely used in the analysis of algorithms, where recurrence relations
that result from recursive thinking often give rise to formulas that are verified by math-
ematical induction.

Discrete Structures Discrete mathematical structures are the abstract structures that de-
scribe, categorize, and reveal the underlying relationships among discrete mathematical
objects. Those studied in this book are the sets of integers and rational numbers, general
sets, Boolean algebras, functions, relations, graphs and trees, formal languages and regular
expressions, and finite-state automata.

Combinatorics and Discrete Probability Combinatorics is the mathematics of count-
ing and arranging objects, and probability is the study of laws concerning the measure-
ment of random or chance events. Discrete probability focuses on situations involving
discrete sets of objects, such as finding the likelihood of obtaining a certain number of
heads when an unbiased coin is tossed a certain number of times. Skill in using combina-
torics and probability is needed in almost every discipline where mathematics is applied,
from economics to biology, to computer science, to chemistry and physics, to business
management.

Algorithms and Their Analysis The word algorithm was largely unknown in the middle
of the twentieth century, yet now it is one of the first words encountered in the study of
computer science. To solve a problem on a computer, it is necessary to find an algorithm, or
step-by-step sequence of instructions, for the computer to follow. Designing an algorithm
requires an understanding of the mathematics underlying the problem to be solved. Deter-
mining whether or not an algorithm is correct requires a sophisticated use of mathematical
induction. Calculating the amount of time or memory space the algorithm will need in
order to compare it to other algorithms that produce the same output requires knowledge
of combinatorics, recurrence relations, functions, and O-, )-, and ®-notations.

Applications and Modeling Mathematical topics are best understood when they are seen
in a variety of contexts and used to solve problems in a broad range of applied situations.
One of the profound lessons of mathematics is that the same mathematical model can be
used to solve problems in situations that appear superficially to be totally dissimilar. A goal
of this book is to show students the extraordinary practical utility of some very abstract
mathematical ideas.

Special Features of This Book

Mathematical Reasoning The feature that most distinguishes this book from other dis-
crete mathematics texts is that it teaches—explicitly but in a way that is accessible to
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first- and second-year college and university students—the unspoken logic and reason-
ing that underlie mathematical thought. For many years I taught an intensively interactive
transition-to-abstract-mathematics course to mathematics and computer science majors.
This experience showed me that while it is possible to teach the majority of students to
understand and construct straightforward mathematical arguments, the obstacles to doing
so cannot be passed over lightly. To be successful, a text for such a course must address
students’ difficulties with logic and language directly and at some length. It must also
include enough concrete examples and exercises to enable students to develop the mental
models needed to conceptualize more abstract problems. The treatment of logic and proof
in this book blends common sense and rigor in a way that explains the essentials, yet avoids
overloading students with formal detail.

Spiral Approach to Concept Development A number of concepts in this book appear in
increasingly more sophisticated forms in successive chapters to help students develop the
ability to deal effectively with increasing levels of abstraction. For example, by the time
students encounter the relatively advanced mathematics of Fermat’s little theorem in Sec-
tion 8.4, they have been introduced to the logic of mathematical discourse in Chapters 1,
2, and 3, learned the basic methods of proof and the concepts of mod and div in Chapter
4, explored mod and div as functions in Chapter 7, and become familiar with equivalence
relations in Sections 8.2 and 8.3. This approach builds in useful review and develops math-
ematical maturity in natural stages.

Support for the Student Students at colleges and universities inevitably have to learn a
great deal on their own. Though it is often frustrating, learning to learn through self-study
is a crucial step toward eventual success in a professional career. This book has a number
of features to facilitate students’ transition to independent learning.

Worked Examples

The book contains over 500 worked examples, which are written using a problem-
solution format and are keyed in type and in difficulty to the exercises. Many solutions
for the proof problems are developed in two stages: first a discussion of how one might
come to think of the proof or disproof and then a summary of the solution, which is
enclosed in a box. This format allows students to read the problem and skip imme-
diately to the summary, if they wish, only going back to the discussion if they have
trouble understanding the summary. The format also saves time for students who are
rereading the text in preparation for an examination.

Marginal Notes and Test Yourself Questions

Notes about issues of particular importance and cautionary comments to help students
avoid common mistakes are included in the margins throughout the book. Questions
designed to focus attention on the main ideas of each section are located between the
text and the exercises. For convenience, the questions use a fill-in-the-blank format,
and the answers are found immediately after the exercises.

Exercises

The book contains almost 2600 exercises. The sets at the end of each section have
been designed so that students with widely varying backgrounds and ability levels will
find some exercises they can be sure to do successfully and also some exercises that
will challenge them.

Solutions for Exercises
To provide adequate feedback for students between class sessions, Appendix B con-
tains at least one, and often several, complete solutions for every type of exercise
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in the book. A blue exercise number indicates that there is a solution in Appendix
B; the letter H is added for a solution that is less than complete. When two or more
exercises use the same solution strategy, there is a full solution for the first and ei-
ther another full solution or a partial solution for later ones. Exercises with several
parts often have an answer and/or hint for one or more of the parts to help students
determine whether they are on track so that they can make adjustments if needed.

Students are strongly urged not to consult solutions until they have tried their best
to answer questions on their own. Once they have done so, however, comparing their
answers with those given can lead to significantly improved understanding. There are
also plenty of exercises without solutions to help students learn to grapple with math-
ematical problems in a realistic environment.

Reference Features

Many students have written me to say that the book helped them succeed in their ad-
vanced courses. One even wrote that he had used one edition so extensively that it had
fallen apart, and he actually went out and bought a copy of the next edition, which he
was continuing to use in a master’s program. Figures and tables are included where
doing so would help readers to a better understanding. In most, a second color is used
to highlight meaning. My rationale for screening statements of definitions and theo-
rems, for putting titles on exercises, and for giving the meanings of symbols and a list
of reference formulas in the endpapers is to make it easier for students to use this book
for review in a current course and as a reference in later ones.

Support for the Instructor I have received a great deal of valuable feedback from in-
structors who have used previous editions of this book. Many aspects of the book have
been improved through their suggestions. In addition to the following items, there is ad-
ditional instructor support on the book’s website, described later in the preface.

Exercises

The large variety of exercises at all levels of difficulty allows instructors great free-
dom to tailor a course to the abilities of their students. Exercises with solutions in
the back of the book have numbers in blue, and those whose solutions are given
in a separate Student Solutions Manual and Study Guide have numbers that are a
multiple of three. There are exercises of every type in the book that have no answer
in either location so that instructors can assign whatever mixture they prefer of
exercises with and without answers. The ample number of exercises of all kinds
gives instructors a significant choice of problems to use for review assignments and
exams. Instructors are invited to use the many exercises stated as questions rather
than in “prove that” form to stimulate class discussion on the role of proof and coun-
terexample in problem solving.

Flexible Sections

Most sections are divided into subsections so that an instructor can choose to cover
certain subsections only and either omit the rest or leave them for students to study on
their own. The division into subsections also makes it easier for instructors to break
up sections if they wish to spend more than one day on them.

Presentation of Proof Methods

It is inevitable that most of the proofs and disproofs in this book will seem easy to
instructors. Many students, however, find them difficult. In showing students how
to discover and construct proofs and disproofs, I have tried to describe the kinds of
approaches that mathematicians use when confronting challenging problems in their
own research.
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Complete Instructor Solutions
Complete instructor solutions to all exercises are available to anyone teaching a course
from this book. They are available through the Instructor’s Companion Website.

Highlights of the Fifth Edition

The changes made for this edition are based on suggestions from colleagues and other
long-time users of previous editions, on continuing interactions with my students, and on
developments within the evolving fields of computer science and mathematics.

Reorganization

¢ In response to instructor requests to move the introduction of certain topics ear-
lier in the book, Section 1.2 now includes a definition and examples of strings.
In addition, a new Section 1.4 contains definitions and examples of graphs and
includes an introduction to graph coloring and the four-color theorem.

¢ The handshake theorem and its applications have been moved from Chapter 10 to
Section 4.9. This gives students an early experience of using direct and indirect
proof in a novel setting and was made possible because the elements of graph
theory are now introduced in Chapter 1.

Improved Pedagogy

¢ The exposition has been reexamined throughout and carefully revised as needed.

e Exercises have been added for topics where students seemed to need addi-
tional practice, and they have been modified, as needed, to address student
difficulties.

¢ Additional hints and full answers have been incorporated into Appendix B to
give students more help for difficult topics.

¢ The introductory material in Chapter 4 was made more accessible by being di-
vided into two sections. The first introduces basic concepts about proof and dis-
proof in the context of elementary number theory, and the second adds examples
and advice for writing proofs.

Logic and Applications

¢ Discussion was added about the role of bound variables and scope in mathemati-
cal writing and computer programming.

¢ The section on two’s complements was significantly simplified.

e Language for expressing universal quantifiers was revised to provide a clearer
basis for the idea of the generic particular in mathematical proof.

¢ The material on Boolean algebras was expanded.

Proof and Applications

e A greater variety of examples and exercises for number theory and set theory
proofs is now included.

¢ The directions for writing proofs and the discussion of common mistakes have
been revised and expanded in response to interaction with students.

¢ Discussion of historical background and recent mathematical results has been
augmented.

e Material was added on using cryptographic hash functions to secure the trans-
mission of digital data and on using cryptography to authenticate the sender of a
transmitted message.

Induction and Recursion
e The sections on ordinary and strong mathematical induction were reorganized
and expanded to increase the emphasis on applications.
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¢ In the section on recursive definitions, the format used for proofs by structural
induction was revised to parallel the format used for proofs by ordinary and
strong mathematical induction. The set of examples and exercises illustrating
recursive definitions and structural induction was significantly increased. The
recursive definition for the set of strings over a finite set and for the length of a
string were revised, and structural induction proofs for fundamental string prop-
erties are now included.

Graph Theory and the Analysis of Algorithm Efficiency

e Instructors who wish to give their students an early experience of graph theory
can now do so by combining the introduction to graphs in Chapter 1 with the
handshake theorem in Chapter 4.

e There is a new subsection on binary search trees in Chapter 10.

e The discussion of O-, {)-, and ®-notations was significantly simplified.

e Many exercises on algorithm efficiency were added or revised to make the con-
cepts more accessible.

Student Resources
The Student Companion Website for this book includes:

* A general orientation for each chapter

e Review materials for each chapter

e Proof tips

e A link to the author’s personal website, which contains errata information and links
for interactive animations, tutorials, and other discrete mathematics resources on the
Internet

Instructor’s Resources
login.cengage.com
The Instructor’s Companion Website for this book contains:

e Suggestions for how to approach the material of each chapter
e The Complete Instructor’s Solutions Manual

¢ Ideas for projects and writing assignments

e Review materials to share with students

e Lecture Note PowerPoint slides

¢ Images from the book

¢ A test bank of questions for exams and quizzes

e Migration guide from 4th to 5th edition
Additional resources for the book are available at http.//condor.depaul.edu/sepp.

WebAssign

www.webassign.com

WebAssign from Cengage Discrete Mathematics with Applications, Fifth Edition, is an
online homework system, which instructors can choose to pair with the book. For stu-
dents, it offers tutorial help in solving exercises, including review of relevant material,
short instructional videos, and instant feedback on how they are doing. For instructors, it
offers the ability to create customized homework sets, most of which are graded automati-
cally and produce results directly into an online grade roster. Real-time access to their
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students’ performance makes it possible for instructors to adjust the presentation of mate-
rial on an ongoing basis.

Student Solutions Manual and Study Guide

(ISBN: 978-0-357-03520-7)

In writing this book, I hoped that the exposition in the text, the worked examples, and the
exercise solutions would provide all that a student would need to successfully master the
material of the course. I continue to believe that any student who understands the solutions
for all the exercises with complete solutions in Appendix B will have achieved an excellent
command of the subject. Nonetheless, in response to requests for supplementary materials,
I developed the Student Solutions Manual and Study Guide, available separately from the
book, which contains complete solutions for all the exercises whose numbers are a multiple
of 3. The guide also includes alternative explanations for some of the concepts and review
questions for each chapter.

Organization

This book may be used effectively for a one- or two-semester course. Chapters contain
core sections, sections covering optional mathematical material, and sections covering
optional applications. Instructors have the flexibility to choose whatever mixture will
best serve the needs of their students. The following table shows a division of the sections
into categories.

Sections Containing Optional | Sections Containing Optional

Chapter | Core Sections Mathematical Material Computer Science Applications

1 1.1-1.3 1.4 1.4

2 2.1-2.3 2.5 24,25

3 3.1-34 33 33

4 4.1-45,4.7 4.6,4.8,4.9 4.10

5 5.1,5.2,5.6,5.7 5.3,54,5.8 5.1,5.5,59

6 6.1 6.2-6.4 6.1,6.4

7 7.1,7.2 7.3,7.4 7.1,7.2,7.4

8 8.1-8.3 84,85 84,85

9 9.1-9.4 9.5-9.9 9.3

10 10.1, 104 10.2,10.3, 10.5 10.1, 10.4-10.6

11 11.1,11.2 114 11.3,11.5

12 12.1,12.2 12.3 12.1-12.3

The following tree diagram shows, approximately, how the chapters of this book depend
on each other. Chapters on different branches of the tree are sufficiently independent that
instructors need to make at most minor adjustments if they skip chapters, or sections of
chapters, but follow paths along branches of the tree.

In most cases, covering only the core sections of the chapters is adequate preparation
for moving down the tree.
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SPEAKING
MATHEMATICALLY

Therefore O students study mathematics and do not build
without foundations. —Leonardo da Vinci (1452-1519)

The aim of this book is to introduce you to a mathematical way of thinking that can serve
you in a wide variety of situations. Often when you start work on a mathematical prob-
lem, you may have only a vague sense of how to proceed. You may begin by looking at
examples, drawing pictures, playing around with notation, rereading the problem to focus
on more of its details, and so forth. The closer you get to a solution, however, the more
your thinking has to crystallize. And the more you need to understand, the more you need
language that expresses mathematical ideas clearly, precisely, and unambiguously.

This chapter will introduce you to some of the special language that is a foundation
for much mathematical thought, the language of variables, sets, relations, and functions.
Think of the chapter like the exercises you would do before an important sporting event.
Its goal is to warm up your mental muscles so that you can do your best.

&l Variables

A variable is sometimes thought of as a mathematical “John Doe” because you can use it
as a placeholder when you want to talk about something but either (1) you imagine that it
has one or more values but you don’t know what they are, or (2) you want whatever you
say about it to be equally true for all elements in a given set, and so you don’t want to be
restricted to considering only a particular, concrete value for it. To illustrate the first use,
consider asking

Is there a number with the following property: doubling it and adding 3
gives the same result as squaring it?

In this sentence you can introduce a variable to replace the potentially ambiguous
word “it”:
Is there a number x with the property that 2x+ 3 = x%?

The advantage of using a variable is that it allows you to give a temporary name to what
you are seeking so that you can perform concrete computations with it to help discover its
possible values. To emphasize the role of the variable as a placeholder, you might write the
following:

Is there a number [J with the property that 2-C1+ 3 = [1%?

The emptiness of the box can help you imagine filling it in with a variety of different val-
ues, some of which might make the two sides equal and others of which might not.
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Note In part (a) the
answer is yes. For
instance,a = l and b = 0
would work. Can you
think of other numbers
that would also work?

In this sense, a variable in a computer program is similar to a mathematical variable
because it creates a location in computer memory (either actual or virtual) into which
values can be placed.

To illustrate the second use of variables, consider the statement

No matter what number might be chosen, if it is greater than 2, then its
square is greater than 4.

In this case introducing a variable to give a temporary name to the (arbitrary) number you
might choose enables you to maintain the generality of the statement, and replacing all in-
stances of the word “it” by the name of the variable ensures that possible ambiguity is avoided:

No matter what number n might be chosen, if n is greater than 2, then
n?is greater than 4.

Writing Sentences Using Variables

Use variables to rewrite the following sentences more formally.

a. Are there numbers with the property that the sum of their squares equals the square of
their sum?

b. Given any real number, its square is nonnegative.

Solution

a. Are there numbers a and b with the property that a+b* = (a+b)*?
Or: Are there numbers a and b such that o> + b* = (a+ b)z?
Or: Do there exist any numbers a and b such that a+b = (a+ b)z?

b. Given any real number r, P is nonnegative.
Or: For any real number r, P =0.
Or: For every real number r, ”=0. ]

Some Important Kinds of Mathematical Statements

Three of the most important kinds of sentences in mathematics are universal statements,
conditional statements, and existential statements:

A universal statement says that a certain property is true for all elements in a set.
(For example: All positive numbers are greater than zero.)

A conditional statement says that if one thing is true then some other thing also
has to be true. (For example: If 378 is divisible by 18, then 378 is divisible by 6.)

Given a property that may or may not be true, an existential statement says that
there is at least one thing for which the property is true. (For example: There is a
prime number that is even.)

In later sections we will define each kind of statement carefully and discuss all of them
in detail. The aim here is for you to realize that combinations of these statements can be
expressed in a variety of different ways. One way uses ordinary, everyday language and
another expresses the statement using one or more variables. The exercises are designed to
help you start becoming comfortable in translating from one way to another.
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Note If you introduce x
in the first part of the sen-
tence, be sure to include it
in the second part of the
sentence.

Note For a number b to
be an additive inverse for
a number a means that
a+b=0.

1.1 VARIABLES 3

Universal Conditional Statements

Universal statements contain some variation of the words “for every” and conditional
statements contain versions of the words “if-then.” A universal conditional statement is
a statement that is both universal and conditional. Here is an example:

For every animal a, if a is a dog, then a is a mammal.

One of the most important facts about universal conditional statements is that they can be
rewritten in ways that make them appear to be purely universal or purely conditional. For
example, the previous statement can be rewritten in a way that makes its conditional nature
explicit but its universal nature implicit:

If a is a dog, then a is a mammal.

Or: If an animal is a dog, then the animal is a mammal.

The statement can also be expressed so as to make its universal nature explicit and its
conditional nature implicit:

For every dog a, a is a mammal.
Or: All dogs are mammals.

The crucial point is that the ability to translate among various ways of expressing univer-
sal conditional statements is enormously useful for doing mathematics and many parts of
computer science.

Rewriting a Universal Conditional Statement
Fill in the blanks to rewrite the following statement:

For every real number x, if x is nonzero then xis positive.
a. If a real number is nonzero, then its square

b. For every nonzero real number x,

c. Ifx then

d. The square of any nonzero real number is

e. All nonzero real numbers have

Solution

a. is positive

b. x%is positive

c. is a nonzero real number; x” is positive
d. positive

e. positive squares (or: squares that are positive) |

Universal Existential Statements

A universal existential statement is a statement that is universal because its first part says
that a certain property is true for all objects of a given type, and it is existential because its
second part asserts the existence of something. For example:

Every real number has an additive inverse.
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In this statement the property “has an additive inverse” applies universally to all real num-
bers. “Has an additive inverse” asserts the existence of something—an additive inverse—
for each real number. However, the nature of the additive inverse depends on the real
number; different real numbers have different additive inverses. Knowing that an additive
inverse is a real number, you can rewrite this statement in several ways, some less formal
and some more formal:*

All real numbers have additive inverses.

Or: For every real number 7, there is an additive inverse for r.

Or: For every real number 7, there is a real number s such that s is an
additive inverse for r.

Introducing names for the variables simplifies references in further discussion. For in-
stance, after the third version of the statement you might go on to write: When r is positive,
s is negative, when r is negative, s is positive, and when r is zero, s is also zero.

One of the most important reasons for using variables in mathematics is that it gives you
the ability to refer to quantities unambiguously throughout a lengthy mathematical argu-
ment, while not restricting you to consider only specific values for them.

Rewriting a Universal Existential Statement

Fill in the blanks to rewrite the following statement: Every pot has a lid.
a. Allpots .

b. For every pot P, there is

c. For every pot P, there is a lid L such that

Solution
a. have lids

b. alid for P
c. Lisalid for P [ |

Existential Universal Statements

An existential universal statement is a statement that is existential because its first part
asserts that a certain object exists and is universal because its second part says that the
object satisfies a certain property for all things of a certain kind. For example:

There is a positive integer that is less than or equal to every positive integer.

This statement is true because the number one is a positive integer, and it satisfies the
property of being less than or equal to every positive integer. We can rewrite the statement
in several ways, some less formal and some more formal:

Some positive integer is less than or equal to every positive integer.

Or: There is a positive integer m that is less than or equal to every
positive integer.

Or: There is a positive integer m such that every positive integer is
greater than or equal to m.

Or: There is a positive integer m with the property that for every
positive integer n, m = n.

*A conditional could be used to help express this statement, but we postpone the additional complexity to a
later chapter.
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SEEYARY  Rewriting an Existential Universal Statement
Fill in the blanks to rewrite the following statement in three different ways:

There is a person in my class who is at least as old as every person in
my class.

a. Some s at least as old as

b. There is a person p in my class such that p is

c. There is a person p in my class with the property that for every person g in my class,
pis— .

Solution

a. person in my class; every person in my class

b. at least as old as every person in my class

c. atleastasold as g |

Some of the most important mathematical concepts, such as the definition of limit of a
sequence, can only be defined using phrases that are universal, existential, and conditional,
and they require the use of all three phrases “for every,” “there is,” and “if-then.” For
example, if ay, a,, as, .. . is a sequence of real numbers, saying that

the limit of a,, as n approaches infinity is L
means that

for every positive real number &, there is an integer N such that
for every integer n, if n > N then —¢ < q,— L < &.

Answers to Test Yourself questions are located at the end of each section.
1. A universal statement asserts that a certain property 3. Given a property that may or may not be true,
is for an existential statement asserts that ___ for

.. . which the property is true.
2. A conditional statement asserts that if one property

thing _ then some other thing

EXERCISE SET 1.1

Appendix B contains either full or partial solutions to all exercises with blue numbers. When the solution is not complete,
the exercise number has an “H” next to it. A “*” next to an exercise number signals that the exercise is more challenging
than usual. Be careful not to get into the habit of turning to the solutions too quickly. Make every effort to work exercises
on your own before checking your answers. See the Preface for additional sources of assistance and further study.

In each of 1-6, fill in the blanks using a variable or variables a. Is there an integer n such that n has ?
to rewrite the given statement. b. Does there exist such that if n is divided
. . . . o
1. Is there a real number whose square is —1? by 5 the remainder is 2 and if ’
a. Is there a real number x such that 2 Note: There are integers with this property. Can you
b. Does there exist such that x*> = — 1?2 think of one?
2. .Is.the.re.an integer that has a.remamder of 2 When 3. Given any two distinct real numbers, there is a
it is divided by 5 and a remainder of 3 when it is real number in between them.

divided by 6?
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a. Given any two distinct real numbers a and b,
there is a real number ¢ such that c is

b. For any two such that c is
between a and b.

i

c. If an object is a square, then it
d. IfJ , then J .
e. Forevery square J, .

9. For every equation E, if E is quadratic then E has
4. Given any real number, there is a real number that at most two real solutions.
is greater. a. All quadratic equations
a. Given any real number r, there is s such b. Every quadratic equation
that s is . c. If an equation is quadratic, then it
b. For any R such that s > r. d. IfE , then E .
. The reciprocal of any positive real number is positive. e. Forevery quadratic equation £, —.
a. Given any positive real number r, the reciprocal 10. Every nonzero real number has a reciprocal.
of . a. All nonzero real numbers
b. For any real number r, if r is then b. For every nonzero real number r, there is
c. If areal number r then for r.
6. The cube root of any negative real number s c. For every nonzero real number r, there is a real
. number s such that
negative.
a. Given any negative real number s, the cube 11. Every positive number has a positive square root.
root of a. All positive numbers
b. For any real number s, if s is then b. For every positive number e, there is for e.
c. If areal number s then c. For every positive number e, there is a positive
. Rewrite the following statements less formally, number r such that
without using variables. Determine, as best as you 12. There is a real number whose product with every
can, whether the statements are true or false. number leaves the number unchanged.
a. There are real numbers u and v with the prop- a. Some has the property that its .
erty thatu +v <u—v. b. There is a real number r such that the product
b. There is a real number x such that x* < x. of r
c. For every positive integer n, n*=n. c. There is a real number r with the property that
d. For all real numbers a and b, |a + b| < |a| + |b|. for every real number s,
In each of 8-13, fill in the blanks to rewrite the given 13. There is a real number whose product with every

statement.

8. For every object J, if J is a square then J has four

ANSWERS FORTEST YOURSELF

1. true; all elements of a set

sides.
a. All squares
b. Every square

real number equals zero.

a. Some has the property that its

b. There is a real number a such that the product
of a

c. There is a real number a with the property that
for every real number b, .

2. is true; also has to be true

i®1 The Language of Sets

3. there is at least one thing

. . . when we attempt to express in mathematical symbols a condition proposed in

words. First, we must understand thoroughly the condition. Second, we must be
familiar with the forms of mathematical expression. —George Polya (1887-1985)

Use of the word ser as a formal mathematical term was introduced in 1879 by Georg
Cantor (1845-1918). For most mathematical purposes we can think of a set intuitively, as
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Note The Z is the first
letter of the German word
for integers, Zahlen. It
stands for the ser of all
integers and should not
be used as a shorthand for
the word integer.

When the Symbols R,
Q, and Z are handwrit-
ten, they appear as R, Q,
and Z.

1.2 THE LANGUAGE OF SETS 7

Cantor did, simply as a collection of elements. For instance, if C is the set of all countries
that are currently in the United Nations, then the United States is an element of C, and if /
is the set of all integers from 1 to 100, then the number 57 is an element of /.

Set-Roster Notation

If S is a set, the notation x € S means that x is an element of S. The notation x & S
means that x is not an element of S. A set may be specified using the set-roster
notation by writing all of its elements between braces. For example, {1, 2, 3} denotes
the set whose elements are 1, 2, and 3. A variation of the notation is sometimes used
to describe a very large set, as when we write {1, 2, 3, ..., 100} to refer to the set of
all integers from 1 to 100. A similar notation can also describe an infinite set, as when
we write {1, 2, 3, ...} to refer to the set of all positive integers. (The symbol .. .is
called an ellipsis and is read “and so forth.”)

The axiom of extension says that a set is completely determined by what its elements
are—not the order in which they might be listed or the fact that some elements might be
listed more than once.

Using the Set-Roster Notation

a. LetA={1,2,3},B=1{3,1,2},and C = {1, 1, 2, 3, 3, 3}. What are the elements of
A, B, and C? How are A, B, and C related?

b. Is {0} = 0?

c. How many elements are in the set {1, {1}}?

d. For each nonnegative integer n, let U, = {n, —n}. Find U;, U,, and U,

Solution

a. A, B, and C have exactly the same three elements: 1, 2, and 3. Therefore, A, B, and C
are simply different ways to represent the same set.

b. {0} # 0 because {0} is a set with one element, namely 0, whereas O is just the symbol
that represents the number zero.

c. The set {1, {I1}} has two elements: 1 and the set whose only element is 1.
d. U, = {1, =1}, U, = {2, =2}, Uy = {0, =0} = {0, 0} = {0}. u

Certain sets of numbers are so frequently referred to that they are given special sym-
bolic names. These are summarized in the following table.

Symbol Set
R the set of all real numbers
Y/ the set of all integers
Q the set of all rational numbers, or quotients of integers

Addition of a superscript + or — or the letters nonneg indicates that only the positive or
negative or nonnegative elements of the set, respectively, are to be included. Thus R"
denotes the set of positive real numbers, and Z"""* refers to the set of nonnegative
integers: 0, 1, 2, 3, 4, and so forth. Some authors refer to the set of nonnegative integers
as the set of natural numbers and denote it as N. Other authors call only the positive

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203



8 CHAPTER1 SPEAKING MATHEMATICALLY

Note We read the left-
hand brace as “the set of
all” and the vertical line
as “such that.” In all oth-
er mathematical contexts,
however, we do not use

a vertical line to denote
the words ““such that”; we
abbreviate “such that” as
“s. t.” or “s. th.” or ““2-

integers natural numbers. To prevent confusion, we simply avoid using the phrase natural
numbers in this book.

The set of real numbers is usually pictured as the set of all points on a line, as shown
below. The number O corresponds to a middle point, called the origin. A unit of distance is
marked off, and each point to the right of the origin corresponds to a positive real number
found by computing its distance from the origin. Each point to the left of the origin cor-
responds to a negative real number, which is denoted by computing its distance from the
origin and putting a minus sign in front of the resulting number. The set of real numbers is
therefore divided into three parts: the set of positive real numbers, the set of negative real
numbers, and the number 0. Note that O is neither positive nor negative. Labels are given
for a few real numbers corresponding to points on the line shown below.

-3 -2 -1 0 1 2 3
1

1 1 1 1 >
T T T

s .3 08 1 3 26 13
2 3 4
The real number line is called continuous because it is imagined to have no holes. The
set of integers corresponds to a collection of points located at fixed intervals along the real
number line. Thus every integer is a real number, and because the integers are all sepa-
rated from each other, the set of integers is called discrete. The name discrete mathematics
comes from the distinction between continuous and discrete mathematical objects.
Another way to specify a set uses what is called the set-builder notation.

Set-Builder Notation

Let S denote a set and let P(x) be a property that elements of S may or may not satisfy.
We may define a new set to be the set of all elements x in S such that P(x) is true.
We denote this set as follows:

xeSs|Pw)
/! N

the set of all such that

Occasionally we will write {x | P(x)} without being specific about where the element x
comes from. It turns out that unrestricted use of this notation can lead to genuine contradic-
tions in set theory. We will discuss one of these in Section 6.4 and will be careful to use this
notation purely as a convenience in cases where the set S could be specified if necessary.

Using the Set-Builder Notation

Given that R denotes the set of all real numbers, Z the set of all integers, and Z" the set of
all positive integers, describe each of the following sets.

a. (xER|-2<x<5)}

b. (x€Z|-2<x<5}

c. (x€EZT|-2<x<5)

Solution

a. {x € R|—2 < x < 5} is the open interval of real numbers (strictly) between —2 and
5. It is pictured as follows:

-3 -2 -1 0 1 2 3 4
1 O " I I 1
~ T ~ T T T T T T

L
¥
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1.2 THE LANGUAGE OF SETS 9

b. {x € Z|—2 < x < 5} is the set of all integers (strictly) between —2 and 5. It is equal
totheset {—1,0,1,2,3,4}.

c. Since all the integers in Z™ are positive, {x € Z* | -2 <x<5}=1{1,2,3,4}. [ |

Subsets

A basic relation between sets is that of subset.

If A and B are sets, then A is called a subset of B, written A C B, if, and only if, every
element of A is also an element of B.
Symbolically:

A C B means that for every element x, if x € A then x € B.

The phrases A is contained in B and B contains A are alternative ways of saying that
A is a subset of B.

It follows from the definition of subset that for a set A not to be a subset of a set B means
that there is at least one element of A that is not an element of B. Symbolically:

’ A Z B means that there is at least one element x such that x € A and x & B.

Definition

Let A and B be sets. A is a proper subset of B if, and only if, every element of A is
in B but there is at least one element of B that is not in A.

CELITIFE]  Subsets

Let A=Z",B={nE€Z|0=n=100}, and C = {100, 200, 300, 400, 500}. Evaluate
the truth and falsity of each of the following statements.

a. BCA

b. Cis a proper subset of A

c. C and B have at least one element in common

d. CCB

e. CCC

Solution

a. False. Zero is not a positive integer. Thus zero is in B but zero is not in A, and so B Z A.

b. True. Each element in C is a positive integer and, hence, is in A, but there are elements
in A that are not in C. For instance, 1 is in A and not in C.

c¢. True. For example, 100 is in both C and B.
d. False. For example, 200 is in C but not in B.

e. True. Every element in C is in C. In general, the definition of subset implies that all
sets are subsets of themselves. |
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10 CHAPTER1 SPEAKING MATHEMATICALLY

Example1.2.4

ArchivePL/Alamy Stock Photo

Kazimierz Kuratowski
(1896-1980)

Distinction between € and C

Which of the following are true statements?
a. 2€{1,2,3} b. {2} €{1,2,3} c. 2C{1,2,3}
d. {2} C{1,2,3} e {2}C{{1},{2}} f {2}e{{1},{2}}

Solution Only (a), (d), and (f) are true.

For (b) to be true, the set {1, 2, 3} would have to contain the element {2}. But the only
elements of {1, 2, 3} are 1, 2, and 3, and 2 is not equal to {2}. Hence (b) is false.

For (c) to be true, the number 2 would have to be a set and every element in the set 2
would have to be an element of {1, 2, 3}. This is not the case, so (c) is false.

For (e) to be true, every element in the set containing only the number 2 would have to
be an element of the set whose elements are {1} and {2}. But 2 is not equal to either {1} or
{2}, and so (e) is false. [ ]

Cartesian Products

With the introduction of Georg Cantor’s set theory in the late nineteenth century, it
began to seem possible to put mathematics on a firm logical foundation by developing
all of its various branches from set theory and logic alone. A major stumbling block was
how to use sets to define an ordered pair because the definition of a set is unaffected
by the order in which its elements are listed. For example, {a, b} and {b, a} represent
the same set, whereas in an ordered pair we want to be able to indicate which element
comes first.

In 1914 crucial breakthroughs were made by Norbert Wiener (1894-1964), a young
American who had recently received his Ph.D. from Harvard, and the German mathemati-
cian Felix Hausdorff (1868—1942). Both gave definitions showing that an ordered pair can
be defined as a certain type of set, but both definitions were somewhat awkward. Finally,
in 1921, the Polish mathematician Kazimierz Kuratowski (1896—1980) published the fol-
lowing definition, which has since become standard. It says that an ordered pair is a set of
the form

{a}, {a, b}}.

This set has elements, {a} and {a, b}. If a # b, then the two sets are distinct and a is in both
sets whereas b is not. This allows us to distinguish between a and b and say that a is the
first element of the ordered pair and b is the second element of the pair. If @ = b, then we
can simply say that a is both the first and the second element of the pair. In this case the set
that defines the ordered pair becomes {{a}, {a, a}}, which equals {{a}}.

However, it was only long after ordered pairs had been used extensively in mathematics
that mathematicians realized that it was possible to define them entirely in terms of sets,
and, in any case, the set notation would be cumbersome to use on a regular basis. The usual
notation for ordered pairs refers to {{a}, {a, b}} more simply as (a, b).

Given elements a and b, the symbol (a, b) denotes the ordered pair consisting of
a and b together with the specification that a is the first element of the pair and b
is the second element. Two ordered pairs (a, b) and (c, d) are equal if, and only if,
a = c and b = d. Symbolically:

(a,b) = (c,d) meansthat a =candb = d.
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1.2 THE LANGUAGE OF SETS n

EErTEEE] Ordered Pairs
a. Is(1,2) = (2, 1)?
b. Ts (3, 15) = (V9, 3)?
¢. What is the first element of (1, 1)?
Solution
a. No. By definition of equality of ordered pairs,
(1,2) = (2, 1) if, and only if, | =2 and 2 = 1.
But 1 # 2, and so the ordered pairs are not equal.
b. Yes. By definition of equality of ordered pairs,

5 ). e S _1
(3, 10) = <\F9, 2> if, and only if, 3 = \/9 and 07

Because these equations are both true, the ordered pairs are equal.

c. In the ordered pair (1, 1), the first and the second elements are both 1. [ ]

The notation for an ordered n-tuple generalizes the notation for an ordered pair to a set
with any finite number of elements. It also takes both order and multiplicity into account.

Let n be a positive integer and let x;, x,, ..., x,, be (not necessarily distinct) ele-
ments. The ordered n-tuple, (x{, x5, . . . , X,,), consists of x;, x,, . . ., x,, together with
the ordering: first x;, then x,, and so forth up to x,. An ordered 2-tuple is called an
ordered pair, and an ordered 3-tuple is called an ordered triple.

Two ordered n-tuples (xi, X, ..., x,) and (yy, ¥», ..., y,) are equal if, and only
if, x; =y,x =y...,and x, = y,.
Symbolically:
(xl’xZ""’xn) = (yl’yZ""’yn) = X1 =YX =YXy = Ypo

FEMEWEY Ordered n-tuples

a Is(1,2,3,4) = (1,2,4,3)?
b 1s (3, (=22 3) = (V0,4,2)

Solution
a. No. By definition of equality of ordered 4-tuples,

(1,2,3,4=(1,2,43) < 1=1,2=2,3=4,and4 =3
But 3 # 4, and so the ordered 4-tuples are not equal.
b. Yes. By definition of equality of ordered triples,

1 3 1 3
3,(-2% =) =(V9.4>] < 3=V9and(-2)’=4and— ="
2 6 2 6
Because these equations are all true, the two ordered triples are equal. |
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12 CHAPTER1 SPEAKING MATHEMATICALLY

Example1.2.7

Note This is why it
makes sense to call a
Cartesian product a
product!

Given sets A, A,,...,A,, the Cartesian product of A, A, ...,A,, denoted
Ay X Ay X -+ X A, is the set of all ordered n-tuples (a;, a,, . . ., a,) where a; € Ay,
a2€A2,...,a,,EAn.

Symbolically:

Al XA2><><A,,= {(al,az,...,an)|a1EAl,aZEAz,...,anEAn}.

In particular,
Ay X Ay = {(a), @) | a E A, and a; € A}

is the Cartesian product of A; and A,.

Cartesian Products

LetA = {x,y},B={1,2,3},and C = {a, b}.

a. Find A X B.

. Find B X A.

c. FindA X A.

d. How many elements are in A X B, B X A, and A X A?

e. Find (A X B) X C

f. FindA X B X C

g. Let R denote the set of all real numbers. Describe R X R.

o

Solution

a. AXB={x1), (D, x2),»2,x?3) (3}
b. B XA ={(1,x), (1, 2,%,2,y),3,x, 3}
c. AXA={(xx), ), ),

d. A X B has 6 elements. Note that this is the number of elements in A times the number
of elements in B. B X A has 6 elements, the number of elements in B times the num-
ber of elements in A. A X A has 4 elements, the number of elements in A times the
number of elements in A.

e. The Cartesian product of A and B is a set, so it may be used as one of the sets making
up another Cartesian product. This is the case for (A X B) X C.

(AX B) X C

{(u,v)|[u EA X Bandv € C} by definition of Cartesian product
{((x, D), @), ((x, 2), @), ((x, 3), @), ((, ), @),

(0, 2), @), (v, 3), @), ((x, 1), b), ((x, 2), b), (x, 3), b),

(&, D, b), (v, 2), b), (v, 3), D)}

f. The Cartesian product A X B X C is superficially similar to but is not quite the same
mathematical object as (A X B) X C. (A X B) X C is a set of ordered pairs of which
one element is itself an ordered pair, whereas A X B X C is a set of ordered triples. By
definition of Cartesian product,
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AXBXC = {(uv,w)|u€A,vEB, andw € C}
{(x, 1,a), (x,2,a), (x,3,a), (v, 1,a), (y,2,a), (y,3,a), (x, 1, b),
(x,2,b), (x,3,b0), (0, 1,b), (v, 2, b), (v, 3, b)}.

g. R X Ris the set of all ordered pairs (x, y) where both x and y are real numbers. If
horizontal and vertical axes are drawn on a plane and a unit length is marked off, then
each ordered pair in R X R corresponds to a unique point in the plane, with the first
and second elements of the pair indicating, respectively, the horizontal and vertical
positions of the point. The term Cartesian plane is often used to refer to a plane with
this coordinate system, as illustrated in Figure 1.2.1.

YA
3 4
(—3,. 2) )1
1+ e (2,1)

} } } } } } } } >

4 3 2 ] 1 2 3 4 *
14

(-2,-2) e -2+ o (1,-2)
34
FIGURE1.2.1 A Cartesian Plane |

Another notation, which is important in both mathematics and computer science, denotes
objects called strings.*

Let n be a positive integer. Given a finite set A, a string of length n over A is an or-
dered n-tuple of elements of A written without parentheses or commas. The elements
of A are called the characters of the string. The null string over A is defined to be
the “string” with no characters. It is often denoted A\ and is said to have length 0. If
A = {0, 1}, then a string over A is called a bit string.

Strings

Let A = {a, b}. List all the strings of length 3 over A with at least two characters that are
the same.

Solution

aab, aba, baa, aaa, bba, bab, abb, bbb

In computer programming it is important to distinguish among different kinds of data
structures and to respect the notations that are used for them. Similarly in mathematics, it
is important to distinguish among, say, {a, b, c}, {{a, b}, ¢}, (a, b, ¢), (a, (b, ¢)), abc, and so
forth, because these are all significantly different objects. |

*A more formal definition of string, using recursion, is given in Section 5.9.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203



14

TESTYOURSELF

1.

CHAPTER1 SPEAKING MATHEMATICALLY

When the elements of a set are given using the
set-roster notation, the order in which they are
listed

. For a set A to be a subset of a set B means that

. Given sets A and B, the Cartesian product A X B

2. The symbol R denotes is
3. The symbol Z denotes 8. Given sets A, B, and C, the Cartesian product
4. The symbol Q denotes AXBXCis
. . 9. A string of length n over a set S is an ordered n-tuple
5. The notation {x | P} is read of elements of S, written without or
EXERCISESET1.2
1. Which of the following sets are equal? ¢ U=s{reZ|2=r=-2}
_ _ d. V={s€Z|s>2o0rs <3}
A=la.bcd}  B={dea.c} e. W=(t€Z|1<t<-3)
C={dbac} D={aadec.e} f. X=(weZ|lusdoru=1)
2. Write in words how to read each of the following 8. LetA={c,d,f.g},B=1{fj},and C = {d, g}.
out loud. N Answer each of the following questions. Give
a. xER|0<x<1) reasons for your answers.
b. xER|x=0o0rx=1} a IsB CA?
c. {n € Z|nis afactor of 6} b. ; C_A;’
d. {n€Z" |nis afactor of 6) - sCCA
c. IsCC(C?
3. a. Is4={4)? d. Is C a proper subset of A?
b. How many elements are in the set {3, 4, 3, 5}?
c. How many elements are in the set {1, {1}, {1, {1}}}? 9. a. Is3 € {1, 2,3})?
b. Is1 C {1}?
4. a. Is2€ 22 stc il
i c Is{2} e {1,2})?
b. How many elements are in the set {2, 2, 2, 2}? d. Is (3} € {1, {2}, (3}}?
c. How many elements are in the set {0, {0}}? e' Kle {1}?’ ’ '
0 . ?
g lore o thr fIs (2 C (L (2), B2
e. Is {{0}, {1}}? g. Is {1} C {1,2})?
H5. Which of the following sets are equal? h. Is 1 € {{1}, 2}?
A=1{0,1,2 i. Is{l} C{1, {2}}?
B={x€ER|-1=x<3} o Iy C {17
C={xER|-1<x<3} 10. a. Is (2%, —2%) = (=22, (=2)»?
D={xEZ|-1<x<3} b. Is(5, —=5) = (=5,5)?
E=(xeZ|-1<x<3) € 158 -0V =D) ~ (~1, =1
. d. Is (=5, (—2)°) = (5 —8)
H 6. For each integer n, let 7,, = {n, n”}. How many Let A = iB = b h
elements are in each of 75, T_3, T}, and T,? Justify Tl LetA = {M.}’ Y Z}. and B = {a, b}. Us.et © set-
roster notation to write each of the following sets, and
your answers. . .
indicate the number of elements that are in each set.
7. Use the set-roster notation to indicate the elements a. AXB
in each of the following sets. b. BXA
a. S={n€Zln=(- for some integer £}. . AXA
b. T={m€&Z|m=1+(—1), for some integer i}. d. BXB
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1.3 THE LANGUAGE OF RELATIONS AND FUNCTIONS 15

12. LetS ={2,4,6}and T = {1, 3, 5}. Use the set- 14. LetR = {a}, S = {x,y},and T = {p, g, r}. Find
roster notation to write each of the following sets, and each of the following sets.
indicate the number of elements that are in each set. a. RX S XT)
a. SXT b. RXS)XT
b. TXS . RXSXT
c. §XS§

d TXT

13. LetA = {1,2,3}, B= {u},and C = {m, n}. Find
each of the following sets.

a. AXBXO)
b. AXB)XC

c. AXB

ANSWERS FOR TEST YOURSELF

X C

15. Let S = {0, 1}. List all the strings of length 4 over
S that contain three or more 0’s.

16. Let T = {x, y}. List all the strings of length 5 over
T that have exactly one y.

1. does not matter 2. the set of all real numbers 3. the set in B 7. the set of all ordered pairs (a, b) where a is in A and
of all integers 4. the set of all rational numbers 5. the set bisin B 8. the set of ordered triples of the form (a, b, ¢)
of all x such that P(x) 6. every element in A is an element where a € A,b € B,and ¢ € C 9. parentheses; commas

The Language of Relations and Functions

Mathematics is a language. —Josiah Willard Gibbs (1839-1903)

There are many kinds of relationships in the world. For instance, we say that two people
are related by blood if they share a common ancestor and that they are related by marriage
if one shares a common ancestor with the spouse of the other. We also speak of the rela-
tionship between student and teacher, between people who work for the same employer,
and between people who share a common ethnic background.

Similarly, the objects of mathematics may be related in various ways. A set A may
be said to be related to a set B if A is a subset of B, or if A is not a subset of B, or if A
and B have at least one element in common. A number x may be said to be related to a
number y if x <Yy, or if x is a factor of y, or if X+ y2 = 1. Two identifiers in a computer
program may be said to be related if they have the same first eight characters, or if the
same memory location is used to store their values when the program is executed. And
the list could go on!

LetA ={0,1,2} and B = {1, 2, 3} and let us say that an element x in A is related to an
element y in B if, and only if, x is less than y. Let us use the notation x R y as a shorthand
for the sentence “x is related to y.” Then

OR1 since 0<]1,
OR2 since 0<2,
OR3 since 0<3,
1R2 since 1<2,
1R3 since 1 <3, and
2R3 since 2<3.
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On the other hand, if the notation x Ky represents the sentence “x is not related to y,” then

1R1 since 1«1,
2R1 since 2+ 1, and
2K2 since 2« 2.

Recall that the Cartesian product of A and B, A X B, consists of all ordered pairs whose
first element is in A and whose second element is in B:

AXB= {(x,y)|xEAandyEB}.
In this case,
A X B={(0,1),(0,2),(0,3),(,1),(,2),,3),2,1),(2,2), (2,3)}.

The elements of some ordered pairs in A X B are related, whereas the elements of other
ordered pairs are not. Consider the set of all ordered pairs in A X B whose elements are
related

{(0, 1), (0,2),(0,3), (1,2), (1, 3), (2, 3)}.

Observe that knowing which ordered pairs lie in this set is equivalent to knowing which
elements are related to which. The relation itself can therefore be thought of as the totality of
ordered pairs whose elements are related by the given condition. The formal mathematical
definition of relation, based on this idea, was introduced by the American mathematician
and logician C. S. Peirce in the nineteenth century.

Let A and B be sets. A relation R from A to B is a subset of A X B. Given an ordered
pair (x, y) in A X B, x is related to y by R, written x R y, if, and only if, (x, y) is in R.
The set A is called the domain of R and the set B is called its co-domain.

The notation for a relation R may be written symbolically as follows:

xRy meansthat (x,y) €R.
The notation x Ky means that x is not related to y by R:
xRy meansthat (x,y) & R.

EENTTEERN A Relation as a Subset

Let A = {1,2}and B = {1, 2, 3} and define a relation R from A to B as follows: Given any
(x,y) €A X B,

(x,y) € R means that Y is an integer.

a. State explicitly which ordered pairs are in A X B and which are in R.
b. Is1R3?Is2R3?Is2R2?
¢. What are the domain and co-domain of R?

Solution

a. AXB={(1,1),(,2),(,3), 2,1, (2,2), (2, 3)}. To determine explicitly the compo-
sition of R, examine each ordered pair in A X B to see whether its elements satisfy the
defining condition for R.
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1-1_0
2

(1, 1) € R because —5— = 5 = 0, which is an integer.

(1, 2) & R because 12;2 = _71, which is not an integer.

(1, 3) € R because % %2 = —1, which is an integer.

2—-1
(2, 1) & R because “5—

, which is not an integer.

NS o=

(2,2) € R because 22;2 = 0, which is an integer.

(2, 3) & R because % = %1, which is not an integer.

Thus

R={(,1),(,3),2,2)}

b. Yes, 1 R 3 because (1, 3) € R.
No, 2 K3 because (2, 3) & R.
Yes, 2 R 2 because (2, 2) € R.

¢. The domain of R is {1, 2} and the co-domain is {I, 2, 3}.

EELIIER] The Circle Relation

Define a relation C from R to R as follows: For any (x, y) € R X R,
(x,y) € C means that O+ y2 = 1.
1 V3
a. Is (1,00 € C?1Is (0,0) € C? Is (—2, 2) EC?2Is2C0?2Is0C(—=1)?Is1C1?
b. What are the domain and co-domain of C?

c. Draw a graph for C by plotting the points of C in the Cartesian plane.

Solution

a. Yes, (1, 0) € C because 1>+0° = 1.
No, (0, 0) & C because 0°+0°=0+#1.
Yes, (—%, V—g) € C because (—%)2 + (Lg)z = i-l—% =1
No, —2 ¢ 0 because (—2)2 +0°=4+#1.
Yes, 0 C (—1) because 0>+ (—1)* = 1.
No, 1 Z‘ 1 because 17+ 12 =2 # 1.
b. The domain and co-domain of C are both R, the set of all real numbers.

C. V4

x2+y2:1

{1
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CHAPTER1

SPEAKING MATHEMATICALLY

Arrow Diagram of a Relation

Suppose R is a relation from a set A to a set B. The arrow diagram for R is obtained as
follows:

1. Represent the elements of A as points in one region and the elements of B as points in
another region.

2. For each xin A and y in B, draw an arrow from x to y if, and only if, x is related to y by
R. Symbolically:

Draw an arrow from x to y
if, and only if, XRy
if, and only if, x,y) €ER.
Arrow Diagrams of Relations

Let A=1{1,2,3} and B = {1, 2, 3} and define relations S and T from A to B as follows:
For every (x,y) € A X B,

Draw arrow diagrams for S and T.

Solution

T={21),25)
SN
T

These example relations illustrate that it is possible to have several arrows coming out
of the same element of A pointing in different directions. Also, it is quite possible to have
an element of A that does not have an arrow coming out of it. |

x,y) €S meansthat x <y Sis a “less than” relation.
. %

Functions

In Section 1.2 we showed that ordered pairs can be defined in terms of sets and we defined
Cartesian products in terms of ordered pairs. In this section we introduced relations as subsets
of Cartesian products. Thus we can now define functions in a way that depends only on the
concept of set. Although this definition is not obviously related to the way we usually work
with functions in mathematics, it is satisfying from a theoretical point of view, and computer
scientists like it because it is particularly well suited for operating with functions on a computer.

Definition

A function F from a set A to a set B is a relation with domain A and co-domain B
that satisfies the following two properties:

1. For every element x in A, there is an element y in B such that (x, y) € F.

2. For all elements x in A and y and z in B,

if (x,y) € Fand (x,z) €EF, then y =z
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Properties (1) and (2) can be stated less formally as follows: A relation F from A to B is
a function if, and only if:

1. Every element of A is the first element of an ordered pair of F.
2. No two distinct ordered pairs in F have the same first element.

In most mathematical situations we think of a function as sending elements from one
set, the domain, to elements of another set, the co-domain. Because of the definition of
function, each element in the domain corresponds to one and only one element of the
co-domain.

More precisely, if F is a function from a set A to a set B, then given any element x in A,
property (1) from the function definition guarantees that there is at least one element of B
that is related to x by F and property (2) guarantees that there is at most one such element.
This makes it possible to give the element that corresponds to x a special name.

Function Notation

If A and B are sets and F is a function from A to B, then given any element x in A, the
unique element in B that is related to x by F is denoted F(x), which is read “F of x.”

Functions and Relations on Finite Sets

Let A= {2,4,6}and B = {1, 3, 5}. Which of the relations R, S, and T defined below are
functions from A to B?

a. R={2,5), 4, 1),4,3),(0,5)}

b. Forevery (x,y) € A X B, (x,y) € S means thaty = x+ 1.

c. Tis defined by the arrow diagram

Solution

a. Ris not a function because it does not satisfy property (2). The ordered pairs (4, 1)
and (4, 3) have the same first element but different second elements. You can see this
graphically if you draw the arrow diagram for R. There are two arrows coming out of
4: One points to 1 and the other points to 3.

b. S is not a function because it does not satisfy property (1). It is not true that every
element of A is the first element of an ordered pair in S. For example, 6 € A but there
isnoyin B such that y = 6 +1 = 7. You can also see this graphically by drawing the
arrow diagram for S.
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Note In part (),

T@) = T(6). This illustrates
the fact that although no
element of the domain of a
function can be related to

more than one element of c. Tis afunction: Each element in {2, 4, 6} is related to some element in {1, 3, 5}, and no

the co-domain. several ele- element in {2, 4, 6} is related to more than one element in {1, 3, 5}. When these proper-

ments in the domain can be ties are stated in terms of the arrow diagram, they become (1) there is an arrow coming
related to the same element out of each element of the domain, and (2) no element of the domain has more than one
in the co-domain. arrow coming out of it. So you can write 7(2) = 5, T(4) = 1, and 7(6) = 1. [ ]

EERNEEX] Functions and Relations on Sets of Strings
Let A = {a, b} and let S be the set of all strings over A.

a. Define a relation L from S to Z"*""*® as follows: For every string s in S and for every
nonnegative integer n,

(s, n) € L means that the length of s is n.

Observe that L is a function because every string in S has one and only one length.
Find L(abaaba) and L(bbb).

b. Define a relation C from S to S as follows: For all strings s and ¢ in S,

(s, ) € C means that r = as,

where as is the string obtained by appending a on the left of the characters in s. (C is
called concatenation by a on the left.) Observe that C is a function because every
string in S consists entirely of a’s and b’s and adding an additional a on the left creates
a new strong that also consists of a’s and b’s and thus is also in S. Find C(abaaba) and

C(bbb).
Solution
a. L(abaaba) = 6 and L(bbb) = 3
b. C(abaaba) = aabaaba and C(bbb) = abbb [ |

Function Machines

Another useful way to think of a function is as a machine. Suppose fis a function from X to
Y and an input x of X is given. Imagine f to be a machine that processes x in a certain way
to produce the output f(x). This is illustrated in Figure 1.3.1.

x/\

Input

function machine

\

Sx) Output

FIGURE 1.3.1
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SElYEXY Functions Defined by Formulas

The squaring function f from R to R is defined by the formula f(x) = x* for every real
number x. This means that no matter what real number input is substituted for x, the output
of f will be the square of that number. This idea can be represented by writing f((CJ) = mg
In other words, f sends each real number x to xz, or, symbolically, f: x — x°. Note that the
variable x is a dummy variable; any other symbol could replace it, as long as the replace-
ment is made everywhere the x appears.

The successor function g from Z to Z is defined by the formula g(n) = n + 1. Thus, no mat-
ter what integer is substituted for n, the output of g will be that number plus 1: g(J) = O+ 1. In
other words, g sends each integer n to n + 1, or, symbolically, g: n — n + 1.

An example of a constant function is the function z from Q to Z defined by the for-
mula h(r) = 2 for all rational numbers r. This function sends each rational number r to 2.
In other words, no matter what the input, the output is always 2: A/((J) = 2 or h: r — 2.

The functions f, g, and & are represented by the function machines in Figure 1.3.2.

7N 7N N

n r

constant
function

squaring
function

successor
function

N

fo)=x2 gm)y=n+1

(a) (b)
FIGURE 1.3.2

A function is an entity in its own right. It can be thought of as a certain relationship
between sets or as an input/output machine that operates according to a certain rule. This
is the reason why a function is generally denoted by a single symbol or string of symbols,
such as f, G, of log, or sin.

A relation is a subset of a Cartesian product and a function is a special kind of relation.
Specifically, if fand g are functions from a set A to a set B, then

f={x,)EAXB|y=f(} and g={(x,y) EAXB|y= g}
It follows that

f equals g, writtenf =g, if, andonly if, f(x) = g(x) for all x in A.

EEIrSERd Equality of Functions

Define functions f and g from R to R by the following formulas:
f(x) = |x| foreveryx €R.
gx) = \/)? for every x € R.
Does f = g?

Solution
Yes. Because the absolute value of any real number equals the square root of its square,
| x| =\/)?forallx€R.Hencef=g. [ |
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TEST YOURSELF

1. Given sets A and B, a relation from A to B is

b. for all elements x in A and y and z in B, if
then

2. A function F from A to B is a relation from A to B
that satisfies the following two properties:
a. for every element x of A, there is

3. If Fis a function from A to B and x is an element
of A, then F(x) is

EXERCISESET1.3

1. Let A = {2,3,4} and B = {6, 8, 10} and define c. Write the domain and co-domain of V.

a relation R from A to B as follows: For every
(x,y) EA X B,

(x,y) € R means that %is an integer.

Is4R6?1s4R8?Is(3,8) €ER?1s (2,10) € R?
Write R as a set of ordered pairs.

Write the domain and co-domain of R.

Draw an arrow diagram for R.

. LetC=D=1{-3,-2,—1,1,2,3} and define
arelation S from C to D as follows: For every
(x,y) e C XD,

oan oo

(x,y) €S means that %— % is an integer.

a. Is2852?Is—15—-1?71s(3,3) € §?
Is(3,-3)es?

b. Write S as a set of ordered pairs.

c. Write the domain and co-domain of S.

d. Draw an arrow diagram for S.

. LetE={1,2,3}and F = {—2, —1, 0} and define
arelation 7 from E to F as follows: For every
(x,y) EEXF,

(x,y) €T means that )% is an integer.
a. Is37T0?Is1T(1)?Is2,-1)€ET?

Is3,—2) €1

b. Write T as a set of ordered pairs.
c. Write the domain and co-domain of 7.
d. Draw an arrow diagram for 7.

. LetG={-2,0,2} and H = {4, 6, 8} and define a
relation V from G to H as follows: For every
(x,y) €GXH,

(x,y) € V means that x%y is an integer.
a. Is2Ve?Is(—2)V(8)?Is(0,6) € V?

Is2,4eV?
b. Write V as a set of ordered pairs.

d. Draw an arrow diagram for V.

. Define a relation S from R to R as follows:

For every (x, y) € R X R,

(x,y) €S meansthat x=y.

a. Is2,H)es?71s(2,2) € 8?1s2 8537
Is(—=1) S (—2)?
b. Draw the graph of S in the Cartesian plane.

. Define a relation R from R to R as follows:

For every (x,y) € R X R,
(x,y) ER meansthat y= X
a. s2,9€ER?Is42)ER?Is(-3)R9?
Is9OR (=3)?
b. Draw the graph of R in the Cartesian plane.

. Let A=1{4,5,6} and B = {5, 6, 7} and define

relations R, S, and 7 from A to B as follows:
For every (x,y) €A X B:

(x,y) € R means that x=y.
(x,y) €S means that )% is an integer.
T=A{4,7),(6,5),(6,7}

a. Draw arrow diagrams for R, S, and T
b. Indicate whether any of the relations R, S, and
T are functions.

. Let A=1{2,4} and B = {1, 3,5} and define rela-

tions U, V, and W from A to B as follows:

For every (x,y) €A X B:
(x,y) € U meansthat y— x> 2.
(x,y) €V meansthat y—1 = %
wW=42,5),4,1),2,3)}

a. Draw arrow diagrams for U, V, and W.

b. Indicate whether any of the relations U, V, and
W are functions.
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10.

1.

12.

13.

14.

15.

a. Find all functions from {0, 1} to {1}.
b. Find two relations from {0, 1} to {1} that are
not functions.

Find four relations from {a, b} to {x, y} that are
not functions from {a, b} to {x, y}.

Let A = {0, 1, 2} and let S be the set of all strings
over A. Define a relation L from S to Z""""* as
follows: For every string s in S and every nonnega-
tive integer n,

(s, ) € L means that

Then L is a function because every string in S has
one and only one length. Find L(0201) and L(12).

the length of s is n.

Let A = {x, y} and let S be the set of all strings
over A. Define a relation C from S to S as follows:
For all strings s and ¢ in S,

(s,) € C meansthat ¢=ys.

Then C is a function because every string in S
consists entirely of x’s and y’s and adding an ad-
ditional y on the left creates a single new string
that consists of x’s and y’s and is, therefore, also in
S. Find C(x) and C(yyxyx).

LetA={—1,0,1}and B = {t, u, v, w}. Define a
function F: A — B by the following arrow diagram:

—

a. Write the domain and co-domain of F.
b. Find F(—1), F(0), and F(1).

LetC={1,2,3,4}and D = {a, b, ¢, d}. Define
a function G: C — D by the following arrow
diagram:

I

a. Write the domain and co-domain of G.
b. Find G(1), G(2), G(3), and G(4).

Let X ={2,4,5}and Y = {1, 2,4, 6}. Which of
the following arrow diagrams determine functions
from X to ¥?
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16.

17.

18.

19.

20.

y

\/
K

0

:

Let f'be the squaring function defined in Example
1.3.6. Find f(~1), £(0), and £ (3).

Let g be the successor function defined in
Example 1.3.6. Find g(—1000), g(0), and g(999).

Let i be the constant function defined in
Example 1.3.6. Find h(—2), (%), and A(35).

Define functions f and g from R to R by the fol-
lowing formulas: For every x € R,

207+ 2x

x)=2x and gkx)=—7F""

Jfx) 8(x) 211

Does f = g? Explain.

Define functions H and K from R to R by the fol-

lowing formulas: For every x € R,

Hx) = (x—2)* and K(x)=(@x—1)(x—3)+1.
Does H = K? Explain.
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ANSWERS FOR TEST YOURSELF

1. a subset of the Cartesian product A X B 2. a. an element b. (x,y) € Fand (x,z) € F;y = z 3. the unique element of B
y of B such that (x, y) € F (i.e., such that x is related to y by F) that is related to x by F

The Language of Graphs

The whole of mathematics consists in the organization of a series of aids to the
imagination in the process of reasoning. —Alfred North Whitehead, 1861-1947

Imagine an organization that wants to set up teams of three to work on some projects.
In order to maximize the number of people on each team who had previous experience
working together successfully, the director asked the members to provide names of their
previous partners. This information is displayed below both in a table and in a diagram.

Name Previous Partners
Ana Dan, Flo Ana
Bev Cai, Flo, Hal Bev
Cai Bev, Flo s
Dan Ana, Ed
Hal

Ed Dan, Hal Cai
Flo Cai, Bev, Ana ]

. Gia
Gia Hal Dan
Hal Gia, Ed, Bev, Ira
Ira Hal Flo Ed

From the diagram, it is easy to see that Bev, Cai, and Flo are a group of three previous
partners, and so it would be reasonable for them to form one of these teams. The drawing
below shows the result when these three names are removed from the diagram.

Ana

Ira

Hal

Gia
Dan

Ed

This drawing shows that placing Hal on the same team as Ed would leave Gia and Ira on
a team where they would not have a previous partner. However, if Hal is placed on a team
with Gia and Ira, then the remaining team would consist of Ana, Dan, and Ed, and every-
one on both teams would be working with a previous partner.

Drawings such as these are illustrations of a structure known as a graph. The dots are
called vertices (plural of vertex) and the line segments joining vertices are called edges. As
you can see from the first drawing, it is possible for two edges to cross at a point that is not
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a vertex. Note also that the type of graph described here is quite different from the “graph
of an equation” or the “graph of a function.”

In general, a graph consists of a set of vertices and a set of edges connecting various
pairs of vertices. The edges may be straight or curved and should either connect one vertex
to another or a vertex to itself, as shown below.

Parallel edges Isolated vertex

l

LS
vy

Ve

Loop

In this drawing, the vertices are labeled with v’s and the edges with ¢’s. When an edge
connects a vertex to itself (as e5 does), it is called a loop. When two edges connect the same
pair of vertices (as e, and e5 do), they are said to be parallel. It is quite possible for a vertex
to be unconnected by an edge to any other vertex in the graph (as vs is), and in that case the
vertex is said to be isolated. The formal definition of a graph follows.

A graph G consists of two finite sets: a nonempty set V(G) of vertices and a set £(G)
of edges, where each edge is associated with a set consisting of either one or two
vertices called its endpoints. The correspondence from edges to endpoints is called
the edge-endpoint function.

An edge with just one endpoint is called a loop, and two or more distinct edges
with the same set of endpoints are said to be parallel. An edge is said to connect
its endpoints; two vertices that are connected by an edge are called adjacent; and a
vertex that is an endpoint of a loop is said to be adjacent to itself.

An edge is said to be incident on each of its endpoints, and two edges incident
on the same endpoint are called adjacent. A vertex on which no edges are incident
is called isolated.

Graphs have pictorial representations in which the vertices are represented by dots and
the edges by line segments. A given pictorial representation uniquely determines a graph.

Terminology

Consider the following graph:

€7
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a. Write the vertex set and the edge set, and give a table showing the edge-endpoint function.

b. Find all edges that are incident on vy, all vertices that are adjacent to vy, all edges that
are adjacent to ey, all loops, all parallel edges, all vertices that are adjacent to them-
selves, and all isolated vertices.

Solution
a. vertex set = {vy, vy, U3, Uy, Us, Ug}

edge set = {ey, e,, €3, ey, €5, g, €7}
edge-endpoint function:

Edge Endpoints
¢ {vi, va}
€ {vi, v3}
€3 {v1, v3}
2 {va, v3}
es {vs, v}
€6 {vs}
€7 {vs}

b. ey, €5, and e5 are incident on v.
v, and v; are adjacent to v;.
e, e3, and e, are adjacent to e;.
eg and e; are loops.

Note The isolated vertex
v, does not appear in the
table. Although each edge
of a graph must have ei-

ther one or two endpoints, ey and e; are parallel.
a vertex need not be an vs and vg are adjacent to themselves.
endpoint of an edge. v, is an isolated vertex. [ |

Although a given pictorial representation uniquely determines a graph, a given graph may
have more than one pictorial representation. Such things as the lengths or curvatures of
the edges and the relative position of the vertices on the page may vary from one pictorial
representation to another.

SE YW WY Drawing More Than One Picture for a Graph

Consider the graph specified as follows:

vertex set = {vy, vy, U3, Uy}
edge set = {ey, e, €3, €4}
edge-endpoint function:

Edge Endpoints
e {v, v3}
€ {v, vy}
€3 {v2, 14}
=zl {vs}
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Both drawings (a) and (b) shown below are pictorial representations of this graph.

ey Uy ey
'U3 1)3
ey e |€3 e
v, vy
€3
€ vy vy
vy
(@) (b) |

Labeling Drawings to Show They Represent the Same Graph

Consider the two drawings shown in Figure 1.4.1. Label vertices and edges in such a way
that both drawings represent the same graph.

(@ (b)

FIGURE 1.4.1

Solution Imagine putting one end of a piece of string at the top vertex of Figure 1.4.1(a)
(call this vertex v;), then laying the string to the next adjacent vertex on the lower right (call
this vertex v,), then laying it to the next adjacent vertex on the upper left (v3), and so forth,
returning finally to the top vertex v;. Call the first edge e, the second e,, and so forth, as
shown below.

vy
€]
e
U3 } Uy
€5 €y
€
Vs vy

Now imagine picking up the piece of string, together with its labels, and repositioning it
as follows:

v
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Example1.4.4

Example 1.4.5

This is the same as Figure 1.4.1(b), so both drawings represent the graph with vertex set
{v1, v, U3, Uy, U5}, edge set {ey, e,, €3, ey, €5}, and edge-endpoint function as follows:

Edge Endpoints
€l {vi, v2}
€ {v2, 3}
€3 {vs, v4}
€y {v4, vs}
es {vs, v} m

Examples of Graphs

Graphs are a powerful problem-solving tool because they enable us to represent a complex
situation with a single image that can be analyzed both visually and with the aid of a com-
puter. A few examples follow, and others are included in the exercises.

Using a Graph to Represent a Network

Telephone, electric power, gas pipeline, and air transport systems can all be represented
by graphs, as can computer networks—from small local area networks to the global In-
ternet system that connects millions of computers worldwide. Questions that arise in the
design of such systems involve choosing connecting edges to minimize cost, optimize a
certain type of service, and so forth. A typical network, called a hub-and-spoke model,
is shown below.

Boston
Denver
San Francisco Chicago

New York
‘Washington
Los Angeles

Using a Graph to Represent the World Wide Web

The World Wide Web, or Web, is a system of interlinked documents, or webpages,
contained on the Internet. Users employing Web browsers, such as Internet Explorer,
Chrome, Safari, and Firefox, can move quickly from one webpage to another by click-
ing on hyperlinks, which use versions of software called hypertext transfer protocols
(HTTPs). Individuals and individual companies create the pages, which they transmit
to servers that contain software capable of delivering them to those who request them
through a Web browser. Because the amount of information currently on the Web is so
vast, search engines, such as Google, Yahoo, and Bing, have algorithms for finding in-
formation very efficiently.

The following picture shows a minute fraction of the hyperlink connections on the
Internet that radiate in and out from the Wikipedia main page.
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A directed graph is like an (undirected) graph except that each edge is associated with an
ordered pair of vertices rather than a set of vertices. Thus each edge of a directed graph can
be drawn as an arrow going from the first vertex to the second vertex of the ordered pair.

Note Each directed Definition
graph has an associated
ordinary (undirected)
graph, which is obtained

A directed graph, or digraph, consists of two finite sets: a nonempty set V(G) of
vertices and a set D(G) of directed edges, where each is associated with an ordered
by ignoring the directions pair of vertices called its endpoints. If edge e is associated with the pair (v, w) of
of the edges. vertices, then e is said to be the (directed) edge from v to w.

SEIYWNY Using a Graph to Represent Knowledge

In many applications of artificial intelligence, a knowledge base of information is collected
and represented inside a computer. Because of the way the knowledge is represented and
because of the properties that govern the artificial intelligence program, the computer is
not limited to retrieving data in the same form as it was entered; it can also derive new facts
from the knowledge base by using certain built-in rules of inference. For example, from the
knowledge that the Los Angeles Times is a big-city daily and that a big-city daily contains
national news, an artificial intelligence program could infer that the Los Angeles Times
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contains national news. The directed graph shown in Figure 1.4.2 is a pictorial representa-
tion for a simplified knowledge base about periodical publications.
According to this knowledge base, what paper finish does the New York Times use?

ade-of Periodical contaj ns
Paper M Printed
M writing
Motor Trend 15-a

mstance -of Sports

4 Scholarly Newspaper Sports <~ [llustrated
con? Ly, magazme
journal is-a 5.
Long S %, B [%'
words “sp 2 g

2
Suburban & Sports

is-a weekly is-a %Ile news
G,
. L L IOSSJ,
Literary Scientific Big-city Contajng
journal journal daily C‘o\’ National
« Hajpg news
% %,
instance-of @oo OOQ Local
& O news
Poetry Los Angeles New York
Magazine Times Times
FIGURE 1.4.2

Solution The arrow going from New York Times to big-city daily (labeled “instance-
of”’) shows that the New York Times is a big-city daily. The arrow going from big-city
daily to newspaper (labeled “is-a”) shows that a big-city daily is a newspaper. The arrow
going from newspaper to matte (labeled “paper-finish”) indicates that the paper finish on a
newspaper is matte. Hence it can be inferred that the paper finish on the New York Times
is matte. [ ]

SEIIYR®A Using a Graph to Solve a Problem: Vegetarians and Cannibals

The following is a variation of a famous puzzle often used as an example in the study of
artificial intelligence. It concerns an island on which all the people are of one of two types,
either vegetarians or cannibals. Initially, two vegetarians and two cannibals are on the left
bank of a river. With them is a boat that can hold a maximum of two people. The aim of
the puzzle is to find a way to transport all the vegetarians and cannibals to the right bank of
the river. What makes this difficult is that at no time can the number of cannibals on either
bank outnumber the number of vegetarians. Otherwise, disaster befalls the vegetarians!

Solution A systematic way to approach this problem is to introduce a notation that can
indicate all possible arrangements of vegetarians, cannibals, and the boat on the banks of
the river. For example, you could write (vuc / Be) to indicate that there are two vegetarians
and one cannibal on the left bank and one cannibal and the boat on the right bank. Then
(vuceB /) would indicate the initial position in which both vegetarians, both cannibals, and
the boat are on the left bank of the river. The aim of the puzzle is to figure out a sequence
of moves to reach the position (/ Buucc) in which both vegetarians, both cannibals, and the
boat are on the right bank of the river.

Construct a graph whose vertices are the various arrangements that can be reached in a
sequence of legal moves starting from the initial position. Connect vertex x to vertex y if it
is possible to reach vertex y in one legal move from vertex x. For instance, from the initial
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position there are four legal moves: one vegetarian and one cannibal can take the boat to the
right bank; two cannibals can take the boat to the right bank; one cannibal can take the boat
to the right bank; or two vegetarians can take the boat to the right bank. You can show these
by drawing edges connecting vertex (vvccB /) to vertices (vc / Buc), (vv/ Bec), (vue / Be), and
(cc / Bvv). (It might seem natural to draw directed edges rather than undirected edges from
one vertex to another. The rationale for drawing undirected edges is that each legal move is
reversible.) From the position (vc / Buc), the only legal moves are to go back to (vvceB /) or
to go to (vucB / ¢). You can also show these by drawing in edges. Continue this process until
finally you reach (/ Bvvcc). From Figure 1.4.3 it is apparent that one successful sequence of
moves is (vvceB /) — (vc | Buc) — (vueB [ ¢) — (¢ / Buvue) — (ccB / vv) —(/ Buucc).

FIGURE1.4.3 |

Definition

Let G be a graph and v a vertex of G. The degree of v, denoted deg(v), equals the
number of edges that are incident on v, with an edge that is a loop counted twice.

Since an edge that is a loop is counted twice, the degree of a vertex can be obtained
from the drawing of a graph by counting how many end segments of edges are incident on
the vertex. This is illustrated below.

The degree of this
vertex equals 5.

Degree of a Vertex

Find the degree of each vertex of the graph G shown below.

&

V3

€3
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Example 1.4.9

Solution deg(v;) = 0 since no edge is incident on v, (v, is isolated).
deg(v,) = 2 since both ¢, and e, are incident on v,.

deg(v;) = 4 since e; and e, are incident on v and the loop ej is also incident
on vy (and contributes 2 to the degree of vs). |

Using a Graph to Color a Map

Imagine that the diagram shown below is a map with countries labeled A—J. Show that you
can color the map so that no two adjacent countries have the same color.

Solution Notice that coloring the map does not depend on the sizes or shapes of the
countries, but only on which countries are adjacent to which. So, to figure out a coloring,
you can draw a graph, as shown below, where vertices represent countries and where edges
are drawn between pairs of vertices that represent adjacent countries. Coloring the vertices
of the graph will translate to coloring the countries on the map.

As you assign colors to vertices, a relatively efficient strategy is, at each stage, to focus on
an uncolored vertex that has maximum degree, in other words that is connected to a maxi-
mum number of other uncolored vertices. If there is more than one such vertex, it does not
matter which you choose because there are often several acceptable colorings for a given
graph. For this graph, both C and H have maximum degree so you can choose one, say, C,
and color it, say, blue. Now since A, F, I, and J are not connected to C, some of them may
also be colored blue, and, because J is connected to a maximum number of others, you
could start by coloring it blue. Then F is the only remaining vertex not connected to either
C or J, so you can also color F blue. The drawing below shows the graph with vertices C,
J, and F colored blue.
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Since the vertices adjacent to C, J, and F cannot be colored blue, you can simplify the job
of choosing additional colors by removing C, J, and F and the edges connecting them to
adjacent vertices. The result is shown in Figure 1.4.4a.

A D A D

(a) (b)
FIGURE 1.4.4

In the simplified graph again choose a vertex that has a maximum degree, namely H, and
give it a second color, say, gray. Since A, D, and E are not connected to H, some of them
may also be colored gray, and, because E is connected to a maximum number of these
vertices, you could start by coloring E gray. Then A is not connected to E, and so you can
also color A gray. This is shown in Figure 1.4.4b. The drawing below shows the original
graph with vertices C, J, and F colored blue, vertices H, A, and E, colored gray, and the
remaining vertices colored black. You can check that no two adjacent vertices have the
same color.

Translating the graph coloring back to the original map gives the following picture in
which no two adjacent countries have the same color.

The final map in Example 1.4.9 was drawn with three colors. Two colors are not enough
because, for example, since B, C, and H are all adjacent to each other, different colors must
be used for all three. The following drawing shows a map of part of Central Africa that
requires four colors. Take a moment to try to assign colors to the different countries so that
you see why three colors are not enough.
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Democratic Republic

of the Congo Tanzania

In the mid-1800s it was conjectured that any map, however complex, could be colored with
just four colors with no two adjacent regions having the same color. The conjecture is now
known as the four-color theorem because it was finally proved true in 1976 by Kenneth
Appel and Wolfgang Haken, at the University of Illinois at Urbana-Champaign. They rep-
resented maps as graphs and used an innovative and controversial technique that combined
mathematical deduction with computer examination of almost 2000 special cases.

In 1950 Edward Nelson, a university student, posed the following question: How many
colors are needed to create a coloring for all the points in an ordinary (Euclidean) plane so
that no two points separated by a unit distance have the same color? Nelson himself found
that three colors are not enough, and a fellow student, John Isbell, developed an example
showing that seven colors could be used. Thus the minimum number had to be 4, 5, or 6.
Over the years a number of mathematicians tried to narrow the possibilities further, but it
was not until 2018 that an English biologist and amateur mathematician, Aubrey de Grey,
using a combination of ingenuity and computer calculations, created an example showing
that four colors are not enough. As of the publication of this book, the complete answer to
Nelson’s question is still unknown, but de Grey has now proved that it must be either 5 or 6.

It turns out that a variety of problems can be modeled by representing their features
with a graph and solved by finding a coloring for the vertices of the graph. For example,
scheduling committee meetings when members serve on more than one committee but the
meetings must be held during a fixed number of time slots or scheduling final exams for a
group of courses so that no student has more than two exams on any one day. See exercises
16 and 17 at the end of this section for details about these.

A graph consists of two finite sets: ____ 5. An edge is incident on
and ____ where each edge is associated with a

- 6. Two edges incident on the same endpoint
set consisting of

are

Aloop i his . . . .
00p 11 & graph 1s 7. A vertex on which no edges are incident is

Two distinct edges in a graph are parallel if, and

only if, 8. In adirected graph, each edge is associated

with
Two vertices are called adjacent if, and only

" 9. The degree of a vertex in a graph is _

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203



EXERCISESET1.4

1.4 THE LANGUAGE OF GRAPHS 35

In1and 2, graphs are represented by drawings. Define each graph formally by specifying its vertex set, its edge set, and a

table giving the edge-endpoint function.

1 e
v v, vy
€

U3

€3

In 3 and 4, draw pictures of the specified graphs.

3. Graph G has vertex set {v;, vy, U3, Uy, U5} and edge
set {e}, ,, €3, 4}, with edge-endpoint function as

follows:

Edge | Endpoints
€ {v1, vy}
€ {v1, v2}
3 {v2, v3}
€4 {vy}

4. Graph H has vertex set {vy, vy, U3, Uy, Us} and edge
set {ey, e,, €3, e4} with edge-endpoint function as

follows:
Edge | Endpoints
€1 {v1}
€ {v2, v3}
e; {v, v3}
=z {v1, vs}

In 5-7, show that the two drawings represent the same
graph by labeling the vertices and edges of the right-hand
drawing to correspond to those of the left-hand drawing.

(b)

6. v, vy
€l €
ey es
vy V3
(@) (b)
7. v, & vy
€] €3

@ (b)
For each of the graphsin 8 and 9:
(i) Find all edges that are incident on v;.
(i1) Find all vertices that are adjacent to vs.
(ii1) Find all edges that are adjacent to e;.
(iv) Find all loops.
(v) Find all parallel edges.
(vi) Find all isolated vertices.
(vii) Find the degree of vs.

o g

oy

10. Use the graph of Example 1.4.6 to determine
a. whether Sports Illustrated contains printed
writing;
b. whether Poetry Magazine contains long words.

11. Find three other winning sequences of moves for
the vegetarians and the cannibals in Example 1.4.7.

12. Another famous puzzle used as an example in the
study of artificial intelligence seems first to have
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appeared in a collection of problems, Problems for
the Quickening of the Mind, which was compiled
about A.D. 775. It involves a wolf, a goat, a bag of
cabbage, and a ferryman. From an initial posi-
tion on the left bank of a river, the ferryman is to
transport the wolf, the goat, and the cabbage to

the right bank. The difficulty is that the ferry-
man’s boat is only big enough for him to transport
one object at a time, other than himself. Yet, for
obvious reasons, the wolf cannot be left alone with
the goat, and the goat cannot be left alone with the
cabbage. How should the ferryman proceed?

13. Solve the vegetarians-and-cannibals puzzle for the
case where there are three vegetarians and three
cannibals to be transported from one side of a
river to the other.

H14. Two jugs A and B have capacities of 3 quarts and
5 quarts, respectively. Can you use the jugs to
measure out exactly 1 quart of water, while obey-
ing the following restrictions? You may fill either
jug to capacity from a water tap; you may empty
the contents of either jug into a drain; and you
may pour water from either jug into the other.

15. Imagine that the diagram shown below is a map
with countries labeled a—g. s it possible to color
the map with only three colors so that no two
adjacent countries have the same color? To answer
this question, follow the procedure suggested by
Example 1.4.9. Draw and analyze a graph in which
each country is represented by a vertex and two
vertices are connected by an edge if, and only if,
the countries share a common border.

H 16. In this exercise a graph is used to help solve a
scheduling problem. Twelve faculty members in

ANSWERS FORTEST YOURSELF

a mathematics department serve on the following
committees:

Undergraduate Education: Tenner, Peterson,
Kashina, Degras

Graduate Education: Hu, Ramsey, Degras, Bergen
Colloquium: Carroll, Drupieski, Au-Yeung
Library: Ugarcovici, Tenner, Carroll

Hiring: Hu, Drupieski, Ramsey, Peterson
Personnel: Ramsey, Wang, Ugarcovici

The committees must all meet during the first
week of classes, but there are only three time slots
available. Find a schedule that will allow all fac-
ulty members to attend the meetings of all com-
mittees on which they serve. To do this, represent
each committee as the vertex of a graph, and draw
an edge between two vertices if the two commit-
tees have a common member. Find a way to color
the vertices using only three colors so that no two
committees have the same color, and explain how
to use the result to schedule the meetings.

17. A department wants to schedule final exams so
that no student has more than one exam on any
given day. The vertices of the graph below show
the courses that are being taken by more than one
student, with an edge connecting two vertices if
there is a student in both courses. Find a way to
color the vertices of the graph with only four col-
ors so that no two adjacent vertices have the same
color and explain how to use the result to schedule
the final exams.

MCS101 MCS102

MCS100

MCS110

MCS135

MCS130 MCS120

1. a finite, nonempty set of vertices; a finite set of edges;
one or two vertices called its endpoints 2. an edge with
a single endpoint 3. they have the same set of endpoints
4. they are connected by an edge 5. each of its endpoints

6. adjacent 7. isolated 8. an ordered pair of vertices
called its endpoints 9. the number of edges that are
incident on the vertex, with an edge that is a loop
counted twice
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THE LOGIC OF COMPOUND
STATEMENTS

The first great treatises on logic were written by the Greek philosopher Aristotle. They
were a collection of rules for deductive reasoning that were intended to serve as a basis
for the study of every branch of knowledge. In the seventeenth century, the German
philosopher and mathematician Gottfried Leibniz conceived the idea of using symbols
to mechanize the process of deductive reasoning in much the same way that algebraic
notation had mechanized the process of reasoning about numbers and their relationships.
Leibniz’s idea was realized in the nineteenth century by the English mathematicians
George Boole and Augustus De Morgan, who founded the modern subject of symbolic
logic. With research continuing to the present day, symbolic logic has provided, among
other things, the theoretical basis for many areas of computer science such as digital logic
circuit design (see Sections 2.4 and 2.5), relational database theory (see Section 8.1),
automata theory and computability (see Section 7.4 and Chapter 12), and artificial intel-

Aristotle ligence (see Sections 3.3, 10.1, and 10.5).
(384 B.c.—322 B.C.)

Mohamed Osama/Alamy Stock Photo

BAl Logical Form and Logical Equivalence

Logic is a science of the necessary laws of thought, without which no employment
of the understanding and the reason takes place. —Immanuel Kant, 1785

An argument is a sequence of statements aimed at demonstrating the truth of an assertion.
The assertion at the end of the sequence is called the conclusion, and the preceding state-
ments are called premises. To have confidence in the conclusion that you draw from an
argument, you must be sure that the premises are acceptable on their own merits or follow
from other statements that are known to be true.

In logic, the form of an argument is distinguished from its content. Logical analysis
won’t help you determine the intrinsic merit of an argument’s content, but it will help
you analyze an argument’s form to determine whether the truth of the conclusion follows
necessarily from the truth of the premises. For this reason logic is sometimes defined as
the science of necessary inference or the science of reasoning.

Consider the following two arguments. They have very different content but their logi-
cal form is the same. To help make this clear, we use letters like p, g, and r to represent
component sentences; we let the expression “not p” refer to the sentence “It is not the case
that p’; and we let the symbol .. stand for the word “therefore.”

Argument 1
P q r

If the bell rings or the flag drops, then the race is over.

not r not p not g

-. If the race is not over, then the bell hasn’t rung and the flag hasn’t dropped.

37
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Argument 2
P q r
— —— TH
Ifx=2orx = —2,thenx” = 4.
not r not p not g

i)
s Ifx® #4,thenx # 2 and x # —2.

The common form of the arguments is
If p or g, then r.
.. If not r, then not p and not q.

In exercise 10 in Section 2.3 you will show that this form of argument is valid in the sense
that if its assumptions are true, then its conclusion must also be true.

Identifying Logical Form

Fill in the blanks below so that argument (b) has the same form as argument (a). Then rep-
resent the common form of the arguments using letters to stand for component sentences.

a. If Jane is a math major or Jane is a computer science major, then Jane will take
Math 150.
Jane is a computer science major.
Therefore, Jane will take Math 150.

b. If logic is easy or @ , then 2)
I will study hard.
Therefore, I will get an A in this course.

Solution
1. I (will) study hard.

2. I'will get an A in this course.

Common form: If p or g, then r.

q.
Therefore, r. [ |

Statements

Most of the definitions of formal logic have been developed so that they agree with the
natural or intuitive logic used by people who have been educated to think clearly and use
language carefully. The differences that exist between formal and intuitive logic are neces-
sary to avoid ambiguity and obtain consistency.

In any mathematical theory, new terms are defined by using those that have been
previously defined. However, this process has to start somewhere. A few initial terms
necessarily remain undefined. In logic, the words sentence, true, and false are the initial
undefined terms.

Definition

A statement (or proposition) is a sentence that is true or false but not both.

For example, “Two plus two equals four” and “Two plus two equals five” are both state-
ments, the first because it is true and the second because it is false. On the other hand, the
truth or falsity of

©+2=11
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depends on the value of x. For some values of x, it is true (x = 3 and x = —3), whereas for
other values it is false. Similarly, the truth or falsity of

x+y>0
depends on the values of x and y. For instance, when x = —1 and y = 2 it is true, whereas
when x = —1 and y = 1 it is false. In Section 3.1 we will discuss ways to transform sen-

tences of these forms into statements.

Compound Statements

We now introduce three symbols that are used to build more complicated logical expres-
sions out of simpler ones. The symbol ~denotes not, A denotes and, and v/ denotes or.
Given a statement p, the sentence “~p” is read “not p” or “It is not the case that p.” In some
computer languages the symbol — is used in place of ~. Given another statement g, the
sentence “p A ¢g” is read “p and ¢.” The sentence “p \/ ¢” is read “p or ¢.”

In expressions that include the symbol ~ as well as A or Vv, the order of opera-
tions specifies that ~ is performed first. For instance, ~p A g = (~p) A g. In logical
expressions, as in ordinary algebraic expressions, the order of operations can be over-
ridden through the use of parentheses. Thus ~(p A g) represents the negation of the
conjunction of p and q. In this, as in most treatments of logic, the symbols A and v are
considered coequal in order of operation, and an expression such as p A g\ r is con-
sidered ambiguous. This expression must be written as either (p A g) vV ror pA(g\ r)
to have meaning.

A variety of English words translate into logic as A, v, or ~. For instance, the word
but translates the same as and when it links two independent clauses, as in “Jim is tall
but he is not heavy.” Generally, the word but is used in place of and when the part of
the sentence that follows is, in some way, unexpected. Another example involves the
words neither-nor. When Shakespeare wrote, “Neither a borrower nor a lender be,” he
meant, “Do not be a borrower and do not be a lender.” So if p and g are statements,
then

pbutg means pandgqg

neither p nor ¢ means ~p and ~q.

Translating from English to Symbols: But and Neither-Nor

Write each of the following sentences symbolically, letting # = “It is hot” and s = “It is
sunny.”

a. Itis not hot but it is sunny.
b. It is neither hot nor sunny.

Solution

a. The given sentence is equivalent to “It is not hot and it is sunny,” which can be written
symbolically as ~h A s.

b. To say it is neither hot nor sunny means that it is not hot and it is not sunny. Therefore,
the given sentence can be written symbolically as ~h A ~s. |
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Note The point of speci-
fying x, a, and b to be
particular real numbers
is to ensure that sentences
such as “x < a” and

“x = b” are either true or
false and hence that they
are statements.

Note Think of negation

like this:
The negation of a
statement is a state-
ment that exactly ex-
presses what it would
mean for the statement
to be false.

The notation for inequalities involves and and or statements. For instance, if x, a, and b are
particular real numbers, then

X=a means x<a or X=a
a=x=b means a=x and x=b.

Note that the inequality 2 = x = 1 is not satisfied by any real numbers because

2=x=1 means 2=x and x=1,

and this is false no matter what number x happens to be.

And, Or, and Inequalities

Suppose x is a particular real number. Let p, ¢, and r symbolize “0 < x,” “x < 3,”and “x = 3,”
respectively. Write the following inequalities symbolically:

ax=3 b.0<x<3 c. 0<x=3
Solution
a.qvr b. pNg c. pA(gVvr) [ |

Truth Values

In Examples 2.1.2 and 2.1.3 we built compound sentences out of component statements
and the terms not, and, and or. If such sentences are to be statements, however, they must
have well-defined truth values—they must be either true or false. We now define such
compound sentences as statements by specifying their truth values in terms of the state-
ments that compose them.

Definition

If p is a statement variable, the negation of p is “not p” or “It is not the case that p”
and is denoted ~p. It has opposite truth value from p: if p is true, ~p is false; if p is
false, ~p is true.

The truth values for negation are summarized in a fruth table.

Truth Table for ~p

P | ~p
T
F | T

In ordinary language the sentence “It is hot and it is sunny” is understood to be true
when both conditions—being hot and being sunny—are satisfied. If it is hot but not
sunny, or sunny but not hot, or neither hot nor sunny, the sentence is understood to be

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203



Note The only way for
an and statement to be
true is for both compo-
nents to be true. So in
the truth table for an and
statement the first row is
the only row with a T.

Note The statement

“2 = 2” means that 2 is

less than 2 or 2 equals 2.
It is true because 2 = 2.
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false. The formal definition of truth values for an and statement agrees with this gen-
eral understanding.

Definition

If p and g are statement variables, the conjunction of p and g is “p and ¢,” denoted
p A g. It is true when, and only when, both p and ¢ are true. If either p or q is false,
or if both are false, p A ¢ is false.

The truth values for conjunction can also be summarized in a truth table. The table is
obtained by considering the four possible combinations of truth values for p and g. Each
combination is displayed in one row of the table; the corresponding truth value for the whole
statement is placed in the right-most column of that row. Note that the only row containing
a T is the first one because an and statement is true only when both components are true.

Truth Table for p A\ g
p q PAq
T T T
T F F
F T F
F F F

The order of truth values for p and ¢ in the table above is TT, TF, FT, FF. It is not abso-
lutely necessary to write the truth values in this order, although it is customary to do so. So
please use this order for all truth tables involving two statement variables. Example 2.1.5
shows the standard order for truth tables that involve three statement variables.

In the case of disjunction—statements of the form “p or ¢”—intuitive logic offers two
alternative interpretations. In ordinary language or is sometimes used in an exclusive sense
(p or g but not both) and sometimes in an inclusive sense (p or g or both). A waiter who says
you may have “coffee, tea, or milk™ uses the word or in an exclusive sense: Extra payment
is generally required if you want more than one beverage. On the other hand, a waiter who
offers “cream or sugar” uses the word or in an inclusive sense: You are entitled to both
cream and sugar if you wish to have them.

Mathematicians and logicians avoid possible ambiguity about the meaning of the word
or by understanding it to mean the inclusive “and/or.” The symbol \/ comes from the Latin
word vel, which means or in its inclusive sense. To express the exclusive or, the phrase p
or q but not both is used.

Definition

If p and g are statement variables, the disjunction of p and ¢ is “p or ¢,” denoted
p V q. Itis true when either p is true, or ¢ is true, or both p and ¢ are true; it is false
only when both p and ¢ are false.
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Note The only way for
an or statement to be false
is for both components to
be false. So in the truth
table for an or statement
the last row is the only
row with an F.

Note Java, C, and C++
use the following
notations:

~ !

A &&

Example 2.1.4

Note Exclusive or is
often symbolized as
p D g orpXOR gq.

Here is the truth table for disjunction:

Truth Table for p \/ ¢
p q pvq
T T T
T F T
F T T
F F F

Evaluating the Truth of More General Compound Statements

Now that truth values have been assigned to ~p, p A ¢, and p Vv g, consider the question of
assigning truth values to more complicated expressions suchas ~p v g, (p \V ¢) A ~(p N q),
and (p A q) Vv r. Such expressions are called statement forms (or propositional forms).
The close relationship between statement forms and Boolean expressions is discussed in
Section 2.4.

A statement form (or propositional form) is an expression made up of statement
variables (such as p, ¢, and r) and logical connectives (such as ~, A, and V) that
becomes a statement when actual statements are substituted for the component state-
ment variables. The truth table for a given statement form displays the truth values
that correspond to all possible combinations of truth values for its component state-
ment variables.

To compute the truth values for a statement form, follow rules similar to those used
to evaluate algebraic expressions. For each combination of truth values for the statement
variables, first evaluate the expressions within the innermost parentheses, then evaluate
the expressions within the next innermost set of parentheses, and so forth, until you have
the truth values for the complete expression.

Truth Table for Exclusive Or

Construct the truth table for the statement form (p vV ¢) A ~(p A g). Note that when or is
used in its exclusive sense, the statement “p or ¢” means “p or ¢ but not both” or “p or ¢ and
not both p and ¢,” which translates into symbols as (p vV ¢) A ~(p N q).

Solution Set up columns labeled p, ¢, pVv g, p Ag, ~(p A q), and (p Vv g) A ~(P A q).
Fill in the p and g columns with all the logically possible combinations of T’s and F’s.
Then use the truth tables for v and A to fill in the p vV ¢ and p A g columns with the ap-
propriate truth values. Next fill in the ~(p /A g) column by taking the opposites of the truth
values for p A g. For example, the entry for ~(p A ¢) in the first row is F because in the
first row the truth value of p A ¢ is T. Finally, fill in the (» \V ¢) A ~(p A g) column by con-
sidering the truth values for an and statement together with the truth values for p v ¢ and
~(p A q). Since an and statement is true only when both components are true and since
rows 2 and 3 are the only two rows where both p \/ g and ~(p A g) are true, put T in rows
2 and 3 and F in the remaining rows.
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Note To fill out a truth
table for an and state-
ment, first put a T in each
row where both com-
ponents are true; then

put an F in each of the
remaining rows.

Note To fill out a truth
table for an or statement,
first put an F in each row
where both components
are false; then puta T in
each of the remaining
TOWS.
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Truth Table for Exclusive Or: (p \/ q) \ ~(p /\ q)

P q |pvqe pAg ~pA) | GVOA~DPAD

T T T T F F

T F T F T T

F T T F T T

F F F F T F -

Truth Table for (p A q) v ~r

Construct a truth table for the statement form (p A g) vV ~r.

Solution Make columns headed p, ¢, r, p A ¢, ~r, and (p A g) v ~r. Enter the eight logi-
cally possible combinations of truth values for p, g, and r in the three left-most columns.
Then fill in the truth values for p A g and for ~r. Complete the table by considering the
truth values for (p A ¢) and for ~r and the definition of an or statement. Since an or state-
ment is false only when both components are false, the only rows in which the entry is F
are the third, fifth, and seventh rows because those are the only rows in which the expres-
sions p A\ g and ~r are both false. The entry for all the other rows is T.

P q r PAG ~r | (pAQNVT

T T T T F

T T F T T T

T F T F F F

T F F F T T

F T T F F F

F T F F T T

F F T F F F

F F F F T T -

The essential point about assigning truth values to compound statements is that it allows
you—using logic alone—to judge the truth of a compound statement on the basis of your
knowledge of the truth of its component parts. Logic does not help you determine the truth
or falsity of the component statements. Rather, logic helps link these separate pieces of
information together into a coherent whole.

Logical Equivalence
The statements

6is greater than 2 and 2 is less than 6

are two different ways of saying the same thing. Why? Because of the definition of the
phrases greater than and less than. By contrast, although the statements

(I) Dogs bark and cats meow and (2) Cats meow and dogs bark
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are also two different ways of saying the same thing, the reason has nothing to do with
the definition of the words. It has to do with the logical form of the statements. Any two
statements whose logical forms are related in the same way as (1) and (2) would either
both be true or both be false. You can see this by examining the following truth table,
where the statement variables p and ¢ are substituted for the component statements “Dogs
bark™ and “Cats meow,” respectively. The table shows that for each combination of truth
values for p and ¢, p A ¢q is true when, and only when, g A p is true. In such a case, the
statement forms are called logically equivalent, and we say that (1) and (2) are logically
equivalent statements.

p q | PNqg qNP
T T T T
T F| F F
F T| F F
F F| F F
1

p A qand g A\ p always
have the same truth
values, so they are
logically equivalent

Two statement forms are called logically equivalent if, and only if, they have iden-
tical truth values for each possible substitution of statements for their statement
variables. The logical equivalence of statement forms P and Q is denoted by writing
P=0.

Two statements are called logically equivalent if, and only if, they have logi-
cally equivalent forms when identical component statement variables are used to
replace identical component statements.

Testing Whether Two Statement Forms P and Q Are Logically Equivalent

1. Construct a truth table with one column for the truth values of P and another
column for the truth values of Q.

2. Check each combination of truth values of the statement variables to see whether
the truth value of P is the same as the truth value of Q.

a. If in each row the truth value of P is the same as the truth value of Q, then P
and Q are logically equivalent.

b. If in some row P has a different truth value from Q, then P and Q are not logi-
cally equivalent.

Double Negative Property: ~(~ p) =p

Construct a truth table to show that the negation of the negation of a statement is logically
equivalent to the statement, annotating the table with a sentence of explanation.
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Solution
4 ~p | ~(p)
T T
F T F

1 T

p and ~(~p) always have
the same truth values, so they

are logically equivalent

There are two ways to show that statement forms P and Q are not logically equivalent.
As indicated previously, one is to use a truth table to find rows for which their truth values
differ. The other way is to find concrete statements for each of the two forms, one of which
is true and the other of which is false. The next example illustrates both of these ways.

el JPARE Showing Nonequivalence

Show that the statement forms ~(p A g) and ~p A ~¢ are not logically equivalent.

Solution

a. This method uses a truth table annotated with a sentence of explanation.

p q ~p ~q PANq ~(P A9 ~PA~q
T T F F T F F
T F F T F T # F
F T T F F T # F
F F T T F T T
1 1

~(p N g) and ~p N ~q have
different truth values in rows 2 and 3,
so they are not logically equivalent

b. This method uses an example to show that ~(p A ¢g) and ~p N ~¢ are not logically
equivalent. Let p be the statement “0 < 17 and let g be the statement “1 << 0.” Then

~(@ANgq) is “Itisnotthe case thatboth(0 <1and1<0,”
which is true. On the other hand,
~pA~qg is “O£1 and 1<0,

which is false. This example shows that there are concrete statements you can substi-
tute for p and g to make one of the statement forms true and the other false. Therefore,
the statement forms are not logically equivalent. |

SEEPAKY Negations of And and Or: De Morgan’s Laws

For the statement “John is tall and Jim is redheaded” to be true, both components must be
true. So for the statement to be false, one or both components must be false. Thus the nega-
tion can be written as “John is not tall or Jim is not redheaded.” In general, the negation
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Augustus De Morgan
(1806—-1871)

Example 2.1.9

Paul Fearn/Alamy Stock Photo

of the conjunction of two statements is logically equivalent to the disjunction of their ne-
gations. That is, statements of the forms ~(p A g) and ~p v ~¢q are logically equivalent.
Check this using truth tables.

Solution
p q9 | ~p ~q¢ PAe| ~pPAQD ~pV~q
T T F F T F F
T F F T F T T
F T T F F T T
F F T T F T T
1
~(p N q) and ~p v ~q always
have the same truth values, so they
are logically equivalent
Symbolically,

~(pNg)=~pVv~q.

In the exercises at the end of this section you are asked to show the analogous law that
the negation of the disjunction of two statements is logically equivalent to the conjunction
of their negations:

~(pVg =~pN~q.

The two logical equivalences of Example 2.1.8 are known as De Morgan’s laws of
logic in honor of Augustus De Morgan, who was the first to state them in formal math-
ematical terms.

De Morgan’s Laws

The negation of an and statement is logically equivalent to the or statement in which
each component is negated.

The negation of an or statement is logically equivalent to the and statement in
which each component is negated.

Applying De Morgan’s Laws

Write negations for each of the following statements:

a. John is 6 feet tall and he weighs at least 200 pounds.

b. The bus was late or Tom’s watch was slow.

Solution

a. John is not 6 feet tall or he weighs less than 200 pounds.

b. The bus was not late and Tom’s watch was not slow.

Since the statement “neither p nor ¢” means the same as “~p and ~¢g,” an alternative
answer for (b) is “Neither was the bus late nor was Tom’s watch slow.” [ |
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A

Caution! The negation of
—1 <x=4isnot

—1 < x £ 4. It is also not
-1 =x>4.

Example 2.1.11
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If x is a particular real number, saying that x is not less than 2 (x < 2) means that x does
not lie to the left of 2 on the number line. This is equivalent to saying that either x = 2 or
x lies to the right of 2 on the number line (x = 2 or x > 2). Hence,

x £ 2 isequivalentto x=2.

Pictorially,
-2 -1 0 1 2 3 4 5
f f f f + f f f
If x « 2, then x lies
in the shaded region.
Similarly,

Xx*2 isequivalentto x =2,
x %2 isequivalentto x> 2, and

x#2 isequivalentto x <2.

Inequalities and De Morgan’s Laws
Use De Morgan’s laws to write the negation of —1 < x = 4.
Solution The given statement is equivalent to
—1<x and x=4.

By De Morgan’s laws, the negation is

—1<x or x#%4,
which is equivalent to

—1=x or x>4

Pictorially, if —1 = x or x > 4, then x lies in the shaded region of the number line, as

shown below.
-2 -1

De Morgan’s laws are frequently used in writing computer programs. For instance, sup-
pose you want your program to delete all files modified outside a certain range of dates,
say from date 1 through date 2 inclusive. You would use the fact that

~(datel = file_modification_date =< date?2)
is equivalent to

(file_modification_date < datel) or (date2 < file_modification_date).

A Cautionary Example
According to De Morgan’s laws, the negation of

p: Jim is tall and Jim is thin

is ~p: Jim is not tall or Jim is not thin

because the negation of an and statement is the or statement in which the two components
are negated.
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A

Caution! Although the
laws of logic are extremely
useful, they should be
used as an aid to think-
ing, not as a mechanical
substitute for it.

Example 2.1.12

Unfortunately, a potentially confusing aspect of the English language can arise
when you are taking negations of this kind. Note that statement p can be written more
compactly as

p': Jim is tall and thin.
When it is so written, another way to negate it is
~(p"): Jim is not tall and thin.

But in this form the negation looks like an and statement. Doesn’t that violate De Morgan’s
laws?

Actually no violation occurs. The reason is that in formal logic the words and and or
are allowed only between complete statements, not between sentence fragments. So when
you apply De Morgan’s laws, you must have complete statements on either side of each and
and on either side of each or. [ ]

Tautologies and Contradictions

It has been said that all of mathematics reduces to tautologies. Although this is formally
true, most working mathematicians think of their subject as having substance as well as
form. Nonetheless, an intuitive grasp of basic logical tautologies is part of the equipment
of anyone who reasons with mathematics.

A tautology is a statement form that is always true regardless of the truth values of
the individual statements substituted for its statement variables. A statement whose
form is a tautology is a tautological statement.

A contradication is a statement form that is always false regardless of the truth
values of the individual statements substituted for its statement variables. A state-
ment whose form is a contradiction is a contradictory statement.

According to this definition, the truth of a tautological statement and the falsity of a
contradictory statement are due to the logical structure of the statements themselves and
are independent of the meanings of the statements.

Tautologies and Contradictions

Show that the statement form p \/ ~p is a tautology and that the statement form p A ~p is
a contradiction.

Solution

~p pv~p PAN~P

T F T F
T T F
all T’s, so all F’s, so
pV ~pis pA~pisa
a tautology contradiction |
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eI PARKY Logical Equivalence Involving Tautologies and Contradictions

If t is a tautology and c is a contradiction, show that p At=pand p Aec=c.

Solution
t PAL b4 c PAC

T T T T F F
F F F F
1 T 1 ]
same truth same truth
values, so values, so
pAt=p pAC=c¢

Summary of Logical Equivalences

49

Knowledge of logically equivalent statements is very useful for constructing arguments.
It often happens that it is difficult to see how a conclusion follows from one form of a
statement, whereas it is easy to see how it follows from a logically equivalent form of
the statement. A number of logical equivalences are summarized in Theorem 2.1.1 for

future reference.

Theorem 2.1.1 Logical Equivalences

Given any statement variables p, g, and r, a tautology t and a contradiction ¢, the following logical equivalences

hold.
1. Commutative laws: PAG=qANp
2. Associative laws: PA@QQNANr=pA(gAT)
3. Distributive laws: pA@gVvr)=PAg Vv (pAr)
4. Identity laws: pAt=p
5. Negation laws: pv~p=t
6. Double negative law: ~(~p)=p
7. Idempotent laws: PAD=Dp
8. Universal bound laws: pVvt=t
9. De Morgan’s laws: ~(pNqg)=~p\V ~q
10. Absorption laws: pVpAg=p
11. Negations of t and c: ~t=c

pVqg=4qVp
vg@vr=pvigVvr)
pv@nn=@p@EvgAnrpVvr
pve=p

pPA~pP=c

pVp=p
pAC=c
~pVvg=~pr~q
pApVg=p
~c=t

The proofs of laws 4 and 6, the first parts of laws 1 and 5, and the second part of law 9
have already been given as examples in the text. Proofs of the other parts of the theorem
are left as exercises. In fact, it can be shown that the first five laws of Theorem 2.1.1 form
a core from which the other laws can be derived. The first five laws are the axioms for a
mathematical structure known as a Boolean algebra, which is discussed in Section 6.4.
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TEST YOURSELF

CHAPTER2 THELOGIC OF COMPOUND STATEMENTS

The equivalences of Theorem 2.1.1 are general laws of thought that occur in all areas of
human endeavor. They can also be used in a formal way to rewrite complicated statement
forms more simply.

Simplifying Statement Forms
Use Theorem 2.1.1 to verify the logical equivalence
~(~pA@ NPV =p.

Solution Use the laws of Theorem 2.1.1 to replace sections of the statement form on
the left by logically equivalent expressions. Each time you do this, you obtain a logically
equivalent statement form. Continue making replacements until you obtain the statement
form on the right.

~(~pNAg N(pVqg (~C=p Vv~ N(pVq by De Morgan’s laws

= (pv~gAr(pVvg by the double negative law
= (p V (’Vq AN q) by the distributive law
= pvig@gnr—~qg by the commutative law for /\
= pVve by the negation law
p by the identity law |

Skill in simplifying statement forms is useful in constructing logically efficient computer
programs and in designing digital logic circuits.

Although the properties in Theorem 2.1.1 can be used to prove the logical equivalence
of two statement forms, they cannot be used to prove that statement forms are not logically
equivalent. On the other hand, truth tables can always be used to determine both equiva-
lence and nonequivalence, and truth tables are easy to program on a computer. When
truth tables are used, however, checking for equivalence always requires 2" steps, where
n is the number of variables. Sometimes you can quickly see that two statement forms are
equivalent by Theorem 2.1.1, whereas it would take quite a bit of calculating to show their
equivalence using truth tables. For instance, it follows immediately from the associative
law for A that p A (~g A ~r) = (p A ~¢q) N\ ~r, whereas a truth table verification requires
constructing a table with eight rows.

Answers to Test Yourself questions are located at the end of each section.

1.

An and statement is true when, and only when, statement in which each componentis _ and
both components are . (2) that the negation of an or statement is logically
equivalenttothe ___ statement in which each

An or statement is false when, and only when, .
component is

both components are

. . 5. A tautology is a statement that is always

Two statement forms are logically equivalent

when, and only when, they always have ____. 6. A contradiction is a statement that is always

De Morgan’s laws say (1) that the negation of an
and statement is logically equivalent to the
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In each of 1-4 represent the common form of each argu-
ment using letters to stand for component sentences, and
fill in the blanks so that the argument in part (b) has the
same logical form as the argument in part (a).

1.

a. If all integers are rational, then the number 1
is rational.
All integers are rational.
Therefore, the number 1 is rational.

b. If all algebraic expressions can be written in
prefix notation, then

Therefore, (a + 2b)(a2 — b) can be written in
prefix notation.

a. If all computer programs contain errors, then
this program contains an error.
This program does not contain an error.
Therefore, it is not the case that all computer
programs contain errors.

b. If then
2 is not odd.
Therefore, it is not the case that all prime
numbers are odd.

a. This number is even or this number is odd.
This number is not even.
Therefore, this number is odd.
b. _ orlogic is confusing.
My mind is not shot.
Therefore,

a. If the program syntax is faulty, then the com-
puter will generate an error message.

If the computer generates an error message,
then the program will not run.

Therefore, if the program syntax is faulty, then
the program will not run.

b. If thissimple graph | then it is complete.
If this graph , then any two of its verti-
ces can be joined by a path.

Therefore, if this simple graph has 4 vertices
and 6 edges, then ____.

Indicate which of the following sentences are

statements.

a. 1,024 is the smallest four-digit number that is a
perfect square.

b. She is a mathematics major.

c. 128=2°%
d. x=2°

Write the statements in 6-9 in symbolic form using the
symbols ~, V, and A and the indicated letters to represent
component statements.

6.

10.

1.

Let s = “stocks are increasing” and i = “interest

rates are steady.”

a. Stocks are increasing but interest rates are steady.

b. Neither are stocks increasing nor are interest
rates steady.

Juan is a math major but not a computer science
major. (m = “Juan is a math major,” ¢ = “Juan is a
computer science major’)

. Let h = “John is healthy,” w = “John is wealthy,”

and s = “John is wise.”

John is healthy and wealthy but not wise.

John is not wealthy but he is healthy and wise.
John is neither healthy, wealthy, nor wise.

John is neither wealthy nor wise, but he is healthy.
John is wealthy, but he is not both healthy and wise.

popn g

Letp="x>5"qg="“x=5"andr = “10 > x.”
a. x=5

b. 10>x>5

c. 10>x=5

Let p be the statement “DATAENDFLAG is off,”

q the statement “ERROR equals 0,” and r the

statement “SUM is less than 1,000.” Express the

following sentences in symbolic notation.

a. DATAENDFLAG is off, ERROR equals 0, and
SUM is less than 1,000.

b. DATAENDFLAG is off but ERROR is not
equal to 0.

c. DATAENDFLAG is off; however, ERROR is
not 0 or SUM is greater than or equal to 1,000.

d. DATAENDFLAG is on and ERROR equals 0
but SUM is greater than or equal to 1,000.

e. Either DATAENDFLAG is on or it is the case
that both ERROR equals 0 and SUM is less
than 1,000.

In the following sentence, is the word or used in
its inclusive or exclusive sense? A team wins the
playoffs if it wins two games in a row or a total of
three games.

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial solution is
given. The symbol * signals that an exercise is more challenging than usual.
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Write truth tables for the statement forms in 12-15.

B. ~prg)Vv(pVa)
15. pA(~q\Vr)

12. ~pANg
14. pA(@NT)
Determine whether the statement forms in 16-24 are
logically equivalent. In each case, construct a truth table
and include a sentence justifying your answer. Your sen-

tence should show that you understand the meaning of
logical equivalence.

16. pVv(p ANg) and p

17. ~(p N qg) and ~p N\ ~q

18. pvtandt

19. pAtandp

20. pAcandp Ve

21. (pAgArandp A(gAT)

22. pA(@vnand(pAg Vv (pAT)
23. (pAgvrandpA(gVr)

24. (pvg v(pAprand(pVv g Nr

Use De Morgan’s laws to write negations for the state-
ments in 25-30.

25. Hal is a math major and Hal’s sister is a computer
science major.

26. Sam is an orange belt and Kate is a red belt.

27. The connector is loose or the machine is
unplugged.

28. The train is late or my watch is fast.

29. This computer program has a logical error in the
first ten lines or it is being run with an incomplete
data set.

30. The dollar is at an all-time high and the stock
market is at a record low.

31. Let s be a string of length 2 with characters from
{0, 1, 2}, and define statements a, b, ¢, and d as
follows:

a = “the first character of 5 is 0”
b

¢ = “the second character of s is 17

“the first character of s is 1”

d = “the second character of s is 2”.

Describe the set of all strings for which each of
the following is true.

a. @vbyn(cvd
b. (~(@vb) AN (Vvd)
c. (~a)vb)N(cVv(~d)

Assume x is a particular real number and use De Morgan’s
laws to write negations for the statements in 32-37.

32, 2<x<17 33, —10<x<?2

34, x<2o0rx>5 35 x=—lorx>1

36. 1 >x= -3 3. 0> x= -7

In 38 and 39, imagine that num_orders and num_instock
are particular values, such as might occur during execu-
tion of a computer program. Write negations for the
following statements.

38. (num_orders > 100 and num_instock = 500) or
num_instock < 200

39. (num_orders < 50 and num_instock > 300) or
(50 = num_orders <75 and num_instock > 500)

Use truth tables to establish which of the statement
forms in 40-43 are tautologies and which are
contradictions.

40. (pA@V (~pV(pA~q)
a1 (pA~q@) N (~pV q)
42. (~pA@N@ND)N~q

43. (~pvqgV(pAN~q

44, Recall that a < x < b means that a < x and
x < b. Also a = b means thata < bora = b.
Find all real numbers that satisfy the following
inequalities.

a. 2<x=0 b. 1=x<-1

45. Determine whether the statements in (a) and (b)
are logically equivalent.

a. Bob is both a math and computer science
major and Ann is a math major, but Ann is not
both a math and computer science major.

b. It is not the case that both Bob and Ann are
both math and computer science majors,
but it is the case that Ann is a math major
and Bob is both a math and computer
science major.
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*46. Let the symbol €& denote exclusive or; so In 48 and 49 below, a logical equivalence is derived from
pDqg=(pVvq n~(pA q). Hence the truth Theorem 2.1.1. Supply a reason for each step.

table for p © ¢ is as follows:

48. (pA~@V(pAg =pAN(~qVq by@

mon English usage in which a “double positive” is
equivalent to a negative. What is it? Can you think

of others?

ANSWERS FOR TEST YOURSELF

P q | pDyg =pA(gVv~q) by
=pAnt by (c
T T F P y©
=p by )
T F T Therefore, (p A ~q) vV (p A q) = p.
F T| T 49. (pV ~q) N(~pV ~q)
F F F =(~qvp N(~qVv~p)  by(@)
=~qV(pA~p) by (b)
a. Find simpler statement forms that are logically =~gVvec by (©)
equivalent to p D p and (p D p) D p. =~q by (d)
b. Is(pDq) D r=pD (gD nr? Justify your Therefore, (p vV ~q) A (~p Vv ~q) = ~q.
answer. ) Use Theorem 2.1.1 to verify the logical equivalences in
c Is(p®grr=(pnn®gAn?lustfy 50-54. Supply a reason for each step.
your answer.
50. (pA~q)vp=p 5. pA(~qVvp) =p
+47. Inlogic and in standard English, a double negative
is equivalent to a positive. There is one fairly com- 52. ~(pvV~q@Vv(pA~q=-~p

5. ~(~pr@V(EpA~=@)V(pAg=p
5. (pA(~(~pVv NV (prg =p

1. true 2. false 3. the same truth values 4. or; negated; and; negated 5. true 6. false

P¥] Conditional Statements

... hypothetical reasoning implies the subordination of the real to the realm of the
possible ... —Jean Piaget, 1972

When you make a logical inference or deduction, you reason from a hypothesis fo a con-
clusion. Your aim is to be able to say, “If such and such is known, then something or other
must be the case.”

Let p and ¢ be statements. A sentence of the form “If p then ¢” is denoted symbolically
by “p — q”’; p is called the hypothesis and q is called the conclusion. For instance, consider
the following statement:

If 4,686 is divisible by 6, then 4,686 is divisible by 3

hypothesis conclusion

Such a sentence is called conditional because the truth of statement ¢ is conditioned on the
truth of statement p.

The notation p — ¢ indicates that — is a connective, like A or \/, which can be used
to join statements to create new statements. To define p — ¢ as a statement, therefore,
we must specify the truth values for p — g as we specified truth values for p A ¢ and for
pV q. As is the case with the other connectives, the formal definition of truth values
for — (if-then) is based on its everyday, intuitive meaning. Consider an example.
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Suppose you go to interview for a job at a store and the owner of the
store makes you the following promise:

If you show up for work Monday morning, then you will get the job.

Under what circumstances are you justified in saying the owner spoke
falsely? That is, under what circumstances is the above sentence false?
The answer is: You do show up for work Monday morning and you do
not get the job.

After all, the owner’s promise only says you will get the job if a certain
condition (showing up for work Monday morning) is met; it says noth-
ing about what will happen if the condition is not met. So if the condi-
tion is not met, you cannot in fairness say the promise is false regard-
less of whether or not you get the job.

The above example was intended to convince you that the only combination of circum-
stances in which you would call a conditional sentence false occurs when the hypothesis
is true and the conclusion is false. In all other cases, you would not call the sentence false.
This implies that the only row of the truth table for p — ¢ that should be filled in with an
F is the row where p is T and ¢ is F. No other row should contain an F. But each row of a
truth table must be filled in with either a T or an F. Thus all other rows of the truth table
for p — ¢ must be filled in with T’s.

Truth Table for p — ¢

p 9 | p—4q
T T T
T F F
F T T
F F T

Definition

If p and g are statement variables, the conditional of g by p is “If p then ¢ or
“p implies ¢~ and is denoted p — gq. It is false when p is true and g is false; other-
wise it is true. We call p the hypothesis (or antecedent) of the conditional and g the
conclusion (or consequent).

A conditional statement that is true by virtue of the fact that its hypothesis is false is of-
ten called vacuously true or true by default. Thus the statement “If you show up for work
Monday morning, then you will get the job” is vacuously true if you do not show up for
work Monday morning. In general, when the “if”” part of an if-then statement is false, the
statement as a whole is said to be true, regardless of whether the conclusion is true or false.

A Conditional Statement with a False Hypothesis
Consider the statement
IfO=1then1=2.

As strange as it may seem, since the hypothesis of this statement is false, the statement
as a whole is true. [ ]
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Note For example, if you
hypothesize that 0 = 1,
then, by adding 1 to both
sides of the equation, you
can deduce that 1 = 2.

Note The only rows

in which the hypothesis

p Vv ~qis true and the
conclusion ~p is false are
the first and second rows.
So you put F’s in those
two rows and T’s in the
other two rows.
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The philosopher Willard Van Orman Quine advises against using the phrase “p implies
q” to mean “p — ¢” because the word implies suggests that ¢ can be logically deduced
from p and this is often not the case. Nonetheless, the phrase is used by many people, prob-
ably because it is a convenient replacement for the — symbol. And, of course, in many
cases a conclusion can be deduced from a hypothesis, even when the hypothesis is false.

In expressions that include — as well as other logical operators such as A, v, and ~,
the order of operations is that — is performed last. Thus, according to the specification

of order of operations in Section 2.1, ~ is performed first, then A and v, and finally —.

Truth Table forpy ~g—~p
Construct a truth table for the statement form p v ~g — ~p.

Solution By the order of operations given above, the following two expressions are
equivalent: p\/ ~g — ~p and (p v (~¢q)) — (~p), and this order governs the construc-
tion of the truth table. First fill in the four possible combinations of truth values for p and
g, and then enter the truth values for ~p and ~¢ using the definition of negation. Next fill
in the p v ~¢q column using the definition of \v. Finally, fill in the p v ~¢ — ~p column
using the definition of —.

conclusion hypothesis
— ——

p q ~p ~q pv~q |pV~q—>"~p
T T F F T F
T F F T T F
F T T F F T
F F T T T T

Logical Equivalences Involving —

Imagine that you are trying to solve a problem involving three statements: p, g, and . Sup-
pose you know that the truth of » follows from the truth of p and also that the truth of r
follows from the truth of g. Then no matter whether p or ¢ is the case, the truth of » must
follow. The division-into-cases method of analysis is based on this idea.

Division into Cases: Showing Thatpvq—r=(p—r)A(q—Tr)

Use truth tables to show the logical equivalence of the statement forms p v ¢ — r and
(p — r) A\ (@ — r). Annotate the table with a sentence of explanation.

Solution First fill in the eight possible combinations of truth values for p, ¢, and r. Then
fill in the columns for p\/ g, p — r, and ¢ — r using the definitions of or and if-then.
For instance, the p — r column has F’s in the second and fourth rows because these are
the rows in which p is true and r is false. Next fill in the p v ¢ — r column using the
definition of if-then. The rows in which the hypothesis p \/ ¢ is true and the conclusion r is
false are the second, fourth, and sixth. So F’s go in these rows and T’s in all the others. The
complete table shows that p\/ ¢ — r and (p — r) A\ (¢ — r) have the same truth values
for each combination of truth values of p, ¢, and r. Hence the two statement forms are
logically equivalent.
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Example 2.2.4

P q r PVYq p—r q—r pPvVg—T P—->nAlg—r
T T T T T T T T
T T F T F F F F
T F T T T T T T
T F F T F T F F
F T T T T T T T
F T F T T F F F
F F T F T T T T
F F F F T T T T
1 1

pvg—rand(p —>r)AN(g—r)
always have the same truth values,
so they are logically equivalent |
Representation of If-Then as Or
In exercise 13(a) at the end of this section you are asked to use truth tables to show that
p—>q="~pVvg.

The logical equivalence of “if p then ¢” and “not p or ¢” is occasionally used in every-
day speech. Here is one instance.

Application of the Equivalence between ~p\ gandp —q
Rewrite the following statement in if-then form.

Either you get to work on time or you are fired.

Solution Let ~p be
You get to work on time.

and g be
You are fired.

Then the given statement is ~p \/ g. Also p is
You do not get to work on time.

So the equivalent if-then version, p — g, is

If you do not get to work on time, then you are fired. |

The Negation of a Conditional Statement

By definition, p — ¢ is false if, and only if, its hypothesis, p, is true and its conclusion, g,
is false. It follows that

The negation of “if p then ¢g” is logically equivalent to “p and not ¢.”
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Caution! Remember that
the negation of an

if-then statement does
not start with the word if.
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This can be restated symbolically as follows:

~p—=>9=pr~q

To obtain this result you can also start from the logical equivalence p — g = ~p Vv gq. Take
the negation of both sides to obtain

~(p—=g9=~Cpvy
=~(~p) N (~q) by De Morgan’s laws

=pAN~q by the double negative law.

Yet another way to derive this result is to construct truth tables for ~(p — ¢) and for
p N ~q and to check that they have the same truth values. (See exercise 13(b) at the end
of this section.)

Negations of If-Then Statements

Write negations for each of the following statements:
a. If my car is in the repair shop, then I cannot get to class.

b. If Sara lives in Athens, then she lives in Greece.
Solution

a. My car is in the repair shop and I can get to class.

b. Sara lives in Athens and she does not live in Greece. (Sara might live in Athens,
Georgia; Athens, Ohio; or Athens, Wisconsin.) [ |

It is tempting to write the negation of an if-then statement as another if-then statement.
Please resist that temptation!

The Contrapositive of a Conditional Statement

One of the most fundamental laws of logic is the equivalence between a conditional state-
ment and its contrapositive.

The contrapositive of a conditional statement of the form “If p then ¢” is
If ~¢ then ~p.
Symbolically,

The contrapositive of p — g is ~qg — ~p.

The fact is that

A conditional statement is logically equivalent to its contrapositive.

You are asked to establish this equivalence in exercise 26 at the end of this section.
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el PP RY  Writing the Contrapositive

Write each of the following statements in its equivalent contrapositive form:

a. If Howard can swim across the lake, then Howard can swim to the island.

b. If today is Easter, then tomorrow is Monday.

Solution

a. If Howard cannot swim to the island, then Howard cannot swim across the lake.

b. If tomorrow is not Monday, then today is not Easter. |

When you are trying to solve certain problems, you may find that the contrapositive
form of a conditional statement is easier to work with than the original statement. Replac-
ing a statement by its contrapositive may give the extra push that helps you over the top
in your search for a solution. This logical equivalence is also the basis for one of the most
important laws of deduction, modus tollens (to be explained in Section 2.3), and for the
contrapositive method of proof (to be explained in Section 4.7).

The Converse and Inverse of a Conditional Statement

The fact that a conditional statement and its contrapositive are logically equivalent is very
important and has wide application. Two other variants of a conditional statement are not
logically equivalent to the statement.

Suppose a conditional statement of the form “If p then ¢ is given.

1. The converse is “If g then p.”
2. The inverse is “If ~p then ~gq.”

Symbolically,
The converse of p—q is g —p,
and

The inverse of p—¢q is ~p — ~q.

SELEYWWA Writing the Converse and the Inverse

Write the converse and inverse of each of the following statements:
a. If Howard can swim across the lake, then Howard can swim to the island.
A b. If today is Easter, then tomorrow is Monday.

Caution! Many people Solution
believe that if a condition-
al statement is true, then
its converse and inverse Inverse: If Howard cannot swim across the lake, then Howard cannot swim to
must also be true. This is the island.

not correct! The converse
might be true, but it does
not have to be true. Inverse:  If today is not Easter, then tomorrow is not Monday. [ ]

a. Converse: If Howard can swim to the island, then Howard can swim across the lake.

b. Converse: If tomorrow is Monday, then today is Easter.
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A

Caution! “p only if ¢”
does not mean “p if ¢.”
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Note that while the statement “If today is Easter, then tomorrow is Monday” is always
true, both its converse and inverse are false on every Sunday except Easter.

1. A conditional statement and its converse are not logically equivalent.
2. A conditional statement and its inverse are not logically equivalent.

3. The converse and the inverse of a conditional statement are logically equivalent
to each other.

In exercises 24, 25, and 27 at the end of this section, you are asked to use truth tables
to verify the statements in the box above. Note that the truth of statement 3 also follows
from the observation that the inverse of a conditional statement is the contrapositive of
its converse.

Only If and the Biconditional

To say “p only if ¢” means that p can take place only if g takes place also. That is, if
q does not take place, then p cannot take place. Another way to say this is that if p
occurs, then ¢ must also occur (by the logical equivalence between a statement and its
contrapositive).

If p and ¢ are statements,
ponlyifg means “if not g then not p,”

or, equivalently,

“if p then ¢.”

Converting Only If to If-Then

Rewrite the following statement in if-then form in two ways, one of which is the contra-
positive of the other.

John will break the world’s record for the mile run only if he runs the
mile in under four minutes.

Solution Version 1: 1If John does not run the mile in under four minutes, then he will
not break the world’s record.

Version 2: If John breaks the world’s record, then he will have run the mile

in under four minutes. [ |

Note that it is possible for “p only if g” to be true at the same time that “p if ¢” is false.
For instance, to say that John will break the world’s record only if he runs the mile in under
four minutes does not mean that John will break the world’s record if he runs the mile in
under four minutes. His time could be under four minutes but still not be fast enough to
break the record.
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Definition

Given statement variables p and g, the biconditional of p and q is “p if, and only if,
q” and is denoted p <> g. It is true if both p and g have the same truth values and is
false if p and g have opposite truth values. The words if and only if are sometimes

abbreviated iff.

The biconditional has the following truth table:

Truth Table for p <> ¢
p q p<q
T T T

T F F

F T F

F F T

In order of operations <> is coequal with —. As with A and \/, the only way to indicate
precedence between them is to use parentheses. The full hierarchy of operations for the

five logical operators is shown below.

needed.

be needed.

1. ~ Evaluate negations first.

Order of Operations for Logical Operators

2. A\, V Evaluate A and \ second. When both are present, parentheses may be

3. —, <> Evaluate — and <> third. When both are present, parentheses may

According to the separate definitions of if and only if, saying “p if, and only if, ¢”” should
mean the same as saying both “p if ¢”” and “p only if ¢.” The following annotated truth table

shows that this is the case:

Truth Table Showing That p <> g = (p — g) N\ (g — p)

J P—q q—p P<>q P—=9ANG@—p)
T T T T T T
T F F T F F
F T T F F F
F F T T T T
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If and Only If
Rewrite the following statement as a conjunction of two if-then statements:
This computer program is correct if, and only if, it produces correct

answers for all possible sets of input data.

Solution  If this program is correct, then it produces the correct answers for all possible
sets of input data; and if this program produces the correct answers for all possible sets of
input data, then it is correct. [ |

Necessary and Sufficient Conditions

The phrases necessary condition and sufficient condition, as used in formal English, cor-
respond exactly to their definitions in logic.

Definition

If r and s are statements:

r is a sufficient condition for s means “if r then s.”

ris a necessary condition for s means “if not r then not s.”

In other words, to say “r is a sufficient condition for s” means that the occurrence of r
is sufficient to guarantee the occurrence of s. On the other hand, to say “r is a necessary
condition for s”” means that if » does not occur, then s cannot occur either:

The occurrence of r is necessary to obtain the occurrence of s. Note that
because of the equivalence between a statement and its contrapositive,

ris a necessary condition for s also means “if s then r.”

Consequently,

ris a necessary and sufficient condition for s means “rif, and only if, s.”

Interpreting Necessary and Sufficient Conditions

Consider the statement “If John is eligible to vote, then he is at least 18 years old.” The
truth of the condition “John is eligible to vote” is sufficient to ensure the truth of the condi-
tion “John is at least 18 years old.” In addition, the condition “John is at least 18 years old”
is necessary for the condition “John is eligible to vote” to be true. If John were younger
than 18, then he would not be eligible to vote. |

Converting a Sufficient Condition to If-Then Form

Rewrite the following statement in the form “If A then B’

Pia’s birth on U.S. soil is a sufficient condition
for her to be a U.S. citizen.

Solution If Pia was born on U.S. soil, then she is a U.S. citizen. [ |
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Example 2.2.12

Converting a Necessary Condition to If-Then Form

Use the contrapositive to rewrite the following statement in two ways:

George’s attaining age 35 is a necessary condition for his being presi-
dent of the United States.

Solution Version 1: If George has not attained the age of 35, then he cannot be presi-

dent of the United States.
Version 2:  If George can be president of the United States, then he has
attained the age of 35. |

Remarks

1. Inlogic, a hypothesis and conclusion are not required to have related subject matters.

In ordinary speech we never say things like “If computers are machines, then Babe
Ruth was a baseball player” or “If 2+2 =5, then Mickey Mouse is president of the
United States.” We formulate a sentence like “If p then ¢” only if there is some connec-
tion of content between p and q.

In logic, however, the two parts of a conditional statement need not have related
meanings. The reason? If there were such a requirement, who would enforce it? What
one person perceives as two unrelated clauses may seem related to someone else.
There would have to be a central arbiter to check each conditional sentence before
anyone could use it, to be sure its clauses were in proper relation. This is impractical,
to say the least!

Thus a statement like “if computers are machines, then Babe Ruth was a baseball
player” is allowed, and it is even called true because both its hypothesis and its conclu-
sion are true. Similarly, the statement “If 2 +2 = 5, then Mickey Mouse is president
of the United States” is allowed and is called true because its hypothesis is false, even
though doing so may seem ridiculous.

In mathematics it often happens that a carefully formulated definition that success-
fully covers the situations for which it was primarily intended is later seen to be satis-
fied by some extreme cases that the formulator did not have in mind. But those are the
breaks, and it is important to get into the habit of exploring definitions fully to seek out
and understand all their instances, even the unusual ones.

2. In informal language, simple conditionals are often used to mean biconditionals.

The formal statement “p if, and only if, ¢” is seldom used in ordinary language.
Frequently, when people intend the biconditional they leave out either the and only if or
the if and. That is, they say either “p if ¢” or “p only if ¢ when they really mean “p if,
and only if, ¢.” For example, consider the statement “You will get dessert if, and only
if, you eat your dinner.” Logically, this is equivalent to the conjunction of the following
two statements.

Statement I: If you eat your dinner, then you will get dessert.
Statement 2: You will get dessert only if you eat your dinner.
or
If you do not eat your dinner, then you will not get dessert.

Now how many parents in the history of the world have said to their children “You
will get dessert if, and only if, you eat your dinner”’? Not many! Most say either “If you
eat your dinner, you will get dessert” (these take the positive approach—they empha-
size the reward) or “You will get dessert only if you eat your dinner” (these take the
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negative approach—they emphasize the punishment). Yet the parents who promise the
reward intend to suggest the punishment as well, and those who threaten the punish-
ment will certainly give the reward if it is earned. Both sets of parents expect that their
conditional statements will be interpreted as biconditionals.

Since we often (correctly) interpret conditional statements as biconditionals, it is
not surprising that we may come to believe (mistakenly) that conditional statements are
always logically equivalent to their inverses and converses. In formal settings, however,
statements must have unambiguous interpretations. If-then statements can’t sometimes
mean “if-then” and other times mean “if and only if.”” When using language in math-
ematics, science, or other situations where precision is important, it is essential to inter-
pret if-then statements according to the formal definition and not to confuse them with
their converses and inverses.

TEST YOURSELF

1. An if-then statement is false if, and only if, the hy- 7. A conditional statement and its converse are
pothesis is and the conclusion is not
2. The negation of “if p then ¢” is 8. “Ris a sufficient condition for §” means “if
. . then ”
3. The converse of “if p then ¢g” is
.\ . . 9. “Ris a necessary condition for S means “if
4. The contrapositive of “if p then ¢” is then y s
. Thei f “if p then ¢” i . .
> ¢ inverse of il p then g1 10. “R only if S” means “if then ”
6. A conditional statement and its contrapositive
are
EXERCISESET 2.2
Rewrite the statements in 1-4 in if-then form. to rewrite the following statement. (Assume that x
. . . e represents a fixed real number.
1. This loop will repeat exactly N times if it does not P ) 5
contain a stop or a go to. Ifx>2orx<—2,thenx” > 4.
13. Use truth tables to verify the following logical

2. Tam on time for work if I catch the 8:05 bus.

3. Freeze or I'll shoot.

4. Fix my ceiling or I won’t pay my rent.
Construct truth tables for the statement forms in 5-11.

5 ~PV4g—q 6. pVQV(i~prg—q
7.phN~q—r 8. ~pvg—r

9. pATTre>qVT 10. (p—>r)<>(@—r)

N p—=@g—=nN<(prg—rn

12. Use the logical equivalence established in
Example 2.2.3, pvg—r={p—>r) A(g—r),

equivalences. Include a few words of explanation
with your answers.

a. p—>qg=-~pVvyq
b. ~<p—q9=pr—~q

H 14. a. Show that the following statement forms are all

logically equivalent:
p—qVvr, pAN~q—r1r, and pA~r—q
b. Use the logical equivalences established in part
(a) to rewrite the following sentence in two dif-
ferent ways. (Assume that n represents a fixed
integer.)
If n is prime, then 7 is odd or n is 2.
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15. Determine whether the following statement forms
are logically equivalent:

p—(@—r and (p—q —r

In 16 and 17, write each of the two statements in symbolic
form and determine whether they are logically equiva-
lent. Include a truth table and a few words of explanation
to show that you understand what it means for state-
ments to be logically equivalent.

16. If you paid full price, you didn’t buy it at Crown
Books. You didn’t buy it at Crown Books or you
paid full price.

17. If 2 is a factor of n and 3 is a factor of n, then 6 is
a factor of n. 2 is not a factor of n or 3 is not a fac-
tor of n or 6 is a factor of n.

18. Write each of the following three statements in
symbolic form and determine which pairs are
logically equivalent. Include truth tables and a few
words of explanation.

If it walks like a duck and it talks like a duck, then
it is a duck.

Either it does not walk like a duck or it does not
talk like a duck, or it is a duck.

If it does not walk like a duck and it does not talk
like a duck, then it is not a duck.

19. True or false? The negation of “If Sue is Luiz’s
mother, then Ali is his cousin” is “If Sue is Luiz’s
mother, then Ali is not his cousin.”

20. Write negations for each of the following state-
ments. (Assume that all variables represent fixed
quantities or entities, as appropriate.)

a. If Pis asquare, then P is a rectangle.

b. If today is New Year’s Eve, then tomorrow is
January.

c. If the decimal expansion of r is terminating,
then r is rational.

d. If nis prime, then n is odd or n is 2.

e. If x is nonnegative, then x is positive or x is 0.

f. If Tom is Ann’s father, then Jim is her uncle
and Sue is her aunt.

g. If nis divisible by 6, then 7 is divisible by 2
and n is divisible by 3.

21. Suppose that p and g are statements so that
p — q is false. Find the truth values of each of
the following:
a. ~p—¢q

b.pvg c g—p

H 22. Write contrapositives for the statements of

exercise 20.

H 23. Write the converse and inverse for each statement

of exercise 20.
Use truth tables to establish the truth of each statement
in 24-27.

24. A conditional statement is not logically equivalent
to its converse.

25. A conditional statement is not logically equivalent
to its inverse.

26. A conditional statement and its contrapositive are
logically equivalent to each other.

27. The converse and inverse of a conditional state-
ment are logically equivalent to each other.

H 28. “Do you mean that you think you can find out the

answer to it?” said the March Hare.

“Exactly so,” said Alice.
“Then you should say what you mean,” the
March Hare went on.

“I do,” Alice hastily replied; “at least—at least
I mean what I say—that’s the same thing, you
know.”

“Not the same thing a bit!” said the Hatter.
“Why, you might just as well say that ‘I see what I
eat’ is the same thing as ‘I eat what I see’!”

—from “A Mad Tea-Party” in Alice in

Wonderland, by Lewis Carroll

The Hatter is right. “I say what I mean” is not the
same thing as “I mean what I say.” Rewrite each
of these two sentences in if-then form and explain
the logical relation between them. (This exercise is
referred to in the introduction to Chapter 4.)
If statement forms P and Q are logically equivalent, then
P <> Qs a tautology. Conversely, if P <> Q is a tautology,
then P and Q are logically equivalent. Use <> to convert
each of the logical equivalences in 29-31 to a tautology.
Then use a truth table to verify each tautology.

29. p—>@VvnN=(pPN~q—r
30. pA@@Vv)=(AgV(pAT

3. p—>(g@—nN=pPArqg —r
Rewrite each of the statements in 32 and 33 as a conjunc-
tion of two if-then statements.

32. This quadratic equation has two distinct real roots if,
and only if, its discriminant is greater than zero.
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33. This integer is even if, and only if, it equals twice
some integer.

Rewrite the statements in 34 and 35 in if-then form in two
ways, one of which is the contrapositive of the other. Use
the formal definition of “only if.”

34. The Cubs will win the pennant only if they win
tomorrow’s game.

35. Sam will be allowed on Signe’s racing boat only if
he is an expert sailor.

36. Taking the long view on your education, you go to
the Prestige Corporation and ask what you should
do in college to be hired when you graduate. The
personnel director replies that you will be hired
only if you major in mathematics or computer sci-
ence, get a B average or better, and take account-
ing. You do, in fact, become a math major, get a
B+ average, and take accounting. You return to
Prestige Corporation, make a formal application,
and are turned down. Did the personnel director
lie to you?

Some programming languages use statements of the form
“r unless s” to mean that as long as s does not happen,
then r will happen. More formally:

Definition: If r and s are statements,

runlesss means if ~sthenr.

In 37-39, rewrite the statements in if-then form.

37. Payment will be made on fifth unless a new hear-
ing is granted.

38. Ann will go unless it rains.

39. This door will not open unless a security code is
entered.

Rewrite the statements in 40 and 41 in if-then form.

40. Catching the 8:05 bus is a sufficient condition for
my being on time for work.

41. Having two 45° angles is a sufficient condition for
this triangle to be a right triangle.

Use the contrapositive to rewrite the statements in
42 and 43 in if-then form in two ways.

42. Being divisible by 3 is a necessary condition for
this number to be divisible by 9.

2.2 CONDITIONAL STATEMENTS 65

43. Doing homework regularly is a necessary condi-
tion for Jim to pass the course.

Note that “a sufficient condition for s is r” means r
is a sufficient condition for s and that “a necessary
condition for s is r” means r is a necessary condition
for s. Rewrite the statements in 44 and 45 in if-
then form.

44. A sufficient condition for Jon’s team to win
the championship is that it win the rest of
its games.

45. A necessary condition for this computer program
to be correct is that it not produce error messages
during translation.

46. “If compound X is boiling, then its temperature
must be at least 150°C.” Assuming that this
statement is true, which of the following must
also be true?

a. If the temperature of compound X is at least
150°C, then compound X is boiling.

b. If the temperature of compound X is less than
150°C, then compound X is not boiling.

c¢. Compound X will boil only if its temperature
is at least 150°C.

d. If compound X is not boiling, then its tempera-
ture is less than 150°C.

e. A necessary condition for compound X to boil
is that its temperature be at least 150°C.

f. A sufficient condition for compound X to boil
is that its temperature be at least 150°C.

In 47-50 (a) use the logical equivalencesp—-qg=~pv q
andp < qg=(~pvqg) A(~q\vp)torewrite the given
statement forms without using the symbol — or <>,
and (b) use the logical equivalencep\/q = ~(~p A ~q)
to rewrite each statement form using only A and ~.

47. pA~q—r1
48. pv ~q—rVvq

49. (p—>ne(@—0)

50. p—>@—=>M<—=(prg—rn)

51. Given any statement form, is it possible to find a

logically equivalent form that uses only ~ and A?
Justify your answer.
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ANSWERS FORTEST YOURSELF

1. true; false 2.p A~g 3.ifgthenp 4.if ~gthen~p 5.if ~pthen~q 6. logically equivalent 7. logically equivalent

8.R;S 9.55R 10.R;S

Valid and Invalid Arguments

“Contrariwise,” continued Tweedledee, “if it was so, it might be; and if it were so, it
would be; but as it isn't, it ain’t. That’s logic.” —Lewis Carroll, Through the Looking Glass

In mathematics and logic an argument is not a dispute. It is simply a sequence of state-
ments ending in a conclusion. In this section we show how to determine whether an ar-
gument is valid—that is, whether the conclusion follows necessarily from the preceding
statements. We will show that this determination depends only on the form of an argu-
ment, not on its content.

It was shown in Section 2.1 that the logical form of an argument can be abstracted from
its content. For example, the argument

If Socrates is a man, then Socrates is mortal.
Socrates is a man.

.. Socrates is mortal.
has the abstract form

If p then ¢

p

" q
When considering the abstract form of an argument, think of p and ¢ as variables for
which statements may be substituted. An argument form is called valid if, and only if,

whenever statements are substituted that make all the premises true, the conclusion is
also true.

An argument is a sequence of statements, and an argument form is a sequence
of statement forms. All statements in an argument and all statement forms in an
argument form, except for the final one, are called premises (or assumptions or
hypotheses). The final statement or statement form is called the conclusion. The
symbol .-, which is read “therefore,” is normally placed just before the conclusion.

To say that an argument form is valid means that no matter what particular
statements are substituted for the statement variables in its premises, if the resulting
premises are all true, then the conclusion is also true. To say that an argument is
valid means that its form is valid.

The crucial fact about a valid argument is that the truth of its conclusion follows neces-
sarily or inescapably or by logical form alone from the truth of its premises. It is impos-
sible to have a valid argument with all true premises and a false conclusion. When an
argument is valid and its premises are true, the truth of the conclusion is said to be inferred
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or deduced from the truth of the premises. If a conclusion “ain’t necessarily so,” then it
isn’t a valid deduction.

Testing an Argument Form for Validity

1. Identify the premises and conclusion of the argument form.

2. Construct a truth table showing the truth values of all the premises and the
conclusion.

3. A row of the truth table in which all the premises are true is called a critical row.
If there is a critical row in which the conclusion is false, then it is possible for an
argument of the given form to have true premises and a false conclusion, and so
the argument form is invalid. If the conclusion in every critical row is true, then
the argument form is valid.

BEIrTEERl  Determining Validity or Invalidity

Determine whether the following argument form is valid or invalid by drawing a truth ta-
ble, indicating which columns represent the premises and which represent the conclusion,
and annotating the table with a sentence of explanation. When you fill in the table, you
only need to indicate the truth values for the conclusion in the rows where all the premises
are true (the critical rows) because the truth values of the conclusion in the other rows are
irrelevant to the validity or invalidity of the argument.

ﬁ p—>qNr
q—>pANr
Caution! If at least one
premise of an argument
is false, then we have no

information about the
conclusion: It might be

Sp—r

Solution The truth table shows that even though there are several situations in which the
premises and the conclusion are all true (rows 1, 7, and 8), there is one situation (row 4)

true or it might be false. where the premises are true and the conclusion is false.
premises conclusion

)4 q r ~r | qV~r PAr p—q\N ~r q—pANr p—r

T T T F T T T T T

T T F T T F T F This row shows that an

T F T F F T F T argument of this form
can have true premises

T F F T T F T T F ¥ and a false conclusion.
Hence this form of

F T T F T F T F argument is invalid.

F T F T T F T F

F F T F F F T T

F F F T T F T T
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Modus Ponens and Modus Tollens

An argument form consisting of two premises and a conclusion is called a syllogism.
The first and second premises are called the major premise and minor premise, re-
spectively. The most famous form of syllogism in logic is called modus ponens. It has
the following form:

If p then q.
P
s.q

Here is an argument of this form:

If the sum of the digits of 371,487 is divisible by 3,
then 371,487 is divisible by 3.

The sum of the digits of 371,487 is divisible by 3.
.. 371,487 is divisible by 3.

The term modus ponens is Latin meaning “method of affirming” (the conclusion is an
affirmation). Long before you saw your first truth table, you were undoubtedly being con-
vinced by arguments of this form. Nevertheless, it is instructive to prove that modus po-
nens is a valid form of argument, if for no other reason than to confirm the agreement
between the formal definition of validity and the intuitive concept. To do so, we construct
a truth table for the premises and conclusion.

premises conclusion
———

p q P—9q P

T T T T T <« critical row

T F F T

F T T F

F F T F

The first row is the only one in which both premises are true, and the conclusion in that
row is also true. Hence the argument form is valid.

Now consider another valid argument form called modus tollens. It has the following
form:

If p then g.
~q
" ~p

Here is an example of modus tollens:

If Zeus is human, then Zeus is mortal.
Zeus is not mortal.

.. Zeus is not human.
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An intuitive explanation for the validity of modus tollens uses proof by contradiction.
It goes like this:
Suppose

(1) If Zeus is human, then Zeus is mortal; and

(2) Zeus is not mortal.

Must Zeus necessarily be nonhuman?
Yes!

Because, if Zeus were human, then by (1) he would be mortal.
But by (2) he is not mortal.
Hence, Zeus cannot be human.

Modus tollens is Latin meaning “method of denying” (the conclusion is a denial). The
validity of modus tollens can be shown to follow from modus ponens together with the
fact that a conditional statement is logically equivalent to its contrapositive. Or it can be
established formally by using a truth table. (See exercise 13.)

Studies by cognitive psychologists have shown that although nearly 100% of college
students have a solid, intuitive understanding of modus ponens, less than 60% are able
to apply modus tollens correctly.* Yet in mathematical reasoning, modus tollens is used
almost as often as modus ponens. Thus it is important to study the form of modus tollens
carefully to learn to use it effectively.

BEIITEER] Recognizing Modus Ponens and Modus Tollens

Use modus ponens or modus tollens to fill in the blanks of the following arguments so that
they become valid inferences.

a. If there are more pigeons than there are pigeonholes, then at least two pigeons roost in
the same hole.
There are more pigeons than there are pigeonholes.

b. If 870,232 is divisible by 6, then it is divisible by 3.
870,232 is not divisible by 3.

Solution
a. At least two pigeons roost in the same hole. by modus ponens
b. 870,232 is not divisible by 6. by modus tollens |

Additional Valid Argument Forms: Rules of Inference

A rule of inference is a form of argument that is valid. Thus modus ponens and modus
tollens are both rules of inference. The following are additional examples of rules of infer-
ence that are frequently used in deductive reasoning.

EEINIPEE] Generalization

The following argument forms are valid:

a. p b. ¢
PV q SpVq

*Cognitive Psychology and Its Implications, 3d ed. by John R. Anderson (New York: Freeman, 1990), pp. 292-297.
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Example 2.3.4

These argument forms are used for making generalizations. For instance, according to
the first, if p is true, then, more generally, “p or ¢” is true for any other statement g. As an
example, suppose you are given the job of counting the upperclassmen at your school. You
ask what class Anton is in and are told he is a junior.

You reason as follows:

Anton is a junior.
.. (more generally) Anton is a junior or Anton is a senior.

Knowing that upperclassman means junior or senior, you add Anton to your list. |

Specialization
The following argument forms are valid:

a. pAhg b. pAg
P s.q

These argument forms are used for specializing. When classifying objects according to
some property, you often know much more about them than whether they do or do not have
that property. When this happens, you discard extraneous information as you concentrate
on the particular property of interest.

For instance, suppose you are looking for a person who knows graph algorithms to work
with you on a project. You discover that Ana knows both numerical analysis and graph
algorithms. You reason as follows:

Ana knows numerical analysis and Ana knows graph algorithms.
.. (in particular) Ana knows graph algorithms.

Accordingly, you invite her to work with you on your project. |

Both generalization and specialization are used frequently in mathematics to tailor facts
to fit into hypotheses of known theorems in order to draw further conclusions. Elimination,
transitivity, and proof by division into cases are also widely used tools.

Elimination

The following argument forms are valid:

a. pvVvgq b. pvg
~q ~p
Sp g

These argument forms say that when you have only two possibilities and you can rule
one out, the other must be the case. For instance, suppose you know that for a particular
number x,
x—3=0 or x+2=0.
If you also know that x is not negative, then x # —2, so
x+2#0.
By elimination, you can then conclude that

x—3=0. [ |
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Transitivity
The following argument form is valid:
pP—q
q —>r
Lp—or
Many arguments in mathematics contain chains of if-then statements. From the fact that

one statement implies a second and the second implies a third, you can conclude that the
first statement implies the third. In the example below suppose 7 is a particular integer.

If n is divisible by 18, then # is divisible by 9.

If n is divisible by 9, then the sum of the digits of n is divisible by 9.
.. If n is divisible by 18, then the sum of the digits of n is divisible by 9. [ |

Proof by Division into Cases

The following argument form is valid:
pvVq
p—=>r
q —>7r
r
It often happens that you know one thing or another is true. If you can show that in either case
a certain conclusion follows, then this conclusion must also be true. For instance, suppose you
know that x is a particular nonzero real number that is not zero. The trichotomy property of
the real numbers says that any real number is positive, negative, or zero. Thus (by elimination)
you know that x is positive or x is negative. You can deduce that x>0 by arguing as follows:
X is positive or x is negative.
If x is positive, then x> 0.
If x is negative, then 2> 0.
x> 0. |

The rules of valid inference are used constantly in problem solving. Here is an example
from everyday life.

Application: A More Complex Deduction

You are about to leave for class in the morning and discover that you don’t have your
glasses. You know the following statements are true:

a. If I was reading my class notes in the kitchen, then my glasses are on the kitchen table.
b. If my glasses are on the kitchen table, then I saw them at breakfast.
c. I did not see my glasses at breakfast.

d. I was reading my class notes in the living room or I was reading my class notes in the
kitchen.

e. If I was reading my class notes in the living room then my glasses are on the coffee table.

Where are the glasses?
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Solution Let RK = I was reading my class notes in the kitchen.
GK = My glasses are on the kitchen table.
SB = I saw my glasses at breakfast.
RL = I was reading my class notes in the living room.

GC = My glasses are on the coffee table.

Here is a sequence of steps you might use to reach the answer, together with the rules of
inference that allow you to draw the conclusion of each step:

1. RK—GK by (a)
GK — SB by (b)
. RK — SB by transitivity
2. RK — SB by the conclusion of (1)
~SB by (c)
. ~RK by modus tollens
3. RLVRK by (d)
~RK by the conclusion of (2)
*RL by elimination
4. RL — GC by (e)
RL by the conclusion of (3)
. GC by modus ponens
Thus the glasses are on the coffee table. |
Fallacies

A fallacy is an error in reasoning that results in an invalid argument. Three common fal-
lacies are using ambiguous premises, and treating them as if they were unambiguous,
circular reasoning (assuming what is to be proved without having derived it from the
premises), and jumping to a conclusion (without adequate grounds). In this section we
discuss two other fallacies, called converse error and inverse error, which give rise to
arguments that superficially resemble those that are valid by modus ponens and modus
tollens but are not, in fact, valid.

As in previous examples, you can show that an argument is invalid by constructing
a truth table for the argument form and finding at least one critical row in which all the
premises are true but the conclusion is false. Another way is to find an argument of the
same form with true premises and a false conclusion.

For an argument to be valid, every argument of the same form whose premises are
all true must have a true conclusion. It follows that for an argument to be invalid
means that there is an argument of that form whose premises are all true and whose
conclusion is false.
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A

Caution! In logic, the
words true and valid have
very different meanings. A
valid argument may have
a false conclusion, and

an invalid argument may
have a true conclusion.
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Converse Error
Show that the following argument is invalid:

If Zeke is a cheater, then Zeke sits in the back row.
Zeke sits in the back row.

.. Zeke is a cheater.

Solution Many people recognize the invalidity of the above argument intuitively, rea-
soning something like this: The first premise gives information about Zeke if it is known
he is a cheater. It doesn’t give any information about him if it is not already known that he
is a cheater. One can certainly imagine a person who is not a cheater but happens to sit in
the back row. Then if that person’s name is substituted for Zeke, the first premise is true by
default and the second premise is also true but the conclusion is false.

The general form of the previous argument is as follows:

pP—4q
q
Sp
In exercise 12(a) at the end of this section you are asked to use a truth table to show that
this form of argument is invalid. |

The fallacy underlying this invalid argument form is called the converse error because
the conclusion of the argument would follow from the premises if the premise p — g were
replaced by its converse. Such a replacement is not allowed, however, because a conditional
statement is not logically equivalent to its converse. Converse error is also known as the
fallacy of affirming the consequent.

A related common reasoning error is shown in the next example.

Inverse Error
Consider the following argument:

If these two vertices are adjacent, then they do not have the same color.
These two vertices are not adjacent.

.. These two vertices have the same color.

Note that this argument has the following form:

pP—q
~p
" ~q
You are asked to give a truth table verification of the invalidity of this argument form in
exercise 12(b) at the end of this section.

The fallacy underlying this invalid argument form is called the inverse error because
the conclusion of the argument would follow from the premises if the premise p — g were
replaced by its inverse. Such a replacement is not allowed, however, because a conditional
statement is not logically equivalent to its inverse. Inverse error is also known as the fallacy
of denying the antecedent. |
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Example 2.3.11

Example 2.3.12

Sometimes people lump together the ideas of validity and truth. If an argument seems
valid, they accept the conclusion as true. And if an argument seems fishy (really a slang
expression for invalid), they think the conclusion must be false. This is not correct!

A Valid Argument with a False Premise and a False Conclusion

The argument below is valid by modus ponens. But its major premise is false, and so is its
conclusion.

If Canada is north of the United States, then temperatures in Canada never rise above
freezing.

Canada is north of the United States.
". Temperatures in Canada never rise above freezing. |

An Invalid Argument with True Premises and a True Conclusion
The argument below is invalid by the converse error, but it has a true conclusion.

If New York is a big city, then New York has tall buildings.
New York has tall buildings.
.. New York is a big city. |

Definition

An argument is called sound if, and only if; it is valid and all its premises are true.
An argument that is not sound is called unsound.

The important thing to note is that validity is a property of argument forms: If an argu-
ment is valid, then so is every other argument that has the same form. Similarly, if an argu-
ment is invalid, then so is every other argument that has the same form. What characterizes a
valid argument is that no argument whose form is valid can have all true premises and a false
conclusion. For each valid argument, there are arguments of that form with all true prem-
ises and a true conclusion, with at least one false premise and a true conclusion, and with at
least one false premise and a false conclusion. On the other hand, for each invalid argument,
there are arguments of that form with every combination of truth values for the premises and
conclusion, including all true premises and a false conclusion. The bottom line is that we can
only be sure that the conclusion of an argument is true when we know that the argument is
sound, that is, when we know both that the argument is valid and that it has all true premises.

Contradictions and Valid Arguments

The concept of logical contradiction can be used to make inferences through a technique
of reasoning called the contradiction rule. Suppose p is some statement whose truth you
wish to deduce.

Contradiction Rule

If you can show that the supposition that statement p is false leads logically to a
contradiction, then you can conclude that p is true.
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SEEPRREY Contradiction Rule

Show that the following argument form is valid:
~p — ¢, where ¢ is a contradiction
P
Solution Construct a truth table for the premise and the conclusion of this argument.

premises conclusion

There is only one critical
~p ¢ ~p—¢ p row in which the premise
is true, and in this row the
T F F T T conclusion is also true.
T F F Hence this form of argu-
ment is valid. |

The contradiction rule is the logical heart of the method of proof by contradiction. A slight
variation also provides the basis for solving many logical puzzles by eliminating contradic-
tory answers: If an assumption leads to a contradiction, then that assumption must be false.

SElPRERVY  Knights and Knaves

The logician Raymond Smullyan describes an island containing two types of people:
knights who always tell the truth and knaves who always lie.* You visit the island and are
approached by two natives who speak to you as follows:

A says: B is a knight.
B says: A and I are of opposite type.

What are A and B?

Solution A and B are both knaves. To see this, reason as follows:

Suppose A is a knight.

. What A says is true. by definition of knight
*. B is also a knight. That’s what A said.

. What B says is true. by definition of knight

.. A and B are of opposite types. That’s what B said.
*. We have arrived at the following contradiction: A and B are both knights

Eddie Hausner/The New York Times/Redux

Ll and A and B are of opposite type.
Raymond Smullyan *. The supposition is false. by the contradiction rule
(1919-2017) . .
.. Ais not a knight. negation of supposition
.. Ais a knave. by elimination: It’s given that all inhabitants are knights

or knaves, so since A is not a knight, A is a knave.
. What A says is false.
*. B is not a knight.

*. B is also a knave. by elimination

*Raymond Smullyan has written a delightful series of whimsical yet profound books of logical puzzles start-
ing with What Is the Name of This Book? (Englewood Cliffs, New Jersey: Prentice-Hall, 1978). Other good
sources of logical puzzles are the many excellent books of Martin Gardner, such as Aha! Insight and Aha!
Gotcha (New York: W. H. Freeman, 1978, 1982).
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This reasoning shows that if the problem has a solution at all, then A and B must both be
knaves. It is conceivable, however, that the problem has no solution. The problem statement
could be inherently contradictory. If you look back at the solution, though, you can see that
it does work out for both A and B to be knaves. |
Summary of Rules of Inference

Table 2.3.1 summarizes some of the most important rules of inference.

TABLE 2.3.1 Valid Argument Forms

Modus Ponens pP—q Elimination a. pvVvgq b. pVgq
p ~q ~p
g ) S.q
Modus Tollens pP—q Transitivity pP—q
"’q q —>7r
. ~p Lp—T
Generalization a. p b. ¢ Proof by pVq
SpVq -.pV q | Division into Cases p—r
s g—r
Specialization a. pAg b. pAg -
op q
Conjunction )4 Contradiction Rule ~p—c¢
q P
SPAQg

TEST YOURSELF

1. For an argument to be valid means that every 3. For an argument to be sound means that it
argument of the same form whose premises is and its premises . In this case
has a conclusion. we can be sure that its conclusion

2. For an argument to be invalid means that there
is an argument of the same form whose premises
and whose conclusion

EXERCISESET 2.3

Use modus ponens or modus tollens to fill in the blanks in 3. Iflogic is easy, then I am a monkey’s uncle.
the arguments of 1-5 so as to produce valid inferences. I am not a monkey’s uncle.
1. If\V2is rational, then V2= a/b for some
integers a and b. 4.  If this graph can be colored with three colors,
It is not true that \/2 = a/b for some integers a then it can colored with four colors.
and b. This graph cannot be colored with four colors.
2. If1—-0.99999...1is less than every positive real 5.  If they were unsure of the address, then they
number, then it equals zero. would have telephoned.
.. The number 1 —0.99999 ... equals zero. .. They were sure of the address.
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Use truth tables to determine whether the argument forms
in 6-11 are valid. Indicate which columns represent the
premises and which represent the conclusion, and include
a sentence explaining how the truth table supports your
answer. Your explanation should show that you understand
what it means for a form of argument to be valid or invalid.

6. p—q 7. p
q—p pP—q
LpVgq ~q\r
T
8. pvg 9. pAg—~r
pP—>~q pV ~q
p—=r ~q—>p
r o~

10. pvg—r
S r—> ~p A ~q
(This is the form of argument shown on pages 37
and 38.)

n. p—oqvVvr
~g\N ~r
SopNV T
12. Use truth tables to show that the following forms
of argument are invalid.

a. p—gq b. p—gq
q ~p
p So~q

(converse error) (inverse error)

Use truth tables to show that the argument forms referred
to in 13-21are valid. Indicate which columns represent the
premises and which represent the conclusion, and include
a sentence explaining how the truth table supports your
answer. Your explanation should show that you understand
what it means for a form of argument to be valid.

13. Modus tollens:

pP—q

~q

L ~p

14. Example 2.3.3(a)
15. Example 2.3.3(b)
16. Example 2.3.4(a)
17. Example 2.3.4(b)
18. Example 2.3.5(a)
19. Example 2.3.5(b)
20. Example 2.3.6

21. Example 2.3.7

2.3 VALID AND INVALID ARGUMENTS 77

Use symbols to write the logical form of each argument

in 22 and 23, and then use a truth table to test the argu-
ment for validity. Indicate which columns represent the
premises and which represent the conclusion, and include
a few words of explanation showing that you understand
the meaning of validity.

22. If Tom is not on team A, then Hua is on team B.
If Hua is not on team B, then Tom is on team A.
.. Tom is not on team A or Hua is not on team B.

23.  Oleg is a math major or Oleg is an economics
major.
If Oleg is a math major, then Oleg is required to
take Math 362.
.. Oleg is an economics major or Oleg is not
required to take Math 362.
Some of the arguments in 24-32 are valid, whereas others
exhibit the converse or the inverse error. Use symbols to
write the logical form of each argument. If the argument
is valid, identify the rule of inference that guarantees its
validity. Otherwise, state whether the converse or the
inverse error is made.

24.  If Jules solved this problem correctly, then Jules
obtained the answer 2.
Jules obtained the answer 2.
.. Jules solved this problem correctly.

25.  This real number is rational or it is irrational.
This real number is not rational.
.. This real number is irrational.

26.  IfI go to the movies, I won’t finish my homework.
If I don’t finish my homework, I won’t do well
on the exam tomorrow.

.. If T go to the movies, I won’t do well on the
exam tomorrow.

27.  If this number is larger than 2, then its square is
larger than 4.
This number is not larger than 2.
.. The square of this number is not larger than 4.

28. If there are as many rational numbers as there
are irrational numbers, then the set of all irratio-
nal numbers is infinite.

The set of all irrational numbers is infinite.
.. There are as many rational numbers as there are
irrational numbers.

29. If at least one of these two numbers is divisible
by 6, then the product of these two numbers is
divisible by 6.

Neither of these two numbers is divisible by 6.
.. The product of these two numbers is not divisible
by 6.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203



78

30.

31.

32.

33.

34.

35.

36.

37.

38.

CHAPTER2 THELOGIC OF COMPOUND STATEMENTS

If this computer program is correct, then it pro-
duces the correct output when run with the test
data my teacher gave me.
This computer program produces the correct output
when run with the test data my teacher gave me.

.. This computer program is correct.

Sandra knows Java and Sandra knows C++.
.. Sandra knows C++.

If I get a Christmas bonus, I’ll buy a stereo.
If I sell my motorcycle, I’ll buy a stereo.

.. If I get a Christmas bonus or I sell my motor-
cycle, then I’ll buy a stereo.

Give an example (other than Example 2.3.11) of a
valid argument with a false conclusion.

Give an example (other than Example 2.3.12) of an
invalid argument with a true conclusion.

Explain in your own words what distinguishes a
valid form of argument from an invalid one.

Given the following information about a computer

program, find the mistake in the program.

a. There is an undeclared variable or there is a
syntax error in the first five lines.

b. If there is a syntax error in the first five lines,
then there is a missing semicolon or a variable
name is misspelled.

c. There is not a missing semicolon.

d. There is not a misspelled variable name.

In the back of an old cupboard you discover a note

signed by a pirate famous for his bizarre sense of

humor and love of logical puzzles. In the note he

wrote that he had hidden treasure somewhere on

the property. He listed five true statements (a—e

below) and challenged the reader to use them to

figure out the location of the treasure.

a. If this house is next to a lake, then the treasure
is not in the kitchen.

b. If the tree in the front yard is an elm, then the
treasure is in the kitchen.

c. This house is next to a lake.

d. The tree in the front yard is an elm or the trea-
sure is buried under the flagpole.

e. If the tree in the back yard is an oak, then the
treasure is in the garage.

Where is the treasure hidden?
You are visiting the island described in Example

2.3.14 and have the following encounters with
natives.

39.

40.

a. Two natives A and B address you as follows:
A says: Both of us are knights.
B says: A is a knave.
What are A and B?
b. Another two natives C and D approach you but
only C speaks.
C says: Both of us are knaves.
What are C and D?
c. You then encounter natives E and F.
E says: Fis a knave.
F says: E is a knave.
How many knaves are there?
d. Finally, you meet a group of six natives, U, V,
W, X, Y, and Z, who speak to you as follows:
U says: None of us is a knight.
V says: At least three of us are knights.
W says: At most three of us are knights.
X says: Exactly five of us are knights.
Y says: Exactly two of us are knights.
Z says: Exactly one of us is a knight.
Which are knights and which are knaves?

The famous detective Percule Hoirot was called in
to solve a baffling murder mystery. He determined
the following facts:

a. Lord Hazelton, the murdered man, was killed
by a blow on the head with a brass candlestick.

b. Either Lady Hazelton or a maid, Sara, was in
the dining room at the time of the murder.

c. If the cook was in the kitchen at the time of the
murder, then the butler killed Lord Hazelton
with a fatal dose of strychnine.

d. If Lady Hazelton was in the dining room at the
time of the murder, then the chauffeur killed
Lord Hazelton.

e. If the cook was not in the kitchen at the time
of the murder, then Sara was not in the dining
room when the murder was committed.

f. If Sara was in the dining room at the time the
murder was committed, then the wine steward
killed Lord Hazelton.

Is it possible for the detective to deduce the iden-
tity of the murderer from these facts? If so, who
did murder Lord Hazelton? (Assume there was
only one cause of death.)

Sharky, a leader of the underworld, was killed by
one of his own band of four henchmen. Detective
Sharp interviewed the men and determined that all
were lying except for one. He deduced who killed
Sharky on the basis of the following statements:

a. Socko: Lefty killed Sharky.

b. Fats: Muscles didn’t kill Sharky.
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c. Lefty: Muscles was shooting craps with Socko 42. a.
when Sharky was knocked off.
d. Muscles: Lefty didn’t kill Sharky.
Who did kill Sharky?
In 41-44 a set of premises and a conclusion are given. Use

the valid argument forms listed in Table 2.3.1 to deduce the
conclusion from the premises, giving a reason for each step as

mpang

in Example 2.3.8. Assume all variables are statement variables. 43, a.

41. a. ~pvqg—r b.
b. sv~¢q ¢
C. ~t d.
d p-—ot e
e. ~pAr—-~s f. .
f. -.~q

ANSWERS FORTEST YOURSELF

2.4 APPLICATION: DIGITAL LOGIC CIRCUITS 79

pvVq
q—r
pPNS—1
~r
~q—>UNS

St

~p—>r/N\-~s
t—s
u—~p
~w

u\N w

iad’

44. a. p—oq
b. rvs
. ~s—~t
d ~qVs
e. -~
f. ~pAFr—u
g wvt
h. unw

1. are all true; true 2. are all true; is false 3. valid; are all true; is true

EXA Application: Digital Logic Circuits

Only connect! —E. M. Forster, Howards End

In the late 1930s, a young MLLT. graduate student named Claude Shannon noticed an analogy
between the operations of switching devices, such as telephone switching circuits, and the op-
erations of logical connectives. He used this analogy with striking success to solve problems
of circuit design and wrote up his results in his master’s thesis, which was published in 1938.

The drawing in Figure 2.4.1(a) shows the appearance of the two positions of a simple
switch. When the switch is closed, current can flow from one terminal to the other; when
it is open, current cannot flow. Imagine that such a switch is part of the circuit shown in
Figure 2.4.1(b). The light bulb turns on if, and only if, current flows through it. And this
happens if, and only if, the switch is closed.

|

Alfred Eisenstaedt/Getty Images

\

Claude Shannon Open Closed —|_

The symbol
G denotes a batte:

@ the symbol

denotes a light bulb.

and

<

@

(1916-2001) @

FIGURE 2.4.1

(b)

Now consider the more complicated circuits of Figures 2.4.2(a) and 2.4.2(b).

RN

Switches “in series”

(a)

=
=

=
=

Switches “in parallel”

FIGURE 2.4.2

(b)
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The Intel 4004, introduced
in 1971, is generally
considered to be the first
commercially viable
microprocessor or central
processing unit (CPU)
contained on a chip about
the size of a fingernail.

It consisted of 2,300
transistors and could
execute 70,000 instructions
per second, essentially the
same computing power

as the first electronic
computer, the ENIAC,
built in 1946, which filled
an entire room. Modern
microprocessors consist
of several CPUs on one
chip, contain close to a
billion transistors and
many hundreds of millions
of logic circuits, and can
compute hundreds of
millions of instructions per
second.

In the circuit of Figure 2.4.2(a) current flows and the light bulb turns on if, and only if,
both switches P and Q are closed. The switches in this circuit are said to be in series. In the
circuit of Figure 2.4.2(b) current flows and the light bulb turns on if, and only if, at least
one of the switches P or Q is closed. The switches in this circuit are said to be in parallel.
All possible behaviors of these circuits are described by Table 2.4.1.

TABLE 2.4.1
(a) Switches in Series (b) Switches in Parallel
Switches Light Bulb Switches Light Bulb
P [ State P [ State
closed closed on closed closed on
closed open off closed open on
open closed off open closed on
open open off open open off

Observe that if the words closed and on are replaced by T and open and off are replaced
by F, Table 2.4.1(a) becomes the truth table for and and Table 2.4.1(b) becomes the truth
table for or. Consequently, the switching circuit of Figure 2.4.2(a) is said to correspond to
the logical expression P A Q, and that of Figure 2.4.2(b) is said to correspond to P\ Q.

More complicated circuits correspond to more complicated logical expressions. This
correspondence has been used extensively in the design and study of circuits.

In the 1940s and 1950s, switches were replaced by electronic devices, with the physical
states of closed and open corresponding to electronic states such as high and low voltages.

Tim McNerney
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The new electronic technology led to the development of modern digital systems such as
electronic computers, electronic telephone switching systems, traffic light controls, elec-
tronic calculators, and the control mechanisms used in hundreds of other types of electron-
ic equipment. The basic electronic components of a digital system are called digital logic
circuits. The word logic indicates the important role of logic in the design of such circuits,
and the word digital indicates that the circuits process discrete, or separate, signals as op-
posed to continuous ones.

Electrical engineers continue to use the language of logic when they refer to values of
signals produced by an electronic switch as being “true” or “false.” But they generally use
the symbols 1 and O rather than T and F to denote these values. The symbols 0 and 1 are
called bits, short for binary digits. This terminology was introduced in 1946 by the statisti-
cian John Tukey.

Alfred Eisenstaedt/Time Life Pictures/Getty Images

John W. Tukey
(1915-2000)

Black Boxes and Gates

Combinations of signal bits (1’s and 0’s) can be transformed into other combinations of sig-
nal bits (I’s and 0’s) by means of various circuits. Because a variety of different technolo-
gies are used in circuit construction, computer engineers and digital system designers find
it useful to think of certain basic circuits as black boxes. The inside of a black box contains
the detailed implementation of the circuit and is often ignored while attention is focused
on the relation between the input and the output signals.

Input
signals

Q — black box S Output signal

The operation of a black box is completely specified by constructing an input/output
table that lists all its possible input signals together with their corresponding output sig-
nals. For example, the black box pictured above has three input signals. Since each of these
signals can take the value 1 or O, there are eight possible combinations of input signals. One
possible correspondence of input to output signals is as follows:

An Input/Output Table
Input Output

P Q0 R s
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
0 0 0 0

The third row, for instance, indicates that for inputs P = 1, Q = 0, and R = 1, the output
Sis 0.
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An efficient method for designing more complicated circuits is to build them by con-
necting less complicated black box circuits. Three such circuits are known as NOT-, AND-,
and OR-gates.

A NOT-gate (or inverter) is a circuit with one input signal and one output signal. If
the input signal is 1, the output signal is 0. Conversely, if the input signal is 0, then the
output signal is 1. An AND-gate is a circuit with two input signals and one output signal.
If both input signals are 1, then the output signal is 1. Otherwise, the output signal is 0.
An OR-gate also has two input signals and one output signal. If both input signals are 0,
then the output signal is 0. Otherwise, the output signal is 1.

The actions of NOT-, AND-, and OR-gates are summarized in Figure 2.4.3, where P
and Q represent input signals and R represents the output signal. It should be clear from
Figure 2.4.3 that the actions of the NOT-, AND-, and OR-gates on signals correspond
exactly to those of the logical connectives ~, A, and \/ on statements, if the symbol 1 is
identified with T and the symbol O is identified with F.

Gates can be combined into circuits in a variety of ways. If the rules shown at the
bottom of the page are obeyed, the result is a combinational circuit, one whose output at
any time is determined entirely by its input at that time without regard to previous inputs.

Type of Gate Symbolic Representation Action

Input | Output

NOT » ® P R
1 0

0 1

Input Output

P 0| R

AND "7 anp R L !
0 — 1 0 0

0 1 0

0 0| o0

Input Output

P 0 R
OR P & 1 1 1
0 1 0 1
0 1 1
0 0 0
FIGURE 2.4.3
Rules for a Combinational Circuit
Never combine two input wires. 2.4.1
A single input wire can be split partway and used as input for
two separate gates. 242
An output wire can be used as input.
No output of a gate can eventually feed back into that gate. 244
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Rule (2.4.4) is violated in more complex circuits, called sequential circuits, whose
output at any given time depends both on the input at that time and also on previous inputs.
These circuits are discussed in Section 12.2.

The Input/Output Table for a Circuit

If you are given a set of input signals for a circuit, you can find its output by tracing through
the circuit gate by gate.

Dl JCPRB] Determining Output for a Given Input

Indicate the output of the circuits shown below for the given input signals.

a. Input signals: P =0and Q = 1
P O
AND R
Qo
b. p Input signals: P=1,0 =0,R =1
)R>

AND N

Solution

a. Move from left to right through the diagram, tracing the action of each gate on the in-
put signals. The NOT-gate changes P = 0 to a 1, so both inputs to the AND-gate are 1;
hence the output R is 1. This is illustrated by annotating the diagram as shown below.

0 1
P O 1
’ AND R
1
ot
b. The output of the OR-gate is 1 since one of the input signals, P, is 1. The NOT-gate

changes this 1 into a 0, so the two inputs to the AND-gate are 0 and R = 1. Hence the
output S is 0. The trace is shown below.

1 AND s
R |

To construct the entire input/output table for a circuit, trace through the circuit to find
the corresponding output signals for each possible combination of input signals.

V%] Constructing the Input/Output Table for a Circuit

Construct the input/output table for the following circuit.

o
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84 CHAPTER2 THELOGIC OF COMPOUND STATEMENTS

Solution List the four possible combinations of input signals, and find the output for
each by tracing through the circuit.

_ Input Output

% B P [ R

L 1 1 1

22 1 0 1

g% 0 1 0
George Boole 0 0 1 -
(1815-1864)

The Boolean Expression Corresponding to a Circuit

Note Strictly speak- In logic, variables such as p, ¢, and r represent statements, and a statement can have one
ing, only meaningful of only two truth values: T (true) or F (false). A statement form is an expression, such as
expressions such as p A (~q Vv r), composed of statement variables and logical connectives.
(~p~Agq)Vv(pAr)and As noted earlier, one of the founders of symbolic logic was the English mathematician
~(~(pAg)Vvr)are George Boole. In his honor, any variable, such as a statement variable or an input signal,

allowed as Boolean, not

' ) that can take one of only two values is called a Boolean variable. An expression composed
meaningless ones like

of Boolean variables and the connectives ~, A, and V is called a Boolean expression.

Given a circuit consisting of combined NOT-, AND-, and OR-gates, a correspond-
ing Boolean expression can be obtained by tracing the actions of the gates on the input
variables.

p ~q((rs\/ N q~. We use
recursion to give a careful
definition of Boolean ex-
pressions in Section 5.9.

SELPREY Finding a Boolean Expression for a Circuit

Find the Boolean expressions that correspond to the circuits shown below. A black dot
indicates a soldering of two wires; wires that cross without a dot are assumed not to touch.

SiD -
OR AND
0 AND [ AND

AND w R W‘

(a) (b)

Solution

a. Trace through the circuit from left to right, indicating the output of each gate symboli-
cally, as shown below.

P_

Q

\PVOONPANQ
AND
_/

The final expression obtained, (P \/ Q) A ~(P N Q), is the expression for exclusive or:
P or Q but not both.

b. The Boolean expression corresponding to the circuit is (P A Q) A ~R, as shown on
the next page.
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AND PAQ)A™R
0| Y00

o .

Observe that the output of the circuit shown in Example 2.4.3(b) is 1 for exactly one
combination of inputs (P =1, Q0 = 1, and R = 0) and is O for all other combinations of
inputs. For this reason, the circuit can be said to “recognize” one particular combination
of inputs. The output column of the input/output table has a 1 in exactly one row and 0’s
in all other rows.

Definition

A recognizer is a circuit that outputs a 1 for exactly one particular combination of
input signals and outputs 0’s for all other combinations.

Input/Output Table for a Recognizer

P [ R (PNO)N~R
1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

The Circuit Corresponding to a Boolean Expression

The preceding examples showed how to find a Boolean expression corresponding to a cir-
cuit. The following example shows how to construct a circuit corresponding to a Boolean
expression. The strategy is to work from the outermost part of the Boolean expression to
the innermost part, adding logic gates that correspond to the operations in the expression
as you move from right to left in the circuit diagram.

DY R-®Y Constructing Circuits for Boolean Expressions
Construct circuits for the following Boolean expressions.

a. (~PrQ)Vv~Q b. (PNOANRAS)NT

Solution

a. Write the input variables in a column on the left side of the diagram. Since the last op-
eration executed when evaluating (~P A Q) v ~Q is Vv, put an OR-gate at the extreme
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right of the diagram. One input to this gate is ~P A Q, so draw an AND-gate to the
left of the OR-gate and show its output coming into the OR-gate. Since one input to
the AND-gate is ~P, draw a line from P to a NOT-gate and from there to the AND-
gate. Since the other input to the AND-gate is O, draw a line from Q directly to the
AND-gate. The other input to the OR-gate is ~Q, so draw a line from Q to a NOT-
gate and from the NOT-gate to the OR-gate. The circuit you obtain is shown below.

-

CPAOV~Q

b. To start constructing this circuit, put one AND-gate at the extreme right to correspond
to the A, which is the final operation between ((P A Q) A (R A S)) and T. To the left of
that gate put the AND-gate corresponding to the A between P A Q and R A S. To the
left of that gate put the two AND-gates corresponding to the A’s between P and Q and
between R and S. The circuit is shown in Figure 2.4.4.

P— PAQ .
00— R \5@7 N(PADARAS)AT
T AND
R |~
AND
S_
T

FIGURE 2.4.4 |

It follows from Theorem 2.1.1 that all the ways of adding parenthesesto PAQ ARASAT
give logically equivalent results. Thus, for example,

(PADONRASHAT=EPNQAR)NESAT),

and hence the circuit in Figure 2.4.5, which corresponds to (PA(QAR) NS AT),
has the same input/output table as the circuit in Figure 2.4.4, which corresponds to
(PANONRNANS)NT.

P 1»,

PA(OAR)

0 —] 0 AR| AND N\ (P AQAR)ASAT)
AND SAT AND
R —— /
S ___ 1
AND
T_ |
FIGURE 2.4.5

It follows that the circuits in Figures 2.4.4 and 2.4.5 are both implementations of the
expression PANQ ARASAT. Such a circuit is called a multiple-input AND-gate and
is represented by the diagram shown in Figure 2.4.6. Multiple-input OR-gates are con-
structed similarly.
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P
0

_—
R AND
s—I
T

FIGURE 2.4.6

Finding a Circuit That Corresponds to a Given Input/Output Table

To this point, we have discussed how to construct the input/output table for a circuit, how
to find the Boolean expression corresponding to a given circuit, and how to construct the
circuit corresponding to a given Boolean expression. Now we address the question of how
to design a circuit (or find a Boolean expression) corresponding to a given input/output
table. The way to do this is to put several recognizers together in parallel.

Designing a Circuit for a Given Input/Output Table

Design a circuit for the following input/output table:

Input Output
P O R S
1 1 1 1
1 1 0 0
1 0 1 1
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

Solution First construct a Boolean expression with this table as its truth table. To do this,
identify each row for which the output is 1—in this case, the rows 1, 3, and 4. For each such
row, construct an and expression that produces a 1 (or true) for the exact combination of
input values for that row and a O (or false) for all other combinations of input values.

For example, the expression for row 1 isP AQ AR because PN Q A Ris 1if P = 1 and
QO =1and R = 1, and it is O for all other values of P, Q, and R. The expression for row 3
iSPA~QARbecause PN ~QARislif P=1and Q =0and R = 1, and it is O for all
other values of P, Q, and R. Similarly, the expression for row 4 is P A ~Q A ~R.

Now any Boolean expression with the given table as its truth table has the value 1 in
case P NOQAR=1,orincase PN~Q AR =1,orincase PN ~0O N ~R =1, and in no
other cases. It follows that a Boolean expression with the given truth table is

PANOAR)NV(PAN~QAR)V(PAN~QAN~R). 2.4.5

The circuit corresponding to this expression has the diagram shown in Figure 2.4.7. Ob-
serve that expression (2.4.5) is a disjunction of terms that are themselves conjunctions in
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which one of P or ~P, one of Q or ~(Q, and one of R or ~R all appear. Such expressions
are said to be in disjunctive normal form or sum-of-products form.

P
Q
R

&)

g

AND

&)

FIGURE 2.4.7 |

Simplifying Combinational Circuits
Consider the two combinational circuits shown in Figure 2.4.8.

P

AND

(@) NOT »
AND R

AND

P —

Q_

AND R

(®)
FIGURE 2.4.8

If you trace through circuit (a), you will find that its input/output table is

Input Output
P 0 R
1 1 1
1 0 0
0 1 0
0 0 0
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which is the same as the input/output table for circuit (b). Thus these two circuits do the same
job in the sense that they transform the same combinations of input signals into the same
output signals. Yet circuit (b) is simpler than circuit (a) in that it contains many fewer logic
gates. Thus, as part of an integrated circuit, it would take less space and require less power.

Definition

Two digital logic circuits are equivalent if, and only if, their input/output tables
are identical.

Since logically equivalent statement forms have identical truth tables, you can deter-
mine that two circuits are equivalent by finding the Boolean expressions corresponding
to the circuits and showing that these expressions, regarded as statement forms, are logi-
cally equivalent. Example 2.4.6 shows how this procedure works for circuits (a) and (b)
in Figure 2.4.8.

el PRKY Showing That Two Circuits Are Equivalent

Find the Boolean expressions for each circuit in Figure 2.4.8. Use Theorem 2.1.1 to show
that these expressions are logically equivalent when regarded as statement forms.

Solution The Boolean expressions that correspond to circuits (a) and (b) are
(PAN~Q)Vv(PNQ)AQand P A Q, respectively. By Theorem 2.1.1,

(PAN~Q)VvPAOYNQ
=PA(C~OVO)YAQ by the distributive law
=PAQV~0)N0 by the commutative law for \/
=PArt)yAQ by the negation law
=PANQ by the identity law.
It follows that the truth tables for (P A ~Q)Vv (PANQ))AQ and P A Q are the same.

Hence the input/output tables for the circuits corresponding to these expressions are also
the same, and so the circuits are equivalent. [ |

In general, you can simplify a combinational circuit by finding the corresponding Bool-
ean expression, using the properties listed in Theorem 2.1.1 to find a Boolean expression
that is shorter and logically equivalent to it (when both are regarded as statement forms),
and constructing the circuit corresponding to this shorter Boolean expression.

NAND and NOR Gates

Another way to simplify a circuit is to find an equivalent circuit that uses the least number
£ of different kinds of logic gates. Two gates not previously introduced are particularly use-
< ful for this: NAND-gates and NOR-gates. A NAND-gate is a single gate that acts like an
& AND-gate followed by a NOT-gate. A NOR-gate acts like an OR-gate followed by a NOT-
gate. Thus the output signal of a NAND-gate is 0 when, and only when, both input signals
are 1, and the output signal for a NOR-gate is 1 when, and only when, both input signals
are 0. The logical symbols corresponding to these gates are | (for NAND) and | (for NOR),
here | is called a Sheffer stroke (after H. M. Sheffer, 1882-1964) and | is called a Peirce
arrow (after C. S. Peirce, 1839-1914; see page 110). Thus

ves

v

£

HUD 305.25. Harvard Un

H. M. Sheffer
(1882-1964) Pl[0=~PAQ) and P|Q=~(PVvO).
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The table below summarizes the actions of NAND and NOR gates.

P 1 1 0
NOR o— R
0 1 0 0

Type of Gate Symbolic Representation Action
Input Output
P 0 R=P|Q
P —} 1 1 0
NAND NAND R
Q— 1 0 1
0 1 1
0 0 1
Input Output
P 0 R=PlQ

It can be shown that any Boolean expression is equivalent to one written entirely with
Sheffer strokes or entirely with Peirce arrows. Thus any digital logic circuit is equivalent
to one that uses only NAND-gates or only NOR-gates. Example 2.4.7 develops part of the
derivation of this result; the rest is left for the exercises.

Example 2.4.7

Rewriting Expressions Using the Sheffer Stroke

Use Theorem 2.1.1 and the definition of Sheffer stroke to show that
a. ~P=P|P and b. PvQ=(P|P)|(Q|Q).

Solution

a. ~P=~(PAP)
=P|P

~(~(PVv Q)
~(~PA~Q)
= ~((P|P) A (Q]Q)
PPl

b. PvQ

by the idempotent law for A
by definition of |.

by the double negative law

by De Morgan’s laws

by part (a)

by definition of |. |

1. The input/output table for a digital logic circuit is

a table that shows

2. The Boolean expression that corresponds to a

digital logic circuit is

. A recognizer is a digital logic circuit that

. Two digital logic circuits are equivalent if, and

only if,
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5. A NAND-gate is constructed by placing a
gate immediately following an gate.

EXERCISE SET 2.4

2.4 APPLICATION: DIGITAL LOGIC CIRCUITS 91

6. A NOR-gate is constructed by placing a
gate immediately following an

gate.

Give the output signals for the circuits in 1-4 if the input
signals are as indicated.

1 p

0 — o>

inputsignals: P=1 and Q=1

2. p

Q

V&

input signals: P =1 and Q=0

3. p

Q

¥

R
inputsignals: P =1, 0=0, R=0

4. P
Q

AND O
R —

inputsignals: P=0, 0=0, R=0

OR

Q
~
)

In 5-8, write an input/output table for the circuit in the

referenced exercise.
5. Exercise 1 6. Exercise 2
7. Exercise 3 8. Exercise 4

In 9-12, find the Boolean expression that corresponds to
the circuit in the referenced exercise.

9. Exercise 1 10. Exercise 2
11. Exercise 3 12. Exercise 4
Construct circuits for the Boolean expressions in 13-17.
14. ~(Pv Q)

16. (PANQ)V ~R

13. ~PVvQ
15. Pv(~PA~Q)
17. (PAN~Q)V(~PAR)

For each of the tables in 18-21, construct (a) a Boolean
expression having the given table as its truth table and (b)
a circuit having the given table as its input/output table.

8. P Q@ R | S
11 10
11 01
10 1.0
1 0 00
0 1 11
0 1 00
0 0 10
0 0 00

., o & s

110
11 0 |1
10 1.0
1 0 o0 | 1
o 1 10
0o 1 01
0o 0 10
0O 0 00

20-1'p 9 R S
o1
1 1 0o
10 1|1
1 0 0 0
0 1 1,0
0 1 00
0 0 10
0 0 0 1

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203



92 CHAPTER2 THELOGIC OF COMPOUND STATEMENTS

2. | p 0 R S b. p » E
O
11 1]0 ¢
1 1 0 1 28. a.
P
1 0 1 0 AND
1 0 0 0 €
0 1 1 1
AND
o 1 01 NOT l='>
0 0 1 0
0 0 0 0 NOT
22. Design a circuit to take input signals P, O, and R AND
and output a 1 if, and only if, P and Q have the
same value and Q and R have opposite values. NOT
23. Design a circuit to take input signals P, O, and R P
and output a 1 if, and only if, all three of P, Q, and b. OR
R have the same value. o w o
24. The lights in a classroom are controlled by two 29. a.
switches: one at the back of the room and one at P
the front. Moving either switch to the opposite AND
o . . . Q
position turns the lights off if they are on and on if
they are off. Assume the lights have been installed NOT
so that when both switches are in the down posi- AND »
tion, the lights are off. Design a circuit to control
the switches.
) AND
25. An alarm system has three different control panels NOT
in three different locations. To enable the system,
switches in at least two of the panels must be in b. p
the on position. If fewer than two are in the on
position, the system is disabled. Design a circuit to Q
control the switches. For the circuits corresponding to the Boolean expressions
Use the properties listed in Theorem 2.1.1 to show that in each of 30 and 31 there is an equivalent circuit with at
each pair of circuits in 26-29 have the same input/output most two logic gates. Find such a circuit.
table. (Find the Boolea.n express.lons for the circuits and 30. (PAQ)V (~P A Q) (~PA~Q)
show that they are logically equivalent when regarded as
statement forms.) 3. (~PA~Q)V(~PANQO)V(PN~Q)
26. a. p_—_| 32. The Boolean expression for the circuit in

AND

Example 2.4.5 is
PANOAR)V(PAN~OQAR)V(PA~QN~R)

b. p (a disjunctive normal form). Find a circuit with at
0 @7 most three logic gates that is equivalent to this circuit.

33. a. Show that for the Sheffer stroke

b}

PAQ=(P|O|(P|O).
P ’ b. Use the results of Example 2.4.7 and part (a)
L AND above to write P A (~Q \/ R) using only
AND w o Sheffer strokes.
0
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34. Show that the following logical equivalences hold c. PAQ=P|P) Q]| O0O
for the Peirce arrow |, where P | Q = ~(P v Q). H d. Write P — Q using Peirce arrows only.

. ~P=P|P

e. Write P <> Q using Peirce arrows only.

b. PvO=PlO | PO

ANSWERS FOR TEST YOURSELF

1. the output signal(s) that correspond to all possible the input signals 3. outputs a 1 for exactly one particular
combinations of input signals to the circuit 2. a Boolean combination of input signals and outputs 0’s for all other
expression that represents the input signals as variables combinations 4. they have the same input/output table
and indicates the successive actions of the logic gates on 5.NOT; AND 6. NOT; OR

BXEA Application: Number Systems

and Circuits for Addition

Counting in binary is just like counting in decimal if you are all thumbs. —Glaser and Way

In elementary school, you learned the meaning of decimal notation: that to interpret a
string of decimal digits as a number, you mentally multiply each digit by its place value.
For instance, 5,049 has a 5 in the thousands place, a 0 in the hundreds place, a 4 in the tens
place, and a 9 in the ones place. Thus

5,049 = 5-(1,000) +0-(100) +4-(10) +9-(1).
Using exponential notation, this equation can be rewritten as
5,049 = 5-10°+0-10*+4-10" +9-10".

More generally, decimal notation is based on the fact that any positive integer can be writ-
ten uniquely as a sum of products of the form

d-10",

where each 7 is a nonnegative integer and each d is one of the decimal digits O, 1, 2, 3, 4,
5, 6,7, 8, or 9. The word decimal comes from the Latin root deci, meaning “ten.” Decimal
(or base 10) notation expresses a number as a string of digits in which each digit’s posi-
tion indicates the power of 10 by which it is multiplied. The right-most position is the ones
place (or 10° place), to the left of that is the tens place (or 10" place), to the left of that is the
hundreds place (or 10% place), and so forth, as illustrated below.

Place 10° 10% 10! 10°
thousands hundreds tens ones
Decimal Digit 5 0 4 9

Binary Representation of Numbers

There is nothing sacred about the number 10; we use 10 as a base for our usual number
system because we happen to have ten fingers. In fact, any integer greater than 1 can serve
as a base for a number system. In computer science, base 2 notation, or binary notation,
is of special importance because the signals used in modern electronics are always in one
of only two states. (The Latin root bi means “two.”)
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In Section 5.4, we show that any integer can be represented uniquely as a sum of prod-
ucts of the form

d-2",
where each n is an integer and each d is one of the binary digits (or bits) O or 1. For example,
27=16+8+2+1
=1-2'+1-2°+0- 22+ 1-2" +1-2°

In binary notation, as in decimal notation, we write just the binary digits, and not the
powers of the base. In binary notation, then,

-2 +1-22+0-22+1-2"+ 1.2

\ —1]|

2710 = 11011,

where the subscripts indicate the base, whether 10 or 2, in which the number is written.
The places in binary notation correspond to the various powers of 2. The right-most posi-
tion is the ones place (or 20 place), to the left of that is the twos place (or 2! place), to the
left of that is the fours place (or 2* place), and so forth, as illustrated below.

24 23 22 2! 20
Place . .
sixteens eights fours twos ones
Binary Digit 1 1 0 1 1

As in the decimal notation, leading zeros may be added or dropped as desired. For
example,

003,,=3,,=1-2"+1-2"= 11, = 011,.

Binary Notation for Integers from1to 9

Derive the binary notation for the integers from 1 to 9.

Solution 1,,= 2= 1
2,0 = 1-:2'+0-2"= 10,
3= 1-2'+1:2= 11,
4,0 = 1-2°40-2'+0-2" = 100,
5= 1-2°40-2'+1-2"= 101,
6,0 = 1-:2°+1-2'+0-2" = 110,
7o = 1:2°+1-2'+1-2"= 111,
8,=1-2"+0-2+0-2"+0-2" = 1000,
9,,=1-2"+0-2+0-2"+1-2" = 1001, |
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A list of powers of 2 is useful for doing binary-to-decimal and decimal-to-binary con-
versions. See Table 2.5.1.

TABLE 2.5.1 Powers of 2
Power of 2 20001 2% 1 28 | 27 |28 23 2t 28 222t 2
Decimal Form | 1024 | 512 | 256 | 128 | 64 | 32 | 16 8 4 2 1

EEINIPXER] Converting a Binary to a Decimal Number
Represent 110101, in decimal notation.
Solution 110101, = 1-2°+1-2*+0-2°+1-22+0-2" +1-2°
=32+16+4+1
=539

Alternatively, the schema below may be used.

YV o
5 0) b‘//\ ’b//oo ’»//b‘ \//r\/ Q//\
v v v v v v
1 1 0 1 0 1,
L 1.1= 1
0:2= 0
1-4= 4
0-8§ = 0
1-16 = 16
1-32 = 32
53 B

BENrTEEE] Converting a Decimal to a Binary Number

Represent 209 in binary notation.

Solution Use Table 2.5.1 to write 209 as a sum of powers of 2, starting with the highest
power of 2 that is less than 209 and continuing to lower powers.
Since 209 is between 128 and 256, the highest power of 2 that is less than 209 is 128. Hence

209, = 128 + a smaller number.

Now 209 — 128 = 81, and 81 is between 64 and 128, so the highest power of 2 that is less
than 81 is 64. Hence

209,, = 128 + 64 + a smaller number.
Continuing in this way, you obtain
209,, =128 +64+ 16+ 1
=1-27+1-2°40-2°+1-2*+0-2° +0-22+0-2' + 1-2°.

For each power of 2 that occurs in the sum, there is a 1 in the corresponding position
of the binary number. For each power of 2 that is missing from the sum, there is a O in the
corresponding position of the binary number. Thus

209,, = 11010001, m

Another procedure for converting from decimal to binary notation is discussed in
Section 5.1.
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A

Caution! Do not read
10, as “ten”; it is the num-
ber two. Read 10, as “one
oh base two.”

Example 2.5.4

Binary Addition and Subtraction

The computational methods of binary arithmetic are analogous to those of decimal arith-
metic. In binary arithmetic the number 2 (which equals 10, in binary notation) plays a role
similar to that of the number 10 in decimal arithmetic.

Addition in Binary Notation
Add 1101, and 111, using binary notation.

Solution Because 2, = 10, and 1,; = 1,, the translation of 1,,+1,; = 2/, to binary
notation is

+ 1,
10,

It follows that adding two 1’s together results in a carry of 1 when binary notation is used.
Adding three 1’s together also results in a carry of 1 since 3;, = 11, (“one one base two”).

Thus the addition can be performed as follows:

<— carry row

i
1

101,
+ 11 1,
1 01 0 0 [ |
Subtraction in Binary Notation
Subtract 1011, from 11000, using binary notation.
Solution 1In decimal subtraction the fact that 10,,—1,, = 9 is used to borrow across

several columns. For example, consider the following:

9 9
<« borrow row

1
- S 81

In binary subtraction it may also be necessary to borrow across more than one column.
But when you borrow a 1, from 10,, what remains is 1,.
10,
— 12
1
Thus the subtraction can be performed as follows:

0 1 1
k) k) 1 <« borrow row
11 0,

- 1011,
1101, =
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Circuits for Computer Addition

Consider the question of designing a circuit to produce the sum of two binary digits P
and Q. Both P and Q can be either 0 or 1. And the following facts are known:

12 + 12 = 102,

12"‘02 = 12 = 012,

02+12 = 12 = 012,
02"‘02 = 02 = 002

It follows that the circuit must have two outputs—one for the left binary digit (this
is called the carry) and one for the right binary digit (this is called the sum). The carry
output is 1 if both P and Q are 1; it is O otherwise. Thus the carry can be produced using
the AND-gate circuit that corresponds to the Boolean expression P A Q. The sum output
is 1 if either P or Q, but not both, is 1. The sum can, therefore, be produced using a circuit
that corresponds to the Boolean expression for exclusive or: (P Q) A ~(P A Q). (See
Example 2.4.3(a).) Hence, a circuit to add two binary digits P and Q can be constructed as
in Figure 2.5.1. This circuit is called a half-adder.

HALF-ADDER
Circuit Input/OutputTable
P P [0 Carry | Sum
OR 1 1 1 0
0 — w ) AND Sum 1 0 0 1
ﬂ 0 1 0 1
AND |— Carry 0 0 0 0

FIGURE 2.5.1 Circuit to Add P+ Q, Where P and Q Are Binary Digits

Now consider the question of how to construct a circuit to add two binary integers, each
with more than one digit. Because the addition of two binary digits may result in a carry to
the next column to the left, it may be necessary to add three binary digits at certain points.
In the following example, the sum in the right column is the sum of two binary digits, and,
because of the carry, the sum in the left column is the sum of three binary digits.

1 <— carry row
2
+ 11
110,

Thus, in order to construct a circuit that will add multidigit binary numbers, it is neces-
sary to incorporate a circuit that will compute the sum of three binary digits. Such a circuit
is called a full-adder. Consider a general addition of three binary digits P, Q, and R that
results in a carry (or left-most digit) C and a sum (or right-most digit) S.

P

+ 0
+ R
CS

The operation of the full-adder is based on the fact that addition is a binary operation:
Only two numbers can be added at one time. Thus P is first added to Q and then the result
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is added to R. For instance, consider the following addition:

1
i 02}1”02“”2 L+ 1, = 10,

+ 1,
10,

The process illustrated here can be broken down into steps that use half-adder circuits.

Step 1:

Step 2:

Add P and Q using a half-adder to obtain a binary number with two digits.
P
+ 0
GiS;

Add R to the sum C; S; of P and Q.

CiSy
+ R

To do this, proceed as follows:

Step 2a: Add R to S; using a half-adder to obtain the two-digit number C,S.

S
+ R
C,S

Then S is the right-most digit of the entire sum of P, Q, and R.

Step 2b: Determine the left-most digit, C, of the entire sum as follows: First note that it

is impossible for both C; and C, to be 1’s. For if C; = 1, then P and Q are both
1, and so §; = 0. Consequently, the addition of S; and R gives a binary number
C,S; where C, = 0. Next observe that C will be a 1 in the case that the addition
of P and Q gives a carry of 1 or in the case that the addition of S; (the right-most
digit of P+ Q) and R gives a carry of 1. In other words, C = 1 if, and only if,
C; = 1or C, = 1. It follows that the circuit shown in Figure 2.5.2 will compute
the sum of three binary digits.

FULL-ADDER

Circuit Input/Output Table
R G P|Q|R|C|S
half-adder #1 s OR ¢ 1 1 1 1 1

Q 1 1
C, 1711010
170110

half-adder #2

R s 110/0|0]|1
oj1|1]1]0
O/ 1]0]0/|1
0O/0]1]0]1
oOjo0jO0O|0]O

FIGURE 2.5.2 Circuit to Add P+ Q + R, Where P, Q, and R Are Binary Digits
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Two full-adders and one half-adder can be used together to build a circuit that will add
two three-digit binary numbers PQR and STU to obtain the sum WXYZ. This is illustrated
in Figure 2.5.3. Such a circuit is called a parallel adder. Parallel adders can be constructed
to add binary numbers of any finite length.

half-adder
C

\_ S,=Y

full-adder

S;=X
P full-adder

C3=W
FIGURE 2.5.3 A Parallel Adder to Add POR and STU to Obtain WXYZ

Two’s Complements and the Computer Representation
of Signed Integers

Typically a fixed number of bits is used to represent integers on a computer. One way to
do this is to select a particular bit, normally the left-most, to indicate the sign of the inte-
ger, and to use the remaining bits for its absolute value in binary notation. The problem
with this approach is that the procedures for adding the resulting numbers are somewhat
complicated and the representation of 0 is not unique. A more common approach is to use
“two’s complements,” which makes it possible to add integers quite easily and results in a
unique representation for 0. Bit lengths of 64 and (sometimes) 32 are most often used in
practice, but, for simplicity and because the principles are the same for all bit lengths, this
discussion will focus on a bit length of 8.

We will show how to use eight bits to represent the 256 integers from —128 through 127
and how to perform additions and subtractions within this system of numbers. When the
more realistic 32-bit two’s complements system is used, more than 4 billion integers can
be represented.

Definition

The 8-bit two’s complement for an integer a between —128 and 127 is the 8-bit

bi tation f a ifa=0
1nary representation 1or
Ve B—|a| ifa<o.

Thus the 8-bit representation for a nonnegative integer is the same as its 8-bit binary
representation. As a concrete example for the negative integer —46, observe that

(28— —46]),, = (256 — 46),, = 210, = (128 + 64 + 16 +2),, = 11010010...

and so the 8-bit two’s complement for —46 is 11010010.
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Example 2.5.6

For negative integers, however, there is a more convenient way to compute two’s com-
plements, which involves less arithmetic than applying the definition directly.

The 8-Bit Two’s Complement for a Negative Integer

The 8-bit two’s complement for a negative integer a that is at least —128 can be
obtained as follows:

 Write the 8-bit binary representation for |a|.

e Switch all the I’s to 0’s and all the O’s to 1’s. (This is called flipping, or comple-
menting, the bits.)

* Add 1 in binary notation.

Finding a Two’s Complement
Use the method described above to find the 8-bit two’s complement for —46.

Solution Write the 8-bit binary representation for | —46| (=46), switch all the 1’s to 0’s
and all the O0’s to 1’s, and then add 1.

|—46],, = 46,, = (32 +8+4+2),, = 00101110, 2L 11910001 2L 11010010.

Note that this is the same result as was obtained directly from the definition. |

The fact that the method for finding 8-bit two’s complements works in general depends
on the following facts:

1. The binary representation of 28— 1is 11111111,.

2. Subtracting an 8-bit binary number a from 11111111, switches all the 1’s to 0’s
and all the O’s to Is.

3. 28— |a| = [(2®— 1) —|a|]+1 for any number a.

Here is how the facts are used when a = —46:

L[] ]u]r]ar

loJoftfoft]1]1]o]el=

0’sand I’s are /
switched

N
[t foft]ojoloft]ee |

1 is added + |O|O|O|O|O|0|0|1|<—>+1

[t]1Jo1JoJoJt]o]=> 1

Because 127 is the largest integer represented in the 8-bit two’s complement system and
because 127,, = 011111115, all the 8-bit two’s complements for nonnegative integers have
a leading bit of 0. Moreover, because the bits are switched, the leading bit for all the nega-
tive integers is 1. Table 2.5.2 illustrates the 8-bit two’s complement representations for the
integers from —128 through 127.
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2.5 APPLICATION: NUMBER SYSTEMS AND CIRCUITS FOR ADDITION 101

TABLE 2.5.2
Decimal Form of
8-Bit Two’s Two’s Complement for
Integer Complement Negative Integers
127 ort1r1111
126 01111110
2 00000010
00000001
0 00000000
-1 11111111 28 _
=2 11111110 28 _»
-3 11111101 28_13
—127 10000001 28 127
—128 10000000 28 128

Observe that if the two’s complement procedure is used on 11010010, which is the two’s
complement for —46, the result is
11010010 2Pt 00101101 —Ls 00101110,
which is the two’s complement for 46. In general, if the two’s complement procedure is
applied to a positive or negative integer in two’s complement form, the result is the negative
(or opposite) of that integer. The only exception is the number —128. (See exercise 37a.)

To find the decimal representation of the negative integer with a given 8-bit two’s
complement:

e Apply the two’s complement procedure to the given two’s complement.

e Write the decimal equivalent of the result.

Finding a Number with a Given Two’s Complement
What is the decimal representation for the integer with two’s complement 101010017
Solution Since the left-most digit is 1, the integer is negative. Applying the two’s com-

plement procedure gives the following result:

Mt pro10110 —22Ls 01010111,

= (64+ 16+4+2+1)|0 = 8710 = |_87|10.

10101001

So the answer is —87. You can check its correctness by deriving the two’s complement of
—87 directly from the definition:

%= |=87]),p = (256 —87), = 169,, = (128 + 32+ 8+ 1),, = 10101001,. ™
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Addition and Subtraction with Integers
in Two’s Complement Form

The main advantage of a two’s complement representation for integers is that the same
computer circuits used to add nonnegative integers in binary notation can be used for both
additions and subtractions of integers in a two’s complement system of numeration. First
note that because of the algebraic identity

a—>b = a+ (—b) for all real numbers,

any subtraction problem can be changed into an addition one. For example, suppose you
want to compute 78 — 46. This equals 78 + (—46), which should give an answer of 32. To
see what happens when you add the numbers in their two’s complement forms, observe
that the 8-bit two’s complement for 78 is the same as the ordinary binary representation
for 78, which is 01001110 because 78 = 64 + 8 + 4 + 2, and, as previously shown, the 8-bit
two’s complement for —46 is 11010010. Adding the numbers using binary addition gives
the following:

[0t Toolali]i]o]n

+ [ TolTolo 1 o]~ «

t [ofojrfofojofofofem

The result has a carry bit of 1 in the ninth, or 28th, position, but if you discard it, you ob-
tain 00100000, which is the correct answer in 8-bit two’s complement form because, since
32 =28,

321() = 001000002

In general, if you add numbers in 8-bit two’s complement form and get a carry bit of
1 in the ninth, or 2%th position, you should discard it. Using this procedure is equivalent
to reducing the sum of the numbers “modulo 28 and it gives results that are correct in
ordinary decimal arithmetic as long as the sum of the two numbers is within the fixed-bit-
length system of integer representations you are using, in this case those between —128 and
127. The fact that this method produces correct results follows from general properties of
modular arithmetic, which is discussed at length in Section 8.4.

General Procedure for Using 8-Bit Two’s Complements to Add Two Integers

To add two integers in the range —128 through 127 whose sum is also in the range
—128 through 127:

e Convert both integers to their 8-bit two’s complement representations.

e Add the resulting integers using ordinary binary addition, discarding any carry bit
of 1 that may occur in the 28th position.

e Convert the result back to decimal form.

When integers are restricted to the range —128 through 127, you can easily
imagine adding two integers and obtaining a sum outside the range. For instance,
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(—87) + (—46) = —133, which is less than — 128 and, therefore, requires more than eight
bits for its representation. Because this result is outside the 8-bit fixed-length register
system imposed by the architecture of the computer, it is often labeled “overflow error.”
In the more realistic environment where integers are represented using 64 bits, they can
range from less than — 10" to more than 10" So a vast number of integer calculations
can be made without producing overflow error. And even if a 32-bit fixed integer length
is used, nearly 4 billion integers are represented within the system.

Detecting overflow error turns out to be quite simple. The 8-bit two’s complement sum
of two integers will be outside the range from — 128 through 127 if, and only if, the integers
are both positive and the sum computed using 8-bit two’s complements is negative, or if the
integers are both negative and the sum computed using 8-bit two’s complement is positive.
To see a concrete example for how this works, consider trying to add (—87) and (—46).
Here is what you obtain:

CTolifoli o oli]~

+|1|1|0|1|0|0|1|o|974@

tlofrfufrfujofu]r]

When you discard the 1 in the 28th position, you find that the leading digit of the result
is 0, which would mean that the number with the two’s complement representation for
the sum of two negative numbers would be positive. So the computer signals an over-
flow error.*

Hexadecimal Notation

It should now be obvious that numbers written in binary notation take up much more space
than numbers written in decimal notation. Yet many aspects of computer operation can
best be analyzed using binary numbers. Hexadecimal notation is even more compact than
decimal notation, and it is much easier to convert back and forth between hexadecimal and
binary notation than it is between binary and decimal notation. The word hexadecimal
comes from the Greek root hex-, meaning “six,” and the Latin root deci-, meaning “ten.”
Hence hexadecimal refers to “sixteen,” and hexadecimal notation is also called base 16
notation. Hexadecimal notation is based on the fact that any integer can be uniquely ex-
pressed as a sum of numbers of the form

d-16",

where each n is a nonnegative integer and each d is one of the integers from O to 15. In
order to avoid ambiguity, each hexadecimal digit must be represented by a single symbol.
The integers 10 through 15 are represented by the symbols A, B, C, D, E, and F. The 16
hexadecimal digits are shown in Table 2.5.3, together with their decimal equivalents and,
for future reference, their 4-bit binary equivalents.

*If the carry bit had not been discarded and if the resulting 9 bits could be processed using a “9-bit two’s
complement conversion procedure,” the result of 101111011 would convert to —133, which is the correct
answer. However, the computer signals an error because —133 is not representable within its 8-bit two’s
complement system.
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TABLE 2.5.3
Decimal Hexadecimal 4-Bit Binary Equivalent
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

Example 2.5.8

Convert 3CF ;4 to decimal notation.

Converting from Hexadecimal to Decimal Notation

Solution A schema similar to the one introduced in Example 2.5.2 can be used here.

e
" 7 N 4 7
K RZEN
31() Cl(} F16
I Il Il
31() 121[) 151()

P N

‘ L———15-1 = 15

So 3CF16 = 97510.

12- 16 =192
3-256= 768
97519

Now consider how to convert from hexadecimal to binary notation. In the example
below the numbers are rewritten using powers of 2, and the laws of exponents are applied.

The result suggests a general procedure.

© S
NP N
o o N N
8 &8 8
Cis Si6 016 Ass

L—1016=(2°+2)1 =2°+2
0-16' = 0-2¢ =0
5-16% = (224 1)-28 =204 28
12-16% = (23 + 22)-212 = 215 4 oM

since 10 = 23 + 2

since 16! = 24

since 5= 22+ 1,162 = (2*)2 = 28 and 22.28 = 210
since 12 = 23 + 22,162 = (2%)% = 212,

23.012 _ 215 and 22.912 _ 9l4
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2.5 APPLICATION: NUMBER SYSTEMS AND CIRCUITS FOR ADDITION 105

But

QP +2"M+ 2%+ 25+ 0+ 23 +2)
= 11000000 00000000, + 0101 00000000, by the rules for writing
+ 00000000, + 1010,  binary numbers.
So

C50A 4 = 1100 0101 0000 1010,

—_— —

Cis 516 016 A by the rules for adding
binary numbers.

The procedure illustrated in this example can be generalized. In fact, the following
sequence of steps will always give the correct answer.

To convert an integer from hexadecimal to binary notation:

e Write each hexadecimal digit of the integer in 4-bit binary notation.

e Juxtapose the results.

Converting from Hexadecimal to Binary Notation
Convert BO9F, to binary notation.

Solution B]ﬁ = 111() = 10112, 016 = 01() = 00002, 916 = 91() = 10012, and Fl() = 151() =
1111,. Consequently,
B 0 9 F

! ! ! !
1011 0000 1001 1111

and the answer is 10110000100111115. |

To convert integers written in binary notation into hexadecimal notation, reverse the
steps of the previous procedure. Note that the commonly used computer representation for
integers uses 32 bits. When these numbers are written in hexadecimal notation only eight
characters are needed.

To convert an integer from binary to hexadecimal notation:

e Group the digits of the binary number into sets of four, starting from the right and
adding leading zeros as needed.

¢ Convert the binary numbers in each set of four into hexadecimal digits. Juxtapose
those hexadecimal digits.

Converting from Binary to Hexadecimal Notation
Convert 100110110101001, to hexadecimal notation.

Solution First group the binary digits in sets of four, working from right to left and add-
ing leading O’s if necessary.

0100 1101 1010 1001.
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Convert each group of four binary digits into a hexadecimal digit.

0100 1101 1010 1001

! ! !
D A 9

Then juxtapose the hexadecimal digits.

DEIPRERIN Reading a Memory Dump

4DA9, n

The smallest addressable memory unit on most computers is one byte, or eight bits. In some
debugging operations a dump is made of memory contents; that is, the contents of each
memory location are displayed or printed out in order. To save space and make the output
easier on the eye, the hexadecimal versions of the memory contents are given, rather than
the binary versions. Suppose, for example, that a segment of the memory dump looks like

A3 BB 59 2E.

What is the actual content of the four memory locations?

Solution

A3l() = 1010001 12

BB, = 10111011,
591() = 0101 10012
2E,, = 00101110, [ ]
TEST YOURSELF
1. To represent a nonnegative integer in binary nota- 6. To find the 8-bit two’s complement of a negative

EXERCISE SET 2.5

tion means to write it as a sum of products of the
form where

. To add integers in binary notation, you use the

facts that 1, + 1, = and I, +1,+ 1, =

To subtract integers in binary notation, you use the
facts that 10, — 1, = and 11,—1,= .

A half-adder is a digital logic circuit that
and a full-adder is a digital logic circuit that

]

If a is an integer with —128 =< a =< 127, the 8-bit
two’s complement of a is ifa = 0and is
ifa<O.

integer a that is at least —128, you
and

y —————

7. To add two integers in the range —128 through
127 whose sum is also in the range —128 through
127, you and

8. To represent a nonnegative integer in hexadecimal
notation means to write it as a sum of products of
the form , where

9. To convert a nonnegative integer from hexadeci-
mal to binary notation, you and

Represent the decimal integers in 1-6 in binary notation.

1.
4.

19 2. 55 3. 287
458 5. 1609 6. 1424

Represent the integers in 7-12 in decimal notation.
7. 1110, 8. 10111, 9. 110110,
10. 1100101, 1. 1000111, 12. 1011011,
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Perform the arithmetic in 13-20 using binary notation.

13. 1011, 14. 1001,
+ 101, + 1011,
15. 101101, 16. 110111011,
+ 11101, 41001011010,
17. 10100, 18. 11010,
— 1101, — 1101,
. 101101, 20. 1010100,
— 10011, - 10111,

21. Give the output signals S and 7 for the circuit
shown below if the input signals P, Q, and R are
as specified. Note that this is not the circuit for a
full-adder.

a. P=1,0=1,R=1
b. P=0,0=1,R=0
. P=1,0=0,R=1
P G
half-adder #1 |_
0— 51 AND }—§
L Cof
half-adder #2
R —————T

22. Add 11111111, + 1, and convert the result to deci-
mal notation, to verify that 11111111, = 28-1) 10~

Find the 8-bit two’s complements for the integers in 23-26.
23. —23 24, —67 25. —4 26. —115

Find the decimal representations for the integers with the
8-bit two’s complements given in 27-30.

27. 11010011 28. 10011001

29. 11110010 30. 10111010

Use 8-bit two’s complements to compute the sums in 31-36.
31. 57+ (—118) 32. 62+ (—18)

33. (—6)+(—73) 34. 89+ (—55)

35. (—15)+(—46) 36. 123+ (—94)

ANSWERS FOR TEST YOURSELF

37. a. Show that when you apply the 8-bit two’s com-
plement procedure to the 8-bit two’s complement
for —128, you get the 8-bit two’s complement
for —128.

*b. Show that if a, b, and a + b are integers in the
range 1 through 128, then

B+ 2= b =28~ (@+b)+28=28+2".

Explain why it follows that if integers a, b, and
a+b are all in the range 1 through 128, then
the 8-bit two’s complement of (—a) + (—b) is a
negative number.

Convert the integers in 38-40 from hexadecimal to deci-
mal notation.

38. A2BC, 39. EOD 40. 39EB,,

Convert the integers in 41-43 from hexadecimal to binary
notation.

41. 1COABE,,  42. B53DF8,, 43. 4ADF83,,

Convert the integers in 44-46 from binary to hexadeci-
mal notation.

44. 00101110,
46. 11001001011100,

45. 1011011111000101,

47. Octal Notation: In addition to binary and
hexadecimal, computer scientists also use

octal notation (base 8) to represent numbers.

Octal notation is based on the fact that any

integer can be uniquely represented as a sum

of numbers of the form d-8", where each n

is a nonnegative integer and each d is one of

the integers from O to 7. Thus, for example,

5073, = 5-8°+0-8°+7-8' +3-8° = 2619,

a. Convert 615025 to decimal notation.

b. Convert 207635 to decimal notation.

c. Describe methods for converting integers from
octal to binary notation and the reverse that are
similar to the methods used in Examples 2.5.9
and 2.5.10 for converting back and forth from
hexadecimal to binary notation. Give examples
showing that these methods result in correct
answers.

1.d-2";d = 0 ord = 1, and n is a nonnegative integer
2.105; 11, 3.15; 10, 4. outputs the sum of any two
binary digits; outputs the sum of any three binary

digits 5. the 8-bit binary representation of a; the 8-bit
binary representation of 28—4a 6. write the 8-bit binary
representation of a; flip the bits; add 1 in binary notation

7. convert both integers to their 8-bit two’s complements;
add the results using binary notation; truncate any leading
1; convert back to decimal form 8.d-16";d =0,1,2,...
9,A, B, C,D, E, F,and n is a nonnegative integer 9. write
each hexadecimal digit in 4-bit binary notation; juxtapose
the results
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THE LOGIC OF QUANTIFIED
STATEMENTS

In Chapter 2 we discussed the logical analysis of compound statements—those made of
simple statements joined by the connectives ~, A, \/, —, and <>. Such analysis casts light
on many aspects of human reasoning, but it cannot be used to determine validity in the
majority of everyday and mathematical situations. For example, the argument

All men are mortal.
Socrates is a man.

.. Socrates is mortal.

is intuitively perceived as correct. Yet its validity cannot be derived using the methods out-
lined in Section 2.3. To determine validity in examples like this, it is necessary to separate
the statements into parts in much the same way that you separate declarative sentences
into subjects and predicates. And you must analyze and understand the special role played
by words that denote quantities such as “all” or “some.” The symbolic analysis of predi-
cates and quantified statements is called the predicate calculus. The symbolic analysis
of ordinary compound statements (as outlined in Sections 2.1-2.3) is called the statement
calculus (or the propositional calculus).

IEAl Predicates and Quantified Statements |

. it was not till within the last few years that it has been realized how fundamental
any and some are to the very nature of mathematics. —A. N. Whitehead (1861-1947)

As noted in Section 2.1, the sentence “x*+2 = 117 is not a statement because it may be
either true or false depending on the value of x. Similarly, the sentence “x+y > 0 is not a
statement because its truth value depends on the values of the variables x and y.

In grammar, the word predicate refers to the part of a sentence that gives information
about the subject. In the sentence “James is a student at Bedford College,” the word James
is the subject and the phrase is a student at Bedford College is the predicate. The predicate
is the part of the sentence from which the subject has been removed.

In logic, predicates can be obtained by removing some or all of the nouns from a state-
ment. For instance, let P stand for “is a student at Bedford College” and let Q stand for “is a
student at.” Then both P and Q are predicate symbols. The sentences “x is a student at Bed-
ford College” and “x is a student at y”” are symbolized as P(x) and as Q(x, y), respectively,
where x and y are predicate variables that take values in appropriate sets. When concrete
values are substituted in place of predicate variables, a statement results. For simplicity,
we define a predicate to be a predicate symbol together with suitable predicate variables.
In some other treatments of logic, such objects are referred to as propositional functions
or open sentences.

108
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set of all x in D such that
P(x).”
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Definition

A predicate is a sentence that contains a finite number of variables and becomes
a statement when specific values are substituted for the variables. The domain of a
predicate variable is the set of all values that may be substituted in place of the variable.

Finding Truth Values of a Predicate

Let P(x) be the predicate “x? > x” with domain the set R of all real numbers. Write
P(2), P(%), and P(—%), and indicate which of these statements are true and which are false.

Solution

PQ2): 2*>2, or 4>2. True.

p(} AR Lol ma
ol - - r — . .
2 2) T Ty T

When an element in the domain of the variable of a one-variable predicate is substituted
for the variable, the resulting statement is either true or false. The set of all such elements
that make the predicate true is called the truth set of the predicate.

Definition

If P(x) is a predicate and x has domain D, the truth set of P(x) is the set of all ele-
ments of D that make P(x) true when they are substituted for x. The truth set of
P(x) is denoted

{x €D |PW)}.

Finding the Truth Set of a Predicate

Let Q(n) be the predicate “n is a factor of 8.” Find the truth set of Q(n) if
a. the domain of n is Z", the set of all positive integers

b. the domain of 7 is Z, the set of all integers.

Solution

a. The truth set is {1, 2, 4, 8} because these are exactly the positive integers that
divide 8 evenly.

b. The truth setis {1, 2,4, 8, —1, —2, —4, —8} because the negative integers — 1, —2, —4,
and —8 also divide into 8 without leaving a remainder. |

The Universal Quantifier: Y

One sure way to change predicates into statements is to assign specific values to all their
variables. For example, if x represents the number 35, the sentence “x is (evenly) divisible
by 5” is a true statement since 35 = 5-7. Another way to obtain statements from predicates
is to add quantifiers. Quantifiers are words that refer to quantities such as “some” or “all”
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and tell for how many elements a given predicate is true. The formal concept of quantifier
was introduced into symbolic logic in the late nineteenth century by the American philoso-
pher, logician, and engineer Charles Sanders Peirce and, independently, by the German
logician Gottlob Frege.

The symbol V is called the universal quantifier. Depending on the context, it is read as

“for every,” “for each,” “for any,” “given any,” or “for all.” For example, another way to express
the sentence “Every human being is mortal” or “All human beings are mortal” is to write

V human beings x, x is mortal,

which you would read as “For every human being x, x is mortal.” If you let H be the set of
all human beings, then you can symbolize the statement more formally by writing

Fine Art Images/Glow Images

' Vx € H, x is mortal.
Charles Sanders Peirce

(1839-1914) Think of the symbol x as an individual but generic object, with all the properties shared
by every human being but with no other properties. Because x is individual, even if you
Note Think “for every” read V as “for all,” you should use the singular verb and say, “For all x in H, x is mortal”

when you see the symbol V. rather than “For all x in H, x are mortal.”

In a universally quantified sentence the domain of the predicate variable is generally
indicated either between the V symbol and the variable name (as in V human being x) or
immediately following the variable name (as in Vx € H). In sentences containing a mix-
ture of symbols and words, the V symbol can refer to two or more variables. For instance,
you could symbolize “For all real numbers x and y, x +y = y+x.” as “V real numbers x
andy, x+y=y+x"*

Sentences that are quantified universally are defined as statements by giving them the
truth values specified in the following definition:

Def n

Let O(x) be a predicate and D the domain of x. A universal statement is a statement
of the form “Vx € D, Q(x).” It is defined to be true if, and only if, Q(x) is true for
each individual x in D. It is defined to be false if, and only if, Q(x) is false for at least
one x in D. A value for x for which Q(x) is false is called a counterexample to the
Gottlob Frege universal statement.

(1848-1925)

Pictorial Press Ltd./Alamy Stock Photo

EENTEERE]  Truth and Falsity of Universal Statements
a. Let D ={1, 2, 3,4, 5}, and consider the statement
Vx €D, ¥ =x
Write one way to read this statement out loud, and show that it is true.
b. Consider the statement
vx € R, 2 =x.

Find a counterexample to show that this statement is false.

*More formal versions of symbolic logic would require a separate V for each variable:
“vx € R(Vy E R(x+y =y+x)).”
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Solution

a. “For every x in the set D, X is greater than or equal to x.” The inequalities below show

that “x~ = x” is true for each individual x in D.
1’=1, 2*)=2,  3'=3,  4=4 5’=5.

Hence “Vx € D, ¥ = x7is true.

b. Counterexample: The statement claims that x> = x for every real number x. But when

1
X = 5, for example,

AR
2 47 2

Hence “Vx € R, X% = x” is false.

The technique used to show the truth of the universal statement in Example 3.1.3(a) is
called the method of exhaustion. It consists of showing the truth of the predicate sepa-
rately for each individual element of the domain. (The idea is to exhaust the possibilities
before you exhaust yourself!) This method can, in theory, be used whenever the domain
of the predicate variable is finite. In recent years the prevalence of digital computers has
greatly increased the convenience of using the method of exhaustion. Computer expert
systems, or knowledge-based systems, use this method to arrive at answers to many of
the questions posed to them. Because most mathematical sets are infinite, however, the
method of exhaustion can rarely be used to derive general mathematical results.

The Existential Quantifier: 3

The symbol 3 denotes “there exists” and is called the existential quantifier. For example,

the sentence “There is a student in Math 140” can be written as

Note Think “there Ja person p such that p is a student in Math 140,

exists” when you see the

symbol 3.

or, more formally,

dp € P such that p is a student in Math 140,

where P is the set of all people. The domain of the predicate variable is generally indicated
either between the 3 symbol and the variable name or immediately following the variable
name, and the words such that are inserted just before the predicate. Some other expres-
sions that can be used in place of there exists are there is a, we can find a, there is at least
one, for some, and for at least one. In a sentence such as “d integers m and n such that

m+n = m-n,” the 3 symbol is understood to refer to both m and n.*

Sentences that are quantified existentially are defined as statements by giving them the

truth values specified in the following definition.

Definition

Let O(x) be a predicate and D the domain of x. An existential statement is a state-
ment of the form “Jx € D such that Q(x).” It is defined to be true if, and only if, O(x)
is true for at least one x in D. It is false if, and only if, Q(x) is false for all x in D.

*In more formal versions of symbolic logic, the words such that are not written out (although they are under-

stood) and a separate 3 symbol is used for each variable: “IJm € Z (In € Z(m +n = m-n)).”
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SEJENRY  Truth and Falsity of Existential Statements

Note In ordinary English,
the fourth statement in
part (c) may be taken to
mean that there are at least
two positive integers equal
to their own squares. In
mathematics, we under-
stand the last two state-
ments in part (c) to mean
the same thing.

a. Consider the statement
Im € Z such that m* = m.
Write one way to read this statement out loud, and show that it is true.
b. Let E = {5, 6,7, 8} and consider the statement
Im € E such that m*> = m.
Show that this statement is false.

Solution

a. “There is at least one positive integer m such that m®> = m.” Observe that 1> = 1. Thus

. .. . + .
“m* = m” is true for a positive integer m, and so “Im € Z" such that m?> = m” is true.

b. Note that m* = m is not true for any integers m from 5 through 8:
57=25#5 6°=36#6, T°=49#7, 8 =064+38.
Thus “Im € E such that m> = m” is false. |

Formal vs. Informal Language

It is important to be able to translate from formal to informal language when trying to
make sense of mathematical concepts that are new to you. It is equally important to be able
to translate from informal to formal language when thinking out a complicated problem.

Translating from Formal to Informal Language

Rewrite the following formal statements in a variety of equivalent but more informal ways.
Do not use the symbol V or 3.

a. VxER,xZEO.
b. VxER,xzi—l.
¢. 3m € Z" such that m* = m.

Solution

a. Every real number has a nonnegative square.
Or: All real numbers have nonnegative squares.
Or: Any real number has a nonnegative square.
Or: The square of each real number is nonnegative.

b. All real numbers have squares that do not equal —1.
Or: No real numbers have squares equal to —1.
(The words none are or no ... are are equivalent to the words all are not.)

c. There is a positive integer whose square is equal to itself.
Or: We can find at least one positive integer equal to its own square.
Or: Some positive integer equals its own square.
Or: Some positive integers equal their own squares. |

Another way to restate universal and existential statements informally is to place the
quantification at the end of the sentence. For instance, instead of saying “For any real num-
ber x, x* is nonnegative,” you could say “x? is nonnegative for any real number x.” In such
a case the quantifier is said to “trail” the rest of the sentence.
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Note The following two
sentences mean the same
thing: “All triangles have
three sides” and “Every

triangle has three sides.”

Example 3.1.8

Example 3.1.9

3.1 PREDICATES AND QUANTIFIED STATEMENTS | 113

Trailing Quantifiers

Rewrite the following statements so that the quantifier trails the rest of the sentence.
a. For any integer n, 2n is even.

b. There exists at least one real number x such that x* < 0.

Solution

a. 2n is even for any integer n.

b. x*> = 0 for some real number x.
Or: x* = 0 for at least one real number x. [ ]

Translating from Informal to Formal Language

Rewrite each of the following statements formally. Use quantifiers and variables.
a. All triangles have three sides.

b. No dogs have wings.

c. Some programs are structured.

Solution

a. Vtriangle ¢,  has three sides.
Or: ¥Vt € T, t has three sides (where T is the set of all triangles).

b. V dog d, d does not have wings.
Or: ¥d € D, d does not have wings (where D is the set of all dogs).

c. Japrogram p such that p is structured.
Or: 3p € P such that p is structured (where P is the set of all programs). |

Universal Conditional Statements

A reasonable argument can be made that the most important form of statement in math-
ematics is the universal conditional statement:

Vx, if P(x) then Q(x).

Familiarity with statements of this form is essential if you are to learn to speak mathematics.

Writing Universal Conditional Statements Informally
Rewrite the following statement informally, without quantifiers or variables.

Vx € R, if x > 2 then x> > 4.

Solution If a real number is greater than 2, then its square is greater than 4.
Or: Whenever a real number is greater than 2, its square is greater than 4.
Or: The square of any real number greater than 2 is greater than 4.
Or: The squares of all real numbers greater than 2 are greater than 4. |

Writing Universal Conditional Statements Formally
Rewrite each of the following statements in the form

v if then
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a. If areal number is an integer, then it is a rational number.
b. All bytes have eight bits.
c. No fire trucks are green.

Solution

a. V real number x, if x is an integer, then x is a rational number.
Or:Vx € R,if x € Zthen x € Q.

b. Vx, if x is a byte, then x has eight bits.

c. Vx, if x is a fire truck, then x is not green.

It is common, as in (b) and (c) above, to omit explicit identification of the domain of
predicate variables in universal conditional statements. |

Careful thought about the meaning of universal conditional statements leads to another
level of understanding for why the truth table for an if-then statement must be defined as it
is. Consider again the statement

V real number x, if x > 2 then x* > 4.
Your experience and intuition tell you that this statement is true. But that means that
If x > 2 then x* > 4

must be true for every single real number x. Consequently, it must be true even for values
of x that make its hypothesis “x > 2 false. In particular, both statements

If1>2then1>>4 and If —3 > 2then (—3)*>4

must be true. In both cases the hypothesis is false, but in the first case the conclusion
“12> 47 s false, and in the second case the conclusion “(—3)2 > 4” is true. Hence, if an
if-then statement has a false hypothesis, we have to interpret it as true regardless of whether
its conclusion is true or false.

Note also that the definition of valid argument is a universal conditional statement:

For every combination of truth values for the component statements,
if the premises are all true then the conclusion is also true.

Equivalent Forms of Universal and Existential Statements

Observe that the two statements “V real number x, if x is an integer then x is rational” and
“Y integer x, x is rational” mean the same thing because the set of integers is a subset of
the set of real numbers. Both have informal translations “All integers are rational.” In fact,
a statement of the form

Vx € U, if P(x) then Q(x)
can always be rewritten in the form
Vx € D, Q(x)

by narrowing U to be the subset D consisting of all values of the variable x that make P(x)
true. Conversely, a statement of the form

Vx € D, Q(x)
can be rewritten as

Vx, if x is in D then Q(x).
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Equivalent Forms for Universal Statements

Rewrite the following statement in the two forms “Vx, if then ” and
“v X, ”: All squares are rectangles.
Solution Vx, if x is a square then x is a rectangle.

V square x, x is a rectangle. |

Similarly, a statement of the form “Jx such that P(x) and Q(x)” can be rewritten as
“dx € D such that Q(x),” where D is the set of all x for which P(x) is true.

Equivalent Forms for Existential Statements

A prime number is an integer greater than 1 whose only positive integer factors are it-
self and 1. Consider the statement “There is an integer that is both prime and even.” Let
Prime(n) be “n is prime” and Even(n) be “n is even.” Use the notation Prime(n) and Even(n)
to rewrite this statement in the following two forms:

a. dn such that A
b. d n such that
Solution

a. dn such that Prime(n) A Even(n).

b. Two answers: 3 a prime number n such that Even(n).
dan even number n such that Prime(n). [ ]

Bound Variables and Scope

Consider the statement “For every integer x, x> = 0.” First note that you don’t have to call
the variable x. You can use any name for it as long as you do so consistently. For instance,
all the following statements have the same meaning:

For every integer x, x*=0. For every integer 7, n’>=0. For every integer s, 5= 0.

In each case the variable simply holds a place for any element in the set of all integers. Each
way of writing the statement says that whatever integer you might choose, when you square
it the result will be nonnegative. It is important to note, however, that once you finish writ-
ing the statement, whatever symbol you chose to use in it can be given an entirely different
meaning when used in a different context.

For example, consider the following statements:

(1) For every integer x, ¥ =0.
(2) There exists a real number x such that x* = 8.

Statements (1) and (2) both call the variable x, but the x in Statement (1) serves a different
function from the x in Statement (2). We say that the variable x is bound by the quantifier
that controls it and that its scope begins when the quantifier introduces it and ends at the
end of the quantified statement.

The way variables are used in mathematics is similar to the way they are used in com-
puter programming. A variable in a computer program also serves as a placeholder in the
sense that it creates a location in computer memory (either actual or virtual) into which
its values can be placed. In addition the way it can be bound in a program is similar to the
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way that a mathematical variable can be bound in a statement. For example, consider the
following two examples in Python:

Program1 Program 2
def £(): def £():
X = "Hi" S = "Hi"
print X print S
def g(): def g():
X = "Bye” S = "Bye”
print X print S
£() £()
g() g()

The output for both programs is

Hi
Bye

In each case the variable—whether X or S—is local to the function where it is defined. It
is created each time the function is called and destroyed as soon as the call is complete.
The local variable is bound by the function that defines it, and its scope is restricted to
that function. Outside of the function definition the variable name can be used for any
other purpose. That is why the functions f and g are allowed to use the same name for the
variable in their definitions and why f and g define the same functions in both programs.

Implicit Quantification
Consider the statement
If a number is an integer, then it is a rational number.

As shown earlier, this statement is equivalent to a universal statement. However, it does
not contain the telltale word all or every or any or each. The only clue to indicate its univer-
sal quantification comes from the presence of the indefinite article a. This is an example
of implicit universal quantification.

Existential quantification can also be implicit. For instance, the statement “The number
24 can be written as a sum of two even integers” can be expressed formally as “J even
integers m and n such that 24 = m+n.”

Mathematical writing contains many examples of implicitly quantified statements.
Some occur, as in the first example above, through the presence of the word a or an. Oth-
ers occur in cases where the general context of a sentence supplies part of its meaning. For
example, in an algebra course in which the letter x is always used to indicate a real number,
the predicate

If x > 2 then x> > 4
is interpreted to mean the same as the statement
For every real number x, if x > 2 then x> 4.

Mathematicians often use a double arrow to indicate implicit quantification symbolically.
For instance, they might express the above statement as

x>2 = ¥>4.
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Let P(x) and Q(x) be predicates and suppose the common domain of x is D.

¢ The notation P(x) = Q(x) means that every element in the truth set of P(x) is in the
truth set of Q(x), or, equivalently, Vx, P(x) — Q(x).

e The notation P(x) < Q(x) means that P(x) and Q(x) have identical truth sets, or,
equivalently, Vx, P(x) <> Q(x).

Using=and <

Let
Q(n) be “n is a factor of 8,”
R(n) be “n is a factor of 4,
S(m)be “n<5S5andn # 3,
and suppose the domain of n is Z*, the set of positive integers. Use the = and <> symbols
to indicate true relationships among Q(n), R(n), and S(n).
Solution

1. As noted in Example 3.1.2, the truth set of Q(n) is {1, 2, 4, 8} when the domain of n
isZ". By similar reasoning the truth set of R(n) is {1, 2, 4}. Thus it is true that every
element in the truth set of R(n) is in the truth set of Q(n), or, equivalently, Vn in VAR
R(n) — Q(n). So R(n) = Q(n), or, equivalently

nisafactorof 4 = nis afactor of 8.
2. The truth set of S(n) is {1, 2, 4}, which is identical to the truth set of R(n), or, equiva-
lently, Vn in Z+, R(n) <> S(n). So R(n) <> S(n), or, equivalently,
nisafactorof4 < n<<5andn # 3.
Moreover, since every element in the truth set of S(n) is in the truth set of Q(n), or,
equivalently, Vz in Z+, S(n) — Q(n), then S(n) = Q(n), or, equivalently,
n<5andn #3 = nisafactor of 8. [ |

Some questions of quantification can be quite subtle. For instance, a mathematics text
might contain the following:

a. (x+ 1> =x>+2x+1. b. Solve 3x—4 = 5.

Although neither (a) nor (b) contains explicit quantification, the reader is supposed to un-
derstand that the x in (a) is universally quantified, whereas the x in (b) is existentially
quantified. When the quantification is made explicit, (a) and (b) become

a. V real number x, (x + 1)2 = x>+ 2x+1.

b. Show (by finding a value) that 3 a real number x such that 3x —4 = 5.

The quantification of a statement—whether universal or existential—crucially deter-
mines both how the statement can be applied and what method must be used to establish its
truth. Thus it is important to be alert to the presence of hidden quantifiers when you read
mathematics so that you will interpret statements in a logically correct way.

Tarski’s World

Tarski’s World is a computer program developed by information scientists Jon Barwise
and John Etchemendy to help teach the principles of logic. It is described in their book

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203



18 CHAPTER3 THE LOGIC OF QUANTIFIED STATEMENTS

The Language of First-Order Logic, which is accompanied by a CD containing the pro-
gram Tarski’s World, named after the great logician Alfred Tarski.

ElIIEANREY Investigating Tarski’s World

The program for Tarski’s World provides pictures of blocks of various sizes, shapes, and
= colors, which are located on a grid. Shown in Figure 3.1.1 is a picture of an arrangement of
objects in a two-dimensional Tarski world. The configuration can be described using logical
operators and—for the two-dimensional version—notation such as Triangle(x), meaning “x
is a triangle,” Blue(y), meaning ““y is blue,” and RightOf(x, y), meaning “x is to the right of
y (but possibly in a different row).” Individual objects can be given names such as a, b, or c.

Alfred Tarski A °
(1902-1983)

A G
B
NCIE
‘

FIGURE 3.1.1

Briscoe Center for American Histor

Determine the truth or falsity of each of the following statements. The domain for all vari-
ables is the set of objects in the Tarski world shown in Figure 3.1.1.

a. Vt, Triangle(r) — Blue(?).

b. Vx, Blue(x) — Triangle(x).

c. dy such that Square(y) A RightOf(d, ).
d. Jz such that Square(z) A Gray(z).

Solution
a. This statement is true: Every triangle is blue.

b. This statement is false. As a counterexample, note that e is blue and it is not a triangle.

o

. This statement is true because e and 4 are both square and d is to their right.

d. This statement is false: All the squares are either blue or black. |

TEST YOURSELF

Answers to Test Yourself questions are located at the end of each section.

1. If P(x) is a predicate with domain D, the truth set 4. A statement of the form Vx € D, Q(x) is true if,
of P(x) is denoted . We read these symbols and only if, Q(x) is for
out loud as

5. A statement of the form 9x € D such that Q(x) is
2. Some ways to express the symbol V in words are true if, and only if, Q(x) is for

3. Some ways to express the symbol 3 in words are
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1. A menagerie consists of seven brown dogs, two

black dogs, six gray cats, ten black cats, five blue

birds, six yellow birds, and one black bird. Deter-

mine which of the following statements are true

and which are false.

a. There is an animal in the menagerie that is red.

b. Every animal in the menagerie is a bird or a
mammal.

c. Every animal in the menagerie is brown or

. Find the truth set of each predicate.

a. Predicate: 6/d is an integer, domain: Z
b. Predicate: 6/d is an integer, domain: VA
c. Predicate: 1 = x*> < 4, domain: R

d. Predicate: 1 = x*> < 4, domain: Z

. Let B(x) be “—10 < x < 10.” Find the truth set of

B(x) for each of the following domains.
a. Z b. Z© c. The set of all even integers

gray or black. 7. Let S be the set of all strings of length 3 consist-
d. There is an animal in the menagerie that is ing of a’s, b’s, and c¢’s. List all the strings in S that
neither a cat nor a dog. satisfy the following conditions:
e. No animal in the menagerie is blue. 1. Every string in S begins with b.
f. There are in the menagerie a dog, a cat, and a 2. No string in S has more than one c.
bird that all have the same color. 8. Let T be the set of all strings of length 3 consisting

. Indicate which of the following statements are true
and which are false. Justify your answers as best
as you can.

a. Every integer is a real number.

of 0’s and I’s. List all the strings in 7 that satisfy

the following conditions:

1. For every string s in 7, the second character
of s is I or the first two characters of s are

b. 0 is a positive real number. the same.
c. For every real number 7, —r is a negative real 2. No string in 7 has all three characters the
number. same.

d. Every real number is an integer.

. Let R(m, n) be the predicate “If m is a factor of n’
then m is a factor of n,”” with domain for both m
and n being Z the set of integers.
a. Explain why R(m, n) is false if m = 25 and

n = 10.

Find counterexamples to show that the statements in
9-12 are false.

9.

10

vx ER, x= 1/x.

Va € Z, (a— 1)/a is not an integer.

e -
b. Give values different from those in part (a) for 11V positive integers m and n, m-n = m + n.

which R(m, n) is false. 12. Vreal numbersxandy, Vx+y = Vax+ \/y .
c. Explain why R(m, m)is true if m = 5 and 13. Consider the following statement:

n = 10.
d. Give values different from those in part (c) for
which R(m, n) is true.

. Let Q(x, y) be the predicate “If x < y then <y

with domain for both x and y being R the set of
real numbers.

V basketball player x, x is tall.

Which of the following are equivalent ways of
expressing this statement?

a. Every basketball player is tall.

b. Among all the basketball players, some

a. Explain why Q(x, y) is false if x = —2 and are tall.
y=1 c. Some of all the tall people are basketball
b. Give values different from those in part (a) for players.

which Q(x, y) is false.
c. Explain why Q(x, y) is true if x = 3 and y = 8.
d. Give values different from those in part (c) for
which Q(x, y) is true.

d. Anyone who is tall is a basketball player.

All people who are basketball players are tall.

f. Anyone who is a basketball player is a tall
person.

i

*For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial solution is
given. The symbol * signals that an exercise is more challenging than usual.
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Consider the following statement:
Jx € R such that x* = 2.

Which of the following are equivalent ways of

expressing this statement?

a. The square of each real number is 2.

b. Some real numbers have square 2.

c. The number x has square 2, for some real
number x.

d. If xis a real number, then ©=2.

. Some real number has square 2.

f. There is at least one real number whose square
is 2.

(]

Rewrite the following statements informally in at
least two different ways without using variables or
quantifiers.

a. Vrectangle x, x is a quadrilateral.

b. Jaset A such that A has 16 subsets.

Rewrite each of the following statements in the

form “V X,

a. All dinosaurs are extinct.

b. Every real number is positive, negative, or
zero.

c. No irrational numbers are integers.

No logicians are lazy.

e. The number 2,147,581,953 is not equal to the
square of any integer.

f. The number —1 is not equal to the square of
any real number.

2

Rewrite each of the following in the form “3____
x such that

a. Some exercises have answers.

b. Some real numbers are rational.

Let D be the set of all students at your school, and

let M(s) be ““s is a math major,” let C(s) be “s is a

computer science student,” and let E(s) be “’s is an

engineering student.” Express each of the follow-

ing statements using quantifiers, variables, and the

predicates M(s), C(s), and E(s).

a. There is an engineering student who is a math
major.

b. Every computer science student is an engineer-
ing student.

c. No computer science students are engineering
students.

d. Some computer science students are also math
majors.

e. Some computer science students are engineer-
ing students and some are not.

19.

H 20.

21.

22.

23.

24,

25.

Consider the following statement:
V integer n, if n’ is even then 7 is even.

Which of the following are equivalent ways of

expressing this statement?

a. All integers have even squares and are even.

b. Given any integer whose square is even, that
integer is itself even.

c. For all integers, there are some whose square
is even.

d. Any integer with an even square is even.

e. If the square of an integer is even, then that
integer is even.

f. All even integers have even squares.

Rewrite the following statement informally in at
least two different ways without using variables or
the symbol V or the words “for all.”

V real numbers x, if x is positive
then the square root of x is positive.

Rewrite the following statements so that the quan-

tifier trails the rest of the sentence.

a. For any graph G, the total degree of G is even.

b. For any isosceles triangle 7, the base angles of
T are equal.

c. There exists a prime number p such that p is
even.

d. There exists a continuous function f such that f
is not differentiable.

Rewrite each of the following statements in the

form “V x, if then ”

a. All Java programs have at least 5 lines.

b. Any valid argument with true premises has a
true conclusion.

Rewrite each of the following statements in

the two forms “Vx, if then ” and

“Va, ” (without an if-then).

a. All equilateral triangles are isosceles.

b. Every computer science student needs to take
data structures.

Rewrite the following statements in the two forms
= x such that ” and “Jdx such that
and ?

a. Some hatters are mad.

b. Some questions are easy.

The statement “The square of any rational number
is rational” can be rewritten formally as “For all
rational numbers x, %7 is rational” or as “For all X,
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if x is rational then x? is rational.” Rewrite each
of the following statements in the two forms

“v X, ” and “Vx, if then ”

or in the two forms “V x and y, ” and

“Vx and y, if then ”

a. The reciprocal of any nonzero fraction is a
fraction.

b. The derivative of any polynomial function is a
polynomial function.

c. The sum of the angles of any triangle is 180°.

d. The negative of any irrational number is
irrational.

e. The sum of any two even integers is even.

f. The product of any two fractions is a fraction.

26. Consider the statement “All integers are ratio-
nal numbers but some rational numbers are not

integers.”
a. Write this statement in the form “Vx, if
then but 4 x such that ”

b. Let Ratl(x) be “x is a rational number” and
Int(x) be “x is an integer.” Write the given
statement formally using only the symbols
Ratl(x), Int(x), ¥, 3, A, v/, ~, and —.

27. Refer to the picture of Tarski’s world given in Ex-
ample 3.1.13. Let Above(x, y) mean that x is above
y (but possibly in a different column). Determine
the truth or falsity of each of the following state-
ments. Give reasons for your answers.
a. Vu, Circle(u) — Gray(u).
b. Vu, Gray(u) — Circle(u).
c. y such that Square(y) A Above(y, d).
d. Jz such that Triangle(z) A Above(f, z).
In 28-30, rewrite each statement without using quanti-
fiers or variables. Indicate which are true and which are
false, and justify your answers as best as you can.

28. Let the domain of x be the set D of objects dis-
cussed in mathematics courses, and let Real(x) be
“x is a real number,” Pos(x) be “x is a positive real
number,” Neg(x) be “x is a negative real number,”
and Int(x) be “x is an integer.”
a. Pos(0)

b. Vx, Real(x) A Neg(x) — Pos(—x)

ANSWERS FOR TEST YOURSELF
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c. Vx, Int(x) — Real(x)
d. dx such that Real(x) A ~Int(x)

29. Let the domain of x be the set of geometric figures
in the plane, and let Square(x) be “x is a square”
and Rect(x) be “x is a rectangle.”

a. dx such that Rect(x) A Square(x)

b. Jx such that Rect(x) A ~Square(x)
c. Vx, Square(x) — Rect(x)

30. Let the domain of x be Z, the set of integers, and
let Odd(x) be “x is odd,” Prime(x) be “x is prime,”
and Square(x) be “x is a perfect square.” (An inte-
ger n is said to be a perfect square if, and only if,
it equals the square of some integer. For example,
25 is a perfect square because 25 = 5%)

a. dx such that Prime(x) A ~Odd(x)
b. Vx, Prime(x) — ~Square(x)
c. dx such that Odd(x) A Square(x)

H 31. In any mathematics or computer science text other
than this book, find an example of a statement that
is universal but is implicitly quantified. Copy the
statement as it appears and rewrite it making the
quantification explicit. Give a complete citation
for your example, including title, author, publisher,

year, and page number.

32. Let R be the domain of the predicate variable x.
Which of the following are true and which are
false? Give counter examples for the statements
that are false.

a. x>2=>x>1

b. x>2=x">4
. X*>4=x>2
d. ¥ >4< x| >2

33. Let R be the domain of the predicate variables a,
b, ¢, and d. Which of the following are true and
which are false? Give counterexamples for the
statements that are false.

a. a>0andb>0=ab >0
b. a<0Oandb<0=ab <0
c. ab=0=a=0o0rb=0

d. a<bandc < d=ac <bd

1. {x € D|P(x)}; the set of all x in D such that P(x)
2. Possible answers: for every, for any, for each, for
arbitrary, given any, for all 3. Possible answers: there

exists, there exist, there exists at least one, for some, for

at least one, we can find a 4. true; every x in D (Some
alternative answers: all x in D; each individual x in D)
5. true; at least one x in D (Alternative answer: some

x in D)
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E¥] Predicates and Quantified Statements I

TOUCHSTONE: Stand you both forth now: stroke your chins, and swear by your
beards that I am a knave.

CELIA: By our beards—if we had them—thou art.

TOUCHSTONE: By my knavery—if I had it—then I were; but if you swear by that
that is not, you are not forsworn. —William Shakespeare, As You Like It

This section continues the discussion of predicates and quantified statements begun in
Section 3.1. It contains the rules for negating quantified statements; an exploration of the
relation among V, 3, A, and \/; an introduction to the concept of vacuous truth of universal
statements; examples of variants of universal conditional statements; and an extension of
the meaning of necessary, sufficient, and only if to quantified statements.

Negations of Quantified Statements

Consider the statement “All mathematicians wear glasses.” Many people would say
that its negation is “No mathematicians wear glasses,” but if even one mathemati-
cian does not wear glasses, then the sweeping statement that a/l mathematicians wear
glasses is false. So a correct negation is “There is at least one mathematician who does
not wear glasses.”

The general form of the negation of a universal statement follows immediately from
the definitions of negation and of the truth values for universal and existential statements.

Theorem 3.2.1 Negation of a Universal Statement

The negation of a statement of the form
Vx in D, Q(x)
is logically equivalent to a statement of the form
dx in D such that ~Q(x).
Symbolically,

~(Vx € D, Q(x)) = 3x € D such that ~Q(x).

Thus

The negation of a universal statement (“‘all are”) is logically equivalent to an
existential statement (‘some are not” or “there is at least one that is not”).

Note that when we speak of logical equivalence for quantified statements, we mean
that the statements always have identical truth values no matter what predicates are sub-
stituted for the predicate symbols and no matter what sets are used for the domains of
the predicate variables.

Now consider the statement “Some snowflakes are the same.” What is its negation? For
this statement to be false means that not a single snowflake is the same as any other. In
other words, “No snowflakes are the same,” or “All snowflakes are different.”
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The general form for the negation of an existential statement follows immediately from
the definitions of negation and of the truth values for existential and universal statements.

Theorem 3.2.2 Negation of an Existential Statement

The negation of a statement of the form
dx in D such that Q(x)
is logically equivalent to a statement of the form
Vx in D, ~Q(x).
Symbolically,
~(dx € D such that Q(x)) = Vx € D, ~Q0(x).

Thus

The negation of an existential statement (‘“‘some are”) is logically
equivalent to a universal statement (“none are” or ‘all are not”).

EEITERE] Negating Quantified Statements

Write formal negations for the following statements:

a. V primes p, p is odd.

b. Fatriangle T such that the sum of the angles of T equals 200°.

Solution

a. By applying the rule for the negation of a V statement, you can see that the answer is
Ja prime p such that p is not odd.

b. By applying the rule for the negation of a 3 statement, you can see that the answer is

vV triangles 7, the sum of the angles of T does not equal 200°. |

You need to exercise special care to avoid mistakes when writing negations of state-
ments that are given informally. One way to avoid error is to rewrite the statement formally
and take the negation using the formal rule.

EEIITEEE] More Negations

Rewrite the following statements formally. Then write formal and informal negations.
a. No politicians are honest.

b. The number 1,357 is not divisible by any integer between 1 and 37.

Solution

a. Formal version: V politicians x, x is not honest.
Formal negation: Ja politician x such that x is honest.
Informal negation: Some politicians are honest.

b. This statement has a trailing quantifier. Written formally it becomes:

V integer n between 1 and 37, 1,357 is not divisible by n.
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Note Which is true:

the statement in part (b)
or its negation? Is 1,357
divisible by some integer
between 1 and 377 Or is
1,357 not divisible by any
integer between 1 and 37?

A

Caution! Just inserting
the word not to negate a
quantified statement can
result in a statement that
is ambiguous.

Its negation is therefore
Jan integer n between 1 and 37 such that 1,357 is divisible by n.
An informal version of the negation is

The number 1,357 is divisible by some integer between 1 and 37. |

Another important way to avoid error when taking negations of statements, whether
stated formally or informally, is to ask yourself, “What exactly would it mean for the given
statement to be false? What statement, if true, would be equivalent to saying that the given
statement is false?”

Still More Negations

Write informal negations for the following statements:
a. All computer programs are finite.

b. Some computer hackers are over 40.

Solution

a. What exactly would it mean for this statement to be false? The statement asserts that
all computer programs satisfy a certain property. So for it to be false, there would
have to be at least one computer program that does not satisfy the property. Thus the
answer is

There is a computer program that is not finite.

Or: Some computer programs are infinite.

b. This statement is equivalent to saying that there is at least one computer hacker with
a certain property. So for it to be false, not a single computer hacker can have that
property. Thus the negation is

No computer hackers are over 40.

Or: All computer hackers are 40 or under. |

Informal negations of many universal statements can be constructed simply by in-
serting the word not or the words do not at an appropriate place. However, the resulting
statements may be ambiguous. For example, a possible negation of “All mathematicians
wear glasses” is “All mathematicians do not wear glasses.” The problem is that this
sentence has two meanings. With the proper verbal stress on the word not, it could be in-
terpreted as the logical negation. (What! You say that all mathematicians wear glasses?
Nonsense! All mathematicians do not wear glasses.) On the other hand, stated in a flat
tone of voice (try it!), it would mean that all mathematicians are nonwearers of glasses;
that is, not a single mathematician wears glasses. This is a much stronger statement than
the logical negation: It implies the negation but is not equivalent to it.

Negations of Universal Conditional Statements

Negations of universal conditional statements are of special importance in mathe-
matics. The form of such negations can be derived from facts that have already been
established.

By definition of the negation of a for all statement,

~(Vx, P(x) — Q(x)) = 3x such that ~(P(x) — Q(x)). 3.2.1
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But the negation of an if-then statement is logically equivalent to an and statement. More
precisely,

~(P(x) = Q(x)) = P(x) A ~Q(x). 32.2
Substituting (3.2.2) into (3.2.1) gives
~(Vx, P(x) — Q(x)) = dx such that (P(x) A ~Q(x)).

Written somewhat less symbolically, this becomes

Negation of a Universal Conditional Statement

~(Vx, if P(x) then Q(x)) = dx such that P(x) and ~Q(x).

Negating Universal Conditional Statements

Write a formal negation for statement (a) and an informal negation for statement (b).
a. V person p, if p is blond then p has blue eyes.

b. If a computer program has more than 100,000 lines, then it contains a bug.

Solution
a. Ja person p such that p is blond and p does not have blue eyes.

b. There is at least one computer program that has more than 100,000 lines and does not
contain a bug. |

The Relation among V¥, 3, A\, and \/

The negation of a for all statement is a there exists statement, and the negation of a there
exists statement is a for all statement. These facts are analogous to De Morgan’s laws,
which state that the negation of an and statement is an or statement and that the negation of
an or statement is an and statement. This similarity is not accidental. In a sense, universal
statements are generalizations of and statements, and existential ments are generalizations
of or statements.

If O(x) is a predicate and the domain D of x is the set {xy, x,, ..., x,,}, then the statements

vx €D, Q) and  Q(x) A Qx) A+ A Q(x,)
are logically equivalent. For example, let Q(x) be “x-x = x”” and suppose D = {0, 1}. Then
Vx € D, O(x)

can be rewritten as

V binary digits x, x-x = x.
This is equivalent to

0:0=0 and 1-1=1,
which can be rewritten in symbols as

Q0) A O(D).
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Note In ordinary lan-
guage the words in gen-
eral mean that something
is usually, but not always
the case. (In general, I
take the bus, but today I
walked.) In mathemat-
ics the words in general
mean that something is
always true.

Similarly, if Q(x) is a predicate and D = {xi, x», ..., x,,}, then the statements

dx € Dsuchthat Q(x) and Q(x)) Vv Q(xp) Vv - - Vv O(x,)

are logically equivalent. For example, let Q(x) be “x+x = x” and suppose D = {0, 1}.
Then

dx € D such that Q(x)

can be rewritten as

Ja binary digit x such that x +x = x.
This is equivalent to
0+0=0 or 1+1=1,

which can be rewritten in symbols as

0(0) v O(1).

Vacuous Truth of Universal Statements

Suppose a bowl sits on a table and next to the bowl is a pile of five blue and five gray balls,
any of which may be placed in the bowl. If three blue balls and one gray ball are placed
in the bowl, as shown in Figure 3.2.1(a), the statement “All the balls in the bowl are blue”
would be false (since one of the balls in the bowl is gray).

Now suppose that no balls at all are placed in the bowl, as shown in Figure 3.2.1(b).
Consider the statement

All the balls in the bowl are blue.

Is this statement true or false? The statement is false if, and only if, its negation is true.
And its negation is

There exists a ball in the bowl that is not blue.

But the only way this negation can be true is for there actually to be a nonblue ball in the
bowl. And there is not! Hence the negation is false, and so the statement is true “by default.”

(a) (b)
FIGURE 3.2.1

In general, a statement of the form
Vx in D, if P(x) then Q(x)

is called vacuously true or true by default if, and only if, P(x) is false for every x in D.
In mathematics, the words in general signal that what is to follow is a generalization of
some aspect of the example that always holds true.

Variants of Universal Conditional Statements

Recall from Section 2.2 that a conditional statement has a contrapositive, a converse, and an
inverse. The definitions of these terms can be extended to universal conditional statements.
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Consider a statement of the form Vx € D, if P(x) then Q(x).
1. Its contrapositive is the statement Vx € D, if ~Q(x) then ~P(x).

2. Its converse is the statement Vx € D, if Q(x) then P(x).
3. Its inverse is the statement Vx € D, if ~P(x) then ~Q(x).

EEIIEEE] Contrapositive, Converse, and Inverse of a Universal Conditional Statement

Write a formal and an informal contrapositive, converse, and inverse for the following
statement:

If a real number is greater than 2, then its square is greater than 4.

Solution The formal version of this statement is Vx € R, if x > 2 then x> >4,
Contrapositive: Vx € R, if x* =4 thenx = 2.
Or: If the square of a real number is less than or equal to 4,
then the number is less than or equal to 2.

Converse: Vx € R, if x* > 4 then x > 2.
Or: If the square of a real number is greater than 4, then the
number is greater than 2.

Inverse: Vx € R, if x = 2 then ¥ =4
Or: If a real number is less than or equal to 2, then the square
of the number is less than or equal to 4.

Note that in solving this example, we have used the equivalence of “x »* a” and “x = a”
for all real numbers x and a. (See page 47.) |

In Section 2.2 we showed that a conditional statement is logically equivalent to its con-
trapositive and that it is not logically equivalent to either its converse or its inverse. The
following discussion shows that these facts generalize to the case of universal conditional
statements and their contrapositives, converses, and inverses.

Let P(x) and Q(x) be any predicates, let D be the domain of x, and consider the statement

Vx € D, if P(x) then Q(x)
and its contrapositive

Vx € D, if ~Q(x) then ~P(x).

Any particular x in D that makes “if P(x) then Q(x)” true also makes “if ~Q(x) then ~P(x)”
true (by the logical equivalence between p — g and ~g — ~p). It follows that the sen-
tence “If P(x) then Q(x)” is true for all x in D if, and only if, the sentence “If ~Q(x) then
~P(x)” is true for all x in D.

Thus we write the following and say that a universal conditional statement is logically
equivalent to its contrapositive:

Vx € D, if P(x) then Q(x) = Vx € D, if ~Q(x) then ~P(x)

In Example 3.2.5 we noted that the statement
vx € R, if x > 2 then x* > 4

has the converse vx € R, if x> > 4 then x > 2.
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Example 3.2.6

Observe that the statement is true whereas its converse is false (since, for instance,
(—3)2 = 9 > 4 but —3 * 2). This shows that a universal conditional statement may have a
different truth value from its converse. Hence a universal conditional statement is not logi-
cally equivalent to its converse. This is written in symbols as follows:

Vx € D, if P(x) then Q(x) # Vx € D, if Q(x) then P(x).

In exercise 35 at the end of this section, you are asked to provide an example to show that
a universal conditional statement is not logically equivalent to its inverse.

Vx € D, if P(x) then Q(x) # Vx € D, if ~P(x) then ~Q(x).

Necessary and Sufficient Conditions, Only If

The definitions of necessary, sufficient, and only if can also be extended to apply to uni-
versal conditional statements.

e “Vx, r(x) is a sufficient condition for s(x)” means “Vx, if 7(x) then s(x).”

® “Vx, r(x) is a necessary condition for s(x)” means “Vx, if ~r(x) then ~s(x)” or,
equivalently, “Vx, if s(x) then r(x).”

® “Vx, r(x) only if s(x)” means “Vkx, if ~s(x) then ~r(x)” or, equivalently, “Vx, if r(x)
then s(x).”

Necessary and Sufficient Conditions

Rewrite each of the following as a universal conditional statement, quantified either explic-
itly or implicitly. Do not use the word necessary or sufficient.

a. Squareness is a sufficient condition for rectangularity.

b. Being at least 35 years old is a necessary condition for being president of the United
States.

Solution
a. A formal version of the statement is

Vx, if x is a square, then x is a rectangle.
Or, with implicit universal quantification:

If a figure is a square, then it is a rectangle.

b. Using formal language, you could write the answer as

V person x, if x is younger than 35, then x
cannot be president of the United States.

Or, by the equivalence between a statement and its contrapositive:

V person x, if x is president of the United States,
then x is at least 35 years old. |
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Rewrite the following as a universal conditional statement:

A product of two numbers is 0 only if one of the numbers is 0.

Solution Using informal language, you could write the answer as

If it is not the case that one of two numbers is 0,
then the product of the numbers is not 0.

In other words,

If neither of two numbers is 0, then the product of the numbers is not 0.

Or, by the equivalence between a statement and its contrapositive:

If a product of two numbers is O, then one of the numbers is 0. [ |

A negation for “All R have property S is “There
is R that 7

A negation for “Some R have property S is

3 ”

A negation for “For every x, if x has property P
then x has property Q” is “ ”

. The converse of “For every x, if x has property P

i)

then x has property Q™ is “

. The contrapositive of “For every x, if x has prop-

i)

erty P then x has property Q” is “

The inverse of “For every x, if x has property P
then x has property Q” is “ ”

Which of the following is a negation for “All

discrete mathematics students are athletic”? More

than one answer may be correct.

a. There is a discrete mathematics student who is
nonathletic.

b. All discrete mathematics students are
nonathletic.

c. There is an athletic person who is not a dis-
crete mathematics student.

d. No discrete mathematics students are athletic.

e. Some discrete mathematics students are
nonathletic.

f. No athletic people are discrete mathematics
students.

Which of the following is a negation for “All dogs
are loyal”? More than one answer may be correct.
a. All dogs are disloyal.

No dogs are loyal.

Some dogs are disloyal.

Some dogs are loyal.

There is a disloyal animal that is not a dog.

LI

5.

f. There is a dog that is disloyal.
g. No animals that are not dogs are loyal.
h. Some animals that are not dogs are loyal.

Write a formal negation for each of the following

statements.

a. V string s, s has at least one character.

b. V computer ¢, ¢ has a CPU.

c. Ja movie m such that m is over 6 hours long.

d. Jaband b such that b has won at least 10
Grammy awards.

Write an informal negation for each of the follow-
ing statements. Be careful to avoid negations that
are ambiguous.

a. All dogs are friendly.

b. All graphs are connected.

c. Some suspicions were substantiated.

d. Some estimates are accurate.

Write a negation for each of the following statements.
a. Every valid argument has a true conclusion.
b. All real numbers are positive, negative, or zero.
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Write a negation for each statement in 6 and 7.

6. a. Sets A and B do not have any points in common.
b. Towns P and Q are not connected by any road
on the map.

7. a. This vertex is not connected to any other vertex
in the graph.
b. This number is not related to any even number.

8. Consider the statement “There are no simple solu-
tions to life’s problems.” Write an informal nega-
tion for the statement, and then write the statement
formally using quantifiers and variables.

Write a negation for each statement in 9 and 10.

9. Vreal number x, if x > 3 then ¥ >0,

10. V computer program P, if P compiles without error
messages, then P is correct.

In each of 11-14 determine whether the proposed nega-
tion is correct. If it is not, write a correct negation.

1. Statement: The sum of any two irrational
numbers is irrational.
Proposed negation: The sum of any two irrational
numbers is rational.

12. Statement: The product of any irrational
number and any rational num-
ber is irrational.

Proposed negation: The product of any irrational
number and any rational num-
ber is rational.

13. Statement: For every integer n, if n’is
even then n is even.
Proposed negation: For every integer n, if n is
even then 7 is not even.

14. Statement: For all real numbers x; and x,,
ifx% = x% then x; = x,.

Proposed negation: For all real numbers x| and x,,
if x% = x% then x; # x,.

15. Let D = {—48,—14,-8,0,1,3,16,23,26,32,36}.
Determine which of the following statements are
true and which are false. Provide counterexamples
for the statements that are false.

a. Vx € D, if x is odd then x > 0.

b. Vx € D, if x is less than O then x is even.

c. Yx €D, if xis even then x = 0.

d. Vx € D, if the ones digit of x is 2, then the tens
digit is 3 or 4.

e. Vx € D, if the ones digit of x is 6, then the tens
digitis 1 or 2.

In 16-23, write a negation for each statement.
16. V real number x, if x> =1 then x > 0.

17. Vinteger d, if 6/d is an integer then d = 3.
18. Vx ER,if x(x+ 1) >0thenx >0orx < —1.

19. Vn € Z, if n is prime then n is odd or n = 2.

20. Vintegers a, b, and ¢, if a — b is even and b — c is
even, then a — ¢ is even.

21. Vinteger n, if n is divisible by 6, then  is divisible
by 2 and n is divisible by 3.

22. If the square of an integer is odd, then the integer
is odd.

23. If a function is differentiable then it is continuous.

24. Rewrite the statements in each pair in if-then form
and indicate the logical relationship between them.
a. All the children in Tom’s family are female.
All the females in Tom’s family are children.
b. All the integers that are greater than 5 and end
in 1, 3,7, or 9 are prime.
All the integers that are greater than 5 and are
prime end in 1, 3, 7, or 9.

25. Each of the following statements is true. In each
case write the converse of the statement, and give a
counterexample showing that the converse is false.
a. If nis any prime number that is greater than 2,
then n + 1 is even.

b. If m is any odd integer, then 2m is even.

c. If two circles intersect in exactly two points,
then they do not have a common center.

In 26-33, for each statement in the referenced exercise

write the contrapositive, converse, and inverse. Indicate

as best as you can which of these statements are true and

which are false. Give a counterexample for each that is false.

26. Exercise 16 27. Exercise 17

28. Exercise 18 29. Exercise 19

30. Exercise 20 31. Exercise 21

32. Exercise 22 33. Exercise 23

34. Write the contrapositive for each of the following
statements.

a. If nis prime, then 7 is not divisible by any
prime number from 2 through V. (Assume
that » is a fixed integer.)

b. If A and B do not have any elements in com-
mon, then they are disjoint. (Assume that
A and B are fixed sets.)
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35. Give an example to show that a universal condition-
al statement is not logically equivalent to its inverse.

*36. If P(x) is a predicate and the domain of x is the set
of all real numbers, let R be “Vx € Z, P(x),” let S
be “Vx € Q, P(x),” and let T'be “Vx € R, P(x).”
a. Find a definition for P(x) (but do not use “x € Z.)
so that R is true and both S and T are false.

b. Find a definition for P(x) (but do not use ‘“x € Q™)
so that both R and S are true and 7 is false.

37. Consider the following sequence of digits: 0204.
A person claims that all the 1’s in the sequence
are to the left of all the 0’s in the sequence. Is this
true? Justify your answer. (Hint: Write the claim
formally and write a formal negation for it. Is the
negation true or false?)

38. True or false? All occurrences of the letter u in Dis-
crete Mathematics are lowercase. Justify your answer.

Rewrite each statement of 39-44 in if-then form.

39. Earning a grade of C— in this course is a suffi-
cient condition for it to count toward graduation.

40. Being divisible by 8 is a sufficient condition for
being divisible by 4.

41. Being on time each day is a necessary condition
for keeping this job.

42. Passing a comprehensive exam is a necessary
condition for obtaining a master’s degree.

43. A number is prime only if it is greater than 1.

ANSWERS FOR TEST YOURSELF
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44. A polygon is square only if it has four sides.

Use the facts that the negation of a V statement is

a Jstatement and that the negation of an if-then
statement is an and statement to rewrite each of the
statements 45-48 without using the word necessary or
sufficient.

45. Being divisible by 8 is not a necessary condition
for being divisible by 4.

46. Having a large income is not a necessary condi-
tion for a person to be happy.

47. Having a large income is not a sufficient condition
for a person to be happy.

48. Being a polynomial is not a sufficient condition
for a function to have a real root.

49. The computer scientists Richard Conway and
David Gries once wrote:

The absence of error messages during
translation of a computer program is only a
necessary and not a sufficient condition for
reasonable [program] correctness.

Rewrite this statement without using the words
necessary or sufficient.

50. A frequent-flyer club brochure states, “You may
select among carriers only if they offer the same
lowest fare.” Assuming that “only if”” has its for-
mal, logical meaning, does this statement guaran-
tee that if two carriers offer the same lowest fare,
the customer will be free to choose between them?
Explain.

1. some (Alternative answers: at least one; an); does not
have property S. 2. No R have property S. 3. There
is an x such that x has property P and x does not have
property Q. 4. For every x, if x has property Q then

x has property P. 5. For every x, if x does not have
property Q then x does not have property P. 6. For every
x, if x does not have property P then x does not have

property Q.

EX] Statements with Multiple Quantifiers

It is not enough to have a good mind. The main thing is to use it well. —René Descartes

Imagine you are visiting a factory that manufactures computer microchips. The factory

guide tells you,

“There is a person supervising every detail of the production process.”
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Note The scope of Vx
extends throughout the
statement, whereas the
scope of Jy starts in the
middle. That is why the
value of y depends on the
value of x.

Note that this statement contains informal versions of both the existential quantifier there
is and the universal quantifier every. Which of the following best describes its meaning?

e There is one single person who supervises all the details of the production process.

e For any particular production detail, there is a person who supervises that detail, but
there might be different supervisors for different details.

As it happens, either interpretation could be what the guide meant. (Reread the sentence to
be sure you agree!) Taken by itself, his statement is genuinely ambiguous, although other
things he may have said (the context for his statement) might have clarified it. In our ordi-
nary lives, we deal with this kind of ambiguity all the time. Usually context helps resolve
it, but sometimes we simply misunderstand each other.

In mathematics, formal logic, and computer science, by contrast, it is essential that we
all interpret statements in exactly the same way. For instance, the initial stage of software
development typically involves careful discussion between a programmer analyst and a
client to turn vague descriptions of what the client wants into unambiguous program speci-
fications that client and programmer can mutually agree on.

Because many important technical statements contain both 3 and ¥, a convention has de-
veloped for interpreting them uniformly. When a statement contains more than one kind
of quantifier, we imagine the actions suggested by the quantifiers as being performed
in the order in which the quantifiers occur. For instance, consider a statement of the form

Vx in set D, Jy in set E such that x and y satisfy property P(x, ).
To show that such a statement is true, you must be able to meet the following challenge:

Imagine that someone is allowed to choose any element whatsoever from the set D, and
imagine that the person gives you that element. Call it x.

e The challenge for you is to find an element y in E so that the person’s x and your y, taken
together, satisfy property P(x, y).

Because you do not have to specify the y until after the other person has specified the x,
you are allowed to find a different value of y for each different x you are given.

Truth of a V3 Statement in a Tarski World

Consider the Tarski world shown in Figure 3.3.1.

'@ |A
m | |

,.

Show that the following statement is true in this world:

FIGURE 3.3.1

For every triangle x, there is a square y such that x and y have the same color.
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Solution The statement says that no matter which triangle someone gives you, you will
be able to find a square of the same color. There are only three triangles, d, f, and i. The fol-
lowing table shows that for each of these triangles a square of the same color can be found.

Givenx = choosey = and check that y is the same color as x.
d e yes v/
fori horg yes v/ -

Now consider a statement containing both V and 3, where the 3 comes before the V:
Jx in set D such that ¥y in set E, x and y satisfy property P(x, ).

To show that a statement of this form is true:
You must find one single element (call it x) in D with the following property:

e After you have found your x, someone is allowed to choose any element whatsoever
from E. The person challenges you by giving you that element. Call it y.

* Your job is to show that your x together with the person’s y satisfy property P(x, ).

Your x has to work for any y the person might give you; you are not allowed to change
your x once you have specified it initially.

Truth of a 3V Statement in a Tarski World

Consider again the Tarski world in Figure 3.3.1. Show that the following statement is true:
There is a triangle x such that for every circle y, x is to the right of y.

Solution The statement says that you can find a triangle that is to the right of all the
circles. Actually, either d or i would work for all of the three circles, a, b, and ¢, as you can
see in the following table.

Choose x = Then: giveny = check that x is to the right of y.
dori a yes v/
b yes v/
c esv
4 |

Here is a summary of the convention for interpreting statements with two different
quantifiers:

Interpreting Statements with Two Different Quantifiers

If you want to establish the truth of a statement of the form
Vx in D, Jy in E such that P(x, y)
your challenge is to allow someone else to pick whatever element x in D they wish
and then you must find an element y in E that “works” for that particular x.
If you want to establish the truth of a statement of the form
Jxin D such that Vy in E, P(x, y)

your job is to find one particular x in D that will “work” no matter what y in E any-
one might choose to challenge you with.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203



134

CHAPTER3 THE LOGIC OF QUANTIFIED STATEMENTS

Interpreting Statements with More Than One Quantifier

A college cafeteria line has four stations: salads, main courses, desserts, and beverages.
The salad station offers a choice of green salad or fruit salad; the main course station of-
fers spaghetti or fish; the dessert station offers pie or cake; and the beverage station offers
milk, soda, or coffee. Three students, Uta, Tim, and Yuen, go through the line and make
the following choices:

Uta: green salad, spaghetti, pie, milk
Tim: fruit salad, fish, pie, cake, milk, coffee
Yuen: spaghetti, fish, pie, soda

These choices are illustrated in Figure 3.3.2.

Salads
green salad
fruit salad

Uta -
Main courses

spaghetti
fish

Desserts
pie
cake

Tim

Yuen oo
Beverages

milk
soda
coffee

FIGURE 3.3.2

Write each of following statements informally and find its truth value.

a. Jan item 7 such that V student S, S chose 1.

b. Ja student S such that V item /, S chose 1.

c. Jastudent S such that V station Z, 3 an item I in Z such that S chose I.
d. V student S and V station Z, 3 an item [ in Z such that S chose 1.

Solution

a. There is an item that was chosen by every student. This is true; every student chose
pie.

b. There is a student who chose every available item. This is false; no student chose all
nine items.

c. There is a student who chose at least one item from every station. This is true; both
Uta and Tim chose at least one item from every station.

d. Every student chose at least one item from every station. This is false; Yuen did not
choose a salad. |

Translating from Informal to Formal Language

Most problems are stated in informal language, but solving them often requires translating
them into more formal terms.
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Translating Statements with Multiple Quantifiers from Informal
to Formal Language

The reciprocal of a real number a is a real number b such that ab = 1. The following two
statements are true. Rewrite them formally using quantifiers and variables.

a. Every nonzero real number has a reciprocal.

b. There is a real number with no reciprocal.

Solution

a. V nonzero real number u, 3 a real number v such that uy = 1.

b. Jareal number ¢ such that V real number d, cd # 1. [ |

There Is a Smallest Positive Integer

Recall that every integer is a real number and that real numbers are of three types: positive,
negative, and zero (zero being neither positive nor negative). Consider the statement “There
is a smallest positive integer.” Write this statement formally using both symbols 3 and V.

Solution To say that there is a smallest positive integer means that there is a positive
integer m with the property that no matter what positive integer n a person might pick, m
will be less than or equal to n:

da positive integer m such that V positive integer n, m = n.

Note that this statement is true because 1 is a positive integer that is less than or equal to
every positive integer.

positive integers

|
)}
|
~
|
%)
|
S}
|
O
S}
w
A~
)}

There Is No Smallest Positive Real Number

Imagine the positive real numbers on the real number line. These numbers correspond to
all the points to the right of 0. Observe that no matter how small a real number x is, the
number x/2 will be both positive and less than x.*

S N S B

o~ T T T

¥

N|=

Thus the following statement is true: “There is no smallest positive real number.” Write
this statement formally using both symbols V and 3.

Solution V positive real number x, 3 a positive real number y such that y < x. |

The Definition of Limit of a Sequence

The definition of limit of a sequence, studied in calculus, uses both quantifiers ¥V and 3 and
also if-then. We say that the limit of the sequence a,, as n goes to infinity equals L and write
lima,=L

n—®

if, and only if, the values of a, become arbitrarily close to L as n gets larger and larger
without bound. More precisely, this means that given any positive number &, we can find

*This can be deduced from the properties of the real numbers given in Appendix A. Because xis positive,
0 < x. Add x to both sides to obtain x < 2x. Then 0 < x < 2x. Now multiply all parts of the inequality by the
positive number 1/2. This does not change the direction of the inequality, so 0 < x/2 < x.
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an integer N such that whenever 7 is larger than N, the number q,, sits between L — & and

L+ € on the number line.

L-¢ L L+e
1

[«

v

a, must lie in here when n > N

Symbolically:

Ve > 0, Jan integer N such that V integer n,
ifn>NthenL—¢e<a,<L+e.

Considering the logical complexity of this definition, it is no wonder that many students
find it hard to understand. u

Ambiguous Language

The drawing in Figure 3.3.3 is a famous example of visual ambiguity. When you look at it
for a while, you will probably see either a silhouette of a young woman wearing a large hat
or an elderly woman with a large nose. Whichever image first pops into your mind, try to
see how the drawing can be interpreted in the other way. (Hint: The mouth of the elderly
woman is the necklace on the young woman.)

Chronicle/Alamy Stock Photo

FIGURE3.3.3

Once most people see one of the images, it is difficult for them to perceive the other.
So it is with ambiguous language. Once you interpreted the sentence at the beginning of
this section in one way, it may have been hard for you to see that it could be understood
in the other way. Perhaps you had difficulty even though the two possible meanings were
explained, just as many people have difficulty seeing the second interpretation for the
drawing even when they are told what to look for.
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Although statements written informally may be open to multiple interpretations, we
cannot determine their truth or falsity without interpreting them one way or another.
Therefore, we have to use context to try to ascertain their meaning as best we can.

Negations of Statements with More Than One Quantifier

You can use the same rules to negate statements with several quantifiers that you used to
negate simpler quantified statements. Recall that

~(Vx in D, P(x)) = dx in D such that ~P(x).
and
~(dx in D such that P(x)) = Vx in D, ~P(x).
Thus
~(Vx in D, dy in E such that P(x, y)) = dx in D such that ~(Jy in E such that P(x, y))
= dxin D such that Vy in E, ~P(x, y)
Similarly,
~(3x in D such that Vy in E, P(x, y)) = Vx in D, ~(Vy in E, P(x, y))
= Vxin D, Jy in E such that ~P(x, y)

These facts are summarized as follows:

Negations of Statements with Two Different Quantifiers

~(¥xin D, dy in E such that P(x, y)) = Jx in D such that Vy in E, ~P(x, y)
~(3x in D such that Vy in E, P(x, y)) = Vx in D, Jy in E such that ~P(x, y)

SEERE Y Negating Statements in a Tarski World

Refer to the Tarski world of Figure 3.3.1, which is reprinted here for reference.

o
© @ A

,.
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Write a negation for each of the following statements, and determine which is true, the
given statement or its negation.

a. For every square x, there is a circle y such that x and y have the same color.

b. There is a triangle x such that for every square y, x is to the right of y.

Solution

a. First version of negation: 3a square x such that ~(3 a circle y such
that x and y have the same color).
Final version of negation: 3 a square x such that V circle y, x and y do not have
the same color.

The negation is true. Square e is black and no circle in this Tarski world is black, so there
is a square that does not have the same color as any circle.

b. First version of negation: V triangle x, ~(V square y, x is to the right of y).
Final version of negation: V triangle x, 3 a square y such that x is not to the right
of y.

The negation is true because no matter what triangle is chosen, it is not to the right of
square g or square j, which are the only squares in this Tarski world. |

Order of Quantifiers

Consider the following two statements:

Vv person x, 3 a person y such that x loves y.

Ja person y such that V person x, x loves y.

Note that except for the order of the quantifiers, these statements are identical. However,
the first means that given any person, it is possible to find someone whom that person
loves, whereas the second means that there is one amazing individual who is loved by
all people. (Reread the statements carefully to verify these interpretations!) The two
sentences illustrate an extremely important property about statements with two different
quantifiers.

In a statement containing both V and 3, changing the order of the quantifiers can
significantly change the meaning of the statement.

Interestingly, however, if one quantifier immediately follows another quantifier of the
same type, then the order of the quantifiers does not affect the meaning. Consider the com-
mutative property of addition of real numbers, for example:

V real number x and V real number y, x +y = y + x.
This means the same as

V real number y and V real number x, x +y = y + x.
Thus the property can be expressed a little less formally as

V real numbers x and y, x +y = y + x.
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Caution! If a statement
contains two different
quantifiers, reversing
their order may change
the truth value of the
statement to its opposite.

Example 3.3.10
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Quantifier Order in a Tarski World

Look again at the Tarski world of Figure 3.3.1. Do the following two statements have the
same truth value?

a. For every square x there is a triangle y such that x and y have different colors.

b. There exists a triangle y such that for every square x, x and y have different colors.

Solution Statement (a) says that if someone gives you one of the squares from the Tarski
world, you can find a triangle that has a different color. This is true. If someone gives you
square g or i (which are gray), you can use triangle d (which is black); if someone gives you
square e (which is black), you can use either triangle for i (which are gray); and if someone
gives you square j (which is blue), you can use triangle d (which is black) or triangle f or i
(which are gray).

Statement (b) says that there is one particular triangle in the Tarski world that has a dif-
ferent color from every one of the squares in the world. This is false. Two of the triangles
are gray, but they cannot be used to show the truth of the statement because the Tarski
world contains gray squares. The only other triangle is black, but it cannot be used either
because there is a black square in the Tarski world.

Thus one of the statements is true and the other is false, and so they have opposite
truth values. [ ]

Formal Logical Notation

In some areas of computer science, logical statements are expressed in purely symbolic
notation. The notation involves using predicates to describe all properties of variables
and omitting the words such that in existential statements. (When you try to figure
out the meaning of a formal statement, however, it is helpful to think the words such
that to yourself each time they are appropriate.) The formalism also depends on the
following facts:

“Vx in D, P(x)” can be written as “Vx (x in D — P(x)),” and
“dx in D such that P(x)” can be written as “dx (x in D A P(x)).”

We illustrate the use of these facts in Example 3.3.10.

Formalizing Statements in a Tarski World

Consider once more the Tarski world of Figure 3.3.1:

@ |A
m | |

|
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Let Triangle(x), Circle(x), and Square(x) mean “x is a triangle,” “x is a circle,” and “x is a

EEIT3

square”; let Blue(x), Gray(x), and Black(x) mean “x is blue,” “x is gray,” and “x is black™; let
RightOf(x, y), Above(x, y), and SameColorAs(x, y) mean “x is to the right of y,” “x is above
y,” and “x has the same color as y”’; and use the notation x = y to denote the predicate “x is
equal to y.” Let the common domain D of all variables be the set of all the objects in the
Tarski world. Use formal logical notation to write each of the following statements, and
write a formal negation for each statement.

a. For every circle x, x is above f.
b. There is a square x such that x is black.
c. For every circle x, there is a square y such that x and y have the same color.

d. There is a square x such that for every triangle y, x is to the right of y.

Solution

a. Statement: Vx(Circle(x) — Above(x, f))
Negation: ~(Vx (Circle(x) — Above(x, f)))
= Jx ~(Circle(x) — Above(x, 1))
by the law for negating a V statement
= Jx(Circle(x) A ~Above(x, 1))
by the law of negating an if-then statement
b. Statement: 3x(Square(x) N Black(x))
Negation: ~(3x(Square(x) /A Black(x)))
= Vx ~(Square(x) A Black(x))
by the law for negating a 3 statement
= Vx(~Square(x) v ~Black(x))
by De Morgan’s law
c. Statement: Vx(Circle(x) — Jy(Square(y) A SameColor(x, y)))
Negation: ~(Vx(Circle(x) — Jy(Square(y) A SameColor(x, y))))
= Jx ~(Circle(x) — Jy(Square(y) A SameColor(x, y)))
by the law for negating a V statement
= Jx(Circle(x) A ~(Fy(Square(y) A SameColor(x, y))))

by the law for negating an if-then statement
= dx(Circle(x) A Vy(~(Square(y) A SameColor(x, y))))
by the law for negating a 3 statement
= dx(Circle(x) A Vy(~Square(y) v ~SameColor(x, y)))
by De Morgan’s law
d. Statement: 3x(Square(x) A Vy(Triangle(y) — RightOf(x, y)))
Negation: ~(3x(Square(x) A Vy(Triangle(y) — RightOf(x, y))))
= Vx~(Square(x) A Vy(Triangle(x) — RightOf(x, y)))
by the law for negating a 3 statement
= Vx(~Square(x) v ~(Vy(Triangle(y) — RightOf(x, y))))
by De Morgan’s law
= Vx(~Square(x) \V 3y(~(Triangle(y) — RightOf(x, y))))
by the law for negating a V statement
= Vx(~Square(x) v Jy(Triangle(y) A ~RightOf(x, y)))
by the law for negating an if-then statement
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Note Different Prolog
implementations follow
different conventions as to
how to represent constant,
variable, and predicate
names and forms of ques-
tions and answers. The
conventions used here

are similar to those of
Edinburgh Prolog.
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The disadvantage of the fully formal notation is that because it is complex and some-
what remote from intuitive understanding, when we use it, we may make errors that go
unrecognized. The advantage, however, is that operations, such as taking negations, can
be made completely mechanical and programmed on a computer. Also, when we become
comfortable with formal manipulations, we can use them to check our intuition, and then
we can use our intuition to check our formal manipulations. Formal logical notation is used
in branches of computer science such as artificial intelligence, program verification, and
automata theory and formal languages.

Taken together, the symbols for quantifiers, variables, predicates, and logical connec-
tives make up what is known as the language of first-order logic. Even though this lan-
guage is simpler in many respects than the language we use every day, learning it requires
the same kind of practice needed to acquire any foreign language.

Prolog

The programming language Prolog (short for programming in logic) was developed in
France in the 1970s by A. Colmerauer and P. Roussel to help programmers working in the
field of artificial intelligence. A simple Prolog program consists of a set of statements de-
scribing some situation together with questions about the situation. Built into the language
are search and inference techniques needed to answer the questions by deriving the an-
swers from the given statements. This frees the programmer from the necessity of having
to write separate programs to answer each type of question. Example 3.3.11 gives a very
simple example of a Prolog program.

A Prolog Program

Consider the following picture, which shows colored blocks stacked on a table.

8 W g | =gray block by | =blue block 3
by by by | ="blue block 1 w; | = white block 1
“ b3 b, |=blue block 2 w, | = white block 2

The following are statements in Prolog that describe this picture and ask two questions
about it.

isabove(g, b)) color(g, gray) color(bs, blue)
isabove(by, wy) color(b, blue) color(w,, white)
isabove(w,, b,) color(b,, blue) color(w,, white)
isabove(b,, bs) isabove(X, Z) if isabove(X, Y) and isabove(Y, Z)
1. 2color(b,, blue) 2. ?isabove(X, w;)

The statements “isabove(g, b;)” and “color(g, gray)” are to be interpreted as “g is above b;”
and “g is colored gray.” The statement “isabove(X, Z) if isabove(X, Y) and isabove(Y, Z)” is
to be interpreted as “For all X, Y, and Z, if X is above Y and Y is above Z, then X is above Z.”
Statement 1

2color(b;, blue)

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203



142

TEST YOURSELF

1.

CHAPTER3 THE LOGIC OF QUANTIFIED STATEMENTS

asks whether block b, is colored blue. Prolog answers this by writing
Yes.
Statement 2
Tisabove(X, w;)

asks for which blocks X the predicate “X is above w,;” is true. Prolog answers by giving a
list of all such blocks. In this case, the answer is

X:bl,X:g.

Note that Prolog can find the solution X = b, by merely searching the original set of given
facts. However, Prolog must infer the solution X = g from the following statements:

isabove(g, b)),

isabove(b|, wy),
isabove(X, Z) if isabove(X, Y) and isabove(Y, Z).

Write the answers Prolog would give if the following questions were added to the program

above.
a. ?isabove(b,, w;)

Solution

b. ?color(w;, X)

c. ?2color(X, blue)

a. The question means “Is b, above w;?”; so the answer is “No.”

b. The question means “For what colors X is the predicate ‘w, is colored X ’ true?”’; so

the answer is “X = white.”

c. The question means “For what blocks is the predicate ‘X is colored blue’ true?”; so the
answer is “X = by,” “X = b,,” and “X = b3 [ |

To establish the truth of a statement of the form
“Vx in D, Jy in E such that P(x, y),” you imagine
that someone has given you an element x from
D but that you have no control over what that el-
ement is. Then you need to find with the
property that the x the person gave you together
with the you subsequently found satisfy

. To establish the truth of a statement of the form

“Jx in D such that Vy in E, P(x, y),” you need
to find so that no matter what a
person might subsequently give you, will
be true.

. Consider the statement “Vx, Jy such that P(x, y), a

property involving x and y, is true.” A negation for
this statement is “ v

. Consider the statement “Jx such that Yy, P(x, y), a

property involving x and y, is true.” A negation for
this statement is “ ”

. Suppose P(x, y) is some property involving x

and y, and suppose the statement “Vx in D, Jy in E
such that P(x, y)” is true. Then the statement “Jx in
D such that Vy in E, P(x, y)”

a. istrue.

b. is false.

c. may be true or may be false.
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1. Let C be the set of cities in the world, let N be the
set of nations in the world, and let P(c, n) be “c is
the capital city of n.” Determine the truth values
of the following statements.
a. P(Tokyo, Japan)

c. P(Paris, France)

b. P(Athens, Egypt)
d. P(Miami, Brazil)

2. Let G(x,y) be “xr > v.” Indicate which of the fol-
lowing statements are true and which are false.
a. G(2,3) b. G(1,1)
¢ G54 d. G(-2,2)

3. The following statement is true: “V nonzero
number x, 3 a real number y such that xy = 1.” For
each x given below, find a y to make the predicate
“xy = 17 true.

a. x=2 b. x=-1 c. x=23/4

4. The following statement is true: “V real number x,
Jan integer n such that n > x.”* For each x given
below, find an n to make the predicate “n > x” true.
a. x=1583 b, x=10° c. x=10"°"

The statements in exercises 5-8 refer to the Tarski world
given in Figure 3.3.1. Explain why each is true.

5. For every circle x there is a square y such that
x and y have the same color.

6. For every square x there is a circle y such that
x and y have different colors and y is above x.

7. There is a triangle x such that for every square
y, x is above y.

8. There is a triangle x such that for every circle y,
y is above x.

9. LetD=FE={-2,—1,0, 1,2}. Explain why the
following statements are true.
a. Vxin D, Jyin E such that x +y = 0.
b. dxin D suchthatVyin E, x+y = y.

10. This exercise refers to Example 3.3.3. Determine
whether each of the following statements is true or
false.

a. Vstudent S, Ja dessert D such that S chose D.
b. V student S, 3 a salad T such that S chose T.

c. Jadessert D such that V student S, S chose D.
d. Jabeverage B such that V student D, D chose B.

e. Jan item 7 such that V student S, S did not
choose L.

f. dJa station Z such that V student S, 3 an item /
such that S chose I from Z.

11. Let S be the set of students at your school, let M
be the set of movies that have ever been released,
and let V(s, m) be “student s has seen movie m.”
Rewrite each of the following statements without
using the symbol V, the symbol 3, or variables.

a. ds € S such that V(s, Casablanca).

Vs € S, V(s, Star Wars).

Vs € S, dm € M such that V(s, m).

dm € M such that Vs € S, V(s, m).

ds € S,3dr € S, and dm € M such that s # ¢

and V(s, m) N\ V(t, m).

f. ds &€ Sand3dr € Ssuchthats # frand Vimm € M,
Vs, m) — V(t, m).

P oo

12. LetD = E={-2,—1,0, 1, 2}. Write negations
for each of the following statements and determine
which is true, the given statement or its negation.
a. YWwin D,dyin E such that x+y = 1.

b. dxin Dsuch thatVyin E, x +y = —y.
c. Vxin D, 3y in E such that xy = y.
d. dxin D suchthatVyin E, x = y.

In each of 13-19, (a) rewrite the statement in English
without using the symbol ¥ or Jor variables and express-
ing your answer as simply as possible, and (b) write a
negation for the statement.

13. V color C, 3 an animal A such that A is colored C.
14. Jabook b such that V person p, p has read b.

15. V odd integer n, 3 an integer k such that n = 2k + 1.
16. Jareal number « such that V real number v, uv = v.
17. Vr € Q, Jintegers a and b such that » = a/b.

18. Vx € R, Jareal number y such that x+y = 0.

19. dx € R such that for every real number y,
x+y=0.

20. Recall that reversing the order of the quantifiers
in a statement with two different quantifiers may

*This is called the Archimedean principle because it was first formulated (in geometric terms) by the great Greek mathematician Archimedes

of Syracuse, who lived from about 287 to 212 B.C.E.
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change the truth value of the statement—but it
does not necessarily do so. All the statements in
the pairs below refer to the Tarski world of Figure
3.3.1. In each pair, the order of the quantifiers is
reversed but everything else is the same. For each
pair, determine whether the statements have
the same or opposite truth values. Justify your
answers.
a. (1) For every square y there is a triangle x such
that x and y have different colors.
(2) There is a triangle x such that for every
square y, x and y have different colors.
b. (1) For every circle y there is a square x such
that x and y have the same color.
(2) There is a square x such that for every
circle y, x and y have the same color.

21. For each of the following equations, determine
which of the following statements are true:
(1) For every real number x, there exists a real
number y such that the equation is true.
(2) There exists a real number x, such that for
every real number y, the equation is true.

Note that it is possible for both statements to be
true or for both to be false.
a. 2x+y=7
b. y+x=x+y
c. x2—2xy+y2 =0
d x=50@—-1)=0
e. x° +y2 = -1
In 22 and 23, rewrite each statement without using vari-

ables or the symbol V or 3. Indicate whether the state-
ment is true or false.

22. a. Vreal number x, 3 a real number y such that

x+y=0.
b. Fa real number y such that V real number x,
x+y=0.

23. a. YV nonzero real number r, 3 a real number s
such that rs = 1.
b. Jareal number r such that V nonzero real
number s, rs = 1.

24. Use the laws for negating universal and existential
statements to derive the following rules:

a. ~(Vx € D(Vy € E(P(x, y))
=dx € DAy € E(~P(x, y))

b. ~(3x € D3y € E(P(x, y)))
=Vx € D(Vy € E(~P(x,y))

Each statement in 25-28 refers to the Tarski world of
Figure 3.3.1. For each, (a) determine whether the state-
ment is true or false and justify your answer, and (b) write
a negation for the statement (referring, if you wish, to the
result in exercise 24).

25. V circle x and V square y, x is above y.
26. V circle x and V triangle y, x is above y.

27. Jacircle x and 3 a square y such that x is above y
and x and y have different colors.

28. dJatriangle x and 3 a square y such that x is above
y and x and y have the same color.

For each of the statements in 29 and 30, (a) write a new

statement by interchanging the symbols V and 3, and

(b) state which is true: the given statement, the version

with interchanged quantifiers, neither, or both.

29. Vx € R, Jdy € R such that x < y.

30. Jx € Rsuch that Vy € R (the set of negative real
numbers), x > y.

31. Consider the statement “Everybody is older than
somebody.” Rewrite this statement in the form
“Vpeoplex, 3~

32. Consider the statement “Somebody is older than
everybody.” Rewrite this statement in the form
“Ja person x such that V ?

In 33-39, (a) rewrite the statement formally using
quantifiers and variables, and (b) write a negation for the
statement.

33. Everybody loves somebody.

34. Somebody loves everybody.

35. Everybody trusts somebody.

36. Somebody trusts everybody.

37. Any even integer equals twice some integer.

38. Every action has an equal and opposite reaction.

39. There is a program that gives the correct answer to
every question that is posed to it.

40

In informal speech most sentences of the form
“There is every ” are intended to be
understood as meaning “V 3 )’ even
though the existential quantifier there is comes
before the universal quantifier every. Note that
this interpretation applies to the following
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well-known sentences. Rewrite them using quan-

tifiers and variables.

a. There is a sucker born every minute.

b. There is a time for every purpose under
heaven.

41. Indicate which of the following statements are true
and which are false. Justify your answers as best
you can.

a. WEZ",3y EZ" suchthatx = y+1.
b. Vx € Z,dy € Z such that x = y +1.
c. dJx&€ RsuchthatVye R, x=y+1.
d. Yx € R",3y € R" such that xy = 1.
e. Yx € R, dy € Rsuch that xy = 1.

f. dx€ RsuchthatVy e R, x+y =y.
g. Vx € R", 3y € R" such that y < x.

h. 3x € R" such that Vy € R", x < y.

42. Write the negation of the definition of limit of a
sequence given in Example 3.3.7.

43. The following is the definition for lim, _, , fix) = L:

For every real number & > 0, there exists a real
number 6 > 0 such that for every real number x,
ifa—0 <x<a+dand x # a then

L—e<fix)<L+e.

Write what it means for lim, _, , fix) # L. In other
words, write the negation of the definition.

44. The notation 3! stands for the words “there exists
a unique.” Thus, for instance, “3! x such that x
is prime and x is even” means that there is one
and only one even prime number. Which of the
following statements are true and which are false?

Explain.
a. 3! real number x such that V real number
Y, Xy = Y.

b. 3!integer x such that 1/x is an integer.
c. Vreal number x, 3! real number y such that
x+y=0.

*45. Suppose that P(x) is a predicate and D is the

domain of x. Rewrite the statement “3! x € D
such that P(x)” without using the symbol 3!. (See
exercise 44 for the meaning of 3!.)
In 46-54, refer to the Tarski world given in Figure 3.1.1,
which is shown again here for reference. The domains of
all variables consist of all the objects in the Tarski world.
For each statement, (a) indicate whether the statement
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is true or false and justify your answer, (b) write the given
statement using the formal logical notation illustrated in
Example 3.3.10, and (c) write a negation for the given state-
ment using the formal logical notation of Example 3.3.10.

A O

CE
AD|
CE

46. There is a triangle x such that for every square y, x
is above y.

47. There is a triangle x such that for every circle y, x
is above y.

48. For every circle x, there is a square y such that y is
to the right of x.

49. For every object x, if x is a circle then there is a
square y such that y has the same color as x.

50. For every object x, if x is a triangle then there is a
square y such that y is below x.

51. There is a square x such that for every triangle y, if
y is above x then y has the same color as x.

52. For every circle x and for every triangle y, x is to
the right of y.

53. There is a circle x and there is a square y such that
x and y have the same color.

54. There is a circle x and there is a triangle y such
that x has the same color as y.

Let P(x) and Q(x) be predicates and suppose D is the
domain of x. In 55-58, for the statement forms in each
pair, determine whether (a) they have the same truth
value for every choice of P(x), Q(x), and D, or (b) there is
a choice of P(x), Q(x), and D for which they have opposite
truth values.

55. Vx € D, (P(x) N\ Q(x)), and
(Vx € D, P(x)) A (Vx € D, Q(x))
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56. dx € D, (P(x) N\ Q(x)), and
(3x € D, P(x)) A (3x € D, Q(x))

57. Vx € D, (P(x) v Q(x)), and
(Vx € D, P(x)) v (Vx € D, Q(x))

58. dx € D, (P(x) v Q(x)), and
(Hx € D, P(x)) v (3x € D, Q(x))

ANSWERS FOR TEST YOURSELF

In 59-61, find the answers Prolog would give if the

following questions were added to the program given

in Example 3.3.11.

59. a. ?isabove(b, w;)
b. ?color(X, white)
c. ?isabove(X, bs)

60. a. ?isabove(w, g)
b. ?color(w,, blue)
c. ?Zisabove(X, by)
61. a. ?isabove(w,, bs)
b. ?color(X, gray)
c. lisabove(g, X)

1. anelement yin E; y; P(x,y) 2.anelementxin D;y
in E; P(x,y) 3.dx such that Yy, the property P(x, y) is

false. 4. Vx, Jy such that the property P(x, y) is false.

5. The answer is (c): the truth or falsity of a statement in
which the quantifiers are reversed depends on the nature of
the property involving x and y.

ER Arguments with Quantified Statements

The only complete safeguard against reasoning ill, is the habit of reasoning well;
familiarity with the principles of correct reasoning; and practice in applying those

principles. —John Stuart Mill

The rule of universal instantiation (in-stan-she-AY-shun) says the following:

the set.

Universal Instantiation

If a property is true of everything in a set, then it is true of any particular thing in

Use of the words universal instantiation indicates that the truth of a property in a particu-
lar case follows as a special instance of its more general or universal truth. The validity of
this argument form follows immediately from the definition of truth values for a universal
statement. One of the most famous examples of universal instantiation is the following:

All men are mortal.
Socrates is a man.

.. Socrates is mortal.

Universal instantiation is the fundamental tool of deductive reasoning. Mathematical
formulas, definitions, and theorems are like general templates that are used over and over
in a wide variety of particular situations. A given theorem says that such and such is true
for all things of a certain type. If, in a given situation, you have a particular object of
that type, then by universal instantiation, you conclude that such and such is true for that
particular object. You may repeat this process 10, 20, or more times in a single proof or

problem solution.

As an example of universal instantiation, suppose you are doing a problem that requires

you to simplify

k+1
r °r,
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where r is a particular real number and & is a particular integer. You know from your study
of algebra that the following universal statements are true:

. +
1. For every real number x and for all integers m and n, x"-x" = x"™".

2. For every real number x, X =x

So you proceed as follows:

+ + .
rk 1-r=rk 1-r1 Step 1
= kD1 Step2
= rk_'—2 by basic algebra.

Here is the reasoning behind steps 1 and 2.

Step 1:  For every real number x, x' = universal truth
r is a particular real number. particular instance
" rl =r. conclusion

Step 2:  For every real number x and for all integers
mand n, X"-x" = "

ris a particular real number and £ + 1

and 1 are particular integers. particular instance

N ]

universal truth

conclusion

Both arguments are examples of universal instantiation.

Universal Modus Ponens

The rule of universal instantiation can be combined with modus ponens to obtain the valid
form of argument called universal modus ponens.

Universal Modus Ponens

Formal Version Informal Version
Vx, if P(x) then Q(x). If x makes P(x) true, then x makes Q(x) true.
P(a) for a particular a. a makes P(x) true.
- 0. .. a makes Q(x) true.

Note that the first, or major, premise of universal modus ponens could be written “All
things that make P(x) true make Q(x) true,” in which case the conclusion would follow by
universal instantiation alone. However, the if-then form is more natural to use in the major-
ity of mathematical situations.

SEJXR NN Recognizing Universal Modus Ponens

Rewrite the following argument using quantifiers, variables, and predicate symbols. Is this
argument valid? Why?

If an integer is even, then its square is even.
k is a particular integer that is even.

- k% is even.

Solution The major premise of this argument can be rewritten as

Vx, if x is an even integer then x%is even.
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Example 3.4.2

Note The logical
principle of existential
instantiation says that if
we know or have deduced
that something exists, we
may give it a name. This
is the principle that allows
us to call the integers
rand s.

Let E(x) be “x is an even integer,” let S(x) be “x? is even,” and let k stand for a particular
integer that is even. Then the argument has the following form:

Va, if E(x) then S(x).
E(k), for a particular k.
= S(k).

This argument has the form of universal modus ponens and is therefore valid. |

Drawing Conclusions Using Universal Modus Ponens

Write the conclusion that can be inferred using universal modus ponens.

If T is any right triangle with hypotenuse Pythagorean Theorem

c and legs a and b, then A =d+p

The triangle shown at the right is a right triangle c
with both legs equal to 1 and hypotenuse c.

Solution ¢ =12+12=2

Note that if you take the nonnegative square root of both sides of this equation, you obtain
¢ = \V/2. This shows that there is a line segment whose length is \/2. Section 4.7 contains
a proof that \/2 is not a rational number. |

Use of Universal Modus Ponens in a Proof

In Chapter 4 we discuss methods of proving quantified statements. Here is a proof that
the sum of any two even integers is even. It makes use of the definition of even integer,
namely, that an integer is even if, and only if, it equals twice some integer. (Or, more for-
mally: V integers x, x is even if, and only if, 3 an integer—say, k—such that x = 2k.)

Suppose m and n are particular but arbitrarily chosen even integers. Then m = 2r for
some integer r,(l> and n = 2s for some integer 5.” Hence

m+n=2r+2s by substitution
=2(r+ S)G) by factoring out the 2.

Now r+ s is an integer,(4) and so 2(r+s) is even.”) Thus m + 7 is even.

The following expansion of the proof shows how each of the numbered steps is justified by
arguments that are valid by universal modus ponens.

(1)  If an integer is even, then it equals twice some integer.
m is a particular even integer.
‘. m equals twice some integer, say, r.

(2)  If an integer is even, then it equals twice some integer.
n is a particular even integer.
*. n equals twice some integer, say, s.

(3)  If a quantity is an integer, then it is a real number.
r and s are particular integers.
*. rand s are real numbers.

For all a, b, and c, if a, b, and c¢ are real numbers, then ab + ac = a(b + ¢).
2, r, and s are particular real numbers.
L 2r+2s = 2(r+s).

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203



Example 3.4.3

3.4 ARGUMENTS WITH QUANTIFIED STATEMENTS 149

(4)  For all u and v, if u and v are integers, then u + v is an integer.
rand s are two particular integers.
*. r+ s is an integer.

(5)  If a number equals twice some integer, then that number is even.
2(r + s) equals twice the integer r + s.
. 2(r+s)is even.

Of course, the actual proof that the sum of even integers is even does not explicitly
contain the sequence of arguments given above. In fact, people who are good at analyti-
cal thinking are normally not even conscious that they are reasoning in this way because
they have absorbed the method so completely that it has become almost as automatic as
breathing.

Universal Modus Tollens

Another crucially important rule of inference is universal modus tollens. Its validity re-
sults from combining universal instantiation with modus tollens. Universal modus tollens
is the heart of proof of contradiction, which is one of the most important methods of math-
ematical argument.

Universal Modus Tollens

Formal Version Informal Version
Va, if P(x) then Q(x). If x makes P(x) true, then x makes Q(x) true.
~(Q(a), for a particular a. a does not make Q(x) true.
. ~P(a). .. a does not make P(x) true.

Recognizing the Form of Universal Modus Tollens

Rewrite the following argument using quantifiers, variables, and predicate symbols. Write
the major premise in conditional form. Is this argument valid? Why?

All human beings are mortal.
Zeus is not mortal.

.. Zeus is not human.
Solution The major premise can be rewritten as

Vx, if x is human then x is mortal.

Let H(x) be “x is human,” let M(x) be “x is mortal,” and let Z stand for Zeus. The argument
becomes

Vx, if H(x) then M(x)
~M(Z)
.. ~H(Z).

This argument has the form of universal modus tollens and is therefore valid. |
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Example 3.4.4

Drawing Conclusions Using Universal Modus Tollens
Write the conclusion that can be inferred using universal modus tollens.

All professors are absent-minded.

Tom Hutchins is not absent-minded.

Solution Tom Hutchins is not a professor. |

Proving Validity of Arguments with Quantified Statements

The intuitive definition of validity for arguments with quantified statements is the same as
for arguments with compound statements. An argument is valid if, and only if, the truth
of its conclusion follows necessarily from the truth of its premises. The formal definition
is as follows:

To say that an argument form is valid means the following: No matter what particu-
lar predicates are substituted for the predicate symbols in its premises, if the result-
ing premise statements are all true, then the conclusion is also true. An argument is
called valid if, and only if, its form is valid. It is called sound if, and only if, its form
is valid and its premises are true.

As already noted, the validity of universal instantiation follows immediately from the
definition of the truth value of a universal statement. General formal proofs of validity of
arguments in the predicate calculus are beyond the scope of this book. We give the proof of
the validity of universal modus ponens as an example to show that such proofs are possible
and to give an idea of how they look.

Universal modus ponens asserts that

Va, if P(x) then Q(x).
P(a) for a particular a.
.. 0(a).

To prove that this form of argument is valid, suppose the major and minor premises are
both true. [We must show that the conclusion “Q(a)” is also true.] By the minor premise,
P(a) is true for a particular value of a. By the major premise and universal instantiation,
the statement “If P(a) then Q(a)” is true for that particular a. But by modus ponens, since
the statements “If P(a) then Q(a)” and “P(a)” are both true, it follows that Q(a) is true also.
[This is what was to be shown.]

The proof of validity given above is abstract and somewhat subtle. We include the proof
not because we expect that you will be able to make up such proofs yourself at this stage of
your study. Rather, it is intended as a glimpse of a more advanced treatment of the subject,
which you can try your hand at in exercises 35 and 36 at the end of this section if you wish.

One of the paradoxes of the formal study of logic is that the laws of logic are used to
prove that the laws of logic are valid!

In the next part of this section we show how you can use diagrams to analyze the valid-
ity or invalidity of arguments that contain quantified statements. Diagrams do not provide
totally rigorous proofs of validity and invalidity, and in some complex settings they may
even be confusing, but in many situations they are helpful and convincing.
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Using Diagrams to Test for Validity

Consider the statement

All integers are rational numbers.
Or, formally,

V integer n, n is a rational number.

Picture the set of all integers and the set of all rational numbers as disks. The truth of the
given statement is represented by placing the integers disk entirely inside the rationals disk,
as shown in Figure 3.4.1.

rational numbers

integers

FIGURE 3.4.1

Because the two statements “Vx € D, Q(x)” and “Vx, if x is in D then Q(x)” are logically
equivalent, both can be represented by diagrams like the foregoing.

Perhaps the first person to use diagrams like these to analyze arguments was the German
mathematician and philosopher Gottfried Wilhelm Leibniz. Leibniz (LIPE-nits) was far
ahead of his time in anticipating modern symbolic logic. He also developed the main ideas
of the differential and integral calculus at approximately the same time as (and indepen-
dently of) Isaac Newton (1642—1727).

To test the validity of an argument diagrammatically, represent the truth of both prem-
ises with diagrams. Then analyze the diagrams to see whether they necessarily represent
the truth of the conclusion as well.

Using a Diagram to Show Validity

Use diagrams to show the validity of the following syllogism:

Bettmann/Getty Images

G. W. Leibniz
(1646-1716)

All human beings are mortal.
Zeus is not mortal.
.. Zeus is not a human being.
Solution The major premise is pictured on the left in Figure 3.4.2 by placing a disk la-

beled “human beings” inside a disk labeled “mortals.” The minor premise is pictured on
the right in Figure 3.4.2 by placing a dot labeled “Zeus” outside the disk labeled “mortals.”

mortals

human beings Zeus

Major premise Minor premise

FIGURE 3.4.2
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The two diagrams fit together in only one way, as shown in Figure 3.4.3.

mortals

human beings Zeus

FIGURE 3.4.3

Since the Zeus dot is outside the mortals disk, it is necessarily outside the human beings
disk. Thus the truth of the conclusion follows necessarily from the truth of the premises. It
is impossible for the premises of this argument to be true and the conclusion false; hence
the argument is valid. |

Using Diagrams to Show Invalidity

Use a diagram to show the invalidity of the following argument:

All human beings are mortal.
Felix is mortal.

.. Felix is a human being.

Solution The major and minor premises are represented diagrammatically in Figure 3.4.4.

mortals

mortals
human beings
® Felix
Major premise Minor premise

FIGURE3.4.4

All that is known is that the Felix dot is located somewhere inside the mortals disk.
Where it is located with respect to the human beings disk cannot be determined. Either one
of the situations shown in Figure 3.4.5 might be the case.

mortals
mortals

human beings

human beings

® Felix

(@) (b)
FIGURE 3.4.5
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The conclusion “Felix is a human being” is true in the first case but not in the second
(Felix might, for example, be a cat). Because the conclusion does not necessarily follow

Caution! Be carcful from the premises, the argument is invalid. |
when using diagrams to
test for validity! For in- The argument of Example 3.4.6 would be valid if the major premise were replaced by
stance, in this example if ~  its converse. But since a universal conditional statement is not logically equivalent to its
you put the diagrams for converse, such a replacement cannot, in general, be made. We say that this argument ex-
the premises together to hibits the converse error.
obtain only Figure 3.4.5(a)
and not Figure 3.4.5(b),
you would conclude erro- Converse Error (Quantified Form)
neOVUS]y.that the argument Formal Version Informal Version
was valid.

Vx, if P(x) then Q(x). If x makes P(x) true, then x makes Q(x) true.

Q(a) for a particular a. a makes Q(x) true.

.. P(a). < invalid .. a makes P(x) true. < invalid
conclusion conclusion

The following form of argument would be valid if a conditional statement were logi-
cally equivalent to its inverse. But it is not, and the argument form is invalid. We say that
it exhibits the inverse error. You are asked to show the invalidity of this argument form in
the exercises at the end of this section.

Inverse Error (Quantified Form)
Formal Version Informal Version
Vx, if P(x) then Q(x). If x makes P(x) true, then x makes Q(x) true.
~P(a), for a particular a. a does not make P(x) true.
. ~Q(a). < invalid .. a does not make Q(x) true. < invalid
conclusion conclusion

SEER. WA An Argument with “No”

Use diagrams to test the following argument for validity:

No polynomial functions have horizontal asymptotes.
This function has a horizontal asymptote.
.. This function is not a polynomial function.
Solution A good way to represent the major premise diagrammatically is shown in Fig-
ure 3.4.6, two disks—a disk for polynomial functions and a disk for functions with hori-

zontal asymptotes—that do not overlap at all. The minor premise is represented by placing
a dot labeled “this function” inside the disk for functions with horizontal asymptotes.

functions with
horizontal asymptotes

polynomial functions

@ this function

FIGURE 3.4.6
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Example 3.4.8

The diagram shows that “this function” must lie outside the polynomial functions disk, and
so the truth of the conclusion necessarily follows from the truth of the premises. Hence the
argument is valid. |

An alternative way to solve Example 3.4.7 is to transform “No polynomial functions
have horizontal asymptotes” into the equivalent statement “Vx, if x is a polynomial func-
tion, then x does not have a horizontal asymptote.” If this is done, the argument can be seen
to have the form

Vx, if P(x) then Q(x).
~Q(a), for a particular a.
- ~P(a).

where P(x) is “x is a polynomial function” and Q(x) is “x does not have a horizontal asymp-
tote.” This is valid by universal modus tollens.

Creating Additional Forms of Argument

Universal modus ponens and modus tollens were obtained by combining universal instan-
tiation with modus ponens and modus tollens. In the same way, additional forms of argu-
ments involving universally quantified statements can be obtained by combining universal
instantiation with other of the valid argument forms given in Section 2.3. For instance, in
Section 2.3 the argument form called transitivity was introduced:

pP—q
q —>r
p—r
This argument form can be combined with universal instantiation to obtain the following
valid argument form.

Universal Transitivity

Formal Version Informal Version
Vx P(x) — Q(x). Any x that makes P(x) true makes Q(x) true.
Vx Q(x) — R(x). Any x that makes Q(x) true makes R(x) true.
. Vx P(x) — R(x). .. Any x that makes P(x) true makes R(x) true.

Evaluating an Argument for Tarski’s World

The following argument refers to the kind of arrangement of objects of various types and
colors described in Examples 3.1.13 and 3.3.1. Reorder and rewrite the premises to show
that the conclusion follows as a valid consequence from the premises.

1. All the triangles are blue.

2. If an object is to the right of all the squares, then it is above all the circles.

3. If an object is not to the right of all the squares, then it is not blue.

.. All the triangles are above all the circles.

Solution Itis helpful to begin by rewriting the premises and the conclusion in if-then form:
1. Vx, if x is a triangle, then x is blue.

2. Vx, if x is to the right of all the squares, then x is above all the circles.
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3. Va, if x is not to the right of all the squares, then x is not blue.

.V, if x is a triangle, then x is above all the circles.

The goal is to reorder the premises so that the conclusion of each is the same as the
hypothesis of the next. Also, the hypothesis of the argument’s conclusion should be the
same as the hypothesis of the first premise, and the conclusion of the argument’s conclu-
sion should be the same as the conclusion of the last premise. To achieve this goal, it may
be necessary to rewrite some of the statements in contrapositive form.

In this example you can see that the first premise should remain where it is, but the sec-
ond and third premises should be interchanged. Then the hypothesis of the argument is the
same as the hypothesis of the first premise, and the conclusion of the argument’s conclusion
is the same as the conclusion of the third premise. But the hypotheses and conclusions of
the premises do not quite line up. This is remedied by rewriting the third premise in con-
trapositive form.

1. Vx, if x is a triangle, then x is blue.

3. Va, if x is blue, then x is to the right of all the squares.

2. Vx, if x is to the right of all the squares, then x is above all the circles.

Putting 1 and 3 together and using universal transitivity gives that

4. Vi, if x is a triangle, then x is to the right of all the squares.

And putting 4 together with 2 and using universal transitivity gives that
..V, if x is a triangle, then x is above all the circles,

which is the conclusion of the argument. |

Remark on the Converse and Inverse Errors

One reason why so many people make converse and inverse errors is that the forms of the
resulting arguments would be valid if the major premise were a biconditional rather than a
simple conditional. And, as we noted in Section 2.2, many people tend to conflate bicon-
ditionals and conditionals.

Consider, for example, the following argument:

All the town criminals frequent the Den of Iniquity bar.
John frequents the Den of Iniquity bar.
.. John is one of the town criminals.

The conclusion of this argument is invalid—it results from making the converse error.
Therefore, it may be false even when the premises of the argument are true. This type of
argument attempts unfairly to establish guilt by association.

The closer, however, the major premise comes to being a biconditional, the more likely
the conclusion is to be true. If hardly anyone but criminals frequent the bar and John also
frequents the bar, then it is likely (though not certain) that John is a criminal. On the basis
of the given premises, it might be sensible to be suspicious of John, but it would be wrong to
convict him.

A variation of the converse error is a very useful reasoning tool, provided that it is used
with caution. It is the type of reasoning that is used by doctors to make medical diagnoses
and by auto mechanics to repair cars. It is the type of reasoning used to generate explana-
tions for phenomena. It goes like this:
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TEST YOURSELF

1.

EXERCISESET 3.4

1.

CHAPTER3 THE LOGIC OF QUANTIFIED STATEMENTS

If a statement of the form

For every x, if P(x) then Q(x)
is true, and if

QO(a) is true, for a particular a,

then check out the statement P(a); it just might be true. For instance, suppose a doctor
knows that

For every x, if x has pneumonia, then x has a fever and chills,
coughs deeply, and feels exceptionally tired and miserable.

And suppose the doctor also knows that

John has a fever and chills, coughs deeply,
and feels exceptionally tired and miserable.

On the basis of these data, the doctor concludes that a diagnosis of pneumonia is a strong
possibility, though not a certainty. The doctor will probably attempt to gain further support
for this diagnosis through laboratory testing that is specifically designed to detect pneu-
monia. Note that the closer a set of symptoms comes to being a necessary and sufficient
condition for an illness, the more nearly certain the doctor can be of his or her diagnosis.

This form of reasoning has been named abduction by researchers working in artificial
intelligence. It is used in certain computer programs, called expert systems, that attempt to
duplicate the functioning of an expert in some field of knowledge.

The rule of universal instantiation says that if
some property is true for in a domain, then
it is true for

If the first two premises of universal modus
ponens are written as “If x makes P(x) true, then
x makes Q(x) true” and “For a particular value
of a )’ then the conclusion can be written
as “

If the first two premises of universal modus tol-
lens are written as “If x makes P(x) true, then x
makes Q(x) true” and “For a particular value of a

.’ then the conclusion can be written

13 ”»

as

If the first two premises of universal transitivity are
written as “Any x that makes P(x) true makes Q(x)
true” and “Any x that makes Q(x) true makes R(x)
true,” then the conclusion can be written as

i)

Diagrams can be helpful in testing an argument
for validity. However, if some possible configu-
rations of the premises are not drawn, a person
could conclude that an argument was when
it was actually .

Let the following law of algebra be the first state-

ment of an argument: For all real numbers a and b,
(a+b)* =a +2ab+b.

Suppose each of the following statements is, in

turn, the second statement of the argument. Use

universal instantiation or universal modus ponens

to write the conclusion that follows in each case.

a. a = xand b = y are particular real numbers.

b. a = f;and b = f; are particular real numbers.

c. a = 3uand b = 5v are particular real numbers.

d. a = g(r) and b = g(s) are particular real
numbers.

e. a = log(#;) and b = log(t,) are particular real
numbers.

Use universal instantiation or universal modus ponens to
fill in valid conclusions for the arguments in 2-4.

2.

If an integer n equals 2-k and k is an integer,
then n is even.
0 equals 2-0 and 0 is an integer.
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For all real numbers a, b, ¢, and d, if b # 0 and
d # 0 then a/b + c/d = (ad + bc)/bd.
a=2,b=3,c=4,and d = 5 are particular
real numbers such that » # 0 and d # 0.

V real numbers r, a, and b, if r is positive, then
(ra)b — rab

r=3,a = 1/2,and b = 6 are particular real
numbers such that r is positive.

Use universal modus tollens to fill in valid conclusions for
the argumentsin 5 and 6.

5.

11'%11 irrational numbers are real numbers.
¢ is not a real number.

If a computer program is correct, then compilation
of the program does not produce error messages.
Compilation of this program produces error
messages.

Some of the arguments in 7-18 are valid by universal
modus ponens or universal modus tollens; others are
invalid and exhibit the converse or the inverse error. State

which are valid and which are invalid. Justify your answers.

7.

10.

1.

12.

All healthy people eat an apple a day.
Keisha eats an apple a day.

". Keisha is a healthy person.

All freshmen must take a writing course.
Caroline is a freshman.

*. Caroline must take a writing course.

If a graph has no edges, then it has a vertex of
degree zero.
This graph has at least one edge.

*. This graph does not have a vertex of degree

ZE€ro.

If a product of two numbers is 0, then at least
one of the numbers is 0.

For a particular number x, neither (2x + 1) nor
(x—7) equals 0.

*. The product (2x + 1)(x — 7) is not 0.

All cheaters sit in the back row.
Monty sits in the back row.

*. Monty is a cheater.

If an 8-bit two’s complement represents a posi-
tive integer, then the 8-bit two’s complement
starts with a 0.

3.4 ARGUMENTS WITH QUANTIFIED STATEMENTS 157

The 8-bit two’s complement for this integer does
not start with a 0.
*. This integer is not positive.

13.  For every student x, if x studies discrete math-
ematics, then x is good at logic.
Tarik studies discrete mathematics.

*. Tarik is good at logic.

14.  If compilation of a computer program produces
error messages, then the program is not correct.
Compilation of this program does not produce
error messages.

*. This program is correct.

15.  Any sum of two rational numbers is rational.
The sum r + s is rational.

*. The numbers r and s are both rational.

16.  If a number is even, then twice that number is
even.

The number 27 is even, for a particular number n.
*. The particular number 7 is even.

17.  If an infinite series converges, then the terms go
to 0. ®
The terms of the infinite series —goto 0.

n=1
*. The infinite series — converges.
oo

18.  If an infinite series converges, then its terms go

to 0.
e N
The terms of the infinite series 2 1 do not
goto 0. n=1"
e - N
*. The infinite series E —— does not converge.
“~ n+1
19. Rewrite the statement “No good cars are cheap”

in the form “Vx, if P(x) then ~Q(x).” Indicate
whether each of the following arguments is valid
or invalid, and justify your answers.
a.  No good car is cheap.
A Rimbaud is a good car.
.. A Rimbaud is not cheap.
b.  No good car is cheap.
A Simbaru is not cheap.
*. A Simbaru is a good car.
c.  No good car is cheap.
A VX Roadster is cheap.
.. A VX Roadster is not good.
d.  No good car is cheap.
An Omnex is not a good car.
. An Omnex is cheap.
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20. a. Use a diagram to show that the following

argument can have true premises and a false
conclusion.
All dogs are carnivorous.
Aaron is not a dog.
.. Aaron is not carnivorous.

. What can you conclude about the validity or

invalidity of the following argument form?
Explain how the result from part (a) leads to
this conclusion.

Vx, if P(x) then Q(x).
~P(a) for a particular a.

- ~Q(a).

Indicate whether the arguments in 21-27 are valid or
invalid. Support your answers by drawing diagrams.

21.

22.

23.

24.

25.

26.

27.

All people are mice.
All mice are mortal.

.. All people are mortal.

All discrete mathematics students can tell a
valid argument from an invalid one.

All thoughtful people can tell a valid argument
from an invalid one.

.. All discrete mathematics students are thoughtful.

All teachers occasionally make mistakes.
No gods ever make mistakes.

.. No teachers are gods.

No vegetarians eat meat.
All vegans are vegetarian.

.. No vegans eat meat.

No college cafeteria food is good.
No good food is wasted.

.. No college cafeteria food is wasted.

All polynomial functions are differentiable.
All differentiable functions are continuous.

.. All polynomial functions are continuous.

[Adapted from Lewis Carroll.]
Nothing intelligible ever puzzles me.
Logic puzzles me.

.. Logic is unintelligible.

In exercises 28-32, reorder the premises in each of the
arguments to show that the conclusion follows as a valid
consequence from the premises. It may be helpful to
rewrite the statements in if-then form and replace some
of them by their contrapositives. Exercises 28-30 refer to
the kinds of Tarski worlds discussed in Examples 3.1.13

and 3.3.1. Exercises 31 and 32 are adapted from Symbolic
Logic by Lewis Carroll.”

28. 1.

2.

Every object that is to the right of all the blue
objects is above all the triangles.

If an object is a circle, then it is to the right of
all the blue objects.

If an object is not a circle, then it is not gray.

*. All the gray objects are above all the triangles.

29. 1.

All the objects that are to the right of all the
triangles are above all the circles.

. If an object is not above all the black objects,

then it is not a square.
All the objects that are above all the black
objects are to the right of all the triangles.

*. All the squares are above all the circles.

30. 1.

bl

If an object is above all the triangles, then it is
above all the blue objects.

. If an object is not above all the gray objects,

then it is not a square.

Every black object is a square.

Every object that is above all the gray objects
is above all the triangles.

-, If an object is black, then it is above all the

3. L
. Dogs gnaw bones.

blue objects.

I trust every animal that belongs to me.

I admit no animals into my study unless they
will beg when told to do so.

All the animals in the yard are mine.

I admit every animal that I trust into my study.
The only animals that are really willing to beg
when told to do so are dogs.

*. All the animals in the yard gnaw bones.

32. 1.

bl

When I work a logic example without grum-
bling, you may be sure it is one I understand.
The arguments in these examples are not ar-
ranged in regular order like the ones I am used
to.

No easy examples make my head ache.

I can’t understand examples if the arguments
are not arranged in regular order like the ones
I am used to.

I never grumble at an example unless it gives
me a headache.

*. These examples are not easy.

*Lewis Carroll, Symbolic Logic (New York: Dover, 1958),
pp- 118, 120, 123.
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In 33 and 34 a single conclusion follows when all the given 2. No one is a true poet unless he can stir the hu-
premises are taken into consideration, but it is difficult man heart.

to see because the premises are jumbled up. Reorder the 3. Shakespeare wrote Hamlet.

premises to make it clear that a conclusion follows logi- 4. No writer who does not understand human
cally, and state the valid conclusion that can be drawn. nature can stir the human heart.

(It may be helpful to rewrite some of the statements in 5
if-then form and to replace some statements by their ’
contrapositives.)

None but a true poet could have written
Hamlet.

#35. Derive the validity of universal modus tollens
from the validity of universal instantiation and
modus tollens.

33. 1. No birds except ostriches are at least 9 feet tall.

2. There are no birds in this aviary that belong to
anyone but me.

3. No ostrich lives on mince pies. *36. Derive the validity of universal form of part (a) of

4. Thave no birds less than 9 feet high. the elimination rule from the validity of universal

instantiation and the valid argument called elimi-

34. 1. All writers who understand human nature are o .
nation in Section 2.3.

clever.

ANSWERS FOR TEST YOURSELF

1. all elements; any particular element in the domain (Or: each true 3. Q(a) is false; P(a) is false 4. Any x that makes P(x)
individual element of the domain) 2. P(a) is true; Q(a) is true makes R(x) true. 5. valid; invalid (Or: invalid; valid)
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ELEMENTARY NUMBER
THEORY AND METHODS
OF PROOF

The underlying content of this chapter consists of properties of integers (whole numbers),
rational numbers (integer fractions), and real numbers. The underlying theme of the chap-
ter is how to determine the truth or falsity of a mathematical statement.

Here is an example involving a concept used frequently in computer science. Given any
real number x, the floor of x, or greatest integer in x, denoted |x], is the largest integer that
is less than or equal to x. On the number line, |x|is the integer immediately to the left of x
(or equal to x if x is, itself, an integer). Thus [2.3] = 2,[12.99999| =12, and |-1.5] = —2.
Consider the following two questions:

1. For any real number x, is [x —1] = [x|—1?
2. For any real numbers x and y, is [x — y] = [x]|—[y/?

Take a few minutes to try to answer these questions for yourself.

It turns out that the answer to (1) is yes, whereas the answer to (2) is no. Are these the an-
swers you got? If not, don’t worry. In Section 4.6 you will learn the techniques you need to
answer these questions and more. If you did get the correct answers, congratulations! You
have excellent mathematical intuition. Now ask yourself, “How sure am I of my answers?
Were they plausible guesses or absolute certainties? Was there any difference in certainty
between my answers to (1) and (2)? Would I have been willing to bet a large sum of money
on the correctness of my answers?”’

One of the best ways to think of a mathematical proof is as a carefully reasoned argu-
ment to convince a skeptical listener (often yourself) that a given statement is true. Imagine
the listener challenging your reasoning every step of the way, constantly asking, “Why is
that so?” If you can counter every possible challenge, then your proof as a whole will be
correct.

As an example, imagine proving to someone not very familiar with mathematical nota-
tion that if x is a number with 5x +3 = 33, then x = 6. You could argue as follows:

If 5x+3 = 33, then 5x+ 3 minus 3 will equal 33 —3 because subtracting the same
number from two equal quantities gives equal results. But 5x + 3 minus 3 equals 5x
because adding 3 to 5x and then subtracting 3 just leaves 5x. Also, 33 —3 = 30. Hence
5x = 30. This means that x is a number which when multiplied by 5 equals 30. But the
only number with this property is 6. Therefore, if Sx +3 = 33 then x = 6.

Of course there are other ways to phrase this proof, depending on the level of mathemat-
ical sophistication of the intended reader. In practice, mathematicians often omit reasons
for certain steps of an argument when they are confident that the reader can easily supply
them. When you are first learning to write proofs, however, it is better to err on the side
of supplying too many reasons rather than too few. All too frequently, when even the best
mathematicians carefully examine some “details” in their arguments, they discover that
those details are actually false. One of the most important reasons for requiring proof in

160
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Note Most quotients of
integers are not integers.
For example, 3 + 2, which
equals 3/2, is not an inte-
ger, and 3 + 0 is not even
a number.
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mathematics is that writing a proof forces us to become aware of weaknesses in our argu-
ments and in the unconscious assumptions we have made.

Sometimes correctness of a mathematical argument can be a matter of life or death.
Suppose, for example, that a mathematician is part of a team charged with designing a new
type of airplane engine, and suppose that the mathematician is given the job of determin-
ing whether the thrust delivered by various engine types is adequate. If you knew that the
mathematician was only fairly sure, but not positive, of the correctness of his analysis,
would you want to ride in the resulting aircraft?

At a certain point in Lewis Carroll’s Alice in Wonderland (see exercise 28 in Section 2.2),
the March Hare tells Alice to “say what you mean.” In other words, if she means a thing,
then that is exactly what she should say. In this chapter, perhaps more than in any other
mathematics course you have ever taken, you will need to say what you mean. Precision of
thought and language is essential to achieve the mathematical certainty that is necessary for
you to have complete confidence in your solutions to mathematical problems.

Direct Proof and Counterexample I: Introduction

Mathematics, as a science, commenced when first someone, probably a Greek,
proved propositions about “any” things or about “some” things without specification
of definite particular things. —Alfred North Whitehead, 1861-1947

Both discovery and proof are integral parts of problem solving. When you think you have
discovered that a certain statement is true, try to figure out why it is true. If you succeed, you
will know that your discovery is genuine. Even if you fail, the process of trying will give you
insight into the nature of the problem and may lead you to discover that the statement is false.
For complex problems, the interplay between discovery and proof is not reserved to the end
of the problem-solving process but, rather, is an important part of each step.

Assumptions

e In this text we assume a familiarity with the laws of basic algebra, which are listed
in Appendix A.

e We also use the three properties of equality: For all objects A, B,and C, (1) A = A,
(2)if A=B,thenB=A,and 3)if A =Band B = C, then A = C.

¢ And we use the principle of substitution: For all objects A and B, if A = B, then
we may substitute B wherever we have A.

¢ In addition, we assume that there is no integer between 0 and 1 and that the set of
all integers is closed under addition, subtraction, and multiplication. This means
that sums, differences, and products of integers are integers.

The mathematical content of this section primarily concerns even and odd integers and
prime and composite numbers.

Even, Odd, Prime, and Composite Integers

In order to evaluate the truth or falsity of a statement, you must understand what the state-
ment is about. In other words, you must know the meanings of all terms that occur in
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Example 4.1.1

the statement. Mathematicians define terms very carefully and precisely and consider it
important to learn definitions virtually word for word.

An integer n is even if, and only if, n equals twice some integer. An integer n is odd
if, and only if, n equals twice some integer plus 1.
Symbolically, for any integer, n
niseven < n = 2k for some integer k

nisodd < n = 2k+ 1 for some integer k

It follows from the definition that if you are doing a problem in which you know that a
particular integer is even, you can deduce that it has the form 2 - (some integer). Conversely,
if you know that an integer equals 2 (some integer), then you can deduce that the integer
is even.

Know a particular n has the form

deduce

integer n is even. ——> 2-(some integer).
Know n has the form .
deduce
_deduce - nis even.

2-(some integer).

This illustrates why both the if and the only-if parts of definitions are important in math-
ematical reasoning. In stating definitions, however, mathematics books often replace the
words if-and-only-if by the single word if, perhaps to seem less formal. For instance, the
definition of even might be given as “An integer is even if it equals twice some integer.” But
when the definition is actually used in a proof, both the if and the only-if parts are usually
needed. So, even when the only-if part of a definition is not stated explicitly, you are sup-
posed to understand intuitively that it should be included.

Also observe that the definitions of even and odd integers are quantified statements.
In Section 3.1 we pointed out that variables used in quantified statements are local,
which means that they are bound by the quantifier to which they are attached and that
their scopes extend only to the end of the quantified statements that contain them. As
a result, the particular names used for the variables have no meaning themselves and
are freely replaceable by other names. For example, you can substitute any symbols you
like in place of n and k in the definitions of even and odd without changing the meaning
of the definitions.

For every integer n, n is even if, and only if, n = 2r for some integer r.
For every integer m, m is even if, and only if, m = 2a for some integer a.
For every integer a, a is odd if, and only if, a = 25 + 1 for some integer s.

For every integer k, k is odd if, and only if, k = 2n +1 for some integer 7.

Even and Odd Integers

Use the definitions of even and odd to justify your answers to the following questions.
a. Is 0 even?
b. Is =301 odd?

c. If a and b are integers, is 6a’b even?
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Note The reason for not
allowing 1 to be prime is
discussed in Section 4.4.
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d. If a and b are integers, is 10a + 8b + 1 odd?

e. Is every integer either even or odd?

Solution
a. Yes, 0 is even because 0 = 2-0.

b. Yes, —301 is odd because —301 = 2(—151) +1 and —151 is an integer.

c. Yes, 6a°b is even because 6a°h = 2(3a2b) and 3a°b is an integer since it is a product
of integers.

d. Yes, 10a + 8b +1 is odd because 10a +8b+ 1 = 2(5a +4b) + 1 and 5a + 4b is an
integer since it is a sum of products of integers.

e. Yes, every integer is either even or odd. However, the reason for this fact is not im-
mediately apparent. It can be deduced using the method of proof by contradiction,
which is introduced in Section 4.7. It is also a consequence of the quotient-remainder
theorem, which is stated in Section 4.5. [ |

The integer 6, which equals 2-3, is a product of two smaller positive integers. On the
other hand, 7 cannot be written as a product of two smaller positive integers; its only posi-
tive factors are 1 and 7. A positive integer, such as 7, that cannot be written as a product of
two smaller positive integers is called prime.

An integer n is prime if, and only if, » > 1 and for all positive integers r and s, if
n = rs, then either r or s equals n. An integer n is composite if, and only if, n > 1
and n = rs for some integers r and s with | <r <nand 1 <s <n.

In symbols: For each integer n withn > 1,

nis prime < V positive integers r and s, if n = rs
then eitherr =1l ands =norr =nands = 1.

n is composite <> d positive integers r and s such that n = rs
and 1 <r<nand1<s<n.

Prime and Composite Numbers

a. Is 1 prime?

b. Is every integer greater than 1 either prime or composite?
c. Write the first six prime numbers.

d. Write the first six composite numbers.

Solution
a. No. A prime number is required to be greater than 1.

b. Yes. Let n be any integer that is greater than 1. Consider all pairs of positive integers
rand s such that n = rs. There exist at least two such pairs, namely, r = nand s = 1
and » = 1 and s = n. Moreover, since n = rs, all such pairs satisfy the inequalities
1 =r=nand 1 = s = n. If nis prime, then these two pairs are the only ways to write
n as rs. Otherwise, there exists a pair of positive integers » and s such that n = rs and
neither  nor s equals either 1 or n. Therefore, in this case | <r <mand 1 <s < n, and
hence n is composite.
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Example 4.1.3

c. 2,3,5711,13
d. 4,6,8,9,10, 12 [ |

Proving Existential Statements

According to the definition given in Section 3.1, a statement in the form

dx € D such that Q(x)
is true if, and only if]
Q(x) is true for at least one x in D.

One way to prove this is to find an x in D that makes Q(x) true. Another way is to give a set
of directions for finding such an x. Both of these methods are called constructive proofs
of existence. The logical principle underlying such a proof is called existential general-
ization. It says that if you know a certain property is true for a particular object, then you
may conclude that “there exists an object for which the property is true.”

Constructive Proofs of Existence

a. Prove: 3 an even integer n that can be written in two ways as a sum of two
prime numbers.

b. Suppose that r and s are integers. Prove: 3 an integer k such that 22r + 18s = 2k.

Solution

a. Letn = 10. Then 10 = 5+5 =3+ 7 and 3, 5, and 7 are all prime numbers. Thus
Jan even integer—namely, 10—that can be written in two ways as a sum of two
prime numbers.

b. Let k = 11r+ 9s. Then k is an integer because it is a sum of products of integers, and
by substitution, and the distributive law of algebra,

2k = 2(11r +9s) = 22r + 18s.

Thus 3 an integer, namely &, such that 22r + 18s = 2k. |

A nonconstructive proof of existence involves showing either (a) that the existence
of a value of x that makes Q(x) true is guaranteed by an axiom or a previously proved
theorem or (b) that the assumption that there is no such x leads to a contradiction. The
disadvantage of a nonconstructive proof is that it may give virtually no clue about where
or how x may be found. The widespread use of digital computers in recent years has
led to some dissatisfaction with this aspect of nonconstructive proofs and to increased
efforts to produce constructive proofs containing directions for computer calculation of
the quantity in question.

Disproving Universal Statements by Counterexample

To disprove a statement means to show that it is false. Consider the question of disproving
a statement of the form

Vx in D, if P(x) then Q(x).
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Note Example 4.1.4
shows that it is not always
true that if the squares of
two numbers are equal,
then the numbers are
equal. However, it is true
that if the squares of two
positive numbers are
equal, then the numbers
are equal.
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Showing that this statement is false is equivalent to showing that its negation is true. The
negation of the statement is existential:

dx in D such that P(x) and not Q(x).

But to show that an existential statement is true, we generally give an example, and because
the example is used to show that the original statement is false, we call it a counterexample.
Thus the method of disproof by counterexample can be written as follows:

Disproof by Counterexample

To disprove a statement of the form “Vx € D, if P(x) then Q(x),” find a value of x in
D for which the hypothesis P(x) is true and the conclusion Q(x) is false. Such an x is
called a counterexample.

Disproof by Counterexample
Disprove the following statement by finding a counterexample:

V real numbers a and b, if a* = b*then a = b.

Solution To disprove this statement, you need to find real numbers a and b such that the
hypothesis a* = b is true and the conclusion a = b is false. The fact that both positive and
negative integers have positive squares helps in the search. If you flip through some possi-
bilities in your mind, you will quickly see that 1 and —1 will work (or 2 and —2, or 0.5 and
—0.5, and so forth). You only need one such pair to give a counterexample.

Statement: V real numbers a and b, if at = bz, then a = b.

Counterexample: Let = 1 and » = —1. Then ¢* = 1> = 1 and b* = (—1)* = 1,
and so a®> = b*. Buta # b since 1 # —1.

After observing that a property holds in a large number of cases, you may guess that it
holds in all cases. You may, however, run into difficulty when you try to prove your guess.
Perhaps you just have not figured out the key to the proof, or perhaps your guess is false.
Consequently, when you are having serious difficulty proving a general statement, you
should interrupt your efforts to look for a counterexample. Analyzing the kinds of prob-
lems you are encountering in your proof efforts may help in the search. It may even happen
that if you find a counterexample and therefore prove the statement false, your understand-
ing may be sufficiently clarified so that you can formulate a more limited but true version
of the statement by changing the hypothesis.

Proving Universal Statements

The vast majority of mathematical statements to be proved are universal. In discussing
how to prove such statements, it is helpful to imagine them in a standard form:

Vx € D, if P(x) then Q(x).
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Example 4.1.5

Example 4.1.6

Sections 1.1 and 3.1 give examples showing how to write any universal statement in this
form. When D is finite or when only a finite number of elements satisfy P(x), such a state-
ment can be proved by the method of exhaustion.

The Method of Exhaustion

Use the method of exhaustion to prove the following statement:

Vn € Z,if nis even and 4 = n =< 26 then n can be written as a sum of
two prime numbers.

Solution 4=2+2 6=3+3 §=3+5 10=5+5
12=5+7 14=11+3 16 =5+11 18 =7+11
20=7+13 22=5+17 24=5+19 26=7+19 |

In most mathematical situations, however, the method of exhaustion cannot be used. For
instance, to prove by exhaustion that every even integer greater than 2 can be written as a
sum of two prime numbers you would have to check every even integer. But this is impos-
sible because there are infinitely many such numbers.

Even when the domain is finite, it may be infeasible to use the method of exhaustion.
Imagine, for example, trying to check by exhaustion that the multiplication circuitry of a
particular computer gives the correct result for every pair of numbers in the computer’s
range. Since a typical computer would require thousands of years just to compute all pos-
sible products of all numbers in its range (not to mention the time it would take to check
the accuracy of the answers), checking correctness by the method of exhaustion is obvi-
ously impractical.

The most powerful technique for proving a universal statement is one that works re-
gardless of the size of the domain over which the statement is quantified. It is based on a
logical principle sometimes called universal generalization. A more descriptive name is
generalizing from the generic particular.

Generalizing from the Generic Particular

To show that every element of a set satisfies a certain property, suppose x is a
particular but arbitrarily chosen element of the set, and show that x satisfies
the property.

The principle of generalizing from the generic particular is not a typical part of everyday
reasoning. Its main use is to determine that a general mathematical statement is correct.
The example below introduces the idea.

Generalizing from the Generic Particular

At some time you may have been shown a “mathematical trick” like the following. You
ask a person to pick any number, add 5, multiply by 4, subtract 6, divide by 2, and sub-
tract twice the original number. Then you astound the person by announcing that their
final result was 7. How does this “trick” work? Imagine that an empty box [J contains
whatever number the person picked. The table shows that by the end of the calculations,
whatever was in the empty box was subtracted out of the answer.
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Step Visual Result Algebraic Result
Pick a number. O X
Add 5. o] x+5
Multiply by 4. Ol
Ol +5)-4 =4x+20
s (o=
O {]]1
Subtract 6. O | |
O
(4x+20)—6=4x+14
O[]
O[]
Divide by 2. Ol drt 14
ol 2 T ET

Subtract twice the original number. Qx+T)—2x =17

The x in the table above is another way of holding a place for the number the person picked.
It is particular (because it is a single object), but it is also arbitrarily chosen or generic
(because any number whatsoever can be put in its place). So you can generalize from the
generic particular to conclude that if you follow the steps you will always get 7, regardless
of the initial value you put in place of x or inside the empty box. |

The point of having x be arbitrarily chosen (or generic) is to make a proof that can be gen-
eralized to all elements of the domain. By choosing x arbitrarily, you are making no special
assumptions about x that are not also true of all other elements of the domain. The word generic
means “sharing all the common characteristics of a group or class.” Thus everything you de-
duce about a generic element x of the domain is equally true of any other element of the domain.

When the method of generalizing from the generic particular is applied to a property of
the form “If P(x) then Q(x),” the result is the method of direct proof. Recall that the only
way an if-then statement can be false is for the hypothesis to be true and the conclusion to
be false. Thus, given the statement “If P(x) then Q(x),” if you can show that the truth of P(x)
compels the truth of Q(x), then you will have proved the statement. It follows by the method
of generalizing from the generic particular that to show that “Vx, if P(x) then Q(x),” is true
for every element x in a set D, you suppose x is a particular but arbitrarily chosen element
of D that makes P(x) true, and then you show that x makes Q(x) true.

Method of Direct Proof
1. Express the statement to be proved in the form “For every x € D, if P(x) then
Q(x).” (This step is often done mentally.)
2. Start the proof by supposing x is a particular but arbitrarily chosen element of D
for which the hypothesis P(x) is true. (This step is often abbreviated “Suppose
X € D and P(x).”)

3. Show that the conclusion Q(x) is true by using definitions, previously established
results, and the rules for logical inference.
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el AWA A Direct Proof of a Theorem

A

Caution! The word two
in this statement does

not necessarily refer to
two distinct integers. If a
choice of integers is made
arbitrarily, the integers
are very likely to be
distinct, but they might be
the same.

A

Caution! Because m and
n are arbitrarily chosen
they can be any pair of
even integers whatsoever.
But if you write m = 2r
and n = 2r, then m would
equal n, which is not
usually the case.

Prove that the sum of any two even integers is even.

Solution Whenever you are presented with a statement to be proved, it is a good idea to
ask yourself whether you believe it to be true. In this case you might imagine some pairs
of even integers—say 2+4, 6+ 10, 12+ 12, 28 + 54—and mentally check that their
sums are even. However, since you cannot possibly check all pairs of even numbers, you
cannot know for sure that the statement is true in general by checking its truth in these
particular instances. Many properties hold for a large number of examples and yet fail to
be true in general.

To prove this statement in general, you need to show that no matter what even inte-
gers are given, their sum is even. But given any two even integers, it is possible to repre-
sent them as 2r and 2s for some integers r and s. And by the distributive law of algebra,
2r+2s = 2(r+s), which is even because r+ s is an integer. Thus the statement is true
in general.

Suppose the statement to be proved is much more complicated than this. What method
can you use to derive a proof? You can begin by expressing the statement formally.

Formal Restatement: ¥ integers m and n, if m and n are even then m + n is even.

This statement is universally quantified over an infinite domain. Thus to prove it in gen-
eral, you need to show that no matter what two integers you might be given, if both of them
are even then their sum will also be even.

Next ask yourself, “How should I start the proof?” or “What am I supposing?” The an-
swer to such a question gives you the starting point, or first sentence, of the proof.

Starting Point: Suppose m and n are any particular but arbitrarily chosen integers that are
even.

Or, in abbreviated form:
Suppose m and n are any even integers.

Then ask yourself, “What conclusion do I need to show in order to complete the proof?”
To Show: m + n is even.

At this point you need to ask yourself, “How do I get from the starting point to the con-
clusion?” Since both involve the term even integer, you must use the definition of this
term—and thus you must know what it means for an integer to be even. It follows from the
definition that since m and n are even, each equals twice some integer. One of the basic
laws of logic, called existential instantiation, says, in effect, that if you know something
exists, you can give it a name. However, you cannot use the same name to refer to two dif-
ferent things, both of which are currently under discussion.

Existential Instantiation

If the existence of a certain kind of object is assumed or has been deduced, then
it can be given a name, as long as that name is not currently being used to refer to
something else in the same discussion.

Thus since m equals twice some integer, you can give that integer a name, and since n
equals twice some integer, you can also give that integer a name:

m = 2r, for some integer r and n = 2s, for some integer s.
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Now what you want to show is that m + n is even. In other words, you want to show that
m + n equals 2-(some integer). Having just found alternative representations for m (as 2r)
and n (as 2s), it seems reasonable to substitute these representations in place of m and n:

m+n=2r+2s.

Your goal is to show that m + n is even. By definition of even, this means that m + n can
be written in the form

2-(some integer).

This analysis narrows the gap between the starting point and what is to be shown to
showing that

2r + 2s = 2-(some integer).
Why is this true? First, because of the distributive law from algebra, which says that
2r+2s = 2(r+s),

and, second, because the sum of any two integers is an integer, which implies that r + s is
an integer.

This discussion is summarized by rewriting the statement as a theorem and giving a
formal proof of it. (In mathematics, the word theorem refers to a statement that is known to
be true because it has been proved.) The formal proof, as well as many others in this text,
includes explanatory notes to make its logical flow apparent. Such comments are purely a
convenience for the reader and could be omitted entirely. For this reason they are italicized
and enclosed in italic square brackets: [ J.

Donald Knuth, one of the pioneers of the science of computing, has compared con-
structing a computer program from a set of specifications to writing a mathematical proof
based on a set of axioms.* In keeping with this analogy, the bracketed comments can be
thought of as similar to the explanatory documentation provided by a good programmer.
Documentation is not necessary for a program to run, but it helps a human reader under-
stand what is going on.

Theorem 4.1.1

The sum of any two even integers is even.

Proof: Suppose m and n are any [particular but arbitrarily chosen] even integers. [We
must show that m+ n is even.] By definition of even, m = 2r and n = 2s for some
integers r and s. Then

m+n=2r+2s by substitution
=2(r+s) by factoring out a 2.

Let ¢t = r+ 5. Note that ¢ is an integer because it is a sum of integers. Hence
m+n =2t where tis an integer.

It follows by definition of even that m + n is even. [This is what we needed to show. ]Jr

*Donald E. Knuth, The Art of Computer Programming, 2nd ed., Vol. I (Reading, MA: Addison-Wesley,
1973), p. ix.

See page 148 for a discussion of the role of universal modus ponens in this proof.
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Example 4.1.8

Note You are not expected
to know anything about
complete bipartite graphs.

Example 4.1.9

Most theorems, like Theorem 4.1.1, can be analyzed to a point where you realize that
as soon as a certain thing is shown, the theorem will be proved. When that thing has been
shown, it is natural to end the proof with the words “this is what we needed to show” or “as
was to be shown.” The Latin words for this are quod erat demonstrandum, or Q.E.D. for
short. Proofs in older mathematics books end with these initials.

Note that both the if and the only if parts of the definition of even were used in the
proof of Theorem 4.1.1. Since m and n were known to be even, the only if (=) part of the
definition was used to deduce that m and » had a certain general form. Then, after some
algebraic substitution and manipulation, the if (&) part of the definition was used to de-
duce that m + n was even.

Getting Proofs Started

Believe it or not, once you understand the idea of generalizing from the generic particular
and the method of direct proof, you can write the beginnings of proofs even for theorems
you do not understand. The reason is that the starting point and what is to be shown in a
proof depend only on the linguistic form of the statement to be proved, not on the content
of the statement.

Identifying the “Starting Point” and the “Conclusion to Be Shown”

Write the first sentence of a proof (the “starting point”) and the last sentence of a proof (the
“conclusion to be shown”) for the following statement:

Every complete bipartite graph is connected.
Solution Tt is helpful to rewrite the statement formally using a quantifier and a variable:

domain hypothesis conclusion

Formal Restatement: For every graph G, if G is complete bipartite, then G is connected.

The first sentence, or starting point, of a proof supposes the existence of an object (in this
case G) in the domain (in this case the set of all graphs) that satisfies the hypothesis of the
if-then part of the statement (in this case that G is complete bipartite). The conclusion to
be shown is just the conclusion of the if-then part of the statement (in this case that G is
connected).

Starting Point: Suppose G is a [particular but arbitrarily chosen] graph such that G is
complete bipartite.

Conclusion to Be Shown: G is connected.
Thus the proof has the following shape:

Proof:
Suppose G is a [particular but arbitrarily chosen] graph such that G is complete bipartite.

Therefore, G is connected. |

Fill in the Blanks for a Proof

Fill in the blanks in the proof of the following theorem.

Theorem: For all integers r and s, if r is even and s is odd then 3r + 2s is even.
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Proof:
Suppose r and s are any [particular but arbitrarily chosen] integers such that r is even
and s is odd.
[We must show that 3r + 2s is even.]

By &, r=2mand s = 2n + 1 for some integers m and n.

Then
3r+2s =32m)+22n+1) by (0
=6m+4n+2 by multiplying out
=2Bm+2n+1) by factoring out 2

Lett=3m+2n+1.

Then ¢ is an integer because m, n, 3, 2, and 1 are integers and because &

Hence 3r+2s=2¢t, where t is an integer, and so by (d_), 3r+2s is even
[as was to be shown].

Solution

(a) definition of even and odd, (b) substitution, (c) products and sums of integers are inte-
gers, (d) definition of even.

TEST YOURSELF

Answers to Test Yourself questions are located at the end of each section.

1. Aninteger is even if, and only if, . 5. According to the method of generalizing from the
generic particular, to show that every element of

2. Aninteger is odd if, and only if, . . . .
a set satisfies a certain property, suppose x is a
3. Aninteger nis prime if, and only if, . _, and show that
4. The most common way to disprove a universal 6. To use the method of direct proof to prove a state-
statementistofind . ment of the form, “For every x in a set D, if P(x)
then Q(x),” one supposes that ___ and one
shows that

EXERCISE SET 4.1*

In 1-4 justify your answers by using the definitions of 4. Assume that r and s are particular integers.
even, odd, prime, and composite numbers. a. Is 4rseven?
b. Is 6r+4s*+ 3 odd?

1. Assume that k is a particular integer. .
P g c. If r and s are both positive, is P4 2rs +5°

a. Is —17 an odd integer?

. ite?
b. Is O neither even nor odd? composite:
¢. Is2k—1o0dd? Prove the statements in 5-11.
2. Assume that cis a Particular integer. 5. There are integers m and n such that m > 1 and
a. Is —6c an even integer? n>1and~+1isan integer.

b. Is 8¢ +5 an odd integer?

c. Is (*+1)—(c® —1)—2 an even integer? 6. There are distinct integers m and n such that

) ) % + % is an integer.
3. Assume that m and n are particular integers.
a. Is 6m+ 8n even?

b. Is 10mn +7 odd? \a+b=\Va+\Vb.

c. Ifm>n>0,ism*—n* composite?

7. There are real numbers a and b such that

*For exercises with blue numbers, solutions are given in Appendix B. The symbol H indicates that only a hint or partial solution is given. The
symbol * signals that an exercise is more challenging than usual.
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8. There is an integer n > 5 such that 2" — 1 is prime.

9. There is a real number x such that x > 1 and
2% > x10

Definition: An integer n is called a perfect square if,
and only if, n = K* for some integer k.

10. There is a perfect square that can be written as a
sum of two other perfect squares.

1. There is an integer n such that 2n* — 5n + 2 is
prime.

In 12-13, (a) write a negation for the given statement,
and (b) use a counterexample to disprove the given state-
ment. Explain how the counterexample actually shows
that the given statement is false.

12. For all real numbers a and b, if a < b then
a> < b

13. For every integer n, if n is odd then ™ 5 Lis odd.
Disprove each of the statements in 14-16 by giving a

counterexample. In each case explain how the counterex-
ample actually disproves the statement.

14. For all integers m and n, if 2m + n is odd then m
and n are both odd.

15. For every integer p, if p is prime then pP—1is
even.

16. For every integer n, if n is even then n’+1is
prime.

In 17-20, determine whether the property is true for all

integers, true for no integers, or true for some integers

and false for other integers. Justify your answers.

17. (a+b)y’ =d*+b°

18, LS ate
b d b+d
H19. —d" = (—a)"

20. The average of any two odd integers is odd.

Prove the statement in 21 and 22 by the method of
exhaustion.

21. Every positive even integer less than 26 can be ex-
pressed as a sum of three of fewer perfect squares.
(For instance, 10 = 12+3%and 16 = 42.)

22. For each integer n with 1 = n = 10, n—n+11is
a prime number.

Each of the statements in 23-26 is true. For each, (a)

rewrite the statement with the quantification implicit as

If then and (b) write the first sentence

of a proof (the “starting point”) and the last sentence of

a proof (the “conclusion to be shown”). (Note that you do
not need to understand the statements in order to be able
to do these exercises.)

23.

24.

25.

26.
H 27.

For every integer m, if m > 1 then 0 < % < 1.
For every real number x, if x > 1 then x> x

For all integers m and n, if mn = 1 thenm =n =1
orm=n=—1.

For every real number x, if 0 < x < 1 then x* < x.
Fill in the blanks in the following proof.
Theorem: For every odd integer n, n” is odd.

Proof: Suppose 1 is any _@ . By definition of
odd, n = 2k + 1 for some integer k. Then

n2 = ( & )2 by substitution
= 4% + 4k +1 by multiplying out
= 2(2/(2 +2k)+1 by factoring out a 2

Now 2k* + 2k is an integer because it is a sum of

products of integers. Therefore, n’ equals 2-(an in-

teger) + 1, and so © isodd by definition of odd.
Because we have not assumed anything about n

except that it is an odd integer, it follows from the

principle of @ that for every odd integer n,

n* is odd.

In each of 28-31: a. Rewrite the theorem in three differ-
ent ways: as V. if then as

v

y— (without using the words if or then),

and as If then (without using an explicit
universal quantifier).

b. Fill in the blanks in the proof of the theorem.

28.

Theorem: The sum of any two odd integers is even.

Proof: Suppose m and n are any [particular but
arbitrarily chosen] odd integers.

[We must show that m + n is even.]

By&,m =2r+1andn = 2s+ 1 for some
integers r and s.

Then
mtn=Qr+)+@s+1) by
=2r+2s+2
=2(r+s+1) by algebra.

Letu = r+s+ 1. Then u is an integer because r,
s, and 1 are integers and because ©
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Hence m +n = 2u, where u is an integer, and so,
by ﬂ, m + n is even [as was to be shown].

29. Theorem: The negative of any even integer is
even.

Proof: Suppose n is any [particular but arbitrarily
chosen] even integer.

[We must show that —n is even.]

By _@ 5 = 2k for some integer k.

Then
—n = —(2k) by _®
=2(—k) by algebra.
Let r = —k. Then r is an integer because (— 1) and

k are integers and _(©) .

Hence —n = 2r, where r is an integer, and so —n is
even by ) [as was to be shown].

30. Theorem 4.1.2: The sum of any even integer and
any odd integer is odd.

Proof: Suppose m is any even integer and n is
_(@) By definition of even, m = 2r for some
(b) ., and by definition of odd, n = 25+ 1 for

ANSWERS FOR TEST YOURSELF

some integer s. By substitution and algebra,
m+n=_© =2(r+s)+1.

Since r and s are both integers, so is their sum
r+ 5. Hence m + n has the form twice some inte-
ger plus one, and so _(d)__ by definition of odd.

31. Theorem: Whenever # is an odd integer, 50247
is even.

Proof: Suppose n is any [particular but arbitrarily
chosen] odd integer.

[We must show that 502+ 17 is even.|

By definition of odd, n = _(@)__ for some integer k.

Then
5P +7=_(b)
= 54k +dk+1)+7
= 20K* + 20k + 12
= 2(10k* + 10k + 6)

by substitution

by algebra.
Letr = _(C) . Then tis an integer because prod-
ucts and sums of integers are integers.

Hence 5n°+7 = 2t, where ¢ is an integer, and thus
_@d by definition of even [as was to be shown].

1. it equals twice some integer 2. it equals twice some
integer plus 1 3. n is greater than 1 and if n equals the
product of any two positive integers, then one of the integers
equals 1 and the other equals n. 4. a counterexample

5. particular but arbitrarily chosen element of the set;
x satisfies the given property 6. x is a particular but
arbitrarily chosen element of the set D that makes the
hypothesis P(x) true; x makes the conclusion Q(x) true.

E¥] Direct Proof and Counterexample Il: Writing Advice

“...it is demanded for proof that every doubt becomes impossible.” —Carl Friedrich

Gauss (1777-1855)

Think of a proof as a way to communicate a convincing argument for the truth of a math-
ematical statement. When you write a proof, try to be clear and complete. Keep in mind
that a classmate reading your proof will see only what you actually write down, not any
unexpressed thoughts behind it. Ideally, your proof will lead your reader to understand why

the given statement is true.

Directions for Writing Proofs of Universal Statements

Over the years, the following rules of style have become fairly standard for writing the

final versions of proofs:

1. Copy the statement of the theorem to be proved on your paper.
This makes the theorem statement available for reference to anyone reading the proof.
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2. Clearly mark the beginning of your proof with the word Proof.

This word separates general discussion about the theorem from its actual proof.

. Make your proof self-contained.

This means that you should explain the meaning of each variable used in your proof
in the body of the proof. Thus you will begin proofs by introducing the initial variables
and stating what kind of objects they are. The first sentence of your proof would be
something like “Suppose m and n are any even integers” or “Let x be a real number such
that x is greater than 2.” This is similar to declaring variables and their data types at the
beginning of a computer program.

At a later point in your proof, you may introduce a new variable to represent a quan-
tity that is known at that point to exist. For example, if you have assumed that a particu-
lar integer n is even, then you know that n equals 2 times some integer, and you can give
this integer a name so that you can work with it concretely later in the proof. Thus if
you decide to call the integer, say, s, you would write, “Since 7 is even, n = 2s for some
integer s,” or “since n is even, there exists an integer, say s, such that n = 2s.”

. Write your proof in complete, grammatically correct sentences.

This does not mean that you should avoid using symbols and shorthand abbrevia-
tions, just that you should incorporate them into sentences. For example, the proof of
Theorem 4.1.1 contains the sentence

Thenm+n = 2r+2s by substitution
=2(r+s) by factoring out 2.

To read such text as a sentence, read the first equals sign as “equals” and each subse-
quent equals sign as “which equals.”

. Keep your reader informed about the status of each statement in your proof.

Your reader should never be in doubt about whether something in your proof has
been assumed or established or is still to be deduced. If something is assumed, preface it
with a word like Suppose or Assume. If it is still to be shown, preface it with words like,
We must show that or In other words, we must show that. This is especially important if
you introduce a variable in rephrasing what you need to show. (See Common Mistakes
on the next page.)

. Give a reason for each assertion in your proof.

Each assertion in a proof should come directly from the hypothesis of the theorem,
or follow from the definition of one of the terms in the theorem, or be a result obtained
earlier in the proof, or be a mathematical result that has previously been established or
is agreed to be assumed. Indicate the reason for each step of your proof using phrases
such as by hypothesis, by definition of ... by theorem ... and so forth.

It is best to refer to definitions and theorems by name or number. If you need to
state one in the body of your proof, avoid using a variable when you write it because
otherwise your proof could end up with a variable that has two conflicting meanings.*

Proofs in more advanced mathematical contexts often omit reasons for some steps
because it is assumed that students either understand them or can easily figure them out
for themselves. However, in a course that introduces mathematical proof, you should
make sure to provide the details of your arguments because you cannot guarantee that
your readers have the necessary mathematical knowledge and sophistication to supply
them on their own.

*When a variable is used to state a definition, the scope of the variable extends only to the end of the defini-
tion. After that, the symbol for the variable no longer has the same meaning. Confusion can result from think-
ing that the meaning of the symbol continues into other parts of the proof.
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7. Include the “little words and phrases” that make the logic of your arguments clear.
When writing a mathematical argument, especially a proof, indicate how each sen-
tence is related to the previous one. Does it follow from the previous sentence or from a
combination of the previous sentence and earlier ones? If so, start the sentence with the
word Because or Since and state the reason why it follows, or write Then, or Thus, or
So, or Hence, or Therefore, or Consequently, or It follows that, and include the reason
at the end of the sentence. For instance, in the proof of Theorem 4.1.1, once you know
that m is even, you can write: “By definition of even, m = 2r for some integer r,” or you
can write, “Then m = 2r for some integer r by definition of even.” And when you write
“Then m +n = 2r+ 2s,” add the words by substitution to explain why you are allowed
to write 2r in place of m and 2s in place of n.

If a sentence expresses a new thought or fact that does not follow as an immediate
consequence of the preceding statement but is needed for a later part of a proof, intro-
duce it by writing Observe that, or Note that, or Recall that, or But, or Now.

Sometimes in a proof it is desirable to define a new variable in terms of previous
variables. In such a case, introduce the new variable with the word Let. For instance,
in the proof of Theorem 4.1.1, once it is known that m +n = 2(r + s), where r and s are
integers, a new variable ¢ is introduced to represent r + s. The convention in mathemat-
ics and computer science is to put a new variable to the left of the equal sign and the
expression that defines it to the right of the sign. Thus the proof goes on to say, “Let
t = r+s. Then t is an integer because it is a sum of two integers.”

8. Display equations and inequalities.

The convention is to display equations and inequalities on separate lines to increase
readability, both for other people and for ourselves so that we can more easily check our
work for accuracy. We follow the convention in the text of this book, but in order to save
space, we violate it in a few of the exercises and in many of the solutions contained in
Appendix B. So you may need to copy out some parts of solutions on scratch paper to
understand them fully. Please follow the convention in your own work. Leave plenty of
empty space, and don’t be stingy with paper!

Variations among Proofs

It is rare that two proofs of a given statement, written by two different people, are identical.
Even when the basic mathematical steps are the same, the two people may use different
notation or may give differing amounts of explanation for their steps, or may choose dif-
ferent words to link the steps together into paragraph form. An important question is how
detailed to make the explanations for the steps of a proof. This must ultimately be worked
out between the writer of a proof and the intended reader, whether they be student and
teacher, teacher and student, student and fellow student, or mathematician and colleague.
Your teacher may provide explicit guidelines for you to use in your course. Or you may
follow the example of the proofs in this book (which are generally explained rather fully
in order to be understood by students at various stages of mathematical development).
Remember that the phrases written inside brackets [ ] are intended to elucidate the logical
flow or underlying assumptions of the proof and need not be written down at all. It is your
decision whether to include such phrases in your own proofs.

Common Mistakes

The following are some of the most common mistakes people make when writing math-
ematical proofs.
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1. Arguing from examples.

Looking at examples is one of the most helpful practices a problem solver can engage
in and is encouraged by all good mathematics teachers. However, it is a mistake to think
that a general statement can be proved by showing it to be true for some individual
cases. A property referred to in a universal statement may be true in many instances
without being true in general.

Consider the following “proof” that the sum of any two even integers is even
(Theorem 4.1.1).

This is true because if m = 14 and n = 6, which are both even,
then m +n = 20, which is also even.

Some people find this kind of argument convincing because it does, after all,
consist of evidence in support of a true conclusion. But remember that when we
discussed valid arguments, we pointed out that an argument may be invalid and
yet have a true conclusion. In the same way, an argument from examples may be
mistakenly used to “prove” a true statement. In the previous example, it is not suf-
ficient to show that the conclusion “m+n is even” is true for m = 14 and n = 6.
You must give an argument to show that the conclusion is true for any arbitrarily
chosen even integers m and n.

. Using the same letter to mean two different things.

Some beginning theorem provers give a new variable quantity the same letter name
as a previously introduced variable. Consider the following “proof” fragment:

Suppose m and n are any odd integers. Then by definition of odd,
m = 2k+ 1 and n = 2k + 1 where k is an integer.

You might think of a variable in a mathematical proof as similar to a global variable
in a computer program: once introduced, it has the same meaning throughout the pro-
gram. In other words, its scope extends to the end of the program. In this example,
using the symbol k in the expressions for both m and n makes k a global variable. As
a result, both m and n equal 2k + 1, and thus are equal to each other. The proof then
only shows that a sum of two identical odd integers is even, not that the sum of two
arbitrarily chosen odd integers is even.

. Jumping to a conclusion.

To jump to a conclusion means to allege the truth of something without giving an
adequate reason. Consider the following “proof” that the sum of any two even integers
is even.

Suppose m and n are any even integers. By definition of even,
m = 2r and n = 2s for some integers r and s. Then m +n = 2r + 2s.
So m+ n is even.

The problem with this “proof” is that to show an integer is even one needs to show
that it equals twice some integer. This proof jumps to the conclusion that m + n is even
without having found an integer that, when doubled, equals m + n.

. Assuming what is to be proved.

To assume what is to be proved is a variation of jumping to a conclusion. As an
example, consider the following “proof” of the fact that the product of any two odd
integers is odd:

Suppose m and n are any odd integers. When any odd integers are
multiplied, their product is odd. Hence mn is odd.
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5. Confusion between what is known and what is still to be shown.
A more subtle way to jump to a conclusion occurs when the conclusion is restated
using a variable. Here is an example in a “proof™ that the product of any two odd inte-
gers is odd:

Suppose m and n are any odd integers. We must show that mn is

odd. This means that there exists an integer s such that

mn =2s+1.

Also by definition of odd, there exist integers a and b such that
m=2a+1andn=2b+1.
Then

l
mn= Qa+1)2b+1)=2s+1.

So, since s is an integer, mn is odd by definition of odd.

In this example, when the author restated the conclusion to be shown (that mn is
odd), the author wrote “there exists an integer s such that mn = 2s + 1.” But we only
know that the integer s exists if we know that mn is odd, which is what the author is
trying to show. Thus, in the sentence starting with the word “Then,” the author jumped
to an unjustified conclusion. This mistake might have been avoided if the author had
written

“This means we must show that there exists an integer s such that mn = 25+ 1.”

An even better way to avoid this kind of error is not to introduce a variable into a proof
unless it is either part of the hypothesis or deducible from it.

6. Use of any when the correct word is some.

There are a few situations in which the words any and some can be used interchange-
ably. For instance, in starting a proof that the square of any odd integer is odd, one could
correctly write, “Suppose m is any odd integer” or “Suppose m is some odd integer.” In
most situations, however, the words any and some are not interchangeable. Here is the
start of a “proof” that the square of any odd integer is odd, which uses any when the
correct word is some:

Suppose m is a particular but arbitrarily chosen odd integer.
By definition of odd, m = 2a + 1 for any integer a.

In the second sentence it is incorrect to say that “m = 2a + 1 for any integer a” because
a cannot be just “any” integer; in fact, solving m = 2a + 1 for a shows that the only
possible value for a is (m —1)/2. The correct way to finish the second sentence is,
“m = 2a + 1 for some integer a” or “there exists an integer a such that m = 2a + 1.”

7. Misuse of the word if.
Another common error is not serious in itself, but it reflects imprecise thinking that
sometimes leads to problems later in a proof. This error involves using the word if when
the word because is really meant. Consider the following proof fragment:

Suppose p is a prime number. If p is prime, then p cannot be written
as a product of two smaller positive integers.

The use of the word if in the second sentence is inappropriate. It suggests that the
primeness of p is in doubt. But p is known to be prime by the first sentence. It cannot
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Example 4.2.1

be written as a product of two smaller positive integers because it is prime. Here is a
correct version of the fragment:

Suppose p is a prime number. Because p is prime, p cannot be written
as a product of two smaller positive integers.

An Odd Integer Minus an Even Integer

Prove that the difference of any odd integer and any even integer is odd. Use only the defi-
nitions of odd and even and the Assumptions listed on page 161, not any other properties
of odd and even integers. Follow the directions given in this section for writing proofs of
universal statements.

Solution

You may already have a sense that the statement to be proved is true, but to make sure your

intuition is correct and to develop a careful proof, rewrite the statement using names such as

a and b for the odd and even integers so that you will have a convenient way to refer to them:
For all integers a and b, if a is odd and b is even, then a — b is odd.

Or: For every odd integer a and every even integer b, the difference a — b is odd.
Or: If a is any odd integer and b is any even integer, then a — b is odd.

Thus the starting point for your proof would be something like, “Suppose a is any odd in-
teger and b is any even integer,” and the conclusion to be shown would be “We must show that
a — bis odd.” I, in addition, you know how to use the definitions of odd and even, you will have
reduced the creative part of developing the proof to a small, but crucial, section in the middle.

Theorem 4.2.1

The difference of any odd integer and any even integer is odd.

Proof:

1. Suppose a is any odd integer and b is any even integer. [ We must show that a —b
is odd.]

. By definition of odd, @ = 2r + 1 for some integer r, and b = 2s for some integer s.
Then a—b=QQ2r+1)—2s by substitution
=2r—2s+1 by combining like terms
=2(r—s)+1 by factoring out 2.
Let t=r—s.

Then 7 is an integer because it is a difference of integers.

So, by substitution, a —b = 2t + 1, where ¢ is an integer.

© 0N U R W

Hence a — b is odd [as was to be shown].

Note that lines 1-3 follow immediately from the general structure of the proof, the defini-
tions of odd and even, and substitution. In order to figure out your next steps, it can be helpful
to refer to what must be shown—namely, that a — b is odd. According to the definition of
odd, you can conclude that a — b is odd if you can show that it equals 2-(some integer) + 1.
So showing that a — b is odd involves transforming (2r + 1) — 2s into 2 - (some integer) + 1.
Lines 4—8 show the steps for doing this, and line 9 concludes that what was to be shown has
been achieved. |
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Some of the exercises at the end of the section are based on actual student work and ask
you to identify mistakes in “proofs” that have been proposed. Example 4.2.2 illustrates the
kind of care that must be taken in evaluating a proof.

Identifying a Mistake in a Proposed Proof

Find the mistake in the following “proof.”
Theorem: If n is any even integer, then (—1)" = 1.

Proof:

1. Suppose n is any even integer. [We must show that (—1)" is even.]

2. By definition of even, n = 2a for some integer a.

3. Then (—l)n = (- 1)2a by substitution

4, =((— 1)“)2 by a law of exponents

5. =1 because any nonzero real number squared is positive.
Solution

This “proof” incorrectly jumps to a conclusion in line 5. Although it is true that the square
of any nonzero real number is positive, it does not follow that the square of (—1)* is 1.
Exercise 10 at the end of this section asks you to give a correct proof of this theorem. |

Showing That an Existential Statement Is False

Recall that the negation of an existential statement is universal. It follows that to prove an
existential statement is false, you must prove a universal statement (its negation) is true.

Disproving an Existential Statement
Show that the following statement is false:
There is a positive integer n such that n?+3n+2 s prime.
Solution Proving that the given statement is false is equivalent to proving its negation is
true. The negation is
For all positive integers n, n? + 3n+ 2 is not prime.

Because the negation is universal, it is proved by generalizing from the generic particular.
Claim: The statement “There is a positive integer n such that n?+3n+2is prime” is false.
Proof:

Suppose n is any [particular but arbitrarily chosen] positive integer. [We will show that
n* + 3n+ 2 is not prime.] Factoring shows that

P +3n+2=n+1n+2).

In addition, n+ 1 and n+ 2 are integers (because they are sums of integers), and both
n+1>1and n+2>1 (because n = 1). Thus n” +3n+2 is a product of two integers
each greater than 1, and so n’+3n+ 2 is not prime. |

Conjecture, Proof, and Disproof

More than 350 years ago, the French mathematician Pierre de Fermat claimed that it is
impossible to find positive integers x, y, and z with x" +y" = " if n is an integer that is
at least 3. (For n = 2, the equation has many integer solutions, such as 3% +4>=5%and
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52+ 12% = 13%) Fermat wrote his claim in the margin of a book, along with the comment
“I have discovered a truly remarkable PROOF of this theorem which this margin is too
small to contain.” No proof, however, was found among his papers, and over the years
some of the greatest mathematical minds tried and failed to discover a proof or a counter-
example for what came to be known as Fermat’s last theorem.

In 1986 Kenneth Ribet of the University of California at Berkeley showed that if a cer-
tain other statement, the Taniyama—Shimura conjecture, could be proved, then Fermat’s
theorem would follow. Andrew Wiles, an English mathematician and faculty member at
Princeton University, had become intrigued by Fermat’s claim while still a child and, as
an adult, had come to work in the branch of mathematics to which the Taniyama—Shimura
conjecture belonged. As soon as he heard of Ribet’s result, Wiles immediately set to work
to prove the conjecture. In June of 1993, after 7 years of concentrated effort, he presented
a proof to worldwide acclaim.

During the summer of 1993, however, while the proof was being carefully checked
to prepare for publication, Wiles found a step he had difficulty justifying and which he
ultimately realized was an error. Having worked alone for so long, he decided to call on
a former student, Richard Taylor, then at Cambridge University in England, who agreed
to join him in Princeton, and, together, they worked ceaselessly for months to resolve the
problem. After almost a year without a breakthrough, Taylor encouraged Wiles to revisit
an approach that had been abandoned years earlier, and, as Wiles examined the details,
he suddenly saw that the reason it had failed was the exact reason another approach he
had previously abandoned would succeed. By the end of 1994, the revised proof had been
thoroughly checked and pronounced correct by experts in the field. It was published in the
Annals of Mathematics in 1995. Several books and an excellent documentary have been
produced that convey the drama and excitement of the discovery.*

One of the oldest problems in mathematics that remains unsolved is the Gold-
bach conjecture. In Example 4.1.5 it was shown that every even integer from 4 to
: ; 26 can be represented as a sum of two prime numbers. More than 250 years ago,
Andrew Wiles Christian Goldbach (1690-1764) conjectured that every even integer greater than 2
(born 1953) can be so represented. Explicit computer-aided calculations have shown the conjec-
ture to be true up to at least 10", But there is a huge chasm between 10" and infin-
ity. As pointed out by James Gleick of the New York Times, many other plausible
conjectures in number theory have proved false. Leonhard Euler (1707-1783), for
example, proposed in the eighteenth century that a*+b*+¢* = d* had no nontrivial
whole number solutions. In other words, no three perfect fourth powers add up to an-
other perfect fourth power. For many numbers, Euler’s conjecture looked good. But in
1987 a Harvard mathematician, Noam Elkies, proved it wrong. One counterexample,
found by Roger Frye of Thinking Machines Corporation in a long computer search, is
95,800 +217,519* + 414,560" = 422,481*

In May 2000, “to celebrate mathematics in the new millennium,” the Clay Mathematics
Institute of Cambridge, Massachusetts, announced that it would award prizes of $1 mil-
lion each for the solutions to seven longstanding, classical mathematical questions. One of
them, “P vs. NP,” asks whether problems belonging to a certain class can be solved on a
computer using more efficient methods than the very inefficient methods that are presently
known to work for them. This question is discussed briefly at the end of Chapter 11.

Bettmann/Getty Images

" S -f:
Pierre de Fermat
(1601-1665)

AP Images/Charles Rex Arbogast

““The Proof,” produced in 1997, for the series Nova on the Public Broadcasting System; Fermat’s Enigma:
The Epic Quest to Solve the World’s Greatest Mathematical Problem, by Simon Singh and John Lynch (New
York: Bantam Books, 1998); Fermat’s Last Theorem: Unlocking the Secret of an Ancient Mathematical Prob-
lem by Amir D. Aczel (New York: Delacorte Press, 1997).

James Gleick, “Fermat’s Last Theorem Still Has Zero Solutions,” New York Times, April 17, 1988.
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TEST YOURSELF

1. The meaning of every variable used in a proof
should be explained within

2. Proofs should be written in sentences that are
and

3. Every assertion in a proof should be supported by
a

4. The following are some useful “little words and
phrases” that clarify the reasoning in a proof:
and

EXERCISE SET 4.2

5. A new thought or fact that does not follow as an
immediate consequence of the preceding state-
ment can be introduced by writing |

or

6. To introduce a new variable that is defined in
terms of previous variables, use the word

7. Displaying equations and inequalities increases
the _ of a proof.

8. Some proof-writing mistakesare |
and

Prove the statements in 1-11. In each case use only the
definitions of the terms and the Assumptions listed on
page 161, not any previously established properties of
odd and even integers. Follow the directions given in this
section for writing proofs of universal statements.

1. For every integer n, if n is odd then 3n + 5 is even.

2. For every integer m, if m is even then 3m + 5 is
odd.

3. For every integer n, 2n — 1 is odd.

4. Theorem 4.2.2: The difference of any even inte-
ger minus any odd integer is odd.

5. If a and b are any odd integers, then @+ is
even.

6. If k is any odd integer and m is any even integer,
then &° + m” is odd.

7. The difference between the squares of any two
consecutive integers is odd.

8. For any integers m and n, if m is even and n is odd
then 5m + 3n is odd.

9. If an integer greater than 4 is a perfect square, then
the immediately preceding integer is not prime.

10. If n is any even integer, then (—1)" = 1.

1. If n is any odd integer, then (—1)" = —1.

Prove that the statements in 12-14 are false.

12. There exists an integer m = 3 such that m*—11is
prime.

13. There exists an integer n such that 6n° + 27 is
prime.

14. There exists an integer k = 4 such that
2k* — 5k + 2 is prime.
Find the mistakes in the “proofs” shown in 15-19.

15. Theorem: For every integer k, if k > O then
K+ 2k+1is composite.

“Proof: For k = 2,k > 0 and K>+ 2k + 1 =
2°+2-2+1=9. Andsince 9 = 3-3,
then 9 is composite. Hence the theorem is true.”

16. Theorem: The difference between any odd integer
and any even integer is odd.

“Proof: Suppose n is any odd integer, and m is
any even integer. By definition of odd, n = 2k + 1
where k is an integer, and by definition of even,
m = 2k where k is an integer. Then

n—m=QRk+1)—2k=1,

and 1 is odd. Therefore, the difference between
any odd integer and any even integer is odd.”

17. Theorem: For every integer k, if k > 0 then
K+ 2k+1is composite.

“Proof: Suppose k is any integer such that k > 0.
If K>+ 2k + 1 is composite, then KE+2k+1=rs
for some integers r and s such that

1<r<k+2k+1
and 1<s<k+2k+1.
Since B+2k+1=rs

and both r and s are strictly between 1 and
K+ 2k + 1, then K>+ 2k + 1 is not prime. Hence
K+ 2k+1is composite as was to be shown.”
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18. Theorem: The product of any even integer and
any odd integer is even.

“Proof: Suppose m is any even integer and 7 is
any odd integer. If m-n is even, then by defini-
tion of even there exists an integer » such that

m-n = 2r. Also since m is even, there exists an in-
teger p such that m = 2p, and since n is odd there
exists an integer g such that n = 2¢ + 1. Thus

mn = (2p)2q+ 1) = 2r,

where r is an integer. By definition of even, then,
m-n is even, as was to be shown.”

19. Theorem: The sum of any two even integers
equals 4k for some integer k.

“Proof: Suppose m and n are any two even integers.

By definition of even, m = 2k for some integer k
and n = 2k for some integer k. By substitution,

m+n = 2k+ 2k = 4k.

This is what was to be shown.”

In 20-38 determine whether the statement is true or
false. Justify your answer with a proof or a counterexam-
ple, as appropriate. In each case use only the definitions
of the terms and the Assumptions listed on page 161, not
any previously established properties.

20. The product of any two odd integers is odd.
21. The negative of any odd integer is odd.
22. For all integers a and b, 4a + 5b + 3 is even.

23. The product of any even integer and any integer is
even.

24. If a sum of two integers is even, then one of the
summands is even. (In the expression a + b, a and
b are called summands.)

25. The difference of any two even integers is even.

26. For all integers a, b, and ¢, if a, b, and ¢ are con-
secutive, then a + b + ¢ is even.

ANSWERS FOR TEST YOURSELF

27. The difference of any two odd integers is even.

H 28. For all integers n and m, if n —m is even then

n® —m® is even.

29. For every integer n, if n is prime then (—1)" = —1.

30. For every integer m, if m > 2 then m*—4is
composite.

31. For every integer n, n—n+1lisa prime number.

32. For every integer n, 4n*+n+1)—3n"isa perfect
square.

33. Every positive integer can be expressed as a sum
of three or fewer perfect squares.

H* 34. (Two integers are consecutive if, and only if, one

is one more than the other.) Any product of four
consecutive integers is one less than a perfect
square.

35. If m and n are any positive integers and mn is a
perfect square, then m and n are perfect squares.

36. The difference of the squares of any two consecu-
tive integers is odd.

H 37. For all nonnegative real numbers a and b,

\Vab = V/a\/b. (Note that if x is a nonnegative
real number, then there is a unique nonnegative
real number y, denoted \/}, such that y2 =Xx)

38. For all nonnegative real numbers a and b,
Va+b=Va+\Vb.

39. Suppose that integers m and n are perfect squares.
Then m +n+ 2V mn is also a perfect square.
Why?

H* 40. If p is a prime number, must 2” — 1 also be prime?

Prove or give a counterexample.

* 41. If n is a nonnegative integer, must 2% 4+ 1 be

prime? Prove or give a counterexample.

1. the body of the proof (or: the proof itself) 2. complete;
grammatically correct 3.reason 4. Because; Since;
Then; Thus; So; Hence; Therefore; Consequently; It follows
that; By substitution 5. Observe that; Note that; Recall
that; But; Now 6. Let 7.readability 8. Arguing from

examples; Using the same letter to mean two different
things; Jumping to a conclusion; Assuming what is to be
proved; Confusion between what is known and what is still
to be shown; Use of any when the correct word is some;
Misuse of the word if
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EX] Direct Proof and Counterexample llI:
Rational Numbers

Such, then, is the whole art of convincing. It is contained in two principles: to define
all notations used, and to prove everything by replacing mentally the defined terms by
their definitions. —Blaise Pascal, 1623-1662

Example 4.3.1

Sums, differences, and products of integers are integers. But most quotients of integers
are not integers. Quotients of integers are, however, important; they are known as rational
numbers.

Definition

A real number r is rational if, and only if, it can be expressed as a quotient of two
integers with a nonzero denominator. A real number that is not rational is irrational.
More formally, if 7 is a real number, then

r is rational < 3 integers @ and b such that r = % and b # 0.

The word rational contains the word ratio, which is another word for quotient. A rational
number can be written as a ratio of integers.

Determining Whether Numbers Are Rational or Irrational

ISE

e o

= g oo

i

Is 10/3 a rational number?

. Is— 3% a rational number?

Is 0.281 a rational number?

. Is 7 a rational number?

Is 0 a rational number?

Is 2/0 a rational number?

. Is 2/0 an irrational number?

. Is 0.12121212 ... arational number (where the digits 12 are assumed to repeat

forever)?

If m and n are integers and neither m nor n is zero, is (m + n)/mn a rational number?

Solution

. Yes, 10/3 is a quotient of the integers 10 and 3 and hence is rational.

. Yes, —35—9 = ;—95, which is a quotient of the integers —5 and 39 and hence is rational.

Yes, 0.281 = 281/1000. Note that the numbers shown on a typical calculator display
are all finite decimals. An explanation similar to the one in this example shows that
any such number is rational. It follows that a calculator with such a display can accu-
rately represent only rational numbers.

. Yes,7="17/1.

Yes, 0 = 0/1.

f. No, 2/0 is not a real number (division by 0 is not allowed).
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g. No, because every irrational number is a real number, and 2/0 is not a real number.
We discuss additional techniques for determining whether numbers are irrational in
Sections 4.7, 4.8, and 7.4.

h. Yes. Let x = 0.12121212... Then 100x = 12.12121212... Thus

100x —x = 12.12121212... —0.12121212... = 12.
But also 100x —x = 99x by basic algebra.
Hence 99x = 12,
12
and so x=—
99
Therefore, 0.12121212... = 12/99, which is a ratio of two nonzero integers and thus

is a rational number.

Note that you can use an argument similar to this one to show that any repeating
decimal is a rational number. In Section 9.4 we show that any rational number can be
written as a repeating or terminating decimal.

i. Yes, since m and n are integers, so are m + n and mn (because sums and products of
integers are integers). Also mn # 0 by the zero product property. One version of this
property says the following:

Zero Product Property

If neither of two real numbers is zero, then their product is also not zero.

(See Theorem T11 in Appendix A and exercise 8 at the end of this section.) It follows
that (m + n)/mn is a quotient of two integers with a nonzero denominator and hence is
a rational number. [ ]

More on Generalizing from the Generic Particular

If you claim a property holds for all elements in a domain, then someone can challenge
your claim by picking any element in the domain and asking you to prove that that element
satisfies the property. To prove your claim, you must be able to meet all such challenges.
In other words, you must have a way to convince the challenger that the property is true for
an arbitrarily chosen element in the domain.

For example, suppose “A” claims that every integer is a rational number. “B” challenges
this claim by asking “A” to prove it for n = 7. “A” observes that

7= T which is a quotient of integers and hence rational.
“B” accepts this explanation but challenges again with n = —12. “A” responds that
—12 = T which is a quotient of integers and hence rational.

Next “B” tries to trip up “A” by challenging with n = 0, but “A” answers that

0= T which is a quotient of integers and hence rational.
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As you can see, “A” is able to respond effectively to all “B”’s challenges because “A” has a
general procedure for putting integers into the form of rational numbers: “A” just divides
whatever integer “B” gives by 1. That is, no matter what integer n “B” gives “A”, “A” writes

n
n= T which is a quotient of integers and hence rational.

This discussion is an informal proof for the following theorem.

Theorem 4.3.1

Every integer is a rational number.

In exercise 11 at the end of this section you are asked to condense the above discussion into
a formal proof.

Proving Properties of Rational Numbers

The next example shows how to use the method of generalizing from the generic particular
to prove a property of rational numbers.

Any Sum of Rational Numbers Is Rational

Prove that the sum of any two rational numbers is rational.

Solution Begin by mentally or explicitly rewriting the statement to be proved in the form
“v if then ?

Formal Restatement: ¥ real numbers r and s, if r and s are rational then r + s is rational.

Next ask yourself, “Where am I starting from?” or “What am I supposing?” The answer
gives you the starting point, or first sentence, of the proof.

Starting Point: Suppose r and s are any particular but arbitrarily chosen real numbers such
that r and s are rational; or, more simply,
Suppose r and s are any rational numbers.
Then ask yourself, “What must I show to complete the proof?”
To Show: r+ s is rational.
Finally ask, “How do I get from the starting point to the conclusion?” or “Why must r + s
be rational if both r and s are rational?”” The answer depends in an essential way on the

definition of rational.
Rational numbers are quotients of integers, so to say that r and s are rational means that

and s = € for some integers a, b, ¢, and d
where b # Qand d # 0.

r =

a
b

It follows by substitution that

+s=24° @3.0)
r—s=_—T . .
b d
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Example 4.3.3

You need to show that r + s is rational, which means that » + s can be written as a single
fraction or ratio of two integers with a nonzero denominator. But the right-hand side of
equation (4.3.1) is

a ¢ ad n bc by rewriting the fraction with a common
b d - bd  bd denominator
ab + be by adding fractions with a
_ Y 1=}
- bd common denominator.

Is this fraction a ratio of integers? Yes. Because products and sums of integers are integers,
ad+ bc and bd are both integers. Is the denominator bd # 0? Yes, by the zero product
property (since b # 0 and d # 0). Thus r + s is a rational number.

This discussion is summarized as follows:

Theorem 4.3.2

The sum of any two rational numbers is rational.

Proof: Suppose r and s are any rational numbers. [We must show that r + s is rational.]
Then, by definition of rational, r = a/b and s = ¢/d for some integers a, b, ¢, and d
with b # 0 and d # 0. Thus

a ¢
r+s=—+— by substitution
b d

_ad+bc

by basic algebra.
bd

Let p = ad+ bc and g = bd. Then p and ¢ are integers because products and sums
of integers are integers and because a, b, ¢, and d are all integers. Also g # 0 by the
zero product property. Thus

r+s= Z where p and g are integers and g # O.

Therefore, r + s is rational by definition of a rational number [as was to be shown].

Deriving New Mathematics from Old

Section 4.1 focused on establishing truth and falsity of mathematical theorems using only the
basic algebra normally taught in secondary school; the fact that the integers are closed under
addition, subtraction, and multiplication; and the definitions of the terms in the theorems
themselves. In the future, when we ask you to prove something directly from the defini-
tions, we will mean that you should restrict yourself to this approach. However, once a col-
lection of statements has been proved directly from the definitions, another method of proof
becomes possible. The statements in the collection can be used to derive additional results.

Deriving Additional Results about Even and Odd Integers
Suppose that you have already proved the following properties of even and odd integers:

1. The sum, product, and difference of any two even integers are even.

2. The sum and difference of any two odd integers are even.
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The product of any two odd integers is odd.
The product of any even integer and any odd integer is even.
The sum of any odd integer and any even integer is odd.

The difference of any odd integer minus any even integer is odd.

NS AW

The difference of any even integer minus any odd integer is odd.

Use the properties listed above to prove that if a is any even integer and b is any odd inte-
a+b+1
2

ger, then is an integer.

Solution Suppose a is any even integer and b is any odd integer. By property 3, b is
odd, and by property 1, a® is even. Then by property 5, a® + b* is odd, and because 1 is
also 0dd, the sum (a® +b%) + 1 = a* +b>+1 is even by property 2. Hence, by definition
of even, there exists an integer k such that @ +b+1 =2k Dividing both sides by 2 gives

2 2 2 2
+b*+1 L . +bh+1 . .
e 22 5 = k, which is an integer. Thus aiz 1s an integer [as was to be shown]. [ |

A corollary is a statement whose truth can be immediately deduced from a theorem
that has already been proved.

The Double of a Rational Number

Derive the following as a corollary of Theorem 4.3.2.

Corollary 4.2.3

The double of a rational number is rational.

Solution The double of a number is just its sum with itself. But since the sum of any
two rational numbers is rational (Theorem 4.3.2), the sum of a rational number with itself
is rational. Hence the double of a rational number is rational. Here is a formal version of
this argument:

Proof: Suppose r is any rational number. Then 2r = r + r is a sum of two rational numbers.
So, by Theorem 4.3.2, 2r is rational. [ |

TEST YOURSELF

1. To show that a real number is rational, we must
show that we can write it as

EXERCISE SET 4.3

. Zero is a rational number because

. An irrational number is a that is

The numbers in 1-7 are all rational. Write each number as

a ratio of two integers.

1 —E 2. 4.6037 3 i+g
. 6 . 4. 579
4. 0.37373737...

5. 0.56565656...

. 320.5492492492 . ..
. 52.4672167216721 ...

. The zero product property, says that if a product

of two real numbers is 0, then one of the numbers
must be 0.
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a. Write this property formally using quantifiers
and variables.

b. Write the contrapositive of your answer to part (a).

c. Write an informal version (without quantifier

symbols or variables) for your answer to part (b).

9. Assume that a and b are both integers and that
a # 0and b # 0. Explain why (b — a)/(ab”) must
be a rational number.

10. Assume that m and n are both integers and that
n # 0. Explain why (5m — 12n)/(4n) must be a
rational number.

11. Prove that every integer is a rational number.

12. Let S be the statement “The square of any rational
number is rational.” A formal version of S is “For
every rational number r, #* is rational.” Fill in the
blanks in the proof for S.

Proof: Suppose that r is @ By definition of
rational, r = a/b for some with b # 0. By
substitution,

P=_0© = a*/b.

Since a and b are both integers, so are the prod-
ucts a®and (@ Also > # 0 by the _©
Hence 2 is a ratio of two integers with a non-
zero denominator, and so ®) by definition of
rational.

13. Consider the following statement: The negative of
any rational number is rational.
a. Write the statement formally using a quantifier
and a variable.
b. Determine whether the statement is true or
false and justify your answer.

14. Consider the statement: The cube of any rational
number is a rational number.
a. Write the statement formally using a quantifier
and a variable.
b. Determine whether the statement is true or
false and justify your answer.
Determine which of the statements in 15-19 are true
and which are false. Prove each true statement directly
from the definitions, and give a counterexample for each
false statement. For a statement that is false, determine
whether a small change would make it true. If so, make
the change and prove the new statement. Follow the
directions for writing proofs on page 173.

15. The product of any two rational numbers is a
rational number.

H 18. If r and s are any two rational numbers, then —

H 16. The quotient of any two rational numbers is a

rational number.

H 17. The difference of any two rational numbers is a

rational number.
r+s

is rational.

H 19. For all real numbers a and b, if a < b then

+
a<%<b.

(You may use the properties of inequalities in
T17-T27 of Appendix A.)

20. Use the results of exercises 18 and 19 to prove
that given any two rational numbers r and s with
r < s, there is another rational number between r
and s. An important consequence is that there are
infinitely many rational numbers in between any
two distinct rational numbers. See Section 7.4.

Use the properties of even and odd integers that are
listed in Example 4.3.3 to do exercises 21-23. Indicate
which properties you use to justify your reasoning.

21. True or false? If m is any even integer and n is any
odd integer, then m? + 3nis odd. Explain.

22. True or false? If a is any odd integer, then a+ais
even. Explain.

23. True or false? If k is any even integer and m is any
odd integer, then (k + 2)2 —(m— 1)2 is even. Explain.

Derive the statements in 24-26 as corollaries of
Theorems 4.3.1, 4.3.2, and the results of exercises 12, 13,
14,15, and 17.

24. For any rational numbers r and s, 2r + 35 is rational.

25. If r is any rational number, then 37 —2r+4is
rational.

26. For any rational number s, 5s° 4 8s%> — 7 is rational.
27. Itis a fact that if n is any nonnegative integer, then
1 1— (1 /2n+1)

2T -1/

(A more general form of this statement is proved in
Section 5.2.) Is the right-hand side of this equation
rational? If so, express it as a ratio of two integers.

1+1+L+L+---+
2 22 23

28. Suppose a, b, c, and d are integers and a # c. Sup-
pose also that x is a real number that satisfies the
equation

ax+b

cx+d
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Must x be rational? If so, express x as a ratio of
two integers.

* 29. Suppose a, b, and c are integers and x, y, and z are
nonzero real numbers that satisfy the following

equations:
Xy XZ yz
=a and —=b and ——=c¢
x+y x+z y+z

Is x rational? If so, express it as ratio of two integers.

30. Prove that if one solution for a quadratic equa-
tion of the form x>+ bx + ¢ = 0 is rational
(where b and c are rational), then the other
solution is also rational. (Use the fact that if
the solutions of the equation are r and s, then
XAbx+c= (x—rx—ys).)

31. Prove that if a real number c satisfies a polyno-
mial equation of the form
r3x3 + r2x2 +rx+r=0,

where r, rq, 1, and r5 are rational numbers, then
c satisfies an equation of the form

2
n3x® + nox’ + nyx +ng = 0,

where ng, ny, n,, and n3 are integers.

Definition: A number c is called a root of a polynomial
p() if, and only if, p(c) = 0.

* 32. Prove that for every real number c, if ¢ is a root of
a polynomial with rational coefficients, then c is a
root of a polynomial with integer coefficients.

Use the properties of even and odd integers that are
listed in Example 4.3.3 to do exercises 33 and 34.

33. When expressions of the form (x — r)(x —s) are
multiplied out, a quadratic polynomial is obtained.
For instance, (x —2)(x —(=7)) = x—2)(x+7) =
x>+ 55— 14.

H a. What can be said about the coefficients of
the polynomial obtained by multiplying out
(x — r)(x — ) when both r and s are odd integers?
When both r and s are even integers? When one
of rand s is even and the other is odd?

b. It follows from part (a) that x* —1253x + 255

cannot be written as a product of two polynomials
with integer coefficients. Explain why this is so.

* 34, Observe that

x—rNx—s)x—1
=x - (r+s+t)x2+ (rs +rs+ st)x — rst.

a. Derive a result for cubic polynomials similar
to the result in part (a) of exercise 33 for
quadratic polynomials.

b. Can x*+7x> — 8x — 27 be written as a product
of three polynomials with integer coefficients?
Explain.

In 35-39 find the mistakes in the “proofs” that the sum of
any two rational numbers is a rational number.

35. “Proof: Any two rational numbers produce a
rational number when added together. So if » and
s are particular but arbitrarily chosen rational
numbers, then r + s is rational.”

36. “Proof: Let rational numbers r = % and s = %be
given. Then r+s = 7 +5 = 7, which is a rational
number. This is what was to be shown.”

37. “Proof: Suppose r and s are rational numbers. By
definition of rational, r = a/b for some integers
a and b with b # 0, and s = a/b for some integers
a and b with b # 0. Then
a a 2a
r+s=—+—=—.
b b b
Let p = 2a. Then p is an integer since it is a prod-
uct of integers. Hence r+s = p/b, where p and b
are integers and b # 0. Thus r + s is a rational
number by definition of rational. This is what was
to be shown.”

38. “Proof: Suppose r and s are rational numbers.
Then r = a/b and s = ¢/d for some integers a,
b, ¢, and d with b # 0 and d # 0 (by definition of
rational). Then
r+s= 4 + £.
b d
But this is a sum of two fractions, which is a frac-
tion. So r — s is a rational number since a rational
number is a fraction.”

39. “Proof: Suppose r and s are rational numbers.
If » + s is rational, then by definition of ratio-
nal r+s = a/b for some integers a and b with
b # 0. Also since r and s are rational, r = i/j and
s = m/n for some integers i, j, m, and n with j # 0
and n # 0. It follows that

i m a
rts=—-+—=-—,
j n b
which is a quotient of two integers with a nonzero
denominator. Hence it is a rational number. This is

what was to be shown.”
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. . . . . 0
1. aratio of integers with a nonzero denominator 2. real number; not rational 3.0 = T

Note According to the
definition of divisibility
if you know that n and d

are any

d divides n, then you may

assume
to zero.

IR Direct Proof and Counterexample IV: Divisibility

The essential quality of a proof is to compel belief. —Pierre de Fermat
When you were first introduced to the concept of division in elementary school, you were

probably taught that 12 divided by 3 is 4 because if you separate 12 objects into groups of
3, you get 4 groups with nothing left over.

’XXX‘ ’XXX‘ ’XXX‘ ’XXX‘

You may also have been taught to describe this fact by saying that “12 is evenly divisible
by 3” or “3 divides 12 evenly.”

The notion of divisibility is the central concept of one of the most beautiful subjects in
advanced mathematics: number theory, the study of properties of integers.

If n and d are integers then
n is divisible by d if, and only if, n equals d times some integer and d # 0.

Instead of “n is divisible by d,” we can say that

n is a multiple of d, or
d is a factor of n, or

d is a divisor of n, or
d divides n.

The notation d|n is read “d divides n.” Symbolically, if n and d are integers:

integers such that

that d is not equal

d|n < Janinteger, say k, such that n = dk and d # 0.

The notation d/n is read “d does not divide 7n.”

Divisibility

a. Is 21 divisible by 3? b. Does 5 divide 40? c. Does 7|42?
d. Is 32 a multiple of —16? e. Is 6 a factor of 547 f. Is 7 a factor of —7?

Solution
a. Yes, 21 =3-7. b. Yes, 40 = 5-8. c. Yes, 42 =7-6.
d. Yes, 32 = (—16)-(—2). e. Yes, 54 =6-9. f. Yes, =7 =7-(—1). [ |

SEIEE R W] Divisors of Zero

If k is any nonzero integer, does k divide 0?

Solution Yes, because 0 = k-0. [ |
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Two useful properties of divisibility are (1) that if one positive integer divides a second
positive integer, then the first is less than or equal to the second, and (2) that the only divi-
sors of 1 are 1 and —1.

Theorem 4.4.1 A Positive Divisor of a Positive Integer

For all integers a and b, if a and b are positive and a divides b then a = b.

Proof: Suppose a and b are any positive integers such that a divides b. [We must show
that a = b.] By definition of divisibility, there exists an integer k so that b = ak. By
property T25 of Appendix A, k must be positive because both a and b are positive.
It follows that

1=k

because every positive integer is greater than or equal to 1. Multiplying both sides
by a gives

a=ka=0>b

because multiplying both sides of an inequality by a positive number preserves the
inequality by property T20 of Appendix A. Thus a = b [as was to be shown].

Theorem 4.4.2 Divisors of 1

The only divisors of 1 are 1 and —1.

Proof: Since 1-1 = 1 and (—1)(—1) = 1, both 1 and —1 are divisors of 1. Now sup-
pose m is any integer that divides 1. Then there exists an integer n such that 1 = mn.
By Theorem T25 in Appendix A, either both m and n are positive or both m and n
are negative. If both m and n are positive, then m is a positive integer divisor of 1. By
Theorem 4.4.1, m = 1, and, since the only positive integer that is less than or equal
to 1 is 1 itself, it follows that m = 1. On the other hand, if both m and n are nega-
tive, then, by Theorem T12 in Appendix A, (—m)(—n) = mn = 1. In this case —m
is a positive integer divisor of 1, and so, by the same reasoning, —m = 1 and thus
m = —1. Therefore there are only two possibilities: either m =1 orm = —1. So the
only divisors of 1 are 1 and —1.

el XE] Divisibility and Algebraic Expressions

a. If a and b are integers, is 3a + 3b divisible by 3?
b. If k and m are integers, is 10km divisible by 5?

Solution

a. Yes. By the distributive law of algebra, 3a + 3b = 3(a + b) and a + b is an integer
because it is a sum of two integers.

b. Yes. By the associative law of algebra, 10km = 5-(2km) and 2km is an integer because
it is a product of three integers. |
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Note Ifd = 0, then 5 is
not defined, and so it is
certainly not an integer.

Example 4.4.4

A

Caution! a|b denotes the
sentence “a divides b,”
whereas a/b denotes the
number a divided by b.

Example 4.4.5

Example 4.4.6

When the definition of divides is rewritten formally using the existential quantifier, the
result is

d|n < Janinteger k such that n = dk and d # 0.

Since the negation of an existential statement is universal, it follows that d does not divide
n (denoted d)(n) if, and only if, V integer k, n # dk or d = 0; in other words, the quotient
n/d is not an integer.

Forallintegersnandd, dfn < 7 is not an integer.

Checking Nondivisibility
Does 4|15?

Solution No, 14*5 = 3.75, which is not an integer. [ |

Be careful to distinguish between the notation a|b and the notation a/b. The notation
a|b stands for the sentence “a divides b,” which means that there is an integer k such that
b = ak. Dividing both sides by a gives b/a = k, an integer. Thus, when a # 0, a|b if, and
only if, b/a is an integer. On the other hand, the notation a/b stands for the number a/b
which is the result of dividing a by b and which may or may not be an integer. In particular,
since the symbol | stands for the word “divides,” be sure to avoid writing something like

A[3+5—=48.

If read out loud, this becomes “4 divides the quantity 3 plus 5 equals 4 divides 8,” which
is nonsense.
Prime Numbers and Divisibility

An alternative way to define a prime number is to say that an integer n > 1 is prime if, and
only if, its only positive integer divisors are 1 and itself. |

Proving Properties of Divisibility

One of the most useful properties of divisibility is that it is transitive. If one number divides
a second and the second number divides a third, then the first number divides the third.

Transitivity of Divisibility

Prove that for all integers a, b, and ¢, if a|b and b|c, then a|c.

Solution Since the statement to be proved is already written formally, you can immedi-
ately pick out the starting point, or first sentence of the proof, and the conclusion that must
be shown.

Starting Point: Suppose a, b, and c are particular but arbitrarily chosen integers such that
alband b|c.

To Show: a|c.
You need to show that a

¢, or, in other words, that

¢ = a-(some integer).
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But since a|b,
b = ar for some integer r. 44.1

And since b

c,
c = bs for some integer s. 442

Equation 4.4.2 expresses c in terms of b, and equation 4.4.1 expresses b in terms of a. Thus
if you substitute 4.4.1 into 4.4.2, you will have an equation that expresses ¢ in terms of a.

c=bs by equation 4.4.2
= (ar)s by equation 4.4.1.
But (ar)s = a(rs) by the associative law for multiplication. Hence
c = a(rs).

Now you are almost finished. You have expressed ¢ as a-(something). It remains only to
verify that that something is an integer. But of course it is, because it is a product of two
integers.

This discussion is summarized as follows:

Theorem 4.4.3 Transitivity of Divisibility

For all integers a, b, and c, if a divides b and b divides c, then a divides c.

Proof: Suppose a, b, and ¢ are any [particular but arbitrarily chosen] integers such
that a divides b and b divides c. [We must show that a divides c.] By definition of
divisibility,
b=ar and c=bs forsome integers r and s.
By substitution
¢ =bs
= (ar)s

= a(rs) by basic algebra.
Let k = rs. Then k is an integer since it is a product of integers, and therefore
¢ = ak where k is an integer.

Thus a divides ¢ by definition of divisibility. [This is what was to be shown.]

It would appear from the definition of prime that to show that an integer is prime you
would need to show that it is not divisible by any integer greater than 1 and less than itself.
In fact, you need only check whether it is divisible by a prime number less than or equal
to itself. This follows from Theorems 4.4.1, 4.4.3, and the following theorem, which says
that any integer greater than 1 is divisible by a prime number. The idea of the proof is quite
simple. You start with a positive integer. If it is prime, you are done; if not, it is a product of
two smaller positive factors. If one of these is prime, you are done; if not, you can pick one
of the factors and write it as a product of still smaller positive factors. You can continue in
this way, factoring the factors of the number you started with, until one of them turns out to
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be prime. This must happen eventually because all the factors can be chosen to be positive
and each is smaller than the preceding one.

Theorem 4.4.4 Divisibility by a Prime

Any integer n > 1 is divisible by a prime number.

Proof: Suppose n is a [particular but arbitrarily chosen] integer that is greater than
1. [We must show that there is a prime number that divides n.] If n is prime, then n is
divisible by a prime number (namely itself), and we are done. If n is not prime, then,
as discussed in Example 4.1.2b,

n =rysy Wwhere ryand s, are integers and
I <rg<nmand1l <sy<n.

It follows by definition of divisibility that r,|n.
If ry is prime, then r, is a prime number that divides n, and we are done. If ry is
not prime, then

ro = ris;  where rq and s; are integers and
1<r1<r0and1 <s1<r0.

It follows by the definition of divisibility that r,|r,. But we already know that r,|n.
Consequently, by transitivity of divisibility, r |n.

If ry is prime, then r; is a prime number that divides n, and we are done. If 7y is
not prime, then

ry = rs, where r, and s, are integers and
1<r2<r] andl <s2<r1.

It follows by definition of divisibility that r,|r,. But we already know that r, |n. Con-
sequently, by transitivity of divisibility, r,|n.

If r, is prime, then r, is a prime number that divides n, and we are done. If r, is
not prime, then we may repeat the previous process by factoring r, as r3s3.

We may continue in this way, factoring successive factors of n until we find a
prime factor. We must succeed in a finite number of steps because each new factor
is both less than the previous one (which is less than n) and greater than 1, and there
are fewer than n integers strictly between 1 and n.* Thus we obtain a sequence

ro, rl,rz,...,rk,

where k=0, 1<rn<r_;<--<r<r<ry<n, and rn for each i =0,
1,2,..., k. The condition for termination is that r;, should be prime. Hence r; is a
prime number that divides n. [This is what we were to show.]

Counterexamples and Divisibility

To show that a proposed divisibility property is not universally true, you need only find one
pair of integers for which it is false.

*Strictly speaking, this statement is justified by an axiom for the integers called the well-ordering principle,
which is discussed in Section 5.4. Theorem 4.4.4 can also be proved using strong mathematical induction, as
shown in Example 5.4.1.
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Checking a Proposed Divisibility Property
Is the following statement true or false? For all integers a and b, if a|b and b|a then a = b.

Solution This statement is false. Can you think of a counterexample just by concentrat-
ing for a minute or so?

The following discussion describes a mental process that may take just a few seconds. It
is helpful to be able to use it consciously, however, to solve more difficult problems.

To discover the truth or falsity of a statement such as the one given above, start off much
as you would if you were trying to prove it.

Starting Point: Suppose a and b are integers such that a|b and b|a.

Ask yourself, “Must it follow that @ = b, or could it happen that a # b for some a and b?”
Focus on the supposition. What does it mean? By definition of divisibility, the conditions
a|b and b|a mean that

b=ha and a = kb forsome integers h and k.

Must it follow that @ = b, or can you find integers a and b that satisfy these equations for
which a # b? The equations imply that

b = ha = h(kb) = (hk)b.
Since b|a, b # 0, and so you can cancel b from the extreme left and right sides to obtain
1 = hk.

In other words, & and k are divisors of 1. But, by Theorem 4.4.2, the only divisors of 1
are 1 and —1. Thus % and k are both 1 or are both —1. If 4 = k = 1, then b = a. But if
h=k= —1,then b = —a and so a # b. This analysis suggests that you can find a coun-
terexample by taking b = —a. Here is a formal answer:

Proposed Divisibility Property: For all integers a and b, if a|b and b|a then
a=b.

Counterexample: Leta = 2andb = —2.Then —2 = (—1)-2and2 = (—1)-(—2),
and thus

alband b

a, but a # b because 2 # —2.

Therefore, the statement is false.

The search for a proof will frequently help you discover a counterexample (provided the
statement you are trying to prove is, in fact, false). Conversely, in trying to find a counter-
example for a statement, you may come to realize the reason why it is true (if it is, in fact,
true). The important thing is to keep an open mind until you are convinced by the evidence
of your own careful reasoning.

The Unique Factorization of Integers Theorem

The most comprehensive statement about divisibility of integers is contained in the unique
factorization of integers theorem. Because of its importance, this theorem is also called the
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Note This theorem is the
reason the number 1 is
not allowed to be prime.
If 1 were prime, then
factorizations would not
be unique. For example,
6=2-3=1-2-3,and so
forth.

Example 4.4.8

Sfundamental theorem of arithmetic. Although Euclid, who lived about 300 B.C.E., seems to
have been acquainted with the theorem, it was first stated precisely by the great German
mathematician Carl Friedrich Gauss (thymes with house) in 1801.

The unique factorization of integers theorem says that any integer greater than 1 either
is prime or can be written as a product of prime numbers in a way that is unique except,
perhaps, for the order in which the primes are written. For example,

72 =2-2-2-3-3=2-3-3-2:2=3:2-2-3-2,

and so forth. The three 2’s and two 3’s may be written in any order, but any factorization of
72 as a product of primes must contain exactly three 2’s and two 3’s—no other collection
of prime numbers besides three 2’s and two 3’s multiplies out to 72.

Theorem 4.4.5 Unique Factorization of Integers Theorem
(Fundamental Theorem of Arithmetic)

Given any integer n > 1, there exist a positive integer k, distinct prime numbers p;,
P2, - - - » Pi» and positive integers ey, e,, . . ., €, such that

n=pi'pyps ... pi,
and any other expression for n as a product of prime numbers is identical to this
except, perhaps, for the order in which the factors are written.

The proof of the unique factorization of integers theorem is outlined in the exercises for
Sections 5.4 and 8.4.

Because of the unique factorization theorem, any integer n > 1 can be put into a stan-
dard factored form in which the prime factors are written in ascending order from left
to right.

Given any integer n > 1, the standard factored form of 7 is an expression of the
form

e e e e
n = pi' p3’p3 - pis

where k is a positive integer, py, p, - - - , p; are prime numbers, ey, e, . . ., €, are posi-
tive integers, and p; < p, < - < p;.

Writing Integers in Standard Factored Form
Write 3,300 in standard factored form.
Solution First find all the factors of 3,300. Then write them in ascending order:
3,300 = 100-33 = 4-25-3-11
=2-2-5-5-3-11 = 2>-3"-5%-11".
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Suppose m is an integer such that
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Using Unique Factorization to Solve a Problem

8:7-6:54-3-2-m=17-16-15-14-13-12-11-10.

Does 17|m?

Solution Since 17 is one of the prime factors of the right-hand side of the equation, it is
also a prime factor of the left-hand side (by the unique factorization of integers theorem).
But 17 does not equal any prime factor of 8, 7, 6, 5, 4, 3, or 2 (because it is too large). Hence
17 must occur as one of the prime factors of 2, and so 17 |m. |

TEST YOURSELF

1. To show that a nonzero integer d divides an integer

n, we must show that

2. To say that d divides n means the same as saying

that is divisible by

3. If a and b are positive integers and a
is less than or equal to

b, then

4. For all integers n and d, dj/ n if, and only if,

5. If a and b are integers, the notation a|b denotes
and the notation a/b denotes

EXERCISE SET 4.4

6.

The transitivity of divisibility theorem says that
for all integers a, b, and c, if then

The divisibility by a prime theorem says that every
integer greater than 1 is

. The unique factorization of integers theorem says

that any integer greater than 1 is either or
can be written as in a way that is unique
except possibly for the in which the num-
bers are written.

Give a reason for your answer in each of 1-13. Assume
that all variables represent integers.

1. Is 52 divisible by 13?

Does 7|56?

Does 5|0?

Does 3 divide (3k + 1)(3k + 2)(3k + 3)?
Is 6m(2m + 10) divisible by 4?

Is 29 a multiple of 3?

Is —3 a factor of 66?

Is 6a(a + b) a multiple of 3a?

Is 4 a factor of 2a-34b?

Does 7|34?

. Does 13|73?

. If n = 4k + 1, does 8 divide n* — 1?
. If n = 4k + 3, does 8 divide n* — 1?

o ® N w kWD

- el -l
w o 3 o

14.

Fill in the blanks in the following proof that for all
integers a and b, if a|b then a|(—b).

Proof: Suppose a and b are any integers such that
_@ By definition of divisibility, there exists an
integer r such that . By substitution,

—b = —(ar) = a(—r).

Lett=_©  Thentisan integer because

t = (—1)-r, and both —1 and r are integers. Thus,
by substitution, —b = at, where ¢ is an integer, and
so by definition of divisibility, ) , as was to be
shown.

Prove statements 15 and 16 directly from the definition
of divisibility.

15.

H 16.

17.

For all integers a, b, and c, if a|b and a|c then
a | (b+c).

For all integers a, b, and c, if a|b then a|c then
a | b—oc).

For all integers a, b, ¢, and d, if a|c and b|d then
ab|cd.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-203
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18. Consider the following statement: The negative of
any multiple of 3 is a multiple of 3.
a. Write the statement formally using a quantifier
and a variable.
b. Determine whether the statement is true or
false and justify your answer.

34. Consider a string consisting of a’s, b’s, and ¢’s
where the number of b’s is three times the num-
ber of a’s and the number of ¢’s is five times the
number of a’s. Prove that the length of the string is
divisible by 3.

35. Two athletes run a circular track at a steady
pace so that the first completes one round in 8
minutes and the second in 10 minutes. If they
both start from the same spot at 4 p.M., when
will be the first time they return to the start
together?

19. Show that the following statement is false: For all
integers a and b, if 3|(a + b) then 3|(a — b).

For each statement in 20-32, determine whether the
statement is true or false. Prove the statement directly
from the definitions if it is true, and give a counterex-

ample if it is false.

H 20.

The sum of any three consecutive integers is divis-
ible by 3.

36.

It can be shown (see exercises 44—48) that an
integer is divisible by 3 if, and only if, the sum of
its digits is divisible by 3; an integer is divisible
by 9 if, and only if, the sum of its digits is divis-

21. The product of any two even integers is a multiple ible by 9; an integer is divisible by 5 if, and only
of 4. if, its right-most digit is a 5 or a 0; and an integer
H 22. A necessary condition for an integer to be divisible is divisible by 4 if, and only if, the number
by 6 is that it be divisible by 2. formed by its right-most two digits is divisible by
.. .. . . 4. Check the following integers for divisibility by
23. A suf.flclent. COIldl'tl(')n' for an integer to be divisible 3.4, 5, and 9.
by 8 is that it be divisible by 16. a. 637.425.403.705.125
24. For all integers a, b, and c, if a|b and a|c then b. 12,858,306,120,312
al(2b—3c). c. 517,924,440,926,512
. e d. 14,328,083,360,232
25. For all integers a, b, and c, if a is a factor of ¢ and
b is a factor of ¢ then ab is a factor of c. 37. Use the unique factorization theorem to write the
. . following integers in standard factored form.
H 26. ZTr all integers a, b, and ¢, if ab|c then a|c and a. 1176 b. 5733 c. 3.675
c.
. . 38. Letn = 8,424.
H 27. For all integers a, b, and c, if a|(b + ¢) then a|b 2. Write the prime factorization for 1.
orale. b. Write the prime factorization for n.
28. For all integers a, b, and ¢, if a|bc then a|b or a|c. H c. Is n’ divisible by 20? Explain.
29. For all integers a and b, if a|b then a’ | b Hd. zﬁlza‘: 1’snt}11: ;es;;fggflst;\;eai:;eger m so that
30. For all integers a and n, if a|n2 and a = n then 39. Suppose that in standard factored form
aln. a = pi' pT...py, where k is a positive integer; p;,
31. For all integers a and b, if a|10b then a|10 or a|b. D2, - - -, P are prime numbers; and ey, e,, ..., ¢;
. . . ) are positive integers.
32. A fast-food c.hfun has a contest in which a card with a. What is the standard factored form for a°?
numbers on it is given to each customer who makes b. Find the least positive integer k such that
a purchase. If some of the numpers on the card gdd 24.35.7.11% kis a perfect cube (that is, it
up to 100, then the customer wins $100. A certain Is an integer to the third power). Write the
customer receives a card containing the numbers equat g P ’
resulting product as a perfect cube.
72,21, 15, 36, 69, 81,9, 27, 42, and 63. 40. a. If a and b are integers and 12a = 25b, does
Will the customer win $100? Why or why not? 12|b? does 25|a? Explain.
33. Is it possible to have a combination of nickels, b. Ifxand y are integers and 10x = 9y, does

dimes, and quarters that add up to $4.72? Explain.

10|y? does 9|x? Explain.
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H 41. How many zeros are at the end of 45%-88%9 Explain
how you can answer this question without actually
computing the number. (Hint: 10 = 2-5.)

42. If nis an integer and n > 1, then n! is the product
of n and every other positive integer that is less
than n. For example, 5! = 5-4-3-2-1.

a. Write 6! in standard factored form.

b. Write 20! in standard factored form.

c. Without computing the value of 20!y
determine how many zeros are at the end of
this number when it is written in decimal form.
Justify your answer.

H* 43. At a certain university 2/3 of the mathematics
students and 3/5 of the computer science students
have taken a discrete mathematics course. The
number of mathematics students who have taken
the course equals the number of computer science
students who have taken the course. If there are at
least 100 mathematics students at the university,
what are the least possible number of mathematics
students and the least possible number of com-
puter science students at the university?

Definition: Given any nonnegative integer n, the decimal
representation of n is an expression of the form

dy dy—y * dyd,d,

where k is a nonnegative integer, dy, dy, d,, . . ., d; (called
the decimal digits of n) are integers from 0 to 9 inclu-
sive, dk # O unless n = 0 and k = 0, and

n=d1054+d,_ - 105+ - +d, 107+ d; - 10 + d,,.
(For example, 2,503 = 2-10* +5-10*+0-10 +3.)

44. Prove that if n is any nonnegative integer whose
decimal representation ends in 0, then 5|n. (Hint:
If the decimal representation of a nonnegative
integer n ends in dy, then n = 10m + d,, for some
integer m.)

45. Prove that if n is any nonnegative integer whose
decimal representation ends in 5, then 5|n.

46. Prove that if the decimal representation of
a nonnegative integer n ends in d;d, and if

ANSWERS FOR TEST YOURSELF

1. n equals d times some integer and d # 0 (Or: there is an
integer r such thatn = drandd # 0) 2.n;d 3.a;b
4. % is not an integer 5. the sentence “a divides b”; the

H* 47.

* 48,

* 49,

50.

4](10d, + d,y), then 4 |n. (Hint: If the decimal
representation of a nonnegative integer n ends
in d,d,, then there is an integer s such that

n = 100s + 10d, + d,.)

Observe that

7,524 =7-1,000+5-100+2-10+4
=70999+1)+599+1)+209+1)+4
=(7-99+7)+(5:99+5)+(2-:9+2)+4
=(7-999+5-99+2-9)+(7T+5+2+4)
=(7-111-9+5-11:9+2-9)+(7+5+2+4)
=7 111+511+2)-9+(7+5+2+4)
= (an integer divisible by 9)

+ (the sum of the digits of 7,524).

Since the sum of the digits of 7,524 is divisible by
9, 7,524 can be written as a sum of two integers
each of which is divisible by 9. It follows from
exercise 15 that 7,524 is divisible by 9.

Generalize the argument given in this example
to any nonnegative integer n. In other words, prove
that for any nonnegative integer n, if the sum of

the digits of n is divisible by 9, then n is divisible
by O.

Prove that for any nonnegative integer n, if the
sum of the digits of n is divisible by 3, then n is
divisible by 3.

Given a positive integer n written in decimal form,
the alternating sum of the digits of n is obtained
by starting with the right-most digit, subtracting
the digit immediately to its left, adding the next
digit to the left, subtracting the next digit, and

so forth. For example, the alternating sum of the
digits of 180,928 is 8§—2+9—-0+8—1 = 22.
Justify the fact that for any nonnegative integer n,
if the alternating sum of the digits of n is divisible
by 11, then 7 is divisible by 11.

The integer 123,123 has the form abc,abc, where
a, b, and c are integers from O through 9. Consider
all six-digit integers of this form. Which prime
numbers divide every one of these integers? Prove
your answer.

number obtained when a is divided by b 6. a divides b

and b divides c; a divides ¢ 7. divisible by some prime

number 8. prime; a product of prime numbers; order
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EX] Direct Proof and Counterexample V: Division into
Cases and the Quotient-Remainder Theorem

Be especially critical of any statement following the word “obviously.”
—Anna Pell Wheeler, 1883—-1966

When you divide 11 by 4, you get a quotient of 2 and a remainder of 3.

2 <— quotient
411
8

3 «— remainder

Another way to say this is that 11 equals 2 groups of 4 with 3 left over:

2 groups of 4 3 left over
Or,
11 =2-4+3.
2 groups of 4 3 left over

The number left over (3) is less than the size of the groups (4) because if 4 or more were
left over, another group of 4 could be formed.

The quotient-remainder theorem says that when any integer # is divided by any positive
integer d, the result is a quotient ¢ and a nonnegative integer remainder 7 that is smaller than d.

Theorem 4.5.1 The Quotient-Remainder Theorem

Given any integer n and positive integer d, there exist unique integers g and r such
that

n=dg+r and 0=r<d.

The proof that there exist integers ¢ and r with the given properties is in Section 5.4; the
proof that ¢ and r are unique is outlined in exercise 21 in Section 4.8.

If n is positive, the quotient-remainder theorem can be illustrated on the number line
as follows:

-0 d 2d 3d - - - - - -qdn - - -
} } } } | I—
T T T T L

—
r

If n is negative, the picture changes. Since n = dq + r, where r is nonnegative, d must be
multiplied by a negative integer g to bring dg either exactly to n (in which case » = 0) or to
a point below 7 (in which case the positive integer r is added to bring dg + r back up to n).
This is illustrated as follows:

- 3d -2d -d 0 - - -

|
T

+ s

——
r
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Example 4.5.1

Note In 1801 Carl Fried-
rich Gauss introduced

the word modulus and its
abbreviation mod with the
meaning shown here.

Example 4.5.2

The Quotient-Remainder Theorem

For each of the following values of n and d, find integers ¢ and r such that n = dg + r and
0=r<d.

a.n=54,d=4 b.n=—-54,d=4 c. n=54,d="70
Solution

a. 54 =4-13+2;hence g = 13 and r = 2.

b. =54 =4-(—14)+2;hence g = —14 and r = 2.

c. 54 =70-0+ 54; hence g = 0 and r = 54. [ |

divand mod

A number of computer languages have built-in functions that enable you to compute values of
the quotients and remainders for the quotient-remainder theorem. In Python n div d is written
n // d and n mod d is written n % d, and for all integer inputs both operators give the values
that satisfy the quotient-remainder theorem. In C, C#, and Java, n div d is written n / d and
n mod d is written n % d. For all nonnegative integer inputs for n and positive integer inputs
for d, both operators give the values that satisfy the quotient-remainder theorem, but for nega-
tive integer inputs for n or d the resulting values differ from their mathematical counterparts.

Given an integer n and a positive integer d,

n div d = the integer quotient obtained
when 7 is divided by d, and

n mod d = the nonnegative integer remainder obtained
when 7 is divided by d.

Symbolically, if n and d are integers and d > 0, then
ndivd=¢q and nmodd=r < n=dg+r,

where g and r are integers and 0 = r < d.

It follows from the quotient-remainder theorem that n mod d equals one of the integers
from O through d — 1 (since the remainder of the division of n by d must be one of these inte-
gers). Also a necessary and sufficient condition for an integer n to be divisible by an integer
d is that n mod d = 0. You are asked to prove this in the exercises at the end of this section.

Computing div and mod by Hand or with a Four-Function Calculator

Compute 32 div 9 and 32 mod 9 by hand or with a four-function calculator.

Solution Performing the division by hand gives the following results:

3 «—34div9

932
27
_5 <«— 32 mod 9
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Example 4.5.3

Example 4.5.4

To use a four-function calculator to compute n div d for a nonnegative integer » and a posi-
tive integer d, just divide n by d and ignore the part of the answer to the right of the decimal
point. To compute n mod d, substitute n div d in place of ¢ and n mod d in place of r in the
equation n = dg + r. The result is

n=d-(ndivd)+nmodd.
Solving for n mod d gives
nmodd=n—d-(ndivd).

Thus when you use a four-function calculator to divide 32 by 9, you obtain an expression
like 3.555555556. Discarding the fractional part gives 32 div 9 = 3, and so

32mod9 =32—-9-32div9) =32—-27 =5. |

Computing the Day of the Week

Suppose today is Tuesday, and neither this year nor next year is a leap year. What day of
the week will it be 1 year from today?

Solution There are 365 days in a year that is not a leap year, and each week has 7 days.
Now

365div7 =52 and 365mod7 =1

because 365 = 52-7+ 1. Thus 52 weeks, or 364 days, from today will be a Tuesday, and
so 365 days from today will be 1 day later, namely, Wednesday.

More generally, if DayT is the day of the week today and DayN is the day of the week
in N days, then

DayN = (DayT + N) mod 7, 4.5.1
where Sunday = 0, Monday = 1, ..., Saturday = 6. [ |

Solving Problems about mod

a. Prove that if n is a positive integer, then n mod 10 is the digit in the ones place in the
decimal representation for n. (See Section 2.5 or the preamble to exercises 44—49 in
Section 4.4 for discussion about the decimal representation of integers.)

b. Suppose m is an integer. If m mod 11 = 6, what is 4m mod 11?7

Solution

a. Proof: Suppose n is any positive integer. The decimal representation for n is
dydi—,...drd, dy, where dy, dy, d,, . . ., d; are integers from O to 9 inclusive, d; # 0
unless n = Q and k = 0,

n=d-10°+d,_ 10" "+ +d,- 10> + d,- 10 + d,
and d,) is the digit in the ones place. Factoring out 10 from all but the final term gives
n=10-(d- 10" "+ d - 102+ -+ dy- 10" + d)) + d.
Thus n = 10-(an integer) + dy, and so n mod 10 = d,, which is the digit in the ones
place in the decimal representation for n.

b. Because m mod 11 = 6, the remainder obtained when m is divided by 11 is 6. This
means that there is some integer g so that

m=1lg+6.
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Note The fact that any
integer is either even or
odd is called the parity
property.

Example 4.5.5

Thus dm = 44q+24 = 4dg+22+2 = 11(4q +2) +2.

Since 4g + 2 is an integer (because products and sums of integers are integers) and since
2 < 11, the remainder obtained when 4m is divided by 11 is 2. Therefore,

dm mod 11 = 2, [ |

Representations of Integers

In Section 4.1 we defined an even integer to have the form twice some integer. At that time
we could have defined an odd integer to be one that was not even. Instead, because it was
more useful for proving theorems, we specified that an odd integer has the form twice
some integer plus 1. The quotient-remainder theorem brings these two ways of describing
odd integers together by guaranteeing that any integer is either even or odd. To see why,
let n be any integer, and consider what happens when 7 is divided by 2. By the quotient-
remainder theorem (with d = 2), there exist unique integers ¢ and r such that

n=2g+r and 0=r<2.

But the only integers that satisfy 0 = r <2 are r = 0 and r = 1. It follows that given any
integer n, there exists an integer g with

n=2g+0 or n=2q+1.

In the case that n = 2g + 0 = 2q, n is even. In the case that n = 2¢g + 1, n is odd. Hence
n is either even or odd, and, because of the uniqueness of ¢ and r, n cannot be both even
and odd.

The parity of an integer refers to whether the integer is even or odd. For instance, 5 has
odd parity and 28 has even parity.

Consecutive Integers Have Opposite Parity
Prove that given any two consecutive integers, one is even and the other is odd.

Solution Two integers are called consecutive if, and only if, one is one more than the
other. So if one integer is m, the next consecutive integer is m + 1.

To prove the given statement, you can divide the analysis into two cases: case 1, where
the smaller of the two integers is even, and case 2, where the smaller of the two integers
is odd.

Theorem 4.5.2 The Parity Property

Any two consecutive integers have opposite parity.

Proof:

Suppose that two [particular but arbitrarily chosen] consecutive integers are given;
call them m and m + 1. [We must show that one of m and m+ 1 is even and that the
other is odd.] By the parity property, either m is even or m is odd. [We break the proof
into two cases depending on whether m is even or odd.]

Case 1 (m is even): In this case, m = 2k for some integer k, and so m+1 = 2k+ 1,
which is odd [by definition of odd]. Hence in this case, one of m and m + 1 is even
and the other is odd.

(continued on page 204)
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Example 4.5.6

Case 2 (m is odd): In this case, m =2k+1 for some integer k, and so
m+1=Q2k+1)+1=2k+2=2(k+1). Butk+ 11is an integer because it is a sum
of two integers. Therefore, m + 1 equals twice some integer, and thus m + 1 is even.
Hence in this case also, one of m and m + 1 is even and the other is odd.

It follows that regardless of which case actually occurs for the particular m and m + 1 that
are chosen, one of m and m + 1 is even and the other is odd. [This is what was to be shown.]

The division into cases in a proof is like the transfer of control for an if-then-else statement
in a computer program. If m is even, control transfers to case 1; if not, control transfers to
case 2. For any given integer, only one of the cases will apply. You must consider both cases,
however, to obtain a proof that is valid for an arbitrarily given integer whether even or not.

There are times when division into more than two cases is called for. Suppose that at
some stage of developing a proof, you know that a statement of the form

AjorAyorAsor...orA,

is true, and suppose you want to deduce a conclusion C. By definition of or, you know that
at least one of the statements A, is true (although you may not know which). In this situa-
tion, you should use the method of division into cases. First assume A; is true and deduce
C; next assume A, is true and deduce C; and so forth, until you have assumed A,, is true and
deduced C. At that point, you can conclude that regardless of which statement A; happens
to be true, the truth of C follows.

Method of Proof by Division into Cases

To prove a statement of the form “If A; or A, or...or A,, then C,” prove all of the
following:

If A, then C,
If A,, then C,

If A, then C.

This process shows that C is true regardless of which of A, A,, ..., A, happens to
be the case.

Proof by division into cases is a generalization of the argument form shown in Ex-
ample 2.3.7, whose validity you were asked to establish in exercise 21 of Section 2.3. This
method of proof was combined with the quotient-remainder theorem for d = 2 to prove
Theorem 4.5.2. Allowing d to take on additional values makes it possible to obtain a vari-
ety of other results. We begin by showing what happens when a = 4.

Representing Integers mod 4
Show that any integer can be written in one of the four forms
n=4q or n=4g+1 or n=4g+2 or n=4q+3

for some integer g.
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Example 4.5.7

Note Another way to

state this fact is that if you
square an odd integer and
divide by 8, you will always
get a remainder of 1. Try a
few examples!

Note Desperation can
spur creativity. When you
have tried all the obvious
approaches without suc-
cess and you really care
about solving a problem,
you reach into the odd cor-
ners of your memory for
anything that may help.
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Solution Given any integer n, apply the quotient-remainder theorem to n with the divi-
sor equal to 4. This implies that there exist an integer quotient ¢ and a remainder r such
that

n=4g+r and 0=r<4.

But the only nonnegative remainders r that are less than 4 are 0, 1, 2, and 3. Hence

n=4q or n=4q+1 or n=49g+2 or n=4g+3

for some integer g. In other words, n mod 4 equals 0, 1, 2, or 3. [ |

The next example illustrates how the alternative representations for integers mod 4 can
help establish a result in number theory. The solution is broken into two parts: a discussion
and a formal proof. These correspond to the stages of actual proof development. Very few
people, when asked to prove an unfamiliar theorem, immediately write down the kind of
formal proof you find in a mathematics text. They may first check some examples to ex-
plore whether the theorem is believable. If it passes that test, they often need to experiment
with several possible approaches before finding one that works. A formal proof is much
like the ending of a mystery story—the part in which the action of the story is systemati-
cally reviewed and all the loose ends are carefully tied together.

The Square of an Odd Integer
Prove: The square of any odd integer has the form 8m + 1 for some integer m.

Solution If checking some examples convinces you that the statement may be true, be-
gin to develop a proof by asking, “Where am I starting from?” and “What do I need to
show?” To help answer these questions, introduce variables to rewrite the statement more
formally.

Formal Restatement: ¥ odd integer n, 3 an integer m such that n* = 8m + 1.
From this, you can immediately identify the starting point and what is to be shown.

Starting Point: Suppose n is a particular but arbitrarily chosen odd integer.

To Show: 3 an integer m such that n* = 8m + 1.

This looks tough. Why should there be an integer m with the property that n’ = 8m+1?
That would say that (n*—1)/8 is an integer, or that 8 divides n*—1. Perhaps you could
make use of the fact that n” — 1 = (n—1)(n+1). Does 8 divide (n— 1)(n+ 1)? Since n is
odd, both (n — 1) and (n + 1) are even. That means that their product is divisible by 4. But
that’s not enough. You need to show that the product is divisible by 8.

You could try another approach by arguing that since n is odd, you can represent it as
2g + 1 for some integer g. Then n’ = (2qg + 1? = 4q2 +4qg+1 = 4(q2 +¢q)+ 1. It is clear
from this analysis that n? can be written in the form 4m+1, but it may not be clear that it
can be written as 8m + 1.*

Yet another possibility is to use the result of Example 4.5.6. That example showed
that any integer can be written in one of the four forms 4¢, 4g+ 1, 4g + 2, or 4q + 3. Two
of these, 4¢+ 1 and 4g + 3, are odd. Thus any odd integer can be written in the form
4g + 1 or 4q + 3 for some integer g. You could try breaking into cases based on these two
different forms.

*See exercise 18 for a different perspective about this approach.
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It turns out that this last possibility works! In each of the two cases, the conclusion

follows readily by direct calculation. The details are shown in the following formal
proof:

Theorem 4.5.3

The square of any odd integer has the form 8m + 1 for some integer m.

Proof: Suppose n is a [particular but arbitrarily chosen] odd integer. By the quotient-
remainder theorem with the divisor equal to 4, n can be written in one of the forms

4qg or 4g+1 or 4g+2 or 4g+3

for some integer g. In fact, since n is odd and 4¢ and 4¢g + 2 are even, n must have
one of the forms
4g+1 or 4q+3.

Case I (n = 4q + 1 forsomeinteger q): [ We must find an integer m such thatn* = 8m + 1.]
Sincen =4g+1,

nz = (49 + 1)2 by substitution
=M@g+1DMEg+1) by definition of square
= 16¢"+8q+1
= 8(2q2 +q) +1 by the laws of algebra.

Letm = 2¢” + . Then m is an integer since 2 and ¢ are integers and sums and prod-
ucts of integers are integers. Thus, substituting,

n* =8m+1 where m is an integer.

Case2(n = 4 q + 3forsomeintegerq): [ We mustfindanintegerm such thatn* = 8m+1.]
Since n = 4qg + 3,

n’ = (4qg + 3)2 by substitution
= (4g+3)4qg+3) by definition of square
= 164> +24q+9

= 16¢"+24g+(8+1)
= 8(2q2 +3¢g+1D+1 by the laws of algebra.

[The motivation for the choice of algebra steps was the desire to write the expression in
the form 8- (some integer) +1.]

Letm = 2q2 + 3g + 1. Then m is an integer since 1, 2, 3, and ¢ are integers and sums
and products of integers are integers. Thus, substituting,

n* =8m+1 where m is an integer.

Cases 1 and 2 show that given any odd integer, whether of the form 4+ 1 or
4q + 3, n*> = 8m+ 1 for some integer m. [This is what we needed to show.]
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Note that the result of Theorem 4.5.3 can also be written, “For any odd integer n, n’

mod 8 = 1.7
In general, according to the quotient-remainder theorem, if an integer » is divided by an
integer d, the possible remainders are 0, 1,2, ..., (d — 1). This implies that n can be written

in one of the forms
dg,dg+1,dg+2,...,dq+(d—1) forsome integer q.

Many properties of integers can be obtained by giving d a variety of different values and
analyzing the cases that result.
Absolute Value and the Triangle Inequality

The triangle inequality is one of the most important results involving absolute value. It has
applications in many areas of mathematics.

Definition

For any real number x, the absolute value of x, denoted |x

x| x ifx=0
x =
—x ifx<O.

, is defined as follows:

The triangle inequality says that the absolute value of the sum of two numbers is less than
or equal to the sum of their absolute values. We give a proof based on the following two facts,
both of which are derived using division into cases. We state both as lemmas. A lemma is
a statement that does not have much intrinsic interest but is helpful in deriving other results.

Lemma4.5.4

For every real number r, —|r| = r =|r|.

Proof: Suppose r is any real number. We divide into cases according to whether
r=0,r>0,orr<o.

Case I (r = 0): In this case, by definition of absolute value, r| =r = 0.since) = —0,
we have that —0 = —|r| = 0 = r = |r|, and so it is true that

~lrl =r=1r].

Case 2 (r > 0): In this case, by definition of absolute value, [&lpipelrlpipell=Ir&].
Also, since r is positive and — |r| is negative, —|r| < r. Thus it is true that

Il =r=1r.

Case 3 (r < 0): In this case, by definition of absolute value, |r| = —r. Multiplying
both sides by —1 gives that —|r| = r. Also, since r is negative and |r| is positive,
r < |r|. Thus it is also true in this case that

~lrl ==,
Hence, in every case,
Il =r=1r

[as was to be shown].

Copy