

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page i — #1 i
i

i
i

i
i

Foundations of
Discrete Mathematics
with Algorithms and

Programming

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page ii — #2 i
i

i
i

i
i

http://taylorandfrancis.com

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page iii — #3 i
i

i
i

i
i

Foundations of
Discrete Mathematics
with Algorithms and

Programming

Sriraman Sridharan
Laboratoire LAMPS

Département de Mathématiques et d’Informatique
Université de Perpignan Via Domitia

Perpignan
FRANCE

R. Balakrishnan
Bharathidasan University

Tiruchirappalli
Tamil Nadu

INDIA

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page iv — #4 i
i

i
i

i
i

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2019 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20180813

International Standard Book Number-13: 978-0-8153-7848-8 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access
www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
(CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization
that provides licenses and registration for a variety of users. For organizations that have been granted
a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Library of Congress Cataloging-in-Publication Data

Names: Sridharan, Sriraman, author. | Balakrishnan, R. (Rangaswami), author.
Title: Foundations of discrete mathematics with algorithms and programming /
Sriraman Sridharan, R. Balakrishnan.
Description: Boca Raton : Taylor & Francis, a CRC title, part of the Taylor &
Francis imprint, a member of the Taylor & Francis Group, the academic
division of T&F Informa, plc, 2019. | Includes bibliographical references
and index.
Identifiers: LCCN 2018018635| ISBN 9780815378488 (hardback : acid-free paper)
| ISBN 9781351019149 (ebook)
Subjects: LCSH: Computer science--Mathematics.
Classification: LCC QA76.9.M35 S725 2019 | DDC 004.01/51--dc23
LC record available at https://lccn.loc.gov/2018018635

www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com
https://lccn.loc.gov/2018018635

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page v — #5 i
i

i
i

i
i

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page vi — #6 i
i

i
i

i
i

The first author S. S. affectionately dedicates this book in
memory of his parents:

Geeyar Sriraman
Padmavathi Sundaravaradhan

The second author R. B. dedicates this book in memory of

the Late Professor Jacob K. Goldhaber,

formerly of the University of Maryland, USA for all the good things
in life the author learned from him, besides, of course, mathemat-
ics.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page vii — #7 i
i

i
i

i
i

Contents

Preface xi

1 Sets, Relations and Functions 1
1.1 Introduction . 2
1.2 Functions . 5
1.3 Equivalence Relations 9
1.4 Finite and Infinite Sets 11
1.5 Cardinal Numbers of Sets 14
1.6 Power Set of a Set 17
1.7 Exercises . 19
1.8 Partially Ordered Sets 20
1.9 Lattices . 25
1.10 Boolean Algebras 34

1.10.1 Introduction 34
1.10.2 Examples of Boolean Algebras 34

1.11 Atoms in a Lattice 38
1.12 Exercises . 42

2 Combinatorics 47
2.1 What Is Combinatorics? 48
2.2 Elementary Counting Principles 51
2.3 Permutations and Combinations 64

2.3.1 Sums and Products 79
2.4 Binomial Theorem 83
2.5 Multinomial Coefficients 91
2.6 Stirling Numbers 103
2.7 Stirling Number of the Second Kind

{
n
k

}
. 113

vii

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page viii — #8 i
i

i
i

i
i

viii CONTENTS

2.8 Bell Numbers . 125
2.9 The Principle of Inclusion 127

2.9.1 Applications of Inclusion and Exclusion
Principle . 132

2.9.2 Application of Inclusion and Exclusion
Principle to Elementary Number Theory . . 137

2.9.3 Applications to Permanents 143
2.10 Generating Functions 152

2.10.1 Solving Recurrence Relations Using
Generating Function Techniques 157

2.10.2 Catalan Numbers 160
2.11 Generating Subsets 166
2.12 Exercises . 175

3 Basics of Number Theory 183
3.1 Introduction . 184
3.2 Divisibility . 184
3.3 gcd and lcm of Two Integers 186
3.4 Primes . 189
3.5 Exercises . 193
3.6 Congruences . 194
3.7 Complete System of Residues 197
3.8 Linear Congruences 202
3.9 Lattice Points Visible from the Origin 206
3.10 Exercises . 209
3.11 Some Arithmetical Functions 210
3.12 Exercises . 218
3.13 The Big O Notation 218

4 Introduction to Graph Theory 225
4.1 The Idea of a Graph 225
4.2 An Informal and Intuitive 234
4.3 Multigraph or Undirected Graph 239
4.4 Some Special Graphs 244
4.5 Graphs and Subgraphs 264
4.6 Walks, Paths, Cycles 271
4.7 Connectedness . 275

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page ix — #9 i
i

i
i

i
i

CONTENTS ix

4.8 Graphs and Puzzles 283

4.8.1 An Application 288

4.8.2 Two Friendship Theorems 289

4.8.3 Pandava Princes Problem and 3 Houses, 3
Utilities Problem 292

4.9 Ramsey Numbers 293

4.10 Graph Algebra . 308

4.11 Exercises . 314

5 Introduction to Algorithms 325

5.1 Algorithms . 326

5.2 Complexity of Algorithms 330

5.3 An Overview of a Classical Computer 353

5.4 Introduction to Programming 360

5.4.1 Parameter Passing 373

5.4.2 Recursion 381

5.5 Introduction to Data Structures 387

5.5.1 Access Restricted Lists 406

5.6 Examples of Algorithms 416

5.7 Exercises . 439

6 Introduction to Logic 447

6.1 Introduction . 447

6.2 Algebra of Propositions 448

6.3 Proofs in Mathematics 454

6.3.1 Universal and Existential Quantifiers 457

6.4 Probability . 458

Appendices Answers to Even-Numbered Exercises 477

A Answers to Chapter 1 479

B Answers to Chapter 2 483

C Answers to Chapter 3 487

D Answers to Chapter 4 491

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page x — #10 i
i

i
i

i
i

x CONTENTS

E Answers to Chapter 5 497

F Answers to Chapter 6 503

Index 507

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page xi — #11 i
i

i
i

i
i

Preface

Discrete mathematics and programming courses are all-pervasive
in computer science, mathematics, and engineering curricula. This
book is intended for undergraduate/postgraduate students in com-
puter science, mathematics and engineering. No specific computer
science and mathematics background is assumed. The student
with high school level mathematics, can use this book for self-
study and reference. A glance at the table of contents will reveal
that the book treats fundamentals of discrete mathematics, com-
puter science and programming languages. A number of examples
have been given to enhance the understanding of concepts. The
programming languages used are Pascal and C. In the chapters
on combinatorics, graph theory, algorithms and data structures,
examples are given and then the relevant concept/ algorithm is
abstracted from the examples. The aim of the book is to bring to-
gether the fundamentals of discrete mathematics, algorithms and
programming for the student community.

The scope of the book

In Chapter 1, titled “Sets, Relations, and Functions,” the reader is
given a review of the basic concepts of sets, relations and functions.
Partially ordered sets, lattices and Boolean algebras are treated
with examples. Next, cardinal numbers are introduced. The fact
that 2α > α for any cardinal number α is proved. The celebrated
Schroder-Berstein theorem is established. The chapter ends with
a section on lattices which describes modular lattices, distributive
lattices and Boolean algebras.

xi

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page xii — #12 i
i

i
i

i
i

xii PREFACE

In Chapter 2, titled “Combinatorics,” we start from the ele-
mentary rules of counting, then study permutations and combi-
nations, binomial coefficients, binomial theorem, multinomial co-
efficients, multinomial theorem, Stirling numbers, and Bell num-
bers. Next, the Principle of Inclusion and Exclusion (simple and
weighted versions) and its application to number theory and the
theory of permanents, generating function techniques and recur-
rence relations, Bernoulli numbers, Catalan numbers, and algo-
rithms for generating all the subsets of a given finite set are stud-
ied.

Chapter 3 is titled “Basics of Number Theory.” After recalling
some elementary concepts, congruences, the complete system of
residues, and the Chinese remainder theorem, lattice points visible
from the origin are presented.

In Chapter 4, titled “Introduction to Graph Theory,” we begin
from directed graphs as binary relations. Elementary theorems
concerning in-degrees, out-degrees, and degrees are presented. An
informal and intuitive introduction to the Classes P, NP and NP-
complete is given. Multigraphs and simple graphs are then treated
along with the idea of degree sequences. Some special graphs are
then introduced. Graph isomorphism is covered with simple re-
sults on enumeration of graphs. Various types of sub-graphs and
f-factors are defined and the fundamental result of Tutte on the
existence of an f-factor in a multigraph is stated. The Erdös-Gallai
theorem on the degree sequence of graphs is given. Walks, paths,
distance concepts, and connectedness are studied. Examples of the
use of graphs to solve puzzles (like the Königsberg bridge prob-
lem and the five Pandava princes problem) are covered along with
Eulerian circuits. Ramsey numbers are introduced and fundamen-
tal results involving these numbers are proved. Graph algebra is
presented together with the concept of graph minors.

The concept of the algorithm is at the very heart of computer
science. In Chapter 5, titled “Introduction to Algorithms and
Data Structures,” we begin with the notion of an algorithm and
the classic example of the greatest common divisor algorithm (the
granddad of all algorithms, according to Donald Knuth). We then
introduce big oh, big omega, and big theta notations to study

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page xiii — #13 i
i

i
i

i
i

PREFACE xiii

the complexity of an algorithm. Frequently occurring complex-
ity functions along with the corresponding algorithms are stated.
Next, an overview of a classical computer is presented. Fundamen-
tals of programming are studied. These include variables, types,
assignment, the conditional statement, loop statement (while, re-
peat, for), function, procedure, parameter passing mechanisms,
recursion and how these programming concepts are implemented
in the languages Pascal/C are explained with examples. Next,
fundamental data structures are presented. These include the
data model list, its representation as an array, and the linked list.
Access-restricted fundamental data models like stack, queue, and
circular queue are covered along with their representation as an
array and a linked list. Examples of programs in C whose complex-
ities are frequently occurring functions are written. These include
binary search, quick sort, selection sort, matrix multiplication,
tower of Brahma-Hanoi and permutation generation.

Chapter 6 is titled “Introduction to Logic and Probability.”
In the first section, we study the concepts of statements, truth as-
signments to statements, implication (conditional statement), logi-
cally equivalent statements, truth tables, tautology, contradiction,
valid arguments, arguments with fallacies (invalid arguments), and
proof techniques in mathematics.

In the next section on probability, we study elementary prob-
ability theory. We introduce sample space, events, probability,
random variables (discrete and continuous), conditional probabil-
ity, independence of events, expectation, variance, and binomial
and Poisson distributions.

Answers to even-numbered exercises are given. The reader is
requested to give a reasonable effort to exercises, before looking at
the solutions.

Use of the Book

Chapters 1 and 3 have been taught by the second author in various
universities in India.

Chapters 2, 4, 5, and 6 have been taught by the first author
at the following French universities: Université de Bordeaux I,

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page xiv — #14 i
i

i
i

i
i

xiv PREFACE

Université de Pierre et Marie Curie and Université de Perpig-
nan Via Domitia, Cour du Soir au CNAM (Conservatoire Na-
tional des Arts et Métiers), and at the Institute IMERIR (Institut
Méditerranéen de Recherche En Informatique et En Robotique).

The instructor has a great deal of flexibility in choosing the
material from the book. For example, Chapters 1, 2, 3, and 6 will
serve as a solid introductory course in combinatorics. Chapter
5 can be used for courses on data structures and programming,
and Chapter 4 can serve as an accelerated course on the theory of
graphs. A course on graph algorithms can use Chapters 4 and 5.
Many illustrative examples have been given to enforce the under-
standing of the concepts. Every algorithm treated is illustrated
with sample inputs. Algorithms are expressed as informal pseudo-
codes and programs in Pascal/C. Of course, these can be easily
translated into any language like C++ or JAVA. Some concepts
and results are found in two different chapters in different con-
texts. Exercises at the end of each chapter or section test the
understanding of the concepts developed in the text.

We feel that the presentation of these chapters would go a
long way in providing undergraduate students of mathematics,
computer science and engineering, a solid foundation in discrete
mathematics.

Acknowledgment

The authors thank S. Baskaran for going through the chapters
which deal with algebra and number theory. We also thank A.
Anuradha and R. Dhanalakshmi for their help in typesetting some
of the chapters. Thanks are also due to N. Sridharan and A. Srini-
vasan for going through some chapters of the book and offering
constructive comments and criticisms.

We take the opportunity to thank our institutions–
Bharathidasan University, Tamil Nadu, India and Université de
Perpignan Via Domitia, France—for their academic support. Our
thanks are also due to the faculties in our departments whose en-
couragement proved vital in attaining our goal. We also thank
the four anonymous reviewers for suggesting some changes on the

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page xv — #15 i
i

i
i

i
i

PREFACE xv

initial version of the book. Last but not least, we thank Aastha
Sharma and Shikha Garg of CRC Press for their kind understand-
ing of our problems and for the patience exhibited by them till our
completion of the manuscript.

The first author expresses his deep gratitude to Professor
K. R. Parthasarathy of the Indian Institute of Technology, Chen-
nai, India for introducing him to graph theory and guiding his
PhD thesis. A thousand thanks go to Professor Claude Berge,
one of the greatest pioneers in graph theory and combinatorics,
who invited him to CAMS (Centre d’Analyse Mathématique So-
ciale) and guided his doctoral work in Paris. Claude has been a
source of immense inspiration to him. Special thanks are also due
to Professors R. Balasubramanian (A. M. Jain College, TN, In-
dia), Philippe Chrétienne of Université de Pierre et Mairie Curie,
Robert Cori of Université de Bordeaux I, Alain Fougère (UPVD),
Michel Las Vergnas (CNRS), UFR secretary Mme. Fabien Pontra-
mont (UPVD), Mircea Sofonea (Directeur de Laboratoire LAMPS,
UPVD), N. Srinivasan (A. M. Jain College, TN, India), Michel
Ventou (UPVD), Annick Truffert (Dean of the faculty of Sciences,
UPVD). Many thanks are also due to my students of UPVD for
their feedback. We are responsible for all the remaining errors,
but still, we feel that the initial readers of our manuscript could
have smoked out some more bugs. Though it is not in the Hindu
custom to explicitly thank the family members, he would like to
break this tradition and thank his wife Dr. Usha Sridharan and
his daughters Ramapriya and Sripriya for putting up with an un-
usually long prolonged absence, as well as Dheeraj.

The entire book was composed using the TEX and LATEX sys-
tems developed by D. E. Knuth and L. Lamport, respectively.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page xvi — #16 i
i

i
i

i
i

xvi PREFACE

The authors welcome corrections, comments and criticisms
from readers which would be gratefully acknowledged. They can
be sent by email to rbsri2018@gmail.com.

S. S.
R. B.

Perpignan, France
Tiruchirappalli, Tamil Nadu, India
February 2018

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 1 — #17 i
i

i
i

i
i

Chapter 1

Sets, Relations and
Functions

No solitary tree can pass on for a grove.
Proverb in Tamil

Seuls comptent les ensembles.
F. Braudel

Summary

The basic operations of sets, namely union, intersection and com-
plementation, are defined and De Morgan’s laws are derived. In-
jective, surjective and bijective functions are then defined. This
is followed by consideration of finite and infinite sets. This leads
to the study of cardinal numbers of sets, and, in particular, to
countable and uncountable sets. This is followed by a proof of the
Schroder-Bernstein theorem. As a consequence, the cardinality of
the power set P(X) of a set X is strictly greater than that of X.

The next major part of the chapter deals with partially or-
dered sets and lattices. This is followed by a study of distributive
and modular lattices. The theorem that any modular lattice must
contain the pentagonal lattice as a sublattice is then proved.

The last two sections of this chapter consider atoms in a lat-
tice and Boolean algebras. Basic properties of Boolean algebras

1

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 2 — #18 i
i

i
i

i
i

2 CHAPTER 1. SETS, RELATIONS AND FUNCTIONS

are established. The chapter ends up with the Representation theo-
rem for finite Boolean algebras which states that any finite Boolean
algebra B may be thought of as the Boolean algebra P(S) defined
on the set S of its atoms.

In this chapter, we recall some of the basic facts about sets,
functions, relations and lattices. We are sure that the reader is
already familiar with most of these, which are usually taught in
high school algebra with the exception of lattices. We also assume
that the reader is familiar with the basics of real and complex
numbers.

1.1 Introduction

Intuitively, a set is a collection of objects viewed as a single entity.
Objects are also referred to as elements or members or points of
the set. Elements of a set are enclosed in braces. For example, the
set A consisting of the members 1, 2, 3 is written as

A = { 1, 2, 3 }.

The element 1 ∈ A (read “1 belongs to or is in the set A”) and
the element 4 /∈ A (read “4 does not belong to or is not in A”).

A set can be visualized as a box containing objects which are
its elements, and the empty set is an empty box, written as ∅. The
set E consisting of all even positive integers is

E = { 2, 4, 6, . . . }.

Note that A is a finite set since the number of its elements (also
called the cardinality of the set A), namely, |A| = 3 while E is an
infinite set.

We do not repeat elements in a set and the order of the elements
in a set is irrelevant. For example, { 1, 2, 3 } = { 2, 1, 3 }. If some
elements are repeated in a set, then we speak of a multiset and the
number of times an element is repeated is called its multiplicity.
Two sets A and B are equal, denoted by A = B, if they consist
of identical elements. We now study some operations on sets.
Usually, sets are denoted by capital letters like A,B, etc., and the
elements of the sets by small letters a, b, etc.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 3 — #19 i
i

i
i

i
i

1.1. INTRODUCTION 3

There are generally two ways of specifying sets. One way is to
list its members inside braces, with elements separated by commas
like { 3, 6, 9 }. The infinite set of all prime numbers can be written
as { 2, 3, 5, 7, 11, . . . , }. Sometimes it is not possible to give an
exhaustive list all members of the set. In this case, we specify
a set by a characterizing property of a typical element as in the
following example.

The set of all odd positive integers is written as

{n | n is an odd integer , n > 0 }.

The vertical line | is read as “such that” and (,) as “and.”

Venn diagrams and operations on sets

Sets are usually described by their Venn diagrams (see Figure 1.1).
A Venn diagram is a geometrical representation of sets. In this
pictorial representation, sets are represented by enclosed areas in
the plane. If A and B are sets, then their union, A∪B, is defined

1

2
3

5
4

7

A B

6

Figure 1.1: Venn diagram of sets

to be the set of all elements x such that x ∈ A or x ∈ B; here
“or” is used in the sense of and/or; their intersection, A ∩ B is
defined to be the set of all elements x such that x ∈ A and x ∈ B,
that is, common to both A and B. In Figure 1.1, the set A =
{1, 2, 3, 4, 5} and the set B = {4, 5, 6, 7} have been marked by
their Venn diagrams. Here A∪B is the set {1, 2, 3, 4, 5, 6, 7} while
A ∩ B = {4, 5}. The sets A and B are disjoint if they have no
elements in common. If A and B are sets then A ⊆ B if every

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 4 — #20 i
i

i
i

i
i

4 CHAPTER 1. SETS, RELATIONS AND FUNCTIONS

element of A is an element of B (that is, A is a subset of B, and
A may be equal to B). In this case, the complement of A with
respect to B is the set B \ A consisting of all elements of B not
belonging to A (the symbol \ stands for set subtraction). The sets
A and B are equal if A ⊆ B and B ⊆ A. In other words, A and
B have identical elements.

For example, the set of all prime numbers except 2, is a subset
of the set of all odd positive integers. (Note that 2 is the only even
prime number.) The symmetric difference of A and B is the set
of those elements of A and B which are not in both A andB. It is
denoted by A △B. Hence

A △B = (A ∪B) \ (A ∩B).

Again, for sets A and B of Figure 1.1, A△B = {1, 2, 3, 6, 7}. Using
Venn diagrams for the sets A and B, the set A △B can be pictori-
ally given as in Figure 1.2 where the marked region denotes A △B

Figure 1.2: Set A △B, the symmetric difference

We observe that

A △B = (A \B) ∪ (B \ A),

and that
A ∪B = (A △B) ∪ (A ∩B).

In Figure 1.2, A \B = {1, 2, 3} and B \ A = {6, 7}.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 5 — #21 i
i

i
i

i
i

1.2. FUNCTIONS 5

The notion of union, intersection of two sets can be extended
to any number of sets. To this end, we introduce:

Index Set: Given a non-empty set I, we say that I serves as an
index set for the family of sets F = {Aα}, if to each α ∈ I, there
is a set Aα in the family of sets F . The index set I can be any set,
finite or infinite. Typically the index set is I = { 1, 2, . . . , n }.

For instance, if A1 = {1, 2}, A2 = {3, 4} and A3 = {5, 6, 7},
then {Aα}α∈I is a disjoint family of sets, where the index set I =
{1, 2, 3}. Let F = {Aα}α∈I be a family of sets. Here for each
α ∈ I, there exists a set Aα of F . Assume that each Aα is a
subset of a set X. Such a set X certainly exists since we can take
X = ∪

α∈I
Aα. For each α ∈ I, denote by A′

α the complement X/Aα

of Aα in X. We then have the celebrated laws of De Morgan.

Theorem 1.1.2 (De Morgan’s laws):
Let {Aα}α∈I be a family of subsets of a set X. Then

1. (∪α∈I Aα)
′ = ∩α∈I A′

α, and

2. (∩α∈I Aα)
′ = ∪α∈I A′

α.

Proof. We prove (i); the proof of (ii) is similar.
Let x ∈ (∪

α∈I
Aα)

′. Then x ̸∈ ∪
α∈I

Aα, and therefore, x ̸∈ Aα,

for each α ∈ I. Hence x ∈ A′
α for each α, and consequently,

x ∈ ∩
α∈I

A′
α. Thus (∪

α∈I
Aα)

′ ⊆ ∩
α∈I

A′
α. Conversely, assume that

x ∈ ∩
α∈I

A′
α. Then x ∈ A′

α for each α ∈ I, and therefore, x ̸∈
Aα for each α ∈ I. Thus x ̸∈ ∪

α∈I
Aα, and hence x ∈ (∪

α∈I
Aα)

′.

Consequently, ∩
α∈I

A′
α ⊆ (∪

α∈I
Aα)

′. This proves (i).

Definition 1.1.1:
A family {Aα}α∈I is called a disjoint family of sets if whenever
α ∈ I, β ∈ I and α ̸= β, we have Aα ∩ Aβ = ∅.

1.2 Functions

A relation between two sets is defined by means of a function.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 6 — #22 i
i

i
i

i
i

6 CHAPTER 1. SETS, RELATIONS AND FUNCTIONS

Definition 1.2.1:
A function (also called a map or mapping or a single-valued func-
tion) f : A → B from a set A to a set B is a rule by which to
each a ∈ A, there is assigned a unique element f(a) ∈ B. f(a) is
called the image of a under f .

For example, if A is a set of students of a particular class, then
for a ∈ A, if f(a) denotes the height of a, then f : A→ R+ is the
set of positive real numbers is a function.

Definition 1.2.2:
Two functions f : A → B and g : A → B are called equal if
f(a) = g(a) for each a ∈ A.

Definition 1.2.3:
If E is a subset of A, then the image of E under f : A → B is
∪

a∈E
{f(a)}. It is denoted by f(E).

Definition 1.2.4:
A function f : A→ B is one-to-one (or 1–1 or injective) if for a1
and a2 in A, f(a1) = f(a2) implies that a1 = a2.

Equivalently, the last definition means that a1 ̸= a2 implies
that f(a1) ̸= f(a2). Hence f is 1–1 iff distinct elements of A have
distinct images in B under f .

As an example, let A denote the set of 1,000 students of a
college A, and B the set of positive integers. For a ∈ A, let
f(a) denote the exam registration number of a. Then f(a) ∈ B.
Clearly, f is 1–1. On the other hand if for the above sets A and
B, f(a) denotes the age of the student a, f is not 1–1, as the ages
of 1,000 students in a restricted age group cannot all be distinct.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 7 — #23 i
i

i
i

i
i

1.2. FUNCTIONS 7

Definition 1.2.5:
A function f : A → B is called onto (or surjective) if for each
b ∈ B, there exists at least one a ∈ A with f(a) = b (that is, the
image f(A) = B).

For example, let A denote the set of integers Z, and B the set
of even integers. If f : A → B is defined by setting f(a) = 2a,
then f : A → B is onto. Again, if f : R → (set of non-negative
reals) defined by f(x) = x2, then f is onto but not 1–1.

Definition 1.2.6:
A function f : A → B is bijective (or is a bijection) if it is both
1–1 and onto.

The function f : Z→ 2Z defined by f(a) = 2a is bijective.

An injective (respectively surjective, bijective) mapping is re-
ferred to as an injection (respectively surjection, bijection).

Definition 1.2.7:
Let f : A→ B and g : B → C be functions. The composition of
g with f , denoted by g ◦ f , is the function

g ◦ f : A→ C

defined by (g ◦ f)(a) = g(f(a)) for a ∈ A.

As an example, let A = Z denote the set of integers, B =
N ∪ {0}, where N is the set of natural numbers {1, 2, . . .}, and
C = N. If f : A→ B is given by f(a) = a2, a ∈ A, and g : B → C
is defined by g(b) = b+ 1, b ∈ B, then h = g ◦ f : A→ C is given
by h(a) = g(f(a)) = g(a2) = a2 + 1, a ∈ Z = A.

Definition 1.2.8:
Let f : A→ B be a function. For F ⊆ B, the inverse image of F
under f , denoted by f−1(F), is the set of all a ∈ A with f(a) ∈ F .
In symbols:

f−1(F) = {a ∈ A : f(a) ∈ F}.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 8 — #24 i
i

i
i

i
i

8 CHAPTER 1. SETS, RELATIONS AND FUNCTIONS

Let f : S −→ {1, 2, 3, 4, 5} be the function from the set S of
students of an elementary school to the set {1, 2, 3, 4, 5} of grades,
where for s ∈ S, f(s) denotes the grade to which the student
s belongs. If F = {1, 3}, then f−1(F) stands for the set of all
students in S who are either in the 1st grade or in the 3rd grade.

Theorem 1.2.9:
Let f : A → B, and X1, X2 ⊆ A and Y1, Y2 ⊆ B. Then the
following statements are true:

(i) f(X1 ∪X2) = f(X1) ∪ f(X2),

(ii) f(X1 ∩X2) ⊆ f(X1) ∩ f(X2),

(iii) f−1(Y1 ∪ Y2) = f−1(Y1) ∪ f−1(Y2), and

(iv) f−1(Y1 ∩ Y2) = f−1(Y1) ∩ f−1(Y2).

Proof. We prove (iv). The proofs of the other statements are
similar.

So assume that a ∈ f−1(Y1 ∩ Y2), where a ∈ A. Then f(a) ∈
Y1∩Y2, and therefore, f(a) ∈ Y1 and f(a) ∈ Y2. Hence a ∈ f−1(Y1)
and a ∈ f−1(Y2), and therefore, a ∈ f−1(Y1) ∩ f−1(Y2). The
converse is proved just by retracing the steps.

Note that, in general, we may not have equality in (ii).
Here is an example where equality does not hold well. Let
A = {1, 2, 3, 4, 5} and B = {6, 7, 8}. Let f(1) = f(2) = 6,
f(3) = f(4) = 7, and f(5) = 8. Let X1 = {1, 2, 4} and
X2 = {2, 3, 5}. Then X1 ∩ X2 = {2}, and so, f(X1 ∩ X2) =
{f(2)} = {6}. However, f(X1) = {6, 7}, and f(X2) = {6, 7, 8}.
Therefore f(X1) ∩ f(X2) = {6, 7} ̸= f(X1 ∩X2).

We next define a family of elements and a sequence of elements
in a set X.

Definition 1.2.10:
A family {xi}i∈I of elements xi in a set X is a map x : I → X,
where for each i ∈ I, x(i) = xi ∈ X. I is the indexing set of the
family (in other words, for each i ∈ I, there is an element xi ∈ X
of the family).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 9 — #25 i
i

i
i

i
i

1.3. EQUIVALENCE RELATIONS 9

Definition 1.2.11:
A sequence {xn}n∈N of elements of X is a map f : N → X. In
other words, a sequence in X is a family in X where the indexing
set is the set N of natural numbers. For example, {2, 4, 6, . . .}
is the sequence of even positive integers given by the map (or
function) f : N→ N with f(n) = 2n.

1.3 Equivalence Relations

Definition 1.3.1:
The Cartesian product X×Y of two (not necessarily distinct) sets
X and Y is the set of all ordered pairs (x, y), where x ∈ X and
y ∈ Y . In symbols:

X × Y = {(x, y) : x ∈ X, y ∈ Y }.

In the ordered pair (x, y), the order of x and y is important
whereas the unordered pairs (x, y) and (y, x) are equal. As ordered
pairs they are equal if and only if x = y. For instance, the pairs
(1, 2) and (2, 1) are not equal as ordered pairs, while they are
equal as unordered pairs.

Definition 1.3.2:
A relation R on a setX is a subset of the Cartesian productX×X.

If (a, b) ∈ R, then we say that b is related to a under R and
we also denote this fact by aRb. For example, if X = {1, 2, 3}, the
set R = {(1, 1), (1, 2), (2, 2)} is a relation on X.

One of the important concepts in the realm of relations is the
equivalence relation.

Definition 1.3.3:
A relation R on a set X is an equivalence relation on X if

1. R is reflexive, that is, (a, a) ∈ R for each a ∈ X,

2. R is symmetric, that is, if (a, b) ∈ R then (b, a) ∈ R, and

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 10 — #26 i
i

i
i

i
i

10 CHAPTER 1. SETS, RELATIONS AND FUNCTIONS

3. R is transitive, that is, if (a, b) ∈ R and (b, c) ∈ R, then
(a, c) ∈ R.

We denote by [a] the set of elements of X which are related
to a under R. In other words, [a] = {x ∈ X : (x, a) ∈ R}. [a] is
called the equivalence class defined by a by the relation R.

Example 1.3.4:

1. On the set N of positive integers, let aRb mean that a|b (a
is a divisor of b). Then R is reflexive and transitive but not
symmetric.

2. On the set N of positive integers, set xRy iff x is prime to
y. Then R is symmetric but neither reflexive nor transitive.
(For instance, if x = 5 is prime to y = 7, and y is prime to
z = 55, 5 is not prime to 5 and it is not prime to 55).

It is clear that similar examples can be constructed.

Example 1.3.5 (Example of an equivalence relation):
On the set Z of integers (positive integers, negative integers and
zero), set aRb iff a−b is divisible by 5. Clearly R is an equivalence
relation on Z.

Definition 1.3.6:
A partition P of a set X is a collection P of nonvoid subsets of
X whose union is X such that the intersection of any two distinct
members of P is empty.

Theorem 1.3.7:
Any equivalence relation R on a set X induces a partition on X
in a natural way.

Proof. Let [x] denote the equivalence class defined by x. We show
that the classes [x], x ∈ X, define a partition on X. First of all,
each x of X belongs to class [x] since (x.x) ∈ R. Hence

X =
∪
x∈X

[x].

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 11 — #27 i
i

i
i

i
i

1.4. FINITE AND INFINITE SETS 11

We now show that if (x, y) ̸∈ R, then [x]∩ [y] = ϕ. Suppose on the
contrary, [x] ∩ [y] ̸= ϕ. Let z ∈ [x] ∩ [y]. This means that z ∈ [x]
and z ∈ [y]; hence (z, x) ∈ R and (z, y) ∈ R. This of course
means that (x, z) ∈ R and (z, y) ∈ R and hence by transitivity
of R, (x, y) ∈ R, a contradiction. Thus {[x] : x ∈ X} forms a
partition of X.

Example 1.3.8:
Let X = Z, the set of integers, and let (a, b) ∈ R iff a − b is a
multiple of 5. Then clearly, R is an equivalence relation on Z. The
equivalence classes are:

[0] ={. . . ,−10, −5, 0, 5, 10, . . .},
[1] ={. . . ,−9, −4, 1, 6, 11, . . .},
[2] ={. . . ,−8, −3, 2, 7, 12, . . .},
[3] ={. . . ,−7, −2, 3, 8, 13, . . .},
[4] ={. . . ,−6, −1, 4, 9, 14, . . .}.

Note that [5]=[0], [6]=[1], [7]=[2] etc. Then the collection
{[0], [1], [2], [3], [4]} of equivalence classes forms a partition of Z.

1.4 Finite and Infinite Sets

Definition 1.4.1:
Two sets are called equipotent if there exists a bijection between
them. Equivalently, if A and B are two sets, then A is equipotent
to B if there exists a bijection ϕ : A→ B from A onto B.

If ϕ : A → B is a bijection from A to B, then ϕ−1 : B → A
is also a bijection. Again, if ϕ : A → B and ψ : B → C are
bijections, then ψ ◦ ϕ : A → C is also a bijection. Trivially, the
identity map i : A → A defined by i(a) = a for each a ∈ A, is
a bijection on A. Hence if X is a nonvoid set, and P(X) is the
power set of X, that is, the collection of all subsets of X, then for
A, B ∈ P(X), if we set ARB iff there exists a bijection ϕ from A
onto B, then R is an equivalence relation on P(X). Equipotent

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 12 — #28 i
i

i
i

i
i

12 CHAPTER 1. SETS, RELATIONS AND FUNCTIONS

sets have the same “cardinal number” or “cardinality”.
Let Nn denote the set {1, 2, . . . , n}. Nn is called the initial

segment of N defined with respect to n.

Definition 1.4.2:
A set S is finite if S is equipotent to Nn for some positive integer
n; otherwise S is called an infinite set.

If S is equipotent to Nn, then the number of elements in it is
n. Hence if n ̸= m, Nn is not equipotent to Nm. Consequently,
no finite set can be equipotent to a proper subset of itself.

For instance, the set of trees in a garden is finite whereas the
set Z of integers is infinite. Any subset of a finite set is finite
and therefore any superset of an infinite set is infinite. (If S is an
infinite set and S ⊆ T , then T must be infinite; otherwise, S being
a subset of a finite set T , must be finite).

Theorem 1.4.3:
Let S be a finite set and f : S → S. Then f is 1–1 iff f is onto.

Proof. Suppose f : S → S is 1–1, and T = f(S). If T ̸= S, as f
is a bijection from S to T

(
⊄
=
S
)
, S and T have the same number

of elements, a contradiction to the fact that T is a proper subset
of the finite set S. Hence f must be onto.

Conversely, assume that f is onto. If f is not 1–1, there exists
at least one s ∈ S having at least two preimages. For each s ∈ S
choose a preimage s′ ∈ S under f . Let S ′ be the set of all such s′.
Clearly, if s and t are distinct elements of S, then s′ ̸= t′. Hence
S ′ is a proper subset of S. Moreover, the function ϕ : S → S ′

defined by ϕ(s) = s′ is a bijection. Thus S is bijective with the
proper subset S ′ of S, a contradiction to the fact that S is a finite
set.

Example 1.4.4:
We show by means of examples that the conclusions in Theo-
rem 1.4.3 may not be true if S is an infinite set.

First, take S = Z, the set of integers and f : Z → Z defined

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 13 — #29 i
i

i
i

i
i

1.4. FINITE AND INFINITE SETS 13

by f(a) = 2a. Clearly f is 1–1 but not onto (the image of f being
the set of even integers). Next, let R be the set of real numbers,
and let f : R→ R be defined by

f(x) =


x− 1 if x > 0

0 if x = 0

x+ 1 if x < 0

Clearly f is onto; however, f is not 1–1 since

f(1) = f(0) = f(−1) = 0.

Theorem 1.4.5:
The union of any two finite sets is finite.

Proof. First we show that the union of any two disjoint finite sets is
finite. Let S and T be any two disjoint finite sets of cardinalities n
and m respectively. Then S is equipotent to Nn and T equipotent
to Nm = {1, 2, . . . , m}. Clearly T is also equipotent to the set
{n+1, n+2, . . . , n+m}. Hence S∪T is equipotent to {1, . . . , n}∪
{n+ 1, . . . , n+m} = Nn+m. Hence S ∪ T is also a finite set.

By induction it follows that the union of a disjoint family of a
finite number of finite sets is finite.

We now show that the union of any two finite sets is finite.
Let S and T be any two finite sets. Then S ∪ T is the union of
the three pair-wise disjoint sets S\T , S ∩T and T\S and hence is
finite (here S \ T stands for the set of points of S which are not
in T).

Corollary 1.4.6:
The union of any finite number of finite sets is finite.

Proof. By induction on the number of finite sets.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 14 — #30 i
i

i
i

i
i

14 CHAPTER 1. SETS, RELATIONS AND FUNCTIONS

1.5 Cardinal Numbers of Sets

In this section, we briefly discuss the cardinal numbers of sets.
Recall that a set A is equipotent to a set B if there exists a bijec-
tion f from A onto B, and that equipotence between members of
a collection of sets S is an equivalence relation on S.

As mentioned before, the sets in the same equivalence class
are said to have the same cardinality or the cardinal number.
Intuitively it must be clear that equipotent sets have the same
“number” of elements. The cardinal number of any finite set is
a positive integer, while the cardinal numbers of infinite sets are
denoted by certain symbols. The cardinal number of the infinite
set N (the set of positive integers) is denoted by ℵ0 (aleph not).
ℵ is the first character of the Hebrew language.

Definition 1.5.1:
A set is called denumerable if it is equipotent to N (equivalently,
if it has cardinal number ℵ0). A set is countable if it is finite or
denumerable. It is uncountable if it is not countable (clearly, any
uncountable set must be infinite).

Lemma 1.5.3:
Every infinite set contains a denumerable subset.

Proof. Let X be an infinite set and let x1 ∈ X. Then X1 =
X \{x1} is an infinite subset of X (if not, X = X1∪{x1} is a union
of two finite subsets of X and therefore finite by Corollary 1.4.6).
As X1 is infinite, X1 has an element x2, and X1 \ {x2} = X \
{x1, x2} is infinite. Suppose we have found out distinct elements
x1, x2, . . . , xn in X with Xn = X \ {x1, . . . , xn} infinite. Then
there exists xn+1 inXn so thatXn\{xn+1} is infinite. By induction,
there exists a denumerable subset {x1, x2, . . . , xn, xn+1, . . .} of
X.

Theorem 1.5.4:
A set is infinite iff it is equipotent to a proper subset of itself.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 15 — #31 i
i

i
i

i
i

1.5. CARDINAL NUMBERS OF SETS 15

Proof. That no finite set can be equipotent to a proper subset of
it has already been observed (Section 1.4).

Assume that X is infinite. Then, by Lemma 1.5.3, X contains
a denumerable subset X0 = {x1, x2, . . . , }. Let

Y =(X \X0) ∪ {x2, x3, . . .} = X \ {x1}.

Then the mapping ϕ : X → Y defined by

ϕ(x) =

{
x if x ∈ X \X0

xn+1 if x = xn, n ≥ 1,

(so that ϕ(x1) = x2, ϕ(x2) = x3 and so on) is a 1–1 map of X onto
Y , and therefore an equipotence (that is, a bijection). Thus X is
equipotent to the proper subset Y = X \ {x} of X.

Notation

We denote the cardinality of a set X by |X|.
If X is a set of, say, 17 elements and y is a set of 20 elements,

then |X| < |Y | and there exists a 1–1 mapping of X to Y . Con-
versely, if X and Y are finite sets and |X| < |Y |, then there exists
a 1–1 map from X to Y . These ideas can be generalized to any
two arbitrary sets.

Definition 1.5.5:
Let X and Y be any two sets. Then |X| ≤ |Y | iff there exists a
1–1 mapping from X to Y .

Suppose we have |X| ≤ |Y |, and |Y | ≤ |X|. If X and Y are
finite sets, it is clear that X and Y have the same number of ele-
ments, that is, |X| = |Y |. The same result holds well even ifX and
Y are infinite sets. This result is known as the Schroder–Bernstein
theorem.

Theorem 1.5.6 (Schroder–Bernstein):
If X and Y are sets such that |X| ≤ |Y | and |Y | ≤ |X|, then
|X| = |Y |.

For the proof of Theorem 1.5.6, we need a lemma.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 16 — #32 i
i

i
i

i
i

16 CHAPTER 1. SETS, RELATIONS AND FUNCTIONS

Lemma 1.5.7:
Let A be a set and A1 and A2 be subsets of A such that A ⊇ A1 ⊇
A2. If |A| = |A2|, then |A| = |A1|.

Proof. If A is a finite set, then |A| = |A2| gives that A = A2, as
A2 is a subset of A. Hence A = A1 = A2, and therefore |A| = |A1|.

So assume that A is an infinite set. |A| = |A2| means that
there exists a bijection ϕ : A → A2. Let ϕ(A1) = A3 ⊆ A2. We
then have

A1 ⊇ A2 ⊇ A3, and |A1| = |A3| (1.1)

So starting with A ⊇ A1 ⊇ A2 and |A| = |A2|, we get (1.1).
Starting with (1.1) and using the same argument, we get

A2 ⊇ A3 ⊇ A4 and |A2| = |A4|. (1.2)

Note that the bijection from A2 to A4 is given by the same map
ϕ. In this way, we get a sequence of sets

A ⊇ A1 ⊇ A2 ⊇ A3 ⊇ . . . (1.3)

with |A| = |A3|, and |Ai| = |Ai+2|, for each i ≥ 1. Moreover,∣∣A \ A1

∣∣ =∣∣A2 \ A3

∣∣,∣∣A1 \ A2

∣∣ =∣∣A3 \ A4

∣∣,∣∣A2 \ A3

∣∣ =∣∣A4 \ A5

∣∣,
and so on (see Figure 1.3). Once again, the bijections are under
the same map ϕ. Let P = A ∩ A1 ∩ A2 ∩ . . .

Then A = (A \ A1) ∪ (A1 \ A2) ∪ . . . ∪ P, (1.4)

and A1 = (A1 \ A2) ∪ (A2 \ A3) ∪ . . . ∪ P, (1.5)

where the sets on the right are pairwise disjoint. Note that since
A ⊇ A1 ⊇ A2 ⊇ A3 ⊇ · · · , is a decreasing sequence of sets,
∩i≥1Ai = A ∩ (∩i≥1Ai) and both of these are equal to P. Now in
the Equations 1.4 and 1.5, in the first two terms on the R.H.S.
we observe that |A \ A1| = |A2 \ A3| while the term |A1 \ A2| is
common. In the next two terms of the two expressions on the

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 17 — #33 i
i

i
i

i
i

1.6. POWER SET OF A SET 17

A\A1

A1A

A2\A3

A3 A2

ϕ

Figure 1.3: Illustration

R.H.S. |A2 \ A3| = |A4 \ A5| while the term |A3 \ A4| is common.
In general, for each n ≥ 1, |A2n \ A2n+1| = |A2n+2 \ A2n+3| while
the term |A2n+1 \ A2n+2| is common to both the expressions on
the R.H.S. As the terms are pairwise disjoint, this proves that
|A| = |A1|.

Proof of Schroder–Bernstein theorem. By hypothesis |X| ≤ |Y |.
Hence there exists a 1–1 map ϕ : X → Y . Let ϕ(X) = Y ∗ ⊆ Y .
Then

|X| = |Y ∗| (1.6)

Again by hypothesis, |Y | ≤ |X|. Hence there exists a 1–1 map
ψ : Y → X. Let ψ(Y) = X∗ ⊆ X. Then

|Y | = |X∗| (1.7)

As Y ∗ ⊆ Y , ψ(Y ∗) = (say)X∗∗ ⊆ ψ(Y) = X∗. Hence

|Y ∗| = |X∗∗| (1.8)

Thus X ⊇ X∗ ⊇ X∗∗, and by Equations 1.6 and 1.8, |X| =
|X∗∗|. This implies, by Lemma 1.5.7 that |X| = |X∗|. But by
Equation 1.7, |X∗| = |Y |. Therefore |X| = |Y |.

1.6 Power Set of a Set

We recall the definition of the power set of a given set from Sec-
tion 1.4.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 18 — #34 i
i

i
i

i
i

18 CHAPTER 1. SETS, RELATIONS AND FUNCTIONS

Definition 1.6.1:
The power set P(X) of a set X is the set of all subsets of X.

For instance, if X = {1, 2, 3}, then

P(X) =
{
∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {3, 1}, {1, 2, 3} = X

}
The empty set ∅ and the whole set X, being subsets of X, are
elements of P(X). Now each subset S of X is uniquely defined by
its characteristic function χS : X → {0, 1} defined by

χS =

{
1 if s ∈ S
0 if s /∈ S.

Conversely, every function f : X → {0, 1} is the characteristic
function of a unique subset S of X. Indeed, if

S = {x ∈ X : f(x) = 1},

then f = χS.

Definition 1.6.2:
For sets X and Y , denote by Y X , the set of all functions f : X →
Y .

Theorem 1.6.3:
|X| < |P(X)| for each nonvoid set X.

Theorem 1.6.3, implies that there exists a 1–1 function from
X to P(X) but none from P(X) to X.

Proof. First of all, the mapping f : X → P(X) defined by f(x) =
{x} ∈ P(X) is clearly 1–1. Hence |X| ≤ |P(X)|. Next, suppose
there exists a 1–1 map from P(X) to X. Then by the Schroder–
Bernstein theorem, there exists a bijection g : P(X) → X. This
means that for each element S of P(X), the mapping g : S →
g(S) = x ∈ X is a bijection. Now the element x may or may not
belong to S. Call x ∈ X ordinary if x ∈ S, that is, x is a member
of the subset S ofX whose image under the map g is x. Otherwise,

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 19 — #35 i
i

i
i

i
i

1.7. EXERCISES 19

call x extraordinary. Let A be the subset of X consisting of all
the extraordinary elements of X. Then A ∈ P(S). (Note: A may
be the empty set; still, A ∈ P(S)). Let g(A) = a ∈ X. Is a an
ordinary element or an extraordinary element of X? Well, if we
assume that a is ordinary, then a ∈ A; but then a is extraordinary
as A is the set of extraordinary elements. Suppose we now assume
that a is extraordinary; then a /∈ A and so a is an ordinary element
of X, again a contradiction. These contradictions show that there
exists no 1–1 mapping from P(X) to X (X ̸= ∅), and so |P(X)| >
|X|.

1.7 Exercises

1. State true or false and provide the reason for your answer:

(a) Parallelism is an equivalence relation on the set of all
lines in the plane.

(b) Perpendicularity is an equivalence relation on the set of
all lines in the plane.

(c) A finite set can be equipotent to a proper subset of
itself.

2. Prove the statements (i), (ii) and (iii) in Theorem 1.2.9.

3. Prove that the set Z of integers is denumerable.

4. (a) Prove that a denumerable union of denumerable sets is
denumerable.

(b) Prove that a countable union of denumerable sets is
denumerable.

5. Prove that the set of all rational numbers is denumerable.

6. Let n ∈ N, and Mn = {m ∈ N : m is a positive multiple of
n i.e., m = an, where a ∈ N}. Find

(a) ∪
n∈N

Mn.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 20 — #36 i
i

i
i

i
i

20 CHAPTER 1. SETS, RELATIONS AND FUNCTIONS

(b) Mn1 ∩Mn2 .

(c) ∩
n∈N

Mn.

(d) ∪
p=a prime

Mp.

7. Let f : A→ B, and g : B → C be functions.

Prove:

(a) If f and g are 1–1, then so is g ◦ f .
(b) If f and g are onto, then so is g ◦ f .
(c) If g ◦ f is 1–1, then f is 1–1.

(d) If g ◦ f is onto, then g is onto.

8. Give an example of a relation which is
(i) reflexive and symmetric but not transitive
(ii) reflexive and transitive but not symmetric.

9. Does there exist a relation which is not reflexive but both
symmetric and transitive?

10. Give a detailed proof of Corollary 1.4.6.

11. Let X be the set of all ordered pairs (a, b) of integers with
b ̸= 0. Set (a, b) ∼ (c, d) in X iff ad = bc. Prove that ∼ is an
equivalence relation on X. What is the class to which (1,2)
belongs?

1.8 Partially Ordered Sets

Definition 1.8.1:
A relation R on a set X is called antisymmetric if, for a, b ∈ X,
(a, b) ∈ R and (b, a) ∈ R together imply that a = b.

For instance, in the relation R defined on N, the set of nat-
ural numbers, setting that “(a, b) ∈ R iff a|b (a divides b)” is an
antisymmetric relation. However, the same relation defined on
Z⋆ = Z/{0}, the set of nonzero integers, is not antisymmetric.
For instance, 5|(−5) and (−5)|5 but 5 ̸= −5.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 21 — #37 i
i

i
i

i
i

1.8. PARTIALLY ORDERED SETS 21

Definition 1.8.2:
A relation R on a set X is called a partial order on X if it is
(i) Reflexive, (ii) Antisymmetric and (iii) Transitive.

A partially ordered set is a set with a partial order defined on
it.

Examples

1. Let R be defined on the set N by setting aRb iff a|b. Then
R is a partial order on N.

2. Let X be a nonempty set. Define a relation R on P(X) by
setting ARB in P(X) iff A ⊆ B. Then P(X) is a partially
ordered set with respect to the above partial order.

It is customary to denote a general partial order on a set X by
“≤.” We then say that (X, ≤) is a partially ordered set or a poset
in short.

Every poset (X, ≤) can be represented pictorially by means of
its Hasse diagram. This diagram is drawn in the plane by taking
the elements of X as points of the plane and representing the fact
that a < b in X by placing b above a and joining a and b by a line
segment. If a < b and b < c, then certainly, a < c but then we
do not join a and c just to avoid cluttering of lines in the Hasse
diagram.

As an example, take S = {1, 2, 3} and X = P(S), the power
set of S, and ⊆ to stand for “≤”. Figure 1.4 gives the Hasse
diagram of (X, ≤). Note that ∅ ≤ {1, 2} since ∅ is a subset of
{1,2}. However, we have not drawn a line between ∅ and {1, 2}
but a (broken) line exists from ∅ to {1, 2} via {1} or {2}. When
there is no relation between a and b of X, both a and b can appear
at the same horizontal level.

Definition 1.8.3:
A partial order “≤” on X is a total order (or linear order) if for
any two elements a and b of X, either a ≤ b or b ≤ a holds.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 22 — #38 i
i

i
i

i
i

22 CHAPTER 1. SETS, RELATIONS AND FUNCTIONS

b

b

b

b
b

b

b

b

b

b

b

b

{1}

ϕ

{3}

{1,3}

{1,2,3}

{1,2}

{2}

{2,3}

Figure 1.4: The Hasse diagram of P({1, 2, 3})

For instance, if X = {1, 2, 3, 4} and “≤” is the usual “less than
or equal to” then (X, ≤) is a totally ordered set since any two
elements of X are comparable, that is, for any two elements a, b
of X, either a ≤ b or b ≤ a. The Hasse diagram of (X, ≤) is given
in Figure 1.5.

b

b

b

b

b

ϕ

1

2

3

4

Figure 1.5: Hasse diagram of (X, ≤), X = {1, 2, 3, 4}

The Hasse diagrams of all lattices with at most five elements
are given in Figure 1.6.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 23 — #39 i
i

i
i

i
i

1.8. PARTIALLY ORDERED SETS 23

b
0

1

V 1
1

b

b

0

1

V 2
1

b

b

b

0

1

a

V 3
1

b

b

b

b b

1

a

0

V 4
1

b

b

b

b

0

1

a

b

V 4
2

b

b

b

b b

1

a

c
b

b

0

V 5
1

b

b

b

b b

c

a

0

b

b
1

V 5
2

b

b

b

b

b

b

b

1

a

0

bc

V 5
3

b

b

b

b

b

0

a

c

1

b

V 5
4

b

b

b

b

b

0

a

b

c

1

V 5
5

Figure 1.6: Hasse diagrams of all lattices with at most five ele-
ments. V q

p stands for the q-th lattice in the set of all lattices with
p elements (in the above order).

If S has at least two elements, then (P(S), ≤) is not a totally
ordered set. Indeed, if a, b ∈ S, then {a} and {b} are incompara-
ble (under ⊆) elements of P(S).

Definition 1.8.4 (Converse relation):
If f : A −→ B is a relation, the relation f−1 : B −→ A is called
the converse of f provided that (b, a) ∈ f−1 iff (a, b) ∈ f .

We note that if (X, ≤) is a poset, then (X, ≥) is also a poset.
Here a ≥ b in (X, ≥) is defined by b ≤ a in (X, ≤).

Definition 1.8.5:
Let (X, ≤) be a poset.

1. a is called a greatest element of the poset if x ≤ a for each

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 24 — #40 i
i

i
i

i
i

24 CHAPTER 1. SETS, RELATIONS AND FUNCTIONS

x ∈ X. An element b ∈ X is called a smallest element if
b ≤ x for each x ∈ X.

If a and a′ are greatest elements of X, by definition, a ≤ a′

and a′ ≤ a, and so by antisymmetry a = a′. Thus a greatest
(smallest) element, if it exists, is unique. The greatest and
least elements of a poset, whenever they exist, are denoted by
1 and 0 respectively. They are called the universal elements
of the poset.

2. An element a ∈ X is called a minimal element of X if there
exists no element c ∈ X such that c < a (that is, c ≤ a and
c ̸= a). b ∈ X is a maximal element of X if there exists no
element c of X such that c > b (that is, b ≤ c, b ̸= c).

Clearly, the greatest element of a poset is a maximal element and
the least element a minimal element.

Example 1.8.6:
Let (X, ⊆) be the poset where X =

{
{1}, {2}, {1, 2}, {2, 3},

{1, 2, 3}
}
. In X, {1}, {2} are minimal elements, {1, 2, 3} is the

greatest element (and the only maximal element) but there is no
smallest element.

Definition 1.8.7:
Let (X, ≤) be a poset and Y ⊆ X.

1. x ∈ X is an upper bound for Y if y ≤ x for all y ∈ Y .

2. x ∈ X is a lower bound for Y if x ≤ y for all y ∈ Y .

3. The infimum of Y is the greatest lower bound of Y , if it
exists. It is denoted by inf Y .

4. The supremum of Y is the least upper bound of Y , if it
exists. It is denoted by sup Y .

Example 1.8.8:
If X = [0, 1] and ≤ stands for the usual ordering in the reals, then

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 25 — #41 i
i

i
i

i
i

1.9. LATTICES 25

1 is the supremum of X and 0 is the infimum of X. Instead, if we
take X = (0, 1), X has neither an infimum nor a supremum in X.
Here we have taken Y = X. However, if X = R and Y = (0, 1),
then 1 and 0 are the supremum and infimum of Y respectively.
Note that the supremum and infimum of Y , namely, 1 and 0, do
not belong to Y .

1.9 Lattices

We now define a lattice.

Definition 1.9.1:
A lattice L = (L, ∧, ∨) is a nonempty set L together with two
binary operations ∧ (called meet or intersection or product) and
∨ (called join or union or sum) that satisfy the following axioms:

For all a, b, c ∈ L,
(L1) a ∧ b = b ∧ a; a ∨ b = b ∨ a, (Commutative law)

(L2) a ∧ (b ∧ c) = (a ∧ b) ∧ c; a ∨ (b ∨ c) = (a ∨ b) ∨ c,
(Associative law)

and (L3) a ∧ (a ∨ b) = a; a ∨ (a ∧ b) = a, (Absorption law).

Now, by (L3), a ∨ (a ∧ a) = a,

and hence again by (L3), (a ∧ a) = a ∧ (a ∨ (a ∧ a)) = a.

Similarly, a ∨ a = a for each a ∈ L.

Theorem 1.9.2:
The relation “a ≤ b iff a ∧ b = a” in a lattice (L,∧,∨), defines a
partial order on L.

Proof. 1. Trivially a ≤ a since a ∧ a = a in L. Thus “≤” is
reflexive on L.

2. If a ≤ b and b ≤ a, we have a ∧ b = a and b ∧ a = b. Hence
a = b since by (L1), a∧ b = b∧ a. This proves that “≤” is
antisymmetric.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 26 — #42 i
i

i
i

i
i

26 CHAPTER 1. SETS, RELATIONS AND FUNCTIONS

3. Finally we prove that “≤” is transitive. Let a ≤ b and b ≤ c
so that a ∧ b = a and b ∧ c = b.

Now

a ∧ c = (a ∧ b) ∧ c = a ∧ (b ∧ c) by (L2)

= a ∧ b = a and hence a ≤ c.

Thus (L, ≤) is a poset.

The converse of Theorem 1.9.2 is as follows:

Theorem 1.9.3:
Any partially ordered set (L,≤) in which any two elements have
an infimum and a supremum in L is a lattice under the operations,

a ∧ b = inf(a, b), and a ∨ b = sup(a, b).

Proof. Follows from the definitions of supremum and infimum.

Examples of Lattices

For a nonvoid set S,
(
P(S), ∩, ∪

)
is a lattice. Again for a positive

integer n, define Dn to be the set of divisors of n, and let a ≤ b in
Dn mean that a | b, that is, a is a divisor of b. Then a∧ b = (a, b),
the gcd of a and b, and a ∨ b = [a, b], the lcm of a and b, and(
Dn, ∨, ∧

)
is a lattice (see Chapter 2 for the definitions of gcd and

lcm). For example, if n = 20, Fig. 1.7 gives the Hasse diagram of
the lattice D20 = {1, 2, 4, 5, 10, 20}. It has the least element 1
and the greatest element 20. We next give the Duality Principle
valid in lattices.

Duality Principle

In any lattice (L,∧,∨), any formula or statement involving the
operations ∧ and ∨ remains valid if we replace ∧ by ∨ and ∨ by
∧.

The statement obtained by the replacement is called “the dual
statement” of the original statement.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 27 — #43 i
i

i
i

i
i

1.9. LATTICES 27

1

2

4

20
10

5

Figure 1.7: The lattice D20

The validity of the duality principle lies in the fact that in
the set of axioms for a lattice, any axiom obtained by such a
replacement is also an axiom. Consequently, whenever we want to
establish a statement and its dual, it is enough to establish one
of them. Note that the dual of the dual statement is the original
statement. For instance, the statement:

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

implies the statement

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Definition 1.9.4:
A subset L′ of a lattice L = (L, ∧, ∨) is a sublattice of L if
(L′, ∧, ∨) is a lattice.

A subset S of a lattice (L, ∧, ∨) need not be a sublattice even
if it is a poset with respect to the operation “ ≤ ” defined by

a ≤ b iff a ∧ b = a

For example, let (L, ∩, ∪) be the lattice of all subsets of a vector
space L and S be the collection of all subspaces of L. Then S is,
in general, not a sublattice of L since the union of two subspaces
of L need not be a subspace of L.

To understand it better at this stage, take the vector space L

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 28 — #44 i
i

i
i

i
i

28 CHAPTER 1. SETS, RELATIONS AND FUNCTIONS

to be the 3-dimensional Euclidean space R3. Then the set union
of two distinct lines through the origin is not a line through the
origin.

Lemma 1.9.5:
In any lattice L = (L, ∧, ∨), the operations ∧ and ∨ are isotone,
that is, for a, b, c in L,

if b ≤ c, then a ∧ b ≤ a ∧ c and a ∨ b ≤ a ∨ c.

Proof. We have (see Exercise 5 of Section 1.12)

a ∧ b = a ∧ (b ∧ c) = (a ∧ b) ∧ c
(by L2)

≤ a ∧ c (as a ∧ b ≤ a).

Similarly (or by duality), a ∨ b ≤ a ∨ c.

Lemma 1.9.6:
Any lattice satisfies the two distributive inequalities:

1. x ∧ (y ∨ z) ≥ (x ∧ y) ∨ (x ∧ z), and

2. x ∨ (y ∧ z) ≤ (x ∨ y) ∧ (x ∨ z).

Proof. We have x ∧ y ≤ x, and x ∧ y ≤ y ≤ y ∨ z. Hence, x ∧ y ≤
inf(x, y ∨ z) = x ∧ (y ∨ z), Also x ∧ z ≤ x, and x ∧ z ≤ z ≤ y ∨ z.
Thus x∧ z ≤ x∧ (y ∨ z). Therefore, x∧ (y ∨ z) is an upper bound
for both x ∧ y and x ∧ z and hence greater than or equal to their
least upper bound, namely, (x∧y)∨(x∧z). The second statement
follows by duality.

Lemma 1.9.7:
The elements of a lattice satisfy the modular inequality:

x ≤ z implies x ∨ (y ∧ z) ≤ (x ∨ y) ∧ z.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 29 — #45 i
i

i
i

i
i

1.9. LATTICES 29

Proof. We have x ≤ x∨ y and x ≤ z. Hence x ≤ (x∨ y)∧ z. Also,
y∧ z ≤ y ≤ x∨ y and y∧ z ≤ z, whence y∧ z ≤ (x∨ y)∧ z. These
together imply that

x ∨ (y ∧ z) ≤ (x ∨ y) ∧ z.
In other words:

By Lemma 1.9.6 x ∨ (y ∧ z) ≤ (x ∨ y) ∧ (x ∨ z)
= (x ∨ y) ∧ z, as x ≤ z.

Distributive and Modular Lattices

Two important classes of lattices are the distributive lattices and
modular lattices. We now define them.

Definition 1.9.8:
A lattice (L, ∧, ∨) is called distributive if the two distributive laws:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),
and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

hold for all a, b, c ∈ L.

Note that in view of the duality that is valid for lattices, if
one of the two distributive laws holds in L, then the other would
automatically remain valid.

Example 1.9.9 (Examples of distributive lattices):

1.
(
P(S), ∩, ∪

)
2. (N, gcd, lcm). (Here a ∧ b = (a, b), the gcd of a and b, and
a ∨ b = [a, b], the lcm of a and b.)

Example 1.9.10 (Examples of nondistributive lattices):

1. The “diamond lattice” of Figure 1.8 (a)

2. The “pentagonal lattice” of Figure 1.8 (b)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 30 — #46 i
i

i
i

i
i

30 CHAPTER 1. SETS, RELATIONS AND FUNCTIONS

b

b

b

b

b

b

b

a

0

b

1

c

The Diamond Lattice
(a)

b

b

b

b

b

1

c

a

0

b

The Pentagonal Lattice
(b)

Figure 1.8: Hasse diagram of the diamond and pentagonal lattices

In the diamond lattice,

a∧ (b∨ c) = a∧ 1 = a, while (a∧ b)∨ (a∧ c) = 0∨ 0 = 0 (̸= a).

In the case of the pentagonal lattice,

a ∨ (b ∧ c) = a ∨ 0 = a, while

(a ∨ b) ∧ (a ∨ c) = 1 ∧ c = c(̸= a).

Complemented Lattice

Definition 1.9.11:
A lattice L with 0 and 1 is complemented if for each element a ∈ L,
there exists at least one element b ∈ L such that

a ∧ b = 0 and a ∨ b = 1.

Example 1.9.12:

1. Let L = P(S), the power set of a nonvoid set S. If A ∈ L,
then A has a unique complement B = L \ A. Here 0 = the
empty set and 1 = the whole set S.

2. The complement of an element need not be unique. For
example, in the lattice of Figure 1.9 (a), both a and c are
complements of b, since b∧a = b∧c = 0, and b∨a = b∨c = 1.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 31 — #47 i
i

i
i

i
i

1.9. LATTICES 31

b

b

b

b

b

b

0

a

c

1
b

b

b

b

c

a

1

b

b

b 0
(a) (b)

Figure 1.9: (a) A complemented lattice, (b) a non-complemented
lattice

3. Not every lattice with 0 and 1 is complemented. In the
lattice of Figure 1.9 (b), a has no complement.

That the diamond lattice and the pentagonal lattice (of Fig-
ure 1.8) are crucial in the study of distributive lattices is the con-
tent of Theorem 1.9.13.

Theorem 1.9.13:
A lattice is distributive iff it does not contain a sublattice isomor-
phic to the diamond lattice or the pentagonal lattice.

The necessity of the condition in Theorem 1.9.13 is trivial but
the proof of sufficiency is more involved.

However, a much simpler result is the following:

Theorem 1.9.14:
If a lattice L is distributive, then for a, b, c ∈ L, the equations
a ∧ b = a ∧ c and a ∨ b = a ∨ c together imply that b = c.

Proof. Assume that L is distributive. Suppose that a ∧ b = a ∧ c
and a ∨ b = a ∨ c. We have to show that b = c.

Now b = b ∧ (a ∨ b) (by absorption law)

= b ∧ (a ∨ c) (by hypothesis)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 32 — #48 i
i

i
i

i
i

32 CHAPTER 1. SETS, RELATIONS AND FUNCTIONS

= (b ∧ a) ∨ (b ∧ c) (by distributivity)

= (a ∧ b) ∨ (b ∧ c) = (a ∧ c) ∨ (b ∧ c)
= (a ∨ (b ∧ c)) ∧ (c ∨ (b ∧ c)) (by hypothesis)

= (a ∨ (b ∧ c)) ∧ c (by absorption law)

= ((a ∨ b) ∧ (a ∨ c)) ∧ c = ((a ∨ c) ∧ (a ∨ c)) ∧ c
= (a ∨ c) ∧ c (by hypothesis)

= c.

We now consider another important class of lattices called
modular lattices.

Modular Lattices

Definition 1.9.15:
A lattice is modular if it satisfies the following modular identity:

x ≤ z ⇒ x ∨ (y ∧ z) = (x ∨ y) ∧ z.

Hence the modular lattices are those lattices for which equality
holds in Lemma 1.9.7. It is well known that the normal subgroups
of any group form a modular lattice.

The pentagonal lattice of Figure 1.9 is nonmodular since in it
a ≤ c, a∨ (b∧ c) = a∨ 0 = a while (a∨ b)∧ c = 1∧ c = c(̸= a). In
fact, the following result is true.

Theorem 1.9.16:
Any nonmodular lattice L contains the pentagonal lattice as a
sublattice.

Hence, as a consequence, we can conclude that if a lattice L
does not contain the pentagonal lattice as a sublattice, then L is
modular.

Proof. As L is nonmodular, there exist elements a, b, c in L such
that

a < c and a ∨ (b ∧ c) ̸= (a ∨ b) ∧ c.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 33 — #49 i
i

i
i

i
i

1.9. LATTICES 33

(Note: For a = c, equality holds on the right.) But the modular
inequality (Lemma 1.9.7) holds for any lattice. Hence

a < c and a ∨ (b ∧ c) < (a ∨ b) ∧ c.

Set x = a ∨ (b ∧ c), and y = (a ∨ b) ∧ c, so that x < y. Now

x ∨ b =
(
a ∨ (b ∧ c)

)
∨ b

= a ∨
(
(b ∧ c) ∨ b

)
= a ∨ b
= (a ∧ c) ∨ b (by absorption)

= (a ∧ c) ∨ (b ∧ c) ∨ b
= ((a ∨ b) ∧ c) ∨ b = y ∨ b

By duality, x ∧ b = y ∧ b. Now since y ≤ c, b ∧ y ≤ b ∧ c ≤ x, the

b

b

b

b

b

a ∧ b

b

b ∧ y

x

y

Figure 1.10: Illustration

lattice of Figure 1.10 is the pentagonal lattice contained in L.

A consequence of Theorems 1.9.13 and 1.9.16 is that every
distributive lattice is modular (since L is distributive ⇒ L does
not contain the pentagonal lattice as a sublattice⇒ L is modular).
The diamond lattice is an example of a modular lattice that is not
distributive. Another example is the lattice of all vector subspaces
of a vector space V . (See Exercise 1.12.)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 34 — #50 i
i

i
i

i
i

34 CHAPTER 1. SETS, RELATIONS AND FUNCTIONS

Theorem 1.9.17:
In a distributive lattice L, an element can have at most one com-
plement.

Proof. Suppose x has two complements y1, y2. Then

x ∧ y1 = 0 = x ∧ y2, and x ∨ y1 = 1 = x ∨ y2.

As L is distributive, by Theorem 1.9.14, y1 = y2.

1.10 Boolean Algebras

1.10.1 Introduction

A Boolean algebra is an abstract mathematical system (abstrac-
tion of the algebra of sets and propositions, see Chapter 6 for
details) primarily used in computer science and in expressing the
relationships between sets. This system was developed by the
English mathematician George Boole in 1850 to permit an alge-
braic manipulation of logical statements. Such a manipulation can
demonstrate whether or not a statement is true and show how a
complicated statement can be rephrased in a similar, more conve-
nient form without losing its meaning.

Definition 1.10.1:
A Boolean algebra is a complemented distributive lattice.

Hence a Boolean algebra B has the universal elements 0 and 1
and every element x of B has a complement x′, and since B is a
distributive lattice, by Theorem 1.9.17, x′ is unique. The Boolean
algebra B is symbolically represented as (B, ∧, ∨, 0, 1,′).

1.10.2 Examples of Boolean Algebras

1. Let S be a nonvoid set. Then (P(S), ∩, ∪, ∅, S, ′) is a
Boolean algebra. Here, if A ∈ P(S), A′ = S \ A is the
complement of A in S.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 35 — #51 i
i

i
i

i
i

1.10. BOOLEAN ALGEBRAS 35

2. Let Bn denote the set of all binary sequences of length n.
For (a1, . . . , an) and (b1, . . . , bn) ∈ Bn, set

(a1, . . . , an) ∧ (b1, . . . , bn) = (min(a1, b1), . . . ,min(an, bn)),
(a1, . . . , an) ∨ (b1, . . . , bn) = (max(a1, b1), . . . ,max(an, bn)),
and (a1, . . . , an)

′ = (a′1, . . . , a
′
n), where 0′ = 1 and 1′ = 0.

Note that the zero element is the n-vector (0, 0, . . . , 0), and
the unit element is (1, 1, . . . , 1). For instance, if n = 3,
x = (1, 1, 0) and y = (0, 1, 0), then x ∧ y = (0, 1, 0), x ∨ y =
(1, 1, 0), and x′ = (0, 0, 1).

Theorem 1.10.2 (De Morgan’s laws):
Any Boolean algebra B satisfies De Morgan’s laws: For any two
elements a, b ∈ B,

(a ∧ b)′ = a′ ∨ b′, and (a ∨ b)′ = a′ ∧ b′.

Proof. We have by distributivity,

(a ∧ b) ∧ (a′ ∨ b′) = (a ∧ (a′ ∨ b′)) ∧ (b ∧ (a′ ∨ b′))
= ((a ∧ a′) ∨ (a ∧ b′)) ∧ ((b ∧ a′) ∨ (b ∧ b′))
= (0 ∨ (a ∧ b′)) ∧ ((b ∧ a′) ∨ 0)

= (a ∧ b′) ∧ (b ∧ a′)
= (a ∧ b ∧ a′) ∧ (b′ ∧ b ∧ a′)

(see Exercise 1.12 #4)

= (a ∧ a′ ∧ b) ∧ (b′ ∧ b ∧ a′)
= (0 ∧ b) ∧ (0 ∧ a′)
= 0 ∧ 0

= 0 (since a ∧ a′ = 0 = b ∧ b′).

Similarly,

(a ∧ b) ∨ (a′ ∨ b′) = (a ∨ (a′ ∨ b′)) ∧ (b ∨ (a′ ∨ b′))
(by distributivity)

= ((a ∨ a′) ∨ b′) ∧ ((b ∨ b′) ∨ a′)
(since a′ ∨ b′ = b′ ∨ a′)

= (1 ∨ b′) ∧ (1 ∨ a′) = 1 ∧ 1 = 1.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 36 — #52 i
i

i
i

i
i

36 CHAPTER 1. SETS, RELATIONS AND FUNCTIONS

Hence the complement of a ∧ b is a′ ∨ b′. In a similar manner, we
can show that (a ∨ b)′ = a′ ∧ b′.

Corollary 1.10.3:
In a Boolean algebra B, for a, b ∈ B, a ≤ b iff a′ ≥ b′

Proof. a ≤ b⇔ a ∨ b = b⇔ (a ∨ b)′ = a′ ∧ b′ = b′ ⇔ a′ ≥ b′.

Theorem 1.10.4:
In a Boolean algebra B, we have for all a, b ∈ B,

a ≤ b iff a ∧ b′ = 0 iff a′ ∨ b = 1.

Proof. Since (a ∧ b′)′ = a′ ∨ b and 0′ = 1, it is enough to prove
the first part of the theorem. Now a ≤ b⇒ (by isotone property)
a ∧ b′ ≤ b ∧ b′ = 0. ⇒ a ∧ b′ ≤ 0⇒ a ∧ b′ = 0.

Conversely, let a ∧ b′ = 0. Then

a = a ∧ 1 = a ∧ (b ∨ b′) = (a ∧ b) ∨ (a ∧ b′)
= a ∧ b⇒ a ≤ b.

Next we briefly discuss Boolean subalgebras and Boolean iso-
morphisms. These are notions similar to subgroups and group-
isomorphisms in the theory of groups.

Boolean Subalgebras

Definition 1.10.5:
A Boolean subalgebra of a Boolean algebra B = (B, ∧, ∨, 0, 1, ′)
is a subset B1 of B such that (B1, ∧, ∨, 0, 1, ′) is itself a Boolean
algebra with the same elements 0 and 1 of B.

Boolean Isomorphisms

Definition 1.10.6:
A Boolean homomorphism from a Boolean algebra B1 to a Boolean
algebra B2 is a map f : B1 → B2 such that for all a, b in B1,

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 37 — #53 i
i

i
i

i
i

1.10. BOOLEAN ALGEBRAS 37

1. f(a ∧ b) = f(a) ∧ f(b),

2. f(a ∨ b) = f(a) ∨ f(b), and

3. f(a′) = (f(a))′.

Conditions (1) and (2) imply that f is a lattice homomorphism
from B1 to B2 while condition (3) tells us that f takes the com-
plement of an element (which is unique in a Boolean algebra) in
B1 to the complement in B2 of the image of that element.

Theorem 1.10.7:
Let f : B1 → B2 be a Boolean homomorphism. Then

1. f(0) = 0, and f(1) = 1.

2. f is isotone.

3. The image f(B1) is a Boolean subalgebra of B2.

Proof. Straightforward.

Example 1.10.8:
Let S = {1, 2, . . . , n}, and let A be the Boolean algebra (P(S) =
A, ∩, ∪, ′), and let B be the Boolean algebra defined by the set of
all functions from S to the 2-element set {0, 1}. Any such function
is a sequence (x1, . . . , xn) where xi = 0 or 1. Let ∧, ∨ be as in
Example 2 of Section 1.10.1. Now consider the map f : A =
P(S)→ B = {0, 1}S, the set of all 2n functions from S → {0, 1},
defined as follows: For X ⊂ S (that is, X ∈ P(S) = A), let
f(X) = (x1, x2, . . . , xn), where xi = 1 or 0 according to whether
i ∈ X or not. For X, Y ∈ P (S), set f(X) ∧ f(Y) = f(X ∩ Y),
the binary sequence having 1 only in the places common to X and
Y as per the definitions in Example 2 of Section 1.10.1 Similarly,
1.10.1. Similarly, f(X ∪ Y) = the binary sequence having 1 in all
the places corresponding to the 1’s in the set X∪Y = f(X)∨f(Y).

Further, f(X ′) = f(S \X) = the binary sequence having 1’s in
the places where X has zeros, and zeros in the places where X has
1’s = (f(X)′). f is 1–1 since distinct binary sequences in B arise

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 38 — #54 i
i

i
i

i
i

38 CHAPTER 1. SETS, RELATIONS AND FUNCTIONS

out of distinct subsets of S. Finally, f is onto, since any binary
sequence in B is the image of the corresponding subset (that is,
the subset corresponding to the places of the sequence with 1) of
X. Thus f is a Boolean isomorphism.
Remark: The binary vector f(X) is usually called the character-
istic vector of the set X.

Example 1.10.9:
Let A be a proper Boolean subalgebra of B = P(S). Then if
f : A → B is the identity function, f is a lattice homomorphism
since,

f(A1 ∧ A2) = A1 ∧ A2 = f(A1) ∧ f(A2),

and f(A1 ∨ A2) = A1 ∨ A2 = f(A1) ∨ f(A2).

However f(A′) = f (complement of A in A)= f(∅) = ∅ = 0B,
while (f(A))′ = A′ = B \ A ̸= ∅.
Hence f(A′) ̸= f(A′), and f is not a Boolean homomorphism.

1.11 Atoms in a Lattice

Definition 1.11.1:
An element a of a lattice L with zero is called an atom of L if
a ̸= 0 and for all b ∈ L, 0 < b ≤ a implies that b = a. That is to
say, a is an atom if there is no nonzero b strictly less than a.

Definition 1.11.2:
An element a of a lattice L is called join-irreducible if a = b ∨ c,
then a = b or a = c; otherwise, a is join-reducible.

Lemma 1.11.3:
Every atom of a lattice (with zero) is join-irreducible.

Proof. Let a be an atom of a lattice L, and let a = b ∨ c, a ̸= b.
Then b ≤ b ∨ c = a, but since b ̸= a and a is an atom of L, b = 0,
and hence a = c.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 39 — #55 i
i

i
i

i
i

1.11. ATOMS IN A LATTICE 39

Lemma 1.11.4:
Let L be a distributive lattice and c ∈ L be join-irreducible. If
c ≤ a ∨ b, then c ≤ a or c ≤ b. In particular, the same result is
true if c is an atom of L.

Proof. As c ≤ a ∨ b, and L is distributive, c = c ∧ (a ∨ b) =
(c∧ a)∨ (c∧ b). As c is join-irreducible, this means that c = c∧ a
or c = c ∧ b, that is, c ≤ a or c ≤ b. The second statement follows
immediately from Lemma 1.11.3.

Definition 1.11.5:

1. Let L be a lattice and a and b, a ≤ b, be any two elements
of L. Then the closed interval [a, b] is defined as:

[a, b] = {x ∈ L : a ≤ x ≤ b}.

2. Let x ∈ [a, b]. x is said to be relatively complemented in
[a, b], if x has a complement y in [a, b], that is, x∧ y = a and
x∨y = b. If all closed intervals [a, b] of L are complemented,
then the lattice L is said to be relatively complemented.

3. If L has a zero element and all elements in [0, b] have com-
plements in L for every nonzero b in L, then L is said to be
sectionally complemented.

Our next theorem is crucial for the proof of the representation
theorem for finite Boolean algebras.

Theorem 1.11.6:
The following statements are true:

1. Every Boolean algebra is relatively complemented.

2. Every relatively complemented lattice is sectionally comple-
mented.

3. In any finite sectionally complemented lattice, each nonzero
element is a join of finitely many atoms.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 40 — #56 i
i

i
i

i
i

40 CHAPTER 1. SETS, RELATIONS AND FUNCTIONS

Proof. 1. Let [a, b] be a closed interval in a Boolean algebra B,
and x ∈ [a, b].

We have to prove that [a, b] is complemented. Now, as B is
the Boolean algebra, it is a complemented lattice and hence
there exists x′ in B such that x∧ x′ = 0, and x∨ x′ = 1. Set
y = b ∧ (a ∨ x′). Then y ∈ [a, b]. Also, y is a complement of
x in [a, b] since

x ∧ y = x ∧ (b ∧ (a ∨ x′))
= (x ∧ b) ∧ (a ∨ x′) = x ∧ (a ∨ x′)

(as x ∈ [a, b], x ≤ b)

= (x ∧ a) ∨ (x ∧ x′) (as B is distributive)

= (x ∧ a) ∨ (0) = a (as a ≤ x)

and, x ∨ y = x ∨ (b ∧ (a ∨ x′)) = (x ∨ b) ∧ (x ∨ (a ∨ x′))
= b ∧

(
(x ∨ x′) ∨ a

)
(again by distributivity)

= b ∧ 1 = b (since x ∨ x′ = 1, and 1 ∨ a = 1).

Hence B is complemented in the interval [a, b].

2. If L is relatively complemented, L is complemented in [0, b]
for each b ∈ L (take a = 0). Hence L is sectionally comple-
mented.

3. Let a be a nonzero element of a finite sectionally comple-
mented lattice L. As L is finite, there are only finitely
many atoms p1, . . . , pn in L such that pi ≤ a, 1 ≤ i ≤ n,
and let b = p1 ∨ · · · ∨ pn. Now, b ≤ a, since b is the
least upper bound of p1, . . . , pn while a is an upper bound
of p1, . . . pn. Suppose b ̸= a, then b has a nonzero com-
plement, say, c, in the section [0, a] since we have assumed
that L is sectionally complemented. Let p be an atom such
that p ≤ c (≤ a). Then p ∈ {p1, . . . , pn}, as by assump-
tion p1, . . . , pn are the only atoms with pi ≤ a, and hence,
p = p ∧ b ≤ c ∧ b = 0 (as c is the complement of b), a
contradiction. Hence b = a = p1 ∨ · · · ∨ pn.

An immediate consequence of Theorem 1.11.6 is the following
result.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 41 — #57 i
i

i
i

i
i

1.11. ATOMS IN A LATTICE 41

Corollary 1.11.7:
In any finite Boolean algebra, every nonzero element is a join of
atoms.

We end this section with the representation theorem for finite
Boolean algebras which says that any finite Boolean algebra may
be thought of as the Boolean algebra P(S) defined on a finite set
S.

Theorem 1.11.8 (Representation theorem for finite Boolean al-
gebras):
Let B be a finite Boolean algebra and A, the set of its atoms.
Then there exists a Boolean isomorphism B ≃ P(A).

Proof. For b ∈ B, define A(b) = {a ∈ A : a ≤ b} so that A(b) is
the set of the atoms of B that are less than or equal to b. Then
A(b) ∈ P(A). Now define

ϕ : B → P(A)

by setting ϕ(b) = A(b). We now prove that ϕ is a Boolean iso-
morphism. We first show that ϕ is a lattice homomorphism, that
is, for b1, b2 ∈ B, ϕ(b1 ∧ b2) = ϕ(b1) ∧ ϕ(b2) = ϕ(b1) ∩ ϕ(b2), and
ϕ(b1 ∨ b2) = ϕ(b1) ∨ ϕ(b2) = ϕ(b1) ∪ ϕ(b2).

Equivalently, we show that

A(b1 ∧ b2) = A(b1) ∩ A(b2),
and A(b1 ∨ b2) = A(b1) ∪ A(b2).

Let a be an atom of B. Then a ∈ A(b1∧b2)⇔ a ≤ b1∧b2 ⇔ a ≤ b1
and a ≤ b2 ⇔ a ∈ A(b1) ∩ A(b2). Similarly, a ∈ A(b1 ∨ b2)⇔ a ≤
b1∨b2⇔ a ≤ b1 or a ≤ b2. (As a is an atom, a is join-irreducible by
Lemma 1.11.3 and B being a Boolean algebra, it is a distributive
lattice. Now apply Lemma 1.11.4) ⇔ a ∈ A(b1) or a ∈ A(b2)
⇔ a ∈ A(b1) ∪ A(b2). Next, as regards complementation,

a ∈ ϕ(b′)⇔ a ∈ A(b′)⇔ a ≤ b′ ⇔ a∧b = 0 (by Theorem 1.10.4)

⇔ a ⩽̸ b⇔ a /∈ A(b)⇔ a ∈ A \ A(b) = (A(b))′.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 42 — #58 i
i

i
i

i
i

42 CHAPTER 1. SETS, RELATIONS AND FUNCTIONS

ThusA(b′) = (A(b))′ .

Finally, ϕ(0) = set of atoms in B that are ≤ 0

= ∅ (as there are none), the zero element of P(A),
and ϕ(1) = set of atoms in B that are ≤ 1

= set of all atoms in B = A, the unit element of P(A).

All that remains to show is that ϕ is a bijection. By Corol-
lary 1.11.7, any b ∈ B is a join, say, b = a1∨· · ·∨an (of a finite num-
ber n) of atoms a1, . . . , an of B. Hence ai ≤ b, 1 ≤ i ≤ n. Suppose
ϕ(b) = ϕ(c), that is, A(b) = A(c). Then each ai ∈ A(b) = A(c)
and so ai ≤ c for each i, and hence b ≤ c. In a similar manner,
we can show that c ≤ b, and hence b = c. In other words, ϕ is
injective.

Finally we show that ϕ is surjective. Let C = {c1, . . . , ck} ∈
P(A) so that C is a set of atoms in A. Set b = c1 ∨ · · · ∨ ck. We
show that ϕ(b) = C and this would prove that ϕ is onto. Now
ci ≤ b for each i, and so by the definition of ϕ, ϕ(b) = { set of
atoms c ∈ A with c ≤ b} ⊇ C. Conversely, if a ∈ ϕ(b), then a is
an atom with a ≤ b = c1 ∨ . . . ∨ ck. Therefore a ≤ ci for some i
by Lemma 1.11.4. As ci is an atom and a ̸= 0, this means that
a = ci ∈ C. Thus ϕ(b) = C.

1.12 Exercises

1. Draw the Hasse diagram of all the 15 essentially distinct
(that is, non-isomorphic) lattices with six elements.

2. Show that the closed interval [a, b] is a sublattice of the lat-
tice

(
R, inf, sup

)
.

3. Give an example of a lattice with no zero element and with
no unit element.

4. In a lattice, show that
(i) (a ∧ b) ∧ c = (c ∧ b) ∧ a,
(ii) (a ∧ b) ∧ c = (a ∧ c) ∧ (b ∧ c).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 43 — #59 i
i

i
i

i
i

1.12. EXERCISES 43

5. Prove that in a lattice a ≤ b⇔ a ∧ b = a⇔ a ∨ b = b.

6. Show that every chain is a distributive lattice.

7. Show that the three lattices of Fig. 1.11 are not distributive.

b

b

b

b

b

b

b

b

b

0

a

c

1

d e

b

f

(a)

b

b

b

b

b

b

b

b

b

0

a

1

d

b
c

(b)

b

b

b

b

b

b

b

b
b

b

b

b

0

a

1

d
cb

(c)

Figure 1.11: Three lattices

8. Show that the lattice of Fig. 1.11 (c) is not modular.

9. Show that the lattice of all subspaces of a vector space is not
distributive.

10. Which of the following lattices are (i) distributive, (ii) mod-
ular, (iii) modular, but not distributive? (a) D10 (b) D20

(c) D36 (d) D60.

11. Give a detailed proof of Theorem 1.10.7.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 44 — #60 i
i

i
i

i
i

http://taylorandfrancis.com

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 45 — #61 i
i

i
i

i
i

Bibliography

[1] K. J. Devlin, Sets, Functions and Logic, CRC Press, 2003.

[2] I. S. Luthar, Sets, Functions and Numbers, Alpha Science
International Ltd, 2005.

[3] P. R. Halmos, Naive Set Theory, D. Von Nostrand Company,
INC, 1960.

[4] M. N. Yiannis, Notes on Set Theory, UTM, Springer, 1994.

45

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 46 — #62 i
i

i
i

i
i

http://taylorandfrancis.com

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 47 — #63 i
i

i
i

i
i

Chapter 2

Combinatorics

La Combinatoire est l’étude:

• d’une configuration

• d’une configuration inconnue

• de dénombrement exact de configurations

• de dénombrement approché de configurations

• d’énumération de configurations

• d’optimization

Claude Berge
Principes de Combinatoire

In this chapter on combinatorics, we start from the elementary
rules of counting, then study permutations and combinations, bi-
nomial coefficients, binomial theorem, multinomial coefficients,
multinomial theorem, Stirling numbers of the first and the sec-
ond kind, Bell numbers, the Principle of Inclusion and Exclusion
(simple and weighted versions), some applications of the Principle
of Inclusion and Exclusion to number theory and the theory of
permanents, generating function techniques and recurrence rela-
tions, Bernoulli numbers, Catalan numbers, and an algorithm for
generating all the subsets of a given finite set.

47

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 48 — #64 i
i

i
i

i
i

48 CHAPTER 2. COMBINATORICS

2.1 What Is Combinatorics?

Combinatorics can be described as the study of properties of finite
sets and finite structures (see [2]). Unless otherwise stated, all sets
in this chapter are finite.

Combinatorics is traditionally associated with the permutation
and combination of a finite number of objects. Combinatorics
deals with the following two types of problems: Existence problems
and enumeration problems (see [1]).

In the existence problem, the following question is raised:
Does there exist a particular special structure or situation or
phenomenon? If the answer to the existence problem is affirma-
tive, then we raise the second question: How many such special
structures exist? This is the enumeration problem. In fact, the
second problem of enumeration can be viewed as a generalization
of the existence problem. This is because, the existence of a spe-
cial structure has an affirmative answer if and only if the number
of such special structures is at least one.

The following examples illustrate the existence and enumera-
tion problem in combinatorics.

Example 2.1.1 (Enumeration problem):
Consider a set A consisting of 4 integers 1,2,3,4. Symbolically,
A = { 1, 2, 3, 4 }. Find the number of subsets of A consisting of
just two elements. This is an enumeration problem. Here the
existence problem is trivially solved by “exhibiting” a subset of A
with two elements (for example, { 1, 2 } is a 2-element subset of
A.)

There are six subsets of A containing exactly 2 elements,
namely, { 1, 2 }, { 1, 3, }, { 1, 4 }, { 2,3 }, { 2,4 }, { 3, 4 }.

Example 2.1.2 (Existence problem: Checkerboard problem):
Consider the familiar 8×8 chess board. From this chess board, we
remove two diagonally opposite squares. The board thus obtained
by the removal of two opposite squares is called a checkerboard . It
has exactly 62 squares, the removed squares are marked with ×,
“B” stands for a black square and “W” stands for a white square

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 49 — #65 i
i

i
i

i
i

2.1. WHAT IS COMBINATORICS? 49

(see Table 2.1).

Table 2.1: Checkerboard

× B W B W B W B
B W B W B W B W
W B W B W B W B
B W B W B W B W
W B W B W B W B
B W B W B W B W
W B W B W B W B
B W B W B W B ×

Table 2.2: Dominoes

W B

Example 2.1.3:
The question is the following: Is it possible to cover the entire
checkerboard by using thirty-one 1 × 2 dominoes? This is the
existence problem. The answer is “no” as the following simple
“parity” argument proves:

In the conventional chess board, the squares are colored alter-
natively black and white. Hence there are 32 black squares and
32 white squares. Note that the two diagonally opposite squares
are of the same color (either both black or both white). Suppose
we have removed two white squares. Hence, our checkerboard has
30 white squares and 32 black squares. But a 1 × 2 rectangle of
domino covers exactly one black square and one white square. The
given 31 dominoes can cover 31 black squares and 31 white squares.
But the checkerboard has an unequal number of black and white
squares. Hence a complete covering of the checkerboard with 31
1× 2 dominoes is impossible.

On the other hand, if we are given 32 dominoes of 1×2 rectan-
gle, we can easily cover the entire chess board with 32 dominoes.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 50 — #66 i
i

i
i

i
i

50 CHAPTER 2. COMBINATORICS

In this case, we are led to the enumeration problem: How many
such coverings are possible?

Example 2.1.4 (Existence problem: Euler’s 36 officers problem):
Euler’s 36 officers problem and the fallacy of Euler’s con-
jecture [1][5]:

Consider 6 regiments and from each regiment take 6 officers of
6 different ranks. Hence, we have a total of 36 officers.

Question (Euler): Is it possible to arrange these 36 officers in
the form of a 6× 6 matrix satisfying the following condition?

Each row and each column of the 6 × 6 matrix contains only
one officer from each rank and only one officer from each column.

Euler conjectured that such an arrangement is impossible.

Representation: Let us denote the ranks and regiments by the
integers 1,2,3,4,5,6. Then associate to each officer the ordered pair
(i, j) with 1 ≤ i, j ≤ n, where the first co-ordinate i represents the
officer’s rank and the second co-ordinate j, the officer’s regiment.
Then Euler’s conjecture is equivalent to constructing a 6×6 matrix
with distinct entries (i, j) with 1 ≤ i, j ≤ n, in such a way that
each row has all of the six numbers 1, 2, 3, 4, 5, 6 in some order as
the first co-ordinate and each column has all of the six numbers
1, 2, 3, 4, 5, 6 in some order as the second co-ordinate.

Euler’s 36 officers problem was verified by Tarry [5] by system-
atic enumeration.

Euler’s conjecture: Euler further conjectured that such an ar-
rangement/matrix is impossible for all square matrices of order
(4n + 2) × (4n + 2) for all n ≥ 2. This research earned the trio,
Bose, Shrikhande, and Parker, the sobriquet Euler’s spoiler, and
created such a stir that even the New York Times brought the
news out on its first page.

But Bose, Shrikhande, and Parker proved the existence of such
a matrix for each n ≥ 2. The following remarkable 10× 10 matrix
is a counterexample to Euler’s conjecture for n = 2.

For convenience, let us use a, b, c, d, e, f, g, h, i, j for the first co-
ordinate instead of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and A,B,C,D,E, F,G,
H, I, J for the second co-ordinate in place of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
For instance, gI denotes an officer of the rank 7 in the regiment 9

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 51 — #67 i
i

i
i

i
i

2.2. ELEMENTARY COUNTING PRINCIPLES 51

and aJ an officer of rank 1 of the regiment 10.

M =



1 2 3 4 5 6 7 8 9 10

1 jJ fG eH dI iA hC gE aB bD cF
2 gF aA jG fH eI iB hD bC cE dJ
3 hE gJ bB aG jH fI iC cD dF eA
4 iD hF gA cC bG aH jI dE eJ fB
5 aI iE hJ gB dD cG bH eF fA jC
6 cH bI iF hA gC eE dG fJ jB aD
7 eG dH cI iJ hB gD fF jA aC bE
8 bA cB dC eD fE jF aJ gG hH iI
9 dB eC fD jE aF bJ cA hI iG gH
10 fC jD aE bF cJ dA eB iH gI hG


Each row and each column of the matrix M has all the letters

a, b, . . . , j as first co-ordinate in some order. Similarly, each row
and each column of the matrix M has all the letters A,B, . . . , J
in some order as the second co-ordinate.

2.2 Elementary Counting Principles

First we recall the following elementary “sum rule” concerning
sets. We denote by |A|, the number of elements in the set A.

Fact 2.2.0.1 (Sum rule):
Consider two disjoint finite sets A and B, that is, A and B are
finite sets with A ∩ B = ∅. The number of elements in the union
|A ∪B| is |A|+ |B|. Symbolically,

|A ∪B| = |A|+ |B|.

There is nothing sacred about the number two in the above
fact. More generally, if A1, A2, · · · , An are n finite pairwise mutu-
ally disjoint sets (that is, Ai ∩ Aj = ∅ for i, j with 1 ≤ i < j ≤ n)
then the number of elements in the union A1 ∪ A2 ∪ · · · ∪ An is
given by the equation

|A1 ∪ A2 ∪ · · · ∪ An| = |A1|+ |A2|+ · · ·+ |An|.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 52 — #68 i
i

i
i

i
i

52 CHAPTER 2. COMBINATORICS

The whole is equal to the sum of its parts.

Let us recall the idea of the Cartesian product of two or more
given sets.

If A and B are two given sets then the Cartesian product or
simply product of A and B is denoted by A×B and defined as the
set of all ordered pairs (a, b) with a ∈ A and b ∈ B. Symbolically,

A×B = { (a, b) | a ∈ A, b ∈ B }

More generally, the product of n sets A1, A2, · · · , An is denoted by
A1×A2×· · ·×An and is defined as the set of all ordered n-tuples
(a1, a2, · · · , an) with ai ∈ Ai for i = 1, 2, · · · , n. ai is called the ith
component of the n-tuple (a1, a2, · · · , an)

We declare the n-tuple (a1, a2, · · · , an) to be equal to the n-
tuple (a′1, a

′
2, · · · , a′n) if and only if ai = a′i for all i = 1, 2, · · · , n.

Example 2.2.1 (Cartesian product):
Consider two sets A and B where A = { 1, 2, 3 } and B = { 2, 4 }.
Then the product of A and B is

A×B = { (1, 2), (1, 4), (2, 2), (2, 4), (3, 2), (3, 4) }

Its geometric representation is shown in Figure 2.1:

Figure 2.1: An example illustrating a Cartesian product

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 53 — #69 i
i

i
i

i
i

2.2. ELEMENTARY COUNTING PRINCIPLES 53

Example 2.2.2 (Product of two intervals):
Consider the two-dimensional Cartesian plane xy. Consider two
intervals [1, 3] = {x | x real with 1 ≤ x ≤ 3 } in the x axis and
[2, 3]{ y | y real with 2 ≤ y ≤ 3 } in the y axis. Then the geometric
interpretation of the product [1, 3] × [2, 3] is the set of all points
of the rectangle ABCD in the xy plane where the co-ordinates
of A,B,C,D are respectively (1, 2), (1, 3), (3, 2), (3, 3) (see Figure
2.2).

Figure 2.2: An example illustrating product of intervals

Example 2.2.3 (Right circular cylinder as Cartesian product):
The product of a circle in the xy plane and a closed interval in the
z axis is a right circular cylinder in the three dimensional space
R3.

Two Interpretations of functions

Consider a function f : A → B with A = { 1, 2, 3, 4, 5 } and B =
{ a, b, , c, d } with f(1) = f(3) = a,f(2) = f(4) = b,f(5) = c. This
function is represented graphically in Figure 2.3:

This function f is denoted by

f =

(
1 2 3 4 5
a b a b c

)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 54 — #70 i
i

i
i

i
i

54 CHAPTER 2. COMBINATORICS

Figure 2.3: Graphical illustration of a function

First interpretation: Professors and
offices/rooms

The elements of the domain set A stand for 5 professors and the
elements of the co-domain set B are the rooms/offices occupied by
these professors in the university.

Professors 1 and 2 share room “a,” Professors 3 and 4 share
room “b,” whereas Professor 5 is all alone in office “c.” Note that
office “d” is not occupied by any of these five professors and hence
unoccupied.

If every room is occupied by at least one professor then the
function is surjective or onto. Hence the function f is not surjec-
tive because the room d is occupied by no one.

If every room is occupied by at most one person then the func-
tion is injective or one to one. Hence our function f is not injec-
tive.

Second interpretation: Cartesian product or
word

The elements of the co-domain B are treated as letters and the
set B as an alphabet .

The function f where

f =

(
1 2 3 4 5
a b a b c

)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 55 — #71 i
i

i
i

i
i

2.2. ELEMENTARY COUNTING PRINCIPLES 55

is represented more compactly as f = (a, b, a, b, c) if the domain
set is understood to be the ordered 5-tuple (1, 2, 3, 4, 5). We even
remove commas in f = (a, b, a, b, c) and write simply f = (ababc).
Hence, the function f can be viewed as an element of the Cartesian

product B5 =

5 times︷ ︸︸ ︷
B ×B × · · · ×B .

The elements of the product B5 are sometimes called words of
length 5 of the alphabet B. (The number of letters in the word is
its length). In this representation, the function is identified with
a word whose length is equal to the number of elements of the
domain of the function.

More generally, a function f from a set A = { 1, 2, . . . , n } of
n elements to a set B of m elements can be viewed as ordered n
tuples of elements of the co-domain set B.

Equality of functions

The equality of two functions means the equality of the corre-
sponding ordered tuples. In other words, the two functions have
the same effect on each element of the domain set. If every letter
of the alphabet appears at least once in a word then the function
is surjective. If each letter appears at most once in a word then
the function is injective.

In graphical terms:

A function is injective if and only if the number of arrows
arriving at an element of the co-domain is at most one, that is,
the in-degree of every element of the co-domain is ≤ 1.

A function is surjective if and only if the number of arrows
arriving at each element of the co-domain is at least one, that is,
the in-degree of every element of the co-domain is ≥ 1.

A function is bijective if and only if the number of arrows
arriving at an element of a co-domain is exactly one, that is, the
in-degree of every element of the co-domain is = 1.

The cardinality of two finite sets A and B can be compared by
the following proposition whose proof is obvious.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 56 — #72 i
i

i
i

i
i

56 CHAPTER 2. COMBINATORICS

Proposition 2.2.1:
Consider any two finite sets A and B. Then the following hold:

1. There is an injective function from the set A to the set B if
and only if |A| ≤ |B|.

2. There is a surjective function from the set A onto the set B
if and only if |A| ≥ |B|.

3. There is a bijective function or one-to-one correspondence
from the set A onto the set B if and only if |A| = |B|.

For example, to prove that two finite sets A and B are of the
same cardinality we may establish a one-to-one correspondence
between the sets A and B.

We shall first see the following “fundamental principle”(also
called the product rule) of combinatorics.

Proposition 2.2.2 (Fundamental principle or product rule):
Consider two finite sets A and B of cardinalities m and n respec-
tively. Then the cardinality of the Cartesian product A×B is mn.
In other words, |A×B| = |A||B|.

The above fundamental principle is often stated in the following
form:

Popular form of the fundamental principle

If a certain thing can be done in m ways, and when it has been
done, a second thing can be done in n ways, then the total number
of ways in which the two things can be done together is mn ways.

Example 2.2.4 (Product rule):
If there are 2 different routes r1, r2 to travel from Perpignan city
to Lyon city and if there are three ways r3, r4, r5 to go from
Lyon city to Paris city then there are 2 × 3 = 6 different ways
r1r3, r1r4, r1r5, r2r3, r2r4, r2r5 to travel from Perpignan city to Paris
passing via Lyon (see Figure 2.4). In this figure, the three cities
are represented as small circles and the route by curves/straight
segments.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 57 — #73 i
i

i
i

i
i

2.2. ELEMENTARY COUNTING PRINCIPLES 57

Figure 2.4: An example illustrating the product rule

The above product rule can be generalized to any number of k
sets as below.

Proposition 2.2.3:
If A1, A2, . . . , Ak are k sets with |Ai| = ni for all i = 1, 2, . . . , k,
then the number of elements in the Cartesian product A1 × A2 ×
· · · × Ak is n1n2 · · ·nk.

Example 2.2.5 (Product rule):
How many square matrices of order n can be formed with entries
of either 0 or 1?. Such matrices are called (0, 1) matrices.

Each entry of a (0, 1) matrix has 2 possible choices of entries.
But a square (0, 1) matrix of order n possesses n× n = n2 entries
which are either 0 or 1. Hence by the product rule the number of

possible (0, 1) matrices of order n is

n2 times︷ ︸︸ ︷
2× 2× · · · × 2 = 2n

2
.

Example 2.2.6 (Product rule):
How many 3-letter words (words of length three like aaa, aab,
aac, . . ., by not worrying about their meanings) can be formed
from the English alphabet? How many 3-letter words on distinct
letters (e.g. abc, abd, . . . ,) can be formed?

We know that there are 26 letters in the English alphabet.
The first letter of the word can be chosen in 26 ways, the second
in 26 ways and the third also in 26 ways. Hence by the product
rule (Proposition 2.2.3) the required number of 3-letter words is

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 58 — #74 i
i

i
i

i
i

58 CHAPTER 2. COMBINATORICS

26× 26× 26 = 263.

Let us now find the number of 3-letter words on distinct letters.
The first letter can be chosen in 26 ways. Having chosen the first
letter, the second one can be chosen in 25 ways. Having chosen
the first and the second one, the third can be selected in 24 ways.
Hence by the product rule, the number of 3-letter words on distinct
letters is 26× 25× 24 = 15600.

Example 2.2.7 (Counting the number of divisors of an integer):
Find the number of positive divisors of the integer 600.

By the fundamental theorem of arithmetic, any integer > 1 can
be written as the product of primes in only one way except for the
order of prime factors. Let us write

600 = 23 × 3× 52.

So each divisor of 600 must be of the form 2i×3j×5k, for all i, j, k
with 0 ≤ i ≤ 3, 0 ≤ j ≤ 1, 0 ≤ k ≤ 2. There are 4 possible
values for i, 2 for j, and three for k. Hence by the product rule, the
total number of possible positive divisors of 600 is 4× 2× 3 = 24.

More generally, if n = 2n2 × 3n3 × 5n5 × · · · , then the number
of possible positive divisors of n is

(n2 + 1)(n3 + 1)(n5 + 1) · · ·

Pigeon-hole principle

Of three ordinary people, two must have the same sex!
D. J. Kleitman

More generally, if n+1 letters are distributed among n letter boxes,
then at least one of the letter boxes will have at least two letters.

In an abstract manner, if a set consisting of a “large” number of
elements, is decomposed into a sufficiently small number of subsets
then at least one of the subsets will have many elements of the set.
More about this principle in Chapter 4.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 59 — #75 i
i

i
i

i
i

2.2. ELEMENTARY COUNTING PRINCIPLES 59

Example 2.2.8:
Show that in any sequence of n integers, there is a subsequence of
consecutive integers whose sum is exactly divisible by n.

Solution: We shall use the pigeon-hole principle to prove
the result. Consider the sequence (a1, a2, . . . , an) of n integers
and all of its possible n subsequences of consecutive integers
(a1), (a1, a2), (a1, a2, a3), , (a1, a2, . . . , an). Let s1, s2, . . . , sn
be their respective sums, that is si =

∑i
j=1 aj for 1 ≤ i ≤ n.

If one of the s′is is divisible by n then we are done. So we may
suppose that no si is divisible by n (with remainder 0). Since the
remainder 0 is excluded, the possible remainders of si’s when di-
vided by n must be among the integers 1, 2, . . . , n− 1. Since there
are n sums and only n−1 remainders, by the pigeon-hole principle
(identify the sums with letters and the remainders with the letter
boxes) there are integers p and q with p < q such that the sums sp
and sq leave the same remainder r when divided by n. Therefore
we can write: sq = bn+r and sp = cn+r. By subtraction, we have
sq − sp = (b− c)n. This means that, ap+1 + · · ·+ aq = (b− c)n, a
multiple of n.

The following example shows that the decimal expansion of a
rational number either terminates or repeats. For example, the
decimal representation of 1/2 is 0.5, which terminates. On the
other hand, the decimal representation of 1/3 is 0.333 . . ., which
repeats indefinitely. The decimal representation of 1/7 is 0.142857
where the bar indicates the repetition of the digits indefinitely.

More generally, if x is any real number, then x can be written
as

x = n+ 0.d1d2d3 . . . dk . . .

where n is an integer and di is a digit with 0 ≤ di ≤ 9. To avoid
ambiguity, we suppose that the sequence of digits doesn’t end with
infinitely many 9s; this is because, for example, 0.5 = 0.4999
The above representation of x means that

n+
d1
10

+
d2
102

+ · · ·+ dk
10k
≤ x < n+

d1
10

+
d2
102

+ · · ·+ dk
10k

+
1

10k
.

In other words, dk is the largest digit satisfying the following in-

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 60 — #76 i
i

i
i

i
i

60 CHAPTER 2. COMBINATORICS

equality

n+
d1
10

+
d2
102

+ · · ·+ dk
10k
≤ x for all integer k > 0.

Example 2.2.9 (The decimal expansion of a rational number):
Prove that the decimal expansion of a rational number a/b either
terminates or repeats where a and b are positive integers.

Solution: By the Euclidean division algorithm, if we divide a
by b we get the integer quotient q and the nonnegative integer
remainder r, which is strictly less than the divisor b. Symbolically,

a = bq + r, with 0 ≤ r < b

If r = 0, then the division process terminates and we have a/b = q,
in which case the decimal expansion is q, which is a terminating
one.

If not, since we have exhausted the digits of a, we bring down
0. Note that the digit that we bring down is always 0. We continue
the division process after bringing down 0 at each step. We must
obtain one of the remainders 0, 1, . . . , b − 1. If 0 is obtained after
a finite number of divisions, then again the decimal expansion
is a terminating one. If 0 is not obtained, then by the pigeon-
hole principle after at most b steps one of the remainders must
be repeated (since we are left with only b− 1 possible remainders
1, 2, . . . , b−1). If the remainder repeats, the entire division process
repeats.

We shall prove the following interesting theorem due to Erdös
and Szekeres which may be considered as a generalization of the
pigeon-hole principle.

Theorem 2.2.1 (Erdös and Szekeres):
Consider any sequence of mn + 1 distinct integers (a) = (a1,
a2, . . . , amn+1). Then either the sequence (a) contains a (strictly)
decreasing subsequence of > m terms or the sequence (a) contains
a (strictly) increasing subsequence of > n terms.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 61 — #77 i
i

i
i

i
i

2.2. ELEMENTARY COUNTING PRINCIPLES 61

Proof. We shall prove the theorem by contradiction. Suppose the
theorem is false.

Let l−i be the number of integers in a longest decreasing subse-
quence of the given sequence (a) starting with the term ai and let
l+i be the number of integers in a longest increasing subsequence
of the sequence (a) beginning with the integer ai. Since the theo-
rem is assumed to be false, we have the inequalities: l−i ≤ m and
l+i ≤ n for each i = 1, 2, . . . ,mn+ 1.

We shall establish an injective function from the set { a1, a2, . . .,
amn+1 } to the Cartesian product { 1, 2, · · · ,m } × { 1, 2, . . . , n }.
To define an injective function f , we associate to each integer ai
the ordered pair (l−i , l

+
i), that is,

f(ai) = (l−i , l
+
i) for each i = 1, 2, . . . ,mn+ 1.

Since the theorem is assumed to be false, f is a function from the
set { a1, a2, . . . , amn+1 } to the Cartesian product { 1, 2, · · · ,m } ×
{ 1, 2, . . . , n }. We shall prove that f is injective. We have to show
that if ai ̸= aj then f(ai) ̸= f(aj).

Consider two distinct integers ai and aj with i < j. We distin-
guish two cases:

Case 1: ai < aj.
By the definition of l+i and l+j , we have l+i > l+j and hence

(l−i , l
+
i) ̸= (l−j , l

+
j) (by the definition of equality of ordered n-

tuples). That is, f(ai) ̸= f(aj).
Case 2: ai > aj.
By the definition of l−i and l−j , we have l−i > l−j and hence

(l−i , l
+
i) ̸= (l−j , l

+
j) (by the definition of equality of ordered n-

tuples). That is, f(ai) ̸= f(aj).
Hence f is an injective function. But by the Proposition 2.2.1,

we have

|{ a1, a2, . . . , amn+1 }| ≤ |{ 1, 2, . . . ,m } × { 1, 2, . . . , n }|

That is, mn+ 1 ≤ mn, a contradiction.

The number of functions from an n-element set to an m
element set:

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 62 — #78 i
i

i
i

i
i

62 CHAPTER 2. COMBINATORICS

Theorem 2.2.2:
Let A and B be two sets with A = { 1, 2, . . . , n } and
B = { 1, 2, . . . ,m }. The number of functions from the set A to
the set B is |B||A| = mn.

Proof. A function f from A to B can be viewed as an element of

the Cartesian product Bn =

n times︷ ︸︸ ︷
B ×B × · · · ×B (second interpreta-

tion of functions). Hence the set of all functions from A to B is
the set of all ordered n-tuples of elements of B. In particular, the

number of functions from A to B is |Bn| =
n times︷ ︸︸ ︷

|B| × |B| × · · · × |B| =
mn.

Because of the above theorem, the set of all functions from a
set A to a set B is denoted by BA. Symbolically,

BA = { f | f : A→ B }.

A function from A to B is sometimes traditionally called a
permutation with repetition of elements of B taken n at a time.
Here n is the number of elements of the domain set A. An n-set is
a set of n elements. An m-subset of a set A is a subset of A with
exactly m elements.

Subtraction Rule:

Example 2.2.10 (Rule of subtraction):
Consider a biology class of 40 students in which 25 students are
girls. Then the number of boys in the class is 40 − 25 = 15. The
rule of sum generalizes this simple example.

Fact 2.2.2.1:
Let S be a finite set and let A be a subset of S. Then the number
of elements of the set S not in the subset A is

S \ A = |S| − |A|.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 63 — #79 i
i

i
i

i
i

2.2. ELEMENTARY COUNTING PRINCIPLES 63

Example 2.2.11 (Subtraction rule):
Find the number of integers between 100 and 1000 in which there
is at least one digit 3 present.

Solution: Any integer between 100 and 1000 containing a digit
3 must have 3 digits.

Total number of 3-digit integers with at least one digit 3 =
Total number of 3-digit integers− Total number of 3-digit numbers
in which 3 is not present at all.

Let us find the total number of 3-digit integers: The digits to
be used are 0, 1, 2, . . . , 9. The hundred’s place can be chosen in 9
ways (because it can’t be 0). Each of the tenth and first place
can be chosen in 10 ways. Hence by the product rule, the total
number of 3-digit integers is equal to 9× 10× 10 = 900.

Let us now find the total number of 3-digit integers in which
the digit 3 is not present at all: We can only use the 9 digits
0, 1, 2, 4, 5, 6, 7, 8, 9. The hundredth place can be chosen in 8 ways
(because 0 must not be there). Each of the tenth and first place
can be chosen in 9 ways. Hence the number of integers without
the digit 3 is equal to 8× 9× 9 = 648.

Hence the required number is 900− 648 = 252.

Division rule

Example 2.2.12 (Counting the number of cows by counting their
legs):
The number of cows in a shed is the same as the total number
of their legs divided by 4. (Assuming that every cow has exactly
four legs!)

Example 2.2.13 (Division rule):
Seventy-five toffees are distributed equally among the children.
If each child receives exactly 5 toffees then the total number of
children present is

75

5
= 15.

The division rule generalizes the above simple examples.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 64 — #80 i
i

i
i

i
i

64 CHAPTER 2. COMBINATORICS

Fact 2.2.2.2:
Consider a multiset M of m elements in which each element is
repeated k times (that is, each element has multiplicity k). Then
the total number of distinct elements of the multiset M is given
by the quotient

m

k
.

Example 2.2.14:
Consider the multisetM = { 3.a, 3.b, 3.c, 3.d } = { a, a, a, b, b, b, c, c,
c, d, d, d } consisting of 12 elements in which each element has mul-
tiplicity 3. Then the number of distinct elements of M is 12

3
= 4.

2.3 Permutations and Combinations

A permutation of an m-set B taken n at a time is simply an injec-
tive function from the set of n elements { 1, 2, · · · , n } to the set
B. According to the second interpretation of functions as Carte-
sian products, a permutation of an m-set B taken n at a time is
an element of the Cartesian product/word of length n whose com-
ponents (or letters) are distinct elements of the set B (B is the
alphabet).

Example 2.3.1 (Permutation):
Consider the set B = { a, b, c } of three elements. Let us find
the set of all permutations of the elements of B taken 2 at a
time. It is the set of all elements of the Cartesian product B2 =
B × B = { aa, ab, ac, ba, bb, bc, ca, cb, cc } whose components are
distinct. Hence the required permutations or arrangements are:

a b, a c, b a, b c, c a, c b. They are six in number. In other
words, there are 6 injective functions f1, f2, . . . , f6 where f1(1) =
a, f1(2) = b, f2(1) = a, f2(2) = c, f3(1) = b, f3(2) = a,
f4(1) = b, f4(2) = c, f5(1) = c, f5(2) = a,f6(1) = c, f6(2) = b.

Method of constructing permutations of n elements in an
inductive manner:

We shall illustrate this method by a simple example.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 65 — #81 i
i

i
i

i
i

2.3. PERMUTATIONS AND COMBINATIONS 65

Example 2.3.2 (Permutation construction):
The permutation of the 1-set { 1 } is simply 1.

The permutations of the 2-element set { 1, 2 } are 1 2, and 2 1.
This is obtained by inserting the element 2 in all possible places
(before 1 and after 1) of the permutation of the 1-set.

From these permutations of the 2-set, we now construct all
permutations of the 3-set { 1, 2, 3 } in the following way.

For each permutation of the set { 1, 2 }, construct three other
permutations by inserting the number 3 in every possible place,
getting

3 1 2, 1 3 2, 1 2 3
3 2 1, , 2 3 1 , 2 1 3.

To construct all permutations of the 4-set { 1, 2, 3, 4 }, we now in-
sert the number 4 in all possible places in each of the permutations
of the 3-set { 1, 2, 3 }. This process can be continued indefinitely.

The number of injective functions from an n-set to an
m-set: Pnm

The following theorem gives the formula for the number of
permutations of an m-set taken n at a time.

Theorem 2.3.1:
The number of injective functions from an n-set to an m-set (n ≤
m is m(m − 1) · · · (m − n + 1). In other words, the number of
permutations of m objects taken n at a time is Pnm = m(m −
1) · · · (m− n+ 1).

Proof. The number of injective functions from an n-set
{ 1, 2, . . . , n } to an m-set B = { 1, 2, . . . ,m } is the number of
ordered n tuples (b1, b2, . . . , bn) of distinct elements of the set B.

The first component b1 can be selected from the elements of
B in m ways, since it can be either 1 or 2 or etc. or m. After
having chosen the first component of Bn, we havem−1 choices for
the second component b2 (since the components must be distinct).
Having chosen the first two components, there arem−2 choices for
the third component, b3, etc. Finally, we have m− (n− 1) choices

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 66 — #82 i
i

i
i

i
i

66 CHAPTER 2. COMBINATORICS

for the last component bn. Hence by the product rule (Proposi-
tion 2.2.2), the number of distinct ordered n tuples of elements is
m(m− 1) · · · (m− n+ 1).

The number m(m−1) · · · (m−n+1) is called a falling factorial
and is denoted by m(n) or m

n (read m to the n falling) by Knuth.
We define the empty product m0 = 1 for m ̸= 0. In particular,
the number m(m) = m(m− 1) · · · 2.1 is the product of all positive
integers from 1 to m. It is called the factorial of m or m factorial
and is denoted simply by m! instead of m(m). For the sake of
convenience we define 0! = 1.

A recurrence relation allows us to calculate the terms of a se-
quence (fn)

∞
n=0 from the given initial values and the previously

computed values.
The factorial function can be defined recursively as follows:

n! =

{
1 if n = 0 (basis or initialization)
n(n− 1)! if n ≥ 1 (recurrence)

A bijective function/one-to-one correspondence from an n-set onto
itself is called a permutation of the n-set.

Corollary 2.3.1.1:
The number of permutations of n elements is n! In other words,
the number of bijections from an n-set onto itself is n!

Proof. An injective function from an n-set to itself is necessarily
surjective and hence bijective. By Theorem 2.3.1, the number of
such bijections is nn which is n!

Stirling approximation for n!:
The factorial function grows very rapidly. For example, 0! =
1, 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! =
120, 6! = 720, , 7! = 5040, 8! = 40320, 9! =
362880,
10! = 3628800.

The following formula due to Stirling gives an approximation
of n!

n! ≈ nne−n
√
2nπ (2.1)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 67 — #83 i
i

i
i

i
i

2.3. PERMUTATIONS AND COMBINATIONS 67

The symbol ≈ means “approximately equal” and the number e
denotes the base of the natural logarithm. In fact, e is an irrational
number and is defined by the infinite series

e = 1 +
1

1!
+

1

2!
+

1

3!
+ · · · ≈ 2.718281 · · · .

π is the “circle ratio”(ratio of the circumference of a circle to its
diameter), which is an irrational number ≈ 3.14159 · · · .

Example 2.3.3 (Approximation for 8!):
The exact value of 8! is 40320. Its approximate value is (by formula
2.1) 88e−8

√
2× 8× π ≈ 39902.

Example 2.3.4 (Permutation):
The set of all permutations of the 3-set { a, b, c } are a b c,
a c b, b a c, b c a, c a b, c b a. There are 3! = 6
permutations of a 3-set.

The number of k-subsets of an n-set:
(
n
k

)
(read “n choose k”)

We are interested in finding a formula for the number of k-
subsets of an n-set. This integer is also called the number of
combinations of n objects taken k at a time and is denoted by(
n
k

)
(read “n choose k”). The integers

(
n
k

)
are called binomial

coefficients.

Binomial coefficients in detail were known to Hindu Mathe-
maticians Bhaskara Acharya (Bhaskara Acharya’s book: Lilavati)
and Halayudha’s tenth-century commentary (Halayudha commen-
tary on an ancient Hindu classic: Pingala’s Chanda-Sutra). These
are the earliest known detailed and clear discussions on binomial
coefficients (see [1]). Note that in a set, the order of the elements
is irrelevant whereas in the idea of a permutation, the order of the
elements is taken into account. After all, permutations are certain
Cartesian products.

Hence in the notion of combination, the order of elements is
irrelevant. Let us find the number of 2-subsets of a 4-element set.
The following example illustrates the method.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 68 — #84 i
i

i
i

i
i

68 CHAPTER 2. COMBINATORICS

Example 2.3.5 (Combination):
Consider the 4-element set A = { 1, 2, 3, 4 }. We have to find the
number of 2-subsets of A.

The number of permutations of the elements of A taken 2 at a
time is 42 = 4 × 3 = 12. But the two permutations a b = (a, b)
and b a = (b, a) of A taken 2 at a time defines only one 2-element
subset { a, b } for a, b ∈ A with a ̸= b (because the order of elements
in a set is irrelevant.) Conversely, each 2-subset of A defines 2!=2
permutations of A taken two at a time. Hence we have the equality(
4
2

)
= 12/2 = 6. Hence there are six 2-subsets of a 4-set.

With this example as a model, we prove the following theorem.

Theorem 2.3.2:
The number of k-subsets of an n-set is

(
n
k

)
=n(n− 1) · · · (n− k +

1)/k! = n!/k!(n− k)!. (0 ≤ k ≤ n)

Proof. Consider an n-set A = { 1, 2, . . . , n }. By Theorem 2.3.1,
the number of permutations of the set A taken k at a time is n(k) =
n(n−1) · · · (n−k+1). Each k-subset of A defines k! permutations
of 1,2,. . . ,n taken k at a time, and conversely k! permutations
of a1, a2, . . . , ak (ai ∈ A and ai ̸= aj) defines only one k-subset
{ a1, a2, . . . , ak } of the set A. Hence we have the equality

(
n
k

)
=

n(k)/k! = n(n − 1) . . . (n − k + 1)/k!. Multiplying the numerator
and the denominator of the right-hand side by (n− k)!, we obtain(
n
k

)
= n!/k!(n− k)!.

Note that
(
n
k

)
= 0 if k > n by definition. Similarly,

(
n
k

)
= 0 if

k < 0.
(
0
0

)
= 0!/0!(0− 0)! = 1.

(
0
k

)
= 0 if k > 0.

Theorem 2.3.2 can be written (using 2.3.1 and 2.3.1.1) strik-
ingly as follows:

The number of k-subsets of an n-set is equal to the number
of injections from a k-set to the n-set divided by the number of
bijections from a k-set onto itself.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 69 — #85 i
i

i
i

i
i

2.3. PERMUTATIONS AND COMBINATIONS 69

Example 2.3.6 (Binomial coefficients):
Find the number of triangles that can be formed in a convex poly-
gon of n sides.

Solution: A polygon is convex if the segment joining any two
points on or inside the polygon lies entirely in the polygon. Intu-
itively, a convex set is one in which we cannot play hide and seek.
Let the vertex set of the polygon be V = { 1, 2, . . . , n}. Note that
in a convex polygon no three vertices are collinear. Hence a trian-
gle is obtained by choosing/joining any three vertices of the set V.
But by the definition of the binomial coefficient a three-element
subset of an n-set can be chosen in

(
n
3

)
ways. Hence the number

of triangles formed is
(
n
3

)
= n(n− 1)(n− 2)/3!

Example 2.3.7 (Binomial coefficients):
Find the number of diagonals of a polygon of n sides.

Solution: Let the vertex set of the polygon be V =
{ 1, 2, . . . , n}. By joining any two distinct vertices of the polygon
we get either a side of the polygon which can be any segment of
the set S = { 12, 23, 34, . . . , (n− 1)n, n1 } or else a diagonal of the
polygon. But the number of line segments that can be obtained
by joining/choosing any two vertices is the same as the number
of two-element subsets of the vertex set V which is the binomial
coefficient

(
n
2

)
= n(n − 1)/2. Among these n(n − 1)/2 segments,

exactly n line segments are the sides of the polygon. Hence the
number of diagonals = n(n− 1)/2− n = n(n− 3)/2.

Definition 2.3.1 (Extension of binomial coefficients):
The formula of Theorem 2.3.2, may be used to define binomial co-
efficients

(
n
k

)
when n is not a non-negative integer. More precisely,

for any real number x, and any non-negative integer k, we define(
x

k

)
=
x(x− 1) · · · (x− k + 1)

k(k − 1) . . . (1)
=
xk

k!(
x

k

)
= 0 if k < 0

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 70 — #86 i
i

i
i

i
i

70 CHAPTER 2. COMBINATORICS

Corollary 2.3.2.1:
The product of k consecutive positive integers is divisible by k!.

Proof. Consider any k successive positive integers n+1, n+2, · · · ,
n + k for n ≥ 0. We have to prove that the product (n + 1) ×
(n + 2) × · · · × ×(n + k) is divisible by k!. In other words, it

is to be proved that (n+1)×(n+2)×···××(n+k)
k!

is an integer. But this

quotient is equal to the binomial coefficient
(
n+k
k

)
(by Theorem

2.3.2.) But the binomial coefficients are integers by definition.
Hence the corollary.

A positive integer p ≥ 2 is called a prime number if its only
positive divisors are unity and itself.

Corollary 2.3.2.2:
If p is a prime number, then the binomial coefficients(

p

1

)
,

(
p

2

)
, . . . ,

(
p

p− 1

)
are all divisible by p.

Proof. Let k be an integer such that 1 ≤ k ≤ p − 1. We have
to show that p divides

(
p
k

)
. By Corollary 2.3.2.1, k! divides the

product p(p− 1) · · · (p− k + 1). In other words, the quotient

p× (p− 1)(p− 2) · · · (p− k + 1)

k!

is an integer. Since p is prime and k < p, we have, k, k−1, . . . , 2, 1
are all relatively prime to p. In particular, k! is relatively prime
to p. Therefore in the above quotient, k! divides the product
(p − 1)(p − 2) · · · (p − k + 1) (since if c divides ab and if a
and c are relatively prime, then the integer c divides the in-
teger b.). That is, (p−1)(p−2)···(p−k+1)

k!
is an integer. But then,(

p
k

)
/p = (p−1)(p−2)···(p−k+1)

k!
Hence the corollary.

Example 2.3.8 (Duality relation: Binomial coefficients):(
n
0

)
=n!/0!(n − 0)! = 1(since 0! = 1). Similarly,

(
n
n

)
= 1.

(
n

n−k

)
=

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 71 — #87 i
i

i
i

i
i

2.3. PERMUTATIONS AND COMBINATIONS 71

n!/(n− k)!(n− (n− k))! = n!/k!(n− k)! =
(
n
k

)
Thus we have the

duality relation of the binomial coefficients:
(
n
k

)
=
(

n
n−k

)
. There is

a nice combinatorial interpretation of this duality relation: every
time we select a k-subset of an n-set, we indirectly reject an (n−k)-
subset (the complement of the k-subset we select) of the n-set.

Example 2.3.9:
If m horizontal parallel lines are cut by n vertical parallel lines,
find the number of parallelograms that can be obtained.

Solution: To form a parallelogram, we need two horizontal
parallel lines and two vertical parallel lines. Two horizontal lines
can be chosen from among the m lines in

(
m
2

)
ways and similarly

two vertical lines can be chosen from n lines in
(
n
2

)
ways. Hence by

the product rule (Proposition 2.2.2), the number of parallelograms

obtained is
(
m
2

)
×
(
n
2

)
= m(m−1)

2
× n(n−1)

2
= mn(m−1)(n−1)

4
.

The number of k- multisubsets of an n-set:

The principal utility of the notion of a set is the following: Given
an element, we should be able to say if the given element belongs
to the set or not. So, in a set, the occurrence of an element is not
repeated more than once.

If we allow the occurrence of an element more than once, the
set is called amultiset and the number of occurrences of an element
in a multiset is called its multiplicity.

Consider a finite set A. A set B is called a multisubset of A,
if every element of B is in the set A and an element of B may
occur more than once in B. If the multisubset B of A has exactly
k elements (multiplicity of each element of B is counted), then B
is a k-multiset of A. A set can be viewed as a multiset with the
multiplicity of each element 1.

Example 2.3.10 (Multisubset):
Let A = { 1, 2, 3, 4 }. Then B = { 1, 1, 1, 3, 4, 4 } is a 6-multisubset
of A. The multiplicity of the element 1 is 3, of the element 3 is
1, and of the element 4 is 2. Another multiset (in fact simply a
subset) of A is { 1, 3 } where the multiplicity of each element is 1.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 72 — #88 i
i

i
i

i
i

72 CHAPTER 2. COMBINATORICS

We are interested in finding a formula for the number of k-
multisubsets of an n-set. We employ a technique called bijective
proof . In this proof, we establish a one-to-one correspondence
between the set of all k-multisubsets of an n-set and the set of all
k-subsets of an n+ k − 1-set.

Theorem 2.3.3:
The number of k-multisubsets of an n-set is

(
n+k−1

k

)
.

Proof. (Bijective proof) Consider an n-set A = { 1, 2, . . . , n }. A
k-multisubset B of A can be written in the form

B = { b1, b2, . . . , bk }

where the bi elements of the set B satisfy the following inequalities:

1 ≤ b1 ≤ b2 ≤ b3 · · · ≤ bk ≤ n

Note that if the strict inequality holds everywhere then the set B
becomes simply a k-subset of A. Consider the n+ k − 1-set

A′ = { 1, 2, . . . , n+ k − 1 }

We shall now establish a one-to-one correspondence between the
k-multisubsets of A and k-subsets of A′.

Given a k-multisubset B of the n-set A, we shall produce a k-
subsetB′ of the n+k−1-setA′ by usingB. LetB = { b1, b2, . . . , bk }
be a k-multisubset of A with

1 ≤ b1 ≤ b2 ≤ · · · ≤ bi ≤ · · · ≤ bk ≤ n

Now the set B′ = { b1 + 0, b2 + 1, . . . , bi + i − 1, . . . , bk + k − 1 }
is certainly a k-multisubset of A′, because 1 ≤ bi ≤ n and hence
1 ≤ bi + i− 1 ≤ n+ i− 1 ≤ n+ k− 1 for all i with 1 ≤ i ≤ k. We
now show that B′ is a k-subset of A′, that is, the elements of B′

are distinct. If not, suppose bi+ i−1 = bj + j−1 with i < j. Since
i < j, we have bi ≤ bj. But then the equation bi+ i−1 = bj+ j−1
implies bi−bj = j−i. This is impossible since the left-hand side of
this equality bi − bj is ≤ 0 while the expression on the right-hand
side is > 0. Hence B′ is a k-subset of A′.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 73 — #89 i
i

i
i

i
i

2.3. PERMUTATIONS AND COMBINATIONS 73

Conversely, consider now a k-subset B′ = { b1, b2, . . . , bk } of A′

with

1 ≤ b1 < b2 < · · · < bi · · · < bk ≤ n+ k − 1.

We shall construct a k-multisubset B of A with the help of the
k-subset B′. Define B′ = { b1 − 0, b2 − 1, . . . , bi − (i− 1), . . . , bk −
(k − 1) }. We shall prove that B′ is a k-multisubset of A. It is
enough if we prove 1 ≤ bi − (i− 1) ≤ n for all i with 1 ≤ i ≤ k.

First we prove that bi − (i− 1) ≥ 1 for all i with 1 ≤ i ≤ k by
induction on i. This is clearly true for i = 1 for b1−(1−1) = b1 ≥ 1.
Suppose bp−(p−1) ≥ 1 with 1 ≤ p < k.We shall prove it for p+1.
That is, we have to prove bp+1 − (p+ 1− 1) ≥ 1. Since bp < bp+1,
we have bp − p < bp+1 − p and hence bp − p + 1 ≤ bp+1 − p. By
induction hypothesis, bp − p+ 1 ≥ 1. Hence bp+1 − p ≥ 1.

Next we prove bi − (i − 1) ≤ n for all i with 1 ≤ i ≤ k. This
is true for i = k for bk ≤ n + k − 1 and hence bk − k + 1 ≤ n.
Now bk−1 < bk. Hence bk−1 − k < bk − k. This implies that
bk−1− k+ 1 ≤ bk − k and therefore bk−1− k+2 ≤ bk − k+ 1 ≤ n.
Hence the inequality is proved for i = k − 1. Similarly we prove
the inequality successively for i = k − 2, k − 3, . . . , 1.

Hence we have established a bijection from the set of all
k-multisubsets of the n-set A onto the k-subsets of the (n+k−1)-
set A′. But the number of k-subsets of the (n + k − 1)-set is(
n+k−1

k

)
by definition. Hence by Proposition 2.2.1, the number

of k-multisubsets of the n-set is also equal to
(
n+k−1

k

)
.

Example 2.3.11 (Number of multisubsets):
The number of 2-multisubsets of the 3-set { 1, 2, 3 } is

(
3+2−1

2

)
=(

4
2

)
= 4×3/2! = 6. These 2-multisubsets are { 1, 2 }, { 1, 3 }, { 2, 3 },

{ 1, 1 }, { 2, 2 }, { 3, 3 }.

Example 2.3.12:
If a set of k-dice are thrown simultaneously, find the number of
possible outcomes.

Solution: The faces of each die are marked with the integers
1,2,3,4,5,6. Hence an outcome of a single throw of a set of k-dice
may be viewed as a k-multisubset of the 6-set { 1, 2, 3, 4, 5, 6 } (e.g.,

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 74 — #90 i
i

i
i

i
i

74 CHAPTER 2. COMBINATORICS

possible outcomes are

k 1′s︷ ︸︸ ︷
{ 1, 1, . . . , 1 },

(k−1) 1′s︷ ︸︸ ︷
{ 1, 1, . . . , 1, 2 }, etc.). Hence

the number of possible outcomes is (Theorem 2.3.3)
(
6+k−1

k

)
=(

k+5
k

)
=
(
k+5
5

)
by the duality relation of the binomial coefficients

(Example 2.3.8).

An interpretation of the binomial coefficients as the number of
nonnegative integral solutions of a homogeneous linear equation:

Consider the following equation:

x1 + x2 + · · ·+ xn = k

where k is a positive integer. How many nonnegative integral
solutions (x1, x2, . . . , xn) does the above equation possess?

We shall see that there is a one-to-one correspondence between
the nonnegative integral solutions of the equation x1 + x2 + . . .+
xn = k and the k- multisubset of n-set { a1, a2, . . . , an }.

If (x1, x2, . . . , xn) is a nonnegative integral solution of the equa-
tion, we construct a k-multisubset of { a1, a2, . . . , an } by choosing
the element ai with multiplicity xi for 1 ≤ i ≤ n. Conversely, given
a k-multisubset S of { a1, a2, . . . , an } we assign to the variable xi
the value of the multiplicity of the element ai occurring in the k-
multisubset S. Hence the number of nonnegative integral solutions
of the equation x1 + x2 + · · ·+ xn = k is

(
n+k−1

k

)
.

Example 2.3.13:
Find the number of positive integral solutions of the equation x1+
x2 + x3 + x4 = 9.

We have a formula for the number of nonnegative integral solu-
tions of a linear homogeneous equation but here we have to deter-
mine the number of positive integral solutions. To use our formula,
we perform the following change of variables:

y1 = x1 − 1 y2 = x2 − 1 y3 = x3 − 1 y4 = x4 − 1. Plugging
these into our initial equation, we get the equation y1+y2+y3+y4 =
5 where the yi variables are nonnegative. Note that (x1, x2, x3, x4)
is a positive integral solution of x1 + x2 + x3 + x4 = 9 if and only
if (y1, y2, y3, y4) is a nonnegative integral solution of the equation

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 75 — #91 i
i

i
i

i
i

2.3. PERMUTATIONS AND COMBINATIONS 75

y1 + y2 + y3 + y4 = 5. Hence the number of desired solutions is(
4+5−1

5

)
= 56.

Power set

The set of all subsets of a given set A is often called the power set
of the set A and is denoted by P(A) or 2A.

Example 2.3.14 (Power set):
Let A = { 1, 2, 3 }. Then the set of all subsets of A is

P(A) = { ∅, { 1 }, { 2 }, { 3 }, { 1, 2 }, { 1, 3 }, { 2, 3 }, { 1, 2, 3 } }

Note that each element of P(A) is a subset of the set A. There are
23 = 8 subsets of A.

The following Table 2.3 summarizes our results for various
kinds of selections—ordered and unordered, with and without
repetition—of k-objects out of n-given objects.

Table 2.3: Number of ordered and unordered selections of k things
out of n things

Ordered/Functions/ Unordered/subsets/
Cartesian product multisubsets

Without repetition n(n− 1) · · · (n− k + 1)
(
n
k

)
With repetition nk

(
n+k−1

k

)
Characteristic function associated with a subset S: χS

Consider a subset S of a given finite set A. Then the charac-
teristic function of the set S, denoted by χS, is the function from
the set A to the set { 0, 1 } defined as follows:

χS(a) =

{
1 if a ∈ S
0 otherwise.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 76 — #92 i
i

i
i

i
i

76 CHAPTER 2. COMBINATORICS

Example 2.3.15 (Characteristic function):
Consider a non-empty finite set A. Then χ∅ is the function which
takes the value 0 on each element of the set A. On the other hand,
χA is the characteristic function which assigns the value 1 to each
element of the set A.

We shall prove the following theorem which establishes a bi-
jection between the set of all characteristic functions on an n-set
and the set of all ordered n-tuples of 0’s and 1’s.

Theorem 2.3.4:
There is a natural one-to-one correspondence between the set of
all characteristic functions defined on an n-set and the set of all
ordered n-tuples of 0’s and 1’s.

Proof. Consider the n-set A = { 1, 2, . . . , n } and a subset S of A.
To the characteristic function χS, we associate an ordered n-

tuple (a1, a2, . . . , an) where

ai =

{
1 if i ∈ S
0 otherwise.

Conversely, given an ordered n-tuple (a1, a2, . . . , an) of 0’s and 1’s,
we define a subset S of A by

S = { i | ai = 1 }.

Now we associate the characteristic function χS to the ordered
n-tuple (a1, a2, . . . , an) This completes the proof.

Corollary 2.3.4.1:
The number of characteristic functions defined on an n-set is 2n.

Proof. By the product rule (Proposition 2.2.2), the number of pos-

sible n-tuples of 0’s and 1’s is

n times︷ ︸︸ ︷
2× 2× · · · × 2 = 2n (since each of

the n components of an n-tuple has 2 possible choices:0 or 1). But

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 77 — #93 i
i

i
i

i
i

2.3. PERMUTATIONS AND COMBINATIONS 77

by Theorem 2.3.4, there is a one-to-one correspondence between
the set of all characteristic functions on an n-set and the set of all
ordered n-tuples of 0’s and 1’s. Hence the number of characteristic
functions on an n-set is 2n.

Corollary 2.3.4.2:
The total number of subsets of an n-set is 2n.

Proof. Consider an n-set A = { 1, 2, . . . , n }. To each subset S of
A we associate its characteristic function χS.

Conversely, to each characteristic function χS the subset S is
obtained by S = { i | ai = 1 }.

This establishes a bijection between the subsets of A and the
characteristic functions on A. In particular, the number of subsets
of A is equal to the number of characteristic functions on A. By
Corollary 2.3, the number of subsets of A is 2n.

Because of the above corollary, the power set of a given finite
set A is denoted by 2A.

The following elementary identity is obtained by counting the
number of subsets of an n-set in two different ways. This technique
of counting the same quantity in at least two different ways is
frequently employed in combinatorics.

Corollary 2.3.4.3:
For any positive integer n, we have

(
n
0

)
+
(
n
1

)
+· · ·+

(
n
n

)
=2n.

Proof. Consider an n-set A. The number of subsets of A is equal
to the sum of the number of 0-subsets of A + the number of
1-subsets of A + · · · + the number of n-subsets of A. But by
definition, the number of k-subsets of an n-set is

(
n
k

)
for each k

with 0 ≤ k ≤ n. Hence the total number of subsets of an n-set is
the sum

(
n
0

)
+
(
n
1

)
+· · ·+

(
n
n.

)
But by Corollary 2.3.4.2, the number of subsets of an n-set is

2n. Therefore, equating the two expressions for the total number

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 78 — #94 i
i

i
i

i
i

78 CHAPTER 2. COMBINATORICS

of subsets, we get(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
= 2n.

We now prove the following addition formula (recurrence rela-
tion) of binomial coefficients.

Lemma 2.3.1:(
n

k−1

)
+
(
n
k

)
=
(
n+1
k

)
for all integers n ≥ 0 and all integers k with

0 ≤ k ≤ n.

Proof. Note that the identity is trivially true if k = 0, because(
n
−1

)
= 0 and

(
n
0

)
= 1. So, suppose k ≥ 1.

First proof:
The proof of the identity follows by using the formula

(
n
k

)
=

n!/k!(n− k)! to replace the expression on the left-hand side of the
identity to obtain the right-hand side.(

n

k − 1

)
+

(
n

k

)
= n!/(k − 1)!(n− k + 1)! + n!/k!(n− k)!

= n!/k!(n− k)! ((k/n− k + 1) + 1)

using p! = p(p− 1)!

= n!/k!(n− k)! (n+ 1/n− k + 1)

= (n+ 1)!/k!(n− k + 1)!

using again p(p− 1)! = p!

=

(
n+ 1

k

)
using p!/k!(p− k)! =

(
p
k

)
.

Second proof:
This proof uses the definition of

(
n
k

)
and is combinatorial in

nature. Consider an (n + 1)-set A = { 1, 2, . . . , n + 1 }. By defi-
nition,

(
n+1
k

)
is the number of k-subsets of the (n + 1)-set A. We

distinguish two cases:

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 79 — #95 i
i

i
i

i
i

2.3. PERMUTATIONS AND COMBINATIONS 79

Case 1: The k-subsets of A containing a particular element, say,
n+1. The number of k-subsets of A containing the element n+1
is equal to the number of (k−1)-subsets of the n-set { 1, 2, . . . , n }
(since a (k− 1)-subset of A \ {n+ 1 } together with the singleton
n + 1 gives a k-subset of A and conversely the removal of the
element n + 1 from a k-subset of A containing the element n + 1
gives a k − 1 subset of A \ {n + 1 }). Hence the total number of
k-subsets of A containing the particular element n+ 1 is

(
n

k−1

)
.

Case 2: The k-subsets of A not containing the particular ele-
ment n+ 1.

The number of k-subsets of A not containing the element n+1
is the same as the number of k-subsets of the n-set A \ {n+1 } =
{ 1, 2, . . . , n } which is by definition

(
n
k

)
.

Note that these two cases are mutually exclusive and they ex-
haust all the possibilities. Hence by the sum rule 2.2.0.1, we have(

n

k − 1

)
+

(
n

k

)
=

(
n+ 1

k

)

Lemma 2.3.1 can be used to find the binomial coefficients re-
cursively starting from the initial conditions

(
n
0

)
= 1 and

(
n
1

)
= n.

In Table 2.4, called Pascal’s triangle, the nth line gives the bino-
mial coefficients

(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
for n = 0, 1, 2, 3. (Note that the

first line is the 0th line.) For example, the 5th line gives the bino-
mial coefficients

(
4
0

)
,
(
4
1

)
,
(
4
2

)
,
(
4
3

)
,
(
4
4

)
. Each coefficient is obtained

by adding the two coefficients found in the north-east and north-
west direction. This table may be continued to any number of
lines.

2.3.1 Sums and Products

Sums:
Consider a sequence of real numbers a1, a2, In fact, this

sequence may be considered as a function a from the set of natural
numbers to the set of real numbers. The value of the function a at
the integer i is denoted by the subscript notation ai instead a(i).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 80 — #96 i
i

i
i

i
i

80 CHAPTER 2. COMBINATORICS

Table 2.4: Pascal Triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
...

The sum a1+a2+ · · ·+an is denoted by the symbolism
∑n

i=1 ai
or
∑

1≤i≤n ai. The variable i in the summation is called a dummy
variable or index variable. This index variable may be replaced by
any other variable j. Hence

∑n
i=1 ai =

∑n
j=1 aj. If n = 0 then the

sum is defined to be zero.
More generally, the symbolism∑

P (i)

ai

means the sum of all the numbers ai, where i is an integer satisfying
the property P (i) (P (i) is a property of the integer i). If there is
no integer i satisfying the property P (i), then the sum is defined
to be zero.

Example 2.3.16 (On sums): ∑
1≤i≤15

i, prime

ai

denotes the sum a2+a3+a5+a7+a11+a13. Here the property to
be satisfied by the index variable i should be an integer such that
1 ≤ i ≤ 15 and i must be a prime number.

The notation
∑

1≤i≤n ai where n = 3.14 means a1 + a2 + a3.

Double summation:
Interchange of the order of summation:

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 81 — #97 i
i

i
i

i
i

2.3. PERMUTATIONS AND COMBINATIONS 81

Consider the mn numbers aij for i = 1, 2, . . . ,m and j =
1, 2, . . . , n. (These mn numbers may be viewed as a function a
from the Cartesian product { 1, 2, . . . ,m } × { 1, 2, . . . , n } to the
set of real numbers. The value of the function a at the pair (i, j)
is denoted by using the subscript notation aij.) Then the double
summation∑m

i=1

∑n
j=1 aij means

∑m
i=1

(∑n
j=1 aij

)
. In this summation, we

first fix the value of the index i and vary the index j from 1 to n
and then vary the index i from 1 to m. To understand this, let us
consider the following special case.

If m = 3 and n = 2, then
∑3

i=1

∑2
j=1 aij =

∑3
i=1

(∑2
j=1 aij

)
=∑3

i=1 (ai1 + ai2) = (a11 + a12) + (a21 + a22) + (a31 + a32).
We may view the mn numbers arranged in the form of the

rectangular array (called “matrix”) A = (aij) where the number
aij is in the intersection of the ith line and the jth column of the
matrix A. 

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

...
an1 an2 . . . ann


By summing the numbers aij of the matrix M in two different
ways, first row by row and then summing the numbers (aij) column
by column we obtain

m∑
i=1

n∑
j=1

aij =
n∑

j=1

m∑
i=1

aij

Thus we may interchange the order of summation in a double
summation.

Example 2.3.17:
Given mn numbers aij for i = 1, 2, . . . ,m and j = 1, 2, . . . , n,
prove that

∑n
i=1

∑i
j=1 aij =

∑n
j=1

∑n
i=j aij.

Solution: View the mn numbers aij arranged in the form of an
m×n matrix A.. In this matrix, the subscripts i, j of the numbers
aij verify the following property: i = j if aij is in the main diagonal

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 82 — #98 i
i

i
i

i
i

82 CHAPTER 2. COMBINATORICS

of M , i < j if aij is above the main diagonal and i > j if aij is
below the main diagonal.

Summing all the numbers of the matrix M which are below or
on the main diagonal in two different ways, first line by line and
then column by column, we get the desired equality.

Example 2.3.18 (Distributive law):
Consider the numbers a1, a2 and b1, b2, b3. Then

(
2∑

i=1

ai

)(
3∑

j=1

bj

)
= (a1 + a2)(b1 + b2 + b3)

= (a1b1 + a1b2 + a1b3) + (a2b1 + a2b2 + a2b3)

=
2∑

i=1

(
3∑

j=1

aibj

)

More generally, we have the distributive law

(
m∑
i=1

ai

)(
n∑

j=1

bj

)
=

m∑
i=1

(
n∑

j=1

aibj

)
.

Change of variable:

Consider the sum
∑n

i=1 ai. Let us replace the index variable i
by j + 1. i = 1 implies that j + 1 = 1 and hence j = 0. i = n
implies that j +1 = n and therefore j = n− 1. Therefore we have
the equality

n∑
i=1

ai =
n−1∑
j=0

aj+1.

More generally, we may replace the index variable i by p(i) where
p(i) is a permutation of the range of i. (See [1].)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 83 — #99 i
i

i
i

i
i

2.4. BINOMIAL THEOREM 83

Products:
The symbolism ∏

P (i)

ai

means the product of all numbers ai for which the integer i satisfies
the property P (i). If no such integer i exists, then we define the
product to have the value 1. It is in this spirit that we have defined
0! = 1.

Sum of the products:
The sum of the product of elements belonging to all k-subsets

of the n-set A = { 1, 2, . . . , n } is denoted by∑
1≤i1<i2<···ik≤n

i1 × i2 × · · · × ik.

The above sum is taken over all integers i1, i2, . . . , ik satisfying the
property 1 ≤ i1 < i2 < · · · ik ≤ n. Since the order of elements in
a set is irrelevant, we have imposed the condition 1 ≤ i1 < i2 <
· · · ik ≤ n on the elements ij of the subset { i1, i2, . . . , ik } in order
to avoid duplication (because { 1, 2 } = { 2, 1 }).

To understand this notation, consider the following special
case.

Example 2.3.19 (Sum of the products):
Find the sum of the products of integers belonging to all 3-element
subsets of the set { 1, 2, 3, 4, 5 }.

Solution: The required sum is
∑

1≤i<j<k≤5 i × j × k, which is
equal to

(1×2×3)+(1×2×4)+(1×2×5)+(1×3×4)+(1×3×5)+
(1× 4× 5)+ (2× 3× 4)+ (2× 3× 5)+ (2× 4× 5)+ (3× 4× 5) =
6 + 8 + 10 + 12 + 15 + 20 + 24 + 30 + 40 + 60 = 225.

2.4 Binomial Theorem

In school we learn the following elementary formulas:

(a+ b)2 = a2 + 2ab+ b2; (a+ b)3 = a3 + 3a2b+ 3ab2 + b3

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 84 — #100 i
i

i
i

i
i

84 CHAPTER 2. COMBINATORICS

The binomial theorem gives us a formula for (a+ b)n for any pos-
itive integer n.

We observe that the expression on the right-hand side of (a+b)2

is a homogeneous expression of degree 2 in a and b (that is, the total
degree of each term in the expansion of (a + b)2 is 2). Similarly,
the expression on the right-hand side in the expansion of (a+b)3 is
a homogeneous expression of degree 3 in a and b. More generally,
one can prove easily by induction on n the following observation.

Observation 2.4.1:
For any positive integer n, the expansion of (a + b)n is a homo-
geneous expression of degree n. Moreover, all terms of the form
akbn−k for k with 0 ≤ k ≤ n appear in the expansion of (a+ b)n.

Proof. Proof is by induction on n.
Induction basis: Let us verify the observation for n = 1. (a +

b)1 = a+ b and clearly a+ b is a homogeneous expression and all
possible terms of degree one appear.

Induction hypothesis: Suppose the observation for a fixed n
with (n ≥ 1).

We shall prove the observation for n+ 1.
(a+ b)n+1 = (a+ b)n(a+ b). By induction hypothesis, (a+ b)n

is a homogeneous expression in a and b and all possible terms of
the form akbn−k appear in its expansion. Denote this expression
by En. Hence (a + b)n+1 = En × (a + b) = aEn + bEn. Clearly
aEn + bEn is a homogeneous expression of degree n + 1 and all
possible terms of the form akbn+1−k for all k with 0 ≤ k ≤ n + 1
appear in it. This proves the observation.

The binomial theorem, Pingala’s Chanda-Sutra (Sutra means
“formula” in Sanskrit language and Chanda means “moon”) gives
us a formula for (a+ b)n for any positive integer n.

Theorem 2.4.1:
For any positive integer n we have

(a+ b)n =
n∑

k=0

(
n

k

)
akbn−k

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 85 — #101 i
i

i
i

i
i

2.4. BINOMIAL THEOREM 85

=

(
n

0

)
a0bn +

(
n

1

)
a1bn−1 +

(
n

2

)
a2bn−2 + · · ·+

(
n

n

)
anb0

Proof. By Observation 2.4.1, all terms of the form akbn−k for k
with 0 ≤ k ≤ n appear in the expansion of (a + b)n. Our job is
now to find the coefficient of akbn−k in the expansion of (a + b)n.
Consider the product

(a+ b)n =

n factors︷ ︸︸ ︷
(a+ b)× (a+ b)× · · · × (a+ b)

A term of the form akbn−k is obtained by choosing exactly k a’s
out of n factors (a+ b) (and hence n− k b’s out of the remaining
n− k factors (a+ b)). By definition of the binomial coefficient, k
a’s can be chosen out of n factors (a + b) in

(
n
k

)
ways. Hence the

coefficient of the term akbn−k in the expansion of (a + b)n is
(
n
k

)
.

This proves the theorem.

If we define 00 = 1 (since limx→0+ x
x = 1), the above binomial

theorem remains true even if n = 0. Setting a = b = 0 and n = 0
in the binomial formula, we obtain 00 = 1 which is true, because(
0
0

)
= 1.

In fact, the binomial formula can be extended to any real ex-
ponent. We state the following theorem without proof.

Theorem 2.4.2:
If r is a real number which is not a non-negative integer, then the
infinite series

∞∑
k=0

(
r

k

)
xk

converges to (1 + x)r for all real numbers x with |x| < 1.

The binomial theorem justifies the name “binomial coeffi-
cients” thanks to the numbers

(
n
k

)
appearing as coefficients:

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 86 — #102 i
i

i
i

i
i

86 CHAPTER 2. COMBINATORICS

Example 2.4.1 (Binomial theorem):
Let us expand (a+ b)5. Here n = 5.

By Theorem 2.4.1,

(a+ b)5 =

(
5

0

)
a0b5 +

(
5

1

)
a1b4 +

(
5

2

)
a2b3 +

(
5

3

)
a3b2

+

(
5

4

)
a4b1 +

(
5

5

)
a5b0

= b5 + 5ab4 + 10a2b3 + 10a3b2 + 5a4b1 + 5a5

Since
(
n
k

)
=
(

n
n−k

)
(duality relation of the binomial coefficients),

we observe that in the expansion of (a+b)n, the coefficients equidis-
tant from the beginning and the end are equal. Furthermore, be-
cause of the following relations of the binomial coefficients,(

2n

0

)
<

(
2n

1

)
< · · · <

(
2n

n

)
(
2n− 1

0

)
<

(
2n− 1

1

)
< · · · <

(
2n− 1

n− 1

)
=

(
2n− 1

n

)
the coefficients in the expansion (a+ b)n first strictly increase and
then strictly decrease (this is known as the monotonicity of the
binomial coefficients).

Remark 2.4.1 (Justification for the name: Chanda-Sutra):
As we have already said, the word “Chanda” means “moon” in
the ancient Sacred Sanskrit language. Just like the rising and de-
caying moon, the binomial coefficients first increase and then de-
crease. Because of the above duality property, the name Chanda-
Sutra=Moon Formula perfectly justifies the appellation The Bi-
nomial Theorem.

Binomial identities:

The binomial theorem is very useful for deriving identities involv-
ing binomial coefficients:

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 87 — #103 i
i

i
i

i
i

2.4. BINOMIAL THEOREM 87

Corollary 2.4.2.1:
If n is a positive integer, then we have

(1 + x)n =
n∑

k=0

(
n

k

)
xk = 1 +

(
n

1

)
x1 +

(
n

2

)
x2 + · · ·+

(
n

n

)
xn,

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
= 2n,

and (
n

0

)
−
(
n

1

)
+ · · ·+ (−1)n

(
n

n

)
= 0

Proof. By Theorem 2.4.1,

(a+ b)n =
n∑

k=0

(
n

k

)
akbn−k

Setting a = 1 and b = x and using
(
n
0

)
= 1 we get the first identity.

Setting a = b = 1 we obtain the second equation.
Setting a = 1 and b = −1 we obtain the third one.

As we have already noted, a technique usually employed in
proving combinatorial identities is to compare the same quantity
calculated in two different ways. The following example illustrates
this technique.

Example 2.4.2 (Binomial identities):
Prove that(

n

0

)2

+

(
n

1

)2

+

(
n

2

)2

+ · · ·+
(
n

n

)2

=

(
2n

n

)
Proof. The right-hand side of the identity provides us a hint. The
right-hand side integer

(
2n
n

)
is the coefficient of xn in the expansion

of (1 + x)2n, since by replacing n by 2n in the first identity of
Corollary 2.4.2.1, we have

(1 + x)2n =
2n∑
k=0

(
2n

k

)
xk

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 88 — #104 i
i

i
i

i
i

88 CHAPTER 2. COMBINATORICS

Let us now calculate the coefficient of xn in the expansion (1+x)2n

in a different way. By observing the left-hand side of the given
identity, we get a hint. Let us write (1+x)2n = (1+x)n×(1+x)n.
We shall show that the left-hand side of the identity is also the
coefficient of xn in the product

(1 + x)n × (1 + x)n =

(
1 +

(
n

1

)
x1 +

(
n

2

)
x2 + · · ·+

(
n

n

)
xn
)

×
(
1 +

(
n

1

)
x1 +

(
n

2

)
x2 + · · ·+

(
n

n

)
xn
)

A term in xn is obtained by taking a term
(
n
k

)
xk from the first

factor and a term
(

n
n−k

)
xn−k from the second factor of the right-

hand side of the above expression for all k with 0 ≤ k ≤ n. Hence
the coefficient of xn in the product is

n∑
k=0

(
n

k

)(
n

n− k

)
=

(
n

0

)(
n

n

)
+

(
n

1

)(
n

n− 1

)
+

(
n

2

)(
n

n− 2

)
+ · · ·+

(
n

n

)(
n

0

)
By the duality relation of the binomial coefficient (see Example
2.3.8),

(
n

n−k

)
=
(
n
k

)
for all k with 0 ≤ k ≤ n. Substituting

(
n
k

)
for(

n
n−k

)
in the above expression, we obtain the following expression

for the coefficient of xn in (1 + x)n × (1 + x)n:(
n

0

)2

+

(
n

1

)2

+

(
n

2

)2

+ · · ·+
(
n

n

)2

This establishes the identity.

Example 2.4.3 (Chu-Vandermonde formula):
Prove the Chu-Vandermonde formula∑

k, an integer

(
r

k

)(
s

n− k

)
=

(
r + s

n

)
Solution: Note that even though the summation on the left side
is taken over all integers, only finitely many terms are non-zero
because the binomial coefficient

(
r
k

)
= 0 if k < 0 or k > r.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 89 — #105 i
i

i
i

i
i

2.4. BINOMIAL THEOREM 89

We may assume that r and s are positive integers. The right-
hand side gives us a clue to prove the formula. The right-hand
side is the coefficient of xn in the expansion of (1 + x)r+s which is
equal to

∑r+s
k=0

(
r+s
k

)
xk by Corollary 2.4.2.1. Hence we prove this

identity by finding the coefficient of xn in (1 + x)r+s in a second
way.

Write

(1 + x)r+s = (1 + x)r × (1 + x)s

Let us find the coefficient of xr+s in the product

(1 + x)r × (1 + x)s =

(
r∑

k=0

(
r

k

)
xk

)
×

(
s∑

k=0

(
s

k

)
xk

)

The coefficient of xn is the sum of the product of the coefficient
of xk in

(∑r
k=0

(
r
k

)
xk
)
and the coefficient of xn−k in

(∑s
k=0

(
s
k

)
xk
)

for all possible integer k which is equal to

∑
k,aninteger

(
r

k

)(
s

n− k

)
=

(
r + s

n

)
.

Therefore the formula is proved.

A combinatorial interpretation of the above identity:

A nice combinatorial interpretation (proof) of the above Chu-
Vandermonde identity is given in [1].

By the definition of the binomial coefficients, the right-hand
side is the number of ways of selecting n people from among r
men and s women; whereas each term on the left-hand side is the
number of ways to select k men from among r men and n − k
women from among the s women for all possible values of k. By
the product rule (Proposition 2.2.2), we obtain that the left-hand
side of the formula is also the number of ways of selecting n people
from among r men and s women.

Differentiation and integration may be used to derive certain
binomial identities. The following examples illustrate the method.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 90 — #106 i
i

i
i

i
i

90 CHAPTER 2. COMBINATORICS

Example 2.4.4 (Binomial identity using differentiation):
Prove that

n∑
k=1

k

(
n

k

)
= n2n−1

Proof. By Corollary 2.4.2.1, we have

(1 + x)n = 1 +

(
n

1

)
x1 +

(
n

2

)
x2 + · · ·+

(
n

n

)
xn

Differentiating both sides with respect to x using the formula
d/dx (xk) = kxk−1, for k ≥ 0, we obtain

n(1 + x)n−1 =

(
n

1

)
+ 2

(
n

2

)
x1 + 3

(
n

3

)
x2 · · ·+ n

(
n

n

)
xn−1

Setting x = 1 on both sides, we obtain the result.

Example 2.4.5 (Binomial identity using integration):
Prove that

1 +

(
n

1

)
/2 +

(
n

2

)
/3 + · · ·+

(
n

n

)
/(n+ 1) =

(
2n+1 − 1

)
/(n+ 1).

Proof. By Corollary 2.4.2.1, we have

(1 + x)n = 1 +

(
n

1

)
x1 +

(
n

2

)
x2 + · · ·+

(
n

n

)
xn

Integrating both sides between 0 and 1 with respect to x using the
formula

∫
xk dx = xk+1/k + 1 (k ≥ 0) we get,∫ 1

0

(1 + x)n =

∫ 1

0

(
1 +

(
n

1

)
x1 +

(
n

2

)
x2 + · · ·+

(
n

n

)
xn
)

[
(1 + x)n+1

n+ 1

]1
0

=

[
x+

(
n

1

)
x2

2
+

(
n

2

)
x3

3
+ · · ·+

(
n

n

)
xn+1

n+ 1

]1
0

Setting x = 1 on both sides, we get the desired identity.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 91 — #107 i
i

i
i

i
i

2.5. MULTINOMIAL COEFFICIENTS 91

2.5 Multinomial Coefficients

Ordered and unordered partitions:

One of the important generalizations of the binomial coefficient(
n
k

)
is the multinomial coefficient

(
n

n1,n2,...,nk

)
. To define the multi-

nomial coefficient, we need the idea of an ordered partition of a
given set.

Consider an n-set A and subsets A1, A2, . . . , Ak of A. The sub-
sets A1, A2, . . . , Ak form a partition of the set A if the following
two conditions are satisfied.

1. Ai ∩ Aj = ∅ for all i, j with 1 ≤ i < j ≤ k. In other words,
the subsets A1, A2, . . . , Ak are mutually disjoint.

2. A1 ∪ A2 ∪ · · · ∪ Ak = A. In other words, the union of the
subsets A1, A2, . . . , Ak is the whole set A.

Note that Ai may be the empty set . We distinguish two types
of partition depending on the definition of the equality of two
partitions.

A partition (A1, A2, . . . , Ak) of the set A is an ordered partition
if the equality of partition is defined as follows: Two partitions
(A1, A2, . . . , Ak) and

(
A′

1, A
′
2, . . . , A

′
p

)
are declared equal if k = p

and Ai = A′
i for all i = 1, 2, . . . , k.

For non-negative integers n1, n2, . . . , nk, an (n1, n2, . . . , nk)-
ordered partition of an n-set A is an ordered partition
(A1, A2, . . . , Ak) of A with |Ai| = ni for i = 1, 2, . . . , k. Note that
n1 + n2 + · · · + nk = n. A partition {A1, A2, . . . , Ak} of the set A
is an unordered partition if the equality of partition is defined as
follows: Two partitions {A1, A2, . . . , Ak } and

{
A′

1, A
′
2, . . . , A

′
p

}
are declared equal if k = p and each Ai is equal to some A′

j.

Notation: We use parentheses () for ordered partitions and
braces {} for unordered partitions.

Example 2.5.1 (Ordered and unordered partitions):
Consider the set A = { 1, 2, 3, 4, 5 }. (A1, A2, A3) where A1 =
{ 3, 5 }, A2 = { 2, 4 }, A3 = { 1 } is an ordered (2, 2, 1)-partition
of A. Another ordered (1, 2, 2)-partition is (A′

1, A
′
2, A

′
3) where

A′
1 = { 1 }, A′

2 = { 3, 5, }, A′
3 = { 2, 4 }. Note that (A1, A2, A3) ̸=

(A′
1, A

′
2, A

′
3). In other words, as ordered partitions (A1, A2, A3) and

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 92 — #108 i
i

i
i

i
i

92 CHAPTER 2. COMBINATORICS

(A′
1, A

′
2, A

′
3) are different but as unordered partitions {A1, A2, A3 }

and {A′
1, A

′
2, A

′
3 } are one and the same.

Multinomial coefficients are defined in terms of the ordered
(n1, n2, . . . , nk) partitions of an n-set.

Definition 2.5.1 (Multinomial coefficients):
Consider an n-set and k non-negative integers n1, n2, . . . , nk with
n1+n2+ · · ·+nk = n. Then the multinomial coefficient

(
n

n1,n2,...,nk

)
or k-nomial coefficient (read n choose n1, n2, . . . , nk) is the number
of ordered (n1, n2, . . . , nk) partitions of the n-set.

Example 2.5.2 (Binomial coefficient as the number of ordered
(n1, n2)-partitions):
Consider an n-set A and an integer k with 1 ≤ k ≤ n. Then
the binomial coefficient

(
n
k

)
is the number of k-subsets of the n-

set. Every choice of a subset k-subset B uniquely defines another
(n − k)-subset Bc = A \ B, the complement of the set B in the
set A. Hence every k-subset B of A defines an ordered (k, n− k)-
partition and conversely every ordered (k, n − k)-partition of the
n-set A defines a k-subset of A. Hence the number of k-subsets of
A is the same as the number of ordered (k, n− k)-partitions of A.
Hence by the Proposition 2.2.1, we have the equality(

n

k, n− k

)
=

(
n

k

)
Example 2.5.3:

Find the number of

n 1′s︷ ︸︸ ︷
(1, 1, . . . , 1) ordered partitions of an n-set.

Each ordered

n 1′s︷ ︸︸ ︷
(1, 1, . . . , 1) partition of an n-set defines a permu-

tation on the n-set and conversely each permutation on the n-set

defines a

n 1′s︷ ︸︸ ︷
(1, 1, . . . , 1) partition of the n-set. Hence the required

number is the number of permutations on the n-set which is n!
(by Proposition 2.2.1 and Corollary 2.3.1.1).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 93 — #109 i
i

i
i

i
i

2.5. MULTINOMIAL COEFFICIENTS 93

The following theorem gives a formula for the multinomial co-
efficients.

Theorem 2.5.1:
The number of ordered (n1, n2, . . . , nk)-partitions of an n-set (ni ≥
0 for all i = 1, 2, . . . , k and

∑k
i=1 ni = n) is(

n

n1, n2, . . . , nk

)
=

n!

n1!n2! · · ·nk!

Proof. Let (A1, A2, . . . , Ak) be an ordered (n1, n2, . . . , nk) parti-
tion of an n-set. From the n-set, a subset A1 consisting of n1

elements can be chosen in
(
n
n1

)
ways (by Theorem 2.3.2). Having

chosen a subset A1, another subset A2 consisting of n2 elements
can be chosen from the remaining n−n1 elements in

(
n−n1

n2

)
ways.

More generally, having chosen the subsets A1 with n1 elements,
A2 with n2 elements, . . . ,Ap−1 with np−1 elements, we can choose
the p-th subset Ap from the remaining n − n1 − n2 − · · · − np−1

in
(
n−n1−n2−···−np−1

np

)
ways (1 ≤ p ≤ k).. Hence by the product

rule (Proposition 2.2.3 the number of ordered (n1, n2, . . . , nk) par-
titions of an n-set is(

n

n1

)(
n− n1

n2

)
· · ·
(
n− n1 − n2 − · · · − np−1

np

)
· · ·(

n− n1 − n2 − · · · − nk−1

nk

)
which is equal to (by Theorem 2.3.2)

n!

n1!(n− n1)!

(n− n1)!

n2!(n− n1 − n2)!

(n− n1 − n2)!

n3!(n− n1 − n2 − n3)!
· · ·

(n− n1 − · · · − nk−1)!

nk!

On simplifying, this number is equal to

n!

n1!n2! · · ·nk!

This proves the result.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 94 — #110 i
i

i
i

i
i

94 CHAPTER 2. COMBINATORICS

Example 2.5.4:
In a game of bridge, 52 cards are distributed equally among four
players. Hence each player receives 13 cards. The order of the
cards received by each player is irrelevant. Find the total number
of situations possible.

Each hand can be viewed as an ordered (13, 13, 13, 13) partition
of a 52-set. Therefore the number of possible different hands is the
multinomial coefficient

(
52

13,13,13,13

)
= 52!

13!13!13!13!
= 52!

(13!)4
.

Another interpretation of multinomial coefficients in terms of per-
mutations of multisets:
Consider a multiset M = { 1n1 , 2n2 , . . . , knk } where the element
1 is repeated n1 times, the element 2 is repeated n2 times, etc.,
with n = n1 + n2 + · · · + nk. This multiset is also written as
M = {n1.1, n2.2, . . . , nk.k }. Then the number of permutations of
the elements of the set M is exactly(

n

n1, n2, . . . , nk

)
=

n!

n1!n2! · · ·nk!

Example 2.5.5:
Find the number of anagrams that can be formed from the word
“SRIRANGAM.”

The number of anagrams is the same as the number of permu-
tations of the multiset { 1.S, 2.R, 2.A, 1.I, 1.N, 1.G, 1.M } because
the letters R,A, are repeated twice in the word and all other letters
appear only once. Hence the required number is the multinomial
coefficient (

9

1, 2, 2, 1, 1, 1, 1

)
=

9!

1!2!2!1!1!1!1!
= 90720.

Example 2.5.6 (Mutinomial coefficients):
Find the number of different words that can be formed from the
word “MISSISSIPPI.” Find the number of these words in which
four I’s do not occur together.

Solution: The words of “MISSISSIPPI” induce the multiset
M = { 1.M, 4.S, 4.I, 2.P }. The number of elements of the multiset

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 95 — #111 i
i

i
i

i
i

2.5. MULTINOMIAL COEFFICIENTS 95

is 11. Hence the required number is the number of permutations
of the multiset M which is equal to the multinomial (4-nomial)
coefficient (

11

1, 4, 4, 2

)
=

11!

1!4!4!2!
= 34650.

For the second question, consider the four I’s as a single en-
tity I’, that is, I ′ ≡ IIII. Then we have the multiset M′ =
{ 1.M, 4.S, 1.I ′, 2.P } of 8 elements. The number of permuta-
tions of M′ is the 4-nomial coefficient

(
8

1,4,1,2

)
which is equal to

8!
1!4!1!2!

= 840. Therefore the number of permutations of the multi-
setM in which the four I’s appear together is 840.

Hence, by the subtraction rule, the required number is 34650−
840 = 33810.

Example 2.5.7 (Unordered partition):
Find the number of unordered { 2, 2, . . . , 2 }︸ ︷︷ ︸

n 2′s

partitions of the 2n

set A = { 1, 2, . . . , 2n }. (For example, there are three { 2, 2, 2 }
unordered partitions of the 4-set { 1, 2, 3, 4 }, namely,

{ { 1, 2 }, { 3, 4 } } ,{ { 1, 3 }, { 2, 4 } } ,{ { 1, 4 }, { 2, 3 } }).
The number of (2, 2, . . . , 2)︸ ︷︷ ︸

n 2′s

ordered partitions of A of the 2n-

set is the multinomial coefficient
(

2n
2,2,...,2

)
(by definition).

Each unordered { 2, 2, . . . , 2 }︸ ︷︷ ︸
n 2′s

partition {A1, A2, . . . , An } of the

2n-set A gives rise to n! (2, 2, . . . , 2)︸ ︷︷ ︸
n 2′s

ordered partitions of A (be-

cause there are n! possible permutations of A1, A2, . . . , An.) Con-
versely, the n! (2, 2, . . . , 2)︸ ︷︷ ︸

n 2′s

ordered partitions A1, A2, . . . , An of A

define only one unordered { 2, 2, . . . , 2 }︸ ︷︷ ︸
n 2′s

partition {A1, A2, . . . , An }

of A (since we disregard the order of sets in the partition.) Hence

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 96 — #112 i
i

i
i

i
i

96 CHAPTER 2. COMBINATORICS

the number of unordered { 2, 2, . . . , 2 }︸ ︷︷ ︸
n 2′s

partitions is

(
2n

2, 2, . . . , 2

)
/n! =

(2n)!

2nn!

Example 2.5.8 (Unordered partition):
Find the number of partitions of the n-set A = { 1, 2, . . . , n } into
which j subsets can be partitioned such that there are ki subsets
having i ≥ 1 elements.

Solution: The number of subsets into which A should be par-
titioned is j = k1+ k2+ · · · and the number of elements of the set
A is n = k1 + 2k2 + 3k3 + · · · .

The number of ordered k1 1′s︷ ︸︸ ︷
1, 1, . . . , 1,

k2 2′s︷ ︸︸ ︷
2, 2, . . . , 2,

k3 3′s︷ ︸︸ ︷
3, 3, . . . , 3, . . .


partitions is the multinomial coefficient(

n

1, 1, . . . , 1, 2, 2, . . . , 2, 3, 3, . . . , 3, 4, . . .

)
=

n!

1!k12!k23!k3 · · ·
.

Each unordered
k1 1′s︷ ︸︸ ︷

1, 1, . . . , 1,

k2 2′s︷ ︸︸ ︷
2, 2, . . . , 2,

k3 3′s︷ ︸︸ ︷
3, 3, . . . , 3, . . .


partition gives rise to k1!k2!k3! · · · ordered k1 1′s︷ ︸︸ ︷

1, 1, . . . , 1,

k2 2′s︷ ︸︸ ︷
2, 2, . . . , 2,

k3 3′s︷ ︸︸ ︷
3, 3, . . . , 3, . . .


partitions (because there are k1! ways to permute subsets with
one element, k2! ways to permute subsets with 2 elements etc.,
hence there are k1!k2!k3! · · · ways to permute all the subsets by

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 97 — #113 i
i

i
i

i
i

2.5. MULTINOMIAL COEFFICIENTS 97

the product rule (Proposition 2.2.2) and conversely. Hence the
required number is(

n

1, 1, . . . , 1, 2, 2, . . . , 2, 3, 3, . . . , 3, 4, . . .

)
/k1!k2!k3! · · · =

n!

1!k1k1!2!k2k2!3!k3k3! · · ·
.

The following example illustrates a special case of the above
example.

Example 2.5.9:
Find the number of unordered { 1, 1, 2 } partitions of the 4-set
{ 1, 2, 3, 4 }.

By the formula of Example 2.5.8, the required number is
4!

(1!)22(2!)11!
= 6. The six { 1, 1, 2 } unordered partitions

Pi = {A1, A2, A3 } for i = 1, 2, . . . , 6 are given in the table:

Table 2.5: Six { 1, 1, 2 } partitions of the 4-set

Partitions A1 A2 A3

P1 { 1 } { 2 } { 3, 4 }
P2 { 1 } { 3 } { 2, 4 }
P3 { 1 } { 4 } { 2, 3 }
P4 { 2 } { 3 } { 1, 4 }
P5 { 2 } { 4 } { 1, 3 }
P6 { 3 } { 4 } { 1, 2 }

Example 2.5.10:
How many words of length 10 (that is 10-letter words) can be
formed from 3 a’s, 3 b’s, 2 c’s and 2 d’s?

Note that 3+3+2+2=10. We shall use the bijective method.

Consider the 10-set A = { 1, 2, . . . , 10 }.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 98 — #114 i
i

i
i

i
i

98 CHAPTER 2. COMBINATORICS

We shall establish a one-to-one correspondence between the set
of all ordered (3, 3, 2, 2) partitions of the set A and the set B of
all words of length 10 with exactly 3 a’s, 3 b’s, 2 c’s and 2 d’s.

Consider an ordered (3, 3, 2, 2) partition (A1, A2, A3, A4) of the
set A.We associate to the partition (A1, A2, A3, A4) a unique word
w of length 10 belonging to the set B in the following way: Denote
by w(i) the ith letter of the word w.

w(i) =


a if i ∈ A1

b if i ∈ A2

c if i ∈ A3

d otherwise

For example, to the partition (A1, A2, A3, A4) where
A1 = { 1, 5, 9, },A2 = { 4, 6, 8 },A3 = { 2, 7 } and A4 = { 3, 10 }
we associate the word acdbabcbad.

Conversely, given a word w of length 10 belonging to the set B,
we construct a unique ordered (3, 3, 2, 2) partition (A1, A2, A3, A4)
of the set A in the following way. Let i be an integer such that
1 ≤ i ≤ 10.

i ∈


A1 if w(i) = a
A2 if w(i) = b
A3 if w(i) = c
A4 otherwise

For example, to the word w = aabccdbabd the assigned partition
is A1 = { 1, 2, 8 },A2 = { 3, 7, 9 },A3 = { 4, 5 },A4 = { 6, 10 }.

Therefore a one-to-one correspondence is found from the set
of all ordered (3, 3, 2, 2) partitions of the 10-set A onto the set B.
But the number of ordered (3, 3, 2, 2) partitions of the 10-set A
is the multinomial coefficient

(
10

3,3,2,2

)
. Hence (by the Proposition

2.2.1, the number of words of the set B is also equal to
(

10
3,3,2,2

)
,

which is equal to 10!
3!3!2!2!

= 25200.

The above example motivates the following generalization and
another interpretation of multinomial coefficients.

Theorem 2.5.2:
Consider an alphabet A = { a1, a2, . . . , ak } consisting of k distinct

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 99 — #115 i
i

i
i

i
i

2.5. MULTINOMIAL COEFFICIENTS 99

letters. Let n1, n2, . . . nk be k non-negative integers with n1+n2+
· · · + nk = n. Then the number of words of length n that can be
formed using the letter a1 exactly n1 times, using the letter a2
exactly n2 times, etc., and using the letter ak exactly nk times is
the multinomial coefficient(

n

n1, n2, . . . , nk

)
=

n!

n1!n2! · · ·nk!
.

Proof. It is enough if we imitate the proof of Example 2.5.10 by
replacing the 10-set by the k-set A to establish a one-to-one cor-
respondence between the ordered (n1, n2, . . . , nk) partitions of an
n-set and the set of all words of length n from the alphabet A
containing exactly n1 times the letter a1, containing exactly n2

times the letter a2, and finally containing exactly nk times the
letter ak.

Example 2.5.11:
Find the number of words of length 4 (4-letter words) that can
be formed from the letters a, b, c in which the letter a appears at
most three times, b appears at most once and c appears at most
twice.

First we enumerate all the possible ordered partitions of 4 into
three parts in which the first part is ≤ 3 (corresponding to the
maximum number of appearances of a), the second part is ≤ 1
(corresponding to the maximum number of appearances of b) and
the third part is ≤ 2 (corresponding to the maximum number of
appearances of c).

The possible partitions of the integer 4 with the above condi-
tions are: (3, 1, 0),(3, 0, 1),(2, 1, 1),(2, 0, 2),(1, 1, 2).

Therefore, the number of words of length 4 with the imposed
conditions is(

4

3, 1, 0

)
+

(
4

3, 0, 1

)
+

(
4

2, 1, 1

)
+

(
4

2, 0, 2

)
+

(
4

1, 1, 2

)
which is equal to

4!

3!1!0!
+

4!

3!0!1!
+

4!

2!1!1!
+

4!

2!0!2!
+

4!

1!1!2!
= 4+4+12+6+12 = 38.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 100 — #116 i
i

i
i

i
i

100 CHAPTER 2. COMBINATORICS

Multinomial theorem:
The main use of the multinomial coefficient is the following gen-
eralization of the binomial Theorem 2.4.1.

Theorem 2.5.3:
For any k real numbers a1, a2, . . . , ak and for any positive integer
n the following relation is satisfied:

(a1 + a2 + · · ·+ ak)
n =

∑
n1,n2,...,nk≥0

n1+n2+···+nk=n

(
n

n1, n2, . . . , nk

)
an1
1 a

n2
2 · · · a

nk
k

Proof. First of all, observe that the expansion of (a1 + a2 + · · ·+
ak)

n, is a homogeneous expression in a,a2, . . . , ak of degree n =
n1+n2+· · ·+nk. Further, all possible terms of the form an1

1 a
n2
2 · · ·

ank
k for n1, n2, . . . , nk ≥ 0 with n1 + n2 + · · · + nk = n are found

in the expansion (see Observation 2.4.1). To get the expansion
(a1 + a2 + · · ·+ ak)

n it is enough if we find the coefficient (that is
the number of occurrences) of each term an1

1 a
n2
2 · · · a

nk
k .

Now consider the k-set of alphabet A = { a1, a2, . . . , ak }. A
term of the form an1

1 a
n2
2 · · · a

nk
k in the expansion of (a1+ a2+ · · ·+

ak)
n can be viewed as a word of length n1 + n2 + · · · + nk with

the letter a1 appearing exactly n1 times, the letter a2 appearing
exactly n2 times, etc., and finally the letter ak appearing exactly
nk times. By Theorem 2.5.2, the number of such words is the
multinomial coefficient (

n

n1, n2, . . . , nk

)
Hence the relation is proved.

Example 2.5.12 (Multinomial theorem):
Find the expansion of (a1 + a2 + a3)

3.
The possible ordered partitions of the integer 3 into nonnega-

tive integers are: (3, 0, 0), (0, 3, 0), (0, 0, 3), (2, 1, 0)(1, 2, 0), (2, 0, 1),
(1, 0, 2), (0, 2, 1), (0, 1, 2), (1, 1, 1).

The partition (n1, n2, n3) corresponds to the term an1
1 a

n2
2 a

n3
3 in

the expansion of (a1+a2+a3)
3 and its coefficient is

(
3

n1,n2,n3

)
. The

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 101 — #117 i
i

i
i

i
i

2.5. MULTINOMIAL COEFFICIENTS 101

first three partitions give the same coefficient 1, the second three
give the same coefficient 3 and the last partition gives the number
6. Hence

(a1 + a2 + a3)
3 = a31 + a32 + a33 + 3a21a2 + 3a1a

2
2 + 3a21a3 + 3a1a

2
3

+3a22a3 + 3a2a
2
3 + 6a1a2a3

Example 2.5.13:
Find the coefficients of the terms a31a

2
3 and a

2
1a2a

2
3 in the expansion

of (3a1 + 2a2 − 4a3)
5.

The power of the term a31a
2
3 = a31a

0
2a

2
3 indicates the partition

(3 + 0 + 2) of the exponent 5, in (3a1 + 2a2 − 4a3)
5. Hence the

corresponding coefficient is
(

5
3,0,2

)
× (3)320(−4)2 = 1440.

The partition induced by the term a21a2a
2
3 is (2+1+2) and the

corresponding coefficient is
(

5
2,1,2

)
× (3)221(−4)2 = 8640.

Example 2.5.14:
Find the number of terms in the expansion of (a1+a2+ · · ·+ak)n.

By the multinomial theorem, the number of terms in the ex-
pansion is the number of ordered partitions (n1, n2, · · · , nk) of the
exponent n =

∑k
i=1 ni. As we have already seen, this number is

the same as the number of nonnegative integral solutions of the
homogeneous linear equation x1 + x2 + · · · + xk = n which is the
same as the number of n-multisubset of a k-set which is

(
n+k−1

n

)
.

In particular, the number of terms in the expansion of (a+ b)n

is
(
n+2−1

n

)
=
(
n+1
n

)
=
(
n+1
1

)
= n+ 1.

By comparing the coefficient of an1
1 a

n2
2 · · · a

nk
k in the expansion

of (a1+a2+ · · ·+ak)n in two different ways, the following corollary
is proved.

Corollary 2.5.3.1:
We have:(

n

n1, n2, . . . , nk

)
=

∑
n1,n2,...,ni−1,ni+1,...,nk≥0,ni>0

n1+n2+···+nk=n(
n− 1

n1, n2, . . . , ni−1, ni − 1, ni+1, . . . , nk

)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 102 — #118 i
i

i
i

i
i

102 CHAPTER 2. COMBINATORICS

Proof.

(a+a2 + · · ·+ ak)
n = (a1 + a2 + · · ·+ ak)× (a1 + a2 + · · ·+ ak)

n−1

The coefficient of an1
1 a

n2
2 · · · a

nk
k in the left-hand side expression is(

n
n1,n2,...,nk

)
, by the multinomial Theorem 2.5.3.

Let us now find the coefficient of an1
1 a

n2
2 · · · a

nk
k in the right-hand

expression. It is the coefficient of a1 from the first bracket multi-
plied by the coefficient of an1−1

1 an2
2 · · · ank

n from the second bracket
+ the coefficient of a2 from the first bracket multiplied by the
coefficient of an1

1 a
n2−1
2 · · · ank

n from the second bracket +· · ·+ the
coefficient of ai from the first bracket multiplied by the coefficient
of an1

1 a
n2−1
2 · · · ani−1

i · · · ank
n from the second bracket +· · ·+ the co-

efficient of ak from the first bracket multiplied by the coefficient
of an1

1 a
n2
2 · · · ank−1

n from the second bracket. By the multinomial
Theorem 2.5.3, the coefficient of an1

1 a
n2
2 · · · a

nk
k in the right-hand

side is(
n− 1

n1 − 1, n2, . . . , nk

)
+

(
n− 1

n1, n2 − 1, n3, . . . , nk

)
+ · · ·

+

(
n− 1

n1, n2, . . . , nk−1, nk − 1

)
which is equal to∑

n1,n2,...,ni−1,ni+1,...,nk≥0,ni>0

n1+n2+···+nk=n

(
n− 1

n1, n2, . . . , ni−1, ni − 1, ni+1, . . . , nk

)

The following corollary gives a formula for the sum of all pos-
sible k-nomial coefficients

(
n

n1,n2,...,nk

)
for a given n and k.

Corollary 2.5.3.2:
We have: ∑

n1,n2,...,nk≥0
n1+n2+···+nk=n

(
n

n1, n2, . . . , nk

)
= kn

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 103 — #119 i
i

i
i

i
i

2.6. STIRLING NUMBERS 103

Proof. Setting a1 = a2 = · · · = ak = 1 in the multinomial Theo-
rem 2.5.3, the desired result is obtained.

By setting oddly subscripted ai’s to +1 and evenly subscripted
ai’s to−1 in the multinomial formula 2.5.3, we obtain the following
corollary.

Corollary 2.5.3.3:∑
n1,n2,...,nk≥0

n1+n2+···+nk=n

(
n

n1, n2, . . . , nk

)
(−1)n2+n4+··· =

1− (−1)k

2

Proof. Set a1 = a3 = · · · = 1 and a2 = a4 = · · · = −1 in the
multinomial Theorem 2.5.3, we have∑

n1,n2,...,nk≥0
n1+n2+···+nk=n

(
n

n1, n2, . . . , nk

)
(−1)n2+n4+··· =

{
0 if k is even
1 if k is odd

Combining the two right-hand side piecewise equalities into one,
we get the result.

2.6 Stirling Numbers

Mathematical notations evolve like all languages do.
Donald Knuth

There are two kinds of Stirling numbers: Stirling number of the
first kind denoted by

[
n
k

]
and the Stirling number of the second

kind denoted by
{

n
k

}
. Berge denotes these numbers by skn and Sk

n

(see [3]). We shall first study the Stirling number of the first kind.

Stirling number of the first kind: Let us recall the falling
factorial xn (read, “x to the n falling”) where

xn = x(x− 1) · · · (x− n+ 1) =
n−1∏
i=0

(x− i)

Note that the falling factorial xn contains exactly n factors and is
a polynomial of degree n in the variable x.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 104 — #120 i
i

i
i

i
i

104 CHAPTER 2. COMBINATORICS

Definition 2.6.1 (Stirling numbers of the first kind):
The absolute value of the coefficient of xk in the polynomial xn =
x(x − 1) · · · (x − n + 1) is called the Stirling number of the first
kind and is denoted by

[
n
k

]
(read “n cycle k.” This will be justified

shortly; see [6]).

Hence we can write

xn = x(x− 1) · · · (x− n+ 1)

=
[n
n

]
xn −

[
n

n− 1

]
xn−1 + · · ·+ (−1)n

[n
0

]
x0

=
n∑

k=0

(−1)n−k
[n
k

]
xk

Remark 2.6.1 (Stirling numbers):
We could also define the Stirling number of the first kind

[
n
k

]
as

the coefficient of xk in the rising factorial xn (read “x to the n
rising”) by throwing out minus signs.

xn = x(x+ 1)(x+ 2) · · · (x+ n− 1) =
n∑

k=0

[n
k

]
xk

The principal motivation for defining the Stirling number of the
first kind is to convert falling factorial powers into ordinary powers.

The following examples illustrate the notion of Stirling num-
bers.

Example 2.6.1:
Find the Stirling numbers

[
n
k

]
for n = 4 and k = 0, 1, . . . 4. Solu-

tion:

x4 = x(x− 1)(x− 2)(x− 3) = x4 − 6x3 + 11x2 − 6x

Hence
[
4
4

]
= 1,

[
4
3

]
= 6,

[
4
2

]
= 11,

[
4
1

]
= 6,

[
4
0

]
= 0.

Example 2.6.2:
Find

[
n+1
1

]
for non-negative integer n.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 105 — #121 i
i

i
i

i
i

2.6. STIRLING NUMBERS 105

Solution: By definition,
[
n+1
1

]
is the coefficient of x1 in the

product x(x + 1)(x + 2) · · · (x + n), that is, the constant term in
the product (x+1)(x+2) · · · (x+n) which is 1×2×3 · · ·×n = n!

Note that we always have the following relation by definition
of Stirling numbers:[n

0

]
= 0 and

[n
n

]
= 1for non-negative integer n.

Note also that
[
n
k

]
= 0 if k > n.We now prove the following simple

addition formula (recurrence relation) for the Stirling numbers of
the first kind.

Lemma 2.6.1 (Recurrence relation involving the Stirling number
of the first kind):
For non-negative integers n and k we have the following relation:[

n+ 1

k

]
= n

[n
k

]
+

[
n

k − 1

]
Proof. By definition, the number

[
n+1
k

]
is the absolute value of

the coefficient of xk in the product x(x− 1) · · · (x− n+1)(x− n).
Now let us write this product as

xn+1 = (x− n)× x(x− 1)(x− 2) · · · (x− n+ 1)

= x (x(x− 1) · · · (x− n+ 1))− n (x(x− 1) · · · (x− n+ 1))

But then the absolute value of the coefficient of xk on the right-
hand side of the above writing is the absolute value of the coef-
ficient of xk−1 in the product x(x − 1) · · · (x − n + 1) + n× the
absolute value of the coefficient of xk in x(x − 1) · · · (x − n + 1)
which by definition is

[
n

k−1

]
+ n

[
n
k

]
. Hence the lemma.

From the initial values
[
n
0

]
= 0 and

[
n
n

]
= 1 for non-negative

integer n and the recurrence relation
[
n+1
k

]
= n

[
n
k

]
+
[

n
k−1

]
, we

may find any Stirling number of the first kind. The following
Stirling triangle of the first kind (similar to the Pascal triangle)
constructs the Stirling numbers iteratively.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 106 — #122 i
i

i
i

i
i

106 CHAPTER 2. COMBINATORICS

For example, the 4th line of the Stirling triangle gives the coef-
ficients

[
4
1

]
,
[
4
2

]
,
[
4
3

]
,
[
4
4

]
and

[
4
5

]
. (Note that the first line is

the 0th line.) To obtain the kth number in the nth line (assuming
that the terms in the (n− 1)st line have already been computed),
we multiply by n the number found to the north-east of the num-
ber to be found and add it to the number to the north-west of
the number to be calculated. The table may be continued to any
number of lines.

Table 2.6: Stirling Triangle of the first kind

1
1 0

1 1 0
2 3 1 0

4 11 6 1 0
...

We shall now see a nice combinatorial interpretation of the
Stirling number of the first kind:

Combinatorial interpretation of Stirling numbers of the
first kind:

Permutations revisited:
As we have already seen, a (linear) permutation on an n-set
A = { 1, 2, . . . , n } is a one-to-one correspondence from the set
A onto itself. There are three types of notation used to represent
a permutation on an n-set. Each notation has its own advantage.
We normally choose one suitable to the problem at hand. In the
sequel, the three notations are illustrated.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 107 — #123 i
i

i
i

i
i

2.6. STIRLING NUMBERS 107

Example 2.6.3 (Three representations of a permutation):
Consider a 7-set A = { 1, 2, . . . , 7 } and consider a bijection p :
A → A defined as follows: p(1) = 2, p(2) = 3, p(3) = 1, p(4) =
5, p(5) = 4, p(6) = 6, p(7) = 7.

Two-line notation (matrix form or two-line notation or two-
dimensional notation): In the two-line notation, the permutation
p is written as

p =

(
1 2 3 4 5 6 7
2 3 1 5 4 6 7

)
Note that in the first line of the matrix notation, the domain
elements are listed in increasing order and the second line of the
matrix gives the corresponding values of the bijective function p.
Note that the interchange of any two columns of the matrix p
leaves the function p unchanged.

One-line notation or one-dimensional notation: In the one-line
notation of the permutation p, we write only the values of the
bijective function p, that is, only the second line of the matrix
form of p assuming that the domain elements are always listed in
the natural order 1, 2, · · · , n. Hence we write

p = 2315467

Cycle notation: This notation uses the following well-known de-
composition property of permutations:

Every permutation can be expressed in a unique manner, ex-
cept for order, as a product (composition) of disjoint cycles.

To understand this, let us represent the permutation p graphi-
cally. In this graphical representation of p, we draw a directed arc
from the point i to the point j if and only if p(i) = j. Here the
points are the numbers 1, 2 . . . , 7 (see the Figure 2.5).

According to the figure, the permutation p can be written as
the product of disjoint cycles as:

p = (123)(45)(6)(7).

More generally, a cycle (x1x2 · · · xk) of a permutation maps x1 onto
x2,x2 onto x3,. . ., xk−1 onto xk, and finally xk onto x1.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 108 — #124 i
i

i
i

i
i

108 CHAPTER 2. COMBINATORICS

Figure 2.5: Permutation as a product of disjoint cycles

Reduced cycle notation: In the reduced form of cycle notation
the single point cycles are omitted. Hence p can be represented as

p = (123)(45).

The disjoint cycle representation of a permutation is not unique.
The same permutation p can be given as

p = (231)(54) = (312)(45) = (123)(45) = (45)(123)

because graphically, a cycle may start and end at any of its points!
We shall see that the permutation p is indeed the product (com-
position) of disjoint cycles (123) and (45) because

p1 = (123) =

(
1 2 3 4 5 6 7
2 3 1 4 5 6 7

)
Note that the elements i not present in the cycle (123) are fixed
by the permutation p1 that is, p(i) = i. Similarly,

p2 = (45) =

(
1 2 3 4 5 6 7
1 2 3 5 4 6 7

)
Now it is readily seen that the composition p1◦p2 = p (for example,
p1 maps 1 onto 2 and p2 maps 2 onto itself and hence p1 ◦ p2 maps
1 onto 2, etc.).

We are now ready to interpret the number
[
n
k

]
combinatorially.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 109 — #125 i
i

i
i

i
i

2.6. STIRLING NUMBERS 109

Combinatorial meaning of
[
n
k

]
:

Consider the set of all n! (linear) permutations of an n-set A =
{ 1, 2, . . . , n } written in cycle notation. Then

[
n
k

]
is the number

of permutations on the n-set having k cycles. (Hence the reading
n cycle k.)

The following example illustrates the combinatorial interpre-
tation of

[
4
2

]
.

Example 2.6.4 (Combinatorial interpretation of the Stirling num-
ber of the first kind):
There are 4! = 24 permutations that are possible on the 4-set
A = { 1, 2, 3, 4 }. Among these 24 permutations, there are eleven
different permutations which can be written in the cycle notation
as the product of two disjoint cycles. The reader can verify that
the permutations having exactly two cycles are:

(123)(4), (124)(3), (134)(2), (234)(1), (142)(3),
(143)(2), (243)(1), (132)(4), (12)(34), (13)(24), (14)(23).

Hence
[
4
2

]
= 11.

Example 2.6.5 (Sum of all the Stirling numbers of the first kind):
Show that

∑n
k=0

[
n
k

]
= n! for n ≥ 0.

Combinatorial proof:
[
n
k

]
is the number of permutations of [n]

containing exactly k cycles. Hence the sum
∑n

k=0

[
n
k

]
accounts for

the number of permutations of [n] having 0, 1, . . . , n cycles. This
is nothing but the number of permutations of [n] which is n!.

Algebraic proof: By definition,

x(x+ 1) · · · (x+ n− 1) =
n∑

k=0

[n
k

]
xk.

Setting x = 1, we get, n! =
∑n

k=0

[
n
k

]
.

Consider the n! permutations of the n-set { 1, 2, . . . , n } ex-
pressed in cycle notation. The following example gives a formula
for the total number of cycles in terms of the harmonic number hn
where

hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
=

n∑
i=1

1

i
for all n ≥ 1.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 110 — #126 i
i

i
i

i
i

110 CHAPTER 2. COMBINATORICS

Example 2.6.6 (The number of cycles):
For n = 3, the 3! = 6 permutations in cycle notations are:
(1)(2)(3), (1)(32), (12)(3) (123), (132), (13)(2). The total
number of cycles is 11.

Example 2.6.7 (Formula for the number of cycles):
Let us write all n! permutations of the n-set { 1, 2, . . . , n } in cycle
notation. Then prove that the total number of cycles is n!hn where
hn is the harmonic number hn = 1 + 1

2
+ 1

3
+ · · ·+ 1

n
.

Solution:

Let us first find how many times a special k-cycle (a1a2 . . . ak)
with (1 ≤ k ≤ n), appears in these n! permutations. By fixing the
cycle (a1a2 . . . ak), the remaining n − k integers can be permuted
in (n− k)! ways.

Now let us compute the number of different possible k-cycles
(a1a2 . . . ak). The first element a1 can be picked in n ways.
Having selected the first element of the cycle, the sec-
ond integer can be picked in n − 2 ways. More gener-
ally, the ith integer of the cycle may be picked in (n −
i) ways. Hence the number of different possible k-cycles
(a1a2 . . . ak) is n(n − 1)(n − 2) · · · (n − k). But then the k cycles
(a1a2 . . . ak), (a2a3 . . . aka1), (a3a4 . . . aka1a2), . . . ,
(aka1a2 . . . ak−1 are all one and the same cycle, since a cycle may
start and end at any of its elements. Therefore, the total number
of different k-cycles (a1a2 . . . ak) among all the possible n! permu-
tations is n(n− 1)(n− 2) · · · (n− k)/k.

By the product rule (Proposition 2.2.2), the total number of
k-cycles is
(n(n− 1)(n− 2) · · · (n− k)/k)× (n− k)! = n!/k for (1 ≤ k ≤ n).

Hence the total number of cycles in all permutations is∑n
k=1

n!
k
= n!

(
1 + 1

2
+ 1

3
+ · · ·+ 1

n

)
.

Example 2.6.8:
Consider the 3! permutations of the 3-set { 1, 2, 3 } expressed in
cycle notation. Then the total number of cycles among all the 6
permutations is 3!h3 = 3!(1 + 1/2 + 1/3) = 6 + 3 + 2 = 11 by
Example 2.6.7.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 111 — #127 i
i

i
i

i
i

2.6. STIRLING NUMBERS 111

Cyclic permutations or circular permutations:

Definition 2.6.2:
A cyclic permutation on the n-set A = { 1, 2, . . . , n } is a permuta-
tion on the set A whose cycle representation consists of only one
cycle. Two cyclic permutations are declared equal if one can be
obtained from the other by cyclic rotation in the clockwise/anti-
clockwise direction. What is important is their positions relative
to each other and not to their environment.

Let us recall that the permutation (123 . . . n) in cycle notation
is represented as (

1 2 3 . . . n
2 3 4 . . . 1

)
in two-line notation. Hence the following n cyclic permuta-
tions (123 . . . n); (234 . . . n1); (345 . . . 12). . . (n12 . . . n − 1) are
all considered as equal.

The following example clarifies the definition.

Example 2.6.9 (Cyclic permutations):
Find all the distinct cyclic permutations on the 4-set {1, 2, 3, 4 }.

We have to write all distinct permutations of the 4-set hav-
ing only one cycle. These are (1234); (1243); (1324); and their
inverses (4321); (3421); (4231). They are 6(= 3!) in number.

There is an n-to-1 correspondence between the set of all linear
permutations on n symbols and the circular permutation on n
symbols.

The following example illustrates the above statement.

Example 2.6.10 (5-to-1 correspondence):
Consider the linear permutations on five integers 1, 2, 3, 4, 5. There
are in total 5! = 120 linear permutations.

But the five linear permutations 12345, 23451, 34512, 45123,
51234 all induce only one circular permutation 12345 because of
the definition of the equality of two cyclic permutations. Hence

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 112 — #128 i
i

i
i

i
i

112 CHAPTER 2. COMBINATORICS

the total number of cyclic permutations by the division rule is
5! = 24.

Example 2.6.11 (Number of cyclic permutations on (n+1)-set):
Find the number of cyclic permutations on an (n+1)-set (n ≥ 0.)

Solution: By the combinatorial interpretation of the Stirling
number of the first kind,

[
n+1
1

]
is the number of permutations on

an n-set having one cycle, that is, the number of cyclic permuta-
tions on an n-set. But by definition,

[
n+1
1

]
is the coefficient of x1

in the product

n factors︷ ︸︸ ︷
x(x+ 1) · · · (x+ n), that is, the term independent

of x in the product

(x+ 1)(x+ 2) · · · (x+ n)

which is 1 × 2 × 3 · · · × n = n!. Therefore, the number of cyclic
permutations on an (n+ 1)-set is n!.

Stirling number of the first kind as the sum of a product:
Another equivalent way to define the Stirling number of the first
kind is as the sum of the product of certain integers.

To define
[
n
k

]
, we consider the n− 1-set A = { 1, 2, . . . , n− 1 }.

Then
[
n
k

]
is the sum of the product of integers in all (n−k)-subsets

of the (n− 1)-set A. Symbolically,[n
k

]
=

∑
0<k1<k2<···<kn−k<n

k1k2 · · · kn−k

Example 2.6.12 (Stirling number of first kind as the sum of a
product):
What is the value of

[
5
2

]
?

Solution: By definition,
[
5
2

]
is the sum of the product of in-

tegers in all (5 − 2) = 3-subsets of the 4-set A = { 1, 2, 3, 4 }.
The four 3-subsets of A are { 1, 2, 3 }, { 1, 2, 4 }, {1, 3, 4 }, and
{ 2, 3, 4 }. Hence[

5

2

]
= 1× 2× 3 + 1× 2× 4 + 1× 3× 4 + 2× 3× 4 = 50.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 113 — #129 i
i

i
i

i
i

2.7. STIRLING NUMBER OF THE SECOND KIND
{

N
K

}
113

Example 2.6.13:
Let p be a prime number. Then prove that

[
p
k

]
for all k with

1 < k < p.
Solution: In the modulo p world, the only relevant integers are

0, 1, . . . , p − 1 and any other integer can be brought back to this
list by taking the remainder on division by p. (Analogy: The clock
follows modulo 12 arithmetic.) We have x(x−1) · · · (x−(p−1)) = 0
for each x = 0, 1, . . . , p− 1. Hence we can write

x(x− 1) · · · (x− (p− 1)) ≡ 0 (mod p).

That is,
p∑

k=1

[p
k

]
(−1)n−kxk ≡ 0 (mod p).

By Fermat’s theorem (see Chapter 3) we have,

xp − x ≡ 0 (mod p).

Subtracting the last two modular equalities, we get (since
[
p
p

]
= 1[

p

p− 1

]
xp−1−

[
p

p− 2

]
xp−2+· · ·−

[p
2

]
x2+

[p
1

]
x+x ≡ 0 (mod p).

But
[
p
1

]
= (p−1)!. Hence the coefficient of x in the above modular

equality is (p− 1)! + 1 which is ≡ 0 (mod p) by Wilson’s theorem
(see Chapter 3). Hence we have[

p

p− 1

]
xp−1 −

[
p

p− 2

]
xp−2 + · · · −

[p
2

]
x2 ≡ 0 (mod p).

This means that p divides each coefficient
[
p
k

]
for 1 < k < p.

2.7 Stirling Number of the Second

Kind
{
n
k

}
The Stirling number of the second kind denoted by

{
n
k

}
is the

number of unordered partitions of the n-set A = { 1, 2, . . . , n } into

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 114 — #130 i
i

i
i

i
i

114 CHAPTER 2. COMBINATORICS

k mutually disjoint non-empty subsets. Note that the empty set is
not permitted in the partition. (In the partitions corresponding to
a multinomial coefficient, empty sets are allowed.) Such a partition
is called a k-partition of the set A.

The curly braces in
{

n
k

}
(read n subset k) can be easily re-

membered, since curly braces denote sets. The following example
illustrates the Stirling number of the second kind.

Example 2.7.1 (Stirling number of the second kind):
What is the value of

{
4
2

}
?

Solution: Consider the 4-set A = { 1, 2, 3, 4 }. The pos-
sible partitions of the set A into two non-empty subsets
are: { 1, 2, 3 } { 4 }; { 1, 2, 4 } { 3 }; { 1, 3, 4 } { 2 } ;
{ 2, 3, 4 } { 1 };
{ 1, 2 } { 3, 4 }; { 1, 3 } { 2, 4 }; { 1, 4 } { 2, 3 }. There
are 7 partitions of A into two non-empty subsets. Therefore by
definition,

{
4
2

}
= 7.

{n
1

}
= 1 for n ≥ 1

because the number of unordered partitions of an n-set A into one
mutually disjoint non-empty subset is 1(the set {A } is the only
partition of A). Again {n

n

}
= 1 for n ≥ 1

since the only unordered partition of the n-set A = { 1, 2, . . . , n }
into n mutually disjoint subsets is the partition {A1, A2, . . . , An }
where Ai = { i } for all i = 1, 2, . . . , n.

We define
{

0
0

}
= 1. Note that

{
n
k

}
= 0 if k > n.

The initial and boundary values of the binomial coefficients,
Stirling numbers of the first and second kind may be written suc-
cinctly with the help of the Kronecker delta δij where

δij =

{
1 if i = j
0 otherwise

Kronecker’s famous citation:

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 115 — #131 i
i

i
i

i
i

2.7. STIRLING NUMBER OF THE SECOND KIND
{

N
K

}
115

God created the natural numbers, all the rest is the
work of man.

Kronecker

Another interesting quotation:

Man created the integers, all else is Dieudonné.
R. K. Guy

Using the notation δij, we write for non-negative integer n,(
0

n

)
=

[
0

n

]
=

{
0

n

}
= δn0.

Furthermore, (
n

n

)
=
[n
n

]
=
{n
n

}
= 1 = δnn.

We shall now prove the following addition formula (recurrence
formula) involving Stirling numbers of the second kind.

Lemma 2.7.1 (Recurrence formula for Stirling number of the sec-
ond kind):
For non-negative integers n and k we have:{

n+ 1

k

}
= k

{n
k

}
+

{
n

k − 1

}
Proof. Consider the (n + 1)-set A = { 1, 2, . . . , n + 1 }. By defi-
nition,

{
n+1
k

}
is the number of unordered partitions of the set A

into k mutually disjoint non-empty subsets of A. We distinguish
two types of k-partitions of the (n+ 1)-set A.

Case 1: k-Partitions of A having the singleton set {n+1 } as a
member of the partition. (This set can be any other singleton set.
If 1, 2, . . . , n, n+1 are professors in the Mathematics Department,
then n + 1 can be considered as the “Head” of the Mathematics
Department.)

We are interested in counting the number of such partitions
in terms of n. By definition,

{
n

k−1

}
is the number of unordered

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 116 — #132 i
i

i
i

i
i

116 CHAPTER 2. COMBINATORICS

(k− 1)-partitions of the n-set A \ {n+1 }. Each (k− 1)-partition
{A1, A2, . . . , Ak−1 } of the n-set A\{n+1 } defines the k-partition
{A1, A2, . . . , Ak−1 }∪{ {n+1 } } of the (n+1)-set A. Conversely,
each k-partition of the (n+1)-set A having the singleton set {n+
1 } as a member, defines a (k−1)-partition (obtained by removing
the set {n + 1 } from the k-partition) of the n-set A \ {n + 1 }.
Hence by Proposition 2.2.1, the number of k-partitions of A having
the singleton set {n+1 } as a member of the partition is the same
as the number of (k− 1)-partitions of the n-set A \ {n+1 } which
is by definition

{
n

k−1

}
Case 2: k-partitions of A having no singleton subset {n + 1 }

as a member, that is, partitions in which subsets containing the
element n+ 1 must have at least two elements.

Let us count the number of such partitions in terms of n.
Consider a k-partition {A1, A2, . . . , Ak } of A such that the

subset Ai containing the element n+1 and the number of elements
of Ai is ≥ 2. Now the {A1, A2, . . . , Ai \ {n + 1 }, . . . , Ak } is a k-
partition of the n-set A \ {n+ 1 }, since Ai \ {n+ 1 } ̸= ∅.

Conversely, consider a k-partition {A1, A2, . . . , Ak } of the n-
set A\{n+1 }. This partition defines k k-partitions {A1, A2, . . . ,
Ai ∪ {n+ 1 }, . . . , Ak } of the set (n+ 1)-set A for i = 1, 2, . . . , k.

Therefore the number of desired partitions in this case is k
{

n
k

}
.

Since case 1 and case 2 are mutually disjoint, we have by the
rule of sum (see Fact 2.2.0.1),{

n+ 1

k

}
= k

{n
k

}
+

{
n

k − 1

}
Thus the proof is complete.

The above recurrence relation allows us to compute the num-
bers

{
n
k

}
starting from the initial conditions

{
0
0

}
= 0 and

{
n
1

}
=

1 for n ≥ 1. The following table, called the Stirling triangle of the
second kind, constructs the numbers

{
n
k

}
iteratively. To obtain

the k-th number in the (n+1)-th line, (assuming that n lines have
already been constructed), we multiply by k the kth number of
the nth line and add it to the (k − 1)-th number of the n-th line.
The table may be continued to any number of lines. Note that the
first line is the 0-th line.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 117 — #133 i
i

i
i

i
i

2.7. STIRLING NUMBER OF THE SECOND KIND
{

N
K

}
117

For example, the 4-th line gives the numbers
{

4
1

}
;
{

4
2

}
;{

4
3

}
;
{

4
4

}
; and

{
4
5

}
.

Table 2.7: Stirling triangle of the second kind

1
1 0

1 1 0
1 3 1 0

1 7 6 1 0
...

Example 2.7.2 (Stirling numbers of the first and second kinds):
Prove that

{
n
k

}
≤
[
n
k

]
.

Combinatorial proof: Every partition of [n] into nonempty sub-
sets induces at least one cycle. For example, the singleton sets { 1 }
and { 1, 2 } give only one cycle (1) and (1, 2) = (2, 1) respectively.
All other sets of at least 3 elements give more than one cycle.
For example, the set of three elements { 1, 2, 3 } give two different
cycles (1, 2, 3) and (1, 3, 2). Hence the claimed inequality.

Example 2.7.3 (Stirling numbers of the first and second kinds):
Prove that [

n

n− 1

]
=

{
n

n− 1

}
=

(
n

2

)
Solution: By definition,

[
n

n−1

]
is the coefficient of xn−1 in the

product x(x + 1)(x + 2) · · · (x + n − 1), that is, the coefficient of
xn−2 in

(x+ 1)(x+ 2)(x+ 3) · · · (x+ n− 1) = xn−2

+(1 + 2 + 3 + · · ·+ n− 1)xn−2 + · · ·+ (n− 1)!

Hence
[

n
n−1

]
= 1 + 2 + · · ·+ (n− 1) = (n− 1)n/2 =

(
n
2

)
.

Now, by definition,
{

n
n−1

}
is the number of unordered parti-

tions of the n-set A = { 1, 2, . . . , n } into (n− 1) mutually disjoint

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 118 — #134 i
i

i
i

i
i

118 CHAPTER 2. COMBINATORICS

non-empty subsets of A. The sets of such a partition are of the
form {A1, A2, . . . , Ai, . . . , An−1 } where exactly one of the Ai’s is
a two-element subset of A and all others are singleton subsets of
A. Note that once we pick a 2-subset Ai of A, all other sets in the
partition are uniquely determined.

Therefore, the number of such partitions is the same as the
number of two-element subsets of the n-set, which by definition is(
n
2

)
.

Example 2.7.4 (Property):
Let p be a prime number. Then prove that

{
p
k

}
for all k with

1 < k < p.
Solution: Similar to Example 2.6.13.

Example 2.7.5 (Stirling number of the second kind):
Prove that for non-negative integer n,{

n+ 1

2

}
= 2n − 1.

Solution: By definition,
{

n+1
2

}
is the number of unordered parti-

tions of the (n + 1)-set A = { 1, 2, . . . , n + 1 } into two mutually
disjoint non-empty subsets of A.

First we count the number of ordered 2-partitions of the set A
(empty set allowed as a part of the partition.)

By definition of the multinomial coefficient, the number of
ordered (k, n − k) 2-partition of the n-set A (0 ≤ k ≤ n) is(

n
k,n−k

)
= n!

k!(n−k)!
=
(
n
k

)
. Hence the number of ordered 2-partitions

of the (n+ 1)-set is

n∑
k=1

(
n

k

)
= 2n+1 by Corollary 2.4.1 .

These 2n+1 ordered 2-partitions of A include the special two or-
dered partitions (∅, A) and (A, ∅) of which one part is empty. If we
remove these two partitions, then we have the number of ordered
2-partitions (A1, A2) (with A1 ̸= ∅ and A2 ̸= ∅) of the (n+ 1)-set
which is 2n+1 − 2.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 119 — #135 i
i

i
i

i
i

2.7. STIRLING NUMBER OF THE SECOND KIND
{

N
K

}
119

But the two ordered 2-partitions (A1, A2) and (A2, A1) define
only one unordered partition {A1, A2 }. Therefore, the number of
unordered partitions of the set A into two mutually disjoint non-
empty subsets is 1

2
× (2n+1 − 2) = 2n − 1.

Number of surjective functions from an n-set onto an
m-set (n ≥ m): We shall now find the number of surjective
functions from an n-set onto an m-set using the Stirling number of
the second kind. The following example illustrates how a surjective
function f from an n-set X onto an m-set Y induces an unordered
partition of the domain set X into mutually disjoint non-empty
subsets of X.

First we recall the idea of an inverse image of any function
f : X → Y. For an element y ∈ Y , f−1(y) is the set of all elements
x ∈ X whose image under f is y. Symbolically,

f−1(y) = {x ∈ X | f(x) = y }

Example 2.7.6 (Partition induced by a surjective function):
Let X = { p1, p2, . . . p10 } be a set of professors in the Department
of Mathematics and let Y = { r1, r2, . . . , r6 } be the rooms in the
Department of Mathematics in a university. Consider the surjec-
tive function f : X → Y which assigns to each professor his room
in the Department of Mathematics. f is written in the matrix
form where

f =

(
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
r3 r6 r3 r1 r2 r4 r5 r4 r3 r6

)
The function is clearly surjective because every room is occupied
by at least one professor. Now for room r ∈ Y , f−1(r) is the set of
professors occupying the room r and this set is non-empty because
f is surjective. The partition induced by the function f is

f−1(r1)∪f−1(r2)∪· · ·∪f (−1)(r6) = { p4 }∪{ p5 }∪{ p1, p3, p9 }∪
{ p6, p8 }{ p7 } ∪ { p2, p10 }.

With this example in mind, we state the following proposition.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 120 — #136 i
i

i
i

i
i

120 CHAPTER 2. COMBINATORICS

Proposition 2.7.1:
Let f : X → Y be a surjective function from an n-set X onto an
m-set Y. Then f induces an unordered partition of the domain set
X into m mutually disjoint non-empty subsets of X.

Proof. If Y = { y1, y2, . . . , ym }, then the required partition of the
set X into m mutually disjoint non-empty subsets is

{ f−1(y1), f
−1(y2), . . . , f

−1(ym) }

The following theorem gives the number of surjective functions
from an n-set onto an m-set.

Theorem 2.7.1:
The number of surjective functions from an n-set onto an m-set
(n ≥ m) is

{
n
m

}
m!.

Proof. Let the domain set be the n-set X = {x1, x2, . . . , xn } and
let the range set be the m-set Y = { y1, y2, . . . , ym }. By Propo-
sition 2.7.1, every surjective function from X onto Y induces a
partition of X into mutually disjoint non-empty subsets of X.

Now consider an unordered m-partition {X1, X2, . . . , Xm } of
the setX. Consider any permutation (written in one-line notation)
pi = (yi1yi2 . . . yim) of the m-set Y. This permutation defines a
surjective function pi from X onto Y where

pi(xj) = yij if xj ∈ Xj, 1 ≤ j ≤ n

That is, pi maps every element of the subset Xj onto the element
yij . Since there are m! permutations possible on the m-set Y , each
m-partition {X1, X2, . . . , Xm } of the set X induces m! surjections
from X onto Y. But the number partitions possible of the n set X
into m mutually disjoint non-empty sets is the Stirling number of
the second kind

{
n
m

}
, by definition. Therefore by the product rule

(see Proposition 2.2.2), the number of surjections from the n-set
X onto the m-set Y is

{
n
m

}
m!.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 121 — #137 i
i

i
i

i
i

2.7. STIRLING NUMBER OF THE SECOND KIND
{

N
K

}
121

Example 2.7.7:
The number of surjective functions from the 4-set
X = {x1, x2, x3, x4 } onto the 3-set Y = { y1, y2, y3 } is

{
4
3

}
3!.

From the Table 2.7,
{

4
3

}
= 6. Hence the number of surjections is

6× 3! = 36.

Example 2.7.8:
Find the number of ways to partition n elements in m different
boxes B1, B2, . . . , Bm in such a way that k of these boxes are non-
empty and m− k of these boxes are empty.

Solution:
The number of ways to pick k boxes out of m boxes is

(
m
k

)
ways. The number of ways to partition (unordered partition) n
elements into k mutually disjoint subsets is the Stirling number{

n
k

}
. Hence, the number of ways to put n elements into k boxes

Bi1 , Bi2 , . . . , Bik such that no box is empty is the same as number
of ordered partitions of n-elements into k non-empty subsets which
is k!

{
n
k

}
(since each unordered partition into k non-empty subsets

gives rise to k! ordered partitions). Therefore by the product rule
of Proposition 2.2.2, the desired number is k!

{
n
k

} (
m
k

)
.

Example 2.7.9:
Find the number of equivalence relations that can be defined on
the set [n] = { 1, 2, . . . , n }.

Solution: We know that every equivalence relation on [n] parti-
tions the set [n] into nonempty mutually disjoint subsets called the
equivalence classes and given any partition of [n] into nonempty
mutually disjoint subsets, we can define an equivalence relation
on [n] whose equivalence classes are exactly the given partitions
of the set.

Hence by the definition of the Stirling number of the second
kind, the number of equivalence relations on [n] is the number of
possible partitions of [n] into k (1 ≤ k ≤ n) nonempty mutually
disjoint subsets. This number is

n∑
k=1

{n
k

}
.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 122 — #138 i
i

i
i

i
i

122 CHAPTER 2. COMBINATORICS

Corollary 2.7.1.1:
For positive integers m and n we have the equality

mn =
n∑

k=1

{n
k

}
mk

Proof. By Theorem 2.2.2, the left-hand side of the equality mn is
the number of functions from an n-set X = {x1, x2, . . . , xn } to
the m-set Y = { y1, y2, . . . , ym }.

Now let us compute the number of functions from X to Y in
a different way. Let us first observe that any function f : X → Y
becomes a surjective function if we restrict the co-domain set Y
to the subset f(X) = { f(x) | x ∈ X }, the set of all images of the
elements of the domain set X. Furthermore, 1 ≤ |f(X)| ≤ n.

Consider a k-subset T of Y where k is an integer such that
1 ≤ k ≤ n. By Theorem 2.7.1, the number of surjections from
X onto the k-set T is

{
n
k

}
k!. But a k-subset T of the m-set Y

can be chosen in
(
m
k

)
, by the definition of the binomial coefficient.

Therefore, by the product rule (Proposition 2.2.2), the number of
surjections from X onto a k-subset of Y is

{
n
k

}
k!
(
m
k

)
. Since the

integer k may assume any value between 1 and n, we have that
the number of surjections from X onto a subset of Y is

n∑
k=1

{n
k

}
k!

(
m

k

)
=

n∑
k=1

{n
k

}
mk

Example 2.7.10:
Verify the equality in the Corollary 2.7.1.1, for n = 3 and m = 4.

The left-hand side is mn = 43 = 64.
The right-hand side of the equality is

n∑
k=1

{n
k

}
mk =

3∑
k=1

{
3

k

}
4k

=

{
3

1

}
4 +

{
3

2

}
(4)(3) +

{
3

3

}
(4)(3)(2)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 123 — #139 i
i

i
i

i
i

2.7. STIRLING NUMBER OF THE SECOND KIND
{

N
K

}
123

= (1)(4) + (3)(4)(3) + (1)(4)(3)(2)

= 4 + 36 + 24

= 64

Consider the equality mn =
∑n

k=1

{
n
k

}
mk of the Corollary

2.7.1.1. This equation can be proved to be true for any real num-
ber x. To do this, we need the following simple lemma concerning
polynomials. To prove the lemma, we need the Fundamental The-
orem of Algebra, which we state without proof.

Theorem 2.7.2 (Fundamental theorem of algebra):
Consider a polynomial p(z) = p0+p1z+p2z

2+ · · ·+pnzn of degree
n with complex coefficients pi. Then p(z) has exactly n complex
roots (distinct or coincident).

The following lemma is very useful to extend the validity of
some equations from integers to all real numbers.

Lemma 2.7.2:
Let p(x) = p0 + p1x+ · · ·+ pnx

n and q(x) = q0 + q1x+ · · ·+ qnx
n

be two non-zero polynomials of degree n. If p(x) = q(x) for n+ 1
distinct real numbers r0, r1, . . . , rn then the polynomials p(x) and
q(x) are identically equal, symbolically, p(x) ≡ q(x).

Proof. p(x) = q(x) for x = r0, r1, . . . , rn. Therefore r(x) = p(x)−
q(x) is a polynomial of degree at most n. Moreover, the polynomial
r(x) of degree at most n is such that s(ri) = p(ri) − q(ri) = 0
for i = 0, 1, . . . , n. In other words, the polynomial s(x) which
is of degree at most n has n + 1 distinct roots. Hence by the
fundamental theorem of algebra 2.7.2, the polynomial s(x) must
be identically zero, that is, s(x) = 0 for all real numbers. That is,
p(x)− q(x) ≡ 0, that is, p(x) ≡ q(x).

Corollary 2.7.2.1:
If x is any real number and n is a positive integer then we have

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 124 — #140 i
i

i
i

i
i

124 CHAPTER 2. COMBINATORICS

the equality

xn =
n∑

k=1

{n
k

}
xk

Proof. By Theorem 2.7.1.1, we have the equality

mn =
n∑

k=1

{n
k

}
mk for positive integers m,n.

The left-hand side and the right-hand side of the above equation
may be viewed as polynomials of degree n in the variablem. These
two polynomials of degree n in the variable m assume the same
values for n+1 distinct values of m where m = 0, 1, 2, . . . , n (since
for m = 0, both polynomials are 0.) Hence by Lemma 2.7.2,
the left-hand side is identically equal to the right-hand side. This
proves the corollary.

Theorem 2.7.3:{
n+ 1

k

}
=

n∑
p=0

(
n

p

){
p

k − 1

}
.

Proof. Consider the (n + 1)-set A = { 1, 2, . . . , n, n + 1 } and a
partition P = {P1, P2, . . . , Pk } of A into k mutually disjoint non-
empty subsets.

Let Pi be the set containing the integer n+1. Then by removing
the set Pi from P , we get the partition {P1, P2, . . . , Pi−1, Pi+1, Pk }
of the subset A \ Pi into k − 1 mutually disjoint subsets.

Conversely, given a subset S of A with p elements (0 ≤ p ≤ n)
not containing the integer n+ 1 and a partition P = {P1, P2, . . . ,
Pk−1 } of S into k−1 mutually disjoint subsets, we get a partition
P ∪ (A \ S) of A by adding the set A \ S to P .

But a subset S of A consisting of p elements not containing the
integer n+1 may be picked in

(
n
p

)
ways. Thus we have established

a one-to-one correspondence between the family of all partitions
of the set A and the family of all partitions of the subsets of A not
containing the element n+ 1.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 125 — #141 i
i

i
i

i
i

2.8. BELL NUMBERS 125

Therefore, by the Proposition 2.2.1, we have the equality{
n+ 1

k

}
=

n∑
p=0

(
n

p

){
p

k − 1

}
.

Stirling number of the second kind as the sum of a prod-
uct:
Like Stirling number of the first kind, the Stirling number of the
second kind may be defined as the sum of a product of certain
integers.

Definition 2.7.1 (Stirling number of the second kind as the sum
of a product):
To define

{
n
k

}
, we consider the k-set A = { 1, 2, . . . , k }. Now

{
n
k

}
is the sum of the product of integers in all n − k-multisubsets of
the set A. Symbolically,{n

k

}
=

∑
1≤k1≤k2≤···≤kn−k≤k

k1k2 · · · kn−k

Example 2.7.11 (Stirling number of the second kind as the sum
of a product):
Find

{
5
3

}
.

Solution: Consider the 3-set A = { 1, 2, 3 }. The possible (5 −
3) = 2-multisubsets of the set A are: { 1, 2 }; { 1, 3 }; { 2, 3 };
{ 1, 1 }; { 2, 2 }; { 3, 3 }. Hence{
5

3

}
= (1×2)+(1×3)+(2×3)+(1×1)+(2×2)+(3×3) = 25.

2.8 Bell Numbers

The total number of unordered partitions of an n-set into mutually
disjoint subsets is the n-th Bell number, denoted by Bn. Since

{
n
k

}
is the number of unordered partitions of an n-set into k mutually
disjoint non-empty subsets, we have the following proposition.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 126 — #142 i
i

i
i

i
i

126 CHAPTER 2. COMBINATORICS

Proposition 2.8.1:

Bn =
{n
1

}
+
{n
2

}
+ · · ·+

{n
n

}
.

The following proposition gives a recurrence relation involving
Bell numbers.

Proposition 2.8.2 (Recurrence relation involving Bell numbers):

Bn+1 =
n∑

k=0

(
n

k

)
Bk.

Proof. Since
(
n
k

)
=
{

n
k

}
= 0 for all k > n, we may write the

equation of the Theorem 2.7.3 as{
n+ 1

k

}
=

∞∑
p=0

(
n

p

){
p

k − 1

}
(2.2)

Hence by the Proposition 2.8.1, we have

Bn+1 =
n+1∑
k=1

{
n+ 1

k

}
=

∞∑
k=1

{
n+ 1

k

}
since

{
n
k

}
= 0 if k > n

=
∞∑
k=1

n∑
p=0

(
n

p

){
p

k − 1

}
by Theorem 2.7.3

=
n∑

p=0

(
n

p

)(∞∑
k=1

{
p

k − 1

})
by interchanging summation

=
n∑

p=0

(
n

p

)(p∑
k=1

{
p

k − 1

})

=
n∑

p=0

(
n

p

)
Bp by Theorem 2.7.3

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 127 — #143 i
i

i
i

i
i

2.9. THE PRINCIPLE OF INCLUSION 127

2.9 The Principle of Inclusion

and Exclusion

Consider a set A consisting of n elements. Let A1, A2, . . . , Am

be m subsets of the set A. The inclusion and exclusion principle
counts the number of elements of the set A which are in exactly k
of the subsets A1, A2, . . . , Am. Inclusion and exclusion principle is
an important technique in enumeration problems.[4][5]

The principle can be considered as a generalization of the fol-
lowing example:

Example 2.9.1:
In a class of 40 students, 14 like mathematics, 16 like physics,
and 15 like chemistry; 7 like both mathematics and physics, 9
both physics and chemistry, and 6 students like mathematics and
chemistry. There are 5 who like all three subjects. How many
students do not like any of the three subjects?

Solution: First we subtract from the total number of students,
namely 40, the number of students who like mathematics, physics,
chemistry respectively:

40− 14− 16− 15.

In the above expression, a student who likes both mathematics
and physics is subtracted twice; so we have to add them back,
and similarly for the two other pairs of subjects: This gives the
number 40− 14− 16− 15 + 7 + 9 + 6.

But now a student who likes all the three subjects is subtracted
thrice and added thrice. In order to get the desired number we
have to subtract the number of students who like all the three once
more. Hence the desired integer is 40−14−16−15+7+9+6−5.

Example 2.9.2:
Let A = { 1, 2, . . . , 10 }. Consider the three subsets A1, A2, A3

of the set A where A1 = { 2, 4, 6, 7, 8 } A2 = { 1, 2, 4, 6, 8, 10 }
A3 = { 1, 4, 5, 6, 8, 9, 10 } (see the shaded portion of Figure 2.6).

The set of elements of A lying in exactly two of the subsets is
{ 1, 2, 10 } (because the element 1 lies inA2∩A3 and 2 inA1∩A2 but

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 128 — #144 i
i

i
i

i
i

128 CHAPTER 2. COMBINATORICS

Figure 2.6: Inclusion-exclusion principle

1, 2 /∈ A1∩A2∩A3, the element 10 ∈ A1∩A3 but 10 /∈ A1∩A2∩A3).
Hence the number of elements in exactly two of the subsets is 3.

Example 2.9.3:
Given two subsets A1 and A2 of a finite set A, express the num-
ber of elements in exactly one of the subsets A1, A2 in terms of
A1, A2, andA1 ∩ A2.

Solution:
The set of elements belonging to exactly one of the subsets is

(A1 \ (A1 ∩ A2)) ∪ (A2 \ (A1 ∩ A2)) .

But the two sets (A1 \ (A1 ∩ A2)) and (A2 \ (A1 ∩ A2)) are mutu-
ally disjoint. Therefore by the sum rule (see Fact 2.2.0.1),

| (A1 \ (A1 ∩ A2)) ∪ (A2 \ (A1 ∩ A2))

| = | (A1 \ (A1 ∩ A2)) |+ | (A2 \ (A1 ∩ A2)) |
= (|A1| − |A1 ∩ A2) + (|A2| − |A1 ∩ A2|)
= |A1|+ |A2| − 2|A1 ∩ A2|

Note that we have used the subtraction rule in the above deriva-
tion: if A ⊂ B, then |B \ A| = |B| − |A|.

The inclusion and exclusion principle generalizes the above ex-
ample. Before stating and proving the formula, we prove a simple

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 129 — #145 i
i

i
i

i
i

2.9. THE PRINCIPLE OF INCLUSION 129

equation involving binomial coefficients.

Fact 2.9.0.1:(
r

s

)(
p

r

)
=

(
p

s

)(
p− s
p− r

)
where s ≤ r ≤ p

Proof.(
r

s

)(
p

r

)
=

r!

s!(r − s)!
× p!

r!(p− r)!
by formula

=
p!

s!(p− s)!
× (p− s)!

(p− r)!((p− s)− (p− r)!)
multiplying and dividing by (p− s)!

=

(
p

s

)(
p− s
p− r

)
by formula

Theorem 2.9.1 (Inclusion and exclusion principle):
Consider a set S of n elements and m subsets S1, S2, . . . , Sm

of the set S. For i1,2 , . . . , ir with 1 ≤ i1 < i2 < · · · ≤ m,
let A(i1, i2, . . . , ir) be the number of elements in the intersection
Si1 ∩ Si2 ∩ · · · ∩ Sir . Then the number of elements of S lying in
exactly k of the subsets S1, S2, . . . , Sm is given by the formula

E(k) = Ak−
(
k + 1

k

)
Ak+1+

(
k + 2

k

)
Ak+2−· · ·+(−1)m−k

(
m

k

)
Am

where

Ar =
∑

1≤i1<i2<···<ir≤m

A(i1, i2, . . . , ir).

Proof. Consider an element s ∈ S belonging to exactly p of the sub-
sets S1, S2, . . . , Sm. We shall prove that the element s contributes
zero to the right-hand side of the formula if either p < k or p > k
and the element s contributes exactly one to the right-hand side
if p = k.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 130 — #146 i
i

i
i

i
i

130 CHAPTER 2. COMBINATORICS

Case 1: p < k.
Since the element s belongs to at most k − 1 of the subsets

S1, S2, . . . , Sm, it contributes zero to Ak, Ak+1, . . . , Am. Hence the
contribution of s to the right-hand side of the formula is zero.

Case 2: p > k.
Set k + q = p where q > 0 is a positive integer.
Let us first observe that Ar =

∑
1≤1<i1<i2<···<ir≤mA(i1, i2, . . . ,

ir) has exactly
(
m
r

)
terms (since the subscripts in the sum are taken

over each r-subset of { 1, 2, . . . ,m }). Therefore the contribution
of the element s to the first term Ak is

(
p
k

)
, the contribution of

s to the second term −
(
k+1
k

)
Ak+1 is −

(
k+1
k

)(
p

k+1

)
etc. and finally

the contribution of s to the (k + q + 1)st term is (−1)q
(
k+q
k

)(
s

k+q

)
.

The element s contributes zero to Ar if r > p by the definition of
Ar. Therefore, the contribution of s to the right-hand side of the
formula is(

p

k

)(
k

k

)
−
(
k + 1

k

)(
p

k + 1

)
+

(
k + 2

k

)(
p

k + 2

)
− · · ·

+(−1)p−k

(
p

k

)(
p

p

)
Using the fact that

(
r
s

)(
p
r

)
=
(
p
s

)(
p−s
p−r

)
where s ≤ r ≤ p (see Fact

2.9.0.1), the contribution of s to the right-hand side is(
p

k

)(
p− k
p− k

)
−
(
p

k

)(
p− k

p− (k + 1)

)
+

(
p

k

)(
p− k

p− (k + 2)

)
− · · ·

+(−1)p−k

(
p− k
p− p

)
which is equal to (by taking

(
p
k

)
as a a common factor and using

the duality relation of the binomial coefficient
(
p
k

)
=
(

p
p−k

)
(see

2.3.8). (
p

k

)((
p

0

)
−
(
p

1

)
+

(
p

2

)
− · · · (−1)p−k

(
p− k
p− k

))
But by the third equation of Corollary 2.4.2.1, the bracketed ex-
pression is zero. Hence the contribution of s to the right-hand side
is zero in this case.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 131 — #147 i
i

i
i

i
i

2.9. THE PRINCIPLE OF INCLUSION 131

Case 3: p = k.
The contribution of s to the first term Ak = Ap of the right-

hand side of the formula is clearly 1. The contribution of s to
Ak+1, Ak+2 · · · is clearly zero, since s belongs to exactly k of the
subsets. Therefore, the total contribution of s to the right side of
the formula is 1− 0 + 0− · · · = 1.

From these three cases we conclude that each element belong-
ing to exactly k of the subsets S1, S2 . . . , Sm is counted once to the
right-hand side of the formula and each other element contributes
zero. Hence right-hand side counts exactly the number of elements
of A belonging to exactly k of the subsets. Hence the formula.

The alternating signs “+” and “-” (“inclusion for + and ex-
clusion for −”) in the inclusion and exclusion formula justifies its
name. Also note that the formula express the “exact number of
elements in k of the subsets ” (“E” for exact) in terms of “number
of elements in at least k of the subsets (“A” for at least) in at least
(k + 1) of the subsets, etc.).”

As a special case of the above Theorem 2.9.1 we derive the
following useful corollary.

Corollary 2.9.1.1:
Consider a set S of n elements and m subsets S1, S2, . . . , Sm of
the set S. For i1,2 , . . . , ir with 1 ≤ i1 < i2 < · · · ≤ m, let
A(i1, i2, . . . , ir) = |Si1 ∩ Si2 ∩ · · · ∩ Sir |. Then the number of el-
ements in none of the subsets is

n− A1 + A2 − · · ·+ (−1)mAm

where
Ar =

∑
1≤1<i1<i2<···<ir≤m

A(i1, i2, . . . , ir).

Proof. By the inclusion and exclusion principle (see Theorem
2.9.1), the number of elements in exactly k of the subsets
S1, S2, . . . , Sm is

E(k) = Ak −
(
k + 1

k

)
Ak+1 +

(
k + 2

k

)
Ak+2 − · · ·+ (−1)m−kAm

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 132 — #148 i
i

i
i

i
i

132 CHAPTER 2. COMBINATORICS

Setting k = 0 we have that the number of elements in none of the
subsets S1, S2, . . . , Sm is

E(0) = A0 −
(
1

0

)
A1 +

(
2

0

)
A2 − · · ·+ (−1)m

(
m

0

)
Am

But
(
p
0

)
= 1 for any non-negative integer p. Moreover, A0, by

definition, is the number of elements of S belonging to at least
zero of the subsets S1, S2, . . . , Sm which is the number of elements
of S. Therefore, the number of elements in none of the subsets is

E(0) = n− A1 + A2 − · · ·+ (−1)mAm.

2.9.1 Applications of Inclusion and Exclusion
Principle

A formula for the number of derangements of n elements:

A derangement is a permutation p on an n-set A = { 1, 2, . . . , n }
such that p(i) ̸= i for all i = 1, 2, . . . , n. In other words, derange-
ments are permutations with no fixed elements. (An element i is
a fixed element of a permutation p if p(i) = i.) A derangement is
a permutation in which no element occupies its original position.

A permutation written as a product of disjoint cycles is a de-
rangement if it has no singleton cycle.

We are interested in finding a formula for the number of de-
rangements. Before stating and proving the formula, we consider
an example to illustrate the notion.

Example 2.9.4 (Derangements):
Find the number of derangements of a 3-element set.

Solution: Consider the 3-set A = { 1, 2, 3 }. There are 3! =
1 × 2 × 3 = 6 permutations possible with the elements of A. Let
us write down the 6 permutations in one-line notation. These are:

123; 132; 213; 231; 312; 321

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 133 — #149 i
i

i
i

i
i

2.9. THE PRINCIPLE OF INCLUSION 133

Of these six permutations, the derangements, that is, permuta-
tions with no fixed elements are: p = 231; q = 312. That is,
p(1) = 2, p(2) = 3, p(3) = 1 and q(1) = 3, q(2) = 1, q(3) = 2.
Hence the number of derangements of a 3-set is 2.

In cycle notation p = (123) and q = (132) and we see p and q
have no singleton cycles. Hence p and q are the only two derange-
ments.

Theorem 2.9.2 (Formula for the number of derangements):
The number of derangements dn on n elements is

dn = n!

(
1− 1

1!
+

1

2!
− · · ·+ (−1)n 1

n!

)
Proof. Let S be the set of all n! permutations of the n-set
{ 1, 2, . . . , n }. For i = 1, 2, . . . , n let Si be the subset of S con-
sisting of all permutations on 1, 2, . . . , n for which the element i
is a fixed element. In other words, Si consists of all permutations
written in cycle notation for which the element i forms a singleton
cycle.

Therefore, the number of derangements dn is the number of
elements of S which are in none of the subsets S1, S2, . . . , Sn. By
Corollary 2.9.1.1, the number of elements of S which are in none
of the subsets S1, S2, . . . , Sn is

E(0) = A0 −
(
1

0

)
A1 +

(
2

0

)
A2 − · · ·+ (−1)n

(
n

0

)
An

Our problem reduces to calculating Ar for r = 1, 2, . . . , n. By defi-
nition of Si, Ar =

∑
1≤i1<i2<···<ir≤n |Si1∩Si2∩· · ·∩Sir | is the num-

ber of permutations in the set S in which the elements i1, i2, . . . , ir
form singleton cycles/fixed elements. In order to calculate Ar, we
first calculate the general term of Ar which is |Si1 ∩Si2 ∩· · ·∩Sir |.
To find |Si1 ∩ Si2 ∩ · · · ∩ Sir |, fix the r elements i1, i2, . . . , ir in
their respective positions. The remaining (n− r) elements may be
permuted in (n− r)! ways. Hence |Si1 ∩ Si2 ∩ · · · ∩ Sir | = (n− r)!
Since there are

(
n
r

)
terms in the sum Ar, we have Ar =

(
n
r

)
(n−r)!.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 134 — #150 i
i

i
i

i
i

134 CHAPTER 2. COMBINATORICS

Substituting Ar for r = 0, 1, . . . , n in

E(0) = A0 −
(
1

0

)
A1 +

(
2

0

)
A2 − · · ·+ (−1)n

(
n

0

)
An,

we get

E(0) =

(
n

0

)
(n− 0)!−

(
n

1

)
(n− 1)! +

(
n

2

)
(n− 2)!

−
(
n

3

)
(n− 3)! + · · ·+ (−1)n

(
n

n

)
(n− n)!

=
n!

0!
− n!

(n− 1)!
+

n!

(n− 2)!
− n!

(n− 3)!

+ · · ·+ (−1)n n!

(n− n)!
using

(
n

k

)
=

n!

k!(n− k)!

= n!

(
1− 1

1!
+

1

2!
− 1

3!
+ · · · (−1)n 1

n!

)

Remark 2.9.1 (Number of derangements):
By Theorem 2.9.2, the number of derangements dn on n symbols
is

dn = n!

(
1− 1

1!
+

1

2!
− · · ·+ (−1)n 1

n!

)
But we know that the inverse of the number e is given by the
alternating infinite series

e−1 = 1− 1

1!
+

1

2!
− 1

3!
+ · · · (−1)n 1

n!
+ (−1)n+1 1

(n+ 1)!
+ · · ·

Multiplying both sides by n! we get,

n!e−1 = n!

(
1− 1

1!
+

1

2!
− 1

3!
+ · · · (−1)n 1

n!

)
+(−1)n+1 1

n+ 1
+ (−1)n+2 1

(n+ 1)(n+ 2)
+ · · ·

= dn + (−1)n+1 1

n+ 1
+ (−1)n+2 1

(n+ 1)(n+ 2)
+ · · ·

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 135 — #151 i
i

i
i

i
i

2.9. THE PRINCIPLE OF INCLUSION 135

If n is sufficiently large, the sum (−1)n+1 1
n+1

+(−1)n+2 1
(n+1)(n+2)

+

· · · can be made arbitrarily small. Hence we may take n!
e
as a good

approximation for the number of derangements. In fact, ⌊n!
e
⌉, the

nearest integer to the number n!
e

is the exact value of dn. (For
example, ⌊5.5⌉ = ⌊5.9⌉ = 6 whereas ⌊5.4⌉ = 5.)

Notation for the number of derangements on n symbols. This
number is called n subfactorial in the book (see [6]) and denoted
by n followed by the exclamation symbol inverted like factorial
inverted.

Example 2.9.5:
Find the number of derangements on 3 symbols and on 4 symbols.

Solution: The number of derangements on 3 symbols is 3!(1−
1
1!
+ 1

2!
− 1

3!
) = 6− 6 + 3− 1 = 2.

By Remark 2.9.1, the number of derangements on 4 symbols
is ⌊4!

e
⌉ = ⌊ 24

2.7
⌉ = ⌊8.8⌉ = 9 (since the real number e ≈ 2.7).

Example 2.9.6 (A problem in probability):
(See Chapter 6 for more details.) Consider n gentlemen attending
a party. Their n hats are placed in a checkroom. Then the n
hats are mixed and returned at random to the gentlemen after the
party is over. Find the probability that no one receives his own
hat.

Solution: By definition

The probability =
The number of favorable cases

The total number of possible cases

The total number of possible cases is the total number of ways
in which the n hats can be mixed which is the number of per-
mutations of n hats. Hence the total number of possible cases is
n!.

The number of favorable cases is the number of ways in which
no gentleman gets his own hat, which is nothing but the num-
ber of permutations of n hats in which the i-th man will not
get his own hat for all i = 1, 2, . . . , n. This is the number of
derangements of n hats, which by Theorem 2.9.2 is the number

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 136 — #152 i
i

i
i

i
i

136 CHAPTER 2. COMBINATORICS

dn = n!
(
1− 1

1!
+ 1

2!
− · · ·+ (−1)n 1

n!

)
. Hence the required proba-

bility is dn
n!

= 1 − 1
1!
+ 1

2!
− · · · + (−1)n 1

n!
≈ 1

e
by Remark 2.9.1, if

n is sufficiently large.

Example 2.9.7 (A chess board problem):
Consider the usual 8× 8 chess board. Suppose we are given eight
rooks. Find the number of ways in which these eight rooks can
be placed on the board in such a way that no rook can attack
another (that is, no two rooks are in the same row (line) or in the
same column) and the second main diagonal/the black diagonal
(diagonal from the bottom left square to the top right square) is
free of rooks.

Solution: (Bijective proof)

Let the eight rooks be 1, 2, . . . , 8. Consider a derangement
i1i2 · · · i8 on the 8-set { 1, 2, . . . , 8 } where ik ̸= k for each k =
1, 2, . . . , 8. To this derangement, we associate a board position for
8 rooks as follows:

We place the rook k in the j-th line of the k-th column of the
chess board, if ik = j for k = 1, 2, . . . , 8. (For example, if the
derangement is 87654321, then we place the rook 1 in the 8th line
of the first column, the rook 2 in the 7th line of the second column,
etc.) Since ik ̸= k, no rook will occupy the main diagonal and no
rook will attack another (8 rooks are placed in different lines and
different columns).

Conversely, consider a position of 8 rooks in the board accord-
ing to the condition imposed in the example. We construct a
derangement i1i2 · · · i8 from the given position of rooks as follows:
ik is equal to the integer j if the rook in the kth column occupies
the jth line. Since no two rooks are in the same column, ik is
well defined. Then i1i2 · · · i8 is a derangement, since ik ̸= k (be-
cause the second main diagonal is free of rooks) and i1i2 · · · i8 is a
permutation of 1, 2, . . . , 8 (because no two rooks are in the same
line.)

Thus we have established a bijection between the derange-
ments on the 8-set { 1, 2, . . . , 8 } and the set of possible posi-
tions of 8 rooks on the board such that no rook can attack an-
other with the second main diagonal being free of rooks. There-

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 137 — #153 i
i

i
i

i
i

2.9. THE PRINCIPLE OF INCLUSION 137

fore, by Proposition 2.2.1, the number possible positions of the
8 rooks is the number of derangements of an 8-set which is
d8 = 8!

(
1− 1

1!
+ 1

2!
− · · ·+ 1

8!

)
= 14833.

2.9.2 Application of Inclusion and Exclusion
Principle to Elementary Number Theory

(See Chapter 3, for more information.)

The Euler ϕ-function ϕ(n): For a positive integer n, we
define ϕ(n), called the Euler ϕ-function, as the number of positive
integers ≤ n and relatively prime to the integer n. (Two positive
integers p and q are relatively prime, denoted by p ⊥ q, if their
only common positive divisor is unity.)

Example 2.9.8:
ϕ(1) = 1, ϕ(2) = 1,ϕ(3) = 2.

ϕ(8) = 4, because there are four positive integers ≤ 8 and
relatively prime to 8. These are 1, 3, 5, 7.

ϕ(9) = 6, because there are six positive integers ≤ 8 and rela-
tively prime to 8. These are 1, 2, 4, 5, 7, 8.

ϕ(p) = p−1, for any prime number p, since any positive integer
< p is relatively prime to p.

We are interested in finding a formula for ϕ(n) in terms of n
and its prime factors.

We recall the fundamental theorem of arithmetic, also called
the unique factorization theorem. A positive integer n > 1 is a
prime number if its only positive divisors are unity and itself.

Theorem 2.9.3 (Fundamental theorem of arithmetic):
Any positive integer n > 1 can be factored in a unique way as

n = pk11 p
k2
2 · · · pkmm

where p1 < p2 · · · < pm are prime numbers and ki > 0 are integers
for i = 1, 2, . . . ,m.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 138 — #154 i
i

i
i

i
i

138 CHAPTER 2. COMBINATORICS

Floor function: For a real number x, ⌊x⌋ (read “floor of x”)
denotes the greatest integer ≤ x. Symbolically,

⌊x⌋ = max
n,an integer

n ≤ x.

Example 2.9.9 (Floor function):
For example, ⌊5.99⌋ = ⌊5⌋ = 5; ⌊−5.4⌋ = −6. ⌊16

3
= 5⌋.

Note that for positive integers n and k, ⌊n
k
⌋ is the quotient

obtained by dividing n by k. In other words, ⌊n
k
⌋ is the number of

integers in the set {1, 2, . . . , n } which are multiples of the integer
k (that is divisible by k).

We now state and prove a formula for ϕ(n).

Theorem 2.9.4:
Let n be a positive integer. Then the number of positive integers
≤ n and relatively prime to n is

ϕ(n) = n
∏

p,a prime number
p|n

(
1− 1

p

)
.

That is, the above product is taken over all prime divisors p of n.

Proof. Let { p1, p2, . . . , pm } be the set of distinct prime divi-
sors of the integer n. Consider the set A = { 1, 2, . . . , n } For
i = 1, 2, . . . ,m, denote by Si the set of integers belonging to the
set A which are divisible by the prime number pi.

We observe that the number of positive integers ≤ n and rela-
tively prime to n is the same as the number of integers in the set
A which are not divisible by p1, p2, . . . , pm. (For if k is an integer
with 1 ≤ k ≤ n and relatively prime to n then k is not divisible
by any of the numbers pi for i = 1, 2, . . . ,m. Conversely, if k ∈ A
is not divisible by any of the pi’s, then k is relatively prime to n.)

Hence we calculate the number of integers in the set A not
divisible by any of the pi’s. By our definition of the sets Si’s, this
is nothing but the number of elements of A belonging to none of
the sets Si for i = 1, 2, . . . ,m.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 139 — #155 i
i

i
i

i
i

2.9. THE PRINCIPLE OF INCLUSION 139

By Corollary 2.9.1.1, this number is

E(0) = n− A1 + A2 − · · ·+ (−1)mAm

where

Ar =
∑

1≤1<i1<i2<···<ir≤m

|Si1 ∩ Si2 ∩ · · ·Sir |.

|Si1 ∩ Si2 ∩ · · ·Sir | is the number of elements of A divisible by
pi1 , pi2 , . . . , pir , that is, divisible by the product pi1pi2 · · · pir (since
pi1 , pi2 , . . . , pir are primes). But this number is the floor function
⌊ n
pi1pi2 ···pir

⌋ = n
pi1pi2 ···pir

(since the product pi1pi2 · · · pir divides n,

see Example 2.9.9). Therefore,

Ar =
∑

1≤i1<i2<···<ir≤m

n

pi1pi2 · · · pir

Substituting Ar in E(0) = n − A1 + A2 − · · · + (−1)mAm we get
the number of required integers is

E(0)

= n−
∑

1≤i1≤m

n

pi1
+

∑
1≤i1<i2≤m

n

pi1pi2
− · · · (−1)m n

p1p2 · · · pm

= n

(
1−

∑
1≤i1≤m

1

pi1
+

∑
1≤i1<i2≤m

1

pi1pi2
− · · · (−1)m 1

p1p2 · · · pm

)

= n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(
1− 1

pm

)
= n

∏
p

p is a prime divisor of n

(
1− 1

p

)

Example 2.9.10:
Find ϕ(30).

Solution: The prime divisors of 30 are 2, 3, 5. Hence by Theo-
rem 2.9.4, ϕ(30) = 30(1− 1

2
)(1− 1

3
)(1− 1

5
) = 30× 1

2
× 2

3
× 4

5
= 8.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 140 — #156 i
i

i
i

i
i

140 CHAPTER 2. COMBINATORICS

The formula of the Theorem 2.9.4 can be written elegantly us-
ing theMöbius function µ(n). For a positive integer n, the function
µ(n) is defined as

µ(n) =


1 if n = 1
0 if n is divisible by a square of a prime number
(−1)k if n = p1p2 · · · pk where pi’s are distinct primes

For example, µ(16) = 0 since 22 divides 16. µ(30) = µ(2×3×5) =
(−1)3 = −1.

Theorem 2.9.5 (Euler ϕ function using Möbius function µ):
For a positive integer n,

ϕ(n) = n
∑
d

µ(d)

d

where the sum is taken over all positive divisors d of n.

Proof. Consider the sum

n
∑

d, a divisor of n

µ(d)

d
(2.3)

By the fundamental theorem of arithmetic 2.9.3, the integer n can
be written as the product

n = pk11 p
k2
2 · · · pkmm

where p1 < p2 · · · < pm are prime numbers and ki > 0 are integers
for i = 1, 2, . . . ,m. Therefore any positive divisors d of n may be
written in the form d = pq11 p

q2
2 · · · pqmm with 0 ≤ qi ≤ ki. By the

definition of the Möbius function µ(d), µ(d) = 0 if there is an
i with qi ≥ 2 (since the prime square p2i divides d.) Hence such
divisors d contribute zero to the sum (2.3). Therefore only the
divisors d of the form d = pq11 p

q2
2 · · · pqmm with qi = 0 or 1 contribute

to the sum (2.3), that is, only the divisors d which are either 1
or the product of distinct prime numbers are counted in the sum
(2.3). By definition of µ(d),

µ(d) =

{
1 if d is a product of even number of some distinct pi’s
−1 if d is a product of odd number of some distinct pi’s

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 141 — #157 i
i

i
i

i
i

2.9. THE PRINCIPLE OF INCLUSION 141

Hence the sum 2.3 can be written as

n
∑

d, a divisor of n

µ(d)

d

= n

µ(1)
1

+
∑

d, a product of distinct primes pi’s

µ(d)

d


= n

(
1 +

∑
1≤i≤m

µ(pi)

pi
+

∑
1≤i<j≤m

µ(pipj)

pipj
+ · · ·+ µ(p1p2 · · · pm)

p1p2 · · · pm

)

= n

(
1−

∑
1≤i≤m

1

pi
+
∑

1≤i≤m

1

pipj
− · · ·+ (−1)m 1

p1p2 · · · pm

)

= n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(
1− 1

pm

)
= n

∏
p

p is a prime divisor of n

(
1− 1

p

)
= ϕ(n)

Sieve of Eratosthenes:
For a real number x, let us denote by π(x) the number of prime
numbers ≤ x. For example, π(23) = 9 because there are nine
prime numbers, namely, 2, 3, 5, 7, 11, 13, 17, 19, 23 are ≤ 23. Ap-
parently, there is no closed formula for π(x). However there is an
asymptotic formula for π(x) which says that

lim
x→∞

π(x)

(x/loge x)
= 1.

The above equation is called the Prime number theorem. We first
prove the following simple fact concerning a sufficient condition to
test primality. A divisor d of an integer n is a prime divisor if d is
prime.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 142 — #158 i
i

i
i

i
i

142 CHAPTER 2. COMBINATORICS

Fact 2.9.5.1 (A sufficient condition to test primality):
Let n ≥ 2 be a positive integer. If n has no prime divisors ≤

√
n,

then n is a prime number.

Proof. If n were not a prime, n = ab for integers a ≥ 2, b ≥
2. Clearly, both a and b cannot be strictly greater than

√
n, for

otherwise their product will be > n. So at least one of a and b, say
a must be ≤

√
n. But then, any prime factor of a, which is also a

prime factor of n, must be ≤
√
n.

Remark 2.9.2 (Algorithm: Sieve of Eratosthenes):
The above Fact 2.9.5.1 gives us a method (or algorithm) to find
all prime numbers ≤ n if we know the prime numbers ≤

√
n.

Algorithm: Write down the list of all integers from 2 to n. Let
p1 = 2, p2 = 5, . . . , pm be the known prime numbers ≤

√
n. Now

strike out the numbers of the list which are divisible by p1, then
strike out the numbers divisible by p2, and so on, and finally strike
out the numbers divisible by pm. By the Fact 2.9.5.1, the numbers
remaining in the list are all prime numbers >

√
n and ≤ n. This

method of generating prime numbers is known as the “sieve of
Eratosthenes.”

Theorem 2.9.6:
If n is a positive integer then

π(n)− π(
√
n) = −1 + n

∑
d

µ(d)

d

where the sum is taken over all divisors d of n.

Proof. Let p1, p2, . . . , pk be the prime numbers ≤
√
n. Let S =

{ 2, 3, . . . , n }. Note that |S| = n−1. For i = 1, 2, . . . , pm, let Si be
the subset consisting of all integers in S which are divisible by the
prime pi. By Remark 2.9.2, the integers of the set S which do not
belong to any of the sets Si for i = 1, 2, . . . , n are prime numbers
>
√
n and ≤ n. Using the notation π(x), the number of integers

which are in none of the sets Si is π(n)− π(
√
n).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 143 — #159 i
i

i
i

i
i

2.9. THE PRINCIPLE OF INCLUSION 143

But this number can be computed in a second way using the
principle of inclusion and exclusion. By Corollary 2.9.1.1, the
number of elements in none of the sets is

(n− 1)− A1 + A2 − · · ·+ (−1)mAm (2.4)

where Ar =
∑

1≤1<i1<i2<···<ir≤m |Si1∩Si2∩· · ·Sir |. By the definition
of Si, |Si1∩Si2∩· · ·Sir | is the number of integers in the set A which
are divisible by pi1 , pi2 , . . . , pir , that is divisible by the product
pi1pi2 · · · pir (since pij ’s are primes) (refer to Example 2.9.9). This
number is the quotient n

pi1pi2 ···pir
. Substituting the values of Ar

(r = 1, 2, . . . ,m) in Equation 2.4, we get

π(n)− π(
√
n) = −1 + n−

∑
1≤i≤m

n

pi
+

∑
1≤i<j≤m

n

pipj
− · · ·

+(−1)m n

p1p2 · · · pm

= −1 + n
∏
p

a prime divisor of n

(
1− 1

p

)

= −1 + n
∑
d

µ(d)

d
by Theorem 2.9.5

2.9.3 Applications to Permanents

The permanent of a square matrix is the sum of the products of
the entries of the matrix taken only one entry from each row and
each column. Thus the permanent of a square matrix has the same
expansion as the determinant of the matrix except that each term
of the permanent is assigned a plus sign while the determinant
alternates between a plus sign and minus sign. We denote the
permanent of a matrix M by per(M).

Hence permanents can be expanded similar to the Laplace ex-
pansion for determinants. The following examples illustrate the
concept.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 144 — #160 i
i

i
i

i
i

144 CHAPTER 2. COMBINATORICS

Example 2.9.11:

The permanent of

(
a b
c d

)
is ad+ bc whereas its determinant is

ad− bc.

Example 2.9.12 (Determinants and permanents):
The permanent of the matrix (we expand similar to the Laplace
expansion of determinants) a b c

d e f
g h i


is a(ei+ fh) + b(di+ gf) + c(dh+ ge) = aei+ afh+ bgf + cdh+
bdi+ cge. Its determinant is a(ei− fh)− b(di− gf)+ c(dh− ge) =
aei− afh+ bgf − bdi+ cdh− cge.

In a formal manner, the permanent of the square matrix
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

...
an1 an2 . . . ann


is defined as the number∑

p

a1p1a2p2 · · · anpn

where the sum is taken over all possible permutations
p = (p1, p2, . . . , pn) on the set { 1, 2, . . . , n }. Hence the perma-
nent of an n × n square matrix possesses exactly n! terms (since
there are n! permutations possible on an n-set) and is the sum
of the products of all possible permutations of the set [n]. Note
that the action of the permutation p on the element i is denoted
conveniently by pi instead of p(i).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 145 — #161 i
i

i
i

i
i

2.9. THE PRINCIPLE OF INCLUSION 145

Example 2.9.13:
Find the permanent of the 3× 3 matrix 1 1 1

1 1 1
1 1 1


Solution: Each term of the permanent is the sum of the product

taken only one element from each row and each column. Hence
each term of the permanent is 1 × 1 × 1 = 1 and the permanent
has exactly 3! terms. Hence the value is 3! = 6.

More generally, the permanent of an n × n matrix with each
entry 1 is n!.

Example 2.9.14:
Find the permanent of the n × n matrix (aij) with each entry in
the main diagonal is 0 and all other entries are 1.

Solution: By definition the permanent is∑
p

a1p1a2p2 · · · anpn

where p = (p1, p2, . . . , pn) is a permutation of 1, 2, . . . , n. Since
the diagonal entries aii are zero, for permutations p for which
p(i) = pi = i for some i, we have a1p1a2p2 · · · anpn = 0. Therefore
only the permutations p for which pi ̸= i for all i = 1, 2, . . . , n
contribute in the evaluation of the permanent. But by definition
such permutations are called derangements. Since aij = 1 if i ̸= j,
we have that the permanent is equal to

∑
p

n ones︷ ︸︸ ︷
1× 1 · · · × 1

where the sum is taken over all derangements of the set
{ 1, 2 . . . , n }.

Since each term of the sum is 1, the permanent is the num-
ber of derangements on the n-set { 1, 2 . . . , n } which is dn =
n!
(
1− 1

1!
+ 1

2!
− · · ·+ (−1)n 1

n!

)
. (See Theorem 2.9.2.)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 146 — #162 i
i

i
i

i
i

146 CHAPTER 2. COMBINATORICS

Property 2.9.1 (Permanents and determinants):
The permanents satisfy the following properties:

1. If A is an n × n square matrix with real entries, then
per(A) = per(At) where At is the transpose of A. (The trans-
pose of A is the matrix obtained by interchanging the rows and
columns of A.)

2. If A,B are two square matrices of order n × n, then in
general

per(A×B) ̸= per(A)× per(B)

(unlike in determinants).

3. There is no known reasonable way (technically a “polyno-
mial time”) to calculate the permanent of a matrix (unlike deter-
minants).

4. The addition of a constant multiple of a row (column) to
another row (column) does modify the value of the permanent
(unlike the determinant).

Example 2.9.15 (Permanents and product of the row sums of a
square matrix):

Consider the 2×2 matrix

(
m11 m12

m21 m22

)
. The product of the row

sums of the above matrix is (m11 +m12)(m21 +m22) = m11m21 +
m11m22 +m12m21 +m12m22

The above product of the row sums can be viewed as∑
j

m1j1m2j2

where the sum is taken over all possible functions j from the set
{ 1, 2 } to itself. Note that the value of the function j on 1 is
denoted by j1 instead of j(1). Similarly for j2. The (2

2 = 4) differ-

ent functions from the set { 1, 2 } to itself are

(
1 2
1 1

) (
1 2
1 2

)
(

1 2
2 1

) (
1 2
2 2

)
.

The four functions will be written simply as (1, 1);(1, 2);(2, 1);(2, 2).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 147 — #163 i
i

i
i

i
i

2.9. THE PRINCIPLE OF INCLUSION 147

More generally, the product of the row sums of an n×n matrix,
M = (mij) is ∑

j

m1j1m2j2 · · ·mnjn ,

where the sum is taken over all possible functions j =
(j1, j2, . . . , jn) from the set { 1, 2, . . . , n } to itself. By Theorem
2.2.2, the number of terms in the above sum is nn.

If we restrict the functions j = (j1, j2, . . . , jn) from the set
{ 1, 2, . . . , n } to itself, that is, to bijections (permutations) we get,
by definition, the value of the permanent of the matrix (mij).

Now consider the matrix,Mr, obtained by replacing the entries
of some r columns, say the columns 1, 2, . . . , r of the matrix M ,
by zeros. That is,

Mr =


0 0 . . . 0 . . . m1,r+1 . . . m1n

0 0 . . . 0 . . . m2,r+1 . . . m2n
...

...
...

...
...

...
...

...
0 0 . . . 0 . . . mn,r+1 . . . mnn


The sum of the product of the row sums of the matrix Mr is
denoted by s(Mr) where

s(Mr) =
n∏

i=1

(mi,r+1 +mi,r+2 + · · ·+min).

By multiplying term by term the above product of the sums, we
obtain

s(Mr) =
∑
j

m1j1m2,j2 · · ·mn,jn

where the sum is taken over all functions j = (j1, j2, . . . , jn) from
the n-set { 1, 2, . . . , n } to {r+ 1, r+2, . . . , n }, that is, the sum is
taken over all ordered n-tuples (j1, j2, . . . , jn) not containing the
components r + 1, r + 2, . . . , n.

With Example 2.9.15 in mind, we are going to derive an ex-
pression for the permanent of a square matrix using the weighted
version of the exclusion and inclusion principle which we shall

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 148 — #164 i
i

i
i

i
i

148 CHAPTER 2. COMBINATORICS

state and prove now.

Weighted version of the inclusion and exclusion principle:

Theorem 2.9.7:
Consider an n-set S. Let each element s ∈ S be associated to a
real number w(s), called the weight of the element s. Consider
m subsets S1, S2, . . . , Sm of the set S. Let w(i1, i2, . . . , ir) be the
sum of the weights of all the elements belonging to the intersection
Si1 ∩ Si2 ∩ · · · ∩ Sir . Then the sum of the weights of the elements
of the set S which are in exactly k of the subsets S1, S2, . . . , Sm is

E(k) = Ak−
(
k + 1

k

)
Ak+1+

(
k + 2

k

)
Ak+2−· · ·+(−1)m−k

(
m

k

)
Am

(2.5)
where A0 = sum of the weights of all the elements of S and Ar =∑
w(i1, i2, . . . , ir) where the sum is taken over all r-subsets

{ı1, i2, . . . , ir } of { 1, 2, . . . , n } with 1 ≤< i1 < i2 < · · · < ir ≤ m.
(Note that if w(s) = 1 for all s ∈ S, we get our Theorem 2.9.1.)

Proof. Consider an element s ∈ S belonging to exactly p of the
subsets S1, S2, . . . , Sm. We shall prove that the element s con-
tributes zero to the right-hand side of the formula 2.5 for Ek if
either p < k or p > k and the element s contributes exactly w(s)
to the right-hand side of the formula 2.5 for Ek if p = k.

The proof is essentially the same as the proof of the Theo-
rem 2.9.1 with the following slight modification which takes into
account the weight of s ∈ S.

Case 1 remains the same.
In Case 2, multiply the expression(

p

k

)(
k

k

)
−
(
k + 1

k

)(
p

k + 1

)
+

(
k + 2

k

)(
p

k + 2

)
− · · ·

+(−1)p−k

(
p

k

)(
p

p

)
by w(s) and proceed.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 149 — #165 i
i

i
i

i
i

2.9. THE PRINCIPLE OF INCLUSION 149

In Case 3, replace “1” by w(s). That is, read the first sentence
of Case 3 as “the contribution of s to the first term Ak = Ap of
the right-hand side of the formula is clearly w(s) and proceed.

By setting k = 0 in the above theorem we get the following
corollary.

Corollary 2.9.7.1:
The sum of the weights of the elements of the set S which are in
none of the k subsets S1, S2, . . . , Sm is

E(0) = A0 − A1 + A2 − · · ·+ (−1)mAm

where
Ar =

∑
1≤i1<i2<···<ir≤m

w(i1, i2, . . . , ir)

with w(i1, i2, . . . , ir) =
∑

s∈Si1
∩Si2

∩···∩Sir
w(s).

Theorem 2.9.8:
Consider an n×n matrixM = (mij.) LetMr be a matrix obtained
from the matrix M by replacing some r columns of M by zeros.
Let s(Mr) denote the product of the row sums of the matrix Mr

and let sr be the sum of the s(Mr) taken over all possible choices
of Mr. That is sr =

∑
Mr
s(Mr). We then have

per(M) = s0 − s1 + s2 − · · · (−1)n−1sn−1.

Proof. We shall apply the weighted version of the principle of in-
clusion and exclusion (see Corollary 2.9.7.1) to prove the expres-
sion.

To do this, let S be the set of all functions j = (j1, j2, . . . , jn)
from the n-set { 1, 2, . . . , n } onto itself. (Note that we denote
j(1) by j1, j(2) by j2, etc.) Hence a function from the n-
set { 1, 2, . . . , n } onto itself is nothing but an ordered n-tuple
of elements from { 1, 2, . . . , n }. (See the first interpretation of
functions in the beginning of the chapter.) To each element
j = (j1, j2, . . . , jn) of the set S, we associate a weight w(j) =
m1j1m2j2 · · ·mnjn .

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 150 — #166 i
i

i
i

i
i

150 CHAPTER 2. COMBINATORICS

Then per(M), by definition, is the sum of the weights of all
the elements w(j), with j ∈ S and j is a permutation on the
set { 1, 2, . . . , n }. Define n subsets S1, S2, . . . , Sn as follows. For
r = 1, 2, . . . , n, let Sr be the subset of S consisting of all ordered n-
tuples (j1, j2, . . . , jn) not containing the integer r as its component,
that is, jk ̸= r for all k = 1, 2, . . . , n.

Now let us compute Ar for r = 0, 1, . . . , n where

Ar =
∑

1≤j1<j2<···≤n

 ∑
s∈Sj1

∩Sj2
···∩Sjr

w(s)

 .

But by the definition of Si’s, an ordered n-tuple s ∈ Sj1 ∩
§j2 · · · ∩ Sjr does not contain the components j1, j2, . . . , jr. Hence∑

s∈Sj1
∩Sj2

···∩Sjr
w(s) is the product of the row sums of the coeffi-

cients of the matrix Mr obtained from the matrix M by replacing
the columns j1, j2, . . . , jr by the zero entries which is s(Mr) (by
Example 2.9.15). Hence Ar =

∑
1≤j1<j2<···≤n s(Mr) where the sum

is taken over all possible choices of Mr. But this sum is equal to
sr.

By Corollary 2.9.7.1, the sum of the weights of the elements of
S belonging to none of the sets S1, S2, . . . , Sn is

E(0) = A0 − A1 + A2 − · · ·+ (−1)nAn

= s0 − s1 + s2 − · · ·+ (−1)nsn
= s0 − s1 + s2 − · · · (−1)n−1sn−1.

(since Mn is the zero matrix, sn = 0)

Hence the formula.

We now prove two corollaries.

Corollary 2.9.8.1:
For all non-negative integers n we have the equality

n! =
n−1∑
r=0

(−1)r
(
n

r

)
(n− r)n

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 151 — #167 i
i

i
i

i
i

2.9. THE PRINCIPLE OF INCLUSION 151

Proof. Consider the n×n matrix M = (mij where each entry mij

is 1. Then by Example 2.9.3, the permanent of the matrix M is
n!.

We shall now compute the permanent of the matrix M in a
second way using the formula of Theorem 2.9.8

per(M) = s0 − s1 + s2 − · · · (−1)n−1sn−1 (2.6)

For r = 0, 1, . . . , n−1, letMr be the matrix obtained by replac-
ing the columns j′1, j

′
2, . . . , j

′
r of the matrix M by the zero entries.

Then s(Mr) is the product of the row sums of the matrixMr. Since
the sum of each row of Mr is (n− r), we have the product of the
row sums of Mr is (n − r)n, that is, s(Mr) = (n − r)n. Now by
definition, sr =

∑
Mr
s(Mr) where the sum is taken over all possi-

ble choices of Mr. But r columns can be chosen from n columns
in
(
n
r

)
ways. Hence sr =

∑
Mr
s(Mr) =

(
n
r

)
(n − r)n. Substituting

the values of sr in the right-hand side of Equation (2.6), we get,

per(M) = s0 − s1 + s2 − · · · (−1)n−1sn−1

=

(
n

0

)
(n− 0)n −

(
n

1

)
(n− 1)n + · · ·

(−1)n−1

(
n

n− 1

)
(n− (n− 1))(n−(n−1)

=
n−1∑
r=0

(−1)r
(
n

r

)
(n− r)n

Thus the corollary is proved.

Corollary 2.9.8.2:
The number of derangements dn on an n-set is

dn =
n−1∑
r=0

(−1)r
(
n

r

)
(n− r)r(n− r − 1)n−r.

Proof. Consider the matrixM = (mij) with each entry in the main
diagonal mii zero and all other entries 1. By Example 2.9.14, the
permanent of the matrix M is dn.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 152 — #168 i
i

i
i

i
i

152 CHAPTER 2. COMBINATORICS

Now let us calculate the permanent of the matrix M in a dif-
ferent way using the formula of Theorem 2.9.8

per(M) = s0 − s1 + s2 − · · · (−1)n−1sn−1 (2.7)

For r = 0, 1, . . . , n−1, letMr be the matrix obtained by replacing
the columns j′1, j

′
2, . . . , j

′
r of the matrixM by the zero entries. Then

s(Mr) is the product of the row sums of the matrix Mr. The row
sum s(li) of the entries in the ith line of the matrix Mr is given by

s(li) =

{
n− r if i ∈ { j′1, j′2, . . . , j′r }
n− r − 1 otherwise

In other words, the row sum ofMr is n−r for the rows j′1, j′2, . . . , j′r
and it is equal to n−r−1 for all other n−r rows. Hence the product
of the row sums of the matrixMr is s(Mr) = (n−r)r(n−r−1)n−r.
Therefore,

sr =
∑
Mr

s(Mr)=
∑
Mr

(n− r)r(n− r − 1)n−r

=

(
n

r

)
(n− r)r(n− r − 1)n−r

(since there are
(
n
r

)
possible choices of r columns out of n available

columns). Substituting the values of sr to the right-hand side of
Equation (2.7), we obtain

per(M) = s0 − s1 + s2 − · · · (−1)n−1sn−1

=
n−1∑
r=0

(−1)rsr

=
n−1∑
r=0

(−1)r
(
n

r

)
(n− r)r(n− r − 1)n−r

This proves the corollary.

2.10 Generating Functions and Recur-

rence Relations

Consider an infinite sequence of numbers (ai)i≥0 = (a0, a1, . . .).
Then the infinite sum in the “indeterminate” z (called the power

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 153 — #169 i
i

i
i

i
i

2.10. GENERATING FUNCTIONS 153

series)

g(z) = a0 + a1z + a2z
2 + · · · =

∞∑
i=0

aiz
i

is called an ordinary generating function or simply the generating
function of the sequence (ai). The function g(z) “encapsulates”
the entire infinite sequence (ai).

A note on the symbol “x”:
The symbol “x” is used very often in mathematics. But the mean-
ing of “x” varies according to the subtle context. In elementary
algebra “x” denotes an unknown number. For example, if we want
to solve the equation x2 − x− 1 = 0, then “x” here represents an
“unknown.”

The same equation x2−x−1 = 0 can be solved using the graph-
ical method: In this method, we draw the graph of the equation
y = x2 and find its intersection with the graph of the straight
line y − x − 1 = 0. In this graphical method, “x” is no longer an
unknown but is a variable.

Now there is another generalization of the symbol “x” in which
“x” represents an indeterminate. It is simply a symbol with no
condition imposed on it, except that the symbol should satisfy
the fundamental laws of algebra. This means that with “x” and
with other numbers or other indeterminates, we can perform the
operation of addition, subtraction, multiplication and perhaps di-
vision and the operations of addition and multiplication are com-
mutative and multiplication is distributive over addition. The un-
knowns and the variables also obey these laws but the idea of an
indeterminate is more general because we do not assume that an
indeterminate does belong to a number system (see the book, The
Skeleton Key of Mathematics, by D. E. Littlewood).

The following examples illustrate the concept of a generating
function.

Example 2.10.1 (Geometric series):
Consider the sequence (ai)

∞
i=0 = (1, 1, 1, . . .). Then the generating

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 154 — #170 i
i

i
i

i
i

154 CHAPTER 2. COMBINATORICS

function of the sequence (ai) is

g(z) = 1 + z + z2 + z3 + · · · .

We know that the right-hand side of the above equation is a ge-
ometric series which converges to 1

1−z
for all z with the property

that |z| < 1. Hence the function 1
1−z

“encapsulates” the whole
sequence (ai).

Example 2.10.2 (Binomial theorem):
The generating function of the sequence (ai) where a0 = 1,a1 =
r,a2 = r(r − 1)/2!,a3 = r(r − 1)(r − 2)/3!, etc., is

1 + rz + r(r − 1)z2/2! + r(r − 1)(r − 2)z3/3! + · · ·

From the binomial Theorem 2.4.2, the above series becomes an
infinite series if r is not a non-negative integer and it converges to
(1 + z)r for all z satisfying the inequality |z| < 1.

If r is a non-negative integer, then the series becomes a finite
series because ar+1 = ar+2 = · · · = 0 and its value is again (1+z)r

for all values of z.

The behavior of the geometric series of Example 2.10.1 which
converges for all z with |z| < 1 and diverges for all z with |z| > 1 is
typical. In fact, every power series a0+ a1z+ a2z

2+ · · · converges
inside a circle |z| < r, called the circle of convergence, and diverges
outside this circle except in the following two cases. The series
converges for all values of z or it converges only for z = 0.

We state the following theorem due to Abel without proof.
(For a proof, see [8]).

Theorem 2.10.1:
Consider the power series a0+a1z+a2z

2+· · · where the coefficients
ai’s are real or complex numbers. Then there exists a real number
r, called the radius of convergence, such that 0 ≤ r ≤ ∞, satisfying
the following properties:

1. The series converges absolutely for all z satisfying the in-
equality |z| < r. If s is a real number such that 0 ≤ s < r then the

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 155 — #171 i
i

i
i

i
i

2.10. GENERATING FUNCTIONS 155

series converges uniformly for all z with |z| ≤ s. 2. For all z with
|z| > r, the series is divergent.

3. For all z with |z| < r, the sum of the series is an analytic
function. We can differentiate term by term the series a0 + a1z +
a2z

2+· · · and the derived series has the same radius of convergence
as the original series.

The circle { z : |z| = r } is called the circle of convergence of
the series a0 + a1z + a2z

2 + · · · . Nothing can be said about the
convergence of the series for values of z on the circle of convergence.
The following due to Hadamard, gives a formula for the radius of
convergence r.

1/r = lim sup
n→∞

|an|1/n.

If the series is convergent only for z = 0, then it may be possible to
obtain a convergent series for the sequence (ai/i!). This motivates
the following definition.

Exponential generating function

Consider the infinite sequence (ai)
∞
i=0. Then the infinite sum

g(z) = a0z + a1z/1! + a2z
2/2! + a3z

3/3! + · · ·

is called the exponential generating function of the sequence (ai).

Example 2.10.3 (Exponential generating function):
The exponential generating function of the sequence (ai) =
(1, 1, . . .) is

1 + z/ 1! + z2/2! + z3/3! + · · ·

which is the familiar exponential function ez. The series converges
for all values of z.

Example 2.10.4 (Bernoulli numbers):
The exponential generating function of the Bernoulli numbers
(Bi)

∞
i=0 is the function z

ez−1
.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 156 — #172 i
i

i
i

i
i

156 CHAPTER 2. COMBINATORICS

Let us expand z
ez−1

. as an infinite series. ez = 1 + z + z2/2! +
z3/3! + · · · . Hence

z

ez − 1
=

1

1 + z/2! + z2/3! + · · ·
=
(
1 + z/2! + z2/3! + · · ·

)−1
.

But by binomial Theorem 2.4.2, (1 + z)−1 = 1− z+ z2− z3 + · · · .
Expanding (1 + z/2! + z2/3! + · · ·)−1

with the help of the binomial
theorem, we get

z

ez − 1
= 1− 1

2
z +

1

12
z2 + · · · =

∞∑
i=0

Biz
i

i!
.

Hence B0 = 1, B1 = −1/2, B2 = 1/12 etc. The numbers Bi are
known as Bernoulli numbers.

Remark 2.10.1 (On the convergence of generating functions):
When we deal with generating functions, we need not worry about
the convergence of the series, because we are only examining pos-
sible approaches to the solution of some problem (see Knuth [1].)
When a solution is found by some means, it may be possible to
justify the solution by other means (e.g., proof by induction).

Addition and scalar multiplication of power se-
ries

We add two power series by adding their corresponding coeffi-
cients.

More formally, if g(z) =
∑∞

i=0 aiz
i is the generating function of

the sequence (ai) and h(z) =
∑∞

i=0 biz
i is the generating function

of the sequence (bi), then g(z)+h(z) =
∑∞

i=0 ciz
i where ci = ai+bi

for all i = 0, 1,
For a constant c, we define cg(z) =

∑∞
i=0(cai)z

i.

Multiplication of two power series

To multiply two generating functions, we multiply term by term
the symbols formally, use the relation zr × zs = zr+s, and collect
like terms.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 157 — #173 i
i

i
i

i
i

2.10. GENERATING FUNCTIONS 157

In a formal manner, if g(z) =
∑∞

i=0 aiz
i is the generating func-

tion of the sequence (ai) and h(z) =
∑∞

i=0 biz
i is the generating

function of the sequence (bi), then

g(z)h(z) = (a0 + a1z + a2z
2 + · · ·)(b0 + b1z + b2z

2 · · ·)
= (a0 + b0) + (a0b1 + a1b0)z

+(a0b2 + a1b1 + a2b0)z
2 + · · ·

= c0 + c1z + c2z
2 + · · ·

where ck = akb0 + ak−1b1 + ak−2b2 + · · · + a0bk =
∑k

i=0 ak−ibi for
all k = 0, 1,

2.10.1 Solving Recurrence Relations Using
Generating Function Techniques

Gopala, Hemachandra, Fibonacci sequence:
Consider the sequence of integers (fn)

∞
n=0 = (0, 1, 1, 2, 3, 5, 8, 13, . . .

defined recursively as follows: The first two terms of the sequence
are 0 and 1. Every other term is the sum of the two previous
terms. In a formal manner,

fn =


0 if n = 0(basis)
1 if n = 1(basis)
fn−1 + fn−2 if n ≥ 2(recurrence)

The above sequence, called a Fibonacci sequence, was actu-
ally known much earlier to Hindu mathematicians Gopala and
Hemachandra of the 12th century (see Knuth [1].)

Example 2.10.5 (Closed formula for Gopala-Hemachandra-Fi-
bonacci sequence):
Our problem is to find a closed formula for the nth term of the
sequence (fn).

Solution:
We consider the generating function of the sequence

g(z) = f0 + f1z + f2z
2 + f3z

3 + · · ·
= z + z2 + 2z3 + 3z4 · · ·

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 158 — #174 i
i

i
i

i
i

158 CHAPTER 2. COMBINATORICS

Our aim, if possible, is to find a “closed formula” for g(z) like our
Example 2.10.1 of the geometric series. To this end, we shall use
the relation fn − fn−1 − fn−2 = 0 for all n with n ≥ 2. Replacing
n by n+ 2 we get fn+2 − fn+1 − fn = 0 for all n with n ≥ 0. Now

g(z) = f0 + f1z + f2z
2 + f3z

3 + f4z
4 · · ·

zg(z) = f0z + f1z
2 + f2z

3 + · · ·
z2g(z) = f0z

2 + f1z
3 + f2z

4

Subtracting vertically, we get,

(1−z−z2)g(z) = f0+(f1−f0)z+(f2−f1−f0)z2+(f3−f2−f1)z3

+(f4 − f3 − f2)z4 + · · ·
But f0 = 0 and fn+2−fn+1−fn = 0 for all values of n with n ≥ 0.
Therefore all terms of the above series vanish except the second
term. Hence, we have the closed expression for g(z) (if it exists)
of (1− z − z2)g(z) = (f1 − f0)z = z or

g(z) = z/(1− z − z2).

We now split the rational expression z/(1 − z − z2) into partial
fractions. Factoring the denominator (or solving the quadratic
equation 1− z − z2 = 0) we get

1− z − z2 = (1− ϕz)(1− ϕ′z)

where the real number ϕ =
√
5+1
2

is the “golden ratio” and ϕ′ =
1− ϕ. Now splitting g(z) into partial fractions we get,

g(z) = z/(1− z − z2) = 1√
(5)

(
1

1− ϕz
− 1

1− ϕ′z

)
.

By Example 2.10.1 of the geometric series,

1

1− z
= 1 + z + z2 + z3 + · · ·

Therefore,

g(z) =
1√
(5)

(1 + ϕz + ϕ2z2 + · · · − 1− ϕ′z − ϕ′2z2 − · · ·

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 159 — #175 i
i

i
i

i
i

2.10. GENERATING FUNCTIONS 159

That is,

f0+f1z+f2z
2+ · · · = 1√

5
(1+ϕz+ϕ2z2+ · · ·−1−ϕ′z−ϕ′2z2−· · ·)

Comparing the coefficient of zn on both sides of the above equa-
tion, we get,

fn =
1√
5
(ϕn − ϕ′n).

This is the desired closed form of the n-th term of the sequence
(fn).

Remark 2.10.2:
The formula fn = 1√

5
(ϕn−ϕ′n) can now be proved by induction on

the parameter n. Note that to prove something by induction, we
must know the result in advance! The generating function tech-
nique gives a possible approach to find a formula without worrying
about the convergence of the generating function.

Example 2.10.6 (Application):
(See [6].) Show that the sum of the infinite numbers:

.1 + .01 + .002 + .0003 + .00005 + .000008 + .0000013 + · · ·
converges to a rational number.

Solution: Observe that the nonzero digits form the Fibonacci
sequence (1, 1, 2, 3 . . .). The generating function for the Fibonacci
sequence is

g(z) =
∞∑
n=0

fnz
n = z/(1− z − z2)

(see Example 2.10.5). Setting n = 1/10, we get the desired sum is
equal to 10/89.

Example 2.10.7:
Prove by induction that the nth term of the sequence (fn) where
f0 = 0, f1 = 1 (basis) and fn = fn−1 + fn−2 (recurrence) for all
n ≥ 2 is

fn =
1√
5
(ϕn − ϕ′n)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 160 — #176 i
i

i
i

i
i

160 CHAPTER 2. COMBINATORICS

where the “golden ratio” ϕ =
√
5+1
2

and ϕ′ = 1 − ϕ are the roots
of the equation x2 − x− 1 = 0.

Solution:

Induction basis: Setting n = 0 in fn = 1√
5
(ϕn − ϕ′n) we get

f0 =
1√
5
(ϕ0− ϕ′0) = 0, which is true. By setting n = 1, f1

1√
5
(ϕ1−

ϕ′1) = 1.

Induction hypothesis: Suppose fn = 1√
(5)

(ϕn − ϕ′n) for all

integers ≤ n. We shall prove that fn+1 = 1√
5
(ϕn+1 − ϕ′n+1). By

recurrence, we have

fn+1 = fn + fn−1 (2.8)

By the induction hypothesis, fn = 1√
5
(ϕn − ϕ′n) and fn−1 =

1√
5
(ϕn−1 − ϕ′n−1). Substituting these in Equation 2.8, and using

the fact that ϕ and ϕ′ are the roots of the equation 1 + x = x2 we
obtain

fn+1 = fn + fn−1

=
1√
5
(ϕn − ϕ′n) +

1√
5
(ϕn−1 − ϕ′n−1)

=
1√
5

(
ϕn−1(1 + ϕ)− ϕ′n− 1(1 + ϕ′)

)
=

1√
5

(
ϕn−1ϕ2 − ϕ′n− 1ϕ′2)

)
since 1 + ϕ = ϕ2 and 1 + ϕ′ = 1 + ϕ′2

=
1√
5
(ϕn+1 − ϕ′n+1)

2.10.2 Catalan Numbers

Catalan numbers give the number of ways to parenthesize a string
of n-symbols. A string of n-symbols on a set A is simply an ordered
n-tuple of elements of A.

Example 2.10.8 (Matrix chain multiplication):
Consider n square matricesM1,M2, . . . ,Mn of the same order. We
know that the matrix multiplication is associative. The number

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 161 — #177 i
i

i
i

i
i

2.10. GENERATING FUNCTIONS 161

of ways to perform the multiplication M1 ×M2 × · · · ×Mn is the
same as the number of ways to parenthesize a string of n symbols.

Example 2.10.9 (Catalan numbers):
Consider a string of 3-letters abc. This can be parenthesized in the
following two ways: ((ab)c) and (a(bc)).

Take a string of 4 letters, abcd. This string can be paren-
thesized in the following ways: (((ab)c)d), ((ab)(cd)), ((a((bc)d)),
(a(b(cd))), ((a(bc))d). Hence the number of ways to parenthesize
4 letters is 5. In other words, by Example 2.10.8, the number of
ways to multiply 4 square matrices of the same order is 5.

We are interested in finding a “closed formula” for the number
of ways to parenthesize a string of n-symbols using the gener-
ating function techniques. The following example illustrates the
method.

Example 2.10.10 (A closed formula for Catalan numbers):
Find a closed formula for the Catalan numbers with the help of
the generating function technique.

Solution:

In Example 2.10.5, we had a recurrence relation at our disposal
which indeed facilitated our job in finding a closed formula for fn.
In a similar manner, we first derive a recurrence relation involving
the sequence of Catalan numbers (ci)

∞
i=1. For the basis of the

recurrence, we easily see the following: c1 = 1 (since there is only
one way to parenthesize the symbol a which is (a).

Now for the recurrence relation involving ci’s. Consider a
string of n symbols a1a2a3 · · · an with n ≥ 2. The number of
ways to parenthesize the first string of length k, a1a2 · · · ak where
(1 ≤ k ≤ n) is by definition ck. The number of ways to parenthe-
size the remaining string of length n − k, ak+1ak+2 · · · an is cn−k.
Hence by the product rule of Proposition 2.2.2, the number of ways
to parenthesize together the first string of length k, a1a2 · · · ak and
then the following string of length n−k, ak+1ak+2 · · · an is the prod-
uct ck × cn−k. Since the integer k can assume any value between
1 and n, we have by the sum rule 2.2.0.1 the following recurrence

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 162 — #178 i
i

i
i

i
i

162 CHAPTER 2. COMBINATORICS

relation:

cn = c1cn−1 + c2cn−2 + · · ·+ cn−1c1 =
n−1∑
i=1

cicn−i for n ≥ 2. (2.9)

Thus we have derived a recurrence relation involving c′is. Now
we proceed as in Example 2.10.5 to find a closed form for cn.
The sequence (ci) starts with c1. To facilitate the computation,
define the new sequence (bi)

∞
i=0 where bi = ci+1 for all i = 0, 1,

Hence the new sequence (bi) = (b0, b1, b2, . . . = (1, 1, 2, . . .) where
b0 = 1 and the recurrence relation 2.9 written in terms of b′is using
ci = bi−1 is

bn−1 = b0bn−2 + b1bn−3 + · · ·+ bn−2b0 for n ≥ 2.

Substituting n+ 1 for n we get,

bn = b0bn−1 + b1bn−2 + · · ·+ bn−1b0 for n ≥ 1. (2.10)

We first set up the generating function g(z) of the sequence
(bi) where

g(z) = b0z + b1z + b2z
2 + · · · =

∞∑
i=0

biz
i.

Our first aim is to find a closed form for g(z) using the recurrence
relation 2.9.

g(z) = b0 + b1z + b2z
2 + b3z

3 + · · ·
g(z)2 = b0b0 + (b0b1 + b1b0)z + (b0b2 + b1b1 + b2b0)z

2

+(b0b3 + b1b2 + b2b1 + b3b0)z
3 + · · ·

= b1 + b2z + b3z
2 + b4z

3 + · · ·
by the Equation (2.10) and the fact that b1 = b0.

zg(z)2 = b1z + b2z
2 + b3z

3 + b4z
4 · · ·

= g(z)− 1.

Therefore, the generating function satisfies the relation zg(z)2 =
g(z)−1. Solving this quadratic equation in “g(z)” we get the closed
form

g(z) =
1

2z

(
1−±

√
1− 4z

)
.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 163 — #179 i
i

i
i

i
i

2.10. GENERATING FUNCTIONS 163

If g(z) = 1
2z

(
1 +
√
1− 4z

)
, then 1 = b0 = g(0) → ∞, which is

impossible. Hence

g(z) =
1

2z

(
1−
√
1− 4z

)
.

Expanding
√
1− 4z = (1− 4z)1/2 by the binomial Theorem 2.4.2,

we get,

g(z) =
1

2z

(
1 − (1 − 4z)

1/2
)

=
1

2z
−

1

2z

∑
k≥0

(1
2

k

)
(−4z)

k
with |z| < 1/4

= 2

 1

4z
−

1

4z

∑
k≥0

(1
2

k

)
(−4z)

k


= 2

 1

4z
+

∑
k≥0

(1
2

k

)
(−4z)

k−1


= 2

 1

4z
−

1

4z
+

∑
k≥1

(1
2

k

)
(−4z)

k


= 2

∑
k≥1

(1
2

k

)
(−4z)

k−1

= 2
∑
n≥0

(1
2

n + 1

)
(−4z)

n

by setting k = n + 1 and changing limit accordingly

= 2
∑
n≥0

1

2(n + 1)

(−1
2

n

)
(−4z)

n
using

(
n
r

)
= n

r

(
n−1
r−1

)

=
∑
n≥0

(−1
2

n

)
(−4z)n

n + 1

=
∑
n≥0

(−1/2)(−1/2 − 1)(−1/2 − 2) · · · (−1/2 − n + 1)

n!
(−4)

n
z
n
/(n + 1)

=
∑
n≥0

(−4 × −1/2)((−4)(−1/2 − 1))((−4)(−1/2 − 2)) · · · ((−4)(−1/2 − n + 1))

n!
z
n
/(n + 1)

=
∑
n≥0

2.6.10.14 · · · (4n − 2)

n!
z
n
/(n + 1)

=
∑
n≥0

2n1.3.5 · · · (2n − 1)

n!
z
n
/(n + 1)

=
∑
n≥0

2nn!1.3.5 · · · (2n − 1)

n!n!
z
n
/(n + 1)

=
∑
n≥0

2.4.6 · · · (2n).1.3.5 · · · (2n − 1)

n!n!
z
n
/(n + 1)

=
∑
n≥0

(
2n

n

)
z
n
/(n + 1).

But g(z) = b0z + b1z + b2z
2 + · · · =

∑∞
i=0 biz

i and hence by
comparing the coefficient of zn on both sides of the equation, we

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 164 — #180 i
i

i
i

i
i

164 CHAPTER 2. COMBINATORICS

get

bn =
1

n+ 1

(
2n

n

)
.

But bn = cn+1. Hence the Catalan number cn+1 =
1

n+1

(
2n
n

)
.

We give here the first few Catalan numbers:
c1 = 1, c2 = 1, c3 = 2, c3 = 5, c4 = 14, c5 = 42, c6 = 132.

Each equation I included in my book would halve the
sales.

Stephan Hawking

Example 2.10.11:
Find the number of ways to multiply a chain of six n×n matrices
M1 ×M2 × · · · ×M6.

Solution:
The required number is the number of ways to parenthesize a

word of length 6, which is c5+1 = c6 =
1
6

(
10
5

)
= 42.

Example 2.10.12 (Generating function for a finite sum):
Let g(z) be a generating function for the sequence (ai)

∞
i=0. Then

prove that the generating function for the partial sum sequence
(si) is

g(z)
1−z

where si = a0 + a1 + · · ·+ ai for all i = 0, 1,
Solution:
We shall use the fact that 1

1−z
= 1+ z+ z2+ z3 · · · (see 2.10.1)

g(z) = a0 + a1z + a2z
2 + · · · ,

and hence
g(z)

1− z
= (a0 + a1z + a2z

2 + · · ·)(1 + z + z2 + · · ·)

=
(
a0 + (a0 + a1)z + (a0 + a1 + a2)z

2 + · · ·
)

= s0 + s1z + s2z
2 + · · ·

where si = a0+a1+ · · ·+ai. This shows that g(z)
1−z

is the generating
function for the partial sum sequence (si).

In the following example, we use differentiation to find the
generating function.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 165 — #181 i
i

i
i

i
i

2.10. GENERATING FUNCTIONS 165

Example 2.10.13:
Find the sum 12 + 22 + 32 + · · ·+ n2.

Solution:
First we shall find the generating function for the sequence

(i2)∞i=0.

1

1− z
= 1 + z + z2 + z3 + · · · . by 2.10.1

d

dz

(
1

1− z

)
=

d

dz
(1 + z + z2 + z3 + · · ·)

by differentiating both sides w.r.t. z

⇒ 1

(1− z)2
= 1 + 2z + 3z2 + 4z3 + · · ·

⇒ z

(1− z)2
= z + 2z2 + 3z3 + 4z4 + · · ·

⇒ d

dz

(
z

(1− z)2

)
= 12 + 22z + 32z2 + 42z3 + · · ·

⇒ z
d

dz

(
z

(1− z)2

)
= 02 + 12z + 22z2 + 32z3 + 42z4 + · · ·

Hence, the generating function of the sequence (i2) is z d
dz

(
1

(1−z)2

)
which on differentiation gives g(z) = z(1+z)

(1−z)3
.

By Example 2.10.12, the generating function for the partial
sum (si) where si =

∑i
j=0 j

2 is g(z)/(1 − z). Therefore the sum

12 + 22 + 32 + · · · + n2 is the coefficient of zn in the expansion of
g(z)/(1− z) = z(1+z)

(1−z)4
. By binomial Theorem 2.4.2,

z(1 + z)/(1− z)4 = (z + z2)(1− z)−4

= (z + z2)

(∑
k≥0

(
−4
k

)
(−z)k

)

Therefore the coefficient of zn in g(z)/(1− z) is the coefficient of
zn−1 in (1− z)−4+ the coefficient of zn−2 in (1− z)−4.

The coefficient of zn in (1− z)−4 is (−4)(−4−1)(−4−2)···(−4−n+1)
(

−
1)nn! = 4×5×6···×(n+3)

n!
which is equal to (n+1)(n+2)(n+3)

1.2.3
. There-

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 166 — #182 i
i

i
i

i
i

166 CHAPTER 2. COMBINATORICS

fore the required coefficient of zn in g(z)/(1 − z) is n(n+1)(n+2)
1.2.3

+
(n−1)n(n+1)

1.2.3
= n(n+1)(2n+1)

6
.

2.11 Generating Subsets

Generating all the subsets of an n element set:
We shall study an algorithm (a step-by-step procedure to solve

a problem) to generate all the possible subsets P [n] of the set
{n, n − 1, . . . , 2, 1 }. Note that the elements are written in de-
creasing order in the set [n], the reason will be seen shortly. We
have already seen that there are 2n subsets of the set [n]. Consider
the binary set B = { 0, 1 }. The cardinality of the set Bn of all or-
dered n tuples of elements of B is also 2n by the product rule. (An
ordered n tuple written without parentheses and commas between
elements is referred to as a string or words of length n. We also
refer to the elements of B as letters and the set B as an alphabet.
For example, the ordered triple (0, 1, 1) is simply written as the
string 011 whose length is 3.)

Since the two sets P [n] and Bn have the same number of ele-
ments, there are bijections from the set Bn onto the set P [n]. In
particular, we choose the “natural bijection” which associates to
each element of Bn its corresponding characteristic vector , that is,
the ith letter(component) of the string corresponds to the integer
n − i + 1 of the set [n] with the meaning that the 0 value in the
i-th letter implies the absence of the integer n− i + 1 in the cor-
responding subset and 1 implies its presence in the subset. That
is, the first coordinate of the string corresponds to the integer n,
the second to n− 1 and so on. Further, each characteristic vector
of length n can be viewed as a number in base 2 and hence has
a decimal value which lies between 0 and 2n − 1. Note that the

decimal 0 corresponds to the binary number (

n zeros︷ ︸︸ ︷
00 . . . 0)2) and the

decimal 1 corresponds to the binary (

(n−1) zeros︷ ︸︸ ︷
00 . . . 1)2) (the subscript

2 represents the number in base 2). Note that the leading 0’s are
written in order to make the length of the string n.

Equality of strings: We declare two string a1a2 . . . an and

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 167 — #183 i
i

i
i

i
i

2.11. GENERATING SUBSETS 167

b1b2 . . . bn are equal if and only if ai = bi for all possible subscripts
i.

The algorithm we present uses this natural bijection to gen-
erate all the subsets of [n]. In other words the algorithm simply
generates all the possible strings of 0’s and 1’s with length n.

The following example illustrates the “natural bijection” for
the set [3] = { 3, 2, 1 }.

Example 2.11.1 (Natural bijection):

subsets strings of length 3 decimal value
∅ 000 0
{ 1 } 001 1
{ 2 } 010 2
{ 2, 1 } 011 3
{ 3 } 100 4
{ 3, 1 } 101 5
{ 3, 2 } 110 6
{ 3, 2, 1 } 111 7

The first column gives all possible subsets of [3], the second
column the corresponding strings of 0’s and 1’s of length 3. The
third column uses the formula to convert binary into decimal :

(bn−1bn−2 . . . b2b1b0)2 =
n−1∑
i=0

bi × 2i

For example, (110)2 = 0 × 20 + 1 × 21 + 1 × 22 = 0 + 2 + 4 = 6
with n = 3.

Conversion of integer into binary :

Conversely, to convert a nonnegative decimal integer n into a
binary representation, we divide the integer n successively by 2 (by
recording the remainders obtained during the division processes)
till we arrive at a quotient 0. Then we write the sequence of
remainders found in the reverse order.

The following example illustrates the conversion.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 168 — #184 i
i

i
i

i
i

168 CHAPTER 2. COMBINATORICS

Example 2.11.2 (Conversion of decimal into binary):
Let us convert the integer n = 75 into decimal. The sequence of
remainders obtained during the division is given in the following
table.

Integer n Quotient q Remainder r
75 37 1
37 18 1
18 9 0
9 4 1
4 2 0
2 1 0
1 0 1

The sequence of remainders obtained is (1, 1, 0, 1, 0, 0, 1) and writ-
ing this sequence in reverse order we obtain 1001011. Hence
75 = (1001011)2.

Verification: (1 × 20) + (1 × 21) + (0 × 22) + (1 × 23) + (0 ×
24) + (0× 25) + (1× 26) = 75.

Let us observe the order of listing of the strings in the sec-
ond column of Example 2.11.1. They are listed in the lexico-
graphic order just like the word “algorithm” comes before the
word “almanac” in the dictionary. More generally, the string
a1a2 . . . ap lexicographically precedes the string b1b2 . . . bp denoted
by a1a2 . . . ap < b1b2 . . . bp if there is some k, 1 ≤ k ≤ n such that
aj = bj for 1 ≤ j < k but ak < bk. Geometrically, the initial seg-
ment of first k−1 characters of the two strings are equal and strict
inequality holds in the kth character. Here we suppose a′is and b

′
is

are integers. This is the reason why we list the elements of the set
[n] in the decreasing order. Note however that in the first column
of Example 2.11.1 the subsets are listed not in lexicographic order
but in the order called squashed ordering of the subsets of [3]. In
this squashed ordering, we write first all the possible subsets of
the current elements before considering a new element.

Example 2.11.3 (Correspondence: Subsets and strings):
Consider the set [5] = { 5, 4, 3, 2, 1 }. The subset corresponding to
the string 11001 of length 5 is { 5, 4, 1 } and the string of length 5

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 169 — #185 i
i

i
i

i
i

2.11. GENERATING SUBSETS 169

corresponding to the subset { 4, 2 } is 01010.

Therefore the problem of generating all the subsets of a set
of n elements is the same as the problem of generating in the
lexicographic order all possible strings of 0’s and 1’s with length

n. The first string in the lexicographic order is (

n zeros︷ ︸︸ ︷
00 . . . 0)2) and the

last string is (

n ones︷ ︸︸ ︷
11 . . . 1)2). In Example 2.11.1 every new string is

obtained by adding 1 (in base 2 arithmetic) to the previous string.
So the algorithm proceeds as follows:

We start with the string (bn−1bn−2 . . . b2b1b0) = (

n zeros︷ ︸︸ ︷
00 . . . 0)2).

while the string is not equal to (

n ones︷ ︸︸ ︷
11 . . . 1)2) do

begin
add 1 to the string (bn−1bn−2 . . . b2b1b0)
write the string thus obtained;

end while;

The following example illustrates the operation of adding the bit
(binary digit) 1 to a string of 0’s and 1’s:

Example 2.11.4 (Addition of bit 1 to a string):
The addition uses the four equations: 0+0 = 0, 0+1 = 1+0 =
1, 1 + 1 = 10.

Let us add 1 to the string 1010111. By using the equations
and carrying out the bit, we obtain 1010111 + 1 = 1011000.

We observe that to add 1 to 1010111, it is enough to replace
the first bit 0 from the right by 1 and all other 1’s to the right of
the first 0 from right, (which by definition are all 1) by 0’s.

Thus, from the above example, we get the general rule for

adding the bit 1 to a string of 0’s and 1’s (̸= (

nones︷ ︸︸ ︷
11 . . . 1)). The rule

is: Replace the first bit 0 from the right of the string by 1 and all
other bits to the right of the first 0 from the right by 0’s.

We are now ready to give the complete algorithm to generate

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 170 — #186 i
i

i
i

i
i

170 CHAPTER 2. COMBINATORICS

all strings of 0’s and 1’s.

Algorithm to generate all strings of 0’s and 1’s with length n:
(*INITIALIZATION of (bn−1bn−2 . . . b2b1b0)*)

(bn−1bn−2 . . . b2b1b0)←
n zeros︷ ︸︸ ︷
00 . . . 0)

(*ITERATION*)

while the string (bn−1bn−2 . . . b2b1b0) is not equal to (

n ones︷ ︸︸ ︷
11 . . . 1)2) do

begin while
Replace the first bit 0 from the right of the string

(bn−1bn−2 . . . b2b1b0) by 1 and all other bits to the right of the first
0 from right, by 0’s;

write the newly obtained string (bn−1bn−2 . . . b2b1b0);
end while;

Example 2.11.5:
Consider the set [6] = { 6, 5, 4, 3, 2, 1 }. In the above algorithm for
generating the subsets, let us find the subset following immediately
the subset { 6, 4, 3, 1 }.
The subset { 6, 4, 3, 1 } is represented by the string 101101 of length
6. To find the next string, replace the first 0 from right by the bit
1 and replace all other bits to the right of this 0 by 1’s. We obtain
the string 101110. The subset corresponding to the string 101110
is { 6, 4, 3, 2 }, which is the set following { 6, 4, 3, 1 }.

Algorithm to generate all possible k-subsets of an n-set in lexico-
graphic order:

Let us generate all possible k-subsets of the n-set n =
{ 1, 2, . . . , n }. Note that the elements of [n] are written in the nat-
ural strictly increasing order, in contrast to the strictly decreasing
order used in the algorithm for generating all possible subsets of
[n]. Let us first agree to write a subset as a string/word of strictly
increasing letters/elements. Evidently, in this writing the letters
are distinct. The following example clarifies our convention.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 171 — #187 i
i

i
i

i
i

2.11. GENERATING SUBSETS 171

Example 2.11.6 (Subsets in lexicographic order):
Let [6] = { 1, 2, 3, 4, 5, 6 } and let us write the 4-subsets of [6] in
lexicographic order as a string of increasing letters.

4-subsets string notation 4-subsets string notation
{ 1, 2, 3, 4 } 1234 { 1, 3, 5, 6 } 1356
{ 1, 2, 3, 5 } 1235 { 1, 4, 5, 6 } 1456
{ 1, 2, 3, 6 } 1236 { 2, 3, 4, 5 } 2345
{ 1, 2, 4, 5 } 1245 { 2, 3, 4, 6 } 2346
{ 1, 2, 4, 6 } 1246 { 2, 3, 5, 6 } 2356
{ 1, 2, 5, 6 } 1256 { 2, 4, 5, 6 } 2456
{ 1, 3, 4, 5 } 1345 { 3, 4, 5, 6 } 3456
{ 1, 3, 4, 6 } 1346

We observe that the strings of length 4 (equivalently subsets of
cardinality 4) in the second column of Example 2.11.6 are listed in
lexicographic order. The first one in the list is 1234 and the last
one is 3456.

More generally, the first string in lexicographic order of k dis-
tinct elements of the n-set [n] is 12 . . . k and the last string is
(n− k + 1)(n− k + 2) . . . n.

Question: How can we find a string of length k in [n] immedi-
ately following the k-string a1a2 . . . ak ̸= (n−k+1)(n−k+2) . . . n
in lexicographic order?

To answer the question, let us again refer to Example 2.11.6.
By studying this example closely, we arrive at the following two
cases.

Let us first dispose of the trivial case.
Case 1: The last letter a4 in the string is ≠ 6. For example,

the string 1245 with a4 = 5.
In this case, by the definition of lexicographic ordering, the

string immediately following is obtained by replacing the last letter
a4 by a4 + 1 while keeping the other letters fixed. For example,
the string immediately following 1245 is 1246.

Case 2: The last letter of the string a4 = 6. For example,
consider the string 1256 with a4 = 6.

In this case, find the largest length of consecutive integers from
the right of the string (also called the largest length of consecutive

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 172 — #188 i
i

i
i

i
i

172 CHAPTER 2. COMBINATORICS

suffix). In the example, in the string 1256, the largest suffix of
consecutive integers is 56 and its length is 2. Then replace the
third (= 2+1) integer from the right of the string by its immediate
successor. The string obtained is 1345.

We generalize our example, to give the following rule to find
the immediate successor in the lexicographic order of the string
a1a2 . . . ak ̸= (n − k + 1)(n − k + 2) . . . n with a1a2 < · · · < ak in
the set [n].

Case 1: The last letter ak in the string is ̸= n.

In this case, by the definition of lexicographic ordering, the
string immediately following is obtained by replacing the last letter
ak by ak + 1 while keeping the other letters fixed.

Case 2: The last letter of the string ak = n. For example,
consider the string 1256 with an = 6.

In this case, find the largest length l of consecutive integers
from the right of the string (also called the largest length of con-
secutive suffix). Then replace the l+1-st integer from the right of
the string with its immediate successor.

We are now ready to write the algorithm in its general form:

Algorithm to generate all the k-subsets of an n-set [n]
(* INITIALIZATION*)
a1a2 . . . ak ← 12 . . . k;
(* ITERATION *)
while (a1a2 . . . ak ̸= (n− k + 1)(n− k + 2) . . . n) do
begin

if ak ̸= n
then c← a1a2 . . . (ak + 1)

else
begin
l← the length of the largest suffix of a1a2 . . . ak;
a1a2 . . . al . . . ak ← a1a2 . . . (al + 1) . . . ak

end
end

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 173 — #189 i
i

i
i

i
i

2.11. GENERATING SUBSETS 173

Example 2.11.7:
Let [8] = { 1, 2, . . . , 8} and let us find the subset immediately
following the 5-set 125678 in lexicographic order.

The last integer of the string is equal to 8. Hence we are in
Case 2. The largest suffix of consecutive integers is 5678 and its
length is 4. So by our rule, we replace the fifth integer 2 from the
right with its successor 3. Hence the required string is 135678.

On the other hand, the string coming just after 2567 is 2368
(we are in Case 1, because the last integer in the string is 7 ̸= 8
and we add 1 to the last integer 7 to get 8).

We are now interested in finding the place of occurrence of
the k-subset a1a2 . . . al . . . ak among all the k-subsets of the set
[n]. Let us again refer to Example 2.11.6. For example, the string
1236 occurs in the 3rd place and the string 2345 occurs in the 11th
place.

More generally, we are going to prove a formula for the place
of occurrence of the string a1a2 . . . al . . . ak in the list of all possible
k-strings of the set [n].

Theorem 2.11.1:
Consider the k-string/subset a1a2 . . . ak of the [n]-set { 1, 2, . . . , n }.
The place of occurrence of the k-subset/string a1a2 . . . ak in lex-
icographic order among the list of all possible k-subsets of [n] is
given by(
n

k

)
−
(
n− a1
k

)
−
(
n− a2
k − 1

)
− · · · −

(
n− ak−1

2

)
−
(
n− ak

1

)
.

Proof. Our proof goes as follows: We use the subtraction rule.
First we find the number of k-subsets coming after (in lexico-
graphic order) the k-subset a1a2 . . . ak. Then we subtract this num-
ber from the total number of k-subsets of [n], which is the binomial
coefficient

(
n
k

)
to obtain the desired place. Let us recall that a k-

subset is written as a string a1a2 . . . ak with a1 < a2 < · · · < ak.

Therefore let us first find the number of k-subsets following the
k-subset a1a2 . . . ak. This number is split into k numbers:

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 174 — #190 i
i

i
i

i
i

174 CHAPTER 2. COMBINATORICS

1. The number of k-subsets coming after a1a2 . . . ak whose first
element is strictly greater than a1.

2. The number of k-subsets coming after a1a2 . . . ak whose first
element (prefix) is a1 but the second one is strictly greater than
a2.
...
i. The number of k-subsets coming after a1a2 . . . ak whose prefix
(initial segment) is a1a2 . . . ai−1 but whose i-th element is strictly
greater than ai.
...
k. The number of k-subsets coming after a1a2 . . . ak whose prefix
(initial segment) is a1a2 . . . ak−1 but the k-th one is strictly greater
than ak.
These k numbers are, respectively,

(
n−a1
k

)
,
(
n−a2
k−1

)
. . .
(

n−ai
k−(i−1)

)(
n−ak

k−(k−1)

)
.

Therefore the number of k-subsets coming after the k-subset
a1a2 . . . ak is the sum(

n− a1
k

)
+

(
n− a2
k − 1

)
+ · · ·+

(
n− ak−1

2

)
+

(
n− ak

1

)
Subtracting the above sum from the total number

(
n
k

)
of k-subsets

of [n] we get the formula of the theorem.

Example 2.11.8:
Let us find the place of occurrence of the 4-subset 2346 among the
list of 4-subsets of [6] written in lexicographic order.

Here n = 6 and k = 4. According to the above formula the
place of occurrence of the string 2346 is(

6

4

)
−
(
6− 2

4

)
−
(
6− 3

3

)
−
(
6− 4

2

)
−
(
6− 6

1

)
which is equal to 15− 1− 1− 1− 0 = 12.

The subset/string 2346 occurs in the 12th place as can be seen
from Example 2.11.6.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 175 — #191 i
i

i
i

i
i

2.12. EXERCISES 175

2.12 Exercises

1. Consider any sequence of 13 distinct integers. Verify that
your sequence always contains either a strictly increasing
subsequence of 4 integers or strictly decreasing subsequence
of 3 integers.

2. What is the minimum number of elements of a sequence
of distinct integers to ensure that the sequence will always
contain either a strictly increasing subsequence of 4 integers
or a strictly decreasing subsequence of 4 integers.

3. Consider any sequence of 10 integers. Find a subsequence of
consecutive integers of your sequence whose sum is divisible
by 10.

4. Prove or disprove (n, a non-negative integer): n! is always
even.

5. Prove or disprove (n, a non-negative integer): n! is always
divisible by 10 if n ≥ 5.

6. Prove that (n! + 1) is not divisible by any integer d where
2 ≤ d ≤ n.

7. Prove that

2n!

n!
= (1× 3× 5× · · · (2n− 1))× 2n

8. Find the greatest common divisor (gcd) of the three numbers
6!, 7!, 9! What is their least common multiple?

9. Find the number of words of length 5 which can be formed
from the letters of the word PARIS when

(a) the letters are distinct

(b) the repetition of the letters is allowed

10. Find the number of ways in which 6 letters can be distributed
among 4 letter boxes.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 176 — #192 i
i

i
i

i
i

176 CHAPTER 2. COMBINATORICS

11. Find the number of positive divisors of

(a) 103

(b) 23 × 35 × 74

(c) 1729 (Ramanujan number)

12. Find the number of words of 4 distinct letters that can be
made from the English alphabet.

13. Find the number of integers between 100 and 1000 such that
the digit 5 is in the first (unit’s) place.

14. Find the number of integers between 100 and 1000 such that
at least one of their digits is 3.

15. Find the ordered two partition of n distinct objects or in
other words, find the number of ways in which n objects
can be put into two labeled boxes B1 and B2 (a box can be
possibly empty).

16. Find the number of ways of putting n objects into two labeled
boxes B1 and B2 in which each box contains at least one
element.

17. In how many ways can 4 boys and 5 girls be seated in a row
so that boys are always seated in even places?

18. Find the number of five-digit integers with distinct digits.

19. Find the number of integers less than 1000 in which all digits
are distinct.

20. Find the number of ways of seating 5 boys and 3 girls in a
row so that no two girls are together.

21. Find the number of ways of seating 4 boys and 4 girls in a
row so that:

(a) No two girls sit together.

(b) All the girls sit together and all the boys sit together.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 177 — #193 i
i

i
i

i
i

2.12. EXERCISES 177

(c) All the girls are never together.

22. Find the number of nonnegative integral solutions of the
equation

x1 + x2 + x3 + x4 = 18.

23. Find the number of positive integral solution of the equation

x1 + x2 + x3 + x4 = 10

24. Find the number of integral solutions of the equation

x1 + x2 + x3 + x4 = 18

where x1 ≥ 3, x2 ≥ 1, x3 ≥ 0, x4 ≥ 5

25. Give the number of functions from a 3-set to a 5-set.

26. Find the number of relations from a 3-set to a 5-set.

27. Using the Stirling number of the second kind, find the num-
ber of surjections from a 5-set onto the 3-set.

28. Find the number of injections from a 4-set into a 6-set.

29. Give the number of bijections from a 5-set onto a 5-set.

30. Give the number of circular/cyclic permutations of a 5-set.

31. Give the number of linear permutations of a 5-set.

32. Using the Stirling number of the first kind, find the number
of permutations of a 5-set having two cycles.

33. Find the number of derangements of a 5-set.

34. List all the possible derangements of a 4-set.

35. Describe the sum of the Stirling numbers of the second kind∑n
k=0

{
n
k

}
in terms of the notion of equivalence relations on

the set { 1, 2, . . . , n }.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 178 — #194 i
i

i
i

i
i

178 CHAPTER 2. COMBINATORICS

36. What value of k makes the binomial coefficient
(
10
k

)
a maxi-

mum?

37. What value of k makes the binomial coefficient
(
11
k

)
a maxi-

mum?

38. What value of k makes the binomial coefficient
(
n
k

)
a mini-

mum?

39. Find the number of terms in the expansion of
(x1 + x2 + x3 + x4)

5.

40. What is the sum of all the coefficients in the expansion of
(x1 + x2 + x3 + x4)

5?

41. Find the number of 4-multisubsets of a 3-set.

42. Find the number of increasing functions (not necessarily
strictly increasing) from the 5-set [5] = { 1, 2, 3, 4, 5 } into
the 3-set [3] = { 1, 2, 3 }.

43. Using the Stirling number of the second kind, find the num-
ber of equivalence relation that can be defined on the set
[5] = { 1, 2, 3, 4, 5 }.

44. Using the algorithm studied in the text, generate all four
subsets of the 6-set [6] = { 1, 2, . . . , 6 } in lexicographic order.

45. Using the algorithm studied in the text, generate all 4-tuples
of 0’s and 1’s in lexicographic order.

46. Use the binomial theorem to find the value of 115.

47. Find the number of 11-permutations of the multiset
{ 3.a, 4.b, 5.c }.

48. Show that any five points selected within a square of side
length 2, there must exist two points such that their Eu-
clidean distance is strictly less than

√
2.

Hint: Divide the rectangle into four equal parts and apply
the pigeon-hole principle.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 179 — #195 i
i

i
i

i
i

2.12. EXERCISES 179

49. Choose any ten points inside an equilateral triangle of side
length 1. Show that there exist two points whose Euclidean
distance is strictly less than 1/3.

50. Prove that if n+1 integers are chosen from the set { 1, 2, . . . ,
2n}, then there must be two integers differing by 1.

51. Prove that if n+1 integers are chosen from the set { 1, 2, . . . ,
3n}, then there must be two integers differing by at most 2.

52. How many points must be chosen inside an equilateral trian-
gle of side length 1 to ensure two points at Euclidean distance
strictly less than 1/n?

53. Consider the n-set [n] = { 1, 2, . . . , n} and a collection A
of subsets of [n] such that no two subsets in A are disjoint.
Prove that |A| ≤ 2n−1.

54. In a class of 25 students, 15 like mathematics, 12 like physics,
11 like chemistry, 5 like both mathematics and chemistry, 9
like both mathematics and physics, 4 like both physics and
chemistry, and 3 like all the three subjects. Find the number
of students who like

(a) only chemistry

(b) only mathematics

(c) only physics

(d) physics and chemistry but not mathematics

(e) mathematics and physics but not chemistry

(f) only one of the subjects

(g) at least one of the three subjects

(h) none of the subjects

55. Let S be a finite set and let A1, A2, A3 be three subsets of
the set S. Give a formula for the following:

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 180 — #196 i
i

i
i

i
i

180 CHAPTER 2. COMBINATORICS

(a) The number of elements in exactly two of the sets
A1, A2, A3 in terms of the intersections of some of the
sets A1, A2, A3.

(b) The number of elements in exactly one of the sets
A1, A2, A3 in terms of A1, A2, A3 and the intersections
of the some of them.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 181 — #197 i
i

i
i

i
i

Bibliography

[1] D. E. Knuth, Art of Computer Programming, Fundamental
Algorithms, Vol. 1, Addison-Wesley, Reading, Mass (1968).

[2] L. Lovász, Combinatorial Problems and Exercises, 2nd Edi-
tion, Elsevier, North-Holland Publishing Company, Amster-
dam, 2003.

[3] C. Berge, The Principles of Combinatorics, Academic Press,
New York, 1971.

[4] V. Krishnamurthy, Combinatorics: Theory and Applications,
Affiliated East-West Press, 1985.

[5] H. J. Ryser, Combinatorial Mathematics, The Carus Mathe-
matical Monographs, The Mathematical Association of Amer-
ica, Distributed by John Wiley and Sons, Inc., 1963.

[6] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathe-
matics, Pearson Education, Inc. and Dorling Kindersley Pub-
lishing, Inc. (1994).

[7] D. E. Littlewood, The Skeleton Key of Mathematics, Dover
Publications, Inc. Mineola, NY (2002).

[8] L.V. Ahlfors, Complex Analysis, Third edition, McGraw-Hill
Book Company, 1979.

181

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 182 — #198 i
i

i
i

i
i

http://taylorandfrancis.com

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 183 — #199 i
i

i
i

i
i

Chapter 3

Basics of Number Theory

Summary

As the title indicates, this chapter deals with basics of number
theory. To begin with, the greatest common divisor (gcd) and the
least common multiple (lcm) of two nonzero numbers are defined.
The Euclidean algorithm and the extended Euclidean algorithm
for any two nonzero numbers are then established.

The next section deals with the property of primes. The unique
factorization theorem which states that any positive integer is ex-
pressible uniquely, up to order, as a product of primes is estab-
lished. Linear congruences and complete residue systems are then
explained.

In the following sections, some of the fundamental theorems in
basic number theory, namely, Euler’s theorem, Wilson’s theorem,
Chinese remainder theorem for linear congruences are established.
These are followed by a discussion on lattice points visible from
the origin. The chapter closes with a discussion of some arithmeti-
cal functions, a brief discussion of big O notation and polynomial
time algorithms, and a proof of the fact that Euclid’s algorithm
for finding the greatest common divisor of two (nonzero) integers
is a polynomial time algorithm. Some concepts found here might
have found a place in Chapter 2 as well, but in passing.

183

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 184 — #200 i
i

i
i

i
i

184 CHAPTER 3. BASICS OF NUMBER THEORY

3.1 Introduction

In this chapter, we present some basics of number theory. These
include divisibility, primes, congruences, some number-theoretic
functions and the Euclidean algorithm for finding the gcd of two
numbers. We also explain the big O notation and polynomial time
algorithms. We show, as examples, that the Euclidean algorithm
and the modular exponentiation algorithm are polynomial time
algorithm. We denote by Z, the set of integers and N, the set of
positive integers.

3.2 Divisibility

Definition 3.2.1:
Let a and b be any two integers and a ̸= 0. Then b is divisible by
a (equivalently, a is a divisor of b) if there exists an integer c such
that b = ac.

If a divides b, it is denoted by a | b. If a does not divide b, we
denote it by a ∤ b.

Theorem 3.2.2:

1. a | b implies that a | bc for any integer c.

2. If a | b and b | c, then a | c.

3. If a divides b1, b2, . . . , bn, then a divides b1x1+ · · ·+ bnxn for
integers x1, . . . , xn.

4. a | b and b | a imply that a = ±b.

The proofs of these results are trivial and are left as exercises.
(For instance, to prove (iii), we note that if a divides b1, . . . , bn,
there exist integers c1, c2, . . . , cn such that b1 = ac1, b2 = ac2, . . . ,
bn = acn. Hence b1x1 + · · · + bnxn = a(c1x1 + · · · + cnxn), and so
a divides b1x1 + · · · bnxn).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 185 — #201 i
i

i
i

i
i

3.2. DIVISIBILITY 185

Theorem 3.2.3 (Division algorithm):
Given any integers a and b with a ̸= 0, there exist unique integers
q and r such that

b = qa+ r, 0 ≤ r < |a|, where |a| = max(a,−a).

Proof. Consider the arithmetic progression

. . . , b− 3|a|, b− 2|a|, b− |a|, b, b+ |a|, b+ 2|a|, b+ 3|a|, . . .

with common difference |a| and extended infinitely in both the
directions. Certainly, this sequence contains a least non-negative
integer r. Let this term be b+ q|a|, q ∈ Z. Thus

b+ q|a| = r (3.1)

and, its previous term, namely, r − |a| < 0 so that r < |a|. If
a > 0, then (3.1) gives

b = −qa+ r, 0 ≤ r < |a| = a,

while if a < 0, |a| = −a so that b = qa+ r, 0 ≤ r < |a|. It is clear
that the numbers q and r are unique.

Theorem 3.2.3 gives the division algorithm, that is, the process
by means of which division of one integer by a nonzero integer
is made in the set of integers. An algorithm is a step-by-step
procedure to solve a given mathematical problem. We next present
Euclid’s algorithm to determine the gcd of two numbers a and b.
Euclid’s algorithm (300 BCE) is the first known algorithm in the
mathematical literature. It is just the usual algorithm taught in
high school algebra.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 186 — #202 i
i

i
i

i
i

186 CHAPTER 3. BASICS OF NUMBER THEORY

3.3 The Greatest Common Divisor

(gcd) and the Least Common

Multiple (lcm) of Two Integers

Definition 3.3.1:
Let a and b be two integers, at least one of which is not zero. A
common divisor of a and b is an integer c(̸= 0) such that c | a and
c | b. The greatest common divisor of a and b is the greatest of
the common divisors of a and b. It is denoted by (a, b).

If c divides a and b, then so does −c. Hence (a, b) > 0 and is
uniquely defined. Moreover, if c is a common divisor of a and b,
that is, if c | a and c | b, then

a = a′c and b = b′c

for integers a′ and b′. Hence

(a, b) = c(a′, b′)

so that c | (a, b). Thus any common divisor of a and b divides the
gcd of a and b. Hence (a, b) is the least positive common divisor
of a and b that is divisible by every common divisor of a and b.
Moreover, (a, b) = (±a,±b).

Proposition 3.3.2:
If c | ab and (c, b) = 1, then c | a.

Proof. By hypothesis c | ab. Trivially c | (ac). Hence c is a
common divisor of ab and ac. Hence c is a divisor of (ab, ac) =
a(b, c) = a, as (b, c) = 1.

Definition 3.3.3:
If a, b and c are nonzero integers and if a | c and b | c, then c is
called a common multiple of a and b.

The least common multiple (lcm) of a and b is the smallest of
the positive common multiples of a and b and is denoted by [a, b].
As in the case of gcd, [a, b] = [±a, ±b].

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 187 — #203 i
i

i
i

i
i

3.3. GCD AND LCM OF TWO INTEGERS 187

Euclid’s Algorithm

Since (±a, ±b) = (a, b), we may assume without loss of generality
that a > 0 and b > 0 and that a > b (if a = b, then (a, b) =
(a, a) = a). By the Division Algorithm (Theorem 3.2.3), there
exist integers q1 and r1 such that

a = q1b+ r1, 0 ≤ r1 < b. (3.2)

If r1 ̸= 0, divide b by r1 and get

b = q2r1 + r2, 0 ≤ r2 < r1. (3.3)

If r2 ̸= 0, divide r1 by r2 and get

r1 = q3r2 + r3, 0 ≤ r3 < r2. (3.4)

Proceeding in this way, at the (i+2)-th stage, we get the equation

ri = qi+2ri+1 + ri+2, 0 ≤ ri+2 < ri+1. (3.5)

Since the sequence of remainders r1, r2, . . . is strictly decreasing,
this procedure must stop at some stage, say,

rj−1 = qj+1rj. (3.6)

Then (a, b) = rj.

Proof. First we show that rj is a common divisor of a and b. To
see this we observe from Equation (3.6) that rj | rj−1. Now Equa-
tion (3.5) for i = j − 2 is

rj−2 = qjrj−1 + rj. (3.7)

Since rj | rj−1, rj divides the expression on the right side of (3.7),
rj | rj−2. Going backward, we get successively that rj divides
rj−1, rj−2, . . . , r1, b and a. Thus rj | a and rj | b.

Next, let c | a and c | b. Then from Equation (3.2), c | r1, and
this when substituted in Equation (3.3), gives c | r2. Thus the
successive equations of the algorithm yield c | a, c | b, c | r1, c | r2,
. . . , c | rj. Thus any common divisor of a and b is a divisor of rj.

Consequently, rj = (a, b).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 188 — #204 i
i

i
i

i
i

188 CHAPTER 3. BASICS OF NUMBER THEORY

Extended Euclidean Algorithm

Theorem 3.3.4:
If rj = (a, b), then it is possible to find integers x and y such that

ax+ by = rj (3.8)

Proof. The equations preceding (3.6) are

rj−3 = qj−1rj−2 + rj−1, and

rj−2 = qjrj−1 + rj. (3.9)

Equation (3.9) expresses rj in terms of rj−1 and rj−2 while the
equation preceding it expresses rj−1 in terms of rj−2 and rj−3.
Thus

rj = rj−2 − qjrj−1

= rj−2 − qj (rj−3 − qj−1rj−2)

= (1 + qjqj−1) rj−2 − qjrj−3.

Thus we have expressed rj as a linear combination of rj−2 and rj−3,
the coefficients being integers. Working backward, we get rj as a
linear combination of a, b with the coefficients being integers.

The process given in the proof of Theorem 3.8 is known as the
Extended Euclidean Algorithm.

Corollary 3.3.5:
If (a, m) = 1, then there exists an integer u such that au ≡ 1
(mod m) and any two such integers are congruent modulo m.

Proof. By the Extended Euclidean Algorithm, there exist integers
u and v such that au+mv = 1. This however means that au ≡ 1
(mod m). The second part is trivial as (a, m) = 1.

Example 3.3.6:
Find integers x and y so that 120x+ 70y = 10.

We apply Euclid’s algorithm to a = 120 and b = 70. We have

120 = 1 · 70 + 50

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 189 — #205 i
i

i
i

i
i

3.4. PRIMES 189

70 = 1 · 50 + 20

50 = 2 · 20 + 10

20 = 2 · 10
Hence gcd(120, 70) = 10.

Now starting from the penultimate equation and going backward,
we get

10 = 50− 2 · 20
= 50− 2(70− 1 · 50)
= 3 · 50− 2 · 70
= 3 · (120− 1 · 70)− 2 · 70
= 3 · 120− 5 · 70.

Therefore x = 3 and y = −5 fulfill the requirement. Note that
we have obtained the desired result by replacing the successive
remainders by going backward.

3.4 Primes

Definition 3.4.1:
An integer n > 1 is a prime if its only positive divisors are 1 and
n. A natural number greater than 1 which is not a prime is a
composite number.

Naturally, 2 is the only even prime. 3, 5, 7, 11, 13, 17, . . . are
all odd primes. The composite numbers are 4, 6, 8, 9, 10, . . .

Theorem 3.4.2:
Every integer n > 1 can be expressed as a product of primes.

Proof. The result is obvious for n = 2, 3 and 4. So assume that
n > 4 and apply induction. If n is a prime, there is nothing to
prove. If n is not a prime, then n = n1n2, where 1 < n1 < n and
1 < n2 < n. By induction hypothesis, both n1 and n2 are products

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 190 — #206 i
i

i
i

i
i

190 CHAPTER 3. BASICS OF NUMBER THEORY

of primes. Hence n itself is a product of primes. (Note that the
prime factors of n need not all be distinct.)

Suppose in a prime factorization of n, the distinct prime factors
are p1, p2, . . . , pr, and that pi is repeated αi times, 1 ≤ i ≤ r,

n = pα1
1 p

α2
2 · · · pαr

r . (3.10)

We now show that this factorization of n is unique in the sense
that in any prime factorization, the prime factors that occur are
the same and that the prime powers are also the same except for
the order of the prime factors. For instance, 200 = 23 × 52, and
the only other way to write it in the form (3.10) is 52 × 23.

Theorem 3.4.3 (Unique factorization theorem):
Every positive integer n > 1 can be expressed uniquely in the form

n = pα1
1 p

α2
2 · · · pαr

r

where pi, 1 ≤ i ≤ r, are distinct primes; the above factorization is
unique except for the order of the primes.

To prove Theorem 3.4.3, we need a property of primes.

Lemma 3.4.4:
If p is a prime such that p | (ab), but p ∤ a, then p | b.

Proof. As p ∤ a, (p, a) = 1. Now apply Proposition 3.3.2.

Note 3.4.5:
Theorem 3.4.4 implies that if p is a prime and p ∤ a and p ∤ b,
then p ∤ (ab). More generally, p ∤ a1, p ∤ a2, . . . p ∤ an imply that
p ∤ (a1a2 · · · an). Consequently if p | (a1a2 · · · an), then p must
divide at least one ai, 1 ≤ i ≤ n.

Proof. (of Theorem 3.4.3) Suppose

n = pα1
1 p

α2
2 · · · pαr

r = qβ1

1 q
β2

2 · · · q
βj

j · · · qβs
s (3.11)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 191 — #207 i
i

i
i

i
i

3.4. PRIMES 191

are two prime factorizations of n, where the pi’s and qi’s are

all primes. As p1 | (pα1
1 · · · pαr

r), p1 |
(
qβ1

1 · · · qβr
s

)
. Hence by

Lemma 3.4.4, p1 must divide some qj. As p1 and qj are primes
and p1 | qj, p1 = qj. Cancelling p1 on both sides, we get

pα1−1
1 pα2

2 · · · pαr
r = qβ1

1 q
β2

2 · · · q
βj−1
j · · · qβs

s . (3.12)

Now argue as before with p1 if α1 − 1 ≥ 1. If α1 < βj, this
procedure will result in the relation

pα2
2 · · · pαr

r = qβ1

1 q
β2

2 · · · q
βj−α1

j · · · qβs
s . (3.13)

Now p1 divides the right hand expression of (3.13) and so must
divide the left-hand expression of (3.13). But this is impossible as
the pi’s are distinct primes. Hence α1 = βj. Cancellation of pα1

1

on both sides of (3.11) yields

pα2
2 · · · pαr

r = qβ1

1 q
β2

2 · · · q
βj−1

j−1 q
βj+1

j+1 · · · qβs
s .

Repetition of our earlier argument gives p2 = one of the qi’s, 1 ≤
i ≤ s, say, qk, k ̸= j. Hence α2 = βk and so on. This shows that
each pi = some qt and that αi = βt so that pαi

i = qαt
t . Cancellation

of pα1
1 followed by pα2

2 , . . . , p
αr
r on both sides will leave 1 on the left

side expression of (3.11) and so the right side expression of (3.11)
should also reduce to 1.

The unique factorization of numbers enables us to compute the
gcd and lcm of two numbers. Let a and b be any two integers ≥ 2.
Let p1, . . . , pr be the primes, each of which divides either a or b.
Then a and b can be written uniquely in the form

a = pα1
1 p

α2
2 · · · pαr

r

b = pβ1

1 p
β2

2 · · · pβr
r ,

where αi’s and βj’s are non-negative integers. (Taking αi’s and
βj’s to be nonnegative integers in the prime factorizations of a
and b, instead of taking them to be positive, enables us to use the

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 192 — #208 i
i

i
i

i
i

192 CHAPTER 3. BASICS OF NUMBER THEORY

same prime factors for both a and b. For instance, if a = 72 and
b = 45, we can write a and b as,

a = 23 · 32 · 50

and b = 20 · 32 · 51.
)

Then clearly,

(a, b) =
r∏

i=1

p
min(αi, βi)
i , and

[a, b] =
r∏

i=1

p
max(αi, βi)
i

We next establish two important properties of prime numbers.

Theorem 3.4.5 (Euclid):
The number of primes is infinite.

Proof. The proof is by contradiction. Suppose there are only
finitely many primes, say, p1, p2, . . . , pr. Then the number n =
1+p1p2 · · · pr is larger than each pi, 1 ≤ i ≤ r, and hence compos-
ite. Now any composite number is divisible by some prime. But
none of the primes pi, 1 ≤ i ≤ r, divides n. (For, if pi divides
n, then pi | 1, an impossibility). Hence the number of primes is
infinite.

Theorem 3.4.6 (Nagell):
There are arbitrarily large gaps in the sequence of primes. In other
words, for any positive integer k ≥ 2, there exist k consecutive
composite numbers.

Proof. The k numbers

(k + 1)! + 2, (k + 1)! + 3, . . . , (k + 1)! + k, (k + 1)! + (k + 1)

are consecutive. They are all composite since (k+1)!+2 is divisible
by 2, (k+1)!+3 is divisible by 3 and so on. In general (k+1)!+ j
is divisible by j for each j, 2 ≤ j ≤ k + 1.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 193 — #209 i
i

i
i

i
i

3.5. EXERCISES 193

Definition 3.4.7:
Two numbers a and b are coprime or relatively prime or prime to
each other, if gcd(a, b) = 1.

3.5 Exercises

1. For any integer n, show that n2 − n is divisible by 2, n3 − n
by 6 and n5 − n by 30.

2. Show that (n, n+ 1) = 1 and that [n, n+ 1] = n(n+ 1).

3. Use the unique factorization theorem to prove that for any
two positive integers a and b, (a, b)[a, b] = ab, and that
(a, b) | [a, b]. (Remark: This shows that if (a, b) = 1,
then [a, b] = ab. More generally, if {a1, a2, . . . , ar} is
any set of positive integers, then (a1, a2, . . . , ar) divides
[a1, a2, . . . , ar]. Here (a1, a2, . . . , ar) and [a1, a2, . . . , ar]
denote, respectively, the gcd and lcm of the numbers
a1, a2, . . . , ar.

4. Prove that no integers x, y exist satisfying x+ y = 100 and
(x, y) = 3. Do x, y exist if x+ y = 99, (x, y) = 3 ?

5. Show that there exist infinitely many pairs (x, y) such that
x+ y = 72 and (x, y) = 9.

Hint: One choice for (x, y) is (63, 9). Let p be any prime
strictly greater than 72. Then (p, 72) = 1. Let x = 72 − 9p
and y = 9p. Then x + y = 72 (x, y) = 9. As p has infinitely
many choices, the result is clear.

6. If a+ b = c, show that (a, c) = 1, iff (b, c) = 1. Hence show
that any two consecutive Fibonacci numbers are coprime.
(The Fibonacci numbers Fn are defined by the recursive re-
lation Fn = Fn−1 + Fn−2, where F0 = 1 = F1. Hence the
Fibonacci sequence is {1, 1, 2, 3, 5, 8, . . .}.

7. Find (i) gcd (2700, 15120). (ii) lcm [2700, 15120].

8. Determine integers x and y so that

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 194 — #210 i
i

i
i

i
i

194 CHAPTER 3. BASICS OF NUMBER THEORY

(a) 180x+ 72y = 36.

(b) 605x+ 96y = 67.

9. For a positive integer n, show that there exist integers a and
b such that n is a multiple of (a, b) = d and ab = n iff d2 | n.

(Hint: By Exercise 3 above, (a, b)[a, b] = ab = n and that
(a, b) | [a, b]. Hence d2 |n. Conversely, if d2 |n, n = d2c.
Now take d = a and dc = b.)

10. Prove that amn− 1 is divisible by am− 1, when m and n are
positive integers. Hence show that if an − 1 is prime, a ≥ 2,
then n must be prime.

11. Prove that
2n−1∑
j=1

1

2j − 1
is not an integer for n > 1. (Hint:

Let S = {1, 3, . . . , (2n−1)}, and let r be the largest positive
integer with 3r ∈ S. Then 3r divides no number in S \ {3r}.
Suppose 1

1
+ 1

3
+· · ·+ 1

2n−1
is an integer q. Then q− 1

3r
= 1

3r−1 · ab ,
where a and b are integers with (3, b) = 1).

12. Show that the sum s = 1
2
+ 1

3
+ · · · + 1

n
is never an integer

for any n ≥ 2.

13. Prove that if an = 22
n
+ 1, then (an, an + 1) = 1 for each

n ≥ 1. (Hint: Set 22
n
= x).

14. If n = pa11 · · · parr is the prime factorization of n, show that
d(n), the number of distinct divisors of n is (a1+1) · · · (ar +
1).

3.6 Congruences

A congruence is a division with reference to a number or a function.
The congruence relation has a notational convenience that could
be employed in making addition, subtraction, multiplication by
constants and division in some special cases.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 195 — #211 i
i

i
i

i
i

3.6. CONGRUENCES 195

Definition 3.6.1:
Given integers a, b and n (̸= 0), a is said to be congruent to b
modulo n, if a− b is divisible by n, that is, a− b is a multiple of
n. In symbols, it is denoted by a ≡ b (mod n), and is read as “a
is congruent to b modulo n.” The number n is the modulus of the
congruence.

Definition 3.6.2:
If f(x), g(x) and h(x) (̸= 0) are any three polynomials with real
coefficients then by f(x) ≡ g(x) (mod h)(x), we mean that f(x)−
g(x) is divisible by h(x) over R, that is to say, there exists a
polynomial q(x) with real coefficients such that

f(x)− g(x) = q(x)h(x).

The congruence given in Definition 3.6.1 is numerical congru-
ence while that given in Definition 3.6.2 is polynomial congruence.
We now concentrate on numerical congruences. Trivially, a ≡ b
(mod m), iff a ≡ b (mod − m). Hence we assume without loss
of generality that the modulus of any numerical congruence is a
positive integer.

Proposition 3.6.3: 1. a ≡ b (mod m) iff b ≡ a (mod m).

2. If a ≡ b (mod m), and b ≡ c (mod m), then a ≡ c
(mod m).

3. If a ≡ b (mod m), then for any integer k, ka ≡ kb
(mod m). In particular, taking k = −1, we have −a ≡ −b
(mod m), whenever a ≡ b (mod m).

4. If a ≡ b (mod m), and c ≡ d (mod m), then

(a) a± c ≡ b± d (mod m), and

(b) ac ≡ bd (mod m).

Proof. We prove only 3 and 4; the rest follow immediately from
the definition.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 196 — #212 i
i

i
i

i
i

196 CHAPTER 3. BASICS OF NUMBER THEORY

3. If a ≡ b (mod m), then a − b is divisible by m, and hence
so is k(a− b) = ka− kb. Thus ka ≡ kb (mod m).

4. If a − b and c − d are multiples of m, say, a − b = km and
c − d = k′m for integers k and k′, then (a + c) − (b + d) =
(a − b) + (c − d) = km + k′m = (k + k′)m, a multiple of
m. This means that a + c ≡ b + d (mod m). Similarly
a − c ≡ b − d (mod m). Next, if a ≡ b (mod m), then
by (3), ac ≡ bc (mod m). But then c ≡ d (mod m) gives
bc ≡ bd (mod m). Hence ac ≡ bd (mod m) by (1).

Proposition 3.6.4:
If ab ≡ ac (mod m), and (a, m) = 1, then b ≡ c (mod m).

Proof.

ab ≡ ac (mod m) =⇒ m|a(b− c)

=⇒ m|(b− c) as (a,m) = 1 (by Proposition 3.3.2)

b ≡ c (mod m).

Corollary 3.6.5:
If ab ≡ ac (mod m), then b ≡ c (mod)

m
d, where d = (a, m).

Proof. As d = (a, m), d | a and d | m. Therefore, a = da′ and
m = dm′, where (a′, m′) = 1. Then ab ≡ ac (mod m) gives that

da′b ≡ da′c (mod m), (3.14)

that is da′b ≡ da′c (mod dm′) (3.15)

and therefore a′b ≡ a′c. (mod m′). But (a′, m′) = 1. Hence by
Proposition 3.6.4, b ≡ c (mod m′).

Proposition 3.6.6:
If (a,m) = (b,m) = 1, then (ab,m) = 1.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 197 — #213 i
i

i
i

i
i

3.7. COMPLETE SYSTEM OF RESIDUES 197

Proof. Suppose (ab,m) = d > 1 and p is a prime divisor of d.
Then p | m and p | ab. But p | ab means that p | a or p | b
as p is prime. If p | a, then (a, m) ≥ p > 1, while if p | b,
(b, m) ≥ p > 1. This shows that (ab, m) ≥ p > 1, a contradiction.
Hence (ab,m) = 1.

Proposition 3.6.7:
If ax ≡ 1 (mod m) and (a, m) = 1, then (x, m) = 1.

Proof. Suppose (x, m) = d > 1. Let p be a prime divisor of d.
Then p | x and p | m. This however means, since ax− 1 = km for
some k ∈ Z, that p | 1, a contradiction.

Proposition 3.6.8:
If a ≡ b (mod mi), 1 ≤ i ≤ r, then a ≡ b (mod [m1, . . . ,mr]),
where [m1, . . . ,mr] stands for the lcm of m1, . . . ,mr.

Proof. The hypothesis implies that a− b is a common multiple of
m1, . . . ,mr and hence it is a multiple of the least common multiple
of m1, . . .mr. (Because if a− b = αimi, 1 ≤ i ≤ r, and mi has the

prime factorization mi = p
αi
1

1 p
αi
2

2 · · · p
αi
t

t , 1 ≤ i ≤ r, then p
αi
j

j | mi

for each j, in 1 ≤ j ≤ t and for each i, 1 ≤ i ≤ r. (Here the
exponents αi

j are nonnegative integers. This enables us to take
the same prime factors p1, . . . , pt for all the mi’s. See Section 3.4.)

Hence mi is divisible by
(
p
maxi α

i
j

j

)
for each j in 1 ≤ j ≤ t. Thus

each of these t numbers divides a−b and they are pairwise coprime.
Hence a − b is divisible by their product. But their product is
precisely the lcm of m1, . . . ,mr. (See Section 3.4.)

3.7 Complete System of Residues

A number b is called a residue of a number a modulo m if a ≡ b
(mod m). Obviously, b is a residue of b modulo m.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 198 — #214 i
i

i
i

i
i

198 CHAPTER 3. BASICS OF NUMBER THEORY

Definition 3.7.1:
Given a positive integer m, a set S = {x1, . . . , xm} of m numbers
is called a complete system of residues modulo m if for any integer
x, there exists a unique xi ∈ S such that x ≡ xi (mod m).

We note that no two numbers xi and xj, i ̸= j, in S are con-
gruent modulo m. For if xi ≡ xj (mod m), then since xi ≡ xi
(mod m) trivially, we have a contradiction to the fact that S is a
complete residue system modulo m. Conversely, it is easy to show
that any set of m numbers, no two of which are congruent modulo
m, forms a complete residue system modulo m. In particular, the
set {0, 1, 2, . . . ,m− 1} is a complete residue system modulo m.

Next, suppose that (x, m) = 1 and x ≡ xi (mod m). Then
xi is also prime to m. (If xi and m have a common factor p > 1
then p | x as x − xi = km, k ∈ Z. This however means that
(x, m) ≥ p > 1, a contradiction to our assumption.) Thus if
S = {x1, . . . , xm} is a complete system of residues modulo m and
x ≡ xi (mod m), then (x, m) = 1 iff (xi, m) = 1. Then deleting
the numbers xj of S that are not coprime to m, we get a subset
S ′ of S consisting of a set of residues modulo m each of which is
relatively prime to m. Such a system is called a reduced system of
residues modulo m. For instance, taking m = 10, {0, 1, 2, , 9}
is a complete system of residues modulo 10, while S ′ = {1, 3, 7, 9}
is a reduced system of residues modulo 10. The numbers in S ′ are
all the numbers that are less than 10 and prime to 10.

Euler’s ϕ-Function

Definition 3.7.2:
The Euler function ϕ(n) (also called the totient function) is defined
to be the number of positive integers less than n and prime to n.
It is also the cardinality of a reduced residue system modulo n.

We have seen earlier that ϕ(10) = 4. We note that ϕ(12) is
also equal to 4 since 1, 5, 7, 11 are all the numbers less than
12 and prime to 12. If p is a prime, then all the numbers in
{1, 2, . . . , p− 1} are less than p and prime to p and so ϕ(p) = p−1.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 199 — #215 i
i

i
i

i
i

3.7. COMPLETE SYSTEM OF RESIDUES 199

We now present Euler’s theorem on the ϕ-function.

Theorem 3.7.3 (Euler):
If (a, n) = 1, then

aϕ(n) ≡ 1 (mod n).

Proof. Let
{
r1, . . . , rϕ(n)

}
be a reduced residue system modulo n.

Now (ri, n) = 1 for each i, 1 ≤ i ≤ ϕ(n). Further, as (a, n) = 1,
by Proposition 3.6.6, (ari, n) = 1. Moreover, if i ̸= j, ari ̸≡ arj
(mod n). For, ari ≡ arj (mod n) implies (as (a, n) = 1), by virtue
of Proposition 3.6.4, that ri ≡ rj (mod n), a contradiction to the
fact that

{
r1, . . . , rϕ(n)

}
is a reduced residue system modulo n.

Hence
{
ari, . . . , arϕ(n)

}
is also a reduced residue system modulo n

and
ϕ(n)∏
i=1

(ari) ≡

ϕ(n)∏
j=1

rj

 (mod n).

This gives that aϕ(n)
∏ϕ(n)

i=1 ri ≡
∏ϕ(n)

j=1 rj (mod n). Further

(ri, n) = 1 for each i = 1, 2, . . . , ϕ(n) gives that
(∏ϕ(n)

i=1 ri, n
)
= 1

by Proposition 3.6.6. Consequently, by Proposition 3.6.4,

aϕ(n) ≡ 1 (mod n).

Corollary 3.7.4 (Fermat’s little theorem):
If n is a prime and (a, n) = 1, then an−1 ≡ 1 (mod n).

Proof. If n is a prime, then ϕ(n) = n − 1. Now apply Euler’s
theorem (Theorem 3.7.3).

We see more properties of the Euler function ϕ(n) in Sec-
tion 3.11. Another interesting theorem in elementary number the-
ory is Wilson’s theorem.

Theorem 3.7.5:
If u ∈ [1, m− 1] is a solution of the congruence ax ≡ 1 (mod m),
then all the solutions of the congruence are given by u+km, k ∈ Z.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 200 — #216 i
i

i
i

i
i

200 CHAPTER 3. BASICS OF NUMBER THEORY

Proof. Clearly, u+km, k ∈ Z, is a solution of the congruence ax ≡
1 (mod m) because a(u + km) = au + akm ≡ au ≡ 1 (mod m).
Conversely, let ax0 ≡ 1 (mod m). Then a(x0 − u) ≡ 0 (mod m),
and therefore by Proposition 3.6.7, (x0 − u) ≡ 0 (mod m) as
(a, m) = 1 in view of au ≡ 1 (mod m). Hence x0 = u + km for
some k ∈ Z.

Theorem 3.7.7 (Wilson’s theorem):
If p is a prime, then

(p− 1)! ≡ −1 (mod p).

Proof. The result is trivially true if p = 2 or 3. So let us assume
that prime p ≥ 5. We look at (p− 1)! = 1 · 2 · · · (p− 1). Now

1 ≡ 1 (mod p), and

p− 1 ≡ −1 (mod p).

Hence it is enough if we prove that

2 · 3 · · · (p− 2) ≡ 1 (mod p),

since the multiplication of the three congruences (See Proposi-
tion 3.6.3) will yield the required result.

Now, as p (≥ 5) is an odd prime, the cardinality of L is even,
where L = {2, 3, . . . , p− 2}. For each i ∈ L, by virtue of Corol-
lary 3.3.5, there exists a unique j, 1 ≤ j ≤ p − 1 such that
ij ≡ 1 (mod p). Now j ̸= 1, and j ̸= p − 1.

(
If j = p − 1,

then ij = i(p− 1) ≡ −i (mod p) and therefore −i ≡ 1 (mod p).
This means that p | (i + 1). This is not possible as i ∈ L

)
. Also

ij = ji. Moreover j ̸= i since j = i implies that i2 ≡ 1 (mod p)
and therefore p | (i − 1) or p | (i + 1). However this is not pos-
sible as this will imply that i = 1 or (p − 1). Thus each i ∈ L
can be paired off with a unique j ∈ L such that ij ≡ 1 (mod p).

In this way we get
p− 3

2
congruences. Multiplying these

p− 3

2
congruences, we get

2 · 3 · · · (p− 2) ≡ 1 · · · 1 ≡ 1 (mod p) (3.16)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 201 — #217 i
i

i
i

i
i

3.7. COMPLETE SYSTEM OF RESIDUES 201

Example 3.7.8:
As an application of Wilson’s theorem, we prove that 712!+1 ≡ 0
(mod 719).

Proof. Since 719 is a prime, Wilson’s theorem implies that 718! +
1 ≡ 0 (mod 719). We now rewrite 718! in terms of 712 as

718! = (712)!× 713× 714× 715× 716× 717× 718

= 712!(719− 6)(719− 5) · · · (719− 1)

= 712! (M(719) + 6!) .

(
M(719) stands for a multiple of 719.

)
≡
(
712!× 6!

)
(mod 719)

≡
(
712!× 720

)
(mod 719).

≡
(
712!× (719 + 1)

)
(mod 719).

≡
(
(712!× 719) + 712!

)
(mod 719)

≡
(
712!

)
(mod 719).

Thus 712! + 1 ≡ 718! + 1 ≡ 0 (mod 719)

If a ≡ b (mod m), then by Proposition 3.6.3, a2 ≡ b2

(mod m), and so a3 ≡ b3 (mod m) and so on. In general,
ar ≡ br (mod m) for every positive integer r and hence, again
by Proposition 3.6.3, tar ≡ tbr for every integer t. In particular, if
f(x) = a0 + a1x + · · · + anx

n is any polynomial in x with integer
coefficients, then f(a) = a0 + a1 · a + a2 · a2 + · · · + an · an ≡
a0 + a1 · b + a2 · b2 + · · · + an · bn = f(b) (mod m). We state this
result as a theorem.

Theorem 3.7.9:
If f(x) is a polynomial with integer coefficients, and a ≡ b
(mod m), then f(a) ≡ f(b) (mod m).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 202 — #218 i
i

i
i

i
i

202 CHAPTER 3. BASICS OF NUMBER THEORY

3.8 Linear Congruences and the Chi-

nese Remainder Theorem

Let f(x) be a polynomial with integer coefficients. By a solution
of the polynomial congruence

f(x) ≡ 0 (mod m), (3.17)

we mean an integer x0 with f(x0) ≡ 0 (mod m). If x0 ≡ y0
(mod m), by Theorem 3.7.9, f(x0) ≡ f(y0) (mod m), and hence
y0 is also a solution of the congruence (3.17). Hence, when we
speak of all the solutions of (3.17), we consider congruent solutions
as forming a class. Hence by the number of solutions of a poly-
nomial congruence, we mean the number of distinct congruence
classes of solutions. Equivalently, it is the number of incongruent
solutions modulo m of the congruence. Since any set of incongru-
ent numbers modulo m is of cardinality at most m, the number of
solutions of any polynomial congruence modulo m is at most m.

The congruence (3.17) is linear if f(x) is a linear polynomial.
Hence a linear congruence is of the form

ax ≡ b (mod m) (3.18)

It is not always necessary that a congruence modulo m has m
solutions. In fact, a congruence modulo m may have no solution
or less than m solutions. For instance, the congruence 2x ≡ 1
(mod 6) has no solution since 2x− 1 is an odd integer and hence
cannot be a multiple of 6. The congruence x3 ≡ 1 (mod 7) has
exactly 3 solutions given by x ≡ 1, 2, 4 (mod 7).

Theorem 3.8.1:
Let (a, m) = 1 and b an integer. Then the linear congruence

ax ≡ b (mod m) (3.19)

has exactly one solution.

Proof. (See also Corollary 3.3.5.) The numbers 1, 2, . . . , m form
a complete residue system modulo m. Hence, as (a, m) = 1, the

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 203 — #219 i
i

i
i

i
i

3.8. LINEAR CONGRUENCES 203

numbers a · 1, a · 2, · · · , a · m also form a complete residue sys-
tem modulo m. Now any integer is congruent modulo m to a
unique integer in a complete residue system modulo m (by defini-
tion of a complete residue system). Hence b is congruent modulo
m to a unique a · i, 1 ≤ i ≤ m. Thus there exists a unique
x ∈ {1, 2, . . .m} such that

ax ≡ b (mod m) (3.20)

If (a, m) = 1, taking b = 1 in Theorem 3.8.1, we see that there
exists a unique x in {1, 2, . . .m} such that

ax ≡ 1 (mod m)

This unique x is called the reciprocal of a modulo m.
We have seen in Theorem 3.8.1 that if (a, m) = 1, the congru-

ence has exactly one solution. What happens if (a, m) = d?

Theorem 3.8.2:
Let (a, m) = d. Then the congruence

ax ≡ b (mod m) (3.21)

has a solution iff d | b. If d | b, the congruence has exactly d
solutions. The d solutions are given by

x0, x0 +m/d, x0 + 2m/d, . . . , x0 + (d− 1)m/d, (3.22)

where x0 is the unique solution in {1, 2, . . . ,m/d} of the congru-
ence

a

d
x ≡ b

d
(mod

m

d
).

Proof. Suppose x0 is a solution of the congruence (3.21). Then
ax0 = b+km, k ∈ Z. As d | a and d | m, d | b. Conversely, if d | b,
let b = db0. Further, if a = da0 and m = dm0, the congruence
(3.21) becomes

a0dx ≡ db0 (mod dm0),

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 204 — #220 i
i

i
i

i
i

204 CHAPTER 3. BASICS OF NUMBER THEORY

and therefore

a0x ≡ b0 (mod m0) (3.23)

where (a0, m0) = 1. But the latter has a unique solution x0 ∈
{1, 2, . . .m0 = m/d}. Hence a0x0 ≡ b0 (mod m0). So x0 is also a
solution of (3.21).

Assume now that d | b. Let y be any solution of (3.21). Then
ay ≡ b (mod m). Also ax0 ≡ b (mod m). Hence ay ≡ ax0
(mod m) so that a0dy ≡ a0dx0 (mod (m/d)d). Hence a0y ≡ a0x0
(mod m/d). As d = (a, m), (a0, m/d) = 1. So by Proposi-
tion 3.6.4, y ≡ x0 (mod m/d) and so y = x0 + k(m/d) for some
integer k. But k ≡ r (mod d) for some r, 0 ≤ r < d. This gives
km

d
≡ rm

d
(mod m). Thus x0 + k(m/d) ≡ x0 + r(m/d) (mod m),

0 ≤ r < d and so y is congruent modulo m to one of the numbers
in (3.22).

Chinese Remainder Theorem

Suppose there is more than one linear congruence. In general, they
need not possess a common solution. (In fact, as seen earlier, even
a single linear congruence may not have a solution.) The Chinese
remainder theorem ensures that if the moduli of the linear con-
gruences are pairwise coprime, then the simultaneous congruences
all have a common solution. To start with, consider congruences
of the form x ≡ bi (mod mi).

Theorem 3.8.3:
Let m1, . . . ,mr be positive integers that are pairwise coprime,
that is, (mi, mj) = 1 whenever i ̸= j. Let b1, . . . , br be arbitrary
integers. Then the system of congruences

x ≡ b1 (mod m1)

...

x ≡ br (mod mr)

has exactly one solution modulo M = m1 · · ·mr.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 205 — #221 i
i

i
i

i
i

3.8. LINEAR CONGRUENCES 205

Proof. Let Mi =M/mi, 1 ≤ i ≤ r. Then, by hypothesis,

(Mi, mi) =
(r∏

k=1
k ̸=i

mk, mi

)
= 1.

Hence each Mi has a unique reciprocal M ′
i modulo mi, 1 ≤ i ≤ r.

Let
x = b1M1M

′
1 + · · ·+ brMrM

′
r. (3.24)

Now mi divides eachMj, j ̸= i. Hence, taking modulo mi on both
sides of (3.24), we get

x ≡ biMiM
′
i (mod mi)

≡ bi (mod mi) as MiM
′
i ≡ 1 (mod mi).

Hence x is a common solution of all the r congruences.
We now show that x is unique modulo M . In fact, if y is

another common solution, we have

y ≡ bi (mod mi), 1 ≤ i ≤ r,

and, therefore,

x ≡ y (mod mi), 1 ≤ i ≤ r.

This means, as the mi’s are pairwise coprime, that

x ≡ y (mod M).

We now present the general form of the Chinese remainder
theorem.

Theorem 3.8.4 (Chinese remainder theorem):
Let m1, . . . ,mr be positive integers that are pairwise coprime. Let
b1, . . . , br be arbitrary integers and let integers a1, . . . , ar satisfy
(ai, mi) = 1, 1 ≤ i ≤ r. Then the system of congruences

a1x ≡ b1 (mod m1)

...

arx ≡ br (mod mr)

has exactly one solution modulo M = m1m2 · · ·mr.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 206 — #222 i
i

i
i

i
i

206 CHAPTER 3. BASICS OF NUMBER THEORY

Proof. As (ai, mi) = 1, ai has a unique reciprocal a′i modulo mi so
that aia

′
i ≡ 1 (mod mi). Then the congruence aix ≡ bi (mod mi)

is equivalent to a′iaix ≡ a′ibi (mod mi), that is, to x ≡ a′ibi
(mod mi), 1 ≤ i ≤ r. By Theorem 3.8.3, these congruences have a
common unique solution x moduloM = m1 · · ·mr. Because of the
equivalence of the two sets of congruences, x is a common solution
to the given set of r congruences as well.

3.9 Lattice Points Visible from the

Origin

A lattice point of the plane is a point both of whose Cartesian
coordinates (with reference to a pair of rectangular axes) are inte-
gers. For example, (2, 3) is a lattice point while (2.5, 3) is not. A
lattice point (a, b) is said to be visible from another lattice point
(a′, b′) if the line segment joining (a′, b′) with (a, b) contains no
other lattice point. In other words, it means that there is no lat-
tice point that obstructs the view of (a, b) from (a′, b′). It is clear
that (±1, 0) and (0, ±1) are the only lattice points on the coor-
dinate axes visible from the origin. Further, the point (2, 3) is
visible from the origin, but (2, 2) is not (see Figure 3.1). Hence
we consider here lattice points (a, b) not on the coordinate axes
but visible from the origin. Without loss of generality, we may
assume that a ≥ 1 and b ≥ 1.

O
x

y

b

b

b

(1,1)

(2,2)

(2,3)

Figure 3.1: Lattice points visible
from the origin

O
x

y
b

b

b (a′, b′)

(a, b)

Figure 3.2: Illustration

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 207 — #223 i
i

i
i

i
i

3.9. LATTICE POINTS VISIBLE FROM THE ORIGIN 207

Lemma 3.9.1:
The lattice point (a, b) (not belonging to any of the coordinate
axes) is visible from the origin iff the gcd(a, b) = 1.

Proof. As mentioned earlier, assume without loss of generality,
that a ≥ 1 and b ≥ 1. A similar argument applies in the other
cases.

Suppose gcd(a, b) = 1. Then (a, b) must be visible from the
origin. If not, there exists a lattice point (a′, b′) with a′ < a and
b′ < b in the segment joining (0, 0) with (a, b). (See Figure 3.2.)

Then
b

a
=
b′

a′
(= slope of the line joining (0, 0) with (a, b)) so that

ba′ = b′a. Now a | b′a and so a | ba′. But (a, b) = 1 and hence by
Proposition 3.3.2, a | a′. But this is a contradiction since a′ < a.

Next assume that gcd(a, b) = d > 1. Then a = da′, b = db′

for positive integers a′, b′. Then the lattice point (a′, b′) lies on
the segment joining (0, 0) with (a, b), and since a′ < a and b′ < b,
(a, b) is not visible from the origin.

Corollary 3.9.5:
The lattice point (a, b) is visible from the lattice point (c, d) iff
(a− c, b− d) = 1.

Proof. Shift the origin to (c, d) through parallel axes. Then, the
new origin is (c, d) and the new coordinates of the original point
(a, b) with respect to the new axes are (a− c, b− d). Now apply
Lemma 3.9.1.

We now give an application of the Chinese remainder theorem
to the set of lattice points visible from the origin.

Theorem 3.9.6:
The set of lattice points visible from the origin contains arbitrarily
large square gaps. That is, given any positive integer k, there exists
a lattice point (a, b) such that none of the lattice points

(a+ r, b+ s), 1 ≤ r ≤ k, 1 ≤ s ≤ k,

is visible from the origin.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 208 — #224 i
i

i
i

i
i

208 CHAPTER 3. BASICS OF NUMBER THEORY

b

b

b

b

b

(a, b) x

y

(a+ t, b+ k) (a+ k, b+ k)

(a+ r, b+ s) (a+ k, b+ t)

Figure 3.3: Lattice points not visible from (0, 0)

Proof. Let {p1, p2, . . .} be the sequence of primes. Given the pos-
itive integer k, construct a k-by-k matrix M whose first row is
the sequence of first k primes p1, p2, . . . , pk, the second row is the
sequence of next k primes, namely pk+1, . . . , p2k, and so on.

M :

 p1 p2 . . . ps . . . pk
pk+1 pk+2 . . . pk+s . . . p2k
...

...
. . .

...
...


Let mi (resp. Mi) be the product of the k primes in the i-th
row (resp. column) of M . Then for i ̸= j, (mi, mj) = 1 and
(Mi, Mj) = 1 because in the products mi and mj (resp. Mi and
Mj), there is no repetition of any prime. Now by Chinese remain-
der theorem, the set of congruences

x ≡ −1 (mod m1)

x ≡ −2 (mod m2)

...

x ≡ −k (mod mk)

has a unique common solution a modulo m1 · · ·mk. Similarly, the
system

y ≡ −1 (mod M1)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 209 — #225 i
i

i
i

i
i

3.10. EXERCISES 209

y ≡ −2 (mod M2)
...

y ≡ −k (mod Mk)

has a unique common solution b moduloM1 · · ·Mk. Then a ≡ −r
(mod mr), and b ≡ −s (mod Ms), 1 ≤ r, s ≤ k. Hence a + r is
divisible by the product of all the primes in the r-th row of M ,
and similarly b + s is divisible by the product of all the primes
in the s-th column of M . Hence the prime common to the r-th
row and s-th column of M divides both a+ r and b+ s. In other
words (a + r, b + s) ̸= 1. So by Lemma 3.9.1, the lattice point
(a+ r, b+ s) is not visible from the origin. Now any lattice point
inside the square is of the form (a+r, b+s), 0 < r < k, 0 < s < k.
(For 1 ≤ r ≤ k − 1, 1 ≤ s ≤ k − 1, we get lattice points inside
the square while for r = k, or s = k, we get lattice points on the
boundary of the square.)

3.10 Exercises

1. If a is prime to m, show that 0 · a, 1 · a, 2 · a, . . . , (m− 1) · a
form a complete system of residues (mod m). Hence
show that for any integer b and for (a, m) = 1, the set
{b, b+ a, b+ 2a, . . . , b+ (m− 1)a} forms a complete system
of residues modulo m.

2. Show that the sum of the numbers less than n and prime to
n is 1

2
nϕ(n).

3. Prove that 18! + 1 is divisible by 437.

4. If p and q are distinct primes, show that pq−1 + qp−1 − 1 is
divisible by pq.

5. If p is a prime, show that 2(p− 3)! + 1 ≡ 0 (mod p). [Hint:
(p− 1)! = (p− 3)!(p− 2)(p− 1) ≡ 2(p− 3)!].

6. Solve: 5x ≡ 2 (mod 6). [Hint: See Theorem 3.8.1].

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 210 — #226 i
i

i
i

i
i

210 CHAPTER 3. BASICS OF NUMBER THEORY

7. Solve: 3x ≡ 2 (mod 6). [Hint: Apply Theorem 3.8.2].

8. Solve: 5x ≡ 10 (mod 7)15. [Hint: Apply Chinese remainder
theorem].

9. Solve the simultaneous congruences:

(a) x ≡ 1 (mod 3), x ≡ 2 (mod 4); 2x ≡ 1 (mod 5).

(b) 2x ≡ 1 (mod 3), 3x ≡ 1 (mod 4); x ≡ 2 (mod 5).

10. Prove the converse of Wilson’s theorem, namely, if (n−1)!+
1 ≡ 0 (mod n), then n is prime. [Hint: Prove by contradic-
tion].

3.11 Some Arithmetical Functions

Arithmetical functions are real or complex valued functions de-
fined on N, the set of positive integers. We have already come
across the arithmetical function ϕ(n), Euler’s totient function. In
this section, we look at the basic properties of the arithmetical
functions ϕ(n), the Möbius function µ(n) and the divisor function
d(n).

Definition 3.11.1:
An arithmetical function or a number-theoretical function is a
function whose domain is the set of natural numbers and codomain
is the set of real or complex numbers.

The Möbius function µ(n)

Definition 3.11.2:
The Möbius function µ(n) is defined as follows:

µ(1) = 1;

If n > 1, and n = pa11 · · · parr is the prime factorization of n,

µ(n) =


(−1)r if a1 = a2 = · · · = ar = 1

(that is, if n is a product of r distinct primes)

0 otherwise (that is, n has a square factor > 1).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 211 — #227 i
i

i
i

i
i

3.11. SOME ARITHMETICAL FUNCTIONS 211

For instance, if n = 5 ·11 ·13 = 715, a product of three distinct
primes, µ(n) = (−1)3 = −1, while if n = 52 · 11 · 13 or n = 73 · 13,
µ(n) = 0. Most of these arithmetical functions have nice relations
connecting n and the divisors of n.

Theorem 3.11.2:
If n ≥ 1, we have

∑
d|n

µ(d) =

⌊
1

n

⌋
=

{
1 if n = 1

0 if n > 1.
(3.25)

(Recall that for any real number x, ⌊x⌋ stands for the floor of
x, that is, the greatest integer not greater than x; for example,
⌊15

2
⌋ = 7.)

Proof. If n = 1, µ(1) is, by definition, equal to 1 and hence
the relation (3.25) is valid. Now assume that n > 1 and that
p1, . . . , pr are the distinct prime factors of n. Then any divi-
sor of n is of the form pa11 · · · parr , where each ai ≥ 0 and hence
the divisors of n for which the µ-function has nonzero values
are the numbers in the set {pσ1

1 · · · pσr
r : σi = 0 or 1, 1 ≤ i ≤

r} = {1; p1, . . . , pr; p1p2, p1p3, . . . , pr−1pr; . . . ; p1p2 · · · pr}. Now
µ(1) = 1; µ(pi) = (−1)1 = −1; µ(pipj) = (−1)2 = 1; µ(pipjpk) =
(−1)3 = −1 and so on. Further the number of terms of the form
pi is

(
n
1

)
, of the form pipj is

(
n
2

)
, and so on. Hence if n > 1,

∑
d|n

µ(d) = 1−
(
n

1

)
+

(
n

2

)
− · · ·+ (−1)r

(
n

r

)
= (1− 1)r = 0

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 212 — #228 i
i

i
i

i
i

212 CHAPTER 3. BASICS OF NUMBER THEORY

A relation connecting ϕ and µ

Theorem 3.11.3:
If n ≥ 1, we have

ϕ(n) =
∑
d|n

µ(d)
n

d
= n

∑
d|n

µ(d)

d
(3.26)

Proof. If (n, k) = 1, then
⌊

1
(n, k)

⌋
=
⌊
1
1

⌋
= 1, while if (n, k) > 1,⌊

1
(n, k)

⌋
= ⌊a positive number less than 1⌋ = 0. Hence

ϕ(n) =
n∑

k=1

⌊
1

(n, k)

⌋
.

Now replacing n by (n, k) in Theorem 3.11.2, we get∑
d|(n, k)

µ(d) =

⌊
1

(n, k)

⌋
.

Hence

ϕ(n) =
n∑

k=1

∑
d|(n, k)

µ(d)

=
n∑

k=1

∑
d|n
d|k

µ(d). (3.27)

For a fixed divisor d of n, we must sum over all those k in the range
1 ≤ k ≤ n which are multiples of d. Hence if we take k = qd, then
1 ≤ q ≤ n/d. Therefore (3.27) reduces to

ϕ(n) =
∑
d|n

n/d∑
q=1

µ(d)

=
∑
d|n

µ(d)

n/d∑
q=1

1 =
∑
d|n

µ(d)
n

d

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 213 — #229 i
i

i
i

i
i

3.11. SOME ARITHMETICAL FUNCTIONS 213

Theorem 3.11.4:
If n ≥ 1, we have

∑
d|n ϕ(d) = n.

Proof. For each divisor d of n, let A(d) denote those numbers k,
1 ≤ k ≤ n, such that (k, n) = d. Clearly, the sets A(d) are pair-
wise disjoint and their union is the set {1, 2, . . . , n}. (For example,
if n = 6, d = 1, 2, 3 and 6.) Moreover A(1) = {k : (k, n) = 1} =
{set of numbers ≤ n and prime to n} = {1, 5}. Similarly,
A(2) = {2, 4}, A(3) = {3}, A(4) = ϕ = A5, and A6 = {6}.
Clearly, the sets A(1) to A(6) are pairwise disjoint and their union
is the set {1, 2, 3, 4, 5, 6}). Then if |A(d)| denotes the cardinality
of the set A(d), ∑

d|n

| A(d) |= n (3.28)

But (k, n) = d iff

(
k

d
,
n

d

)
= 1 and 0 < k ≤ n. Hence if we set

q = k
d
, there is a 1−1 correspondence between the elements in

A(d) and those integers q satisfying 0 < q ≤ n
d
, where (q, n/d) =

1. The number of such q’s is ϕ(n/d). Note: If q = n/d, then,
(q, n/d) = (n/d, n/d) = n/d = 1 iff d = n. In this case, q = 1 =

ϕ(1) = ϕ
(n
d

)
. Thus | A(d) |= ϕ(n/d) and (3.28) becomes∑

d|n

ϕ(n/d) = n.

But this is equivalent to
∑

d|n ϕ(d) = n since as d runs through all

the divisors of n, so does n/d.

As an example, take n = 12. Then d runs through 1, 2, 3, 4,
6 and 12. Now ϕ(1) = ϕ(2) = 1, ϕ(3) = ϕ(4) = ϕ(6) = 2, and
ϕ(12) = 4 and

∑
d|n
ϕ(d) = ϕ(1)+ϕ(2)+ϕ(3)+ϕ(4)+ϕ(6)+ϕ(12) =

(1 + 1) + (2 + 2 + 2) + 4 = 12 = n.

A product formula for ϕ(n)

We now present the well-known product formula for ϕ(n) express-
ing it as a product extended over all the distinct prime factors of

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 214 — #230 i
i

i
i

i
i

214 CHAPTER 3. BASICS OF NUMBER THEORY

n.

Theorem 3.11.5:
For n ≥ 2, we have

ϕ(n) = n
∏
p|n

p=a prime

(
1− 1

p

)
(3.29)

Proof. We use the formula ϕ(n) =
∑

d|n µ(d)
n
d
of Theorem 3.11.3

for the proof. Let p1, . . . , pr be the distinct prime factors of n.
Then

∏
p|n

p=a prime

(
1−

1

p

)
=

r∏
i=1

(
1−

1

pi

)
= 1−

∑
i

1

pi
+

∑
i̸=j

1

pipj
−

∑ 1

pipjpk
+ · · · , (3.30)

where, for example, the sum
∑

1
pipjpk

is formed by taking distinct

prime divisors pi, pj and pk of n. Now, by definition of the µ-
function, µ(pi) = −1, µ(pipj) = 1, µ(pipjpk) = −1 and so on.
Hence the sum on the right side of (3.30) is equal to

1 +
∑
pi

µ(pi)

pi
+
∑
pi,pj

µ(pipj)

pipj
+ · · · =

∑
d|n

µ(d)

d
,

since all the other divisors of n, that is, divisors which are not
products of distinct primes, contain a square and hence their µ-
values are zero. Thus

n
∏
p|n

p=a prime

(
1− 1

p

)
=
∑
d|n

µ(d)
n

d
= ϕ(n) (by Theorem 3.11.3)

The Euler ϕ-function has the following properties.

Theorem 3.11.6:

1. ϕ(pr) = pr − pr−1 for prime p and r ≥ 1.

2. ϕ(mn) = ϕ(m)ϕ(n)(d/ϕ(d)), where d = (m, n).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 215 — #231 i
i

i
i

i
i

3.11. SOME ARITHMETICAL FUNCTIONS 215

3. ϕ(mn) = ϕ(m)ϕ(n), if m and n are relatively prime.

4. a | b implies that ϕ(a) | ϕ(b).

5. ϕ(n) is even for n ≥ 3. Moreover, if n has k distinct odd
prime factors, then 2k | ϕ(n).

Proof. 1. By the product formula,

ϕ(pr) = pr
(
1− 1

p

)
= pr − pr−1.

2. We have ϕ(mn) = mn
∏

p|mn

p=a prime

(
1− 1

p

)
. If p is a prime

that divides mn, then p divides either m or n. But then
there may be primes which divide both m and n and these
are precisely the prime factors of (m, n). Hence if we look at
the primes that divide both m and n separately, the primes
p that divide (m, n) = d occur twice. Therefore

∏
p|mn

(
1− 1

p

)
=

∏
p|m

(
1− 1

p

)
·
∏

p|n

(
1− 1

p

)
∏

p|(m,n)

(
1− 1

p

)
=

ϕ(m)

m
· ϕ(n)
n

ϕ(d)

d

(by the product formula)

=
1

mn
ϕ(m)ϕ(n)

d

ϕ(d)

This gives the required result since the term on the left is
1

mn
ϕ(mn).

3. If (m, n) = 1, then d in (ii) is 1. Now apply (ii).

4. If a | b, then every prime divisor of a is a prime divisor of b.

Hence a
∏
p|a

(
1− 1

p

)
| b
∏
p|b

(
1− 1

p

)
. This however means that

ϕ(a) | ϕ(b).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 216 — #232 i
i

i
i

i
i

216 CHAPTER 3. BASICS OF NUMBER THEORY

5. If n ≥ 3, either n is a power of 2, say, 2r, r ≥ 2, or else
n = 2sm, where m ≥ 3 is odd. If n = 2r, ϕ(n) = 2r−1, an
even number. In the other case, by (iii), ϕ(n) = ϕ(2s)ϕ(m).
Now ifm = pk11 · · · pkss is the prime factorization ofm, by (iii)
ϕ(m) =

∏s
i=1 ϕ(p

ki
i) =

(
by (i)

) ∏s
i=1 p

ki−1
i ·(pi−1). Now each

pi − 1 is even and hence 2s is a factor of ϕ(n).

There are other properties of the three arithmetical functions
described above and also other arithmetical functions not de-
scribed here. The interested reader can consult the books given in
the reference.

We now present an application of Theorem 3.11.4.

An application

We prove that the determinant∣∣∣∣∣∣∣∣∣
(1, 1) (1, 2) . . . (1, n)
(2, 1) (2, 2) . . . (2, n)

...
...

. . .
...

(n, 1) (n, 2) . . . (n, n)

∣∣∣∣∣∣∣∣∣ = ϕ(1)ϕ(2) · · ·ϕ(n).

Proof. Let D be the diagonal matrix
ϕ(1) 0 . . . 0
0 ϕ(2) . . . 0
...

...
. . .

...
0 ϕ(n)


Then detD = ϕ(1)ϕ(2) · · ·ϕ(n). Define the n by n matrix A =
(aij) by

aij =

{
1 if i | j
0 otherwise.

Then A is a unit upper triangular matrix. (Recall that a square
matrix A = (aij) is upper triangular if aij = 0 for i > j, that
is, the entries below the principal diagonal of A are all zero) with

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 217 — #233 i
i

i
i

i
i

3.11. SOME ARITHMETICAL FUNCTIONS 217

all diagonal entries equal to 1.) Hence detA = 1 = detAt. Set
S = AtDA. Then

detS = detAt · detD · detA
= 1 · (ϕ(1)ϕ(2) · · ·ϕ(n)) · 1
= ϕ(1)ϕ(2) · · ·ϕ(n).

We now show that S = (sij), where sij = (i, j). This would prove
our statement.

Now At = (bij), where bij = aji. Hence if D is the matrix
(dαβ), then the (i, j)-th entry of S is given by:

sij =
n∑

α=1

n∑
β=1

biαdαβaβj.

Now dαβ = 0 if α ̸= β, and dαα = ϕ(α) for each α. Therefore

sij =
n∑

α=1

biαdααaαj

=
n∑

α=1

biαaαjϕ(α)

=
n∑

α=1

aαiaαjϕ(α)

Now by definition aαi = 0 iff α ∤ i and aαi = 1 if α | i. Hence the
nonzero terms of the last sum are given by those α that divide i as
well as j. Now α | i and α | j iff α | (i, j). Thus sij =

∑
α|(i, j)

ϕ(α).

But the sum on the right is, by Theorem 3.11.4, (i, j).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 218 — #234 i
i

i
i

i
i

218 CHAPTER 3. BASICS OF NUMBER THEORY

3.12 Exercises

1. Find those n for which ϕ(n) | n.

2. An arithmetical function f is called multiplicative if it is not
identically zero and f(mn) = f(m)f(n) whenever (m, n) =
1. It is completely multiplicative if f(mn) = f(m)f(n) for
all positive integers m and n. Prove the following:

(a) ϕ is multiplicative but not completely multiplicative.

(b) µ is multiplicative but not completely multiplicative.

(c) If n is even, prove that
∑
d|n
µ(d)ϕ(d) = 0.

3. Prove that the sum of the positive integers less than n and

prime to n is
1

2
nϕ(n).

4. Let σ(n) denote the sum of the divisors of n. Prove that
σ(n) is multiplicative. Hence prove that if n = par1 · · · parr is
the prime factorization of n, then

σ(n) =
r∏

i=1

pai+1
i − 1

pi − 1
.

3.13 The Big O Notation

The big O notation is used mainly to express an upper bound for
a given arithmetical function in terms of another simpler arith-
metical function.

Definition 3.13.1:
Let f : N→ C be an arithmetical function. Then f(n) is O(g(n))
(read big O of g(n)), where g(n) is another arithmetical function
provided that there exists a constant K > 0 such that

|f(n)| ≤ K|g(n)| for all n ∈ N.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 219 — #235 i
i

i
i

i
i

3.13. THE BIG O NOTATION 219

More generally, we have the following definition for any
complex-valued function.

Definition 3.13.2:
Let f : R → C be a complex valued function. Then f(x) =
O
(
g(x)

)
, where g : R → C is another function if there exists a

constant K > 0 such that

|f(x)| ≤ K|g(x)| for each x in R.

An equivalent formulation of Definition 3.13.1 is the following.

Definition 3.13.3:
Let f : N→ C be an arithmetical function. Then f(n) is O(g(n)),
where g(n) is another arithmetical function if there exists a con-
stant K > 0 such that

|f(n)| ≤ K|g(n)| for all n ≥ n0, for some positive integer n0.
(3.31)

Clearly, Definition 3.13.1 implies Definition 3.13.3. To prove
the converse, assume that (3.31) holds. Choose positive numbers
c1, c2, . . . , cn0−1 such that |f(1)| < c1|g(1)|, |f(2)| < c2|g(2)| . . . ,
|f(n − 1)| < cn−1|g(n − 1)|. Let K0 =max (c1, c2, . . . , cn0−1, K).
Then

|f(n)| ≤ K0|g(n)| for each n ∈ N.

This is precisely Definition 3.13.1.

The time complexity of an algorithm is the number of bit oper-
ations required to execute the algorithm. If there is just one input,
and n is the size of the input, the time complexity is a function
T (n) of n. In order to see that T (n) is not very unwieldy, usually,
we try to express T (n) = O(g(n)), where g(n) is a known less
complicated function of n. The most ideal situation is where g(n)
is a polynomial in n. Such an algorithm is known as a polynomial
time algorithm. We now give the definition of a polynomial time
algorithm where there are, not just one, but k inputs.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 220 — #236 i
i

i
i

i
i

220 CHAPTER 3. BASICS OF NUMBER THEORY

Definition 3.13.4:
Let n1, . . . , nr be positive integers and let ni be a ki-bit integer (so
that the size of ni is ki), 1 ≤ i ≤ r. An algorithm to perform a
computation involving n1, . . . , nr is said to be a polynomial time
algorithm if there exist nonnegative integers m1, . . .mr such that
the number of bit operations required to perform the algorithm is
O(km1

1 . . . kmr
r).

Recall that the size of a positive integer is the number of bits in
it. For instance, 8 = (1000) and 9 = (1001). So both 8 and 9 are
4 bits. In fact all numbers n such that 2k−1 ≤ n < 2k are k-bits.
Taking logarithms with respect to base 2, we get k−1 ≤ log2 n < k
and hence k − 1 ≤ ⌊log2 n⌋ < k, so that ⌊log2 n⌋ = k − 1. Thus
k = 1 + ⌊log2 n⌋ and hence k is O(log2 n). Thus we have proved
the following result.

Theorem 3.13.5:
The size of n is O(log2 n).

Note that in writing O(log n), the base of the logarithm is
immaterial. For, if the base is b, then any number that is O(log2 n)
is O(logb n) and vice verse. This is because log2 n = logb n · log2b,
and log2 b can be absorbed in the constant K of Definition 3.13.1.

Example 3.13.1:
Let g(n) be a polynomial of degree t. Then g(n) is O(nt).

Proof. Let g(n) = a0n
t + a1n

t−1 + · · ·+ at, ai ∈ R. Then

|g(n)| ≤|a0|nt + |a1|nt−1 + . . .+ |at|
≤nt(|a0|+ |a1|+ . . .+ |at|)

=Knt, where K =
t∑

i=0

|ai|.

Thus g(n) is O(nt).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 221 — #237 i
i

i
i

i
i

3.13. THE BIG O NOTATION 221

We now present two examples for a polynomial time algorithm.
We have already described (see Section 3.3) Euclid’s method

of computing the gcd of two positive integers a and b.

Theorem 3.13.6:
Euclid’s algorithm is a polynomial time algorithm.

Proof. We show that Euclid’s algorithm of computing the gcd
(a, b), a > b, can be performed in time O(log3 a).

Adopting the same notation as in (3.5), we have

rj = qj+2rj+1 + rj+2, 0 ≤ rj+2 < rj+1.

Now the fact that qj+2 ≥ 1 gives,

rj ≥ rj+1 + rj+2 > 2rj+2.

Hence rj+2 < 1
2
rj for each j. This means that the remainder

in every other step in the Euclidean algorithm is less than half
of the original remainder. Hence if a = O(2k), then there are
at most k = O(log a) steps in the Euclidean algorithm. Now,
how about the number of arithmetic operations in each step? In
Equation (3.5), the number rj is divided by rj+1 and the remainder
rj+2 is computed. Since both rj and rj+1 are numbers less than
a they are O(log a). Hence Equation (3.5) involves O(log2 a) bit
operations. Since there are k = O(log a) such steps, the total
number of bit operations is (O(log3 a)).

Next we show that the modular exponentiation ac (mod m)
for positive integers a, c and m can be performed in polynomial
time. Here we can take without loss of generality that a < m
(because if a ≡ a′ (mod m), then ac ≡ (a′)c (mod m), where a′

can be taken to be < m). We now show that ac (mod m) can be
computed in O(log a log2m) bit operations. Note that O(log a) is
O(logm).

Write c in binary. Let

c = (bk−1bk−2 · · · b1b0) in the binary scale.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 222 — #238 i
i

i
i

i
i

222 CHAPTER 3. BASICS OF NUMBER THEORY

Then c = bk−12
k−1 + bk−22

k−2 + · · · + b02
0, and therefore ac =

abk−12
k−1 · abk−22

k−2 · · · ab12 · ab0 , where each bi = 0 or 1. We now
compute ac (mod m) recursively by reducing the number com-
puted at each step by (mod m). Set

y0 = abk−1 = a

y1 = y20a
bk−2 = abk−1·2abk−2

y2 = y21a
bk−3 = abk−12

2

abk−22abk−3

...

yi+1 = y2i a
bk−i−2 = abk−12

i

abk−22
i−1 · · · abk−i−2

...

yk−1 = y2k−2a
bk−k = abk−12

k−1

abk−22
k−2 · · · ab0

= a(bk−12
k−1+bk−22

k−2+···+b0) = ac (mod m).

There are k − 1 steps in the algorithm. Note that yi+1 is com-
puted by squaring yi and multiplying the resulting number by
1 if bk−i−2 = 0 or else multiplying the resulting number by a if
bk−i−2 = 1. Now yi (mod m) being a O(logm) number, to com-
pute y2i , we make O(log2m) = O(t2) where t = O(log2m) bit
operations. yi being a t-bit, y2i is a 2t or (2t + 1) bit number
and so it is also an O(t)-bit number. Now we reduce y2i modulo
m, that is, we divide the O(t) number y2i by the O(t) number m.
Hence this requires an additional O(t2) bit operations. Thus in
all we have performed until now O(t2)+O(t2) bit operations, that
is O(t2) bit operations. Having computed y2i (mod m), we next
multiply it by a0 or a1. As a is O(log2m) = O(t), this requires
O(t2) bit operations. Thus in all, computation of yi+1 from yi re-
quires O(t2) bit operations. But then there are k − 1 = O(log2 c)
steps in the algorithm. Thus the number of bit operations in the
computation of ac (mod m) is O(log2 c log

2
2m) = O(kt2). Thus

the algorithm is a polynomial time algorithm.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 223 — #239 i
i

i
i

i
i

Bibliography

[1] G. Andrews, Number Theory, Hindustan Publishing Corpo-
ration (India), 1992.

[2] I. Niven and H. S. Zuckerman, An Introduction to the Theory
of Numbers, John Wiley and Sons, Inc., 1960.

[3] G. H. Hardy and E. M. Wright, An Introduction to the The-
ory of Numbers, 4th ed., Oxford, Clarendon Press, 1960.

[4] T. Nagell, Introduction to Number Theory, John Wiley and
Sons, New York, 1951.

[5] C. V. Hsiung, Elementary Theory of Numbers, World Scien-
tific Pub. Co. 1992.

223

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 224 — #240 i
i

i
i

i
i

http://taylorandfrancis.com

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 225 — #241 i
i

i
i

i
i

Chapter 4

Introduction to Graph
Theory

Modélisation: Remplacer du visible compliqué par
l’invisible simple.

J. Perrin

Mathematics is a reflection of the real-world in the
mirror of our thinking.

G. Polya

One picture is worth more than a long discourse.
Napoléon Bonaparte

The chapter starts with the idea of a graph and basic definitions.
An informal, intuitive introduction to NP-complete problems is
given. Then multigraphs, simple graphs, degree sequences, some
special graphs, graphs and subgraphs, walks, paths and cycles
are introduced. Then we study graphs and puzzles, and Ramsey
numbers. Finally, graph algebra is studied.

4.1 The Idea of a Graph

Intuitively, a graph is a diagram consisting of a finite set of points
(called vertices) together with a finite set of arrows, each arrow
joining a certain ordered pair of vertices. Here, vertices and arrows

225

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 226 — #242 i
i

i
i

i
i

226 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

are undefined terms like points and lines in geometry. Many real-
world situations can be abstracted by means of the concept of the
graph. Graphs can be used as mathematical models for systems
involving binary relations. A mathematical model is a reflection of
some real-world situation. A model must mirror certain essential
features of a real situation, but not all. A mathematical model is
also a simplification that allows us to study the relevant properties
and ignore the others. A model can be smaller or larger or roughly
the same size as the thing it represents.

Vertices of a graph may be interpreted as cities and arcs as
highways joining the corresponding pairs of cities or vertices as
computers and arcs as possible direct communication between the
corresponding computers.

More formally, we define a graph as follows [1]:

The number of systems of terminology presently used
in graph theory is equal, to a close approximation, to
the number of graph theorists.

Richard P. Stanley

Definition 4.1.1:
A graph G is an ordered pair (X, U) where X is a finite set of
points (called vertices), and U is a finite unordered list/multiset of
arcs (arrows), and each arc is an ordered pair of vertices of G.

A lot of nomenclature and classification is associated with the
theory of graphs. Since U is a list, an arc in U may appear several
times in U. A p-graph (where p is an integer ≥ 0) is one, in which
the same arc cannot appear more than p times in U. If G is a 1-
graph, then each element of U will not occur more than once and
hence U becomes the set of arcs of the graph G.

The number of vertices of the graph G is denoted by n(G)
(called the order of the graph) or simply n, if there is no possi-
bility of confusion, and the number of arcs by m(G) or simply m.
One of the appealing features of graph theory is that graphs ad-
mit geometrical/graphical representation, by which we understand
several of their properties. Hence the name “graph.”

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 227 — #243 i
i

i
i

i
i

4.1. THE IDEA OF A GRAPH 227

The following example illustrates the concept of a graph and
its geometrical representation. We often identify a graph with its
geometrical representation.

Example 4.1.1:
Consider a graph G = (X,U) where X = {x1, x2, . . . , x7 } and
U = (u1, u2, . . . , u12) where u1 = (x7, x7), u2 = (x2, x2), u3 =
(x3, x2), u4 = (x2, x1), u5 = (x1, x4), u6 = (x4, x1), u7 = (x4, x5),
u8 = (x3, x4), u9 = (x3, x5), u10 = (x6, x7), u11 = (x7, x6), u12 =
(x7, x6). This is a set theoretic representation of a graph.

The arcs u11 and u12 are multiple arcs since they join the same
ordered pair of vertices. The arcs u5 and u6 are symmetric arcs.

The same graph can be represented geometrically as follows:
(see Figure 4.1).

Figure 4.1: An example of a graph

In this graphical representation, vertices are depicted as small
circles, and an arc as a continuous curve joining from its first co-
ordinate vertex to its second co-ordinate vertex. Note that the
direction of an arc is indicated at its second co-ordinate vertex.
We assume that no arc intersects itself and passes through a ver-
tex other than its first and second co-ordinate vertices. Such a
representation is always possible. The arcs u11 and u12 are of the

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 228 — #244 i
i

i
i

i
i

228 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

same form (x7, x6) and hence U is a multiset. Such arcs are called
multiple arcs.

Loop

For an arc, its first co-ordinate vertex is simply called its initial
vertex or tail and its second co-ordinate vertex its final vertex or
head or tip. An arc of the form (x, x) is a loop, that is, a loop joins
a vertex to itself. An extremity of an arc is either its initial vertex
or its final vertex. For a loop, initial and final vertices coincide.

Let us refer to Example 4.1.1 (see Figure 4.1). It is a 2-graph,
because the arcs u11 and u12 are of the same form (x7, x6). There
are two loops, u1 and u2. The parameters n andm are respectively
7, 12.

Adjacency and incidence

Two arcs u1 and u2 are adjacent whenever they share an extremity
in common. Two vertices are adjacent whenever there is an arc
joining them, the direction of the arc being immaterial. For an
arc u = (x, y) with x ̸= y, the arc u is said to be incident out
of the vertex x and u is said to be incident into the vertex y.
A loop u = (x, x) is at the same time incident into the vertex x
and incident out of x. A vertex is simply incident with an arc if
it is either an initial or final vertex of the arc. Let us note that
the relation of incidence is defined between an arc and a vertex
whereas the relation of adjacency is defined either between two
vertices or between two arcs.

Predecessor and successor

The vertex x is a predecessor of the vertex y or dually y is a
successor of x. if (x, y) is an arc. The set of all successors of a
vertex x is denoted by Γ+(x) and the set of all predecessors of x
by Γ−(x).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 229 — #245 i
i

i
i

i
i

4.1. THE IDEA OF A GRAPH 229

In-degree, out-degree, degree

The in-degree of a vertex x, denoted by d−(x), is the number of
arcs having the vertex x as its final vertex or geometrically it is the
number of arcs leading into the vertex x. Dually, the out-degree
of a vertex x, denoted by d+(x), is the number of arcs having
x as its initial vertex or geometrically it is the number of arcs
leading away from the vertex x. A loop attached to the vertex
x is considered as leading into and away from the vertex x. In
geometrical representation of a graph, we may omit the orientation
on a loop. Finally, the degree of a vertex x, denoted by d(x),
is the sum of its in-degree and its out-degree, that is, d(x) =
d+(x) + d−(x). A vertex of degree zero is an isolated vertex and a
vertex of degree one is an end-vertex . Let us note that each loop
at the vertex x is counted twice in the calculation of d(x).

Let us pause and look at an example.

Example 4.1.2:
Let us again refer to the graph of Example 4.1.1. The vertices
x3 and x5 are adjacent whereas x2 and x5 are non-adjacent. The
vertex x3 is a predecessor of x4 and x2 is a successor of x3. The
arcs u6 and u8 are adjacent whereas u5 and u9 are non-adjacent.
d+(x2) = 2, d−(x2) = 2, d(x7) = d+(x7) + d−(x7) = 2 + 3 = 5.
Γ+(x7) = Γ−(x7) = {x6, x7 }

Until now, we have introduced several parameters of a graph
namely, n, the number of vertices, m, the number of arcs, d+(x),
the out-degree of the vertex x, and d−(x) the in-degree of the
vertex x. Now it is time to prove a concrete result involving these
parameters. Axiomatically, mathematics is concerned with the
relations among undefined objects.

Before stating the theorem, let us again refer to the graph
of Example 4.1.1 (see Figure 4.1). In this graph, the in-degrees
of the vertices x1, x2, · · · , x7 are respectively 2, 2, 0, 2, 2, 1, 3, and
their sum is 12, which is equal to the number of arcs in the graph.
Similarly, the sum of the out-degrees of the vertices is again equal
to the number of arcs. This is not a coincidence as we see in the

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 230 — #246 i
i

i
i

i
i

230 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

following elementary but important result.
The following Theorem 4.1.1 may be compared with the fol-

lowing analogy:
Analogy: The number of monkeys in a cage is equal to the

number of heads of the monkeys, which is also equal to the number
of tails of the monkeys (assuming that each monkey has exactly
one head and exactly one tail!).

Theorem 4.1.1:
In any graph, the sum of the in-degrees of all vertices is equal to
the sum of the out-degrees of all vertices. Moreover, each sum
equals the number of arcs of the graph. In notation,

n∑
i=1

d+(xi) =
n∑

i=1

d−(xi) = m.

Proof. In fact, a little more is true.
Let G = (X,U) be a graph with vertex set X =

{x1, x2, · · · , xn}
and U = (u1, u2, . . . , um).

Let U+
i be the set/multiset of arcs leading away from the ver-

tex xi, for i = 1, 2, . . . , n. (In Example 4.1.1, U+
1 = {u5 }, U+

2 =
{u2, u4 }, etc.) By the definition of out-degree, |U+

i | = d+(xi).
Clearly,

U = U+
1 ∪ U+

2 ∪ · · · ∪ U+
n and U+

i ∩ U+
j = ∅ for i ̸= j.

Let us note that U+
i may be the empty set. In particular, we have

|U | = |U+
1 ∪ U+

2 ∪ · · · ∪ U+
n |

=
n∑

i=1

|U+
i |

=
n∑

i=1

d+(xi)

Therefore,
∑n

i=1 d
+(xi) = m, the number of arcs of G.

Similarly, by defining the set U−
i as the set of arcs leading into

the vertex xi, we can prove
∑n

i=1 d
−(xi) = m.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 231 — #247 i
i

i
i

i
i

4.1. THE IDEA OF A GRAPH 231

(Out-degree,in-degree) sequence of a graph: Consider a graph
G with vertices 1, 2, . . . , n and suppose d+(i) = ri and d

−(i) = si
for all 1 ≤ i ≤ n. The sequence (r1, s1), (r2, s2), . . . , (rn, sn) is
called the (out-degree,in-degree) sequence of G or simply (out,in)
degree-sequence of G.

Conversely, a sequence (r1, s1), (r2, s2), . . . , (rn, sn) of a pair of
non-negative integers is said to be a realizable sequence if there is a
graph with n vertices 1, 2, . . . , n satisfying the property: d+(i) = ri
and d−(i) = si for all 1 ≤ i ≤ n.Otherwise, the sequence is referred
to as non-realizable. The sequence is p-realizable if there is a p-
graph satisfying the above property. The above theorem can be
used to say that a given sequence is non-realizable.

Example 4.1.3:
Does there exist a digraph with five vertices 1, 2, 3, 4, 5 with (out-
degree, in-degree) sequence: (2, 1), (1, 2), (3, 2), (2, 2), (3, 3)? If the
answer is “yes,” construct a digraph realizing the pair of sequences.
If “no,” justify your answer.

Solution: Since
∑5

i=1 d
+(i) = 11 ̸=

∑5
i=1 d

−(i) = 10, there
exists no graph on 5 vertices realizing the sequence (by Theorem
4.1.1.)

On the other hand, the sequence (2, 1), (2, 1), (2, 3), (1, 2) is 2-
realizable because the graph with vertex set 1, 2, 3, 4 and arc set

U = { (1, 4), (1, 4), (2, 1), (2, 3), (3, 2), (3, 3), (4, 3) }

has (out, in) degree sequence (2, 1), (2, 1), (2, 3), (1, 2) and no arc
is repeated more than twice.

Corollary 4.1.1.1:
In any graph, the sum of the degrees of all vertices is equal to
twice the number of arcs. In symbol,

n∑
i=1

d(xi) = 2m.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 232 — #248 i
i

i
i

i
i

232 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

Proof.

n∑
i=1

d(xi) =
n∑

i=1

(d+(xi) + d−(xi))

=
n∑

i=1

d+(xi) +
n∑

i=1

d−(xi)

= m+m

= 2m

by Theorem 4.1.1

Corollary 4.1.1.1 may be stated in the following popular terms:
Analogy: The number of students in a classroom is equal to the

total number of hands of all the students divided by 2 (assuming
that each student has exactly 2 hands!).

Handshaking lemma: The above corollary is popularly known
as the handshaking lemma. This lemma says that if in a group of
people several people shake hands, then the total number of hands
shaken should be an even integer, just because exactly two hands
are involved in each handshake. (We identify hands of all the
people in the group as the vertices of a graph and each handshake
as an edge joining the corresponding vertices.)

Corollary 4.1.1.2:
In any graph, the number of vertices of odd degree, that is, vertices
whose degree is an odd integer, is always even.

Proof. Let X1 consist of all vertices of odd degree in G and let X2

consist of all vertices of even degree. Then

X = X1 ∪X2 with X1 ∩X2 = ∅

where X is the set of vertices of the graph. We have to prove that
|X1| is even.

We have,
∑

x∈X d(x) =
∑

x∈X1
d(x) +

∑
x∈X2

d(x).
But by definition of X2, d(x) is even for each x ∈ X2. Hence by

Corollary 4.1.1.1,
∑

x∈X1
d(x) = 2m—an even integer = an even

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 233 — #249 i
i

i
i

i
i

4.1. THE IDEA OF A GRAPH 233

integer. Since the degree of each vertex in X1 is an odd integer,
we must have |X1|, an even integer.

The graph as defined in this section is usually called the directed
graph or simply digraph, because the arcs are ordered pairs of
vertices. Such graphs are used to represent real-world situations
like a traffic network/city map in which certain routes are one-way
for motorists. There are situations in which the directions of the
arcs are irrelevant.

Examples are graphs whose vertices represent the set of people
in a gathering and two vertices are joined by a straight line segment
if the corresponding persons know each other. Graphs obtained by
ignoring the directions of the arcs are called “undirected graphs.”
When the direction of the arc is ignored, the arc is called an edge
of the graph.

Another important example concerning the famous four-color
conjecture has now become the following theorem:

Four-Color theorem

The vertices of a graph represent the set of different countries in
any map in a plane (a country consists of a single connected region)
and two vertices are joined by a line segment if the corresponding
countries share a common boundary, which is not a single point.
The four-color theorem states that the vertices (countries) of such
a graph can be colored using only four colors such that two vertices
joined by a line segment receive different colors, like in our globe,
France and Switzerland are colored differently, otherwise we would
be unable to distinguish their border visually. We may color India
and France with the same color since they don’t share a common
boundary. Nearly 125 years since its birth in the year 1852 as a
conjecture and resisting attempts by many mathematicians, the
conjecture has been finally proved with the massive aid of the
computer (1200 hours of computer time on three computers) by
Appel and Haken (see [7] for an interesting history of the four-color
problem).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 234 — #250 i
i

i
i

i
i

234 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

Example 4.1.4 (Illustrating the four-color theorem):
In Figure 4.2, the mapM consists of five countries C1, C2, C3, C4, C5.
The graph corresponding to the map M is denoted by G. In the
graph G, the vertex C1 is joined to all other vertices since the cor-
responding country C1 in the map M shares a common boundary
with all other countries. The vertices C2 and C3 are not joined
by an edge because the countries C2 and C3 don’t have a common
boundary. Similarly, the countries C4 and C5 have no common
boundary.

A coloring of the graph G with three colors B (for blue), y
(for yellow), R (for red) with the property that no two vertices
joined by an edge (or line segment) receive the same color (see
color e-book). The reader may observe that 3 is the minimum
number of colors needed to color the vertices of the graph G with
the constraint imposed. In other words, three is the chromatic
number of the graphG. Notice an important property of the graph:
no two edges intersect at a point of the plane except at a vertex
of the graph G. A graph admitting such a drawing is called a
planar graph. For example, the graph of Figure 4.1 is planar (by
redrawing the arc u9 without cutting u6 and u7). We now state
the four-color theorem:

Theorem 4.1.2 (The four-color theorem):
The vertices of any planar graph can be colored in four or fewer
colors in such a way that the vertices joined by an edge receive
different colors.

4.2 An Informal and Intuitive Intro-

duction to NP-Complete Problems

What is a problem? A problem is a question to be answered or a
structure to be constructed in response to various input parameters
or free variables. These parameters of the problem are described
(like integer, real, graph, n × n matrix of real entries) without
actually specifying their values.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 235 — #251 i
i

i
i

i
i

4.2. AN INFORMAL AND INTUITIVE 235

Figure 4.2: An example illustrating the four-color theorem

An instance of a problem is obtained by giving specific values
to the parameters of the problem.

A decision problem is one which requires an answer, either
“yes” or “no.”

Example (Decision problem):
Instance: A positive integer k ≥ 2.
Question: Is k a prime number?
Let us see an example from graph theory.
Instance: An undirected graph G = (X,E).
Question: Is G 3-colorable? That is, can we paint all the

vertices of G using 3 colors in such a way that the vertices joined
by an edge receive different colors?

An algorithm is a step-by-step method to solve a problem. Let
us recall that one of the oldest algorithms is Euclid’s algorithm
to find the greatest common divisor (gcd) of two positive integers;
Knuth calls it the “granddad of algorithms.” An algorithm solves
a decision problem if it always gives an answer either “yes” or “no”
to any instance of the decision problem.

Note that the problem of finding the gcd(m,n) of two positive

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 236 — #252 i
i

i
i

i
i

236 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

integers m,n can be converted (more generally any optimization
problem) into a sequence of decision problems as follows:

Since gcd(m,n) is always less than or equal to min(m,n), we
start by setting k = min(m,n).

Does k divide both m and n? If the answer is “yes” then
k = gcd(m,n). If the answer is “no” then we ask: Does k − 1
divide m and n. If the answer is “yes” then k − 1 = gcd(m,n).
Otherwise, we continue asking if k−2 divides bothm and n and so
on till we get an integer d dividing both m and n. In this case, the
gcd(m,n) = d. Such an algorithm is called a brute-force algorithm,
because it examines all possible divisors of m and n.

To each problem, we associate an integer n called the size of
the problem, which is a measure of the quantity of input data (see
Chapter 4). For example, the size of a graph may be its number
of vertices or maximum of the number of vertices and edges or
the sum of the number of vertices and edges, and the size of the
matrix multiplication problem will be the largest dimension of the
matrices to be multiplied.

The time complexity of an algorithm, expressed as a function
of the size of the problem it solves, is the maximum number of
elementary steps executed by the algorithm in solving any instance
of that size.

An algorithm is said to be a polynomial time algorithm or good
algorithm if its time complexity function is bounded above by a
polynomial on the size of the input data.

An algorithm whose time complexity function is not bounded
above by a polynomial function of the input size is said to be an
exponential time algorithm.

Why are polynomial algorithms considered good?

Polynomials have the following two important properties:

1. Closure property of polynomials: They are closed under ad-
dition, multiplication and composition. In other words, the sum,
the product and the composition of two polynomials are still poly-
nomials. No other smaller class of functions (for example, the
logarithmic functions) having useful complexity bounds has this
property. Intuitively, polynomial algorithms become “useless” in
practice little by little as the size of the problem increases, whereas

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 237 — #253 i
i

i
i

i
i

4.2. AN INFORMAL AND INTUITIVE 237

exponential algorithms become “useless” all of a sudden.

2. The formal computational models RAM (Random Access
Machine), RASP (Random Access Stored Program Machine), and
the Turing Machine are all polynomially equivalent under loga-
rithmic cost (see [9]).

Class-P consists of all decision problems which can be solved
in polynomial time. Class-NP is the set of all decision problems
for which the “YES-ANSWER” can be “exhibited” in polynomial
time. “NP” stands for the nondeterministic polynomial time. We
shall give an example to illustrate the word “exhibit.”

Example 4.2.1 (An NP decision problem):
Instance: An integer k ≥ 4.

Question: Is k a composite number? Specifically, are there
integers p ≥ 2 and q ≥ 2 such that k = pq?

This problem is in the class-NP. Why? If the answer is “yes,”
then the “yes-answer” can be “exhibited” or “proven” quickly, that
is, in polynomial time. But how can we do this?

All we have to do is to provide two integers p ≥ 2 and q ≥ 2.
Once the two integers are furnished, then these two integers can
be multiplied together to see if their product is indeed equal to
the given integer k. Note that the usual algorithm for the multi-
plication of two integers p and q demands only polynomial time.
It is important to note that the time needed to find the factors p
and q is not at all taken into account. Only the time for the “ver-
ification” of the “yes” answer is calculated and this “verification
time” should be a polynomial in the size of the input.

The chromatic number γ(G) of an undirected graph G is the
minimum number of colors needed to paint the vertices ofG in such
a way that two vertices joined by an edge are assigned different
colors. Note that the vertices not joined by an edge may or may
not receive the same color. An undirected graph G is k-colorable
(k, a nonnegative integer) if k is greater than or equal to the
chromatic number γ(G). The integers 1, 2, . . . , k are used for the
colors. Note that in a k-coloring of a graph G, the set of vertices
colored with the same color i are mutually nonadjacent, and this

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 238 — #254 i
i

i
i

i
i

238 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

set is called the color class i under the k coloring. A set of vertices
of G in which no two vertices are joined/adjacent is called an
independent set or stable set. A set of vertices of G in which
any two vertices are adjacent is called a clique of G.

Theorem 4.2.1 (Brooks’s theorem):
Brooks’s theorem asserts that if G is a simple graph that is neither
a complete graph nor an odd elementary cycle, then its chromatic
number satisfies the inequality γ(G) ≤ ∆(G). (∆(G) is the maxi-
mum degree of any vertex of G.) (For a proof see [3],[5].)

Determining the chromatic number of an arbitrary graph be-
longs to a large class of “difficult” problems called NP-Complete
problems (NP stands for nondeterministic polynomial time, for
which all known solutions are of the type “brute-force method,”
that is, “try all possibilities.” All problems in the NP-Complete
class are “equivalent in computational difficulty.”

What is the “brute-force method” for finding the chromatic
number of a graph G? We are interested in finding a smallest
integer k such that G is k colorable. Clearly, every graph G is n
colorable (n, the number of vertices of G). Then, we try to color
the graph with (n − 1) colors. If we don’t succeed with (n − 1)
colors then we conclude that γ = n. Otherwise, try to color the
graph by using (n − 2) colors. If the attempt is not successful,
then γ = n− 1. If we succeed in coloring G with the help of n− 2
colors, then try to assign n − 3 colors and so on until we arrive
at a situation where we can color the graph with k colors but not
with k − 1 colors. At this point, we can conclude that γ(G) = k.

Evidently, this brute-force algorithm or exhaustive method
takes an enormous amount of time. Technically, this “try all pos-
sibilities method” takes an exponential time (or intuitively “slow
algorithm”) in the length of the input (as opposed to a polynomial
time algorithm, or intuitively “quick or fast algorithm”) which is
informally the number n of vertices of the graph. In a formal man-
ner, the input length is the number of bits necessary to encode the
given instance.

In fact, the class of NP-Complete decision problems share the

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 239 — #255 i
i

i
i

i
i

4.3. MULTIGRAPH OR UNDIRECTED GRAPH 239

following two properties:

1. Currently, no polynomial time algorithm is known to solve
any problem belonging to this class. In other words, all the known
algorithms to solve a problem of this class take exponential time
in the worst case.

2. If one of the problems of this class has a polynomial time
algorithm, then every other problem of the class also possesses a
polynomial time algorithm.

Many real-world problems like the Traveling Salesman problem
or TSP, and the Integer programming problem belong to this class.
Note that the TSP is NP-Complete in its decision version whereas
the corresponding optimization version is NP-Hard. A decision
problem is NP-Hard if any problem in NP is polynomially reducible
to it. A problem π is polynomially reducible to a problem π′ if
there is a many-one transformation that carries a positive instance
(yes-instance) of π into a positive instance of π′ and a negative
instance (no-instance) of π into a negative instance of π′.

We now introduce the notion of a multigraph or undirected
graph.

4.3 Multigraph or Undirected Graph

A multigraph is a graph in which the directions/orientations of its
arcs are ignored. In a formal manner, a multigraph is defined as
follows:

Definition 4.3.1:
A multigraph or an undirected graph G is an ordered pair (X,E)
where X is a finite set of points (called vertices) and E is a finite
multiset of unordered pairs of vertices (called edges).

The following example serves to clarify the definition of the
multigraph.

Example 4.3.1 (Multigraph):
Consider the graph obtained by “forgetting”(called the underlying

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 240 — #256 i
i

i
i

i
i

240 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

graph) the directions of the arcs of the graph in Example 4.1.1.
Such a graph is referred to as the underlying multigraph of Ex-
ample 4.1.1. It is a graph with a vertex set that is the same
as that of Example 4.1.1, and its edge set E = (e1, e2, . . . , e12)
where e1 = x7x7, e2 = x2x2, e3 = x3x2, e4 = x2x1, e5 = x1x4,
e6 = x4x1, e7 = x4x5, e8 = x3x4, e9 = x3x5, e10 = x6x7, e11 = x7x6,
e12 = x6x7. This is a set theoretic representation of the multigraph.

The following is a geometric representation (see Figure 4.3).

Figure 4.3: An example of a multigraph

In an undirected graph, the concepts of in-degree, out-degree,
edge leading out of a vertex, edge leading into the vertex, etc.,
have no meaning. We should only speak of simply the degree of a
vertex, an edge incident with a vertex, etc. The set of all vertices
joined (adjacent) to a given vertex x is denoted by Γ(x), that is,

Γ(x) = { y ∈ X | xy is an edge of the graph}.

Example 4.3.2:
In Example 4.3.1, the degree d(x2) = 4, the number of edges
incident with the vertex x2, the loop at x2 being counted twice.
The edges e7 and e9 are adjacent whereas the edges e3 and e6
are nonadjacent. The vertices x4 and x3 are adjacent whereas the

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 241 — #257 i
i

i
i

i
i

4.3. MULTIGRAPH OR UNDIRECTED GRAPH 241

vertices x2 and x4 are nonadjacent. The vertices x3 and x5 are the
extremities or the end vertices of the edge e9. The edges e1 and
e2 are loops. An edge (called a link) which is not a loop may be
regarded as a two-element subset of the vertex set. e5 and e6 are
multiple edges as are e10 and e12.

Simple graph

A simple graph is a multigraph which does not admit loops and
multiple edges. For example, a graph with vertices representing
all people in a gathering and edges joining two vertices if the cor-
responding persons know each other is a simple graph. Thus every
edge of a simple graph can be regarded as a two-element subset
of the vertex set. The following is the underlying simple graph
obtained from the multigraph of Example 4.3.1 by deleting all
loops and removing all but exactly one edge between two adjacent
vertices.

Example 4.3.3 (Example of a simple graph):
(See Figure 4.4.)

Figure 4.4: An example of a simple graph

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 242 — #258 i
i

i
i

i
i

242 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

Graphical sequence

If G is a multigraph with n vertices 1, 2, . . . , n then the sequence
d = (d(1), d(2), . . . , d(n)) where d(i) = the degree of the vertex i
in the graph G, is called the degree sequence of the graph G.

A sequence d = (d1, d2, . . . , dn) of non-negative integers is
said to be graphical if there is a simple graph G with n vertices
1, 2, . . . , n such that the degree of the vertex i is exactly the inte-
ger di for all 1 ≤ i ≤ n. We also say that the graph G realizes the
sequence d = (d1, d2, . . . , dn)

Example 4.3.4 (Graphical sequence):
The sequence (2, 2, 3, 3, 2, 1, 1) is graphical as the simple graph of
Figure 4.4 has seven vertices x1, x2, . . . , x7 with d(x1) = 2, d(x2) =
2,d(x3) = 3,d(x4) = 3,d(x5) = 2,d(x6) = 1,d(x7) = 1.

Example 4.3.5 (Non-graphical sequence):
Show that the sequence (6, 6, 5, 4, 3, 3, 1) is not graphical.

Solution: If the sequence is graphical, then there is a simple
graph G with vertices 1, 2, . . . , 7 with d(1) = 6,d(2) = 6,d(3) =
5,d(4) = 4,d(5) = 3,d(6) = 3,d(7) = 1. Since d(1) = 6 and d(2) = 6
the vertex 1 is joined to all other vertices and the vertex 2 is also
joined to all other vertices. (See Figure 4.5.) But in the process
of constructing a graph realizing the sequence, the degree of each
vertex is already ≥ 2 and hence we can’t have a vertex with degree
1 in the graph. Hence the sequence is non-graphical.

Figure 4.5: A step in the proof that (2, 2, 3, 3, 2, 1, 1) is non-
graphical

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 243 — #259 i
i

i
i

i
i

4.3. MULTIGRAPH OR UNDIRECTED GRAPH 243

An application to geometry

Consider n points in the plane such that the Euclidean distance
between any two points is at least (≥ 1) one. Prove that there are
at most (≤) 3n pairs of points at distance exactly equal to 1.

Proof. Let us model this situation by a simple graph G. The ver-
tices correspond to n points of the plane and two vertices are joined
by an edge if the distance between its end vertices is exactly one.
We must show that the number of edges m of this graph is at most
3n.

Let us suppose that we have already proved d(x) ≤ 6 for each
vertex x ∈ X. (Why 6? The reason will be clear soon.)

Then by Corollary 4.1.1.2,

2m =
n∑

i=1

d(x)

≤
n∑

i=1

6

= 6n

Hence, m ≤ 3n. It remains to show that d(x) ≤ 6 for each
vertex x ∈ X. The proof is by contradiction. If not, there is
a vertex x such that d(x) ≥ 7. Consider some seven vertices
x1, x2, . . . , x7 joined to the vertex x (see Figure 4.6).

Since the distance between x and xi, 1 ≤ i ≤ 7, is exactly one,
we can draw a circle with x as its center and passing through the
vertices x1, x2, . . . , x7. The circumference of this circle is 2π which
is ≈ 2 × 3.14 = 6.28 < 7. But then there are seven points on
the circumference of the circle, hence by the pigeon-hole principle,
there are two points at circular distance < 1. Therefore, there are
two points whose Euclidean distance is < 1 (because a straight
line is the shortest distance between two points), a contradiction
to our assumption that the distance between two points is ≥ 1.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 244 — #260 i
i

i
i

i
i

244 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

Figure 4.6: A step in the proof

4.4 Some Special Graphs

Complete graph

A directed graph is a complete graph, if between any two distinct
vertices x and y, there is at least one arc joining them. Hence, a
1-graph is complete if (x, y) is not an arc then (y, x) is an arc.

Example 4.4.1 (A complete graph):
The following graph is a complete graph on four vertices (see Fig-
ure 4.7):

A simple complete graph on n vertices is denoted by Kn. Since
any two vertices of Kn is joined by exactly one edge, the number
of edges of Kn is the same as the number of two-element subsets
of a set of n elements, which is the binomial coefficient

(
n
2.

)
In

notation, m(Kn) =
(
n
2

)
= n(n−1)

2
.

Example 4.4.2 (Complete graphs K4 and K5):
In the following diagrams, the complete graphs on four and five
vertices are drawn (see Figure 4.8).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 245 — #261 i
i

i
i

i
i

4.4. SOME SPECIAL GRAPHS 245

Figure 4.7: A complete graph on four vertices

Figure 4.8: The graphs K4 and K5

Bipartite graph

A graph G is a bipartite graph or 2-colorable graph (briefly, bi-
graph) if its vertex set X admits a partition X1 and X2 into two
parts, such that each arc/edge of G joins a vertex of X1 and a
vertex of X2. Stated differently, there are no arcs/edges between
two vertices of X1 or between two vertices of X2. Such a partition
is called a bipartition of the vertex set. In particular, a bipartite
graph cannot contain a loop.

A complete bipartite graph is a bipartite graph in which there
is at least one arc/edge joining a vertex of X1 and a vertex of X2.
A complete simple bipartite graph with parts consisting of p and
q vertices is denoted by Kp,q. The number of edges of the complete
bipartite graph Kp,q is pq.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 246 — #262 i
i

i
i

i
i

246 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

Example 4.4.3 (A bipartite graph and the bipartite graph K3,3):
In the following diagrams, we see a bipartite graph and the com-
plete bipartite graph K3,3 (see Figure 4.9). The bipartitions of the
graphs are X1 = { 1, 2, 3 } and X2 = { 4, 5, 6 }. There are no edges
between the vertices of the subset X1 and the subset X2. Such
subsets of vertices of a graph are called stable sets or independent
sets .

On the other hand, the complete graph K3 is not bipartite.

Figure 4.9: A bigraph and the graph K3,3

Example 4.4.4 (Star graph K1,3.):
A star graph is a complete bipartite graph K1,p. The case of p = 3
is an important special case and the graph K1,3 is drawn below
(see Figure 4.10).

Figure 4.10: The star graph K1,3

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 247 — #263 i
i

i
i

i
i

4.4. SOME SPECIAL GRAPHS 247

k-partite graph or k-colorable graph

There is nothing sacrosanct about the number “two” in the above
definition of the bipartite graph. A k-partite graph or k-colorable
graph is a graph whose vertex set can be partitioned into k subsets
such that each arc/edge has one extremity/end in one subset and
another extremity/end in another subset. Put differently, we must
not have an arc/edge joining two vertices of the same subset of the
partition.

A complete k-partite graph is a k-partite graph in which there
is at least one arc/edge joining two vertices lying in two different
subsets of the partition.

Definition 4.4.1 (Integer functions):
For a real number x, the floor of x denoted by ⌊x⌋ is the greatest
integer less than or equal to x. For example, ⌊4.7⌋ = 4, ⌊−4.7⌋ =
−5,⌊π⌋ = 3, where π is the circle ratio, ⌊e⌋ = 2 where e is the base
of the natural logarithm .

For a real number x, the ceiling of x denoted by ⌈x⌈ is the least
integer greater than or equal to the real number x. For example,
⌈4.7⌉ = 5, ⌈−4.7⌉ = −4,⌈π⌉ = 4, where π is the circle ratio,
⌈e⌉ = 3.

Note that for any real number x, we have the double inequality,
0 ≤ ⌊x⌋ ≤ ⌈x⌉ ≤ 1 and ⌈x⌉ = ⌊x⌋ if and only if x is an integer.

The name “entire” is derived from the French word “Entier”
which means “integer.”

A simple complete k-partite graph with the parts consisting of
n1, n2, . . . , nk vertices is denoted by Kn1,n2,...,nk

. The number of
edges of Kn1,n2,...,nk

is
∑

1≤i<j≤k ninj.

A graph Kn1,n2,...,nk
satisfying the condition |ni − nj| ≤ 1 for

i ≤ i, j ≤ k is called a Turán graph, that is, ni = ⌊nk ⌋ or ⌈
n
k
⌉ for

1 ≤ i ≤ k. The Turán graph is denoted by Tn,k.

We shall see later that bipartite graphs can be recognized in
polynomial time, whereas no such algorithm is known for k-partite
graphs for k ≥ 3.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 248 — #264 i
i

i
i

i
i

248 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

Example 4.4.5 (The Turàn graph T6,3 = K2,2,2):
The following is the Turàn graph K2,2,2 (see Figure 4.11).

Figure 4.11: The Turàn graph T6,3 = K2,2,2

Regular graph

A graph is a regular graph if the degree of every vertex is the same
integer. A k-regular graph is one for which the degree of each
vertex is k. A 3-regular graph is often called a cubic graph. The
complete graph Kn is an (n− 1)-regular graph.

Example 4.4.6 (Modeling using bipartite regular graphs):
In a certain college, each girl “knows” exactly k boys and each boy
“knows” exactly k girls (k > 0). Prove that the number of boys
in the college is equal to the number of girls in the college. (We
assume that “knowing” is a symmetric relation.)

Solution: We construct a bipartite graph G = (X1, X2;E) as
follows: X1 is the set of all girls, and X2 is the set of all boys of
the college and a girl “g” is joined to a boy “b” if and only if the
girl “g” and the boy “b” know each other. Thus G is a bipartite
regular graph of degree k > 0 with bipartition (X1, X2) and we
have to show that |X1| = |X2|.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 249 — #265 i
i

i
i

i
i

4.4. SOME SPECIAL GRAPHS 249

We shall calculate the number of edges of G in two different
ways and equate them.

1. Since there are no edges between two vertices of X1 and two
vertices of X2, the number of edges m of G is (by viewing from
X1)

m = k|X1|.

2. The number of edges of G by viewing from X2 is

m = k|X2|.

Equating the two values of m, we have k|X1| = k|X2|. Since k ̸= 0,
we have |X1| = |X2|.

Example 4.4.7 (Petersen graph):
The following graph is called the Petersen graph. This graph pos-
sesses many remarkable properties. The Petersen graph is a 3-
regular graph (see Figure 4.12). It cannot be drawn in the plane
in such a way that two of its edges avoid intersecting at a point
other than at one of its vertices. Such a graph is called a non-
planar graph. If there is a drawing of a graph in the plane such
that no two of its edges/arcs intersect at a point other than a
vertex then such a graph is referred to as a planar graph.

Figure 4.12: The Petersen graph

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 250 — #266 i
i

i
i

i
i

250 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

Definition 4.4.2 (Strongly regular graph):
A simple k-regular graph (k > 0) G on n vertices which is not a
complete graph is strongly regular if every pair of adjacent vertices
have λ common neighbors and every pair of nonadjacent vertices
have µ common neighbors. The numbers n, k, λ, µ are the param-
eters of the strongly regular graph.

Again, the graph of Petersen is strongly regular with parame-
ters 10, 3, 0, 1.

Definition 4.4.3 (Line graph):
Consider a simple graph G = (X,E) with at least one edge. Then
the line graph of G, denoted by L(G), is defined as follows: The
vertex set of L(G) is the set of edges of the base graph G and two
vertices ei and ej of L(G) are adjacent in L(G) if and only if the
edges ei and ej share a common vertex in the graph G, that is, ei
and ej are adjacent edges of G.

Example 4.4.8 (A graph and its line graph):
The graph G with its edges labeled e1, e2, e3, e4, e5 and its line
graph L(G) with its vertices labeled e1, e2, e3, e4, e5 (see Figure
4.13).

Figure 4.13: A graph and its line graph

Theorem 4.4.1:
Let G be a simple graph with n vertices 1, 2, . . . , n and m edges.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 251 — #267 i
i

i
i

i
i

4.4. SOME SPECIAL GRAPHS 251

Let the degree of the vertex i be di for 1 ≤ i ≤ n. Then the number
of vertices of the line graph L(G) is m and the number of edges of
L(G) is given by the formula

−m+
1

2

n∑
i=1

d2i .

Proof. By the definition of the line graph L(G), the number of
vertices of L(G) is m. Now we have to find the number of edges
of L(G) in terms of di’s. Take the vertex i of G. An edge of L(G)
is obtained from two adjacent edges of G. Since the degree of i
is di, there are exactly di edges incident at i and these di edges
are mutually adjacent to each other (in other words, the star Ki,di

is a subgraph of G at the vertex i) and hence form a complete
graph Kdi while constructing L(G). We know that the number of
edges of the complete graph Kdi is the binomial coefficient

(
di
2

)
.

This argument is valid for any vertex i of G. Hence the number of
edges of L(G) is

∑n
i=1

(
di
2

)
=
∑n

i=1 di(di−1)/2 = 1
2

∑n
i=1(d

2
i −di)

which is equal to 1
2

∑n
i=1 d

2
i − 1

2

∑n
i=1 di. But by Corollary 4.1.1.1,∑n

1=1 di = 2m. By plugging this sum into the number of lines of
L(G), the desired formula is obtained.

Definition 4.4.4 (The chromatic index of a graph):
A multigraph G is k edge colorable if its edges can be colored in
k or fewer colors in such a way that no two edges sharing a com-
mon vertex receive the same color. The edge chromatic number
of G denoted by q(G) is the minimum integer k for which G is
k edge colorable. Let us note that in a k-edge-coloring of G the
edges receiving the same color are mutually nonadjacent. A set
of mutually nonadjacent edges in a multigraph is often called a
matching in G. A matching consisting of n/2 (n even) edges of G
is called a perfect matching in G. The chromatic index of a graph
can be viewed as follows: q(G) is the smallest integer k such that
the edge set E of G can be partitioned into the union of k mutually
disjoint matchings, that is,

E =M1 ∪M2 ∪ · · · ∪Mk where each Mi is a matching in G

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 252 — #268 i
i

i
i

i
i

252 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

and Mi ∩Mj ̸= ∅ for all i, j, i ̸= j.

By the definition of the line graph it is seen that q(G) =
γ(L(G)), the chromatic number of L(G).

Example 4.4.9 (Chromatic index):
The graph G with its edges colored with the colors 1, 2, 3, 4. (see
Figure 4.14). The reader can verify that the chromatic index of G
is 4.

Figure 4.14: A graph with chromatic index number 4

The following theorem is due to Gupta and independently by
Vizing (for a proof, see [1] or [5]).

Theorem 4.4.2 (Gupta, Vizing):
If G is a loopless multigraph with multiplicity p (the number of
edges joining any two vertices is less than or equal to the integer
p) then its chromatic index satisfies the double inequality

∆(G) ≤ q(G) ≤ ∆(G) + p.

Definition 4.4.5 (Total graph):
(See the book by Harary [2].) Consider a simple graph G with
vertices x1, x2, . . . , xn and with edges e1, e2, . . . , em. Then the total
graph of G denoted by T (G) is a graph with vertex set

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 253 — #269 i
i

i
i

i
i

4.4. SOME SPECIAL GRAPHS 253

{x1, x2, . . . , xn, e1, e2, . . . , em } and two vertices of T (G) are ad-
jacent whenever the following conditions are verified:

1. If the vertices of T (G) are xi and xj (i ̸= j) then we join xi
and xj if these two vertices are adjacent in the base graph G;

2. If the vertices of T (G) are ei and ej (i ̸= j) then we join ei
and ej if these two edges are adjacent in the base graph G;

3. If the vertices of T (G) are xi and ej (i ≠ j) then we join
xi and ej if the vertex xi is incident with the edge ej in the base
graph G.

Example 4.4.10 (A graph and its total graph):
The graph G with its vertices labeled x1, x2, x3 and its edges la-
beled e1, e2 and its total graph T (G) with its vertices labeled
x1, x2, x3, e1, e2 (see Figure 4.15).

Figure 4.15: A graph and its total graph

Definition 4.4.6 (Complement of a simple graph):
Consider a simple graph G = (X,E). The complement of the graph
G denoted by Gc = (X,Ec) is the simple graph with the same
vertex set X as G and two vertices are adjacent in Gc if and only
if they are not adjacent in the graph G, that is, Ec = { ij | i ̸=
j and ij /∈ E }.

For example, the complement of the complete graph Kc
n is the

graph consisting of n isolated vertices and the complement of the
complete bipartite graph Kp,q is the disjoint union of two complete
graphs Kp and Kq.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 254 — #270 i
i

i
i

i
i

254 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

Example 4.4.11 (Complement of a graph):
In Figure 4.16 the graph H is the complement of the graph G.

Figure 4.16: A graph G and its complement H = Gc

An extremal result

Extremal structures exhibit interesting properties.
What is the maximum number of edges in a simple bipartite

graph on n vertices? What is the maximum number of edges of a
simple graph without containing a given induced subgraph ? Such
questions are studied in the part of graph theory called extremal
graph theory.

Our first question can be answered easily. Consider the com-
plete bipartite graph K3,3 on 6 vertices. The number of its edges
is 3× 3. If we partition the set of 6 vertices into two parts consist-
ing of 2 and 4 vertices, we have the complete bipartite graph K2,4

whose number of edges is only 2 × 4. So, intuitively, we feel that
to have the maximum number of edges in a bipartite graph, the
bipartition should be as equal as possible. This intuitive feeling is
asserted by the following theorem due to Turán.

In fact, Turán’s theorem is nothing more than the following
simple observation in elementary number theory.

Observation 4.4.1:
Consider a partition of a positive integer n into the sum of two
positive integers, n1 and n2, that is, n = n1 + n2 (for example,

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 255 — #271 i
i

i
i

i
i

4.4. SOME SPECIAL GRAPHS 255

13=6+7 or 13=5+8 or 13=4+9). Then the product of the parti-
tion numbers is maximum if and only if the partition numbers are
as equal as possible. For example, 6× 7 > 5× 8 > 4× 9.

A single drop of water added to a full cup of water,
makes the cup overflow.

Theorem 4.4.3:
The number of edges of a bipartite simple graph on n vertices is
≤ ⌊n2

4
⌋.

Proof. We give a simple proof using differential calculus! A com-
binatorial proof can be found in books [2], [5].

Consider a bipartition of the vertex set X into two parts con-
sisting of p and n − p vertices. In order to obtain the maximum
number of edges, the bipartite graph should be a complete bipar-
tite graph. Then the number of edges of the complete bipartite
graph Kp,n−p is p(n− p). Let us regard p as a continuous variable
in the closed interval [1, n]. The we have to maximize the following
function m which is a function of the one variable p

m = p(n− p). (4.1)

Differentiating with respect to p, dm/dp = n− 2p and dm/dp = 0
gives the value of p = n/2.

The second derivative d2m/dp2 = −2 < 0. Hence m attains
the maximum value if p = n/2 and the maximum value is obtained
by substituting the value of p = n/2 in Equation 4.1.

Hence,m ≤ n2/4. Sincem is an integer, we havem ≤ ⌊n2

4
⌋.

Remark 4.4.1 (Contrapositive of Theorem 4.4.3):
(See Chapter 6 for more details on contrapositive: The contrapos-
itive of the statement “p implies q” is: “not q implies not p.” They
are logically equivalent.)

Theorem 4.4.3 can be stated as “if a simple graph contains
more than ≤ ⌊n2

4
⌋ edges, then the graph is not bipartite. In fact,

the graph contains a triangle, an elementary cycle of length 3.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 256 — #272 i
i

i
i

i
i

256 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

Isomorphism

Mathematicians do not study objects but the rela-
tions among the objects; it is therefore irrelevant for
them to replace these objects by others provided the
relations are preserved.

The matter is not important to them; only the form
is relevant to them.

H. Poincaré
Are the great new discoveries really just recogni-

tions that two things are the same?
Paul Halmos

In mathematics, we declare two objects to be equal if they
possess some common properties, that is, we measure the equality
of objects with respect to some properties. We rarely ask for
identity of two objects. This is even true of real-life situations.
When we say that two candidates are equally good for a post
of a professor at a university, we mean that the quality of their
dossiers are the same; one may be taller than the other, etc. An
elementary example from arithmetic is the following: We consider
the two rational numbers 1/2 and 5/10 as equal or equivalent, even
though they are not identical.

When do we declare two graphs to be equal? Two graphs G1

andG2 are isomorphic if we can draw the graphG2 so as to “resem-
ble” the graph G1. This means that in the pictorial representation
of a graph/multigraph, the relative position of vertices and the
forms of arcs/edges joining the pairs of vertices is immaterial. We
are only interested in the pair of vertices which are joined by an
arc/edge and how many times they are joined. Isomorphic graphs
possess the same structural properties. Thus two graphs differing
only in the labels of their vertices but not in the structure of their
arcs are equal.

Example 4.4.12 (A graph isomorphic to the Petersen graph):
For example, the following graph H is another way of drawing the
Petersen graph (see Figure 4.17). In other words, the Petersen
graph is isomorphic to the following graph H. The vertices and

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 257 — #273 i
i

i
i

i
i

4.4. SOME SPECIAL GRAPHS 257

the edges of the graph H are not labeled. Such a graph is called
an unlabeled graph. We use labels to vertices and edges only for
the purpose of referring to them.

Figure 4.17: Another drawing of the Petersen graph

In a formal manner, we give the definition of isomorphism of
two graphs. Before giving the definition, we need a useful notation.

Given a graph G and two distinct vertices x and y, m+(x, y)
denotes the number of arcs having the vertex x as its tail and the
vertex y as its head. Also, m−(x, y) denotes the number of arcs
with x as its head and y as its tail. We set

m(x, y) = m+(x, y) +m−(x, y).

For each loop attached to the vertex x, m+(x, x) = m−(x, x) = 1,
m(x, x) = 2.

More generally, for disjoint subsets S and T of the vertex set
of a graph, U(S, T) denotes the multiset/set of all arcs with tail
in the set S and head in the set T ; we set m(S, T) = |U(S, T)|.

Similarly, the notation E(S, T) means the set of all edges of a
multigraph with one end in S and another end in T , where S and
T are disjoint subsets of the vertex set.

Definition 4.4.7:
Consider two graphs G1 = (X1, U1) and G2 = (X2, U2). We say
that the graph G1 is isomorphic to the graph G2, denoted by
G1
∼= G2, if there is a one-to-one correspondence f from the set

X1 onto the set X2 satisfying the following property: The number
of arcs with the vertex x as its tail and the vertex y as its head in

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 258 — #274 i
i

i
i

i
i

258 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

the graph G1 is the same as the number of arcs having the vertex
f(x) as its tail and the vertex f(y) as its head in the graph G2.
In notation,

m+
G1
(x, y) = m+

G2
(f(x), f(y)) for every x, y ∈ X1.

Similar definition holds for isomorphism of a multigraph if we
replace m+ simply by m in the above definition.

The definition becomes somewhat simpler in the case of a sim-
ple graph.

Two simple graphs G1 and G2 are isomorphic if there is a bijec-
tion from the vertex set of G1 onto the vertex set of G2 preserving
adjacency and non-adjacency.

To prove that two graphs G and H are isomorphic, we must
find an isomorphism between the graphs G and H. The following
example illustrates this.

Example 4.4.13 (Isomorphism):
Consider the two labeled graphs G and H of Figure 4.18. The

Figure 4.18: Isomorphic graphs

function f : { 1, 2, . . . , 10 } → { 1, 2, . . . , 10 } defined below estab-
lishes an isomorphism between the graph G and the graph H.

f(1) = 1, f(2) = 7, f(3) = 4, f(4) = 5, f(5) = 6, f(6) = 2,

f(7) = 10, f(8) = 3, f(9) = 9, f(10) = 8.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 259 — #275 i
i

i
i

i
i

4.4. SOME SPECIAL GRAPHS 259

The reader can verify that ij is an edge of the graph G if and only
if f(i)f(j) is an edge of H. The function f is a succinct certificate
to “exhibit” that G ∼= H.

Definition 4.4.8 (Self-complementary graph):
A simple graph G is self-complementary if it is isomorphic to its
complement Gc; symbolically,

G ∼= Gc.

Example 4.4.14 (Self-complementary graph):
In Figure 4.19 the graph G is a self-complementary graph. The

Figure 4.19: A self-complementary graph

reader is asked to draw the complementGc and verify thatG ∼= Gc.

Example 4.4.15:
Prove that the number of vertices of a self-complementary graph
is of the form either 4p or 4p+ 1.

Solution: Let G = (X,E) be a self-complementary graph.
Then by definition, GC = (X,Ec) ∼= G. In particular, the number
of edges of G is equal to the number of edges of Gc. Symbolically,
m(G) = m(Gc).

Also by the definition of Gc, we have Kn = (X,E ∪Ec) where
Kn is the complete graph on n vertices. Hence we have,

|E|+ |Ec| = m(Kn)

that is m(G) +m(Gc) = n(n− 1)/2 since m(Kn) = n(n− 1)/2

implies 2m(G) = n(n− 1)/2 since m(G) = m(Gc)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 260 — #276 i
i

i
i

i
i

260 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

implies m(G) = n(n− 1)/4.

Since m(G) is an integer, this last equality implies that 4 divides
n(n − 1). But n − 1 and n are consecutive integers and hence
exactly one of them must be even and the other odd. Therefore, 4
divides either n or else n− 1. Hence n must be either of the form
4p or 4p+ 1.

To establish that two graphs G and H are non-isomorphic, it
is enough if we find a property P of a graph which holds in the
graph G but which does not hold in the graph H. The graph in
Figure 4.20 illustrates this.

Example 4.4.16 (Non-isomorphism):
Consider the two graphs of Figure 4.20. We know that by the

Figure 4.20: Non-isomorphic graphs

definition of isomorphism, if two graphs differ either in the number
of vertices or in the number of edges then they are not isomorphic.
But the two graphs G and H have the same number of vertices
and edges. So we have to find some property P which holds in G
but which fails in H.

The property P is the adjacency of vertices of degree 4.
The graphs are not isomorphic because in the graph G, the

only two vertices of degree 4 are adjacent whereas in the graph H,
the only two vertices of degree 4 are not adjacent.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 261 — #277 i
i

i
i

i
i

4.4. SOME SPECIAL GRAPHS 261

In general, to prove the non-isomorphism of two graphs on n
vertices we must examine all the possible n! (10! > 3.5 million)
bijections to say that no bijection preserves the adjacency and
non-adjacency.

Clearly isomorphic graphs/multigraphs possess the same num-
ber of vertices and arcs/edges but the converse is not true. Deter-
mining if two graphs are isomorphic is an intermediately difficult
unsolved problem. The graph isomorphism is believed to belong
to the class-NPI. Here the letter “I” stands for the word inter-
mediate difficulty. The class NPI “lies” between the Class-P (the
class of decision problems solvable in a polynomial time algorithm)
and NP-complete, that is, intuitively, Class-P ≤ Class-NPI ≤ NP-
Complete. Here, the symbol ≤ is employed to indicate the “dif-
ficulty” of the classes. The isomorphism problem is particularly
intriguing for its unsettled complexity status.

Isomorphism is an equivalence relation on the set of all graphs.
The relation of isomorphism partitions the set of all graphs into
disjoint equivalence classes. Two graphs are isomorphic if they
belong to the same equivalence class, otherwise they are not iso-
morphic. We attach labels to the vertices and arcs/edges to facil-
itate the reference to them. A graph without any labeling in the
geometric representation may be thought of as a representative of
an equivalence class of isomorphic graphs.

Label isomorphism

Consider two labeled graphs/multigraphs G1 and G2 having the
same vertex set. Two graphs are label isomorphic or identical if
the identity function f(x) = x from the vertex of G1 onto the
vertex set of G2 is an isomorphism of G1 onto G2.

Isomorphism does not imply label isomorphism. The following
example illustrates this statement:

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 262 — #278 i
i

i
i

i
i

262 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

Example 4.4.17:

1

2

3

1

2 3

G1:
G2:

Example 4.4.18 (A graph isomorphic to the Petersen graph):
For example, the graph H of Figure 4.21 is another way of drawing
the Petersen graph (see Figure 4.18). In other words, the Petersen
graph is isomorphic to the following graph H. The vertices and
the edges of the graph H are not labeled. Such a graph is called
an unlabeled graph. We use labels to vertices and edges only for
the purpose of referring to them.

Figure 4.21: Yet another drawing of the Petersen graph

A simple result in enumerative graph

theory

Enumerative graph theory is concerned with the study of the num-
ber of graphs on n vertices satisfying some conditions. We prove
the following simple combinatorial result on the number of simple
labeled graphs on n vertices, that is, the number of graphs on n
vertices 1, 2, · · · , n up to label isomorphism.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 263 — #279 i
i

i
i

i
i

4.4. SOME SPECIAL GRAPHS 263

Theorem 4.4.4:
The number of simple labeled graphs on n vertices is 2(

n
2). More

precisely, the number of nonlabel isomorphic (or non-identical)

simple graphs on the given set of n vertices is exactly 2(
n
2).

Proof. Let the vertex set be X = { 1, 2, . . . , n }. Any two-element
subset of X determines an edge and conversely an edge of a simple
graph can be considered as a two-element subset of its vertex set.
Hence the set of all possible edges is P2(X) = { ij | 1 ≤ i < j ≤ n }
(to avoid repetition of an edge 12 as 21, we have written i < j)
and their number is the binomial coefficient

(
n
2

)
.

Any subset of P2(X) determines a graph with the vertex set

X and there are exactly 2(
n
2) subsets of P2(X). (Since the number

of subsets of a set of k elements is exactly 2k.)

The following example illustrates the above theorem.

Example 4.4.19 (Labeled graphs on three vertices):
There are 23 = 8 different labeled simple graphs on 3 vertices.
These graphs are (see Figure 4.22):

Figure 4.22: Labeled graphs on 3 vertices

In the above example, there are only four graphs which are
non-isomorphic.

In general, it is a difficult unsolved problem to determine the
number of non-isomorphic graphs on n vertices.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 264 — #280 i
i

i
i

i
i

264 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

Corollary 4.4.4.1:
The number of simple labeled graphs on n vertices and with m

edges is
((n2)

m

)
.

Proof. Let us first recall that the maximum number of edges of a
simple graph on n vertices is the binomial coefficient

(
n
2

)
.

Each choice of m edges from among the
(
n
2

)
possible edges de-

termines a graph of m edges on n vertices. Hence the number of
labeled graphs on n vertices and m edges is the same as the num-
ber of possible subsets of m elements from a set of

(
n
2

)
elements.

Therefore, the desired number is
((n2)

m

)
.

The following example gives a lower bound on the number of
non-isomorphic simple graphs on n vertices.

Example 4.4.20:
Show that the number of non-isomorphic simple graphs on n ver-
tices is ≥ 2n(n−1)/2/n!

Solution: By Theorem 4.4.4, the number of labeled simple

graphs on n vertices is 2(
n
2). Let k be the number of isomorphic

graphs on n vertices.
Now consider any simple labeled graph G on n vertices. The

vertices of G can be permuted in n! ways, each permutation re-
sulting in the graph isomorphic to G. This is because in any per-
mutation of the vertices of G, the combinatorial structure of the
edges is preserved. But in the resulting n! graphs, all need not be
non-identical. For example, if G is the complete graph Kn, any
permutation of the vertices of Kn results in a graph identical to
Kn. Hence, we have the inequality,

k × n! ≥ 2n(n−1)/2.

Therefore, k ≥ 2n(n−1)/2/n!.

4.5 Graphs and Subgraphs

A subgraph of a graph/multigraph G is a graph having all of its
vertices and arcs/edges in the graph G.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 265 — #281 i
i

i
i

i
i

4.5. GRAPHS AND SUBGRAPHS 265

Types of subgraphs

Induced subgraph

Intuitively, an induced subgraph on a subset A of vertices of a
graph G, is just a “photographic image” of the part of the graph G
focused on the subset of vertices A. Consider a graph/multigraph
G with the vertex set X and a vertex x of G. The vertex deleted
subgraph, G \ x, is the graph whose vertex set is X \ x and with
an arc/edge multiset with all arcs/edges of G having no extremity
in x. Stated differently, the graph G \ x consists of all arcs/edges
of G possessing both extremities in the set X − x.

In a formal manner, for a subset A of the vertex set X, the
induced subgraph of A, denoted by G(A) or < A > is a graph ob-
tained from G by deleting the vertices of X \A in succession. Put
differently, G(A) is the graph with vertex set A and the arc/edge
multiset consisting of all edges of G having both extremities in
the set A. Let us note that the graph G(A) is the maximal sub-
graph of G with the vertex set A (maximal with respect to the set
inclusion). Let us refer to the following example.

Example 4.5.1 (A graph and its subgraphs):
Let us refer to the graphs of Figure 4.23. The graph G2 is an
induced subgraph of the graph G. Note that the graph G2 can
also be obtained by removing the vertex 1 from the graph G, that
is, G2 = G − 1. The graph G1 is not an induced subgraph of G
because the directed arc (4, 1) is present in G but missing in G1.
Similarly, G3 is not an induced subgraph of G.

The following example gives a “somewhat” obvious necessary
condition for a sequence to be graphic.

Example 4.5.2 (A necessary condition for a sequence to be
graphic):
Consider a sequence d = (d1, d2, . . . , dn) of non-negative integers
with d1 ≥ d2 ≥ · · · ≥ dn, If d is graphic, then

1.
∑n

i=1 di is an even integer.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 266 — #282 i
i

i
i

i
i

266 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

Figure 4.23: A graph and its subgraphs

2.
∑k

i=1 di ≤ k(k − 1) +
∑n

i=k+1min(k, di) for 1 ≤ k ≤ n.

Solution: Since d is graphic, there is a graph G = (X,E)
with vertex set [n] = { 1, 2, . . . , n } and degree d(i) = di for
all 1 ≤ i ≤ n. Then by Corollary 4.1.1.1, we have

∑n
i=1 di =

2m, which is an even integer.

Now, we have to prove the inequality
∑k

i=1 di ≤ k(k − 1) +
min(k, di) for 1 ≤ k ≤ n.

Observe that the above inequality gives an upper bound on
the sum of the k largest degrees of the vertices of the graph
G. This means that we have to maximize the sum

∑k
i=1 di.

We split this sum of degrees into two disjoint parts: (Divide
and Prove!) 1. The sum of the edges arising by joining
the k vertices [k] = { 1, 2, . . . , k } with each other plus 2.
The sum of the edges joining the remaining set of vertices
{ k + 1, k + 2, . . . , n } with the set of vertices { 1, 2, . . . , k }.
Part 1. To maximize this sum, we must assume that the
k vertices 1, 2, . . . , k induce a complete subgraph Kk. In this
case, the degree of each vertex i, 1 ≤ i ≤ k in the subgraph
Kk is k − 1.

Part 2. Let us first recall the notation m(S, T) for disjoint
subsets S and T of the vertex set X of the graph G. m(S, T)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 267 — #283 i
i

i
i

i
i

4.5. GRAPHS AND SUBGRAPHS 267

is the number of edges of G with one end in the set S and the
other end in the set T. In particular, m(i, T) for a vertex i /∈
T , stands for the number of edges with one end incident with
i and the other end in the set T. We also use the following
simple observation: if x ≤ a and x ≤ b, then x ≤ min(a, b).
Now we have to maximize the number of edges joining the
remaining n− k vertices k+1, k+2, . . . , n with the vertices
1, 2, . . . , k which is by our notation m([k], X \ [k]). Consider
an arbitrary vertex i with k + 1 ≤ i ≤ n.

On the one hand the vertex i can be joined to maximum
of all the k vertices 1, 2, . . . , k, that is, m(i,X \ [k]) ≤ k),
but on the other hand it can’t be joined to more than di
vertices ofKk, that is, m(i,X\[k]) ≤ di). Combining the two
inequalities we have : i is joined to at most min(k, di) vertices
of Kk for all k + 1 ≤ i ≤ n. In notation, m(i,X \ [k]) ≤
min(k, di).

Combining the two parts, we have the desired upper bound
for the sum:

k∑
i=1

di ≤
k∑

i=1

(k − 1) +
n∑

i=k+1

min(k, di), for 1 ≤ k ≤ n

≤ k(k − 1) +
n∑

i=k+1

min(k, di), for 1 ≤ k ≤ n.

The above (see Example 4.5.2) “somewhat” obvious necessary
condition for a sequence to be graphic has also been proved to be
sufficient by Erdös and Gallai (see [1]). Such characterizations are
called TONCAS, meaning “the obvious necessary condition is also
sufficient.” For a simple and elegant proof of the theorem using
Tutte’s f-factor theorem (stated below), see [3].

Spanning subgraph

Consider a graph/multigraph G. The graph obtained by deleting
an arc/edge of G is the graph whose vertex set is the same as that

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 268 — #284 i
i

i
i

i
i

268 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

of G, and whose arc/edge multiset consisting of all arcs/edges of
G except the one deleted.

Let us note that when we delete an arc/edge of a graph, the ex-
tremities of the deleted arc/edge still remain in the graph whereas
the removal of a vertex suppresses not only the concerned ver-
tex but also all arcs/edges having an extremity with the deleted
vertex.

A spanning subgraph of a graph/multigraph G is a subgraph
with the same vertex set as that of G. Let us note that a spanning
subgraph can be obtained by deleting some subset of arcs/edges
of G, one by one in succession.

For a subset U1/E1 of arcs/edges of a graph G, the arc/edge
induced subgraph G(U1)/G(E1) is a graph with the vertex set
consisting of all extremities of U1/E1 and the arc/edge multiset
U1/E1.

Finally, a subgraph of a graph/multigraph is one which can be
obtained by removing some subset of vertices and/or some subset
of arcs/edges of G. Note that such a subgraph may neither be
spanning nor induced in G.

Example 4.5.3 (Spanning subgraph):
Let us again see the graph of Figure 4.23. The graph G3 is
a spanning subgraph of the graph G. Note that the subgraph
G3 can be obtained from the graph G by deleting the arc set
{ (1, 4), (5, 3), (2, 2) }. The subgraph G1 is neither an induced nor
a spanning subgraph of the graph G. Note that the graph G1 can
be obtained from the graph G by deleting successively the vertex
3 and the directed edge (4, 1).

Example 4.5.4:
Let G = (X,E) be a simple graph with n vertices and m edges.
Then find the following:

a) the number of spanning subgraphs of G

b) the number of induced subgraphs of G

Solution: a) The number of subsets of a set of p elements
is exactly 2p. By definition, a spanning subgraph H of G is a
subgraph of the formH = (X,F) where F is any subset of the edge

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 269 — #285 i
i

i
i

i
i

4.5. GRAPHS AND SUBGRAPHS 269

set E. Since there are exactly 2m subsets of E (because |E| = m),
there are exactly 2m spanning subgraphs, one for each subset of
E.

b) By definition, an induced subgraph H of G is a subgraph of
the form H = (S, F) where S is a subset of the vertex set X and
F is the set of all edges of G having both of its end vertices in the
set S. Since there are 2n subsets of X(because |X| = n), there are
2n induced subgraphs, one for each subset of X. If we exclude the
empty graph then the number of induced subgraphs is 2n − 1.

f-factors

Consider a multigraph G = (X,E) and a function f from the
vertex set to the set of non-negative integers. An f -factor of G
is a spanning subgraph H of G such that dH(x) = f(x) for all x
in X. If f(x) = 1 for all vertices x then the f -factor becomes a
1-factor or perfect matching.

Graphs containing f -factors were characterized by Tutte (see
[3]). Erdös’ conjecture concerning the existence of spanning bireg-
ular subgraphs in a regular graph was elegantly proved by Tutte
using his f-factor theorem.

Theorem 4.5.1 (Conjectured by Erdös and proved by Tutte):
Let G be a k-regular graph and let r an integer such that r ≤ k.
Then G contains a spanning graph whose degrees are either r or
r + 1.

A slight extension of the above theorem was proved by Srira-
man Sridharan using Lovasz’s (g, f)-factor theorem.

(g,f)-factors

Consider a multigraph G = (X,E) and two functions f and g from
the vertex set to the set of non-negative integers. A (g, f)-factor of
G is a spanning subgraph H of G such that g(x) ≤ dH(x) ≤ f(x)
for all x in X. If f(x) = g(x) for all vertices x then the (g, f)-factor
becomes an f -factor or perfect f -matching.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 270 — #286 i
i

i
i

i
i

270 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

Graphs containing (g, f)-factors were characterized by Lovasz.
However, Tutte deduced Lovasz’s theorem as a consequence of his
f-factor theorem (see [3]).

Theorem 4.5.2 (Thomassen and independently by Sriraman Srid-
haran):
Let G be a graph whose degrees are either k or k + 1 and let r
be an integer such that r < k. Then G contains a spanning graph
whose degrees are either r or r + 1.

(For proofs of these two theorems, see the book by K.R.
Parthasarathy [3]).

Given a loopless multigraph of m edges, is there any nontrivial
lower bound on the number of edges of a spanning bipartite sub-
graph? The question is answered by the following theorem due to
Erdös:

Theorem 4.5.3:
A loopless multigraph G of m edges contains a spanning bipartite
subgraph of at least m/2 edges.

Variational Proof. If the theorem is true, then themaximum num-
ber of edges of a spanning bipartite subgraph will have at leastm/2
edges. Let H be such a bipartite graph with bipartition X1 and
X2. Since H has the maximum number of edges, all the edges of
the graph G having one end vertex in X1 and another end vertex
in X2 must be present in the graph H.

Assume that we have proved the following: The degree of each
vertex x in the graph H is at least half the degree of x in the graph
G, that is,

dH(x) ≥ (1/2)dG(x).

Then by Corollary 4.1.1.1

2m(H) =
∑
x∈X

dH(x)

≥ (1/2)
∑
x∈X

dG(x)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 271 — #287 i
i

i
i

i
i

4.6. WALKS, PATHS, CYCLES 271

≥ (1/2)(2m(G))

≥ m(G)

Therefore, m(H) ≥ (1/2)m(G).
Hence it remains to show that dH(x) ≥ (1/2)dG(x). If not,

there is a vertex x with dH(x) < (1/2)dG(x). We may assume
that x is in X1. This means that the degree of the vertex x in the
induced subgraph

dG(X1)(x) > 1/2dG(x) (4.2)

We can now form a new spanning bipartite graph H ′ of G with
the bipartition X1 \ x and X2 ∪ x , that is, the new bipartition is
obtained by removing the vertex x from X1 and adding the vertex
x in X2. But then, m(H ′) > m(H) by the inequality 4.2, which is
a contradiction to the maximality of the graph H.

Remark 4.5.1 (Open problem):
Can we find a result “similar” to Theorem 4.5.3 for an induced
bipartite graph? More precisely, what is the maximum number of
vertices of an induced bipartite graph in a given graph?

4.6 Walks, Paths, Cycles

We would like to “navigate” in a graph from one vertex to another
along the edges of the graph. To this end, we shall study the
notions of walks, paths, and cycles in a graph.

Walk

A walk in a graph is a finite sequence of arcs (u1, u2, . . . , up) such
that one of the extremities of ui coincides with one of the extrem-
ities of ui+1 for 1 ≤ i < p. Put differently, in the sequence, the
arcs ui and ui+1 are adjacent for 1 ≤ i < p.

In the graph of Example 4.1.1, the sequence (u4, u6, u5, u6, u7)
is a walk whose origin or departure or initial vertex is the vertex
x2 and whose terminus or arrival or final vertex is the vertex x5.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 272 — #288 i
i

i
i

i
i

272 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

In the definition of a walk, let us observe that the direction of
arcs is immaterial. We can imagine a walk of a pedestrian from
one point, a street intersection, to another point in a city map
in which there are no one ways for pedestrians but having one
ways for motorists, that is, the walk is taken in the underlying
multigraph obtained by ignoring the directions of the arcs of the
given graph.

In the case of 1-graph/simple graph, a walk can be specified as
a sequence of vertices met by the walk, since between two vertices
of a 1-graph/simple graph there is at most one arc/edge joining
the two vertices.

Simple walk

A simple walk (also called trail) is a walk in which no two arcs
are repeated. In other words, a pedestrian taking a walk from one
point to another in a city map does not traverse the same street
twice.

For example, in the graph of Example 4.1.1, the sequence
(u4, u6, u5) is a simple walk with its origin at the vertex x2 and
the terminus at the vertex x1.

Elementary walk

An elementary walk (also called a path) is a walk in which no two
vertices are repeated except possibly the origin and the terminus
of the walk. Stated differently, a pedestrian taking a walk from
one point to another in a city does not traverse the same point
twice, except perhaps for coming back to his departure point.

A cycle is a trail in which the departure vertex and the arrival
vertex coincide. In other words, a cycle is a closed trail.

For example, (u5, u6, u7, u9, u8) is a cycle in the graph of Ex-
ample 4.1.1 with origin = terminus = x4.

An elementary cycle is an elementary path in which the origin
and terminus coincide.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 273 — #289 i
i

i
i

i
i

4.6. WALKS, PATHS, CYCLES 273

The sequence (u7, u9, u8) is an elementary cycle of Example
4.1.1.

Directed walk, directed path, directed

cycle

A directed walk or simply diwalk in graph is a walk in which the
directions of the arcs are taken into account, that is, it is a se-
quence of arcs (u1, u2, . . . , up) such that the extremity terminal of
ui coincides with the extremity initial of ui+1 for 1 ≤ i < p.

(u4, u5, u6, u5, u7) is diwalk in the graph of Example 4.1.1. Its
origin is x2 and its terminus is x5. For a diwalk, one can imagine a
motorist traveling from one point of a city to another by respecting
the one-way streets.

A simple diwalk (called also directed trail or ditrail) is a diwalk
in which no arc is repeated.

The sequence (u4, u5, u6) is a directed trail of the graph of
Example 4.1.1 with origin at x2 and the terminus at x1. A directed
path or elementary directed walk or simply dipath is a diwalk in
which no two vertices are repeated except possibly the departure
and the arrival.

The sequence (u3, u4, u5, u7) is a dipath of the graph of Example
4.1.1.

A circuit or dicycle is a simple closed diwalk, that is, it is a
simple walk in which the origin and the terminus coincide.

In Example 4.1.1, (u1, u11, u10) is a circuit.
An elementary circuit is a directed path in which the origin

and the terminus coincide.
For example, (u1) and (u5, u6) are elementary circuits in Ex-

ample 4.1.1. A shortest possible path/directed path with vertex
x as origin and vertex y as terminus, if it exists, is called a x− y
geodesic. We consider the sequence (x) where x is any vertex of a
graph as a walk/diwalk of length zero or empty walk.

Remark 4.6.1:
Note that an elementary cycle/circuit may start and end at any of

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 274 — #290 i
i

i
i

i
i

274 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

its vertices. This is because there is exactly one elementary cycle/-
circuit of length l up to isomorphism. For example, in the graph
of Example 4.1.1, (u7, u9, u8) is an elementary cycle whose origin
and terminus are the vertex x4. This cycle can also be specified by
the sequence (u9, u8, u7) with origin and terminus at x5 or by the
sequence (u8, u7, u9). More generally, a cyclic permutation of the
arcs/edges of a cycle/circuit does not affect the cycle.

Table 4.1 summarizes the concepts of walk/directed walk in
digraphs/multigraphs.

Table 4.1: Walks/diwalks in multigraphs/digraphs
Multigraph/Simple Graph Directed Graph

(Direction of arcs immaterial) (Direction of arcs matters)

Walk Directed Walk
(vertices and edges may be repeated) (vertices and arcs may be repeated)

Simple Walk Directed trail or Simple Directed walk
(edges are distinct) (arcs are distinct)

Elementary Walk or Path Directed Path
(vertices and hence edges are distinct) (vertices and hence arcs are distinct)

Cycle Circuit
(edges are distinct) (arcs are distinct)
Elementary Cycle Elementary Circuit

(vertices are distinct) (vertices are distinct)

We now prove a simple proposition concerning walk.

Proposition 4.6.1:
If there is a directed walk from vertex x to vertex y in a directed
graph, then there is an elementary directed path from vertex x to
vertex y.

Proof. Intuitively, if we remove all the “redundant” arcs from a
directed walk with origin x and terminus y, we will be left out with
a directed elementary path. In fact, a geodesic (shortest dipath)
from the vertex x to the vertex y satisfies the proposition.

Let W = (u1, u2, . . . , up) be a directed walk of minimum pos-
sible length p from x = x1 to y = xp+1 with ui = (xi, xi+1) for
1 ≤ i ≤ p. If W is not an elementary walk, then a vertex must
be repeated in the walk W. Let xk be a repeated vertex in W (see

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 275 — #291 i
i

i
i

i
i

4.7. CONNECTEDNESS 275

Figure 4.24). Note that a shortest repeated portion of W from xk

Figure 4.24: A walk W with repeated vertex xk

to xk is a directed elementary cycle. Now the removal of all the
arcs of this directed cycle together with all vertices of the directed
cycle except xk still gives a diwalk from x to y whose length is
< p, a contradiction to the minimality of p.

Proposition 4.6.2:
Every simple graph with the degree of each vertex of at least two
(δ ≥ 2) contains an elementary cycle of length δ + 1.

Proof. Consider a longest possible (elementary) path P in the
graph. (The length of a path is the number of edges in the path.)
Let x0 be the initial vertex of the path P = (x0, x1, . . . , xl) and
consider the vertices of the graph adjacent to the initial vertex x0.
Since the degree of x0 ≥ 2, there is a vertex y ̸= x1 such that x0y
is an edge of the graph.

If y ̸= xi for 2 ≤ i ≤ l, then we have a path (y, x0, x1, . . . , xl)
whose length l + 1 exceeds that of P , a contradiction.

Then we must have y = xi for some i with 2 ≤ i ≤ l with x0xi
is an edge of the graph. But then we have the elementary cycle
(x0, x1, . . . , xi) (since x0xi is an edge of the graph). In fact, if i is
the largest such index, then i ≥ δ. But then (x0, x1, . . . , xi) is an
elementary cycle of length at least δ + 1.

4.7 Connectedness

Intuitively, a graph is connected if one draws the whole graph
without lifting the pen from the paper, in other words, the graph
may be drawn in one continuous pen stroke, a vertex and an arc/
edge may be traced more than once. If the vertices represent some

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 276 — #292 i
i

i
i

i
i

276 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

objects and arcs/edges represent strings, then a connected graph
will remain as one piece if picked by any one of the vertices. For
example, in an electric circuit, circuit elements like transistors,
resistors, and capacitors are connected by wires in various ways.
We may ask the question: Is everything connected?

More formally, a graph is connected if there is an elementary
path between any two vertices of the graph. A disconnected graph
G consists of more than one vertex disjoint connected subgraphs,
called the connected components of G. The connected components
of a graph G partition the graph into maximal connected sub-
graphs of G. Note that for connectivity of a graph, the orientations
of arcs are immaterial.

Example 4.7.1 (A disconnected graph):
The graph G of Figure 4.25 is a disconnected multigraph with four
connected components. On the other hand, the Petersen graph is
a connected simple graph.

Figure 4.25: A disconnected multigraph graph with 4 components

Remark 4.7.1:
While proving theorems on graph theory, we normally use the fol-
lowing sentence: If the graph G is not connected then we can con-
sider the connected components of G separately. However, there
are exceptions like the famous reconstruction conjecture of Ulam
(see [3]).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 277 — #293 i
i

i
i

i
i

4.7. CONNECTEDNESS 277

Distance in graphs/multigraphs

In a graph/multigraph, the distance between two vertices, d(x, y),
is the minimum number of arcs/edges of a path/directed path
from the vertex x to the vertex y. If no such path/directed path
exists then we set d(x, y) =∞.

In a connected multigraph G, distance is a metric; that is, for
all vertices x, y, and z, we have the following three properties:

1. d(x, x) = 0 and d(x, y) > 0 if x ̸= y.

2. d(x, y) = d(y, x).

3. d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality).

The diameter , d(G), of a graph G is max(d(x, y) | x, y ∈ X),
in other words, the diameter of G is the length of any longest
geodesic in G.

A simple graph is called a geodetic graph if there is a unique
shortest path between any two vertices of the graph. For example,
the reader can verify that the Petersen graph is geodetic whereas
an elementary cycle of length 4 is not geodetic. More generally,
an elementary cycle of even length is not geodetic whereas an
elementary cycle of odd length is geodetic.

Geodetic graphs have been characterized by Parthasarathy and
Srinivasan (see [3]).

Example 4.7.2:
If G is a simple graph on n vertices with its minimum degree
δ(G) ≥ (n − 1)/2, then prove that the diameter of G is less than
or equal to 2.

Solution: Consider any two distinct vertices x, y of G.We shall
show that the distance between them is less than or equal to 2.
We distinguish two cases.

Case 1: The vertices x and y are adjacent in G.
In this case, the distance d(x, y) = 1 and we are done.
Case 2: The vertices x and y are not adjacent.
In this case, we prove the existence of a third vertex z such

that xz and zy are edges of G, that is, z ∈ Γ(x)∩ Γ(y). If not, we

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 278 — #294 i
i

i
i

i
i

278 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

have Γ(x) ∩ Γ(y) = ∅. This means that the number of vertices of
the graph G is at least

|Γ(x)|+ |Γ(y)|+ |{x }|+ |{ y }|.

Since the minimum degree of G is ≥ (n− 1)/2, and |Γ(v)| = d(v)
for all v, we get the number of vertices of G is at least (n− 1)/2+
(n − 1)/2 + 1 + 1 = n + 1, which is impossible. Therefore there
must be a vertex z joined to both x and y and the elementary
path (x, z, y) is a path of length 2 from x to y. This means that
d(x, y) = 2.

All cases have been considered and the proof is complete.

Example 4.7.3:
Prove that if G = (X,E) is a simple graph of diameter > 3 then
the diameter of the complement graph Gc is < 3.

Solution: Consider any two distinct vertices x, y of G.We shall
show that the distance between them is less than or equal to 2 in
the complement Gc. Two cases can arise:

Case 1. The vertices x and y are not adjacent in the graph G.
Then, by the definition of the complement, the two vertices x and
y are joined by an edge in Gc and hence d(x, y) = 1 in Gc.

Case 2. The vertices x and y are adjacent in G.

We shall show that there is a third vertex z such that both
xz and zy are not edges in G. Suppose the contrary. Then every
vertex z distinct from x and y is joined to at least one of the
vertices x and y in G. This means that any two vertices of G are
joined by an elementary path of length ≤ 3 and hence the diameter
of G is less than or equal to 3, a contradiction to our hypothesis.
Hence there is a third vertex z such that both xz and zy are not
edges in G. By the definition of the complement, xz and zy are
edges in Gc. This means that the elementary path (x, z, y) in Gc

is a path of length 2 and d(x, y) = 2. Therefore the diameter of
Gc in this case is exactly 2.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 279 — #295 i
i

i
i

i
i

4.7. CONNECTEDNESS 279

A good characterization of non-bipartite

graphs

Consider Figure 4.26:

Figure 4.26: A bigraph and its bipartite drawing

From the geometric representation of the first graph G is it
possible to assert “quickly” that the first graph G of Figure 4.26
bipartite? Of course, if we “exhibit” the same graph as indi-
cated by the second graph G, it is clearly (by using our eye-ball!)
bipartite because every edge of the graph possesses one end in
X1 = { 1, 3, 5 } and another end in X2 = { 2, 4, 6 }.

Conversely, we raise the following question: given a graph can
we assert “quickly,” that the graph is non-bipartite? For example,
it can be verified easily that an elementary cycle of length three
(a triangle) is not bipartite. More generally, one can prove that
an elementary cycle of odd length (also called an odd elementary
cycle) is non-bipartite.

The following theorem of König tells us that an elementary odd
cycle is the only type of graph that a given graph G should not
possess as a subgraph, in order to be bipartite. Put differently, odd
elementary cycles are the only forbidden structures of a bipartite
graph.

Theorem 4.7.1:
A graph G is not bipartite if and only if it contains an odd ele-
mentary cycle. Equivalently, a graph G is bipartite if and only if

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 280 — #296 i
i

i
i

i
i

280 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

each of its elementary cycle is of even length.

Proof. If G is a bipartite graph, then we have to prove that the
graph contains no odd elementary cycle; in other words, we must
prove that every elementary cycle must be of even length.

Since G is bipartite, by definition, its vertex set can be parti-
tioned into two subsets X1 and X2 such that every edge has one
end in X1 and another end in X2.

Let C = (e1, e2, . . . , ep) be an elementary cycle of length p.
Then we have to show that p is an even integer. Let the edge ei
join the vertices xi and xi+1, that is, ei = xixi+1 for 1 ≤ i ≤ p.
Since C is a cycle, we have x1 = xp+1, that is, the origin and
terminus of C coincide. We may assume that the origin x1 of the
cycle C is in the set X1. Then, since G is bipartite, x2 must be in
X2, x3 must be inX1, etc., because xixi+1 is an edge, for 1 ≤ i ≤ p.
This means that the oddly subscripted vertices are in X1, and the
evenly subscripted vertices are in X2. Since x1 = xp+1 is in the
set X1, we must have p+ 1 an odd integer and hence p is an even
integer.

Now for the second part of the theorem, assume that the graph
G = (X,E) contains no odd elementary cycle. We have to prove
that G is bipartite.

We may assume without loss of generality that the graph is
connected, for otherwise, we can apply the following argument for
the connected components of G separately (see Remark 4.7.1). (If

Gi = (X
(1)
i ∪X

(2)
i , Ei) are vertex disjoint bipartite graphs for 1 =

1, 2, . . . , k, then their union is a bipartite graph with bipartition
∪k

i=1X
(1)
i and ∪k

i=1X
(2)
i .)

The proof is constructive in nature, that is, we are going to
give an algorithm to find a bipartition of the graph G. Consider
any vertex x1 in X. Define a bipartition of the vertex set X as
follows: Let X1 consist of all vertices at even distance from the
vertex x1 and X2 = X \X1, in notation,

X1 = {x ∈ X | d(x1, x) is even } and X2 = X \X1 =

{x ∈ X | d(x1, x) is odd }.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 281 — #297 i
i

i
i

i
i

4.7. CONNECTEDNESS 281

We claim that X1 and X2 is a desired bipartition. We shall show
that every edge of G joins a vertex of X1 and a vertex of X2. For
suppose there is an edge e = xy joining two points of X1. We will
obtain a contradiction.

Consider the smallest possible length paths P1 from x1 to x,
and P2 from x1 to y. By the definition of X1, d(x1, x) and d(x1, y)
are both even, that is, the number of edges in the paths P1 and P2

are even. These paths may have vertices and/or edges in common.
Let z be the last vertex common to the paths P1 and P2. This last
vertex may be the vertex x1. A portion of a smallest path is always
a smallest path. Hence the subpath of P1 from x1 to z and the
subpath from x1 to z of P2 have the same length; put differently,
d(x1, z) along the path P1 and d(x1, z) along the path P2 are equal.
Since both d(x1, x) and d(x1, y) are even, we have both d(z, x) and
d(z, y) have the same parity. But then, the edge-induced subgraph
induced by the subpath of P1 from z to x and the subpath of P2

from z to y and the edge xy is an odd elementary cycle of G, a
contradiction to the fact that G has no elementary cycle of odd
length. Similarly, we can prove that there are no edges between
any two vertices of X2.

We have the intuitive feeling that if a simple graph contains a
“lot” of edges, then it must be connected. The following proposi-
tion captures this intuition.

Proposition 4.7.1:
A simple graph on n vertices and m >

(
n−1
2

)
edges is connected.

Moreover the result is the best possible in the sense that for every
n > 1 there is a disconnected graph on n vertices with exactly(
n−1
2

)
edges.

Proof. The proof is by contradiction.

If the graph G is disconnected, then it is the disjoint union of
mutually vertex-disjoint connected subgraphs of G. Let the con-
nected components of G be G1, G2, . . ., Gk where k ≥ 2.

Set n(Gi) = ni, the number of vertices of Gi and m(Gi)) = mi,
the number of edges of Gi for 1 ≤ i ≤ k.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 282 — #298 i
i

i
i

i
i

282 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

Then clearly, n = n1+n2+· · ·+nk andm = m1+m2+· · ·+mk.
A simple graph on p vertices has at most

(
p
2

)
edges, since every

simple graph on p vertices is a spanning subgraph of the complete
graph Kp. Hence mi ≤

(
ni

2

)
for 1 ≤ i ≤ k.

Therefore, m =
∑k

i=1mi ≤
∑k

i=1

(
ni

2

)
.

We shall now prove that
∑k

i=1

(
ni

2

)
≤
(
n−1
2

)
for k ≥ 2 and

ni ≥ 1.
To prove the inequality

∑k
i=1

(
ni

2

)
≤
(
n−1
2

)
, we proceed by in-

duction on k.
Basis: k = 2.
We have to prove that

(
n1

2

)
+
(
n2

2

)
≤
(
n1+n2−1

2

)
.

That is, to prove, n1(n1 − 1)/2 + n2(n2 − 1)/2 ≤ (n1 + n2 −
1)(n1 + n2 − 2)/2.

That is, to prove, n1 + n2 ≤ n1n2 + 1, which is always true
because n1 ≥ 1 and n2 ≥ 1, that is, the sum of two positive
integers is always less than or equal to their product plus one.

Induction hypothesis: Assume

k∑
i=1

(
ni

2

)
≤
(∑k

i=1 ni − 1

2

)
.

We shall prove the inequality for k + 1.

k+1∑
i=1

(
ni

2

)
=

k∑
i=1

(
ni

2

)
+

(
nk+1

2

)
by induction hypothesis ≤

(∑k
i=1 ni − 1

2

)
+

(
nk+1

2

)
by basis ≤

(∑k
i=1 ni − 1 + nk+1 − 1

2

)
≤

(∑k+1
i=1 ni − 2

2

)
which is clearly ≤

(∑k+1
i=1 ni − 1

2

)
.

Finally, the graph Kn−1 ∪{ xn }, the complete graph on n− 1 ver-
tices plus an isolated vertex xn is disconnected with two connected
components for n > 1 and its number of edges is

(
n−1
2

)
.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 283 — #299 i
i

i
i

i
i

4.8. GRAPHS AND PUZZLES 283

4.8 Graphs and Puzzles

Graph theory and recreational mathematics were intimately re-
lated in the beginning of the subject. In fact, the origin of graph
theory can be traced to the famous Königsberg Bridge problem
solved by Euler in the year 1736. The problem can be stated as
follows:

Königsberg bridge problem

In the city of Königsberg, now called Kaliningrad, there were two
islands I1, I2 and two banks B1 and B2 of the River Pregel con-
nected by seven bridges (see Figure 4.27). The problem is the

Figure 4.27: Seven bridges of Königsberg

following: Is it possible for a pedestrian starting at any of the
four land areas I1, I2, B1, B2 to cross each of the seven bridges ex-
actly once (no condition is imposed on coming back to the starting
point)?

We can model the problem by means of a multigraph. We
represent the four land areas by four distinct vertices and the
bridges by the edges joining the corresponding land areas (see
Figure 4.28).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 284 — #300 i
i

i
i

i
i

284 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

Figure 4.28: The graph corresponding to the seven bridges of
Königsberg

In terms of the above multigraph, the problem can be refor-
mulated as follows:

Can we draw the graph of Figure 4.28 at one single stroke?
Stated differently, is it possible to draw the graph of Figure 4.28
without lifting the pen and without going through the same edge
more than once? The correspondence between taking a walk
around the bridges, without crossing a bridge more than once and
drawing the corresponding multigraph without lifting the pen and
without tracing the same edge more than once is clear.

After some trial-and-error attempts, we may conclude that
such a drawing is impossible. Why? Is it possible to convince
somebody that such a drawing is impossible, by merely looking
at the graph? To our surprise the answer is “yes,” because of the
following result due to Euler (see Berge [1]).

Theorem 4.8.1 (Euler):
Such a drawing is impossible, if and only if either the graph is not
connected or there are at least four vertices of odd degree.

In fact, the multigraph of Figure 4.28 associated with the

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 285 — #301 i
i

i
i

i
i

4.8. GRAPHS AND PUZZLES 285

Königsberg bridges have all of its four vertices possessing an odd
degree. Hence, a walk around the seven bridges of Königsberg is
impossible.

Good characterization

Euler’s characterization given above is an example of a good char-
acterization of multigraphs without admitting a drawing at one
single pen stroke. If a multigraph can be drawn at one stroke, then
the possibility of such a drawing can be “exhibited” by drawing
the graph G with the stipulated condition. If it can’t be drawn,
then the impossibility of such a drawing can be proved by finding
four vertices of a multigraph having odd degree.

Thus, we are able to convince somebody “quickly,” that is, in
polynomial time, of a possibility of such a drawing or the impossi-
bility of such a drawing. Such a characterization is called a “good
characterization.” In somewhat more formal manner, let us define
the notion of a good characterization:

Definition 4.8.1 (Good characterization):
Consider a property “P” of a graph or concerning any mathe-
matical structure. The property “P” is referred to as an “NP-
property” whenever the existence of the property “P” can be ex-
hibited “easily” (in polynomial time in the size of the input) for
any graph/mathematical structure verifying “P.” For example, the
compositeness of an integer n ≥ 4 is an NP-property because to
“convince” someone that n is composite, it is enough to furnish
him or her with a divisor d of n other than 1 and n. The divisor d
is referred to as a succinct certificate for the compositeness of n.
“Planarity” of a given graph G is an NP-property for if G is planar
then it can be easily exhibited by drawing G in the plane in such
a way that the edges do not intersect at a point other than at a
vertex of the graph. A good characterization is one which estab-
lishes an equivalence between an NP-property and a negation of
another NP-property. Finally, a property P is well-characterized
if we can exhibit both the existence of P and the non-existence of

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 286 — #302 i
i

i
i

i
i

286 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

P “easily.”

Example 4.8.1:
In the example (see Figure 4.29) the first graph G1 is impossible
to draw at one stroke whereas the other two graphs G2 and G3

admit such a drawing.

Figure 4.29: G1, impossible to draw at one stroke, whereas G2, G3

admit such a drawing

If a graph/multigraph can be drawn at one stroke, then such a
drawing is called a Eulerian directed trail/trail, that is, a Eulerian
directed trail/Eulerian trail is a directed trail/trail passing through
each arc/edge exactly once. If in addition, the directed trail/trail
is closed, that is, the origin and terminus coincide, then such a
directed trail/trail is called a Eulerian circuit/Eulerian cycle. A
graph/multigraph admitting a Eulerian circuit/Eulerian cycle is
called a Eulerian graph/multigraph.

The following is a characterization of graphs possessing Eule-
rian circuits and is due to I.J. Good (see Knuth [8]).

Theorem 4.8.2 (Good):
A graph possesses a Eulerian circuit if and only if it is connected
and every vertex has the same in-degree as its out-degree.

Proof. One part of the theorem is easy to prove.
If G possesses a circuit passing through each arc exactly once,

then every vertex x lies in the circuit. Hence, in the circuit for

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 287 — #303 i
i

i
i

i
i

4.8. GRAPHS AND PUZZLES 287

every arc leading into the vertex x, there is a different arc leading
away from the vertex x. Therefore there is a bijection between the
set of all arcs leading into x onto the set of all arcs leading away
from x. In particular, d+(x) = d−(x).

Conversely, assume that the graph G is connected and d+(x) =
d−(x) for each vertex x.We shall show that G possesses a Eulerian
circuit. If a Eulerian circuit exists, then it must be a directed trail
(simple walk) of maximum possible length m, because a Eulerian
circuit passes through each arc exactly once. Let

T = (u1, u2, . . . , up)

be a directed trail of longest possible length. Note that
head(ui−1) = tail(ui) for all i, with 2 ≤ i ≤ p. We shall first
prove that T is closed, that is, we shall prove that the head of last
arc up is the same as the tail of first arc u1.

If x is the head of the arc up, then all the k = d+(x) arcs
leading out of the vertex x should appear in the directed trail T ;
since otherwise, we could add that arc u does not appear in the
directed trail T at the terminus of T to get a longer directed trail
than T. Since the integer p is the largest subscript such that arc up
lies in T , we have the subscript i of every arc ui leading out of the
vertex x satisfies the inequality 1 ≤ i ≤ (p − 1). If u1 is one such
arc, then T is closed. Otherwise, the subscript i of every arc ui
leading out of the vertex x satisfies the inequality 2 ≤ i ≤ (p− 1).
But for every such arc ui, ui−1 exists because i−1 ≥ 1 and≤ (p−2)
and the head of ui−1 coincides with the tail of ui. Since the arc up
leads into the vertex x, and p is the maximum index, these imply
that the in-degree of the vertex x is at least k+1, a contradiction
to the fact that d+(x) = d−(x). Hence T is a closed directed trail,
that is, a closed circuit.

It remains to prove that the circuit T includes all the arcs of
the graph G. By Remark 4.6.1, a circuit may start and end at any
if its vertices, that is, we can take any of its vertex vertices as
origin and terminus. Assume an arc u = (s, t) of the graph G not
in the circuit T. Then this arc has neither its head t nor its tail
s in T , since otherwise we can add this arc to T to have a longer
directed trail than T. So if the circuit T does not include all the

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 288 — #304 i
i

i
i

i
i

288 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

arcs of the graph G, then G is not connected.

4.8.1 An Application

Proposition 4.8.1:
Consider a connected digraph G with arcs u0, u1, . . . , um. Let
p0, p1, . . . , pm be the positive integers. Let pi be the weight as-
sociated with the arc ui for 0 ≤ i ≤ m. Assume that the sum of
the weights of the arcs leading into each vertex x is equal to the
sum of the weights of the arcs leading away from the vertex x,
that is, ∑

head(ui)=x

pi =
∑

tail(ui)=x

pi, for each vertex x of G.

The above condition is called Kirchoff’s law.
Assume further that p0 = 1. Show that there is a directed walk

(neither elementary nor simple) in G from the head of u0 to the
tail of u0 such that the arc does not occur in the path, and for
1 ≤ i ≤ m arc ui occurs exactly pi times.

Proof. We are going to apply Theorem 4.8.2 to a suitably con-
structed digraph.

Construct a new directed graph G′ having the same vertex set
as that of G and having pi copies of the arc ui for 0 ≤ i ≤ m, that
is, each arc ui of G is replicated pi times in the new graph G′ (see
Figure 4.30).

Figure 4.30: Graph G and G′. Weights are written on the edges of
G.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 289 — #305 i
i

i
i

i
i

4.8. GRAPHS AND PUZZLES 289

Because of Kirchoff’s condition in the graph G, in the newly
constructed digraph G′, every vertex has the same in-degree as its
out-degree. Hence G′ is a connected digraph in which d+(x) =
d−(x) for each vertex x. Therefore by Theorem 4.8.2 G′ possesses
a Eulerian circuit (u0, . . . ,) (recall that a circuit may start and
end at any of its arcs) and u0 occurs exactly once on this Eulerian
circuit (since p0 = 1).

The desired directed path is obtained by removing the arc u0
from this Eulerian circuit.

4.8.2 Two Friendship Theorems

Proposition 4.8.2:
Show that, in any group of two or more people, there are always
two people having the same number of friends inside the group.
We assume friendship is a symmetric relation.

Proof. This problem can be modeled using a simple graph.

We construct a simple graph where the vertices correspond to
different people and two vertices are adjacent if the correspond-
ing people are friends. In this graph, the degree of a vertex x
represents the number of friends of the person represented by x.

In graphical terms, the proposition is stated as follows:

Prove that, in any simple graph, there exist two distinct ver-
tices x and y having the same degree, that is, d(x) = d(y). This
is a direct application of the pigeon-hole principle.

Pigeon-hole principle: Of three ordinary people, two
must have the same sex!

D. Kleitman

More generally, if (n + 1) letters are distributed among n letter
boxes, then at least one letter box will have at least two letters.

Let us first observe that in a simple graph on n vertices, the
degree of a vertex can assume at most n integers, 0, 1, . . . , n− 1.

We distinguish two cases:

Case 1: There is a vertex x such that d(x) = 0.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 290 — #306 i
i

i
i

i
i

290 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

Then, we cannot have a vertex of degree n−1, that is, a vertex
joined to all other vertices of the graph. More precisely, we must
have 0 ≤ d(y) ≤ n − 2, for each vertex y. But then the possible
degrees of a vertex are n − 1 in number and we have n vertices.
Hence by the pigeon-hole principle, there are two vertices having
the same degree. (Here, the letters are the vertices and the n letter
boxes labeled with 0, 1, . . . , n − 1. A vertex of degree i goes into
the letter box labeled i.)

Case 2: The degree of each vertex is > 0.

In this case also the possible degrees that a vertex can assume is
n− 1 in number. More precisely, the possible degrees of a vertex
are: 1, 2, . . . , n − 1. But the number of vertices is n. Therefore,
there are two vertices possessing the same degree. (Here again the
letters are the vertices and the letter boxes are labeled with the
integers: 1, 2, . . . , n − 1. A vertex of degree i goes into the letter
box labeled i.)

Proposition 4.8.3:
Prove that in any group of six people, there are either three mutual
friends or three mutual strangers. Here again we assume that the
friendship is a symmetric relation. (Note that three mutual friends
and three mutual strangers are not complementary to each other!)

Proof. As in the proof of the previous theorem, we construct a
simple graph as follows:

We construct a simple graph G on six vertices: The six vertices
represent the six people and two vertices are joined by a solid
edge if the corresponding people know each other and we join two
vertices by a dotted edge if the corresponding people do not know
each other.

The puzzle is equivalent to the following: Any simple graph on
six vertices contains either a solid elementary cycle of length three,
that is, a solid triangle, or contains a dotted elementary cycle of
length three, that is, a dotted triangle.

Consider a vertex x. Clearly, the number of solid edges incident
with x plus the number of dotted edges incident with the same
vertex x is exactly 5. Hence, either the number of solid edges at x

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 291 — #307 i
i

i
i

i
i

4.8. GRAPHS AND PUZZLES 291

must be ≥ 3 or the number of dotted edges at x must be ≥ 3, for
if not, the number of solid edges at x plus the number of dotted
edges at x is ≤ 4. We may assume that there are at least three
solid edges incident with the vertex x (See Figure 4.31); the case
of at least three dotted edges can be treated similarly.

Figure 4.31: A step in the proof

If any two of the vertices, say, y and z in the neighbor set
Γ(x), are joined by an edge, then the vertices x, y, z induce a solid
triangle (see Figure 4.32).

Figure 4.32: A step in the proof

If no two of the vertices in the neighbor set of x are adjacent,
then, clearly the induced subgraph G(Γ(x)) contains a dotted tri-
angle (see Figure 4.33).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 292 — #308 i
i

i
i

i
i

292 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

Figure 4.33: A step in the proof

4.8.3 Pandava Princes Problem and 3 Houses,
3 Utilities Problem

Example 4.8.2 (Pandava princes problem):
After the Kurushetra War in Bharat (now called India, this war
dates back to 3000 BC according to historians), the five Pandava
princes who won the war wanted to divide the kingdom, which is
a single connected piece, into five “connected regions,” in such a
way that each region must have a common frontier (which is not
a single point) with four other regions. Is it possible to share the
kingdom in such a way? If so, how?

Solution: Draw a simple graph with five vertices corresponding
to five provinces and two vertices are joined by an edge if and only
if the corresponding regions have a common frontier. If such a
sharing is possible, then in the graph thus constructed, each vertex
is joined to four other vertices. This is nothing but a complete
graph K5 on five vertices.

The problem is now equivalent to drawing the complete graph
on five vertices K5 in a plane such that no two edges cross apart
from their vertices.

After some trial and error you will see that such a drawing
is impossible (see [3][1][5])! In other words, K5 is a non-planar
graph.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 293 — #309 i
i

i
i

i
i

4.9. RAMSEY NUMBERS 293

Example 4.8.3 (3 houses and 3 utilities problem):
We would like to connect all three houses (villas) a,b,c to all three
factories e,g,w producing, respectively, electricity, gas and water.
Is it possible to connect all three houses to all the three factories,
so that the connecting lines/pipes (no underground connection!)
do not cross in between? Assume that the houses and the factories
are in the same plane.

Solution: As in Example 4.8.2, construct a graph with six ver-
tices a,b,c,e,g,w and join two vertices if and only if one vertex is
a house and another vertex is a factory. Since all three services,
electricity, gas and water, are required by each house, we get a
complete bipartite graph K3,3. The problem is now: Is it possible
to draw the graph K3,3 in plane such that two edges do not cross,
other than at a vertex? After some trial and error you will see
that such a drawing is impossible. In other words, the graph K3,3

is non-planar (see [1][3][5]).

4.9 Ramsey Numbers

Ramsey numbers can be considered as a profound generalization
of the pigeon-hole principle:

If we partition a set of a sufficiently large number of elements
into a sufficiently small number of subsets, then at least one of
the sets of the partition must contain many of the elements of the
original set.

The above proposition states that in any graph with at least
six vertices, either there is a stable set of three vertices or a clique
of three vertices, that is, an elementary cycle of length 3 (since
a graph of at least six vertices contains a subgraph of exactly six
vertices.)

Definition 4.9.1 (Ramsey numbers):
Wemay raise the following question: What is theminimum integer
r(p, q) such that every simple graph on r(p, q) vertices contains
either a stable set of p vertices or a clique of q vertices? The
existence of such numbers r(p, q) for all positive integers p and q

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 294 — #310 i
i

i
i

i
i

294 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

was proved by Ramsey and the numbers r(p, q) are called Ramsey
numbers .

In the following example we show that r(3, 3) = 6.

Example 4.9.1:
Consider the elementary cycle C5. The reader can verify that C5

contains neither a clique of three vertices nor a stable set of three
vertices. Hence by the definition of r(3, 3) we have r(3, 3) ≥ 6.

But the above Proposition 4.8.3 implies that r(3, 3) ≤ 6.
Combining the two inequalities, we have the result.

Only a few Ramsey numbers are known and in general finding the
Ramsey numbers is a difficult unsolved problem.

Example 4.9.2 (Symmetry of Ramsey numbers):
Show that r(p, q) = r(q, p).

Solution: Let G be a simple graph on r(p, q) vertices. Then by
the definition of r(p, q), G contains either a stable set of p vertices
or a clique of q vertices and the number of vertices of G is a graph
of the minimum number of vertices satisfying this property. Now
consider the complement Gc of the graph G. By the definition of
Gc, a set S of vertices in G is a stable set in G, if and only if it
is a clique in Gc and a set K of vertices in G is a clique in G, if
and only if it is a stable set in Gc. Since G and Gc have the same
set of vertices, we have by the definition of the Ramsey numbers,
r(p, q) = r(q, p).

Because of the symmetry of the Ramsey numbers, we can inter-
change the role of stable set and clique in the definition of Ramsey
numbers.

The following theorem shows the existence of the Ramsey num-
bers. To prove the existence, we use induction. The following
simple identity, the so-called Pascal identity involving binomial
coefficients, is used as an induction jump.(

n+ 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
k ≥ 1 and n ≥ 0

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 295 — #311 i
i

i
i

i
i

4.9. RAMSEY NUMBERS 295

The following theorem can be viewed as a profound generalization
of the pigeon-hole principle. The theorem intuitively states: A
complete disorder is impossible.

Theorem 4.9.1 (Ramsey):
Let G be any simple graph on n =

(
p+q
p

)
vertices. Then G contains

either a clique of p+ 1 vertices or a stable set of q + 1 vertices.

Proof. The theorem is proved by induction on the sum p+ q.
Induction Basis. For p + q = 1, we must have either p = 0

or p = 1. Then the number of vertices n = 1 and G consists of
only one vertex and no edge. Clearly, G satisfies the theorem
in this case. If p = q = 1 then the graph G has exactly two
vertices. There are only two simple graphs with two vertices: 1.
The complete graph K2 on two vertices 2. The graph with two
vertices and no edge. These two graphs satisfy the theorem. So
we may suppose that p > 1 and q > 1.

Induction hypothesis. Suppose the theorem is true for all sim-
ple graphs with strictly less than

(
p+q
p

)
vertices.

Take a simple graph on exactly n =
(
p+q
p

)
vertices and a vertex

x of G. By the definition of the complement of the graph G, we
have

dG(x) + dGc(x) = n− 1 =

(
p+ q

p

)
− 1.

By the Pascal identity involving binomial coefficients, we have

dG(x) + dGc(x) =

(
p+ q

p

)
− 1 =

(
p+ q − 1

p− 1

)
+

(
p+ q − 1

p

)
− 1.

Hence, we must have either dG(x) ≥
(
p+q−1
p−1

)
or dGc(x) ≥

(
p+q−1

p

)
for, if both are not true, then dG(x) ≤

(
p+q−1
p−1

)
− 1 and dGc(x) ≤(

p+q−1
p

)
−1, then by addition, we obtain dG(x)+dGc(x) ≤

(
p+q−1
p−1

)
+(

p+q−1
p

)
− 2, which is a contradiction.

Suppose dG(x) ≥
(
p+q−1
p−1

)
. Take a subset S of the neighbors

of the vertex x containing exactly
(
(p−1)+q

p−1

)
vertices. Then by the

induction hypothesis, the induced subgraph < S > contains either

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 296 — #312 i
i

i
i

i
i

296 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

a clique of p− 1 vertices or a stable set of q vertices. But then the
induced subgraph < S ∪ { x } > contains a clique of p vertices or
a stable set of q vertices because x is joined to all the vertices of
S.

Now suppose dGc(x) ≥
(
p+q−1

p

)
. Take a subset T of vertices

belonging to the neighbors of x in the complement graph Gc con-
sisting of exactly

(
p+q−1

p

)
vertices, which is, by the duality relation

of the binomial coefficients, equal to
(
(q−1)+p

q−1

)
. (Duality relation of

binomial coefficients:
(
n
k

)
=
(

n
n−k

)
.) By induction hypothesis, the

induced subgraph < T > of Gc contains either a clique of q − 1
vertices or a stable set of p vertices. Hence, T ∪ { x } contains
either a clique of q vertices or a stable set of p vertices since x is
joined to all the vertices of T in Gc. That is, G contains either a
clique of p vertices or a stable set of q vertices.

We give below a table of some known Ramsey numbers (see
[6], [4]).

Table 4.2: Some known Ramsey numbers r(p, q)

q \ p 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 2 3 4 5 6 7
3 1 3 6 9 14 18 23
4 1 4 9 18 25
5 1 5 14 25
6 1 6 18
7 1 7 23

It is proved that 43 ≤ r(5, 5) ≤ 49. However, the exact value of
r(5, 5) is not known. The numbers r(p, p) are called the diagonal
Ramsey numbers . For example, to prove that r(5, 5) = k we have
to prove that every simple graph on k vertices contains either a
stable set of k vertices or a clique of k vertices and construct
or prove the existence of a simple graph on k − 1 vertices which
contains neither a stable set of k vertices nor a clique of k vertices.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 297 — #313 i
i

i
i

i
i

4.9. RAMSEY NUMBERS 297

We now prove the following simple recurrence inequality in-
volving Ramsey numbers:

Example 4.9.3 (Trivial Ramsey numbers):
Show that r(p, 1) = r(1, q) = 1 and r(2, q) = q r(p, 2) = p.

Solution: Consider the trivial graph G with exactly one vertex
and no edges. Clearly, G itself is a clique of one vertex and a
stable set of one vertex. The empty graph has neither a clique
of one vertex nor a stable set of one vertex. By the definition of
Ramsey numbers, r(p, 1) = r(1, q) = 1.

We shall now prove that r(2, q) = q. Consider any simple graph
on q vertices. If G has at least one edge e = xy then {x, y } is
a clique of two vertices. If G does not contain any edge then the
graph itself forms a stable set of q vertices. On the other hand,
the graph consisting of q−1 vertices and no edges contains neither
a clique of two vertices nor a stable set of q vertices. Therefore,
r(2, q) = q. Similarly, r(p, 2) = p.

Theorem 4.9.2 (Erdös-Szekeres):
The Ramsey numbers satisfy the recurrence relation

r(p, q) ≤ r(p, q − 1) + r(p− 1, q) for all p ≥ 2 and q ≥ 2

Moreover, if both the numbers r(p, q − 1) and r(p− 1, q) are even
integers, then the above inequality is strict.

Proof. By the definition of the Ramsey numbers, we have to show
that every simple graph on r(p, q−1)+r(p−1, q) vertices contains
either a clique of p vertices or a stable set of q vertices.

Let G be a simple graph on n = r(p, q−1)+r(p−1, q) vertices
and take any vertex x of G. By the definition of the complement Gc

of the graphG we have the equality dG(x)+dGc(x) = n−1 for every
vertex x of G, that is, in words, the number of vertices adjacent
to x plus the number of vertices nonadjacent to x is always n− 1.
Hence the vertex x is either nonadjacent to a set S of ≥ r(p, q−1)
vertices or else x is adjacent to a set K of ≥ r(p− 1.q) vertices in
G.

Because of the above observation, two cases can arise:

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 298 — #314 i
i

i
i

i
i

298 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

Case 1. x is nonadjacent to a set S of vertices with |S| ≥
r(p, q − 1).

By the minimality of the integer in the definition of r(p, q−1),
we have: The induced subgraph < S > of G contains either a
clique of p vertices or a stable set of q − 1 vertices and therefore
the induced subgraph < S ∪ {x } > of G (and hence also G)
contains either a clique of p vertices or a stable set of q vertices.

We now consider the negation of the case 1. Case 2. x is
adjacent to a set K of vertices with |K| ≥ r(p − 1, q). By the
minimality of the integer in the definition of r(p− 1, q), we have:
The induced subgraph < K > of G contains either a clique of
p−1 vertices or a stable set of q vertices and therefore the induced
subgraph < K ∪{ x } > of G (and hence also G) contains either a
clique of p vertices or a stable set of q vertices.

Assume now that both r(p−1, q) and r(p, q−1) are both even
integers. We have to show that every graph G on n = r(p, q−1)+
r(p− 1, q)− 1 contains either a clique of p vertices or a stable set
of q vertices.

Let G be a graph on n vertices. Since n is an odd integer,
by Corollary 4.1.1.2, G must have a vertex x of even degree. In
particular, d(x) ̸= r(p − 1, q) − 1, that is, x can’t be adjacent to
exactly r(p− 1, q)− 1 vertices. As above, the following two cases
arise:

Case 1. x is nonadjacent to a set S of vertices with |S| ≥
r(p, q − 1).

Case 2. x is adjacent to a set K of vertices with |K| ≥ r(p, q−
1) − 1. But the equality is excluded. Hence the case 2 becomes:
x is nonadjacent to a set S of vertices with |S| ≥ r(p, q − 1).
By repeating the same argument, G contains either a clique of p
vertices or a stable set of q vertices. Therefore

r(p, q) ≤ r(p− 1, q) + r(p, q − 1)− 1.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 299 — #315 i
i

i
i

i
i

4.9. RAMSEY NUMBERS 299

Definition 4.9.2 ((p, q)-Ramsey graph):
A (p, q)-Ramsey graph is a simple graph G on r(p, q)− 1 vertices.
By the definition of the number r(p, q), the graph G contains nei-
ther a clique of p vertices nor a stable set of q vertices. For example,
the elementary cycle of length five is a (3, 3)-Ramsey graph, be-
cause it contains neither a triangle nor a stable set of three vertices
and r(3, 3) = 6 (see Example 4.9.1).

We have already proved that r(3, 3) = 6 (see Example 4.9.1).
As an application of the above recurrence inequality, we shall show
in the following example that r(3, 4) = 9.

Example 4.9.4 (Ramsey number r(3, 4)):
Show that r(3, 4) = 9.

Solution: We shall first construct a simple graph on 8 vertices
containing no clique of three vertices and no stable set of four
vertices (see the graph of Figure 4.34 which has 8 vertices).

Figure 4.34: (3,4)-Ramsey graph

The reader can verify that the graph of Figure 4.34 contains no
clique of three vertices and no stable set of four vertices. Hence by
the definition of the Ramsey number r(3, 4) we have the inequality

r(3, 4) ≥ 9 (4.3)

We shall now prove that r(3, 4) ≤ 9. By the inequality of Theorem

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 300 — #316 i
i

i
i

i
i

300 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

4.9.2 we have

r(3, 4) ≤ r(2, 4) + r(3, 3).

But r(2, 4) = 4 because every graph on four vertices contains
either a clique of two vertices, that is an edge, or else it contains
no edges and hence the whole graph itself is a stable set of four
vertices. Further, the graph consisting of three vertices and no
edges contains neither a clique of two vertices nor a stable set of
four vertices.

Since both r(3, 3) = 6 (see Example 4.9.1) and r(2, 4) are even,
we have strict inequality in Theorem 4.9.2. Hence we have

r(3, 4) ≤ r(2, 4) + r(3, 4)− 1 ≤ 4 + 6− 1 ≤ 9 (4.4)

By combining the two inequalities 4.3 and 4.4, we have r(3, 4) = 9.

The following corollary gives an upper bound on the Ramsey
number r(p, q) in terms of binomial coefficients.

Corollary 4.9.2.1:
The Ramsey number r(p, q) satisfies the inequality

r(p, q) ≤
(
p+ q − 2

p− 1

)
.

Proof. The proof proceeds by induction on the sum p+ q.
Induction Basis: We verify the inequality for p+ q ≤ 5.
We have r(p, 1) = 1 for all p ≥ 1 (by Example 4.9.3), and
r(p, 1) = 1 ≤

(
p+1−2
p−1

)
= 1. Moreover, r(p, 2) = p (by Example

4.9.3) and r(p, 2) = p ≤
(
p+2−2
p−1

)
= p. In particular, the inequal-

ity is true for all p ≤ 4. Hence by the symmetry of the Ramsey
numbers, the induction basis is true for p+ q ≤ 5.

Induction Hypothesis: Suppose the inequality for all p and q
with 5 ≤ p+ q < a+ b.

We shall prove the inequality for r(a, b).
By Theorem, 4.9.2, we have

r(a, b) ≤ r(a− 1, b) + r(a, b− 1)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 301 — #317 i
i

i
i

i
i

4.9. RAMSEY NUMBERS 301

≤
(
a− 1 + b− 2

b− 1

)
+

(
a+ b− 1− 2

b− 2

)
by the induction hypothesis

=

(
a+ b− 3

b− 1

)
+

(
a+ b− 3

b− 2

)
=

(
a+ b− 2

b− 1

)
since

(
n

k−1

)
+
(
n
k

)
=
(
n+1
k

)
“Pascal identity”

Probabilistic Method

We shall now prove an inequality concerning the diagonal Ramsey
numbers r(k, k) using a powerful method in combinatorics called
the Probabilistic method. This method is used to prove the exis-
tence of a mathematical object (in our case, a graph) with certain
properties. Before presenting the inequality due to Erdös let us
briefly review some basics of probability theory.

First of all, we recall some basics of probability theory (see
Chapter 6 for more details).

Definition 4.9.3 (Sample space, events):
The set of all possible outcomes of an experiment is called a sample
space. An event is a set of outcomes. Put differently, an event is
a subset of the sample space.

The following example clarifies the notions of sample space and
events.

Example 4.9.5 (Sample space, events):
Consider the experiment of tossing a fair coin twice. Let us note
the head by H and the tail by T. Then the sample space of this
experiment is the set S consisting of following four elements:

S = {HH,HT, TH, TT }.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 302 — #318 i
i

i
i

i
i

302 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

Note that the set S is the Cartesian product: S = {H,T } ×
{H,T }. Let A be the event of getting at least one head. The
subset A of S is A = {HH,HT, TH }. The event B of obtaining
only tails is the singleton set B = {TT }.

Definition 4.9.4 (Probability of an event):
Let S be a finite sample space and let E be an event. Then the
probability of the event E is written as Pr(E) and is defined as
the ratio

Pr(E) =
|E|
|S|

.

In other words,

Pr(E) =
Number of outcomes favorable to E

Total number of possible outcomes

In the above Example 4.9.5, Pr(A) = 3
4
and Pr(B) = 1

4
.

What is a probabilistic method?

Let us describe in an informal and intuitive manner the probabilis-
tic method: Consider a finite set G of graphs. If we can prove that
an appropriately defined random graph would have the property
“P” with positive probability, then we can conclude that there
must exist a graph G in the set G with the property “P.” This is
because the probability is zero only in the case of the event E = ∅.

Let us see a simple probabilistic proof of Theorem 4.5.3 (al-
ready proved).

Theorem 4.9.3:
A loopless multigraph G of m edges contains a spanning bipartite
subgraph of at least m/2 edges.

Proof. Let H = (X1, X2) be any randomly chosen spanning bipar-
tite subgraph of G. Take any edge e = xy of G. Then there are
two possibilities: either both ends of e are in the same partition of
H or in different partitions of H. Hence the probability of having

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 303 — #319 i
i

i
i

i
i

4.9. RAMSEY NUMBERS 303

one end of e in X1 and another in X2 is 1/2 and this is true of
each edge of G. Hence the expected (“average”) number of edges
of the graph H is (see Chapter 6 for the definition of expectation)∑m

i=1 1/2 = m/2. Therefore, there must be at least one bipartite
graph having at least m/2 edges. Analogy: If the average mark of
a class is 55, there must be at least one student having at least 55
marks.

Analogy: If the average salary of a professor in a university is
4,000 euros, there must be at least one professor whose salary is
at least (≥) 4,000 euros.

Theorem 4.9.4 (Erdös):
The diagonal Ramsey 4,000 numbers r(k, k) satisfy the inequality

r(k, k) ≥ 2k/2 for all k ≥ 2.

Proof. Since r(2, 2) = 2 ≥ 22/2, and r(3, 3) = 6 ≥ 23/2, we can
assume that k ≥ 4.

Consider the set Gn of all possible non-identical simple graphs
on the vertex set [n] = {x1, x2, . . . , xn }. By Theorem 4.4.4, the
cardinality of the set Gn is given by

|Gn| = 2(
n
2).

Now we are interested in finding an upper bound for the number
of graphs in the set Gn possessing a clique of k vertices.

Let us first fix a set [k] = { 1, 2, . . . , k }. We shall first find the
number of graphs in Gn possessing the set [k] as a clique. Since
there are

(
n
2

)
possible edges on the vertex set {x1, x2, . . . , xn }

and
(
k
2

)
edges of the induced clique [k] are already fixed, we have

the freedom to choose any subset of the remaining edge set of
cardinality

(
n
2

)
−
(
k
2

)
to have a graph with the clique set [k]. Since

a set of cardinality p contains exactly 2p subsets, the number of
graphs in G with the clique [k] is

2(
n
2)−(

k
2).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 304 — #320 i
i

i
i

i
i

304 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

Let us now vary the k-subset [k]. We know that the number of
k-subsets of the n-set [n] = {x1, x2, . . . , xn } is the binomial co-
efficient

(
n
k

)
. Hence the subset G<k>

n of graphs in Gn possessing a
clique of k-vertices satisfies the inequality

|G<k>
n | ≤

(
n

k

)
× 2(

n
2)−(

k
2).

Notice the sign of inequality above, because while finding the set
G<k>
n the same graph may be generated many times (for instance,

the complete graph Kn.) Therefore

Pr(A graph G in Gn has a k-clique)

≤ |G<k>
n |
|Gn|

≤
(
n

k

)
2−(

k
2)

≤ n(n− 1) · · · (n− k + 1)

k!
× 2−(

k
2)

<
nk2−(

k
2)

k!
(since n− i < n for i ≥ 1.)

(now for n < 2k/2) <
2k

2/22−(
k
2)

k!

=
2k/2

k!

<
1

2
(since k! > 2k−1 ≥ 2(k+2)/2

Hence, strictly less than fifty percent of the graphs in Gn contain
a clique of k vertices.

Similar arguments as above can be applied to prove that
strictly less than fifty percent of the graphs in Gn contain a stable
set of k-vertices. Therefore, there must be a graph (with n ver-
tices) in Gn which has neither a clique of k vertices nor has a stable
set of k vertices. By the definition of r(k, k) and our assumption on
the number of vertices n, n < 2k/2, we obtain r(k, k) ≥ n+1 ≥ 2k/2

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 305 — #321 i
i

i
i

i
i

4.9. RAMSEY NUMBERS 305

by choosing n as follows:

n =

{
2k/2 − 1 if 2k/2 is an integer,
⌊2k/2⌋ otherwise.

Corollary 4.9.4.1:
The Ramsey numbers r(p, q) satisfy the inequality

r(p, q) ≥ 2
min(p,q)

2 .

Proof. Set k = min(p, q). Consider any simple graph G on r(p, q)
vertices. By the definition of r(p, q), G contains either a clique of
p vertices or a stable set of q vertices. But any clique of p vertices
contains also a clique of k vertices and any stable set of q vertices
contains also a stable set of k vertices. This is because k ≤ p and
k ≤ q. Hence the graph G contains a clique of k vertices or a stable
set of k vertices. By the minimality of the number r(k, k), we have

r(p, q) ≥ r(k, k) ≥ 2k/2 by Theorem 4.9.4.

A generalization of Ramsey numbers

The Ramsey number r(p, q) may be viewed in terms of a two
partition of the edge set of the complete graph Kn as described
below.

Consider the complete graphKn and any two partition (E1, E2)
of the edge set E of Kn, that is, E = E1 ∪ E2 and E1 ∩ E2 = ∅.
Notice that Ei may be empty for some i. The edges of E1 are
said to be colored with color 1 and the edges of E2 are said to be
colored with color 2.

Definition 4.9.5:
The Ramsey number r(p, q) is the smallest integer n such that
any two partition (E1, E2) of the edge set of the complete graph

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 306 — #322 i
i

i
i

i
i

306 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

Kn contains either a complete subgraph on p vertices all of whose
edges are colored with color 1 or contains a complete subgraph on
q vertices all of whose edges are colored with color 2.

This is because, if G = (X,E) is a simple graph on n vertices
then Kn = (X,E ∪ Ec).

The above point of view enables us to generalize the Ramsey
numbers as a function of k arguments k ≥ 2 instead of two argu-
ments.

Consider the complete graph Kn and any k partition
(E1, E2, . . . , Ek) of the edge set E of Kn, that is, E = E1∪E2 · · ·∪
Ek and Ei ∩ Ej = ∅ for all 1 ≤ i < j ≤ n. Notice that Ei may
be empty for some i. The edges of Ei are said to be colored with
color i for 1 ≤ i ≤ n.

Definition 4.9.6 (Generalization of Ramsey numbers):
The Ramsey number r(p1, p2, . . . , pk) is the minimum integer n
such that any k partition (E1, E2, . . . , Ek) of the edge set E of the
complete graph Kn contains, for some i, a complete subgraph on
pi vertices, all of whose edges are colored with the color i.

Instant insanity puzzle

We are given four cubes of the same dimension. Denote the four
cubes by cube 1, cube 2, cube 3 and cube 4. The six faces of each
of the cubes are variously colored with the colors Yellow, Green,
Red and Blue.

The puzzle poses the following question: Is it possible to stack
the four cubes, one on top of another, in such a way that all the
four colors appear on each of the four sides, east side, west side,
north side, south side, of the resulting 4× 1 stack?

See the illustration below: The cubes are unfolded in Figure
4.35.

One possible solution to the problem is to “try all possibilities”
(brute-force method) of the stacking of the cubes until we find the
right one or conclude that no such stacking is possible. The prob-
lem with this case-by-case exhaustive analysis is that the maxi-

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 307 — #323 i
i

i
i

i
i

4.9. RAMSEY NUMBERS 307

Figure 4.35: Unfolded cubes

mum number of possible trials will be 3× 24× 24× 24 = 41472.
To find a solution to the puzzle in a reasonable amount of time,

we construct a multigraph G as follows:
The vertices of the multigraph are the four different colors: Yel-

low(Y), Green(G), Red(R) and Blue(B). Two vertices are joined
by an edge labeled by the integer i where 1 ≤ i ≤ 4, if the corre-
sponding colors form the opposite faces of the cube i.

Now let us proceed backwards, that is, assume that we are
able to stack up the cubes, one on top of another, in such a way
that all the four colors appear on the east side, west side, north
side and south side. Construct the two subgraphs G1 and G2 of
the graph G induced by the east-west faces and north-south faces
respectively (see Figure 4.36). These two subgraphs possess the
following properties:

1. G1 and G2 are spanning subgraphs of G; because all four
colors are represented on each face of the stack.

2. Each of the two subgraphs has exactly four edges and these
edges are labeled differently with 1, 2, 3, 4; because by joining
four opposite faces of the stack of four cubes we will have
four edges labeled differently.

3. The subgraphs G1 and G2 are edge disjoint because an east-
west edge is different from a north-south edge.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 308 — #324 i
i

i
i

i
i

308 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

Figure 4.36: Graphs induced by east-west faces and north-south
faces

4. G1 and G2 are regular subgraphs of degree 2; because each
color appears exactly twice on east plus west sides of the
stack and exactly twice on north plus south sides of the stack.

These four necessary conditions to have a solution to the puzzle
can be easily seen to be also sufficient ! That is, we may stack the
cubes one on top of another if and only if the graph G admits two
subgraphs G1 and G2 satisfying the above four stated properties.

Let us come back to our illustration: The graph G admits two
subgraphs G1 and G2 satisfying all the four properties. (See the
graphs G1, G2 and a right stacking of the cubes of Figure 4.37.)

4.10 Graph Algebra

In this section, we study some basic operations on graphs. These
include the union of graphs , join of graphs, Cartesian product of
graphs , contraction of an edge of G and minor of a graph. These
operations are defined here only for simple graphs but these defi-
nitions can be naturally extended to multigraphs and digraphs as

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 309 — #325 i
i

i
i

i
i

4.10. GRAPH ALGEBRA 309

Figure 4.37: Graphs and desired stacking of cubes

well.

Consider two simple graphs G1 = (X1, E1) and G2 = (X2, E2)
with disjoint vertex sets and edge sets.

Then the union of G1 and G2 denoted as usual by G1 ∪ G2 is
defined naturally as follows: The vertex set of G1∪G2 is the union
X1 ∪X2 and the edge set is the union E1 ∪ E2.

The join of G1 and G2 is denoted by G1+G2 and is composed
of the union G1 ∪G2 and all possible edges joining the vertex sets
X1 and X2.

The Cartesian product of G1 and G2 denoted as expected by
G1 ×G2 is defined intuitively as follows:

G1×G2 is obtained by substituting for each vertex of G1 a copy
of the graph G2 (this operation of substitution is sometimes called
a blowing-up operation or expansion or splitting as opposed to the
operation of contraction) and replacing each edge of G1 by the
edges between corresponding vertices of the appropriate copies.

In a formal manner, the vertex set of the Cartesian product
G1×G2 is the set of all possible ordered pairs (x1, x2) with x1 in X1

and x2 in X. The edge set of G1 × G2 is obtained by joining the
vertices (x1, x2) and (x1, x

′
2) whenever x2x

′
2 is an edge of the graph

G2 together with the edges drawn by joining the vertices (x1, x2)
and (x′1, x2) whenever x1x

′
1 is an edge of the graph G1. Note that

a minimal condition to have an edge in the product is that either
the first components of the vertex must be equal or else the second
components are equal.

We illustrate these operations by the following examples:

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 310 — #326 i
i

i
i

i
i

310 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

Example 4.10.1 (Graph union and join):
The graph of Figure 4.38 illustrates the operation of union and
join of two graphs.

Figure 4.38: Graph union and join

Example 4.10.2 (Graph product):
The graph of Figure 4.39 illustrates the operation of the product
of two graphs.

For other graph products like composition of graphs, the reader
can see the books [1],[5].

Operation of contraction of an edge: Consider a simple graphG
and an edge e = xy in G. The simple graph obtained by identifying
the ends x and y of the edge e and is denoted by G.e or G[x = y].
In a formal manner, the graph G.[x = y] is obtained from the
graph G by the following the two sequences of operations:

1. The removal of the vertices x and y.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 311 — #327 i
i

i
i

i
i

4.10. GRAPH ALGEBRA 311

Figure 4.39: Graph product G1 ×G2

2. The addition of a new vertex denoted by z which is [x = y]
and joining the new vertex z to the vertices v ≠ x, y of G already
joined either to x or to y or to both in the base graph G. (Replace
parallel edges form z by a single edge.)

We can view the contraction G.e where e = xy as the graph
obtained (up to isomorphism) by joining the vertex x in the vertex
deleted subgraph graph G − y to all the neighbors of the vertex
y in the base graph G not already joined to x. By symmetry, G.e
is also the graph obtained by joining the vertex y in the vertex
deleted graph G − x to all the neighbors of the vertex x in the
original graph G not already joined to y.

The following example clarifies the notion of contraction:

Example 4.10.3 (A graph and its contraction):
Let us refer to the graph of Figure 4.40 which illustrates the con-

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 312 — #328 i
i

i
i

i
i

312 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

traction of edge 14 of the graph G.

Figure 4.40: A graph and its contraction

A simple way of describing a sequence of edge contractions:
There is a simple way to describe a sequence of edge contrac-

tions in a graph: Suppose we start with a simple graph G. Let
G1 be the graph obtained by contracting an edge e1 of G and let
G2 be the graph obtained by contracting an edge e2 in G1, and so
on until we arrive finally at a graph H. Then such a graph H can
be described in a simple manner as follows: Consider a partition
X1 ∪X2 ∪ · · ·Xk of the vertex set X of G such that each induced
subgraph < Xi > is connected for all 1 ≤ i ≤ k. Define the graph
H as follows: The vertex set of H is {X1, X2, . . . , Xk } and we join
the vertices Xi and Xj in H if there is an edge joining a vertex of
Xi with a vertex of Xj in the base graph G.

The following example illustrates the sequence of edge contrac-

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 313 — #329 i
i

i
i

i
i

4.10. GRAPH ALGEBRA 313

tions:

Example 4.10.4 (A graph and its sequence of edge contraction):
The complete graphK5 is obtained from the graphG by a sequence
of edge contractions. The partition of the vertex set of G is as
follows: X1 = { 1, 2, 3, 4, 5 }, X2 = { 10 }, X3 = { 6, 7 }, X4 = { 9 },
X5 = { 8 } (see Figure 4.41).

Figure 4.41: A graph and its sequence of edge contractions

Minor of a graph

Definition 4.10.1:
A minor of a simple graph G is any graph obtainable from G by a
sequence of vertex deletions, edge deletions and edge contractions
(in any order).

Example 4.10.5 (Minor of a graph):
As an example, consider again the Petersen graph. The complete
graph on 5 vertices K5 is a minor of the Petersen graph, because
K5 is obtained by contracting the five edges joining the pentagon
(the elementary cycle (1, 2, 3, 4, 5, 1) and the pentagram (the el-
ementary cycle (6, 8, 10, 7, 9, 6) (see the Petersen graph drawn in
the text). Hence by the following theorem, the Petersen graph is
nonplanar.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 314 — #330 i
i

i
i

i
i

314 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

We now state the following theorem due to Wagner character-
izing planar graphs (see the book by Parthasarathy [3]).

Theorem 4.10.1:
A graph G is planar if and only if G contains neither the complete
graph K5 nor the complete bipartite graph K3,3 as a minor.

The nonexistence of a particular graph as a minor of a given
graph influences profoundly the structure of the given graph. The
graph minor theory has been developed by Robertson and Sey-
mour (see [7] for an interesting history).

As an example we state the following theorem:

Theorem 4.10.2 (Graph minor theorem, Robertson and Sey-
mour):
For any infinite set S of simple graphs, there exist two distinct
graphs in the set S, such that one of these graphs is a minor of
the other.

4.11 Exercises

1. If G is any digraph, then prove the following three double
inequalities:

δ−(G) ≤ m
n
≤ ∆−(G)

δ+(G) ≤ m
n
≤ ∆+(G)

δ(G) ≤ 2m
n
≤ ∆(G)

where δ−(G), δ+(G),∆−(G),∆+(G), δ(G),∆(G) are, respec-
tively, the minimum in-degree, the minimum out-degree, the
maximum in-degree, andthe maximum out-degree, the min-
imum degree, and the maximum degree of the graph G.

2. Show that in any digraph G without containing any directed
circuit, we always have the equalities δ−(G) = δ+(G) = 0.

3. Consider any multigraph G. By assigning a direction to each
edge of the graph, we obtain a digraph denoted by G⃗ which

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 315 — #331 i
i

i
i

i
i

4.11. EXERCISES 315

is referred to as an orientation of the graph G. The graph G
becomes the underlying undirected graph of the digraph G⃗.
Show that any multigraph G has an orientation G⃗ such that
|d+(x)− d−(x)| ≤ 1.

4. Consider a 1-graph G without any loops with the property
that max(δ−(G), δ+(G)) = p > 0. Prove that G contains a
directed cycle of length at least p+ 1.

5. Show that if G is a simple graph with the minimum degree
δ(G) ≥ 2, then G contains an elementary cycle.

6. Let G be a k-regular (k > 0) bipartite graph with bipartition
(X1, X2). Then show that |X1| = |X2|.

7. Prove or disprove:

(a) Every simple graph on p vertices is a subgraph of the
complete graph Kn(p ≤ n).

(b) Every simple graph on n vertices is a spanning subgraph
of the complete graph Kn.

8. Construct the digraph G = (X,U) where the vertex set X =
{ 1, 2, 3, 4 } and the arc set is defined by the binary relation
U on the set X as U = { (i, j) | i + j = 4 or i + j = 7 }.
Find the number of connected components of the graph so
constructed.

9. Construct the directed graph G = (X,U) with the vertex
set X = { 1, 2, 3, 4 } and the arc set U = { (i, j) | i < j }.
Does the graph contain a directed circuit? Is it a complete
graph? Is G a transitive graph? (A digraph G is transitive
if (x, y) and (y, z) ∈ U imply that (x, z) also ∈ U.)

10. Prove or disprove:

There exists a directed graph on four vertices 1, 2, 3, 4 with
the degrees verifying the properties d+(1) = 1, d+(2) = 2,
d+(3) = 1, d+(4) = 1 and d−(1) = 2, d−(2) = 1, d−(3) =
1, d−(4) = 2. If the answer is “yes,” then construct one such
graph.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 316 — #332 i
i

i
i

i
i

316 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

11. Prove or disprove:

There exists a directed graph on four vertices 1, 2, 3, 4 with
the degrees satisfying the properties d+(1) = 1, d+(2) =
2, , d+(3) = 1, d+(4) = 1 and d−(1) = 2, d−(2) = 1, d−(3) =
1, d−(4) = 1. If the answer is “yes,” then construct such a
graph.

12. A sequence of n (n ≥ 1) non-negative integers (d1, d2, . . . , dn)
is said to be multigraphic if there is a multigraph on n ver-
tices 1, 2, . . . , n with d(i) = di for all i with 1 ≤ i ≤ n.

Prove that a sequence of non-negative integers (d1, d2, . . . , dn)
is multigraphic if and only if

∑n
i=1 di is an even integer.

Give an algorithm to construct a multigraph on n vertices
1, 2, . . . , n with d(i) = di for all i with 1 ≤ i ≤ n whenever
the sequence (d1, d2, . . . , dn) is multigraphic.

13. Draw all the eleven non-isomorphic simple graphs on four
vertices.

14. How many non-identical simple graphs on four vertices exist?

15. Construct two non-isomorphic simple cubic graphs on six
vertices.

16. Let us refer to two different drawings of the Petersen graph
in the text. Find an isomorphism between these different
drawings of the Petersen graph.

17. Draw the line graphs of star K1,3 and the complete graph
K3.

18. What is the line graph of an elementary cycle Cn on n ver-
tices?

19. Draw the total graph of the elementary cycle C4. Describe
the total graph of the elementary cycle Cn.

20. True or false:

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 317 — #333 i
i

i
i

i
i

4.11. EXERCISES 317

(a) The total graph T (G) of G contains the graph G as an
induced subgraph.

(b) The total graph T (G) of G contains the line graph L(G)
as an induced subgraph.

21. Let G be a simple graph with n vertices 1, 2, . . . , n and m
edges and let the degree of the vertex i be di for 1 ≤ i ≤ n.
Express the number of vertices and edges of the total graph
T (G) of G in terms of n,m, di.

22. Find the chromatic index of the complete graphs K4 and
K5. Guess a formula for the chromatic index of the complete
graph Kn with n odd and even.

23. An elementary cycle of length n in a simple graph G on
n vertices is called a Hamilton cycle. A Hamiltonian cy-
cle doesn’t always exist. A graph containing a Hamiltonian
cycle is called a Hamiltonian graph.

Show that the Petersen graph is not a Hamiltonian graph
but becomes a Hamiltonian graph if we delete any vertex.
Such a graph is called a hypo-Hamiltonian graph.

24. Construct a cubic simple graph on 2p (p ≥ 3) vertices with-
out containing the elementary cycle C3.

25. Construct two geodetic graphs of diameter 2 other than the
Petersen graph.

26. The kth power Gk(k ≥ 1) of a simple graph G = (X,E)
is defined in terms of the distance between two vertices as
follows:

Gk has the same vertex set X as the original graph G and
two distinct vertices x and y are joined in the kth power Gk

if and only if the distance between them in the graph G is
less than or equal to the integer k.

(a) Describe the square of the Petersen graph.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 318 — #334 i
i

i
i

i
i

318 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

(b) Describe the dth power Gd of a simple graph with di-
ameter d.

(c) If the distance between two vertices x and y, d(x, y) = p
in the simple graph G, find d(x, y) in the kth power Gk.

27. Consider a multigraph G = (X,E) and consider an edge
xy of G. The edge xy is said to be subdivided when it is
replaced by an elementary path (x, x1, x2, . . . , xs, y) where
x1, x2, . . . , xs are s newly introduced vertices not in the ver-
tex set X. A graph H is a subdivision graph of G whenever
H can be obtained from G by a sequence of subdivisions of
a subset of the edges (in any order) of G.

H is obtained by subdividing some of the edges of the graph
G = K3,3. The newly introduced vertices during the opera-
tion of subdivision are not labeled in the diagram (see Figure
4.42).

(In fact, a famous theorem of Kuratowski characterizes non-
planar graphs: A multigraph G is nonplanar if and only if
there is a subgraph isomorphic to a subdivision of either the
complete bigraph K3,3 or the complete graph K5. See page
152 of the book by Parthasarathy [3] or Balakrishnan and
Ranganathan [5].)

Figure 4.42: K3,3 and its subdivision

28. Find a subgraph of the Petersen graph which is isomorphic
to a subdivision of the complete bigraph K3,3.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 319 — #335 i
i

i
i

i
i

4.11. EXERCISES 319

(a) Does there exist a self-complementary graph on n ver-
tices where n ≤ 3?

(b) Construct a self-complementary graph on 4 and 5 ver-
tices.

(c) Prove that the number of vertices n of a self-
complementary graph has the form 4p or 4p + 1 for
some integer p.

(d) Prove that S is a stable set of G if and only if S is a
clique of the complement Gc.

(e) Show that G and its complement Gc both cannot be
disconnected simultaneously.

(f) Show that a self-complementary graph on n > 1 ver-
tices has diameter either 2 or 3.

(g) Show that the sequence (d1, d2, . . . , dn) is a graphic se-
quence if and only if the sequence (n− d1− 1, n− d2−
1, . . . , n− dn − 1) is a graphic sequence.

(h) Show that Ramsey numbers are symmetric, that is,
r(p, q) = r(q, p) for positive integers p and q.

(i) What is the value of the Ramsey numbers r(2, q)?

(j) Prove or disprove the following equations involving two
simple graphs G1 and G2.

i. (G1 +G2)
c = Gc

1 +Gc
2

ii. (G1 ×G2)
c = Gc

1 ×Gc
2.

(k) Show that the edge graph of the complete graph K5 is
isomorphic to the complement of the Petersen graph.

29. Let us refer to the definition of the Turán graph Tn,k in the
text.

a) Show that the number of edges in the Turán graph Tn,k
is exactly equal to(

n− q
2

)
+ (k − 1)

(
q + 1

2

)
where q = ⌊n

k
⌋,

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 320 — #336 i
i

i
i

i
i

320 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

the quotient of n divided by k.

b) If G = Kn1,n2....,nk
is any complete k−partite graph on n

vertices then show that m(G) ≤ m(Tn,k) and that equality
holds if and only if G ∼= Tn,k.

30. If G is a simple graph on n vertices with its minimum degree
δ(G) ≥ (n− 1)/2 then prove that the graph G is connected.

31. Show that the Instant Insanity Puzzle has no solution if the
four unfolded cubes are colored as shown in Figure 4.43.

Figure 4.43: Four unfolded cubes

32. Find a solution to the four cubes problem if the four unfolded
cubes are colored as shown in Figure 4.44.

Figure 4.44: Four unfolded cubes

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 321 — #337 i
i

i
i

i
i

4.11. EXERCISES 321

33. If G1 and G2 are two simple graphs with the number of
vertices and edges n1,m1 and n2,m2 respectively, then find
the number of vertices and edges of the Cartesian product
G1 ×G2.

34. Draw the Cartesian product K2 × C5 where K2 is the com-
plete simple graph on 2 vertices and C5 is the elementary
cycle of 5 vertices.

35. Can you write the Petersen graph as the product K2×G for
some suitably chosen graph G. Justify your answer.

36. The graph k-cube (k ≥ 1) denoted by Qk and is defined in a
recursive manner as follows:

Q1 = K2 (basis of the recursion) and Qk = K2 × Qk−1 for
k ≥ 2 (recursion).

(a) Draw the graphs Q2 and Q3.

(b) Find the number of vertices and edges of the k-cube Qk

in terms of k.

(c) Prove that Qk is a bipartite graph.

(d) Find a bipartite graph which is not a subgraph of any
Qk. (Equivalently, the k-cube Qk is defined as follows:
The vertex set of the k-cube is the set of all possible
binary k-tuples b1b2 · · · bk with each bi ∈ { 0, 1 } and
two vertices of Qk are adjacent if their corresponding
binary k-tuples differ at exactly one co-ordinate.)

37. Prove or disprove: If G1 and G2 are two regular simple
graphs, then G1 + G2 is also regular G1 × G2 is still reg-
ular.

38. Prove or disprove: If G1 and G2 are two simple bigraphs,
then G1 +G2 is also a bigraph G1 ×G2 is still a bigraph.

39. Prove that in a connected simple graph, any two longest
elementary paths have a vertex in common.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 322 — #338 i
i

i
i

i
i

322 CHAPTER 4. INTRODUCTION TO GRAPH THEORY

40. Construct a k-regular simple graph on k2 + 1 vertices and
diameter 2 for k = 2, 3. (Such a graph exists only for k =
2, 3, 7 and possibly 57.) For k = 2, it is the elementary cycle
of length 5. For k = 3, it is the Petersen graph. For k = 7,
Hoffman and Singleton constructed such a graph (see [4]).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 323 — #339 i
i

i
i

i
i

Bibliography

[1] C. Berge, The Theory of Graphs and Its Applications, Wiley,
New York, 1958; Graphs and Hypergraphs, North Holland,
1973.

[2] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass,
1969.

[3] K. R. Parthasarathy, Basic Graph Theory, Tata-McGraw Hill
Publishing Company Limited, New Delhi (1994).

[4] J. A. Bondy and U. S. R. Murty, Graph Theory with Appli-
cations, MacMillion, 1976.

[5] R. Balakrishnan and K. Ranganathan, A Textbook of Graph
Theory, 2nd edition,Springer, New York (2012).

[6] D. B. West, Introduction to Graph Theory, 2nd edition, Pren-
tice Hall, New Jersey (2001).

[7] G. Chartrand and P. Zhang, Introduction to Graph Theory,
Tata McGraw-Hill Publishing Company Limited, New Delhi
(2006).

[8] D. E. Knuth, Art of Computer Programming, Fundamental
Algorithms, Vol 1, Addison-Wesley, Reading, Mass (1968).

[9] A. V. Aho, J. E. Hopcroft and J. D. Ullman, Design and
Analysis of Computer Algorithms, Addison-Wesley, 1974.

323

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 324 — #340 i
i

i
i

i
i

http://taylorandfrancis.com

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 325 — #341 i
i

i
i

i
i

Chapter 5

Introduction to Algorithms
and Data Structures

Algorithms + Data Structures = Programs.
N. Wirth

Mathematical models have been a crucial inspiration
for all scientific activity even though they are only ap-
proximate idealizations of the real-world phenomena.
Inside computers such models are more relevant than
ever before, because computer programs create artifi-
cial worlds in which mathematical models often apply
precisely.

Donald Knuth

This chapter begins with the concept of an algorithm. Then the
complexity of algorithms is studied. After a brief introduction to
computer architecture, an introduction to programming languages
is given. Since data structures go in parallel with algorithms, fun-
damental data structures like lists, stacks and queues are studied.
In the last section, examples of algorithms with different complex-
ity functions encountered in practice are illustrated.

325

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 326 — #342 i
i

i
i

i
i

326 CHAPTER 5. INTRODUCTION TO ALGORITHMS

5.1 Algorithms

The word algorithm is at the very heart of computer science. The
word algorithm signifies approximately the same meaning as the
following words: method, procedure, function, technique, strategy,
process, recipe, etc. (See [1] and [8].)

An algorithm can be described as a systematic and progressive
method to solve a problem; that is, it is a step-by-step procedure
to solve a problem.

Mathematically, it can be viewed as a function acting on a
specified set of arguments/inputs to produce a specified set of re-
sults/outputs. It transforms the “raw” data into the “refined”
data (just like a kitchen recipe transforms flour, sugar, milk, etc.,
into a cake).

The modern description of algorithm is a method of solving a
problem adapted to the computer implementation.

Figure 5.1: Algorithm as a black box

The concept of an algorithm is illustrated by Example 5.1.1,
one of the oldest known algorithms due to Euclid (see also Chapter
3). Knuth calls Euclid’s algorithm the granddad of all algorithms.

Example 5.1.1 (Euclid’s greatest common divisor algorithm):
Greatest Common Divisor of Two Integers (gcd):

Arguments or Inputs: Two positive integers m and n.
Result or output: The gcd(m,n).
Algorithm: If the two input integers m and n are equal, then

the result is either m or n (basis).
Otherwise, that is, if m ̸= n, then replace the greater inte-

ger by the difference, that is, substitute for the greater integer

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 327 — #343 i
i

i
i

i
i

5.1. ALGORITHMS 327

Table 5.1: Execution of Euclid’s gcd algorithm

m n is m = n ?

25 35 no
25 35− 25 = 10 no

25− 10 = 15 10 no
15− 10 = 5 10 no

5 10− 5 = 5 yes

(the greater integer) − (the smaller integer), until we get equality
(iteration).

When the equality is obtained, then one of the two equal inte-
gers is the desired result.

An algorithm must be seen to be believed! So, let us perform
the algorithm of Example 5.1.1 on a sample input. This is called
the hand simulation of algorithm. The following table illustrates a
step-by-step execution of Euclid’s algorithm for two integers m =
25 and n = 35.

I hear, I forget;
I see, I remember;
I do, I understand.

In Automathography, Paul Halmos

In the last line of the above table, the value of m is equal to 5
which is equal to the value of n. Hence the gcd(25, 35) = 5.

An algorithm must possess the following five properties:

1. Finiteness or Termination: An algorithm must terminate af-
ter a finite number of operations. This need not be with a
procedure or method.

2. Preciseness: Each instruction of an algorithm must be writ-
ten in an unambiguous manner.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 328 — #344 i
i

i
i

i
i

328 CHAPTER 5. INTRODUCTION TO ALGORITHMS

3. Input: An algorithm has zero or more inputs.

4. Output: An algorithm must produce at least one result/out-
put.

5. Realizability or Hand Simulation: Hand simulation of the al-
gorithm must be possible; that is, a human should be able to
play the role of a computer. Stated differently, each instruc-
tion of an algorithm must be sufficiently elementary that
a human being should be able to perform the algorithm in
finite time and in an exact manner using paper and pencil.

The following is an example of a method which is a geometric
construction that does not terminate:

Example 5.1.2 (gcd of two numbers: A Procedure which does
not terminate):
The greatest common number of two incommensurable positive
real numbers (that is, the ratio of the two numbers is not a rational
number).

Input: Two line segments such that their ratio is not a rational
number; that is, the given lengths are incommensurable.

Result: The greatest common measure of the two line seg-
ments.

Method: Essentially the procedure is the same as the algo-
rithm of Example 5.1.1, interpreting “subtraction” as taking away
a smaller line segment from the left end of the larger one, which
is nothing but subtraction.

To see a solution to some “problems” with the help of exist-
ing algorithms, we may have to wait beyond our lifetime! Such
algorithms are generally obtained by exhaustive method , by trying
all possible possibilities. They are called brute-force algorithms .
This is like playing all possible combinations/buying all tickets to
win a national lottery! The following example clarifies the idea of
the brute-force method.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 329 — #345 i
i

i
i

i
i

5.1. ALGORITHMS 329

Example 5.1.3 (Chess board problem):
Given a certain position of white and black pieces on a conven-
tional 8 × 8 chess board, there is an algorithm to predict if the
white or black will win the game! So, this algorithm is better
than any human Grand Master. This algorithm examines all con-
sequences of all the moves possible according to the rules of chess.
This brute-force method takes a very long time, and we may not
know the result in our lifetime!

We have described an algorithm as a systematic and progres-
sive method to solve a “problem.” Let us now describe the idea
of a problem.

Problem

A problem is a question to be answered by “yes” or “no” (exam-
ple: whether a given integer n ≥ 2 is a prime number or not), or a
structure to be found in response to several input parameters (ex-
ample: in Example 5.1.1 the parameters are two positive integers
m and n). These input parameters are usually described by fixing
the set of values they can assume but their explicit values are not
specified. The result of a problem is sometimes characterized by
some properties.

Decision problem

A decision problem is one for which the answer is either “yes” or
“no.”

Undecidable Problems

A decision problem is an undecidable problem if there is no algo-
rithm at all to solve the problem.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 330 — #346 i
i

i
i

i
i

330 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Example 5.1.4:
A halting problem is undecidable:

Input: An arbitrary computer program and an arbitrary input
to that program.

Output: “Yes” if the program halts, that is, it does not contain
an infinite loop. “No” if the program does not halt, that is, the
program contains an infinite loop.

No algorithm can be given to solve this problem.

Another example is Hilbert’s tenth problem. This problem con-
cerns the solvability of polynomial equations in integers.

Theorem (Yuri Matijasevich): There is no algorithm to de-
cide whether a given polynomial in several variables with integral
coefficients has a solution in integers.

5.2 Complexity of Algorithms

Very often, we have two or more algorithms to solve the same
problem. Among these algorithms to solve the same problem, how
do we choose the best one? How do we judge the quality of an
algorithm? An algorithm uses two main resources of a computer:

1. Time complexity: Time taken to execute the algorithm.

2. Space complexity: Memory space needed to perform the
algorithm.

Time complexity

Intuitively, the time complexity of an algorithm or simply the com-
plexity of an algorithm is the number of elementary or basic state-
ments/instructions executed by the algorithm. Time complexity
is expressed as a function of the size of the problem. Intuitively,
the size of a problem is the number of times we have to type the
keys in order to enter the input. For example, if we want to ar-
range or sort n given integers in non-decreasing order, the size of
the problem is taken as n. The size of a graph problem may be n,
the number of vertices or m, the number of edges or max(m,n).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 331 — #347 i
i

i
i

i
i

5.2. COMPLEXITY OF ALGORITHMS 331

In a formal manner, the size of a problem is the number of bits
(binary digits) needed to encode the problem.

If an algorithm A processes an input of size n in c.n2 units of
time (one unit of time may be imagined as 10−6 second or one
micro second), then we say that the complexity of the algorithm
is of order n2, and we write TA(n) = n2, that is, the time taken
to find the solution of the problem of size n using algorithm A is
of order n2. Here c is a positive constant whose value depends on
the machine, compiler, and data structures chosen to implement
the algorithm.

Worst-Case complexity

This complexity is for “pessimists!” For a given size n of a prob-
lem, we may have several inputs meeting the size n. For many
algorithms, the complexity does not depend on the size n but on
a particular input of size n.

The worst case complexity is themaximum time needed, among
all possible inputs of size n, to solve the problem. Stated differ-
ently, the worst case tells us the slowest an algorithm can run on
an input of size n. In symbol, if TA(n) is the maximum time taken
to solve a problem π of size n using algorithm A, then

TA(n) = max{T (In)|In ∈ πn }

where πn is the set of all inputs of size n and T (In) is the time
taken (number of basic statements executed) by the algorithm A
on the input In.

We will be mostly interested in the worst-case time complexity
since it has wide applicability. For example, if we are given one
hour of computer time, the worst-case complexity of an algorithm
determines how big a problem we can solve in an hour using a
given algorithm.

To express the complexity, we need the following useful nota-
tion (see also Chapter 1).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 332 — #348 i
i

i
i

i
i

332 CHAPTER 5. INTRODUCTION TO ALGORITHMS

“Big oh” notation

Intuitively, the equation T (n) = O(f(n)) (read: T of n is big oh
of f of n) if the value function T (n) is at most a constant times
the value of the function f(n), if n is sufficiently large; that is, the
function T (n) is dominated by the function cg(n) (c is a positive

constant) if n is sufficiently large. In other words, the quotient T (n)
f(n)

is bounded above by a constant if n is sufficiently large (assuming
f(n) ̸= 0).

Before studying examples illustrating big oh notations, let us
see a remark on how to manipulate inequalities:

Remark 5.2.1 (How to manipulate inequalities: transitivity, ad-
dition and positive scaling):
Given any two real numbers x, y, we have exactly one of the fol-
lowing relations:

1. x = y

2. x < y

3. x > y

Transitivity: If x < y and y < z then x < z. (x, y, z are reals.)
Addition: We may add two inequalities provided they “point in

the same direction,” that is, if x < y and if z < t then x+z < y+t.
Positive scaling: If x < y then cx < cy if c > 0 and cx > cy if

c < 0. In short, multiplication by a negative number reverses the
direction of the inequality and by a positive number preserves the
inequality.

Reciprocal law: Let x > 0 and y > 0 be such that x > y. Then
1/x < 1/y.

Let x > y > 0 and s > t > 0. Then xs > yt.
|xy| = |x||y| and |x/y| = |x|/|y| (y ̸= 0.)
Triangle inequality: |x+ y| ≤ |x|+ |y|. More generally,

|x1 + x2 + · · ·+ xn| ≤ |x1|+ |x2|+ · · ·+ |xn|.

The following examples clarify the big oh notation:

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 333 — #349 i
i

i
i

i
i

5.2. COMPLEXITY OF ALGORITHMS 333

Example 5.2.1 (Big oh):
We can write

1 + 2 + . . .+ n = O(n2).

because we know that

1 + 2 + . . .+ n = n(n+ 1)/2.

So, it is enough if we prove that the value of n(n+1)/2 is at most
a constant times the value of n2, if n is sufficiently large.

Now n(n+1)/2 = (n2 + n)/2 = n2/2+ n/2 ≤ n2 + n2 = 2ṅ2 if
n ≥ 1. Here the constant in question is 2 and we are not interested
in finding the least constant satisfying the inequality. The lower
bound for n for which the inequality holds is 1.

Example 5.2.2 (Big oh):
Prove that

12 + 22 + . . .+ n2 = O(n3).

Proof: We know that

12 + 22 + . . .+ n2 = n(n+ 1)(2n+ 1)/6.

We have to show that n(n+1)(2n+2) is at most a constant times
n3 if n is sufficiently large.

Now n(n+1)(2n+1)/6 = (2n3+3n2+n)/6 = 2n3/6+3n2/6+
n/6 ≤ n3 + n3 + n3 = 3n3 for all n ≥ 1. Here the multiplicative
constant is 3 and lower bound for n for which the inequality is
valid is 1.

We now state the formal general definition of the “Big Oh”
Notation. The advantage of this notation is that it enables us to
replace certain inequalities by equations.

Definition 5.2.1:
Consider two real-valued functions f and g defined on the set
of positive integers. We write f(n) = O(g(n) if there exist two
constants c > 0 and a positive integer n0 such that the inequality
|f(n)| ≤ c|g(n)| holds for n ≥ n0.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 334 — #350 i
i

i
i

i
i

334 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Since n2 = O(n2) (because n2 ≤ n2), n log n = O(n2) (because
log n ≤ n), n = O(n2), we may regard O(n2) as the set of all func-
tions dominated by a constant times n2. More generally, O(f(n))
is the set of all functions dominated by a constant times f(n).

Average complexity or expected complexity

This complexity is for “probabilists!” The average complexity of
an algorithm is the average time taken, over all inputs of size n.
The average time complexity is more difficult to calculate than
the worst-case complexity. To find the average complexity of an
algorithm, we have to make some assumptions on the distribu-
tion of inputs and the realistic assumptions are difficult to tract
mathematically.

If πn is the set of all possible inputs of size n, and if each input
is equally likely to occur, then the expected complexity is defined
as

Tav(n) =
1

|πn|
∑
In∈πn

T (In)

where T (In) is the time (or the number of elementary operations)
taken to execute the algorithm on the input In.

If the assumption of equally likely occurrence on the inputs is
dropped, then

Tav(n) =
∑
In∈πn

Pr(In)× T (In)

where Pr(In) is the probability that the input In occurs. As before,
πn is the set of all possible inputs of size n.

Best case complexity

This complexity is for “optimists!” The best case complexity of an
algorithm is the fastest the algorithm can run on an input of size
n, that is, it is the minimum time needed among all inputs of size
n to solve the problem.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 335 — #351 i
i

i
i

i
i

5.2. COMPLEXITY OF ALGORITHMS 335

In symbol, if TA(n) is the minimum time taken to solve a prob-
lem π of size n using algorithm A, then

TA(n) = min{T (In)|In ∈ πn }

where πn is the set of all inputs of size n and T (In) is the time
taken by the algorithm A to execute input In.

To express the best-case complexity of an algorithm, the fol-
lowing notation will be useful:

Big omega notation

Consider two real-valued functions f and g defined on the set of
natural numbers. The notation f(n) = Ω(g(n)) (read: f of n is
big omega of g of n) means that the function |f(n)| dominates the
function c|g(n)| where c > 0 is a constant, that is, |f(n)| is at least
a constant times |g(n)| if n is sufficiently large.

Symbolically, there exist two constants c > 0 and a natu-
ral number n0 such that the inequality |f(n)| ≥ c|g(n)| holds if

n ≥ n0. In other words, the quotient, |f(n)|
|g(n)| is bounded below by a

constant if n is sufficiently large and g(n) ̸= 0.

Example 5.2.3 (Big omega):
We can write

1 + 2 + . . .+ n = Ω(n2).

because we know that

1 + 2 + . . .+ n = n(n+ 1)/2.

So, it is enough if we prove that the value of n(n+1)/2 is at least
a constant times the value of n2 if n is sufficiently large. Now
n(n+ 1)/2 = (n2 + n)/2 = n2/2 + n/2 ≥ n2/2 = (1/2)n2 if n ≥ 1.
Here the constant c in question is 1/2 and we are not interested
in finding the maximum constant satisfying the inequality. The
lower bound for n for which the inequality holds is 1.

The following simple proposition gives the relation between the
“big oh” and “big omega” notations:

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 336 — #352 i
i

i
i

i
i

336 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Proposition 5.2.1:
f(n) = O(g(n)) if and only if g(n) = Ω(f(n)).

Proof. By definition, f(n) = O(g(n) if and only if there exist two
constants c > 0 and a positive integer n0 such that the inequality
|f(n)| ≤ c|g(n)| for all n ≥ n0, that is, if and only if |g(n)| ≥

(1/c)|f(n)| for all n ≥ n0, that is, if and only if g(n) = Ω(f(n)).

Big theta notation

Big theta notation is used to express the exact time complexity
function. We write f(n) = Θ(g(n)) (read: f of n is big theta of g
of n) means the function f(n) at the same time dominates and is
dominated by a constant multiple of g(n), that is, f(n) = O(g(n))
and f(n) = Ω(g(n)).

In other words, there exist two constants c1 > 0, c2 > 0 and a
natural number n0 such that the inequality

c1g(n) ≤ f(n) ≤ c2g(n) holds for all n ≥ n0.

Example 5.2.4 (Big theta):
By Examples 5.2.2 and 5.2.3, it is clear that

1 + 2 + . . .+ n = Θ(n2).

An improved version of Euclid’s algorithm

Consider the algorithm of Example 5.1.1. In this algorithm, if
m = 1000 and n = 1, then the algorithm will take 999 steps/it-
erations to output the result 1; (gcd(1000, 1) = gcd(999, 1) =
gcd(998, 1) = · · · = gcd(1, 1) = 1). Since division is nothing but
repetitive subtraction, we obtain the following improvement of al-
gorithm of Example 5.1.1.

Example 5.2.5:
Input: Two positive integers m and n.

Output: The gcd(m,n).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 337 — #353 i
i

i
i

i
i

5.2. COMPLEXITY OF ALGORITHMS 337

Table 5.2: Execution of an improved version of Euclid’s algorithm

m n m mod n Is m mod n = 0?

132 276 132 no
276 132 12 no
132 12 0 yes

Algorithm: Replace the greater (not necessarily strict inequal-
ity; if m = n, the algorithm substitutes for m, the remainder
m mod n which is 0) of the two integers by the remainder of the
division of two integers till the remainder of the division of the
two integers becomes 0. Symbolically,

gcd(m,n) =

{
n if m mod n = 0 (basis).

gcd(n,m mod n) Otherwise (iteration).

Let us execute the improved version of Euclid’s algorithm on
a sample set of data with m = 276 and n = 132. Table 5.2 traces
each step of the execution.

The algorithm terminates when m mod n = 0. The greatest
common divisor is the final value of n, which is 12.

The reader may easily verify that for the sample data withm =
1000 and n = 1 the improved algorithm 5.2.5 takes only one step
whereas Algorithm 5.1.1 will go through 999 steps/subtractions!

Extended version of Euclid’s algorithm

The following theorem is the basis for the extended version of
Euclid’s algorithm

Theorem 5.2.1 (Bezhout):
If m and n are positive integers, then we can find integers a and b
such that

am+ bn = gcd(m,n).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 338 — #354 i
i

i
i

i
i

338 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Moreover, m ⊥ n (m relatively prime to n orm and n are coprime)
if and only if there are integers a, b such that am+ bn = 1.

Example 5.2.6 (Extended version of Euclid’s algorithm):
Let m = 18 and n = 12. Then gcd(m,n) = 6. We may take a = 1
and b = −1, so

am+ bn = gcd(m,n).

Let m = 1769, n = 551. Then by applying Euclid’s gcd algorithm,
we find gcd(1769, 551) = 29. We may take a = 5 and b = −16
because

(5× 1769)− (16× 551) = 29.

In fact, the following min-max equality holds:

min(am+ bn > 0|a, b are integers) = max
d divides m,d divides n

d.

Given two positive integers m and n, the following algorithm finds
two integers a and b such that

am+ bn = gcd(m,n).

Extended version of Euclid’s algorithm

Input: Two positive integers m and n.
Output:Two integers a,b and their gcd d satisfying the equality:

am+ bn = d.

Algorithm:
Let us write a fragment of the program in C (see Table 5.3):
Invariant of the above loop :
The algorithm works thanks to the two equations am+ bn = d

and ap∗m+ bp∗n = c and the assignments inside the loop do not
modify these two equations. These two equations constitute the
“loop invariant” (we will study this concept later in this chapter).
This loop invariant concept is used to prove the correctness of the
algorithm.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 339 — #355 i
i

i
i

i
i

5.2. COMPLEXITY OF ALGORITHMS 339

Table 5.3: Implementation of extended version of Euclid’s algo-
rithm in C

int a,ap,b,bp.c,d,r,q,t;
//Initialization of a,ap,b,bp, c,d. ap for a prime. bp for b
prime. We work with c,d
a=0;ap=1;b=1;bp=0;c=m;d=n;
// we have: am+ bn = d and ap ∗m+ bp ∗ n = c.
r=c%d;q=(c-r)/d;//r, the remainder. q, the quotient.
c = qd+ r, 0 ≤ r < d.
//Observe that if r = 0, the program ends; we have in this
case: am+ bn = d as desired
while (r > 0) {

c=d;d=r;
t=ap;ap=a;a=t-qa;
t=bp;bp=b;b=t-qb;//Still we have:am+ bn = d and

ap ∗m+ bp ∗ n = c.
};//end while.
//We quit the loop with r=0 and we have am+ bn = d.

Let us execute the above program with m = 55 and n = 25
(see Table 5.4).

In Table 5.4, from the last row d = 5, a = 1, b = −2 and we
have the equality (1× 55)− (2× 25) = 5.

Application of the extended version of Euclid’s algorithm to
partial fractions:

To simplify the sum and difference of rational numbers like
1
5
− 1

2
+ 1

3
, we first find the lcm (least common multiple) of the

denominators 5, 2, 3, which is 30, and then simplify the expression

Table 5.4: Execution of extended version of Euclid’s algorithm

ap a bp b c d q r
1 0 0 1 55 25 2 5
0 1 1 -2 25 5 5 0

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 340 — #356 i
i

i
i

i
i

340 CHAPTER 5. INTRODUCTION TO ALGORITHMS

into 1
30
.

We now consider the inverse problem of writing 1
30

into the
sum or difference of rational numbers in which the denominators
are either prime factors of 30 or squares of the prime factors.

The method is illustrated by Example 5.2.7.

Example 5.2.7:
[Application to partial fractions] Write 1

30
in partial fractions.

Solution: First decompose 30 as the product of prime numbers.
This is always possible by the fundamental theorem of arithmetic).
We have 30 = 2×3×5. Now the factors 2 and 3 are relatively prime,
that is, gcd(3, 2) = 1. By applying the extended version of Euclid’s
algorithm, we find two integers a and b such that 3a+2b = 1. For
example, we may take, a = 1 and b = −1.

That is, (1×3)−(1×2) = 1. By dividing both sides by 6 = 3×2
we get,

1

2
− 1

3
=

1

6
.

Now 6 ⊥ 5, that is, 6 = 3 × 2 is relatively prime to the factor
5. Again by applying the extended version of Euclid’s algorithm,
we can find two integers a and b (for example, a = 1 and b = −1)
such that 6a+ 5b = 1, that is, (1× 6)− (1× 5) = 1.

By dividing both sides of this equation by 30 (30 = 6× 5) we
have,

1
5
− 1

6
= 1

30
. Now we plug 1

6
= 1

2
− 1

3
into the preceding equation

to obtain
1

5
− 1

2
+

1

3
=

1

30
.

As another example, consider the rational number 1
12
. 12 = 2×2×

3. gcd(2, 2) = 2. By the extended version of Euclid’s algorithm,
we may take a = 2 and b = 1 and (2× 2)− (1× 2) = 2. Divide by
4 to get 1

2
− 1

4
= 1

4
.

Now 4 ⊥ 3. We may take a = 1 and b = −1. Divide 12 to get,
1
3
− 1

4
= 1

12
. Now plug 1

4
= 1

2
− 1

4
into the preceding equation,

and we get
1

3
− 1

2
+

1

4
=

1

12
.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 341 — #357 i
i

i
i

i
i

5.2. COMPLEXITY OF ALGORITHMS 341

Definition 5.2.2 (polynomial function):
A function p(z) is a polynomial function if it can be written in the
form

p(z) = akz
k + ak−1z

k−1 + · · ·+ a1z + a0

where a0, a1, . . . , ak are real or complex numbers, and k is an in-
teger ≥ 0. If ak ̸= 0, then k is called the degree of the polynomial.

Good algorithm or polynomial time algorithm

Consider a problem P and an algorithm A for solving P. The
algorithm A is said to be a good or polynomial time algorithm if
its time complexity is O(p(n)) where p(n) is a polynomial in n and
as usual n is the size of the problem P .

Exponential time algorithm

An algorithm whose time complexity is not bounded above by a
polynomial function of the input size n is called an exponential
time algorithm.

For example, Algorithm 5.1.1 is an exponential time algorithm,
whereas the improved version of Euclid’s algorithm 5.2.5 is a poly-
nomial time algorithm as we will see later (to represent the positive
integer n in binary notation, we need only about log2 n not n bits,
so we want an algorithm which is polynomial in log2 n and not in
n).

We shall now prove the following results involving big oh nota-
tion. These are useful when finding the complexity of algorithms:

Theorem 5.2.2:
If T (n) is a polynomial of degree m with real coefficients, then
T (n) = O(nm).

Proof. Let T (n) = a0 + a1n + a2n
2 + · · · + amn

m where ai’s are
real numbers.

We have to show that |T (n)| ≤ cnm for some positive constant
c and for n ≥ n0.

|T (n)| = |a0 + a1n+ · · ·+ amn
m|

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 342 — #358 i
i

i
i

i
i

342 CHAPTER 5. INTRODUCTION TO ALGORITHMS

(by triangle inequality) ≤ |a0|+ |a1n|+ · · ·+ |amnm|
(for n ≥ 1) ≤ |a0|+ |a1|n+ · · ·+ |am|nm

≤ nm(
|a0|
nm

+
|a1|
nm−1

+ · · ·+ |am|)

≤ nm(|a0|+ |a1|+ · · ·+ |am|) = c.nm.

In the last step, we have used the fact that |ai|
nm−i ≤ |ai| for n ≥ 1.

The constant c is |a0|+ |a1|+ · · ·+ |am|.

The rule of sum

Proposition 5.2.2:
Let T1(n) = O(f1(n) and T2(n) = O(f2(n)) then T1(n) + T2(n) =
O(max(|f1(n)|, |f2(n)|).

Proof. We have to prove that |T1(n) + T2(n)| ≤ cmax(|f1(n)|,
|f2(n)|) for c > 0 and for all n ≥ n0. T1(n) = O(f1(n)). Therefore
by definition, |T1(n)| ≤ c1|f1(n)| for c1 > 0 and for all n ≥ n1.

T2(n) = O(f2(n)). Therefore by definition, |T2(n)| ≤ c2|f2(n)|
for c2 > 0 and for all n ≥ n2.

If n0 = max(n1, n2), the above two inequalities are simultane-
ously satisfied for n ≥ n0.

Hence by triangle inequality,

|T1(n) + T2(n) ≤ |T1(n)|+ |T2(n)| ≤ c1|f1(n)|+ c2|f2(n)|

Set c = max(c1, c2). Since c1 ≤ c and c2 ≤ c, we have |T1(n) +
T2(n)| ≤ c(|f1(n)|+ |f2(n)|)

Now set f(n) = max(|f1(n)|, |f2(n)|) for n ≥ n0. Since f1(n) ≤
|f(n)| and f2(n) ≤ |f(n)| for n ≥ n0, we have |T1(n) + T2(n)| ≤
2cf(n).

We have proved the rule of sum for two functions T1 and T2.
There is nothing special about the number 2, that is, the rule of
sum can be extended to k functions for any k ≥ 2.

In essence the rule says the following:
The time complexity of the sequence of k instructions I1,

I2, · · · , Ik is O(max(T (I1), T (I2), · · · , T (Ik))) where T (Ij) is the

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 343 — #359 i
i

i
i

i
i

5.2. COMPLEXITY OF ALGORITHMS 343

time needed to perform the instruction Ij. Intuitively, we can ig-
nore lower-order terms and the multiplicative constants in a sum,
when we calculate the complexity.

In big O-notation, a big term subsumes the smaller
ones, that is, the big one eats away the smaller ones!

Example 5.2.8:
Rule of sum:

100 log n + 40
√
n + 1000n log n + 4n2 = O(n2) as lower-order

terms and the multiplicative constants can be ignored, thanks to
big oh notation.

Example 5.2.9:
Consider the functions T1(n) and T2(n) defined as below:

T1(n) =

{
n4 if n if n is even
n2 if n if n is odd

T2(n) =

{
n2 if n if n is even
n3 if n if n is odd

Then by the sum rule, T1(n) + T2(n) = O(max(n4, n3)), which is
n4 if n is even, n3 if n is odd.

Rule of product

Proposition 5.2.3:
Let T1(n) = O(f1(n) and T2(n) = O(f2(n)) then T1(n)T2(n) =
O(f1(n)f2(n)).

Proof. We have to prove that |T1(n)T2(n)| ≤ c|f1(n)f2(n)| for
some constant c > 0 and for all n ≥ n0. T1(n) = O(f1(n)).
Therefore by definition, |T1(n)| ≤ c1|f1(n)| for c1 > 0 and for all
n ≥ n1.

T2(n) = O(f2(n)). Therefore by definition, |T2(n)| ≤ c2|f2(n)|
for c2 > 0 and for all n ≥ n2.

For n0 = max(n1, n2), the above two inequalities are simulta-
neously satisfied.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 344 — #360 i
i

i
i

i
i

344 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Hence for n ≥ n0, we have

|T1(n)T2(n)| = |T1(n)||T2(n)| ≤ c1c2|f1(n)||f2(n)|
≤ c1c2|f1(n)f2(n)|.

One should be careful in manipulating big oh notation. First
of all, the equality “=” used in big oh notation is not a symmetric
relation. For example, 4n2 = O(n2), but we should not write
O(n2) = n2/2, otherwise we will have the absurd relation 4n2 =
n2/2. Example 5.2.10 illustrates one possible trap.

Example 5.2.10:
[Fallacy in O-symbol manipulation][4]. Find the error in the fol-
lowing argument: We know that a linear function in n, an + b is
O(n). Therefore, n = O(n), 2n = O(n),· · · , .5.2.2. Hence we can
write,

∑n
k=1 kn =

∑n
i=1O(n) = O(n2).

Answer: Here, n, is a variable (the size of the input). We have
replaced kn by a single O-symbol, that is, |kn| ≤ cn, which is not
true if k is a function of n, for example, k = n or k = n/2. In fact,
the sum is, n(1 + 2+ · · ·+ n)= n

∑n
k=1 k = n× n(n+ 1)/2, which

is a polynomial of degree 3, and hence O(n3).

We now present a formal definition of an exponential function.

Definition 5.2.3 (Exponential function):
f(n) is an exponential function if there are constants c1 > 0, k1 >
1, c2 > 0, k2 > 1 such that

c1k
n
1 ≤ f(n) ≤ c2k

n
2

for all but a finite number of values of n.

Table 5.5 describes the commonly encountered complexity
functions and the corresponding algorithms. These algorithms will
be treated in the text. As usual, the integer n represents the size
of the problem. The logarithms in Table 5.5 are to the base 2.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 345 — #361 i
i

i
i

i
i

5.2. COMPLEXITY OF ALGORITHMS 345

Table 5.5: Table of complexity functions and their corresponding
algorithms

Complexity Functions Algorithms
logn Bisection Method or searching in a sorted array
n Linear search in an unsorted array

n logn Quick sort (Expected complexity)
n2 Insertion sort
n3 Multiplication of two matrices of order n
2n Brute force or exhaustive search
n! Generating all permutations of n elements

Remark 5.2.2:
The most convenient base of logarithms in mathematics is the real
number e, perhaps because the derivative of ex is the same function
ex, but in computer science the most suitable base of logarithms
is the integer 2 because computer programs often make two way
alternatives (just like in trigonometry, the convenient measure of
angles for practical purpose is the angle measure in degrees but
for theoretical purpose, the convenient measure is the radian mea-
sure)[4]. The base of the logarithm modifies the constant c of the
complexity function but not the function. Further the numbers
are represented in base two notation.

The logarithms of the same number with two different
bases are proportional to each other.

In Table 5.5, except the functions 2nand n!, all other functions are
polynomials. One may think that by designing more and more
powerful processors, the computational complexity of algorithms
can be ignored. But just the opposite of this statement is true.

Consider a problem P and five different algorithms A1, A2, . . . ,
A5 to solve the problem P. Let the respective complexities of the al-
gorithms be log n, n, n log n, n2, 2n. Here the complexity functions
express the execution time in terms of microseconds, that is, one
unit of time is 10−6sec. For example, the algorithm A4 processes
an input of size n in n2 units of time. Suppose we are given one
second of computer time.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 346 — #362 i
i

i
i

i
i

346 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Table 5.6 gives the size of problems one can solve using these
different five algorithms.

For example, the entries in the third column are obtained by
solving the equations log n = 1000000, n = 1000000, n log n =
1000000, n2 = 1000000,2n = 1000000 for n.

Table 5.6: Comparison of polynomial and exponential time com-
plexity functions

Algorithms Complexity functions Maximum size processed in 1 second
A1 logn 21000000

A2 n 1000000
A3 n logn ≈ 62746
A4 n2 1000
A5 2n ≈ 20

The function 2n is the paradigm for non-polynomial
growth.

Example 5.2.11:
Prove that if k is any integer, then en ̸== O(nk). In particular,
2n ̸== O(nk).

Solution: en = 1 + n/1! + n2/2! + · · ·∞ (by definition). If
k > 0, then en > nk+1/(k + 1). Hence en/nk > n/(k + 1). This
means that en/nk is not bounded by any constant. This proves the
first assertion. Since 2 < e(= 2.718281...), 2n ≤ en for all n ≥ 0.
Hence, O(2n) = O(en) ̸== O(nk).

Table 5.6 illustrates that with an exponential time algorithm 2n,
one can process/execute in one second a problem of size only 20,
whereas with the quadratic polynomial function n2 the size be-
comes 1000 and with the logarithmic function the size reaches
21000000.

Even more interesting will be the study of the increase in the
size of the problem with the corresponding increase in the speed
of the processor.

Suppose we have a new computer which runs 1000 times faster
than our present computer, that is, with the new computer one

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 347 — #363 i
i

i
i

i
i

5.2. COMPLEXITY OF ALGORITHMS 347

unit of time will be 1010
−9
sec. Table 5.7 illustrates the increase in

size we can achieve with the new machine, given a fixed computer
time, say, one hour. In Table 5.7, for example, the fourth entry

Table 5.7: Effect of new machine on polynomial and exponential
time algorithms

Complexity functions Size with present computer With computer
1000 times faster

logn s1 s10001
n s2 1000s1

n logn s3 ≈ 1000s3 for large s3
n2 s4

√
1000s4 = 31.6s4

2n s5 s5 + 9.97

of the last column is obtained by solving for N4, the new size,
the equation N2

4 = 1000s24, and the fifth entry of the last column
is obtained by solving for N5, the new size, the equation 2N5 =
1000× 2s5 .

Let us note that from Table 5.7, with the linear algorithm n,
the size of the problem that can be solved with the new machine is
multiplied by 1000 whereas with the exponential algorithm 2n the
size is only increased by about 10. In general, with polynomial time
algorithms, the new size of the problem is obtained by multiplying
the old size by some constant factor, whereas with exponential
time algorithm the size is obtained by only adding a constant term
to the old size.

This is the reason why computer scientists consider polynomial
algorithms as good or efficient algorithms.

Polynomial time algorithms are designed by gaining some
deeper insight into the structure of the problem, whereas expo-
nential algorithms are often obtained by variations of brute-force
or exhaustive search methods. We call a problem intractable if
there is no polynomial time algorithm to solve the problem.
Why are polynomial algorithms considered good?

Polynomials have the following properties:
1. Closure property of polynomials: They are closed under ad-

dition, multiplication and composition. In other words, the sum,

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 348 — #364 i
i

i
i

i
i

348 CHAPTER 5. INTRODUCTION TO ALGORITHMS

the product and the composition of two polynomials are still poly-
nomials. No other smaller class of functions (for example, the
logarithmic functions) having useful complexity bounds has this
property. Intuitively, polynomial algorithms become “useless” in
practice little by little as the size of the problem increases, whereas
exponential algorithms become “useless” all of a sudden.

2. The formal computational models RAM (Random Access
Machine), RASP (Random Access Stored Program Machine), and
the Turing Machine are all polynomially equivalent under loga-
rithmic cost (see [3]).

3. Polynomial time algorithms can be programmed using a
given number of cycles with no jumps, whereas an exponential
time algorithm does not have this property.

Remark 5.2.3:
The simplex algorithm to solve a linear programming problem
takes exponential time in the worst case (Klee-Minty examples),
but this algorithm behaves very well in practice, that is, it works
as if it is an efficient algorithm. The simplex method takes linear
time on the average (see [9]). Further, an exponential time algo-
rithm may be useful if the size of the problem is bounded above
by a suitable constant, that is, n is sufficiently small. To illustrate
this assertion, consider two algorithms of time complexity n3 and
2n to solve the same problem. Since 2n ≤ n3 for n ≤ 9, we may use
the exponential time algorithm to solve problems of size less than
or equal to 9. Here we have ignored the constants of proportion-
ality c. If we have two algorithms of complexity 1000n2 and 2n3

to solve the same problem, then the 2n3 algorithm will be cheaper
for all problems of size less than 500.

Example 5.2.12 (n! is an exponential function):
Prove that nn/2 ≤ n! ≤

(
n+1
2

)n
.

Solution:

n! = 1.2 · · ·n =
n∏

p=1

p

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 349 — #365 i
i

i
i

i
i

5.2. COMPLEXITY OF ALGORITHMS 349

Writing the product in the reverse order,

n! = n.(n− 1) · · · 1 =
n∏

p=1

(n− p+ 1)

Hence by multiplying the two factorials, we have

(n!)2 =
n∏

p=1

p(n− p+ 1).

We shall prove that n ≤ p(n − p + 1) ≤
(
n+1
2

)2
for all p with

1 ≤ p ≤ n.
We shall first prove p(n−p+1) ≥ n. The inequality is clearly true
if p = 1, for 1(n−1+1) ≥ n. Suppose p ̸= 1. Then, p(n−p+1) ≥ n,
if and only if n(p−1) ≥ p(p−1), if and only if n ≥ p (since p ̸= 1)
which is true.
To prove p(n−p+1) ≤ (n+1)2

4
, we may also use differential calculus!

Set f(p) = p(n−p+1). Then f ′(p) = n−2p+1 and f ′(p) = 0 gives
p = n+1

2
. Now f ′′(p) = −2 < 0 and hence f(p) has a maximum at

p = n+1
2

and the maximum value is f(n+1
2
) = (n+1)2

4
. But

min
1≤p≤n

f(p) ≤ f(p) ≤ max
1≤p≤n

f(p)

Thus, n ≤ p(n− p+ 1) ≤ (n+1)2

4
and therefore,

n∏
p=1

n ≤
n∏

p=1

p(n− p+ 1) ≤
n∏

p=1

(n+ 1)2

4

implies nn ≤ (n!)2 ≤
(
n+ 1

2

)2n

.

Taking the square root, we obtain

nn/2 ≤ n! ≤
(
n+ 1

2

)n

.

Example 5.2.13:
Calculating the complexity:
Consider the following procedure “mystery” written in Pascal:

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 350 — #366 i
i

i
i

i
i

350 CHAPTER 5. INTRODUCTION TO ALGORITHMS

procedure mystery(n : Integer);

var i, j, x, y : integer;

begin

for i:= 1 to n do

if i mod 2 = 1 then

begin

for j: = i to n do x: =x+1;

for j:= 1 to i do y:= y+1;

end;

end;

Let A(n) denote the number of assignments performed by the pro-
cedure “mystery” to the variables x or y.

Express the function A(n) using the big oh notation and big
theta notation.

Answer:
We use the two integer functions: the lower integer function

⌊x⌋ which is the greatest integer ≤ the real number x and the
upper integer function ⌈x⌉ which is the minimum integer ≥ the
real number x. For example, ⌊3.61⌋ = 3 whereas ⌈3.61⌉ = 4.

The outermost loop is executed as many number of times as
there are odd integers between 1 and n. If n is even, then there
are n/2 odd integers between 1 and n and if n is odd there are
(n + 1)/2 odd integers between 1 and n. Combining, there are
exactly ⌊(n+ 1)/2⌋ odd integers.

In the first inner loop, there are clearly n− i + 1 assignments
for the variable x and in the second inner loop, there are exactly
i assignments to the variable y.

Hence A(n) = ⌊(n+ 1)/2⌋(n− i+ 1+ i) = ⌊(n+ 1)/2⌋(n+ 1).
Clearly, A(n) ≤ n+1

2
(n+ 1) since ⌊x⌋ ≤ x.

Now A(n) is bounded by a polynomial of degree 2 and hence
by Theorem 5.2.2 A(n) = O(n2). Further, A(n) ≥ n

2
(n + 1) since

⌊(n+ 1)/2⌋ ≥ n/2.
Hence A(n) = Θ(n2).

Encoding integers: In the study of complexity, three types of
integer encodings are used: Unary, Binary and Uniform, or Arith-
metic. Consider a non-negative integer n.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 351 — #367 i
i

i
i

i
i

5.2. COMPLEXITY OF ALGORITHMS 351

Unary encoding: If we assume that to store the integer n in the
memory, we need n computer words (a word is an addressable unit
of memory), then we say that the coding is unary. For example,
the roman numeral to represent 3 uses three strokes iii of i to
represent the integer 3.

Binary encoding: This encoding is more realistic. If we use
l(n) bits (binary digits: 0, 1) to represent, then we say that the
encoding is binary where l(n) is defined as follows:

l(n) =

{
1 if n = 0
⌊log2 n⌋+ 1 if n ̸= 0

In fact, l(n) is the number of bits necessary to write the integer n
in binary notation.

Remark 5.2.4 (common, binary, natural logarithms):
Logarithms with bases 10, 2, e(=≈ 2.71) are called, respectively,
common, binary, and natural logarithms. In computer science,
binary logarithms are used.

Uniform or arithmetic encoding: If we use only one memory
word to store the integer n, then the encoding is called uniform
encoding. If all numbers in the calculation can be stored in one
computer word, we use this encoding.

Unless otherwise mentioned, we use uniform encoding of inte-
gers.

Example 5.2.14 (Number of bits in n):
Show that the number of bits in the binary expansion of the integer
n > 0 is exactly ⌊log2 n⌋+ 1.

Solution:
Let the binary writing of n consist of k bits. We have to prove

that k = ⌊log2 n⌋+ 1.
The minimum value of a number written in binary with k digits

is 1

n−1︷ ︸︸ ︷
00 . . . 0 and the maximum value of the binary with k bits is

n︷ ︸︸ ︷
11 . . . 1 .

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 352 — #368 i
i

i
i

i
i

352 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Their corresponding values in decimals are

2k−1

and
20 + 21 + · · ·+ 2k−1 = 2k − 1.

Hence, 2k−1 ≤ n ≤ 2k − 1. To remove 1 from 2k − 1 form of the
inequality, we write: 2k−1 ≤ n < 2k (note the strict inequality
on the right). Applying log2 to the previous inequalities, we ob-
tain k − 1 ≤ log2 n < k. This means that log2 n is between two
successive integers k−1 and k. This implies that ⌊log2 n⌋ = k−1.

Typical complexity functions and algorithms

Constant function c: The notation O(1) represents some con-
stant. If every statement of an algorithm is executed at most
some constant times, then the complexity is O(1). This is
an ideal situation.

Logarithmic function O(log n): This complexity arises in al-
gorithms which convert a problem of size n into a similar
subproblem of size n/2 such that the solution of the prob-
lem of size n is the same as the solution to the problem size
n/2. This is called the Divide and Conquer Technique. The
amount of “effort” needed to divide the given problem of
size n into a similar subproblem of size approximately n/2
must be a constant. The successive sizes of sub-problems are
approximately n/2, n/22, . . . , n/2k respectively.

Linear function O(n): When an algorithm processes each in-
put at most a constant times, the time complexity will be
linear. This typically arises in an algorithm processing each
input in a single loop consisting of a statement requiring
O(1) time.

The function O(n log n): This function is obtained by employ-
ing the Divide-and-Conquer method to solve the problem.
We divide a problem of size n into two similar sub-problems

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 353 — #369 i
i

i
i

i
i

5.3. AN OVERVIEW OF A CLASSICAL COMPUTER 353

of size approximately n/2, solve the subproblems separately,
and finally combine the solutions of the sub-problems into
the solution of the original given problem. The amount of
work necessary to divide the original problem into two sim-
ilar subproblems should be a linear function in n.

Quadratic function O(n2): This function is obtained in an al-
gorithm which processes each pair of inputs (typically in
a double-nested loop). For example, in a program with a
double-nested loop consisting of a statement requiring O(1)
time.

Cubic function O(n3): We will have this complexity in an algo-
rithm which processes all triples of inputs. For example, in a
program with a triple-nested loop consisting of a statement
requiring O(1) time.

Exponential function O(2n): This complexity arises as a re-
sult of brute-force or exhaustive search methods .

5.3 An Overview of a Classical Com-

puter

Algorithms exist independent of any computer. In the absence of
a computer it is the human being who plays the role of a machine.
Of course, humans are subject to errors, fatigue, etc., whereas com-
puters can execute long sequences of instructions with reliability,
and with thoughtless obedience.

The modern digital computer was invented to facilitate diffi-
cult, long and tedious calculations. A computer is only a machine
which manipulates a material called “information.” Information
can be described as a finite sequence of letters, digits, and some
special characters like *, +, :, etc.

The information manipulated by a computer must be:
1. Stored: This is the role of the memory.
2. Manipulated: This is the role of the Central Processing

Unit.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 354 — #370 i
i

i
i

i
i

354 CHAPTER 5. INTRODUCTION TO ALGORITHMS

3. Exchanged (with a programmer or with other machines):
This is the role of the input/output peripheral units like the key-
board and monitor.

In the figure below, a model of a classical computer is depicted
(see [7]).

Figure 5.2: A model of a classic computer

Main memory

Information is stored in memory as a sequence of bits (binary dig-
its). A binary digit is either 0 or 1. In fact, the information
manipulated by a computer is materialized by two different volt-
ages (0 means a high voltage, 1 means a low voltage, for example)
in the computer’s circuitry. The smallest storage unit of memory
is referred to as a cell or a byte. We may treat a byte as a box
containing a small chunk of information. Each byte possesses an
address which distinguishes it from the other bytes. In fact, the
addresses of the bytes are the non-negative integers starting from
0,1,... and ending with n−1 where n is the number of bytes in the
main memory. Thus a byte is the smallest storage unit which has
its own address, that is, the smallest addressable unit of memory.
Usually a byte is a sequence of 8 bits.

It is generally 8, 16, 24 or 32 bits under high/low voltage. The
set of all bytes is referred to as the main memory. In the main
memory, the computer stocks not only the sequence of statements
comprising a program, indicating the manipulation/computation

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 355 — #371 i
i

i
i

i
i

5.3. AN OVERVIEW OF A CLASSICAL COMPUTER 355

to be carried out on the data, but also the data on which these
statements of the program will be executed. The following pa-
rameters are associated with the memory: 1. The capacity or size
of the memory. 2. The speed with which the instructions can
be stocked and retrieved. The main memory is also called the
Random Access Memory or briefly, RAM.

Central processing unit:
This is the “brain” behind the computer. All processing takes

place in the Central Processing Unit or briefly, CPU. The CPU (in
fact, the control unit of the CPU orders the execution) executes
the instructions as follows:

1. Fetch instruction: The next instruction to be executed is
brought by the processor from the RAM and stored in the appro-
priate registers. Registers are the CPU’s own storage space.

2. Decode instruction: The instruction in the register is recog-
nized or decoded.

3. Fetch data/operands: The data/operands on which the in-
struction is to be executed is brought from the main memory or
register and stored in the appropriate register.

4. Execute: The instruction is executed.
5. Depositing the result: The result of the execution is written

back to wherever it is supposed to go—either stored in the main
memory or in the appropriate register. The following example
illustrates the CPU’s actions:

CPU actions

Example 5.3.1:
To evaluate the expression x ∗ y + t− z where x, y, z, t are integer
variables.

Let r1 and r2 be two registers and let a be an integer vari-
able used to store the intermediate/temporary result. Then the
evaluation may proceed as follows:

r1 := x;
r2 := y;
r1 := r1 ∗ r2;
a := r1;

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 356 — #372 i
i

i
i

i
i

356 CHAPTER 5. INTRODUCTION TO ALGORITHMS

r1 := t;
r2 := z;
r1 := r1− r2;
r2 := a;
r1 := r1 + r2;
The final result is in the register r1.

The CPU is divided into two parts:
1. The control unit: The control unit orders the execution to

be carried out.
2. The arithmetic and logic unit: The arithmetic and logic

unit (briefly, ALU) executes instructions (see Figure 5.3). The

Figure 5.3: A view of the central processing unit

arithmetic operations are addition, subtraction, multiplication and
division and the logical operations are “or,” “and,” and “not.”
These operations are executed on the data stored in the main
memory.

Hierarchy of memories:

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 357 — #373 i
i

i
i

i
i

5.3. AN OVERVIEW OF A CLASSICAL COMPUTER 357

In fact there are four levels of memory hierarchy:

1. Registers

2. Cache

3. Random access main memory (RAM)

4. Secondary or disk memory

Each level has a larger storage capacity than the preceding level
but access time is greater than the preceding one. As we have
already seen, registers are the processors’ own storage elements.
Access to the register is extremely fast. Access to the register is
faster than access to the main memory.

The next memory level in the hierarchy is cache. Cache con-
tains a small amount of main memory and it is a subset of Static
Random Access Memory (briefly, SRAM). It is hoped that the
cache contains the right contents of the main memory at the right
time.

The next level is DRAM, Dynamic Random Access Memory.
The adjectives “static” and “dynamic” are used according to the
technology used to design memory cells. For example, each time
we read information from the DRAM, the information read is lost
and has to be rewritten. This is not the case with SRAM.

The last level in the memory hierarchy is the auxiliary memory.
This is a peripheral device or a collection of devices such as disks.
These devices can store much more information than the main
memory but its access speed is slow compared to the main memory.
The information stored in the secondary memories are permanent,
in the sense that the data will be available after the computer is
switched off and later switched on. The computer tries to keep
the data it needs frequently in the main memory because of the
slow access time of the peripheral memories.

Coding the information

The information manipulated by the computer must be first key-
boarded, that is, captured by the computer, then manipulat-

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 358 — #374 i
i

i
i

i
i

358 CHAPTER 5. INTRODUCTION TO ALGORITHMS

ed/processed, and finally exchanged with the outside world. Dur-
ing each of these stages, the information is coded. A coding is
simply a correspondence between two ways of representing the
same information.

Example 5.3.2:
Coding the information:

For example, the different names of the months of the year
January, February, . . . , December are usually written for simplic-
ity using the integers 1, 2, . . . , 12. This way of writing the names
of the months using the integers can be considered as a “code.”

The widely employed coding of characters (10 digits, 11 to 25
special characters, some command characters) is the ASCII code.
Its expansion is American Standard Code for Information Inter-
change. As its expansion indicates, this character set is used to
facilitate exchange of information among the user, machine, print-
ing device, etc. It is proposed by the ANSI (American National
Standards Institute). In the ASCII code, each character is coded
or represented by a unique sequence of 7 bits. This one-to-one
correspondence or bijection between the ASCII code and the set
of 128 characters is called a code. Therefore ASCII is referred to
as seven-bit code. For example, the uppercase letter “A” is repre-
sented by the sequence 1000001. Its value in decimal is 65. Since
27 = 128, using the ASCII code one can represent 128 characters.

The ASCII alphabet is partitioned into printable characters
and control characters. There are 95 graphic/printable charac-
ters and 33 control characters. The control characters are used
in data transmission and the control of printing equipment. The
ordinal numbers from 0 to 31 and 127 represent control charac-
ters. For example, cr means “carriage return” and lf means “line
feed.” When we transmit the data to the printer, “cr” instructs
the printer to begin a new line. The restricted ASCII code which
uses only uppercase letters is used on commercial devices.

The ASCII code for the character 0 is 48 written in binary, the
code for the character 1 is 49, etc. The code for the uppercase A is
65, again written in binary, the code for B is 66, etc. The ASCII

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 359 — #375 i
i

i
i

i
i

5.3. AN OVERVIEW OF A CLASSICAL COMPUTER 359

code is coherent and contiguous. The other computer alphabet
is EBCDIC (Extended Binary Coded Decimal Interchange Code)
proposed by IBM (International Business Machine) for its 360 line
of computers designed by Amdhal. It is an 8-bit code and hence
can represent 28 = 256 different characters.

Information processing and the hierarchy of lan-
guages

Computers work exclusively with binaries (machine language), a
tedious language for human programmers. (There are also decimal
computers!) A machine language is one which can be directly
executed/interpreted by the computer.

The machine language is the mother tongue of a com-
puter.

Since machine languages are not suitable for humans, computer
scientists have invented “high-level” languages which are in be-
tween the natural languages like French, English, etc. (which are
imprecise and ambiguous for a machine, which acts exactly as
it is told to do, no more or less) and machine language, which
is cumbersome for human beings. Some “high-level” languages
are Pascal, C, ADA, etc. A program is a sequence of elementary
instructions. These high-level languages are translated by a pro-
gram, called a compiler, into an equivalent language (see [10]).

The language translated by a compiler may be an assembly lan-
guage or relocatable machine language. An assembly language is a
symbolic and mnemonic version of the machine language in which
names are used instead of machine/binary codes for operations.
Names are also given to machine addresses. In the assembly lan-
guage, words like “store,” “add,” “load,” etc., replace the machine
codes for operations. This assembly language will be further pro-
cessed by the assembler to produce relocatable machine code. This
relocatable machine code is finally passed to the load/link editor
to produce “absolute machine code,” which can be directly inter-
preted by the machine’s circuitry. The role of the linker is to bind

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 360 — #376 i
i

i
i

i
i

360 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Figure 5.4: A view of a compiler

together the compiled parts (see Figure 5.4). The other method
of executing a program written in a high-level language is by us-
ing “interpreters.” Interpreters are used in command languages
like Maple and MATLAB®. Operations executed in a command
language may be an invocation of a large and complex program
such as an editor or a compiler. An interpreter takes together a
program and its input and furnishes the output. We see in the
computer system, there are two different entities:

1. Hardware, which is the computer’s circuitry.
2. Software, which is the collection of programs which facili-

tates the writing of other programs and which extends the capac-
ities of the machine.

Finally, one should not forget the “humanware.”

5.4 Introduction to Programming

The transformation of an algorithm in a precise formalized com-
puter language is called a program. In a computer language, each
instruction has a very definite meaning. A programming language
consists of two components:

1. The syntax/grammar of the language, which describes what
the program will look like.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 361 — #377 i
i

i
i

i
i

5.4. INTRODUCTION TO PROGRAMMING 361

To command a programming language, we must obey
its syntax and semantics.

2. The semantics of the language, which describes the meaning of
each statement in a program.

We will be using a “pseudo-language,” which is obtained by
combining the constructs of a programming language Pascal to-
gether with some informal English statements. We will now de-
scribe briefly a few basic concepts of imperative programming lan-
guage and the notation we will be using to express our algorithms:

Variable or Box:

Once a person has understood the way in which the
variables are used in a programming language, he has
understood the quintessence of programming language.

The concept of a variable represents an abstraction
from its current value.

E. Dijkstra

A variable or identifier is a symbol to which we can attribute
several values of a given type. It can be considered as a “box” of
suitable size in the memory of the computer whose name is the
variable. We may not use the keywords of a language as identfiers
as these keywords have special meaning for the language. For
example, to declare a variable n of type integer in the language C
we write: int n; in the language Pascal it is written as:

var n : integer;

A variable may be compared with a blackboard in a classroom.
The content of the variable is equivalent to the writings on the
board. Its value (contents) can be read or copied as many times
as we like but once its content is erased by a new assignment
(eraser), its previous value is lost.

Type:
There are two data types:
1. Built-in data types or pre-defined data types. (For example,

integer, real. These basic types get machine support.)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 362 — #378 i
i

i
i

i
i

362 CHAPTER 5. INTRODUCTION TO ALGORITHMS

2. User-defined data types, also called data structures, which
we will study later.

A type is the set of values a variable can assume together with
some operations to combine them. The type can be viewed as
the trademark of a variable. For example, with the type integer,
the typical operations in Pascal are : +,−,∗, mod, div, etc. In
the language C, the operations with the integers are: +, −, ∗, %
(modulo operator), etc. The basic types in the language C are int
(integer), float (real), char (character), etc.

All programs will be finally translated into a sequence of bits.
Writing programs using only the bits would be cumbersome in-
deed. The concept of type permits us to specify the manner in
which a particular set of bits will be treated and the functions
allow us to describe the operations that will be performed on the
data. We can now describe the concept of a variable in a program-
ming language in all of its facets. In fact a variable can be viewed
as consisting of four different components:

1. Name

2. A set of attributes

3. A reference or a box in memory

4. The content of the box (see Figure 5.5).

Figure 5.5: The four components of a variable

Unlike in mathematics, in computer science, the type integer
represents only a finite subset of the set of integers. Of course, this

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 363 — #379 i
i

i
i

i
i

5.4. INTRODUCTION TO PROGRAMMING 363

set will differ from one computer to another. Similarly, the type
real in a programming language represents a finite set of repre-
sentatives of intervals in the real continuum. This is because the
computer memory is finite. More precisely, to each real number x,
there is associated a computer real number r(x) called the repre-
sentative of x (somewhat like a parliament member representing
the people of his/her constituency). Every r(x) represents many
real numbers, with the condition that the set represented by r(x)
is a coherent interval on the real axis. The most commonly used
format for reals is the IEEE format (Institute of Electronic and
Electrical Engineers). The operations on the variables of the type
integer are supposed to be exact except for the phenomenon of
overflow. On the other hand, operations involving arguments of
type real are “inexact.” Two real numbers x and y are considered
equal by a computer if r(x) = r(y), that is, the computer real
number of x is equal to the computer real number of y. In com-
puter programs, the equality of two real numbers x and y is tested
by the inequality |x − y| < ϵ, where ϵ is a very small number.
Note that this test of equality of two real numbers does not even
satisfy the relation of transitivity; that is, x = y and y = z need
not imply that x = z.

All exact sciences are dominated by the idea of approx-
imation.

B. Russel

Approximately equal is not an equivalence relation.

In computer arithmetic, the usual associative and dis-
tributive laws are generally not valid.

Remark 5.4.1:
Inside a computer, the bit/internal structure representing an in-
teger is usually different from the one representing a real number
even though the integer and the real number denote the same
value.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 364 — #380 i
i

i
i

i
i

364 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Assignment statement

The most important elementary instruction in a programming lan-
guage is the assignment (or substitution or replacement) state-
ment. If n and m are two integer variables, the substitution of the
value of the variable m for the variable n is written as:

n := m; in Pascal.
In C we write this assignment as n = m;.
In writing algorithms, we write this as n ← m;. It should

be noted that in an assignment statement, the right-hand side
variable represents the content of the box (also referred to as the
r-value) whose name is m and the left-hand side represents the
reference component of the variable (also called the l-value) n.

Sometimes we use the term “dereferencing” for “r-value.” The
term dereferencing means the following: taking a reference and
returning its associated value. This is also called the contents
operator. In general, an assignment statement can be written as

“variable := formula”;

where “formula” is an expression which gives a single value and
this value will be assigned to the variable on the left-hand side.

Compound statement

A compound statement is a sequence of at least two elementary
statements. In Pascal, a compound statement is enclosed between
the two delimiters begin, end. In the language C, we use {, }
as delimiters (see Figure 5.6). S, S1, S2, I represent statements or
instructions.

Figure 5.6: A compound statement

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 365 — #381 i
i

i
i

i
i

5.4. INTRODUCTION TO PROGRAMMING 365

Conditional statement

If the traffic signal is green then the car moves; otherwise the car
stops. If the student passes the final examination, then he goes
on vacation during the summer; otherwise, he sits at home and
revises for his second sitting.

The computer is capable of receiving instructions of this kind.
In Pascal this conditional statement is expressed as follows:

if B then S1 else S2;

Here B is a Boolean expression which has a value either true or
false. S1 and S2 are statements. If the result of evaluation of
the Boolean expression is true then the statement S1 is executed;
otherwise the statement S2 is executed.

The corresponding statement in C is exactly the same except
for the word “then” and the semicolon may be written after the
statement S1 (see Figure 5.7).

Figure 5.7: A flowchart for if-then-else statement

A variation of the above conditional statement is one in which
the else part is absent. It is written in Pascal as:

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 366 — #382 i
i

i
i

i
i

366 CHAPTER 5. INTRODUCTION TO ALGORITHMS

if B then S;
In C we write this as:

if (B) S;
(See Figure 5.8 for conditional statement without “else” part.)

Figure 5.8: A flowchart for if-then statement

Example 5.4.1:
Conditional statement in Pascal:

if (n mod 2 = 0) then writeln(n, ’ is even’) else writeln(n, ’ is
odd’);
Conditional statement in C:

if (n % 2 ==0) printf(”%d is even”, n) else printf(”%d is odd”,
n); %d inside quote says n should be printed as a decimal number.

Repetitive statement or loop with precondition

Computers are well suited for performing a sequence of operations
until a condition is satisfied. Machines can execute the same se-
quence of instructions thousands of times with absolute, thought-
less obedience and accuracy. This is where a human operator fails.
A human being is subject to errors and fatigue which is not the
case with an automaton.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 367 — #383 i
i

i
i

i
i

5.4. INTRODUCTION TO PROGRAMMING 367

Figure 5.9: A flowchart for while-do loop

In Pascal the repetitive or iterative statement with precondition
is expressed as below:

while B do S;

In C the construction is as follows:

while (B) S

Note that “do” is present in Pascal notation after while but not
in C notation. (See Figure 5.9.)

Its meaning is the following: The Boolean expression B is eval-
uated first. If its value is true, then the statement S is executed.
Again, the expression B is evaluated and if its value is true then
we execute the statement S; if the value of B is false, then we quit
the loop.

In brief, the statement S is executed as long as the value of
the Boolean expression is true. This implicitly implies that the
execution of the statement S should modify one or more variables
present in the expression B, in order to terminate the loop. Let
us note that if the first evaluation of B leads to a false value, the
loop is not performed at all.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 368 — #384 i
i

i
i

i
i

368 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Example 5.4.2:
Iterative statement:

Let us write Euclid’s algorithm 5.1.1 in Pascal and in C:

program euclid;

var m, n, x, y : integer;(* find the gcd of m and n*)

begin

writeln(’ enter two integers ’);

readln(m, n);(* read m and n*)

x : = m; y: = n; (* we manipulate x, y, copies of m,n*)

while x <> y do (*loop*)

if x > y then x:= x - y

else y:= y - x;

(* we quit the loop with x = y*)

writeln(’ The gcd of ’, m, ’and ’, n, ’is ’, x):

end;

The sentences between the delimiters (* and *) are comments to
follow the program easily and these are ignored by the compiler.
Let us write the same program in C:

#include <stdio.h> /* reference to standard input-output library*/

int main()

{

int m, n, x, y;

printf(" enter two integers\n");/* \n is the new line character*/

scanf(" %d %d", &m, &n);/* read m and n*/

x = m; y = n;/* we manipulate x and y*/

while (x != y)

if (x > y) x = x - y; else y = y - x;

/* we quit the loop with x = y*/

printf(" The gcd of %d and %d is %d", m, n, x);

}

The sentences within the delimiters /* and */ are comments to
understand the program. These comments are ignored by the
compiler. scanf reads the input line and assigns the values found
there to the variables m and n. The character &, just before m
and n in scanf, means that scanf accesses the variables indirectly.

Also note that the above programs do not terminate, that is,
they have an infinite loop if the variable m is strictly positive and
n = 0.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 369 — #385 i
i

i
i

i
i

5.4. INTRODUCTION TO PROGRAMMING 369

Loop with postcondition

In this kind of loop, the condition to stay in the loop is tested at
the bottom of the loop. Note that this implies that the loop is
executed at least once. This kind of loop should be used only if
we know in advance that the loop will be performed at least once.

In Pascal, this loop is written as follows:

repeat S until condition;

Its meaning is as follows: the loop is executed until the condition
becomes “true.” In other words, the loop is performed as long as
the condition remains “false” (see Figure 5.10).

Figure 5.10: A flowchart for repeat-until loop

In C, the loop with postcondition is written as below:

do S while condition;

The loop is executed as long as the condition remains “true”
(see Figure 5.11).

A program represents a class of computations and determines
a model of behavior for an indeterminate, often infinite number
of possible processes. Now the question is the following: How do
we know that each possible computation evoked by a computer
program will give the exact result? One brute-force answer is the
following: Execute the program with all possible legal inputs and

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 370 — #386 i
i

i
i

i
i

370 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Figure 5.11: A flowchart for do-while loop

compare the answers obtained by some other means, for exam-
ple, by hand calculation. This is humanly impossible taking into
consideration the large amount of inputs involved and the time
needed. So, the exhaustive method is not helpful in proving pro-
grams.

Program testing (debugging) may be used to find
the presence of errors, but never to prove their absence.

E. Dijkstra

In order to prove that the loop calculates the desired value cor-
rectly on exiting, we now introduce the important concept of loop
invariant or general snapshot.

Loop invariant

A loop invariant (or general snapshots or inductive assertion) is
an assertion or a relation among variables of a program, which is
always true at a given point in the loop, irrespective of the number
of executions of the loop performed before. Mathematical induc-
tion and program proving are intimately related. To show that a
loop gives the desired result on exiting, we use induction on the

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 371 — #387 i
i

i
i

i
i

5.4. INTRODUCTION TO PROGRAMMING 371

number of executions of the loop or some sort of induction on the
values of an input variable. Invariants hold at particular points of
a program text and they can be considered as a “bridge” between
the static program text (spread out in text space) and the dynamic
process of computation. In fact, the proof of a loop/inductive as-
sertion involves the following three constituents:

1. Initialization: The invariant is true at/before the entry of
the loop. (Induction basis)

2. Preservation: The assertion is conserved one execution after
another. (Induction leap)

3. Termination/Finiteness : The loop terminates after a finite
number of executions.

The following example illustrates this idea on Euclid’s algorithm.

Example 5.4.3:
Loop invariant and termination:

Let us refer to the program of Example 5.4.2 written in Pascal
implementing Algorithm 5.1.1. What is the invariant of the “while
loop” of this program ?

The relation which holds at the entry of the loop is the follow-
ing:

gcd(m,n) = gcd(x, y).

Let us prove this relation:
1. Basis: Since x := m; and y := n;, the relation is true before

entering into the loop.
2. Induction leap: It is enough if we show that gcd(m,n) =

gcd(m− n, n) if m > n.
We will prove first that the set of all divisors of m and n is the

same as the set of all divisors of m− n and n.
If d is a divisor of m and n, then d divides the difference m−n

and n. Hence the set of divisors of m and n is a subset of the set
of divisors of m− n and n. Conversely, if d divides m− n and n,
then d divides the sum m − n + n = m and n. Hence the set of
divisors of m−n and n is contained in the set of divisors of m and
n. Hence the equality of the two sets of divisors.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 372 — #388 i
i

i
i

i
i

372 CHAPTER 5. INTRODUCTION TO ALGORITHMS

In particular, we have maxd|m,d|n d = maxd|m−n,d|n d. Thus the
induction leap is proved (read: d|m as d divides m).

3. Termination: Initially, x and y are strictly positive integers.
Set N = max(x, y). Inside the loop, the strictly greater of the two
integers x and y is replaced by the difference. Thus the function
N forms a strictly decreasing sequence of positive integers, which
must obviously terminate.

Loop termination

To prove the termination or convergence of a loop,

while B do S;

we normally find an integer function N depending on some of the
variables of the program with the following properties:

1. If B is true then N > 0 on entry of the loop.
2. Each execution of the loop decreases the value of the integer

function N.

Example 5.4.4 (Infinite loop):
If a C program has the following loop, then it will not terminate:

while (1) { }

Loop with post condition

In the while loop “while B do S” discussed above, if the Boolean
condition B assumes the “false” value at the beginning, then the
loop is not executed at all. Of course, any loop can be expressed
with this “while” construction. For reasons of convenience, we see
below a variant of this loop:

In Pascal, this loop is written as:

repeat S until B;

The statement S is executed till the condition B takes the value
“true” (not “false”). Note that, since the Boolean condition is

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 373 — #389 i
i

i
i

i
i

5.4. INTRODUCTION TO PROGRAMMING 373

tested at the end of the loop, the statement S is performed at
least once.

In the language C, it is written as:

do S while (B);

The statement S is executed as long as the condition B remains
“true.” This form of loop is executed at least once, since the
condition to stay in the loop is tested at the end of the loop.

For loop:
In the case of the “while loop,” it is difficult to predict in

advance the number of times the loop will be performed, because
it depends in general on the particular input. If we can compute
in advance, the number of executions of the “while loop,” the
following construction will be very handy.

In Pascal, the “for loop” is written as:

for i := 1 to n do S ;

The statement is executed exactly n times where n is a positive
integer. If n is a non-positive integer, the loop is executed zero
times.

In the language C, it is written as:

for(i = 1; i ≤ n; i++) S

(See Figure 5.12.)
Table 5.8 summarizes the notations of Pascal and C.

5.4.1 Parameter Passing

Modularizing programs into coherent pieces:
A module of a program is a sub-program (subroutine, proce-

dure, function, etc.) which realizes some processes, which will
be used to write the main program. Procedures are user-defined
operations in contrast to built-in operations like addition among
integers. This idea of modules of a program is equivalent to the
concept of a lemma in mathematics. (A lemma is a result used to
prove a theorem, which is comparable to the whole program.) This

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 374 — #390 i
i

i
i

i
i

374 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Figure 5.12: A flowchart for a “for loop”

concept facilitates the understanding and management of long and
complex programs. Another advantage is avoiding the repetition
of the same type of calculation in different parts of a program.
Even if the program is short, it is advisable to modularize the
code into coherent, and as far as possible into independent, pieces.
Procedures/functions specify what is done without telling how it
is done.

A procedure/function consists of four constituents:

1. Its name

2. The formal parameters

3. Type of value calculated by the procedure/function

4. The body, indicating how the computation is carried out in
terms of parameters and other variables.

A subprogram which computes and returns a single value of type
integer, real, char (scalar type or unstructured), pointer, etc. is
called a “function” in Pascal, whereas a subprogram which is not

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 375 — #391 i
i

i
i

i
i

5.4. INTRODUCTION TO PROGRAMMING 375

Table 5.8: Table of Pascal and C notations
Pascal Notation C Notation

:= (Assignment) = (Assignment)
<> (Not equal to) != (Not equal to)
= (Comparison) == (Comparison)
or(logical or) ——(logical or)

and(logical and) &&(logical and)
not(logical negation) !(logical negation)

mod(remainder operator) %(operator remainder)
readln (Read statement) scanf (Read statement)
writeln (Write statement) printf (Write statement)

if B then S1 else S2; if (B) S1; else S2;
(Conditional statement) (Conditional statement)
;(statement separator) ;(statement terminator)

while B do S while (B) S
(Loop) (Loop)

for i:= 1 to n do S for (i = 1; i ≤ n; i++) S;
(Loop) (Loop)

no ; before else ; before else

a function, that is, which does not compute a single value, is called
a “procedure” or “subroutine.” In the language C, analogous to
the concept of a “procedure” in Pascal, is a function which returns
no value or whose return type is “void.” Let us illustrate this by
writing a function computing the gcd in Pascal and in C.

Example 5.4.5:
Functions in Pascal and C computing the gcd using the improved
version of Euclid’s algorithm 5.2.5:

Pascal function for gcd:

function gcd(m, n : integer): integer;

(* m , n are formal parameters.

The types of parameters are integers.

The name of the function is gcd.

The return type is integer,

which is indicated at the right end*)

var r: integer;(* local variable, representing remainder*)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 376 — #392 i
i

i
i

i
i

376 CHAPTER 5. INTRODUCTION TO ALGORITHMS

begin

r : = m mod n;

while r < > 0 do

begin

m : = n;

n : = r;

r : = m mod n;

end;(* while *)

gcd: = n;

end;

Note how the final value computed is assigned

to the name of the function gcd.

C function for gcd:\\

int gcd(int m, int n)

/* note the return type "int" is written

at the beginning of the function heading*/

{ int r;/* local or automatic variable*/

r = m % n;/* % means mod*/

while (r ! = 0)

{ m = n;

n = r;

r = m % n;

}

return n

}

Note the final value is written after the return statement.

Of course, the functions in the above examples should be in-
corporated in the main program and invoked (called or activated)
in order to obtain an executable program. Generally, there are
two ways in which a function/procedure can establish a relation
with other functions/procedures.

1. Global variables: These are the variables declared in the
main program or in the environment surrounding the subpro-
grams. The environment of a module is the set of variables defined
outside the body of the module and which may be used or mod-
ified by the module at run time. The environment of the main
program is the operating system of the computer, where standard
objects are all predefined.

2. Parameters: The other way of establishing contacts be-
tween modules is with the help of parameters. The parameters
introduced in the procedure/function heading, during the declara-
tion are called the formal parameters. They exist only within the
body of the subprogram and are local to it. During the activation

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 377 — #393 i
i

i
i

i
i

5.4. INTRODUCTION TO PROGRAMMING 377

of a subprogram, the arguments replacing the formal parameters
of a subprogram are called the actual parameters. There are three
ways in which actual parameters can be substituted in place of the
corresponding formal parameters.

Local variables: The variables declared inside a procedure/-
function are local to the procedure/function and are unknown out
of the text of the procedure/function. Such variables are called
automatic variables, since they are created when the procedure/-
function is called and are destroyed when we exit the procedure/-
function. However, in the language C, if the keyword “static”
appears before a local variable, such variables do retain their val-
ues from one call of the procedure to another. The word “static”
means “only one copy.”

We will describe each of these methods of substitution below.
Recall that a variable consists of four components:

1. Name,

2. Type,

3. Reference,

4. Content.

Value substitution: During the activation of a subprogram, if the
value or content of the actual parameter is substituted for the
corresponding formal parameters, then this substitution is called
the value substitution. If the actual parameter is an expression/
formula, this expression is evaluated and the resulting value is
assigned to the corresponding formal parameters. After this sub-
stitution, however, there no longer exists any connection between
actual and formal parameters. In the value substitution, the for-
mal parameters are considered as local variables of the subprogram
and are initialized to the values of the actual parameters.

When do we use a value substitution?
When a parameter acts as an input to a subprogram and not a

result of the subprogram, then the value substitution is generally
appropriate. Of course there are exceptions in the case of an actual
parameter representing a big structure like a matrix. If a big

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 378 — #394 i
i

i
i

i
i

378 CHAPTER 5. INTRODUCTION TO ALGORITHMS

structure is not modified by the called subprogram, that is, none
of its entries will be assigned a new value during the invocation,
then we pass such a structure by variable substitution. This is
done, because we don’t want to waste time copying a big structure.
In Pascal and C, the value substitution is made by default, that
is, if there is no specification on the part of the programmer. In
the language ADA, this kind of parameter passing is called in
parameter.

Variable/reference substitution: In this case, the actual param-
eter must be a variable. The possible presence of indices in the
variable are evaluated. The variable thus obtained is substituted
for the corresponding formal parameters.

When do we use a variable substitution?
This is used if the parameter represents a result of a subpro-

gram. In the language Pascal, this kind of substitution is indicated
by the symbol var preceding the formal parameter. In the language
C, the only parameter-passing mechanism is by value. However,
the effect of variable substitution can be achieved by means of
pointers. A pointer is a reference to some object. Putting it dif-
ferently, a pointer is a variable whose value/content represents
another variable. For example, a pointer concerning a human may
be his email address or his telephone number or his residing ad-
dress. In the language ADA, this kind of parameter passing is
called out parameter or in out parameter.

A subroutine or procedure achieves its task either by changing
one or more of its variable/reference parameters or by modifying
some variables in the environment of the procedure or by modify-
ing both.

Name substitution: The actual parameter is substituted liter-
ally for every occurrence of the corresponding formal parameters.
We don’t use this kind of parameter passing in our book.

Table 5.9 illustrates the notations used in mathematics, in Pas-
cal and in C. The following examples clarify the parameter-passing
mechanism:

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 379 — #395 i
i

i
i

i
i

5.4. INTRODUCTION TO PROGRAMMING 379

Table 5.9: Notations in mathematics, Pascal, and C
Mathematics Pascal C

f(a, b) = c. function f(a, b :integer):integer; int f(int a,int b)
(a, b, c are integers.
For example,f can be
gcd or lcm function etc)
f(a0, a1, . . . , an−1) = b procedure f(var a:T;var b:integer); void f(int a[],int n,int *b)
a0, a1, . . . , an, b (To avoid copying, a is a is a pointer to a[0],
are integers. For example, declared as a variable the first element of
f may find the maximum, parameter; T is type array array a. b is a pointer
or minimum of a0, . . . , an−1. of n integers; to integer.
f does not change a0, . . . , an.

Example 5.4.6:
Value and variable substitution:

Let us write a subprogram computing the product of two pos-
itive integers m and n using only the operation of addition, and
store the resulting product in the variable p.

The algorithm behind this procedure is very simple: We have to
decompose the product as a sequence of additions: Symbolically,

m× n =

n terms︷ ︸︸ ︷
m+m+ · · ·+m.

A Pascal procedure:\\

procedure multiply(m , n : integer; var p :integer);

(* m and n are value parameters by default.

p is the variable parameter*)

var i : integer;(* i an index variable *)

begin

p : = 0; (* initialization*)

for i : = 1 to n do

p : = p + m;

end;(* multiply *)

To find the product of 7 and 5, we may write

in the main program, the following statements:

a : = 7; b : = 5; (* a, b, c are global variables *)

multiply(a , b, c);(* A call to multiply.

m takes the value of 7 and n takes 5.

c is identified with p. Finally, c = 35.

The final result is made available in the variable c.*)

Example 5.4.7:
Variable substitution:

Let us write a procedure/function exchanging the contents of
two integer variables, that is, if m = 5 and n = 3 initially, then
after execution m = 3 and n = 5. What is the algorithm?

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 380 — #396 i
i

i
i

i
i

380 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Consider the problem exchanging the contents of two bottles of
wine (one liter each) without mixing them. We need a third empty
bottle of capacity one liter. First, we pour the contents of the first
bottle into the third empty bottle, then pour the contents of the
second bottle into the now empty first bottle, and finally pour the
contents of the third into the now empty second bottle. This is
the algorithm. A Pascal procedure to exchange two variables:

procedure permute(var x, y : integer);

(* x and y are variable parameters. *)

var temp : integer; (* temp is a local variable *)

begin

temp : = x; x : = y; y : = temp;

end;

In the main program, we write the following instructions:

m := 5; n : = 3; (* m, n are global*)

permute(m, n); (* A call to permute.

m is identified with x and n with y *)

After this call: m = 3 and n = 5.

Function in C to exchange two variables:

void permute(int *x, int *y)

{ /* A prefix * indicates a pointer */

int temp; /* temp automatic or local variable */

temp = *x; *x = *y; *y = temp;

}

In the main program, we write the following statements:

m = 5; n = 3; /* m, n are global integer variables*/

permute (&m , &n); /* Invoking permute. x is identified with &m,

similarly y with &n. In C, *&m is the same as m, *&n is n */

After the invocation, m = 3 and n = 5.

On the other hand, consider the following function.

void permute(int x, int y)

{ int temp; /* temp is local */

temp = x; x = y; y = temp;

}

The main program has instructions: m = 5; n = 3;

The call permute(m,n) does nothing as it swaps only the parameters

x and y and not the variables m and n. It leaves the value of

m,n unchanged.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 381 — #397 i
i

i
i

i
i

5.4. INTRODUCTION TO PROGRAMMING 381

5.4.2 Recursion

A recurrence relation is used to compute the terms of a sequence
from the given initial values and the previously computed values.
In mathematics, a function is said to be a recursive function if it
is defined partially in terms of itself.

Similarly, in programming, a function which calls (invokes) it-
self either directly or indirectly is referred to as a recursive func-
tion. A function F invoking itself, that is, there is a statement in
the body of the function F referring to itself, is called a direct re-
cursion. This means that in graphical terminology, we have a loop
around the vertex F . On the other hand, if the function F invokes
the function G, which in turn invokes the function H, which again
calls the function F , then such a situation is referred to as an in-
direct recursion. This means that we have a circuit of length three
(F , G, H, F). Each arc is interpreted as an invocation. Recursion
allows us to write compact and concise programs.

Example 5.4.8 (Recursive functions):
Recursive function:

The example which comes to our mind first is the factorial
function defined as follows:

For a positive integer n, factorial n is the product of all first n
natural numbers. More precisely,

n! =

{
1 if n = 0 (basis)
n(n− 1)! if n ≥ 1 (recursion.)

Let us write a function computing n! in Pascal and in C.
Factorial function in Pascal:

function fact(n : integer) : integer;

begin

if n = 0 then fact : = 1 (* basis*)

else fact : = n * fact (n - 1); (* recursive call*)

end;

Factorial function in C:

int fact(int n)

{ if (n == 0) return 1; /* basis */

return n*fact(n - 1);/* recursive call */

}

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 382 — #398 i
i

i
i

i
i

382 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Let us write a recursive function in C to find the gcd of two
integers m,n implementing the following algorithm:

gcd(m,n) =

{
m if n = 0 (basis)

gcd(n,m mod n) if n > 0 (recursion).

Recursive gcd function in C :

int gcd(int m,int n)//m>0,n>=0

{ if (n==0) return m;//basis

return gcd(n,m%n);//recursive call

}

We notice that these functions, “fact” and “gcd,” are a direct
translation of the mathematical definition of the factorial function
and the gcd algorithm. Further, we don’t need to declare any
auxiliary variable to write these functions!

Let us calculate the complexity of the function fact in the above
example:

Let T(n) be the time needed to compute the n! Then we have
the recurrence relation involving T (n):

T (n) =

{
1 if n = 0
T (n− 1) + 1 if n ≥ 1.

Notice that the basis case costs one unit of time, whereas the costs
of the statement involving recursion is T (n − 1) + 1, because the
cost of fact(n − 1) if T (n − 1) and the cost of multiplication * is
one unit.

Let us now solve the above recurrence relation.

T (n) = T (n− 1) + 1

Replacing n by n − 1, we get T (n − 1) = T (n − 1 − 1) + 1 =
T (n−2)+1. Substituting T (n−1) = T (n−2)+1 in the equation

T (n) = T (n− 1) + 1

we obtain,
T (n) = T (n− 2) + 2

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 383 — #399 i
i

i
i

i
i

5.4. INTRODUCTION TO PROGRAMMING 383

Continuing like this, we get after n steps, T (n) = T (n− n) + n =
T (0) + n = 1 + n by using T (0) = 1. T (n) is a linear function,
hence T (n) = O(n).

Let us write a non-recursive function computing n!.

Example 5.4.9 (Non-recursive factorial functions in Pascal and
C):
Non-recursive factorial function: Pascal function:

function fact (n: integer);

var i, f : integer; (* i an index variable*)

begin

(* initialization of i and f*)

i := 0; f : = 1; (* 0! = 1*)

while i < n do (* iteration*)

begin

i : = i + 1; f : = i * f;(* i! = i (i-1)!*)

end;

fact := f ;

end;

C factorial function:

int fact(int n)

{ int i, f;

i = 0; f = 1; /* initialization*/

while (i < n) /* iteration */

{ i = i + 1; f = i * f;

}

return f

}

Remark 5.4.2:
During the initialization in programming, an empty sum is defined
as zero because sum + 0 = sum whereas, an empty product is
defined as one, not zero, because product × 1 = product. That is
why we define 0! = 1, 20 = 1.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 384 — #400 i
i

i
i

i
i

384 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Example 5.4.10 (Fibonacci sequence):
The Fibonacci sequence (fn)n≥0 is defined as follows:

fn =


0 if n = 0
1 if n = 1
fn−1 + fn−2 otherwise.

Let us write a function in C computing the nth Fibonacci number.
The function fn has multiple (two) bases.

int fib(int n)

{ if (n == 0) return 0;/* basis*/

if (n == 1) return 1; /* basis */

return fib (n - 1) + fib (n - 2); /* two recursive calls*/

}

The above program is concise and compact but its complexity
is exponential! The reason is the following: terms of the sequence
are computed independently many times! (See the calling tree in
Figure 5.13.)

Figure 5.13: Tree illustrating the call fib(5)

This is an example to show that the recursion must not be used
blindly. Let us calculate the complexity of the function fib(n). Let

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 385 — #401 i
i

i
i

i
i

5.4. INTRODUCTION TO PROGRAMMING 385

T (n) be the time needed to compute the fib(n). Then we have the
following recurrence relation:

T (n) =


1 if n = 0
1 if n = 1
T (n− 1) + T (n− 2) + 1 otherwise.

Let us note that the two bases cost one unit each, the cost of
the call fib(n − 1) is T (n − 1), the cost of the call fib(n − 2) is
T (n − 2), and the cost of addition is one unit. We have to solve
this recurrence relation, that is, we have to express T (n) in terms
of n.

To this end, we introduce the displacement operator E defined
as below:

E0T (n) = T (n) and ET (n) = T (n+ 1). We define the compo-
sition EkT (n) = Ek−1(ET (n)) for k ≥ 2. E−1 is the inverse of E,
E−2 is the inverse of E2 etc.

Let us come back to the recurrence relation T (n) = T (n−1)+
T (n− 2) + 1. For convenience, replacing n by n+ 2, we get:

T (n+2) = T (n+1)+T (n)+1. Equivalently, using the operator
E, E2T (n) = ET (n) + T (n) + 1 which is

(E2 − E − 1)T (n) = 1

The characteristic equation of the above difference equation is x2−
x−1 = 0. Solving this quadratic equation we get, x = 1±

√
5

2
. Hence

the two roots are ϕ = 1+
√
5

2
, which is known as the golden ratio

and ϕ̂ = 1− ϕ.
Therefore, a solution of the recurrence relation T (n + 2) −

T (n + 1) − T (n) = 0 is T (n) = Aϕn + Bϕ̂n where A and B are
constants which can be found from the initial conditions. Since
the multiplicative constants can be ignored while using the big oh
notation, we don’t bother to find them explicitly.

Now we have to find a particular solution. A particular solution
is T (n) = 1

E2−E−1
1 = −(1 + E − E2)−11.

Using the fact that (1 + x)−1 = 1 − x + x2 − x3 + · · · we get
T (n) = −(1− (E − E2) + (E − E2)2 − · · ·)1. But E1 = 1. Hence
a particular solution is −1 (the reader may verify this by direct

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 386 — #402 i
i

i
i

i
i

386 CHAPTER 5. INTRODUCTION TO ALGORITHMS

substitution in the equation) and therefore the general solution of
the recurrence relation is

T (n) = Aϕn +Bϕ̂n − 1.

But limn→∞ ϕ̂n = 0 because |ϕ| ≈ | − 0.6| < 1. Hence T (n) =
O(ϕn) = O(2n). (Recall that we may ignore the terms of lower
order while calculating the complexity.)

A non-recursive program to compute fn

The recursive program to compute the n-th Fibonacci number
takes exponential time, as we have seen. We give below a simple
non-recursive program to compute fn which takes only linear time.

Example 5.4.11 (A non-recursive function in Pascal to compute
fn:):
Non-recursive function for fn

function fib(n : integer): integer;

var i, c_t, p_t, temp : integer;(* c_t, the current term and

p_t, the preceding term, temp, a temporary variable*)

begin

i := 1; c_t : =1 ; p_t : = 0;(* initialization*)

while i < n do

begin

temp : = c_t; i := i + 1;

c_t : = p_t + c_t; (* each term is the sum of the

two previous terms *)

p_t:= temp;

end;

fib := c_t;

end;

Clearly the complexity of this non-recursive function is O(n), since
there is only one dominating loop which is executed exactly (n−1)
times. The other statements inside the loop together require time
O(1). Hence the complexity is O(n).

The following Table 5.10 summarizes the complexities of vari-
ous constructs in programming, that will occur frequently in prac-
tice:

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 387 — #403 i
i

i
i

i
i

5.5. INTRODUCTION TO DATA STRUCTURES 387

Table 5.10: Summary of complexities of various constructs
Statement Complexity

Assignment: x := y;
(x, y are unstructured variables O(1)

like integer, real, Boolean, char etc.)
Compound statement:

begin S1, S2, . . . , Skend; O(max(Cost (S1),Cost (S2), . . . ,Cost (Sk))
Conditional statement:
if B then S1 else S2; O(Cost of evaluation of B + max(cost(S1), cost(S2))
Iterative statement:

while B do S O(Number of executions of the loop* cost(S))
(assuming the cost of evaluation of B = O(1))

for i:= 1 to n do S O(n)(assuming the cost of the statement S = O(1))

for i:= 1 to n do O(n2)(assuming the cost of the statement S = O(1))
for j:= 1 to n do

S

for i:= 1 to n do O(n3)(assuming the cost of the statement S = O(1))
for j:=1 to n do

for k:=1 to n do
S

Reading an unstructured variable or
Writing an unstructured variable O(1)

Writing an expression O(The cost of evaluating the expression)

5.5 Introduction to Data Structures

What are we to think of this question: Is Euclidean
geometry true? This question has no meaning. We
could as well ask: If Cartesian coordinates are true and
polar coordinates false? One geometry cannot be more
true than another, it can only be more convenient.

Henri Poincaré

Algorithms + Data Structures = Programs
N. Wirth [5]

Data structures are user-defined data types in contrast to built-
in data types like integer, real, Boolean. Built-in data structures
get machine support.

The problem-solving steps:
We are going to describe a method of solving problems known

as the top-down method, that is from the whole to the parts. The
top-down method leads to programs with inherent structure. The
dual method is referred to as the bottom-up method, that is from
the parts to the whole. There are three steps involved in the top-
down method.

1. In the top-down method, we have to find first of all, a
suitable mathematical model (other models are physical models,

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 388 — #404 i
i

i
i

i
i

388 CHAPTER 5. INTRODUCTION TO ALGORITHMS

logical models, etc.) representing the real-world problem. Some
examples of mathematical models are sequences, sets, trees, and
graphs. Once a suitable model is found, we try to find a solution in
terms of this mathematical model. Results concerning the model
can be used to solve the problem. We are interested in finding
a solution in the form of an algorithm. During this first step, we
express our algorithm in an informal way. This informal algorithm
will not contain many details.

2. In the second step, we progressively transform our informal
algorithm into a pseudo-program. A pseudo-program will have all
the essence of a working program without taking into considera-
tion the declarations of variables, types and syntax of a particular
language like C. It may also have statements like “Let m be a
minimum integer of the sequence S, etc.” This pseudo-code will
have more details compared to the informal algorithm. As we re-
fine the pseudo-code by taking into consideration more details of
the problem, we can identify the basic operations to be performed
on the different data types. (A data type is a collection of objects
together with various operations on the objects.) Once the oper-
ations on data types are identified, we create appropriate abstract
data types.

Mathematical Model + Various Operations defined
on the Model = Abstract Data Type.

Stacks and Queues are classic examples of abstract data types.
The idea of an abstract data type appears in the class type of the
language SIMULA67.

3. In the third and final step of the stepwise refinement, we
have to implement each of our abstract data types in a program-
ming language like Pascal or C. We must also refine each informal
instruction of the pseudo-code into a legal instruction of the lan-
guage in which we like to execute our program.

Abstract Data Type + Implementation = Data
Structure

The data or information (data/information is a finite sequence
of digits, letters, special symbols, etc.) to be manipulated by the

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 389 — #405 i
i

i
i

i
i

5.5. INTRODUCTION TO DATA STRUCTURES 389

computer, represents an abstraction on the part of the real world.
For example, the data concerning a student in a university are
perhaps his name, surname, date of birth, mailing address, courses,
etc. Most probably this data may not include details like color of
his hair, eyes, etc. The data we have at hand to manipulate inside
a computer should represent relevant details on the part of the
real world and must ignore other properties which are irrelevant
to the problem at hand.

We would like to organize or structure the data so that op-
erations on the data can be efficiently carried out, because our
goal is to minimize the time taken to execute an algorithm. The
operations that we would like to perform on the data are storing
information in the memory, retrieval of information found in the
memory, and modification of the information.

For example, consider a huge science library containing thou-
sands of books, scientific journals, reviews, indices, etc. In order
to use the library in an efficient way, the books should be arranged
according to the different disciplines (mathematics, computer sci-
ence, etc.). Further, the mathematics books may be divided into
various topics like topology, differential equations, etc. and inside
each such division the books are arranged according to the lex-
icographic order (like words in a dictionary) of the authors. Of
course we need library people who manage the library!

In a similar manner, the raw data we have at hand must be
given some structure in order to carry out the operations on the
data. In fact, data representation is a mapping of abstract struc-
ture into the computer store/memory. Of course this structuring
depends on the operations that will be performed by the algorithm.

The most basic way of organizing/representing a sequence or
list of n elements is by the idea of an array. The mathematical
counterpart of the concept of an array is the vector or a function
whose domain is an index set. A list is a mathematical object or
data model which is defined as follows.

A list is a sequence of zero or more elements (a1, a2, . . . , an)
where each element ai belongs to a given type. If n = 0, then
the list is an empty list. The operations we would like to perform
on this list are the following: Finding the length or the number of

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 390 — #406 i
i

i
i

i
i

390 CHAPTER 5. INTRODUCTION TO ALGORITHMS

elements of the list, inserting a new element in the i−th place, sup-
pressing the element in the j-th place, suppressing all the elements
of the list to get the empty list, etc.

Example 5.5.1 (List operations):
Consider the list L = (2, 1, 5, 0, 7) of integers. The length of the
list is 5. Insertion of the integer 4 in the 3rd place of L (before the
integer 5) modifies the list as L = (2, 1, 4, 5, 0, 7) and its length
becomes 6. Deleting or suppressing the last element, that is, the
6th element of L, gives L = (2, 1, 4, 5, 0). Deleting all the elements
of L leads to the empty list L = ().

The data model list is principally represented by the two data
structures called a one-dimensional array/vector (sequential allo-
cation of memory) and a linked list, using a pointer mechanism. A
pointer is a reference to an object usually implemented as a single
machine address.

Representation of a list by array: An array is an aggregate of
homogeneous data elements. Mathematically, an array is a map-
ping defined as follows in Pascal:

var a: array[domain type] of range type;

Quite often, the domain type of an array is a subset of integers.
In fact, the entire random access memory of a computer can be
viewed as an array where: memory: array[addresses] of word;
where word is an addressable unit of memory, that is, which has
its own address.

An array is represented as a finite number of contiguous mem-
ory spaces. Let us see how an array is declared in Pascal and C. In
Pascal an array “a” of 5 integers (here the elements are integers)
is defined as follows: var a: array[1..5] of integer;

The different integers of the array are a[1], . . . , a[5]. In the lan-
guage C, the same array is defined as follows: int a[4]; the different
integers of the array are a[0], . . . , a[4]. Note that in the language
C, the lower index of the array starts from zero. Further, in the
language C, the name of the array “a” also represents a pointer
to the first element of the array, which is a[0]. Hence, there are

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 391 — #407 i
i

i
i

i
i

5.5. INTRODUCTION TO DATA STRUCTURES 391

two representations of the ith integer of the array “a,” namely, a[i]
and ∗(a+ i). Mathematically, a[i] = ∗(a+ i).

Two-dimensional array or matrix

In mathematics, a matrix as we know is a rectangular array of
elements arranged into rows and columns. The elements usually
come from a field(real or complex). In the language Pascal, a
square matrix m consisting of n rows and n columns with integer
entries is defined as follows.

Matrix declaration in Pascal:

const n = 10;
var m: array[1..n,1..n] of integer;

The entry in the intersection of the ith row and jth column is
denoted by m[i, j]. The same matrix m is declared in the language
C as below.

Matrix declaration in C:
#define n = 10
int m[n-1][n-1];

The (i, j) entry of the matrix m is denoted by m[i][j]; Note that
the entries of m are m[0][0],m[0][1], . . . ,m[n − 1][n − 1]. As an
example of matrix manipulation, we shall study an algorithm to
construct a magic square of odd orders.

Algorithm to construct a magic square of odd order:

A magic square is an n × n square matrix m satisfying the
following properties.

1. Each entry belongs to the set { 1, 2, . . . , n2 }
2. The entries are all distinct.

3. The sum of the entries in each row and in each column and
in each of the two diagonals is the same.

The following example illustrates the magic square.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 392 — #408 i
i

i
i

i
i

392 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Example 5.5.2 (Magic square):
A 3× 3 magic square is given below.

8 1 6
3 5 7
4 9 2

The sum of the entries of each row and each column and each
diagonal is 15.

We shall now describe an algorithm to construct a magic square
of odd order.

Input: An empty n× n matrix m where n is an odd integer.
Output: An n× n magic square.
Algorithm: First of all, let us imagine three identical copies of

the matrix m, one copy in the direction north of the matrix m,
one copy in the direction east of the matrix m and one copy in the
direction north-east of the matrix m as indicated in the following
figure.

COPY COPY
m COPY

Now assign the integer 1 to the middle entry/cell of the 1st row/top
row of the matrix m. Then assign the integers 2, 3, . . . , n2 succes-
sively in this order to the cells of the matrix m by always traveling
in the north-east direction according to the following conditions.

(1) If we fall off the matrix m by traveling through north-east
↗ (since we travel always in the north-east direction ↗, if we
fall off the original matrix m, then we must land in one of the
cells of a copy of the matrix m). Assign the next integer to the
corresponding cell of the original matrix, if the corresponding cell
is not yet filled. Otherwise, assign the next integer to the cell
found just below the most recently filled cell.

(2) If we meet a cell of the original matrix which is already
filled while traveling in the north-east direction ↗, then assign
the next integer to the cell found just below ↓ the most recently
filled cell (see Example 5.5.2).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 393 — #409 i
i

i
i

i
i

5.5. INTRODUCTION TO DATA STRUCTURES 393

Let us write a program to construct a magic square of odd
order in the language C (see Figure 5.14). The program does not
use the row zero and the column zero of the matrix m[n][n]. Now
we will study the representation by linked list.

Representation of data model list by linked list

Each variable/node in the above figure consists of two fields: The
integer field and the pointer field. Such a variable can be de-
fined in Pascal by using the construction called “Record,” and in
the language C it is defined by means of the construction called
“struct” (structure). Its mathematical counterpart is the Carte-
sian product. An array is an aggregate of homogeneous data el-
ements whereas a record or structure is an aggregate of possibly
heterogeneous data elements. In other words, it is a group of vari-
ables which are individually accessed by their field names. The
field names are usually not integers as is the case with the arrays.
This allows us to use intuitive names for the fields.

Example 5.5.3:
Heterogeneous data types:

Let us define the data type of complex numbers in Pascal. A
complex number z is an expression of the form x+ iy where x and
y are real numbers with i =

√
−1. x is the real part of z and y

is the imaginary part of z. We now define the type “complex” in
Pascal.

type complex = record

rp : ;(* rp for real part *)

ip : real; (* ip for imaginary part *)

end;(see figure below)\\

real

Note that there is no “begin” for the type complex but “end” is
present. Let us define a variable z of type complex.

var z : complex; Now the variable z consists of two fields: rp
and ip. The real part of z is denoted by z.rp and the imaginary

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 394 — #410 i
i

i
i

i
i

394 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Figure 5.14: Program to construct a magic square of odd order

#include<stdio.h>
#define n=6
{int m[n][n],i,j,nei,nej,key;
//(i, j) the current cell;(nei, nej)
//cell in the north-east ↗ of (i, j)
//initialization of matrix m = 0
//m[i][j] = 0 if and only if the cell (i, j) is not yet filled
for (i = 1;i <= n,i++)

for(j = 1;j <= n;j++)
m[i][j] = 0;

//assign 1 to the middle cell of top row
m[1][n/2] = 1;i = 1; j = n/2;
(i, j) current cell
for (key = 2;key <= n ∗ n;key ++)
{//calculate the north-east cell of (i, j)

if (i == 1) //fall off m
nei = n;
else i = i− 1;
if (j == n) /:fall off m
nej = 1;
else j = j + 1;
if (m[nei][nej] == 0)//(nei, nej) not yet filled
{i = nei; j = nej;}
else i = i+ 1;//just get down one cell south ↓ of (i, j)
m[i][j] = key;

}
//print the magic square m
for (i = 1;i <= n,i++)
{
{for(j = 1;j <= n;j++)

printf(”%4d”,m[i][j]);
printf(”\n”);

}
}

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 395 — #411 i
i

i
i

i
i

5.5. INTRODUCTION TO DATA STRUCTURES 395

part of z is accessed by z.ip. A field is accessed by the name of the
variable which is z and the name of the field which can be either
rp or ip separated by a period. For example, the assignments
z.rp := 2 and z.ip := 3 set the complex number variable z to
z = 2 + 3i.

Figure 5.15: Illustration of record variable z

Let us now write a function in Pascal to find the modulus of
the complex number z where the modulus of z is denoted by |z|
and is equal to

√
x2 + y2.

function mod(z : complex): real;

(* The input parameter is z; The output type is real.

The name of the function is mod *)

begin

mod : = sqrt(z.rp*z.rp + z.ip*z.ip);

end;

The type complex is defined in the language C as follows:

struct complex { float rp; float ip };

/* note the semicolon after the right brace */

We now define a variable z of type complex as below:
complex z; The real part of z is denoted by z.rp and the imaginary
part is z.ip. The assignments z.rp = 2 and z.ip = 3 set the complex
number z = 2+3i. The modulus function is written in C as follows:

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 396 — #412 i
i

i
i

i
i

396 CHAPTER 5. INTRODUCTION TO ALGORITHMS

float mod(float z)

/* The input parameter is z. The return type is float.
The function name is mod.*/ return sqrt(z.rp ∗ z.rp+ z.ip.z.ip)
The square root function sqrt is found in the library routine
<math.h.>

Let us declare a type consisting of nodes in Pascal where each
node has two fields: a variable x of type integer and the second
variable called “next” which is a pointer or address or reference to
a variable of type node. A pointer is a reference to some object,
that is, a pointer variable is one whose value represents another
variable. Pointers are usually implemented as a single machine
address independent of what they point to. Pointers are used
for indirect addressing. Several pointers can point to the same
variable, but a pointer cannot point to two different variables.

Example 5.5.4:
Heterogeneous data elements:

type node = record

var x: integer;

next: ^node;

(* ^ is the notation of pointer in pascal.

^ is read as : points to *)

end;

This type node is of a recursive type, that is, to define the
type node we again use the node as its constituent. Note that
the keyword “end” is present without the keyword “begin.” This
declaration describes the formats of a variable of type “node.” A
variable v of type node may now be defined as follows:

var v: node;

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 397 — #413 i
i

i
i

i
i

5.5. INTRODUCTION TO DATA STRUCTURES 397

The variable v has two fields: (1) x and (2) next. The “x”
field of the variable v is denoted by v.x and the next field of v is
denoted by v.next. In other words, a field is accessed by the name
of the variable and the name of the field separated by a period, or
dot. The node pointed to by the pointer variable v.next is denoted
by v.next^. Note that the pointer notation ‘‘^’’ is written as a
postfix to the pointer variable v.next. There is a pointer constant
called “nil” which points nowhere. This is equivalent to the integer
0 among the set of integers and the empty set ∅ in the theory of
sets.

A variable of type ^node is declared as: var p: ^node; To create
a node to be pointed by the variable p, we invoke the predefined
procedure “new.” The instruction to create a new node to be
pointed (referenced) by p is new(p). new(p) creates a variable
of type node and puts a pointer to it in the variable p. The node
created by invoking the procedure new comes from a special region
of memory usually referred to as heap. The node just allocated by
the system is denoted by p̂. This is called the dynamic allocation
of variable p^.

Pictorially, to indicate that the variable p is a pointer to a
variable p, we draw an arrow from the variable p to the variable p
(see Figure 5.16).

Figure 5.16: Illustration of pointer variable

Note that the notation ^ is used in two different ways according
to the contexts. For example, if T is a type, then ^T represents
the pointer type; and if p is a variable of type ^T , then p^, called
the dereferencing operator, denotes the variable of type T pointed
by the pointer p.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 398 — #414 i
i

i
i

i
i

398 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Let us pause and look at an example of a linked list construc-
tion.

Example 5.5.5:
Linked list construction in Pascal:

Let us construct a linked list in Pascal representing the se-
quence (1, 2, . . . , n). The comma “,” between two successive in-
tegers can be interpreted as “pointers.” This list will consist of
exactly n nodes. If n = 0 then the list is empty. Finally, the
program prints the contents of the linked list. If the list is empty,
it prints nothing.

Algorithm: We create a node and store n, in the x field of this
node. Then another new node is created and n − 1 is assigned
to the x field of this new node and this node containing n − 1 is
attached to the node containing n. This process is repeated until
we arrive at 0. To print the list, we simply go through the list
node by node writing the contents until we arrive at the end of
the list. The end of the list is indicated by the pointer nil which
can be compared to the back door of the last compartment of a
train (don’t open it!).

program ptr_list;

type pointer = ^node

node = record

x:integer;

next: ^node;

end;

var head, t : pointer;(* head points to

the first node of the list

under construction.*)

begin

writeln(’enter a nonnegative integer’);

readln(n);

head := nil; (* initialize empty list *)

while n > 0 do

begin

new(t);

(* create a new node to be pointed by t *)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 399 — #415 i
i

i
i

i
i

5.5. INTRODUCTION TO DATA STRUCTURES 399

t^.x := n; (* store n in the x field of t^*)

t^.next := head; (* attach the node t^

as the first node of the list pointed by head *)

head := t; (* update head *)

n : = n - 1;

end; (* list is constructed*)

(* print the contents of the list *)

(* if the list is nonempty, then head=t *)

while head < > nil do

begin

writeln(t^.x, ’ ’);(* write x field t^ *)

t := t^.next;

(* move t one step forward in the list *)

end;

end.

In C, the type node is defined as follows using the keyword
“struct”:

struct node \{int x; struct node *next;\};

Note the semicolon after the closing brace }. An asterisk *
appearing as a prefix to a variable means a pointer variable, that
is, next is a pointer variable that will be referencing a variable of
type node.

A pointer variable t referencing a variable of type “node” can
be defined as follows:

struct node $*t$;\\

Now to create a variable of type node to be pointed by the variable
t, we use the following somewhat complicated instruction: t =
(struct node *) malloc(sizeof ∗t); (see the figure below)

x nextp

p ->

The instruction malloc (memory allocation) creates a variable
of type node and puts a reference to it in the variable t. These

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 400 — #416 i
i

i
i

i
i

400 CHAPTER 5. INTRODUCTION TO ALGORITHMS

nodes come from a special region of memory called heap. The
node just created by invoking the malloc function is denoted by
∗t or t− > (a minus sign followed by the greater-than sign). The
x field of the node t− > is denoted by t− > x and the pointer
field by t− >next. Finally, the pointer constant which points
nowhere is denoted by NULL (equivalent to 0 or ∅.) Note that
several pointers can point to the same node. Note that there are
two dereferencing operator notations. A prefix * attached to the
pointer variable t and a suffix − > written after the variable t.
(− > is the minus sign followed by the symbol greater than.)

In order to clarify these notations, let us now write a program
in C to represent the sequence (1, 2, . . . , n) by a linked allocation.
Once the linked list is constructed, the program prints the contents
of the list. The algorithm is the same as that of Example 5.5.5.

Example 5.5.6 (Linked list in C:):

#include <stdio.h>

struct node {int x; struct node *next;};

main()

{ int n;

struct node *head, *t;/* head points to the first node

of the list under construction*/

printf("enter a nonnegative integer\n");

scanf("%d",&n);

head = NULL; /* initialize empty list*/

while (n > 0)

{

t = (struct node *) malloc(sizeof *t); /*create

a node to be referenced by t*/

t->x = n; /* assign n to the x field of t->*/

t->next = head; /*attach the node t->

at the head of the list pointed by head*/

head = t; /*update head*/

n = n - 1;

}/* list construction is over*/

/* print the list. t = head if n > 0*/

while (head != NULL)

{

printf("%d", t->x, " ");/* print the x field of t-> */

t = t->next; /* move t one step forward in the list*/

}

}

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 401 — #417 i
i

i
i

i
i

5.5. INTRODUCTION TO DATA STRUCTURES 401

Remark 5.5.1:
A linked list is completely determined by a pointer to the first
node of the list.

Advantages of array representation:

Direct access: Access time to the ith element of the array is
independent of the index of the array i. In other words, the time
needed to attain any given element is a constant which is denoted
by O(1).

Calculation on indices: Since the index type of an array is often
a subset of the type integer, we can perform calculation on the set
of indices of the array.

Disadvantages of array representation:

Fixed size: In Pascal, the size of the array is fixed during the
declaration and cannot be changed thereafter. In the language C,
however, a programmer can fix the size of an array during execu-
tion (dynamic allocation of size). In the array implementation, the
programmer has to predict in advance the maximum number of
elements that the array will contain at any time during execution
and fix the maximum size of the array accordingly. This may lead
to wasted memory space.

Insertion and suppression: The operation of inserting a new
element in the ith place of the array, takes in the worst case O(n)
time, where n is the number of elements currently in the array.
This is because, to insert an element in the ith place, we have to
move the elements in places n, n−1, . . . , i one position to the right
(by imagining the array is drawn horizontally with the smallest
index at the far left), so that the ith cell of the array will be free
to receive the new element. Similarly, the operation of performing
suppression of the ith element of the array takes O(n) time in
the worst case. In the case of suppression of the ith element, we
have to move elements in positions i+ 1, i+ 2, . . . , n one position
to the left (again we assume that the array is drawn from left to
right with the least index at the far left). The following example
illustrates the insertion and suppression operation.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 402 — #418 i
i

i
i

i
i

402 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Example 5.5.7:
Insertion and suppression in an array:

Consider an array a of size n max. Assume that n is the num-
ber of elements currently in the array a and that the smallest index
is 1.

The following procedure in Pascal illustrates the operation of
inserting a new element x in the ith place. We suppose the fol-
lowing type declaration:

const n max = 1000; type vector = array[1..n max] of integer;

procedure insert(i,n: integer; var a : vector);

(* i,n are value parameters. a is the variable parameters.

a is modified by the procedure *)

var j : integer;

begin

if (n = n_max)

then writeln(’array is full’)

else if (i > n + 1) or (i < 1)

then writeln(’ position does not exist’)

else

begin

(* move integers at n, n - 1, ...,i one position

to the right *)

for j : = n downto i do

a[j + 1] : = a[j];

n : = n + 1; (* update n*)

(* insert x *)

a[i] := x;

end;

end;

Example 5.5.8 (Deleting an element from an array):
The following procedure deletes the integer at position i.

procedure suppression(i :integer; var a:vector);

(* i, the value parameter. a, the variable parameter.\\

suppression modifies a*)

var j:integer;

begin

if (i > n) or (i < 1)

then

writeln(’position does not exist’)

else

begin

n : = n - 1;(* update n*)

for j:= i to n do

(* move integers at i+1,i+2,... one position to the left*)

a[j]:= a[j+1];

end;

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 403 — #419 i
i

i
i

i
i

5.5. INTRODUCTION TO DATA STRUCTURES 403

end;

Advantages of linked list representation of a list:
A list is a “living thing,” since it is created (birth of the list),

then grows, shrinks, and finally destroyed during its lifetime. So in
the pointer implementation of the linked list, we need not impose
a bound on the number of elements in the sequence. The linked
list representation needs only as much space as the number of
elements currently on the list, but needs space for the pointer in
each node. The operations of insertion and suppression of a node
in the list can be performed in a constant amount of time, that is,
the time complexity of these operations is O(1).

Insertion in a linked list: Suppose we are interested in adding
a new node just after the node of the list pointed by a pointer t.
Let us suppose the declaration:

type pointer = ^node

node = record

x:integer;

next: ^node;

end;

Let p be a pointer to a variable of type node. Then to add a new
node (with its x field containing the integer n), just after the node
of the list referenced by t, the assignments found in Table 5.11 are
performed. (See Figure 5.17.)

Table 5.11: Linked list insertion
Statements Effects
(1) new(p); This instruction creates a node referenced by p.
(2) p^ : = n; Assign the integer n to the x field of p^.

(3) p^. x next := t^.next;
(4) t^.next = p; Attach the node p^ just after the node t^

Deleting a node from a linked list:
Consider a linked list whose nodes are defined as follows:

type pointer = ^node

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 404 — #420 i
i

i
i

i
i

404 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Figure 5.17: Linked list insertion

node = record

x:integer;

next: ^node;

end;

We are interested in deleting the node after the node referenced by
a pointer t. Note that to suppress a node, we must know a pointer
to the node preceding it. To do this, we perform the following two
assignments of pointers:

p:= t^.next; (here, p is a pointer variable)

t^.next := p^.next; dispose(p);

The predefined/built-in procedure “dispose” in Pascal, is the
inverse of the procedure “new.” The procedure dispose(p) allows
the system to claim the memory space occupied by the node ref-
erenced by the pointer variable p. The corresponding procedure in
C is “free” (see Figure 5.18).

Disadvantages of linked list representation: We have no direct
access to the ith node of the list. To access the ith node of the list,

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 405 — #421 i
i

i
i

i
i

5.5. INTRODUCTION TO DATA STRUCTURES 405

Figure 5.18: Linked list deletion

we have to move from the first node of the list in a step-by-step
manner. The complexity of performing such an operation in the
worst case is O(n) where n is the number of nodes currently in
the list. Also, no manipulation of field names is possible since the
field names are strings of characters.

Another disadvantage of the pointer implementation of a list
is that it needs extra space for the pointer in each node.

What implementation do we choose to represent a list? The
answer depends on the algorithm we use to process the list. We
have to organize the data in the memory of a computer so that the
operations of storage, retrieval and modification can be carried out
efficiently. If the principal operations of an algorithm on a list are
scanning the list, finding the ith element of the list, and swapping
the ith and jth elements of the list like in sorting algorithms, we
have to use an array implementation.

On the other hand, if the main operations of the algorithm
on the list are insertions and deletions of elements in arbitrary
positions, then the linked list implementation will be more appro-

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 406 — #422 i
i

i
i

i
i

406 CHAPTER 5. INTRODUCTION TO ALGORITHMS

priate.

5.5.1 Access Restricted Lists

Besides the actual universe, I can set in imagina-
tion other universes in which the laws are completely
different.

J.L. Synge

Stacks: A stack is a special case of a list in which the operations of
insertion and suppression of an element of the list are performed
at one end. (If the elements of a list are written from left to
right, then the list has two ends, the left end and right end.) The
end in which the operations of insertion and deletion are done is
called the top of the stack. An example of a stack is the set of
dishes in a cafeteria, where it is easy to remove the top dish or
add a new dish at the top of the pile. A stack is also referred
to as a “LIFO” (last-in-first-out) list. The operation of adding a
new element at the top is referred to as “push” and the reverse
operation of deleting the element at the top of the stack is called
“pop.” The main application of stacks is in the implementation
of recursion in programming languages. To convert a recursive
program into a non-recursive one, the programmer has to manage
the stack explicitly.

Example 5.5.9 (Stack operations):
Consider the stack S = (4, 0, 2, 4, 3). The stack grows from left
to right, that is, the top element of the stack is the rightmost
element 3 and the bottom element is the leftmost integer 4. Now
the operation of “push(S, 7)” gives the stack S = (4, 0, 2, 4, 3, 7).
The operation of “pop(S)” gives the stack S = (0, 2, 4, 3, 7). If
we now perform the operation of pop five times successively, we
are left with the empty stack S = (). If we now try to apply the
command pop(S), this is an error (like taking an element from an
empty set).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 407 — #423 i
i

i
i

i
i

5.5. INTRODUCTION TO DATA STRUCTURES 407

Figure 5.19: Stack operations

Remark 5.5.2:
We use, for the sake of convenience, the top-down notation for
stacks, that is, the stacks grow from bottom to top.

Let us write in Pascal the elementary operations associated
with a stack of integers, that is, the contents of the stack are
integers. We use the linked list representation of stack.

Example 5.5.10 (Elementary stack operations in Pascal using a
linked list):
Stack operations in Pascal

We assume the following types and variables:

type pointer = ^node

node = record

x: integer;

next: pointer;

end;

var head : pointer;(* head points to the top

of the stack which is under construction*)

We work with a global stack. Otherwise, the stack must be

passed as a variable parameter.

(* initialize empty stack*)

procedure init_stack;

begin

head : = nil;

end;

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 408 — #424 i
i

i
i

i
i

408 CHAPTER 5. INTRODUCTION TO ALGORITHMS

We now write a function testing if the stack is empty.

function is_stack_empty : boolean;

begin

if head = nil then is_stack_empty := true

else is_stack_empty := false;

end;

function stack_top : integer;

(* returns the ‘x’ field of the node at the top*)

begin

stack_top := head^.x;

end;

Of course the function ‘stack_top’ should be called only if

the stack is nonempty, because the test for nonempty

stack is not found in the function ‘stack_top.’

We now write the ‘push’ and ’pop’ operations.

procedure push(y : integer);

var t: pointer;

begin

new(t); (* create a new node pointed by t*)

t^.x = y;(*assign y to the x field of t^*)

t^.next := head; (*attach node t^

at the top of the stack*)

head := t;(*update head*)

end;

function pop: integer;

(*remove node at the top and return the x field

of the removed node*)

var t: pointer; y:integer;

begin

t := head; y:= t^.x;

head := t^.next;(* delete the node at the top*)

dispose(t);

pop := y;

end;

Of course this procedure should be called only if

the stack is nonempty, because the test for nonempty

stack is not found in the function ‘pop.’

Let us write the elementary stack operations in C with a linked
list. The items of the stack are integers.

Example 5.5.11 (Stack operations in C with a linked list):
We use the following definitions of type and variables:

struct node

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 409 — #425 i
i

i
i

i
i

5.5. INTRODUCTION TO DATA STRUCTURES 409

{int x; struct node *next; };

struct node *head;

/*initialize empty stack*/

void init_stack ()

{ head = NULL;

}

int is_stack_empty ()

{ return head == NULL;

}

int stack_top ()

{return head->x

}

Of course, the function ‘‘stack_top’’ must be called only when

the stack is nonempty, because the test for nonempty

stack is not inside the function.

void push (int y)

{ struct node *t;

/*create a node to be pointed by t*/

t = (struct node *) malloc(sizeof *t);

t->x = y; /*assign y to the x field of t->*/

t->next = head; /*attach t-> at the top of the stack*/

head = t;/*update head*/

}

int pop ()

{ struct node *t; int y;

t = head;

head = t->next;/*delete the node at the top*/

y = t->x;/*assign x field of t-> to y*/

free (t);

return y;

}

The following example illustrates the array implementation of
a stack of integers in C.

Example 5.5.12 (Array implementation of stack of integers in C):
Let us recall that to represent a stack by an array, a programmer
should predict somehow in advance the maximum size to which
the stack can grow during the execution of the program.

#define max_size = 50 /*stack of size max_size*/

int stack[max_size+1], top;

void init_stack()

{ top = 0;/*bottom most element at stack[1]*/

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 410 — #426 i
i

i
i

i
i

410 CHAPTER 5. INTRODUCTION TO ALGORITHMS

}

int is_stack_empty ()

{ return top == 0;

}

void push (int y)

{ stack[++top]=y;

}

Of course, the function should be called only when

the stack is not full, that is, if top is not max_size.

int pop ()

{ return stack[top--];

}

Of course, this function must be called only when

the stack is non empty,that is, if top is not 0.

int top_stack ()

{return stack[top]

}

This function should be called only when

the stack is non empty, that is,if top is not 0.

Data model queue

We shall now study another access restricted data structure called
“queue.” A common example of a queue is persons waiting at
the booking counter in a railway station. A queue is a special
kind of list in which the operation of insertion is performed at one
end of the list called the “end” or “rear” or “tail” of the list, and
the operation of deletion is performed at the other end of the list,
called the “front” or “head” of the list. The elementary operations
associated with a queue are the following: Initializing an empty
queue, finding the element at the head of the queue, insertion of
a new element at the end of the queue (enqueue), deletion of the
element at the front of the queue (dequeue), etc. As for stacks, we
study two queue implementations: 1. implementation by linked
list 2. Implementation by circular array.

Implementation of queue operations by linked list:

We draw the elements of the queue horizontally from left to
right (as we write) and consider the leftmost element as the head of
the queue and the rightmost element as the end of the queue. This

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 411 — #427 i
i

i
i

i
i

5.5. INTRODUCTION TO DATA STRUCTURES 411

is for the sake of convenience of implementation. As we have seen,
a stack is completely characterized by a pointer to the node to the
top of the stack, whereas a queue can be conveniently represented
by two pointers called “head” and “tail.” The following example
illustrates the basic operations of queues in Pascal using a linked
list.

Example 5.5.13 (Queue operations):
Consider the queue Q = (2, 1, 0, 5, 6) of integers. The head of
the queue points to the leftmost integer 2 and the tail of Q in-
dicates the integer 6. The operation of “enqueue(Q, 2)” modifies
the queue as Q = (2, 1, 0, 5, 6, 2). The operation “dequeue(Q)”
gives the queue Q = (1, 0, 5, 6). If the procedure “dequeue(Q)” is
invoked successively 5 times, then we will be left with the empty
queue Q = (). Now applying the command “dequeue(Q)” will lead
to an error message.

Example 5.5.14 (Linked list implementation of queues of integers
in Pascal):
We assume the following definition of types and variables:

type pointer = ^node

node = record

x : integer;

next: pointer;

end;

var head, tail : pointer;

Let us now write the basic operations of queues:

procedure init_queue;(* initialize empty queue*)

begin

head := nil;

end;

function is_queue_empty:boolean;

(* test if the queue is empty*)

begin

if head = nil then is_empty_queue := true

else is_empty_queue := false;

end;

function front: integer;

(* returns the x field of the node at the front*)

begin

front := head^.x;

end;

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 412 — #428 i
i

i
i

i
i

412 CHAPTER 5. INTRODUCTION TO ALGORITHMS

This function ‘‘front’’ should be called only if

the queue is nonempty.

procedure enqueue(y :integer);

(* enqueue adds a new node with its x field y

at the end of the queue*)

var t :pointer;

begin

new(t); (* creates a new node*)

t^.x := y; (* x field of t^ receives y*)

t^.next := nil;

if head = nil

then

begin

head := t;

tail := head;

end

else

tail^.next := t; (*attach t^ at the rear of the queue*)

tail := t; (* update tail*)

end;

Note that if the queue has exactly one node then

head and tail point to the only node of the queue.

function dequeue: integer;

(* deletes the front node and returns

its x field*)

var t: pointer; y :integer;

begin

t := head;

if head = tail (* queue with only one node*)

then tail := nil;

head:= t^.next;(* delete node at front*)

y := t^.x;

dispose (t);

dequeue := y;

end;

The above function must be called only

if the queue is non empty, that is, if

the head is not nil. Note also that

in the above implementation of queue commands,

there are two cases in which head and tail may

be equal: when the queue is empty and when

the queue consists of only one node.

Circular array representation of queues

A circular array is simply a linear array in which we imagine the
first element of the array follows the last element of the array.
There is an advantage in using the circular array instead of the

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 413 — #429 i
i

i
i

i
i

5.5. INTRODUCTION TO DATA STRUCTURES 413

linear array to represent a queue.

Let us clarify this with an example. Consider, for example, a
queue (linear but not circular) Q of 10 integers represented by an
array a, that is, the head of the queue is a[1] and the tail of the
queue is a[10]. Let us apply the operation “dequeue(Q)” 6 times
repetitively (draw a figure to follow). Then the head of Q points
to the index 7 and the tail remains unchanged. Now if we apply
the operation “enqueue” once, then the procedure reaches the end
of the array (remember the tail points to 10) and leads to the
error called “index out of bound” or “queue is full,” even though
the space is available at the beginning of the array! So in order
to make space, with the linear array representation of queues, we
have to move/shift the elements of the array regularly to the left
and the complexity of this operation in the worst case is O(n).

In the circular array representation of queues, we need not shift
the element regularly to the left of the array.

Let us illustrate the circular array representation by an exam-
ple.

Example 5.5.15 (Circular array representation of queue):
Consider the Q = (2, 1, 3, 4) represented by a circular array a
of length 10. The queue grows in a clockwise direction and the
integers are stored in consecutive positions in the circular array.
We may imagine the four integers stored in places with indices,
for example, 5, 6, 7, 8, that is, a[5] = 2, . . . , a[8] = 4. The head of
the queue is the index 5 and the tail is 8 (see Figure 5.20).

Now to perform “enqueue(Q, 7),” we simply increment the tail
by 1 and assign the integer 7 to a[tail]. Now tail = 9. Performing
another “enqueue(Q, 6)” makes the value of the tail equal to 10.
Finally, “enqueue(Q,0)” makes the value of the tail equal to 1,
because we imagine the first element follows the last, whose index
is 10. To perform the operation “dequeue,” we simply increment
the index “head” of the queue.

If we apply the operation of “dequeue” 7 times, then we are left
with the empty queue and head = 2 and tail is 1. This is exactly
the same relative position as when the queue had 10 elements, that
is, as when the queue is full. Hence we cannot distinguish between

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 414 — #430 i
i

i
i

i
i

414 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Figure 5.20: A circular list

an empty queue and a full queue. To avoid this problem, we allow
the queue to contain at most 9(= 10−1) elements.

From the above example, it is clear that one way to distinguish
the full queue from the empty queue is to permit only n − 1 ele-
ments in the queue where n is the maximum size of the circular
array. Let us now write the basic commands of a queue represented
by a circular array.

Example 5.5.16 (Basic operations of a queue in Pascal using a
circular array):
We assume the following declarations:

const n = 100;

var a : array[1..n] of integer;

head, tail : integer;

(*Even though the capacity of the array

is n, we allow only the maximum of n - 1 elements. This is

to avoid ambiguity in case of empty queue and the full queue.

We work with one global queue. Otherwise, the queue should

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 415 — #431 i
i

i
i

i
i

5.5. INTRODUCTION TO DATA STRUCTURES 415

be passed as a variable parameter. We now write the basic operations:*)

procedure init_queue;

begin

head := 1; tail := n;(* initialize empty queue *)

end;

function is_empty_queue : boolean;

begin

if ((tail mod n) + 1) = head

then is_empty_queue := true

else is_empty_queue := false;

end;

function is_queue_full : boolean ;

begin

if ((tail mod n) + 1) mod n + 1 = head

then is_queue_full := true

else is_queue_full := false;

end;

function front : integer;

(* returns the integer at the head of the queue*)

begin

front := a[head];

end;

This function ‘‘front’’ must be invoked only when the queue is non empty.

procedure enqueue(y : integer);

(* add y at the rear of the queue*)

begin

tail : = tail mod n + 1;

a[tail] := y;

end;

This procedure ‘‘enqueue’’ must be called only if the

queue is not full.

procedure dequeue;

begin

head := head mod n + 1;

end;

This procedure must be activated only if the queue is not empty.

For other data structures like binary trees, balanced trees, etc.,
the reader is referred to [3][6][5].

In the following section, we study examples of algorithms with
different complexity functions.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 416 — #432 i
i

i
i

i
i

416 CHAPTER 5. INTRODUCTION TO ALGORITHMS

5.6 Examples of Algorithms with Dif-

ferent Complexity Functions

O(n);O log n);O(n log n);O(n2);O(n3);O(2n);O(n!):
Example of an algorithm which takes O(n) time:
Sequential search in an array:

Input: An array a[1..n] of integers and an integer x to be
searched in the array.

Output: i if a[i] = x, that is, the integer x is in the ith position
of the array. −1 if x is not in the array.

Algorithm: Scan the array by comparing each element of the
array against x. If x is found in the ith position, then stop. If the
end of the array is reached without finding the element x, then
write −1.

The function in C implementing the sequential search algo-
rithm is given in Table 5.12. The complexity of the function in

Table 5.12: Sequential search in an array

int seq search(int a[],int l, int r)//l, left index, r, right
{for(int i = 1; i <= n; i++)

if (a[i] ==x) return i;
//if we reach here, then x not found in the array.
return -1;
}

Table 5.12:
In the worst case (case in which x is not in the array or in the

last position of the array), we make n comparisons. Hence the
complexity is O(n).
Example of an algorithm which takes O(log n) time:
Divide-and-Conquer Algorithms: Idea: To solve a problem P of
size n, we divide the problem P into two similar subproblems P1

and P2 of sizes approximately n/2 in such a way that the solution of
the original problem P is either the solution of the subproblem P1

or the solution of the subproblem P2. At each successive step, the
size of the subproblem is divided by 2. Hence, the successive sizes

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 417 — #433 i
i

i
i

i
i

5.6. EXAMPLES OF ALGORITHMS 417

of the subproblems are n/2, n/22, n/23, . . . , 1. Here n/2 is taken
either as the lower integer part ⌊n/2⌋ or as the upper integer part
⌈n/2⌉.

The following method, called the “bisection method,” is pro-
totypical of the divide-and-conquer algorithm.

Binary search or bisection method in an array:

Input: A sorted array a[1..n] of integers with a[1] ≤ a[2] ≤
· · · ≤ a[n] and an integer x to be searched in the array.

Output: i if a[i] = x, that is, the integer x is in the ith position
of the array. −1 if x is not in the array.

Algorithm: Set m=(1+n)/2; Compare the element a[m]
against x. If equality holds then write i and stop. Otherwise,
we must have either a[m] < x or a[m] > x, since the array is
sorted. If a[m] > x, then try searching x in the first half of the
array a[1..m− 1]. Otherwise we search x in the second half of the
array a[m + 1..n] and continue till we find the element x or the
size of the array searched is negative!

The function in C implementing the binary search algorithm is
given in Table 5.13. The complexity of the function in Table 5.13:

Table 5.13: Binary search in an array

int bin search(int a[],int l, int r)//l for left index. r for right.
{ int m;
//m, the middle index
while(l <= r)
{

m=(l+r)/2;
if (a[m] == x) return m;
if (a[m] > x) r = m− 1; else l = m+ 1;

}
//l > r. if we reach here, x is not found in the array.
return -1;
}

Let T (n) be the time required to search x in an array of n
elements. If the array consists of one element then we compare x

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 418 — #434 i
i

i
i

i
i

418 CHAPTER 5. INTRODUCTION TO ALGORITHMS

against the unique element. Otherwise, we find the middle index
and restrict our search either in the first half of the array or in the
second half of the array. Thus we have the following recurrence
relation for T (n).

T (n) =

{
1 if n = 1
T (n/2) + 1 if n > 1

In the equation T (n) = T (n/2)+1, T (n/2) is the cost of searching
in a half array and +1 is the cost of halving the array (m =
(l + r)/2.)

Let us solve the equation in the special case where n = 2k, that
is, n is a power of 2.

We have to solve the equation

T (2k) = T (2k−1) + 1

Replacing k by k − 1, we get,

T (2k−1) = T (2k−2) + 1

Plugging T (2k−1) = T (2k−2) + 1 into the right-hand side of the
equation T (2k) = T (2k−1) + 1, we get

T (2k) = T (2k−2) + 2

Similarly, we can get the next recurrence equation

T (2k) = T (2k−3) + 3

Continuing like this, we get finally,

T (2k) = T (2k−k) + k = T (1) + k = 1 + k

But 2k = n. Hence k = log2 n.
Therefore, T (n) = log2 n+ 1 = O(log n).

Example of an algorithm with complexity O(n log n).
Divide-and-conquer algorithm:

Consider a problem P of size n. This complexity arises in the
following case. We divide the problem P of size n into two similar

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 419 — #435 i
i

i
i

i
i

5.6. EXAMPLES OF ALGORITHMS 419

Figure 5.21: Illustration of the divide-and-conquer method

subproblems P1 and P2, each of size approximately n/2. Then we
solve the two subproblems independently and combine the solu-
tions of the subproblems P1 and P2 into a solution of the original
problem P (see Figure 5.21).
Paradigm of the divide-and-conquer recurrence rela-
tion [3]:
We first prove that the following recurrence relation concerning
the complexity of divide-and-conquer algorithms. The complexity
depends on the following factors:

1. The number of subproblems

2. The size of the subproblems

3. Effort necessary to split the original problem into subprob-
lems

Theorem 5.6.1 (Divide-and-conquer paradigm):
Consider three nonnegative constants a, b, c. Suppose the recur-
rence relation

T (n) =

{
b if n = 1
aT (n/c) + bn if n > 1

If n is a power of c then the solution to the recurrence relation is

T (n) =


O(n) if a < c
O(n log n) if a = c
O(nlogc a) if a > c.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 420 — #436 i
i

i
i

i
i

420 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Proof. Since n is a power of c, set n = ck or k = logc n. Then

T (ck) = aT (ck−1) + bck

Replace k by k− 1, we get, T (ck−1) = aT (ck−2) + bck−1. Plugging
T (ck−1) = aT (ck−2)+bck−1 into the right-hand side of the equation
T (ck) = aT (ck−1) + bck we get,

T (ck) = a2T (ck−2) + abck−1 + bck

Replacing k by k−2 in T (ck) = aT (ck−1)+bck and substituting on
the right-hand side of the equation T (ck) = a2T (ck−2)+abck−1+bck

we get,

T (ck) = a3T (ck−3) + a2bck−2 + abck−1 + bck

...
T (ck) = akT (ck−k) + ak−1bc+ ak−2bc2 + · · ·+ ak−kbck

T (ck) = bck
(
(a/c)k + (a/c)k−1 + · · ·+ (a/c) + 1

)
The expression inside the bracket is a geometric series. Set the
common ratio r = a/c.

T (n) = bn
(
rk + rk−1 + · · ·+ r + 1

)
Case 1. r = a/c < 1. Then the geometric series

∑∞
i=0 r

i converges
to 1/(1− r). Hence in this case, T (n) < bn/(1− r) = O(n) (since
b and r are constants).

Case 2. a = c. Then a/c = 1 and T (n) = bn(k + 1) =
bn(logc n+ 1) = O(n log n).

Case 3. a > c.
T (n) = bn rk+1−1

r−1
. Now rk+1 = r × rk = r × (a/c)k =

r×
(
ak/ck

)
= r×

(
ak/n

)
. Plugging in rk+1 = r×

(
ak/n

)
and sim-

plifying we get T (n) = b/(r − 1) ×
(
rak − n

)
. T (n) = O(nlogc a).

Since r, b are constants, ak = alogc n = nlogca, logc a > 1, and by
the rule of sum we can ignore n before nlogca.

As an example of an O(n log n) divide-and-conquer algorithm
(in the average case), we study Quick Sort invented by Hoare.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 421 — #437 i
i

i
i

i
i

5.6. EXAMPLES OF ALGORITHMS 421

Quick sort or partition sort:
Input: An array a[1..n] of integers.

Output: A permutation of the elements of the array such that

a[1] ≤ a[2] ≤ · · · ≤ a[n]

Algorithm: (Quick sort)
Quick sort is based on the following partition method. We

choose an element of the array as the pivot element. Following
Sedgewick [2], we choose the rightmost element a[n] as the pivot
element. Then we split the array satisfying the following three
properties:

1. The pivot element is in its final position, that is, had the
array been sorted, the pivot element would have occupied
the current position after the split.

2. All the elements to the left of the pivot element are less than
or equal to the pivot element.

3. All the elements to the right of the pivot elements are greater
than or equal to the pivot element.

Assume that the pivot element occupies the kth position after the
split. Then we have: a[1], a[2], . . . , a[k − 1] all are ≤ a[k] and
a[k + 1], a[k + 2], . . . , a[n] are all ≥ a[k].

Then we apply the partitioning process recursively to the ele-
ments left of a[k] and to the elements right of a[k] and so on till
we arrive at a single element array which is clearly sorted. The
following example illustrates the partitioning process.

Example 5.6.1 (Quick sort):
Consider the array a = (5, 2, 6, 5, 2, 3, 4).

The size of the array is n = 7. We are going to apply the
partitioning process to the array a. Consider as the pivot element
the rightmost element a[7] = 4. Scan the array from left to right
comparing the array elements with the pivot element 4. During
the scan, if we come across an integer which is greater than or

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 422 — #438 i
i

i
i

i
i

422 CHAPTER 5. INTRODUCTION TO ALGORITHMS

equal to the pivot element we stop the scan. In the example, the
very first element of the array a[1] = 5 stops the scan.

Now we scan the array from (n − 1)st to the left. If we come
across an integer less than or equal to the pivot integer we stop
the scan. In the example, the element a[6] = 3 stops the scan.

Now we exchange the two elements which stopped the scans,
that is, we permute the elements a[1] and a[6] to get the array
a = (3, 2, 6, 5, 2, 5, 4).

The scan from the left continues from the second element.
Since 2 ̸≥ 4, we move to the next element 6. But 6 > 4. Hence the
left scan stops at a[3].

The scan from the right continues from the 5th element. Since
2 ̸≥ 4, the right scan stops at a[5].

We now exchange the elements a[3] and a[5] to get the array
a = (3, 2, 2, 5, 6, 5, 4).

We continue the left scan from the 4th element of the array.
Since 5 > 4 the left scan stops at a[4]. We continue the right scan
from the 4th element. Since 5 > 4, we move to the third element.
But a[3] = 2 < 4, and the right scan stops at a[3].

The scans stop now since the left-to-right scan and the right-
to-left scan pointers crossed each other (left scan stopped at the
index 4 and the right at the index 3) and the condition to stop
the scans is that the right index is less than or equal to the left
index, which is 3 ≤ 4. Finally, we exchange the element where the
left scan stopped with the pivot element to complete the partition.
That is, exchange the elements a[4] and a[7] to get the partitioned
array a = (3, 2, 2, 4, 6, 5, 5).

In the above array, we see that 4 is in the final position and all
elements to the left of a[4] are less than or equal to a[4] = 4 and
all elements to the right of a[4] are greater than or equal to a[4].

Now we apply the partitioning process to the left array (3, 2, 2)
and the right array (6, 5, 5). Note that we have partitioned the
initial array of size 7 into two subarrays of size 3 = 7/2 each and
an array consisting of singleton pivot element. We continue the
partitioning process till we obtain an array consisting of only one
element which is clearly sorted.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 423 — #439 i
i

i
i

i
i

5.6. EXAMPLES OF ALGORITHMS 423

Let us write the quick sort algorithm in C. We write a recursive
function quicksort in C. The function takes array a as a parameter.
It also takes two integer parameters l for the left end of the array
(lower limit) and r for thee right end (upper limit) of the array
(see Table 5.14). It remains to write the function “split.”

Table 5.14: Quick sort algorithm in C

void quicksort(int a[],int l, int r)
{
int k;
if (r <= l) return;//if array ‘a’ has fewer than 2 elements, do
nothing
k=split(a,l,r);//call to the function split
quicksort(a,l,k-1);//recursive call to the left subarray
quicksort(a,k+1,r);//recursive call to the right subarray
}

Table 5.15: Partition function in C

int split(int a[],int l, int r)
{int pivot,t,k,j;
//index k scans array a from left to right. j scans from right
to left

pivot=a[r];k=l-1;j=r;
do{
do k++; while(a[k] < pivot);//pivot element acts as

sentinel
do j–; while(a[j] > pivot)&&(j! = l);

//(j! = l)?:to stop the scan when pivot is the smallest in the
array

t=a[k];a[k]=a[j];a[j]=t;//
while (j > k)}//quit loop with j ≤ k.

a[j]=a[k];a[k]=a[r];a[r]=t;// return k; }

The function split in C: An additional exchange of a[k] and
a[j] is performed when j < k just after the two scan indices j

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 424 — #440 i
i

i
i

i
i

424 CHAPTER 5. INTRODUCTION TO ALGORITHMS

and k cross but before the crossing is found and the outer most
“do loop” is quit. The three assignment statements before the
“return k” permutes a[k] and a[j] (to compensate the extra per-
mutation performed) and a[k] with a[r] to put the pivot into the
final position.

The complexity of the quick sort algorithm

Best case (the most favorable case): If we are “extremely lucky,”
then the pivot element will always partition the array in the mid-
dle. In this most favorable case, we have the following recurrence
relation involving T (n), the time to perform the quick sort.

T (1) = 1

T (n) = 2T (n/2) + n if n > 1

The recurrence relation T (n) = 2T (n/2)+n says that the problem
of size n is split into two subproblems of size n/2 (the term 2T (n/2)
reflects this) with an effort of split n (the term +n reflects this.)
In fact, the effort needed to split the array is exactly n − 1 but
n− 1 = O(n). This is done for the sake of convenience.

By Theorem 5.6.1, the solution of the recurrence is T (n) =
O(n log n) since a = c = 2 and b = 1.

Worst case (the most unfavorable case): In the most unfavor-
able case (for example, if the pivot element happens to be the
largest element of the array), the array will be split into two sub-
arrays of size n− 1 and 0 because the pivot element occupies the
last position of the array. In this way, every scan from left to right
and right to left fixes only one element. The cost of such a scan is
O(n). Hence to fix n elements, the complexity is T (n) = O(n2).

Average case: The main power of quick sort is that its ex-
pected complexity is O(n log n).

Theorem 5.6.2 (Average complexity of quick sort):
The program of Table 5.14 takes O(n log n) expected time to sort
an array of n integers.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 425 — #441 i
i

i
i

i
i

5.6. EXAMPLES OF ALGORITHMS 425

Proof. In the time analysis, we shall use the fact that the harmonic
discrete sum 1 + 1

2
+ 1

3
+ · · · + 1

n
can be approximated by the

integral
∫ n

1
1
x
dx ; that is,∫ n

1

1

x
dx ≈ 1 +

1

2
+

1

3
+ · · ·+ 1

n

In order to simplify the time analysis, let us assume that all the
integers of the array are distinct.

Let T (n) be the average time taken by the program 5.14.
If the array consists of fewer than two integers, we do nothing.

Hence
T (0) = T (1) = 1 (basis of the recursion)

Now for the recursion step. The call split(l, r) (with l = 1 and r =
n) puts the pivot element in its final position k, after comparing
all other elements of the array with the pivot. Since the size of
the array is n, this scan requires exactly n − 1 comparisons but
n− 1 = O(n).

The two recursive calls quicksort(l, k−1) and quicksort(k+1, r)
(with l = 1 and r = n) of the program 5.14 have an expected
complexity of

T (k − 1) and T (n− k) respectively

Since the final index k of the pivot element is equally likely to take
any value between 1 and n, the probability that the pivot occupies
the kth index is 1/n for each k with 1 ≤ k ≤ n. Hence we have
the recurrence relationship

T (n) = n+
1

n

n∑
k=1

[T (k − 1) + T (n− k)], for n ≥ 2 (recurrence)

We have to solve the above recurrence relation. First let us note
that,

∑n
k=1 T (k−1) = T (0)+T (1)+· · ·+T (n−1) and

∑n
k=1 T (n−

k) = T (n− 1) + T (n− 2)) + · · ·+ T (0). Hence,
∑n

k=1 T (k − 1) =∑n
k=1 T (n− k). With this algebraic manipulation, the recurrence

relation becomes,

T (n) = n+
2

n

n∑
k=1

T (k − 1)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 426 — #442 i
i

i
i

i
i

426 CHAPTER 5. INTRODUCTION TO ALGORITHMS

To eliminate the denominator n in the above relation, we multiply
both sides by n, to obtain,

nT (n) = n2 + 2
n∑

k=1

T (k − 1)

Now to eliminate the sum
∑

, we replace n by n− 1 in the above,
and subtract the two recurrences: nT (n)− (n−1)T (n−1) = n2−
(n−1)2+2[(T (0)+T (1)+·+T (n−1))−(T (0)+T (1)+· · ·+T (n−2))]
which simplifies to nT (n) = (n+1)T (n−1)+2n−1. Divide both
sides of the above equation by n(n+1), and we get the recurrence
which telescopes:

T (n)

n+ 1
=

T (n− 1)

n
+

2

n+ 1
− 1

n(n+ 1)

=
T (n− 1)

n
+

2

n+ 1
− 1

n
+

1

n+ 1

=
T (n− 1)

n
+

3

n+ 1
− 1

n

(n← n− 1) =
T (n− 2)

n− 1
+

3

n
− 1

n− 1
+

3

n+ 1
− 1

n

=
...

=
T (n− n)
n− (n− 1)

+ 3
n+1∑
k=2

1

k
−

n∑
k=1

1

k

≈ T (0) + 3

∫ n

1

(1/x) dx−
∫ n

1

(1/x) dx

(T (0) = 1) ≈ 1 + 3 log n− log n

≈ 1 + 2 log n

Hence, T (n) ≈ (1+2 log n)(n+1) = O(n log n) by the sum rule of
big O-notation. (Recall that in the O-notation, a “big” term eats
away the “small” ones.)

Example of an algorithm with complexity O(n log n).
Complexity of the greatest common divisor algorithm:

Let us recall the gcd algorithm:

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 427 — #443 i
i

i
i

i
i

5.6. EXAMPLES OF ALGORITHMS 427

Table 5.16: gcd function in C.

Function in C :
int gcd(int m, int n)

{ if (m%n == 0) return n;//basis
return gcd(n,m%n);//recursion

}

Input: Two positive integers m,n with m > n.
Output: The gcd of m and n.
Algorithm:

gcd(m,n) =

{
n if m mod n = 0
gcd(n,m mod n) otherwise.

We shall prove that the complexity of the function in Table 5.16
is O(log m). We shall first prove that after two recursive calls,
the size of the problem m is reduced by at least 2. For this,
we show that m%n ≤ m/2. If n < m/2, we have m%n < n
(because the remainder is always ¡ the divisor). If n > m/2, the
quotient of the division of m by n is m− n. But n > m/2, hence,
m − n < m/2. The case n = m/2 is not taken into account,
because in this case m%n = 0 and hence gcd(m mod n) = n and
the program terminates immediately with complexity O(1).

After two calls we have : gcd(m,n) = gcd(n,m%n) = gcd
(m%n, n%(m%n)). Since m%n < m/2 (as we have already
shown), the original value of m is at least reduced by 2. Therefore
we have the following recurrence relation:

T (m) ≤
{

1 if m mod n = 0 basis
2 + T (m/2) otherwise.

In the expression 2 + T (m/2), the 2 represents the cost of two
calls. Let us solve this in the special case where m is a power of
2, say m = 2k. In the worst case, we have the equality instead of
inequality in the recurrence. Plugging m = 2k, we get,

T (2k) = 2 + T (2k−1)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 428 — #444 i
i

i
i

i
i

428 CHAPTER 5. INTRODUCTION TO ALGORITHMS

changing k into k − 1, = 2 + T (2k−2)

plugging the second equation into first T (2k) = 2× 2 + T (2k−2)

similarly T (2k) = 3× 2 + T (2k−2)

...

T (2k) = 2k + T (2k−k = 1)

But T (1) = 1. Hence T (m) = 2k + 1. Since 2k = m, we have
k = log2 m. Therefore T (m) = 2 log2 m + 1 = O(log2 m). This is
a polynomial time algorithm, because we express the integer m in
binary we need only log2 m bits not m bits.
Generating prime numbers: (Sieve of Eratosthenes)
Let us write a program in C to generate all prime numbers less
than or equal to a given integer (see Chapter 2).

Program to generate all primes ≤ n. We use an array a[1 : n]
of integers.

Initialization: We initialize the array as a[i] = 1 for all i from
2 to n. This is equivalent (simulation) to writing all the numbers
from 2 to n in a list.

Iteration: First we erase all the multiples of 2 from the list,
that is, we erase 4,6,. . . (all even numbers from 4), next we erase
all multiples of 3, that is, 6,9,. . . , then all multiples of 5 (since 4 is
already erased, we don’t consider its multiples which are already
erased) that is, 10,15,. . . , till we arrive at the middle of the list
which is n/2. This phase of erasing is simulated by setting to zero
the array elements which correspond to indices which are known
to be composite.

The complexity of sieve algorithm: The size of the problem
is N. Initialization takes O(N), because there is one loop from
2 to N − 1 and N − 2 = O(N). The inner for loop is executed
N/2, N/3, N/4, . . . , 2 times respectively. Hence the complexity is

T (N) = N (for initialization) +N/2 +N/3 + · · ·+ 2

≤ N +N/2 +N/3 + · · ·+ 2 + 1

≤ N(1 + 1/2 + 1/3 + · · ·+ 1/N)

But 1+1/2+1/3+· · ·+1/N ≈
∫ N

1
1/x dx = loge N. Hence T (N) =

Nlog N. In fact by optimizing the program, and using a some-

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 429 — #445 i
i

i
i

i
i

5.6. EXAMPLES OF ALGORITHMS 429

Table 5.17: Program to generate all primes ≤ n.

#include<stdio.h>//reference to input-output library
#define N 10000// constant N
int main()
{
int i,j,a[N];
//initialization of array: list numbers from 2 to n
for(i = 2;i < N ;i++) a[i] = 1;
//iteration
for(i = 2;i < N/2;i++)
//erase multiples of i

for(j = 2;j < N/i;j ++) //N ×N/i = N
a[i ∗ j] = 0;//i× j is composite

//write the primes 10 per row
j = 0;//j counter
for(i = 2;i < N ;i++)
{

if (a[i] == 1)
{printf(”%5d”, a[i]); j ++;}/*print the prime and

update counter*/
if (j == 10) printf(”\n”);//new line

}
return 0; }

what deep result of number theory, it can be proved that T (N) =
O(N log(log N)) (because

∑N
i=1

i, prime
1/i = O(N log(log N))).

Example of an algorithm with complexity O(n2):

Elementary sorting: (Sorting by selection)

Input: An array a[1..n] of integers.

Output: A permutation of the array elements with the prop-
erty a[1] ≤ a[2] ≤ a[3] · · · ≤ a[n].

Algorithm: (Sorting by selection)

Find the smallest of the array a[1..n] and exchange it with the
first element a[1].

Find the smallest element in the array a[2..n] and exchange it

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 430 — #446 i
i

i
i

i
i

430 CHAPTER 5. INTRODUCTION TO ALGORITHMS

with a[2], etc.

More generally, find the smallest element in a[i..n] and ex-
change it with a[i].

Finally, find the smallest element in a[n − 1..n] and exchange
it with a[n− 1]. We present the algorithm in pseudo-code:

For i from 1 to n-1 do
begin
let a[k] = min a[i..n]
exchange (a[k], a[i])
end

Let us illustrate the algorithm by an example.

Example 5.6.2 (Selection sort):
Consider the array a = (7, 8, 6, 2, 5, 2)) as input. Here n = 6.
A smallest element in a[1..6] is a[4] = 2 and exchange a[4] and
a[1] to get the array a = (2, 8, 6, 7, 5, 2). The smallest element in
a[2..6] is a[6] = 2 and exchange a[2] and a[6] to get the array
a = (2, 2, 6, 7, 5, 8). The successive arrays are a = (2, 2, 5, 7, 6, 8),
a = (2, 2, 5, 6, 7, 8), a = (2, 2, 5, 6, 7, 8)

There are five iterations.

Let us write a function in C implementing the selection sort
(see Table 5.18).

Complexity of the selection sort:

Let T (n) be the time to sort n integers by the selection sort
function of Table 5.18. The instructions inside the inner loop
take O(1) (recall that O(1) represents a constant). There are 3
assignments and each costs a unit of time. Hence the total cost is
3 = O(1).

The inner loop is executed n − i times. The external loop is
executed n− 1 times. Hence,

T (n) =
n−1∑
i=1

n−i∑
j=1

1

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 431 — #447 i
i

i
i

i
i

5.6. EXAMPLES OF ALGORITHMS 431

Table 5.18: Selection sort

void selection(int a[],int l, int r)//l, left index, r, right
{
int i,j,k,t;//i,j for loops.
for (i = 1; i < n; i++)
{//initialization of k
k=i;
for (j = i+ 1; j ≤ n; j ++)

if (a[j] < a[k]) k=j;
//exchange a[k] and a[i]

t=a[k];a[k]=a[i];a[i]=t;}
}

T (n) =
n−1∑
i=1

(

(n−i)terms︷ ︸︸ ︷
1 + 1 + · · ·+ 1)

T (n) =
n−1∑
i=1

(n− i)

T (n) = (n− 1) + (n− 2) + · · ·+ 1 =
(n− 1)n

2

= A polynomial of degree 2 = O(n2).

Example of an algorithm of complexity O(n3):

Matrix multiplication:

Input: Two matrices An×n = (aij) and Bn×n = (bij) with
integer entries.

Output: The product matrix Cn×n = A×B where C = (cij).

Algorithm: Just use the definition of the product of two ma-
trices.

cij =
n∑

k=1

aik ∗ bkj for all i, j = 1, 2, . . . , n.

We give a fragment of the program in C (see Table 5.19).

The complexity of the matrix multiplication program:

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 432 — #448 i
i

i
i

i
i

432 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Table 5.19: Matrix multiplication program

int i,j,k,s;
//initialization of C
for (i = 1; i <= n; i++)

for (j = 1; j <= n; j ++)
c[i][j]=0;

//end of initialization of C
for (i = 1; i <= n; i++)

for (j = 1; j <= n; j ++)
for (k = 1; k <= n; k ++)

c[i][j]=c[i][j]+a[i][k]*b[k][j];

Let T (n) be the cost of multiplying two n × n matrices. The
instruction c[i][j]=c[i][j]+a[i][k]*b[k][j] costs one unit of time.

Hence

T (n) =
n∑

i=1

n∑
j=1

n∑
k=1

1

T (n) =
n∑

i=1

n∑
j=1

n

T (n) =
n∑

i=1

(

n terms︷ ︸︸ ︷
n+ n+ · · ·+ n)

T (n) =
n∑

i=1

n2

T (n) = (

n terms︷ ︸︸ ︷
n2 + n2 + · · ·+ n2) = n3 = O(n3)

Example of an algorithm with complexity O(2n):
(See the excellent book by Sedgewick [2]).

Towers of Brahma-Hanoi puzzle:
The puzzle consists of three pegs A, B, and C. We assume that

A, B, and C are arranged in a clockwise direction in the form of a
triangle. Initially, peg A has on it some number n of disks, starting

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 433 — #449 i
i

i
i

i
i

5.6. EXAMPLES OF ALGORITHMS 433

with the largest one on the bottom and successively smaller ones
on top, as shown in Figure 5.23.

Figure 5.22: Illustration of the Brahma-Hanoi puzzle

The aim of the puzzle is to move the disks one at a time from
peg to peg, never placing a larger disk on top of a smaller one,
finally arriving with all the disks on peg B. Peg C may be used as
an auxiliary peg. This problem is due to the French mathematician
Edouard Lucas (1883). The tower of Brahma has 64 disks and
the tower of Hanoi has 8 disks. According to a romantic legend
by Lucas, Lord Brahma in the beginning of the creation of the
universe, placed these 64 golden disks stacked in decreasing size
on peg A. Brahma then ordained a group of priests to transfer all
the 64 disks from peg A to peg B. When the priest finished the
transfer of all the disks, the world will end (see [4]).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 434 — #450 i
i

i
i

i
i

434 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Algorithm (divide-and-conquer):
Suppose we know how to transfer n − 1 disks from one peg to
another. Divide the problem of moving n disks into two similar
subproblems of size n − 1. First transfer the n − 1 smallest disks
from peg A to peg C leaving the largest disk on peg A.

Transfer the largest disk from A to B. Then move the n − 1
smallest disk from C to B.

Although the exact transfer of individual disks is not clear,
and hand simulation is difficult because of the successive and deep
recursive calls, the algorithm is easy to understand. We can also
prove easily that the algorithm works correctly.

Let us write a recursive program in C (see Table 5.20):
Imagine the pegs arranged in the form of a triangle.

Table 5.20: C function for Brahma Hanoi puzzle

void Brahma Honoi(int n, int d)
{//d for direction. d=+1 clockwise transfer of disk, d=-1 anti-
clockwise move
if (n==0) return;// 0 disks. do nothing
Brahma Honoi(n-1, -d);//move n − 1 disks from peg A to peg
C
printf(”%d ”, n*d);//move nth disk from peg A to peg B
Brahma Honoi(n-1,-d);//move n− 1 disks from peg C to peg B
}

A call to Brahma Hanoi(3,+1) will print the following sequence of
moves (n=3,d=+1): (see the tree of Figure 5.23 which illustrates
the different calls.

+1− 2 + 1 + 3 + 1− 2 + 1

A call to Brahma Hanoi(2,-1) will print the following sequence of
moves (n=2,d=-1):

+1 -2 +1

Note that the two disks are transferred to peg C.
A call to Brahma Hanoi(2,+1) will print the following sequence of
moves (n=2,d=+1):

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 435 — #451 i
i

i
i

i
i

5.6. EXAMPLES OF ALGORITHMS 435

Figure 5.23: Tree illustration of call Brahma Hanoi (3,1)

-1 +2 -1

Here the two pegs are transferred to peg B.

Interpretation of the output: +1 means move the smallest disk
one position clockwise. −2 means move the second smallest disk
one position counterclockwise, +3 means transfer the third small-
est disk (that is, the largest disk) one position clockwise. Note the
pegs A,B,C are arranged in the form of a triangle with A, B, and
C in clockwise order. The reader is asked to verify the sequence
of moves indicated by the sequence to convince herself that the
transfers indeed satisfy the conditions of the puzzle.

By observing this output, we deduce the individual moves of
the disks as follows: Complexity of the Brahma Hanoi puzzle:

Let T (n) be the number of disk moves performed by the algo-
rithm. Then we have the following recurrence relation:

T (n) =

{
0 if n = 0
2T (n− 1) + 1 otherwise.

The recurrence equation T (n) = 2T (n−1)+1 reflects the following
fact. We convert the problem of size n into two similar subprob-
lems of size n − 1. The term +1 indicates the effort/labor/cost
necessary to divide the problem of size n into two similar sub-
problems of size n− 1.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 436 — #452 i
i

i
i

i
i

436 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Table 5.21: Recursive algorithm for Brahma Hanoi puzzle

Algorithm (Revisited): (Iterative method)
We distinguish two cases:
Case 1: n, the number of disks is odd.
On odd-numbered moves, move the smallest disk one peg clock-
wise.
On even-numbered moves, make the only legal move not involv-
ing the smallest disk.
Case 2: n, the number of disks is even.
On odd-numbered moves, move the smallest disk one peg anti-
clockwise.
On even-numbered moves, make the only legal move not involv-
ing the smallest disk.

Let us now solve the recurrence relation

T (n) = 2T (n− 1) + 1

Adding 1 on both sides, we get,

T (n) + 1 = 2T (n− 1) + 2 = 2(T (n− 1) + 1)

Now set, S(n) = T (n)+1. Then S(n−1) = T (n−1)+1. Therefore
the equation T (n)+ 1 = 2T (n− 1)+ 2 = 2(T (n− 1)+ 1) becomes

S(n) = 2S(n− 1).

Replacing n with n− 1 we get,

S(n− 1) = 2S(n− 2).

Plugging S(n−1) = 2S(n−2) into the equation S(n) = 2S(n−1)
we obtain,

S(n) = 22S(n− 2)

More generally,
S(n) = 2kS(n− k)

Setting k = n, we obtain

S(n) = 2nS(n− n) = 2nS(0) = 2n(T (0) + 1) = 2n.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 437 — #453 i
i

i
i

i
i

5.6. EXAMPLES OF ALGORITHMS 437

Hence T (n) + 1 = 2n.

T (n) = 2n − 1 = O(2n)

If n = 10, then 1,023 moves are performed. If n = 20, then about
1 million moves are performed. If n = 30, then about 1 billion
moves are done. Even if the priest transfers 1 million disks per sec-
ond, it will take 5000 centuries to transfer 64 disks! (See the book
“Concrete Mathematics” by Graham, Knuth, Pathashnick [4].)

Example of an algorithm of complexity O(n!)

Algorithm for permutation generation

Input: A set of n integers { 1, 2, . . . , n }.
Output: List of all the n! permutations of { 1, 2, . . . , n }.
Algorithm: The algorithm is recursive.

If n = 1, then the only one permutation of the singleton { 1 }
is 1 (basis of the recursion).

Now for the recursion step: If n > 1, then we proceed as
follows: n-set permutations will be expressed in terms of (n−1)-set
permutations. Fix the last integer n, and append before integer
n, the list of all the permutations of the first (n − 1) integers.
For example, if n = 3, then we fix the integer 3, and the list of
permutations of the first n − 1 = 2 integers are 12, , 21. By
appending these permutations of { 1, 2 } before 3, we obtain, the
list: 123, , 213.

Next, we swap the first and the last integer of the list
(1, 2, . . . , n) to obtain the list (n, 2, 3, . . . , n − 1, 1). As before,
fix the last integer of the list 1, and append before 1, the list of all
the permutations of (n − 1) integers (n, 2, 3, . . . , n − 1) integers.
For example, if n = 3, by swapping 1 and 3, we get the list (3, 2, 1).
Fixing 1 and appending the list of permutations of the list (3, 2),
we obtain:

321, 231. We now swap the second and the last element of
the original list (1, 2, . . . , n), and proceed as before. The procedure
stops after swapping the element n−1 and n of the list (1, 2, . . . , n)
and appending before (n−1) all the permutations of (1, 2, . . . , (n−
2), n).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 438 — #454 i
i

i
i

i
i

438 CHAPTER 5. INTRODUCTION TO ALGORITHMS

Table 5.22: Permutation generation

#include<stdio.h>
#define N 4
int a[N+1]={ 0,1,2,3,4 };
void print()
{ int i;
for (i=1; i<=N; i++)

printf(”%3d”, a[i]);
printf("\n\n");
}
void perm(int k)
{ int i,x;
if (k==1)

print();
else
{
perm(k-1);/*recursive call*/
for (i=1; i < k; i++)
{x=a[i];a[i]=a[k];a[k]=x;/* swap a[i] and a[k]*/
perm(k-1);/*recursive call*/
x=a[i];a[i]=a[k];a[k]=x;/*restore array*/
}

}
}
int main()
{ perm(N);
return 0;
}

For example, with n = 3, we stop after listing the permuta-
tions:

132, 321.

We write the complete program for permutation generation in
C (see Table 5.22).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 439 — #455 i
i

i
i

i
i

5.7. EXERCISES 439

Complexity of the permutation generation

Let C(n) be the number of calls of perm(n) to generate all the
permutations of the list (1, 2. . . . , n). Then

C(n) =

{
1 if n = 1
nC(n− 1) otherwise

C(n) = nC(n − 1) for n > 1, since there are n calls to perm(n-
1). Let us solve the recurrence, C(n) = nC(n − 1). Replace
n by n − 1, we get: C(n − 1) = (n − 1)C(n − 2). Substituting
C(n− 1) = (n− 1)C(n− 2) in the recurrence C(n) = nC(n− 1),
we obtain: C(n) = n(n − 1)C(n − 2). Continuing like this, the
recurrence telescopes to: C(n) = n(n− 1)(n− 2)(n− 3) · · · 2C(1)
Plugging in C(1) = 1, we have C(n) = n!.

Let W (n) be the time to write all the n! permutations. Since
the function print() has a loop which is executed n times to write
each permutation, and there are n! permutations, W (n) = n× n!
Hence the time complexity to generate all the permutations on n
symbols is T (n) = C(n) +W (n) = n! + n × n! ≤ 2 × (n + 1)! =
O(n+ 1)!

5.7 Exercises

1. Execute Euclid’s gcd algorithm on the following pairs of in-
tegers:

a) (35, 25) b) (57, 33) c) (1729, 13) d) (47, 17) e) (100, 1) f)
(551,1769)

2. Execute the improved version of Euclid’s algorithm on the
following pairs of integers:

a) (1729, 13) b) (17, 47) c) (27, 81) d) (1, 1000) e) (551,1769)

3. Execute the extended version of Euclid’s algorithm withm =
1769 and n = 551, that is, find integers a and b such that

am+ bn = gcd(m,n).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 440 — #456 i
i

i
i

i
i

440 CHAPTER 5. INTRODUCTION TO ALGORITHMS

4. Write a program in C to find the least common multiple
(lcm) of two positive integers.

5. Using extended version of Euclid’s algorithm, write the fol-
lowing rational numbers into partial fractions:

a) 1
45

b) 1
120

c) 5
42

6. Prove the min-max equality

min(am+bn > 0|a, b are integers) = max
d divides m,d divides n

d.

7. Prove by induction on n the following equalities:

1. 1 + 2 + · · ·+ n = n(n+1)
2

.

2. 12 + 22 + · · ·+ n2 = n(n+1)(2n+1)
6

.

3. 13 + 23 + · · ·+ n3 =
(

n(n+1)
2

)2
.

8. True or false: If P (n) is a polynomial of degree k, then
P (n) = Ω(nk). If true, prove the result. If false, give a
counterexample.

9. True or false: If P (n) is a polynomial of degree k, then
P (n) = Θ(nk). If true, prove the result. If false, give a
counterexample.

10. Prove that
n∑

i=1

ik = O(nk+1).

11. True or false: Justify your answer.

n∑
i=1

ik = Ω(nk+1).

12. If P (n) = akn
k+ak−1n

k−1+ · · ·+a1n+a0 with ak > 0, then
prove that P (n) = Ω(nk).

13. Prove that n! = O(nn).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 441 — #457 i
i

i
i

i
i

5.7. EXERCISES 441

14. True or false: Justify your answer.

a) 5n2 + 8 = O(n).

b) n2 log n = Θ(n2).

c) n2 log n = O(n3).

d) O(f(n))−O(f(n)) = 0.

15. State and prove the sum rule for big Ω notation.

16. State and prove the product rule for big Ω notation.

17. Write a program in C to find the quotient and the remainder
of two integers m ≥ 0 and n > 0. Use only the operations of
subtraction, addition and comparison of two integers.

(Hint: Division is a repeated subtraction, the number of
subtractions being the quotient.)

18. Write in C the elementary operations of a stack (pop, push,
is empty, is full) of integers. Assume the stack represented
is an array of integers.

19. Write in C the elementary operations of a stack (pop, push,
is empty, is full) of integers. Assume the stack represented
is a linked list.

20. Write in C the elementary operations of a queue (enqueue,
dequeue, is empty, is full) of integers. Assume the queue
represented is an array of integers.

21. Write in C the elementary operations of a queue (enqueue,
dequeue, is empty, is full) of integers. Assume the queue as
a linked list.

22. Write in C the elementary operations of a queue (enqueue,
dequeue, is empty, is full) of integers. Assume the queue
represented as a circular list.

23. Write a program in C to construct a magic square of order
n where n is an odd integer. Test your program with n = 3
and n = 5.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 442 — #458 i
i

i
i

i
i

442 CHAPTER 5. INTRODUCTION TO ALGORITHMS

24. True or false: Justify your answer.

There is no magic square of order 2.

25. True or false: Justify your answer.

A magic square M3×3 of order 3 must have the integer 3 in
the middle position; that is, M [2, 2] = 3.

26. Prove that the sum of entries in each row, in each column,
and in each of the two diagonals of a magic square of order

n is n(n2+1)
2

.

27. Write an iterative program in C to find the sum of the har-
monic series

1 +
1

2
+

1

3
+ · · ·+ 1

n
.

28. Write a recursive program in C to find the sum of the har-
monic series

1 +
1

2
+

1

3
+ · · ·+ 1

n
.

29. Consider a matrixM = (mij)n×n with mij = 0 if i < j. That
is, M is a lower triangular matrix. Show how to represent
the matrix M of n2 entries as a one-dimensional array a
by not representing all the entries zero which are above the
principal diagonal of the matrixM. In this way, to represent
the matrixM , instead of O(n2) space, we use only O(n(n+1)

2
)

space. Show how to obtain the entry M [i, j] with i > j in
the array a.

30. Consider a tridiagonal matrix M = (mij)n×n, that is, mij =
0 if |i − j| ≥ 2. Show how to represent the matrix M of n2

entries as another matrix Nn×3 by not representing all the
entries mij with |i − j| ≥ 2. In this way, to represent the
matrix M , instead of O(n2) space, we use only O(n) space.
Show how to obtain the entry M [i, j] with |i− j| ≤ 1 in the
new matrix N.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 443 — #459 i
i

i
i

i
i

5.7. EXERCISES 443

31. Execute the quick sort algorithm on the array a = (44, 55, 12,
42, 94, 6, 18, 67), by taking the rightmost integer of the array
as the pivot integer.

32. Execute the quick sort algorithm on the array a = (44, 55, 12,
42, 94, 6, 18, 67), by taking the leftmost integer of the array
as the pivot integer.

33. Execute the selection sort algorithm on the array a = (44, 55,
12, 42, 94, 6, 18, 67).

34. Implement the quick sort algorithm by taking the leftmost
element of the array as the pivot element.

35. Implement the quick sort algorithm by taking the middle
element of the array as the pivot element.

36. Draw the binary trees corresponding each of the differ-
ent calls of Brahma Hanoi(3,-1) and Brahma Hanoi(2,+1).
Write the respective output sequences.

37. Prove that the number of moves made by the k-th disk in
the Brahma Honoi tower puzzle is exactly 2n−k, where n is
the total number of disks initially placed on peg A.

38. Using the iterative algorithm for the Brahma Honoi puzzle
given in the text (see Table 5.21), write an iterative program
in C.

39. Solve the following recurrence relation:

T (n) =

{
1 if n = 1
3T (n/2) + n if n > 1

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 444 — #460 i
i

i
i

i
i

http://taylorandfrancis.com

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 445 — #461 i
i

i
i

i
i

Bibliography

[1] D. E. Knuth, The Art of Computer Programming. Volume
1: Fundamental Algorithms, second edition, Addison-Wesley,
Reading, MA, 1973; Volume 2, Seminumerical Algorithms,
second edition, Addison-Wesley, Reading, MA, 1981; Volume
3: Sorting and Searching, second printing, Addison-Wesley,
Reading, MA, 1975.

[2] R. Sedgewick, Algorithms, Addison-Wesley, Reading, MA,
1989; Algorithms in C, Addison-Wesley, Reading, MA,1990;
Algorithms in C++, Addison-Wesley, Reading, MA,1998.

[3] A. V. Aho, J.E. Hopcroft, J. D. Ullman, The Design and
Analysis of Algorithms, Addison-Wesley, Reading, MA, 1975;
Data Structures and Algorithms, Addison-Wesley, Reading,
MA, 1983.

[4] R. L. Graham, D. E. Knuth, O. Pathashnik, Concrete Math-
ematics, Addison-Wesley, Reading, MA, 1988.

[5] N. Wirth, Algorithms + Data Structures = Programs,
Prentice-Hall, Inc., New Jersey, 1976; Systematic Program-
ming, An Introduction, Prentice-Hall, Inc., New Jersey, 1973.

[6] D. Beauquier, J. Berstel et Ph. Chrétienne, Éléments
d’algorithmique, Masson, 1992.

[7] Alfred V. Aho, Jeffrey D. Ullman, Foundations of Computer
Science (Principles of Computer Science series), Addison-
Wesley, Reading, MA, February, 1992.

445

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 446 — #462 i
i

i
i

i
i

446 BIBLIOGRAPHY

[8] K. Thulasiraman, M. N. S. Swamy, Graphs: Theory and Prac-
tice, John-Wiley & Sons, Inc., 1992.

[9] V. Chvatal, Linear Programming, Freeman, 1983.

[10] Ravi Sethi, Programming Languages: Concepts and Con-
structs, Addison-Wesley, Reading, MA, 1998.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 447 — #463 i
i

i
i

i
i

Chapter 6

Introduction to Logic and
Probability

C’est par l’intuition qu’on invente, mais par la logique
qu’on démontre.

Henri Poincaré

In this brief chapter, we shall study mathematical logic and
elementary probability. The first section starts with the concepts
of statements, truth assignments to statements, implication (con-
ditional statement), logically equivalent statements (if and only
if statements), truth tables, tautology, contradiction, valid argu-
ments, arguments with fallacy (invalid arguments), and proof tech-
niques in mathematics.

In the next section, we study elementary probability theory.
We introduce sample space, events, probability, random variables
(discrete and continuous), conditional probability, independence of
events, expectation, variance, and Bernoulli, binomial, and Pois-
son distributions [1],[2],[3].

6.1 Introduction

In mathematics and even in real life, we deal with statements (also
called propositions or assertions) which may be true or false but
not both, like the following:

447

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 448 — #464 i
i

i
i

i
i

448 CHAPTER 6. INTRODUCTION TO LOGIC

1. New Delhi is the capital of India.

2. New York is the capital of the United States.

3. x = 1 is a solution of the equation x2 − 3x+ 2 = 0.

4. What are you doing?

5. 2 ≤ 3.

The first, third, and fifth are true statements but the second one
is false. The fourth one is not a proposition at all. So to every
statement, we associate either the value true (also noted by 1) or
the value false (also denoted by 0). These are called the truth
values of the statements.

6.2 Algebra of Propositions

Consider the following compound propositions:

1. New Delhi is the capital of India or 2 > 3.

2. New York is the capital of the United States and Paris is the
capital of France.

3. It is not true that x = 1 is a solution of the equation x2 −
3x+ 1 = 0.

The three propositions are made of subpropositions using the oper-
ations or, and, and, not. We associate the value true with the first
and third and false with the second. Propositions can be combined
by the operation or, denoted by ∨ (read meet or disjunction), and,
denoted by ∧ (read join or conjunction), and not (denoted by ¬)
(read not or negation). These operations are similar to the set
union ∪, set intersection ∩, and complement of a set A, denoted
by A′. Tables 6.1 and 6.2 are called truth tables and define the
three operations. p, q represent the propositions and true=1 and
false=0. In this chapter, p, q, r denote propositions (elementary or
compound).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 449 — #465 i
i

i
i

i
i

6.2. ALGEBRA OF PROPOSITIONS 449

Table 6.1: Truth table for or, and

p q p ∨ q p ∧ q
0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

Table 6.2: Truth table for not

p ¬p
0 1
1 0

Note that for 2 variables (propositions) p, q, the table has 22 =
4 lines and in general for n variables, the table will have 2n lines.

A compound proposition is called a tautology if its truth value
is always true irrespective of the truth values of its constituents.
For example, p ∨ ¬p is always true, hence it is a tautology. If the
propositional expression always takes the truth value false, then it
is called a contradiction. For example, p ∧ ¬p is a contradiction.

Priority of operators

The operator not (¬) has higher precedence than and (∧) and
(∧) has higher precedence than or (∨). Therefore, the expression
¬p ∧ q is interpreted as (¬p) ∧ q but not as ¬(p ∧ q).

Implication

For example, if the signal is green then a car can cross the signal.
An implication is also a proposition. An implication is a statement
of the form: if p then q. Equivalent forms are:

1. p→ q (read p implies q)

2. q is necessary for p

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 450 — #466 i
i

i
i

i
i

450 CHAPTER 6. INTRODUCTION TO LOGIC

3. p only if q

4. p is sufficient for q.

p is called the hypothesis and q is the conclusion. Table 6.3 gives
the truth table for an implication. Note that if the hypothesis is

Table 6.3: Truth table for implication

p q p→ q
0 0 1
0 1 1
1 0 0
1 1 1

false then the implication is always true! One can easily remember
this table by interpreting → as ≤ . The converse of the statement
p → q is q → p. There is no relation between an implication and
its converse, in the sense that one can be true and the other false
or both can be true/false simultaneously. This is seen by truth
Table 6.4.

Table 6.4: Truth table for implication and its converse

p q p→ q q → p
0 0 1 1
0 1 1 0
1 0 0 1
1 1 1 1

Two statements p and q are logically equivalent if they have
identical truth tables, denoted by p ↔ q or p ≡ q, or simply
p = q. In other words, p and q are logically equivalent if and only
if p → q and q → p. Other forms of equivalent propositions are p
if and only if q, and a necessary and sufficient condition for p is
q. The following example illustrates the logically equal statements
(see Table 6.5).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 451 — #467 i
i

i
i

i
i

6.2. ALGEBRA OF PROPOSITIONS 451

Example 6.2.1 (Logically equivalent propositions: Contraposi-
tive):
As an example, we prove that p → q is logically equivalent to
¬q → ¬p (see Table 6.5). Note that the third and sixth columns

Table 6.5: p→ q ≡ ¬q → ¬q

p q p→ q ¬q ¬p ¬q → ¬p
0 0 1 1 1 1
0 1 1 0 1 1
1 0 0 1 0 0
1 1 1 0 0 1

are identical. Hence the equivalence is established. This equiva-
lence is called a contrapositive.

Algebra of propositions

As we already remarked, propositions satisfy the same laws as the
algebra of sets.

The laws governing the propositions are exactly the
same as the laws of the algebra of sets!

Let us write p + q for p ∨ q, pq for p ∧ q and p′ for ¬p. With this
notation, we state the laws of the algebra of propositions:

1. p+ p = p, pp = p (idempotence)

2. p+ q = q + p, pq = qp (commutative laws)

3. p+ (q + r) = (p+ q) + r, p(qr) = (pq)r (associative laws)

4. p(q + r) = pq + pr, p + (qr) = (p + q)(p + r) (distributive
laws/factorization laws)

5. p+ 1 = 1, p0 = 0 (absorption laws)

6. p1 = p, p+ 0 = p (identity laws)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 452 — #468 i
i

i
i

i
i

452 CHAPTER 6. INTRODUCTION TO LOGIC

7. 1′ = 0, 0′ = 1, p+ p′ = 1, pp′ = 0 (complement laws)

8. (p′)′ = p (involution law)

9. (p+ q)′ = p′q′, (pq)′ = p′ + q′ (DeMorgan’s laws).

Note that the only law which is usually not familiar to the reader
is the distributive law p+(qr) = (p+ q)(p+ r), which will be clear
to the reader if we write + as ∪ (juxtaposition) as ∩, and p,q,r as
sets P,Q,R.

Valid and invalid arguments

Let p1, p2, . . . , pn, q be propositions. Then an argument is an as-
sertion that the propositions p1, p2, . . . , pn, called the hypothesis,
yields the proposition q, called the conclusion. The argument is
denoted by

p1, p2, . . . , pn ⊢ q.
An argument p1, p2, . . . , pn ⊢ q is said to be a valid argument if the
proposition q is true whenever all the propositions p1, p2, . . . , pn are
simultaneously true. Otherwise the argument is called a fallacy.
We state the following theorem, which is easy to prove.

Theorem 6.2.1:
An argument p1, p2, . . . , pn ⊢ q is a valid argument if and only if
the implication p1 ∧ p2 ∧ . . . ∧ pn → q is a tautology.

Example 6.2.2 (Algebra of propositions, valid arguments):
Prove by the algebraic method that the argument p→ q, q → r ⊢
p→ r is a valid argument.

Proof: By Theorem 6.2.1, we must show that the proposition
[(p → q) ∧ (q → r)] → p → r is a tautology. To apply laws of
algebra easily, let us write p + q for p ∨ q, pq for p ∧ q and p′ for
¬p. With this notation, we must prove that [(p′ + q)(q′ + r) →
(p′ + r) = 1. Note that we have replaced (p → q) by p′ + q by
contrapositiveness, etc. (see Table 6.5). Once again, by applying
contrapositiveness, we must prove that

[(p′ + q)(q′ + r)]′ + (p′ + r) = 1.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 453 — #469 i
i

i
i

i
i

6.2. ALGEBRA OF PROPOSITIONS 453

Now, [(p′ + q)(q′ + r)]′ + (p′ + r)= (p′ + q)′ + (q′ + r)′ + p′ + r
(by DeMorgan’s laws)=(p′)′q′ + (q′)′r′ + p′ + r (by DeMorgan’s
laws)=pq′ + qr′ + p′ + r (by involution law)=(p′ + pq′) + (r + qr′)
(commutativity)=(p′ + p)(p′ + q′) + (r + r′)(r + q) (factorization
law)=p′ + q′ + r + q (because p + p′ = 1 = q + q′ and 1p =
p)=q′ + q + p′ + r (commutativity)=1+ (p′ + r)=1 (since p+p’=1
and 1 + p = 1). Hence the proof.

Example 6.2.3 (Invalid argument):
Prove using the truth table that the argument p → q, q ⊢ p is a
fallacy.

Proof. By Theorem 6.2.1, we shall prove that [[p→ q]∧q]]→ p
is not a tautology (see Table 6.6).

Table 6.6: Example of an invalid argument

p q p→ q [[p→ q] ∧ q]] [[p→ q] ∧ q]]→ p
0 0 1 0 1
0 1 1 1 0
1 0 0 0 1
1 1 1 1 1

In the last column, which gives the possible values of [p →
q ∧ q] → p, we find one entry 0 in the second line. Hence, the
argument is not valid.

Exclusive or

The word “or” is used in two senses. Normally, p or q means either
p or q or both, that is, at least one of p and q occurs. The word
“or” is also used in the following sense: p or q but not both. For
example, Ram will prepare his PhD thesis either in the University
of Paris 6 or in the University of Perpignan Via Domitia, is used
in the latter sense, that is, “exclusive or” sense. The notation for
this is ⊕. The following table gives the definition of p ⊕ q. From
the Table 6.7, it is seen that p ⊕ q is equal to addition modulo 2
of p and q.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 454 — #470 i
i

i
i

i
i

454 CHAPTER 6. INTRODUCTION TO LOGIC

Table 6.7: Truth table for “exclusive or”

p q p⊕ q=(p+ q) mod 2
0 0 0
0 1 1
1 0 1
1 1 0

6.3 Proofs in Mathematics

An implication whose truth value is “true” is called a
theorem.

What is a theorem? An implication whose truth value is true is
called a theorem. In other words, it is a true statement of the form:
if p then q where p and q are statements which are true or false
but not both. How do we prove a theorem? One possible answer
is the following: We must read and understand the proofs of other
mathematicians. Then we can mimic their proof techniques to
prove our theorem. In this brief section, we shall see some methods
of proof often employed to prove theorems: proof by induction,
direct proof, and indirect proof (or proof by contradiction).

Proof by induction

This is a principle of inheritance. If every man/woman transmits
some genetic property g to his descendants, then all the descen-
dants of a man/woman with this genetic property will have the
generic property g. It is equivalent to König’s infinity lemma in
graph theory (see Art of Computer Programming, Vol 1, by D.
Knuth)[4].

Mathematical induction

Let S(n) be a statement about the integer n. For example, S(n)
could be the statement n(n+ 1) is an even integer. We are inter-

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 455 — #471 i
i

i
i

i
i

6.3. PROOFS IN MATHEMATICS 455

ested in proving that the statement S(n) is true for all positive
integers. For this, we proceed in two steps:

1. Prove that S(1) is true. This is called the basis of induction.

2. Prove that if S(1)S(2), . . . , S(n) are all true, then S(n +
1) is also true. This is called the induction step and the
supposition that S(1)S(2), . . . , S(n) are all true is called the
induction hypothesis.

Example 6.3.1 (Proof by induction):
If n is a positive integer then prove that n(n+1)(2n+1) is divisible
by 6.

Proof. Induction basis: We prove the assertion for n = 1. If
n = 1 then the product becomes 1 × 2 × 3 = 6, which trivially
proves the basis of the induction.

Induction hypothesis: Suppose S(n) = n(n + 1)(2n + 1) is
divisible by 6. Then we must prove that S(n+ 1) is also divisible
by 6.

Now S(n+1) = (n+1)(n+1+1)(2(n+1)+1)= (n+1)((n+1)+
1)((2n+1)+2). We must write this product in such a way to apply
the induction hypothesis. By multiplying and simplifying, we have
S(n+1) = n(n+1)(2n+1)+6(n2+2n+1)=S(n)+6(n2+2n+1).
By induction hypothesis, S(n) is divisible by 6. Note the factor 6
in the second term of S(n+1). Hence S(n+1) is also divisible by
6.

Direct proof

To prove the statement, “if p then q,” we start from the hypothesis
p and then arrive at the conclusion q by a sequence of logical steps.

Example 6.3.2 (Direct proof):
Let us refer to Example 6.3.1. We shall prove the same statement
by the direct proof method.

Proof. n(n+1)(2n+1) = n(n+1)(2(n+2)−3)=2n(n+1)(n+
2)− 3n(n+ 1).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 456 — #472 i
i

i
i

i
i

456 CHAPTER 6. INTRODUCTION TO LOGIC

But n(n+1)(n+2) is divisible by 3! = 6 because n(n+1)(n+
2)/3! =

(
n+2
3

)
which is an integer. For a similar reason, 3n(n+ 1)

is divisible by 3× 2! = 6, because n(n+1)/2 =
(
n+1
2

)
, which is an

integer. Hence, the difference is also divisible by 6.

Indirect proof

To prove the proposition, “if p then q,” we prove its logically
equivalent statement: “not q implies not p.” Another variation of
the indirect proof is the proof by contradiction. In this method,
we suppose “p is true” and “q is false” and then try to arrive at
“p is false” or some sort of absurd result. Since p can’t be true
and false simultaneously, we are done.

Reductio ad absurdum (Reduction to absurdity),
which Euclid loved so much is one of a mathemati-
cian’s finest weapons. It is a far finer gambit than any
chess gambit: a chess player may offer the sacrifice of
a pawn or even a piece, but a mathematician offers the
game.

G. H. Hardy

Example 6.3.3 (Indirect proof):
Let us again refer to Example 6.3.1. We shall prove the same
statement by the indirect proof method.

Proof. Suppose S(n) = n(n + 1)(2n + 1) is not a multiple of
6 for all n positive integers. This means that there is a positive
integer n0 for which S(n0) is not a multiple of 6. Choose an integer
n0 as small as possible with this property. Then by dividing S(n0)
by 6, we get a remainder r with 0 < r < 6 and a quotient P3(n0),
a polynomial of degree 3. (Since S(n0) may be viewed as a poly-
nomial of degree 3 in n0, and 6 is a constant which is polynomial
of degree 0.) Therefore,

S(n0) = 6P3(n0) + r

Since n0 is the smallest integer with the stated property, S(n0−1)
is divisible by 6 (with remainder zero). Therefore, we can write

S(n0 − 1) = 6P3(n0 − 1).

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 457 — #473 i
i

i
i

i
i

6.3. PROOFS IN MATHEMATICS 457

Subtracting, S(n0)−S(n0− 1) = n0(n0 +1)(2n0 +1)− 6P3(n0)−
[(n0 − 1)(n0)(2n0 − 1)− 6P3(n0 − 1)] = r. Simplifying, we get,

6n2
0−6P2(n0) = r, where P2(n0) is the “polynomial of degree 2

in n0” obtained by simplifying the square bracket term. But then
the left-hand side is divisible by 6, but the right-hand side is not,
since 0 < r < 6. This contradiction proves the result.

Example 6.3.4 (Erroneous proof):
Find the fallacy in the following argument: If a divides m and n,
then m = n (m,n, a are integers).

Proof: a divides m, hence m = qa. a divides n, hence n = qa.
Therefore we have, m = n.

Answer: If Ram and Arjun are married, that doesn’t mean
that they have the same wife! Still don’t see?

6.3.1 Universal and Existential Quantifiers

Consider a set A. Let p(x) be a statement (proposition) concerning
an element of the set A. For example, if A is the set of all natural
numbers, then p(x) can be “x is a prime number.” The truth set
of p(x) is denoted by Tp and is defined as

Tp = {x ∈ A | p(x) is true }.

For example, if A is the set of natural numbers, and p(x) is “x is
prime” then the truth set

Tp = { 2, 3, 5, 7, 11, . . . }.

p(x) may be an equation or inequality.
The notation ∀ stands for “for all” (called a universal quan-

tifier) and ∃ denotes “there exists” (existential quantifier). For
example, we may write

∀n ∈ N n(n+ 1) is even.

It is read as for natural number n, n(n+1) is an even integer. More
generally, the statement ∀ x ∈ A p(x) is called the universal
statement and ∃ x ∈ A p(x) is an existential statement. Note
that the statement p(x) can be either true or false.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 458 — #474 i
i

i
i

i
i

458 CHAPTER 6. INTRODUCTION TO LOGIC

Example 6.3.5 (Universal and existential statement):
Prove that the statement ∃ n ∈ N n2 + n + 41 is composite is
true.

Solution: We substitute n = 1, 2, 3 · · · in the expression n2 +
n+ 41. The values are respectively, 43, 47, 53 which are all prime
numbers. We now study the given expression carefully. To get a
composite number by a suitable substitution of n, we should be
able to factorize the expression after a suitable substitution. The
value we find is n = 41, which on substitution gives 412+41+41 =
41(41 + 1 + 1) which is composite.

We may also say (dually) that the expression ∀n ∈ N n2 +
n + 41 is prime is false, and n = 41 is a counter-example to the
universal statement ∀n ∈ N n2 + n+ 41 is prime.

6.4 Probability

In real-life, we sometimes say on observing the sky: It may prob-
ably rain. This means roughly that the probability/chance of rain
fall is more than 50%, that is, more than 1/2. The probability
theory makes such statements precise [1],[2].

Experiments, outcomes, sample space, events

Consider tossing a fair coin. We may get either a head (briefly,
h) or tail (briefly, t).(We suppose that the coin does not stand
on its side!) Tossing a coin is called an experiment and h and
t are called outcomes. The set {h, t } is called the sample space
of the experiment. h and t are called the sample points. (If the
possibility of a coin standing on its side is allowed, then the sample
space will have 3 elements {h, t s}, where ‘s’ stands for the side.)

Definition 6.4.1:
In general, the set of all possible results (also called outcomes) of
an experiment is called the sample space of the experiment. A
sample space is made up of sample points. Any subset of a sample
space is called an event. Hence if a sample space consists of n

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 459 — #475 i
i

i
i

i
i

6.4. PROBABILITY 459

outcomes then 2n events are possible. The null set ∅, which is a
subset of every set, is an event called the impossible event and the
sample space itself is called the sure event. A singleton subset of
a sample space is an elementary event. Two events E1 and E2 are
called mutually exclusive, if they have no elements in common. An
event is said to occur, if any one of its sample points occurs.

The following example illustrates the union, intersection, and
complement of events.

The laws governing the algebra of events are the same
as the laws of the algebra of sets!

Example 6.4.1 (Union, intersection, complements of events):
Consider the experiment of throwing a die and observe the num-
ber appearing on the top. The faces of the die are marked with
1, 2, 3, 4, 5, 6. The sample space S = { 1, 2, 3, 4, 5, 6 }, since any one
of the numbers from 1 to 6 can appear on the top. Let E1, E2, E3

be three events defined as follows.
E1 is the event that an odd number appears. E2 is the event

that an even number appears. E3 is the event that a multiple
of 3 appears. Then E1 = { 1, 3, 5 };E2 = { 2, 4, 6 };E3 = { 3, 6 }.
E1 ∪ E3 = { 1, 3, 5, 6 } is the event that either an odd number
or a multiple of 3 occurs. E2 ∩ E3 = { 6 } is the event that an
even number which is a multiple of 3 occurs. E ′

3 = { 1, 2, 4, 5 }
is the event that a multiple of 3 does not occur. E1 ∩ E2 = ∅ is
the impossible event, that is, an odd number and an even number
cannot occur simultaneously.

Example 6.4.2:
Consider the experiment of tossing a fair coin twice. The sample
space of this experiment is {hh, ht, th, tt } where hh means two
heads appear, ht means the first toss we get a head and on the
second toss we get a tail, etc. Let E be the event of obtaining at
least one head. Then E = {hh, ht, th }. The event of getting an
equal number of heads and tails is {ht, th }.

Until now, our sample spaces have consisted only of a finite number

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 460 — #476 i
i

i
i

i
i

460 CHAPTER 6. INTRODUCTION TO LOGIC

of sample points. The following example illustrates a sample space
which is infinite.

Example 6.4.3 (Infinite sample space):
Consider the experiment of shooting an arrow until it hits the
target. The sample space of this experiment is

{ s, fs, ffs, fffs, . . . }

where s denotes the success (hitting the target), fs denotes a failure
(missing the target) immediately followed by a success, ffs means
two successive failures followed immediately by a success, etc. The
event of getting a success on or before the kth shoot (k ≥ 1) is
{ s, fs, ffs, . . . , fk−1s } where f i means a string of i f’s.

Finite sample space and probability model

Unless stated otherwise, we deal with sample spaces which are
finite, that is, their number of points/elements is an integer.

We define the finite probability space (probability model) as
follows:

Definition 6.4.2 (Probability space):
A probability model (probability space) is simply a sample space
with a non-negative real number associated with each point of the
sample space with the condition that the sum of all the numbers
associated with the points of the sample space is 1. The non-
negative number associated with a point is called the probability
of that point. We denote by p(s), the probability of the point
s in S. The probability of an event E ⊂ S is denoted by p(E)
and is the sum of all the probabilities of the points of E, that is,
p(E) =

∑
einE p(e).

A probability model distributes the total probability
of 1 among its elementary events.

The following examples illustrate the concept.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 461 — #477 i
i

i
i

i
i

6.4. PROBABILITY 461

Example 6.4.4:
Consider the experiment of tossing a coin once. The sample space
of this experiment is S = {h, t } where h denotes head and t
denotes tail. Then the assignments p(h) = 1/3 and p(t) = 2/3
make S, a probability space, because the numbers associated are
non-negative and their sum is 1.

We may also set (imagine the coin so “designed”): p(h) =
1/2, p(t) = 1/2 or p(h) = 0.23, p(t) = 0.77 to obtain another
probability model. There are infinitely many such assignments
possible.

Remark 6.4.1 (perfectly balanced coin and probability model):
There is no perfectly balanced coin (perfectly unbiased coin), oth-
erwise we can’t distinguish between the head and the tail! When
we associate the probabilities: p(h) = p, p(t) = 1 − p for p > 0,
we imagine the coin designed in such a way that if the experiment
of tossing the coin is repeated a very large number of times, p(h)
will tend to p.

Example 6.4.5:
Consider the experiment of throwing a die twice. The sample
space S consists of 36 ordered pairs S = { (i, j)|1 ≤ i, j ≤ 6 }.
This corresponds to the Cartesian product of the set consisting of
1, 2, . . . , 6 with itself. |S| = 36. We denote the ordered pair (i, j)
simply as ij. Then the assignments p(ij) = 1/36 for all ij in S
make S a probability model. Such a space is called an equiprobable
space.

If each sample point of a sample space is assigned the same
probability, then the space is called an equiprobable space.

Definition 6.4.3 (Probability model of an equiprobable space):
Consider a finite sample space consisting of n points. If the prob-
ability of each point is 1/n, then S is an equiprobable space. If an
event E ⊂ S consists of k elements, then p(E) = k/n. Hence,

P (E) =
number of elements in E

number of elements in S

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 462 — #478 i
i

i
i

i
i

462 CHAPTER 6. INTRODUCTION TO LOGIC

or

P (E) =
number of outcomes favorable to E

total number of all possible outcomes of the experiment

As we already quoted, the algebra of probability of events and
the algebra of sets are similar. The following table illustrates this
analogy. E,E1, E2, E3 denote events in a sample space S. By the

Table 6.8: Similarity between probability of events and set algebra

Description Notation
At least one of E1 or E2(E1orE2) E∪E2

E1 and E2 E1 ∩ E2

not E E ′

E1 but not E2 E1 \ E2

Neither E1 nor E2 E ′
1 ∩ E ′

2

At least one of E1, E2, E3 E1 ∪ E2 ∪ E3

Exactly one of E1 and E2 (E1 ∪ E2) \ (E1 ∩ E2)
All three of E1, E2, E3 E1 ∩ E2 ∩ E3

Impossible event ∅
Sure event S, the sample space.

Table 6.8, we have to simply attach the symbol of probability
p before the set notation to manipulate the probabilities. For
example, we have the following relations for a sample space S and
its events E1, E2, E3:

• p(∅) = 0. This corresponds to the number of elements in the
empty set is 0.

• p(S) = 1. This corresponds to the fact that S is the universal
set.

• p(E1 ∪ E2) = p(E1) + p(E2)− p(E1 ∩ E2). This corresponds
to |A ∪B| = |A|+ |B| − |A ∩B|.

• p(E1\E2) = p(E1)−p(E1∩E2). This corresponds to |A\B| =
|A| − |A ∩B|.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 463 — #479 i
i

i
i

i
i

6.4. PROBABILITY 463

• if E1 ⊂ E2 then p(E1) ≤ p(E2). This corresponds to if A ⊂ B
then |A| ≤ |B|.

In particular, if two events E1, E2 are mutually exclusive, that is,
the occurrence of one of the events excludes the occurrence of the
other, or E1 ∩ E2 = ∅, then p(E1 ∪ E2) = p(E1) + p(E2).

Independent events

Two events E1, E2 are said to be independent events if p(E1∩E2) =
p(E1)p(E2). This says that the occurrence of one of the events does
not in any way influence the occurrence of the other event. If the
events are not independent, then they are called dependent events.

Example 6.4.6 (Independent events):
Consider the experiment that a coin is tossed twice. The sam-
ple space is S = {hh, ht, th, tt }. Note that we suppose the space
is equiprobable unless stated otherwise. The probability of each
sample point is 1/4. Consider the events E1, E2, E3 where E1 is
the event that a head appears in the first toss, E2 is the one with
a head in the second toss, E3 is the one with two heads. Then

E1 = {hh, ht };E2 = {hh, th };E3 = {hh }.
Clearly, by the wording of the definitions of E1 and E2, E1

and E2 are independent. Let us verify this. p(E1) = |E1|/|S| =
2/4 = 1/2. Similarly p(E2) = 1/2. p(E1 ∩ E2) = p({hh }) = 1/4.
Therefore p(E1 ∩ E2) = p(E1)p(E2).

The events E1 and E3 are not independent. Let us verify this
fact. p(E3) = 1/4. p(E1 ∩ E3) = p({hh }) = 1/4.

We see that p(E1)p(E3) = 1/2×1/4 = 1/8 ̸= p(E1∩E3) = 1/4.

Conditional probability

Consider an experiment and the sample space S associated with
this experiment. S need not be equiprobable space. Consider two
events E and F . Note that E and F are subsets of S. Suppose
p(F) > 0. Then the conditional probability of the event E relative
to the event F or the probability of the occurrence of E once F

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 464 — #480 i
i

i
i

i
i

464 CHAPTER 6. INTRODUCTION TO LOGIC

has occurred is denoted by p(E/F), and is defined as

p(E/F) = p(E ∩ F)/p(F).

This measures the probability of the event E with respect to the
reduced subspace F instead of the whole sample space S. If the
space is equiprobable (F ̸= ∅) then we have

p(E/F) = p(E ∩ F)/p(F) = |E ∩ F |/|F |.

Example 6.4.7 (Conditional probability):
Consider the experiment of tossing a die. Consider two events E
and F of the sample space S, defined as: E is the event that an
odd number appears, that is, E = { 1, 3, 5 }. F is the event that a
prime number appears, that is, F = { 2, 3 }. Then the conditional
probability of E relative to the event F is p(E/F) = |E∩F |/|F | =
1/2 since E ∩ F = { 3 }.

Note that p(E) = 3/6 = 1/2. p(E/S) = |E ∩ S|/|S| =
|E|/|S| = 1/2 = p(E).

Note that if the events E and F are independent, then we have

p(E/F) = p(E ∩ F)/p(F) = p(E)× p(F)/p(F) = p(E),

or equivalently,

p(F/E) = p(F ∩ E)/p(E) = p(F)× p(E)/p(E) = p(F).

These are the definitions of independence in terms of conditional
probability. Of course, we assume that the denominator is > 0.

Random variables

A random variable is simply a function from a sample space to the
set of real numbers. In other words, if we associate to each sample
point of a sample space a number, this association is called a
random variable. This allows us to transform the sample points of
a sample space (which are not necessarily numbers) into numbers.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 465 — #481 i
i

i
i

i
i

6.4. PROBABILITY 465

Even if the sample points are numbers (like in the toss of a die),
we associate real numbers to sample points.

Conventionally, a random variable is denoted by the letters
X, Y, Z.

Example 6.4.8 (Random variable):
Consider the experiment of tossing a coin twice. The sample space
is S = {hh, ht, th, tt }. Define a random variable X by associating
to each sample point the number of heads in it. Hence, X(hh) =
2, X(ht) = 1, X(th) = 1, X(tt) = 0.

Define another random variable Y by assigning to each point
the number of tails. Therefore, Y (hh) = 0, Y (ht) = 1, Y (th) =
1, Y (tt) = 2.

Define yet another random variable Z by associating to each
point 1 if the first appearance is h, and 0 otherwise. Therefore,
Z(hh) = Z(ht) = 1 and Z(th) = Z(tt) = 0.

Example 6.4.9 (Random variable):
Consider throwing a die twice. The sample space S consists of 36
ordered pairs S = { (i, j)|1 ≤ i, j ≤ 6 }. This corresponds to the
Cartesian product of the set consisting of 1, 2, . . . , 6 with itself.
|S| = 36. We denote the ordered pair (i, j) simply as ij. Define a
random variable X as X(ij) = i+ j for each ij ∈ S.

Define another random variable Y as Y (ij) = max(i, j).

Probability distribution of a random variable

Let X be a random variable defined on a probability sample
space S (not necessarily equiprobable). Let R(X) = {x1, x2, . . . ,
xm } be the set of values taken by the random variable. R(X) is
called the range of values of the random variable. X induces the
probability space on the set R(X) by assigning to each point xi of
R(X), the probability p(xi) as follows.

X−1(xi) = the inverse image of xi under the function X={ s ∈
S | X(s) = xi }. This is the set of all points of the sample point
of S for which the value xi is assigned by the random variable X.
Clearly X−1(xi) is a subset of S and hence it is an event of the

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 466 — #482 i
i

i
i

i
i

466 CHAPTER 6. INTRODUCTION TO LOGIC

sample space. p(xi) is defined as p(X−1(xi), that is, the sum of
the probabilities of all the points of S for which the image is xi
(see Table 6.9).

Table 6.9: Probability distribution of a random variable

x1 x2 . . . xm
p1 p2 . . . pm

The ordered pairs (x1, p1), (x2, p2), . . . , (xm, pm) given by Table
6.9 is called the probability distribution of X. If the space S is
equiprobable, then

p(X = xi) = p(xi) = |X−1(xi)|/|S|

=
number of points of S whose image is xi

number of points of S

Example 6.4.10 (Probability distribution of X):
Consider the experiment of tossing a fair coin twice. The sample
space is S = {hh, ht, th, tt }. Define a random variable X by as-
sociating to each sample point the number of heads in it. Hence,
X(hh) = 2, X(ht) = 1, X(th) = 1, X(tt) = 0. Find the distribu-
tion of X.

S is equiprobable, therefore p(hh) = p(ht) = p(th) = p(tt) =
1/4. The range of X is R(X) = { 0, 1, 2 }. Note that in a set
the elements are not repeated and 1 is written only once, even
though it appears twice as an image of X. Now to find p(0), we
first find the inverse image of 0, that is, X−1(0), which is { tt }
and p(0) = p({ tt }) = 1/4. To find p(1), let us find first X−1(1),
which is {ht, th }, and p(1) = p({ht, th }) = 2/4 = 1/2. Similarly,
p(2) = 1/4. This distribution is given in Table 6.10. Note that the
sum of the numbers in the second row is 1 and the numbers are
≥ 0.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 467 — #483 i
i

i
i

i
i

6.4. PROBABILITY 467

Table 6.10: Probability distribution of a random variable

X = xi 0 1 2
p(X = xi) = pi 1/4 1/2 1/4

Random variable f(X)

If X is a random variable defined on a sample space S, and if f(X)
is a function of X, for example, f(X) = X2+1) with values in the
real number set for any value of its range R(X), then we define
the random variable f(X) as follows:

f(X)(s) = f(X(s)) ∀ s ∈ S

with the identical corresponding probabilities as the random vari-
able X.

Example 6.4.11 (Random variable f(X)):
For example, let us refer to the previous Example 6.4.10 and now
define f(X) = 2X − 3. Then the new random variable f(X)
takes the values f(X)(hh) = f(X(hh)) = f(2) = 1;f(X)(ht) =
f(X(ht)) = f(1) = −1;f(X)(th) = −1 and f(X)(tt) =
f(X(tt)) = f(0) = −3. Note that by definition of f(X), the prob-
abilities are the same as in Example 6.4.10.

Expectation of a random variable

There are two parameters connected with a random variable: Ex-
pectation of a random variable X (also called the mean or average
of X (because it coincides with the average value of a sequence of
numbers where the probability is defined as the relative frequency
of a number in the sequence) denoted by E(X) or µ(X) or simply
µ and the standard deviation of X, denoted by σX of σ. σX gives
us a measure of “dispersion” of the values of the random variable
from the mean.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 468 — #484 i
i

i
i

i
i

468 CHAPTER 6. INTRODUCTION TO LOGIC

Definition 6.4.4 (Expectation):
Consider Table 6.11 giving the probability distribution of a random
variable X. Then the expectation of X, E(X) is defined as the

Table 6.11: Probability distribution of a random variable

x1 x2 . . . xm
p1 p2 . . . pm

sum of the products of the values of the random variable and its
corresponding probability, that is,

E(X) =
m∑
i=1

xipi.

Example 6.4.12 (Expectation):
Consider the probability distribution of a random variable of Table
6.12. Then E(X) = 0× 1/4 + 1× 1/2 + 2× 1/4 = 1.

Table 6.12: Probability distribution of a random variable

X = xi 0 1 2
p(X = xi) = pi 1/4 1/2 1/4

Variance and standard deviation of a random
variable

Consider Table 6.13, giving the probability distribution of a ran-
dom variable X. Then the variance of X, denoted by var(X), is
defined in terms of expectation as:

var(X) = E[(X − E(X))2] =
m∑
i=1

(xi − µ)2pi =

(
m∑
i=1

pixi
2

)
− µ2

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 469 — #485 i
i

i
i

i
i

6.4. PROBABILITY 469

Table 6.13: Probability distribution of a random variable

x1 x2 . . . xm
p1 p2 . . . pm

where µ = E(X). Here we have used the definition of the new
random variable f(X) = (X − µ)2.

The standard deviation σ =
√
var(X).

Example 6.4.13 (Standard deviation of a random variable):
Let us refer to the probability distribution of the random variable
given by Table 6.14. Then µ = E(X) = 0 × 1/6 + 1 × 1/6 + 2 ×

Table 6.14: Probability distribution of a random variable
.

xi 0 1 2 3 4 5
pi 1/6 1/6 1/12 1/24 1/8 5/12

1/12 + 3× 1/24 + 4× 1/8 + 5× 5/12 = 73/24.
var(X) =

(∑6
i=1 xi

2pi
)
− µ2, because there are m = 6 entries

in each row.
var(X) = 02 × 1/6 + 12 × 1/6 + 22 × 1/12 + 32 × 1/24 + 42 ×

1/8 + 52 × 5/12− (73/24)2 = 2327/576.
σ =

√
(2327/576) ≈ 2.008.

Bernoulli distribution

Consider an experiment (sometimes called a trial) with only two
possible outcomes, like tossing a coin (not necessarily an unbiased
coin). Let the probability of heads be p (p need not be 1/2). Then
the probability of tails is q = 1 − p. Such a distribution is called
a Bernoulli distribution with parameter p. In terms of a random
variable, it can be described by Table 6.15. In Table 6.15, the
value 1 for the random variable represents a success and the value

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 470 — #486 i
i

i
i

i
i

470 CHAPTER 6. INTRODUCTION TO LOGIC

Table 6.15: Bernoulli distribution of a random variable X

xi 1 0
pi p q = 1− p

0, a failure. Such a random variable is called an indicator random
variable.

Binomial distribution

An n (n ≥ 1) repeated Bernoulli distribution is called the binomial
distribution with parameter n and p and is denoted by B(n, p). Its
distribution is given by Table 6.16. The second row of Table 6.16

Table 6.16: Binomial distribution of a random variable X

xi 0 1 2 . . . k . . . n
pi qn

(
n
1

)
qn−1p

(
n
2

)
qn−2p2 . . .

(
n
k

)
qn−kpk . . . pn

is nothing but the different terms of the binomial expansion of
(q + p)n and hence the name binomial distribution.

The probability of getting k successes (that is k heads) in an
independent n tossing of a coin is given by the formula:

pk = p(X = k) =

(
n

k

)
qn−kpk, for k=0,1,. . . ,n

Example 6.4.14 (Binomial distribution):
Ram plays a game in which the probability of his success is 1/4.
He repeats the same game 6 times. What is the probability that
Ram wins the game (I) exactly twice (II) strictly more than four
times (III) at least once.

Solution: This experiment follows the binomial distribution
with parameters n = 6 and p = 1/4. Hence q = 1 − p = 3/4. By

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 471 — #487 i
i

i
i

i
i

6.4. PROBABILITY 471

the binomial distribution,

pk = p(X = k) =

(
n

k

)
qn−kpk, for k=0,1,. . . ,n.

(I) The probability of having 2 successes = p2 = p(X = 2) =(
6
2

)
(1/4)2(3/4)4 ≈ 0.29.
(II) The probability of having > 4 successes = p(X > 4) =

p(X = 5) + p(X = 6) =
(
6
5

)
(1/4)5(3/4)1 + (1/4)6 ≈ 0.004.

(III) The probability of having no successes = p0 = p(X =
0) = (3/4)6

Hence, the probability of having at least one success = p(X >
0) = 1− p(X = 0) = 1− (3/4)6 =≈ 0.82 since p(E ′) = 1− p(E).

Poisson distribution

This distribution is an infinite distribution. The general form of
the Poisson distribution with parameter m is given by

pk = p(X = k) =
mke−m

k!
, for k = 0, 1, . . . ,∞.

We can show that if n is large and p is small (with np = m), then
the binomial distribution (

(
n
k

)
pkqn−k is difficult to calculate) tends

to the Poisson distribution.

Example 6.4.15 (Poisson distribution):
An industry produces spare parts for cars. According to the qual-
ity control department, among every 1000 produced, 5 are defec-
tive. We check 800 spare parts. What is the probability that
among the 800 parts checked, strictly more than 4 are defective?

Solution: Here n = 800 (a “large” integer) and p = 5/1000 =
0.005 (a small “number”). So we use the Poisson distribution.
The parameter m = np = 800× 5/1000 = 4. We seek the number
p(X > 4) = 1 − p(X ≤ 3) = p(X = 0) + p(X = 1) + p(X =
2) + p(X = 3)(because p(E ′) = 1− p(E).)

We calculate each of the four terms using p(X = k) = mke−m

k!
:

p(X = 0) = 40e−4/0! = e−4. Now use the fact that e ≈ 2.71.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 472 — #488 i
i

i
i

i
i

472 CHAPTER 6. INTRODUCTION TO LOGIC

We may use a calculator to find the values of each of the three
other terms p(X = 1), p(X = 2), p(X = 3). Finally, we get
p(x > 4) ≈ 0.371. We leave the details of the calculation to the
reader.

EXERCISES:

1. Simplify the logical expression: (p ∨ q) ∧ (p ∨ q′) where p, q
are statements.

2. Prove by using the truth table that [(p → q) ∧ (q → r)] →
(p→ r)] is a tautology. The truth table will have eight rows.
The text proves this using algebraic methods.

3. Prove by algebraic method that p ∨ ¬(p ∧ q) is a tautology.

4. Prove that the argument p→ q,¬p ⊢ ¬q is a fallacy.

5. Disprove the following statement by finding a counterexam-
ple. For all positive integers n, n2+n+41 is a prime number.

6. Write the definition of limn→∞ an = l and its negation.

7. Write the definition of limx→a f(x) = l and its negation.

8. Write the converse of the following theorem: (Lagrange’s
theorem): The order of the subgroup of a finite group divides
the order of the group.

9. Let us consider the following statement and its proof.

Proposition: If 5 is a multiple of 3, then 20 is also a multiple
of 3.

Proof of the proposition: is a multiple of 3. Hence we can
write : 5 = 3 × k for some integer k. Now 20 = 4 × 5.
Plugging 5 = 3k in the previous equation, we get, 20 =
4× 3k = 3× (4k). Therefore, 20 is also a multiple of 3 (since
3k is an integer).

What is wrong with the above proof? Find the errors, if
there are errors. Your conclusion?

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 473 — #489 i
i

i
i

i
i

6.4. PROBABILITY 473

10. True or false. Justify your answer. If 250 is a perfect square
then 1000 is also a perfect square.

11. Prove that p → (q ∨ r) is logically equivalent to (p → q) ∨
(p→ r) either by algebraic method or by truth table.

12. A pair of unbiased dice is tossed. Find the probability of
obtaining a minimum of 2 in one of the dice.

13. Find p(A/B) if A ∩B = ∅. (assuming p(B) > 0).

14. Find p(A/B) if B ⊆ A.(assuming p(B) > 0).

15. An urn contains 8 items of which three are defective. Three
items are drawn from the urn one by one without replace-
ment. Find the probability that all the three items drawn
are defective.

16. A fair coin is tossed four times; let X be the random variable
associated with the number of heads that appeared. Write
the distribution of X and find the expectation and the vari-
ance of X.

17. A pair of two fair dice is tossed. Let X be the random vari-
able assigning the maximum of the number that appeared
on the two dice. Write the distribution of X and find its
expectation and its variance.

18. A university secretary writes n letters to n professors. The n
letters are handed over at random to each professor. Find the
expectation that each professor receives his/her own letter.
(Hint: Use the indicator random variable).

19. Find the expectation and variance of the Poisson distribution
with parameter m.

20. Prove that the mean and the variance of the binomial distri-
bution with parameters n and p are np and npq, respectively,
where q = 1− p.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 474 — #490 i
i

i
i

i
i

http://taylorandfrancis.com

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 475 — #491 i
i

i
i

i
i

Bibliography

[1] W. Feller, An Introduction to Probability Theory and Its Ap-
plications, Vol 1, John Wiley, New York, 1968.

[2] W. Feller, An Introduction to Probability Theory and Its Ap-
plications, Vol 2, John Wiley, New York, 1968.

[3] S. Lipschutz and M. Lipson, Discrete Mathematics, Tata
McGraw-Hill Publishing Company Limited, New Delhi, 2002.

[4] D. E. Knuth, The Art of Computer Programming. Volume 1:
Fundamental Algorithms, second edition, Addison- Wesley,
Reading, MA, 1973.

475

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 476 — #492 i
i

i
i

i
i

http://taylorandfrancis.com

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 477 — #493 i
i

i
i

i
i

Appendices

Answers to
Even-Numbered Exercises

477

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 478 — #494 i
i

i
i

i
i

http://taylorandfrancis.com

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 479 — #495 i
i

i
i

i
i

Appendix A

Answers to Chapter 1

Section 1.7

Exercise 2:

(i) Let y ∈ f(X1 ∪X2), then there exists an x ∈ X1 ∪X2

such that y = f(x). As x ∈ X1 ∪ X2, x ∈ X1 orx ∈
X2(or both), say, x ∈ X1. Then f(x) = y ∈ f(X1) ⊆
f(X1) ∪ f(X2) and argue as before.

(ii) Similar to (i).

(iii) Similar to (i).

Exercise 4:

(i) Let {X1, X2, . . . } be a denumerable sequence of denu-
merable sets. We want to show that X = ∪i∈NXi is
denumerable (that is, its elements can be enumerated
as a sequence). Set

X1 = {x11, x12, x13, . . . },
X2 = {x21, x22, x23, . . . },
X3 = {x31, x32, x33, . . . }, . . . ,

Then we enumerate the elements of X as a sequence
using Cantor’s diagonalization process. We take
X = {x11; x12, x21;x13, x22; x31; . . . }. Then any element

479

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 480 — #496 i
i

i
i

i
i

480 APPENDIX A. ANSWERS TO CHAPTER 1

of ∪i∈NXi is the n-th term of this sequence for some
unique n. Hence X is denumerable.

(ii) Follows from the fact that a subset of a union of denu-
merable sets cannot be finite.

Exercise 6:

(i) n ∈ Mn as n is a multiple of n. Hence N ⊆ ∪n∈NMn,
Trivially, ∪n∈NMn ⊆ N.

(ii) Let p ∈Mn1∩Mn2 . Then p is a multiple of n1 as well as
n2, and so, p is a multiple of [n1, n2], the lcm of n1 and
n2. Conversely, any multiple of [n1, n2] is a multiple of
both n1 and n2, and hence belongs to Mn1 ∩Mn2 . Thus
Mn1 ∩Mn2 =M[n1,n2].

(iii) Let n ∈ N. Then n /∈ Mn+1 and hence n /∈ ∩q∈NMq ⇒
∩q∈NMq = ∅.

(iv) Let n ∈ N \ {1}. Then n has some prime divisor p and
hence n ∈Mp, Thus ∪p=a primeMp = N \ {1}.

Exercise 8:

(i) On the set of reals, set aRb if d(a, b) ≤ 1 where d stands
for the distance.

(ii) On the set Z of integers, set aRb if a− b ≥ 0. Then R

is reflexive, transitive but not symmetric.

Exercise 10: Let X = {X1, X2, . . . , Xr} be a collection of r sets,
each Xi being finite. Suppose |Xi| = ni. If the sets Xi are pairwise
disjoint enumerate the elements of X as x11, x12, . . . , x1n1 ;
xn1+1, xn1+2, . . . , xn1+n2 ; . . . ; xn1n2+···+nr−1 , . . . , xn1n2+···+nr ,

and hence X has cardinality α =
r∑

i=1

ni, which is finite. If the sets

are not pairwise disjoint, then |X| < α, and therefore, X is again
finite.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 481 — #497 i
i

i
i

i
i

APPENDIX A. ANSWERS TO CHAPTER 1 481

Section 1.12

Exercise 2: Take a ∧ b = inf(a, b), and a ∨ b = sup(a, b).

Exercise 4:

(i)

(a ∧ b) ∧ c = a ∧ (b ∧ c) (by associativity)

= a ∧ (c ∧ b) (by commutativity)

= (c ∧ b) ∧ a (again by commutativity)

NOTE: We can as well denote the LHS by a ∧ b ∧ c
without any ambiguity.

(ii) Similar to (i).

Exercise 6: Suppose the lattice is a chain. Then a∨(b∧c) yields, if
for instance, a < b < c, a∨b = b, while a∨c = c and b∧c = b. Hence
a∨(b∧c) = b = (a∨b)∧(a∨c). By duality, a∧(b∨c) = (a∧b)∨(a∧c)
(in fact, both sides are equal to a). Similar verifications apply for
other orderings like a < c < b, etc.

Exercise 8: Apply Theorem 1.9.0.16.

Exercise 10: D10 : Contains neither a diamond nor pentagonal as
a sublattice. Therefore distributive and hence modular.
D20 : Distributive.
D36 : Contains the pentagonal lattice with vertices 3, 6, 12, 36, 9 in
cyclic order and hence not modular and therefore not distributive.
D60: Contains neither a diamond nor a pentagon. Hence the lattice
is distributive.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 482 — #498 i
i

i
i

i
i

482 APPENDIX A. ANSWERS TO CHAPTER 1

12

4

2

1

3

6

5

10

20

60

30

15

Figure A.1: Lattice D60

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 483 — #499 i
i

i
i

i
i

Appendix B

Answers to Chapter 2

Section 2.12

Exercise 2: The minimum number is 4× 4 + 1 = 17.

Exercise 4: 0! = 1! = 1 are the only odd factorials.

Exercise 6: The remainder is 1 and the quotient is n!/d.

Exercise 8: The gcd = 6! and the lcm = 9!.

Exercise 10: 46.

Exercise 12: 26× 25× 24× 23.

Exercise 14: The number is equal to the (total number of 3-digit
numbers) − (total number of 3-digit numbers in which 7 is ab-
sent). Note that 0 cannot occupy the hundred’s place. Hence the
number sought is 9× 10× 10− 8× 9× 9 = 252.

Exercise 16: The required number is
(
n
1

)
+
(
n
2

)
+
.. .+

(
n

n−1

)
= 2n−2.

Another way: the number of subsets is 2n. By excluding the null
set from B1 and B2, we obtain the number 2n − 2. (n ≥ 2.)

Exercise 18: 9 × 9 × 8 × 7 × 6. (Note that 0 cannot be in ten

483

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 484 — #500 i
i

i
i

i
i

484 APPENDIX B. ANSWERS TO CHAPTER 2

thousandth place.)

Exercise 20: 5 boys can be seated in 5! ways. A girl can be seated
before all of the boys or at the end of all the boys or in between
two boys. Hence the first girl has 6 places to be seated and the
second has 5 places and the third has 4 places. Hence the number
is 5!× 6× 5× 4 = 14400.

Exercise 22: The number is the same as the number of multi-
subsets of 18 elements from a set of 4 elements. This number is(
4+18−1

18

)
, which is

(
21
3

)
= 2660.

Exercise 24: We transform the problem into an equivalent problem
of finding nonnegative integral solutions. To this end, substitute,
y1 = x1−3, y2 = x2−1, y3 = x3, y4 = x4−5. The initial equation
becomes, y1 + y2 + y3 + y4 = 9. The number of solutions is the
number of multisubsets of 9 elements from a set of 4 elements.
This number is

(
4+9−1

9

)
=
(
12
9

)
= 440.

Exercise 26: The number of elements in the Cartesian product of
a 3-set and a 5-set is 3× 5 = 15. Any subset of this 15-element set
gives us a relation and the number of subsets is 215.

Exercise 28: The number is 6× 5× 4× 3 = 360.

Exercise 30: 4! = 24.

Exercise 32: The number is [4
2]
which is the coefficient of x2 in the

product x(x− 1)(x− 2)(x− 3). The coefficient is 11.

Exercise 34: 2143, 2341, 2413, 3142, 3412, 3421, 4123, 4312, 4321.
They are 9 in number.

Exercise 36: k = 5.

Exercise 38: k = 0 or k = n.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 485 — #501 i
i

i
i

i
i

APPENDIX B. ANSWERS TO CHAPTER 2 485

Exercise 40: 45 = 1280.

Exercise 42: The answer is the number of multisets of 5 elements
from the set { 1, 2, 3 }, which is

(
3+5−1

5

)
=
(
7
5

)
=21.

Exercise 44: 1234, 1235, 1236, 1245, 1246, 1256, 1345, 1346
1356, 1456, 2345, 2346, 2356, 2456, 3456.

Exercise 46: 115 = (1+10)5 = 1+
(
5
1

)
10+

(
5
2

)
102+

(
5
3

)
103+

(
5
4

)
104+

105 = 1 + 50 + 1000 + 10000 + 50000 + 100000 = 161051.

Exercise 48: Join the midpoints of the opposite sides of the square.
We obtain 4 equal squares each of one unit side. There are five
points and four squares of side one unit. Hence, two of the points
must be in one of the four squares, by the pigeon-hole princi-
ple. Since the diagonal of each four square measures

√
2 (by the

Pythagorean theorem), the distance between two points must be
less then

√
2.

Exercise 50: If not, let S be a subset of { a1, a2, . . . , an+1 } with
a1 < a2 < . . . < an+1 , ai+1 − ai ≥ 2 for each i, 1 ≤ i ≤ n + 1.
Since a1 ≥ 1, ai+1 − ai ≥ 2, and there are n + 1 elements in the
set S, we must have an+1 ≥ 1 + 2n, which is impossible.

Exercise 52: We have already seen in the text that any five points
inside an equilateral triangle of unit side will ensure that two of the
points will be at distance less than 1/2. Similarly, any ten points
inside an equilateral triangle of unit side will ensure that two of
the points will be at distance less than 1/3 (for this divide each
side into 1/3rd of unity and form 9 triangles each of side 1/3).
Generalize these. Still don’t see the answer? The answer is n2+1.

Exercise 54: To follow the argument, draw a Venn diagram. Let
M,P,C denote the set of students liking (at least) mathematics,
(at least), physics, and (at least), chemistry, respectively. By the
principle of inclusion-exclusion, the number of students liking at

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 486 — #502 i
i

i
i

i
i

486 APPENDIX B. ANSWERS TO CHAPTER 2

least one of the subjects is,

|M∪P∪C| = |M |+|P |+|C|−|M∩P |−|P∩C|−|C∩M |+|M∩P∩C|

which is equal to 15+12+11−9−4−5+3 = 23. This gives the an-
swer to part (g). Now let us find the number of students liking only
mathematics and physics. This number is the number of students
liking at least one of the subjects mathematics or physics minus
the number of students liking all the three subjects. This number
is 9− 3 = 6. Similarly, the number of students liking only physics
and chemistry is 4 − 3 = 1, the number of students liking only
mathematics and chemistry is 5− 3 = 2. The number of students
liking only mathematics is the number of students liking mathe-
matics minus the number of students liking only mathematics and
physics minus the number liking only chemistry and mathematics
minus the number liking all the three =15 − 6 − 2 − 3 = 4. Sim-
ilarly, the number liking only physics is 2 and the number liking
only chemistry is 5. Finally, the number liking none of the sub-
jects is the total number of students minus the number liking at
least one of the subjects, which is = 25− 23 = 2.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 487 — #503 i
i

i
i

i
i

Appendix C

Answers to Chapter 3

Section 3.5

Exercise 2: If prime p divides n, it cannot divide (n + 1). Hence
(n, n+1) = 1. As (n, n+1) = 1, [n, n+1] = n(n+1). Indeed, for
any two positive integers, if (p, q) = 1, then [p, q] = pq.

Exercise 4: As (x, y) = 3, 3|x and 3|y. Hence if x+ y = 100, then
3 must divide 100 which is not the case.
Second part: Yes; take x = 96, y = 3.

Exercise 6: If (b, c) ̸= 1, let p be a prime divisor of (b, c). Then p|b
and p|c, and as a + b = c, p|a =⇒ (a, c) ̸= 1, a contradiction.
Proof for the converse is similar. Result for Fibonacci numbers is
now trivial.

Exercise 8:

(i) Dividing the given equation by 11, we get 311x + 11y = 1.
Now (311, 11) = 1. So we can express 1 as a linear combina-
tion of 311 and 11. We have

Divide 311 by 11 : 311 = 28 · 11 + 3

Divide 11 by 3 : 11 = 3 · 3 + 2

Divide 3 by 2 : 3 = 1 · 2 + 1

487

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 488 — #504 i
i

i
i

i
i

488 APPENDIX C. ANSWERS TO CHAPTER 3

2 = 1 · 2

Hence (311, 11) = 1, and therefore, we can express 1 as a
linear combination of 311 and 11. Indeed, (by substituting
for the successive remainders)

1 = 3− 2

= 3− (11− 3 · 3)
= 4(311− 28 · 11)− 11

= 4 · 3− 11

= 4 · 311− 113 · 11

Hence x = 311 · 11 = 3421 and y = −113 · 11 = −1243.

(ii) Similar to (i) Answer : x = −4730 and y = 271.

Exercise 10: Set am = b. Then amn− 1 = bn− 1. Clearly, bn− 1 is
divisible by b− 1. Therefore amn − 1 is divisible by am − 1.
Next part: if n were not a prime, then n = pq, where p and q are
positive integers greater than or equal to 2. So an − 1 = apq − 1 is
divisible by ap−1 and also by aq − 1 and hence it is not a prime, a
contradiction.

Exercise 12: Let k be the largest power of 2 that occurs in
the denominators, namely, 2, 3, 4 . . . , n. Suppose s = 1

2
+ 1

3
+

· · · + 1
2k

+ · · · + 1
n

is an integer. We shall arrive at a contra-
diction. Multiply the above equation by 2k−1. This gives −1

2
=

−s2k−1+2k−2+ 2k−1

3
+2k−2+ 2k−1

5
+ · · · , where every denominator

on the RHS is an odd integer. Hence on simplification, we get
a fraction with an odd denominator, a contradiction to the fact
that the LHS is equal to −1

2
. (Note: For the same reason, the odd

denominator cannot be equal to 1.)

Exercise 14: Any factor of n is of the form
r∏

i=1

pkii , 0 ≤ ki ≤ ai.

Thus ki takes (ai + 1) values. Hence the result.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 489 — #505 i
i

i
i

i
i

APPENDIX C. ANSWERS TO CHAPTER 3 489

Section 3.10

Exercise 2: By definition, ϕ(n) = number of positive integers less
than n and prime ton. Denote them by

a1, a2, . . . , aϕ(n) . . . (i)

Now, as ai is prime to n, and n− ai is also prime to n. Hence the
numbers

n− a1, n− a2, . . . , n− aϕ(n) . . . (ii)
are just the same as the numbers in (i). Thus

ϕ(n)∑
i=1

ai =
1

2

[ϕ(n)∑
i=1

ai +

ϕ(n)∑
i=1

(n− ai)
]

=
1

2
ϕ(n)n.

Exercise 4: By Euler’s Theorem, as (p, q) = 1, pϕ(q) ≡ 1(mod q),
that is, pq−1 ≡ 1(mod q), as q is a prime. Similarly, qp−1 ≡
1(mod p). Therefore

(pq−1 − 1)(qp−1 − 1) ≡ 0(mod pq)

=⇒ pq−1qp−1 − (pq−1 + qp−1) + 1 ≡ 0(mod pq)

=⇒ pq−1 + qp−1 ≡ 1(mod pq).

Exercise 6: As (5, 6) = 1, the congruence has exactly one solution.
It is x = 4.

Exercise 8: As (5, 715) = 5, the congruence has 5 solutions. We
apply Theorem 3.8.11. Dividing by 5, we get the congruence,
x ≡ 2 (mod 143) and this gives the unique solution x0 = 145. Here
m = 715, d = 5. Hence the 5 solutions are x0 = 145, x0+

m
d
= 145+

143 = 248, x0+2m
d
= 145+286 = 431, x0+3m

d
= 145+429 = 574,

and x4 = x0 + 4m
d
= 145 + 572 = 717.

Exercise 10: Suppose n were not a prime. Then n has a prime di-
visor p (where 1 < p < n). By assumption, (n− 1)! ≡ −1 (mod n)
and hence (n− 1)! ≡ −1 (mod p). Also (n− 1)! ≡ 0 (mod p) =⇒
−1 ≡ 0 (mod p) =⇒ p|(p− 1), a contradiction. Hence n must be
a prime.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 490 — #506 i
i

i
i

i
i

490 APPENDIX C. ANSWERS TO CHAPTER 3

Section 3.12

Exercise 2:

(a) See Theorem 3.11.6 for the first part. If (m,n) ̸= 1, ϕ(mn)
need not be equal to ϕ(m)ϕ(n). For instance, take m = n =
2. Then ϕ(mn) = 2 while ϕ(m) = 1 = ϕ(n).

(b) If (m,n) = 1, the prime factors of m and n are distinct. If
m is a product of r distinct primes, and n is a product of s
distinct primes, thenmn is a product of r+s distinct primes.
Hence µ(mn) = (−1)r+s = (−1)r(−1)s = µ(m)µ(n). Case
when (m,n) ̸= 1. For example, take m = 5, n = 15. Then
µ(m) = −1, µ(n) = 1 while µ(mn) = 0.

(c) In the sum
∑
d|n
µ(d)ϕ(d), it suffices to take only square-free

prime divisors r and 1 (since µ(pr) = 0 for r ≥ 2). Let
p1 < · · · < pr be the distinct prime divisors of n. Then∑

d|n

µ(d)ϕ(d) = µ(1)ϕ(1) +
∑
i

µ(pi)ϕ(pi)

+
∑
i<j

µ(pipj)ϕ(pipj) + · · ·

= 1−
∑
i

ϕ(pi) +
∑
i<j

ϕ(pipj)− · · ·

=
n∏

i=1

[1− ϕ(pi)].

But as n is even, p1 = 2, and ϕ(pi) = 1. Therefore the
product on the right is 0.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 491 — #507 i
i

i
i

i
i

Appendix D

Answers to Chapter 4

Section 4.1

Exercise 2: Consider a longest directed path P in G. If x0 is the
origin of the path P , then the in-degree of x0 is 0, otherwise either
the graph will have a path of length greater than |P | or the graph
will contain a directed circuit which is impossible. Similarly, the
terminus of the path will have out-degree 0.

Exercise 4: Consider a longest path P = (x0, x1, . . . , xl) in G. The
length of P is l. Suppose that max(δ−, δ+) = δ+ = p > 0. Since P
is a longest path, there can’t be a vertex y ̸= xi for i = 0, 1, 2, . . . , l
in G with an arc (xl, y). Otherwise, P ′ = (x0, x1, . . . , xl, y) will be
a path of length l + 1. Hence all the successors of the terminal
vertex xl of the path P must be a subset of {xl−1, xl−2, . . . , x0 }.
Since the out-degree of xl is at least p, (xl, xk) must be an arc for
some k ≤ l − p where xk is a vertex of the path P. This implies
that (xk, xk+1, . . . , xl, xk) is a cycle of length l − k + 1 which is
≥ p+ 1. The argument is similar if max(δ−, δ+) = δ− = p > 0.

Exercise 6: The number of edges of G is on the one hand k|X1|
and on the other hand it is k|X2|, since G is bipartite. Hence,
k|X1| = k|X2| which implies |X1| = |X2|.

Exercise 8: The arc set U = { (1, 3), (3, 1)(2, 2), (3, 4), (4, 3) }.

491

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 492 — #508 i
i

i
i

i
i

492 APPENDIX D. ANSWERS TO CHAPTER 4

There are two connected components and their vertex sets are:
{ 1, 3, 4 } and { 2 }.

Exercise 10: No such graph exists because the sum of the out de-
grees is 5 whereas the sum of the in degrees is 6.

Exercise 12: In any graph, the sum of the degrees of the ver-
tices is always even. To prove the other part, form the sequences
(r1, r2, . . . , rn) and (q1, q2, . . . , qn) where qi is the quotient of the
division of di by 2 and ri is the remainder of the division of di by
2. Since the sum of all the di’s is even, the sequence (r1, r2, . . . , rn)
will have an even number of ones, say, ri1 , ri2 , . . . , ri2k . We shall
now construct a multigraph with the given sequence (di). Take n
vertices 1, 2, . . . , n. Join ri1 , ri2 by an edge, ri3 , ri4 by an edge and
finally, join ri2k−1

, ri2k by an edge. Now attach to each vertex i, qi
loops. Take an example of a sequence and execute the algorithm
to convince yourself.

Exercise 14: The number is 2(
4
2) = 26 = 64.

Exercise 16: Hint: Label the Petersen graph and the other isomor-
phic graphs of Petersen. Redraw each of the other graphs so as to
resemble the Petersen graph. Once this is done, an isomorphism
will be evident.

Exercise 18: Cn itself.

Exercise 20: Both are true.

Exercise 22: The chromatic index of K4 = ∆(K4) = 3 and that
of K5 = ∆(K5) + 1 = 5. More generally, K2n = ∆(K2n) = 2n− 1
and K2n+1 = ∆(K2n+1) + 1 = 2n+ 1.

Exercise 24: We distinguish two cases: p = 3. Take an elementary
cycle C6 of length 6, (1, 2, 3, 4, 5, 6, 1) where successive vertices in
the sequence are joined by an edge. Add the edges 25, 36, 41. We
obtain a cubic graph with 6 vertices and no triangle. The graph

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 493 — #509 i
i

i
i

i
i

APPENDIX D. ANSWERS TO CHAPTER 4 493

obtained is nothing but the complete bipartite graph K3,3. Now
let p ≥ 4. Take two copies of elementary cycles C6, (1, 2, . . . , p, 1),
and (1′, 2′, . . . , p′, 1′) where successive vertices in the sequence are
joined in each copy. Now add the p edges 11′, 22′, . . . , pp′). This
gives us a 3-regular graph without a triangle.

Exercise 26: The square of the Petersen graph is the complete
graph K10, because the diameter of the Petersen graph is 2.
If G is of diameter d, then Gd is the complete graph on n vertices
where n is the number of vertices of G.
The distance d(x, y) in Gk is ⌈n/k⌉.

Exercise 28: a) The graph consists of only one vertex, no edges
are self-complementary. b) An elementary path of length (con-
sisting of 4 vertices and 3 successive edges) is self-complementary.
The elementary cycle of length 5, C5 is self-complementary. c)
Note that m(G) +m(Gc = m(Kn) = n(n − 1)/2. Since G is self-
complementary, m(G) = m(Gc). Hence, the number of edges of G
is n(n − 1)/4. This implies that n(n − 1) is a multiple of 4. This
means that either n is a multiple of 4 or else n − 1 is a multiple
of 4. d) This follows by definition of the complement of a graph.
e) We shall show that if G is disconnected, then Gc is connected.
Let the components of G be G1, G2, . . . , Gk with k ≥ 2. Let the
number of vertices of Gi be n1 for 1 = 1, 2, . . . , k. Then, the com-
plete k partite graph Kn1,n2,...,nk

(which is connected) is a spanning
subgraph of Gc. Hence Gc is connected. f) We shall show that if
G of diameter > 3, then Gc is of diameter < 3. Take two vertices
x and y in G. If xy is not an edge, then xy is an edge in Gc and
d(x, y) = 1 in Gc. Suppose xy is an edge in G. We shall show
that d(x, y) in Gc is 2. Since G is of diameter ¿3, there must be a
vertex z which is joined to neither x nor y in G. But then in Gc,
every vertex z ̸ x, y is joined to either x or y. This means that the
distance between x and y is 2. Therefore, the diameter of Gc is 2.
If G is totally disconnected, then Gc is complete and its diameter
is 1. g) This follows the equation dG(x)+dGc(x) = n− 1 for every
vertex x and hence dGc(x) = n − 1 − dG(x). h) A set of vertices
S is a stable set in G if and only if S is a clique in Gc and S is a

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 494 — #510 i
i

i
i

i
i

494 APPENDIX D. ANSWERS TO CHAPTER 4

clique in G if and only if S is a stable set in G. Hence by definition
of the ramsey numbers, we have r(p, q) = r(q, p. i) r(2, q) = q. j)
No. (K2 +K2)

c ̸= Kc
2 +Kc

2 and (K2×K2)
c ̸= Kc

2 ×Kc
2. h). Draw

the edge graph of K5 and then redraw the edge graph so as to
resemble the Petersen graph.

Exercise 30: We shall prove a stronger result the diameter of the
graph is less than or equal to 2. Consider any two distinct ver-
tices x, y.We have to prove that d(x, y) ≤ 2. If xy is an edge, then
d(x, y) = 1. Suppose xy is not an edge of G.We claim that there is
a vertex z which is joined to both x and y. If not, Γ(x)∩Γ(y) = ∅.
Since, δ ≥ (n−1)/2, we have the inequality d(x)+d(y)+1+1 ≥ n,
that is, n + 1 ≥ n, which is impossible. Hence there is a vertex z
and both xz and zy are edges. This implies that d(x, y) = 2.

Exercise 32: (Draw graphs at each stage to follow the ar-
gument.) Cube 1 corresponds to the multigraph graph with
four vertices R,B,G, Y with edges RR,RG,BY, cube 2 to the
graph with four vertices R,B,G, Y with edges RB,RY,GY,
cube 3 to the graph with four vertices R,B,G, Y with edges
RB,BY,GG, and cube 4 to the graph with four vertices R,B,G, Y
with edges RG,GY, Y B. Now label the edges of cube 1 by 1,
cube 2 by 2, cube 3 by 3, and cube 4 by 4. By superim-
posing these four graphs, we obtain a multigraph graph with
four vertices R,B,G, Y with edges labeled RR(1), GG(3), RG(1),
RG(1), RB(2), RB(3), BY (1), BY (3), BY (4), Y G(2), Y G(4),
RY (2). The labels of the edges are indicated within parentheses.
The superimposed graph has two edge disjoint spanning subgraphs
G1 with edge set RB(3), BY (1), Y G(2), GR(4) (corresponding to
the front and back side) and G2 with edge set RB(2), BY (3),
Y G(4), GR(1) (corresponding to the left and right side). Now
transform these two graphs G1 and G2 into a solution so that all
four colors appear on each side of the 4× 1 stack.

Exercise 34: Draw two five cycles (1, 2, 3, 4, 5, 1) and (1′, 2′, 3′,
4′, 5′, 1′) where successive vertices of the sequences are joined by an
edge. Now draw the edges 11′, 22′, 33′, 44′, 55′. (Draw the graph.)

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 495 — #511 i
i

i
i

i
i

APPENDIX D. ANSWERS TO CHAPTER 4 495

Exercise 36: a) Q2 is the elementary cycle of length 4. To get
Q3, take two copies of Q2 and join the corresponding vertices in
each copy by a new edge. This graph is the usual 3-dimensional
cube. (Draw the graphs.) b) The number of vertices of Qk is
2k. To find the number of edges, observe that a Qk is a k-regular
graph. Hence the sum of the degrees of the vertices is k2k which is
2m. Hence the number of edges is k2k−1. c) The proof is induction
on k. If k = 1, then Q1 = K2 is clearly bipartite. Assume Qk

is bipartite for k ≥ 1. We shall show that Qk+1 is bipartite. By
definition, Qk+1 = Qk × K2 is obtained by taking two copies of
Qk and joining the corresponding vertices of the copies by a new
edge. Let S and T be a bi-partition of Qk and let S ′ and T ′ be
a bi-partition of its copy. Then clearly, S ∪ T ′ and S ′ ∪ T are bi-
partitions of Qk+1. d). The complete bipartite graphK2,3. (Prove!)

Exercise 38: K2 + K2 is not a bipartite graph, although K2 is
bipartite. To prove G1 ×G2 is a bipartite graph if G1 and G2 are
bipartite, follow a similar argument of the answer to Exercise 36c.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 496 — #512 i
i

i
i

i
i

http://taylorandfrancis.com

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 497 — #513 i
i

i
i

i
i

Appendix E

Answers to Chapter 5

Section 5.1

Exercise 2: a) gcd(1729, 13) = 13, because 13 divides 1729.
b) gcd(17, 47) = gcd(47, 17) = gcd(17, 13) = gcd(13, 4) =
gcd(4, 1) = 1. c) gcd(27, 81) = gcd(81, 27) = 27. d) gcd(1, 1000) =
gcd(1000, 1) = 1. e) gcd(551, 1769) = gcd(1769, 551) = gcd(551,
116) = gcd(116, 87) = gcd(87, 29) = 3.

Exercise 4: We shall write a function in pseudo-code and the reader
is asked to translate it into C:

int lcm(int m, int n) { int min,max,t; if (m > n){max = m; min =
n; }; else {max = n; min = m; }
t = 1; while (t ∗max mod min ! = 0) t++; printf(“%d′′, t ∗max)}

Exercise 6: Let the minimum of the positive integral linear combi-
nation ofm and n be p = a′m+b′n. Any divisor ofm and n divides
any integral linear combination of m and n and hence p. In partic-
ular, the gcd(m,n) divides p. Hence gcd(m,n) ≤ p. It remains to
show that gcd(m,n) ≥ p.We shall show that p divides bothm and
n. If, say, p did not divide m, then by the division algorithm, we
can write m = qp+ r where q is the quotient and r the remainder
with 0 < r < p. This means that r = m− qp = m− q(a′m+ b′n).
Since 0 < r < p, r would be a smaller positive integral linear com-

497

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 498 — #514 i
i

i
i

i
i

498 APPENDIX E. ANSWERS TO CHAPTER 5

bination of m and n, which is a contradiction. Hence p divides
both m and n. Therefore, p ≤ gcd(m,n).

Exercise 8: True. Let P (n) = akn
k + ak−1n

k−1 + · · ·++a1n+ a0.
Then limn→∞ |P (n)/nk| = |ak|. This means that in particular for
ϵ = |ak|/2 > 0, there exists n0 such that |P (n)/nk| − |ak| >
|ak| − |ak|/2 = |ak|/2 for all n ≥ n0. (Since, by definition, if
an → l as n →, then, for every ϵ > 0, there exists an n0 such
that l− ϵ < an < l+ ϵ for all n ≥ n0. Hence |P (n)/nk| > |ak|/2 or
|P (n)| > cnk for n ≥ n0 with c = |ak|/2.

Exercise 10: We can approximate a sum by integral by using
the formula:

∑n−1
i=1 f(i) ≈

∫ n

1
f(x) dx function , assuming that

f(x) is a differentiable function. Hence the given sum is equal to

O(
∫ n+1

1
xk dx), whose value is (n + 1)k+1/k + 1 − 1/k + 1 which

is O(nk+1). (See Euler’s Summation Formula, Art of Computer
Programming, Vol 1, by D. Knuth.)

Exercise 12: Special case of Exercise 8.

Exercise 14: a) False, because the ratio (5n2+8)/n tends to infinity
and hence the ratio is not bounded. b) False, for the same reason.
c) True, since n2 = O(n2) and log n = O(n) and by the product
rule, we get the result. d) False, in general, O(f(n))−O(f(n)) =
O(f(n)). Proof. Note that each O symbol may represent a differ-
ent function. Hence let g(n) = O(f(n) and h(n) = O(f(n). This
means that, |g(n)| ≤ c1|f(n)| for all n ≥ n1 and |h(n)| ≤ c1|f(n)|
for all n ≥ n2. Hence for n ≥ max(n1, n2), both inequalities are
valid simultaneously. Therefore, |g(n) − h(n)| ≤ |g(n)| + |h(n)|
≤ (c1 + c2)|f(n)|.

Exercise 16: If g1(n) = Ω(f1(n)) and g2(n) = Ω(f2(n)), then
g1(n)g2(n) = Ω(f1(n)f2(n). Proof. Since g1(n) = Ω(f1(n))
and g2(n) = Ω(f2(n)), there are positive constants c1, c2 and
positive integers n1, n2 such that |g1(n)| ≥ c1|f1(n)| for all
n ≥ n1 and |g2(n)| ≥ c2|f2(n)| for all n ≥ n2. Hence for
n ≥ max(n1, n2) both inequalities are satisfied. Therefore,

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 499 — #515 i
i

i
i

i
i

APPENDIX E. ANSWERS TO CHAPTER 5 499

|g1(n)g2(n)| = |g1(n)||g2(n)| ≥ c1c2|f1(n)f2(n)| for all n ≥
max(n1, n2). Hence by the definition of Ω, we have g1(n)g2(n) =
Ω(f1(n)f2(n).

Exercise 18: We use the constant N as the maximum number of
integers the stack can hold. For example, it could be

#define N 100

stackInitialize(){ h=0 }. int stackEmpty() { return h==0;}. void
push(int x){ s[h++]=x;}. int pop(){return s[--h]}. stackFull(){
return h==N+1}.

Exercise 20: 5 boys can be seated in 5! ways. A girl can be seated
before all of the boys or at the end of all the boys or in between
two boys. Hence the first girl has 6 places to be seated and the
second has 5 places and the third has 4 places. Hence the number
is 5!× 6× 5× 4 = 14400.

Exercise 22: The number is the same as the number of multi-
subsets of 18 elements from a set of 4 elements. This number is(
4+18−1

18

)
, which is

(
21
3

)
= 2660.

Exercise 24: True. Since if there were a magic square of order
n = 2, then the sum of each line, column, and diagonals must be
n(n2+1)/2 = 5. For all the other values of n, a magic square exists.

Exercise 26: Let the common sum be s. Let us find the value
of the sum of all the entries of magic square in two different
ways and equate. On the one hand, the sum of all the entries
is +2+ · · ·+n2 = n2(n2+1)/2, and on the other hand this sum is
ns. Equating we get ns = n2(n2 + 1)/2. Hence, s = n(n2 + 1)/2.

Exercise 28: Float harmonic(int n) { if (n==1) return 1; return
(harmonic(n-1) + 1/n);}

Exercise 30: Define the (in pascal notation) matrix N: array[1..n,-
1..1] of real; where the coefficientsmij =M [i, j] are N[i,j-i]. In this

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 500 — #516 i
i

i
i

i
i

500 APPENDIX E. ANSWERS TO CHAPTER 5

manner, the coefficients which are identical to zero in the matrix
M do not occupy any storage space. The storage space needed for
the old matrix M is O(n2), whereas the space needed for the new
matrix is only 3cn = O(n) where c > 0 is a constant.

Exercise 32: During the first scan, the integers 55 and 18 are ex-
changed. In the next scan, left and right pointers completely cross
at 94 and 6 respectively. We exchange 6 (right pointer integer)
and the pivot 44 to get the sequence (6, 18, 12, 42, 44, 94, 55, 67).
We are left with two files (6, 18, 12, 42) and (94, 55, 67). Consider
the right file. The first scan of this file leave the left and right
pointers towards 67. Exchange 67 and 94. There is no right file
now . The left file is (67, 55). The first scan exchanges 55 and
67. Similarly, apply the scan and exchange to the initial left file
(6, 18, 12, 42) to get (6, 12, 18, 42). By combining the two files , the
array is sorted.

Exercise 34: See the text for a program in C 5.15 taking the right-
most integer as the pivot. We need to modify only the function
split. Now the pivot is a[l] instead of a[r].

Figure E.1: Binary trees corresponding to calls: bh(3,-1) and
bh(2,1)

Exercice 36: The output to call bh(3,-1) is: -1,+2,-1,-3,-1,+2,-1
and the output for the call bh(2,1) is -1,+2,-1.

Exercise 38: Hint: We shall use three stacks (represented by ar-
rays) a,b,c of integers corresponding to three pegs. Let ha,hb,hc

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 501 — #517 i
i

i
i

i
i

APPENDIX E. ANSWERS TO CHAPTER 5 501

Table E.1: Partition function in C with leftmost as pivot

int split(int a[], int l, int r)
{int pivot,t,k,j;
//index k scans array a from left to right. j scans from right to
left
pivot=a[l];k=l;j=r+1;

do{
do k++; while(a[k] < pivot)&&(k! = r);
do j–; while(a[j] > pivot);//pivot element acts as sentinel

//(k! = r)?:to stop the scan when pivot is the greatest in the
array

t=a[j];a[j]=a[k];a[k]=t;//
while (j > k)}

a[k]=a[j];a[j]=a[l];a[l]=t;
return k;
}

be three integer variables pointing to the current integers at the
top of the stacks in a,b,c respectively. Initially all the disks are
stacked on the stack a where a[i] = 1 for i = 1, 2, . . . , n and the
disks are in the order n, n − 1, · · · , 2, 1 from bottom to top. The
arrays b, c are empty. Initially, ha = n, hb = hc = 0. Use the
algorithm: Imagine the arrays a, b, c in the form of a triangle. On
odd numbered moves, move the smallest disk 1 one position in
the clockwise direction. On even numbered moves, make the only
legal move not involving disk 1.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 502 — #518 i
i

i
i

i
i

http://taylorandfrancis.com

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 503 — #519 i
i

i
i

i
i

Appendix F

Answers to Chapter 6

Section 6.1

Exercise 2:

Table F.1: Truth Table

p q r p → q q → r [(p → q) ∧ (q → r)] p → r [(p → q) ∧ (q → r)]
→ (p → r)

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 0 0 1 1
0 1 1 1 1 1 1 1
1 0 0 0 1 0 0 1
1 0 1 0 1 0 1 1
1 1 0 1 0 0 0 1
1 1 1 1 1 0 1 1

Exercise 4: We shall prove that E = p → q,¬p ⊢ ¬q is a fallacy
by the algebraic method. We use p→ q = ¬p ∨ q).
Equivalently, we shall prove that E = (p→ q)∧ (¬p)→ ¬q is not
a tautology.
E = (p′ + q)p′ → q′ (denoting ¬ by ’, ∧ by juxtaposition, ∨ by +)
E = (p′ + p′q)′ + q′ = p + p + q′ + q′ (by DeMoran’s law and
involution)=p + q′ which has the value 0 when p = 0 and q = 1.
Hence it is not a tautology.

503

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 504 — #520 i
i

i
i

i
i

504 APPENDIX F. ANSWERS TO CHAPTER 6

Exercise 6: limn→∞ an = l means ∀ϵ > 0, ∃n0 ∈ N such that
|an − l| < ϵ, ∀n > n0.
limn→∞ an ̸= l means ∃ϵ > 0 such that ∀n0 ∈ N , ∃n > n0,
|an − l| ≥ ϵ.

Exercise 8: Statement of the Converse of Lagrange’s Theorem: Let
G be a finite group. If an integer p divides the order of G, then G
has a subgroup of order p. (This converse is false.)

Exercise 10: True: Justification: It is given that 250 is a per-
fect square. This means that there exists an integer k such that
250 = k2. Now, 1000 = 250 × 4. Plugging in k2 for 250, we get,
1000 = k2×4 = (2k)2. Hence, 1000 is a perfect square. (Note that
the statement “250 is a perfect square” is false and the statement
“1000 is a perfect square” is false, but the implication is true! See
the truth table for implication.)

Exercise 12: The sample space consists of all 36 ordered pairs
(i, j) with 1 ≤ i, j ≤ 6. The number of favorable cases is the
number of elements of the set { (i, j) | i ≥ 2orj ≥ 2 }, which is
35(= 36−1) (all the sample points except (1, 1)). Hence the prob-
ability is 35/36.

Exercise 14: p(A/B) = p(A ∩B)/p(B) = p(B)/p(B) = 1.

Exercise 16: Note that the numerators in the pi line are binomial

Table F.2: The distribution of the random variable X

xi 0 1 2 3 4
pi 1/16 4/16 6/16 4/16 1/16

coefficients
(
4
i

)
for 0 ≤ i ≤ 4.

E(X) = 0× 1/16+1× 4/16+2× 6/16+3× 4/16+4× 1/16 = 2.
var(X) = E(X2)− (E(X))2 = 02×1/16+12×4/16+22×6/16+
32 × 4/16 + 42 × 1/16− 22 = 1.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 505 — #521 i
i

i
i

i
i

APPENDIX F. ANSWERS TO CHAPTER 6 505

Exercise 18: For i = 1, 2, · · · , n define the random variables
X1, X2, · · · , Xn as follows: Let Xi = 1 if the ith professor gets
his/her own letter, and Xi = 0, otherwise. Let X =

∑n
i=1Xi.

We want to find E(X). E(X) = E(
∑n

i=1Xi) =
∑n

i=1E(Xi),
since the expectation is a linear function. Since the letters are
given at random to different professors, the probability that the
ith professor gets his/her own letter is 1/n. Hence E(Xi) =
1× 1/n+ 0× (1− 1/n) = 1/n. Substituting, E(X) = 1.

Exercise 20: E(X) =
∑n

i=0 i×
(
n
i

)
piqn−i. Writing,

(
n
i

)
= n!/i!(n−

i)! and n! = (n − 1)! × n and taking np as a common factor,
we get E(X) = np(q + p)n−1 = np1n−1 = np. (By the binomial
theorem and q + p = 1.) var(X) = E(X2) − (E(X))2. E(X2) =∑n

i=0 x
2
i pi. Now,

∑n
i=1 (xi(xi − 1)pi) = (

∑n
i=1 x

2
i pi)−E(X). There-

fore,
∑n

i=1 x
2
i pi =

∑n
i=1 (xi(xi − 1)pi) + E(X). We first calcu-

late
∑n

i=1 (xi(xi − 1)pi). Substituting for pi and xi and taking
n(n− 1)p2 as a common factor, we obtain, by the binomial theo-
rem,

∑
(xi(xi − 1)pi) = n(n − 1)p2(q + p)n−2 = n(n − 1)p2. But

E(X) = np. Hence, var(X) = n(n−1)p2+np−n2p2 = np(1−p) =
npq.

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 506 — #522 i
i

i
i

i
i

http://taylorandfrancis.com

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 507 — #523 i
i

i
i

i
i

Index

(g, f)-factor of G, 269
(p, q)-Ramsey graph, 299
1× 2 dominoes, 49
Tn,k, the Turán graph, 247
gcd, 175
π, the circle ratio, 247
e, the base of the natural

logarithm, 247
f -factor of G, 269
f -factors, 269
k edge colorable, 251
k-colorable, 237
k-cube, 321
k-nomial coefficient, 92
k-nomial coefficients, 102
k-partition of the set, 114
k-th power Gk of G, 317
p-graph, 226
p-realizable, 231
pi(x), 141
(g,f)-factors, 269
(in-degree,out-degree) sequence

of a graph:, 231
(out,in) degree-sequence of G.,

231
“x” an unknown, 153
3 houses and 3 utilities

problem, 293

A.L.U., 356

Abel, 154
abstract data types, 388
actual parameters, 377
address, 354
algorithm

division, 185
Euclid’s, 187
extended Euclidean, 188

algorithm, 166, 235, 316, 326
algorithm to find all k-subsets

in [n], 170
algorithm to generate all

k-subsets of an [n]-set,
172

algorithm to generate all
strings of 0’s and 1’s
with length n., 170

algorithm to generate all the
subsets, 169

algorithm, brute-force or
exhaustive, 238

algorithm, exponential time,
238

algorithm, brute-force, 328
algorithm, exponential, 341
algorithm, good or polynomial,

341
algorithm: Sieve of

Eratosthenes, 142
alphabet, 54, 166

507

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 508 — #524 i
i

i
i

i
i

508 INDEX

Amdhal, 359
anagrams, 94
analytic function, 155
Another interpretation of

multinomial coefficients
in terms of
permutations of
multisets, 94

ANSI, 358
Application of Extended

Euclid’s algorithm to
partial fractions, 339

approximately equal ≈, 67
arc, head or tip, 228
arc, tail, 228
argument, 452
arithmetic and logic unit, 356
array, 389
array or vector, 390
assembly language, 359
assertion/proposition, 447
assignment, 364
asymptotic formula for π(x),

141
atom in a lattice, 38
auxiliary memory, 357

balanced binary trees, 415
base of the natural logarithm e,

67
basic types, 362
Bell numbers, 125
Berge, 103, 252
Bernoulli distribution, 469
Bernoulli numbers, 155
Bhaskara Acharya, 67
big O notation, 218

bijection, see equipotent
bijective, 7
bijective proof, 72
binary digit, 169
binary search or bisection

method, 417
binary trees, 415
binomial coefficient, 264
binomial coefficients, 67
binomial distribution, 470
binomial identities, 86
binomial theorem for real

power, 85
binomial theorem = Pingala

Chanda-Sutra, 84
bipartite graph or 2-colorable

graph, 245
bits, 331
blowing-up operation or

expansion or splitting,
309

Boolean
algebra, 34
homomorphism, 36
isomorphism, 41
subalgebra, 36

Boolean isomorphism, 38
Bose, Shrikhande, and Parker,

50
bottom up method, 387
Brooks’s theorem, 238
brute force or exhaustive search

methods , 353
brute-force algorithm for gcd,

236
built-in data types, 361, 387
built-in operations, 373

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 509 — #525 i
i

i
i

i
i

INDEX 509

byte, 354

cache, 357
calculation of l(n), 351
cardinal number, 12
cardinality, 2, see cardinal

number
Cartesian product, 52
Cartesian product of G1 and

G2, 309
Cartesian product of graphs,

308
Cartesian product of two sets, 9
Catalan numbers, 160
ceiling function, 350
ceiling of x, 247
Central Processing Unit, 355
Chanda-Sutra = Moon

Formula, 86
change of variable, 82
characteristic equation, 385
characteristic function χS, 75
characteristic vector, 166
checkerboard, 48
chromatic number, 234
chromatic number γ(G), 237
Chu-Vandermonde formula, 88
circle of convergence, 154
circle ratio π, 67
circuit, 273
circuit, cycle, Eulerian, 286
circuit, elementary, 273
circular array, 412
circular permutation, 111
class-NP, 237
class-NPI, 261
class-P, 237, 261

clique, 293
clique of G, 238
clock modulo, 113
closed formula, 158
closure property of

polynomials, 236, 347
code ASCII, 358
coding, 358
coding integers, 350
combinatorial interpretation of

Stirling number of the
first kind, 106

combinatorics, 48
compiler, 359
complement lattice, 30
complement of the graph, 253
complemented

relatively, 40
sectionally, 39

complete residue system, 198
complex number, 393
complexity, average, 334
complexity, best case, 334
complexity, worst case, 331
composite number, 189
compound statement, 364
conditional probability, 463
congruence, 194

polynomial, 195
conjunction, 448
connected components, 276
contents operator, 364
contra positive, 255
contraction, 309
contraction of an edge of G, 308
contradiction, 449
contrapositive, 451

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 510 — #526 i
i

i
i

i
i

510 INDEX

control unit, 356
converse relation, 23
conversion of an integer into

binary, 167
convex polygon, 69
correctness of the algorithm,

338
counter-example, 458
CPU, 355
cycle, 272
cycle notation, 107
cycle, elementary, 272
cyclic or circular permutation,

111

data, 355
data model, 389
data structures, 387
De Morgan’s laws for sets, 5
decimal computers, 359
decimal expansion, 59
decision problem, 235, 329
degree and radian measure, 345
degree sequence, 242
denumerable, 14
denumerable subset, 14
derangement, 132
dereferencing, 364
dereferencing operator, 397
determinant, 143
diagonal Ramsey numbers, 296
diameter, 277
differentiation, 164
differentiation and integration,

89
direct proof, 455
direct recursion, 381

directed graph,digraph, 233
directed path, 273
disconnected graph, 276
disjunction, 448
dispose, 404
distributive inequalities, 28
distributive law, 82
divide and conquer, 352
divide-and-conquer algorithms,

416
divisibility, 184
division algorithm, 185
division rule, 63
diwalk, 273
diwalk simple, 273
diwalk, elementary, 273
double summation, 80
duality in lattices, 28
duality relation of the binomial

coefficients, 71
dummy or index variable, 80
dynamic allocation, 397
Dynamic Random Access

Memory, 357

edge chromatic number q(G),
251

edge subdivision, 318
Edouard Lucas, 433
encapsulation of (ai), 154
enumeration problem, 50
environment, 376
equality of sets, 2
equally likely, 334
equipotent, 11
equiprobable space, 461
equivalence relations, 9

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 511 — #527 i
i

i
i

i
i

INDEX 511

Erdös, 303
Erdös and Gallai, 267
Erdös-Szekeres, 297
Euclid, 185
Euclid’s algorithm, 235
Euclid’s theorem, 192
Euler ϕ-function, 137
Euler’s 36 officers problem, 50
Euler’s conjecture, 50
Euler’s spoilers, 50
Euler’s theorem, 199, 284
event, 458
exhaustive method, 328
existence problem, 49
existential quantifier, 457
expectation of a random

variable, 467
experiment, 458
exponential function, 344
exponential time algorithm, 236
Extended Binary Coded

Decimal Interchange
Code, 359

extension of binomial
coefficients, 69

factorial, 66
factorial function, 381
fallacy, 452
falling factorial, 66
family of elements, 8
finite sample space and

probability model, 460
finite set, 12
fixed elements, 132
floor function, 138, 350
floor of x, 247

formal parameters, 376
formula for the number of

cycles, 110
formula to convert binary into

decimal, 167
four-color conjecture, 233
four-color theorem, 233
free, 404
function

arithmetical, 210
Möbius, 210

functions, 5
Fundamental Principle or

Product Rule, 56
fundamental theorem of

arithmetic, 140
fundamental theorem of

arithmetic, 137
Fundamental Theorem of

Algebra, 123
fundamental theorem of

arithmetic, 58, 340

gcd, 186
generalization of Ramsey

numbers, 305
generating function, 153
geodesic, 273
geodetic graph, 277
global variables, 376
God, 115
golden ratio, 158, 160, 385
good algorithm or polynomial

time algorithm, 341
good characterization, 285
good characterization of

non-bipartite Graphs,

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 512 — #528 i
i

i
i

i
i

512 INDEX

279
Good, I. J., 286
Gopala and Hemachandra, 157
Gopala, Hemachandra,

Fibonacci sequence, 157
granddad algorithm, 326
granddad of algorithms, 235
graph, 225
graph G, 226
Graph Minor Theorem, 314
graph, k-partite, k-colorable,

247
graph, complete, 244
graph, cubic, 248
graph, edge, 233
graph, isomorphic, 257
graph, label isomorphism, 261
graph, regular, 248
graph, simple, 241
graph, simple complete

k-partite, 247
graph, spanning, 268
graph, Turán, 247
graph, underlying, 241
graph, neither induced nor

spanning, 268
graphic sequence, 242
Gupta, Vizing, 252

Hadamard, 155
Halayudha, 67
Halayudha-Pingala’s

Chanda-Sutra, 84
Hamilton cycle, 317
Hamiltonian graph, 317
hand simulation, 327
handshaking lemma, 232

hardware, 360
harmonic number, 110
harmonic number hn, 109
harmonic series, 442
Hasse diagram, 21
heap, 397, 399
heterogeneous data elements,

393
hide and seek game, 69
Hilbert’s tenth problem, 330
Hoare, 420
homogeneous data elements,

393
homogeneous expression, 84
humanware, 360
hypo-Hamiltonian graph, 317

identifier, 361
identifying the ends x and y of

the edge e, 310
identity function, 261
implication, 449
incommensurable, 328
independent events, 463
independent set or stable set,

238
indeterminate, 153
indicator random variable, 470
indirect proof, 456
indirect recursion, 381
induced subgraph, 265
induction jump, 294
inequality manipulation, 332
infimum, 25
infinite loop, 368
information, 353
injective, 6

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 513 — #529 i
i

i
i

i
i

INDEX 513

injective or one to one function,
54

Institute of Electronic and
Electrical Engineers,
363

Integer programming problem,
239

Interchange of the order of
summation, 80

International Business
Machine, 359

interpretation of the binomial
coefficients as the
number of nonnegative
integral solutions of the
homogeneous linear
equation, 74

interpreters, 360
intractable problem, 347
inverse unique of a function, 8
isomophism, simple graph, 258
isomorphism, 256
isomorphism problem, 261
isomorphism, multigraph, 258
isotone, 28

join of G1 and G2, 309
join of graphs, 308
join-irreducible, 38

Königsberg bridge problem, 283
keywords, 361
Kirchoff’s law, 288
Klee-Minty examples, 348
Kronecker delta, 114
Kurushetra War, 292

l-value, 364

Laplace expansion of
determinants, 143

largest length of consecutive
suffix, 172

lattice, 25
distributive, 31
modular, 32

lattice points, 206
lattice points visible from

origin, 206
lcm, 186
least common multiple, 175,

339
length of a word, 55
letters, 54, 166
lexicographic order, 168
lexicographically precedes, 168
line graph of G, 250
linear congruences, 202
linear permutation, 111
linked list, 390
linker, 359
list, 389
local variables, 377
logically equivalent, 450
longest geodesic, 277
loop invariant, 338, 370
loop invariant or general

snapshot, 370
loop or repetitive statement,

367
Lord Brahma, 433

Möbius function, 140
machine language, 359
magic square, 391
main memory, 354

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 514 — #530 i
i

i
i

i
i

514 INDEX

matching in G, 251
mathematical induction, 454
matrix, 391
memory hierarchy, 357
minor of a graph, 308, 313
modules, 373
multigraph, underlying, 240
multigraph, undirected graph,

239
multigraphic sequence, 316
multinomial coefficients, 91, 92
multiple arcs, 227
multiplicity, 2
multiplicity of an element, 71
multiset, 2, 71
multisubset, 71
mutually exclusive events, 459,

463

Nagell’s theorem, 192
natural bijection, 166
natural number e, 134
nearest integer, 135
necessary condition for a

sequence to be graphic,
265

negation, 448
New York Times, 50
non-isomorphic, 260
non-planar, 292, 293
non-planar graph, 249
non-realizable sequence, 231
nondeterministic polynomial

time, 238
nondeterministic polynomial

time, 237
nonvoid, 10

note on the symbol “x.”, 153
NP-complete problems, 238
NP-hard, 239
NP-property, 285
number

coprimes, 193
prime, 189
residue, 197

one line notation or one
dimensional notation,
107

onto, 7
open problem, 271
operating system, 376
ordered pairs, 9
ordered partition, 91
ordinary generating function,

153
orientation of the multigraph,

315
outcomes, 458

Pandava princes, 292
Paradigm of the Divide and

Conquer recurrence
relation, 419

parameters input, 329
parameters or free variables,

234
parity argument, 49
partial fractions, 158
partial sum, 164
partially ordered set, 21
partition, 91
Partition Sort or Quick Sort,

421
Pascal identity, 294, 301

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 515 — #531 i
i

i
i

i
i

INDEX 515

pascal triangle, 79
path, 272
perfect matching in G, 251
permanent, 143
permutation, 64, 66
permutation with repetition, 62
Petersen graph, 249, 250, 318
pigeon-hole principle, 58, 293
Pingala’s Chanda-Sutra, 67, 86
pivot element, 421
planar graph, 234, 249
pointer, 396
pointers, 378
Poisson distribution, 471
polynomial function, 341
polynomial reduction, 239
polynomial time, 247
polynomial time algorithm,

219, 238
polynomial time algorithm or

good algorithm, 236
pop, 406
poset, see partially ordered set
power series, 153
preimages, 12
prime number, 70, 137
prime number theorem, 141
Principle of Inclusion and

Exclusion, 127
probabilistic method, 301
probability, 460
Probability Distribution of a

Random Variable, 465
Probability of an event, 302
probability space, 460
problem, 234
Product formula for ϕ(n), 213

product rule, 58
product rule of combinatorics,

56
program, 359, 360
proof by contradiction, 456
push, 406

queue, 410
Quick Sort, 420

r-value, 364
radius of convergence, 154
RAM machine, 237, 348
Ramanujan number, 176
Ramsey, 294
Ramsey number r(3, 4), 299
Ramsey numbers, 293, 294
Random Access Memory, 355
random variable, 464
RASP machine, 237, 348
real number e, 345
realizable sequence, 231
reciprocal, 203
reconstruction conjecture, 276
record, 393
recurrence relation, 66, 380
recurrence relation for the

Stirling numbers of the
second kind, 115

recursive function, 381
recursive type, 396
reduced cycle notation, 108
reflexive, 9
registers, 355
relation connecting ϕ and µ,

212
relation on a set, 9
relatively prime, 137

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 516 — #532 i
i

i
i

i
i

516 INDEX

representation theorem for
finite Boolean algebras,
41

rising factorial, 104

sample space, 458
sample space, events, 301
self-complementary, 259
semantics, 361
sequence of elements, 9
sequential search, 416
set, 2, 25

countable, 14
disjoint family, 5
infinite, 12
nonempty, 25
partially ordered, 20
power, 18
uncountable, 14

sethi, 359
sieve of Eratosthenes, 141, 428
simple probabilistic proof, 302
simplex algorithm, 348
size of the problem, 236
software, 360
squashed ordering, 168
Sriraman Sridharan, 269
stable set, 293
stable set or independent set,

246
stack, 406
standard deviation, 467
star graph, 246
Static Random Access Memory,

357
Stirling approximation for

factorial, 66

Stirling number of the first
kind as the sum of a
product, 112

Stirling number of the second
kind, 113

Stirling number of the second
kind as the sum of the
product, 125

Stirling number of the first
kind, 103

Stirling number of the first
kind as the sum of the
product, 112

Stirling number of the second
kind, 103

Stirling numbers, 103
Stirling triangle of the first

kind, 105
string of n-symbols, 160
string or words of length n, 166
strongly regular graph, 250
struct, 393
subdivision graph, 318
subfactorial, 135
subgraph, 264, 268
subgraph, induced, 265
sublattice, 27
subscript notation, 79, 81
subtraction rule, 62, 95
succinct certificate, 259, 285
sum of products, 83
sum rule, 51
sums and products, 79
supremum, 25
surjective or onto function, 54
symmetric, 9
symmetric arcs, 227

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 517 — #533 i
i

i
i

i
i

INDEX 517

symmetric relation, 248
syntax, 360

tautology, 449
theorem, 454
theorem

Chinese remainder, 204
Fermat’s little, 199
Schroder–Bernstein, 15
unique factorization, 190
Wilson’s, 200

theorem of Kuratowski, 318
time complexity of an

algorithm, 236
TONCAS, 267
top down method, 387
totient function, 198
Towers of Brahma-Hanoi

puzzle, 432
trail, 272
trail, directed, 273
transitive, 10
transitive graph, 315
transitivity, 11
traveling salesmen problem, 239
triangle inequality, 332
truth set, 457
truth tables, 448
truth values, 448
Turán graph Tn,k, 319
Turing machine, 237, 348
Tutte’s f-factor Theorem, 269
two interpretations of

functions, 53
two line notation, 107
type, 362

Ulam, 276

Unary, Binary and Uniform or
Arithmetic encoding,
350

undecidable problem, 329
underlying graph, 240
underlying graph of the

digraph, 315
undirected graphs, 233
union of G1 and G2, 309
union of graphs, 308
universal quantifier, 457
unlabeled graph, 257, 262
unordered pairs, 9
unordered partition, 91
upper bound on the Ramsey

number r(p, q), 300
user-defined data types, 362,

387
user-defined operations, 373

valid argument, 452
value substitution, 377
variable, 153, 361
variable/reference substitution,

378
variance, 468
variational proof, 270
Venn diagram, 3
vertex, end, 229
vertex, isolated, 229

Wagner’s theorem, 314
walk, 271
walk, directed, 273
walk, elementary, 272
walk, simple, 272
weighted version of the

exclusion and inclusion

i
i

“rb˙sri˙book˙vol˙1” — 2018/10/4 — 10:13 — page 518 — #534 i
i

i
i

i
i

518 INDEX

principle, 147
well-characterized property, 285
word, 390
word of length n, 64
words, 55

Yuri Matijasevich, 330

	Cover

	Half Title

	Title

	Copyrights

	Translation
	Dedication

	Contents
	Preface
	1 Sets, Relations and Functions
	1.1 Introduction
	1.2 Functions
	1.3 Equivalence Relations
	1.4 Finite and In�nite Sets
	1.5 Cardinal Numbers of Sets
	1.6 Power Set of a Set
	1.7 Exercises
	1.8 Partially Ordered Sets
	1.9 Lattices
	1.10 Boolean Algebras
	1.10.1 Introduction
	1.10.2 Examples of Boolean Algebras

	1.11 Atoms in a Lattice
	1.12 Exercises

	2 Combinatorics
	2.1 What Is Combinatorics?
	2.2 Elementary Counting Principles
	2.3 Permutations and Combinations
	2.3.1 Sums and Products

	2.4 Binomial Theorem
	2.5 Multinomial Coefficients
	2.6 Stirling Numbers
	2.7 Stirling Number of the Second Kind n k
	2.8 Bell Numbers
	2.9 The Principle of Inclusion
	2.9.1 Applications of Inclusion and Exclusion Principle
	2.9.2 Application of Inclusion and Exclusion Principle to Elementary Number Theory . .
	2.9.3 Applications to Permanents

	2.10 Generating Functions
	2.10.1 Solving Recurrence Relations Using Generating Function Techniques
	2.10.2 Catalan Numbers

	2.11 Generating Subsets
	2.12 Exercises

	3 Basics of Number Theory
	3.1 Introduction
	3.2 Divisibility
	3.3 gcd and lcm of Two Integers
	3.4 Primes
	3.5 Exercises
	3.6 Congruences
	3.7 Complete System of Residues
	3.8 Linear Congruences
	3.9 Lattice Points Visible from the Origin
	3.10 Exercises
	3.11 Some Arithmetical Functions
	3.12 Exercises
	3.13 The Big O Notation

	4 Introduction to Graph Theory
	4.1 The Idea of a Graph
	4.2 An Informal and Intuitive
	4.3 Multigraph or Undirected Graph
	4.4 Some Special Graphs
	4.5 Graphs and Subgraphs
	4.6 Walks, Paths, Cycles
	4.7 Connectedness
	4.8 Graphs and Puzzles
	4.8.1 An Application
	4.8.2 Two Friendship Theorems
	4.8.3 Pandava Princes Problem and 3 Houses,3 Utilities Problem

	4.9 Ramsey Numbers
	4.10 Graph Algebra
	4.11 Exercises

	5 Introduction to Algorithms
	5.1 Algorithms
	5.2 Complexity of Algorithms
	5.3 An Overview of a Classical Computer
	5.4 Introduction to Programming
	5.4.1 Parameter Passing
	5.4.2 Recursion

	5.5 Introduction to Data Structures
	5.5.1 Access Restricted Lists

	5.6 Examples of Algorithms
	5.7 Exercises

	6 Introduction to Logic
	6.1 Introduction
	6.2 Algebra of Propositions
	6.3 Proofs in Mathematics
	6.3.1 Universal and Existential Quanti�ers

	6.4 Probability

	Appendices Answers to Even-Numbered Exercises
	A Answers to Chapter 1
	B Answers to Chapter 2
	C Answers to Chapter 3
	D Answers to Chapter 4
	E Answers to Chapter 5
	F Answers to Chapter 6
	Index

