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Foreword

THINGS TO LOOK FOR…

• The definition of an embedded system.

• The need for embedded applications.

• Some of the vocabulary of the field.

• Philosophy for the development of embedded applications.

• The major hardware and software components in an embedded system.

• The design and development process of an embedded system.

• Some of the basic architectures and how they evolved.

INTRODUCING EMBEDDED SYSTEMS

This foreword begins with some personal philosophy about the development of embedded
systems. It also gives an overview of what an embedded system is and how such things are
structured. It concludes with a high-level view of the development process for an embedded
system.

PHILOSOPHY

The approach and views on solving engineering problems in general taken in this work are
my views and my approach; yours will probably be different, particularly as you learn and
develop your skills and as the technology changes. This stuff is fun and challenging. At
the same time, it is also important to recognize that not everyone feels the same way. If
you have a different view, put this book down as quickly as you can, go out, and explore
other vistas; go to the top of that next hill and then over it, until you find the things that are
exciting and challenging for you.

As we begin, let’s hop on a time machine and pop back, say 10 000 years or so to the
shores of some beautiful lake somewhere. In the distance, we see some people walking
along, picking up stones or rocks, or perhaps some sticks. Imagine what they might be
thinking. Look, one person sees something. It’s a small roundish flattish sort of rock – “ah
ha,” he says, “I’ll bet I can make this rock skip five or even ten times over that lake if I
throw it just right. In fact, I can make it skip more times than you.” Another picks up a
larger one – a round one too but more like a basketball. This could make a great chair (they
probably didn’t really say chair since the word hadn’t been thought of yet). Yet another
sees a long, stout stick – perfect for helping his mom walk since she’s getting older. In each
case, they saw the object from the outside. That’s what first drew their interest – size, shape,
color, and possible uses. Later, it was curiosity that drove them to learn more, to understand,
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to find out what was inside of something or what made it work. It’s the drive to throw the
rock further, make it skip more times, or make it shinier than the next guy that pushes us to
constantly improve our designs.

Perhaps sometime during your early years someone told you that necessity was the
mother of invention. Perhaps it was even your mother. Unfortunately, they lied. Necessity
is not the mother of invention: laziness is. That’s right, laziness. Our ancestors digging in
the garden with sharpened sticks didn’t say “I think I need a shovel.” They more likely
said, “This is hard work and I’m sick of it. Why do I have to do all the work? I’d rather
be relaxing under that tree over there. I think I’ll invent a shovel so I can get this job done
quicker. If I could invent gasoline, I’d invent a tractor and a plow and get this done even
faster.”

We see here the two main themes that will be interwoven through each of the chapters
ahead. With each new design, our first look should be from the outside. What are we design-
ing? How will people use it – what is its behavior? What effect will it have on its operating
environment – what are the outputs? What will be the effect of its operating environ-
ment – what are its inputs? How well do we have to do the job – what are the constraints?
We want to look at the high-level details first and then go on to the lower. We can borrow
the idea of the public interface (an outside view) to our system from our colleagues working
on object-centered designs.

As technology advances, we are able to do more and more. Today, we can put over a
thousand very powerful computers in the space that a single vacuum tube occupied several
years ago. Keeping track of the behavior of a single vacuum tube offers minimal challenge.
Orchestrating the information flow and managing the computation schedules of over one
thousand high-performance microprocessor cores is a much more interesting problem.

To address such problems, we must have tools – tools to help us attack the complexity
of the designs we are undertaking today; tools to help us get the job done more quickly
and more efficiently. Hey, sitting under that tree is not too bad of an idea. Philosophy is
fun, but now it’s time to get to work. Unfortunately, today we don’t have any tools that
will automatically get this knowledge into our head. Yet, where do we go in the next 20–50
years? What tools will we have then? Let your imagination go free – that’s now your job as
tomorrow’s engineers and scientists.

EMBEDDED SYSTEMS

We’ll open by exploring embedded systems. Remember, as we start, embedded systems are
not a stand-alone field. We use the tools, techniques, and knowledge from just about every
discipline in electrical engineering and computing science.

What Is an Embedded System?

Embedded systems are a combination of hardware and software parts, as well as other
components that we bring together into products such as a cell phone, a music player, a
network router, or an aircraft guidance system. They are a system within another system as
we see in Figure 1.

Embedded systems techniques allow us to make products that are smaller, faster, more
secure, reliable, and cheaper. They allow us to bring features and capabilities to everyday
things that could only be dreamed about just a few years ago. VLSI – Very Large-ScaleVLSI – Very

Large-Scale Integrated
Circuits

Integrated Circuits – are the key components in enabling all of this to happen. Yesterday,
we talked about individual transistors or tens of transistors. Today, with VLSI we think
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Figure 1 A Simple Embedded System.

in terms of millions of transistors collected into a single integrated circuit. Without VLSI,
embedded systems would not be feasible, and without embedded systems VLSI would serve
little purpose.

When we develop an application program, such as a word processing software or the
latest video game, we want people to see it, to like it, and to buy it. If that does not happen,
we have failed. In contrast, we intend our embedded designs to do their job securely, reli-
ably, quietly, efficiently, and out of sight inside some larger system, such as the fuel control
system in our car. We become aware that they are there only when they don’t work.

Embedded systems present a variety of challenges as we bring the hardware, the soft-
ware, and vagaries of the world outside of the microprocessor together. Seeing our design
sending a rover across the plains, conducting experiments on Mars or photographing some
planet in a distant galaxy, saving lives as a part of the latest heart monitoring system, or
working as the core of the newest entertainment system – these are all the reasons we are
in this business.

A few years ago when microprocessors and Programmable Read Only Memories
(PROMs) first appeared as new tools, developing applications – firmware as it became
known – was rather undemanding. Armed with a teletype, a simple assembler, and a host
minicomputer, we were ready to go. “Sophisticated” applications of several hundred lines
of code transformed rather complex, discrete, logic designs into simple, yet powerful,
state-of-the-art systems. Today, we are designing embedded applications comprising
thousands of lines of code, multiple microprocessors, VLSI components, and array logics
that may be distributed around an office or around the world. The complexity of today’s
problems has increased manyfold. To successfully attack such problems, we must develop
and learn new tools to replace those we’ve grown comfortable with.
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Unlike the desktop PC, an embedded computer must interact with a wide variety of
analog and digital devices. The skilled embedded developer must know and understand
the operation of sensors and transducers, analog-to-digital conversion (and vice versa), net-
works and their many protocols, motors, and other processors, as well as the more traditional
peripherals. As we make our systems smaller and smaller, dozens of early physicists are
lurking. Our old friends Maxwell, Faraday, Gauss, and Lenz are there to quickly point out
when we’ve violated one of their laws. Solving problems arising from signal coupling,
noise, electromagnetic interference, or propagation delays is challenging indeed – but nec-
essary.

Building an Embedded System

As we begin to study embedded applications, we will find that, in addition to a wide vari-
ety of other hardware components, we embed three basic kinds of computing engines into
our systems: microprocessors, microcomputers, and microcontrollers. The microcomputer
and other hardware elements are connected via the system bus, which provides an intercon-system bus

Address, Data, Control
necting path for electrical signals to flow. The system bus is actually subdivided into three
busses, segregated by the information they carry: Address, Data, and Control.

We’ll examine each of these elements of the system in greater depth in the coming
chapters. For now, we see that a typical embedded system comprises hardware and software,
and is designed and optimized to solve a specific problem very efficiently. The micropro-
cessor controls the whole system, and ultimately the application, by executing a set of
instructions called firmware that is stored in ROM in the memory subsystem.firmware

To run the application, when power is first turned on, the microprocessor addresses a
predefined location and fetches, decodes, and executes one instruction after another. As eachfetches, decodes,

executes, instruction
cycle

instruction is completed, the processor fetches the next one. The instruction cycle repeats
forever, unlike a typical application program which eventually terminates. At the top level,
an embedded program is structured as an infinite loop, as illustrated in the code fragment
in Figure 2.

while(1)

{

Embedded Program

}
Figure 2 Top-Level Embedded Program.

The program never executes a return; there is no place to return to. The specific set
of instructions that a microprocessor knows how to execute is called its instruction set.instruction set
Included are instructions that bring data in from the outside world, output signals to the
external world, and provide a means to exchange data with the memory subsystem.

The term embedded system refers to a system that is enclosed or embedded in a largerembedded system,
embedded system. Such a system often continually interacts with its surrounding environment as it

monitors and controls some set of processes. A good example is the automobile, which
may contain as many as 100 embedded microprocessors and microcontrollers for manag-
ing engine ignition and firing, transmission shifting, power steering, the antilock braking
system, security system, or the passenger entertainment system.

When operating in electrically harsh environments, such as the engine compartment of
an automobile or the cockpit of an aircraft, there is a high probability that electromagnetic
noise may cause the system to behave erratically. Similar behavior on our desktop machine
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is easily remedied by simply reaching over and resetting the system. We do not have that
luxury with an embedded application that may be flying along at 40 000 ft or two-thirds of
the way to Mars. To address the problem, we add what we call a watchdog timer. Such awatchdog timer
timer is not much more than a fancy alarm clock. Periodically, the microprocessor must reset
the timer. If it fails to do so, the timer will reset the microprocessor, which generally solves
the problem. In Figure 3, the signal from the watchdog timer comes in to the processor as
a nonmaskable interrupt (NMI) – that is, an interrupt that cannot be ignored.
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Figure 3 A Microprocessor-Based Embedded System.

Time is often an essential constraint in an embedded application, in contrast to what
one finds in a typical desktop application, for example. Stating that a system is real-timereal-time
demands that the system must respond to designated external or internal events within a
specified time interval. The expected response is typically the execution of the task associ-
ated with the triggering event.

We identify three kinds of real-time systems based on the urgency of meeting the
required time constraint. A system is considered to be a soft real-time system if failuresoft real-time system
to meet the time constraint results only in degraded performance. If a time constraint is not
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met in a hard real-time system, the system is said to have failed. Such a failure may be seenhard real-time system

firm real-time system
as catastrophic if it can result in considerable risk to people, to the environment, or to a
system being monitored or controlled. A firm real-time system falls in between, with a mix
of the two kinds of tasks.

When an operating system is used in an embedded microcomputer, typically it is a
real-time operating system, or RTOS. An RTOS is specifically designed and optimized to
predictably handle the strict time constraints associated with events in a real-time context.

The implementation of a microprocessor-based embedded system combines the indi-microprocessor
vidual pieces into an integrated whole as we see in Figure 3, which presents the architecture
for a typical embedded system and identifies the minimal set of necessary components.

THE EMBEDDED DESIGN AND DEVELOPMENT PROCESS

Not too many years ago, we began the design of a new embedded application with some
thought about the problem, wrapped some registers, logic, and busses around the micro-
processor, wrote a few lines of assembly language code, downloaded the assembled object
file to the development environment, debugged it, and shipped it – or so it seemed. Such
an approach worked great when all we had to be concerned about was the microprocessor,
a handful of inputs and outputs, a few Small-Scale Integrated (SSI) or Medium-Scale Inte-
grated (MSI) gate packs, and firmware that fit into a couple of PROMs, as we see in the
simple drawing in Figure 4. Today, delivering secure, robust, reliable, and well-designed
embedded applications to our customers is not quite that easy.

m
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voidmain (void)
{

......
}

Embedded System

Figure 4 Building an Embedded
System.

We find that contemporary embedded applications tend to fall into two groups: the
simple ones that run the toaster, microwave, or children’s video game, and the sophisticated
ones that control a jet aircraft, manage an entertainment system, aide a medical doctor in
diagnosing a patient, or help to control a nuclear reactor. The systems in the second group
are orders of magnitude more complex than any of those we used to build. Designing by
hand is no longer feasible. Utilizing an ad hoc approach tailored to each different application
is too expensive and too fraught with error. We can’t simply wire a few parts together, hack
out a bit of software, and spend days or weeks trying to debug the collection. We need tools;
we need formal methods. We need tools to model our designs, to perform simulations, and
to simplify and interactively optimize the hardware, software, and firmware. Ultimately, we
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need tools that we can use to synthesize portions of that design either as a programmable
logic device or a VLSI circuit.

Figure 5 gives a high-level flow through the development process and identifies the
major elements of the development life cycle. Specifically, the hardware portion of thelife cycle
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Figure 5 The Embedded System Life Cycle.
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life cycle involves the design, development, and test of the physical system architecture,
packaging, printed circuit boards, and, ultimately, the individual components.

The software portion entails the tasks or algorithmic portion of the application. Such
software may be written in a high-level language, assembler, or a mixture of the two. Work
in assembly requires detailed knowledge of the microprocessor architecture and its register
structure.

The traditional design approach has been to traverse the two sides of the accompanying
diagram separately; that is:

• Design the hardware components.

• Design the software components.

• Bring the two together.

• Spend time testing and debugging the system.

Contemporary methodologies favor the combined and “simultaneous” design of both
the hardware and the software components, with the objective of meeting system-level
requirements through trade-offs between these two. The key points in such an approach
are to specify and (iteratively) design and develop both aspects of the system concurrently
with the goals of increased productivity – reduced design cycle time – and improved product
quality.

Such an approach focuses on the major areas of the design process:

• Ensuring a sound hardware and software specification and input to the process.

• Formulating the architecture for the system to be designed.

• Partitioning the hardware and software.

• Providing an iterative approach to the design of hardware and software.

Each of the issues we have identified is listed in Figure 6 and will be addressed in detail
during our studies of the development of modern embedded systems.

Major Aspects in the Development of Embedded Applications

•   Digital hardware and software architecture

•   Formal design, development, and optimization process

•   Security, safety and reliability

•   Digital hardware and software/firmware design

•   The interface to physical world analog and digital signals 

•   Debug, troubleshooting, and test of our design

Figure 6 Considerations when Developing an Embedded System.

The contemporary creative design and development process begins with an abstracted
notion of the system to be built and moves through an iterative series of transformations to
the final product. Computer-based tools are essential to that process. To be able to effec-
tively use such tools today, as engineers we must understand how to develop accurate
hardware and software models of the systems we intend to design and build. As an integral
part of embedded systems development, we continually trade off speed, size, power, cost,
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weight, or time constraints to meet specified constraints or to improve performance. Tools
can help us to make those trade-offs more efficiently.

A comprehensive study of the design process and all related modeling tools and
methodologies could easily take up several volumes – and does. Here, we take a first step
and lay the groundwork on which people may build with future work. We will introduce,
study, and apply the basic concepts of formal methods and tools. We learn that good
system designers and designs proceed using a minimum of five steps. These steps are
listed in Figure 7.

•   Requirements definition

•   System specification

•   Functional design

•   Architectural design

•   Prototyping Figure 7 Important Steps in Developing an Embedded
System.

In today’s world, we see that the contemporary design process must also take into
consideration design reuse and intellectual property at every design stage. Through hier-
archical modeling and functional decomposition, we will become familiar with and work
with formal design methodologies. In our studies, we will use the Verilog HDL – Hardware
Design Language – as our hardware modeling and simulation tool. We will study the soft-
ware life cycle in depth; the Unified Modeling Language (UML) and structured methods
are presented and will become our software modeling tools.

A good, solid, secure, and reliable design always begins with a firm foundation
(Figure 8). Without that, everything we add later is fragile. Today, engineering students
who want to work in the embedded field must have a sound understanding of the basics of
digital hardware and software architecture as well as facility with more complex systems.
Thus, we will begin our studies by revisiting the basics; we will build on that knowledge
as we move to new topics.

Figure 8 The Essential Foundation.

We will open with the high-level structure and components coupled with an intro-
duction to the von Neumann and Harvard architectures that comprise the hardware and
computing core of an embedded application. That core is usually manifest as a micropro-
cessor, microcomputer, or microcontroller. At the opposite end of the system hierarchy, we
will take our first look at the bits, bytes, and volts as we study how the various and essen-
tial kinds of information (numbers, characters, addresses, and instructions) are represented
inside of a digital system.
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Next, we examine control and data flow in such machines and discuss how each is man-
ifest as a microprocessor, microcomputer, or microcontroller. Analog and digital peripheral
devices are incorporated to extend the basic architecture into the world of embedded appli-
cations. The programmer’s view of the machine is introduced through a discussion of
register transfer level (RTL) and instruction set architecture (ISA) models. The system
designer’s view brings the hardware and software together. With the high-level view in
place, we proceed with a solid review of logic fundamentals and C language basics essential
to developing robust embedded firmware.

Today’s embedded systems are used in many applications that can affect people’s lives,
result in significant environmental impact, or cost millions of dollars in the event of failure.
One of our goals in the design of embedded applications is to provide the highest perfor-
mance at the lowest cost while still delivering a secure, safe, and reliable system. The design
process does not stop with the first cut at a design; performance evaluation, like testing, must
occur at every stage in the development. This book integrates the philosophy of secure, safe,
secure, and reliable design methodologies throughout. As a lead-in to the design cycle, we
examine many of the considerations necessary for the execution of a safe, secure, robust,
and reliable design. We study both hardware and software methods to address the problems.

Design is the process of translating a customer’s requirements into a working sys-
tem. Working from the specification, we partition the system into its major functions and
then map those functions onto an architectural structure. The application itself is generally
manifest in software and sits on top of the hardware infrastructure.

A colleague once commented that hardware is merely a vehicle for software to express
itself. His statement has some validity. Certainly, an essential component of any embedded
system is the software/firmware. Early systems used an infinite loop to continuously cycle
through the various jobs in the application. Such an approach is still effective in a number of
today’s simpler designs. For the more complex designs, more powerful methods are needed;
such methods organize the required jobs into formal tasks or processes and carefully sched-tasks, processes

cooperate,
communicate

ule when each is executed. The schedule becomes more complex as various constraints are
added. Tasks will often need to share information: to cooperate and to communicate with
each other, with the world outside of the processor in well-controlled ways.

In the chapters ahead, we will introduce the fundamentals of the control and man-
agement of embedded applications by beginning with the simple polling and event-drivenpolling, event-driven
schemes. These ideas will be extended first to nonpreemptive and then to preemptive
task-based systems. Time-based and reactive systems will lead to the development of
simple scheduling algorithms. Building from these concepts, the real-time kernel will
be introduced, studied in depth, and extended to include multitasking and multithreaded
control. A comprehensive presentation of inter-task communication methods and problems
will lead to the need to coordinate and synchronize data exchange, the concept of critical
sections, and the semaphore and monitor as tools for addressing such needs.

The concept of a RTOS as an extension to the basic kernel concepts will provide the
next level of sophistication and power. The notions of task priorities and scheduling crite-
ria will lead to a formal discussion of several fundamental scheduling algorithms, which
include first-come first-served, round robin, and rate monotonic. Once again, addressing
the need for safe, secure, and reliable systems, priority inversion, deadlocks, and starvation
will be presented as potential problems in multitasking systems. Approaches for identifying
and resolving such difficulties will be studied in some depth.

Embedded applications are intended to work with the physical world, sensing vari-
ous analog or digital signals while controlling, manipulating, or responding to others. The
study of the interface to the external world extends the I/O portion of the von Neumann
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machine (see Figure 9) with a detailed study of busses, their constituents, and their timing
considerations. Local exchange is extended to include distributed and remote systems. The
study of basic transaction management, consistency models, idempotent systems, and error
management continues the thread of designing safe, secure, and reliable systems.

Digital Busses

CommunicationsAnalog Inputs

Analog Outputs

Digital Bits Control Signals

Embedded

System

Hosting

Application Figure 9 Interfacing to the Outside
World.

A substantial presentation of the development of interfaces for a variety of the more
familiar serial and parallel hardware devices provides a solid set of tools on which to build.
The discussion expands to the sensing and transducing elements (and their associated prob-
lems) with which the typical embedded application must deal.

A design is not complete when the first prototype is delivered; the system must also
be tested once the design is released to manufacturing. However, the need for testing does
not start with the release to manufacturing. We test at different times for different reasons;
testing and debugging, like modeling, must be interwoven with the development process.

Let us look back at the good old days one more time. Once we built the hardware and
firmware for our system, confirming that it worked was generally a straightforward task.
A handful of switches, hardwired signals, a good emulator, an oscilloscope, and a logic
analyzer, peppered with a little ingenuity, would generally suffice as a comprehensive test
system. Today that is not even close. We’re now working with dozens of simultaneously
changing high-speed signals, on dozens of components that may exhibit failures based on
infrequently occurring patterns in the data. Further complicating the problem is the sim-
ple fact that we have little visibility into the processors, VLSI circuits, or array logics
with which we’re working. Complicating the task even further, we must now deal with
state-of-the-art operating systems, timing constraints measured in nano- or picoseconds,
multiple processors, and systems scattered all over the world.

As with modeling, the literature, tools, and techniques in the field of test are exten-
sive. Nonetheless, having a solid grounding in test and basic test techniques is essential,
yet this knowledge is missing from the toolkit of most contemporary undergraduates and
many working engineers. An even more significant tool missing from many young engi-
neers’ tool chests is an understanding of basic debugging techniques, in particular, when
confronted with the complexity of today’s systems. All too often, magic replaces critical
problem analysis skills. “This circuit only operates properly in the afternoon when the sun
is out and I work on this bench… by the window.” Gee, why? “I don’t know, it just does… I
tried other places or times and it never works.” Could it be the warmer temperature that’s
affecting your system’s behavior, or shall we stay with magic as the answer?
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The philosophy espousing the need to test is integral to each section of this book.
We endeavor to provide such a basis for critical analysis by first introducing some
simple debugging techniques, motivating the need for test, and then showing how we
can design circuits and systems so that they can be easily debugged and tested. We
will study fundamental methods for analyzing basic digital hardware and software
systems. The goal of such study will be to learn to develop tests and methods of test for
many of the more common failures and to learn how to extend such concepts to more
complex designs.

In today’s world, we continuously strive to make our designs faster, smaller, and
cheaper, and to consume less power. As engineers, we always believe that we can make
our design just a little bit better. We can purchase a ticket, hop a plane, and be in Asia,
Europe, or just about any other part of the world in a few hours. With pockets filled with
batteries, we may manage to nurse our laptop through most of the trip. We’re pushing
Moore’s law (processing power doubles approximately every two years) daily and may be
nearing the wall; yet we have to make things better.

In this book, we introduce several measures of system performance and discuss a
number of methods and trade-offs for optimizing a design. In our discussions, we devote
significant coverage to methods for analyzing and optimizing the performance of embedded
systems in time, in size, cost, and power consumption.

SUMMARY

The text provides a valuable tool for the student in the traditional
undergraduate electrical engineering, computer engineering, or
computer science programs as well as for the practicing engi-
neer who wishes to review the basic concepts. We present five
essential aspects of the development of contemporary embed-
ded systems: hardware and software architecture fundamentals,
the design process and formal methods (including safety and
reliability), contemporary real-time kernel and operating system
concepts, interface to the local and distributed external world,
and debug and test of the designs.

Our goal in designing embedded systems is to help to
solve problems for people. Our designs can affect people’s lives.
Always do your best to make your designs as safe, secure, and
as reliable as you can for each application. Remember, too, that
the cost of a product is not limited to the cost of the parts that
make it up. We also have to consider the costs of building, sell-
ing, supporting, and adding new features to your design. Finally,
remember that our responsibility for a design does not end with
design release. Good luck and have fun.

REVIEW QUESTIONS

Embedded Systems

F.1 What is an embedded system?

F.2 What is the difference between VLSI and embedded sys-
tems?

F.3 What are the three kinds of computing engine that are uti-
lized in embedded systems?

F.4 How are an embedded microcomputer and supporting
hardware elements interconnected?

F.5 An embedded system bus is typically made up of three
separate busses; what are these?

F.6 What is an instruction cycle?

F.7 An instruction cycle comprises several steps; what are
these steps?

F.8 What is an instruction set?

F.9 What is the purpose of a watchdog timer in an embedded
application?

F.10 What does the term real time mean?

F.11 What is the difference between hard, firm, and soft real
time?

Embedded System Design and Development

F.12 Briefly describe the major elements of the embedded sys-
tem development life cycle.
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F.13 What are the major elements of the design process?

F.14 The chapter identifies five steps that good designers usu-
ally take when designing a system. Identify and briefly describe
each step.

F.15 What are the major categories of signals through which an
embedded system interfaces with the external world?

THOUGHT QUESTIONS

Embedded Systems

F.1 Some pundits suggest that embedded systems will form
the basis for ubiquitous computing tomorrow. Do you agree or
disagree? Please elaborate.

F.2 Give two examples of a system that might be considered
to be soft real time; hard real time: firm real time.

F.3 Discuss the advantages and disadvantages of having mul-
tiple specialized busses rather than a single generic bus intercon-
necting the various components within an embedded system.

F.4 Discuss the pros and cons of interconnecting the vari-
ous components within an embedded system using a network
scheme such as a miniaturized version of the Internet rather than
a traditional bus.

F.5 Would there be any benefit to having multiple watchdog
timers in an embedded application? Explain your answer.

F.6 Give several examples of analog and digital signals with
which an embedded system might interface.

F.7 Give several examples of analog and digital devices with
which an embedded system might interact.

Embedded System Design and Development

F.8 Today, in the typical embedded system development
cycle, hardware design precedes software design. Discuss the
advantages and disadvantages of developing the hardware and
software components of the system at the same time.

F.9 An embedded system is made up of hardware and software
components. What things should be considered when deciding
whether to implement a piece of functionality in hardware or
software?

F.10 What are some of the more difficult problems that today’s
embedded systems designers face? Consider such examples as
a very popular consumer product, an intelligent robot system to
be sent on a mission to Mars, or an automatic landing system on
a commercial jet airliner.

F.11 What do you think might be some of the more important
performance considerations that one should take into account
when designing an embedded system?
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INTRODUCING EMBEDDED SYSTEMS

Less than 150 years ago, shipping a new product, petroleum, down the Mississippi in barges
was viewed with skepticism and fear of possible explosion. Fifty years later, electricity
and electric lights were viewed as marvels of modern technology available only to a few.
Another 50 years subsequently, someone suggested that the world would need at most three
to four computers. Our views continue to change. Today, we ship petroleum (still with
concern) all over the world. Electricity has become so common that we are surprised if a
switch is not available to turn on a light when we enter a room. The need for three to four
computers has grown to hundreds of millions, perhaps billions, of installed computers of
all sizes worldwide.

This book presents a contemporary approach to the design and development of a kind
of computer system that most of us will never see – those that we call embedded systems.
The approach brings together a solid theoretical hardware and software foundation with
real-world applications. Why do we need such a thing? A good question, let’s take a look.

Embedded systems are one of the foundational elements of today’s computer technol-
ogy. From operating our cars, managing our smart phones, cleaning our home, cooking
our meals, responding to our queries or commands, or using deep reasoning to help solve
complex problems, the special computers we call embedded systems are making our lives
easier, safer, and more connected.

We find the microprocessor – microcomputer – microcontroller – everywhere. Today
these machines are ubiquitous. Like the electric light, we expect the antilock braking system
in our car to work when we use it. We expect our mobile phone to operate like the stationary
one in our home. We carry a computer in our pocket that is more powerful than the ones
the original astronauts took into space or that we sent to Mars.

Today, we have the ability to put an increasingly larger number of hardware pieces,
operating at blindingly higher speeds, into diminishingly smaller spaces. Software is no
longer relegated to a giant machine in an air-conditioned room; our computer and its soft-
ware go where we go. This ability gives engineers, medical doctors, and many others a
new freedom to creatively put together substantially more complex systems with titillating
functionality, systems that only science fiction writers thought of a few years ago. Such an
ability also gives us the opportunity to solve bigger and more complex problems than we
have ever imagined – and to put those designs into smaller and smaller packages. These
are definitely the most fun problems, the exciting kinds of things that we are challenged to
work on. Okay, where do we begin?

The embedded field started, almost by accident, not too many years ago. In the early
1970s Federico Faggin, and many others at Intel and Motorola, introduced the 4004, 8008,
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and 6800 microprocessors to the engineering world. Originally intended for use in calcu-
lators and in calculator-like applications, today, driven by evangelists like Faggin, Gary
Kildall, and Tom Rolander, the microprocessor and its software have become fundamental
components of virtually everything we touch. With such widespread applications, the
ensured safety, security, and reliability of such systems are absolutely essential.

The embedded systems field has grown from nonexistent several years ago to encom-
pass almost every aspect of modern electrical engineering and computing science. Embed-
ded systems are almost unique in this respect. Although certainly other disciplines within
electrical engineering and computing science utilize the knowledge of other fields, those
studying and working with embedded systems must develop multidisciplinary skills, par-
ticularly in the areas of digital hardware, software, security, and networking. Electrical and
computer engineers, working with embedded systems, contribute to all aspects of the devel-
opment process from planning and design to manufacturing, test, and marketing.

The embedded systems field is also a bit of an enigma. Unlike the fields of mathemat-
ics, physics, or chemistry, embedded systems have evolved from the engineer’s workbench
rather than from the scientist’s research laboratory. Much of our formal theory has roots
in the efforts of skilled engineers and computer scientists like Kildall and Rolander whose
work has been quickly adapted to the factory floor.

The field of embedded systems is more like a large umbrella. The systems designed
under that umbrella require skills from many diverse fields. Without those skills, embedded
systems cannot exist. Herein lies one of the dilemmas of trying to write a book on the
field. Finding the right balance between depth and breadth can be a significant challenge.
Hopefully, we have achieved a good and useful balance and have maintained that balance
while introducing new and exciting material with our new edition.

This text is based on a vast store of theoretical and practical knowledge gained in
developing safe, secure, and highly reliable embedded applications over the years for the
aerospace, commercial, and medical industries. We endeavor to present the material in inter-
esting, exciting, and challenging ways. We hope that, once again, we have succeeded and
that this text will create lots of opportunities for you to explore and to learn further.

SELECTING A LANGUAGE AND TOOLS

This book contains a rich collection of real-world hardware and software examples. In
both areas, we have a variety of ways through which we can turn our ideas and designs
into real-world hardware and software components. Perhaps someday we will develop
a universal language in which we can express all applications from business to science
to medicine to engineering. After many years of sweat, toil, creative determination, and
overcoming occasional failures, we have achieved some fundamental victories that enable
us to talk to our computer and have it effortlessly respond to our requests – maybe even
making suggestions along the way – that we may or may not like. We can even address
these tools by name. The hardware and software concepts we study here are largely
language independent. In this book, as we take the step from concept to realization, we
will use the Verilog language as a modeling and synthesis tool to express the hardware
implementation, the Unified Modeling Language (UML) and structured design to model
the software designs, and the C language to affect the software implementation. We will
learn that modeling the hardware and software functions of our design is essential to the
developing field called hardware-software (HW-SW) co-design and to support the rapidly
developing high-speed environments. Moving to other implementation languages and
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tools should be rather straightforward. For those readers not fully versed in Verilog or C,
we provide a good introduction to and overview of the fundamentals of both tools.

ORGANIZING THE BOOK

It is often all too easy to hack together a one-off embedded application that works. Trying
to replicate a million or more copies of such a design (with tight time constraints) very
quickly runs into the real-world gremlins that are waiting for us. A solid, secure, robust,
reliable design must always be based on the underlying theory and a disciplined design and
development approach. Such methods are growing increasingly important as we continue
to push the design and fundamental physical principles envelop.

This book takes a developer’s perspective to teaching embedded systems concepts. It
examines, in detail, each of the important theoretical and practical aspects that one must
consider when designing today’s applications. These include the formal hardware and soft-
ware development process (stressing safety, security, and reliability); the digital and soft-
ware architecture of the system; the physical world interface to external analog and digital
signals; the debug and test throughout the development cycle; and finally improving the
system’s performance.

THE CHAPTERS

Introduction and Background

The Foreword gives an introductory overview, some of the vocabulary that is part of the
embedded world, a bit of background and history, and a few contemporary examples.

Hardware and Software Infrastructure

With a preliminary background set, the next several chapters cover the essential aspects
of the hardware and software necessary for the design and development of contemporary
embedded systems. The Verilog hardware design language, UML, structured design mod-
els, and HW-SW co-design are introduced as tools in support of the development process.

Chapter 1 provides the first formal look at embedded systems and introduces some
basic concepts, approaches, and vocabulary. The chapter begins with the hardware and
computing core, which is usually manifest as a microprocessor, microcomputer, or micro-
controller, and follows with an introduction to and discussion of the classic von Neumann
and Harvard architectures.

Next, at the opposite end of the system hierarchy, methods by which the bits, bytes,
and volts can be interpreted as the various and essential kinds of information (numbers,
characters, addresses, and instructions) found inside of an embedded system are studied.
Building on the instructions, the instruction set architecture (ISA), and register transfer
(RTL) levels of the computer are introduced and studied.

Chapters 2 and 3 address a portion of the hardware side of embedded system design
and lay the preliminary groundwork for more detailed studies of signal integrity in later
chapters. As voltage levels continue to decrease, switching speeds to continue to increase,
and the fundamental physics of analog signals joins our designs, corruption in embedded
systems signaling becomes a growing problem. These chapters provide an initial founda-
tion for understanding the practical aspects of working with digital circuits and systems in
today’s challenging embedded world.
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The Verilog hardware design language is used as a modeling tool in the design and
synthesis of combinational and sequential logics. Time constraints and related issues at the
hardware level are introduced as critical considerations in embedded applications. Difficul-
ties with and solutions to problems of asynchronous system I/O are examined. Effective
clocking schemes for the design of robust digital hardware move the reader into the syn-
chronous world.

Embedded systems work and sometimes fail in the real world. As part of a recurring
emphasis on the need for safe, secure, robust, and reliable designs, several of the more com-
mon failure modes in combinational and sequential hardware, as well as methods for testing
for such failures, are presented. Those who already have a good background in digital design
or hardware design languages can still benefit from going over the material on timing, time
constraints, and the effects of parasitic devices or reviewing the Verilog examples.

Chapter 4 looks at how memory is used in embedded systems. This section begins
with an examination of registers and cache and studies several of the more commonly used
cache organizations and schemes. Next, the static and dynamic allocations of memory and
their impact on performance in real-time embedded designs are studied. Finally, the stack
data type and how it is used in multitasking design are examined.

Chapter 5 presents the major UML modeling diagrams that are relevant to the material
subsequently presented in the text and later moves to the data and control flow diagram
from the structured design approach to system modeling and development. The chapter
introduces UML-based static and dynamic models of the software. The static view, which
begins from outside the system, is refined to increasing levels of detail to capture the com-
prising modules, their relationships, and their communication paths.

The dynamic view expresses the behavior of the system while it is performing its
intended tasks and provides information about interactions among tasks. Concurrent
task operation and persistence are introduced and discussed as two of the more impor-
tant dynamic considerations in anticipation of subsequent studies of tasks, intertask
communication, scheduling, and the operating system.

Chapters 6 and 7 provide a review of the core elements of the C language as well as of
several of the more commonly used data structures and algorithms necessary for developing
embedded applications. Whether you are an experienced programmer or know just enough
to get into trouble, this material guides you through developing software for an embed-
ded environment. The chapters introduce the C basics with specific coverage of variables,
storage types, scopes, addresses, pointers, and structs. Bit operations are presented as an
essential tool for working with hardware signals. Functions, function calls, and pointers to
functions are introduced and discussed in the context of embedded applications.

Developing the Foundation

The next few chapters present the embedded system development process based on the need
to deliver a safe, secure, and reliable design. The development section closes as it does in
the real world with the debug and test processes.

Chapter 8 introduces the basic concepts of safety, reliability, and robustness in embed-
ded applications, formulates definitions for each, and identifies their differences. Several
real-world examples in which minor oversights have led to either significant or potentially
significant and costly failures are examined. After establishing some of the relevant vocab-
ulary and the need for safe, robust, and reliable applications, several design approaches are
presented to help to ensure those needs are met. The chapter then introduces to the trio of
basic concepts, a fourth, essential member: security. Potential security vulnerabilities, both
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inside and outside of the system, are introduced and examined. The chapter concludes with
the introduction of some tools and techniques that can be used to anticipate, detect, and
manage problems in all four areas that may occur during system operation.

Chapter 9 formalizes the embedded systems design and development process. Several
different manifestations of the development life cycle are presented, studied, and analyzed.
The reader is introduced to several traditional approaches to system design. Today’s designs,
however, are continually increasing in complexity, decreasing in size, operating at higher
frequencies, and utilizing a growing breadth of exciting new technologies. To address such
needs, this 2nd edition introduces and studies, in detail, the Co-Design methodology, which
builds on the ideas underlying the development life cycles studied earlier and utilizes an
iterative, combined, and “simultaneous” design, development, and test of the hardware and
software philosophy. The approach employs models and model-based development, both of
which are becoming increasingly critical in the design of today’s highly complex systems.
The chapter concludes, as the design must also, with an examination of the core elements
in a design release package.

Chapter 10 contains concepts and material that are always relevant. Though certainly
no substitute for a sound design process, debug, test, and troubleshooting are essential com-
ponents throughout the process of developing embedded systems. This chapter begins by
motivating the need for testing in both hardware and software. Then, starting with the pre-
debug phase of a project, the presentation moves through module, subsystem, and system
debug and test. Included are discussions of test process and associated specifications, test
case design, alpha and beta testing, then production test as well as self-test and agency
driven testing.

Doing the Work

The next chapters build on the foundation established earlier to develop the application
as a collection of interacting tasks under the management of a real-time operating system
RTOS. Deadlock problems arising from such designs are examined. Prior to moving outside
of the microprocessor in the following section, methods for analyzing and optimizing the
performance of an embedded application are presented.

Chapters 11 and 12 provide an introduction to and motivation for tasks, multitasking,
and the control of an embedded application. Beginning with the necessary terminology, the
material examines the critical role of time in developing and deploying many embedded
applications, and presents a first look at time-based and reactive systems. The chapter iden-
tifies the central responsibilities of an operating system, examines the characteristics and
capabilities that distinguish a RTOS, and then examines the core set of requirements of the
operating system (OS) as embodied in the kernel.

Study then shifts to the fundamentals of flow of control, communication, and detailed
timing in embedded applications. The discussion begins with event-driven control schema
based on simple polling, interrupts, and associated handling mechanisms. Topics of inter-
est include intertask communication, data and resource sharing, and task synchronization
through semaphores and monitors. Scheduling, scheduling algorithms, and methods for
evaluating scheduling algorithms in a real-time context round out the topic.

Chapter 13 continues the study of schedulers by examining the problem of deadlocks
and starvation in multitasking embedded applications. Several methods for avoiding, pre-
venting, identifying, and resolving deadlocks, as well as ensuring progress through the
system, are described, analyzed, and discussed.
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Chapter 14 examines performance and the quantification and evaluation of perfor-
mance in embedded designs. To begin the study, several different metrics are introduced
and discussed. An analysis of several of the more important – response times, time load-
ing, and memory loading in embedded applications – follows. The chapter also studies
the evaluation and optimization of time and power consumption aspects of performance.
By looking at the opposite side of performance, several common errors in analysis of per-
formance measures are explored and evaluated. Then, starting with a high-level view of
embedded systems power consumption, definitions of zero, static, and dynamic power con-
sumption are formulated, and potential sources for each level of power consumption are
examined. The reader is then presented with a number of power management schemes and
approaches for reducing consumption at each level.

Interacting with the Physical World

Continuing the design and development of an embedded application, the scope is expanded
first to local peripheral devices and then to the more remote ones. The next several chapters
move outside of the processor and into the physical world that includes working with a
wide variety of different kinds of signals. Firstly, a model of the interaction is developed
as an extension of that developed earlier in Chapter 12, and then specific applications are
examined in the context of that model.

Chapters 15 and 16 open the study by exploring how an embedded application can
interact with the external world. The internal interprocess and communication model devel-
oped earlier is expanded to include information, control and synchronization, and address-
ing in the external world and is extended to include a transport component. Following the
introductory discussion, each component is studied in detail from the points of view of a
shared variable (local) and a message-based (remote) model of information exchange. The
objective of these chapters is to establish the basic infrastructure and various implementa-
tion architectures for both the local and remote models of external world interaction.

Chapter 17 focuses on the typically local analog and digital I/O interface to the exter-
nal world. The chapter begins with several different methods for generating analog output
signals and then looks at how various physical world analog input signals can be converted
into a digital form. Three specific conversion algorithms – dual slope, successive approxi-
mation, and voltage to frequency – are studied. Because the outputs of the various sensors
and transducers are often nonlinear, the problem of working with such signals is examined.

The chapter next introduces the topic of generating digital signals as control inputs to
several different kinds of small motors, including stepper and servo motors, and as infor-
mation that must be displayed. The discussion of digital I/O concludes by studying how
time and frequency parameters of digital signals can be measured.

Chapter 18 examines the world in which interaction with the external world devices
takes place via a network. The chapter introduces four different, commonly used network
based input/output designs. The study of each begins with the problems that motivated
the development of the interface. Analysis of each design includes the transport mecha-
nism, the control and synchronism scheme used, and the identification of message senders
and receivers in the context of the model of intertask communication and synchronization
developed earlier.

The chapter opens with the traditional RS-232 (EIA-232) standard asynchronous serial
interface, follows with a synchronous approach utilized by the Universal Serial Bus, and
then examines the I2C bus and the Controller Area Network (CAN) bus. The objective is
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to establish the basic infrastructure and various implementation architectures for both local
and remote models of external world interaction.

Chapter 19 provides an introduction to programmable logic devices (PLDs). The
chapter begins with a brief discussion motivating the use of such devices in embedded
systems and then examines the underlying logical concepts that have led to their devel-
opment and widespread use. Next, the commonly used technologies for implementing
programmable devices are examined. The basic structure of the components, variations
on I/O configurations, and the fundamental architectures for the Complex Programmable
Logic Device (CPLD) and the Field Programmable Gate Array (FPGA) are then presented.

As representative examples of PLD architectures, two of the more commonly used
components – the CPLD and the gate array – as well as a more general-purpose device
called a Programmable System on a Chip are presented. The chapter concludes with a look
at several applications.

Practical Considerations: Signal Behavior in the Real World

Chapters 20 and 21 build on earlier material that examined the real-world effects of fun-
damental electrical physics and parasitic components on embedded systems to provide an
introduction to the increasingly important area of signal quality or integrity. Chapter 20
begins the study with a high-level examination of noise, noise sources, cross talk, and capac-
itive and inductive coupling in digital systems. The focus moves to the specific problems
of power supply and ground noise, potential root causes, the effects of system signaling
frequency, and possible solutions.

Chapter 21 follows with an introduction to the vocabulary and metrics of signal
integrity then identifies potential problem issues associated with high-speed digital sig-
naling and signal quality. To examine the issues, the working environment is decomposed
into the printed circuit board (PCB) and the signaling environment. Starting with the PCB,
problems with and limitations of point-to-point wiring are examined followed by a similar
study and analysis of high-speed, controlled impedance environments. Moving to the
signaling environment, the possible problems and negative effects of signal reflection(s)
and certain net topologies on the signal quality and the performance of a high-speed
digital system are examined. The chapter concludes with the study of several signal path
termination schemes and net topologies that can be used to address such problems then
looks at the strengths, weaknesses, and concerns with each.

Supporting and Background Material

The first appendix is an introductory Verilog tutorial. The second appendix, found on the
companion website, provides a number of laboratory projects of increasing complexity that
can be used to reinforce the practical application of the theory underlying the design of
embedded systems.

Appendix A introduces the Verilog language and presents the important features and
capabilities that are then used in this book. The material begins with the basic components
and organization of a Verilog program; examines the behavioral, dataflow, and gate-level
or structural models for combinational logic circuits, and follows with similar models for
sequential circuits. Design is only one element of the product development; each design
must also be tested to confirm that it meets specified requirements. To that end, each section
also discusses how one can formulate test suites to verify the proper operation. The material
on testing will lay the foundation to guide the developer in building test cases for performing
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testing to the desired level. It is beyond the scope of this text to present a comprehensive
treatise on testing.

Appendix B, found on the text’s companion website, http://www.wiley.com/college/
peckol, gives a number of laboratory exercises that are classified into three categories:
Getting Started, Developing Skills, and Bringing It Together. The exercises in the first
category suggest some basic projects that introduce some of the fundamental requirements
of an embedded system, such as bringing information into the microprocessor, using that
information in an application, and producing some outputs. Projects in the second category
are more complex. Many of these require a multitasking implementation, although they
do not require an operating system. They utilize many of the peripheral devices commonly
found in an embedded microprocessor, microcomputer, or microcontroller-based design.
Projects in the third category represent simplified examples of real-world applications.
These projects cover the complete product development life cycle from identifying
requirements through design and test.

Additional Materials

A great variety of additional support material is available on the book’s companion web-
site, http://www.wiley.com/college/peckol. This includes information freely available to
everyone such as the latest errata and additional background tutorials covering the basics
of digital design and the C language fundamentals.

On the instructor’s portion of the site, among other things, we include Power Point
slides of all of the text’s figures and Appendix B which was described previously.

THE AUDIENCE

The book is intended for students with a broad range of background and experience and
also serves as a reference text for those working in the field. The core audience should
have at least one quarter to one semester of study in logic design, facility with a high-level
programming language such as C, C++, or Java, and some knowledge of operating systems,
and should be an upper-level junior or senior or lower-level graduate student.

NOTES TO THE INSTRUCTOR

This book can be a valuable tool for the student in the traditional undergraduate electri-
cal engineering, computer engineering, or computer science programs as well as for the
practicing engineer who wishes to review the basic concepts. Here the student may study
the six essential aspects of the development of contemporary embedded systems, and is
notably given a solid presentation of hardware and software architecture fundamentals, a
good introduction to the design process and formal methods (including safety, security, and
reliability), the study of contemporary real-time kernel and operating system concepts, a
comprehensive presentation of the interface to local and distributed external world devices,
and finally debug and test of the designs.

Key to the presentation is a substantial number of worked examples illustrating funda-
mental ideas as well as how some of the subtleties in application go beyond basic concepts.
Each chapter opens with a list of Things to Look For that highlight the more important mate-
rial in the chapter and concludes with review questions and thought questions. The review
questions are based directly on material covered in the chapter and mirror and expand on

http://www.wiley.com/college/peckol
http://www.wiley.com/college/peckol
http://www.wiley.com/college/peckol


�

� �

�

Preface lvii

the Things to Look For list. They provide the student with a self-assessment of their under-
standing and recall of the material covered. Though based on the material covered in the
chapter, the thought questions extend the concepts as well as provide a forum in which
the student can synthesize new ideas based on those concepts. Most chapters also include
an extensive set of problems to permit the student to begin to apply the theory. These do
not require laboratory support; however, they could be easily extended into basic laboratory
projects. Included in Appendix B, found on the text’s companion website, http://www.wiley
.com/college/peckol, are 23 in-depth laboratory exercises.

The text is written and organized much as one would develop a new system, from
the top down, building on the basics. Ideas are introduced and then revisited throughout
the text, each time to a greater depth or in a new context. Busses may appear in the first
few paragraphs to introduce the idea, later used to interconnect system components, and
analyzed at a detailed level as the concepts of critical timing and data movement are studied.
Safety, security, and reliability are absolutely essential components in the development of
any kind of system today. Such material is placed near the front of this text to emphasize
its importance. The goal is to have the student think about such issues as he or she learns
about and designs embedded applications.

As we stated in the opening of this Preface, finding a good balance between depth and
breadth in an embedded systems text is a challenge. To that end, a couple of decisions were
made at the outset. Firstly, the text is not written around a specific microprocessor. Rather,
the material is intended to be relevant to (and has been used to develop) a wide variety of
applications running on many different kinds of processors. Secondly, the embedded field
is rapidly changing even as this sentence is being typed and read. In lieu of trying to pursue
and include today’s latest technologies, the focus is on the basics that apply to any of the
technologies. It is the underlying philosophy of this book that the student, well grounded in
the fundamentals, will be comfortable working with and developing state-of-the-art systems
utilizing the newest ideas. Ohm’s law hasn’t changed for many years; the field of electrical
engineering has.

The core material has been taught as a one-quarter senior-level course in embedded sys-
tems development for approximately twenty years. Roughly two-thirds of the material has
been successfully taught for several years as a three-quarter on-site and distance learning
outreach program to a population of students with rather diverse backgrounds. The out-
reach students have typically been working in industry for at least five years post-bachelor’s
degree.

Based on student background, the text is sufficiently rich to provide material for a two
to three-quarter or two-semester course in embedded systems development at the junior to
senior level in a traditional four-year college or university. Beyond the core audience, the
sections covering the assumed foundation topics can provide a basis on which the student
with a limited hardware or software background can progress to the remainder of the mate-
rial. The logic and software sections are not sufficiently deep to replace the corresponding
one- or two-quarter courses in the topics. For those with adequate background in such areas,
the material can either be skipped or serve as a brief refresher. Students with a Java back-
ground may find the material on pointers, bitwise operators, and structs to be particularly
useful. The same holds for portions of the material on operating systems; such material
is not intended to replace a formal, in-depth operating systems course. As deemed appro-
priate, the material may be skipped, used as a good refresher, or serve to introduce topics
unique to embedded applications.

http://www.wiley.com/college/peckol
http://www.wiley.com/college/peckol
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PART 1 HARDWARE AND SOFTWARE INFRASTRUCTURE

• Chapter 1: The Hardware Side – Part 1: An Introduction

• Chapter 2: The Hardware Side – Part 2: Combinational Logic–A Practical View

• Chapter 3: The Hardware Side – Part 3: Storage Elements and Finite-State
Machines–A Practical View

• Chapter 4: Memories and the Memory Subsystem
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Chapter 1

The Hardware Side – Part 1:
An Introduction

THINGS TO LOOK FOR …

• The differences between microprocessors, microcomputers, and microcontrollers.

• The four major functional blocks of a computer and their interconnecting busses.

• How to represent numbers, characters, addresses and instructions in a digital system.

• Different instruction formats and addressing modes.

• Data and control flow through a computer.

• The instruction set architecture level (ISA) model of a computer.

• The computer instruction cycle.

• The register transfer level (RTL) model of a computer.

1.1 INTRODUCTION

Our brief introduction to embedded systems in the Foreword shows that hardware, software,
and firmware are essential elements in today’s embedded systems. The digital hardware
provides the platform from which the three can synergistically perform amazing tasks.

Embedded Systems: A Contemporary Design Tool, Second Edition. James K. Peckol.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/college/peckol
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2 Chapter 1 The Hardware Side – Part 1: An Introduction

What is to be implemented in hardware and in software or firmware changes with every
design – perhaps even within a single design as the requirements and the development
evolve. Hardware brings a variety of strengths and weaknesses to the design; software and
firmware do the same. As we learn to develop embedded applications, we will learn all their
strengths and weaknesses. We will also learn when and how to choose which to use in a
design.

In this chapter we will begin with the high-level structure and components: the hard-
ware and computing core of an embedded application. That core is usually manifest as a
microprocessor, microcomputer, or microcontroller. At the opposite end of the system hier-
archy, we will take our first look at the bits, bytes, and volts as we study how the various
and essential kinds of information (numbers, characters, addresses, and instructions) are
represented within a digital system. Building on the instructions, we will introduce and
study the instruction set architecture (ISA) level and register transfer level (RTL) of the
computer. Throughout the remaining chapters of this book, we will develop and study each
of these parts of an embedded design in detail. That study will also include the hardware
and software interaction, for without both we cannot build any kind of system today.

In today’s high-tech and changing world, we can put together a working hierarchy
of hardware components. At the top, we find VLSI (Very Large-Scale Integrated) circuitsVLSI
comprising significant pieces of functionality: microprocessors, microcontrollers, FPGAsFPGAs
(Field Programmable Gate Arrays), (C)PLDs ((Complex) Programmable Logic Devices),(C)PLDs, ASICs
and ASICs (Application Specific Integrated Circuits). Perhaps we could include memories
as well. At the next level down, we find MSI (Medium-Scale Integrated) circuits, whichMSI
bring smaller, yet complete, pieces of functionality. Going down one more step, we have
SSI (Small-Scale Integrated) circuits. At the very bottom, we have the electrical signals thatSSI
we use to represent our data and control information and the other signals that come into
our system as noise or other unwanted signals. We will develop the hardware side of the
design according to that hierarchy.

Today, we collect components in the last two categories of integrated circuits (MSI
and SSI) into what we call glue logic. As we continue to make significant advances in theglue logic
design and development of more complex digital components, one must wonder about the
remaining lifetime of the glue logic components. Tomorrow, the AND and OR gates, as
stand-alone entities, may only be available at the Smithsonian or the British or Deutsches
museums.

We will start at the core microprocessor level and then look inside the hardware com-
ponents through a review of the fundamentals of Boolean algebra, finite state machines, as
well as arithmetic and logical circuits. In our study of the hardware side, we will study good
design practices and some important considerations when developing hardware foundations
that are robust, reliable, and maintainable. The complexity of today’s systems precludes
many of the approaches we used yesterday. Building a breadboard of a design comprising
500 000 gates is neither feasible nor reasonable. At the same time, building a computer
model of such a system is entirely practical. Throughout our studies on the hardware side,
we will utilize the Verilog modeling language to enable us to test, confirm, and demonstrate
the viability of our designs prior to committing to hardware. The language will enable us to
work at various levels of detail – at the top or behavioral level, we can confirm high-level
functionality, and at the lower level or structural level, we can confirm details of timing,
scheduling, and control. Facility at both levels is essential today.

If you already feel comfortable with hardware design and developing hardware sys-
tems, take a few minutes to scan through the next several chapters and perhaps review the
material on good design practices. If hardware design is new to you, working through the
material in this chapter should get you started on the road to digital proficiency. Good luck
and have fun.
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1.2 THE HARDWARE SIDE – GETTING STARTED

Our study of the hardware side of embedded systems begins with a high-level view of the
computing core of the system. We will expand and refine that view to include a detailed
discussion of the hardware (and its interaction with the software) both inside and outside
of that core. Figure 1.1 illustrates the sequence we will follow.

Core

Instruction Set

Architecture

Register

Transfer Level

Physical

Hardware and

Environment

Figure 1.1 Exploring Embedded Systems

The computing core is the central hardware component in any modern embedded
application. It often appears as a microprocessor, microcomputer, or microcontroller.
Occasionally, it may appear as a custom-designed VLSI circuit or FPGA. It interacts with
and utilizes the remaining components of the system to implement the required applica-
tion. Such actions are under the control of a set of software and firmware instructions.
Information and data come into the system from the surrounding environment and from the
application. These data are processed according to the software instructions into signals that
are sent back out of the system to the application. The software and firmware instructions,
as well as signals coming into or going out of the system, are stored in memory.

1.3 THE CORE LEVEL

At the top, we begin with a model comprising four major functional blocks (input, out-
put, memory, and datapath and control) depicting the embedded hardware core and the
high-level signal flow. These are illustrated in Figure 1.2. While there is nothing inherent

input, output,
memory, datapath,

control

Datapath

and Control

Input Output

Memory Figure 1.2 Four Major Blocks of an Embedded
Hardware Core
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in the model that demands a microprocessor, typically, one is used for the computation and
control function.

The memory block serves to hold collections of program instructions that we callmemory
software and firmware, as well as to provide short-term storage for input data, output data,software, firmware
and intermediate results of computations. Data as well as other kinds of signals come into
the system from the external world through the input block. Once inside of the system,input
they may be directed to any number of destinations. The output block provides the meansoutput
to send data or other signals back to the outside world. The datapath and control block,datapath and control
more commonly known as the central processing unit (CPU), coordinates the activitiesCPU

central processing unit of the system as well as performing the computations and data manipulation operations
necessary to execute the application. In performing its responsibilities, the CPU fetches
instructions from memory, interprets them, and then performs the task indicated by the
instruction. In doing so, it may retrieve additional data from memory or from the input
block. Often, it will also produce information that is sent out of the system.

We move signals into, out of, or throughout the system on paths called busses. In theirbusses
most common implementation, busses are simply collections of wires that are carrying
related electrical signals from one place to another. We use the term bus so that we can
speak of such a collection or group as a single entity. Signals flowing on the wires making
up the busses are classified into three major categories: address, data, and control. The dataaddress, data, control
are the key signals that are being moved around; the address signals identify where the data
is coming from and where it is going to; and the control signals specify and coordinate how
the data is transported.

Think of the arrangement as being similar to your telephone. The number you dial is
the address of where your conversation will be directed, and the ring is one of the control
signals indicating to the person you are calling that a call is coming in. Finally, your voice
or text message is the data that you are moving from your location to the person on the
other telephone. As with your telephone, the medium carrying the signal may take many
forms: copper wire, fiber-optic cable, or electromagnetic waves.

In the digital world, signals are expressed as collections of binary 0’s and 1’s; the
elements of such collections, the 0’s and 1’s, are called bits. A bit is simply a variablebits
that takes on either of two values. At the hardware level, a bit may be represented by an
electrical signal: a binary 0 as 0 V and a binary 1 as 5 V. In an optical communications
channel, a bit may also be expressed by the presence or absence of light.

The width of a bus, that is, the number of signals or bits that it can carry simultaneously,width
provides an indirect measure of how quickly information can be moved. Transferring 64
bits of data on a bus that is 32 bits wide requires two transfers to move the data. In contrast,
a bus that is only 8 bits wide will require eight transfers. Figure 1.3 illustrates moving such

101 0 101 1

110 0 011 1

000 0 000 0
011 1 111 1

011 0 111 1

110 0 110 0

101 0 101 0

011 1 010 0

t7 t6 t5 t4 t3 t2 t0t1

time

Source Destination

Figure 1.3 Data Movement Over an 8-Bit Bus
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a set of data over an 8-bit bus from a source module to a destination module. In the model,
each transfer requires one time unit; the process begins at time t0 and completes at time t7.
Time increases to the left.

The following C code fragment might produce such a pattern,

for (i = 0; i < 8; i++)
{

printf(“%i”, a[i]);
}

The source of the transfer is the array of eight bit values; the destination is perhaps a
display. In Figure 1.4, we refine the high-level functional diagram to illustrate a typical bus
configuration comprising the address, data, and control lines.

Address

Control

Data

Signals from

Outside World

Signals to Outside

World

Memory Input Output

Control

Datapath

Figure 1.4 A Typical Bus Structure Comprising Address, Data, and Control Signals

None of the busses is required to have the same number of lines. To avoid cluttering
a drawing by including all of the signals or conducting paths that make up a bus, we will
often label the bus width using the annotation /bus width, as illustrated in Figure 1.5. Inbus width, address bus
this example, the address bus is shown to have 18 signals, the data bus 16, and the controldata bus,

control bus bus 7.

Address

Control

Data

18

16

7

Figure 1.5 Identifying the Number of Signals in a Bus

In practice, such a block diagram will be implemented using a microprocessor, micro-
computer, or microcontroller. Let’s look at each of these, beginning with the micropro-
cessor, with the goal of understanding the high-level structure of each and the differences
among them.
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1.3.1 The Microprocessor

A microprocessor is an integrated implementation of the CPU portion (control and
arithmetic and logical unit) of the machine; it is often simply referred to as a CPU
or datapath. Microprocessors differ in complexity, power consumption, and cost.
Today, microprocessors range from devices with only a few thousand transistors at
a cost of a dollar or less to units with 5–10 million transistors and a cost of several
thousand dollars.

One may also find differences in the internal architecture of the machine, including the
number of internal registers, the overall control structure of the machine, and the internalinternal registers

registers bus structure. Registers are small amounts of high-speed memory that are used to temporar-
ily store frequently used values, such as a loop index or the index into a buffer. Increas-
ingly, the internal single-memory scheme that characterizes the von Neumann machine is
giving way to the Harvard architecture and the benefits of simultaneous instruction and
data access.

To implement a complete (embedded) computer system, we must still include the
input/output subsystems and the external (to the microprocessor) memory system. We also
include a clock or timing reference as the basis for timing, scheduling, or measuring elapsed
time. All such components are connected via a system bus or busses. Figure 1.6 depicts a
high-level block diagram of a microprocessor-based system.

Input / Output
Device

Real-Time
Clock

Microprocessor

Firmware
(Program Store)

Memory

Data
Memory

Input / Output
Device

Outside World
Signals

Hosting Application

Input / Output
Device

Figure 1.6 A Block Diagram for a Microprocessor-Based System

External to the microprocessor, we see two different memory blocks. The firmware,firmware
or program store, contains the application code, and the data store contains data that aredata store
being manipulated, sent to, or brought in from the external world. In the embedded world,
we refer to the application code as firmware because it is generally stored in a Read OnlyRead Only Memory

ROM Memory (ROM), rather than on a hard drive as one might do for a desktop application. The
data memory is usually made up of Random Access Memory (RAM).Random Access

Memory
(RAM) Caution: The two separate pieces of memory do not change the architecture from von

Neumann to Harvard unless two separate busses are connecting them to the processor.
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1.3.2 The Microcomputer

The microcomputer is a complete computer system that uses a microprocessor as its com-microcomputer
putational core. Typically, a microcomputer will also utilize numerous other large-scale
integrated (LSI) circuits to provide necessary peripheral functionality. As with the micro-
processor, the complexity of microcomputers varies from simple units that are implemented
on a single chip along with a small amount of on-chip memory and elementary I/O system to
the complex that will augment the microprocessor with a wide array of powerful peripheral
support circuitry. Costs, of course, are commensurate with capability.

1.3.3 The Microcontroller

The microcontroller, as illustrated in Figure 1.7, brings together the microprocessor coremicrocontroller
and a rich collection of peripherals and I/O capability into a single integrated circuit. Such
additions typically include timers, analog-to-digital converters, digital-to-analog convert-
ers, digital I/O, serial or parallel communications channels, and direct memory access
(DMA). A memory subsystem may or may not be included. If the memory is not included,
the designer must add such capability outside of the microcontroller. Microcontrollers find
great utility in basic embedded applications where low cost is a significant constraint.

Outside World

Interface

Hosting Application

Microcontroller

Microprocessor

Firmware

(Program Store)

Memory

Data

Memory

Input / Output

Device

Input / Output

Device

Input / Output

Device

Real-Time

Clock

Figure 1.7 A Block Diagram for a Microcontroller-Based
System

We see that we have the same components as we found in the microprocessor-based
system. However, now they are integrated into a single unit.

1.3.4 The Digital Signal Processor

In addition to the three different types of general purpose computing engines that we have
discussed, a special purpose microprocessor called a digital signal processor (DSP) is

digital signal processor
(DSP)

becoming increasingly common in embedded applications. The DSP is typically used in
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conjunction with a general purpose processor to perform specialized tasks such as image,
speech, audio, or video processing. A representative block diagram for a DSP is given in
Figure 1.8.

Address

Control

Data

Signals from

Outside World

Signals to Outside

World

Data

Memory

InputOutput

CPU

DSP Core

Address

Control

Data

Instruction

Memory
Register

Array

ALU

Multiplier/Add

Shifter
I/O Devices (ADC, DAC, etc.)

and HighSpeed I/O

Timers

Interrupt

Control

Instruction

Bus

Data Bus

DMA

Control

Figure 1.8 A Block Diagram for a Digital Signal Processor

The tasks performed by the DSP often require it to interface with the analog world.
Real-world analog signals are captured through an analog-to-digital converter, processed,
and returned through a digital-to-analog converter. One of the major strengths of the DSP
is its ability to perform basic arithmetic computations, such as multiply, add, and shift, at
the rate of millions of operations per second. To support high-speed arithmetic, the device
will often implement a multiply-accumulate (MAC) primitive in which a multiply and add
to the accumulator is performed in a single operation, which is useful in matrix operations.
Its arithmetic operations often utilize saturation arithmetic in which overflows (underflows)
remain at the maximum (minimum) value rather than wrapping around. In further support
of high-speed signal processing, the DSP device is architected as a Harvard rather than the
von Neumann machine and incorporates multiple computational units, a large number of
registers, and wide high-bandwidth data busses.

Before proceeding to the next level of detail in our study of the hardware, let’s move
to the opposite end of the hierarchy and examine some of the signals that we are moving
among the various components as well as into and out of the system.

1.4 REPRESENTING INFORMATION

In any embedded application, in addition to the expected numbers and symbols or char-
acters, we must be able to represent both firmware instructions and the data that such
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instructions may be operating on. Because these instructions are stored in memory, we
also need to be able to represent addresses in memory where the data and instructions are
stored. In the next several sections, we will briefly examine how we can represent these
different kinds of information and, with such representations, what limitations we will
encounter.

1.4.1 Word Size

One of the terms that we use to characterize a microprocessor is its word size. Generally,
the word size in a microprocessor refers to the size of an integer. We will assume for the
remainder of this study that we are working with a microprocessor that is using a word size
of 32 bits. Such a processor is called a 32-bit machine. For such a system, we can interpret
an unsigned integer, for example, according to either of the representations that we see in
Figure 1.9.

0

0

31
MSB LSB

31
MSBLSB

big endian

little endian

Figure 1.9 Big Endian
vs. Little Endian Notation

We know that the data bus will be 32 bits wide and that each transfer on the bus will
take one unit of time. If we examine the format of the word, several things are evident. The
word consists of four bytes. The bits can be interpreted so as to place the most significant
byte on the left and the least significant on the right, or vice versa.

Important Point

The interpretation of the order of the bits is just that, an interpretation. There is nothing
inherent in the construction of a number that dictates which end has the most or least
significant bits.

A word interpreted as in the top part of Figure 1.9 is said to be written in big endian
format, and one written as in the lower figure is said to be written in little endian format.

big endian
little endian

Different microprocessors, operating systems, and networks interpret such words in differ-
ent ways. When executing a design, it is absolutely essential to determine which format
each of these components in the system uses. In this text, we will assume a big endian
interpretation unless specified otherwise.

1.5 UNDERSTANDING NUMBERS

We have seen that within a microprocessor, we do not have an unbounded number of bits
with which to express the various kinds of numeric information that we will be working
with in an embedded application. The limitations of finite word size can have unintended
consequences for the results of any mathematical operations that we might need to per-
form. Let’s examine the effects of finite word size on resolution, accuracy, errors, and
the propagation of errors in these operations. In an embedded system, the integers and
floating point numbers are normally represented as binary values and are stored either in
memory or in registers – small pieces of memory. The expressive power of any number is
dependent on the number of bits in the number. Although it is certainly true that, in the
extreme, a number can be stored and transferred as a collection of words of size one, such
an implementation is neither practical nor efficient. At the end of the day, we have memory
limitations as well.
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1.5.1 Resolution

To begin to understand the problem, let’s consider a 4-bit word. If the word is used to hold
a number, the bits comprising the word can be interpreted in several ways as presented in
Table 1.1.

Table 1.1 Interpreting a Four-Bit Number

Interpretation Expressive power

Integer 0–15
Real

xxx.x 0–7.5
xx.xx 0–2.75
x.xxx 0–1.6875

If the bits are interpreted as expressing an unsigned integer, that integer may range
from 0 to 15; the resolution is 20. Interpreting the number as a real with 2 bits devoted
to the fractional component provides two digits of resolution. That is, we can express andtwo digits of resolution
resolve a binary number to 2−2. The meaning of such a limitation is seen in the following
example.

EXAMPLE 1.1 To represent the number 2.3 using a 4-bit binary number with 2 bits of resolution, the best
that one can write is either (10.10) 2.5 or (10.01) 2.25. The error in the expression will be
either +0.2 or −0.05. All that can be resolved is ±0.25.

Because word size limits one’s ability to express numbers, eventually, we are going to
have to either round or truncate a number in order to be able to store it in internal memory.
Thus, faced with truncation or rounding, one can ask which provides the greater accuracy,
and which will give the best representation of a measured value? Which alternative is more
or less accurate?

Let’s consider a real number, N. Following either truncation or rounding of the original
number to fit the microprocessor’s word size, the number will have a fractional component
of n bits. The value of the least significant bit is 2−n. Whether we round or truncate, the
resulting number will have an error. The graphs in Figure 1.10 plot the original number
versus the truncated or rounded number.

N

2

2–n

2–n
2–n

N

TruncationRounding

Ntruncated Nrounded

Figure 1.10 Truncation vs. Rounding
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The error following the operation is computed as

ER = Nrounded–N (1.1)

ET = Ntruncate–N (1.2)

and given in Table 1.2.

Table 1.2 Truncation vs. Rounding Error

N Nrounded Ntruncated Error

Truncation 0 0 0
2−n 0 −2−n

Rounding 0 0 0
1/2 2−n− 0 1/2 2−n−
1/2 2−n+ 2−n 1/2 2−n

As the graph and table illustrate, the operations produce the following ranges of errors

Truncation
–2–n

< ET ≤ 0

Rounding

−1
2

2–n
< ER ≤

1
2

2–n

Observe that the full range of the error is the same; however, for the case of rounding,
the error is more evenly distributed and the maximum error is less.

1.5.2 Propagation of Error

Next, we analyze how the errors propagate under processing. We begin with two perfect
numbers, N1 and N2. Under truncation, the error is less than 1 least significant bit.

1.5.2.1 Addition

We can express the numbers with an error as

N1E = N1 + E1 (1.3)

N2E = N2 + E2 (1.4)

N1E + N2E = (N1 + E1) + (N2 + E2)

= N1 + N2 + E1 + E2 (1.5)

The error in the resulting sum is in the range

2 • 2–n
< ET ≤ 0 ⇒ 21–n

< ET ≤ 0

Observe that the resulting error is the (algebraic) sum of the original errors.
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1.5.2.2 Multiplication

We can express the numbers with an error as

N1E = N1 + E1 (1.6)

N2E = N2 + E2 (1.7)

N1E • N2E = (N1 + E1) • (N2 + E2)
= (N1•N2) + (N2•E1 + N1•E2) + (E1•E2) (1.8)

If we neglect E1•E2, the resulting error is

(N2•E1 + N1•E2) < ET ≤ 0

Observe that the magnitude of the error now depends on the size of the numbers.
To further illustrate the propagation of error in basic calculations, consider the mea-

surement system in Figure 1.11 that is designed to determine power in a resistive load. The
power in the resistor is computed from measurements of the voltage drop across the resistor
and the current flow through the part. Those measurements are given as

E = 100 VDC ± 1%
I = 10 A ± 1%
R = 10 Ω ± 1%

The power dissipated in the resistor, R, can be calculated in three ways. In theory, they
should produce identical results.

R

I

E Figure 1.11 A Simple Measurement System

In each of the three computations, lower order terms are neglected; however, doing so
will have minimal effect on the final results.

EI = (100V ± 1%) ⋅ (10A ± 1%)
= ((1000 ± 10 ⋅ 1%)) ± ((100 ⋅ 1%) ± (1% ⋅ 1%))
= (1000 ± 1.1)

EI ⇒ 998.9 → 1001.1 (1.9)

I2R = (10A ± 1%) ⋅ (10A ± 1%) ⋅ (10Ω ± 1%)
= (100 ± (20 ⋅ 1%) ± (1% ⋅ 1%)) ⋅ (10 ± 1%)
= (100 ± 0.2) ⋅ (10 ± 1%)
= ((1000 ± 2) ± ((100 ⋅ 1%) ± (0.2 ⋅ 1%)))
= (1000 ± 3)

I2R ⇒ 997 → 1003 (1.10)

E2

R
= (100V ± 1%) ⋅ (100V ± 1%)

(10Ω ± 1%)

= (10000 ± 2) ⋅ (1% ± 1%)
(10 ± 1%)

E2

R
⇒ 908.9 → 1111.3 (1.11)
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The results of the three calculations not only yield three different answers, but, depend-
ing on which formula is used, have substantially differing error magnitudes as well.

These simple examples illustrate rather graphically that when one is performing math-
ematical computations, it is important to understand where errors can arise, how they can
propagate under mathematical operations, and how such phenomena can affect any calcu-
lations. Such errors can have serious consequences for the safety of any applications if we
are not careful.

1.6 ADDRESSES

In the earlier functional diagram as well as in the block diagram for a microprocessor, we
learned that information is stored in memory. Each location in memory has an associated
address much like an index in an array. If an array has 16 locations to hold information,
it will have 16 indices. If a memory has 16 locations to store information, it will have 16
addresses. Information is accessed in memory by giving its address. As we found with
encoded characters, each address has a unique binary pattern. Addresses begin at binary 0
and range to the maximum value the word size will permit.

For a word size of 32 bits, the addresses will range (in hex) from 00000000 to
FFFFFFFF. Thus, with 32 bits, we have up to 4 294 967 296 unique combinations and,
therefore, that same number of possible addresses. Of course, we may not use them
all, but they are there. Figure 1.12 illustrates how a word might look if the bits are
interpreted as expressing an address. In fact, an address does not look any different from
an unsigned integer, which, in reality, it is. It is important that it is not a signed integer.
The microprocessor does not support negative addresses.

The following C or C++ declarations place the integer value 10 in binary into some
location in memory. Let’s say at address 3000.

int myVar = 10;
int* myVarPtr = &myVar; // take the address of myVar

// assign it to the pointer variable myVarPtr

When interpreted by the system, the code fragment directs the system to set aside
another memory word to hold the address of the signed integer, myVar (let’s say at addressmyVar
5000) and puts 3000 into that address. The value at address 5000 points to address 3000.value
The accompanying diagram in Figure 1.13 illustrates such an arrangement.

031

310

MSB LSB

MSBLSB

big endian

little endian

Figure 1.12 Expressing Addresses

3000

5000 3000

10 myVar

myVarPtr

Figure 1.13 Using the Value of One Variable to
Hold the Address of Another Variable
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1.7 INSTRUCTIONS

The last view that we want to take on a word is as an instruction. Our examination at this
stage of our study will be at a very high level. As we proceed with our studies, we will
examine instructions in greater detail.

To start, we stipulate that the purpose of an instruction is to direct the hardware of
the microprocessor to perform a series of actions. Such actions can include the following:actions
perform an arithmetic or logical calculation, assign or read the value of a variable, or move
data from one place to another such as from input to memory or from memory to output.
In the parlance of instructions, such actions are called operations.operations

The entities that instructions operate on are denoted operands. The number of operandsoperands
that an instruction operates on at any time is called the arity of the operation.arity

Let’s look at the following code fragment:

x = y + z;

Here we have two operations, the addition operation and the assignment operation.
Firstly, the addition operation: that operation is performed on two operands, y and z. The
addition operator is said to be a binary operator – its arity is two. Now, the assignmentbinary
operator: the operation is performed by giving x the value returned by the addition operation.
It also is performed on two operands, the result of the addition and the operand x – its arity
is two as well.

In C and C++, both operators are referred to as binary operators. Operators takingbinary operators
only a single operand have an arity of one and are referred to as unary operators. With oneunary operators
exception, all operators in C and C++ are either unary or binary.

We see, then, that an instruction must contain at least two components, the operation,
and the operands. Depending on the arity of the operation, the instruction may have one oroperation

operands two operands. Let’s look at several common C or C++ instructions.

1. x = y;

The instruction expresses the basic C/C++ assignment operation in which the value
of the operand y (the source operand) is assigned to the operand x (the destinationtwo operands
operand).

Analyzing the format of the instruction, we see that we have two operands, x and
y, thus making the operator a binary operator. Such an instruction is thus referred
to as a two-operand or two-address instruction.binary operator

two-operand
instruction,

two-address instruction

2. z = x + y;

The code fragment is adding the two operands, x and y; the result is assigned to the
operand z. Analyzing, we see that we have two operations: an addition operation
and an assignment operation. Both are binary.

For the addition operation, the operands x and y are the sources, and the (tem-
porary) result is the destination. Moving to the assignment operation, the result
(destination) of the addition is the source of the assignment operation. The operand
z is the destination of the assignment.
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If we ignore the transient intermediate result, we see that for the code fragment,three operands
three-operand

instruction,
three-address

instruction

we have three operands, x and y are sources and z is a destination. Such an instruction
is designated a three-operand or three-address instruction.

3. x = x + y;

The code fragment is adding the two operands, x and y. The result is assigned to the
operand x. Analyzing, once again, we see that we have two operations: an addition
operation and an assignment operation. Both are binary.

As before, for the addition operation, the operands x and y are the sources, and
the (temporary) result is the destination. Moving to the assignment operation, the
destination of the temporary result from the addition is the source of the assignment
operation. The operand x, in addition to being one of the source operands, is also
the destination of the assignment.

We see that one operand serves the dual role of source and destination. In that
role, the value that it held as the source is lost as a result of the assignment.

If we ignore the transient intermediate result as before, we see that for the code
fragment, we have two operands, x and y are sources and x is also a destination.
Such an instruction is designated a two-operand or two-address instruction.

4. ++x or x++;

In the code fragment, the requested operation is to increment the value of the vari-

operation
one-operand
one-operand

instruction
one-address
instruction

able. In this case, the variable x is both the source and the destination of the opera-
tion; we have only one operand. Such an instruction is designated as a one-operand
or one-address instruction.

The previous code fragments have illustrated three classes of instructions we might

one-, two-,
three-operand

instruction
find in the system software or firmware. These classes are the one-, two-, or three-operand
instruction. Let’s now see how we can interpret the bits in a 32-bit word to reflect such
instructions. Any such interpretation will have to support the ability to express both
operands and operations as seen in Figure 1.14.
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In Figure 1.14 we see that within the 32-bit word the bits are aggregated into groupsgroups
fields, operation

operands
or fields. Some of the fields are interpreted as the operation to be performed, and others are
seen as the operands involved in the operation. At this juncture, we have not specified how
many bits comprise each field. Such a determination is made during the early stages of the
development of the architecture and design of the microprocessor.

The field used to identify the operation is the easiest one to specify the size of. The first
step in specifying the size is to decide how many different instructions the microprocessor is
to support. Such instructions can include arithmetic operations (e.g. add, subtract, multiply,
or divide), logical operations (e.g. and, or, shift, or invert), data movement, or flow of control
(e.g. jump, function call, or branch). Once the number of instructions is determined, then
each is assigned a unique code, exactly as was done earlier when encoding characters.
Such a code is called the operation code or op-code. If the microprocessor is to supportoperation code,

op-code 128 instructions, a minimum of 7 bits will be necessary. The designer may elect to allocate
8 bits to permit room to incorporate additional instructions at a later time or in support of
an enhanced version of the microprocessor.

1.8 REGISTERS – A FIRST LOOK

The size of the fields allocated to the operands is not much more complex. Before answering
the question, however, we must make a slight digression. For those readers who have begun
to anticipate a small problem, you are correct. We have been discussing how we can interpret
a 32-bit word as various types of data (operands) that can be operated on by user-selected
operations. If an instruction, containing even a single operand, in addition to the op-code, is
32 bits, a 32-bit piece of data will not fit into any of the field(s) allocated to hold the operand.

To solve this seemingly intractable problem, we utilize a hardware component that is
called a register. A register is a special kind of memory that is large enough to hold a singleregister
data word. A register is a piece of short-term memory that temporarily holds the operands
during the execution of an instruction.

Prior to executing the instruction, the operand(s) are moved from memory into registers
and then back to memory if the data value is not going to be needed in the immediate future.
While such continual movement of data words into and out of memory and into and out of
registers seems to involve a lot of extra work, the higher speed of registers compared with
the memory we have discussed so far can significantly improve system performance.

Depending on the architecture of the microprocessor, it may have a few registers – 16
to 256 or so – or it may have over 1000. Those microprocessors in the former category
are referred to as Complex Instruction Set Computers (CISCs), and those in the latter are
called Reduced Instruction Set Computers (RISCs). While the number of registers is not the
only (or most significant) difference between the two architectures, their effect on systemComplex Instruction

Set Computers (CISC)
Reduced Instruction

Set Computers (RISC)

performance can be significant.
We can now examine the role that registers play in the format of an instruction. The

contents of the operand field within an instruction is not the operand; rather, it is a binary
number indicating which of the microprocessor’s registers contains the operand.

Let’s assume a hypothetical microprocessor with 144 instructions. To permit each
instruction to be uniquely identified, we will have to specify that the op-code contains 8
bits since 27 < 144< 28. Let’s further assume that the microprocessor is designed to include
256 registers. To permit each register to be uniquely identified will also require 8 bits.

Our earlier diagram for the various instruction formats can now be modified to reflect
the new interpretation of the operand fields, as illustrated in Figure 1.15.

The operand fields in the two-and one-operand instructions are large enough to provide
more than 256 combinations as register designators; most of the combinations will remain
unused.
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Figure 1.16 summarizes the big endian interpretations of a word in a microprocessor
system. The little endian interpretations follow naturally.

Note

It is important to understand that an aggregate of bits has no inherent meaning.
Meaning comes from our interpretation of those bits, and this is what is defined as

type information.
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1.9 EMBEDDED SYSTEMS – AN INSTRUCTION SET VIEW

The software (firmware) in an embedded system is generally written in a high-level lan-
guage such as C or C++. In other cases, it may be written in what is called the assembly
language for the machine on which the application is to run. Sometimes combinations ofassembly language
the two are used, as is the case when portions of programs must be optimized for speed
or size.

When working with assembly language, we are working one step removed from
the microprocessor’s machine language – the collection of 0’s and 1’s that control themachine language
hardware components in the execution of an instruction. At the assembly language level,
we are working with the set of instructions that the machine supports – its instruction set.instruction set
Such a set drives the architecture, the design of the underlying hardware of the processor.
That architecture, the ISA, thus provides to the programmer the public interface for theinstruction set

architecture underlying hardware.
At the assembly language level, mnemonic names are given to binary patterns

expressed by the op-codes to make them easier to work with. A program written in
the machine’s assembly language is translated into machine code by a software toolmachine code
called the assembler. Thus, the machine code reflects binary encoding of the machine’sassembler
instructions or op-codes. Such a set of op-codes for an ISA can be viewed as the machine
language for that particular architecture. For the discussion that follows, the assemblyIEEE

Standard for
Microprocessor

Assembly Language

language instructions are taken from the IEEE Standard for Microprocessor Assembly
Language – IEEE Std. 694–1985.

The complete list of assembly language instructions and how to work with them is
given in the support manuals for the specific processor. These will be provided by the
developer of each processor.

1.9.1 Instruction Set – Instruction Types

A microprocessor’s instruction set specifies the basic operations supported by the machine.
From the earlier functional model, we see that the objectives of such operations are totransfer

store, operate, make
decisions

transfer or store data, to operate on data, and to make decisions based on the data values or
outcome of the operations. Corresponding to such operations, we can classify instructions
into the following groups:

• Data Transfer

• Flow of Control

• Arithmetic and Logic

Data transfer instructions provide the means and mechanism for moving data within
the system and for executing exchanges with external devices, including memory. The flow
of control instructions determine the order in which instructions comprising the embedded
application are executed. Such instructions often respond to the side effects resulting from
the arithmetic or logical operations. The arithmetic and logical instructions provide the
majority of the computational capabilities and useful functionality of a microprocessor.

1.9.2 Data Transfer Instructions

Data transfer instructions are responsible for moving data around inside the processor as
well as for bringing data in from the outside world or sending data out. Each such instruction
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must have four pieces of information: the data, the location of the data – the source of thedata, location of the
data, source,

destination
transfer, and where the data is to be sent – the destination of the transfer.

The source and destination can be any of the following:

• A Register

• Memory

• An Input or Output Port

as is illustrated in Figure 1.17.
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Figure 1.17 Transferring Data

Some of the more common instructions used in support of such data transfers include
those presented in Figure 1.18. A processor design will not implement both the MOVE and
the LD/ST pair. For completeness, both are illustrated in the figure.

LD destination, source Load—source operand  transferred to destination operand can be

either register or memory location.

ST source, destination

MOVE destination, source Transfer from register to register or memory to memory.

XCH destination, source Interchange the source and destination operands.

Oper and pushed onto or popped off of the stack.PUSH/POP

IN/OUT destination, source

Store—source operand transferred to destination operand source

must be a register and the destination must be memory.

Transfer data from or to an input/output port.

Figure 1.18 Data Transfer Instructions

Data transfer is supported by instructions using any of the three different address for-
mats we discussed earlier. The op-code portion of each instruction identifies the operation to
be performed on the operands. The path to the actual selection of the operands is controlled
by the addressing mode specified for the operand.addressing mode
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1.9.2.1 Addressing Modes

Typically, a microprocessor design will implement 4–8 different addressing modes. A por-
tion of each operand field is designated as a specification to the hardware as to how to
interpret or use the information in the remaining bits of the associated address field. That
specification is called the address mode for the operand. The address that is ultimately used
to select the operand is called the effective address.addressing mode

effective address Addressing modes are included in an instruction in order to offer the designer greater
flexibility in accessing data and controlling the flow of the program as it executes. How-
ever, some of the address variations can impact flow through a program as well as the
execution time for individual instructions. We will discuss this issue in greater detail when
we examine methods for optimizing the performance of an application. Each is identified
by a unique binary bit pattern that is interpreted. The drawings in Figure 1.19 refine our
earlier expression of each instruction format to reflect the inclusion of the address mode
information.
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Figure 1.19 Instruction Types Enhanced to Include Address Mode Information

Some of the more commonly used addressing modes include

• Immediate

• Direct and Indirect

• Register Direct and Register Indirect

• Indexed

• Program Counter Relative

We will examine each of these modes in the upcoming paragraphs. To support the
five modes plus the direct/indirect selection, the address mode field associated with eachaddress mode field,

operand address operand address will have to be 4 bits wide. Let’s now examine each of these addressing
modes and identify their strengths and weaknesses.
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1.9.2.1.1 IMMEDIATE MODE
An immediate mode instruction uses one of the operand fields to hold the value of theimmediate
operand rather than a reference to it, as shown in Figure 1.20. The major advantage of such
an instruction is that the number of memory accesses is reduced. Fetching the instruction
retrieves the operand at the same time; there is no need for an additional access. Such a
scheme works well if the value of the immediate operand is small, as might be found for
loop indices or initializing values.
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Figure 1.20 Immediate Mode Instruction
Formats

The immediate instruction might appear as a one- or two-operand instruction, as illus-
trated in Figure 1.20. The one-operand version contains only the immediate value. Without
an explicit destination, the target must be implied. Typically, that is the accumulator in the
arithmetic and logic unit (ALU). The two-operand version illustrates the operation at both

arithmetic and logic
unit (ALU)

the C or C++ level and the assembly language level. In the former case, the variable y
is declared and initialized to the hex value 0×B. Such an expression is compiled into an
assembly language statement of the kind shown.

The immediate value in the assembly language expression is intended to be a hex
number and is so designated by the H suffix on the number. The first form of the instruction
has the accumulator in the ALU as an implied destination; there is no C or C++ level
equivalent. After all, the developer is not supposed to be aware of the accumulator at such
a level. The second form sets the value of operand1 to the hex value B.

On some processors, the instruction mnemonic designates that the operation is to
use an immediate operand. In such cases, the instruction may be written as illustrated in
Figure 1.21.

STI                 -  Store immediate

LDI / LOADI   -  Load Immediate

MOVI             -  Move Immediate Figure 1.21 Variations on the Immediate Mode
Instruction

1.9.2.1.2 DIRECT AND INDIRECT MODES
When using the direct and indirect addressing modes, we are working with operanddirect, indirect
addresses rather than operand values. In both cases, the first level of address information
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is contained in the instruction. The difference between the two modes is that, in the direct
mode, the contents of the operand field in the instruction are the address of the desired
operand, whereas in the indirect case the field contains the address of the address of the
operand. In the latter case, the operand is fetched through one level of indirection.

Because of the limited size of an operand field, the range of memory locations that
can be addressed is less than what is possible with the register direct and indirect modes
discussed next. With either mode, the major disadvantage is the additional memory accesses
necessary to retrieve an operand.

In Figure 1.22, two different data transfer operations are shown. For the direct opera-
tion, at the C/C++ level, the value pointed to by one variable, yPtr, is assigned to a second
variable pointed to by xPtr. At the assembly language level, the MOVE instruction directsdirect, yPtr

xPtr that the contents referenced by operand1 be copied to the location referenced by operand0.
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Figure 1.22 Register Direct and Register Indirect Instruction Formats

For the indirect operation, at the C/C++ level, the value of one variable, stored in
memory and pointed to by the pointer variable yPtrPtr, is assigned to a second variable
pointed to by a second pointer variable, xPtrPtr. At the assembly language level, the MOVEindirect

yPtrPtr
xPtrPtr

instruction now directs that the contents of one memory location serve as the address in
memory of the operand that is to be assigned to the location in memory identified by the
second operand.
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The double ** symbols preceding the operands in the indirect access mode indicate
that two levels of indirection are necessary to reach the final operand in memory.

The flow and two representative instructions at the assembly and the C and C++ levels
are illustrated in Figure 1.22.

1.9.2.1.3 REGISTER DIRECT AND REGISTER INDIRECT MODES
The distinction between the register direct and register indirect modes lies in the content
of the referenced register. In the former case, the register contains the value of the operand

register direct, register
indirect

and in the latter case the address (in memory) of the operand. The register indirect mode
provides the means to easily implement pointer-type operations that are commonly used in
C and C++.

The major disadvantage of indirect addressing is that an additional memory access is
necessary to retrieve the operand’s value. In contrast, when utilizing direct addressing, the
value of the operand is found in the register.

In Figure 1.23, two different data transfer operations are shown. For the register direct
operation, at the C/C++ level, the value of one variable, y, is assigned to a second variable,register direct
x. At the assembly language level, we assume that the values for x and y have previously
been stored in registers R2 and R3, respectively. The MOVE instruction directs that the
contents of R3 be copied to R2.
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Figure 1.23 Register Direct and Register Indirect Data Transfer Operations
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For the register indirect operation, at the C/C++ level, the value of one variable, storedregister indirect
yPtr, x in memory and pointed to by the pointer variable yPtr, is assigned to a second variable, x.

At the assembly language level, once again we assume that the values for x and yPtr have
been previously stored in registers R2 and R3, respectively. The MOVE instruction now
directs that the contents of R3 serve as an address into memory; the value of the variable at
that address is to be retrieved and to be copied into R2.

If the values and address modes of the two operands are interchanged, the data transfer
would be from R2 into the location in memory pointed to by the contents of R3.

The flow and two representative instructions at the assembly and the C and C++ levels
are illustrated in Figure 1.23.

The * preceding the second operand in the indirect instruction indicates that the assem-
bler is to set the indirect addressing mode for the instruction.

1.9.2.1.4 INDEXED MODE
The indexed or displacement addressing mode provides support for accessing container-indexed, displacement
type data structures such as arrays. The effective address is computed as the sum of a base
address and the contents of the indexing register. It is important to note here that following
the execution of the instruction, neither the base address nor the index values are changed.

The major disadvantage of indexed addressing is the time burden associated with com-
puting the address of the operand and then retrieving the value from memory. Indexing adds
a greater burden to system performance than does indirect addressing.

Figure 1.24 illustrates the retrieval of an indexed variable using code fragments written
at the assembly and the C or C++ levels.
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Figure 1.24 Indexed Mode Data Transfer Operations

Starting at the C/C++ level, we have an array variable named y and an integer
variable x. The variable x is to be assigned the value contained in the fourth element of
the array.
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At the assembler level, the C/C++ fragment gets translated into a three-operand
instruction. The base register, R2, will hold the starting address of the container in this
case, the address of the 0th element of the array named y. The value of the variable y
contains the address of the variable Data0, the start of the array. Register R1 will serve as
the index register – that is, provide the offset. At the assembly level, we assume that the
register R1 has already been initialized to the value 3, the offset into the container.

When the instruction is executed, the contents of R1 are added to the contents of R2,
giving an address in memory. The value of the data stored in memory at the computed
address is retrieved and written into register R3.

1.9.2.1.5 PROGRAM COUNTER RELATIVE MODE
Recall that the program counter contains the address in memory of the next instruction to be
executed. That said, program counter relative addressing is mechanically almost identical to

program counter
relative

the indexed addressing mode. Nonetheless, there are several important differences. Firstly,
the value in the program counter serves as the base address and, secondly, the program
counter is assigned the value of the computed effective address; that is, the contents of the
program counter are modified as a result of executing the instruction. Finally, the offset that
is added to the program counter is a signed number. Thus, the PC contents following the
addition of the offset may refer to an address that is higher (the offset was positive) or lower
(the offset was negative) than the original value.

Figure 1.25 illustrates the flow of the instruction. For this instruction, operand0 is
serving as the index register and is holding a value that has already been stored in it. The
effective address is computed by adding the contents of the register identified by operand0
(R1 in this case) to the contents of the program counter. The program counter contents are
then updated to the new value and now refer to the instruction at the computed address.
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address

memory

initial value

operand0

Figure 1.25 Program Counter Relative Operations
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The C/C++ code fragment illustrates a simple for loop. Following the execution of the
body of the loop, the flow must move back to the top of the loop and test the loop variable
once again. A negative offset would have to be added to the contents of the PC to effect that
movement.

The disadvantages of the PC relative mode are similar to those found in the indexed
mode. There can be potential degradation of system performance.

1.9.3 Execution Flow

The execution flow or control flow captures the order of evaluation of each instruction
comprising the firmware in an embedded application. We identify these as

• Sequential

• Branch

• Loop

• Procedure or Function Call

and will now examine each in turn.

1.9.3.1 Sequential Flow

Sequential control flow describes the fundamental movement through a program. Each
instruction contained in the program is executed in sequence, one after another. A signifi-
cant amount of the total code in an application is evaluated and executed in sequential order,
although the individual sequences may be rather short. We capture that notion in the accom-
panying diagram in Figure 1.26, in the following C/C++ code fragment in Figure 1.27, and
in assembler code in Figure 1.28.

The execution first assigns values to several variables and then performs an arithmetic
operation on the two variables.

Initial

Final

Figure 1.26
Sequential
Flow

a = 10;

b = 20;

c = a + b; Figure 1.27 C/C++ Sequential
Flow

MOVE R1, #AH;          // puts 10 – hex A – into R1

MOVE R2, #14H;        // puts 20 – hex 14 – into R2

ADD R3, R1, R2;        // computes R1 + R2 and puts result into R3

Figure 1.28 Assembler Sequential Flow
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1.9.3.2 Branch

A branching construct terminates a sequential flow of control with a decision point. At such
a point, one of several alternate paths for continued execution is taken based on the outcome
of a test on some condition. Graphically, such a construct is seen in Figure 1.29. The branch
construct is used to implement an if else, switch, or case statement.

Decision Point

Figure 1.29 The Branch
Construct

The branch may be executed unconditionally, in which case the contents of the PC are

if else, switch, case

replaced by the effective address specified by the operand. Alternately, the branch may be
taken conditionally based on the side effects of operations performed on data or on several
different kinds of comparisons between two variables such as equality, a greater than or less
than relationship, a carry from an arithmetic operation, or a variable being equal to or not
equal to zero.

The conditional information is temporarily held as a collection of bits in a flag register
or condition code register. The state of each bit in the register is evaluated and potentially

flag register
condition code register

changed following the execution of every instruction. Figure 1.30 lists some of the possible
conditions that may be supported in a microprocessor.

E, NE Operand1 is equal/not equal to Operand2.

Z, NZ The result of the operation is zero/not zero.

GT, GE Operand1 is greater than/greater than or equal to Operand2.

LT, LE Operand1 is less than/less than or equal to Operand2.

V The operation resulted in an overflow—the result is larger than can be held in the destination.

C, NC The operation produced a carry/no carry.

N The result of the operation is negative.

Figure 1.30 Typical Condition Codes

Branching alternatives that may be supported in a particular microprocessor are given
in Figure 1.31.

BR label unconditional branch  to the specified label 

BE label, BNE label branch to the specified  label if the equal flag is set or not set

BZ label, BNZ label branch to the specified label if the zero flag is set or not set

BGT label branch to the specified label if the greater than flag is set

BV label branch to the specified label if the overflow flag is set

BC label, BNC label branch to the specified  label if the carry flag is set or not set

BN label branch to the specified label if the negative flag is set

Figure 1.31 Typical Branching Instructions

The if-else construct is illustrated with the following C/C++ code fragment in
Figure 1.32 and with assembler code fragments in Figure 1.33.



�

� �

�

28 Chapter 1 The Hardware Side – Part 1: An Introduction

if (a == b)

c = d + e;

else

c = d – e;
Figure 1.32 C/C++ if-else Construct

CMP R2, R1                //  compare the contents of R1 and R2, will set the equal flag

//  if the equal flag is set jump to $1BE $1

//  $1 is a label created by compiler

SUB R3, R4, R5          //  compute d – e and put results in c

//  $2 is label created by compilerBR $2

$1: ADD R3, R4, R5    //   computed + e and put results in c

$2: ...

Figure 1.33 Assembler if-else Construct

1.9.3.3 If-else Construct

In the C code fragment in Figure 1.32, the two variables are compared. If they are equal,
one arithmetic operation is performed; otherwise a second one is executed.

The code fragment in Figure 1.33 illustrates the construct in assembler. We assume
that the variables a–e have been placed into registers R1–R5.

The compiler will create labels $1 and $2 if the original source was written in a
high-level language or by the designer if the original source was assembler code.

1.9.3.4 Loop

The loop construct permits the designer to repeatedly execute a set of instructions either
forever or until some condition is met. As Figure 1.34 illustrates, the decision to evaluate
the body of the loop can be made before the loop is entered (entry condition loop) or afterentry condition

exit condition the body of the loop is evaluated (exit condition loop). In the former case, the code may
not be executed, whereas in the latter, the code is executed at least once. The loop type of
construct is seen in the do, repeat, while, or for statements.do, repeat, while, for

Entry Decision Point

Exit Decision Point

Code

Figure 1.34 The Looping Construct

The C/C++ and assembler code fragments in Figures 1.35 and 1.36, respectively, illus-
trate a while loop construct.
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while (myVar < 10)

{

index = index + 2;

myVar++;

}

Figure 1.35 C/C++ Looping Construct

$1: CMP R2, #AH         //  test if R2 < 10

BGE $2                         //  if R2 greater than or equal to 10 branch to $2

ADD R3, #2H                //  compute index + 2 put result in index

ADD R2, #1H                //  add 1 to myVar

BR $1                            //  continue looping

$2: ....

Figure 1.36 Assembler Looping Construct

The body of the loop is continually evaluated as long as the loop variable is less than
a specified value. This code fragment implements an entry condition loop.

Assume that the variables myVar and index have been placed in R2 and R3,myVar, index
-respectively.

1.9.3.5 Procedure or Function Call

The procedure or function invocation is the most complex of the flow of control constructs.
It is not more difficult; it is simply more involved. Such an invocation requires that the
control flow leaves the current context, executes a set of instructions, and then returns to
the original context, as we see in Figure 1.37. Such a construct is seen for a procedure or
subroutine call, an interrupt handler, or co-routine.

Code i

Function Call

Code i + 1

Function

Figure 1.37 The Procedure Call

The operation is supported by the instructions given in Figure 1.38.

CALL operand            PC is unconditionally saved and replaced by specified operand; control is transferred to

specified memory location.

RET                            Previously saved contents of PC are restored, and control is returned to previous context.

Figure 1.38 Common Procedure Call Instructions

Before we examine the CALL process, we need to introduce a data structure called a
stack.stack
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1.9.3.5.1 STACK
The stack is a data structure that occupies an area in memory. It has finite size and supports
several operations. Its structure is similar to an array except that, unlike an array, data can
be entered or removed at only one location called the top. The top of the stack is equivalenttop
to the 0th index in an array. When a new piece of data is entered, everything below is pushed
down like a stack of trays in a cafeteria or like the last card in a discard pile in a card game.
When a piece of data is removed, all data below move up, again, like a stack of plates or
the new top card.

Figure 1.39 illustrates a model for the operations for several pieces of data. Data entry
is called a push and data removal is called a pop. In reality, such a model is impracticalpush, pop
because of the time burden in moving every piece of data each time a new entry is made. A
more practical implementation adds or removes data at the open end of the structure. The
memory address reflecting the current top of the stack is remembered and modified after
each addition or removal. Such an address is called a stack pointer.stack pointer

1 2 3

1

2

11 2

1

push 1 push 2 push 3 pop pop Figure 1.39 Stack Operations

Figure 1.40 presents a modified version of Figure 1.39 and illustrates how the stack
pointer is properly managed.

1 1 1

push 1 push 2 push 3 push 4 pop

2

1

2

3

1

2

SP

SP

SP

SP

SP

Figure 1.40 Managing the Stack Pointer

1.9.3.5.2 PUSH
The push operation puts something onto the top of the stack where it is held for later use.
Mechanically, the push operation increments the address that is held by the stack pointer to
refer to the next empty spot (the new top of the stack) and then writes the data to be stored
into the address in memory designated by that address. As we see in Figure 1.40, for ease
of implementation, the address contained in the stack pointer is typically incremented from
a lower memory address to higher memory address.

1.9.3.5.3 POP
The pop operation takes something off the top of the stack by first retrieving the value in the
memory location designated by the stack pointer and then decrementing the address that is
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held by the stack pointer to refer to the next lower address (the new top of the stack). The
retrieved value is returned as the result of the pop operation.

1.9.3.5.4 PROCESS
Let’s now return to the function call. From a high-level point of view, code execution pro-
ceeds in a sequential manner until the function call is encountered. Flow of control switches
to the function, the code comprising the function body is executed, and flow returns to the
original context, as seen in Figure 1.41.

3000 Code

3053 CALL F1(3)

3054 pop R2

3055 More Code

....

5000 code                  // Function Body....

5053 Return

Figure 1.41 Function Call Construct

Let’s now examine the process in somewhat greater detail. In the code fragment shiwn
in Figure 1.42, the program is initially loaded into memory and begins executing from
address 3000. Code is executed until the flow reaches address 3053, at which point the
function call is encountered. At this point, the sequence of operations shown in Figure 1.42
will occur.

1. The return address and parameters are pushed onto the stack.

The address saved is 3054.

The parameter saved is 3.

2. Address of function body 5000 is put into PC.

3. Instruction at 5000 begins executing.

4. Execution continues until 5053.

5. Return encountered

Stack gets

Return values

Stack loses

Return address

6. Return address is put into PC.

7. Flow returns to address 3054, and the top of stack is popped and put into register R2.

8. Execution continues at 3055.

Figure 1.42 Function Call Flow of Control

Had an additional function call been encountered in function F1, an identical process
would have occurred. The process can be repeated multiple times; however, we must be
aware that stack can overflow. If too much is pushed onto the stack, we begin to lose infor-
mation, particularly the return address.
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1.9.3.6 Arithmetic and Logic

Arithmetic and logical operations are essential elements in affecting what the processor
is to do. Such operations are executed by any of several hardware components com-
prising the ALU. Figure 1.43 presents a block diagram for a possible functional ALU
architecture.

X

Register

Arithmetic ShifterLogic

Multiplexer

Register

Register

State

Machine

Op-Code

Y

Figure 1.43 An ALU Block Diagram

Data are brought into the ALU and held in local registers. The op-code is decoded, the
appropriate operation is performed on the selected operand(s), and the result is placed in
another local register.

1.9.3.6.1 ARITHMETIC
Typically, the processor will support the four basic arithmetic functions: add, subtract, mul-add, subtract, multiply,

divide tiply, and divide. Simpler processors will only implement the first two, relegating the last
two to a software implementation by the designer. The add and subtraction operations may
be supported in two versions, with and without carry and borrow.

The last two versions are intended to support double-precision operations. Such an
operation is performed in two steps: the first computation holds any carry (borrow) and
then utilizes that value as a carry in (borrow in) to the second step. Most such opera-
tions are implemented to support integer-only computations. If floating point mathematics
is supported, a separate floating point hardware unit may be included. In addition to the
four basic functions, the processor may also implement hardware increment and decrement
operations.
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At the instruction set level, a typical complement of arithmetic support will comprise
the function listed in Figure 1.44.

ADD2, ADD3 // Two or three operands addition

ADDC addition with carry

SUB2, SUB3 // Two or three operands subtraction

SUBB subtraction with borrow 

MUL multiplication

DIV division

INC increment

DEC decrement

TEST operand tested and specified condition set

TESTSET atomic test and set

Figure 1.44 Typical Arithmetic Instructions

1.9.3.6.2 LOGICAL OPERATIONS
Logical operations perform traditional binary operations on collections of bits or words.
Such operations are particularly useful in embedded applications where bit manipulation
is common. Such operations are discussed in detail in our studies of the software side of
embedded systems. Typical operations included in the set of logical instructions are illus-
trated in Figure 1.45.

AND bitwise AND

OR bitwise OR

XOR bitwise Exclusive OR

NOT or INV complement

CLR or SET clear or set

CLRC, SETC carry manipulation
Figure 1.45 Typical Logical Instructions

1.9.3.6.3 SHIFT OPERATIONS
Shift operations typically perform several different kinds of shifts on collections of bits or
words. The major differences concern how the boundary values on either side of the shift
are managed. Typically, three kinds of shift are supported: logical, arithmetic, and rotate.

logical, arithmetic,
rotate

Any of the shifts may be implemented as a shift to the left or to the right.
A logical shift enters a 0 into the position emptied by the shift; the bit on the end

is discarded. An arithmetic shift to the right propagates (and preserves) the sign bit into
the vacated position; a shift to the left enters 0’s on the right-hand side and overwrites the
sign bit. The rotate shift circulates the end bit into the vacated bit position on the right- or
left-hand side based on a shift to the left or to the right.
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Typical operations in the set of shift instructions include those listed in Figure 1.46.

SHR operand, count logical shift right

SHL operand, count logical shift left

SHRA operand, count arithmetic shift right

SHLA operand, count arithmetic shift left

ROR operand, count rotate right

ROL operand, count rotate left Figure 1.46 Typical Shift
Instructions

1.10 EMBEDDED SYSTEMS – A REGISTER VIEW

At the ISA level, the instruction set specifies the basic operations supported by the
machine – that is, the external view of the processor from the software developer’s
perspective. During the early stages of design, it plays a significant role in the formulation
of the architecture of the machine. The instruction set expresses the machine’s ability to
transfer data, store data, operate on data, and make decisions, all of which are necessarytransfer store, operate,

make decisions for the machine to be able to perform its ultimate task of aiding in solving problems.
Underlying the instruction set is the physical hardware necessary to implement the

operations directed by the instructions. The core hardware comprises a control unit and acontrol unit
datapath datapath as illustrated in Figure 1.47.

Control

Data pathData Input Data Output

Control Input Control Output

Control Signals Status Information

Figure 1.47 A Control and Datapath
Block Diagram

The datapath is a collection of registers and an associated set of microoperationsmicrooperation
on the data held in the registers. The control unit directs the ordered execution of the
microoperations so as to effect the desired transformations of the data. Thus, the system’s
behavior (execution of the ISA level instructions) can be expressed by the movement of
data among those registers, by operations and transformations performed on the register’s
contents, and by the management of how such movements and operations take place.
The operations on data found at the instruction level are paralleled by a similar, yet more
detailed, set of operations at the register level or RTL. When we study modeling of the
hardware components of an embedded application, we will find that working initially atregister transfer level

hardware design
language (HDL)

the RTL level is natural and convenient. Such an approach easily segues into the hardware
design language (HDL) implementation.
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1.10.1 The Basic Register

A register is a storage device that is capable of holding the collection of one or more bits.
Based on the level of detail we need, we take several views of a register, as we see in the
drawings in Figures 1.48 and 1.49.

D0

Dn–1

D0

Dn–1

D0

Dn–1

D0

Dn–1

write

read

0

n–1

D0

Dn–1

D0

Dn–1

write

read

enable

Figure 1.48 The Register at Several Levels of Abstraction – Parallel Data Entry

The abstract view on the left in Figure 1.48 shows a simple box with the bits numbered
to reflect the size and outputs of the register. More refined/detailed views show inputs and
outputs; those views may be further elaborated to include some control signals. Data are
entered into the registers in parallel, as shown in Figure 1.48, or in serial, as illustrated in
Figure 1.49.

Data

D0 Dn–1 D0

write

Data

read

0 n–1

D0

write

Data

read

Dn–1 Dn–1

enable

Figure 1.49 The Register at Several Levels of Abstraction – Serial Data Entry

1.10.2 Register Operations

Registers support two basic operations:

Read
Write

These operations are illustrated in the timing diagrams shown in Figure 1.50; all
other operations are built on these. Such higher level operations include incrementing/
decrementing, counting, or shifting.

incrementing/
decrementing

counting, shifting
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1.10.2.1 Write to a Register

A parallel write operation begins when the data are placed onto the inputs of the register.parallel write
write

serial write, write
Following a delay to allow the data to settle on the bus, the write signal is asserted. For a
serial write operation, a write signal must accompany each data bit that is entered. In the
drawings shown in Figure 1.50, the write signal is asserted low – which is typical.

Following each write operation, the contents of the register are changed to reflect the
new values of the input data.

Data

Write

Read

Data

Write

Read Serial WriteParallel Write

Figure 1.50 Writing to a Register

1.10.2.2 Read from a Register

The read operation is executed as shown in Figures 1.51. The read signal is issued; follow-read
ing some delay, the data appear on the register output. In this illustration, the read signal is
shown as asserted low.

Data

Write

Read

Parallel Read

read
enable

Data

Write

Read

Serial Read

Figure 1.51 Reading from a Register

The output data will be a copy of the contents of the register; the state of the register
is unchanged by the read operation.

In some designs, when the read signal is not asserted, the data output from the registerread
enable is disabled; in others, output is disabled by an enable control signal.

1.11 REGISTER TRANSFER LANGUAGE

At the RTL, data transfers, operations on data, and control flow are described/specified using
a register transfer language. Within the language, individual operations and transfers areregister transfer

language
register transfer
notation (RTN)

expressed using register transfer notation (RTN). Table 1.3 summarizes the RTN notation
that we will use in the remaining discussion. Such a notation has a direct equivalent in
contemporary HDLs such as Verilog or VHDL, thereby facilitating the transformation from
design to implementation.
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Table 1.3 Register Transfer Notation

Operator Operation

← Transfer from right-hand side to left-hand side

→ If-then operation

[index] Select word from memory at index

<index> Select bit or bits from register at index or range

i..j Index range

:= Text substitution

# Concatenation

: Separator for parallel operations

; Separator for sequential operations

@ Replication

{ } Information about operation

( ) Grouping

= ≠ < ≤ > ≥ Comparison operators

+ − × ÷ + Arithmetic operators

∧ ∨ ¬ ⊕ ≡ Logical operators

Table 1.4 illustrates how representative operations from the ISA level can be expressed
using RTN.

Table 1.4 Instruction Set Architecture Operations Expressed in Register Transfer Notation

Type Instruction ISA level Register transfer level

Data transfer Move register MOVE R1, R2 R1←R2

Move from memory MOVE R1, memadx R1← (memadx)

Move to memory MOVE memadx, R1 (memadx)←R1

Move immediate MOVE R1, #DEAD R1← #DEAD

Control flow Unconditional branch BR $1 PC← $1

Conditional branch BNE $1 cond (PC← $1)
if(cond) PC← $1

Logic Complement accumulator CMA A←¬A

AND register AND R1, R2 R1←R1 ∧ R2

OR register OR R1, R2 R1←R1 ∨ R2

Shift register SHL R1, #3 R1<31..0>←
R1<31–n..0>#(n@0)
Contents of R1 get
replaced by bits in range
of 31–n..0, where n is
number of bits to shift and
n 0s get extended on right

Arithmetic ADD register with carry ADDC R1, R2 R1←R1+R2+C

Clear carry CLRC C← 0

Program control Don’t execute an instruction NOP PC← (PC+ 1)

Stop executing instructions HALT PC← PC
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1.12 REGISTER VIEW OF A MICROPROCESSOR

We will now examine the datapath and control for a simple microprocessor at the RTL level.
We will begin by looking at the components that comprise the datapath from a register point
of view. From there, we will look at the control of such a datapath by studying the instruction
cycle for such a machine.

1.12.1 The Datapath

Figure 1.52 expresses the architecture of the datapath and the memory interface for a simple
microprocessor at the RTL.

R 0

R n–1

Program Counter

Memory Address 

Register

Arithmetic
and Logical Unit

Temp
Register

Flag
Register

General Purpose
Registers

Instruction Register

Instruction Decoder
and

Control

Write

Read

Memory
Subsystem

Memory Data Register

Memory

M
e
m

o
ry

In
te

rf
a
c
e

Datapath

Figure 1.52 RTN Model for a Microprocessor Datapath and Memory Interface

In the diagram, we can identify the minimal set of registers, as listed in Figure 1.53.

Program Counter – PC Hold next instruction address 

Instruction Register – IR Hold current instruction

General Purpose Registers – R0–Rn–1     Temporary data store

Memory Address Register – MAR Hold address during read or write operation

Memory Data Register – MDR Hold address during read or write operation

Hold operand during ALU operationTR0

Hold the result of an arithmetic operationTR1

Figure 1.53 Typical Microprocessor Register
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1.12.2 Processor Control

The control of the microprocessor datapath comprises four fundamental operations defined
as the instruction cycle. These steps are identified in Figure 1.54, and are further describedinstruction cycle
according to state diagram in Figure 1.55.

Fetch Fetch instruction

Decode Decode current instruction

Execute Execute current instruction

Next Compute address of next instruction

Figure 1.54 Steps in the Instruction Cycle

Fetch

Decode

Execute

Next

Figure 1.55 The Instruction Cycle

1.12.2.1 Fetch

The fetch operation retrieves an instruction from memory. That instruction is identified byfetch
its address, which is the contents of the program counter, PC. Thus, at the ISA level, the
fetch operation is written as

MOVE IR, *PC;

Move the memory word identified by the address contained in the program counter
into the instruction register (IR).

The first step in the fetch operation places the contents of the program counter (whichfetch
identifies the address of the next instruction) into the Memory Address Register (MAR).Memory Address

Register, Read A Read command is issued to the memory, which retrieves the instruction stored in the
addressed location and places it into the Memory Data Register (MDR). The contents ofMemory Data Register
the MDR are then transferred to the IR. At the RTL level, the fetch decomposes into theInstruction Register,

fetch sequence of steps given in Figure 1.56.

MAR PC;←
MDR ← Memory[MAR]; // contents of specified memory location placed into MDR

IR ← // MDR enabled out to bus, IR captures value

// PC enabled out to bus, MAR captures value

MDR;

Figure 1.56 Components of the Fetch Instruction
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The second step in this sequence executes a READ operation from the specified mem-READ
read ory location. The underlying hardware will generate the read control signal and manage the

underlying timing.

1.12.2.2 Decode

The decode step is performed when the op-code field in the instruction is extracted fromdecode
Instruction Decoder

control logic, execute
the instruction and decoded by the Instruction Decoder. That information is forwarded to
the control logic, which will initiate the execute portion of the instruction cycle.

1.12.2.3 Execute

Based on the value contained in the op-code field, the control logic performs the sequence
of steps necessary to execute the instruction. Two examples are given in Figures 1.57control logic

execute and 1.58.

// C Instruction

*xPtr = y;

// ISA Level Instruction

ST *R1, R2;

// RTL Level Instructions

MAR ←  R1; // R1 enabled out to bus, MAR captures value

MDR ←  Memory[MAR]; // contents of specified memory location placed into MDR

R2 ← MDR; // MDR enabled out to bus, R2 captures value

Figure 1.57 An Execute Sequence

// C Instruction 

*zPtr = x + *yPtr;

// ISA Level Instruction 

ADD *R3, R1, *R2;

// RTL Level Instructions

// Assume that R2 and R3 already contain the desired addresses in memory 

TR0 ←  R1; // R1 enabled out to bus, TR0 captures value

MAR ←  R2; // R2 enabled out to bus, MAR captures value

MDR ← Memory[MAR]; // contents of specified memory location placed into MDR

TR1← TR0 + MDR; // MDR enabled out to bus, ALU adds TR0 and MDR

// places result in TR1

MAR ←  R3; // R3 enabled out to bus, MAR captures value

MDR ←  TR1; // TR1 enabled out to bus, MDR captures value

Memory[MAR] ←  MDR; // contents of MDR placed into specified memory location 

Figure 1.58 An Execute Sequence
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Store the contents of a register in a named location in memory.
Add the contents of a register to a piece of data stored in memory and place the result

back into memory, but at a different location.

1.12.2.4 Next

The address of the next instruction to be executed is dependent on the type of instruction to
be executed and, potentially, on the state of the condition flags as modified by the recently
completed instruction. At the end of the day, most reduce to algebraically adding a value
to the PC. For short jumps, the displacement may be contained in one of the operand fields
of the instruction; for longer jumps, the value may be contained in the memory location
following the instruction.

Thus, at the ISA level, the several versions of the next operation are written asnext

ADD PC, offset;

Algebraically modifying the PC is best accomplished by using one of the arithmetic
functions in the ALU. The operation begins when the control logic places the desired offset
into the ALU’s temporary register. Next, the output of the PC is directed to the other ALU
input. The ADD instruction is executed and the result is entered into the PC. Placing a
specific value into the PC can be done directly by the control logic, as the target address is
generally contained in the instruction.

At the RTL level, the next step decomposes into the sequence of steps given innext
Figure 1.59.

// Assume the offset is contained in the instruction

TR0 ← IR<n..m>; // offset field of instruction enabled out to bus, TR0 captures value 

TR1 ←  TR0 + PC; // PC enabled out to bus, ALU adds TR0 and PC

PC ←  TR1 // TR1 enabled out to bus, PC captures value

Figure 1.59 The Next Sequence

The Verilog program in Figure 1.60 implements a behavioral model of a portion of the
datapath and control for the simple CPU presented at the start of this section. The number of
registers has been reduced, only two instructions are implemented, and the address mode
field supports four different modes. Nonetheless, the architecture implements a working
system. Included are the test bench and the tester for the CPU.
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#define TRUE 1'b1

#define FALSE 1'b0

/*

 instruction format 32 bit word

31..24 op-code

23..22 address mode field operand 1

21..12 operand 1

11..10 address mode field operand 0

9..0 operand 0

 all registers are 32 bits

*/

// Build a test bench to test the design

module testBench;

cp eht tcennoc // ;cp ]0:13[ eriw

ri eht tcennoc // ;ri ]0:13[ eriw

kcolc eht tcennoc //;kcolceriw

hal0 aComputer (pc,ir, clock); // build an instance of the computer

testIt aTester(clock, pc retset a dliub // ;)ri ,

endmodule

// Test module

module testIt(clock, pc, ir);

// declare the input and output variables

retnuoc margorp // ;cp ]0:13[ tupni

retsiger noitcurtsni // ;ri ]0:13[ tupni

kcolc metsys //;kcolc tuptuo

kcolc metsys // ;kcolc ger

parameter halfPeriod = 1;

initial

clock = 0;

// manage the clock

always

begin

#(halfPeriod) clock = ~clock;

end

// manage the display and look for changes

always @(posedge clock)

begin

$monitor ($time,, "pc = %h \t ir = %h", pc, ir); // record only changes

colc tel //;)doirePflah*01(# k cycle a couple of times

noitalumis a fo DNE ees ot dedeen // ;)doirePflah(#

mrofevaw ta kool nac resu os pots // ;pots$

tixe // ;hsinif$

end

endmodule

Figure 1.60 Model of the Datapath and Control for a Simple CPU
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// The Computer - Hal0

module hal0 (pc, ir, clock);

// declare the I/O and registers

input clock;

output [31:0] pc;

output [31:0] ir;

reg [31:0] m [0:15]; // 16 x 32 bit memory

reg [31:0] pc; // 32 bit program counter

reg [31:0] acc; // 32 bit accumulator

reg [31:0] ir; // 32 bit instruction register

reg [31:0] r[0:7]; // 8 32 bit general purpose registers 

reg notDone; // flag to end program

integer i;

// define op-codes

parameter add = 8'h01; // 8 bit add op-code

parameter move = 8’h05; // 8 bit move op-code

parameter done = 8'hff; // 8 bit done op-code

// define address mode field values

parameter dir = 2'b00;

parameter ind = 2'b01;

parameter imm = 2'b10;

parameter pcr = 2'b11;

// define registers

parameter r0 = 32'h0;

parameter r1 = 32'h1;

parameter r2 = 32'h2;

parameter r3 = 32'h3;

parameter r4 = 32'h4;

parameter r5 = 32'h5;

parameter r6 = 32'h6;

parameter r7 = 32'h7;

// initialize the system

rotalumucca eht dna cp eht ezilaitini //laitini

 begin  

 pc = 0;  // pc <- 0

 acc = 0; // acc <- 0

 notDone = `TRUE; // initialize notDone flag

 // define the instruction rom

 // enter some instructions into memory 

 m[0] = 'h05000803;  // r0 <- 0x3 

 m[1] = 'h05001802; // r1 <- 0x2

 m[2] = 'h01001000; // r1 <- r1 + r0

 m[3] = 'hFFFFFFFF; // done - end of program

 m[4] = 'h00000000;

Figure 1.60 (Continued)
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// run the program

always 

while (notDone == `TRUE)

begin

gnimit metsys lortnoc // )kcolc egdesop(@

noitarepo edoced // )]42:13[ri(esac

 edoc-po evom // :evom

begin

$display("\nMove"); // annotate execution

edom sserdda kcehc // )]01:11[ri(esac

;)"tceridn\"(yalpsid$:rid 

;)"tceridnin\"(yalpsid$:dni 

 evom edom etaidemmi tnemelpmi // :mmi 

nigeb 

noitarepo etucexe //;)"etaidemmin\"(yalpsid$ 

eulaVa -< xr //;]0:9[ri = ] )]21:12[ri( [r 

;)] )]21:12[ri( [r ,"h% eulav retsiger n\"(yalpsid$ 

dne 

;)"evitaler cp n\"(yalpsid$ :rcp 

 endcase

 end

 edoc-po dda // :dda 

 begin 

 $display("add\n");

 case(ir[11:10])

 tcerid retsiger // :rid 

nigeb 

noitarepo etucexe // ;)"tceridn\"(yalpsid$ 

// rx <- rx + ry

 ;] )]0:11[ri( [r + ] )]21:12[ri( [r = ] )]21:12[ri( [r 

;)] )]21:12[ri( [r ,"h% eulav retsiger n\"(yalpsid$ 

dne 

;)"tceridnin\"(yalpsid$   :dni 

;)"tceridnin\"(yalpsid$ :mmi 

;)"evitaler cpn\"(yalpsid$   :rcp 

 endcase

 end

 default:  $display("illegal op-code trap\n"); // identify illegal op-codes

 endcase

sserdda txen etupmoc noitarepo txen // ;1+cp = cp 

noitarepo hctef // ;]cp[ m = ri 

margorp fo dne rof kcehc // ) enod == ]42:13[ri ( fi 

enod // ;ESLAF`= enoDton 
 end

 m[5] = 'h00000000;

 m[6] = 'h00000000;

 m[7] = 'h00000000;

 ir = m [pc];     // fetch operation - get first instruction

 end

Figure 1.60 (Continued)
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1.13 SUMMARY

We introduced a high-level view at the computing core of
an embedded application and then refined that core through
several levels of increasing detail. We observed that such a
core is usually manifest as a microprocessor, microcomputer,
or microcontroller. We briefly examined each, identified the
basic elements of each, and learned how they differ. We intro-
duced and studied the architecture of the computing core
beginning with the functional level, which comprises the four
major blocks – input, output, memory, and CPU – as well as
the bus as a means of interchanging information among the
four blocks.

We then moved to the opposite end of the spectrum to learn
how various essential kinds of information (numbers, charac-
ters, addresses, and instructions) are represented inside of a
digital system. Building on the instructions, we learned that the
instruction set drives or defines the architecture of the computer

and how that architecture is refined and subsequently expressed
at the register level. We designated these two levels as the ISA
level and RTL of the computer.

At the ISA level, we examined how data and information
are expressed within the machine, the different instruction for-
mats, and the different addressing modes commonly supported
by contemporary computing engines.

At the RTL level, we introduced the register, basic regis-
ter operations, and the RTN used for expressing operations at
the RTL. We then decomposed the CPU into the control and
datapath components. We introduced the instruction cycle and
examined how its fetch, decode, execute, and next constituents
can be expressed at both the ISA and RTL levels.

We concluded with a behavioral level Verilog implementa-
tion of a simple datapath.

1.14 REVIEW QUESTIONS

The Hardware Side

1.1 Beginning with the computing core and moving to the
complete system and its environment, the chapter identified a
hierarchy of views of an embedded system. Please identify and
briefly describe each of these views.

1.2 Identify and briefly describe the major functional blocks
that comprise the computing core.

1.3 How are the major blocks of the computing core intercon-
nected?

1.4 What are the major categories of signals flowing among
the major blocks in the computing core?

1.5 What is meant by the term bus width?

1.6 Describe what is meant by the term microprocessor.
Please be specific.

1.7 Describe what is meant by the term microcomputer. Please
be specific.

1.8 Describe what is meant by the term microcontroller.
Please be specific.

Representing Information

1.9 What kinds of information must we be able to represent
in an embedded application?

1.10 What are the two basic classifications of numbers with
which we are concerned in an embedded application?

1.11 How do we distinguish a signed integer from one that is
unsigned?

1.12 What do the terms little endian and big endian mean? Why
are they important?

1.13 When expressing a floating point number, what are the
essential components that must be captured?

1.14 What do we mean when we say that the representation of
a binary number has four bits of resolution?

1.15 A number that exceeds a microprocessor’s word size may
be truncated or rounded. Which of these will produce a greater
error?

1.16 When arithmetic is performed on numbers with an error,
the error will be reflected in the result of the calculation. How
will that error affect the result if the numbers are added (sub-
tracted), multiplied, or divided?

1.17 How are alphanumeric characters and symbols repre-
sented inside of a microprocessor?

1.18 How is an address expressed in a microprocessor word?

Instructions

1.19 An instruction is used to direct a microprocessor to per-
form some action. What are the major pieces of a microprocessor
instruction?

1.20 What is meant by the arity of an instruction?

1.21 Please explain the terms one-, two-, or three-operand
instruction.

1.22 Please explain the terms one-, two-, or three-address
instruction.
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1.23 What is the meaning of the term op-code?

1.24 What is the purpose of an op-code?

An Instruction Set View

1.25 Please explain the terms instruction set and ISA.

1.26 What is the purpose of the software tool called an
assembler?

1.27 What is meant by the term machine code?

1.28 Microprocessor instructions can be classified into three
major groups. What are these groups? Please describe what char-
acterizes instructions in each of the groups.

1.29 Identify the hardware components that may be the source
or destination of a data transfer instruction.

1.30 What information does the addressing mode of an instruc-
tion convey?

1.31 Please identify and briefly describe the more commonly
used addressing modes discussed in the chapter.

1.32 How is the addressing mode information incorporated into
an instruction?

1.33 Please explain the meaning of the term execution or con-
trol flow.

1.34 What are the four major categories of execution flow
through an embedded program? Briefly describe what each
means.

1.35 What is the purpose of a flag or condition code register?

1.36 What is the difference between an entry condition loop
and an exit condition loop?

1.37 Please identify and describe the necessary steps for exe-
cuting a function or procedure call. Please be precise.

1.38 What is a stack?

1.39 What are the major access operations that can be per-
formed on a stack?

1.40 What is the purpose of the variable called the stack
pointer?

1.41 What is the function of the ALU?

A Register View

1.42 Underlying the microprocessor’s instruction set is the
implementation hardware. What are the core components of that
hardware?

1.43 What is meant by the expression RTL? How does
the RTL view of a microprocessor relate to the ISA level
view?

1.44 What is a register, and what is its purpose in a micropro-
cessor?

1.45 What basic operations can be performed on a register?

1.46 What is the purpose of a register transfer language and
RTN?

1.47 Please identify and briefly describe the registers that one
will typically find in a microprocessor’s datapath.

1.48 The control of a microprocessor’s datapath is made up of
four operations called the instruction cycle. Please identify and
describe each of these operations.

1.15 THOUGHT QUESTIONS

The Hardware Side

1.1 Three kinds of computing engine are utilized in embed-
ded systems. What are the advantages and disadvantages
of each?

1.2 Under what circumstances should one consider using
a microcontroller? microcomputer? microprocessor? Please
explain your answer in detail.

1.3 Discuss the advantages and disadvantages of a wide versus
narrow internal system bus.

1.4 Is it necessary for the address and data portions of the sys-
tem bus to have the same number of bits? What are the pros and
cons of a wider address bus? data bus?

1.5 In some designs, the address and data signals are multi-
plexed onto the same set of bus lines. What are the advantages
and disadvantages of such a scheme?

1.6 Discuss the benefits gained from and the disadvantages of
a von Neumann versus Aiken Machine.

Representing Information

1.7 What are the limitations on the amount of information that
can be stored in a data word?

1.8 What are the trade-offs of a wide versus narrow word size?

1.9 If the system bus is 1 byte wide, how can a 32-bit word be
transferred over the bus?

1.10 If an embedded system is designed around a 16-bit word,
is it possible to support 32-bit floating point numbers? If so, how
and if not, why not?

1.11 Identify several reasons for using unsigned integers.

1.12 If the word size in an embedded system is 16-bits, why
would one ever use bytes? Unsigned bytes?

1.13 If an embedded core is implemented as a big endian
machine, how can one communicate with a peripheral device
that is little endian?

1.14 Why is type information necessary for data words?



�

� �

�

1.16 Problems 47

1.15 The hidden bit format for floating point numbers provides
an extra bit of resolution for free. Someone has suggested apply-
ing the same technique to gain two extra bits. What do you think
of the idea? Are there any problems with it?

Instructions

1.16 The essential components of an instruction are the op-code
and the operand(s) on which the operation is to be performed. Is
it necessary that the op-code always contain the same number of
bits? Why or Why not?

1.17 The chapter discussed one-, two-, and three-address
instructions. Is it possible to have a zero-address instruction?
What are the benefits of such a design?

1.18 How can double indirection be implemented in an
instruction?

An Instruction Set View

1.19 What are the four major pieces of information that an
instruction must convey? How are these done?

1.20 In the chapter, several different addressing modes were
discussed. Can you think of others that might be useful?

1.21 Are the bits in the machine code representation of an
instruction arbitrary, or do they have a specific meaning? If they
have meaning, what might it be?

1.22 Microprocessor instructions can be classified into three
major groups. What are these groups? Please describe what char-
acterizes instructions in each of the groups.

1.23 If an instruction contains the address of an operand in
memory, how can the source or destination of an operation be

conveyed if the source or destination is an input or output port
on the microprocessor?

1.24 If one has an assembly code listing for an embedded pro-
gram that has been running on a Motorola processor, will that
program run on an Advanced Micro Devices (AMD) processor?

1.25 If one has a C code listing for an embedded program that
has been running on a Motorola processor, will that program run
on an AMD processor?

1.26 Please explain how a branch type of instruction works
from an instruction set point of view.

1.27 How does an instruction know how or where to access a
flag or condition code register?

1.28 Discuss ways of managing the case of the instruction
decoder finding an op-code in an instruction that it does not rec-
ognize.

A Register View

1.29 A RISC architecture frequently incorporates many more
registers than does a CISC design? Why is this?

1.30 Explain why a register access is generally faster than a
memory access.

1.31 Explain how an indexed type of instruction might be
implemented at the register level.

1.32 How can data from multiple sources be transferred into
the same register?

1.33 Discuss the advantages and disadvantages of building a
register from latches versus flip-flops.

1.34 What are the advantages and disadvantages of tristate
gates versus a traditional multiplexer gate for transferring data
from one register to another?

1.16 PROBLEMS

1.1 Express the following decimal numbers in the bases
indicated.

Decimal: 1011, 23.4, 207, 111.439

(a) Binary

(b) Octal

(c) Hexadecimal

(d) Binary Coded Decimal (BCD)

1.2 Express the following binary numbers in the bases indi-
cated.

Binary: 101101011, 1101.11001, 1001001110, 111.001

(a) Decimal

(b) BCD

(c) Hexadecimal

1.3 Express the following hexadecimal numbers in the bases
indicated.

Hexadecimal: B3D9, CA.43, 1234, 5D.06F

(a) Decimal

(b) BCD

(c) Binary

1.4 Express the following decimal numbers in the bases
indicated.

Decimal: 12.34, 9503.313

(a) Binary

(b) Hexadecimal
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1.5 Express your given name and your family name as ASCII
characters in the following format:

givenName familyName

The ASCII characters should be written in their binary form
and stored so as to use the smallest number of 16-bit words.
Check the Web site http://asciitable.com for the set of ASCII
characters.

1.6 We have the following data stored in the first 32 locations
of a memory as shown.

Memory address Value

00000 0000010

0101001

1000001

0101111

0001111

0000011

1100101

1101001

1111101

0001111

0011101

0010111

0001011

0000001
0101111

0101001

0100011

0000010

0001101

0000111

0111101

0111001

1101001

0011101

0000011

0001111

0011111

0010001

0111101

1001101

1001101

11111 1010101

(a) Please identify the words at the following hexadecimal
addresses.

12, F, 1E, 7, 1C

(b) Please give the hexadecimal addresses for the following
words in memory.

1100101, 0010111, 0100011, 0111101

1.7 We have the following C code fragment:

unsigned char a = 0xD3;

char b = ‘A';

int c = 6;

int d = 9;

int e = -31564;

unsigned int f = 0xFAD7;

float g = 3.1;

float h = 0.0345;

int j;

int* cPtr = &c;

int* dPtr = &d;

int** cPtrPtr = &cPtr;

int** dPtrPtr = &dPtr;

float* gPtr = &g;

float* hPtr = &h;

Variable Memory address Value

00000 1000

1001

2000

2001

3000

3001

4000

4001

http://asciitable.com/
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(a) Please put the values, in binary, for all of the variables into
memory. Assume 16-bit words and big endian notation.

(b) How do the values in memory change after the following
code fragment is executed?

e = e + f;

*gPtr = *gPtr + *hPtr;

j = **cPtrPtr - **dPtrPtr;

1.8 Convert each of the following floating point numbers into
binary. Assume a 16-bit word for which the weight of the least
significant bit is 2−4. Following the conversion, what is the error
for each number?

(a) E = 72.23

(b) F = 121.034

(c) G = 98.6

(d) H = 43.612

1.9 Using the numbers and errors from Problem 1.8, perform
the following calculations. What is the worst case error for each
calculation?

(a) E+ F+G+H

(b) E*F

(c) G*H

(d) (G*H)/(E+ F)

1.10 Please show the contents of the stack, the position of the
stack pointer (SP), and the contents of the indicated registers
after the execution of each of the following instructions. The
instructions are executed in sequence.

Initially, the registers contain the following values R0 =
1234, R1 = 2345, R2 = 4567, R3 = 8901.

For two-operand instructions, assume that the left-hand
operand is also the destination.

PC Instruction

FACE ADD R3, R1

FACF PUSH R2

FAD1 POP R3

FAD6 ADD R1, R2

Registers Stack

R0

R1

R2

R3

PC

Registers Stack

R0

R1

R2

R3

PC

Registers Stack

R0

R1

R2

R3

PC

Registers Stack

R0

R1

R2

R3

PC

Registers Stack

R0

R1

R2

R3

PC

1.11 Using the assembly language instructions introduced in
the chapter, write a program to solve the following problem.

(
(A ⋅ B)
(C − D)

)
⋅ E

The variables A–E are already stored in the registers
R1–R5. The result is to be placed into register R6. You may not
change what is stored in registers R1–R5.

1.12 How does your program in Problem 1.10 change if the
registers contain the addresses of the variables rather than the
values of the variables?

1.13 Given the memory locations, values below, and a
one-address machine with an accumulator (the accumulator is
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the default destination), what values do the following instruc-
tions load into the accumulator?

Assume that R1 and R3 contain the values 0×5000 and
0×3000, respectively.

Memory location Contents Accumulator

1000 2000
2000 3000
3000 FACE
4000 5000
5000 1000

MOVE R1 5000

LOADI 0x5000

MOVE *R1

LOADI 0xFACE

MOVE *R2 3000

1.14 A partial set of specifications for a typical embedded pro-
cessor are given as:

– 16-bit architecture – 16-bit-wide data words.
– 20-bit instructions.
– 8 general-purpose registers.
– One-, two-, and three-address instructions.
– Each address field is qualified by a 2-bit field to identify any

of the following four different addressing modes: register
direct, register indirect, pc relative, indexed.

(a) Please give the format for a one-, two-, and three-address
instruction for this machine. Observe that the width of the
instruction is different from the width of the data. This is not
a problem.

(b) Please show how the following instructions would be
implemented using the format you designed.

ADD2, SUB2, MUL, DIV

opcodes: 00001, 00010, 00011, 00100

respectively

add, subtract, multiply, divide two operands.

MOVE opcode: 00101

Move a word from memory into a register.
Move a word to a memory address location that is contained

in a register.

JUM opcode: 00110

Jump to a location.

BR, BE opcodes: 00111, 01000

Load a 16-bit integer into a register.

CMP opcode: 01001

Compare two operands and set the appropriate condi-
tion code.

e CALL, RET opcodes: 01010, 01011

PC is replaced by a specified address and control is transferred
to the address.

Control is returned to the calling context.

1.15 We have the following requirements for a microprocessor.
Assume that the processor has 32-bit instructions. Let each reg-
ister operand address be specified by a 5-bit field for the address
and qualified by a 2-bit field to identify any of the following four
different addressing modes: register direct, register indirect, pc
relative, indexed.

Assume there are K two-operand instructions and L
zero-operand instructions (e.g. HALT) required.

(a) What is the maximum number of one-address instructions
that can be provided in the computer?

(b) Give the format for zero-, one-, and two-address instruc-
tions. How are these distinguished?

(c) How would the following instructions be expressed using
your format:

• Move a word from memory into a register.
• Move a word to a memory address location that is contained

in a register.
• Jump to a location.
• Add, subtract, multiply, divide two operands.
• Load the integer 59 into a register.
• Read from the keyboard.

1.16 Consider the following state of a computer:

Register R1 contains 800
Register R2 contains 3000
Memory location 1000 contains 2000
Memory location 2000 contains 3000
Memory location 3000 contains 1000.

All numbers are expressed in hex notation.
For the following three instructions, each is executed from

the above initial state.

(a) What is the effect of executing each instruction?

(b) How many words does each instruction occupy?

(c) How many memory accesses does the fetching and execu-
tion of each instruction require?
Assume each instruction is independent of the others

MOVE *R2, R1 // move R1 to what R2 is
// pointing at

MOVE *R2,1800(R1) // move the contents
// of the memory location
// indexed by R1 to what R2
// is pointing at

MOVI *R2, #DEAD // move the constant
// DEAD to what R2
// is pointing at.
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1.17 An embedded application executing on the micropro-
cessor in Problem 1.15 is required to perform the following
computation:

Z¬W1gY1 + W2gY2 + W3gY3

on the contents of memory locations Z1, W1, Y1, W2, Y2, W3,
and Y3. None of the contents of locations W or Y may be
destroyed.

(a) Write a straight-line program for the task described
above.

(b) Write a loop program for the same task on the same
computer.

(c) Calculate the number of main memory accesses (Read
or Write operations) required for each program. Include all
accesses required or fetching and executing the instructions. For
example, the instruction:

MOVE Ri, Rj

requires two memory accesses: one for reading the instruction
from main memory into the microprocessor and one for reading
the operand from main memory location contained in Ri into the
microprocessor.

1.18 In some computers, subroutine linkage is implemented
in the following way. The call subroutine instruction stores
the return address (the next instruction in the calling program)
in the first location of the subroutine and then branches to
the second location, where the execution of the subroutine
begins.

(a) Define a suitable instruction for returning from the subrou-
tine.

(b) How would you pass parameters between the calling pro-
gram and the subroutine?

(c) Would the above linkage support nesting of subroutines?
Why or why not?

(d) Would the above linkage support recursion? Why or why
not?

1.19 Based on the RTL model of a microprocessor datapath
given in Figure 1.52 and the RTL operations given in Table 1.4,
please identify the necessary steps that comprise each phase of
the instruction cycle in order to perform the following instruc-
tion on that microprocessor:

// add the contents of the value
// contained in the register R3 to
// the contents of the memory
// location pointed to by R2 and
// put the results into R4.
add R4, R3, *R2;

1.20 We have the following C code fragment that adds one to
each element of an array.

int a[4] = {1, 2, 3, 4}; // declare an array
// of integers

int i ;
for (i = 0; i < 4; i++)
a[i] = a[i] + 1; // add 1 to each

// element of the array

(a) Using the instructions you developed in Problem 1.15
translate the given code fragment into assembler.

(b) Using the RTL operations given in Table 1.4, translate the
assembler to RTL level.

(c) Using the instructions you developed in Problem 1.15 and
the assembler from part (a), translate the code fragment into
machine code.

1.21 The architecture known as the Aiken or Harvard archi-
tecture uses a separate data memory and a separate instruction
memory.

(a) Please give two advantages and two disadvantages of the
Harvard architecture in comparison to the Princeton architec-
ture. Be precise in your answer.

(b) For the following C++ code fragment. Which memory, the
instruction or the data memory, should contain the values for x
and y? Please explain why.

int x = 3;
int y = 4;
x = x + y;

(c) Using the following memory diagrams, please place
the values for x and y into locations in the appropriate
memory.**

Instruction memory

Memory location Memory address Contents
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Data memory

Memory location Memory address Contents

(d) Are the following assembly code instructions one-, two-,
or three-address instructions? Please explain your answer.

LOADI Ri, #constant // load the constant
// into Ri

LOADI *Ri, #constant // load the constant
// into what Ri is
// pointing to

ADD2 Ri, Rj // add the contents of
// Ri to Rj and place
// the result in Ri

ADD2 *Ri, *Rj // add the contents of
// what Ri is pointing to
// what Rj is pointing to
// and place the result in
// what Ri is pointing to

(e) Using the instructions above, complete the following code
fragment to implement the addition operation in part (b).

LOADI

LOADI

ADD2

(f) Using the following memory diagrams, please place the
instructions you wrote in part (e) into locations in the appropri-
ate memory.

Instruction memory

Memory location Memory address Contents

Data memory

Memory location Memory address Contents

(g) Please provide a format for the add instruction given above.
Explain the purpose of each field in your implementation.

(h) Please identify all of the steps necessary to execute the
add instruction in part (e) above on the Harvard machine.
Refer to the specific parts of the architecture diagram in your
descriptions.

1.22 A computer is designed that uses a set of special registers,
RS0–RS3, rather than the stack to pass data into and out of a sub-
routine. The stack is only used to hold the return address. The
stack pointer is held in the special register SP and the program
counter in register PC.

The machine has four general-purpose registers R0–R3.
The machine has a status flag, equal, that is appropriately

set or reset for each instruction execution as indicated below.
Write a routine exp. (num, pow) that will compute numpow

for such a machine and return that value.

(a) Please write the detailed level pseudocode for invoking
such a routine assuming that it is called from some higher level
function. Be certain to identify all the steps.

(b) Please write the sequence of assembly language steps
necessary to implement such a sequence using the following
instructions.

LOAD Ri, Rj // Ri ← Rj, sets the equal
// flag true if Ri contains 0

LOAD Ri, #val // Ri ← #val, sets the
// equal flag true if Ri
// contains 0

BE @Ri // jumps to address
// contained in Ri if the
// equal flag is true

BNE @Ri // jumps to address
// contained in Ri if the
// equal flag is false

MUL Ri, Rj // Ri ← Ri * Rj, sets the
// equal flag true if Ri
// contains 0

DIV Ri, Rj // Ri ← Ri / Rj, sets the
// equal flag true if Ri
// contains 0
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ADD2 Ri, Rj // Ri ← Ri + Rj, sets the
// equal flag true if Ri
// contains 0

SUB2 Ri, Rj // Ri ← Ri - Rj, sets the
// equal flag true if Ri
// contains 0

INC Ri // Ri ← Ri + 1
DEC Ri // Ri ← Ri - 1, sets the

// equal flag true if Ri
// contains 0

PUSH Ri // stack ← Ri
POP Ri // Ri ← stack

(c) Using a value of 20 for num and 3 for pow, please indicate
the contents of each of the following registers at the execution
points indicated assuming the sequence of steps you have iden-
tified was executed. Also indicate the top of the stack.
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Assume the original function call is at memory address 3050
and that the subroutine is at memory address 5000.

GP Registers

R0

R1

R2

R3

StackSP Registers

RS0

RS1

RS2

RS3

Prior to Function Call PC

After the Function Call PC

StackSP Registers

RS0

RS1

RS2

RS3

GP Registers

R0

R1

R2

R3

GP Registers

R0

R1

R2

R3

StackSP Registers

RS0

RS1

RS2

RS3

Prior to the Return PC

After the Return PC

StackSP Registers

RS0

RS1

RS2

RS3

GP Registers

R0

R1

R2

R3
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Chapter 2

The Hardware Side – Part 2:
Combinational Logic – A Practical
View

THINGS TO LOOK FOR …

• Output topology for logic devices.

• Real-world considerations – Logic levels, drive capability, rise and fall times, and prop-
agation delays.

• Basic concepts of real-world signal quality

• Fundamental issues affecting digital signal quality.

• Race conditions and hazards.

• Understanding and modeling of parasitic components and their effects on digital-circuit.

• Real-world considerations – Signal edges, ringing, coupling, rise and fall times, propa-
gation delays.

• Race conditions and hazards.

• Common faults in combinational logic circuits.

2.1 INTRODUCTION

The previous chapter introduced the hardware side of an embedded application from a
top-down view of the computing core and from a bottom-up view of the bits and bytes
expressing the information used by that core. Another view of that hierarchy is from the
perspective of the physical components that turn the high-level design concepts and the
bits and bytes into a working application. The digital hardware is an essential component
in the design of all embedded systems. At the same time, in today’s systems the hardware
is of little use without the accompanying software and firmware. The goal of this chapter
and the next is to provide a solid basis for the practical aspects of working with digital
circuits in the embedded world. Later chapters will augment and complement the hardware
side with the software/firmware side and then merge the two into safe, secure, reliable
real-world applications.

Embedded Systems: A Contemporary Design Tool, Second Edition. James K. Peckol.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/college/peckol
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When we are focusing on digital hardware, software, and firmware, we sometimes
forget that underneath all of our 0’s and 1’s is also an analog world. It is a world in which
the voltages and currents that we work with and that we turn into software bits and bytes
are not always stable or accurate. It is a world in which signals are delayed going through
gates, flip-flops, array logics, and microprocessors. To be able to design and build robust,
production-quality applications that work in a wide variety of real-world applications, it is
essential that one understand how that world affects the components and the designs.

Modeling and simulation are essential steps in the process of designing systems today.
One often hears the alternative view, which suggests that with the rapid growth of powerful
programmable logic elements we will soon be able to quickly synthesize a design and then
just try it out rather than waste time simulating. After all, don’t we do this already with
software? An important point to remember is that if all we had to do was complete a design
and get it working with one set of parts, such an approach might be reasonable. Unfortu-
nately, not all parts (even from the same manufacturer – even with the same date code) are
identical; each is slightly different. Parts and subsystems can interact in many unexpected
ways. Software does not age. It is not affected by manufacturing tolerances, fundamental
electrical physics, humidity, temperature, or electromagnetic radiation. Modeling and sim-
ulation allow us to subject the critical (here, often hardware) parts of our designs to such
real-world phenomena quickly and cheaply. We introduced modeling at the register transfer
level (RTL) in the last chapter. In this chapter and the next, we will move closer to the gates
and flip-flops that make up the RTL devices and control. Our discussions of the physical
level of embedded systems will assume a solid understanding of Boolean algebra and logic
reduction techniques as well as familiarity with the basic small-scale and medium-scale
logic devices and families.

We open the chapter with an examination of physical world logic signal levels, their
variability, and the effects of noise on those signals. Such an understanding is essential when
trying to design and mass produce a new system. The ability of a logic device to drive other
devices is studied next. We routinely use such knowledge when we are interconnecting
components within a module as well as when we are interfacing with other modules or
systems.

We then move from the static world to the dynamic as we learn that logic signals do
not change state instantly and that they propagate through a system at different rates. Using
the Verilog hardware design language (VHDL), we learn to model (portions of) our designs
at different levels of abstraction in order to permit such real-world effects to be studied and
taken into consideration during the design life cycle prior to synthesis. Delving deeper into
the real world, we explore the first-order and second-order effects of passive parasitic com-
ponents – the resistor, capacitor, and inductor – on our designs. We conclude by studying
common faults in combinational logic circuits and how we begin to test such circuits.

2.2 A LOOK AT REAL-WORLD GATES – PART 1: SIGNAL LEVELS

When we start to use logic gates to realize our designs, the first view is of the function that
they are performing. Our next view must be of their electrical and mechanical character-
istics: how large they are, how much heat they dissipate, how much power they consume,
how fast they are, their ability to drive other parts, the kind of load they present to other
parts, the amplitude of their output, and the requirements on input signals.

In the world of philosophy and logic, it is reasonable to talk about the concepts of truth
and falsity. Ultimately, if we are going to build circuits and systems to implement logical
relationships, we must be able to express such concepts in terms of measurable real-world
quantities such as photons, voltage, or current. In addition, we must be able to design and



�

� �

�

2.2 A Look at Real-World Gates – Part 1: Signal Levels 57

manufacture devices that accept those quantities as the values of input variables, implement
a desired logical function, and present the quantities as output variables.

2.2.1 Logic Levels

In our equations, we deal with a logical 0 or logical 1. In physical parts, those values are
represented by different voltage or light intensity levels (or any of several other measures).
Today, normally we define:

Logical 0 as 0 volts
Logical 1 as +5 volts

Newer logics, including those we call green logics (which help the environment by
consuming less power), are starting to use lower-voltage-level signaling.

Now the problem of interfacing between different logic devices is becoming increas-
ingly complex because of the wide variety of devices and logic families that are being used
in embedded applications today. For the discussion here, we will assume signal levels of
0.0 or 5.0 VDC (volts, dc). The concepts discussed easily scale to any levels.

Logical 0 as 0 volts
Logical 1 as +1.5 or 3.0 volts

Higher speed systems that must also tolerate potential electrical noise contamination
will utilize differential signaling. In these cases, the signal levels may follow some national
or international standard or be unique to the design.

On paper, the logic levels are always exactly at their defined values and are never
affected by the environment or by the manufacturing process. When working with real
parts, however, a logical 1 is never precisely 5.0 VDC and a logical 0 is never exactly 0.0 V.
If a logical high-voltage level gets too low, it could be interpreted as logical 0. Similarly,
if a logical low voltage gets too high, it could be interpreted as logical 1. As a result, the
vendors will specify minimum (maximum) values for logical 1’s (logical 0’s). Integrated
circuits are manufactured in large quantities on a production line. Because no production
line produces all identical parts, there will always be slight variations in the values of each
of the different parameters among parts that are produced on different days, by different
vendors, or different production lines by the same vendor. Such variations have to be taken
into account in any design; specifications for and the range in the variation of the values for
such parameters are given in the vendor’s data sheets.

Because the parameter values vary, the vendor will specify a typical value and atypical
minimum, maximum minimum or maximum value based on the nature of the parameter. To see how this works,

let’s assume that the variations in the values of the parameters have a Gaussian or normal
distribution. From the vendor’s data sheet, we take the information given in Table 2.1 for a
74LS04 inverter.

Table 2.1 Logic Signal Levels

Min Typical Max

VOH 2.5 3.4
VOL 0.2 0.4
VIH 2.0
VIL 0.8
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Let’s now connect two of the inverters into the simple circuit in Figure 2.1, such as we
might find on a signal path on a system bus.

Observe that the positions of the bubbles on the gates are used to reflect the state of the
logic signals on each device. The figure on the left illustrates the range of vendor-specified
values for the high-level output voltage, VOH, and corresponding high-level input voltage,
VIH – those values to the right of the arrow. The figure on the right illustrates the range
of specified values for a low-level output voltage, VOL, and corresponding low-level input
voltage, VIL – those values to the left of the arrow.

VIH
VOH

VOHmin VOHtyp VIHmin

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

VOHmin = 2.5 VDC

VOHtyp = 3.4 VDC VIHmin = 2.0 VDC

I1 I2

VILVOL

VOLmax = 0.4 VDC

VOLtyp = 0.2 VDC
VILmax = 0.8 VDC

VOLmax

VOLtyp VILmax

I1 I2

Figure 2.1 Variation of Logic Signal Levels on Device Inputs and Outputs

The figure on the left illustrates the typical value for the high-level output voltage,greater
VOHtyp, to be 3.4 VDC, with the guarantee that a logical 1 will never be lower than
2.5 VDC, VOHmin. Thus, all values greater than VOHmin are to be interpreted as valid
high-level outputs. We also see that the device is guaranteed to interpret all voltage as low
as 2.0 VDC, VIHmin, as valid high-level inputs.

higher
less

The figure on the right illustrates the same relationships for a low-level output and cor-
responding input. A logical 0 out of the left-hand inverter has a typical value for a low-level
output voltage, VOLtyp, of 0.2 VDC and a guaranteed logical 0 that will never be higher
than 0.4 VDC, VOLmax. Therefore, all values less than VOLmax are to be interpreted as
valid low-level outputs. For inverter I2, we see that the device is guaranteed to interpret any
voltage as high as 0.8 VDC as valid low-level inputs, VILmax.

high-level noise
immunity

noise margin
low-level noise

immunity
noise margin

The difference between the minimum guaranteed output high voltage and the minimum
acceptable input high voltage is called the high-level noise immunity or noise margin of the
part. The difference between the guaranteed maximum output low voltage and the maxi-
mum recognized input low voltage is called the low-level noise immunity or noise margin.
These specifications ensure that with a minimum output signal of 2.5 VDC from a driv-
ing device, the receiving device will tolerate up to 0.5 VDC of noise on its input and still
interpret the signal as a logical 1.
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With a maximum output signal of 0.4 VDC from a driving device, the receiving device
will tolerate up to 0.4 VDC of noise on its input and still interpret the signal as a logical 0.
From the values in the vendor’s data sheet information, we calculate

0.5V of high noise margin
0.4V of low noise margin

The region between the minimum input high-level voltage and the maximum input
low-level voltage is an unknown region. A vendor will make no guarantees about the behav-
ior of the part in this region.

We can express these values graphically, as illustrated in Figure 2.2.

VOHtyp

5.0 V

0.0 V

3.4 V

2.5 V

0.4 V

2.0 V

VOHmi

VIHmin

VOLtyp 0.2 V

VILmax 0.8 V
VOLmax

High-level noise margin

Low-level noise margin

VOH

VOL

unknown

Figure 2.2 Minimum and Maximum Values of Logic Signal Levels

2.2.2 A First Look Inside the Logic Gate

Today’s integrated circuits implement the various logical devices using several different
technologies and device architectures. One of the more significant differences among the
various devices arises from the two primary semiconductor technologies that are used:bipolar technology

MOS technology
Transistor–Transistor

Logic (TTL)
Field Effect

Transistors (FETs)
Metal Oxide

Semiconductors
(MOS)

Complementary
Output

Symmetry MOS
(CMOS)

totem pole

bipolar technology and Metal Oxide Semiconductors (MOSs) technology. The former uti-
lizes bipolar transistors to implement what is called Transistor–Transistor Logic (TTL), and
the latter utilizes Field Effect Transistors (FETs) to implement MOSs and Complementary
Output Symmetry Metal Oxide Semiconductor (CMOS) logic.

We can model the inverter as two switches connected in series, as we see in Figure 2.3.
Moving inside of the device, we see that the logical behavior modeled by these switches
arises from the configuration of the output portion of the implementation logic. Logic gates
implemented utilizing either technology employ output nets structured in a totem pole pat-
tern. Such a configuration is illustrated in the diagrams presenting the output network for
each technology (Figures 2.4 and 2.5).

The basic output structure for the family of devices built utilizing TTL is given in
Figure 2.4. Although there are many variations on the basic implementation technology
(standard TTL [as shown], Schottky, low-power Schottky, plus minor derivatives), the archi-
tecture remains the same.
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+V

sw1

sw2

out

out
Figure 2.3 Inverter Model

+5 VDC

Output

Q1

Q2

Figure 2.4 TTL
Totem Pole Output

Output

+5 VDC

Output

+5 VDC

Figure 2.5 CMOS and NMOS Totem
Pole Output Configuration

In Figure 2.5, the circuit on the left presents the CMOS configuration. The architecture
remains a totem pole structure. The upper transistor is a PMOS (p-type metal oxide semi-
conductor) device and the lower an NMOS (n-type metal oxide semiconductor) device. The
NMOS device, presented in the circuit on the right, is a simple modification of the CMOS
device. The upper transistor is replaced by a second NMOS transistor implemented as a
load device. They are shorthand for P channel and N channel.

drive capability

The ability of the top transistor to source current when the output of the device is a
logical 1 and the bottom transistor to sink current when the output is a logical 0 is called
the drive capability of the device.

2.2.3 Fan-In and Fan-Out

The number of devices that a typical gate can drive without degrading its specified
minimum and maximum output logic levels is called the fan-out of the device. The fan-out

fan-out
sources

sink, fan-in
source

sinks

of a device specifies how much current the device can source to other devices in logic high
state and sink from other devices in the logic low state. Fan-in is a measure of a device’s
input current requirements. It specifies how much current the device sources to other
devices when the input is in the logical 0 state and sinks from other devices when the input
is in the logical 1 state.

sourcing current
sinking current
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When current is leaving the device (driver or receiver), it is said to be sourcing current;
when current enters the device (driver or receiver), it is said to be sinking current. We define
current leaving the device as negative and current entering the device as positive. This is an
arbitrary, but consistent, labeling. We can see these in Figure 2.6.

Inv1 Inv2

Inv2Inv1

I

I

Figure 2.6 Sourcing and Sinking Current

In the first case, inverter Inv1 is sourcing current to Inv2, which is sinking that current.
With respect to Inv1, the current, I, will be negative, and with respect to Inv2 it will be
positive. In the second case, the roles are reversed; Inv1 is sinking current (which will be
viewed positive) that is being sourced by Inv2 (which will be viewed as negative). Once
again, we use the bubbles on the gate to indicate the logical 0 state.

The data sheet for the device will give the specifications in Table 2.2.

Table 2.2 Source and Sink Currents for an SN74LS04

Current Voltage

IOL 8 mA (entering) @VOL = 0.5 VDC
IOH –400 μA (leaving) @VOH = 3.4 VDC
IIL –400 μA (leaving) @VIL = 0.4 VDC
IIH –20 μA (entering) @VIH = 2.7 VDC

Starting from the data sheet, one can compute the fan-out for the SN74LS04 device.
Two cases must be considered when computing the fan-out for the device, when the output
is in the logical 0 state and when it is in the logical 1 state. When specifying the fan-out for
the device, we always use the lower of the two values.

Logic 0 State
When the output is at a logical 0 level, the data sheet specifies that the device canoutput

input sink 8 mA, and when an input is at a logical 0 level, it sources −400 μA.
Thus, when its output is in the logical 0 state, an SN74LS04 can sink the current

from 20 similar devices.

fan-out =
||||

8 mA
−400 μA

||||
= 20 (2.1)

Logic 1 State
When the output is in the logic 1 state, the data sheet specifies that the device can
source −400 μA, and when an input is at logic 1 it sinks 20 μA.
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fan-out =
||||
−400 μA

20 μA

||||
= 20 (2.2)

Thus, when its output is in the logical 1 state, an SN74LS04 can source current to 20
similar devices.

In this case, the fan-out for the two configurations is the same. If the values were dif-
ferent, we would select the lower value as we see in the following example.

EXAMPLE 2.1 In the circuit in Figure 2.7, the device identified as the Driver has an output that is connected
to a light-emitting diode (LED) circuit and is also fanning out to a number of other gates.

+5VDC

450

Driver

N1

Figure 2.7 One Device Driving Several Different
Kinds of Loads

When the output of the device is a logical 0, the warning LED is to be illuminated,
leading to current flow as shown by the arrow in Figure 2.7. When the output of the DriverDriver
gate is a logical 1, the warning LED is off and no current flows through the LED.

The devices have the following specifications:

Inverter IIL = –400 μA

IIH = 20 μA

Driver IOL = 24 mA for VOL = 0.2V

IOH = –15 mA for VOH = 3.5V

LED current 10 mA

To compute the fan-out for the driving device, we apply Kirchhoff’s current law at node
N1 for both logic states.

Logical 1
If the output of the Driver is in the logical 1 state, the currents will appear as in
the drawing in Figure 2.8. Summing currents at node N1 gives the results shown
in the figures.

i1 + i2 − i3 = 0 (2.3)

Since the LED is specified as OFF under the current conditions:

i3 = i1

i3 = 15 mA

fan-out = i3
i4

= 5 mA
20 μA

= 750
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+5 VDC

450

Driver

Logical 1

i1

i2

i3

i4

i4

N1

N2

Figure 2.8 Driving to the Logical 1 State

Logical 0
If the output of the Driver is in the logical 0 state, the currents will now appear as
in Figure 2.9. Observe that bubbles on the logic symbols are altered to reflect the
logical 0 values on the respective gates. Once again, summing currents at node N1
gives,

−i1 + i2 + i3 = 0 (2.4)

For this case, i2 is not 0 and must be taken into account.

i3 = i1 − i2

i3 = 15 mA − 10 mA

fan-out = i3
i4

= 5 mA
20 μA

= 250

+5 VDC

450

Driver

Logical 0

i1

i2

i3

i4

i4

N1

N2

Figure 2.9 Driving to the Logical 0 State

In the logical 0 case, the driver must be able to sink the current from the LED as well
as that from the collection of inverters. After the LED current has been taken into account,
substantially less remains available for the inverters. As this analysis illustrates, in the log-
ical 0 case, the fan-out is reduced to 250. Thus, we must use the smaller of the two figures
in any design. The fan-out for the circuit is determined to be 250.



�

� �

�

64 Chapter 2 The Hardware Side – Part 2: Combinational Logic – A Practical View

We now extend our two-switch device output model to incorporate the nonideal output
signal levels by adding two resistors as shown in Figure 2.10. The resistors will model
the ON resistance of the top and bottom transistors in the totem pole output configuration.
When the device is sinking current, from Ohm’s law, there will be a voltage drop across R2,
giving an increase in the output voltage from the ideal case of 0.0 VDC. Similarly, when it
is sourcing current, we will see a drop across R1 and a corresponding decrease in the output
voltage from the ideal value of +5.0 VDC. The device input interface can also be modeled
as a resistor network and voltage source as shown in the right-hand figure.

+V

R1

R2

sw1

sw2

+V

R1

R2

sw1

sw2

out out

out
out

Output side

+V +V

R3 R3

R4 R4

in in

in in

Input side

Figure 2.10 A First-Order Model for Device Input and Output Circuitry

When the device is sourcing current, that is, the input signal is a logical 0, from Ohm’s
law, there will be a voltage drop across R3. Under normal operation conditions, the worst
case current draw will occur when the input is at 0.0 VDC. The output signal level from the
driver, VOL, is generally going to be higher. Lowering the input signal level below 0.0 VDC
can potentially damage the part.

Similarly, when the device is sinking current, there will be a drop across R4. Forcing
the device to exceed the specified limit, once again, can damage the part.

2.3 A LOOK AT REAL-WORLD GATES – PART 2: TIME

In the ideal world, signal levels change from one state to another in zero time, and the effect
of an input change on a device output is immediate. There is no delay. In the real world, sig-
nals take time to change state, and their effect on the output of a device will occur some time
in future. Such delays and delayed behavior must be taken into consideration during design,
particularly if signaling paths have tight time constraints. Under such constraints, one must
carefully analyze the part’s data sheet to understand the delays as well as to consider how
any variations may affect the system behavior.
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2.3.1 Rise and Fall Times

We define the time for a signal to change from one state to another as its rise time if
the change is from a logic 0 state to a logic 1 state and as its fall time if the change is

rise time
fall time

from logic 1 to logic 0. These times are specified as 𝜏rise and 𝜏fall. In real-world parts,
these two values are generally not the same. In fact, there can be as much as a two to one
difference.

The parameters, how we measure them, and their asymmetry are illustrated in
Figure 2.11. Observe that we measure the rise and fall time at the 10% and 90% points of
the signal.

10%

trise
t fall

10% 90%

90%

Figure 2.11 Digital Signal Rise and Fall Times

Rise and fall times that are too long can create problems. Under such conditions, the
gate no longer acts as a switch; instead, it becomes a rather poor amplifier and enters what
is called a metastable region. We’ll discuss this shortly.metastable

The syntax for including rise and fall times in a Verilog device model is given as,

Syntax
# (riseTime, fallTime) deviceInstance

The following code fragment illustrates the inclusion of such parameters in a part
model.

parameter riseTime = 1;
parameter fallTime = 2;
not #(riseTime, fallTime) myNot (sigOut, sigIn);

2.3.2 Propagation Delay

The time required for the effects of an input signal to be reflected in a corresponding change
in a device’s output is called the propagation delay of the part. In response to an input signal,propagation delay
the time for the output to change from a logical 0 to a logical 1 is often different from a
state change in the opposite direction. The two different propagation delays are designated
𝜏pdLH and 𝜏pdHL.

Propagation delay can easily be observed in an inverter. If a high going signal is set
as the input into the device, the output will change to low sometime later. We measure that
time at the 50% point of two signals. The parameters, how we measure them, and their
asymmetry are illustrated in Figure 2.12.
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tpdHL

tpdLH

50%

50%

Figure 2.12 Digital Signal Propagation Delay

In real-time embedded applications, one of the major design concerns is meeting time
specifications. Although in some cases the concern is about a signal arriving too quickly,
generally the focus is on trying to ensure that the signal arrives before a specified dead-
line. Thus, when modeling a combinational circuit, we use the longer of the two delays,
specifying that value as simply, 𝜏pd.

The syntax for modeling such a delay in Verilog is given by

Syntax
# delay LHS = RHS; // RHS changes and is assigned to LHS after

// delay

The following code fragment illustrates the inclusion of a delay of two time units in a
part model.

parameter propagationDelay = 2;
not #propagationDelay myNot (sigOut, sigIn);

Verilog also supports the inclusion of device rise time, fall time, and delay. The syntax
is given as

Syntax
# (rise time, fall time, delay) device;

The code fragment in Figure 2.13 illustrates the inclusion of a rise time of one time
unit, a fall time of two time units, and a delay of three time units in a part model.

 parameter riseTime = 1;

 parameter fallTime = 2;

 parameter propagationDelay = 3;

 not #(riseTime, fallTime, propagationDelay) 

 myNot (sigOut, sigIn);

Figure 2.13 Modeling Rise Time, Fall Time, and Propagation
Delay
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When modeling temporal behavior in combinational logic, one must pose the following
question: if a signal is entered into a combinational net and the state of the signal changes
several times before the initial value can propagate through the net, what is the effect on
the output?

Two different propagation delay models can be used to study the behavior of com-
binational devices. These are defined as transport delay and inertial delay. The circuit’s
behavior is the same in both cases if the input makes a single state change (and no others)

transport delay
inertial delay

before the output propagates to the output. Under the transport delay model, the changes in
input are seen by the output following the specified delay. The inertial delay model refines
the notion of delay to attempt to account for the physical movement of electronic charge
within a device. As discussed earlier, the voltage level within a device must reach a spec-
ified minimum level before it is recognized as a logical 0 or logical 1. The inertial delay
model states that if the duration of a signal is less than a specified minimum, the signal state
change will not be reflected in the device output. Such a duration is typically set to be less
than or equal to the propagation delay of the device.

Figure 2.14 illustrates the two types of delay models in a simple device. Observe that
the short-duration state change does not appear in the output waveform for the inertial
model.

Input Output

Input

No Delay

Transport Delay

Inertial Delay

Short-duration
change rejected

Figure 2.14 Two Models for
Propagation Delay

2.3.3 Race Conditions and Hazards

A race condition occurs when several signals arrive at a circuit’s inputs or common decision
point (AND gate, OR gate, etc.) at different times. The different arrival times result from
delays in through a circuit or system because of the different path lengths that a signal may
traverse before reaching the decision point.

critical
noncritical

hazard, decoding spike,
glitch

static, dynamic

A critical race occurs when the state or output of the circuit depends on the order in
which several associated inputs arrive at the decision point. A noncritical race occurs when
the state or output of circuit does not depend on the order in which several associated inputs
arrive at the decision point. A hazard (called a decoding spike or glitch in the jargon of the
field) exists in any circuit that has the possibility of producing an incorrect output. Two
types of hazards, static and dynamic, are defined.

2.3.3.1 Static Hazard

A static hazard exists when there is a possibility that a glitch will appear on a circuit’s output
as a result of a race between two or more input signals when it is expected to remain at a
steady level based on a static analysis of the circuit function. A static-0 hazard occurs when

static-0
static-1
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the circuit can produce an erroneous logical 1 output when the output should be a constant
logical 0. A static-1 hazard occurs under the opposite condition.

Let’s look at a simple example. The circuit in Figure 2.15 has a static-1 hazard.

0

0 1

1

A

B

C
~A

~A

A

B

C

Figure 2.15 A Static-1 Hazard

The circuits in Figure 2.16 give additional examples of static hazards.

A

B

C0 1

0 1

0 1 0

Static–0 Hazard

A

B

C
01 1

01

01

Static–1 Hazard

Figure 2.16 Logic Circuits Producing Static-0 and
Static-1 Hazards

The Verilog modules in Figure 2.17 model the static-0 and static-1 hazards. We use
such models to reflect real-world behavior when testing and verifying a design.

// Modeling a Static 0 Hazard 

// A simple circuit comprised of an and gate and an inverter

module Static0 (o0, i1, i2);

// declare the inputs and outputs

input i     1, i2;

output     o0;

parameter delay = 6;

// build logic functions

not #delay inv0(ni1, i1);

and and0(o0, ni1, i2);

endmodule

// Modeling a Static 1 Hazard 

// A simple circuit comprised of an or gate and an inverter

module Static1 (o0, i1, i2);

// declare the inputs and outputs

input       i1, i2;

output     o0;

parameter delay = 6;

// build logic functions

not #delay inv0(ni1, i1);

or or0(o0, ni1, i2);

endmodule

Figure 2.17 Modeling Static-0 and Static-1 Hazards
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In the models, the extra delay through the path with the inverter leads to the hazards.
The problem cannot be fixed by inserting additional buffers to try to match path lengths.
The natural variation in the values of electrical parameters across large part lots makes such
an approach ineffective in mass-produced products.

2.3.3.2 Dynamic Hazard

A dynamic hazard exists when the circuit output may erroneously change more than oncedynamic
as the result of a single input transition. The circuit in Figure 2.18 contains a dynamic-
hazard.

1

1

A

C

B

D

0 1

01

0 1 0
0 1

01

01

01 1 0

slow

fast

1

E

Figure 2.18 A Digital Circuit with a Dynamic Hazard

Observe that the path through a portion of the circuit is slow; that is, the propagation
delay through the gates is at the high end of the specification. A second path comprises gates
that have a delay at the low end of the specification. The remaining devices are assumed to
have typical delays (which fall between the short and long delays) and to all be of the same
value.

The quiescent conditions on the input signals are specified. We assume that the signals
have been stable for a time that is much greater than the propagation delay through the
circuit. The signal on input B is then changed from a logical 0 to a logical 1. The diagram
illustrates the propagation of that signal though the logic. Observe that the output signal
makes three state changes before it finally settles.

The Verilog module in Figure 2.19 models a dynamic hazard.

// Modeling a Dynamic Hazard

module Dynamic0 (E, term0, term1, term2, A, B, C, D);

// declare the inputs and outputs

input A, B, C, D;

output   E, term0, term1, term2;

parameter delay0 = 10;

parameter delay1 = 5;

// build logic functions

not #delay0 inv0(nB, B);

and #delay0 and0(term0, A, B);

and #delay0 and1(term1, nB, C);

and #delay0 and2(term2, term0, term1);

and #delay1 and3(term3, nB, D);

or #delay1 or0(E, term2, term3);

endmodule

Figure 2.19 Modeling a Dynamic Hazard
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2.4 A LOOK AT REAL-WORLD GATES – PART 3: SIGNAL BEHAVIOR IN THE REAL
WORLD – THE LEGACY OF EARLY PHYSICISTS

As we look farther and deeper into the real-world, we discover that at every turn real-world
signals encounter the physics of practical devices. Thousands of yesterday’s physicists are
there just waiting for us. Maxwell, Faraday, Lenz, Gauss, and all their friends say howdy
and welcome to our world. When we accept their invitation, we enter a world filled with
challenges, what appears to be magic, and yet filled with opportunities. When we encounter
a challenge, our first step should be to recognize that it is there. Then, we work to identify
what it is and what it is telling us before we explore potential root causes. Once we under-
stand the problem, we work to find a solution. The first solution may not always succeed;
rather than get discouraged, we explore other possibilities.

When we work with ideal devices, we are working at the macro level: we are taking
a high level, abstracted view of the device and its behavior. When we move to real-world
hardware, we must begin to take a microlevel view; that view and that world are analog – at
the end of the day, it’s an analog world.

In the textbook or ideal world, signals change state instantly, as we see in Figure 2.20a,
or propagate though combinational or sequential networks in zero time. As we take our
first steps into the real world, we discover that what we see on a laboratory bench looks
more like Figure 2.20b; that the quality or integrity of our textbook signals is different from
we see in our real-world circuits. Signal edges and transitions are not as crisp and we see
oscillations, called ringing, as signals change state. As signals propagate through the circuit,ringing
they meander to destination, potentially moving forward at different propagation velocities
and taking different routes; visiting their friends on other gates.

(a) (b)

Figure 2.20 (a) Textbook Digital Signal.
(b) Real-World Digital Signal

As the operating frequency of our embedded applications increases, our focus must
shift to a much greater extent toward a solid understanding of passive components, where
they are, and how they affect the behavior of our systems. Such components include current,
voltage, resistors, capacitors, inductors, wire (a special case of a resistor), and the behavior
of each of these in both the time and frequency domains. Understanding of the basic laws
of physics electronics, and electromagnetics such as Ohm’s and Kirchhoff’s laws, as well
as the fundamental models given by Thévenin and Norton is essential.

capacitance

We know from Ampere’s law that current flowing in a wire will produce a magnetic
field. From Faraday’s and Lenz’s work, we have learned that a wire moving in a mag-
netic field has an induced current. From the work of Gauss and others, we recognize that
charge and the potential difference between two conducting surfaces are related by a quan-
tity called capacitance. From these, we see that Mother Nature and our physics colleagues
are challenging us.

When we have adjacent conducting paths, capacitive and inductive physics couples
signals from one circuit into the other. Any time we have two circuits, we have a mutual
capacitance. Voltages in one circuit create electric fields; such fields affect the surroundingmutual capacitance

mutual inductance circuits. Any time we have two loops, we have a mutual inductance. Current in one
loop creates a magnetic field; such fields can affect other loops; their neighbors near
and far.
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Indeed, our real-world systems do seem to be filled with black magic. Problems seem
to become increasingly mysterious as the signaling frequency increases. If we are to design
and build systems for today and tomorrow that operate reliably, robustly, and securely in
the real world, we must understand when, where, how, and why such physical effects occur
and their impact on our designs. We will explore these concepts in greater detail later in
this chapter and in Chapters 20 and 21. Once we gain such understanding, we can anticipate
impending problems and can potentially design around or compensate for them. As a first
step, we can incorporate such knowledge into our models to determine and test how such
problems are affecting the quality or integrity of the signals within our systems and if our
design approach for mitigating the effects of the real-world has proven successful.

2.5 LOOK FOR THE GUILTY – A FIRST LOOK AT SIGNAL QUALITY

In earlier lessons, we introduced some terminology then identified and took a high-level
view of signaling issues. We now move to borders of the micro issues and root causes.

We will start with basic components and look first at DC then AC behavior.

• Resistors

• Capacitors

• Inductors

• Wires – special case of a resistor.

We will begin discussion with the familiar resistor.

2.5.1 Resistors

At the physical level of the resistor, we have a piece of resistive material such as that shown
in Figure 2.21. The material may be a physical resistor, a printed circuit trace, a wire, a
pin on an integrated circuit package, a run of doped silicon or metal inside of an integrated
circuit, or any number of other components or devices in our circuit.

L

A

Figure 2.21 A Piece of Resistive
Material

The resistance of the device is given in Eq. (2.5) by the basic formula from physics:

R = 𝜌

A
⋅ L (2.5)

where

R Resistance
𝜌 Resistivity of the material
L Length of the material
A Cross-sectional area of the material
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The key points expressed by the formula are that as the length L increases or decreases, R
increases or decreases and that as A increases or decreases, R decreases or increases.

What such behavior means in the implementation of our designs is that as we make
the printed circuit traces, for example, smaller and smaller, the cross-sectional area, A,
of the current path correspondingly decreases, thereby increasing the resistance of the
conduction path. When such behavior is coupled with the continuing effort to lower
signal levels within the circuits, suddenly an increased voltage drop along a conduction
path can begin to seriously affect the noise margin of signals throughout the digital
system.

Routing a long signal trace through a microprocessor, gate array, or programmable
logic device can have the same effect. As the length of the path increases, so does the
resistance along that path and, from Ohm, so does the resulting voltage drop.

2.5.1.1 A Discrete Component First-Order Resistor Model

The network shown in Figure 2.22 gives a first-order circuit model of the resistor. The
parasitic devices

lumped system

inductor and capacitor are inherent parasitic devices (such as stray capacitance or the resis-
tance and inductance in a piece of wire) with the typical values given. Using such a model
assumes that the circuit as a whole can be treated as a lumped system. That is, at DC or low
frequencies, a state change in any signal appears “instantly/simultaneously” to all inter-
connected points throughout the system. If such is not the case as we move to higher
frequencies, a distributed model must be used and signals will appear at different times
to the interconnected points.

L = 10 nH

C = 5 pF

L
R

C

Figure 2.22 A Lumped Resistor Model

All components in the model shown must then be expressed as a function of
distributed model length – R(x)dx, L(x)dx, C(x)dx. Further, the model is an ideal DC model. The key point

here is that such a model can represent a discrete resistor, resistive elements in a circuit,
circuit traces, or wires.

Important questions question to ask are:

• When is modeling important?

• Why is modeling important?

• When do we move from a lumped to a distributed model?

We start with high-level view of the device behavior as function of frequency.

At DC – we speak of resistance

R is a resistor – it has no frequency-dependent component
L has zero resistance
C has infinite resistance
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The resistance of each of the components follows:

|ZR(𝜔)| = R 𝜔 = 0 → no frequency dependent component (2.6)

|ZL| = 𝜔L 𝜔 = 0 → short (2.7)

|ZC(𝜔)| = 1
𝜔C

𝜔 = 0 → open (2.8)

At AC – we speak of impedance

R is a resistor – it has no frequency-dependent component
L has finite nonzero impedance
C has finite nonzero impedance

The impedance of each of the components follows:

|ZR(𝜔)| = R no frequency dependent component (2.9)

|ZL(𝜔)| = 𝜔L finite nonzero impedance - 𝜔 increase → open (2.10)

|ZC(𝜔)| = 1
𝜔C

f inite nonzero impedance-𝜔 increase → short (2.11)

Observe that if the frequency is increased, the impedance of the inductor will increase
and that of the capacitor will decrease. As the frequency is increased further, the capacitor
will eventually form a low-impedance path across the resistor, and the impedance of the
inductor will then dominate that of the resistor. What had been a wire or resistor at low
frequencies has suddenly become a frequency-dependent impedance.

The problem is actually more complex. If we write the transfer function looking into
the network as a Laplace transform:

Z(s) = Ls + R|| 1
Cs

=
(

Ls + R
RCs + 1

)
(2.12)

Evaluating the expression for s = j𝜔 and solving for the impedance and phase angle of
the transfer function, we have:

Let s← j𝜔

|Z(𝜔)| =
√

R2(1 − LC𝜔2)2 + (L𝜔)2

1 + (RC𝜔)2
(2.13)

Checking the boundaries for the impedance, for

𝜔 = 0

|z(𝜔)| = R (2.14)

𝜔 → ∞

|z(𝜔)| = L (2.15)

These values are consistent with those that we estimated earlier. Because of the
inductive and capacitive elements, we also get a phase shift through the path indicated by
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Eq. (2.16). The simple wire or resistor has suddenly become more complex.

𝜙 = 𝜙1 − 𝜙2

𝜙1 = tan−1
(L

R

(
𝜔

1 − LC𝜔2

))

𝜙2 = tan−1(RC𝜔) (2.16)

If we now plot Z(𝜔) versus frequency for several values of R, we get the three graphs
depicted in Figure 2.23. The values of R are given as 10, 1, and 0.1 K, respectively.

The three graphs once again confirm our earlier analysis. As frequency increases, the
impedance begins to roll off as the capacitor shorts out the resistor. At approximately
10 GHz, the inductor becomes the dominant factor and the impedance of the network begins
increasing again.

10000

z(ω)

10
106 1011ω

1000

z(ω)

10
106 1011ω

1000

z(ω)

10
106 1011ω

Figure 2.23 Plots of the Change in Value as a Function of Frequency for a 10, 1, and 0.1 k Resistor

Such a phenomenon will have a significant impact on any logic circuits as the frequency
at which the system is operating continues to increase and as the voltage levels at which it
is operating continue to decrease.

2.5.2 Capacitors

Working next with a capacitor, at the physical level we have a device configured as two
parallel plates separated by a dielectric medium, as illustrated in Figure 2.24.
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d

A

Figure 2.24 A Parallel Plate Capacitor

The capacitor may be a conventional capacitor, the device formed by the power and
ground planes on a printed circuit board, the device formed by two parallel circuit board
traces, parallel wires, adjacent pins on an integrated circuit package, P and N material inside
of an integrated circuit, or any number of other devices in our circuit. The capacitance of
the device is given by the standard formula from physics, Eq. (2.17).

C = 𝜀A
d

(2.17)

where

C Capacitance
A Cross-sectional area of the capacitor
𝜀 The permittivity of the dielectric material between the plates
d The separation of the plates

As with the resistor, the key point to understand from the formula is that as d increases
or decreases, C decreases or increases and as A increases or decreases, C increases or
decreases.

In a printed circuit, two signal traces can form the two plates of a capacitor. That capac-
itor appears as a parasitic device between the two signal traces we see in Figure 2.25. As we
continue to reduce the size of a design, those traces are moved closer and closer together;
the distance between the plates decreases, thereby increasing the associated capacitance.
The capacitor appears as a parasitic device in Figure 2.26.

d

Figure 2.25 Parallel PCB Traces

R

C

Figure 2.26 A Parallel Plate Capacitor from Two Signal Traces

Because the voltage across a capacitor cannot change instantaneously, a portion of the
signal originating at the logic gate on the left will be coupled into the lower trace (ground) as
noise or what is called ground bounce. Routing any signal trace through a microprocessor,
gate array, or programmable logic devices is going to produce the same effect to varying

noise
ground bounce

degrees.
We find a similar parasitic devices between parallel planes such as power and ground,

where we want the capacitance or coupling between human bodies, and the circuit, where
we don’t. As a result, we have conflicting requirements: make the geometry smaller vs.
move components farther apart
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2.5.2.1 Discrete Component First-Order Capacitor Model

We can express a first-order circuit model of the capacitor as the network in Figure 2.27.
As we saw in the earlier resistor model, the inductor and the resistor are inherent parasitic
devices with typical values given. The lumped model assumption we made for the resistor
holds for the capacitor as well.

L = 10 nH

R = 0.5 ohm

L

R
C

Figure 2.27 A Lumped Capacitor Model

A quick analysis of the model for DC signals treats L as a short circuit and C as an
open circuit. The circuit looks like a capacitor should at DC. For AC signals, L now has
finite nonzero impedance and C behaves like a capacitor.

At DC – We speak of resistance

R is a resistor – it has no frequency dependent component
L has zero resistance
C has infinite resistance

The resistance of each of the components follows:

|ZR(𝜔)| = R no frequency dependent component (2.18)

|ZL| = 𝜔L 𝜔 = 0 → short (2.19)

|ZC(𝜔)| = 1
𝜔C

""𝜔 = 0 → open (2.20)

At AC – We speak of impedance

R is a resistor – it has no frequency-dependent component
L has finite nonzero impedance
C has finite nonzero impedance

The impedance of each of the components follows:

|ZR(𝜔)| = R no frequency-dependent component (2.21)

|ZL(𝜔)| = 𝜔L finite nonzero impedance-𝜔 = increase → open (2.22)

|ZC(𝜔)| = 1
𝜔C

finite nonzero impedance-𝜔 = increase → open (2.23)

As with the resistor model, when the frequency of an AC signal is increased, the
impedance of the inductor will increase and that of the capacitor will decrease. We expect
this latter change. As the frequency is increased further, the impedance of the inductor
will dominate that of the resistor and the capacitor (whose impedance is decreasing with
frequency). The component that initially behaved as a capacitor at low frequencies now
behaves as an increasing impedance at higher frequencies.
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Looking into the network and writing the transfer function as a Laplace transform, we
have:

Let s← j𝜔

Z(s) = 1
Cs

+ Ls + R (2.24)

Evaluating the transfer function for s = j𝜔 and then finding the magnitude and phase
angle for the expression, we have:

|Z(𝜔)| =
√

(1 − LC𝜔2)2 + (RC𝜔)2
(C𝜔)2

(2.25)

Because of the inductive element, we get a phase shift. The value is given by:

𝜙 = 𝜙1 − 𝜙2

𝜙1 = tan−1

(
RC𝜔

1 − LC𝜔2

)

𝜙2 = 𝜋

2
(2.26)

The phase angle for the transfer function has been modified by the effects of the para-
sitic components from the expected value of 𝜋/2 from the capacitor.

Plots of |Z(𝜔)| versus 𝜔 for C = 1, 0.1, 0.01 μf are, respectively, given as illustrated in
Figure 2.28.
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Figure 2.28 Plots of the Change in Value as a Function of Frequency for a 1, 0.1, and 0.01 μf Capacitor
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Once again, the dominating effect of the inductor on the circuit impedance at higher
frequencies is evident.

2.5.3 Inductors

We now move to the inductor and the closely related topic of electromagnetic theory.
Both areas are some of the least understood and more challenging of the fundamental
electrical engineering concepts yet both play an important and significant role in under-
standing real-world effects on electrical signal quality.

We have included the inductor in the models of the resistor and the capacitor. Now we
will examine inductance as specific property/component and examine how it applies in a
real-world context.

We will base our analysis on three fundamental principles from electromagnetic
physics:

i. There are circular rings of magnetic field lines around all currents.
ii. Inductance is measure of the number of webers of field lines around a conductor perwebers

Amp of current through it.
iii. When number of field lines (rings) around a conductor changes, a voltage will be

induced across ends of conductor.

2.5.3.1 Magnetic Field Lines – The First Principle

Starting with the first principle, at the physical level we have from Ampere’s Law:

If current flows through a conductor, we will have a magnetic flux field Φ
around the conductor.

The strength of the magnetic flux field surrounding a conductor is directly related to
the magnitude of the current flowing though it and the direction of flux field is found by
using the right-hand rule, as illustrated in Figure 2.29.right hand rule

Magnetic Flux

I
Direction of Flux

Field

𝚽

Figure 2.29 Current Flow–Magnetic Flux
Relationship

The right-hand rule states:

Wrap the fingers of your right hand around the conductor with you thumb
pointing in the direction of the current flow through the conductor. Your fingers
will be pointing in the direction of the flux around the conductor.
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2.5.3.2 Magnetic Field Lines – The Second Principle

The magnetic field rings are always complete circles and always enclose some current. The
number of field rings, the strength of the field, around a current, is measured in webers. If the
amount of enclosed current changes, there will be a corresponding change in the strength

field rings
strength of the field

webers
of the magnetic field; that is, the number of webers of field rings.

The number of field rings is also affected by the length of the conductor; a longer wire
leads to more rings or flux. In addition, the conductor’s cross-sectional area also affects the
total number of rings surrounding current. Further, potentially leading to signal integrity
issues, the presence of other nearby currents will affect the number of field lines around
first current. A mutual field links the first current to the others and thus can have significant
effect on the signal quality of first current.

As we explore the second principle, first consider a single wire and let I1 be a driven
current, as shown in Figure 2.30. If I1 changes, it will cause a changing magnetic field and
the changing field will induce a current I2 in the direction to counteract the magnetic field
that caused it. Such a phenomenon is called self-inductance or simply inductance.

self-inductance
inductance

I1 I2𝚽

Figure 2.30 Changing Field Inducing I2 into a Conductor

From Figure 2.30, the initial current causes the induced current I2 in the opposite direc-
tion. The result is zero net flow of current. If the change in magnetic field decreases, the
induced current I2 decreases, thereby increasing the net flow of current. In steady state, no
change in I1 leads to no change in the magnetic field, which leads to no induced current
that leads to no more inductive effect.

Formally, inductance is fundamentally related to the number of field rings – the strength
of the field – around the conductor per Amp of current through it. One Weber/Amp is defined
as one Henry. Thus, inductance follows directly from Ampere’s Law, and is computed asHenry
the magnitude of magnetic flux per Amp of current as given in Eq. (2.27).

L = Φ
I

(2.27)

L–Inductance expressed in Henrys

Φ–Magnetic flux in Webers

I–Current through conductor in Amps

Now we bring a second conductor into close proximity to the first but with no driven
current in the second conductor, as shown in Figure 2.31. Some of the magnetic flux from I1
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I1
I2

Figure 2.31 Two Conductors in Proximity

will induce the current I2 in the second conductor. The direction of the induced current will
be such so as to generate its own magnetic field and that field will counteract the magnetic
field from I1. The flux from the induced current now appears in the diagram in Figure 2.32.
Some of the magnetic flux from I2 will couple back to the first conductor.

I1 I2

Figure 2.32 Induced Flux Coupling

Now consider two conductors in close proximity, both with driven currents as in the
diagram in Figure 2.33. Some of the magnetic flux from I1 will encircle the second conduc-
tor thereby inducing a current in that conductor. Then, some of the magnetic flux from I2
will encircle the first conductor inducing a current in the first conductor. We now see that
mutual field lines link the two conductors. Such coupling called mutual inductance.Mutual inductance

I1 I2

Figure 2.33 Mutual Flux Coupling

2.5.3.3 Magnetic Field Lines – The Third Principle

On to the third principle; elaborating on the above discussion, from electromagnetic physics
as illustrated in Figures 2.30, 2.31, and 2.33:

• DC current through a conductor creates a constant magnetic field – Oersted’s Law.Oersted’s Law
• AC or time varying current through a conductor creates a changing magnetic field

measured in webers and induces a voltage in nearby conductors – Faraday’s Law ofFaraday’s Law of
Induction Induction.

• AC or time varying current through a circuit containing an inductance induces a volt-Lenz’s law
Self-inductance

Mutual inductance
age opposing the change in current – Lenz’s law. If the change is in the circuit, it is
denoted self-inductance and if in nearby circuits, it is denoted mutual inductance.
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Now let’s examine the conductor in Figure 2.34 that has a driven current I. If the current
in a conductor changes, the magnetic flux changes thereby producing a voltage across length
of conductor as indicated. The voltage induced across the wire is related to the induc-
tance of the wire. Later we’ll learn that how rapidly the current I is changing will be of
significance.

V

I
𝚽

Figure 2.34 Changing Current Leads to Induced Voltage

We can compute induced voltage as shown in Eq. (2.28).

V = ΔΦ
Δt

= ΔLI
Δt

= ΔLI
Δt

= L
dI
dt

(2.28)

L–Inductance expressed in Henrys

Φ–Magnetic flux in Webers

I–Current through the conductor in Amps

As seen in Figures 2.32 and 2.33, if there is a second conductor in proximity to the
first and if we have current in the second conductor, induced or driven, we will have a field
from the second conductor encircling the first. Then, if the current in the second conductor
changes, thereby resulting in a change in the magnetic flux, a voltage will be induced in the
first conductor. Such an induced voltage is denoted cross talk or noise.

Cross talk
Noise

The induced voltage is computed, as we did in Eq. (2.28), with the self-inductance
replaced by the mutual inductance, as shown in Eq. (2.29).

V = ΔΦ
Δt

= ΔMI
Δt

= M
di
dt

(2.29)

M–Mutual inductance expressed in Henrys

Φ–Magnetic flux in Webers

I–Induced current through conductor in Amps

2.6 INDUCTANCE IN ACTION

As noted earlier, inductance arises whenever there is an electric current in a conductor.
Analogous to the behavior of a capacitor, the current creates a magnetic field and the energy
in the magnetic field is supplied by the driving source. If a voltage is applied across an
inductor, initially there is no current flow. Like a voltage across a capacitor, the current
does not change instantly; a magnetic field is being created that builds up over time to a
steady state value; think about an electromagnet.
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Given the circuit in Figure 2.35 with the accompanying waveforms in Figure 2.36, if a
voltage step Vs(t) is applied, initially no current flows, thus I(t) is 0. With no current flowing,
the output voltage will be Vs(t). As a result, initially the inductor looks like an open circuit.
As the current builds up, the current flow increase leads to a decrease in the output voltage.
As a result, in the steady state, the inductor looks like short circuit as we learned earlier.

Vs(t)

Vo(t)

I(t)

L

Zs

Figure 2.35 Changing Input

V
S
(t)

V
O

(t)

V
O

(t)

I(t)

I(t)

Figure 2.36 Charging Current and Output
Voltage following a Step Input

2.6.1 Wires and Conductors

As we learned earlier, a wire or conductor is a special case of a resistor. Thus, our ear-
lier analysis of a resistor applies to other conductors as well. Recall the basic discrete
resistor model, repeated here as Figure 2.37. Our earlier analysis focused on resistive com-
ponent and recognized the inductive and capacitive effects. We will now examine inductor
in greater detail.

L = 10 nH

C = 5 pF

L
R

C

Figure 2.37 Discrete Resistor Model

From our earlier discussion, current flowing in a conductor produces a magnetic field
and the magnetic field leads to inductance. Now, consider the end view of a conductor
depicted in Figure 2.38 and illustrated by the left hand circle. Let a current in the conductor

Figure 2.38 Flux Rings Resulting from a Current flowing in a
Conductor
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flow into page. This will produce rings of flux as shown in the right hand diagram. Some
of the flux will be inside conductor and some of flux will be outside conductor.

First, from fundamental electrical physics, we know that current is the movement of
electrons. We now raise the question: where are those electrons? Are they uniformly dis-
tributed within the conductor?

Flux density is determined by the amount of enclosed current (flowing electrons). The
flux outside of the conductor encloses all of the current flowing through the conductor; it
does not depend upon the distribution or frequency of the current within the conductor.
In contrast, inside the conductor, if the current distribution or frequency changes, the flux
distribution will correspondingly change.

With a DC current moving through the conductor, the current (electrons) will be uni-
formly distributed throughout the body of the conductor. However, currents closer to the
center of the conductor will have greater flux density per Amp of current and, therefore,
higher self-inductance than those nearer the outside. At DC, the inductive impedance will
be zero. With an AC current moving through the conductor, the picture changes – several
things come into play:

• Because inductive impedance is a direct function of frequency, increasing frequency
leads to increasing impedance.

• For a given frequency, paths with the highest inductance will have the highest
impedance.

• From basic electromagnetic physics, current will seek to travel along path with the
lowest impedance.

• Since the center of the conductor has the highest impedance, the current (the electron
flow) will tend to migrate away from the center toward the periphery of the conductor,
which will be a lower impedance.

As the signaling frequency increases, the difference in inductive impedance between
the inner and outer paths increases. The current distribution changes such that the largest
density is near surface of conductor. That is, the current flows mainly in what is called the
skin of the conductor. Such a phenomenon called the skin effect.

skin
skin effect
skin depth

The skin is the region of the conductor between the conductor surface and an internal
level called the skin depth, as illustrated in Figure 2.39. Such an effect can significantly alter
the impedance of the conductor and also alter the self-inductance, but to a lesser extent.

Skin Depth

Figure 2.39 Skin Depth

The above analysis tacitly assumes a sinusoidal (analog) signaling waveform. Such
a signal has single frequency. In the digital world, the problem becomes more complex.
Digital signals approximate square waves, which are wide band signals, i.e. they containwide band signals
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many frequency components. From Fourier analysis, the series expansion of a periodic 50%
duty cycle square wave is given in Eq. (2.30).

f(x) = 2
𝜋

∑
n=1,3,5,…

1
n

sin 2𝜋nFx

F is frequency

x is time (2.30)

Observe that a square wave comprises components or harmonics of odd integer (n) mul-
tiples of a fundamental frequency. Each harmonic will see a different inductive impedance
as it moves along the conductor. The consequences will potentially be an effect on the
composite signal quality, specifically the rise times, fall times, and amplitude. Visualize an
ideal digital signal entering a net. As the signal propagates, each harmonic will encounter
a difference impedance and voltage drop. What will the original signal look like at its
destination?

2.7 LOGIC CIRCUIT MODELS AND PARASITIC COMPONENTS

As embedded systems are becoming increasingly sophisticated and complex, the need to
develop models that reflect and replicate real-world behavior and the supporting tools to
analyze them is becoming increasingly important.

As an initial note, for the first-order models that follow, we cannot have any ringing.
We will start by examining the effect of parasitic components on the behavior of a logic
circuit. Our digital system, shown in Figure 2.40, comprises two black box logic circuits
that we initially model using the two buffers shown. The source produces a typical digital
signal such as one might find originating from a logic gate, a bus driver, or the output of
a more complex device such as FPGA or microprocessor. The receiver of the signal is any
similar such device

Figure 2.40 A First-Order Model of a Digital Embedded
System

2.7.1 First-Order RC Circuit Model

We will begin with a first-order model for the devices, the environment, and the wire inter-
connecting the two devices. Extending the basic logic circuit in Figure 2.40 to include
parasitic resistance and capacitance, we have the circuit as shown in Figure 2.41. Because
we are working with a first-order model, we are not including the parasitic inductance. Such
a model plays a significant role in the first-order analyzes of typical digital circuit behavior.
The results extend naturally to more complex circuits.

C

R

Figure 2.41 A First-Order Model with Parasitic Devices
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In the model, the resistor represents the resistive component of the interconnecting
path. The capacitor includes the contribution from the logical device, the wire, the integrated
circuit package, and the coupling capacitances to other devices. The signal generator serves
as the source of the transmitted digital signal. The values Vin and Vout are related by the
voltage divider formed by the capacitor and the resistor. The relationship between the input
and output voltages, as a function of s, is given as the circuit model in Figure 2.42 and
Eq. (2.31).

Vout(s) =
⎛⎜⎜⎜⎝

1
Cs

R + 1
Cs

⎞⎟⎟⎟⎠
V(s)in

=
( 1

RCs + 1

)
V(s)in (2.31)

Vout(t)

Vin(t) C

R

Figure 2.42 Parasitic RC Circuit Model

If Vin is a positive going step, as it will be for most digital signals, we have:

Vout(s) =
Vin

s

( 1
RCs + 1

)
(2.32)

Following a partial fraction expansion,

Vout(s) = Vin

⎛⎜⎜⎜⎝
1
s
− 1

s + 1
RC

⎞⎟⎟⎟⎠
(2.33)

Taking the inverse Laplace transform,

Vout(t) = Vin

(
1 − e−

t
RC

)
(2.34)

The system model’s output response to a step input from 0 to 5 V is given in Figure 2.43.
If Vin is then a negative going step from 5 to 0 V, the output waveform would have a similarly
shaped, negative going response.

6

0
0 t 0.1

Vout(t)

Figure 2.43 Plot of the Effect of the Parasitic
Components on Signal Rise Time
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Although the output does not show any ringing, this is a first-order model, observe the
potential effect of signal rise time (or fall time) on the circuit behavior. As the parasitic
resistor and or capacitor become larger, the rise (fall) time will increase. Two consequences
are immediately evident. First, as the transition times increase, the time to reach the logic
switching threshold increases, thereby delaying the system’s output response to the input
signal(s). Second, the driven device can potentially go metastable; that is, oscillating around
the switching threshold for an extended period potentially rapidly producing a flurry of false
outputs.

Let’s now examine two common situations in which the parasitic capacitor can have a
significant impact on the behavior and performance of an application.

2.7.2 First-Order RL Circuit Model

Let’s first examine the basic R-L circuit in Figure 2.44.

Vin(t)

Vout(t)

L

R

Figure 2.44 Parasitic RL Circuit Model

Again, we compute the output as simple voltage divider.

Vout(s) =
( Ls

R + Ls

)
Vin(s)

Vout(s) =
⎛⎜⎜⎜⎝

s

s + R
L

⎞⎟⎟⎟⎠
Vin(s) (2.35)

For Vin a positive going step:

Vout(s)) =
Vin

S

⎛⎜⎜⎜⎝
s

s + R
L

⎞⎟⎟⎟⎠

Vout = Vin(s)
⎛⎜⎜⎜⎝

1

s + R
L

⎞⎟⎟⎟⎠
(2.36)
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Taking the inverse Laplace transform yields:

Vout(t) = e
− t

(R∕L) (2.37)

which we plot as Figure 2.45. Plots of the first-order currents will have opposite waveforms.

0.00250

6
6

0 0

4.5

3

1.5

Vou(t)

0 10–10−3t

0.025 0.0075 0.01 Figure 2.45 Parasitic RL Circuit Model Step
Response

2.7.3 Second-Order Series RLC Circuit Model

We noted earlier that first-order circuits cannot ring. Second-order circuits, however, can.
In the real world, such ringing is a side effect of parasitic inductance and capacitance. In
analyzing such circuits, we will begin by following that for a first-order circuit. Once again,
we will use a circuit model representing one signal path in a bus. The driver and interconnect
network can now be modeled as shown in Figure 2.46.

Figure 2.46 Single Trace on a Digital Bus

Now we extend the first-order interconnect model by adding a parasitic inductance.
With the addition of the inductor, we now have a second-order circuit. Figure 2.47a shows
the extended model and Figure 2.47b the resulting circuit model. The modeled capacitor

R

(a) (a)

C

L

R

Vin(t)

Vout(t)

Figure 2.47 (a) Parasitic RLC System. (b) RLC Circuit Model
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lumps the package, bus, outside world, and ground plane parasitic devices, which all add
in parallel.

Once again, we use a simple voltage divider in equation Eq. (2.38) to compute Vout for
a step input.

Vout(s) =
⎛⎜⎜⎜⎝

1
Cs

R + Ls + 1
Cs

⎞⎟⎟⎟⎠
Vin(s)

Vout(s) =
⎛⎜⎜⎜⎝

1

s2 + R
L

s + 1
LC

⎞⎟⎟⎟⎠
(2.38)

The expression in the denominator on right-hand side can be written as the classic
second-order characteristic equation as in equation Eq. (2.39). Thus,

Vout(s) =
Vin(s)

LC

(
1

s2 + 2𝜉𝜔ns + (𝜔n)2

)

𝜔n = 1√
LC

ξ = R
2

(L
C

)0.5
(2.39)

The value of the damping factor 𝜉 determines if circuit is

Underdamped 𝜉 < 1
Critically damped 𝜉 = 1
Overdamped 𝜉 > 1

For a digital system, we want neither underdamped (possible oscillation and noise)
nor overdamped (possible metastability) behavior. Critical damping permits the signal to
reach full magnitude following a state change, the fastest of the alternatives with minimal
overshoot.

The variable Q, or quality factor, is a parameter that describes the damping character-Q
quality factor istics of an oscillator or resonator. It is a measure of a circuit’s ability to support oscillation.

Good oscillators have high Q and vice versa. For this circuit, the Q is given as:

Q =

(L
C

)1∕2

R
=

𝜔nL

R
= 1

2ξ
(2.40)

If Vin is a 5.0 V step input and we solve for Vout(t) in the time domain, the inverse
Laplace transform gives us the circuit output in Eq. (2.41).

V(t) = 5 −

⎛⎜⎜⎜⎜⎜⎝
5 exp

(
−𝜔t
2Q

) sin

(
1
2
𝜔

√
4Q2 − 1

Q
t

)

√
4Q2 − 1

⎞⎟⎟⎟⎟⎟⎠
−

(
5 exp

(
−𝜔t
2Q

)
cos

(
1
2
𝜔

√
4Q2 − 1

Q
t

))

(2.41)
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We can plot the behavior of the circuit as shown in Figure 2.48:

7

–2
0 t 1 × 10−3

v(t)

Figure 2.48 Plot of Step Response of Extended First-Order Model of Driver and Parasitic
Components

Although the previous equation may seem a bit overwhelming at first blush, it is actu-
ally rather straightforward. Let’s first look at its general form, which is given as Eq. (2.42):

Vout(t) = Vin(t)(1 − e−t∕τ) (2.42)

which will give us a damped exponential as a signal envelope. Within that envelope, there is
an oscillatory behavior as given by the two sinusoidal terms. Thus, we have an exponentially
decaying sinusoidal oscillation, as we see in the plot in Figure 2.48.

2.7.4 Tristate Drivers

The tristate driver is commonly used in bus-based applications to route different data
sources or to enable multiple different data sources onto a system bus. Let’s analyze one
signal of such a bus and examine how the parasitic device can affect performance.

The bus signal is presented in Figure 2.49a. The capacitor models the bus, package,
and adjacent path parasitic capacitances. This value will be approximately 50 pf, and the
typical pull-up resistor is 10 K for TTLS (transistor transistor logic semiconductor) logic.
The parasitic contributions from the interconnecting wire do not contribute in this analysis.

When the sending device is enabled and is transmitting data, bus capacitance and wire
parasitics contribute, as discussed earlier. In the circuit in the diagram, the driver has been
disabled and is entering the tristate region. We model that turn-off as we did earlier. When
the driving device is disabled, the driven bus is now under the control of the pull-up resistor.
We model that circuit in Figure 2.49b.

C

(a) (b)

Vcc

Enable

R R

C

Vout

Figure 2.49 (a) Parasitic Components
on a Tristate Line. (b) First-Order Model
of Parasitic Components on a Tristate
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If the state of the bus was a logical 0 when the tristate device was disabled, the resistive
pull-up voltage acts as a step input into the circuit. The signal, Vout – input to the driven
device – will increase according to the earlier equations. The equation and timing diagram
are given in Eq. (2.43) and Figure 2.50.

Vout(t) = Vin(t)
(

1 − e−
t

RC

)
(2.43)

6

0
0 t 0.1

Vout(t)

Figure 2.50 Plot of the Effect of the Parasitic
Components on Signal Rise Time

The consequences of the parasitic capacitor are evident in Figure 2.50.
Our earlier analysis concluded that if the signal degradation becomes too severe, the

receiving device can enter a metastable region, potentially resulting in significant oscillation
on the device’s output.

2.7.4.1 Open Gate Inputs

One should never leave gate inputs open or floating. How we define the state of unusedfloating
inputs is as important as not leaving them floating. To understand why, let’s consider
a design that requires a two-input AND gate. Rather than add another component, the
designer opted to use a spare three-input AND gate. The third unused input on the device
can be managed in several ways.

Figure 2.51a presents three alternatives. In theory, all three designs should be equiva-
lent. Let’s take a look at a more detailed model. In doing so, we will focus on the critical
parasitic capacitors.

Figure 2.51b now adds those components.

Vcc

in0
in1

in1
in0

out0

out0

(a)

(b)

in0
in1

out0

Vcc

in1

in0 out0

in1
out0

out0

in0

in0
in1

C1
C2

C2
C1

C1 Figure 2.51 (a) Managing Unused
Inputs. (b) Unused Gate Inputs with
Parasitic Components Added
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The circuit in the first diagram has left the unused input open. The two parasitic capac-
itors, C1 and C2, form a voltage divider, as shown in the circuit in Figure 2.52.

C2

C1

V
in

V
out

Figure 2.52 A First-Order Model for the Parasitic
Components on Unused Gate Inputs

The resulting voltage on C2 is now given in Eq. (2.44) as:

Vout(s) =
⎛⎜⎜⎜⎝

1
C2s

1
C1s

+ 1
C2s

⎞⎟⎟⎟⎠
V(s)in

=
(

C1

C1 + C2

)
V(s)in (2.44)

If the voltage on C2 is sufficiently high, the AND gate will function as expected. If the
voltage drops below VIHmin, the device will hold a constant logical 0 as its output state.
Sometimes the circuit may work and sometimes it may not.

In the design of the second circuit, two of the inputs are connected together, thereby
eliminating the floating input. Logically, such a practice will give the desired result. How-
ever, the two parasitic capacitors are now in parallel. Since parallel capacitors add, the
net value is now C1+C2. The voltage going into the device on the combined pins is now
given as:

Vout(t) = Vin(t)
(

1 − e−
t

RC

)
(2.45)

where the value of C in the time constant is now C1+C2. If the two capacitors have the
same value, the time constant has doubled, thereby substantially slowing the rising or falling
edge of the input signal. Doing so can induce metastable behavior when the device switches
and can potentially damage the part.

In the third circuit, the design uses a pull-up resistor to define the state of the unused
input. Although the parasitic capacitance associated with the unused input is still there, the
value of the voltage stored on the capacitor is held at the supply voltage. It will cause no
problems.

2.8 TESTING COMBINATIONAL CIRCUITS – INTRODUCTION AND PHILOSOPHY

Debugging is the process of identifying errors in a new or modified circuit or system,
and troubleshooting is identifying failures in a previously working system. Testing is a bit
different. We generally find that there are four main reasons why we have to test. First, we

Debugging
Troubleshooting

Testing
want to verify that any hardware or software modules, prototypes, subsystems, collections
of subsystems, or the final integrated system perform as it was designed.
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Once the initial functionality is confirmed, testing efforts shift to ensuring that the
completed system meets all requirements and design specifications. Any system will change
and grow with time as modifications are made or as new features and capabilities are added
to satisfy new and changing customer requirements. As with the original design, one must
make certain that the completed system, with all its new features and capabilities, also
satisfies all specifications. Meeting all specifications means making certain that the original
behavior of the system has not been modified in unintended or unexpected ways as a result
of the changes. Finally, because no manufacturing process is perfect yet, we must make
certain that the system functions properly after being built.

When we are thinking about testing and when we are putting test suites together, a goodTest suites
way to think about them is in terms of the amount of information that can be gained with
each step. When a step within a test fails, what is it saying? What is the maximum amount
of information that can be gained from the failure? When a test succeeds, what does it say
about the circuit or system being tested? Are we closer to proving that it performs as we
desire? If yes, then good. If not, then why did we include that step?

2.9 MODELING, SIMULATION, AND TOOLS

As we have seen in our studies so far, modeling and simulation play a critical role in the
design of modern-day digital circuits and systems. We have learned about several different
kinds of tools as well as how and when we apply them. When we move to test, those tools
should follow; they are just as important during the test portion of the development as they
were during the design portion. Today one would not think about attacking a complex design
without modeling tools like Spice, VHDL, or Verilog. Test problems should be attacked
with the same formal methods.

As we learned earlier, models and modeling are essential to the design, development,
and test of today’s complex digital systems. One can use models to break a problem down
into parts that are simpler and easier to manage. During the early stages in the design of a
circuit or system, models can serve as aids to understanding and dealing with the complexity
of the problems to be solved. During test, models serve as aids in understanding the behavior
of the hardware or software under faulted conditions and as guides in developing a solid
testing strategy and the subsequent tests.

Faults and errors in the original design or those introduced during its manufacture are
no different in their effects on the behavior of the circuit or system than the components
that are designed into the system. We will take a preliminary look how to begin to model
such faults and the role such models play during the debug and test of a design. In Chapter
9, we will take a more detailed look when we introduce the co-design process.co-design

Before we begin, however, let’s look at the scope of our problem. The analysis and
understanding of intermittent (existing only occasionally) or transient (occurring only once)intermittent, transient

faults
fault, failures

errors

faults require detailed statistical information characterizing how they occur and special
tools for analyzing the collected data. We will begin with some of the relevant vocabu-
lary before we proceed. A fault is any unsatisfactory system condition or state. Failures
and errors are different kinds of faults. A failure is an (undesired) dynamic event occurring
at a specific time. An error is static. An error is an inherent characteristic of a system result-
ing, for example, from a design mistake or oversight. A fault can affect a system in many
different ways.

Faults may be random or systematic, and failures are typically random. When a failure
occurs in a system, we now have a system that once functioned properly that no longer
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does so. Failures usually occur in the field when a hardware part breaks or wears out.
Random faults can only occur in physical things such as an electrical component. We can-
not design them away. Such is not the case for errors. Errors are inherent in the system as
the result of a design oversight or mistake. They surface (generally at the most embarrass-
ing times – frequently in front of our best customer) under situations such as unexpected
combinations of inputs. Through careful design and thorough testing, one can catch most
errors. One further tries to identify potential failure conditions through stress testing.

A design is characterized as static or dynamic; one does the same with faults in the sys-
tem. Static faults are independent of time; dynamic faults appear as the result of transients
and/or changing signals such as races. As we did in earlier work, we begin by modeling
the physical faults. To do so, we develop logical fault models as abstract representationslogical fault models
of the effect of a real world or physical faults on our system. With such models, one can
identify those that affect the logical behavior of the system and those that affect its per-
formance. One can identify the source of faults as originating from the interconnections
among components, the structural faults, and those arising from within a component, the
functional faults.

structural faults
functional faults

single-fault
assumption

The single-fault assumption allows one to assume that when studying structural faults
one is working with good components – those that are fault free and vice versa.

2.10 STRUCTURAL FAULTS

2.10.1 Stuck-at Faults

Within a circuit or system, a net is defined as a signal or collection of signals connecting
two or more elements. Signal paths are made up of stems and branches. A stem is the origin

net
stems, branches

stuck-at fault model
stuck-at-one (s-a-1)
stuck-at-zero (s-a-0)

open
short

of a signal, usually the output of a logic device. A branch is one or more signal paths that
may fan out off a stem. A branch usually terminates at the input of a logic device.

Structural faults arise from defects in the net interconnecting the components in the
system. Such faults may originate at the stem of the net or at one of its branches. One of
the models commonly used to study such faults is called the stuck-at fault model. In such a
model, a signal is interpreted as either permanently held to the logical one state, stuck-at-one
(s-a-1), or to the logical zero state, stuck-at-zero (s-a-0).

An open is a signal line that is designed to be connected to a circuit element or other
signal line that is not connected. A short is a signal line that is not intended to be connected
to a circuit element or other signal line that is connected.

Stuck-at faults generally occur because of missing or unintended connections of one
kind or another. Examples might include an open circuit, an incorrectly connected wire, or
a sliver of printed circuit trace material connecting a signal in a net to one of the power rails
or to another signal in the net. In the latter two cases, one can assume that all components
of the net are at the same logic level. In the first case, one cannot make that assumption.

An open circuit represents a special kind of stuck-at fault. The open may be the result
of a broken wire, damaged printed circuit trace, or bad solder joint. The difficulty with such
faults is that they can appear as a stuck-at-zero or a stuck-at-one, depending on parasitic
connections to neighboring components or the physical characteristics of the device. Let’s
now see how such faults will appear in a design and how they can be modeled.

In the accompanying figures, we will use logic gates to model any conjunctive (AND)
or disjunctive (OR) type of relationship and to illustrate the effects of stuck-at faults in
each context. We assume a single-fault model; thus, faults such as a stuck-at fault on a stem
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accompanied by an open on a branch on that same net represent two faults and will not be
considered.

2.10.1.1 Stuck-at-Zero Faults

Let’s begin with stuck-at-zero faults. In Figure 2.53, we consider the simple cases of a
logical AND, Circuit 0, and a logical OR function, Circuit 1. In the presence of the fault,
neither circuit implements its intended logic function.

OUT 1

IN 1

Circuit 0

OUT 1

IN 1

IN 2
Circuit 1

IN 2

IN 2IN 1 OUT 1

0 0
0 0

1 0

1

0
1

0

1 0

IN 1 IN 2 OUT 1

0 0

0 1

1 0
1

0

1

0
1 1

Figure 2.53 A Stuck-at-Zero Fault

For Circuit 0, the fault has changed the implemented function from a logical AND to
a constant logical zero while blocking the passage of any other signal through the gate. In
Circuit 1, in the presence of the fault, the logic function has changed from an OR to a simple
buffer; OUT1 is independent of IN1, and the circuit merely copies IN2 to the output.s-a-0

Within the circuit, a net has two ends – its input side and its output side. Although
apparently obvious (we can ignore the difference most of the time), such a distinction can
be important for certain kinds of faults, as we will see later.

The s-a-0 fault on a circuit input is modeled by opening the associated input line at the
logical device then, as in Figure 2.54, replacing that connection with a short to ground.

OUT 1

IN 1

Circuit 0

OUT 1

IN 2

IN 2
Circuit 1

IN 1

Figure 2.54 Modeling a Stuck-at-Zero
Fault
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A stuck-at-zero condition on a circuit output (on a system internal net rather than on
a board edge) can be modeled as a stuck-at fault on the following circuit input. The same
fault on a board edge is modeled as a short to ground on the circuit output.

2.10.1.2 Stuck-at-One Faults

A circuit or system with a stuck-at-one fault appears as in Figure 2.55.

IN 1

IN 2

OUT 1

Circuit 3

Vcc

IN 1

IN 2

OUT 1

Circuit 4

Vcc

IN 2IN 1 OUT 1

0 0
0 1

1 0

1

0
1

0

1 1

IN 1 IN 2 OUT 1

0 0

0 1

1 1
1

0

1

0
1 1

Figure 2.55 A Stuck-at-One Fault

In the presence of a stuck-at-one fault, the AND gate, Circuit 3, now functions as the
OR did with a stuck-at-zero, that is, as a simple buffer. It passes all signals that appear on
the input IN2. The stuck-at-one on the OR in Circuit 4 is the dual of the stuck-at-zero on
the AND. The signals on IN2 are blocked and the output of the system remains a constant
logical 1. The assumption here is that the supply voltage will overdrive the output from the
NAND gate.

The model for the stuck-at-one is similar to that for the stuck-at-zero and is shown in
Figure 2.56.

IN 1

IN 2

OUT 1

OUT 1

Vcc

IN 1

IN 2

OUT 1

Circuit 4

Circuit 3

Vcc

Figure 2.56 Modeling a Stuck-at-One
Fault
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The model for the stuck-at-one condition on a circuit output follows naturally from the
stuck-at-zero model.

2.10.2 Open Circuit Faults

Let’s now look at how an open circuit fault may appear in the circuit. We will use a standard
CMOS logic gate driven by two different signals. The circuit includes the parasitic capaci-
tor, C1, connected to IN2 as in Figure 2.57. The capacitor models the input capacitance of
the package as well as any coupling to other traces.

IN 1

IN 2

OUT 1

Circuit 5

C1

Figure 2.57 An Open Circuit Fault

If IN2 is a logical one, the signal on IN1 will pass through the gate. Next, hypothesize
an open circuit in the signal trace connecting the output of the OR gate to IN2 and mark
that with an x in the figure.

If the capacitor C1 can accumulate sufficient charge through parasitic coupling to
enable the voltage on IN2 to rise above the threshold for a logical 1, the signal on IN1
will appear on the output, OUT1. The open appears as a stuck-at-one on the IN2 net. On
the other hand, once again, through parasitic coupling, if sufficient charge can be removed
from C1, then IN2 appears as a logical 0 and the signal IN1 is blocked. The fault now
appears as a stuck-at-zero on the net.

Identifying and isolating such faults can be a very difficult problem. The simple process
of probing the signals during troubleshooting can affect the amount of charge stored on the
parasitic device. After probing, all signals may appear to be correct. Only after some time
will the circuit output return to a faulted state.

2.10.3 Bridging Faults

Bridging faults add the next level of complexity to fault models. As the name might sug-bridging faults
gest, a bridging fault forms a connection between two (or more) signal lines where none
was originally intended. Bridging faults arise from bad solder connections or flakes from
a printed circuit trace that may have been undercut during etch or an errant piece of wire.
When a circuit trace has been undercut, as shown in Figure 2.58, it is not difficult for the
thin edge to break off.

Bridges are typically defined as occurring between logic device (or subsystem) outputs,
between inputs, or between an output and input. One can model such faults, as is done in the
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Printed Circuit Trace

Properly Etched
End View

Printed Circuit Trace

That Has Been Undercut—
illustrates edges that

may break off end view

Figure 2.58 Bridging Faults

circuit fragments in the logic circuits shown in Figure 2.59. The circuits illustrate a possible
bridge on an input net and two possible bridged outputs.
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Figure 2.59 Common Input or Output Bridging Faults

The next two circuits in Figure 2.60 illustrate different possible feedback bridge
configurations.
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Feedback Bridge

Figure 2.60 Common Feedback Bridge Faults

We will now look at both kinds of bridge fault.

2.10.3.1 Nonfeedback Bridge Faults

Let’s begin with nonfeedback bridge faults. These are the easiest to understand and to
model. The simplest nonfeedback faults are those that bridge between a component input or
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output and a power rail (the supply or ground). Such faults are modeled using the stuck-at
model as was done earlier.

The next level of complexity arises when the fault occurs between several signal traces
or logic gate pins; the model becomes a bit more involved. Two cases must be considered.
The first case is a bridge between two or more circuit inputs on a connector pin or card
edge, and the second reflects an internal bridge between two or more signal traces or a
bridge between several output signals on a card edge.

A bridge fault on an input signal on a card edge will only affect another card edge
input. Such a fault can be modeled as a common signal going to both inputs. A bridge fault
that is internal to the circuit involves the interconnection of several device outputs. Under
such a condition, those outputs will be battling furiously. Devices with outputs in the logical
one state will be trying to pull the signal high, while those in the logical zero state will be
trying to do the opposite. The result of the fight depends strongly on the device and logic
family. The more powerful (ability to source or sink current) device(s) will generally be
more successful.

We can formulate a first-order model for such a fault by starting with the Thévenin
equivalent circuit for the driving and receiving devices. Using TTLS parts, we will assume
that only two devices are bridged. The model can easily be extended to other logic families
and to additional devices comprising the bridge as necessary (with two more, we could have
a foursome, but that’s another game).

In Figure 2.61, we show the Thévenin equivalent circuits for the two device outputs.
Let’s now assume that the device on the left is driving Output0 high, and that on the right
is driving Output1 low. Under such a configuration, R2 and R3 will be out of the circuit,
and current will flow through R1 and R4 to ground. Using vendor data sheet specifications,
we have a short-circuit output current of about 20 mA for a 74LS04. Furthermore, we can
compute R4 to be close to 100Ω. As a first-order approximation, we can then compute the
voltage at the bridge to be about 2.0 V.

Output0 Output1

Bridge

Vcc
Output0

R1

R2

+
−

+
−

+
−

+
−

VccOutput1
R3

R4
Bridge

Figure 2.61 A Bridge Model

Such a fault can be modeled as a voltage source. The value of the source will be a
function of the number of logical devices connected into the bridging net, the state(s)
to which they are trying to drive, and the drive capability of each. Assuming only two
devices are joined, one can use the value of 2.0 V just calculated as a reasonable a
pproximation.
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A minor caveat should be given here. The value to which a combined output is driven
when the device inputs are of opposite values strongly depends on the logic family(ies)
involved. The value of the signal on a bridge between a TTL and a CMOS part will most
likely be determined by the TTL part. In general, it is assumed that the more powerful part
will win.

2.10.3.2 Feedback Bridge Faults

Feedback bridge faults are a bit more complex to analyze and model. Such a bridge trans-
forms a circuit that begins life implementing a combinational logic function into one that
behaves as a sequential circuit.

We will redraw the earlier two circuits in Figure 2.62 to illustrate the different possible
feedback bridges.
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Figure 2.62 Feedback Bridges

The circuit on the left contains an odd number of inversions around the bridged path;
consequently, it may oscillate. Such faults are difficult to model and to detect for several
reasons. If the delay around the bridged path is short, the frequency of oscillation can poten-
tially be quite high. At higher frequencies, the comprising devices may not be able to reach
a full, valid logic level.

In general, the bridged input will also have its intended connection from the output of
some other logic function. With the feedback bridge, once again, there are two outputs in
conflict. We now have a situation that is similar to that discussed earlier for bridged device
outputs.

The circuit on the right contains an even number of inversions and, most likely, will not
oscillate. One can often analyze such faults using a stuck-at model. As with the inverting
path feedback bridge, one can also have the situation in which several device outputs are in
contention.

2.11 FUNCTIONAL FAULTS

Let’s change the focus from static to dynamic faults. Dynamic faults are those that arise
from the inherent manufacturing variations in the timing parameters of the parts as well as
from the operating environment. Were all of the parts identical, one might stand a chance
at being able to design dynamic faults out of the system. Such is not the case, as we saw
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earlier. Even with identical parts, different (parasitic impedance) loading in the circuit is
going to affect the propagation of signals through the system.

2.11.1 Hazards and Race Conditions

In ideal digital circuits or those operated at very low frequencies, propagation delays
through the logic devices are nonexistent or are sufficiently small that they can be ignored.
For such circuits, we look at a circuit’s output only after the inputs have been stable for
a long time relative to the delays in the circuit’s electronics. Because of circuit delays,
however, the higher speed transient behavior of a digital circuit may differ from what is
predicted by a steady-state analysis.

We learned about race conditions and hazards in our earlier studies in this chapter. The
study of functional faults means thoroughly understanding both of these phenomena. Onerace conditions,

hazards can model a hazard type fault in a number of different ways. One approach is to consider
the gates to be delay free and then add a spike generator to the output circuit, as we see in
Figure 2.63.

A

B

C0 1

0 1

0 1 0

Static–0 Hazard

Generation
Figure 2.63 Static-0 Hazard Generation

Such an approach gives the ability to control the width, polarity, and timing of the
hazard, independent of the model of the logic gates.

A second approach is to add delay elements to each conjunctive or disjunctive path.
By using such an approach, one can closely approximate the propagation delays that each
signal will experience as it travels from its source and through the net. Such a model is
shown in Figure 2.64.
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Figure 2.64 Static-0 Hazard Generation

Once again, we assume perfect parts. The two delay elements, td0 and td1, are inserted
to model the path delays. By making td0 – td1> 0, one can easily produce the decoding
spike; by controlling the magnitude of the difference between the two delays, the width of
the spike can be controlled.

At the end of the day, through proper design, we can eliminate most hazards. As
we begin to push the speed envelope of today’s parts, eliminating hazards through design
becomes a bit more difficult project.
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2.12 SUMMARY

We opened the chapter with an examination of real-world logic
signal levels, their variability, and the effects of noise on those
signals. We then studied the capability and limitations of one
logic device driving other devices.

We moved from the static world to the dynamic where we
learned that logic signals do not change state instantly and that
they propagate through a system at different rates. Using the Ver-
ilog hardware design language, we modeled (portions of) our
designs at different levels of abstraction to study such real-world
effects. Delving deeper into the real world, we explored the

first-order effects of passive parasitic components – the resis-
tor, capacitor, and inductor – on our designs. We examined a
high-level view of and laid a foundation for study of digital sig-
naling and signal quality, introduced some related concepts and
vocabulary, examined some of the basic issues affecting digi-
tal signal quality, and took the first steps into the advanced area
called signal integrity.

We concluded by studying common faults in combinational
logic circuits and how we begin to test such circuits.

2.13 REVIEW QUESTIONS

Real-World Gates – Signal Levels

2.1 What voltage levels typically define a logic 0 and a logic
1 today?

2.2 What voltage levels typically define a logic 0 and a logic
1 in the newer logics today?

2.3 What is meant by VOH? VOL? VIH? VIL?

2.4 Are the values for VOH, VOL, VIH, and VIL always the
same for all parts in the same logic family?

2.5 What is meant by VOHtyp? VOHmin? VOLtyp? VOLmax?
VIHtyp? VIHmin? VILtyp? VILmax?

2.6 What is meant by high-level noise immunity or noise mar-
gin? Low-level noise immunity or noise margin?

2.7 Why is noise immunity important?

2.8 How is noise margin computed?

A Look Inside the Logic Gate

2.9 What are the major semiconductor technologies used in
making integrated circuits today?

2.10 What is the output configuration commonly used in
today’s logic devices called?

2.11 What is the major difference between TTL logic and
CMOS logic?

Fan-In and Fan-Out

2.12 What does the term fan-out mean? fan-in?

2.13 What is the difference between sinking current and
sourcing current?

2.14 How do we compute fan-out? fan-in?

Real-World Gates – Time

2.15 What is meant by the term rise time? fall time?

2.16 How do we measure rise time? fall time?

2.17 Are the values for the rise time and fall time for all devices
within a particular logic family the same?

2.18 Can we incorporate rise time and fall time values into a
Verilog model? How?

2.19 What is meant by the term propagation delay?

2.20 How do we measure propagation delay?

2.21 Are the values for the propagation delay through a device
the same for a signal making a transition from a logical 0 to a
logical 1 as for a state change in the opposite direction?

2.22 Can we incorporate delay values into a Verilog model?
How?

2.23 What is meant by the term transport delay? inertial
delay?

2.24 What is the difference between transport delay and iner-
tial delay?

2.25 What is meant by the term race in a logic circuit?

2.26 What is meant by the term critical race in a logic circuit?
noncritical race?

2.27 What is a hazard in a logic circuit?

2.28 What is a static-0 hazard? static-1 hazard?

2.29 What is a dynamic hazard?

2.30 Why do we care about hazards?

Real-World Gates – The Legacy of Physics

2.31 What are the major differences between a textbook gate
and a real-world device?

2.32 What is the difference between resistance and impedance?

2.33 How does the resistance of a piece of resistive material
such as a wire or printed circuit board trace vary with length?
diameter?

2.34 What is a parasitic device in a logic circuit?

2.35 What components make up the first-order model of a resis-
tor? Which of these are consider to be parasitic devices?
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2.36 What is meant by the term lumped model? distributed
model?

2.37 What are the major effects of the parasitic devices in the
first-order resistor model?

2.38 How does the capacitance between two parallel plates,
such as two printed circuit board traces or the power and ground
planes in a logic circuit, vary with the separation of the plates?
the cross-sectional area of the plates?

2.39 What components make up the first-order model of a
capacitor? Which of these are considered to be parasitic devices?

2.40 What are the major effects of the parasitic devices in the
first-order capacitor model?

2.41 A wire can be modeled by the first-order circuit in
Figure 2.28. Based on such a model, how is a digital signal trans-
mitted through the wire affected?

2.42 From electromagnetic physics, what is the result of send-
ing a current through a wire?

2.43 What is inductance?

2.44 What is the result of changing the number of field lines
around a conductor?

2.45 What is the result of bringing a second conductor into
close proximity with a conductor carrying a driven current?

2.46 What is the result of bringing two conductors, both with
driven currents, into close proximity?

2.47 Can we change the current through an inductor instantly?

2.48 How does the impedance of a conductor vary with length?
diameter?

2.49 Does the distribution of current through a conductor
change if the frequency of the current flowing through it
increases?

2.50 What is skin effect? skin depth?

2.51 What is meant by a floating gate input?

2.52 What is the best way to manage floating gate inputs?

2.53 A wire can be modeled by the second-order circuit in
Figure 2.37. Based on such a model, how is a digital signal trans-
mitted through the wire affected?

2.54 What is meant by the term underdamped? critically
damped? overdamped?

Testing Combinational Circuits

2.55 What do we mean by the term debugging? troubleshoot-
ing? testing?

2.56 What are the main reasons we test an embedded system or
its components?

2.57 What is a fault?

2.58 What is the difference between a failure and an error?

2.59 What are intermittent or transient faults?

2.60 What is a logical fault model, and why do we develop such
a thing?

2.61 What are structural faults? functional faults?

2.62 What is the single-fault assumption?

2.63 What is the stuck-at fault model, and how do we use it?

2.64 What is a bridging fault, and what are some the things that
may cause them?

2.65 Identify and describe several different kinds of bridge
fault.

2.14 THOUGHT QUESTIONS

Real-World Gates – Signal Levels

2.1 Can an embedded design use logic devices from different
families, for example, CMOS and TTL? If not, why not? If so,
what important factors should one consider?

2.2 The minimum high-output logic level is specified by
VOHmin and the maximum low output logic level is specified
by VOLmax. What are the consequences of violating these spec-
ifications?

2.3 The minimum high-input logic level is specified by
VIHmin, and the maximum low-input logic level is specified by
VILmax. Will a logic device work if the input signal is lower than
VIHmin or higher than VILmax?

2.4 If a logic device operates properly under the conditions
described in Question 2.3, can such behavior be assumed for all
devices in that family? Why or why not? If not, why did the
device operate correctly?

2.5 If a sample of 15 logic devices operates properly under
the conditions described in Question 2.3, can such behavior be
assumed for all devices in that family? Why or why not? If not,
why did the devices operate correctly?

2.6 Can an embedded system be considered to be properly
designed if a lower value of noise immunity than computed from
the data sheet information is accepted? Why or why not?

2.7 Under what conditions would a decision such as that
described in Question 2.6 be acceptable?

A Look Inside the Logic Gate

2.8 In an open drain or open collector device, the top transis-
tor in the output totem pole is left off. Why would we want to
use such a device?

2.9 What is the major difference between an open drain/
collector device and a tristate device?
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2.10 What are the pros and cons of using an open drain/
collector device versus a tristate device?

2.11 Can an open drain/collector device be used on a tristate
bus? Why or why not?

Fan-In and Fan-Out

2.12 Can the calculated fan-out of a logical device be
exceeded? If not so, why? If so, what are the consequences of
doing so?

2.13 Can a design such as that described in Question 2.12 be
considered to be a good design? If not, why not and if so, why?

2.14 Where on a device data sheet would one look to find
information supporting a decision such as that described in
Question 2.12 and the consequences of such a decision?

2.15 How do we compute fan-out for devices from one logic
family driving a different logic family? fan-in?

Real-World Gates – Time

2.16 What are the consequences of increasing the rise time or
a logic signal? the fall time?

2.17 Do the consequences of the situation described in
Question 2.16 change as the frequency of the input signal
changes?

2.18 What are the consequences on the output of a logical
device of the rise time of an input signal being longer (shorter)
than the fall time?

2.19 Do the consequences of the situation described in
Question 2.18 change as the frequency of the input signal
changes?

2.20 What are the effects on the output of a logical device of
propagation delay through the device?

2.21 How do the effects of propagation delay through a logical
device change with increasing (decreasing) frequency?

2.22 How is the output of a device affected if the propagation
delay through the device is longer (shorter) for a signal making
a transition from a logical 0 to a logical 1? Under the same cir-
cumstances, how is the output affected, for a state change in the
opposite direction?

2.23 If a logical circuit has a critical race condition, can that
race be corrected by using additional logic gates to match the
lengths of the delay paths causing the race? Why or why not?

2.24 How can one correct a critical race condition without
matching delay path lengths?

Real-World Gates – The Legacy of Physics

2.25 How does the resistance of a piece of material such as a
wire or printed circuit board trace affect the temporal behavior
of a signal passing through the material?

2.26 Describe how the phenomenon called self-inductance
occurs.

2.27 Describe how the phenomenon called mutual inductance
occurs.

2.28 What is meant by the term cross talk?

2.29 Explain how cross talk can occur via capacitive coupling?
via inductive coupling?

2.30 Using the first-order RC model of a wire described
in Figure 2.28, what is the effect on the temporal behav-
ior of a signal being driven from an open drain/collector
devi ce?

2.31 Using the first-order RC model of a wire described in
Figure 2.28, what is the effect on the temporal behavior of a
signal being driven from a tristate device?

2.32 Using the first-order RC model of a wire described in
Figure 2.28, what is the effect on the temporal behavior of a sig-
nal being driven into that wire from a device with a totem pole
output configuration?

2.33 What are some of the possible effects on the output of a
logic gate if one (or more) of the device input(s) is floating?

2.34 Do the effects described in Question 2.33 change if the
logical device is implemented using CMOS technology? TTL
technology?

2.35 Do the effects described in Question 2.33 change
if the frequency of the input signal is increased?
decreased?

2.36 What are some of the possible temporal effects on the out-
put of a logic gate if the first-order model of an input digital
signal wire is replaced by a second-order model?

2.37 What is meant by the term damping factor?

2.38 What is the effect on a digital signal if the damping factor
for a conducting path is <1, =1, >1?

Testing Combinational Circuits

2.39 When we are troubleshooting an embedded subsystem or
system, what fundamental assumptions can we make?

2.40 When we are testing an embedded subsystem or system,
what fundamental assumptions can we make?

2.41 When we are debugging an embedded subsystem or sys-
tem, what fundamental assumptions can we make?

2.42 Consider that we are debugging a circuit of subsys-
tem and we encounter an intermittent or transient fault. We
replace one or two parts and the problem goes away. Can we
assume that the parts that we replaced were bad? If not, why
not?

2.43 If we have been debugging two modules and have now
concluded that both are working perfectly, it is now time
to integrate them into a larger subsystem. Can we assume
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that the subsystem will work as intended? Why or why
not?

2.44 If, as a result of the debugging process, we conclude
that a newly integrated system has no structural faults, can we
assume that it also contains no functional faults? Why or why
not?

2.45 Is the single-fault assumption reasonable in most cases?
When might it not be valid?

2.46 When troubleshooting a failed system, is it reason-
able to assume that there are no stuck-at faults? bridge
faults?

2.15 PROBLEMS

Digital Signals – Levels and Parasitics

2.1 A friend has shown you his clever new design for turn-
ing on lamps remotely. He plans to build and sell hundreds of
these and has asked you what you think of his design shown in
Figure P2.1.

+ 5V

LampLamp ON

1K

SN74LS04

Figure P2.1

He describes its operation as follows: When the Lamp ON
signal is a logical 0, the relay closes and the lamp turns ON.
When the Lamp ON signal is a logical 1, the relay opens and the
lamp turns OFF.

He says the circuit works well, but that his vendor is sup-
plying some bad parts and that sometimes the relay will not
close.

(a) Using the data that follows, you analyze the circuit and dis-
cover that there is a problem with the design. Use the results of
your analysis to explain what it might be.

SN 74LS04 IOL = 8 mA @ VOL = 0.2 V

IOH =−400 μA @ VOH = 3.5 V

Relay ICLOSE = 375 μA± 10%@ V = 3.5 V

(b) Based on your analysis, propose a way to correct the
design. Explain why your modification fixes the design error.

2.2 A colleague designed the circuit in Figure P2.2 in which
an inverter is used to drive a single LED as a component

in an annunciation subsystem of a project currently under
development. At the moment, she is in Paris talking with
the customer about new features to be incorporated into the
project.

5.0 VDC

Figure P2.2

As part of the process of designing the circuit, she was
considering several different logic families, but she did not
get the chance to complete her analysis and so has asked
if you would help while she was gone. Her notes indicate
that she was considering the following logic families and
configurations:

Driver Receiver

74LS04 74LS04

74LS04 74HC04

74S04 74HCT04

74HCT04 74ALS04

Her notes also specify the LED currents as

LED ON 3.0 mA VOL on the cathode

OFF 50 μA leakage VOH on the cathode
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To complete her analysis,

(a) Identify and label all of the currents in the circuit above if
the input signal to the circuit above is a logical 1.

(b) Identify and label all of the currents in the circuit above if
the input signal to the circuit above is a logical 0.

(c) For each of the combinations she has listed above, based
on vendor data sheets, what is the maximum number of gates we
can drive and still meet the vendor’s specifications if the input
signal is a logical 1? logical 0?

(d) What is the worst case noise margin for each configuration
and for each logic state?

2.3 As part of a design review of a larger system, you decide
to analyze the circuit shown in Figure P2.3. The design review
package includes the following information from the vendor’s
data sheets:

IOH –400 μA @ VOH = 3.4 V

IOL 4.0 mA @ VOL = 0.4 V

IIH 20 μA @ VOH = 3.4 V

IIL −500 μA @ VOL = 0.4 V

LED ON 1.25 mA

OFF (leakage) 1 μA

Relay ON 1.5 mA

OFF 0 μA

I1

Vcc

Vcc
I2

Figure P2.3

The design specifications require that, in addition to the
relay and LED, the circuit must be able to drive four other gates.
Determine if the design meets the specified requirements.

2.4 A warning annunciator is needed in a design that you are
working on. In a discussion with several of your colleagues, sev-
eral say the two circuits given in Figure P2.4 are equivalent,
others say that the one on the left is better, while the remainder
recommend the one on the left.

5.0 VDC

Figure P2.4

Assume that the driver is an SN74LS04 and that the diode
requires 1.25 mA to turn on. To settle the debate, you decide to
do a complete analysis of the circuit.

(a) Based on your analysis, which configuration will give the
brighter light?

(b) Which configuration will consume more power?

(c) What are the noise margins for the two configurations if
one additional SN74LS04 device is to be driven?

2.5 When using tristate bus drivers, one must ensure that the
circuit being driven is never left with a floating or open input.
The following two bus fragments in Figure P2.5 illustrate two
of the commonly used ways to ensure that the state of the bus is
defined when the driver is disabled.

5.0 VDC

R1

R2

Figure P2.5

Assume that the driver is a 74LS244 and the inverter is a
74LS04. Analyze the two circuits and select the values for the
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two resistors to

(a) Minimize power dissipation in the resistor when the
signal from the driver is in the high state, low state, and
tristate.

(b) Maximize the noise margin when the signal from the driver
is in the high state, low state, and tristate.

2.6 Using the first-order model for a bus wire discussed in the
text and your values for the resistors from Problem 2.5, deter-
mine the following:

(a) For the design in the top figure, assume that the bus signal
is in the logical 0 state and the driver is disabled. What is the
time required for the state of the bus to reach a minimum logical
1 state?

(b) For the design in the bottom figure, assume that the bus
signal is in the logical 1 state and the driver is disabled. What
is the time required for the state of the bus to reach a minimum
logical 0 state?

2.7 Repeat Problem 2.6. if the driver fans out to 10 other
devices.

2.8 Using the first-order model for a bus wire discussed in the
text and your values for the resistors from Problem 2.5, deter-
mine the following:

(a) For the design in the top figure, assume that the bus has
been disabled for a sufficiently long time that the state of the
signal has reached its maximum. The driver is now enabled
and is driving the bus to the logical 0 state. What is the time
required for the state of the bus to reach a maximum logical
0 state?

(b) For the design in the top figure, assume that the bus has
been disabled for a sufficiently long time that the state of the
signal has reached its maximum. The driver is now enabled
and is driving the bus to the logical 0 state. What is the time
required for the state of the bus to reach a maximum logical 0
state?

2.9 Repeat Problem 2.5 if the receiver is an MC74HC04 rather
than an SN74LS04.

2.10 Repeat Problem 2.5 if the receiver is a 74ACT04 rather
than an SN74LS04.

2.11 Using the first-order model for a bus wire discussed in the
text, determine

(a) The time required for a state change from a typical TTLS
logic 0 level to VIH min

(b) The time required for a state change from a typical TTLS
logic 1 level to VIL max

(c) How do your answers to parts (a) and (b) change if the time
constant is doubled? tripled?

2.12 The two alternate designs in Figure P2.6 for driving each
line of a system bus have to be analyzed.

5.0 VDC

R1

oc

oc

oc

oc

5.0 VDC

R2

Figure P2.6

The design on the left utilizes an open collector driver,
74LS05, to gate a data stream onto the bus; the design on the
right utilizes a tristate driver, 74LS244.

(a) Using the first-order model for a bus wire discussed in the
text, determine the maximum switching speed of a bus line in
both cases for a pull-up resistor of 1, 10, and 100 KΩ.

(b) Determine the worst case power dissipation for each
pull-up resistor value.

(c) Determine the worst case noise margin for each pull-up
resistor value.

2.13 The circuit fragment and control in Figure P2.7 have been
proposed as an element of a system bus in a new application.
The bus master sets the direction of communication using the
Dir line.

5.0 VDC

R1

Dir
DBi

bus master

Figure P2.7

(a) Can you see any problems with the design?

(b) Are there any possibilities for bus contention? If so,
can you suggest a modification to the circuit to remove any
contention?

2.14 A designer has come up with a logic expression for a por-
tion of a larger system. He has written the equation in minterm
form as

out = Σ(m4,m5,m6)



�

� �

�

2.15 Problems 107

(a) Reduce the equation for the circuit output to its simplest
sum of products form.

(b) The reduced equation in part (a) should give you three
different, but logically equivalent, equations. Give the logic dia-
gram for each. Assume a delay for each gate as five time units.
Analyze the three circuits, commenting on and comparing the
different path delays through each and the susceptibility of each
to both static and dynamic hazards.

2.15 Repeat Problem 2.14, using the min-typical or
typical-max delay ranges from the vendor’s data sheets for the
parts you are using.

2.16 The circuit fragment in Figure P2.8 implements the basic
RS latch.

Reset

Set

Q

Q

Figure P2.8

(a) Analyze the circuit and draw a detailed timing diagram.
Assume that there is a delay of five time units for each gate and
that the Q output and the R and S are initially 0. Base your anal-
ysis on the following input sequence: (R,S) = (0,0), (0,1), (0,0),
(1,0), and (0,0).

(b) Repeat the analysis, using the min-typical or typical-max
delay ranges from the vendor’s data sheets for the parts you are
using.

(c) Verify your analysis using a Verilog structural model for
the circuit and the vendor’s data sheets.

Digital Signals – A Dynamic View

2.17 The circuit in Figure P2.9 has been proposed for turning
a level into a pulse.

Level

Pulse

Figure P2.9

(a) Analyze the circuit using the min-typical or typical-max
delay ranges from the vendor’s data sheets for the parts you are
using.

(b) What is the worst case variation on the width of the pulse
based on your analysis?

(c) What are your thoughts on the design?

2.18 A junior engineer has proposed the design in Figure P2.10
for a portion of a circuit she is working on. She has said the
design works perfectly, but has asked you to review it anyway.
She gives you the information shown in the figure from the ven-
dor’s data sheet.

A

B

C

D

F

Figure P2.10

𝜏pdHL = 10ns // Propagation delay from
a high input to a low output
𝜏pdLH = 15ns // Propagation delay
from low input to a high output

(a) Using the information from the data sheets, complete the
timing diagram in Figure P2.11 for the identified signals based
on the conditions shown.

D

C

B

A

F

Figure P2.11

Assume each square is 10 ns.

(b) Based on your analysis, what can you tell her about the
design?

2.19 For the circuit in Figure P2.12:

1

2

4

3

5

6

7

0
W
X 0 1

0Y

Z 1

F

Figure P2.12
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(a) Draw the theoretical signals on the output of each of the
seven gates as a result of the indicated change on the input to
gate 1. Assume no delay.

(b) Draw the signals on the output of each of the seven gates as
a result of the indicated change on the input to gate 1 assuming
the delays given.

Gate 1: 𝜏pHL = 𝜏pLH = 5–10 ns

Gate 2: 𝜏pHL = 𝜏pLH = 10–15 ns

Gates 3–7: 𝜏pHL = 𝜏pLH = 5–7 ns

2.20 A circuit such as that seen in the accompanying diagram
in Figure P2.13 is occasionally used to provide a clock in a
low-cost embedded application. Assuming that the logic gates
are SN74LSXX types of devices, analyze the circuit and identify
any possible problems.

clock

Figure P2.13

Consider the circuit’s ability to start oscillating by itself
when power is applied, behavior under lower voltage conditions,
variations in propagation delay based on different parts, slow rise
and fall times, and potential metastability problems.

2.21 In the chapter, circuits of the form shown in Figure P2.14
were identified as possibly producing static hazards. Someone
suggested that the problem could easily be solved by simply
adding a buffer with the same delay as the inverter to the bottom
leg of the gate.

A

B

C

Figure P2.14

(a) Will such a change solve the problem? Why or why not?

(b) If the answer to part (a) is yes, can the modification be
incorporated with confidence into a product that will be selling
over 100 000 units each year? Why or why not.

2.22 Design, implement, and verify a full adder using structural
Verilog. Use the vendor’s data sheets for the propagation delay
for each logic device in your circuit.

(a) What is the longest path and worst case delay through your
full adder?

(b) Does your design have any static or dynamic hazards? If
so, please identify.

2.23 Using the full adder from Problem 2.22, design, imple-
ment, and verify a 4-bit carry save adder using structural Verilog.
Use the vendor’s data sheets for the propagation delay for each
logic device in your circuit.

A carry save adder uses a full adder to add two numbers
one column at a time starting with the least significant column.
The carry out from the addition of the ith column is saved and
becomes the carry in to the addition in the i+ 1th column.

(a) What is the longest path and worst case delay through your
4-bit adder?

(b) What is the shortest path and shortest case delay through
your 4-bit adder?

(c) Does your design have any static or dynamic hazards? If
so, please identify.

2.24 Using your full adder from Problem 2.22, design, imple-
ment, and verify a 4-bit ripple carry adder using structural Ver-
ilog. Use the vendor’s data sheets for the propagation delay for
each logic device in your circuit.

(a) What is the longest path and worst case delay through your
4-bit adder?

(b) What is the shortest path and shortest case delay through
your 4-bit adder?

(c) Does your design have any static or dynamic hazards? If
so, please identify.

2.25 Using your full adder, from Problem 2.22 design, imple-
ment, and verify a 4-bit look ahead carry adder using structural
Verilog. Use the vendor’s data sheets for the propagation delay
for each logic device in your circuit.

(a) What is the longest path and worst case delay through your
4-bit adder?

(b) What is the shortest path and shortest case delay through
your 4-bit adder?

(c) Compare the results with those for the carry save adder and
the ripple carry adder.

(d) Does your design have any static or dynamic hazards? If
so, please identify.

2.26 Design, implement, and verify a 2-bit × 2-bit multiplier
using the shift and add algorithm. For the addition, use the high-
est performance (shortest time to compute the sum) adder from
your previous designs. Use the vendor’s data sheets for the prop-
agation delay for seach logic device in your circuit.

What is the worst case execution time for your design?

2.27 Signals being transmitted over a bus in any embedded sys-
tem are going to experience delays as they traverse that bus.
At lower frequencies, the effects of those delays are generally
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negligible. As the transmission rate of the bus signals increases,
the consequences of the delays become more significant. Under
such circumstances, the following must be considered in higher
performance systems:

Modulei

B0

B1

DBj

DBj

DBj To Modulei+1

A Bus Segment Between Modules

Modulei

B1

Modulej

B2

DBj

Modulek

B3
DBj DBj DBj

A Single Bus Line from Source

to Three Modules

Figure P2.15

The delay for each individual bus signal is going to be dif-
ferent. That is, each signal on the bus is going to arrive at an
individual module at a slightly different time.

As the collective signals propagate down the bus from
source to destination, the set will experience a (different) delay
along the bus. Thus, signals arriving at modules close to the
source will see the signals at different times from those at greater
distance.

The following circuit fragments in Figure 2.15 illustrate
one line of a system bus interconnecting three modules and a
basic first-order model for a segment of that path. The buffer B0
isolates the segments in the model and has no delay.

(a) Using the segment model given to model the bus between
each module, build a model of a 4-bit bus interconnecting three
modules.

(b) Place the bit patterns 0101 1010 successively onto the bus
at the source. Draw a detailed timing diagram showing the prop-
agation of the wave front down the bus. That is, show how
the signals appear, in time, at the outputs of buffers B1–B3 on
each of the respective modules. Make certain that you take into
account the variation in delay through each of the module buffers
B1–B3.
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Chapter 3

The Hardware Side – Part 3:
Storage Elements and Finite-State
Machines – A Practical View

THINGS TO LOOK FOR …
• The concepts of state and time in digital systems.
• Formal model for the finite-state machine.
• Design of registers and shift registers.
• Design of counters and dividers.
• Modeling of memory devices and simple finite-state machines in Verilog.
• Real-world behavior of memory devices and finite-state machines.
• Design of clock systems and time bases.
• Use of homing sequences, scan path, and boundary scan to test FSMs.

3.1 INTRODUCTION

Chapters 1 and 2 introduced the hardware side of an embedded application from a top
down view starting with the computing core and then moving to the opposite end of that
hierarchy with the study of the combinational devices and things to consider when design-
ing real-world applications. This chapter extends that study of practical considerations tosequential circuits finite-

state machines sequential circuits – finite-state machines (FSMs).
The logic devices that we have studied so far are combinational. The outputs of such

circuitry are a function of inputs only; they are valid as long as the inputs are true. If the
inputs change, the outputs change. Computers and other kinds of digital systems need the
ability to store data and information and to perform mathematical or logical operations on
that data. Devices that play a significant role in these tasks are called, in the jargon of the
field, latches and flip-flops.latches, flip-flops

Our discussion in this chapter assumes an understanding of the basic latch and flip-flop
types (R-S, J-K, D) as well as of sequential circuits built from these devices. Thus, our study
of FSMs will focus on several specific applications and on how the real world affects the
behavior of memory devices used in such circuits. We will open with a short review of
the concepts of state and time in digital systems because of the significant role these con-
cepts play in the design and modeling of both the hardware and software components of an

Embedded Systems: A Contemporary Design Tool, Second Edition. James K. Peckol.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/college/peckol
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embedded system. Building on these notions, we will evolve a formal FSM model. We will
then briefly examine basic registers and shift registers, which are fundamental to the register
transfer level (RTL) model of most contemporary computing cores and to error-detecting
and error-correcting systems. Next, we will revisit fundamental counters and dividers and
the critical role they play in the design of clock and time-base subsystems commonly used
in embedded designs. Building on this theoretical basis, we will then examine the effects
of nonideal behavior in real-world applications.

As we did with our studies of combinational circuits, we will conclude with an intro-
duction to testing sequential circuits. Many of these techniques will subsequently be applied
in our studies of debugging embedded designs in Chapter 10. Because they are built around
memory devices, sequential systems are significantly more complex to test than combi-
national circuitry. Their behavior is time dependent and governed by the values of their
input signals and the order in which they appear. Compounding the test problem in FSMs
is the inherent cyclic nature of such systems. We will introduce and study several different
methods for attacking the problems unique to sequential circuitry.

3.2 THE CONCEPTS OF STATE AND TIME

We begin the discussion of finite-state systems by examining the concepts of time and state.

3.2.1 Time

A combinational logic system has no notion of time or history. The present (static) output
does not depend in any way on how the output values were achieved. Neglecting delays
through the system, we find that the output is immediate and a direct function of the current
input set. In contrast, the current output of a finite-state system depends both on the path
the system took to reach the current state and, potentially, the present values of the input
set. Time is an integral part of the behavior of such systems.

3.2.2 State

In an analog circuit, we define branch and mesh currents and branch or node voltages. The
values these variables assume over time characterize the behavior of that circuit. If we know
the values of the specified variables over time, we know the behavior of the circuit.

Such variables are called state variables. We define the state of a system at any timestate variables,
state of a system as a set of values for such variables; each set of values represents a unique state. Figure 3.1

illustrates a collection of example states. When the value of any variable changes, the state
of system changes.

1

initial

final
2 coins

light

red
Figure 3.1 A Collection of States
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3.2.3 State Changes

In traditional logic, a simple memory device, represented by a single variable, has two
states, binary 0 and binary 1. The device will remain in the state until changed. For a set of
state variables, the state changes with time are called the behavior of a system. For simplebehavior of a system
systems, one can exhaustively name each state. For more complex systems, some form of
algorithm or formula is often more efficient.

3.3 THE STATE DIAGRAM

In the embedded world, the state diagram, or more formally a graph, is one means usedstate diagram, graph
to capture, describe, and specify the behavior of a system. In a state diagram, each state is
represented by a circle, node, or vertex. We label each node to identify the state. The labelnode, vertex
should be simple and descriptive. A memory device has two states – its output is a logical 1
or a logical 0; thus, to express its behavior we will need two nodes as shown in Figure 3.2.

We show the transition between two states using a labeled directed line or arrow called
an arc (or edge in graph theoretic language), as illustrated in Figure 3.3. Because the line
has a direction, the state diagram is referred to as a directed graph. The head or point of the
arrow identifies the final state, and the tail or back of the arrow identifies the initial state.
Special arcs, such as the one labeled initial, reflect an external, overriding asynchronous

arc, edge
directed graph, head

final state, tail
initial state

event, such as a reset, which places the system into a designated state, here state a.

1

0

Figure 3.2 States of a
Digital Memory Device

state b

state a

[inputs] / [outputs]

[inputs] / [outputs]

Figure 3.3 Transitions between States in a
Digital Memory Device

Because the graph can contain cycles, it is further qualified as a cyclic graph. The label oncyclic graph
each identifies what caused the change and the output(s) of system, if appropriate.

We can use a state diagram such as that in Figure 3.4 to describe an evening’s entertainment.EXAMPLE 3.1
The diagram graphically expresses the same behavior that is described textually in

Figure 3.5.

asleep

awake

boring evententer

room

fall off chair

Figure 3.4 An Example State Diagram

enter room

If in state awake 

Input boring event 

Change to state asleep

else if state asleep 

Input fall off chair 

Change to state awake 

Figure 3.5 Textual Description of the
Behavior Expressed in the State Diagram
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In the embedded world, the state diagram is a very powerful tool for specifying and
modeling the behavior of many different kinds of hardware and software systems from
a high level, abstract point of view and, as the design progresses, from a detailed point
of view.

3.4 FINITE-STATE MACHINES – A THEORETICAL MODEL

We can (in theory) express the behavior of an arbitrarily complex digital system using a state
diagram. The diagram captures the states, the system inputs and outputs, and the transitions
among those states in response to the inputs. Extensions to the basic diagram, such as weUnified Modeling

Language(UML) find in hardware/software co-design tools or the Unified Modeling Language (UML) state
charts, support a rich set of system-modeling capabilities.

A sequential circuit, or more formally, a finite-state machine, is the means by which wefinite-state machine
ultimately transform the behavior expressed in the state diagram into a hardware and/or soft-
ware implementation. Such circuits also form the basis for the sophisticated computation
and control algorithms that one finds at the core of most modern digital systems.

A hardware implementation of such machines can be affected utilizing:

• Large-scale integrated (LSI) or very large-scale integrated (VLSI).

• Arrayed logic.

• Programmable logic devices (PLDs) or (complex) programmable logic devices
(CPLDs).

• Read only memory (ROMs).

• Discrete logic.

A software implementation will typically appear as the firmware that executes on any
of the various pieces of hardware.

Simple FSMs as shown in Figure 3.6 have no inputs other than a clock and have only
primitive outputs (we generally don’t show the clock). Such machines are referred to as
autonomous clocks. As we move to more complex designs, we will introduce inputs asautonomous clocks
well as more sophisticated outputs. A high-level block diagram for a FSM begins with the
diagram in Figure 3.7.

Outputs
Finite-State

Machine

Figure 3.6 An Autonomous Clock

Finite-State
Machine

OutputsInputs

Figure 3.7 A High-Level Block Diagram for a
Finite-State Machine

The outputs shown in the diagram may be the values of the state variables (as they will be
in counting-type designs), combinations of the state variables, or combinations of the state
variables and the inputs.
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Refining the level of detail, the block diagram for the state machine appears as shown
in Figure 3.8.

Inputs Outputs

State Variables
Finite-State

Machine

Figure 3.8 A High-Level Block Diagram for a Finite-State
Machine

We see first that the signals out of the FSM decompose into two sets: state variables and
outputs. Observe that the state variables are fed back as inputs to the system. The diagram

state variables,
outputs

illustrates the essence of the strength of the machine. It has the ability to recognize the state
that it is in and then to react based on the values of the state variables and (potentially) to
the inputs to the system. The decision as to which state to go to next is determined from
the current input and the state that the machine is currently in. The present state of a FSM
inherently encodes the history of the path taken to get there.

If we continue increasing the level of detail in the model, we now include the storage
elements comprising the machine and the combinational logic that implements the out-
put functionality and the input equations to the storage elements. The block diagram now
becomes that in Figure 3.9.

X0

Xn−1

Z0

Zm−1

Y0(t)

Yp−1(t)

Y0(t+1)

Yp−1(t+1)

Combinational

Logic

Memory

Device

Memory

Device

Figure 3.9 A High-Level Block
Diagram for a Finite-State Machine

The model has n inputs, m outputs, and p state variables. A memory device is associ-
ated with each state variable, and each state variable is associated with a memory device.

n inputs, m outputs,
p state variables

At this point no particular type of memory device is specified.
Working from this block diagram, we can begin to formalize our model of the FSM.

That model must reflect the inputs, outputs (which may be a function of the inputs and the
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state variables or the state variables alone), the state variables, and the movement between
states.

We specify the set of variables Xi to represent the n inputs to the system; Zj to represent
the m outputs from the system; and Yk to represent the p internal state variables. We define
our FSM as a quintuple.

M = (I, O, S, 𝜆, 𝛿)
I - Finite nonempty set or vector of inputs
O - Finite nonempty set or vector of outputs
S - Finite nonempty set or vector of states
𝛿 - Mapping I x S → S
𝜆1 - Mapping I x S → O - Mealy Machine
𝜆2 - Mapping S → O - Moore Machine

The operator in the mappings 𝛿 and 𝜆1 is the Cartesian or cross product. The CartesianCartesian,
cross product product of two vectors gives a matrix of all possible pairs among the element’s two vectors.

To reflect the different ways of expressing the output of such a machine, we define the
Mealy and Moore machines.

Mealy machine - 𝜆1
The output is a function of the present state and inputs

Moore machine - 𝜆2
The output function of the present state only

In the next several sections, we will review two practical implementations of the theo-
retical FSM model. We will begin with the basic register and then examine several different
counting/dividing circuits.

3.5 DESIGNING FINITE–STATE MACHINES – PART 1: REGISTERS

A single latch or flip-flop can store a single bit of information – a single logical 1 or logical
0. A collection of such devices, treated as a single entity, is called a register. We encounteredregister
such devices in our earlier studies of the microprocessor datapath.

3.5.1 Storage Registers

Registers are used to hold data; they form one small component of the memory system in a
microprocessor. Often they are used for temporary storage of frequently used values such
as a control variable in a for or while loop. No restrictions are placed on the size (numberfor, while
of flip-flops or latches) of a register. However, it is common practice to design binary-sized
groups: 4-, 8-, 16-, or 32-bit registers. The size of a register is often more appropriately
called its width. The devices comprising a registerwidth

• Have a common clock or gate.
• May have common reset (and preset).
• Work as a single unit.

Common parlance refers to the device as a latch if it consists of gated latches and a
register if the member devices are flip-flops. The logic diagram in Figure 3.10 illustrates alatch,

register 4-bit latch and a similar-sized register.
Any values placed on the inputs to the device are clocked or gated to the outputs. With

a simple inversion, the sense of gate or clock can be modified. The register is sometimes
implemented with a common reset signal as well. The important point here is that the set
of devices comprising the part are treated as a group.
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3.5.2 Shift Registers

Like the basic register, a shift register is a collection of flip-flops that can store data. Theshift register
shift register has the additional capability of shifting the stored data to the left or to the right.
As with the basic register, it is common practice to design the shift register in binary-sized
groups. The devices comprising a shift register

• Have a common clock to effect the shift operation.

• May have a common reset.

• Work as a single unit.

Why don’t we use gated latches as the building block for a shift register?

G

G

G

G

D Q

D Q

4 Bit D Latch 4 Bit D Register

D Q

D Q D Q

D Q

Figure 3.10 The Basic Latch and Register

3.5.2.1 Shift Right Shift Register

Four D flip-flops in the configuration shown in Figure 3.11 implement a 4-bit shift right
shift register and illustrate the basic architecture for the family of devices.

4-bit shift right
shift register
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D Q D Q D Q D Q

Clock

Data In

A B C D

Data Out

Figure 3.11 A 4-Bit Shift Register

Assume that the initial state of all devices is logical 0. At time t0 we put a logical 1 on
the data input and issue one clock pulse. The state of the flip-flops is given in Figure 3.12.

Time Data QA QB QC QD

t0 1 0 0 0 0

t1 0 1 0 0 0 Figure 3.12 Shift Register Following One Clock
Pulse

After the clock pulse, the input data bit has been stored into the first flip-flop.
At time t1 we put a 0 on the data input and issue another clock pulse. The state of the

flip-flops now appears as in Figure 3.13.

Time Data QA QB QC QD

t0 1 0 0 0 0

t1 0 1 0 0 0

t2 0 0 1 0 0 Figure 3.13 Shift Register Following Two
Clock Pulses

After the clock pulse, a logical 0 has been stored into the first flip-flop and the logical
1 from the first flip-flop has moved to the second.

At time t2, we leave the 0 on the data input and issue another clock pulse. The state of
the flip-flops is given in Figure 3.14.

Time Data QA QB QC QD

t0 1 0 0 0 0

t1 0 1 0 0 0

t2 0 0 1 0 0

t3 0 0 0 1 0 Figure 3.14 Shift Register Following Three
Clock Pulses

After the clock pulse, a logical 0 has propagated to the second flip-flop. The logical 1
from the second flip-flop has moved to the third.
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At time t3, we leave the 0 on the data input and issue another clock pulse. The state of
the flip-flops appears as shown in Figure 3.15.

Time Data QA QB QC QD

t0 1 0 0 0 0

t1 0 1 0 0 0

t2 0 0 1 0 0

t3 0 0 0 1 0

t4 0 0 0 0 1 Figure 3.15 Shift Register Following Four
Clock Pulses

After the clock pulse, a logical 0 has propagated to the third flip-flop. The logical 1
from the third flip-flop has now moved to the fourth. With each clock pulse, the stored data
is shifted one position to the right and the new data bit is entered into the first flip-flop.
Data entered into the device will appear on the output after N clock pulses. The output
stream is thus a delayed version of the input stream, making it an effective tool whenever
an embedded application requires a well-controlled delay.

Based on these observations, two equations formalizing behavior of the device can be
written:

For the 0th flip flop, D0 = data

For the ith D flip flop Di =mQi–1

The design implements a right shift by one 4-bit shift register.
right shift by one 4-bit

shift register
The Verilog model for such a device is given in the following code modules. We begin

with the RTL model, given in Figure 3.16.

// RTL Model - Four Bit Shift Right Shift Register

module ShiftRegister4(dataOut, dataIn, clk, por);

// declare the inputs and outputs

input dataIn, clk, por;

output dataOut;

reg [3:0] data;      // implements the shift register

reg dataOut;

// build the shift register

always@ (negedge por or posedge clk)

begin

// reset the register

if(por==0)

begin

data<= 4'b0;

assign dataOut = 0;

end

// implement shift operation

else

begin

assign dataOut = data[3];

data <= {data[2:0], dataIn};

end

end

endmodule

Figure 3.16 RTL Implementation for a 4-Bit Shift Right Shift Register
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The design implements a master reset called POR – Power On Reset. Such a reset isPOR – Power On Reset
essential in any embedded application to ensure that the system will always start in a known
state; typically, that state is the all-0’s condition. The most significant bit, D3 or data[3], is
on the right. Data enters on the left.

The RTL implementation utilizes a Verilog array-type data structure to express the
functionality. The structural implementation for the design is given in the code module in
Figure 3.17.

module DFF(q, qBar, D, clk, rst);

input D, clk, rst;

output q, qBar;

parameter delay0 = 2;    // delay reset to q

parameter delay1 = 3;    // delay clock to q

parameter delay2 = 2;    // delay for qBar with respect to q

reg q;

not #delay2 n1 (qBar, q);

always@ (negedge rst or posedge clk)

begin

if(rst==0)

#delay0 q = 0;

else

#delay1 q = D;

end

endmodule

// Structural Model - Four Bit Shift Right Shift Register

module ShiftRegister4(dataOut, dataIn, clk, por);

// declare the inputs and outputs

input dataIn, clk, por;

output dataOut;

// bulid the shift register

DFF ff3(dataOut, q3Bar, q2, clk, por);

DFF ff2(q2, q2Bar, q1, clk, por);

DFF ff1(q1, q1Bar, q0, clk, por);

DFF ff0(q0, q0Bar, dataIn, clk, por);

endmodule

Figure 3.17 Structural Implementation for a 4-Bit Shift Right Shift
Register

The D flip-flop model is included and has been simplified to only support a reset sig-
nal. The propagation delay parameters are implemented through the underlying flip-flop
implementation rather than in the shift register itself.



�

� �

�

3.5 Designing Finite–State Machines – Part 1: Registers 121

3.5.2.2 Parallel In/Serial Out – Serial In/Parallel Out Left Shift Registers

The shift register is also a convenient means for converting between serial and parallel data.
The first diagram, in Figure 3.18, implements a simple 4-bit serial to parallel converter.

D Q D Q D Q D Q

Clock

Data

A B C D

QA
QB QC QD

Figure 3.18 4-Bit Serial In/Parallel Out Shift Register

A 4-bit word is entered into the shift register, in serial, through the input labeled Data.Data
After four clock pulses, the word appears on the four output lines labeled D3–D0.

One common extension to the basic design is to use a tristate buffer on the outputs to
permit the outputs of several such devices to be multiplexed onto a common bus.

As implemented, one must count the number of bits entered to ensure that the register
is not overrun. The addition of one flip-flop to incorporate a marker bit into the design can
provide an alternate approach, as illustrated in Figure 3.19.

D Q D Q D QData

D2D3 D1

QQQ

D Q

D0

QD3 D2 D1 D0

D Q

Q

Reset

Clock

S

R R R R

Complete

Figure 3.19 4-Bit Serial In/Parallel Out Shift Register with a Marker Bit

Prior to entering the data word, the Reset input is asserted. Following the reset, the 0thReset
stage is in the logical 1 state and all others are at logical 0’s. After four shifts, the logical 1
is in the last state, and the Complete signal is now asserted.Complete

Implementing a parallel in/serial out shift register entails adding a two-to-one multi-
plexer on the input of each stage and a selector control input to select between loading and
shifting. Such a design is presented in Figure 3.20.
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D Q

Clock

Data In

A

Data Out

D Q

B

1

0

1

0

D Q

A

D Q

B

1

0

1

0

Select

DB0 DB1 DB2 DB3

Figure 3.20 4-Bit Parallel In/Serial Out Shift Register

When the Select input is in the logical 1 state, the circuit acts like a 4-bit shift rightSelect
shift register. When it is in the logical 0 state, the parallel input data can be stored on the
next clock rising edge.

3.5.3 Linear Feedback Shift Registers

A linear feedback shift register (LFSR) finds wide application in any embedded applica-
tions that utilize pseudorandom sequences. Such applications include random noise gener-
ation, the development of “random” vectors in test systems, encoding and encryption, or
wireless telecommunication systems utilizing code division multiple access (CDMA) or
spread spectrum techniques.

One cannot generate truly random numbers using a FSM. The finite number of states
ensures that any path through the sequence of states must eventually repeat. The best that
can be expected is that the period of the machine is “very long”; thus, such a machine is
called pseudorandom. The upper limit to the length of any such sequence is given by 2n−1,pseudorandom
where n is the number of flip-flops in the shift register. Such a sequence is called a maximal
length sequence and the producing shift register configuration is described as a maximalmaximal length sequence

maximal length shift register length shift register. The upper bound is not 2n as one might expect with n stages because
the all-0 state is not permitted. Once the generator enters the all-0 state, it will not be able
to exit. Because of their application to noise generation, maximal length LFSR sequencespseudonoise sequences,

PN sequences
linear feedback shift register

(LFSR)

are often termed pseudonoise sequences or PN sequences.
The high-level block diagram for such a design is called a LFSR and is given in

Figure 3.21.

Feedback
Logic

0

N-Bit Shift Register

clock

Output

n−1

Input

Figure 3.21 A block Diagram for a
Linear Feedback Shift Register
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A subset of the outputs from the shift register are fed back as input data according to
the polynomial given in Eq. (3.1).

input = v0 + v1X + v2X2 + … + vn−1Xn−1 (3.1)

vi = 0 or 1

+ implemented as an exclusive OR

Xi represents the flip-flop outputs

The length of the generated sequence, appearing on the output as a series of 0’s and 1’s,
is determined by the starting value in the shift register and by which outputs are fed back as
specified by the values for the vi. The generator will produce a maximal length sequence if
the connection polynomial is irreducible; that is, it cannot be factored. Such a polynomial
is called a primitive polynomial. Eq. (3.2) expresses one such polynomial.primitive polynomial

input = 1 + X + X4 (3.2)

The structural Verilog model for the design of the LFSR is given in the code module
in Figure 3.22.

module LFShiftRegister4(q3, q2, q1, q0, feedBack, clk, por);

// declare the inputs and outputs

input    clk, por;

output    q3, q2, q1, q0, feedBack;

reg    pullUp;

initial

pullUp = 1;.

xor    xr0 (feedBack, q2, q3);

// bulid the shift register

DFF    ff3(q3, q3Bar, q2, clk, por, pullUp);

DFF    ff2(q2, q2Bar, q1, clk, por, pullUp);

DFF    ff1(q1, q1Bar, q0, clk, por, pullUp);

DFF    ff0(q0, q0Bar, feedBack, clk, por, pullUp);

endmodule

Figure 3.22 Structural Verilog Code Module for a Linear
Feedback Shift Register

The D flip-flop used in the implementation has both an asynchronous set and an asyn-
chronous reset input. Since only the reset input is used, the set input must be defined; that
is, it cannot be left floating. The variable pullUp serves that purpose.

set
reset

pullUp
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An LFSR configured according to the given polynomial is illustrated in Figure 3.23.

D Q D Q D Qinput

A B C

Clock

QQQ

D Q

C Q

X1X2X3X4

Output

Reset

+Vcc

pullUp

Figure 3.23 A Linear Feedback Shift Register Implemented According to Eq. (3.2)

3.6 DESIGNING FINITE-STATE MACHINES – PART 2: COUNTING AND DIVIDING

Sequential machines and finite-state automata form the theoretical models of computation
on which we base most of the computation and control capability found in modern digi-
tal systems. Counting and dividing are essential tasks in a wide variety of contemporary
embedded applications. The designs implementing such capability represent some of the
simpler sequential machines we will encounter. We find such capability supported inside of
the microprocessor through a number of user programmable counters/timers and outside of
the microprocessor with the implementation of specialized medium-scale integrated (MSI)
or LSI timing and counting functions.

We employ counters to accumulate events, count bits, or determine when or if a speci-
fied number of events has occurred. We use timers (a simple variant on a counter) to measure
elapsed time between events in an application or to delay an operation for a specified time
after an event. Dividers are used primarily to develop a lower from a higher frequency.

In the ensuing discussions, we will base most designs on the D flip-flop simply because
it finds common application in most of the implementation mediums: VLSI, field pro-
grammable gate arrays (FPGAs), CPLDs. It is attractive because it is easy to implement
and because it presents a very small footprint in integrated implementations.

3.6.1 Dividers

Dividers find frequent application in designs where we must produce a lower frequency
signal from a higher one.

3.6.1.1 Divide by Two

The simplest such circuit accepts an input frequency and produces one-half of the frequency
as output. The implementation of a divide by two circuit is rather straightforward, as we see
in Figure 3.24. We begin with a D flip-flop and connect the Q output back to the D input.
From the truth table for the flip-flop we see that it will alternate between states if configured
as shown and then clocked.
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D Q

Q

Clock

D

0

1

Qn+1

0

1 Figure 3.24 A Divide by Two Divider

Neglecting delays, the output of the device will appear as in the timing diagram given
in Figure 3.25.

clock

D

Q

Q

t0 t1 t2 t3 t4

Figure 3.25 Timing Diagram for a Divide by Two Divider

On each rising edge of the clock, the flip-flop changes state. At each such occurrence,
the new state of the Q output is fed back into the input of the flip-flop and will thus affect
the value of the next state via the D input. After several cycles of the clock, it is clearly
evident that the frequency of the signal at the Q output is one-half that of the clock. The
input frequency has been divided by two.

3.6.2 Asynchronous Dividers and Counters

Let’s extend the circuit as shown in Figure 3.26. The second flip-flop, B, is clocked by the
Q output of the first flip-flop, A. When the Q output of A changes state from logical 1 to

D Q

Q

Clock

D Q

Q

A B

A B

Figure 3.26 Logic Diagram for a Divide by Four Divider



�

� �

�

126 Chapter 3 The Hardware Side – Part 3: Storage Elements and Finite-State Machines – A Practical View

logical 0, the Q output will change state from logical 0 to logical 1. On such a transition,
flip-flop B will change state. Thus, B will be clocked every other time A changes state, or
at one-fourth the frequency of the clock.

Observe how we label the output signals on the flip-flops. The timing diagram is now
given as seen in Figure 3.27.

clock

B

A

A

t0 t1 t2 t3 t4

Figure 3.27 Timing Diagram for a Divide by Four Divider

The circuit is called by several names. It is called a divide by four circuit because the
output is one-fourth of the input frequency. It is qualified as an asynchronous divide by fourdivide by four

asynchronous divide by four circuit because the two flip-flops are not clocked by the same signal. Based on the sequence
of states through which the circuit transitions, {B, A = 00, 01, 10, 11}, the circuit is also
referred to as an asynchronous, 2-bit, binary up counter. It is counting up from the initial
state of 00, and the counting sequence is in binary.asynchronous, 2-bit

binary up counter The state diagram and state table for the circuit are given in Figure 3.28.

Present State

t = tn

Next State

t = tn+1

  AB  AB

0 0 0 0 11

1 0 1 1 02

2 1 0 1 13

3 1 1 0 00

0

1

2

3

Figure 3.28 State Diagram and State Table for a Divide by Four Divider

The edges in the state diagram are not labeled because there is no input signal causing
the state change (other than the clock, which is not shown). The nodes or states are labeled
to reflect the binary value of the two state variables, A and B. The left-hand column, labeled
Present State, illustrates successive current states, and the right-hand column, labeled NextPresent State, Next

State State, identifies the successor or next states – the state the system will be in at the next
time tick.

Observe that because of the way logic drawings are commonly presented with the sig-
nal flow from left to right and top to bottom, the least significant bit of the counter appears
on the left-hand side – little endian notation.

Configured as it is, flip-flop B cannot change state until after flip-flop A changes. As
long as all we are doing is dividing, we have no problem. If many such stages are cas-
caded, we will encounter significant delay as each stage changes state, much like so many



�

� �

�

3.6 Designing Finite-State Machines – Part 2: Counting and Dividing 127

dominoes falling over. Like the series of dominoes, the last stage cannot change state until
all preceding stages have changed. Such a design is called asynchronous because the clock-asynchronous
ing of successive stages is not synchronized to a master clock. It is also called a ripple
counter because a change in the first stage ripples through the intermediate stages, eventu-ripple counter
ally reaching the last. We cannot decode any of the state variable patterns without running
the serious risk of both static and dynamic hazards.

To see the significance of the effects of delay, assume that each device has a clock to
Q propagation delay of m time units. Let the first flip-flop be clocked at time t0.

• The first stage output will appear at time t = t0 +m.

• The second stage output will appear m time units after the output of the first or
at t = t0 + 2 m.

• For n stages, the final output will appear at t = t0 + 2mn worst case.

• Let m have a value of 10 ns.

• The output of the last stage of a 10-stage ripple counter, for example, will
change states 200 ns after the initial clock edge.

The previous analysis illustrates why ripple counters typically do not find wide applica-
tion as general-purpose counters or timers. They can, however, be very effective for dividing
a higher frequency signal down to a lower one.

Caution: Decoding combinations of the state variables in a ripple counter can (and will)
potentially lead to both static and dynamic hazards on the outputs of any combinational
network. Such a practice is best avoided.

3.6.3 Synchronous Dividers and Counters

Synchronous design is the preferred choice for a counter or timer. All stages are synchro-synchronous
nized to a common clock. Each flip-flop output signal changes at approximately the same
time. The state diagram and state tables will remain unchanged.

Working with the characteristic equation and truth table for the D flip-flop and the state
table for the counter, we can develop the D input equations for the two flip-flops. From the
definition of the D flip-flop, as expressed by either the truth table or characteristic equation,
we conclude that for the state of the device to be a logical 1 at time tn+1, the D input must
be a logical 1 at time tn; otherwise the state will be a logical 0. The state table for the 2-bit
binary up counter is repeated in Figure 3.29 for convenience.

Present State

t = tn

Next State

t = tn+1

      B  A      B  A

0    0  0 1    0  1

1    0  1 2    1  0

2    1  0 3    1  1

3    1  1 0    0  0 Figure 3.29 State Table for a 2-Bit Binary Up
Counter
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From the specified state table, we determine that

• From state 0, the counter must transition to state 1. In doing so, flip-flop A must
change state from logical 0 to logical 1; flip-flop B must remain unchanged. Therefore,
DA must be a logical 1.

• From state 1, the counter must transition to state 2. In doing so, flip-flop A must
change state from logical 1 to logical 0 and flip-flop B must change state from logical
0 to logical 1. Thus, DA must be a logical 0 and DB must be a logical 1.

• From state 2, the counter must transition to state 3. In doing so, flip-flop A must
change state from logical 0 to logical 1; flip-flop B must not change state. Thus, DA
and DB must both be a logical 1.

• Finally, from state 3, the counter must transition to state 0. Both flip-flops must tran-
sition to logical 0; both D inputs must be logical 0.

We conclude that DA must then be a logical 1 in states 0 and 2 and DB must be a logical
1 in states 1 and 2. The following D input equations result.

DA = A • B + A • B

= A (3.3)

DB = A • B + A • B

= A ⊕ B (3.4)

The logic diagram follows in Figure 3.30.

D Q

Q

Clock

D Q

Q

A
B

A B

Figure 3.30 Logic Diagram for a Synchronous 2-Bit Binary Up Counter

3.6.4 Johnson Counters

Johnson counters are an interesting and useful subset of counters. They find significant util-Johnson counters
ity in designing time bases for embedded applications as well as for other digital systems.
Their design is based on a classic shift register, with the Q output of the last stage fed back
as the data input to the first stage.
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3.6.4.1 Two-Stage Johnson Counter

The two-stage or 2-bit Johnson counter executes the state table and has the state diagram
given in Figure 3.31.

Present State

t = tn

Next State

t = tn+1

A B A B

0 0 0 1 1 0
2 1 1
3 0 1

1 1 0
2 1 1
3 0 1 0 0 0

0

1

2

3

0 0

1 0

1 1

0 1

POR

Figure 3.31 State Diagram and State Table for a 2-Bit Johnson Counter

The structural Verilog model for the design is given in the code module in Figure 3.32.
Based on the Verilog code, the logic diagram is given in Figure 3.33.

module JohnsonCounter(qF1, qF0, clk, por);

input    clk, por;

output qF1, qF0;

reg    pullUp;

initial 

pullUp = 1;

  // Build the counter

DFF f1(qF1, qBarF1, qF0, clk, pullUp, por);

DFF f0(qF0, qBarF0, qBarF1, clk, pullUp, por);

endmodule

Figure 3.32 Verilog Code Module for a 2-Bit
Johnson Counter

D Q D Q

A B

Clock

A

Q

B

Q

+Vcc

pullUp

Reset

Figure 3.33 Logic Diagram for a 2-Bit Johnson Counter

The timing diagram for the counter is given in Figure 3.34.

clock

B

A

t0 t1 t2 t3 t4

Figure 3.34 Timing Diagram for a 2-Bit Johnson Counter
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Observe the following key points about the two-stage or 2-bit Johnson counter.

• The states change in a Gray sequence – there is only a single variable change
between successive states.

• Because the count sequence is Gray, any state can be decoded, using combina-
tional logic, and there will never be any race conditions or hazards (decoding
spikes).

• With two state variables, there are 22 combinations; all are used in the count
sequence.

3.6.4.2 Three- or Greater Stage Johnson Counter

The three-stage Johnson counter has the state diagram and executes the state table shown
in Figure 3.35. Those with more than three stages simply extend the pattern.

Present State

t = tn

Next State

t = tn+1

A B C A B C

0 0 0 0 1 1 0 0

1 1 0 0 12

3

1 0

2 1 1 0 1 1 1

41 1 1 0 1 1

1

3

4 0 1 1 5 0 0

00 0 1 0 0 05

000

4

2

3

5

0 1

100

111

110

011

001

6

7

101

010

POR

Figure 3.35 State Diagram and State Table for a 3-Bit Johnson Counter

The state table for the three-stage Johnson counter has two distinct components; this is
also seen in the state diagram or graph, which is made up of two disconnected subgraphs.
The desired state diagram subgraph is given on the left. However, if the counter ever enters
the second-state subgraph shown on the right because of noise in the system or some other
external causes, it cannot exit. It is stuck.

Such a situation is not acceptable from either a reliability or a safety point of view. The
problem must be corrected. Such a correction can be implemented by specifying the inputs
to each of the D flip-flops so as to ensure that the system returns to a valid state within
the count sequence. Possible solutions will be explored as an exercise at the end of the
chapter.

Observe the key points in Figure 3.36 about Johnson counters with more than two
stages.
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• The states change in a Gray sequence—there is only a single variable change between successive states. 

• Because the count sequence is Gray, any state can be decoded, using combinational logic, and there will never be 

any hazards (decoding spikes).

• With n stages or state variables, there are 2n combinations; however, not all are used in the count sequence.

• The period of any Johnson counter is 2n; the remaining 2n –2n states form a disconnected subgraph of illegal 

states. These must be identified and managed.

Figure 3.36 Designing a Multistage Johnson Counter

3.7 PRACTICAL CONSIDERATIONS – PART 1: TIMING IN LATCHES AND FLIP-FLOPS

For combinational logic devices, the major timing concerns focused on the delay of sig-
nals propagating through the devices. The timing relationship between the input data and
the gate in latches and the clock in flip-flops introduces the notions of setup time and
hold time.

setup time,
hold time

Setup time specifies how long input signals must be present and stable before the gate
or clock changes state. Hold time specifies how long an input signal must remain stable (i.e.
cannot be changed) after a specified gate or clock has changed state.

3.7.1 Gated Latches

The setup and hold time relationships are illustrated in Figure 3.37 for a gated latch that is
enabled by a logical 1 on the Gate. The specification for the times is given at the 50% pointGate
of each signal.

The setup and hold times permit incoming signals to propagate through any input logicsetup time, hold time
and to initiate and complete the appropriate state changes for any internal memory elements.
These times are designated as

𝜏setup or 𝜏su and 𝜏hold.

If the setup time constraints are not met – that is, if the input data changes within the
setup window – the behavior of the circuit is undefined. The input may or may not be recog-
nized, or the output may enter a metastable state in which it oscillates for an indeterminate
time, such as we might see in Figure 3.38 as the device’s internal components attempt to
reach a stable state. Such oscillation can persist for several nanoseconds.

setup

hold

Input Data

Gate

Figure 3.37 Setup and Hold Times for a
Gated Latch

Figure 3.38 Typical
Metastable Behavior
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3.7.2 Flip-Flops

The diagram in Figure 3.39 graphically illustrates the setup and hold time relationships forsetup time
hold time a positive edge-triggered flip-flop. The specification for the times is given at the 50% point

of each signal.

setup

holdInput Data

Clock Figure 3.39 Setup and Hold Times for a
Positive Edge Triggered Flip-Flop

The need for and consequences of violating the setup and hold time constraints in the
flip-flop are the same as those for the gated latch.

3.7.3 Propagation Delays

In combinational circuits, propagation delay specifies the interval following a change
in state of an input signal to the device and the effect of that change appearing on the
output of the device. Such an interval is characterized by minimum, typical, and maximumminimum, typical

maximum, causative edge values. In flip-flops, the measurement is made with respect to the causative edge of
the clock.

The timing diagram in Figure 3.40 illustrates the minimum and maximum clock to Q
output propagation delays for a low to high and a high to low transition on the flip-flop
output.

tpdlhmin

tpdlhmax

Clock

Q

Flip-Flop-Clock to Q

tpdhlmin

tpdhlmax

Figure 3.40 Clock to Q Propagation Delays for a Positive Edge
Triggered Flip-Flop

As with combinational logic, the delays are measured at the 50% point, between the
causative and consequent edges of the signals; the two delays are generally not symmetric.

The propagation delay specification for latches is slightly more complex. In addition
to the delay from the causative edge (or level) of the gate, latch transparency requires that
the delay from input to output when the Gate is enabled be specified as well.Gate
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The timing diagram in Figure 3.41 illustrates the delay from the leading edge of the
Gate to the Q output of the device.

Gate

Gated Latch-Gate to Q

tpdlhmin

tpdlhmax

Q

tpdhlmin

tpdhlmax

Input

Figure 3.41 Gate to Q Propagation Delays for a Gated Latch with an
Active High Gate

The delay to the latch Q output resulting from a state change in the input follows
-naturally.

3.7.4 Timing Margin

To study the concept of timing margin, we will analyze the Johnson counter timing in greatertiming margin
detail. The two-stage implementation is redrawn in Figure 3.42 for reference.

A

Clock

A

QB

QDQD

B

Q

Figure 3.42 A Two-Stage Johnson
Counter

If we clock the circuit, we will get the pattern {… 0011001100… } on the output of
either flip-flop. If we continually increase the frequency, the pattern will repeat until at
some frequency it fails. Why? Let’s analyze the timing of the circuit to understand what
and where problems might originate. The essential specifications on the 74ALS74 D-type
flip-flop are given as:

𝜏PDLH = 5 − 16ns

𝜏PDHL = 7 − 18ns

𝜏su = 16ns
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The timing diagram in Figure 3.43 illustrates the clock and the Q output of the A
flip-flop for two changes in the value of the state variable.

clock

A

t0 t1

tsutpdLH

period

slack0

tsutpdHL

slack1

t2 t3

Figure 3.43 Timing Diagram Illustrating Propagation Delays in one Stage
of a Two-Stage Johnson Counter

As discussed earlier, when the setup time is violated, the circuit will not behave as
designed and may behave in unpredictable ways. To understand the circuit timing con-
straints, let’s consider two cases. The foregoing analysis assumes no signal delay caused
by either parasitic devices or the board layout.

CASE 1 Low to High Transition of QA

From the timing diagram:

clock period = 𝜏pdLH + 𝜏su + slack0

In the limit, as slack0 approaches 0, the clock period
approaches a minimum:

clock period = 𝜏pdLH + 𝜏su

Under such a condition and with the minimum value for
𝜏pdLH, the maximum frequency for the counter will be:

Fmax =
1

(5 + 16) × 10−9 sec

= 48 MHz

If 𝜏pdLH, is at its maximum value, the maximum frequency
for the counter will be:

Fmax =
1

(16 + 16) × 10−9 sec

= 31.3 MHz

CASE 2 High to Low Transition of QA

From the timing diagram:

clock period = 𝜏pdLH + 𝜏su + slack1

In the limit, as slack1 approaches 0, the clock period
approaches a minimum:

clock period = 𝜏pdLH + 𝜏su

Under such a condition and with the minimum value for
𝜏pdLH, the maximum frequency for the counter will be:

Fmax =
1

(7 + 16) × 10−9 sec

= 43.5 MHz

If 𝜏pdLH, is at its maximum value, the maximum frequency
for the counter will be:

Fmax =
1

(18 + 16) × 10−9 sec

= 29.4 MHz
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Based upon these calculations, the maximum clock frequency that can be used for the
circuit is 29.4 MHz to ensure reliable operation with any individual SN74ALS74 device.
When designing, one must always consider worst case values and then make an educated
evaluation of how far to carry such analysis. If carried too far, it is possible to prove that no
design will ever work properly.

3.8 PRACTICAL CONSIDERATIONS – PART 2: CLOCKS AND CLOCK DISTRIBUTION

3.8.1 The Source

The clock system or time base in a digital system is an essential component in ensuring
proper operation. For certain hard real-time applications, having the proper time base is
critical to meeting the timing specifications.

Four fundamental parameters should be considered when designing or selecting a clock
system or time base. For the basic clock, these parameters are:

• Frequency and frequency range

• Rise times and fall times

• Stability

• Precision.

3.8.1.1 Frequency

Often we start out with a clock source that is a higher frequency than necessary. We then can
use ripple counters to divide down the higher frequency to a number of lower frequencies.
Remember: because ripple counters are asynchronous, one should never decode any of the
state variable combinations to generate a specific frequency. Decoding spikes will occur
and will have enough energy to clock flip-flops and latches at the wrong times.

Building a higher frequency from a lower one is done using a phase locked loop (PLL).
phase locked loop

(PLL)
The basic block diagram appears as drawn in Figure 3.44.

Filter VCO

Input
Frequency Phase

Detection
Amp

Output
Frequency

Figure 3.44 Block Diagram for a Basic Phase Locked Loop

The feedback signal is the output of a voltage-controlled oscillator (VCO) that is con-
trolled by the output voltage. When the phase difference between the input signal and the

voltage-controlled
oscillator (VCO)

output of the VCO is zero, the system has locked onto the input frequency. The output of
the phase detector will be zero. A difference in phase appears as an error voltage that is
filtered by the low-pass filter shown, amplified, and used to provide an input voltage to the
VCO. The output of the VCO can now serve as the clock to the system time base.
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A scheme to select a fractional portion of a clock signal is called a rate multiplier. Therate multiplier
block diagram for such a circuit is given in Figure 3.45.

Combinational
Logic Output Pulses

N-Bit
Selector

N-Bit Counter
Clock

N-Counter Outputs

Figure 3.45 Block Diagram for an
N-Bit Rate Multiplier

A rate multiplier is simply a combinational logic block combined with an N-bit counter.
The period of the counter will be 2N; that is, the counter will cycle through all of its states
every 2N clock pulses. The N-bit selector also permits 2N combinations. For each of the
2N combinations on the selector input, the device will output that many pulses. Thus, if Nselector
is 4, the counter will be 4 bits and there will be 4 selector lines. If the counter is a binary
counter, and the selector pattern is 0101, binary 5, then for every 16 clock pulses coming
into the counter, there will be 5 output pulses. The output frequency will be 5/16 of the inputoutput
frequency. The design of the rate multiplier is such that the selected number of output pulses
is evenly distributed across the period of the clock, as illustrated in the timing diagram in
Figure 3.46 for a selector pattern of binary 5.

Clock

5/16 Clock

Figure 3.46 Timing Diagram Illustrating the 5/16 Output Frequency for a 4-Bit Binary Rate
Multiplier

If one is using a high-frequency oscillator as the primary clock source in a design but
a portion of the application requires a significantly lower frequency, a ripple counter can
provide a very effective means of developing such a signal. Twelve- to fourteen-stage ripple
counters are commonly found as a single MSI part. By using such a counter, one can easily
divide the high-frequency source by as much as 16 K. When doing so, however, one must
be aware that there will be a substantial skew between the edge of the input signal and the
resulting edge of any of the lower frequency signals coming out of the counter because of
the ripple delay through the device. The application of such a divider is illustrated in the
logic diagram in Figure 3.47. The effect of the edge skew is reflected in the subsequent
timing diagram in Figure 3.47 for an asynchronous binary up counter.

The timing diagram illustrates the propagation delay for the first four stages as the
counter changes from a count of binary 7 to binary 8. Observe that the interstage delay
accumulates as subsequent flip-flops change state. In this example, the change in state
of the third stage is delayed by four propagation delays following the causative event in
the first stage. It doesn’t take too much imagination to visualize the situation in which
the least significant stage may have changed states twice before the nth stage is able
to change.
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Q4 Q5 Q6 Q14

14-stage ripple countero
s
c
ill

a
to

r

Clock

Stage 0

Stage 1

Stage 2

Stage 3

tp d h l

tp d l h

Figure 3.47 Timing Diagram
Illustrating the Accumulation of Delays
in an Asynchronous Ripple Counter

3.8.1.2 Precision and Stability

The simplest kinds of clock sources use resistor and capacitor combinations to set their
output frequency. Although such devices may be perfectly reasonable for controlling wind-
shield wipers or a door bell, they should never be used in critical hard real-time applications.
Capacitors have wide tolerances and are subject to humidity, brownout, or low-voltage lev-
els, as well as a number of environmental effects.

Crystal-based sources are generally the best solution for stable and accurate timing
signals. When using such devices, one can start either with the basic crystal and then design
the analog electronics necessary to implement the desired oscillator or buy a prepackaged
oscillator. Each crystal or oscillator has different stability and accuracy specifications. If the
application demands greater accuracy and stability than are available with standard devices,
the next step is to use temperature-compensated designs. Such sources utilize a small heater
to minimize the effects of temperature variation of the oscillator.

3.8.2 Designing a Clock System

3.8.2.1 Single-Phase Clocks

A single-phase clock should start with the crystal oscillator. Such an approach gives stability
and repeatability to any clocking and timing that need to be in the embedded application.

Variations on the circuit in Figure 3.48 should never be used.

Figure 3.48 A Simple Clock Generator

The design is trying to do a digital job with analog parts. Adding the R and C as shown
can significantly affect the rise and fall times of the input signals to the buffer. As the
transition times increase, so does the probability of the circuit becoming metastable.
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3.8.2.2 Multiple-Phase Clocks

Contemporary digital systems frequently require more precise resolution in time than can
be achieved with a single-phase clock. Consider the basic clock waveform in Figure 3.49.

clock

t0 t1 t2

1a
4a

3a

2a 1b
4b

3b

2b

Figure 3.49 Decision Points in a Basic Clock Waveform

A decision can be made in four places within a single clock period:

1. The rising edge

2. The falling edge

3. The high level

4. The low level

One cannot tell the difference in time between the edge at 1a and that at 1b. The best
resolution we have is a half period.

The simplest multiple-phase clock generator is given in Figure 3.50. The circuit gener-
ates two nonoverlapping clock signals as output. The structural Verilog model for the clock
generator is given in the code module in Figure 3.51.

D Q

A

P0

Q

P1

P2

Figure 3.50 A Basic Two-Phase Clock Generator

module ClockTwoPhase(phase2, phase1, clk, por);

// declare inputs and outputs

input      clk, por;

output    phase2, phase1;

reg    pullUp;

initial 

pullUp = 1;

// build clock

not inv0(nclk, clk);

DFF f0(qF0, qBarF0, qBarF0, nclk, pullUp, por);

and andP1(phase1, qF0, clk);

and andP2(phase2, qBarF0, clk);

endmodule

Figure 3.51 A Structural Verilog Code Module for the
Two-Phase Clock Generator
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The timing diagram for the generator is given in Figure 3.52.

P0

t0 t1 t2 t3 t4

P1

P2

P0

Q

Figure 3.52 Timing Diagram for the Two-Phase Clock Generator

We can now see that over a two clock-cycle interval, we have eight different places
that a logical decision can be made. Furthermore, the edge at t0 is distinguishable from
the edge at t1; the same holds true for the remaining edges and levels along the two
phases.

Using such a scheme, we can now use P2 as a causative edge and P1 as a sampling
edge for example. P2 will affect an event or state change. The interval between P2 and P1
should be sufficient for all changing and propagating signals to settle before they are acted
upon by the logic clocked by P1.

Although the circuit contains a race as illustrated in the logic diagram in Figure 3.53,
the race is biased toward path2 so that there can never be a decoding spike on either of the
two AND gates generating P1 and P2.

A

P0

Q

D Q
P1

P2

path2

path1

Figure 3.53 Critical Timing Paths in the Two-Phase Clock
Generator

Another effective and flexible way to produce a multiple-clock phase time base is to
use a Johnson counter. The two-stage counter is repeated and extended in the logic diagram
shown in Figure 3.54. By decoding each of the four states in the counting sequence, we can
generate four different phased clocks as we see in the figure.
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D Q D Q

P0

A

Q

B

Q

A A B B

BA

P1

P2

P3

P4

BA

Figure 3.54 Logic Diagram of a Four-Phase Clock Generator Using a
Johnson Counter

The structural Verilog model follows in Figure 3.55.

module ClockFourPhase(phase4, phase3, phase2, phase1, clk, por);

// declare inputs and outputs

input      clk, por;

output    phase4, phase3, phase2, phase1;

reg    pullUp;

initial 

pullUp = 1;

// build clock

not inv0(nclk, clk);

DFF f0(qF0, qBarF0, qBarF1, nclk, pullUp, por);

DFF f1(qF1, qBarF1, qF0, nclk, pullUp, por);

// build the four phases

and andP1(phase1, qBarF0, qBarF1);

and andP2(phase2, qF0, qBarF1);

and andP3(phase3, qF0, qF1);

and andP4(phase4, qBarF0, qF1);

endmodule

Figure 3.55 Structural Verilog Code Module for a Four-Phase
Clock Generator Using a Johnson Counter
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The timing diagram in Figure 3.56 illustrates the four different clock phases.

B

A

t0 t1 t2 t3 t4

P0

P1

P2

P3

P4

Figure 3.56 Timing Diagram for a Four-Phase Clock Generator Using a Johnson
Counter

By incorporating additional phases, we have increased our control over the placement
or sampling of events in time.

3.8.2.3 More Than Four Phases

Expanding the time base beyond four phases, we can continue to build on the Johnson
counter. If such a design is utilized, the disconnected subgraph for each case will have to
be managed. An alternative approach is to utilize a delay-based scheme such as a tapped
delay line. The advantage of such an approach is that one can use a lower frequency clock.
The Johnson counter used in the previous design requires a base clock that has a frequency
that is four times the frequency of the phases.

3.8.2.4 Multiple Clocks Versus Multiple Phases

The major advantage of multiple phases when compared to multiple clocks is that all phases
are derived from the same fundamental frequency. Clock noise can be filtered out much
more easily. With multiple clocks, although all may be using the same frequency, they are
all running asynchronous to each other.

3.8.2.5 Gating the Clock

The general rule of thumb is that gating the clock should never be done because of the high
potential for hazards. If gating becomes essential, one should thoroughly understand the
timing and change the control logic only when the clock in such a state that it cannot result
in a change on the gate output. An example is the two-phase clock discussed earlier.

3.9 TESTING SEQUENTIAL CIRCUITS

Testing sequential circuits is much more complex than testing combinational circuitry.
Sequential machines have memory; their behavior is determined by the values and
the order in which the input signals occur. Combinational circuits can be tested very
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effectively by using PN (pseudonoise) sequence generators of the type we studied earlier.
Such an approach is not feasible in a circuit with potentially cyclic behavior. Testing in the
sequential world brings a whole new set of interesting opportunities.

3.9.1 The Finite-State Machine Model Revisited

As a first step toward addressing the test problem, we will briefly review the basic model
for the FSM given in Figure 3.57.

X0

Xn−1

Z0

Zm−1

Y0(t)

Yp−1(t)

Y0(t+1)

Yp−1(t+1)

Combinational

Logic

Memory

Device

Memory

Device

Figure 3.57 Model for a Finite-State
Machine

The essential components of a sequential machine and its behavior comprise the com-
binational circuitry, the memory devices, and their combined operation. Faults in the com-
binational circuitry can be modeled using the methods that have been discussed earlier.
Such techniques extend naturally to the memory devices as well. We will examine these
devices in greater detail shortly. Modeling the behavior of the complete system is a bit
more complex.

The objectives when developing tests for a sequential machine are similar to those
established for strictly combinational systems. Each path through the circuit must be ver-
ified, the proper operation of each comprising element must be ensured, and the proper
operation of the system must be confirmed.

3.9.2 Sequential Circuit Test – A First Look

One can attack the complexity of testing sequential circuits in a number of ways. We will
begin with a rather basic approach and then explore some ways by which the more complex
problems can be simplified – basic doesn’t necessarily mean efficient or fast. Remember
the linear search algorithm? It’s rather simple (look at each case until the target is found)
but most definitely not fast.

A test vector is a collection of 0’s and 1’s that is applied to the input of a Unit Undertest vector
Unit Under Test (UUT)

test pattern
Test (UUT) to verify some aspect of its functionality by producing a signal (or set of
signals) on a specified output or outputs. A test pattern is a sequence of test vectors that
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is applied to a UUT to test a series of input/output combinations or to test the temporal
behavior of the UUT.

A first, high-level view of the problem is illustrated in Figure 3.58.

State Table

Test Vectors
Unit Under

Test

Outputs

Figure 3.58 A High-Level View of Testing a Finite-State Machine

Beginning with a sequential circuit (the UUT), a state table describing its behavior,
and a series of test vectors, the test pattern is applied to the primary circuit inputs and
the responses on the primary circuit outputs are observed. The observed behavior is then
compared with that of the given state table. If it matches and if the test is a good test, one
can assume that the system is functioning properly. Otherwise, there has been a failure and
the cause must be identified.

The test is rather simple. If such tests are examined in greater detail, it is evident that
each is made up of two pieces: an initializing sequence that will take the machine to a
desired starting state and a testing sequence that will take the machine from the initial state
through each of its possible transitions to the proper final state. Such a structure is shown
in Figure 3.59. A complete test suite comprises a sufficient number of such tests to ensure
the proper behavior of the machine.

Test Vectors

Testi
initialize

testing sequence

Testi+1

initialize

testing sequence

Figure 3.59 Test Cases for Testing a Finite-State Machine
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Let’s now start to formalize our approach; we will begin with some vocabulary. A FSM
is said to be strongly connected if and only if, for any ordered pair of states {Si, Sj}, there
is an input sequence {Im … In} that will take the machine from Si to Sj. The shortest such
sequence is called a transfer sequence, T{Si, Sj}. Real-world machines are not strongly
connected. Clearly, such is the case for any machines with terminal states. For the purposes
here, we define a weakly connected machine as one in which there exists an ordered pair of
states, {Sinitial, Sj} and a finite input sequence, I, such that if the machine is in state Sinitial,
the machine can reach state Sj if the sequence I is applied. If such is not the case, then the
system has an unreachable state as the result of a design error or oversight. That problem
must be corrected.

The notion of a weakly connected machine presupposes that the machine is able to
reach each such initial state. This can be accomplished in several ways. If access to the
machine is restricted to its primary inputs, then a sequence of inputs must be defined
that will place the system in the desired initial state, Sinitial. Such a sequence is called an
initialization sequence, Iinitial. Developing such a sequence can be a nontrivial task. Furtherinitialization sequence
compounding the difficulty is the possibility that the sequence may be quite long. One of
the goals in production testing is to keep the cost of tests to a minimum while ensuring a
quality product. In production, time is money.

An alternative technique is based on recognizing that the objective in a production
test is to identify defects introduced during manufacturing. One must begin with the initial
assumption that the design of the UUT is correct. Thus, we have the option of placing the
system in the desired initial state through adjunct circuitry that can be included solely for
that purpose. Such a method is called scan design; we will discuss the approach in greaterscan design
detail a bit later. The shorter initialization sequence applied via scan design will still be
referred to as Iinitial.

In a properly operating machine, once the system is in the desired initial state, the
test sequences, {Itest}, will take it to the desired terminal states. A homing sequence fortest sequences

terminal states
homing sequence

a FSM is defined as an input sequence that will produce a unique destination state (from
any initial state) after the sequence is applied. If the notions of a homing and a transfer
sequence are coupled with the weakly connected machine, one can conclude that a complete
test sequence for a sequential machine begins with an initialization (homing) sequence,
followed by a transfer sequence: ItestSequence = Iinitial + Itransfer. The test suite can now consist
of the necessary set of all such sequences that are needed to confirm the proper behavior of
the circuit.

From linear system theory, it is known that two systems are equivalent if their output
behavior is identical for all combinations of inputs. It is just this recognition that allows one
system to be replaced by another perhaps simplified or less expensive version. Although
such an ability is beneficial during design, it can be rather troublesome during testing of the
system.

A fault condition in a FSM will alter its logical structure. When a given test sequence
is applied to a system, the underlying assumption is made that the observable output behav-
ior for the faulted circuit will be distinguishable from that of the fault-free version for
applied sequence. Such a sequence is called a distinguishing sequence. Such an assumptiondistinguishing

sequence depends, in part, on the machine being fully specified and reduced.
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3.9.2.1 Defining Homing and Transfer Sequences

Let’s now take a look at formulating a homing (initialization) sequence and a transfer
sequence for the simple state machine described in this section. We will work with the
machine specified by the state table in Figure 3.60.

Present State 

t = tn

Next State

t = tn+1

Output

x = 0 x = 1 x = 0 x = 1

A C D 0 0

B B A 1 0

C A C 1 1

D D B 0 1

Figure 3.60 A Basic Finite State Machine

A

C D

B

0 1

0

1

1

0

0

1

Figure 3.61 A State Diagram for the
Example Finite-State Machine

We will assume that the system is initially in state A. The state diagram in Figure 3.61
is extracted from the state table. Based on the state diagram, one can easily formulate a
transfer sequence to get from any initial state to any other state. Thus, if state D is selected
as the initial state, the input sequence {1,1} will take the machine to state A and {1,1,0}
will take it to state C.

A homing sequence for the state machine can be built using a simple binary tree called
a successor tree. A homing sequence has been defined as a set of input values that willsuccessor tree
take the state machine from any initial state to a unique final state. Therefore, if the state
machine is viewed as a black box, initially one does not know which state it is in. We have
maximum uncertainty. With each input value that is applied, the uncertainty about the state
of the machine is reduced. After the full homing sequence is complete, the machine will be
in one of the comprising states (and have perfect knowledge or zero uncertainty).

For the example machine, we begin with maximum uncertainty; that is, all that is
known is that it is in one of the states in the set {A, B, C, D}. If a logical 0 is applied
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as an input data, and the output is observed, if the system was initially in state A or state D,
then the output must be a logical 0. If the machine was in either B or C initially, the circuit
output must be a logical 1. The initial uncertainty has been reduced.

Prior to applying the first input, the machine could have been in any of four states. By
observing the output value, one now knows that the machine was in either of two sets of
two states. Similarly, if a logical 1 is applied to the input, the system output will be a logical
0 if the initial state was state A or state B and a logical 1 if the system had started in state
C or state D.

Thus, after the application of just one input value, the initial uncertainty is cut in half.
Prior to applying the first input, the best one could say was that the machine was in one
of four states; now it is in one of two. We continue applying 0’s or 1’s until either no new
information is gained or we have perfect knowledge. The successor tree in Figure 3.62
illustrates the process.

(A B C D)

(A D) (BC)(A B) (C D)

(C) (D) (A) (B) (A) (D) (B) (C)(A) (B D) (C)(A D) (BC)

11

1

00

0

(C) (B) (D) (A) (D) (A) (B) (C)

10

Figure 3.62 A Successor Tree for the Example Finite State Machine

Observe that each of the input sequences {0,0}, {1,1}, and {1,0,0} results in a unique
final state, as we see in the state table in Figure 3.63.

Present 

State 

t = tn

Next State / Output

t = tn+1 Sequence (0,0) Sequence (1,1) Sequence (1,0,0)

x = 0 x = 1 T0 T1 T0 T1 T0 T1 T2

A C/0 D/0 C/0 A/1 D/0 B/1 D/0 C/0 D/0

B B/1 A/0 B/1 B/1 B/0 D/0 A/0 D/0 A/1

C A/1 C/1 A/1 C/0 C/1 C/1 C/0 A/0 C/0 

D D/0 B/1 D/0 D/0 B/1 A/0 B/1 B/1 B/1

Figure 3.63 A State Table Illustrating the Response of the Example Finite-State Machine to Several
Homing Sequences
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The specific final state is based on the original starting state. Each sequence constitutes
a homing sequence. No new information is gained beyond that shown if the sequence {0,1}
is applied. Notice further that there is a unique output sequence for each of the different
starting states.

One can now apply any of the homing sequences as an initialization sequence to estab-
lish any of the states as an initial state; from there, one can then apply the proper transfer
sequence to reach any other state. A fault will alter the physical structure of the machine,
forcing it to follow a different pattern in response to any of the three input sequences.

All reduced state machines have at least one homing sequence. In the previous example,
any of the three sequences will take the machine to one of the four possible states, based
on the starting state. However, such is not always the case; a specific sequence may always
lead to the same state, independent of the initial state, as the following example for a simple
pattern recognizer shows.

The system, illustrated in the state diagram and state table in Figure 3.64, is designed to
recognize the pattern 1010 in a continuous serial stream of data. The output signal, Z, will
indicate a logical 1 if the pattern is found.

EXAMPLE 3.2

Present State

t = tn

Next State

t = tn+1

A

B

x = 0 x = 1

B/0 A/0

C/0

A/0

B

B/0

D/0

B/0

C

D

A B

0/01/0

C

0/0

1/0 0/0
D

1/0

0/0

1/1

Reset

Figure 3.64 A State Diagram and State Table for a Simple Pattern Detection Circuit

The successor tree in Figure 3.65 can now be built.

(A B C D)

(ACA)(C)(BBDB)

(B) (A)(BBD)(C)(C)

11 00

10

(B)(C) (C)

10
Figure 3.65 A Successor Tree and
Homing Sequences for a Simple
Pattern Detection Circuit
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Starting from a state of complete uncertainty, observe that on application each of the
different sequences will take the machine to a unique state. However, one cannot deduce
the initial state by observing the state of the system after application of a single homing
sequence.

3.9.3 Scan Design Techniques

Earlier we observed that a FSM can be decomposed into a combination logic block and
a flip-flop block. If each piece can be tested separately, then the task will be a lot easier.
The combinational portion can be tested using techniques introduced earlier. The flip-flops
can be verified much more easily if one does not have to worry about long sequences or
cyclic behavior. There are two minor problems, however: how can one segregate the two
portions of the circuit, and how can one gain visibility of the flip-flop states from the primary
outputs?

Recall that in the earlier designs of counters and shift registers several different pieces
of functionality (count up/count down, shift left/shift right) were combined into a single
circuit and used a selector input to choose between them. Let’s reexamine that idea. Reuse
of designs is always a good plan. We begin by identifying the pieces of functionality that
we will need.

To verify the proper operation of the flip-flops, one must show that each device can be
placed into the logical 0 or logical 1 state. If all the flip-flops can be configured into a shift
register and a pattern of logical 0’s and 1’s shifted through, that task can be accomplished.
Thus, we have the first piece of functionality – a shift register. Next, the combinational
logic must be confirmed. Confirmation can take either of two directions. One can test for
any stuck-at faults, or one can confirm that all of the state transitions can be executed. Either
path requires that known values be placed on the inputs to the combinational logic block.

The values {Xn} can be entered through the circuit’s primary inputs. It is known how to
configure our flip-flops as a shift register. When so configured, it is possible to shift in any
desired pattern. Specifically, one can shift in a pattern that can place any of the needed values
on the variables {Ym(t+ 1)} from the model. The values {Zk} can be confirmed through the
primary outputs. What remains to confirm are the values of the variables {Ym(t)}. These,
too, can be accessed through the shift register. The second piece of functionality is to con-
figure the shift register to support a parallel load. This, however, is no different from the
normal behavior of the flip-flops.

The test can be executed by appropriately choosing between the shift register function-
ality and the normal operation of the system. To implement the strategy, the original circuit
must be modified to allow one to select between the two modes. Such a reconfiguration can
be controlled through a simple multiplexer as seen in Figure 3.66.

The shift register is called a scan path; the serial data in and out are called scan inscan path, scan in
scan out and scan out, respectively. The multiplexer control permits one to select between normal

operation and test. These signals are brought to connector pins to provide easy access and
connection to a test fixture. A clock to the machine is included in the set of signals that
are brought to the outside. Although one could use the internal system clock, the tests can
be executed more effectively if the internal clock can be disabled and a test clock (TCK)
provided to control the machine.

When the test mode is selected, the memory devices are configured as a shift register.
Data can be entered through the scan in port and read from the scan out port. In the normalscan in, scan out
mode, the values {Ym(t)} will appear on the flip-flop inputs and can be stored when the
devices are clocked. We can then switch back to the test mode to shift the values out.
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X0

X1

Xn−1

Y0(t+1)

Z0

Z1

Zk−1

Y1(t+1)

Data In

Y0(t)

Y1(t)

Ym−2(t)

Combinational Logic

Memory

Device

Ym−3(t+1)

Ym−1(t+1)

Ym−1(t)

Ym−2(t+1)

SelectData Out

Memory

Device

Memory

Device

Memory

Device

Figure 3.66 A Finite-State Machine with Supporting Scan Path

Using a scan path now gives some visibility into and control over the test of a FSM.
What if there are two or three such machines? Are separate input and output paths, sep-
arate clocks, and separate test mode control required for each machine? These are good
questions.

3.9.4 Boundary Scan – Extending Scan-Path Techniques

The growth, changes, and technological advances that have occurred during the last 20–30
years have been remarkable; they have been the stuff of science fiction. Today changes
continue at an ever-increasing pace. Are these changes always good? That is sometimes
difficult to say. Nonetheless, each change presents new levels of complexity and new
challenges to discover ways to deal with that complexity. Not too many years ago, all
the test equipment needed were a good scope and a bit of intuition. This is no longer so.
Today’s application-specific integrated circuits (ASICs), CPLDs, Array Logics, custom
VLSI circuits, or Systems on a Chip make design and test much more interesting. How
can we test? How can we see what we can’t see?
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Let’s begin where we left off. Once again, let’s reuse a design idea. A scan path can
provide visibility into the internals of a state machine. Without much work, the idea can
be extended to an entire chip or system. The scan-path concept forms the basis for what is
known today as boundary scan.

In the mid- to late-1980s, a group of international electronics firms recognized that
a common means for testing and debugging complex systems and integrated circuits
would be economically essential for each to remain competitive in today’s fast-paced
market. Together they formed the Joint Test Advisory Group (JTAG), and they developed
a Standard Test Access Port (TAP) and Boundary-Scan Architecture for such systems.Standard Test Access

Port and
Boundary-Scan

Architecture

Commonly known as JTAG, the standard proposes a simple four-wire serial interface
through which test vectors and test results can be entered into and read from a system
or integrated circuit. In 1990, the IEEE adopted the work of the JTAG as a standard
(IEEE 1149.1), which defines a common protocol and boundary-scan architecture. Today
IEEE 1149.1 has become accepted as an industry standard.

A boundary scan provides a software method to control and observe the values on con-
nector or I/O pins on any circuit board or integrated circuit that is compatible with the JTAG
standard. Let’s take a look at the basic components and architecture for a boundary-scan
system. We will begin with the input and output pin structure, as illustrated in Figure 3.67.

Input
Pin

Storage
Element

Storage
Element

Output
Pin

Input
Boundary Cell

Output
Boundary Cell

System Logic
System Logic

M
U

X

Figure 3.67 Input and Output Pin Structure in a Boundary-Scan Architecture

During normal operation, the boundary cells are disabled and the I/O signals pass into
or out of the system normally. In the test mode, input signals are shadowed in the associ-
ated storage elements, and output signals are set to selected test values that are propagated
down the scan path to test other devices. The scan cells are controlled through the TAP andTest Access Port (TAP)

Instruction Register Instruction Register (IR), as shown in Figure 3.68.
The TAP Controller is a simple state machine with up to 16 possible states. It is used to

control the actions associated with the boundary-scan cells. The system uses four signals,
Test Mode Select (TMS), Test Data In (TDI), Test Data Out (TDO), and TCK, to manageTest Mode Select

Test Data In
Test Data Out

Test Clock
Test Mode Select

the operation of the boundary-scan system. TDI and TDO signals are used to introduce data
into the system or to propagate test signals or data out.

The boundary-scan system can easily be extended to multiple integrated circuits or
boards within a system simply by connecting the TDO signal from one portion to the TDI
signal of the next circuit. By activating the Bypass Register, one can sidestep the scan path
on selected components while testing others.
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Figure 3.68 The Boundary-Scan Architecture and Unit Under Test

A test operation is initiated when a command is sent by a tester on the TMS input
directing the IR to load a sequence of bits appearing on the TDI input. The data receivedInstruction Register
by the IR identifies which type of test the system is to perform. The latest version of the
specification, IEEE 1149.1-2001, dictates that all devices must support the following four
required instructions:

EXTEST. The EXTEST instruction places the device into an external boundary test
mode and connects the boundary-scan register (BSR) between the TDI and TDO
pins. On execution, the output boundary-scan cells are loaded with test patterns
to send to downstream devices. The input boundary-scan cells are configured to
shadow the input data.

BYPASS. The Bypass instruction directs that a device’s scan path is to be bypassed
and that the TDI input data is to be routed directly to the TDO output without
interfering with the ongoing operation of the device.

SAMPLE. The SAMPLE instruction allows the device to remain in a functional (rather
than a test) mode and connects the BSR between the TDI and TDO pins. During
execution, the BSR can be read to monitor data entering the device.

PRELOAD. The PRELOAD instruction is also used to load known data values into the
BSR. We can use such values for initialization, for example.

Both the PRELOAD and SAMPLE instructions are used as a prelude to future
activity.
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In addition to the required instructions, the Standard specifies several optional instruc-
tions. These are:

INTEST. The INTEST instruction is used to activate the BSR for tests of a device’s
internal logic.

IDCODE. The IDCODE instruction accesses a device’s (optional) internal identifica-
tion register that contains manufacturer and part-specific information. That data is
returned through the TDO register.

USERCODE. The USERCODE instruction permits user identification data to be loaded
into the device’s identification register. Such information is useful if a device has
an original generic function, such as a gate array, and a value-added identification,
such as a high-speed graphical manipulator.

BIST. The BIST instruction is used to invoke user-defined built-in self-test functional-
ity. It is assumed that the built-in capability does not need any external initializa-
tion. Once the built-in tests have been completed, the results are sent to the outside
world via the TDO output path.

CLAMP. Working in conjunction with PRELOAD, the CLAMP instruction drives
the device’s output lines with the values that have been entered during
PRELOAD and then enables the BYPASS functionality. The CLAMP instruction
can be used to ensure that the device’s outputs are held in a desired state. Such a
capability can be used to avoid conflicts between several different devices sharing
a common bus.

HighZ. HighZ works like the CLAMP instruction to ensure that specific device outputs
are placed into the high-impedance state.

The IEEE 1149.1 Standard also provides for an optional input pin, TRST, which can
be used to asynchronously reset the TAP controller.

3.10 SUMMARY

In this chapter, we began with the idea of state and time, two key
aspects that distinguish sequential from combinational circuits,
and presented a theoretical model for the FSM.

We introduced registers and shift registers as elementary
examples of a FSM. We expressed the concepts of state and time
using the state diagram and state table, two of the basic tools
for characterizing and working with sequential circuits. We then
used the state diagram and state table to describe the behavior
of basic counting and dividing circuits. We looked at clocking
systems and time-base designs that are useful for accurately con-
trolling the digital hardware in embedded applications.

We then moved from the theoretical to the practical world
when we examined how real-world issues encountered earlier
with combinational logic circuits, as well as several new ones,
are also present in sequential designs.

We concluded our study of sequential circuits with the
problem of how to test finite-state systems. Possible tools
and alternatives included homing sequences, scan-path, and
boundary-scan techniques as methods for attacking the problems
unique to testing sequential circuitry.

3.11 REVIEW QUESTIONS

The Concepts of State and Time

3.1 What are state variables, and what do they tell us?

3.2 When we say state of the system, what do we mean?

3.3 What is a state diagram?

3.4 What is the purpose of a state diagram, and what informa-
tion can we derive from it?

3.5 What are the basic elements of a state diagram?
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3.6 What is a finite-state machine, and what is its purpose?

3.7 In the text, a finite-state machine was defined as a quintu-
ple. What are the elements that comprise the quintuple, and what
is the purpose of each?

3.8 What is the difference between a Mealy and a Moore
finite-state machine?

Designing Finite-State Machines – Registers

3.9 What is a register?

3.10 What do we mean by the width of a register?

3.11 What is a shift register?

3.12 Describe the characteristic behavior of a shift register.

3.13 What do we mean by a parallel in/serial out or serial
in/parallel out shift register?

3.14 What do we mean by the term transparent latch?

3.15 What is a linear feedback shift register?

3.16 What do we mean by the term maximal length shift regis-
ter?

3.17 What is a PN sequence?

Designing Finite-State Machines – Counting and
Dividing

3.18 For what purposes do we use counters and dividers in
embedded applications?

3.19 What is the major difference between an asynchronous
counter/divider and a synchronous one?

3.20 What is a ripple counter?

3.21 What characteristic makes Johnson counters different
from the other counters studied in this chapter?

3.22 What is the general expression for the period of a Johnson
counter?

Practical Considerations – Timing in Latches
and Flip-Flops

3.23 What does the term setup time mean? hold time?

3.24 Why is setup time an important parameter? hold time?

3.25 What is the difference between setup time in a latch versus
a flip-flop? hold time?

3.26 What does the term metastable mean?

3.27 How do we measure propagation delay in a latch?
flip-flop?

3.28 How is propagation delay different in a latch or flip-flop
from that in combinational logic?

Practical Considerations – Clocks and Clock
Distribution

3.29 What is a time base?

3.30 What are the four fundamental parameters that one should
consider when selecting or designing a clock system or time
base?

3.31 What is a phase locked loop?

3.32 What is the purpose of a phase locked loop?

3.33 What is a rate multiplier? What is its purpose?

Testing Sequential Circuits

3.34 What is the major difficulty when testing sequential cir-
cuits versus combinational logic systems?

3.35 What is a test vector?

3.36 What do we mean when we say that a finite-state machine
is strongly connected? weakly connected?

3.37 What does the term transfer sequence mean?

3.38 What is an initialization sequence?

3.39 What is a terminal state?

3.40 What is a homing sequence, and what purpose does it
serve in testing finite-state machines?

3.41 What is a test sequence, and what purpose does it serve in
testing finite-state machines?

3.42 What is a distinguishing sequence?

3.43 What is a successor tree, what is its purpose, and how do
we construct one?

3.44 What is a scan path, and how is it used in testing
finite-state machines?

3.45 What does the term boundary scan mean? Describe how
it is used in testing finite-state machines.

3.12 THOUGHT QUESTIONS

The Concepts of State and Time

3.1 For larger systems, the state diagram can become
unwieldy rather quickly. Suggest ways by which the underlying
concept can be modified to accommodate such problems.

3.2 The state of the system can convey important information
about a system. Can you think of situations in which the state of
a system can be a problem? Consider cases in which the system
has failed and is recovering.
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3.3 Why is the concept of time important in an embedded
system?

Designing Finite-State Machines – Registers

3.4 Propose some situations in which a latch rather than a
register would be the preferred storage device. Explain the rea-
soning behind your choices.

3.5 Propose some situations in which a register rather than a
latch would be the preferred storage device. Explain the reason-
ing behind your choices.

3.6 How can the shifting function be implemented without a
storage element?

3.7 What advantages can you think of for a design such as that
proposed in Question 3.6?

3.8 Propose several uses for a parallel in/serial out shift regis-
ter? for a serial in/parallel out shift register?

3.9 Can a latch be used instead of a flip-flop to implement a
shift register?

3.10 Propose several uses for a linear feedback shift register?

3.11 Can a linear feedback shift register be used as a counter?
timer? What would be the pros and cons of such design?

Designing Finite-State Machines – Counting and
Dividing

3.12 Why is a Power On Reset control signal important in the
design of finite-state machine-based designs?

3.13 Is a Power On Reset control signal subject to fan-out
restrictions?

3.14 What are the major problems that one encounters with a
ripple counter? How does the frequency of the input clock affect
these problems?

3.15 Are there cases for which the ripple counter is pre-
ferred to a comparable synchronous counter? Explain your
choice(s).

3.16 Are there cases for which the synchronous counter is pre-
ferred to a comparable ripple counter? Explain your choice(s).

3.17 What is the major difference between a counter and a
timer?

3.18 For a timing application, what determines the temporal
resolution of your timer?

3.19 One problem with a long synchronous counter or divider
chain is the rapid increase in the complexity of the flip-flop
input equations. Can you propose a possible solution to this
problem?

3.20 Can a latch be used instead of a flip-flop as the basic stor-
age element in a counter or divider? Why or why not?

3.21 Is it necessary that the clock input to a counter, timer, or
divider be a square wave?

Designing Finite-State Machines

3.22 Give several examples in which a Mealy state machine is
preferred to a Moore machine? Explain your choice.

3.23 Give several examples in which a Mealy state machine is
preferred to a Moore machine? Explain your choice.

3.24 As the complexity of a design increases, the finite-state
machine used to implement a solution can become large rather
quickly. Propose several solutions to such a problem.

3.25 Give several examples in which we might use a finite-state
machine as the underlying control mechanism.

3.26 Must a finite-state machine always be implemented in
hardware?

3.27 Please give several examples of embedded applications
for which a pattern recognition system would be required.

3.28 Cite several examples showing when a sliding window
recognizer would or would not be an appropriate solution.
Explain your choices.

3.29 Why or under what circumstances might a one hot state
assignment scheme be appropriate for a Moore machine?

3.30 Why or under what circumstances might a Gray-code-
based state assignment be appropriate for a Mealy machine?

Practical Considerations – Timing in Latches
and Flip-Flops

3.31 What are the consequences of failing to meet the setup
time specifications for a storage device? hold time specifica-
tions?

3.32 Setup time in a storage device is based on what factors in
the design of the device?

3.33 What are some of the factors that limit the operating speed
in a counting, dividing, or timing circuit?

3.34 What are some of the factors that one must consider when
generating control or clocking signals by decoding the states of
a finite-state machine?

3.35 Why is generating control or clocking signals by decoding
the states of a ripple counter generally discouraged? Under what
circumstances might such a technique be considered reasonable?

Practical Considerations – Clocks and Clock
Distribution

3.36 Discuss the pros and cons of utilizing multiphase versus
a single-phase clocking scheme or time base for an embedded
application.

3.37 What problems might arise in a clocking scheme that uti-
lizes the rising edge of a timing signal to clock some flip-flops
in a system and the falling edge to clock others?

3.38 Are timing signals subject to fan-out restrictions?

3.39 When routing timing signals throughout a system, not all
paths may be of equal length. Is this a potential problem?
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3.40 What potential problem might arise from including a tim-
ing signal such as a clock on a system bus?

3.41 What problems might arise in a clocking scheme from
parasitic R, L, C components in a system? How can these be
addressed?

3.42 What are some of the factors that limit the frequency at
which the embedded hardware in a system may be clocked?

3.43 Normally, for high-performance systems we strive to have
signals change state quickly. What are some of the consequences
of very small rise and fall times in clocking and timing signals?

Testing Sequential Circuits

3.44 What are some of the things that can be done to facilitate
the test of sequential circuits?

3.45 Is it necessary to test all possible combinations of inputs
to a finite-state machine?

3.46 What combinations of signals should be included in the
set of test vectors for a sequential machine?

3.47 Why are synchronous designs easier to test than asyn-
chronous?

3.48 What purpose does the Power On Reset control signal play
in the test of sequential circuits?

3.49 What does the expression “break the feedback loop” mean
in the test of sequential circuits?

3.50 When testing sequential machines, how should we deal
with the machines for which the associated state diagram has
loops or cycles?

3.51 What is a homing sequence, and what purpose does it
serve in testing finite-state machines?

3.52 Can you think of an easy way to test shift registers?

3.53 How can a long counting, timing, or dividing chain be
tested without having to traverse all states? Discuss any caveats
with your proposed approach.

3.54 Must a counting, timing, or dividing chain be tested at its
intended operating frequency? What are the consequences of not
doing so?

3.13 PROBLEMS

Flip-Flops, Latches, and Shift Register Designs

3.1 For the two devices in Figure P3.1 and their inputs, data
and sigIn, please draw the corresponding output signals, QA and
QB. Be sure to explain your answer.

data

sigIn

QA

QB

data

sigIn

D Q

Q

D Q

Q

Figure P3.1

3.2 Design and implement an 8-bit shift register that can shift
1 or 2 bits to the left or right based on the states of two input
control lines.

3.3 You have just won a contract to design and implement a
high-speed logical shifter. The specification you have been given
requires the design of a circuit that will shift a 16-bit word to the
right or to the left by 1-, 2-, 3-, or 4-bit positions in a single
clock time.

The input to your system is a 3-bit word that is to be inter-
preted as follows:

B2 0 shift right
1 shift left

B1 B0 Meaning

0 0 Shift by 1

0 1 Shift by 2

1 0 Shift by 3

1 1 Shift by 4

(a) Draw a top-level block diagram for your system.

(b) Assume you decide to build the shifter using 16 D
flip-flops. Write the logic equations for the D inputs.

(c) Explain how your design works.

(d) Confirm your design by writing and testing a structural
Verilog model.

3.4 Extend the design in Problem 3.2 by incorporating the
ability to load the contents of the shift register in parallel. Con-
firm your design by writing and testing a behavioral Verilog
model.
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3.5 An N-bit circular shift register, as shown in Figure P3.2,
operates as follows:

N-Bit Circular Shift

Register

Output

Clock

DIR

AMT

Figure P3.2

Dir Amt Meaning

0 0 Shift right by 1

0 1 Shift right by 2

1 0 Shift left by 1

1 1 Shift left by 2

Assuming that the shift register is implemented using D
flip-flops, write the input equation for the 0th flip-flop.

(a) Write the input equation for the ith flip-flop.
(b) It’s just days away from first shipment and the customer
requests a simple addition to the design. They would now like
to be able to load the shift register in parallel (all bits at once).
What additional signals, if any, will we have to add to the design
and how would they be used? Be specific.
(c) Rewrite the input equation for the ith flip-flop to incorpo-
rate the design change in part (c).

3.6 The purchasing department in your company, Storage
Stuff, Ltd., has just gotten a great deal on 100 000 74LS175 quad
D flip-flops. These devices have an internal logic diagram as
shown in Figure P3.3.

Q

QSET

CLR

D

Q

QD

Q

QD

Q

QD

1 D

2 D

3 D

4 D

1 Q

2 Q

4 Q

3 Q

4 Q

3 Q

2 Q

1 Q

clear

clock

SET

CLR

SET

CLR

SET

CLR

Figure P3.3

Using the 74LS175, and any other parts you need, design
an 8-bit shift register that can be loaded, in parallel, from two
different sources and then enabled to shift the data to the right
or to the left.

(a) From the vendor’s data sheet, we have the following infor-
mation:

𝜏setup = 5 ns, 𝜏hold = 0 ns,
𝜏pLH = 15 ns and 𝜏pHL = 10 ns for each flip flop.

(b) What is the maximum rate that data can be reliably shifted
through the shift register? Explain how you arrived at your
answer.

Counters

3.7 Design and implement a synchronous BCD counter using
D flip-flops that will count up or down based on the state of an
input control line, UP-DOWN.

3.8 Design and implement a 3-bit synchronous counter using
D flip-flops that counts according to the sequence:

A B C

0 0 0

1 0 0

0 1 1

1 1 0

0 1 0

3.9 The following circuit is designed to provide an output
signal on QC with an input clock frequency of 12 MHz. The
system containing the circuit has been in production for sev-
eral months, but now sometimes it works and sometimes it
does not.

(a) Draw the theoretical timing diagram for the circuit show-
ing the signals at points A, B, and C with respect to the
clock.

(b) After a little bit of research, you find from the vendor’s
data sheets that the flip-flops have the following characteristics:

𝜏dHL = 25 to 40 ns

𝜏dLH = 13 to 25 ns

𝜏SU = 25 ns

and the exclusive OR gate has the following characteristics:

𝜏dHL = 20 to 30 ns

𝜏dLH = 13 to 20 ns

(c) Draw the actual timing diagram for the circuit showing the
signals at points A, B, and C with respect to the clock when the
practical circuit parameters are considered.
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(d) Can you explain why the circuit behavior has suddenly
changed? Use your real-world timing diagram as necessary for
illustration.

(e) Can you determine the maximum frequency at which the
circuit can be safely operated?

3.10 (a) For the following circuit in Figure P3.4

Q

QSET

CLR

D

Q

QD SET

Q

QDA

B C D

E

F

reset

CLR

SET

CLR

Figure P3.4

Please give a detailed timing diagram for signals A–F. You
have the following specifications:

Input clock 1 MHz
Flip Flops

𝜏setup = 10 ns

𝜏hold = 0 ns

𝜏pdhl = 15 ns

𝜏pdlh = 10 ns

Gates

tpdhl = 7 ns

tpdlh = 11 ns

At what input clock frequency will the circuit fail to properly
generate the output signals E and F?

3.11 You have been asked to do a detailed analysis and design
review of the counting circuit in Figure P3.5.

Q

QD

Q

QD

A

B C

A B C10 M Hz

2 M Hz

reset to 000

SET QD SET

CLR

SET

CLR CLRQ

Figure P3.5

(a) As part of the review you decide to determine the count-
ing sequence for the circuit. Give a table showing the complete

sequence of states the machine goes through starting at the initial
state of 000.

(b) As a next step toward analyzing the design, you draw the
ideal timing diagram (no delays) for the circuit showing the sig-
nals at points A, B, C, the reset line, and the 2 MHz output – all
with respect to the clock.

(c) You next move to the vendor’s data sheets for the flip-flops
containing the characteristics:

𝜏pdhl = 15 ns

𝜏pdlh = 30 ns

𝜏su = 35 ns

The AND and NAND gates have the characteristics:

𝜏pdhl = 10 ns

𝜏pdlh = 5 ns

Draw the actual timing diagram for the circuit showing sig-
nals at points A, B, C, the reset line, and the 2 MHz output with
respect to the clock when the practical circuit parameters are
considered.

(d) Concluding your analysis, are there any states of flip-flops
A, B, and C, the reset, or the 2 MHz clock that could be a prob-
lem? If so, what are they and why are they a problem? It is
important to be specific in a design review.

(e) Can you recommend a change to the design to correct any
problems you have discovered?

3.12 Design a four-stage Johnson counter.

(a) Detect any of the illegal states and force the counter back
to the 0000 state. You cannot do this by using the master reset
or clear signal.

(b) Detect all of the illegal states and force the counter back to
the 0000 state. You cannot do this by using the master reset or
clear signal.

(c) Discuss the pros and cons of the two designs.

(d) Under what circumstances would you select the first
design? the second design?

3.13 A counting circuit has the output waveforms given in
Figure P3.6.

Clock

A

B

C

Figure P3.6
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(a) Give the state table for a 3-bit counter that operates accord-
ing to the timing diagram given in Figure P3.5. Assume that the
machine starts in an initial state of 000.

(b) What is the period of such a counter in input clock cycles?
Why?

(c) Design and draw the logic diagram for a counter, using D
flip-flops, that operates according to the timing diagram and state
table from part (a). Your flip-flops must reflect on which edge of
the clock the transitions occur. Be sure to take into account any
don’t cares.

(d) The vendor’s data sheets show that the flip-flops and gates
have the following characteristics:

𝜏pdhl = 20 to 30 ns

𝜏pdlh = 10 to 20 ns

𝜏su = 20 ns

Draw the actual timing diagram, based on the data from the
data sheet, for the circuit showing the signals at points A, B, and
C with respect to the clock.

Assume a 10 MHz clock.

Timers and Time Bases

3.14 An application requires a timing signal with a 1 ms period.
A 10 MHz crystal oscillator, from which the required signal can
be derived, is available in the system.

(a) Design the timing chain that will produce the required sig-
nal. Consider using a cascade of a ripple counter prescaler fol-
lowed by a synchronous chain in your design.

(b) Discuss the difficulties of designing the timer chain as a
fully synchronous circuit.

(c) Discuss the problems that can arise if the timer chain is
fully asynchronous.

(d) What is the error in the period of the 1 ms period con-
tributed by the timer chain, excluding the oscillator error?

(e) If the frequency of the oscillator is increased to 20 MHz,
what is the effect on the error in the 1 ms period.

3.15 Design a timer that meets the following specifications:
The timer supports the timing of two intervals, A and B.

While in interval A, a high true output signal is generated signi-
fying the interval. At the end of interval A, interval B starts, the
interval A output goes false, and the interval B output goes true.
At the end of interval B, both outputs go false.

The two intervals can be set independently and can be set
to count from 1 to 255 input clock pulses.

The input clock is a 20 MHz oscillator.
The timer supports the modes Time, Stop, and Hold. When

in the Time mode, the system is timing as specified. When in the
Stop mode, the timer is held in its initial state. When in the Hold
mode, the timer is not advancing and is holding its current state.

3.16 An embedded application that you have been working on
requires a timing generator that produces three periodic signals
specified according to the timing diagram in Figure P3.7. Time
units are in nanoseconds. The signals T0–T2 are not necessarily
the Q outputs of flip-flops.

0
100 200 300 400 500 600 700 800 900 1000

T0

T1

T2

Figure P3.7

In addition to the waveform specification, the specification
requires that the time base will only generate the waveforms
T0–T2 if the Enable input to the system is high.

In executing the design,

(a) What frequency do you choose for the clock? Why?

(b) What is the period of your time-base unit? Why?

(c) Please give the flip-flop equations for your time-base unit
if it is implemented using D flip-flops.

(d) Please give the logic output equations for the time-base
unit to generate output signals T0–T2.

(e) Develop and test a structural Verilog model of the time
base you designed.

(f) The vendor’s specifications for the 74ALS74 D-type flip
flop are given as

tpdlh = 15 ns

tpdhl = 20 ns

tsu = 15 ns

The logic gates have the following delays.

tpdlh = 9 ns

tpdhl = 15 ns

Please give a timing diagram for the signals T0–T2 that reflect
the flip-flop and gate delays.

3.17 An embedded application requires a time base that pro-
duces a four-phase nonoverlapping periodic clock output. Each
clock output must have a frequency of 10 MHz.

(a) What input frequency do you choose? Why?

(b) Design the time base that will produce the four outputs.

(c) Develop and test a behavioral Verilog model of the time
base for the design.

(d) Select the components for the design, and from the ven-
dor’s data sheets, identify all of the appropriate delays. Using the
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vendor information, give a timing diagram reflecting the opera-
tion of your design.

3.18 A technique called pulse width modulation (PWM) is
commonly used in embedded applications as a method for con-
trolling small motors. The PWM signal for driving the motor has
a fixed frequency and a variable duty cycle. At a duty cycle of
close to 0%, the motor is running at a slow speed; with a duty
cycle close to 100%, the motor is running at close to full speed.

(a) Design such a timer that can control the duty cycle of the
output waveform in ± 5% increments.

(b) What frequency have you selected for the PWM signal?
Why?

3.19 You have completed the design of most of a new embed-
ded application; only the time-base unit remains to be designed.
The time base has two inputs: select and clock and one output:
sync. The unit has the following specifications:

• The input signal clock has a frequency of 1 MHz.
• When select is a logical 0, the output signal, sync, is a

1-μsec-wide pulse with a period of 3 μsec. When select is a
logical 1, the output signal, sync, is a 1-μsec-wide pulse with
a period of 7 μsec.

(a) Please draw a timing diagram for the output of the
time-base unit showing its behavior when select is a logical 0.

(b) Please draw a timing diagram for the output of the
time-base unit showing its behavior when select is a logical 1.
Be certain to label time units on your diagram.

(c) Please give the flip-flop input equations if the time base is
to be implemented using D flip-flops.

(d) Please write and test a behavioral Verilog model for your
design.

(e) Please show the logic diagram for your time-base unit
based on your equations.

Finite-State Machines

3.20 As part of a satellite system for locking on to an incoming
data stream, we must design a synchronizer that operates as fol-
lows: A system accepts a serial data stream (one bit at a time) on
its input and produces two outputs, Z1 and Z2. The two outputs
are normally high.

The synchronizer is to operate as follows: .If two consecu-
tive input bits arriving at times ti and ti+1 have the values (01 or
10), output Z1 is to be in the logical 0 state. If the two consec-
utive input bits arriving at times ti and ti+1 have the values (11
or 00), output Z2 is to be in the logical 0 state. Otherwise, both
outputs are to be in the logical 1 state.

When either pattern is detected, the system enters and
remains in a locked state.

(a) Draw a state diagram for such a system using a Mealy
model.

(b) Give the state and output table for such a system based on
your state diagram and using a Mealy model.

(c) Reduce the state and output table for such a system to their
simplest form.

(d) Provide a state assignment based on your reduced state and
output table.

(e) Give the equations for the two output signals, Z1 and
Z2.

(f) Write and test a behavioral Verilog model for the synchro-
nization system.

3.21 A system has two inputs, serial data (DI) and a control
signal (SEL), and a single output (Z) as shown in Figure P3.8.

ZDI

SEL

Figure P3.8

The system has the following specifications:

• If the control input SEL is a logical 0, the system is to pro-
duce a logical 1 on the output Z at time t = t2 if the previous
three input data bits had been the pattern 110. Otherwise it
is to produce a logical 0 on the output.

• If the control input SEL is a logical 1, the system is to pro-
duce a logical 1 on the output Z at time t = t2 if the previous
three input data bits had been the pattern 011. Otherwise it
is to produce a logical 0 on the output.

• Draw a state diagram for such a system.
• Give the state and output table for such a system.
• Provide a state assignment for such a system.
• Write and test a structural Verilog model for your design.

3.22 An error management system is needed as a subsystem
in a new telecommunication system. As a proof of concept, we
will design and build a prototype that works with 4-bit serial
words. A partial block diagram for the subsystem is shown in
Figure P3.9.

Data

load serialOutserialData

Register A encoder

Figure P3.9

It operates as follows:

• Three bits of data are loaded into Register A using a load
signal.



�

� �

�

160 Chapter 3 The Hardware Side – Part 3: Storage Elements and Finite-State Machines – A Practical View

• A start signal is sent to the encoder.
• Following the start signal, the encoder outputs a logical 0.
• The encoder sends an enable signal to Register A to tell it to

shift data out of the serialData line one bit at a time.
• The encoder accepts each data bit from the serialData line

and outputs (transfers) that data to the serialOut line.
• After four data bits have been transferred, the encoder out-

puts a parity bit to the serialOut line.
• The parity bit should be a 1 if the four data bits contained an

odd number of 1’s and a 0 if the number of 1’s was even.
• Following the parity bit, the encoder outputs a logical 1 to

the serialOut line and returns to its initial state.
• The total number of bits sent to the serialOut line is 6.

(a) Draw a complete, unreduced, state diagram for such a sys-
tem expressing all combinations of inputs and states.

(b) Give the state and output table for such a system.

(c) Give a reduced state and output table for such a system. Be
certain to show how you reduced the number of states.

(d) Provide a state assignment for the reduced system.

(e) Give the reduced transition table for such a system.

(f) Give the input equations for each of the D flip-flops and for
the output in the reduced system. Be certain to take into account
any don’t cares.

(g) Write and test a behavioral Verilog model for your design.

Applications

3.23 You have just developed a new toy in a small black box
that we see in the picture in Figure P3.10 and are showing it to
your grandmother.

Oddly - Evenly

Patterns

Figure P3.10

You tell her that she should put in three coins, one after the
other. You tell her that a coin can be either a dime or a penny.

Then you say, if she puts in zero or two pennies, the ODDLY
eye will turn on and if she puts in one or three pennies, the
EVENLY eye will turn on. She wants you to explain how it
works.

(a) Give her an exhaustive (unreduced) state diagram that will
describe the behavior of the toy (she’s a smart grandmother).

(b) Give her a state and output table for the system.

(c) Reduce your state table to its simplest form.

(d) Give a state assignment for the system.

(e) Write and test a structural Verilog model for your design.

3.24 A new temperature monitoring system that utilizes an
analog-to-digital converter to collect data at various points in
a yogurt production process is to be designed. The control logic
accepts the input signals shown and generates the output signals
as specified in Figure P3.11.

• Upon receipt of a start signal, the system must cycle through
the three time intervals – t1, t2, and t3 – and command
the following operations to take place: Sample, Convert, and
Autozero.

• The system is to respond to the input signals as shown in the
diagram. At the end of time t3, as signaled by the Tend input,
the system must return to its initial state and wait for a start
input.

• The times, t1–t3, are not inputs to the system; they merely
identify the length of each interval.

• The signals start, done, and tend are inputs to the system.
They identify the start or end of the intervals as indicated.

• The system must have several output signals to control the
electronics doing the conversion. The control logic is in one
room, and the analog-to-digital converter is in another. There
is a limit to the number of wires in the cable connecting the
two portions of the system.

t1 t2 t3

sample convert autozero

start Tend Done Tend

Figure P3.11

For the system, develop the following:

(a) A block diagram for the system

(b) The minimum number of output control signals, explain-
ing why your answer is correct.

(c) The state diagram

(d) The state table

(e) The output table

(f) The state assignment

(g) The transition diagram

(h) A behavioral model for the control block

(i) Once the behavior is verified from the model, the complete
design of the system

(j) Specification of the minimum number of flip-flops and an
explanation of why your answer is correct

(k) The input equations for a D flip-flop.

3.25 A colleague has developed the block diagram in
Figure P3.12 for an instrument for measuring frequency.
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Counter Counter Counter

4 bit register 4 bit register 4 bit register

10 ms Timer

Control

State Machine

Counter

4 bit registerTransfer

Enable

Start

Start

Done

1 ms

Unknown

Frequency LS Digit MS Digit

9 9 9

Figure P3.12

Accompanying the drawing are the following description
and specifications.

Measure
When a Start signal is received, the timer will start timing

and the control state machine will put the Enable output into the
logical 1 state.

While the Enable signal is in the logical 1 state, an
unknown frequency will be used as the clock to a decade counter
chain.

After 10 ms, the timer will output the Done signal.
Store
In response to the Done signal, the control state machine

will place the Enable signal into the logical 0 state and place the
Transfer signal into the logical 1 state.

After one clock pulse, the control state machine will place
the Transfer signal into the logical 0 state and return to idle
awaiting another Start signal.

When the Enable returns to the logical 0 state, the decade
counter chain will contain a value equivalent to the measured
frequency.

The value contained in the counters in a decade counter
chain is then transferred to the 4-bit register (in response to the
transfer signal), where it is displayed on the readout. Provide:

(a) A high-level timing diagram for the system

(b) A complete design for the timer block

(c) A complete design for one of the counter blocks

(d) A state diagram for the control state machine

(e) A state table for the control state machine

(f) A state assignment for the control state machine

(g) A structural Verilog model for the control state machine.

3.26 You have been hired by Let There Be Lyght – Signals
Abound, Ltd. to design a traffic control system. The design your
predecessor proposed failed at a critical time while he was in the
middle of the intersection testing it.

The intersection you must control is shown in Figure P3.13.
Your design must meet the following specifications:

• Each light, L1 and L2, has two states, ON or OFF
• If a car arrives at the intersection and the light in its direction

is OFF, it may proceed through the intersection.
• If a car arrives at the intersection and the light in its direction

is ON, the car must stop. A timer, Timer1, is started. At the
end of six time units, the light is turned OFF, a second timer
Timer2 is started, and the car may proceed. After 12 time units
have elapsed on the second timer, the light is turned ON again.

• The cars must not collide.

L1

L2

Figure P3.13

Please design the following:

(a) The input and output equations for the two timers, Timer1
and Timer2

(b) An implementation for the two timers

(c) A state diagram showing the behavior of the traffic control
system

(d) The state and output table for the traffic control system

(e) The flip-flop input and system output equations for the traf-
fic control system
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3.27 An embedded system that you are working on has a system
bus with the specifications:

Data 2 bits

Address 2 bits

Control

You are responsible for the system bus and bus interface
that manages transfers of data from the source, S0, to the four
destinations, D0–D3, as shown in Figure P3.14. Data can be
transferred from the source to only one destination at a time.

D0

D1

D2

D3

S0

Figure P3.14

You have an unlimited number of the following part types
available:

L2B 2-Bit latches

R2B 2-Bit Registers

BD2 2-Bit Bus
Drivers – noninverting
– similar to inverter but
with greater drive
capability

BR2 2-Bit Bus
Receivers – noninverting
– similar to inverter but
no inversion

NG2–NG4 2-, 3-, and 4-input NOR
gates

Provide the following:

(a) A block diagram for the system

(b) The signals contained in the Control Bus

(c) A top-level timing diagram of the design showing how data
is transferred from the source to a single destination

(d) A detailed logic diagram of your design using only the part
types listed above.

(e) A description of the operation of your design.
Be sure to state any assumptions.
For this portion of the design, you are only designing the

bus and bus interface.
The source of the data and its use after it is on the board

are not relevant to the design. However, it must be handled
properly when accepted from the bus.

3.28 Your team is working on the audio portion of a larger home
entertainment system. The system combines a mix of new and
legacy components that must be understood and integrated into
a high-quality system.

The volume control for the system is marked with the deci-
mal digits 0–5. Based upon the input selection, the selector out-
puts the single BCD digit corresponding to the level selected.
Selection 0 outputs BCD 0, selection 1 outputs BCD 1, and
so on.

Our gain stage, however, requires a value in the range of
0–15. Thus, we must design a circuit that will multiply that sin-
gle digit BCD number by 3 to give us the proper value as shown
in the following block diagram in Figure P3.15.

BCD Input

(0..5)
Gain Value

(0..15)

Figure P3.15

(a) Please provide a design and logic diagram for such a cir-
cuit. Because this is to be a commercial product, simplicity and
low cost are very important.

The input to the system may come from any of four dif-
ferent sources: a CD player, a DVD player, a Tuner, and a
Joystick. Each of these devices produces a stream of data
4 bits wide.

Consequently, it is necessary to design a circuit that will select
any of these data streams and route it into the system bus as
shown in the following block diagram in Figure P3.16.

(b) Design the logic to go inside the block.

4

4

4

4

4

CD Player

DVD Player

Tuner

Joy Stick

System

Bus

Figure P3.16
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The output from the system may be sent to any of four dif-
ferent devices: a digital-to-analog converter, a digital display, a
memory, and a glitzy graphic output.

Each of these devices requires a stream of data 4 bits wide. We
must design a circuit that will route data from the system bus to
any of these devices as shown in the following block diagram in
Figure P3.17.

4

4

4

4

4

DA Converter

Digital Display

Memory

Glitzy Display

System

Bus

Figure P3.17

(c) Design the logic to go inside the block.
Although the system bus is 4 bits, internally, the system con-

troller uses an 8-bit word. Thus, data must be brought into the
controller 4 bits at a time and assembled into an 8-bit word. We
must design a Data Assembler as an interface between the sys-
tem bus with the system controller as shown in the block diagram
in Figure P3.18.

System Controller

Data Assembler

System Bus

4

8

Figure P3.18

The Data Assembler must operate according to the following
algorithm:

• The first 4 bits appear on the bus accompanied by a DV–Data
Valid signal.

• The DV transitions from a logical 0 to a logical 1 to signify
that the data on the bus is valid.

• The 4 bits of data are loaded, in parallel, into the most signif-
icant 4 bits of an 8-bit shift register.

• The DV transitions from a logical 1 to a logical 0.
• An output signal, Shift Left, is generated to enable the shift

register to be clocked four times.
• The second 4 bits appear on the bus accompanied by a

DV–Data Valid signal.
• The DV transitions from a logical 0 to a logical 1 to signify

that the data on the bus is valid.
• The 4 bits of data are stored into the most significant 4 bits of

the 8-bit shift register, thereby building up the complete 8-bit
word.

• The DV transitions from a logical 1 to a logical 0.
• A Load Complete output signal is generated to signify that the

data has been captured.

(d) Give a state diagram for the bus interface system. Identify
any additional control signals that you may need.

(e) Provide a detailed block diagram for the Data Assembler
by showing the major blocks and all of the input and output sig-
nals, including any that you have added.

(f) The system needs a clock source that has a 0.5 μs period
as part of the system time base. An 18 MHz clock source is the
only one available in the system, and you must now design and
implement the clock source using D flip-flops.
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Chapter 4

Memories and the Memory
Subsystem

THINGS TO LOOK FOR …
• The general categories of memory devices.
• The general and specific interfaces to different memory devices.
• Caching and how it is used in an embedded context.
• Direct mapped, associative, and block-set associative caching schemes.
• Memory maps and their role in embedded design.
• Test of RAM- and ROM-type memories.

4.1 INTRODUCTION

For smaller embedded applications, the memory on board the microprocessor or microcon-
troller is sufficient. Larger applications require substantially larger amounts and must move
outside of the processor to a full-memory subsystem to meet those needs.

The memory subsystem is the place within an embedded system where instructions and
data are stored. The architecture and design of that subsystem can have a significant impact
on the behavior of the system. During design, the major concerns include the effects of the
memory and memory management on the execution times of the various modules making up
the application, the predictability of those execution times, the amount of memory needed
during runtime, and the amount necessary and available to ultimately hold the firmware. An
improperly designed memory subsystem and access scheme can be a leading contributor to
a failed system.

In embedded applications, memory management is concerned with managing the pro-
cess stack(s) and the static and dynamic allocation of memory. Static allocation addresses
the partition of memory into the code and data segments used by both the application and the

memory management
static, dynamic

allocation
system. Dynamic allocation addresses the allocation and management of memory resources
for the processes at runtime.

When managing memory in embedded systems, the major concerns are avoiding
dangerous allocation and minimizing or reducing overhead during memory allocation.
Improper allocation can result in the loss of deterministic behavior and potentially create
deadlock situations at runtime.

Embedded Systems: A Contemporary Design Tool, Second Edition. James K. Peckol.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/college/peckol
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In this chapter, we will introduce and discuss the various kinds of devices utilized
to implement memory subsystems in embedded applications. We will begin with the two
general categories, read only memory or ROM and random access memory or RAM. Toread only memory,

ROM
random access
memory, RAM

gain an understanding of how to interact with memory, we will study the general memory
interface, then discuss the commonly used memory storage devices in detail, and work
through the designs of representative memory systems utilizing such devices.

The concept of caching in the context of embedded systems is introduced and
discussed. Several different caching schemes, direct mapped, associative, and block-setdirect mapped,

associative
block-set associative

associative, are developed and studied. The strengths and weaknesses of each of these
approaches are analyzed.

Discussion moves to the system level with the introduction of memory maps and simplememory maps
dynamic allocation dynamic allocation in an embedded context. The topic of memory test closes the chapter.

Several approaches for testing RAM and ROM memories are introduced and studied.

4.2 CLASSIFYING MEMORY

As a first step in studying memory systems, it is important to recognize that the term memory
is generic. There are many different kinds of memory, each with its strengths and weak-read only memory,

ROM
random access
memory, RAM
static, dynamic

nesses. Understanding the characteristics of each and how to design with them can lead to
more robust and effective design solutions. We begin by classifying memory into two gen-
eral categories: ROM and RAM. We further subdivide RAM into static RAM (SRAM) and
dynamic RAM (DRAM). These classifications lead to a number of different subcategories
of both ROM and RAM. Some of the more common subclassifications are described here.

RAM – Random Access Memory. As the name suggests, any location in memory
is visible for immediate access rather than having to sequence through pre-
decessor locations. The times for a read operation and a write operation are
comparable. A RAM may be organized as bits, bytes, or words.

DRAM – Dynamic RAM. A simple memory cell design with bit storage imple-
mented using a stored charge mechanism. The stored charge can leak away if it
is not repeatedly restored. These devices are used for larger memory systems.
I/O is asynchronous with respect to any external system clocks.

SRAM – Static RAM. A more complex memory cell design with bit storage imple-
mented using a latch-type mechanism. The stored data does not have to be
refreshed. These devices are used for higher speed memory systems because
they are faster than DRAM designs. I/O is asynchronous with respect to any
external system clocks.

Semistatic RAM. The periphery is clock activated (dynamic). Only one memory
cycle is permitted per clock. The periphery circuitry must be allowed to reset
after each active memory cycle for minimum pre-charge time. No refresh is
required.

SDRAM – Synchronous DRAM. SDRAM synchronizes all addresses, data, and con-
trol signals to the system clock and allows much higher data transfer rates than
asynchronous transfers.

ROM – Read Only Memory. During normal operation, ROM can only be read. Like
RAM, any location in memory is visible for immediate access rather than hav-
ing to sequence through predecessor locations. The read operation is orders
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of magnitude faster than a write operation. The write is typically referred to
as programming the ROM. Like a RAM, the ROM may be organized as bits,
bytes, or words.

PROM – Programmable ROM. A PROM is typically programmed using a program-
ming device of one form or another. The device can only be programmed one
time.

EPROM – Erasable PROM. Like the PROM, an EPROM is typically programmed
using a programming device. Erasure, so that it can be reprogrammed, is done
by placing the device under ultraviolet light for a specified time interval.

EEPROM – Electrically Erasable PROM. EEPROM is similar to EPROM in that it
can be reprogrammed. Rather than requiring a UV light for erasure, the opera-
tion is done electrically via a programming device.

FLASH – A kind of EEPROM. Its advantage is that it can be reprogrammed in situ.
The device does not have to be removed from the circuit for reprogramming
although it can be.

4.3 A GENERAL MEMORY INTERFACE

As a first-level model of memory, we can view the device as an array. A value can be
assigned to a location in an array and the value of a piece of data that has been stored
there can be read. For an array, we identify where the data is stored by an index number.
Figure 4.1 illustrates a simple array with eight entries. For each index that is accessed, the
corresponding stored value appears on the output. Conversely, if one provides an index and
an input value, the data will be stored at the corresponding indexed location.

1 2 3 4

3 4 5 6

F A C E

D E A D

E A D 3

B A D E

F E A D

7 6 5 4

0

1

2

3

4

5

6

7

Index

Data Figure 4.1 The Array as a Simple Memory Model

One could seamlessly carry this mathematical model into a physical implementation.
In doing so, however, one finds rather quickly that several difficulties arise. First, using one
index value for each entry will very quickly lead to a substantial number of input signals.
That problem can be solved by encoding the index value as a binary number that is defined as
an address. The binary encoded address can now easily be decoded into the corresponding
index value. In the mathematical model, a read access at a specified index automatically

address
read access
write access

returns the stored value and a write access stores a new value.
The physical model requires a bit more work. One must control the data lines going

into and out of the memory. One must also control when the read and write operations take
control, data

read, write
place. The diagram in Figure 4.2 illustrates how such capabilities might be added to the
array model.
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Figure 4.2 The Array Used as a
Memory Model

The three-to-one-of-eight decoder converts the incoming address patterns into the
equivalent in index numbers. The read and write signals perform the associated operations.
Prior to writing, the output drivers for the memory must be placed into the high-impedance
state so that there is no conflict with the incoming data words. For this simple model, the
data is entered into or read from the memory as a 16-bit word.

Thus, we see that a memory interface generally requires three categories of signals:
address, data, and control. Address signals are inputs to the memory, data can be either anaddress, data, control
input or an output, and the control signals are generally inputs. All of the different memory
types require both address and data signals. They differ in the number and the nature of the
necessary control signals.

In Table 4.1, we identify some of the more common control signals.

Table 4.1 Common Memory Control Signals

Chip
Select
(CS)

Output
Enable
(OE)

Read
(R)

Write
(W)

Column
Address
Strobe
(CAS)

Row
Address
Strobe
(RAS)

ROM X X
SRAM X X X X
DRAM X X X X X X

Chip Select(CS) – Enables a memory device for reading or writing. Generally low true.
Output Enable (OE) – Memory device output tristate control. Generally low true.
Read (R) – Signify a read operation on the memory device.
Write (W) – Signify a write operation on the memory device.
Column Address Strobe (CAS) – Signify that the signals on the address inputs represent a -column
address for the memory device.
Row Address Strobe (RAS) – Signify that the signals on the address inputs represent a row address
for the memory device.

4.4 ROM OVERVIEW

Although there are exceptions, the ROM is generally viewed as a read only device. A
high-level interface to the ROM given in Figure 4.3. Moving inside the ROM, we find
that the adjacent diagram illustrates several bits in a ROM fragment. When the ROM is
implemented, positions in the array that are to store a logical 0 have a transistor connected
as shown in the figure. Those positions intended to store a logical 1 have none.
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Figure 4.3 The ROM – Outside and Inside

4.4.1 Read Operation

A value is read from a ROM by asserting one of the row lines. Those rows in which there
is a transistor will be pulled to ground, thereby expressing a logical 0. Those without the
transistor will express a logical 1.

Typical timing for a ROM read operation is given in Figure 4.4.

Memory Address

Chip Select

Data

t read

ROM Read

Figure 4.4 The ROM – Read Operation Timing

4.5 STATIC RAM OVERVIEW

A high-level interface to the SRAM is very similar to that for the ROM. The major differ-
ences arise from support for write capability. Figure 4.5 presents the major I/O signals and
a typical cell in an SRAM array.

Observe that there are six transistors per cell (two in each of the buffers and the two
pull-up transistors); two access transistors enable the cell for read and write.
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Figure 4.5 The SRAM – Outside and Inside
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Figure 4.6 Timing for the SRAM – Read and Write Operations
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4.5.1 Write Operation

A value is written into the cell by applying a signal to bi and bi through the write/sense
amplifiers. Asserting the word line causes the new value to be written into the latch.

4.5.2 Read Operation

A value is read from the cell by first pre-charging bi and bi to a voltage that is halfway
between a 0 and a 1. Asserting the word line drives bi and bi to high and low or low and
high depending on the value that has been stored. The values are sensed and amplified by
the write/sense amplifier.

Typical timing for a read and a write operation is shown in Figure 4.6.

4.6 DYNAMIC RAM OVERVIEW

A typical cell in a DRAM array appears as illustrated in Figure 4.7. Observe that in contrast
to the configuration of the SRAM cell, in the DRAM, there is only one transistor per cell.
The read and write operations use a single bit line.

bi

Word Line

Dynamic Cell

R / W

Sense Amplifiers

Chip Select

Data

Column Select

Figure 4.7 The DRAM Inside
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4.6.1 Read Operation

A value is read from the cell by first pre-charging bi to a voltage that is halfway between
a 0 and a 1. Asserting the word line enables the stored signal onto bi. If the stored value
is a logical 1, through charge sharing, the value on line bi will increase. Conversely, if the
stored value is a logical 0, charge sharing will cause the value on bi to decrease. The change
in value is sensed and amplified by the write/sense amplifier. The read operation causes the
capacitor to discharge. The sensed and amplified value is placed back on to the bit line. This
is called a restore or rewrite operation.restore, rewrite

4.6.2 Write Operation

A value is written into the cell by applying a logical 0 or logical 1 to bi through the
write/sense amplifiers. Asserting the word line charges the capacitor if a logical 1 is to
be stored and discharges it if a logical 0 is to be stored.

4.6.3 Refresh Operation

Dynamic memories only store data for short periods of time on the parasitic capacitor
associated with a MOS transistor. If the charge stored on the capacitor is not replaced peri-
odically, it will leak away, thereby losing the data stored in the memory. Replacement is
implemented by executing a read operation followed by a rewrite of the data back into the
cell. Such replacement is referred to as refresh or a refresh cycle. The time between tworefresh, refresh cycle
refresh operations is called the refresh time interval. The interval is determined by the ven-refresh time interval
dor’s specification and the system in which memory is operating. A high-level interface to
the DRAM is given in Figure 4.8.

R / W

CS

OE

Data I/O

Address

RAS

CAS

Figure 4.8 The DRAM Outside

CAS or Column Address Strobe is a clock used in dynamic memories to control theColumn Address Strobe
Row Address Strobe input of column addresses to the memory. RAS or Row Address Strobe is a clock used in

dynamic memories to control the input of row addresses to the memory.
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Typical DRAM read and write timing is given in Figure 4.9.
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DRAM Read

Memory Address

t data hold
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RAS

CAS

R /W

Data

t cycle

tRAS

tprecharge

DRAM Write

Figure 4.9 Timing for the DRAM Read and Write Cycles

4.7 CHIP ORGANIZATION

Independent of type of internal storage, the typical memory chip appears as is shown in
Figure 4.10.

4.8 TERMINOLOGY

Prior to delving into the detailed design and application of memory systems, it is appropriate
to introduce some of the vocabulary.

Access time. The time to access a word in memory.

Access time specifies to perform a read or a write operation. Note that the times for
these two operations may be different. The time is measured from the point
at which the access commences (as defined by the application of the address)
until the operation is complete. For a read operation, that time will be when
the data appears at the output port of the device. For a write operation, that
time will be when the data is successfully written into the memory.
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Figure 4.10 Typical Memory Chip Internal Architecture

In the timing diagram for the write operation in Figure 4.11, it is assumed
that the internal write process commences on the transition from high to low
on the write line and completes sometime later.write

The read and write operations are illustrated in the timing diagram in Figure 4.11.

Cycle time. The time interval from the start of one read or write operation until the start
of the next.

Cycle time is a measure of how quickly the memory can be repeatedly accessed.
It is illustrated in the timing diagram in Figure 4.12.

Block size. A block is a logical view placed on a collection of words in memory.logical

When quantities of data are transferred within a system, the units of transfer are
called blocks. The block size specifies the number of words in such a collection.blocks
Figure 4.13 illustrates a memory organized into blocks.

Bandwidth. Memory bandwidth is a measure of the word transmission rate to and from
memory via the memory I/O bus.
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Figure 4.11 Memory Access Time
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Figure 4.12 Memory Cycle Time
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block0
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block2

blockn−1

0.....0

F.....F Figure 4.13 Memory Organized into Blocks
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000…000

111…111

….
Figure 4.14 Memory Storing Alternating 0’s and 1’s

Consider a memory in which the stored data words are a pattern of alternating 0’s
and 1’s, such as is illustrated in Figure 4.14.

When the data is read from memory, the pattern on each data line will be a square
wave. The highest frequency of that square wave is the memory bandwidth.

Latency. Latency is the amount of time required to access the first of a sequence of
words.

Latency measures the time necessary to compute the address of that sequence and
then locate its first block of words in memory.

Block access time. Block access time gives a measure of the time to access an entire
block from the start of a read.

Block access time will include the time to find the 0th word of a block and then to
transfer the remaining words.

Page. A page is a logical view placed on larger collections of words in memory.

Pages are generally comprised of blocks; the size of a page can be given in words
or in blocks.

4.9 A MEMORY INTERFACE IN DETAIL

If a single ROM or RAM chip is large enough and the address and data I/O are wide enough
to satisfy system memory requirements, then the interface is rather straightforward. Often,
however, one or the other of the requirements is not satisfied. Let’s look at implementing a
memory system in which neither of the requirements is met.

We will look first at an SRAM system and then at a DRAM design. A ROM imple-
mentation is identical to an SRAM design minus the write capability.
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4.10 AN SRAM DESIGN

A system specification requires an SRAM system that can store up to 4 K 16-bit words.
However, the largest memory device available is 1 K by 8. That is, it can store up to 1024
8-bit words. Consequently, the design will require eight of the smaller memory devices:
two sets of four.

In the worst case, to support 4 K 16-bit words, 12 address lines and 16 data lines are
required. If sufficient I/O lines are available on the microprocessor, the design is straight-
forward. Let’s assume that such is not the case and that only eight address lines and eight
data lines are available. Under such a restriction, two address transfers and two data trans-
fers will be necessary to complete a single transaction. The architecture of such a system is
given in Figure 4.16.

4.10.1 The Memory Array

Let’s look at the various pieces of the design starting with the memory array. The require-memory array
ments specify support for 4 K 16-bit words. The available memory chips only support 1 K
8-bit words. We can use two 1 K by 8 memory chips to hold 1 K 16-bit words.

One memory chip will store the upper byte, and the other memory chip will store the
lower byte, as we see in Figure 4.15. By duplicating such a configuration four times, we
will have sufficient storage for the 4 K 16-bit words.

CS OE
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Data

R/W

SRAM 0 SRAM 1

Address

Data

R/W

CS OE

Address A9..A0

D15..D8D7..D0

R / W

Figure 4.15 Using Two 8-Bit SRAMs to Store 16-Bit Words

Ten address bits 2 enable us to identify each location in a 1 K block since 10 bits gives
us 210 or 1024 combinations. Next, one must be able to identify which of the 1 K by 16-bit
blocks to read from or write to. Two additional address bits enable such a selection to be
made. These four combinations can be used to activate the chip select (CS) control input for
the appropriate 1 K block. The output enable (OE) control inputs for the individual RAMs

chip select
output enable

must be placed in the logical 1 state during a write cycle and in the logical 0 state during a
read cycle.
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Figure 4.16 Design for a 4 K× 16 SRAM System
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4.10.2 Reading and Writing

Since the microprocessor only supports eight address lines, the full address is built up in two
transfers on the address bus. Each address byte is stored in a register; the register is clocked
by a strobe accompanying each transfer. Only 12 address bits are required; therefore, the
upper four bits from the second transfer are not used.

4.10.3 Write

Data transfers to and from memory are managed using a technique similar to that used for
addresses. For a write operation, each data byte is first stored in a register. To execute a
write operation, the memory address and the data to be written to that address are placed
onto their respective busses, eight bits at a time. Each transfer is accompanied by a strobe
that will be used to store the address and data values in 16-bit address and data registers.
After the data has been stored in the data latches, the write command is issued.write

When writing to the memory, one must ensure that its output drivers are turned off; oth-
erwise there will be a bus contention. The high-level timing diagram for the write operation
is given in Figure 4.17.

Address

Address Strobe

Data Strobe

Chip Select

R / W

SRAM Write

Memory Data

A7−A0A11−A8

D7−D0D15−D8

D15−D0

Bus Data

AS0AS1

DS0DS1

Figure 4.17 SRAM System Write Timing

4.10.4 Read

For a read operation, one must disable the outputs of the data latches and enable the memory
output drivers. To accommodate the 8-bit microprocessor bus, data is transferred from the
memory array eight bits at a time. To execute a read operation, the desired memory address
is selected, as was done during the write operation. The proper CS signal, combined with
the state of the read line, begins the read process on the selected memory block. The OE
signals shown in the logic diagram in Figure 4.18 are successively asserted to first place the
upper and then the lower data bytes onto the data bus as depicted in the timing diagram in
Figure 4.19.

There are a number of variations on the design that we have just completed. One of
the major differences between applications and designs is the number of I/O lines that the
processor has available to support the interface. On the one extreme, there are sufficient
lines to support full address and data busses. If each bus comprises 12, 16, 32 bits, or more,
such a luxury is rare in an embedded application. On the other extreme, signals must be
multiplexed onto busses and stored in registers until all information is collected.
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Figure 4.18 SRAM System Read Control Logic
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Figure 4.19 SRAM System Read Timing

A multiplexed implementation is the more common architecture: sharing one set of
bus lines between the two functions (address and data). Under such circumstances, the
address and data registers are necessary for temporary storage. One finds such registers
referenced in the literature as a memory address register – MAR – and a memory data
(buffer) register – MD(B)R. The design of such a system will closely parallel what we have
done here.

4.11 A DRAM DESIGN

Let’s now explore the design and implementation of an interface to a DRAM system. The
DRAM system will utilize an architecture that duplicates most of the previous SRAM
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system. One of the major differences is the potential need to manage the refresh function.
A second difference results from a memory size versus IC package size difficulty.

Today one can easily find numerous variations on the basic DRAM architecture
(EDO – Extended Data Output; SDRAM – Synchronous DRAM; FPM – Fast Page Mode).
At the end of the day, all of these different types are simply DRAMs. The differences
appear in the way that they are organized and how they are accessed. At the root of
the differences is the need to accommodate the ever increasing speed of contemporary
processors. Thus, the DRAM access is synchronized to the system clock, block access
addressing is improved, or pipelined access is permitted. Today, the basic DRAM is

EDO (Extended Data
Output)

SDRAM (Synchronous
DRAM)

FPM (Fast Page Mode)
referred to as the -regular or conventional DRAM. The newer devices incorporate refreshregular, conventional
management inside the device and support a number of other useful features as well.

In the SRAM design, insufficient pins were available on the microprocessor to permit
all the necessary address bits to be controlled in parallel. The problem was solved by mul-
tiplexing the desired address onto a smaller bus and then demultiplexing it into a full-width
address register.

The ability to store large quantities of information in today’s DRAMs presents a similar
conundrum. Current integrated circuit package technology does not support a sufficient
number of I/O pins to simultaneously accommodate the necessary number of address bits.
We solve the problem by multiplexing the address into the chip as a row segment and a
column segment and then demultiplexing them once they are inside. As we did with the
SRAM design, each segment of the address is accompanied by a strobe; for the DRAM
these are identified as the RAS and the CAS.

Row Address Strobe
(RAS) Column

Address Strobe (CAS)
As a basis for understanding contemporary variations on the DRAM, let’s abstract away

the performance-enhancing modifications and examine the operation of the basic DRAM
core. For the current analysis, we will use a 4 M by 16-bit device – a RAM that will store
4 million 16-bit words.

4.11.1 DRAM Timing Analysis

4.11.1.1 Core Components

To begin the study of the DRAM core and the critical timing elements, some new vocabulary
is necessary.

• RAS – Row Address Strobe Asserts that the row segment of the address is on the input
address bus.

• CAS – Column Address Strobe Asserts that the column segment of the address is on the
input address bus.

• RAS Cycle Time Specifies the period of RAS.

• RAS to CAS Delay Specifies the separation between the start of a row address
strobe and the start of a column address strobe.

• Refresh Period Specifies the maximum period in which all memory cells
must be refreshed to ensure that no data is lost.

The relative timing for some of these signals in the base case is illustrated in
Figure 4.20.

The timing of the row or column address with respect to the RAS or CAS signals
permits either the leading or trailing edge of the strobe to capture the address information.
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Memory Address

Row Address Column Address
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CAS

tRAScycle

tRAS

tCAS

tRAS-CASdelay

tRAS-Column Address delay

Figure 4.20 Basic DRAM Timing

For illustration, the basic cycle is extended in the next timing diagram to illustrate a
DRAM that supports EDO – Extended Data Output. Rather than returning to the deasserted
state following the row address capture, the RAS signal is reinterpreted to include the rowEDO—Extended Data

Output address portion followed by one or more column address portions. In Figure 4.21, three
successive column accesses use the same row address. With such a scheme, two row address
cycles have been eliminated, thereby substantially reducing the amount of time to perform
the read or write operations.

Memory Address

Row Address Column Address i

RAS

CAS

tRAScycle

tRAS

tCAS

tRAS-CAS delay

tRAS-Column Address delay

Column Address j Column Address k

Figure 4.21 EDO DRAM Timing with Successive Column Accesses Using a Single Row Address

With such a modification, row address information must be captured on the leading
edge of RAS. We see that the time interval tRAS now comprises the RAS interval and one
or several subsequent CAS intervals.

4.11.2 DRAM Refresh

Refresh management can be accomplished in several ways. It is important to remember
that the refresh operation is overhead; normal read and write operations are the intended
purpose of the memory. Consequently, it is desirable that the refresh has minimal impact
on the normal operations.

Although a normal read or write operation will refresh the addressed row, one can-
not depend on such operations to ensure that each row in the memory is accessed or that
such accesses occur frequently enough to meet the maximum refresh period specification.
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Periodically performing a burst refresh, in which normal operations are suspended while all
rows are refreshed, can potentially affect real-time performance. An alternative approach is
to refresh one row at a time according to a schedule that ensures that all rows are visited at
least once within the maximum refresh period. Such an approach seeks to evenly distribute
the refresh burden.

The various DRAM chip designs typically support a variety of different refresh
schemes. The major differences center on whether the refresh is controlled externally or
internally and where the refresh addresses originate, again, externally or internally.

4.12 THE DRAM MEMORY INTERFACE

From the microprocessor’s point of view, the interface for normal read and write operations
to the DRAM replicates much of that which has already been designed for the SRAM. Let’s
now add the refresh component.

For this design, we will implement a scheme that refreshes one row at a time and
will implement the refresh management outside of the chip. We will assume a 4 M word
memory chip organized as 4 K rows and 1 K columns, and we will posit that each row must
be refreshed every 64 ms. The organization will require a total of 22 address bits comprising
12 row address bits and 10 column address bits. The memory chip will support 12 address
input pins; 10 of the pins will be shared between the row and column address bits.

We will further assume that the timing will utilize a two-phase clocking scheme that is
derived from a 50-MHz source, as shown in Figure 4.22.

50 MHz

phase 2

phase 1
Figure 4.22 Timing Diagram for a
Two-Phase Nonoverlapping Time
Base

A two-phased clock design gives greater flexibility in time than is possible with a
single-phase clocking scheme. See the earlier discussion of clocks and time bases in
Chapter 3.

4.12.1 Refresh Timing

To meet the refresh timing constraint, one row must be refreshed every 16 seconds. Four
hundred counts from a 9-bit counter incremented from either phase of the clock (25 MHZ)
will provide the 16 μs interval. Decoding the two most significant bits of such a counter will
produce a signal that occurs at count 384 or after 15.36 μs. Executing a refresh 16 counts
early provides some timing margin. That design for the refresh interval timer is given in
Figure 4.23.

256128

Refresh Interval

25 MHz
9-bit binary counter

refresh active

Figure 4.23 Refresh Interval Timer
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4.12.2 Refresh Address

The refresh address is not the same address as is used by the normal read or write operations.
To provide the address, a 12-bit binary counter is used. The counter should be incremented
following the completion of each row refresh operation. The address counter appears in
Figure 4.24.

refresh active
12-bit binary counter

RA0 RA 11
refresh address

Figure 4.24 Refresh Address Generator

During a normal read or write operation, the row addresses to the DRAM are provided
by the source executing the operation. During a refresh, they are given by the refresh address
counter. Thus, the DRAM address lines must provide row, then column addresses during
normal operation and refresh row addresses during the refresh cycle.

Selection among the three alternatives is shown in Figure 4.25.
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enable column address

enable refresh address

enable refresh address

enable refresh address

Figure 4.25 Address Source Control
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Note that only 10 address bits are needed for the column address since the memory has
1 K columns. The timing of the normal row and column address enable signals is given in
Figure 4.26.

Memory Address

Row Address Column Address

RAS

CAS

tRAScycle

phase 1
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enable row address

enable column address

Figure 4.26 Row and Column Address Timing

The signal timing is set such that the addresses are generated on phase 1 of the clock.
The row and column address enable signals are asserted on the same phase. RAS and CAS
are generated on phase 2 of the clock. The two enable signals can be generated using the
state machine in Figure 4.27.
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Figure 4.27 Row and Column Address Enable

4.12.3 Refresh Arbitration

The refresh address is independent from that used by the normal read or write operations.
Consequently, there is a nonzero probability that either a refresh or normal read or write
operation may be in progress when the other is requested or that there may be a collision in
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which both are simultaneously requested. All three cases must be accommodated; we set
the following rules:

1. If a normal read or write operation starts, it is allowed to complete.
2. If a refresh operation has started, the normal operation is remembered.
3. In the case of a tie, the normal operation is given priority.

The following signals are defined:

Read-Write Indicates that a normal read or write operation has been initiated
on the microprocessor bus.

Refresh Interval Indicates that the refresh time interval has elapsed.

Normal Request Indicates that a normal read or write operation is requested by the
arbitration logic.

Refresh Request Indicates that a refresh operation is requested by the arbitration logic.

Normal Grant Indicates that a normal read or write operation is granted by the
arbitration logic.

Refresh Grant Indicates that a refresh operation is granted by the arbitration logic.

Normal Active Indicates that a normal read or write operation has commenced.

Refresh Active Indicates that a refresh operation has commenced.

The specific implementation of several of these signals will be application and pro-
cessor dependent. These include Read-Write, Operation Complete, Normal Active, andRead-Write, Operation

Complete, Normal
Active, Refresh Active

Refresh Active. In any case, they are not difficult to build. For the current design, they will
be assumed to exist.

The logic diagram, presented in Figure 4.28 implements the arbitration circuitry as a
two-level design – the request portion followed by the grant portion.
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Figure 4.28 Normal vs. Refresh Access Arbitration

We now bring the major pieces of the DRAM addressing and refresh management
together in the block diagram shown in Figure 4.29.

The data read and write operations to the DRAM will generally follow the timing dia-
grams presented earlier. They are repeated in Figure 4.30 for reference.
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Figure 4.30 Timing Diagrams – DRAM Memory System Read and Write Access

4.13 THE MEMORY MAP

As a first step toward understanding the memory subsystem in an embedded application, we
begin with a memory map. Formulating a memory map is a useful early step in the designmemory map
of the core system. The map specifies the allocation and use of each location in the physical
memory address space. At a bare minimum, the memory map should identify the data and
code space. A typical memory map for a small 16-bit machine is presented in Figure 4.31.

As illustrated, the memory map lists the addresses in memory allocated to each portion
of the application. Note that this is primary physical memory. From a high-level perspective,
the memory subsystem is comprised of two basic types: RAM and ROM. ROM is used to
hold words that are not expected to change at runtime; this will be the space available to the
application firmware. RAM is used to hold words that may change at runtime; this will be
the space available to hold data among other things. A portion of the RAM memory may be
allocated for nonvolatile RAM that is be used for data that needs to be retained if power is
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Memory Mapped I/O
and DMA

Instructions
(Firmware)

RAM

Stack Space

System Memory

Nonvolatile RAM

0x0

0x3FF

0x4FF

0x8FF

0x68FF

0xE5FF

0xFFFF

Figure 4.31 Basic Memory Map

removed from the system. If the design is using memory mapped I/O, then all of physical
memory will not be available for data or code.

Note that it is possible for the required code and data space to exceed total available pri-
mary memory. Under such circumstances, one must use techniques called virtual memory
and overlays to accommodate the expanded needs.

virtual memory
overlays

4.14 MEMORY SUBSYSTEM ARCHITECTURE

We have looked at several different kinds of memory, how one can design and build an
interface to them, and how one might allocate subsets of the physical memory address
space to meet the different requirements of the application. We now bring a number of
those pieces together in a memory system. The block-labeled memory in the diagram for
a von Neumann machine actually comprises a number of memory components of different
kinds, sizes, and speeds arranged in a hierarchical manner and designed to cooperate with
each other. Such a hierarchy is given in Figure 4.32.

The commonly used hierarchical metrics for relating the different kinds of memories
are speed and storage capacity. At the top are the slowest, largest, and least expensive mem-
ories. These are known as secondary memory and are shown in the diagram by the blocksecondary cache
on the left. At the bottom are the smallest, fastest memories called cache memory; these
are typically higher speed SRAMs. These devices also tend to be the most expensive. In the
middle of the hierarchy is main or primary memory. These are either lower speed SRAMmain, primary
devices or, more commonly, DRAM memories. CPU registers are sometimes included in
the ranking as higher speed memory than cache.

The motivation for building a memory system as a hierarchical collection of different
kinds of memories is that we would prefer an application program to execute as quickly
as possible. Accessing memory takes time; each access contributes to the time required to
execute an instruction that can have a significant negative impact on real-time performance
in an embedded application.
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User
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Cache Memory

System

User

System

Main Memory

User

System

Figure 4.32 Typical Memory Hierarchy Utilizing a Variety of
Memory Types

We will not consider secondary storage; the typical embedded applications will not use
this. The discussion here will focus on main memory and cache, the last two blocks on the
right. These can be implemented using (variations on) the designs presented in the previous
sections.

4.15 BASIC CONCEPTS OF CACHING

Cache is a small, fast memory that temporarily holds copies of block data and program
instructions from the main memory. The increased speed of cache memory over that of main
memory components offers the prospective for programs to execute much more rapidly if
the instructions and data can be held in cache. Many of today’s higher performance micro-
processors, implemented around the Harvard architecture, will internally support both an
icache (instruction cache) and a dcache (data cache). We will now examine the concept oficache, dcache
caching in greater detail. We will look first at the ideas behind caching, what cache is, why
it works, and some of the potential difficulties encountered in embedded applications. We
will then examine several alternative caching schemes and, later, the effect of caching on
performance in Chapter 14.

4.15.1 Locality of Reference

Time is a critical constraint in many embedded applications. Time burdens arising from
memory accesses and memory access speeds can have a significant impact on meeting
those constraints. Thus, in executing a design, among the many goals two are to reduce the
number of memory accesses and make each access as short (in time) as possible. Ideally,
one would like to make all memory as fast as technology allows. There is an associated cost,
however. High-speed memories are expensive and complex to design; support circuitry can
be rather expensive as well. As the speed demands and the requirements for additional
support circuitry increase, a growing stress will be placed on the system’s power supplies.
Let’s look at an alternate approach.
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Almost all embedded software today is written using a procedural paradigm and is
often written in the C language. Many years ago IBM analyzed how such programs are
designed and execute and discovered an interesting phenomenon. Execution generally
occurs either sequentially or in small loops with a small number of instructions. Such
behavior means that the overall forward progress through a program is proceeding at a
much lower rate than the access times of the fastest memory. Put another way, with respect
to the entire program, actual execution takes place within a small window that moves
forward through the program. This is shown in Figure 4.33.

Memory

Complete Program

Window of Activity

Figure 4.33 Locality of Reference

Formally, such a phenomenon is called sequential locality of reference. Because the
program is executing only a few instructions within a small window, if those few instruc-
tions can be kept in fast memory, the program will appear to be executing out of that

sequential locality of
reference

memory. Through such a scheme, we can gain the benefits of higher speed at a reduced cost.
An important point to remember is that the approach works if the area within the program in
which the application is currently executing is in the local window. The method can easily
be defeated with large loops or repeated branches outside of the window. Two other types of
locality of reference, spatial and temporal, are also defined. Spatial locality suggests that a

locality of reference,
spatial, temporal

future access of a resource, a memory address in this case, is going to be physically near one
previously accessed. Temporal locality suggests that a future access of a resource, again,
a memory address, is going to be temporally near one recently accessed. Using locality of
reference knowledge can significantly improve memory access time performance.

A major caveat for real-time applications that utilize a caching scheme is that demand
for the movement of blocks of instructions or data from or to main memory to or from cache
is driven by the execution path taken through the program. Such a path is often governed
by results of computations, external events, and/or any of a variety of other factors. Which
path of a branch is taken, for example, may determine whether or not the application has to
bring in data/instructions from cache.

Although it is important to keep in mind that any such schemes can have significant
negative impact on real-time systems, it is also important to remember that, when properly
used, they can have a significant positive impact on system performance. It is evident, then,
that using caching schemes is sometimes appropriate. If caching must be used, it is essential
to understand the problem and the caching algorithm completely, to determine an upper
bound on context switching, and to leave plenty of time margin in the application.
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4.15.2 Cache System Architecture

When using a caching scheme, the goal is to operate out of cache memory – typically
SRAM – to the greatest extent possible. When program execution needs an instruction or
data that is not in the cache, it must be brought in from main memory – typically DRAM.

The block diagram for the architecture appears as shown in Figure 4.34.
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Figure 4.34 Cache System Architecture

4.16 DESIGNING A CACHE SYSTEM

Caching requires a certain amount of higher speed memory. The size of that memory deter-
mines how much information can be stored locally. In larger modern processors, several
levels of cache internal to the processor can be enabled or disabled. The cache under dis-
cussion here is external to the CPU.

4.16.1 A High-Level Description

The application program begins executing and encounters a need for a piece of data or an
instruction. To locate that item, first the cache is checked. If the item is found, there is a
cache hit. The data or instruction is retrieved and used. If the item is not found, there has
been a cache miss and the item must be obtained from somewhere else. For the currentcache hit

cache miss discussion that location will be main memory.
The block containing the data or instruction is brought into the cache from main mem-

ory. If there is room left in the cache, the block is stored; otherwise room must be made.
That task is accomplished by overwriting or removing an existing block. On one hand, if
the contents of the block have been modified, the changes must be saved. On the other hand,
if there have been no modifications to any data in the old block, that block can simply be
discarded and the new block written in its place.

Several questions arise immediately.

• How do we know when something is not in the cache?
• Where do we go to find something if it is not in the cache?
• What if it’s not there?
• How do we know if there is room left in the cache?
• How do we know if information in the cache was modified?
• How do we select the block to replace?
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4.17 CACHING – A DIRECT MAPPED IMPLEMENTATION

The first cache management strategy that we will study is called direct mapping. As wedirect mapping
examine the design, we will address each of these questions. First the specifications:

• The cache and main memory will store 32-bit words.

• The cache size will be 64 K words.

• The cache will be organized as 128 0.5 K word blocks.

• The cache will implement a direct mapped replacement algorithm.

• Memory addresses will be 32 bits.

• Main memory size will be 128 M words.

• Main memory will be organized as 2 K pages; each page will hold 128 blocks.

The core hardware components of the cache are given in the following diagrams. These
comprise the cache memory array, the MAR used to hold the address being accessed, and
the Memory Data Register (MDR) used to hold data being read from or written to cache.
The diagram on the right in Figure 4.35 gives the software view of the cache, which is
logically divided into 128 blocks. Each block will contain 512 words.

Cache

Memory Data Register

MDR

Memory Address Register

MAR

Block 0

Block 1

Block 3F

word 0
word 1

word 1FF

Figure 4.35 Cache System Architecture in Greater Detail

The cache will now logically appear as we see in Figure 4.35.
During normal operation, an instruction or data fetch from memory or data write to

memory proceeds as discussed earlier. The address (and data as appropriate) is provided,
and the read or write operation is executed. When the target address is not found in the
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cache, a cache miss occurs. Under such circumstances, the required data or instruction must
be copied into the cache from main memory.

Rather than bring a single word into the cache, when such a transfer is needed, the

cache miss

complete block containing the required word is brought in. The destination to where the
new block is copied is determined by the replacement algorithm designed into the cache.
The design under discussion will use the direct mapping algorithm. This algorithm is onedirect mapping
of the simpler ones.

The main memory page size is set equal to the cache size; therefore, each page will
contain a corresponding number of blocks. Thus, main memory will contain sizemain memory
mod sizecache pages. Consequently, each main memory page will contain a block 0, block 1,
and so on.

When a block is brought into the cache from main memory, it is placed into the cor-
responding numbered block in the cache. Thus, a main memory block 0 will always be
placed (or directly mapped) into the cache block 0 slot, a main memory block 1 will alwaysblock 0, block 1
be placed into the cache block 1 slot, and so forth. The mapping is illustrated in Figure 4.36.

Main Memory Cache

Block 0

Block0

Block 0

Block 1

Block1

Block 1

Block 1

Page 0

Page 1

Page 2

Page n−1 Block 0

Block 0

Block 1

Figure 4.36 Main Memory to Cache Mapping

The system memory address is 32 bits; only 18 of them will be needed for the cache
address (if byte addressing is supported). The 18 cache address bits are interpreted as pre-
sented in Figure 4.37.

A0A1A2A10A11A17A18A31

ByteWordBlockTag

Figure 4.37 Address Interpretation in the Cache Context
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Bits A1–A0 Each data or instruction word is 32 bits or four bytes long. Bits A1 and A0
identify a byte within a word.

Bits A10–A2 Each block contains 512 words. Address bits A10–A2 identify a word in a
block.

Bits A17–A11 The block address within the cache is identified by address bits A17–A11.
These bits are called the index into cache and also correspond to the block’s
address within a main memory page.

Thus, any main memory address with address bits A17–A11 having the
values [000 0000] will be mapped into block 0 in cache.

Bits A31–A17 Identify which main memory page the block came from. This value is
called the tag. These values will be stored in a data structure called a tag
table and are used when testing to see if the needed word is in a cache.

The current design will use 11 of these bits; the remainder will be 0.

The tag table is a data structure that contains information essential to the proper man-tag table
agement of the cache. The tag table contains one record for each block in the cache. For
the current design the tag table will, therefore, contain 128 entries. Typical information

valid bit

coherent

write through
delayed write

dirty bit, valid bit

contained in each record includes:

Tag A subset of bits from the main memory address identifying the page (in main
memory) where the block originated.

Valid Bit A flag indicating whether the corresponding block contains valid data.
When an application starts, the cache contains no relevant information. All

blocks allocated to the application are empty. The valid bit associated with each
block is set to FALSE. When a block is brought into the cache, the valid bit is
tested. If FALSE, the new block is copied to the target location and the valid bit
is set. If the valid bit is TRUE, the block must be checked for changes.

Dirty Bit A flag indicating whether the corresponding block contains data that has been
modified.

When a new block is first brought into the cache, the copy in the cache and
the copy in main memory are identical or coherent. If a change is made to any
piece of data in the cache, the two blocks are no longer the same.

There are two main schemes for addressing the issue. The first, called write
through, propagates any data change immediately to main memory, thus
ensuring that the two remain consistent. The second, called delayed write,
assumes that if a piece of data changed once, it may change again in the near
future. Thus, time can be saved by not performing (potentially) multiple write
operations to the same data. To identify that the data has changed, the dirty bit is
set to TRUE.

When a new block is brought into memory and the valid bit is TRUE, the
dirty bit associated with the block is checked. If the bit is FALSE, the new block
overwrites the old. If the bit is set, then the old block must be copied back to
main memory before the new one is brought in.

Time Time of day information may be stored with a tag entry indicating when the
block was brought into the cache or when it was last accessed.

Time information is used in other replacement algorithms. The direct
mapping scheme does not require it.
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4.18 CACHING – AN ASSOCIATIVE MAPPING CACHE IMPLEMENTATION

Although simple, the direct mapped algorithm can have some negative effects on system
performance, particularly if real-time constraints must be satisfied. It is easy to imagine
a situation in which different portions of an algorithm are in different block 0’s in main
memory. In such a circumstance, the two blocks would be repeatedly interchanged.

An alternative approach lets a new block be placed anywhere in the cache. An associa-
tive search is then executed to locate it. Such an algorithm searches by content rather thanassociative search
by address. The associative search asks, “given a target, is it in memory and if so, where?”
The traditional access says, “here is an address; return the contents of that address.”

A mapping from main memory may now appear as illustrated in Figure 4.38.

Main Memory Cache

Block 0

Block 0

Block 0A

Block 1

Block 0B

Block 3F

Page 0

Page 1

Page 2

Page n−1

Block 3E

Block 2E

Block 0B

Block 2E

Block 0

Block 3F

Figure 4.38 Block Mapping from Main Memory to Cache Memory

A new main memory block can be placed anywhere in the cache. As with the direct
mapping algorithm, the tag table entry corresponding to the cache block will contain the
address information identifying the main memory origin. However, a linear search of the
tag table to locate a required block is not feasible.

A cache miss using an associative mapping scheme is handled in much the same way
as was done in the direct mapping scheme. The two differ in how the new block is brought
into the cache and in which block is to be replaced. As the new block is not constrained to
a specific location, replacement offers more opportunities and becomes a bit more interest-
ing. Any of three schemes is commonly used. Each has advantages and disadvantages; the
choice for implementation is often governed by the requirements of the application.

With an associative mapping algorithm, time is added as one of the components of theLeast Recently Used
(LRU) Most Recently

Used (MRU)
tag table record. Two of the more commonly used algorithms applying temporal locality
of reference as a metric are Least Recently Used (LRU) and Most Recently Used (MRU).
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The former is also called a FIFO – first-in-first-out scheme. The latter is referred to as
LIFO – last-in-first-out. A third algorithm selects and removes a block at random.

The FIFO algorithm is based on the assumption that the oldest block in the cache is the
one that is least likely to be used in the future; thus, it should be the one to be replaced. The
LIFO algorithm takes a different tack and assumes that the newest block is the least likely
to be used in the future since it was just used. Therefore, that one should be removed.

The tag table in an associative mapping scheme uses an associative memory as illus-
trated in the high-level block diagram in Figure 4.39.
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Figure 4.39 Tag Table Block Lookup in an Associative Mapping Scheme

To find a word in the cache, the tag and block portions of the memory address specify
the target for the associative search. All entries in the tag table are searched in parallel. If a
match is found, the tag table location identifies the block in the cache containing the target
word. That information, combined with the remainder of the memory address, is used to
retrieve the needed word.
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The problems with fully associative caches are the long search times, which can poten-
tially slow down the application, and the complexity and cost of the underlying logic.

4.19 CACHING – A BLOCK-SET ASSOCIATIVE MAPPING CACHE IMPLEMENTATION

A third algorithm for storing and retrieving data and instructions into and out of the cache,
called block-set associative, combines some of the simplicity of the direct mapping algo-block-set associative
rithm with some of the flexibility of the associative algorithm. Under the block-set asso-
ciative scheme, the entry at a specific index is expanded from a single block to multiple
blocks. Such a collection is called a set. The number of blocks in each set is determinedset two-way set

associative scheme by the specific implementation. The design to be implemented will be a two-way set asso-
ciative scheme; thus, each set will have two blocks. Similarly, a four-way implementation
would support sets containing four blocks. The cache for a two-way implementation takes
on the form illustrated in Figure 4.40 for a cache size of n sets.

Block-Set Associative Cache

Set 0

Set 1

Set 2

Set 3

Set n−1

Block i Block m

Figure 4.40 Two-Way Set Associative Cache
Implementation

Main memory address space is first organized as a collection of m blocks. The m blocks
are then organized as a collection of n groups. The group number to that each block is
assigned is computed as:

groupNumber = m mod n

The set number in the cache corresponds to the main memory group number. Any
block from main memory group j can be placed into cache set j. A set is now searched
associatively; the search is far less complex because we are dealing with much smaller
search space.

For our current system,

Cache 64 K with 128 0.5 K blocks organized as 64 two-block sets.

Main Memory 256 K words organized as 512 blocks. The resulting groups are given in Table 4.2.
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Table 4.2 256 K Main Memory Organized into 64 Groups Comprising 512 Blocks

Block Group

0 64 128 • • • 384 448 0
1 65 129 385 449 1
2 66 130 386 450 2
•
•
63 127 192 447 511 63

The tag table will have 128 entries. Table 4.3 illustrates how the main memory addresses
are mapped to the cache addresses.

Table 4.3 Main Memory to Cache Mapping
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4.20 DYNAMIC MEMORY ALLOCATION

Dynamic memory allocation is usually interpreted as the process of allocating memory at
runtime associated with some extensible data structure such as a linked list or heap. The
linked-list-based scheme works well for an embedded system. The C malloc and C++ new
operators are examples of routines that are used in conjunction with the heap.

Remember: in embedded systems we generally use two kinds of memory, ROM and
RAM (which may be cache or main memory). Here we are more concerned with managing
main memory to accommodate

• Programs larger than main memory.

• Multiple processes in main memory.

• Multiple programs in main memory.

Traditional virtual memory schemes are completely nondeterministic and, thus, are
rarely used in real-time systems, particularly those systems with hard deadlines.
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Let’s look at several schemes for dynamic memory allocation that can work well in
embedded systems.

4.20.1 Swapping

Remember that memory in our system is segregated into two portions: that designated
as system memory and that allocated to code and data space for user programs, as in
Figure 4.41. The simplest method for accommodating multiple programs in memory is
called swapping. With such a scheme, the system remains resident in memory and furtherswapping
assumes that only a single-user program is resident in memory at a time. The same holds
true for tasks; typically there is only a single task in memory at any one time.

System

User Program

and

Processes

ROM

want small
firmware

Figure 4.41 Typical Memory Segregation into
User and System Allocations

We assume that a program consists of several tasks. The first task is executing when
a second must be run. We now have a situation that is similar to a subroutine call only
slightly more complex. We proceed as follows. The first task is suspended and swapped to
a secondary storage device. Here we will use the word “secondary” to refer to nonruntime
memory. In an embedded system, typically we do not have a large hard drive mounted
anywhere that might be convenient. Secondary storage could also be in ROM somewhere
as we are dealing with firmware. We also save our context; we could be working out of a
cache and execute a swap to main.

Next, the second process, with its context, is loaded into user space and activated by
the dispatcher. Note that such a scheme can be deadly in time-critical systems. At the same
time, the timing can be deterministic if the program/task/thread is well understood. If such
a scheme is used, one should ensure that the task/program execution time is long compared
to the swap time. Such processes might be those associated with chemical processing or
thermal control.

4.20.2 Overlays

An overlay is a poor man’s version of virtual memory. The overlay will be in ROM and
used to accommodate a program that is larger than main memory. The program is seg-
mented into a number of sections called overlays. Usually, there is one main section plusoverlays
several remaining overlays. The main section usually contains the following, as is reflected
in Figure 4.42:

• Top level routine

• Code to perform overlay process

• Data segment for shared data

• Overlay segment
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Main Segment

Top Level

Routines

Overlay Process

Code

data

Overlay Segment

Figure 4.42 A Program Segmented into Overlays

When the overlay process is executed, a new overlay segment replaces the current one
in main memory. Care must be taken in designing such systems. Specifically, the code in
each overlay must be selected carefully; we cannot just cut the program into pieces that fit.
Two halves of a loop may land in different overlays, which can result in thrashing. Usually
the segmentation is hand tailored.

4.20.3 Multiprogramming

As the name suggests, multiprogramming permits one to run multiple programs in the same
memory space (RAM). Here we consider two versions: programs in which the number of
tasks is fixed and programs for which the number of tasks is variable.

4.20.3.1 Fixed

Designs with a fixed number of tasks/threads look very similar to paging systems. Such a
scheme is useful when the number of tasks is known in advance. Certainly, this is true for
many embedded systems. To implement the design, the user space is divided into a number
of fixed size partitions and is presented in Figure 4.43. The tasks must reside in contiguous
partitions; linking becomes extremely difficult otherwise.

System

User

Figure 4.43 User Space Divided into Fixed Size Segments
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When preempted, a partition is swapped to disk or (in the case of most embedded
systems) to slower memory or RAM, or the code portion address is saved. As is common
in virtual memory schemes, using fixed-size partitions can lead to memory fragmentation.
Fragmentation can happen in several ways. Consider a system using fixed-size partitions
of 2 K. Let three jobs be brought into memory:

J1–1.5 K

J2–0.5 K

J3–2.1 K

Let these jobs be allocated to successive partitions in memory. We see that four par-
titions are required. Now, let J2 finish and be swapped out. What does this mean? We
immediately see the following problems:

J2. Leaving has left a hole that can only be filled by job ≤2 K. The task consumes a
2 K partition leaving three-fourths of it unused.

J3. Requires two partitions, one of size 2 K and one of size 0.1 K; this is very wasteful
of memory. If these three jobs consume the last of the memory, a new job of size
1 K cannot enter, although it will fit.

4.20.3.2 Variable Number

Programs with a variable number of tasks are treated in a similar manner to segments in
a traditional virtual memory scheme. Memory allocation for a variable number of tasks
is similar to a paged virtual memory scheme. Allocation is determined by the process’s
requirements when it is loaded into memory. Such an approach works well when the number
of tasks is unknown or variable. Wasted memory arising from a misfit into a partition size
is virtually eliminated. Holes remain but can be eliminated by using compaction schemes.
Compaction moves pieces of used memory into contiguous locations. It is important to keep
in mind that any such schemes can have significant negative impact on real-time systems.
If they must be used, then one needs to understand them and the application context com-
pletely. One should also determine an upper bound on context switching and leave plenty
of margin in the application.

4.21 TESTING MEMORIES

Let’s now look at the problem of testing memories. As we learned in earlier studies, a wide
variety of different kinds of memories can be incorporated into a design. On the one hand,
the amount of memory (ROM or RAM) that can economically be included in a contempo-
rary system seems to grow daily. On the other hand, trying to test that memory as a part
of production test has become more costly and complex. Exhaustive testing of all possible
combinations of data values is not a practical approach. Moreover, it is logical to assume
that in production, the object of a memory test is not to confirm the individual memory chips
themselves, but rather to ensure that the installation and interconnection of the devices are
defect free.

To address the memory test problem, as with any other problem, we begin by decom-
posing it into the basic pieces. The high-level diagrams for a RAM or ROM memory system
are redrawn in Figure 4.44. Looking first from an external point of view, we see that both
types of memory are similar, the major difference being the R∕W line and bidirectional data
flow for the RAM. Each memory block shown may comprise a number of memory chips
interconnected via the address, data, and control busses.
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Figure 4.44 A System-Level View of Memory
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Figure 4.45 Basic Memory Architecture

At the system level, memory is no different from any other component we have dealt
with. The manufacturing defects that one encounters are much the same as well – shorted,
open, or bridged lines. Such faults may show up as either stuck-at or bridging type defects
on the address, data, or control lines. Based on the anticipated kinds of faults, one can
begin to formulate a test strategy. Internal to each memory chip are variations on the
architecture in Figure 4.45. With a ROM memory, in most cases, all of the data lines would
be strictly outputs.
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Defects internal to a memory device arising from its manufacture may appear in the
cell array itself, in the row or column address decoding logic, or in the read/write logic
and drivers. The entire category of what are called soft errors will not be considered. Such
errors include those resulting from alpha particles, thermal effects, or transient-type errors.
Dealing with soft errors is more of a design issue than a test problem. In addition, it will be
further assumed that the memory devices themselves are defect free.

4.21.1 RAM Memory

Let’s first examine a RAM fault model. We base the analysis on the assumption that the
design of the RAM chips is correct and that they contain no internal manufacturing defects.
We begin with faults on the data lines. Stuck-at faults prevent the intended data from being
correctly written to or read from the memory. The models for such faults follow directly
for those that were used in the discussion of faults in combinational logic; these are shown
in Figure 4.46.

+V

D0

D2

D1

Figure 4.46 Memory Data Line Faults

A stuck-at-1 fault results in a logical 1 being written to the affected bit for all memory
addresses. Similarly, a stuck-at-0 fault yields a logical zero written to the affected bit for
all device addresses. The effects of the faults provide the basis for testing.

To test for the stuck-at-1 condition, a pattern of all 0’s is written to a memory address
and followed by a read operation from the same address. For a stuck-at-0 condition, the
pattern of all 1’s is written and then read. If the same data is read as was written, then a
stuck-at fault does not exist on any of the data lines. It should be sufficient to perform the
write and the read at a single address. For such faults, no further information is gained by
testing additional locations.

A bridge fault, as illustrated in Figure 4.47, connects two (or more) data lines. As
was noted in the earlier discussion of bridge faults in combinational logic, the actual volt-
age level appearing on the signal lines comprising the faulted net depends on the relative
strengths of the driving signals. The assumption here is that each of those signals (D0 and D1
in this case) will share a common value. Thus, the test consists of writing a … 101010…
pattern to all the data lines going to memory, executing a read, writing a … 010101… pat-
tern and executing a read. In the presence of a bridge fault, one can expect to see the same

D0

D2

D1

Figure 4.47 Bridged Data Line Faults
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value on two adjacent data lines for the two reads. The different patterns should enable a
dominant driver to be identified.

Let’s now look at similar faults on the address lines. The fault model for a stuck-at con-
dition on an address line is identical to that on any of the data lines, as shown in Figure 4.48.
The tests, however, are slightly different. In the presence of a stuck-at address line fault,
two different memory addresses are mapped to the same location.

+V

A0

A1

A2

Figure 4.48 Address Stuck-At Faults

To identify such faults, one must prove that each address bit can be driven to the logical
0 and logical 1 state and that data can be properly written to and read from each such
memory location. Stated the opposite way, one must show that if data is written to a specific
test address, that data is not also written to the address with the bit under test complemented.

The test is performed as follows. An address bit, A0, is selected as the bit under test.
Next, a data pattern, … 0000, for example, is chosen and that data is written to memory
address … xxx0. A different data pattern, say … 1111, is then selected and written to mem-
ory address … xxx1. The contents of the two locations are then read. If there is a stuck-at
fault on A0, both addresses will be mapped to the same location and the same data will be
read from the two different addresses.

Like a bridge fault on the data bus, such a fault on the address bus will constrain two
(or more) address lines to the same value. Once again, several addresses have been mapped
to a single address. Such a fault is depicted in Figure 4.49. The motivation for and method
of test for bridges is similar to that used for stuck-at faults. The tests are only slightly more
complex. Data is written to one address and read from a second. If there is no bridge fault,
the proper data will be read.

A0

A1

A2

Figure 4.49 Bridged Address Lines

Assume that a test for a bridge between address bits A0 and A1 is conducted. As
the test address, any address of the form: … xxxx01 is selected. Next, a background data
pattern (… 1111, for example) is written to the two possible aliased addresses: … xxxx00
and ... xxxx11. A different data pattern (… 0000, for example) is then written to the test
address. Finally, all three addresses are read.
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The test may have any of four possible outcomes. If there is no bridge fault, the correct
data will be read from each address. If there is a bridge fault, one must consider three cases:
the logical 1 in the test address dominates, or the logical 0 dominates, or neither dominates.
For the first case, the data written to the alias address ... xxxx11 will be contaminated, and
for the second, the data written to the alias address … xxxx00 will be corrupted. The third
case is a bit more difficult (probably several bits, actually). If neither address bit dominates,
then the data in any of the three addresses may be affected.

So far, the analysis of bridging faults has assumed a voltage/current model in which one
of the constituent signals in the bridge dominates and, thereby, affects the logical behavior
of our system. If a resistance model is considered instead, the task becomes a bit easier.
With such a model, how the component operates is not important; rather, the resistance
between the pins of interest is simply measured.

When formulating tests for bridging faults, one can use either a black box or a white
box model. In the black box model, all possible pairs of faults must be considered. With a
little knowledge about the pin out of the memory and the layout of the printed circuit board,
most of the possible combinations can be eliminated. If the device pins or the bus layout
are such that a bridge between two address or data lines is physically impossible, there is
no need to test those combinations for such a fault.

groupNumber = m mod n

4.21.2 ROM Memory

From an external point of view, the ROM fault model is no different from that used for the
RAM. In addition, the underlying assumptions on which the analysis is based are similar.
For the RAM, it was assumed that the devices contained no manufacturing defects. On one
level that same assumption can be made for ROMs. However, the ROM (which may be
manifest as a programmable device) is intended to have a particular set of data stored. If
the stored pattern is incorrect, the device is considered to have a failure. Thus, the strategy
for testing ROMs must address the stuck-at and bridging faults as well as ensuring that the
correct data has been stored.

An effective method for testing ROM memories that can address all of these issues is
based on the CRC or cyclic redundancy check and is known as signature analysis. SignatureCRC,

cyclic redundancy
check,

signature analysis

analysis uses an LFSR to compress a data stream into a K-bit pattern. The testing algorithm
is rather straightforward and follows the approach commonly used for error management
in inter- and intrasystem communication.

Design Note

Observe that in developing a method for testing ROMs, ideas are being utilized from sev-
eral different areas, areas that are completely unrelated to test. Whenever approaching
a design, keep the initial options wide open and alternatives unrestricted.

One can model the contents of a ROM as an N•M bit data stream where N is the number
of addresses in the ROM and M is the number of bits stored at each address or word size.
To test the ROM, a CRC or signature is computed for the known data stream. A similar
signature is generated for the ROM under test. If the signatures agree, the correct data has
been stored; otherwise there is a data fault.
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A block diagram for a simple system is given in Figure 4.50.
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Figure 4.50 CRC Generation and Test of a ROM Signature

Data is read from the ROM into the Parallel In/Serial Out shift register. The stored data
is then sent through the LFSR. In this implementation, a comparison can be made either
after each word or after the complete contents of the ROM have been read.

Comparison after each word has the advantage that stuck-at faults can be quickly identi-
fied. The disadvantage is the cost in time of the additional comparisons. If such comparisons
are made at hardware speeds, however, the cost can be small.
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Figure 4.51 Using Data Signatures to Identify ROM Faults
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The signature test in the above design can also be used to help identify, but not neces-
sarily isolate, bridge faults. Once again, taking a page from coding theory, a word read from
the ROM under a bridge fault condition can be modeled as a word with multiple bit errors
or with a burst error. By choosing an irreducible polynomial that can detect such errors, one
can then configure the LFSR accordingly as we see in Figure 4.51.

In this design, a signature is computed for each data bit stream. Such a configuration
provides greater flexibility for isolating both stuck-at and bridged faults. Bits with the same
(incorrect) signature can be assumed to be bridged, for example.

4.22 SUMMARY

We began with an introduction to and discussion of the various
kinds of memory devices utilized in embedded applications. We
studied the general memory interface and discussed commonly
used memory devices in detail. We then worked through the
designs of representative SRAM- and DRAM-based memory
systems, which can form the infrastructure for a typical caching
scheme.

The concept of caching in the context of embedded sys-
tems was introduced and discussed. Several different caching

schemes, direct mapped, associative, and block-set associative,
were developed and studied. The strengths and weaknesses of
each approach were presented.

Discussion then moved to the system level with the intro-
duction of memory maps and simple dynamic allocation in an
embedded context. Finally, several approaches for testing RAM
and ROM memories were introduced and studied.

4.23 REVIEW QUESTIONS

Introduction

4.1 In embedded applications, what are the major responsibil-
ities of a memory management system?

4.2 What do the terms static and dynamic allocation of mem-
ory mean?

4.3 What are the two major categories of memory devices that
are utilized in embedded applications?

Classifying Memory

4.4 We use the terms ROM to identify read only memory and
RAM to designate random access memory. What is the major
difference between the two kinds of memory?

4.5 Does ROM memory support random access?

4.6 What do the terms SRAM and DRAM mean, and what are
the major differences between the two types of RAM?

4.7 What are the major differences between the following
types of read only memory: ROM, PROM, EPROM, EEPROM,
and FLASH?

Memory Overview

4.8 What are the major interface signals in a basic memory
system? What is the purpose of each?

4.9 Are the major interface signals in a basic memory system
the same for both ROM and RAM?

4.10 Explain the terms taccess and tcycle. Why and when are they
important?

4.11 In a DRAM, what is the restore or rewrite operation?

4.12 In a DRAM, what is refresh and the refresh cycle? Why is
it necessary?

4.13 In a DRAM, what is the difference between a restore oper-
ation and a refresh operation?

4.14 In a DRAM, what is the refresh time interval? What are
the consequences of not meeting the time interval?

4.15 In a DRAM, what are the purposes of the Row and Column
Address Strobes?

4.16 What do the terms block and block size mean? What role
do they play in memory access?

4.17 What are latency and block access time? How are they
related, and why are they important in reading from or writing
to a memory?

4.18 What is memory bandwidth, and why is it important in
reading from or writing to a memory?

Memory Map

4.19 What is a memory map?

4.20 How is a memory map used in the design of embedded
systems?

4.21 What kinds of information are typically identified in a
memory map?
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Memory Subsystem Architecture

4.22 In the chapter, we discussed the memory system hierarchy
and the types of memory that are typically included. What are
these?

4.23 What kinds of memory devices would one typically find
in each of the categories in the memory hierarchy discussed in
the chapter?

4.24 Three types of locality of reference were discussed in the
chapter. What were these, and what are their differences?

4.25 What is a caching scheme, and what is its role in a memory
subsystem hierarchy?

4.26 Describe, in detail, how a caching scheme works.

4.27 In the chapter, we discussed three caching schemes. What
were these? Briefly describe how each operates.

4.28 In a caching scheme, what is the tag table, and what is its
purpose?

4.29 What are some of the kinds of information stored in a tag
table? What is the purpose of each?

4.30 Describe how a tag table is used.

4.31 What do the terms write through and delayed write mean?

4.32 What is an associative search?

4.33 Explain the least recently used algorithm when applied to
cache memory management.

4.34 Explain the most recently used algorithm when applied to
cache memory management.

4.35 Explain the terms block-set associative and two-way set
associative with respect to cache memory management.

Dynamic Memory Allocation

4.36 In the context of an embedded application, what do we
mean by dynamic memory allocation?

4.37 In an embedded application, when might one consider
using a dynamic memory allocation scheme?

4.38 In the chapter, swapping was described as one of the sim-
pler dynamic memory management schemes; describe how the
scheme works.

4.39 Describe how the overlay scheme works to support pro-
grams larger than will fit in main memory.

4.40 How does the dynamic memory management scheme
called multiprogramming work?

4.41 What are the major differences among the dynamic mem-
ory management schemes discussed in the chapter?

Testing Memories

4.42 Describe how one might test for a stuck-at-1 condition on
a data line in a RAM-type memory? a stuck-at-0 condition?

4.43 Describe how one might test for a stuck-at-1 condition on
a data line in a ROM-type memory? a stuck-at-0 condition?

4.44 Describe how one might test for a stuck-at-1 condition on
an address line in a RAM-type memory? a stuck-at-0 condition?

4.45 Describe how one might test for a stuck-at-1 condition on
an address line in a ROM-type memory? a stuck-at-0 condition?

4.46 Describe how one might test for bridged data lines in a
RAM-type memory?

4.47 Describe how one might test for bridged data lines in a
ROM-type memory?

4.48 Describe how one might test for bridged address lines in
a RAM-type memory?

4.49 Describe how one might test for bridged address lines in
a ROM-type memory?

4.50 Describe how to construct a CRC-based algorithm to test
the validity and integrity of data stored in a ROM.

4.24 THOUGHT QUESTIONS

Introduction

4.1 Discuss the pros and cons of static and dynamic allocation
of memory in embedded applications. Be certain to address the
circumstances under which there may be potential problems.

4.2 What are the advantages and disadvantages of storing
information in ROM memory? RAM memory?

Memory Overview

4.3 Discuss the benefits of using SRAM versus DRAM;
DRAM versus SRAM.

4.4 What types of systems would benefit from an SRAM-
based memory system? a DRAM-based memory system?

4.5 Would a high- or low-speed system gain the most from an
SDRAM-based memory subsystem?

4.6 Why are some memory devices designed and specified as
nbits × 1? That is, n rows and one column. What kinds of appli-
cations might benefit from such a configuration?

4.7 In what kinds of embedded systems should the following
types of Read Only Memory be used: ROM, PROM, EPROM,
EEPROM, and FLASH?

Memory Map

4.8 What are some of the factors that should be considered
when designing a memory map for an embedded design?
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4.9 Why is a memory map necessary in the design of embed-
ded systems?

Memory Subsystem Architecture

4.10 The address and data signals are among the interface
signals in a basic memory system. In a memory system
design, is it required to connect the least significant address
bit to the pin designated as A0, etc. and the least signif-
icant data bit to the pin designated as D0, etc.? Why or
why not?

4.11 Can a memory be accessed faster than the rate specified
by taccess and tcycle? Why or why not?

4.12 Can a memory be accessed slower than the rate specified
by taccess and tcycle? Why or why not?

4.13 In a DRAM, what are the consequences of violating the
refresh and the refresh cycle time specifications?

4.14 Can a DRAM be refreshed more quickly than the refresh
cycle time specifications?

4.15 What are some of the factors that should be taken into
consideration when specifying the block size in a memory sub-
system design?

4.16 Can you think of ways that latency and block
access time can be reduced within a single memory
device?

4.17 If a memory device is bandwidth limited, can you think
of ways to increase block access time in a memory system as a
whole?

4.18 Why is a caching scheme of limited utility in certain kinds
of embedded system?

4.19 What kinds of embedded system might significantly bene-
fit from a memory system design utilizing a virtual memory and
caching scheme?

4.20 In the chapter, we discussed three caching schemes. What
are the pros and cons of each design?

4.21 What are the trade-offs between the write through and
delayed write update algorithms?

4.22 What are the advantages and disadvantages of a
caching scheme utilizing an associative search-based
architecture?

4.23 What kinds of applications would benefit from a least
recently used algorithm when applied to cache memory
management?

4.24 What kinds of applications would benefit from a most
recently used algorithm when applied to cache memory
-management?

4.25 Discuss the trade-offs between cache designed to utilize a
four-way and one designed to employ a two-way set associative
scheme.

Dynamic Memory Allocation

4.26 In the context of an embedded application, what potential
problems might we encounter when utilizing dynamic memory
allocation? What are some of the benefits?

4.27 For what kinds of applications might one consider using a
dynamic memory allocation scheme?

4.28 The C language uses malloc and free; the C++ and Java
languages use new to allocate and delete and a garbage collec-
tor, respectively, to return unused memory to the system. What
impacts might these three schemes have on an embedded system
with hard real-time constraints? soft real-time constraints? firm
real-time constraints?

4.29 For what kinds of embedded systems would swapping be
a useful technique. Why?

4.30 For what kinds of embedded systems would swapping not
be recommended. Why?

4.31 For what kinds of embedded systems would overlays not
be recommended. Why?

Testing Memories

4.32 Propose some simple tests that might form the basis of a
built-in self-test for a RAM memory system. For a ROM mem-
ory system?

4.33 In a design for an embedded system utilizing a built-in
self-test scheme to verify memory, how can the test be executed
if the memory is defective?

4.34 Discuss the pros and cons of using a CRC-based algorithm
to test the validity and integrity of data stored in a ROM.

4.25 PROBLEMS

Building Basic Components

4.1 A memory system is needed in a new design to support
a small amount of data storage outside of the processor. The
design is to be based on the 16 K bit CY7C128A SRAM orga-
nized as 2 K × 8.

(a) Provide a high-level block diagram for such an interface.

(b) Provide a high-level timing diagram for the interface to the
SRAM from the microprocessor, assuming that separate address
and data busses are available. Define any control signals that may
be necessary.

(c) Design the interface based on the timing diagram from
part (a).
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(d) Analyze the memory performance for a write and a read
operation of 1, 10, and 100 bytes.

4.2 Repeat Problem 1 with the restriction that data and address
use a shared bus.

4.3 An upgrade to the memory system in Problem 4.1 is nec-
essary to support higher performance. The word size is doubled.
Repeat Problem 4.1with the new requirements.

4.4 An upgrade to the memory system in Problem 4.3 is neces-
sary to support higher performance. The storage capability of the
memory is doubled. Repeat Problem 4.3 with the new require-
ments.

4.5 Repeat Problem 4.3 with the restriction that data and
address signals use a shared bus.

4.6 Repeat Problem 4.3 for a memory system implementing
separate data and instruction memories. Instructions are to be
held in a ROM memory with the same organization and specifi-
cations as the SRAM. For part (d), only the read operations are
appropriate for the ROM component.

4.7 Extend the architecture of the memory system designed
in Problem 4.1 to include support for a peripheral device that
performs read only operations from the memory.

(a) Provide a high-level block diagram for the modified
design.

(b) Provide a high-level timing diagram for the interface to the
SRAM from the microprocessor, assuming that separate address
and data busses are available. Define any control signals that may
be necessary.

(c) Identify any possible bus or access contentions,
your proposed solution, and why your solution solves the
problem.

(d) Design the interface based on the timing diagram from
part (a).

(e) Analyze the memory performance for a write and a read
operation of 1, 10, and 100 bytes.

4.8 Repeat Problem 4.7 to include support for a peripheral
device that performs read and write operations from and to the
memory.

(a) Provide a high-level block diagram for the modified
design.

(b) Provide a high-level timing diagram for the interface to the
SRAM from the microprocessor, assuming that separate address
and data busses are available. Define any control signals that may
be necessary.

(c) Identify any possible bus or access contentions, your pro-
posed solution, and why your solution solves the problem.

(d) Design the interface based on the timing diagram from
part (a).

4.9 Please explain the term cache and why we use it in a com-
puter memory.

4.10 Please give a top-level design for a direct mapped cache
between the CPU and main memory.

(a) Let the main memory contain 16 K words (requires a 14-bit
address) and the cache contain 4 K words. Be sure to explain
your reasoning for any choices you make. The cache must have
more than one block.

(b) Pease explain, in detail, how the word at main memory
address 356D is read if it is in a cache.

(c) Please explain, in detail, how the word at main memory
address 356D is read if it is not in a cache.

4.11 Repeat Problem 4.10 for a four-way block-set associa-
tive design. Compare the performance of your design with the
two-way block-set associative design presented in the chapter.

Timing Considerations

4.12 The memory subsystem designed in Problem 4.4 has the
capability of storing 4 K words. The lower device (addresses
0–2 K) will store the first 2 K words and the upper device
(addresses 2 K–4 K) will store the second 2 K.

If successive read operations cross the physical address
boundary between devices, the output drivers from the lower
device will have to be turned off and those for the upper device
will have to be turned on. Under such circumstances, there is the
potential for bus contention.

Taking parasitic components into consideration, what is the
maximum time after the OE (output enable) signal on the lower
device has disabled its SRAM output that the upper device can
be enabled onto the bus without contention?

4.13 Under the constraint that contiguous memory words are
to be read as fast as possible, propose either a design change or
an access algorithm that will prevent possible contention arising
from the shared bus described in Problem 4.5.

4.14 A distributed embedded application utilizes a memory
subsystem as a buffer between the main processor and a
high-speed peripheral device. The peripheral device produces
data in 1 K word, 10 μs bursts. The memory devices have a min-
imum read or write access time of 40 ns. The interval between
bursts can be controlled; however, the word transfer rate to mem-
ory cannot. The processor is able to transfer data from memory
at a 10-MHz rate.

(a) Give a block diagram for the design of a system that will
implement the buffer interface between the two portions of the
system.

(b) Give a data and control flow diagram reflecting the data
transfers between the two components.

(c) How many memory devices does your design use?

(d) What is the minimum time between bursts from the periph-
eral device?

4.15 The microcontroller in a low-end embedded system has
an 8-bit word size and the memory system in Problem 4.1. The
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cross compiler defines char data types as one byte, integer and
instruction data types as two bytes, and floating point data types
as four bytes.

A statistical study of the application shows that char data
types are used in 20% of the operations, integer data types in
40%, instructions in 37%, and floating point types in 3%.

How many memory accesses will be required for a program
with 100, 1000, 10 000 instructions?

4.16 Repeat Problem 4.15 for the memory system design in
Problem 4.2.

Applications

4.17 A home entertainment system is designed to utilize a
caching scheme to improve system performance. An applica-
tion in such a system attempts to fetch the instruction at cache
address 3000 and has a miss.

(a) Describe the sequence of operations that would be neces-
sary to retrieve the 512-word block containing that instruction
from primary memory.

(b) Draw a theoretical timing diagram showing the address,
data, and control signals necessary to execute such a transfer.
Assume a separate address and data bus.

(c) The following information is contained in the hardware
manual for the system microprocessor and memory system:

Register delay, 𝜏 rd, 25 ns max

Delay from internal processor register
to output port

Register set up time, 𝜏su, 15 ns min

Time data must be settled on register
input prior to clocking

MAR counter propagation delay, 𝜏ard, 10 ns max

Time required for counter input to
propagate to the output following clocking

Primary memory read/write access
time, 𝜏paccess, 100 ns min

Delay to Read or Write from/to memory

Cache memory read/write access time, 𝜏caccess, 50 ns min

Delay to Read or Write from/to memory

Primary memory – Cache Data Bus
propagation delay, 𝜏bd, 10 ns max

Delay from time signal placed on bus
until reaching destination

Based on the data given here, please modify your theoretical
timing diagram in part (e) to reflect the real-world address, data,
and control signals necessary to transfer such a block.

(d) Based on your analysis, what is the highest frequency that
such a transfer could be executed?

4.18 A certain program contains two nested loops. The general
structure of the program is as shown in Figure P4.1. The decimal
addresses shown delineate the locations of the two loops as well
as the beginning and end of the complete program. Other than
the two loops, all remaining portions of the program execute in
a straight-line sequence.

17

23

160

240

1200

1600End

Start

Outer loop executes

10 times

Inner loop executes

15 times

Figure P4.1

The program is executed on a computer with a cache. The
cache uses a direct mapping scheme and the important memory
parameters are:

Main 64 K words

Cache 1 K words

Block 128 words
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The cycle time (minimum time between consecutive
accesses) for main memory is 10 τs and that for the cache is
1 τs.

(a) Please specify the number of bits in the Tag, Block, and
Word fields of a main memory address.

(b) What is the total time for fetching instructions for this
-program?

4.19 A presentation system is to be designed and installed in a
new convention center that is being built. The system will have
the ability to provide all forms of high-performance video dis-
play.

To the performance of the system, the video memory sub-
system is implemented using a hierarchical scheme as shown in
Figure P4.2. Video data is transferred from main memory to the
cache in blocks.

Cache Memory
Main

Memory

Graphics

Processor

20 M words/sec

Figure P4.2

As you design the system, using specifications from the
memory vendor’s data sheets, you specify for the memory sys-
tem as follows:

Main memory latency 4.0 μs

Data transfer bandwidth 20.0 M words s−1

Block size 256 words

Based on these specifications, what should the speed of the
graphics processor be to ensure that the processing and transfer
rates match?

4.20 A memory subsystem that is to be utilized by four different
independent subsystems, S0–S3, to store information is needed

in a new design. The memory design is to be based on the 16 K
bit CY7C128A SRAM organized as 2 K × 8.

By design, each subsystem is allocated 500 words of the
memory. Nonetheless, there may be conflicts if more than one
subsystem tries to access the memory at the same time.

(a) Provide a textual description of how one subsystem will
be prevented from accessing memory that has been allocated to
another subsystem.

(b) Provide a textual description of how bus conflicts will be
avoided.

(c) Provide a high-level block diagram for the memory inter-
face.

(d) Provide a high-level timing diagram for the interface to
the SRAM assuming that separate address and data busses are
available. Define any control signals that may be necessary. Your
diagram should illustrate a bus contention and resolution.

4.21 Modify the design in Problem 4.20 to provide 100 words
of shared memory locations between S0 and S1, S1 and S2, S2
and S3, S3 and S0.

Testing

4.22 Design a built-in self-test that could be conducted on the
memory design in Problem 4.1 to identify any address bits that
are stuck low or high. Explain how your algorithm works and
how it is assured of finding the fault.

Your test must be designed to ensure that if it passes, the
contents of the memory are left unchanged.

If your test fails, what statement can you make about the
contents of the memory?

4.23 Repeat Problem 4.22 for any data bit.

4.24 The memory design in Problem 4.5 uses a shared address
and data bus. Design a self-test to identify if one of the bus lines
is stuck low or high. Can you devise a test that will further iso-
late such stuck-at faults to the address or data component of the
bus?

4.25 Devise a simple test that can be used to ensure that a ROM
contains the correct data. Consider the bitwise operators. Can
such a test be used to test a RAM as well? If so, what are the
constraints on the test?
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Chapter 5

An Introduction to Software
Modeling

THINGS TO LOOK FOR…
• Unified Modeling Language overview and diagrams.
• Major static modeling diagrams in UML and the utility of each.
• UML class diagrams and use cases.
• Diagrams for expressing intermodule relationships.
• The need for dynamic modeling.
• Major dynamic modeling diagrams in UML and the utility of each.
• UML state, timing, sequence, and activity diagrams.
• The philosophy behind the Structured Design methods.
• The purpose and utility of the data and control flow diagram.

5.1 INTRODUCTION

As we begin our studies of the design and development of the software side of embedded
systems, it is appropriate that we start to learn about some of the tools that can help us with
that portion of the job. On the hardware side, we used the Verilog language to model and
to analyze the behavior of the modules prior to physical implementation. In this chapter,
we will introduce UML – the Unified Modeling Language – and several tools taken from
the Structured Design approach to system design for that same purpose. A common theme

Unified Modeling Language
Structured Design

with both approaches to software modeling is the heavy use of graphics as a first step in
dealing with the complexity of many contemporary software systems.

We will begin our studies with a brief history of some of the work that led up to the
UML. We will then present and discuss the different diagrams that comprise the UML
approach. Our initial goal will be to learn techniques by which we can express and model the
static structure of a system. We will then work to capture and model its dynamic behavior.

The static view of a system begins from the outside. Such a view is initially captured
by seeking to identify and to express how the user (which may be another system or periph-
eral device) expects to interact with the system. As the system is analyzed and modeled at
increasing levels of detail, the comprising modules, their relationships, and their commu-
nication paths are identified, defined, and included.

Embedded Systems: A Contemporary Design Tool, Second Edition. James K. Peckol.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/college/peckol
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Dynamic models capture the behavior of a system while it is performing its intended
tasks, as well as provide information about interactions among tasks. Concurrent task oper-
ation and persistence are two of the more important dynamic considerations.concurrent

persistence In the design of embedded applications, we work with collections of cooperating
objects. These objects may be software entities, such as tasks or processes, or hardware
modules, such as processors or various peripheral devices. Some of these objects may be
active, that is, centers of independent activity, whereas others may be inactive. Concurrencyactive

concurrency expresses the ability of a system to handle many such activities simultaneously. It is the
property of objects that models parallel operations through an implementation based on
time sharing a single processor or multiple processors.

The sequential execution of a set of instructions in a task or process in an embeddedsequential
thread of control application is called a thread or thread of control. Systems supporting concurrent operation

will have multiple threads of control. Some of the threads may be transitory and others may
last the lifetime of the system execution. Concurrency focuses on the notions of abstraction,
coordination, and synchronization among those threads. Understanding and modeling this
aspect of system behavior is essential in the design of multitasking and multiprocessing
embedded systems.

A software object takes up space and exists for a finite period of time. Persistence ispersistence
the property of an object that describes its existence in space and in time. For instance, a
temporary variable may only exist during the evaluation of an expression. Local variables
exist only while control flow is within their scope and then vanish when the scope is exited.
Global variables, for example, may have a lifetime that extends beyond their scope. Other
variables persist between executions of a program, and between versions of a program, or
may outlive the program.

In this chapter, our study of the dynamic aspects of the system will focus on variables
and on tasks whose lifetime falls into the first three categories listed earlier. Persistence,
however, is concerned with more than just data lifetime; the state of the object must also
be considered. Values must be consistent, particularly in situations such as physically or
temporally distributed systems. The type of an object must be considered. In a distributed
application, every element of the system must interpret the data in the same way.

We will conclude our introduction of software modeling with a brief look at some of
the Structured Design methodologies. Structured Design, which has been around for over
30 years, provides another rich set of tools for attacking the complexities of contemporary
designs. In our studies, we will introduce two of the dynamic modeling tools that are useful
for conveniently expressing the flow of data and control within a system. Like the UML, a
key aspect of Structured Design is that it is graphical.

5.2 AN INTRODUCTION TO UML

The approach that we will use to introduce UML will be to bring in the pieces as we need
them. In this section, we will provide some initial background, terminology, and vocabulary.

As we mentioned earlier, a wide variety of tools are available to help with the design,
development, and test of software. Each tool has its strengths and weaknesses. There are
times and places where they should be used and times when they should not be used.

Part of creativity and of design is the ability to see things where perhaps they “don’t
belong” or in ways that were not originally intended. We introduce UML in a software
context; the underlying ideas and approach, however, have much broader application, as
we will see when we study more formal design.

UML evolved from the work of a great many people who were looking for better ways
to design and develop object-oriented models and systems. By the mid-1990s, the number
of credible approaches was reduced to three. Continuing efforts developed and refined these
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approaches until by 1997 the Object Management Group (OMG) submitted and accepted
version 1.1 of UML. The OMG is an international body that defines standards in many areas

Object Management
Group OMG

of computer science. The current version of UML is 2.5.1. However, the versions of any
standards are subject to change and it is recommended that you check the latest version to
see if there are changes that affect your design.

As its history suggests, UML evolved with the goal of making object-centered
design easier; consequently, much of the vocabulary and approach centers around objects.
Nonetheless, we can extend those ideas to a wide variety of both software and hardware
applications. Frequently in the ensuing discussions, we will use the words class and object.class, object
The intention here is to describe or refer to an abstract entity (or group of entities) rather
than either the intrinsic Java or C++ classes.

Many of the tools that we will introduce are graphical in nature. We, as human beings,
often find it easier to grasp a new concept when it appears as a picture rather than in pages of
text. The use of graphics, however, does not eliminate the need for clear, concise, and under-
standable textual descriptions. A good graphic can quickly capture high-level concepts; we
still rely on text to express the details.

5.3 UML DIAGRAMS

UML uses diagrams and models as a first step towards expressing static and dynamic rela-
tionships among objects. While an important part of the standard, the authors do not see
such diagrams as the main thrust of the approach. Rather, a philosophy of a Model-Driven
Architecture (MDA), in which UML is used as a programming language, is more common.

Model-Driven
Architecture (MDA)

The high-level goal is to create an environment in which tool vendors can develop models
that can work with a wide variety of other MDA tools. On the user side, designers who
work with UML range from those who are putting together a “back of the envelope” sketch
to those who utilize it as a formal (high-level) design and programming language. UML
provides a very good mechanism for quickly exchanging ideas with other designers and for
capturing the critical elements of a design.

This discussion notwithstanding, the current standard recognizes 13 different classes of
drawings. As a design evolves, these different perspectives offer a rich set of tools whereby
we can formulate and analyze potential solutions. Such tools enable us to model several
different aspects of a design. It is rare that all of the types are used in a single design. The
different diagram types are presented in Table 5.1.

Table 5.1 Common UML Diagrams

• Class

• Use case

• Component

• Communication

• State chart

• Timing

• Sequence

• Activity

• Object

• Package

• Composite structure

• Interaction

• Deployment
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As is suggested by their names, diagrams in the first four categories provide the means
for developing a static or structural view; the next four add dynamic analysis; and the final
five bring the pieces together.

We will begin with several of the static components and relationships; these will be
sufficient to get us started. We will spend only limited time on the diagram types in the
last-category.

5.4 USE CASES

The first diagram we will look at is the use case, which gives us an outside view of theuse case
system. It describes the public interface for the module or system and answers the questions,
“What is the behavior that the user sees?” “What is the behavior the user expects?” The use
case repeatedly poses the question, “What?” until the external view of the system has been
satisfactorily captured.

The use case diagram presents the main components of the system and shows how the
user interacts with those components. Like many of the diagrams we will work with, the
use case diagram can be hierarchical. From the top-level drawing, one can expand each use
case into subuse cases as necessary.

The use case diagram has three components: the system, the actor(s), and thesystem, actor(s), use
case(s) use case(s). The meaning of system is self-evident; after all, that is what is being

designed. It is expressed in the diagram as a box – we will often leave this off the
diagram. The actor(s), drawn as simple stick figures, represent(s) any one or any thing
that might be using the system. They are viewed as being outside of the system. The
use cases, represented as a solid oval, identify the various behaviors of the system or
ways that it might be used. They encapsulate the events or actions that must occur to
implement the intended behavior of the system and are stated or expressed from the
point of view of the user. Accompanying each use case is a textual component fully
describing it. Use case diagrams can be a very powerful tool during the early stages
of a project when one is trying to identify, define, and capture the requirements for
the system.

As we construct the diagram, we place the actor that executes the use case on the
left-hand side. Supporting actors appear on the right-hand side. Supporting actors are not
restricted to human users; an actor can be a computer or other system as well. The set of
use cases appears in the center of the drawing, with arrows indicating the actors involved
in the use case.

A generic use case diagram is given in Figure 5.1. We see that the system comprises
three use cases. Actor0 is using the system and appears on the left-hand side; Actor1 is
supporting UseCase2 and is placed on the right-hand side.

One should keep things simple when putting the use case diagram together. If a system
being designed is showing 25–50 use cases on the top-level drawing, then it is time to
rethink the design.

In Example 5.1, we are working on a simple data acquisition system.

EXAMPLE 5.1 A basic data acquisition system that has the ability to measure voltage and temperature is
to be designed. The use case diagram for the system begins with the user shown as Actor0.
After the data has been collected, it needs to be analyzed for trends, alarm conditions, or
other specific patterns. In addition, because the temperature sensor is a nonlinear device, a
linearization operation must be performed.
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Actor0

UseCase1

UseCase2

UseCase3

Actor1

Figure 5.1 The UML Use Case Diagram

The data is collected at very high speed from a number of measurement points; as a
result, hardware co-processing capability is probably going to be necessary. That entity is
included as a second actor and is labeled Data Processor. A possible use case diagram forData Processor
the data acquisition system is given in Figure 5.2.

Actor0

Measure Volts

Data Analysis

Meas. Temperature

Data Processor

Figure 5.2 Use Case Diagram for a Simple Data Acquisition System

5.4.1 Writing a Use Case

The use case diagram captures a graphical representation of the public interface to the mod-
ule or system. Associated with each use case is a textual description of what actions the actor
is to perform and how the system is expected to respond. Such a description can be decom-
posed into two pieces: the normal activity of the use case and how exceptional conditions
are to be handled.

normal activity,
exceptional conditions

Let’s examine the measure volts use case for the data acquisition system. We specifymeasure volts
how the user is to select the task, any options associated with the task, and how exceptions
are handled as is done in Figure 5.3. Do not forget: a use case description is not intended
to be War and Peace.
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User

Select measure volts mode

Select measurement range or autorange

System

If range specified

Configure to specified gain 

Make measurement

If in range—display results

If exceed range—display largest value for range and flash the display

If auto range

Configure to midrange gain

Make measurement

If in range—display results

If above or below range—adjust gain to next range and repeat the measurement

If exceed range—display largest value for range and flash the display

Figure 5.3 Writing a Use Case Description

5.5 CLASS DIAGRAMS

Once we have identified how the user intends or expects to interact with the system, the
next step is to begin to identify and to formulate the modules that give rise to that external
behavior. That process begins with the class diagram. This diagram gives a descriptionclass diagram
of the objects in a system coupled with the relationships that exist among them. Such a
description is frequently found among the foundation elements of most modeling tools.
The class diagram enables one to specify the public interface to the object, the interfacepublic interface
expressed in the use cases. Such a description includes the properties and the operations that
instances of the object can perform and identifies any constraints the application imposes
on those operations. The public interface should always be one of the earlier views one
takes of any design. We want to see the design from our user’s point of view.

The class diagram presents the various kinds of objects in the system and identifies
the relationships called associations among them. Objects are expressed as a rectangle,associations

name
properties

subdivided into three areas as illustrated in Figure 5.4. The top area gives the name of
the class or object, and the middle section identifies all of the properties of the object.
These will generally be declared inside the module implementation and, thereby, hidden
from the casual user. The third pane identifies the operations that the object is intended tooperations
perform. These operations establish the external behavior of the object; they provide the
public interface to the object.

Object Name

−Properties

+operations() Figure 5.4 UML Class Diagram

The properties of an object provide a mechanism to capture the structural features of
that object. A property may be further elaborated as attributes or associations. Attributesattributes, associations
describe a particular characteristic of a property such as the address of an output port,
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whereas associations capture how the object relates to other objects within the system. A
property can be quantified by a multiplicity attribute identifying how many objects may fillmultiplicity
the property. The wheel on an automobile has a multiplicity of four.

5.5.1 Class Relationships

We can define a number of different relationships among classes, including

• Parent–child or inheritance or generalization.

• Containment or aggregation.

5.5.1.1 Inheritance or Generalization

We express inheritance using a solid line terminating in a hollow arrow. Figure 5.5 presentsinheritance
a portion of the design of an external world communications interface in an embedded
system. Therein, we represent the relationship between the parent – Driver – and two chil-
dren – Serial and Parallel. We say that Serial or Parallel are a kind of (AKO) Driver.

Driver
Serial, Parallel, a kind of (AKO)

+read() : boolean
+write() : boolean

Serial

+read() : boolean
+write() : boolean

+port number : unsigned char
+buffer address : int
+status : unsigned char

Driver

+read() : boolean
+write() : boolean

Parallel

Figure 5.5 UML Inheritance Diagram

The diagram captures the requirement (through the parent interface) that each of the
different types of interface must support a common subset of capabilities. Specifically, a
port number must be associated with each interface, the driver must provide the address to
an I/O buffer, it must manage a status flag, and it must implement the read() and write()read(), write()
functions to execute the transfer. The + sign in the diagram indicates that each of the cor-
responding elements is publicly visible.

We generally think of inheritance as supported by the Java or C++ languages; the con-
cept naturally applies as we begin the design of an I/O interface and its associated drivers. It
seems reasonable that there should be a common way of communicating with each driver.
Although the C language does not formally support inheritance, such a limitation should
not preclude using the concept as a hardware or software design tool.

5.5.1.2 Interface

An interface is a wrapper around one piece of functionality that allows us to present ainterface
different set of capabilities as a public view. We express an interface in a manner that is
similar to that which we use for inheritance. We use a dashed line terminating in a hollow
arrow.
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+measure() : float
−convert() : float

Voltmeter

+measure()

«interface»
measurePressure

Figure 5.6 Representing an Interface

In Figure 5.6, we illustrate the concept of an interface with a standard laboratory instru-
ment. We will apply the same concept shortly when we are working with several different
data structures.

In the diagram, the interface, measurePressure, gives the underlying voltmeter the pub-measurePressure
convert() lic appearance of a pressure meter. The hidden operation, convert(), performs the necessary

math to transform the raw voltage reading from a transducer into the corresponding and
proper pressure reading.

5.5.1.3 Containment

Containment conveys the idea that one object is made up of several others, that is, acontainment
aggregation
composition

whole–part relationship. Under UML, we can express two different forms of containment,
aggregation and composition.

5.5.1.3.1 AGGREGATION
Aggregation expresses a whole–part relationship in which one object or module containsaggregation, whole–part

relationship another module. A key characteristic of an aggregation is that the owned module may be
shared with other modules outside of the aggregation. Under such conditions, rules must
be established to ensure proper management of the shared module.

Continuing with the voltmeter system, let’s assume that one of the design requirements
specifies that, in addition to executing pressure measurements, it must also perform severalpressure
different kinds of analyses on the data that it collects. In partial support of such analysis, we
design an algorithm that performs a series of statistical computations, such as trend, mean,
limits test, or rate of change, on the collected data.

To perform the necessary computations, the algorithm utilizes a number of different
library functions. Although the individual functions may be collected under the umbrella
of the analysis package in the design, they can exist without that module and certainly could
be used by other modules within the system as well.

The statistical analysis algorithm is an aggregation of many specific algorithms. Theaggregation
UML diagram for the aggregation relationship, shown in Figure 5.7, presents both the whole
and its parts connected via a solid line that originates at an open diamond on the end asso-
ciated with the whole and terminates on the end associated with the part.

+buffer : int

Statistical Analysis Algorithm0..n Algorithms

Figure 5.7 Representing the Aggregation
Relationship

5.5.1.3.2 COMPOSITION
The composition relationship is similar to aggregation, but the notion of ownership of thecomposition
parts by the whole is much stronger. The elements of the composition cannot be part of
another object and, unlike the aggregation relationship, they cannot exist outside of the
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whole object. Although this may sound a little strange, at the core of the issue is the proper
management of memory. The idea is loosely analogous to local variables in a function.
Once one leaves the scope of the function, the local variables disappear.

In an embedded system, we often build an application as a collection of tasks. Each
of these tasks executes according to a designated schedule. The schedule is made up of a
number of intervals. Without the schedule, the intervals have no meaning. We express such
a relationship in a composition diagram as shown in Figure 5.8.

Schedule

+duration : int

Interval1 n

Figure 5.8 Representing the Composition
Relationship

The schedule is composed of 1−n intervals. Observe that the diagram is similar to
that for the aggregation. The connecting line now originates in a solid rather than an open
diamond. We annotate the relationship as a 1−n composition.

5.6 DYNAMIC MODELING WITH UML

Dynamic modeling provides the means to capture, understand, and design the intended
behavior of a system. The static structure gives an architecture; the dynamic aspects of the
design get the real work done. Important elements of a dynamic model include

• Recognizing intermodule interaction and communication.
• Ensuring the proper order of task execution.
• Understanding what activities can be done in parallel.
• Selecting alternate paths of execution.
• Identifying which tasks are active and when they are not.

In the next several sections, we will study UML diagrams that will enable us to explore,
express, and make trade-offs on these elements of a design.

5.7 INTERACTION DIAGRAMS

The first diagram that we will study is the interaction diagram. For embedded design, under-interaction diagram
standing, and modeling the dynamic behavior of the system is essential. Dynamic behavior
gives information about the lifetime of a task, identifies when that task is active or inactive,
and models interactions among tasks. Such interaction often takes the form of messages.
A message is a means of communication between two or more tasks. It can take several
forms:

• Event

• Rendezvous

• Message

Generally, the receipt of a message results in the initiation of one or more actions. Such
actions are executable functions within the task and result in a change in the values of one
or more attributes associated with the task.
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UML explicitly supports five kinds of actions:

• Call and Return The call action invokes a method on an object and the return
action returns a value in response to call.

• Create and Destroy The create action creates an object; the destroy action does
the opposite.

• Send The send action sends a signal to an object.

Each of these actions is directly applicable to later work with tasks. These actions are
shown in the following diagrams. The dashed line emanating from each object or class is
called a lifeline. The lifeline captures the notion of the persistence of the object.lifeline

5.7.1 Call and Return

A call action is expressed by a solid arrow from the calling object to the receiving objectcall action
return action and the return action by a dashed, open arrow from the receiving object to the calling object.

Such an interaction is shown in Figure 5.9.

:Taski :Taskj

action()

return()

Figure 5.9 The Call and Return Interaction
Diagram

5.7.2 Create and Destroy

The create action is represented by a solid arrow from the creating object to the createdcreate action
destroy action class instance, and the destroy action by a solid arrow from the destroying object to the

destroyed class instance. This relationship is presented in Figure 5.10.

:Taskj:Taski

<<create>>

<<destroy>>

Figure 5.10 The Create and Destroy
Interaction Diagram
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5.7.3 Send

The send action is captured by a solid arrow with an open half arrow head from the sendingsend action
task to the receiving task as seen in Figure 5.11.

:Taski :Taskj

action()

Figure 5.11 The Send Interaction Diagram

The sender does not expect a response.

5.8 SEQUENCE DIAGRAMS

The purpose of a sequence diagram is to express the temporal ordering of a series of mes-sequence diagram
sage exchanges between objects. The diagram comprises the four principal components
presented in Figure 5.12.

• Objects

Objects appear along the top margin of the diagram as they did in the interaction 

diagrams. In our designs, these will be the tasks.

• Lifeline

The lifeline, drawn as a dashed line leaving the object, captures the notion of 

object persistence.

• Focus of Control

The focus of control reflects the durations in the object’s life during which it is 

considered to be active. It is expressed as a thin rectangular box that straddles 

the object’s lifeline and indicates the time during which the object is in control of 

the flow, that is, executing a method or creating another task. This is the time 

when a task has the CPU.

• Messages

The messages show the actions that objects perform either on themselves or on 

each other.

Figure 5.12 Principal Components of the UML Sequence Diagram

Figure 5.13 gives a sequence diagram for making, converting, and displaying a timesequence diagram
interval measurement in a simple counterdesign. The initial selection of the specific func-
tion spawns the measure task. The measure task retrieves the range and measurement edge
information from an internal buffer and sends these to the execute measurement task. The
execute task returns the raw reading to the measure task, which spawns the convert task to

measure
execute measurement

convert
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user

Measure Task Get Attrib. Exec. Meas

measure()

get range()

Convert Display

get edge()

send data()

formatted data()

range()

result()

display value()

ok()

done()

edge()

send data()

Figure 5.13 Sequence Diagram for Making a Time Interval Measurement

process the raw reading into a format that can be displayed. The convert task will also
perform the bounds check on the reading and return the bounds exceeded value if necessary.
Finally, the measure task sends the measurement to the display task, which presents it todisplay
the user via the front panel display.

5.9 FORK AND JOIN

When working with a multitasking embedded system, a common sequence of operations
is for a parent process to start and then spawn several child tasks to do the real work. The
child tasks complete their jobs and terminate and then the parent class follows. The process
of splitting the control flow into two or more flows of control or subtasks is called a fork.fork
Each subtask represents a separate, independent thread of control. When the subtasks are
brought back together or resynchronized, it is called a join.join

Such behavior of tasks and subtasks is modeled using a fork and join diagram asfork and join
reflected in Figure 5.14.
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Parent

Child 2

Child 0

Child 1

Parent

Figure 5.14 The UML Fork and Join Diagram

The tasks are represented by a cartouche or rounded rectangle. Sequential flow is given
by a solid arrow. Forks and joins are represented by a thick bar or rectangle called a synchro-
nization bar. The fork occurs after the first parent activity or action completes. Followingsynchronization bar
such an action, we see that the task spawns subtasks and then suspends itself until subtasks
have completed. Once all subtasks have completed, the join occurs, and the parent task
resumes its activities.

In Figure 5.14, the parent spawns two child tasks. One child performs its task and
completes; the second similarly finishes its task and then spawns a another. When all activity
completes, the child tasks terminate and the parent continues.

5.10 BRANCH AND MERGE

Another form of flow of control is the branch in which the thread of execution is determinedbranch
by the value of some control variable. Such a structure permits one to model alternate
threads of execution. A merge brings the flow back together again. Each is representedmerge
by the diamond symbol, which is commonly found in the familiar flow chart. Sequen-
tial flow is shown by a solid arrow, and individual tasks or activities are shown using a
rounded-rectangle.

A simple diagram with two alternate paths of execution for a portion of the overall task
is given in Figure 5.15.

Following the completion of the activities in the right-hand path, the flow of control
merges back to a single path. At each branch point one can associate a guard condition to
stipulate under what conditions the branch is to be taken. The guard condition is shown in
square brackets on the transition arrow.
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Activity 0

Activity 1

Activity 2

when: [guard condition]

Activity 3

Activity 4 Figure 5.15 The UML Branch and
Merge Diagram

5.11 ACTIVITY DIAGRAM

An activity diagram permits the capture of all the procedural actions or flows of controlactivity diagram
within a task. Such actions may be a branch and merge, a fork and join, or a simple transition
from state to state.

The initial node in the diagram is given by a solid black circle; the final node is a
solid black circle surrounded by a second circle. Figure 5.16 shows how we might com-
bine our earlier activities into a larger task. Conversely, one can show how a larger task is
decomposed into its components.

5.12 STATE CHART DIAGRAMS

The state chart diagram, like the familiar state diagram, finds its roots in the mathematicsstate chart diagram
of graph theory. Using the diagram, we can begin to capture and to model the state behavior
of the (software) system as well as the myriad external and internal events that are affecting
that behavior.

5.12.1 Events

Any embedded application must interact with the world around it. The system will accept
inputs and produce outputs. Inputs generally result in some associated action, and the
actions may or may not lead to an output. Such inputs, outputs, and actions are known
by various names. Under the UML umbrella, they are collected under the name events. Anevents
event is any occurrence of interest to the system, more specifically and typically to one of
the tasks in the system.

UML supports the four kinds of events given in Figure 5.17.
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Activity 0

Activity 5

Activity 6

Activity 8

Activity 1

Activity 3

Activity 2

[guard condition]

Activity 4

Activity 7

Initial Node

Final Node

Figure 5.16 The UML Activity Diagram

5.12.2 State Machines and State Chart Diagrams

We have studied and used the finite-state machines (FSMs) to model and to implement a
system’s behavior in time. The term state machine is used to describe:

(FSMs)
state machine

• The states that a system can enter into during its lifetime.

• Events to which the system can respond.

• Possible responses the system can make to an event.

• Transitions between possible states.
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• Signal
A signal is an asynchronous exchange between tasks.

• Call Event
A call event is a synchronous communication that involves sending 

a message to another task or sending a message to self.

• Time Event
A time event occurs after a specified time duration has elapsed 

following another event.

• Change Event
A change event occurs after some designated condition has been 

satisfied.

Figure 5.17 UML Events

Because of its simplicity, the FSM gives a good first-order model of a system’s behav-
ior. UML supports and extends the traditional notion of state machines.

5.12.2.1 UML State Chart Diagrams

A state chart diagram is nothing more than the familiar state diagram with some exten-
sions/modifications under UML. The diagram begins with the notion of a state. A state isstate chart diagram

state written as a cartouche – a rectangle with rounded corners as illustrated in Figure 5.18. Tran-
sitions between states reflect a change in system from one state to another and are expressed
as an arrow directed from the source state to the destination state.

State1
Figure 5.18 UML State

Mathematically, the UML state chart is a directed graph. Because cycles are permitted,
it is a cyclic directed graph.

5.12.2.2 Transitions

A transition between states occurs when an event of interest to the system takes places ortransition
when the system has completed some action and is ready to move to the next state. The for-
mer is called a triggered transition and the latter transition is called a triggerless transition.triggerless
One may associate an action with the transition, and a transition to self is permitted. All
four types of transition are illustrated in Figure 5.19.

State2 State7

anEvent
State8 State3

Triggered Transition Triggerless Transition

State6 State4

SignalEvent1 /Action

Transition with an Action

State5

Self-Transition

Figure 5.19 Possible Transitions in a UML State Chart
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5.12.2.3 Guard Conditions

A guard condition can be associated with a transition. A guard condition is a Booleanguard condition
expression that must evaluate to true before the transition can fire. As was done in the
branch and merge diagram, a guard condition is shown in square brackets on the transition
arrow. UML supports several different kinds of guard.

• An event and a guard condition are written as
EventName [guardCondition]
on the state transition edge. If the guardCondition evaluates to false, the transition
will not be taken.

• An event, guard condition, and action triple appear as
EventName [guardCondition]/Action
on the state transition arrow. If the guardCondition evaluates to false, the action is not
executed and the transition not taken.

• A guard condition by itself is described as
[guardCondition]
Under such a condition, there is a repeated transition to self until the guard condition
is met. Through such a mechanism, one can model the polling operation or blocking
on an event or a variable’s state.

In the following diagram (Figure 5.20), a solid circle represents the initial state,
and a solid circle with a surrounding open circle represents the final state. Illustrated in
Figure 5.20 is a transition with an action and a guarded event.

State12 State9

State10State11

anEvent [aGuard]

SignalEvent1 / Action

Figure 5.20 Transitions with Guard Conditions in a UML State Chart

UML also makes the following definitions:

• An entry action is an action that the system always performs immediately uponentry action
entering a state. The requirement appears as entry/actionName within the state
symbol

• An exit action is an action the system always performs immediately before leavingexit action
the state. The constraint appears as exit/actionName within the state symbol

• A deferred event is an event that is of interest to the system. Handling the event isdeferred event
deferred until the system reaches another state. The deferred event appears as event-
Name/defer within the state symbol. Such events are entered into a queue that is
checked when the system changes to the new state.
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5.12.2.4 Composite States

The states that we have looked at so far are called simple states. UML extends the notion
of a simple state to include multiple nested states called composite states. These come incomposite states
several different varieties.

5.12.2.4.1 SEQUENTIAL STATES
If the system exists in a composite state and in only one of the state’s substates at a time, such
substates are called sequential substates. Transitions between such substates are permittedsequential states
as expected. Using sequential substates, the behavior of a state can be decomposed into
smaller components, as shown in Figure 5.21.

subState 0 subState 1

subState 2subState 3

anEvent [aGuard]

aState

Figure 5.21 Composite States in a UML State Chart

5.12.2.4.2 HISTORY STATES
When a system makes a transition into a composite state, typically the flow of control will
start in the initial substate. However, it may be desirable or necessary to begin in some
other state. UML includes the concept of a history substate to support such a capability.history substate
The history substate, shown in the state chart in Figure 5.22 by a small circle enclosing the
letter “H,” will hold the last state that the system was in before leaving the composite state
at an earlier time.

State16 State13

State14State15

H

Figure 5.22 Expressing a History Substate in a UML State Chart
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Such a state can be useful when modeling interrupt behavior or if one encounters a
situation in which it is necessary to temporarily switch to another context to perform some
operation prior to continuing. In either case, the present state is temporarily exited. At some
time in the future, flow of control will return to that same state.

5.12.2.4.3 CONCURRENT SUBSTATES
A system may be in a composite state and also in more than one of the substates. Such
is the situation in which the system may have two or more sets of substates representing
parallel flows of control. When a system enters a composite state with concurrent substates,concurrent substates
it enters into an initial state of both flows. Resynchronization is achieved by showing a final
state for each flow as in Figure 5.23.

State18 State19

State17 State20

aState

Figure 5.23 Expressing Concurrent Substates in a UML State Chart

We have only touched on some of the capabilities of the static and dynamic UML dia-
grams. This will be sufficient for our present work. A vast amount of literature is available
for those interested in more detailed study.

5.13 DYNAMIC MODELING WITH STRUCTURED DESIGN METHODS

The next tool that we will study is taken from the Structured Design approach to software
modeling. The Structured Design methodologies, as we noted in our brief study of the UML
approach, provide a far richer and more expansive set of tools that we will present here. Our
focus will be solely on capturing a high-level view of the flow of data and control within a
design.

5.13.1 Brief Introduction to the Structured Design Philosophy

Structured Design methodologies provide another tool for attacking the complexities of
today’s designs. The approach has been around in one form or another for over 30 years.
It provides one of the fundamental bases from which many of the modern tools, including
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UML, grew. A key aspect of the approach is that it is graphical. Its goals are rather simple.
The design philosophy presented in this text is an outgrowth of many of its concepts. From
top to bottom these goals are:

• To reduce the number of errors made during initial design.

• To make it easy to find and fix those errors that do occur.

• To develop robust, reliable, safe software.

Its approach, comprised of five fundamental ideas, is equally simple:

1. Use the definition of the problem to guide the definition of solution.

2. Attack problem complexity by partitioning the problem into modules and then
organizing the modules into hierarchies.

3. Use tools to help to make complex systems understandable.

4. Develop the solution from a well-defined statement of the problem.

5. Identify criteria for evaluating the quality of a design.

Many of the static and philosophical approaches to design have already been manifest
in earlier discussions and in earlier tools; they are not relevant to the material here. The data
and control diagram, however, provides a very simple tool for quickly and easily capturing
a high-level view of the dynamic structure of a design.

5.13.2 Data and Control Flow Diagrams

The data and control flow diagram (DFD) is used to partition a system into its active com-data and control flow
(DFD) diagram ponents and the data and control interfaces between them. The diagram is also sometimes

known as a bubble chart.

5.13.2.1 The Elements

The data flow diagram comprises four graphic elements:

1. The data and control flows.

2. The processes or tasks and threads.

3. The data sources and sinks.

4. Any data stores.

Let’s look at each of these elements.
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5.13.2.1.1 DATA AND CONTROL FLOWS
Data and control flows are expressed using notation that is similar to what we see in many
UML diagrams. Data flow is indicated by a closed, solid arrow and control flow by a closed
dashed arrow. As Figure 5.24 indicates, data or control flow in the direction of the arrow.

Data Flow

Control Flow

Figure 5.24 The Notation for Expressing Data and Control Flows

5.13.2.1.2 PROCESSES OR TASKS
The processes, modules, functions, or tasks are where the significant work in the application
is being accomplished. Using a notation similar to that used in UML for states, these are
expressed in a data and control flow diagram by labeled circles. The label identifies the
name of the process or task and the level in the hierarchy at which the process resides.

• Level 0 – 1.0, 2.0, 3.0, etc.

• Level 1 – 1.1, 1.2, 1.3; 2.1, 2.2, 2.3; 3.1, 3.2, etc.

• Level 2 – 1.1.1, 1.1.2; 1.2.1, 1.2.2, etc.

The communications portion of an embedded system may contain tasks for managing
the send and receive operations in the system. They would be expressed as is drawn in
Figure 5.25.

Send
1.0

Receive
2.0 Figure 5.25 The Structured Design Notation for Expressing

Processes or Tasks

5.13.2.1.3 DATA SOURCES/SINKS
As the name implies, the source identifies where the data originates, for example, from an

source
sink

input port, and a sink indicates where data goes to, for example, to an output port. The
source or sink is drawn as a labeled box with an arrow to indicate the direction of data flow,
as seen in Figure 5.26.

Data In Data Out

Data Source Data Sink

Figure 5.26 Expressing a Data Source or Sink

The source or sink are usually entities that are outside of the system.
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5.13.2.1.4 DATA STORES
The final element is data storage. The data store reflects the temporary storage of data or adata storage
time-delayed repository of data. The data store is represented by two parallel lines or two
parallel lines that are closed on the left-hand side. To electrical engineering students, this
should look just like a capacitor – and does much the same job. The graphic is accompanied
by a labeled arrow to indicate the direction of the data flow as we see in Figure 5.27.

Data from Data to Figure 5.27 Expressing a Data Store

Let us look at a simple example.
EXAMPLE 5.2

Figure 5.28 presents a level 0 – top-level – data and control flow diagram for a system that
accepts commands from a remote source, collects image data at a local site, and then sends
the information back to the remote site.

Receive

2.0

Transmit

3.0

Image Capture

1.0

Remote Input

Remote Output

Command Parser

4.0

Receive Buffer

Transmit Buffer

input data

input data

input data

data

available

command

available

input data /

parsed command
command

image data

data

available

image data

image data

Image Data

Figure 5.28 Capturing the Data and Control Flow in an Imaging System

Command data comes into the system from the remote site. This input is shown as a
data source. The reception is managed by the Receive task, which brings the information
into the system and stores it in the Receive Buffer. Once the Receive task accepts a competeReceive

Receive Buffer
Command Parser

message, it sends a control message to the Command Parser task, which parses the data and
interprets the command. When it finishes, the Command Parser writes the command back
into the buffer and sends a message to the Image Capture task to execute the capture. The
Image Capture task collects the data from an external source and stores it into the transmitImage Capture
buffer. When the capture is complete, it signals the Transmit task to send the collected dataTransmit
back to the remote site.

Figure 5.29 illustrates a hierarchical decomposition of a data flow diagram through
three levels. At each level, greater detail is provided.
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Input / Output
Task

Rcv.

Rec. Buffer

Xmt.

Xmt. Buffer

input
output

Rcv.Tsk.

Local Buffer

from
Rec. Buffer

to shared
buffer

Level 0

Level 1

Level 2

Figure 5.29 A Hierarchical Data and Control Flow Diagram in an Input/Output Task

5.14 SUMMARY

In this chapter, we have taken our first steps into basic soft-
ware design. In doing so, we started to learn about some of the
tools that can help us with that job. Specifically, we opened the
chapter with a presentation of some of the tools that we take
from UML. We have introduced several different UML diagrams
and one Structured Design diagram as tools that can be used
to capture and model the static and dynamic relationships in a
typical embedded application. We learned that the static models

are essential for capturing the structure of the system and the
dynamic models are important for expressing the desired behav-
ior of system while it is performing its designated tasks and for
providing information about interactions amongst those tasks.
Finally, we found that the understanding of the concurrent oper-
ation of modules within the application and the persistence of
software entities comprising the system are among the more
important considerations when designing a system.

5.15 REVIEW QUESTIONS

Introduction

5.1 Why do we use the UML and Structured Design method-
ologies when developing embedded systems?

5.2 What information does a static view of an embedded sys-
tem provide? A dynamic view?

5.3 In an embedded application, what does the term concur-
rency mean?

5.4 Explain the terms thread or thread of control.

5.5 What does the term persistence mean in an embedded soft-
ware application?

5.6 Are there different forms of persistence? If so, briefly
describe what these might be.
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An Introduction to UML

5.7 Where did UML originate, and why was it developed?

5.8 In the context of the work in this text, what is the interpre-
tation of the terms class and object?

5.9 Why are many of the tools used in UML graphical?

UML Diagrams

5.10 What is the purpose of UML diagrams?

5.11 What are the major classes of UML diagrams or drawings?
Give a one- or two-sentence description of the purpose of each
type of drawing.

5.12 In the text, the UML diagrams were segregated into three
major groupings. What are these?

Use Case Diagrams

5.13 What does a use case diagram provide for us?

5.14 What are the major components of a use case diagram?
Briefly describe each.

5.15 Are the actors in a use case diagram always people?

5.16 A textual description is typically associated with a use
case diagram. What information should that description con-
tain?

Class Diagrams

5.17 What information should we include in a class diagram?

5.18 When we say that the class diagram presents the public
interface to an object, what do we mean?

5.19 A class diagram is expressed as a rectangle subdivided
into three components. Identify these components and briefly
describe the information contained in each.

5.20 The properties of an object can be decomposed into asso-
ciations and attributes. Briefly describe what each of these
means.

5.21 What are the different kinds of relationships that can be
defined among classes or objects?

5.22 What kind of information should be captured in an inher-
itance diagram?

5.23 For what kind of relationship should an inheritance dia-
gram be used?

5.24 What is the purpose of an interface diagram?

5.25 What kind of relationship do we express with an aggrega-
tion diagram?

5.26 What kind of relationship do we express with a composi-
tion diagram?

5.27 What is the difference between an aggregation and a com-
position diagram?

Dynamic Modeling with UML

5.28 What information does a dynamic model give us about a
design?

5.29 What are the major elements that should be included in a
dynamic model?

5.30 Three different forms of message can be expressed in an
interaction diagram. What are these?

5.31 What are the different kinds of actions supported in a
UML interaction diagram? Briefly describe each action.

5.32 What is the purpose of a UML sequence diagram?

5.33 What are the major elements of a sequence diagram.

5.34 What is a fork and join diagram? When should such a dia-
gram be used?

5.35 What kind of activity does a branch and merge diagram
allow us to express?

5.36 For what purpose do we use an activity diagram?

5.37 In the context of the Unified Modeling Language, what is
an event?

5.38 What kinds of events are supported by UML? Briefly
describe each event.

5.39 A UML state chart diagram is an extension to the famil-
iar state diagram for expressing the behavior of a finite-state
machine. What is a state diagram intended to describe?

5.40 The UML state chart specifies four kinds of transitions
between states. Please identify each of these and briefly describe
what each means.

5.41 What is the purpose of a guard condition in a UML state
chart?

5.42 What kinds of guard conditions does UML support?
Briefly describe what each such condition means.

5.43 What is a composite state in a UML state chart?

5.44 What kinds of composite states does UML support?
Briefly describe each one and its intended purpose.

Structured Design Methodologies

5.45 What are the major goals of the Structured Design
methodology?

5.46 The Structured Design approach to software modeling
consists of five fundamental ideas. What are these?

5.47 What is the purpose of a data and control flow diagram?

5.48 What are the four major elements in a data and control
flow diagram? What information does each capture?
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5.16 THOUGHT QUESTIONS

Introduction

5.1 Why is the modeling of both a static and a dynamic
view of an embedded system essential throughout the design
process?

5.2 When designing the software for a multitasking embed-
ded system, why is the understanding of and the ability to model
concurrency important?

5.3 Why is the ability to model persistence in an embedded
software application necessary?

Use Case Diagrams

5.4 The use case diagram provides the ability to capture and
model the external view of a system. Why is such a view impor-
tant in the early stages of the design of an embedded system?

5.5 Is the use case diagram limited to a top-level/external view
of the system?

5.6 Discuss possible benefits of developing a use case analysis
for each module comprising a system.

5.7 Is the use case diagram limited to the software compo-
nents of a system?

5.8 Why is a textual description an important component of a
use case diagram?

Class Diagrams

5.9 What is the purpose of developing a class diagram?

5.10 When we say that the class diagram presents the public
interface to an object, how is this different from a use case dia-
gram?

5.11 The class diagram provides the name of the class, its prop-
erties and its operations. Why is it important to capture this
information during the early stages of the design of class?

5.12 What role can the class diagram play during the
system-level definition of an application?

5.13 The properties of an object can be decomposed into asso-
ciations and attributes. Why is this information important?

5.14 Why are the different kinds of relationships that can be
defined among classes or objects important to understand in the
early stages of system definition?

5.15 Why might an inheritance diagram be useful even if an
object-oriented language is not being utilized for implementa-
tion?

5.16 What information should be expressed in an interface dia-
gram?

5.17 Why do we distinguish an aggregation and a composition
diagram?

5.18 What assessments do the aggregation and a composition
diagrams enable us to capture about the elements of the corre-
sponding collections?

Dynamic Modeling with UML

5.19 Why is the information about a system that is captured in
a dynamic model critical to the design of a modern embedded
system?

5.20 What kinds of information should we include in a dynamic
model?

5.21 The event, rendezvous, and message quantify the
exchange in an interaction diagram. Characterize the nature
of the information in each of these exchanges.

5.22 Is the applicability of an interaction diagram restricted to
inside the system?

5.23 Why do we distinguish the three types of information
exchanged between entities in a system?

5.24 Please give an example from an embedded application that
you are familiar with for each type of action modeled in an inter-
action diagram.

5.25 What information are we trying to understand and model
using a UML sequence diagram?

5.26 Should we consider creating a sequence diagram for a
complete system?

5.27 For what kinds of systems is a fork and join diagram going
to provide useful information?

5.28 When should we be using a branch and merge diagram?

5.29 For what purpose do we use an activity diagram?

5.30 Several kinds of events are supported by UML. Give an
example from a commercially available embedded application
with which you are familiar where each such type of event might
occur.

5.31 A UML state chart diagram is an extension to the famil-
iar state diagram for expressing the behavior of a finite-state
machine. Give several examples from commercially available
embedded applications with which you are familiar for which
the behavior on the software side of the system can be modeled
by a state chart.

5.32 The UML state chart specifies four kinds of transitions
between states. Give an example from a commercially available
embedded application with which you are familiar in which each
such type transition might occur.
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5.33 Give several examples of commercially available embed-
ded applications with which you are familiar that might use
composite state(s) as an effective aid in expressing and mod-
eling certain aspects of system behavior? Explain how the use
of composite state(s) has helped.

5.34 Give several examples of commercially available embed-
ded applications with which you are familiar that might use
history state(s) as an effective aid in expressing and modeling
system behavior? Explain how the use of history state(s) has
helped.

Structured Design Methodologies

5.35 Give several examples of commercially available embed-
ded applications with which you are familiar for which a data
and control flow diagram might provide a simpler and more
appropriate model of behavior than a UML state chart, inter-
action diagram, or activity diagram. Explain why the data and
control flow diagram is the preferable alternative.

5.17 PROBLEMS

UML Modeling – Basic Containers

For each of the data types that one might use in an embedded
application, please provide the following diagrams:

• Use Case Diagram and textual description of each use case.
• Class Diagram for each top level module.

5.1 A link in a linked list.

5.2 A linked list.

5.3 A queue.

5.4 A stack.

5.5 A FIFO container.

5.6 A LIFO container.

5.7 A circular list.

UML Modeling – Applications

For the following embedded applications, please provide each
of the following diagrams as appropriate.:

• Use Case Diagram and textual description of each use case.
• A first-level decomposition of the application into top-level

modules.
• Class Diagram for each top-level module.
• An Activity Diagram identifying the major activities in the

application.
• A State Chart (or State Charts as appropriate) identifying the

state behavior of the application.
• An Interaction Diagram/Sequence Diagram (or Diagrams as

appropriate) identifying the interaction and temporal behavior
of the high-level modules within the application.

5.8 Creating an embedded application.

5.9 A digital watch.

5.10 A Tic Tac Toe or noughts and crosses game.

5.11 A cell phone.

5.12 A cell phone with three-way calling.

5.13 A coffee pot.

5.14 An iPod™.

5.15 An automobile.

5.16 An automobile cruise control.

5.17 A television with VCR/DVD player.

5.18 A digital camera.

5.19 A washing machine.
The controls must include the ability to set water tem-

perature, washing start times, modes (presoak, normal, perma-
nent press, delicate), and annunciation of temperature, times,
and mode.

5.20 An intrusion detection with three doors and timers on
each door.

If a door is left open too long, the intruder alarm is initiated.

5.21 An oven control.
The controls must include the ability to set temperatures,

cooking start and stop times, modes (bake, broil, clean), and
annunciation of temperature, times, and mode.

5.22 A seat belt – engine – door lock interlock.
The engine cannot start if the seat belt is not fastened. The

doors automatically lock when the engine is started.

5.23 An entertainment system.
The entertainment system should support the ability to pro-

gram and control a stereo, television, in-home movie theater, and
gaming console, and to route music to any of six rooms in the
house.

5.24 A television.

5.25 A television remote control.

5.26 A VCR/DVD record and playback device.

5.27 A stereo.

5.28 A gaming console.

5.29 A module implementing a four-seat passenger entertain-
ment system on a commercial aircraft.

The entertainment system should support the ability of each
of the four passengers to program and control.

Movie selection
Audio selection
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A gaming console.

5.30 An automatic process for filling and capping bottles of
juice on an assembly line.

Structured Design Concepts – Data and Control Flow

For the following aspects of an embedded application, provide
a data and control flow diagram.

5.31 Reading/writing from/to a USB port and a general paral-
lel port.

5.32 Accessing and reading a mouse.

5.33 Accessing and reading keys from a keyboard.

5.34 Controlling and accessing a digital-to analog converter.

5.35 Controlling and accessing analog-to-digital converter.

5.36 Burning a CD.

5.37 Transferring data from an external device to memory and
then to a display.

5.38 Managing and controlling a video on demand system in a
motel or hotel.

5.39 An automatic process for filling and capping bottles of
juice on an assembly line.
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Chapter 6

The Software Side – Part 1: The C
Program

THINGS TO LOOK FOR …

• The structure of an embedded C program.

• The C program build process.

• C variables – Their type, storage class, and scope.

• The structure of a C program.

• Working with multiple files.

6.1 INTRODUCTION

Software and firmware, like digital hardware, are essential elements in today’s embedded
systems. In this chapter and the next we will cover the elements of the C language that are
essential to developing today’s embedded systems. We will begin with a top-level look at
an embedded C program as we examine its structure and learn how to build a multiple-file
program. We will study good programming style and some important considerations when
developing programs that are robust, reliable, and maintainable.

We will then look inside the program through a review of the fundamentals of the C
language, specifically variables, their type, scope, and storage class. We will conclude with a
look at the structure of a C program itself and learn the details of working with multiple-file
programs, a necessity for larger applications. In the next chapter, we will introduce bit
operators, pointers, functions, and structs.

If you already feel comfortable with the C language and developing programs, take a
few minutes to scan through this chapter and the next. If programming in C is new to you,
working through the material in this chapter and the next should get you started on the road
to C proficiency. Good luck and have fun.

6.2 SOFTWARE AND ITS MANIFESTATIONS

A colleague once commented that the hardware is merely a vehicle for allowing the software
to express itself. Clearly, this is a software fellow; yet, to some extent, this observation is

Embedded Systems: A Contemporary Design Tool, Second Edition. James K. Peckol.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/college/peckol
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right. In an embedded application, the hardware is an integral part of the job. Without the
hardware, there is no place for the software to do any expressing. Both pieces are necessary.

As the early computer developers showed, by rewiring the computer appropriately
they could configure it to solve their particular problem. Originally, all the mathematical
operations used integer rather than floating point numbers. The early developers were all
mathematicians; they felt that everyone knew how to scale numbers.

Continually rewiring the computer is hard work. To make programming the com-
puter easier, smart people have been developing increasingly sophisticated and powerful
languages. These languages hid the lower layers of the machine. We now write in more
comfortable terms, and the tools we have developed figure out how to translate our direc-
tions into signals that manipulate the underlying hardware to solve our problem. We do no
more rewiring. We express the whole idea in Figure 6.1, a diagram we call an onion model.

Hardware—Registers

Machine Language

Assembler
Unique to the Machine

4th GL

High-Level Language

C, Pascal

Higher-Level Language

C++, Java

Application Programs

Figure 6.1 From Hardware to Applications

6.2.1 Combining Hardware and Software

We see then that an embedded application is simply a tool to make solving problems easier.
Let’s follow the process from the original problem statement to see how the hardware and
software can work together.

Problem Let’s begin with a very simplified version of an automated landing system
As the plane approaches the runway, continually decrease the velocity until the aircraft
is at an altitude of 20 m. At that altitude, activate the final approach profile and flare the
plane onto the runway. If the aircraft descends too quickly, increase the thrust.

The original problem is stated in a natural language as part of a customer requirement.
From a software perspective, we can see several familiar things: the need for variables to
express altitude and velocity, a basic loop construct – repeat until – and a conditional if
construct. We also see the need to bring information into the system from external sensors.
What form does that information take? What types of variables are we going to use? But
we are getting a little ahead of ourselves.
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Today’s computers, embedded or not, cannot accept a problem stated in a natural lan-
guage. Thus, the first step must be:

Step 1. Translation of the problem statement into a more computer-compatible form.

6.2.2 High-Level Language

We will see that all our design activities simply involve translating the problem from one
form into another until we achieve a representation that the computer hardware can accept
and respond to. In the current case, we translate into the C language. This translation is
done by hand today, although times are changing.

This translation process is what we call software design or programming, and the result
of the translation is a program. The program is written in what is called a high-level lan-
guage. At this point, a variety of different translations are possible; they are not unique.

program
high-level language

They differ with the problem’s constraints and with the person performing the translation.
This is also the stage during which we have the most creative freedom.

With the program in hand, additional levels of translation are still necessary.

Step 2. More translation.

The program, expressed in a high-level language, must be translated into a form that the
microprocessor can understand, a collection of 0’s and 1’s that is called object code. At thisobject code
stage, the object code is incomplete and, thus, cannot be used by the microprocessor without
further processing. Now the problem becomes a little more complex. More questions need
to be answered, however. Namely, how are different versions of the target language accom-
modated if necessary? Can the object code execute on different target machines or run on
different operating systems? The first high-level model of the next translation process looks
like the block diagram in Figure 6.2.

Compiler
Source Code Object Code

Figure 6.2 Translating from Source Code to Object Code

Let’s now look inside the block.

6.2.3 Preprocessor

At this stage, we can bring in some tools to help in the process. The first such tool, called
a preprocessor, performs several mechanical operations to prepare a source file for the
compiler. Such duties include macro processing, selecting source text for compilation, or

preprocessor
compiler

incorporating different shared files into the file that will ultimately be compiled.
The block diagram now takes on the expanded view shown in Figure 6.3.
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Compiler

Source Code Object CodePreprocess Compile

Figure 6.3 Translating from Source Code to Object Code – An Expanded View

6.2.4 Cross Compiler

The compiler (more specifically here, a cross compiler – more on this shortly) is a tool for
translating programs into a variety of forms. One such form is assembly language.cross compiler

assembly language
cross compiler

development platform
target machine

We note that prior to this stage, the program is independent of the target microproces-
sor. If the program is written well, in theory, one should be able to compile any program
written in a high-level language (C in our case, which is portable) into an assembly language
program that executes on any specific target microprocessor architecture.

Enter the cross compiler. A cross compiler is a compiler that runs on one machine,
typically the development platform, and generates code for a different machine, typically,
the target machine.

6.2.5 Assembler

The assembler is the next tool we use for continuing the series of translation steps. Theassembler
machine language assembler converts the collection of assembly language steps into machine language.

Machine language represents each of the program’s instructions as a specific collection of
0’s and 1’s that the machine is designed to understand. We are not finished yet.

The level of detail in the block diagram is increased one more time as illustrated in
Figure 6.4.

Compiler

Preprocess Compile

Preprocess Compile

Link Object Code

Source Code

Relocatable

Code

Assemble Compile Object CodeSource Code

Source Code

Figure 6.4 Translating from Source Code to Object Code – More Detail



�

� �

�

6.2 Software and Its Manifestations 247

6.2.6 Linker and Loader

The linker and loader now follow. Although the program is now in machine language, itlinker and loader
is not ready to be executed. The problem is that all variables and data structures used in
the program must reside in computer memory, and each needs an address in memory. The
next question we can ask is, which address should be used? To solve this problem, the
assembler generates relocatable code – code that can be placed anywhere in memory. Arelocatable code
second question now arises.

When developing software solutions, it is beneficial to be able to use existing code.
By reusing code, we can reduce development time as well as costs. Such code may be
from previous projects or be purchased as specialized pieces of functionality. How can
such code be incorporated into the program without retyping everything? The tool called
the linker-loader can help with both problems.linker-loader

The linker-loader tool does two jobs: it links a collection of program modules together,
and it resolves (or identifies) address problems. To see how this works, consider the two
diagrams in Figures 6.5 and 6.6. The first, in Figure 6.5, shows the movement through the

Compiler Assembler Linker LoaderPreprocessor

Library Files

Source Code

Figure 6.5 Translating from Source Code to Object Code – Flow Through the Tools

int myFunct(void);

extern int vndrFunct);

void main (void)

{
...
int x = 10;
...
x = vndrFunct(x);
...
myFunct();
...

....

float y = 9.8
....

0

1000

0

7F4

topLevel.c

module0.c

int myFunct(void);

extern int vndrFunct);

void main (void)

{
...
int x = 10;
...
x = vndrFunct(x);
...
myFunct();
...

0

1000

1A0

10C

topLevel.asm

....

float y = 9.8
....

0

7F3

module0.asm

0

9AD

605

213

...
int vndrFunct(int);

....
char z = ‘b’;
int w = 451;
....
vndrFunct(w);
....
int vndrFunct(int aVal)
{
.....

vndrLib0.lib

int myFunct(void);

extern int vndrFunct);

void main (void)

{
...
int x = 10;
...
x = vndrFunct(x);

...
myFunct();
...

0

1000

1A0

10C

topLevel.obj

....

float y = 9.8
....

0

7F3

module0.obj

17F4

21A1

void main (void)

{
...
int x = 10;
...
x = vndrFunct(x);
...
myFunct();
...

0

1A0

10C

topLevel.obj

....

float y = 9.8
....

...

....
char z = ‘b’;
int w = 451;
....
vndrFunct(w);
....
int vndrFunct(intaVal)

{
.....

1A07

1E9C

1AF4

24A1

1B97

void main (void)

{
...
int x = 10;
...
x = vndrFunct(x);
...
myFunct();
...

201

13B4

4A0

main loaded at 300

....

float y = 9.8
....

...
int vndrFunct(int);

....
char z = 'b';
int w = 451;
....
vndrFunct(w);
....
int vndrFunct(intaVal)

{
.....

189A

1D07

219C

2F 2F2F
300

40C

1000

17F3

1300

1AF3

topLevel.obj

Figure 6.6 Translating from Source Code to Object Code – Flow Through the Tools Expanded
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tools involved in the translation sequence, and the second, in Figure 6.6, shows some of the
changes to the modules comprising the program in greater detail. There are others, but we
will pass over them for the moment.

The original program contains two user-written modules and one library module. In
the diagram in Figure 6.6, it is assumed that the preprocessing step has been completed.

The sizes of each module and the location of several of the variables and functions,
with respect to the start of the module, are shown. Note that the function prototypes and
external declarations do not become part of the final code and are, therefore, not assigned
addresses.

The compiler translates each of the two C modules into the assembly language for the
target machine. During that process, the names of all variables are identified and an entry for
each is made in a table called the symbol table. If the compiler is able to identify an addresssymbol table
within the module for each variable, that information is associated with the variable in the
symbol table. If it cannot, and it hasn’t been told that the variable is defined in some other
module (via the extern directive), it cites the variable as being undefined.

If the extern directive is present to tell the compiler to defer concerns about the defini-
tion, that it has been taken care of, and if when the linker arrives and the linker cannot find
that definition, the process ends with a link error.link error

Note that the locations of each variable are still with respect to the start of the module
wherein it was defined.

The assembler translates the assembly language program into what is called relocatablerelocatable
object or machine code, leaving the variable locations unchanged. In the diagrams, the
variables that will ultimately go on the stack are shown in italics. The linker accepts the
two object modules from the assembler and the library file then links the three together.

Linking involves combining all of the machine code into a single file and re-referencing
all addresses to the start (address 0) of the new module. When the C program begins exe-
cution, it is looking for the location of main(). The location of main() in instruction codemain()
space is dependent on the machine on which it is executing. It is the job of the loader to
modify all variable addresses to reflect the start of the program.

Step 3. Into Memory.

6.2.7 Storing

The process is not yet complete; several more stages remain. At this point, the linker and
loader have prepared the program to go into memory. For an embedded application, this
means going into some form of nonvolatile memory such as a flash-type ROM. Once the
program begins to run, the instructions and data will be taken into RAM, cache, and various
registers. Adding these, we complete the job. We have now seen how to take the problem,
expressed in a natural language, and turn it into something that can be solved by a computer.
It sounds easy – take the problem, add some knowledge, imagination, and creativity, bring
them together, and we have it.

We will now look at the pieces of the C language that make all this possible, and we
will also describe some of the mechanical steps that are necessary to bring the complete
program together.
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6.3 AN EMBEDDED C PROGRAM

6.3.1 A Program

We begin with the program. Whether embedded or running on a desktop computer, a pro-
gram is a sequence of instructions that directs the computer hardware and software to solve
a problem. One can immediately ask, “Is any set of instructions satisfactory?” “Are some
instructions better than others?” “If some are, what defines a good set of instructions and
what defines a bad set?”

Starting with the machine, the computer, we recognize that it is simply that – a machine.
Some of the fun science fiction movies notwithstanding, today’s machine is a rigid, dispas-
sionate pile of silicon and wires designed and built to react in precise ways. The program
directing its operations is a large collection of instructions organized as algorithms and
computational procedures to perform some task. The difference between the hoped for per-
formance and the actual performance is evidence of human failure to instruct the computer
properly. Nonetheless, who gets the blame for the bugs or errors in the machine’s operation?
The computer, of course.

Our mission as designers of embedded software programs is to write programs that
solve a problem and that are bug free and, of course, to have fun doing it. We approach the
first of these goals asymptotically; specifically, they are listed in Figure 6.7.

1. Performance

2. Robustness

3. Ease of change

4. Style
Figure 6.7 Program Design Goals

Quantifying each goal, we find that performance must begin with solving the problem.performance
It is then measured by assessing certain characteristics or attributes of that program, such as
its size, speed, or utility to name a few. A robust program is tolerant of failure conditions,robust
misuse, unexpected inputs, side effects, or boundary conditions on inputs or computed data.
Ease of change demands modularity and support for modification, reuse, or addition of newease of change

style features. Good design and coding style include clarity in the algorithms and control flow
through the code, modularity, readability, proper use of indentation and white space, and
documentation.

6.3.2 Developing Embedded Software

Software can be developed from the top down, the bottom up, or a combination of both.
Major pieces in the process begin with formulating a good specification, then executing the
design, doing the coding, and debugging the code, and finally testing the product. There
are two key points here. First, one should devote most of one’s attention to the top of the
list – the specification and the design. Second, no amount of debugging and testing canspecification, design
turn a poorly specified and designed application into a good one. Too often, people do the
reverse. Comments such as “We have to get the product out, we don’t have the luxury to
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spend time designing” or “We have to get coding done because there’s a lot of debugging to
do” are sure steps to project and product failure. Specification and design should be about
70–80% of the job, while code and test should be the remainder – not the reverse.

Let’s now look at a couple of terms and concepts that we will encounter throughout
the design and development process.

6.3.2.1 Abstraction

All computer programming involves working with real-world things; this is even more the
case with embedded applications. Inputs, outputs, and algorithms come from real-world
things: motors, sensors, communications ports, switches, and other systems. When we write
a program, the focus is on those aspects of that information necessary for the application;
the rest is discarded. The real world is abstracted from volts, current, or other quantities to
ints, floats, chars, or more complex data structures.levels

Abstraction is the ability to minimize or eliminate details that are unimportant or
nonessential while focusing on those that are important. With abstraction, the focus is
on the essential elements of the problem; details that are not immediately important are
ignored.

Different levels of abstraction are possible. At the higher levels, the concern focuses
on the major elements of the design; at the lower levels, it turns to the detailed elements of
the design. As we study the design and development of embedded applications, the concept
of abstraction will come up time and time again. To be successful at designing embedded
systems, one must learn to change how one thinks about problems and how the real world
is viewed.

Let’s now take a look at some of the elements of the C language that will be of use as
we learn to design embedded systems. For those of you already comfortable with C, it is
okay to briefly skim over the highlights. A more extended review of the material on basic
pointers and pointers to functions might prove beneficial.

6.4 C BUILDING BLOCKS

With an understanding of the general structure of an embedded C program, we will next
examine, to a much greater depth, the fundamental pieces that we use to build such a pro-
gram. We will begin with the data types that are specified as part of the C language. These
are known as the intrinsic (or built-in) types.intrinsic

6.4.1 Fundamental Data – What’s in a Name?

6.4.1.1 Identifiers in C

The name of a variable or a function in C is called an identifier. Although any combinationvariable, function,
identifier of symbols could be used, the ANSI/ISO C standard establishes some restrictions as to what

constitutes a legal identifier.

• An identifier is case-sensitive.
As we noted earlier, this means that main() and MAIN() are two different functions.

• The first character of an identifier must be an alphabetic character or an underscore.
While some compilers permit a $, this is nonstandard and should be avoided.
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Some vendors prefix proprietary identifiers with one or two underscores. The
ANSI/ISO C standard has specific rules allowing vendors to do this. Consequently,
it is best to avoid using identifiers that begin with a single or double underscore;
otherwise, the local variable identifiers may conflict with some in a library file, for
example.

• Typically, variable and function identifiers begin with a lower case letter, and sym-
bolic constants are written with all upper case letters, although neither is required.

• Identifiers cannot be a C keyword.
return or int cannot be used as identifiers, for example.

• Identifiers should be as descriptive as possible.
Using descriptive identifiers makes any program easier to read and less prone to

errors if someone else is trying to modify or upgrade it.
• ANSI/ISO standard identifiers have no length limit.

Caution: Several compilers claim unlimited length identifiers and yet specify that iden-
tifiers must be unique only in the first 32 bytes. This requirement is not standard; refer
to the compiler documentation to be certain.

Consider the following declarations,EXAMPLE 6.1

int t1 = 98.6;
int temperature1 = 98.6;

Both are legal identifiers. Which conveys more information?

6.4.2 Defining Variables – Giving Them a Name and a Value

The C language permits one to declare and define different kinds of variables. When a
variable is declared, that variable’s name is brought into the namespace of the program.

declare, define
declared, namespace

It can now be referred to by other entities within the program. However, no memory is
allocated.

When a variable is defined, memory is allocated. The definition automatically specifiesdefined
how much memory is needed to store the variable, quantifies the characteristics of that
storage, and associates the name (identifier) for the variable with that piece of storage. The
word type is used to denote the information expressed in a declaration.type

The expressionEXAMPLE 6.2

int age;

is a declaration and a definition for a variable. The line of code says that the name of the
variable, its identifier, is the word age (the declaration) and that sufficient memory is to be
allocated to hold an integer-type variable (the definition).

declaration, definition
identifier, age

integer

At this point, without knowing the target machine, one cannot know the size (number
of bits) of the variable. The system files limits.h and float.h specify the sizes for integrallimits.h, float.h
and floating point types, respectively, for the specific machine. Generally, these files will
be found in the include subdirectory where the compiler was installed.include

initialize One should always initialize a variable with a value at the point that it is defined:

int age = 21;



�

� �

�

252 Chapter 6 The Software Side – Part 1: The C Program

A new value may be assigned anytime thereafter:assigned

age = 40;

using the assignment operator: =assignment operator
Observe that one can initialize a variable only once; one can assign to it as often asinitialize, assign

needed.
We will talk more about equality shortly. For now, it is sufficient to know that the equal-equality

ity operator is ==; that is, two equal signs. It is very easy to confuse these two operators,
so be very careful when you are coding. To emphasize the difference between assignment
and equality, we pronounce = as gets and == as equals.gets, equals

When one declares and defines a variable in C, it is not automatically assigned a value.
The variable does have a value, however; that value is whatever the current state of the bits in
the memory location assigned to the variable. That value will most likely be different each
time the system is powered up. This is why it is important to always assign an initializing
value when the variable is defined.

Important Points

• The declaration of a variable or function makes its name visible to the program.
No memory is allocated.

• The definition of a variable or function directs the compiler to allocate memory
to hold the variable or the body of the function.

• Finally, initialization occurs one time only, when a variable is defined. There-
after, a value is assigned to the variable.

6.4.3 Defining Variables – Giving Them a Type, Scope, and Storage Class

Each variable in a C program is characterized by its type, scope, and storage class. Wetype, scope,
storage class have already introduced the notion of type; scope and storage class further characterize the

identifiers. These all must be taken into consideration as one designs both the hardware and
software portions of an embedded application.

6.4.3.1 Type

A variable is a piece of memory used in a program to hold data. Each variable also has
an associated identifier, its name, by which it is referred to in a program. Each also has aname, type
type that specifies its size, that is, how much memory is needed to store it. It’s a bit like
barrels – we have a number of different types or sizes of barrels. These are 10-, 20-, 50-,
100-, or 500- litre containers. Obviously, each holds a different amount of stuff. Also, it is
pretty obvious that trying to put the contents of a 100-litre barrel into a 10-litre barrel is
going to be a problem. Furthermore, putting salt in a container labeled sugar can give the
user of either product some rather unexpected reactions.

6.4.3.1.1 INTRINSIC TYPES
As we look around the real world, we see that we measure things by a number of different
units: inches, feet, yards, miles, centimeters, meters, kilometers, grams, kilograms, and
so on. These are standards; they are intrinsic units of measure. C does the same thing.
The language specifies a number of standard numeric types. These are predefined types of
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variables with known sizes. Such numeric types are called the intrinsic types or are some-intrinsic types
fundamental types

integral types,
floating point types

times also called fundamental types. The language classifies intrinsic types into two major
groups: integral types and floating point types. We studied each of these earlier from a hard-
ware point of view when we learned how to represent information in a computer. Let’s now
take a look at them from a software perspective.

6.4.3.1.2 INTEGRAL TYPES
Integral types are whole numbers; they have no fractional part. The integer is probably theintegral types, integer
most familiar of the integral types. Others differ in the number of bits of required stor-
age. The number of bits of memory space occupied by an integral variable depends on its
type and the architecture of the machine on which the program is to be run. In the embed-
ded world, typical word sizes for different microprocessors are 4, 8, 16, or 32 bits. As a
user, we must always refer to and work with the hardware and software documentation
accompanying our tools and target environment.

The ANSI/ISO C language standard defines integral types listed in Figure 6.8. Inte-
gral types may be either unsigned or signed. By default all the types identified here areunsigned, signed
signed – yes, chars are signed by default. A signed integer can express either a positive
or a negative value; an unsigned integer can only be positive. Unsigned integral types are
specified by using the C keyword unsigned in the definition.

chart

short

int

long
Figure 6.8 ANSI/ISO C Integral Types

To define an unsigned integer with a value of 25, we writeEXAMPLE 6.3

unsigned int aNotherNumber = 25;

On a number line, an unsigned integer has the expressive power shown in Figure 6.9,
where n is the number of bits in the word.

0

+2n−1

Figure 6.9 Expressive Power of An Unsigned
Integer

On a 16-bit machine, the format for an unsigned integer is given in Figure 6.10.

LSBMSB

215 20

unsigned integer

Figure 6.10 Format of a 16-bit
Unsigned Integer

To define a signed integer with a value of −25 in a program, one writesEXAMPLE 6.4

signed int aNumber = -25;
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or simply

int aNumber = -25;

The second form is permitted because the language standard stipulates that all integers
are signed by default. When a signed integer is specified, the number line shifts to the leftsigned
and the expressive power is modified as shown in Figure 6.11.

0

−2n−1 +1 +2n−1 −1

Figure 6.11 Expressive Power of a Signed Integer

Inside the microprocessor, if the Most Significant Bit (MSB) of an unsigned number
is reinterpreted as a sign bit, then, for a 16-bit machine, the format for a signed integer is
given as in Figure 6.12.

LSB
MSB

+/−

sign bit

215 214 20

signed integer

Figure 6.12 Format of a 16-bit Signed Integer

Binary 0 is used to indicate a positive sign and binary 1 a negative sign.
Based on such a format, the expressive power for these two variable types is given as

unsigned integer 0..215-1
signed integer ± 0..214-1

Observe that we have lost one number using the signed notation. There are now two
representations for the number 0, a positive version and a negative one.

The numbers, expressed as hex numbers, will appear in memory, as illustrated in
Figure 6.13.

8 0 1 9

0 0 1 9

3000

3001

5A00

5A01

aNumber
(−25)

aNotherNumber
(25)

sign bit

1000

Figure 6.13 Two 16-bit Signed Integers in Memory
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For the (negatively) signed integer aNumber, the sign bit (the MSB of the number)aNumber
nibble results in a most significant nibble (4 bits) with hex value 0 × 8. The unsigned integer has

a most significant nibble with value of hex 0 × 0.

For Future Reference Observe that each of these numbers resides at an address in
memory. We can identify the variable either by its name (which is not stored) or by its
address (where it has been stored).

Why use an unsigned integer anyway? This is a very good question. Numbers are stored
in the microprocessor memory as binary bits. For signed numbers, one of the bits is used to
indicate polarity of number – typically the MSB. Writing signed or using the default says
to the compiler: Interpret the MSB as the sign of the number. Writing unsigned tells the
compiler: Use the full expressive power of the type. We want all of the bits in the word to
be interpreted as part of the data.

Interpret the MSB as
the sign of the number
Use the full expressive

power of the type
In an embedded design, the microprocessor’s I/O ports are used to send signals to

or to read from various kinds of external devices, as we see in Figure 6.14. If a word is
read from a digital imager and written into memory, for example, all of the bits contain
relevant pixel information. The bits should not be interpreted as a negative value if the
MSB is a 1.

Digital Imager

16 Bits

Memory

Microprocessor

16 Bits

Figure 6.14 Reading from An External Device Into Memory

6.4.3.1.3 CHAR INTEGER TYPE
The integral type char has historically been used to represent characters. By assigningchar
a value to a char, we are, in effect, assigning a character to that variable. Today, there
are two different sizes of char. The traditional char is 8 bits, 1 byte. The Unicode char,
used for expressing Asian, Middle Eastern, or similar types of characters, is 16 bits,
2 bytes.

The format for these char integer types, expressed in a 16-bit word, is depicted in
Figure 6.15.

Because the char is an integral type, it is signed by default.
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LSB
MSB

20

20

char 0
2728215

215

LSB
MSB unicode char

char 1

sign bit

Figure 6.15 Format of the
Character Integral Type

EXAMPLE 6.5 If one is using the ASCII code (ASCII is the acronym for American Standard Code for

ASCII
American Standard

Code for Information-
Interchange

Information Interchange), then

char x = ‘A';
char y = 65;

both of the above lines of code do the same thing, as the integer 65 is the decimal value of
the ASCII character A.

Note that there is a difference between the integer 0 and the character 0. Failure to
notice the difference can result in a difficult to find program bug. The integer zero is written
as 0. That is, all bits are 0. A char integer with a value of zero is often referred to as a
null character. On the other hand “0” has a value of 48 in the ASCII character set. If thenull character
objective is to compare something to zero but we use “0,” we are actually comparing to the
integer 48. When working with integers and characters, always make certain which one is
intended, the integer interpretation or the character interpretation.

6.4.3.1.4 SHORT INTEGER TYPE
The short integral type, as the name suggests, is a short integer. It was commonly used inshort
the early days of computing (when memory was expensive) to express small integer values.
Typically, it is one-half the size of the integer. In embedded applications, memory is still
expensive. Consequently, it is not unusual to use either chars or shorts to express integer
numbers. In embedded applications, one typically selects the smallest type that will suffice
for the task at hand.

6.4.3.1.5 LONG INTEGER TYPE
The long integral type is the opposite of a short integral type and probably evolved in thelong
same way. The long is used when an integral type is needed, but the size of the integer on
the machine is too small to express the magnitude of the number and floating point numbers
are either not available or not preferred. Typically, it is twice the size of the integer.

6.4.3.1.6 FLOATING POINT TYPES
We have seen how to use integral types to express information in a microprocessor. With
integral types, the size of a number one can express is determined by the number of bits in
an integer for the target machine. The microprocessor in the early PCs expressed integers
as 16-bit words; therefore, the largest positive integer number that could be expressed was
65 536. Although one seldom has to work with and manage the national debt, in an embed-
ded application, there are times when it is necessary to represent larger numbers. To do so,
one must use a different data type called the floating point type.floating point type
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Because mathematical operations using floating point numbers are more complex,
slower, and consume more memory than those using integral types, most compilers for
embedded targets do not automatically load the floating point math packages. It is up to the
user to specifically request that they be included in the build.

Note Whenever we work with floating point numbers, we are going to lose precision.
Some floats are irrational, and we generally don’t have sufficient memory to be able to
store an unlimited number of bits.

So that we can fit it into available storage, we either round or truncate the number.
The error is the same in either case but is more evenly distributed, and the maximum
error is less if we round rather than truncate.

The representation for a floating point number is a bit more complex than that for an
integral type. It is important, however, to recognize that the bits are the same (although there
may be more of them); it is the interpretation of those bits that becomes more complex.interpretation

In a 16-bit machine, a float is typically expressed using 32 bits. This means that a
floating point number will occupy two consecutive words of memory, twice as much as
is required for a basic integer. To see how the number is expressed in the computer, first
remember how floating point numbers are written using scientific notation. For the number

+11.287593

the conversion algorithm is:

• Move the decimal point immediately to the left of the leftmost digit.
• Multiply the resulting number by the appropriate power of 10 to retain the original

value.

Thus, we write:

+0.11287593 x 10+2

The same rule applies when we are working with binary numbers. The rules are now:

• Move the binary point immediately to the left of the leftmost one.
• Multiply the resulting number by the appropriate power of 2 to retain the original

value.

When a number is expressed in scientific notation, four important pieces of information
must be stored: the sign of the number, the number itself, the exponent, and the sign of the

sign, number,
exponent,

sign of the exponent
exponent.

A floating point number can now be represented as shown in Figure 6.16.

LSB

MSB

sign bit +/−

2
15

216231

2
0

230

exponent

222223

number

number

Figure 6.16 Format of the Floating Point Type
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and the expressive power given as:

±(222 - 1) x 2(28-1)

With eight bits allocated to the exponent, one can either accommodate positive expo-
nents or support exponents in the range of ±7.

To avoid having to store the sign, 127 is added to the exponent to move it from the
range ±127 to the range +0.255, as is evident from the graphic in Figure 6.17. (Please
see Chapter 1 for a discussion of the IEEE Hidden Bit Format standard for increasing the
expressive power of floating point numbers.)

0

+255

0

+127−128

Figure 6.17 Representing the Floating Point
Type Exponent

The ANSI/ISO C language standard specifies two floating point types:

float
double

Each of these types contains the same maximum exponent; the double allows for more
significant figures – more bits to the right of binary point. There is even a long double thatsignificant figures
contains even more significant bits.

6.4.3.2 The const Qualifier

The const qualifier is now a part of ANSI/ISO C where it is used to declare or specify
a constant. One immediate application of the const qualifier is as a replacement for the
#define preprocessor directive. The major advantage of such a replacement is that #define
statements are handled by the preprocessor; therefore, there is no type checking. The const
qualifier is interpreted by the compiler and, therefore, has all of the associated benefits of
type checking and optimization.

The const semantics gives the programmer the means to specify that a particular object
should not be changed. The compiler will enforce that requirement.

The declaration

const int speed = 60;

transforms the symbolic variable, speed, into the symbolic constant, speed, within the scopespeed
of speed. Now,writing

speed = 70;

is illegal.
Similarly,

const int speed;
speed = 60

is illegal. One must always assign an initializing value at the time the const is declared and
defined.
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6.4.3.3 Variable Names Revisited

Consider the following declarations:

unsigned int i = 3; // set i to 3
unsigned char x = 0xC; // initialize x to hex C
unsigned int maxTemperatureLimitOnStarboardEngine = 500; // set temperature limit

The first two declarations give no indication as to the purpose of either variable. The
comments do nothing to improve the situation. To complicate matters further, choosing “i”
as a variable name makes searching for it in a large file rather difficult. The third declaration
certainly explains the purpose of the variable. However, now there is too much information.
Searching for that variable begins with trying to type in the name.

Now let’s try:

unsigned int maxTempEngine1 = UPPER_LIMIT; // UPPER_LIMIT is 500

The name is shortened and we are using a symbolic constant rather than a magic
number. The comment provides a reminder of the actual value that had been defined as
a symbolic constant earlier in the program.

Coding Style

When we are declaring variables in our code, we should always select names that are
meaningful and reflective of the intent of the variable. In addition, any annotation asso-
ciated with the variable should add information rather than repeating the obvious.

6.4.3.4 Type Conversions

We have now learned about the primitive data types supported by the C language. As we
work with those types, we will find that at times we have to convert from one type to another.
Such a process is called casting. We begin by looking at implicit-type conversions.casting, implicit

6.4.3.4.1 IMPLICIT-TYPE CONVERSIONS
An implicit-type or side-effect conversion occurs when the compiler needs to convert data
from one intrinsic type to data of another intrinsic type. Such conversions take place silentlyintrinsic type
without the programmer’s knowledge. Implicit conversions that preserve values are said to
be safe and are commonly called promotions. Before an arithmetic operation is performed,safe, promotions
integral promotion is used to create ints out of shorter integral types and floating point
conversions to make doubles out of floats. Promotions will not promote to a long or to a
long double.

doubles, floats, long,
long double

The integral promotions are as follows:

char, signed char, unsigned char, short int, or unsigned short int →
int.
bool → int
false → 0
true → 0
true → 1

Let’s look at several example conversions.
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6.4.3.4.2 INTEGRAL PROMOTIONS
Let’s look at the simple program in Figure 6.18.EXAMPLE 6.6

#include <stdio.h>

// Execution on a 32 bit machine

void main(void)

{

// declare some variables

short myShort = 2;

int myInt = 3;

myInt = myShort;

printf("myInt %i\n", myInt); // prints 2

myInt = 3;

myShort = myInt;

printf("myShort %i\n", myShort); // prints 3

myInt = 32767;

myShort = myInt;

printf(“myShort %i\n”, myShort); // prints 32767

myInt = 100000;

myShort = myInt;

printf(“myShort %i\n”, myShort); // prints -31072

return;

}

Figure 6.18 Integral Promotions

The assignment of myShort to myInt is safe

myInt = myShort

because a short (typically 16 bits on a 32-bit machine) can fit inside an int (32 bits on ashort, int
32-bit machine). The conversion takes place as a side effect of the assignment operation.

The first assignment of myInt to myShort will work because the value of the integer, 3,myInt, myShort
can be expressed in fewer than 16 bits, but the assignment will probably generate a compiler
warning.

In the next assignment, myInt could have an integer as large as 32 767, and the assign-
ment would still give the correct results since 216 is 65 536.

myShort = myInt;

What will display if the integer is first assigned the value 65 536 and then assigned
to the short as shown above? If the value 100 000 is assigned to the integer, what will print?

Both of these assignments will create a problem. The value that is being assigned
exceeds the expressive power of the type. What if such a line of code was included in a
design and the variable myInt was subsequently permitted to take on the range of values
that have been described?

Caution: We must be extremely careful in making such implicit or side-effect casts.
By using them, we are creating a situation in which the program will work sometimes
and not others, or will give erroneous results based on the magnitude of the data values.
Such problems are extremely difficult to debug.
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6.4.3.4.3 FLOATING POINT CONVERSIONS
Because floating point conversions cannot be guaranteed to preserve values, they are not
called promotions. Converting a float to a double is safe, but converting a double to a float is
safe only if the value in the double will fit in the float. If it won’t, the results are not defined.

As with all implicit conversions, the compiler is not obligated to issue a warning. Float-
ing point conversion to an integer works fine as long as the integer variable is large enough
to hold the resulting value. The decimal portion of the floating point number is truncated.
If the truncated value is too large to be represented by the integer type, the conversion is
undefined.

6.4.3.4.4 EXPLICIT TYPE CONVERSIONS
We have seen that type conversions can occur automatically, or implicitly. Casting is a way

implicitly, casting
explicitly

to explicitly convert data from one type to another. When an explicit cast is used, we state
to the compiler, “make this type change; I know what I am doing.”

The cast is specified using the following syntax:

Syntax

(targetType) sourceExpression

The code fragmentEXAMPLE 6.7

unsigned int anInt = 0;
unsigned char aChar = ‘b';
anInt = (unsigned int) aChar;

makes a copy of aChar that is of type unsigned int using an explicit cast. It then assigns the
value (98 – the hex representation of the character b in ASCII) of the copy to anInt.

As noted earlier, some argue that using a cast suggests an error in the original design. In
general, this is probably true. However, shortly we will see several cases where the ability
to cast from one type to another is a powerful and essential tool.

Caution: When using an implicit or explicit cast, be careful and thoroughly understand
what you are doing and the consequences of your actions.

When you make a narrowing conversion (a conversion from a larger to a smaller type),
make absolutely certain that you perform a boundary check on the value of the data prior
to the assignment.

Look in the header files limits.h and float.h to see the maximum and minimum legal
values for any of the types you are using.

6.4.3.5 Scope

Let’s now examine the scope of a variable or function. In this section, rather than repeating
the words or function every time, the word variable is used, and complicating the issue,

function, variable
variable or function

assume they are there. When you see variable, think variable or function.
Scope specifies a variable’s visibility within the program. What does this mean? Let’s

present a brief digression first. The structure or architecture of a program describes how a
program is organized. Certainly, a number of interesting and perhaps creative alternatives
are available. On the one hand, one can have one rather large main function containing the
entire program. While such a model, such as formatting a program into a single line several
kilometers in length, is legal (at least theoretically), it certainly makes debugging and future
modifications more of a challenge.
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For those who find the all-in-one model underwhelming at best, there is the multipleall-in-one
module single-file approach. If designed properly, each comprising module contains related
functions and subroutines. Debugging and maintenance drastically simplify things.

A more reasonable approach is to decompose the program into multiple files, each of
which may contain multiple modules. The individual implementation files can be compiled
and linked either at the same time or at different times.

Most contemporary designers will use the latter model. Beyond the immediate benefits
of ease of maintenance, extension, and simplified development, one adds the further benefit
of being able to subcontract or simply buy standard pieces of functionality that we may not
have the resources to develop.

The immediate questions that arise include, “How are information and data shared
among all the different pieces?” “Can the same variable name be used in multiple files?”
Furthermore, if different variables can have the same name in different modules, when the
program is compiled and linked together, “How does the compiler know about or sort out
the identifier and storage requirements for a variable defined in one module and used in
several others?”

Now to the issue at hand. These questions all relate to what is defined as the scopescope
of the variable’s name. Scope establishes how widely a variable name is known within an
application.

ANSI/ISO C specifies the three primary scopes listed in Figure 6.19.

• Program or Global

• Local

• File
Figure 6.19 ANSI/ISO Scopes

The name of each scope suggests the visibility of any variables defined therein. Vis-
ibility extends beyond simply reading the variable’s value to enabling operations in other
parts of the program to change that value. The three scopes in C can be modeled as the
three nested boxes presented in Figure 6.20. Those inside can see out, but no one can
see in.

Global

File

Local

Visibility

Figure 6.20 Modeling the ANSI/ISO Scopes

6.4.3.5.1 LOCAL
Local scope is the most restricted. Local variables are only visible within the block in whichlocal scope
they have been declared and defined. For C, this means within the function or procedure
in which they were declared. Variables in a local scope are not initialized upon declarationare not initialized
unless special provisions are made.
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Caution: Although local variables are not assigned an initializing value by
default – they do have a value. That value is whatever happens to be in the location in
memory where the variable has been stored.

Local variables and their values exist only while program execution is within the func-
tion body where the variables are declared. Furthermore, they do not persist across invoca-
tions of the enclosing function.

6.4.3.5.2 FILE SCOPE VARIABLES
The visibility of file scope variables is limited to the file in which they are declared. Wefile scope variables, file
will discuss these in greater detail shortly in the context of storage class.

6.4.3.5.3 GLOBAL SCOPE AND GLOBAL VARIABLES
Before beginning any discussion of global variables, it is important to understand that such
variables should only be used with extreme care and parsimony.

Caution: Global variables, as their name suggests, are visible from the point of declara-
tion until the end of the program. They are visible to every function within the program,
all comprising C source files. Such visibility means that any function within the program
can access and potentially change these variables.

Problems arise because functions may change a value that others depend on.

Cautions are duly noted. As we commented earlier, in embedded applications global
variables can be very useful. When they are declared, they are initialized to 0 by default
in most compilers. They provide a means to share data between functions or tasks
without the overhead of physically moving that data (or a reference to it) from one place
to another. We save the time burden and complexity of a function call. The obvious
visibility of global variables dictates that one must ensure strictly controlled access
when multiple users (task or function) are supported. We will discuss such problems and
alternative solutions in much greater detail when we study intertask communication a bit
later.

6.4.3.6 Storage Class

Storage class determines a variable’s lifetime or persistence and storage location within
the program. ANSI/ISO C specifies six possible storage classes/qualifiers as listed in
Figure 6.21. Formalizing what we have already seen, we find that the syntax for declaring
a variable is given as

• auto

• extern

• static

• register

• typedef

• volatile

Figure 6.21 ANSI/ISO Storage Classes
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Syntax

storage-class type variable-name

Let’s look at each of these classes and understand their significance in an embedded
application. There are three important considerations here: the variable’s scope, persistence,
and access privileges.

6.4.3.6.1 AUTO
The storage class auto is the default storage class in C. It specifies that the variable so
designated is to be stored on the stack, that it will be local to the function using it, and thatauto

stack the compiler will automatically destroy it when the enclosing scope is exited.

Syntax

auto type variable-name

Because auto variables are created on the stack, one cannot declare an auto variable
outside of a function; remember: main() is a function too. Furthermore, since it is the default
storage class, it is not necessary to include the keyword auto as part of a declaration.

Auto variables assume the scope in which they were declared – global, file, or local. An
auto variable is created and stored on the stack when program execution enters the scope
in which the variable has been declared and is destroyed when execution leaves that scope.

Caution In embedded applications, the size of the stack is generally limited and can be
exceeded if too many variables are entered.

6.4.3.6.2 EXTERN
Every variable in a C program must be declared and defined. A declaration introduces the
name of the variable into the namespace of the implementation file in which it was specified.
A definition allocates memory to hold that variable. Variables declared as extern provide adeclared, defined,

declaration
definition, extern

first tool for working with multiple-file programs. As was just identified, the auto variables
are local to the block or file in which they are declared and defined. The extern storage class
gives the means to declare and define a variable in one implementation file (or standard
or custom library) and then to use it in another. Qualifying a variable as extern prevents
the compiler from generating unresolved external reference errors during individual file
compilation. Rather, the unresolved external reference is marked and (hopefully) resolved
by the linker later.

Syntax

extern type variable-name
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The extern qualifier introduces a variable name (and hence the variable) into the names-
pace of a file other than the one in which it was originally declared. The named variable is
now shared between the two files. Such data sharing is a common means of communication
within an embedded application.

Caution: The type specifier in an extern declaration is important. Consider the
following:

file0.c
char myVar = ‘a';
file1.c
extern myVar;

Without the type specifier, myVar in file1.c will be treated as an integer rather than
the intended char. This misinterpretation occurs because the compiler will assume the
type to be an int when none is specified.

Although such a variable may be declared (and thus used) in several places through-
out a program, only one piece of memory is allocated to it. The C language permits
multiple declarations but only a single definition – only a single place where memory is

declarations
definition

allocated. Memory allocation is at the heart of the distinction between declaration and
definition.

As the compiler is building each file within a program, it is tracking all of the identifiers
within the file and making sure they are defined. The extern declaration tells the compilerdefined, declaration
that the definition–allocation of memory is in another file and that the compiler is not to
flag an error. All declarations, internal and external, get resolved when the linker combines
all modules.

Because the external declaration brings a variable name into a file without allocating
memory, the notions of scope and persistence are not relevant.

6.4.3.6.3 STATIC
We have seen that auto variables exist only as long as the program is actively executing
within the scope in which they have been defined. There are times when one would like to
have a variable persist for a longer time – for example, a variable in a function that indicates
if a function is called and, if so, how many times. A variable qualified as static enables onestatic
to implement such functionality. A static variable persists across multiple invocations of the
containing function. The memory for such a variable is allocated in the static memory pool
and initialized once (to 0 by default) when the program starts, and yet it lives as long as the
program containing it does. The scope of static variables is local to the more restricted of
the block or file in which they were declared.

The syntax is specified as

Syntax

static type variable-name
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The program module in Figure 6.22 comprises one file in which two variables are declared
and defined, one of which is qualified as static, and a second file in which they are used.
Despite declaring them both as extern variables (thereby bringing their names into the
namespace of main()) in the main file, only the nonstatic one is visible. Attempting to use
the static variable results in a compile error.

EXAMPLE 6.8

// staticData0.c

#include <stdio.h>

// make the function name available in this file

extern unsigned int myData0;

extern unsigned int myData1;

void main (void)

{

printf (“myData0 is: %i \n”, myData0);

// results in compile error - the variable name

// is not visible

// printf (“myData1 is: %i \n”, myData1);

return;

}

// containData0.c

#include <stdio.h>

unsigned int myData0 = 3;

static unsigned int myData1 = 4;

Figure 6.22 Scope of the Static Storage Classes

6.4.3.6.4 REGISTER
Registers are the fastest type of hardware storage and are the closest to the CPU of all the
memory in the microprocessor. Ideally, therefore, one would like to be able to store all the
variables in registers, particularly in designs with very tight time constraints.

To take advantage of the speed that such registers offer, one can recommend to the com-recommend
piler that it place certain variables into registers. Such a recommendation tells the compiler
that the variable may be heavily used and that, by placing it in a register, its access time is
minimized. The goal is faster and smaller programs. In certain embedded applications with
tight time constraints, such an advantage in time can mean the difference between meeting
and not meeting the specification.

Such a qualification, however, is only a recommendation; the compiler does not have
to follow it. It may be the case that the compiler does not have a register available at the
time the request is made, so it may not be granted.

One of the more powerful features in reduced instruction set computer (RISC)
architectures is that they include a large number of registers, sometimes as many as 1000.
In contrast, in complex instruction set computer (CISC) architectures one typically finds
8–128. Using the register qualification for large numbers of variables may be counterpro-
ductive. Frequently, today, using the qualification with highly optimizing compilers may
have little effect. Such compilers typically allocate variables to register as necessary without
recommendation.
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The syntax is specified as

Syntax

register type variable-name

A register variable can only have local scope or be declared a function parameter. Reg-
istered global variables are not permitted. In addition, such variables are restricted to those
types that can fit into a register on the microprocessor. Because they are in a physical hard-
ware register, not in the larger RAM memory, one cannot take the address of a register
variable.

The persistence of a register variable is the same as that for an auto variable. The best
place to use them is in tight loops where access speed is important in minimizing the loop
time and they are not going to change often. Access to a registered variable is limited to
their scope.

6.4.3.6.5 TYPEDEF
The final storage class is the typedef, which is not actually a new storage class. The typedeftypedef
qualifier permits the user to define synonyms for an existing type. It provides new data type
names. It does not actually create a new type – it can only create a new name for an existingnames
type. The new name acts like an alias for an existing data type. That data type can be either
simple or complex.

The syntax is specified as

Syntax

typedef type synonym

The typedef is in scope from the time of its definition. The notion of persistence is not
applicable, and access to or utilization of a typedef variable is limited to the scope of the
original variable. The typedef is similar to the preprocessor #define macro. The difference
is that typedef’s are managed by the compiler (with appropriate type management) rather
than the preprocessor, which merely substitutes text.

The following typedef allows us to define uint as a synonym for an unsigned int. Thereafter,EXAMPLE 6.9

uint the alias can be used as one would use any other type qualifier.

typedef unsigned int uint;
uint myVar = 0x56;

One should be careful when using typedefs. It is easy to redefine and thereby com-
pletely obfuscate and transmogrify the language. One should use the typedef to clarify code
and make it more readable.

6.4.3.6.6 VOLATILE
Like the typedef, the keyword volatile is not a storage class; rather, it is a qualifier. Volatile isvolatile
not something that one encounters in routine desktop applications. It is more likely to appear
in embedded applications involving asynchronous internal or external tasks or specific
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memory locations used by hardware devices. Volatile is also used in system programming
involving multiple processes and threads.

The volatile qualifier tells the compiler that the variable so qualified can be modified
by processes outside of the current process or program. Therefore, it should be excluded
from any attempts by the compiler to optimize it in any way because its value may change
at any time. Its value needs to be read every time, even if the value was just read by the
previous instruction. The volatile qualifier can be viewed as the opposite of const.

6.5 C PROGRAM STRUCTURE

At the start of the chapter, we studied the process of how an embedded application, written
in the C language, is designed, built, and ultimately turned into machine code that becomes
the firmware that is stored in the system and executed by the embedded microprocessor. We
will now analyze the structure of the C program itself. Generally, such a program is built
from multiple implementation files; many of the files will be proprietary, and others will be
available only in binary form from a specific vendor. Of particular interest is how to share
variables and functions among the project files and how to compile each of the separate
files and then link them to create an executable object module.

6.5.1 Separate Compilation

Today’s embedded applications are still rather small compared to the large desktop or server
software systems that have become so common. Nonetheless, an embedded project will
still frequently have a large number of people involved in developing both hardware and
software modules for the program. In such cases, each individual works on only a portion
of the program. Typically, each piece is developed as a separate implementation file or files,
each with its associated header files. While developed as individual pieces of functionality,
software modules may share common information with other parts of the system. The final
program will bring together all of the implementation files, header files, legacy files, library
files, and any other information that may comprise the build.

Although a large operating system might contain 100 000 implementation files, a large
embedded application still counts its files using much smaller numbers. In either case, each
person working on the project must be able to compile his or her implementation file(s) inde-
pendent of all of the other implementation files. Ultimately, the linker that was discussed
earlier combines or links the compiled files into the executable program. The entire process
is called a build, which is illustrated in Figure 6.23. Observe that each implementation filebuild
is processed separately.

6.5.2 Translation Units

Each file is read by the preprocessor and is used to build a temporary file called a translationtranslation unit
unit. The translation unit is what the compiler ultimately compiles to produce an object file.
To start, the preprocessor locates each header file and places a copy into the translation unit,
replacing the #include directive for that header file. The preprocessor then processes any
other directives such as #ifndef and #define. After the translation unit is compiled to create#include

#ifndef, #define the object file, the translation unit is deleted; it is no longer necessary.
Each translation unit is self-contained. It cannot use variables or functions that are part

of another translation unit. Calling functionA() when the code for functionA() is outside the
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Figure 6.23 Building a C Program

translation unit produces an error. The same is true for variables declared outside the trans-
lation unit. When this happens, the translation unit has an unresolved external reference.

unresolved external
reference

Unless instructed otherwise, the build will fail at this point. Instructions needed to com-
plete the build are usually contained in a header file. These instructions allow us to defer
resolution of such problems to the link process after compiling all of the translation units.

6.5.3 Linking and Linkage

In our studies, we have learned that an embedded program usually comprises a number and
variety of different files and that variables and functions are often shared among those files.
At the end of the day, all of the files must be brought together, and the identifiers from each
must be checked to ensure proper visibility and memory allocation.

6.5.3.1 Linking

As noted, each implementation file is separately compiled to produce an object file. A pro-
gram called the linker reads each object file and copies it to the executable program. At thislinker
time, all unresolved external references are resolved.

Suppose the object file uses printf. The code for printf is not in the object file, and theEXAMPLE 6.10

compiler has marked printf as an unresolved external reference. The linker will check the
other object files for printf.printf
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If printf is not found, standard libraries and custom libraries will be checked using a
list the programmer supplies to the linker. These are the include files. When the (compiled)
code for printf is found, it is copied to the executable.

All references to printf in the object file connected to the code are copied into the
executable. When all unresolved external references for all object files are resolved, the
executable program is complete.

When the linker fails to resolve an external reference, it generates an unresolved exter-unresolved external
reference nal reference error and does not create the executable program. The object files remain.

6.5.3.2 Linkage

Linkage relates to sharing variables and functions among implementation files. A variable
or function has external linkage when it uses the extern storage class. For example:linkage

external linkage,
extern

extern unsigned int myData;
extern void myFunction(void);

Such directives instruct the compiler to look for the definition of the variable or function
in another file or in a library. The compiler is told that myData is an unsigned int, and asmyData, unsigned

myFunction() long as it is used that way no error should be generated. Similarly, the body of myFunction()
is defined in another file, and as long as its use in the current file is consistent with the
prototype, once again, no error should be generated. This is the real meaning of function
prototyping: Advising the compiler not to worry when no definition (in this case, the codedefinition
comprising the body of the function) is found in this file.

Let’s look at several variables that are shared among two files.
In myFile1.c, the use of the variable myData is correct and legal. However, inmyData

myFile2.c, the variable is not defined; no storage is allocated, and an error results during
compile. With the inclusion of the keyword extern, we solve the problem.extern

Now in myFile2.c, the compiler is told that the variable is defined elsewhere in the
program; still no storage is allocated in the second file. This is a key point: It is important
that the storage only be allocated in one place.

Coding Style

Generally we would place the line extern unsigned int myData in a header file and
include the header in myFile2.c.

Be careful when you are trying to use static external variables; statics are local to the
file that declares them:

In the first case, use of the variable myData is correct and legal. In the second case,
however, there is a problem. The variable myData is static – it is local to myFile1.c, and it
has internal linkage. It cannot be seen outside of myFile1.c.internal linkage

The same access mechanism works with functions. To be able to call a function that
was declared and defined in another implementation file, we include the function prototype
qualified by the keyword extern in our file. Such an approach works provided the function
is not static. This is why one can call or invoke functions in libraries.is not static

Caution: Static variables and static functions have internal linkage – they are local to
the implementation file that declares or defines them. You cannot use extern to gain
access to static variables and functions.
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6.5.4 Where C Finds Functions

When you make a function call, C locates the function according to the following decision
logic.

• If the function is local or static, use the function definition in this implementation file.

• Otherwise, use the definition from another object file.

• Otherwise, use a library definition.

When your function prototype matches the function prototype of a library function,
your function will be preferred to (override) the library function. That is, your function will
always hide a library function with the same name and signature.

We use such capability to our advantage in developing embedded applications. The
function printf(), for example, writes to standard out, usually the display, in a desktop appli-printf()
cation. For an embedded system, there is no display. If we write a proprietary version of
printf() that uses a serial port, then we can use the function transparently in the program
and we will get the behavior we want.

Caution: When you write functions that have the same prototype as a library function,
make absolutely certain to clearly document what you have done, why you have done
it, and what the current programmer must do to be certain your program is compiled
correctly.

6.5.5 Makefiles

The process for building a program as described requires a place to contain the instructions
that specify what files to compile, lists of standard and custom libraries, the name of the
executable program, and perhaps whether or not debugging information should be included
in the executable. Such a place is called a makefile; the instructions in the makefile specify

makefile
make

the build or make process. The utility that reads the makefile and invokes the preprocessor,
compiler, and linker appropriately is called the make utility. The name and format of the
make utility vary among different environments. Some compiler vendors provide an inte-
grated development environment (IDE) that automates the generation and execution of the
make file. That process is masked by the project file, which provides a convenient tool forproject file
synthesizing the makefile.

A makefile is simply a file comprising a collection of rules and directions of the general
form:

targetName Dependencies or Components of the form x.c, y.obj, z.h
that make up the target and Rules for building targetName such as
the compiler and compiler options

Components Subcomponents comprising each component
Rules for building each subcomponent
...

The syntax and rules for building a makefile to direct the compile process may seem a
bit arcane and inflexible, and to a large extent they are. Nonetheless, a little study removes
most of the mystery.
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An example of a very simple makefile is given in Figure 6.24. The makefile uses the
GNU C compiler to build an executable module from the implementation file hw.c. In this
example, the makefile and the implementation file must be in the same directory. Typing
the keyword make will run the makefile and produce the file hw.exe. To run the first rule,make
the hw.o is required. If that does not exist, the second rule must be executed to produce it.

A very simple makefile

To make hw.exe (the .exe is implied) use hw.o and

Use the gcc compiler with the identified input, flag, and output

To make hw.o use hw.c and

Use the gcc compiler with the identified input and flag

hw: hw.o

gcc hw.o -o hw

hw.o: hw.c

gcc -c hw.c

// Simple classic C program hw.c

#include <stdio.h>

int main(void)

{

printf(“hello world\n”);

return 0;

}

Figure 6.24 A Simple Makefile

6.5.6 Standard and Custom Libraries

A library contains compiled code and may have a file extension of .lib. Compiler vendorslib
provide libraries as part of the implementation of the C programming language. These are
the standard libraries. As a C developer, one may write his or her own libraries to containstandard libraries
functions that have been written specifically for the current project or those that may have
been found useful in earlier developments. These are the custom libraries. As part of thecustom libraries
makefile, one may specify a list of libraries that the linker is to search for functions.

Libraries are distributed with a header file and a binary file containing the compiled
code. The header file may be included in the implementation file and one may include the
name of the library in the makefile. Then one may make calls to library functions.

6.5.7 Debug and Release Builds

A build can include, or not include, information that is used by a debugging tool or that
has been added to the code to provide additional insight into the software (and hardware)
operation during development. If the debugger information is excluded, the executable can
certainly be much smaller, but debugging is more difficult. On the other hand, if the debug-
ging information is included, the executable can be substantially larger and slower as well
as issue surprising information that the customer may not have been expecting.

One can include debugging code in several ways. One method is to use preproces-
sor directives as discussed earlier. Depending on which compiler is used, it may support a
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switch to select between including and not including debug information. Be careful here.
When you perform a debug build, you must be certain that you use debug libraries in the
build. Conversely, with a release build, you must be certain to use release libraries. The rea-
son for this is that the memory allocation may be different between the two builds. Using
inappropriate or different allocation schemes on different parts of the build can cause unex-
pected behavior.

Always be certain that the libraries you use are compatible with the compiler settings.
If you are using an IDE (Integrated Development Environment), the makefile is usually
automatically generated with the correct libraries. If you are doing this manually, you must
read the documentation for your compiler to locate the names of these libraries.

6.6 SUMMARY

In this chapter we opened with a high-level look at an embedded
C program, its structure, and an introduction to the mechanics of
building a multiple-file program. We discussed good program-
ming style and some important considerations when developing
robust, reliable, and maintainable programs.

We then moved inside the program through a review of
the fundamentals of the C language, specifically variables, their
scope and storage class. We concluded with a detailed look at the
structure of a C program itself and working with multiple-file
programs.

6.7 REVIEW QUESTIONS

Software and Its Manifestations

6.1 What is the purpose of the software tool called the prepro-
cessor?

6.2 What is a cross compiler and how is it different from the
basic compiler?

6.3 What is the function of the assembler?

6.4 Please explain the purpose of the software tool called the
linker and briefly describe its operation.

6.5 What is relocatable code?

6.6 What is a link error and how can it occur during the com-
pile process?

6.7 What is the purpose of the software tool called the loader?

An Embedded C Program

6.8 What are the four major goals to strive for when devel-
oping an embedded software application? Briefly describe
each one.

6.9 Why is the return type for the top-level function, main(),
in an embedded C program void?

6.10 Is it necessary to put each statement in an embedded C
program on a separate line?

6.11 What is boot code and what is its purpose?

C Building Blocks

6.12 What does the term identifier mean in the C language?

6.13 Are C language identifiers case sensitive?

6.14 What do the terms declare and define in the C language
mean? What is the difference between them?

6.15 How can one find out the sizes, in terms of bits or bytes,
for each of the intrinsic types for a specific target machine?

6.16 Why is it important to initialize each variable when it is
declared and defined? How many times can a variable be initial-
ized?

6.17 What is the difference between assigning a value to a vari-
able and initializing that variable?

6.18 How many times can we assign a value to a variable?

6.19 What is the difference between the C operators = and ==?

6.20 The C language classifies built-in or intrinsic types into
two major groups. What are these? What are the major differ-
ences between entries in each group?

6.21 What is the purpose of the const qualifier?

6.22 Is it possible to convert a variable from one type to a dif-
ferent type?

6.23 What is the difference between a cast and a promotion?

6.24 Within an embedded C program, what does the term scope
mean?

6.25 The C language specifies three primary scopes. Please
identify each of these classes and briefly describe what each
means.

6.26 Within an embedded C program, what does the term stor-
age class mean?
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6.27 The C language specifies six primary storage classes.
Please identify each of these classes and briefly describe what
each means.

6.28 What is the difference between a variable’s scope and its
storage class?

C Program Structure

6.29 Why is it good practice to design an embedded C program
as a number of individual files?

6.30 What is a translation unit and what is its purpose?

6.31 What does the term external linkage mean when applied
to a C variable?

6.32 What does the term internal linkage mean when applied
to a C variable?

6.33 What is the difference between internal and external link-
age when applied to a C variable?

6.34 When a C function is called, where does the language find
the definition of that function, that is, the function’s body?

6.35 What is a makefile and what is its purpose?

6.36 What is a make utility? What is its purpose?

6.37 What is the difference between a debug and a release build
for an embedded application?

6.8 THOUGHT QUESTIONS

Software and Its Manifestations

6.1 Identify and discuss each of the steps that are necessary to
convert a problem statement into the bits and bytes that can be
run on an embedded microprocessor.

6.2 Why do we use relocatable code?

6.3 Why is relocatable code useful in an embedded
application?

6.4 What is a symbol table? Please identify the information
that is stored in the symbol table. What is the purpose of the
symbol table?

6.5 Why is a link error difficult to find when debugging a pro-
gram?

6.6 Why do we use the software tool called the loader in an
embedded application?

An Embedded C Program

6.7 The chapter identifies four major goals to achieve when
developing an embedded software application. What is the pur-
pose for setting each of these as a goal? Discuss possible conse-
quences of not considering such goals.

6.8 What is the purpose of annotating an embedded software
program?

6.9 Briefly describe the essential information that should be
included in a program’s annotation.

6.10 What are preprocessor directives and what is their pur-
pose?

6.11 What is the purpose of function prototypes? Where, within
an embedded C program, should they be placed?

6.12 What is the purpose of a while(1) loop in the top-level
function, main(), in an embedded C program.

6.13 We will often suggest using pseudo code as a tool during
the design process. What role can pseudo code play in annotating
the final program?

6.14 Why is it important to cite the source for any algorithms
that may have been used or adapted from the literature in a pro-
gram’s annotation?

6.15 How can the preprocessor be an effective tool during the
debug process?

6.16 What is the purpose of a header file in a C or C++
program?

6.17 Why should variable or function definitions never be
included in a header file?

6.18 Does the C language automatically protect from writing
beyond the end of an array?

6.19 Can a program write to storage that is beyond the end of
a C array?

6.20 The while(1) construct is one way to create an infinite loop
in an embedded C program. Are there other ways?

6.21 Is the following code fragment legal in C? If not why not?

int x = 2;
float y = 3.7;
x = y;
char z = ‘a';

C Building Blocks

6.22 Why do we declare certain variables as unsigned?

6.23 How may times can a C identifier be declared?

6.24 Why can a C identifier be defined only once?

6.25 If a pointer variable has been declared and defined, what
will happen if the pointer is dereferenced but never been initial-
ized or assigned to?

6.26 Can one array be assigned to a second one using the =
operator? Why or why not?

6.27 Can two arrays be compared using the == operator?

6.28 Why would we wish to qualify a variable that is being
passed into a function as const? Please give a specific example of
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when such a practice might be particularly useful in an embed-
ded application.

6.29 The C language supports converting from a variable of one
type to a different type; what precautions must be taken when
doing so?

6.30 What is the value for the variable x in the following code
fragment?

int x = 2;
float y = 3.7;
x = y;

6.31 What will the following code fragment print?

int x = 2;
char y = ‘a';
x = y;
printf(“the value is %i'', x);

6.32 The following code fragment contains several ill-advised
practices. What are these?

int x = 2;
char y = ‘a';
x = y;
printf(“the value is %i'', x);

6.33 The C language specifies three primary scopes. Give an
example of when each might be used.

6.34 The C language specifies six primary storage classes. Give
an example of when each might be used.

6.35 Can a variable declared in one function be returned by ref-
erence to another function? Why or why not?

6.36 Can a pointer variable declared and assigned to refer to a
variable in one function be returned and dereferenced in another
function? Why or why not?

C Program Structure

6.37 What are the major kinds of files that will typically be
compiled and linked together in an embedded C software appli-
cation? Briefly describe the information that might be contained
in each such file.

6.38 Give examples of several different types of declarations
for which external linkage might be useful?

6.39 How can the identity of a C variable declared in one file
in a program be hidden from other files in the program? Why
would we want to do such a thing?

6.40 How can the identity of a C function declared in one file
in a program be hidden from other files in the program? Why
would we want to do such a thing?

6.41 Can a function be declared on one file and defined in
another? If so, how and why would we want to do such a thing?

6.42 Why do we distinguish between a debug and a release
build for an embedded application?

6.43 How do we create a debug version of a program? a release
build?

6.44 How can we ensure that debugging code be preserved and
available for future revisions and yet not impact the size of the
code used for the embedded application?

6.45 How can we make a test suite available for future revisions
without impacting the size of the code used for the embedded
application?

6.9 PROBLEMS

Using the Preprocessor

6.1 Starting with the program given in Figure P6.1, write two
functions with the prototypes

int incrementItem(void)
int decrementItem(void)

that will increment or decrement the variable count by 2.
Using the preprocessor, conditionally include either the

original or the new functions based on whether the variable
TWO is defined.

6.2 Starting with the program given in Figure P6.1 and using
the preprocessor, convert the functions incrementItem()
and decrementItem() to macros.

6.3 Starting with the program given in Figure P6.1, write
macro versions of the functions incrementItem() and
decrementItem(). Using the preprocessor, build the pro-
gram such that the two functions are compiled either as functions

or macros based on whether the variable MACROS is defined.
How can you verify that the desired version of the build has
occurred?

Multiple Files

6.4 Starting with the program given in Figure P6.1, move the
functions and global static variable to one .c and global variables
to a second.

C Scope

6.5 Starting with the program in Problem 6.4, add debug code
to the two functions to print out the value of the variable count
each time the function is called. Using the preprocessor, condi-
tionally include the debug code whenever the variable DEBUG
is defined.
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// Top level program, demo0.c, used to generate demo. It is made up of demo0.c

#include <stdio.h>

// function prototypes

int incrementItem(void);

int decrementItem(void);

// a global static variable

static int count = 0;

// global variables 

int gVar0 = 0;

int myArray[10];

void main(void)

{

// local declaration

int number = 0;

// assign a value to the global variable i

gVar0=3;

// This line will print 3

printf (“The value of gVar0 is %i\n”, gVar0);

// Three values are entered into the array myArray[] and printed

for (gVar0=0; gVar0< 3; gVar0++)

{

myArray[gVar0]=gVar0;

}

for (gVar0=0; gVar0< 3; gVar0++)

{

printf (“the value of myArray is %i\n”, myArray[gVar0]);

}

// The function incrementItem is called to increment the variable count the results are printed

for (gVar0=0; gVar0< 3; gVar0++)

{

number = incrementItem();

}

printf (“The total number of items is: %i\n”, number);

// The function decrementItem is called to decrement the variable count and the results are printed

for (gVar0=0; gVar0< 3; gVar0++)

{

number = decrementItem();

}

printf (“The value of number is: %i\n”, number);

printf (“The value of count is: %i\n”, count);

return;

}

int incrementItem(void)

{

count += 1;

return count;

}

int decrementItem(void)

{

count −= 1;

return count;

}

Figure P6.1
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#include <stdio.h>

#define max(a,b) ((a) > (b) ? (a) : (b))

void main(void)

{

int i = 0;

int j = 0;

int a = 3;

int b = 4;

int c = 6;

int d = 5;

i = max (a, b);

j = max (c, d);

printf (“i = %i, j = %i\n”, i, j);

i = max(a++, b++);

printf (“a = %i, b = %i\n”, a, b);

j = max(c++, d++);

printf (“c = %i, d = %i\n”, c, d);

return;

}

Figure P6.2

#include <stdio.h>

void main(void)

{

int i = 0;

unsigned char j = 0;

yarraretcarahcaeralced//;]5[yarrAymrahc

sretcarahchtiwyarrallif//)++i;5=<i;0=i(rof

{

// fill with the ascii characters A..F

// 65 is the ascii value for A

myArray[i]= 65+(j++);

}

yarraehtyalpsid//)++i;5=<i;0=i(rof

{

printf(“the value is: %c\n”, myArray[i]);

}

return;

}

Figure P6.3
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#include <stdio.h>

// get data from the user

char* getSelection();

void main (void)

{

// declare variable to store the selection and a pointer to it

char myValue;

char* myPtr = &myValue;

// get selection from the user

myPtr = getSelection();

// display the selection

printf(“the selection is: %c \n”, *myPtr);

return

}

// prompt the user to make a selection then return a pointer the variable holding that selection

char* getSelection(void)

{

// declare a temp place to store the selection

char tempValue;

char* valuePtr;

// let valuePtr point to it

valuePtr = &tempValue;

// prompt for selection

printf(“Please enter a choice between 0..9: ”);

// get the data

*valuePtr = getchar();

// display its value

printf (“you selected: %c\n”, *valuePtr);

return valuePtr;

}

Figure P6.4

6.6 A colleague has come to you with the code fragment in
Figure P6.2. He claims that sometimes he gets the correct results
and for other times he does not. Can you explain to him what is
happening and why?

6.7 You find the code fragment in Figure P6.3 in a legacy
application that you are working on to incorporate some new
features. The current application works with no problems. After
you add your modifications, the data in the array sometimes gets

corrupted. When you remove your code, everything works prop-
erly again. Can you identify and correct the problem?

6.8 A colleague has written a simple function shown in
Figure P6.4 to prompt the user to make a selection as part of
a new application you both are working on. Somehow the cor-
rect data does not seem to be returned properly, even though it
prints correctly in the prompting function. Can you explain to
him what the problem is and how to correct it?
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The Software Side – Part 2:
Pointers and Functions

THINGS TO LOOK FOR …

• Pointers to variables and functions.

• C functions – passing and returning by value or reference.

• How and when to pass by information value or by reference.

• Writing and working with pointers to function pointers.

• The struct data type – declaration, initialization, and accessing.

• Pointers to structs and passing structs to functions.

• Interrupting events and interrupt control flow.

• Understanding the interrupt vector table and Interrupt service routines.

• Managing interrupts – enabling, disabling, and masking.

7.1 INTRODUCTION

In the early days, the software for embedded applications was written either in machine
code or in assembler. The C language was developed to expedite and to simplify the design
and development process. Consequently, several of the features and capabilities we find
in the language were targeted specifically for such applications. In this chapter, we will
examine four of these: bitwise operators, functions, pointer variables, and structs. We will
also look at two important uses of pointers: pointers to functions and interrupting events.

Bitwise operators work naturally with embedded hardware by permitting the test and
modification of individual signals coming into or going out of the embedded processor.
Functions provide the means to share a block of code among a number of tasks within a
program rather than requiring each to provide and maintain its own copy. Pointer variables

bitwise operators,
functions,

pointer variables,
structs

pointers to functions,
interrupting events

interrupts enable data or instructions to be accessed through their memory address. When used prop-
erly, such an ability can be a very powerful tool. The struct data type provides the ability to
mix different data types in the same container and to treat that collection as a single entity.

Pointers to functions are a powerful mechanism that enables a function to be passed
to another block of code and evaluated in the local context. Interrupts provide support

Embedded Systems: A Contemporary Design Tool, Second Edition. James K. Peckol.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/college/peckol
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for accepting and managing asynchronous events originating from inside or outside of the
-system.

7.2 BITWISE OPERATORS

Bitwise operators in C are more commonly found in the embedded systems developer’s
tool box rather than in that of the traditional application developer’s. Such operators are
intended for work at the hardware level – that is, with the registers and input or output ports
on a target machine.

The bitwise operators are summarized in Table 7.1.

Table 7.1 Bitwise Operators

Operator Meaning Description

Shift
≫ Logical shift right Operand shifted positions are filled with 0’s
≪ Logical shift left Operand shifted positions are filled with 0’s

Logical
& Bitwise AND
| Bitwise inclusive OR
^ Bitwise exclusive OR
∼ Bitwise negation

When working at the bit level, often all of the bits in a word are important because theyunsigned integral type,
unsigned char

unsigned short,
unsigned int

generally represent the state of some signal in the hardware of the machine. Consequently,
the underlying operand type should be an unsigned integral type such as an unsigned char,
unsigned short, or unsigned int. We don’t want one of the bits to be interpreted as a sign.

Common operations that one might perform include:

• Setting or resetting bits on a microprocessor or microcontroller output port.

• Testing status bits on input lines or in registers.

• Setting or resetting status bits as the result of some operation.

• Making comparison operations.

• Quickly performing certain multiplication or division operations.

The application of each operator is rather straightforward and follows naturally from
the logical operators. Let’s examine some examples of these to see how they might apply
in our designs. We will first look at some simple bit manipulation operations.

7.2.1 Bit Manipulation Operations

The logical bitwise operators are binary operators that return the result of the logical
AND, OR, or XOR of each of the individual bits in the two operands. The code module ineach of the individual

bits Figure 7.1 illustrates how each of these works.
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// we are working with byte sized pieces in this example

unsigned char a = 0xF3; // a = 1111 0011 – note this is not a negative number

unsigned char b = 0x54; // b = 0101 0100 – note this is not a positive number

unsigned char c = a & b; // c gets a AND b

// a 1111 0011

// b 0101 0100

// c 0101 0000

unsigned char d = a | b; // d gets a OR b

// a 1111 0011

// b 0101 0100

// d 1111 0111

unsigned char e = a ^ b; // e gets a XOR b

// a 1111 0011

// b 0101 0100

// e 1010 0111

unsigned char f = ~a; // f gets ~a

// a 1111 0011

// f   0000 1100

Figure 7.1 Working with Bitwise Operators

7.2.2 Testing, Resetting, and Setting Bits

We can use the logical bitwise operators to determine whether a specific bit within a word
is set or reset – that is, has a value of logical 1 or logical 0.EXAMPLE 7.1

We have executed the following code to read the state of an I/O port on a micropro-
cessor, and we wish to test whether bit 5, a status bit, is set. If it is, we wish to reset it,
acknowledging the event flagged by the status bit, and we set bit 3 to initiate some action
in the external device.

We will assume that the port comprises eight bits, one byte. We further assume that we
have the I/O support function, setPort(), which we can use to perform the necessary opera-setPort()
tions on the microprocessor’s I/O ports. Such functions are found on most microprocessors
that support I/O port-type operations.

The code module in Figure 7.2 illustrates several interesting techniques.
First, notice that we are using a variable portShadow. We use such a variable to mirrorportShadow

or shadow the state of all bits on an I/O port. We do this for several reasons.
As we did in the argument to the if clause:

if (portShadow & testPattern0) // if bit 5 is set, the AND will give a
// nonzero result
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unsigned char testPattern0 = 0x40; // testPattern0 = 0010 0000

unsigned char setPattern0 = 0x8; // setPattern0 = 0000 1000

// assume portShadow holds 1010 0110

if (portShadow & testPattern0) // if bit 5 is set, the AND will give a nonzero result

{

// set bit3 reset bit 5 and update portShadow

// portShadow = (1010 0110 & ~(0010 0000)) | (0000 1000)

// portShadow = (1010 0110 & 1101 1111) | (0000 1000)

// portShadow = 1000 1110

portShadow = (portShadow & ~testPattern0 ) | setPattern0;

setPort(portShadow);

}

Figure 7.2 Using the Bitwise Operators to Test and Modify I/O Port Signals

The state of the port can be tested without the time cost of actually reading the state of
the port – reading from memory can be much faster.

If the shadow had been stored in an internal register, the operation could be even faster.
In some microprocessor implementations, the state of a port may not be able to be read, only
written.

When bit 5 is reset, rather than declaring a separate variable to hold a pattern that could
be used to reset the bit, the pattern used to test the bit is simply inverted.

// portShadow = (1010 0110 & ∼(0010 0000)) | (0000 1000)
// portShadow = (1010 0110 & 1101 1111) | (0000 1000)

The first line in the code fragment shows the starting pattern. The second line shows
the bitwise inversion of the right-hand operand to the bitwise AND. The result of the AND
will be to reset bit 5 giving the intermediate result

1000 0110

As the final step, we simply OR a logical 1 into bit position 3 giving

1000 1110

Coding Style

When using the bitwise operators, it is good practice to use parentheses to ensure that
the desired operations are being implemented.

Let’s now see how the left shift operator can be used to aid in this task. Remember that
the shift operators are binary operators. Their two operands comprise the operand to shift
and the amount to shift. The operator implements a logical shift and, unless steps are taken
to the contrary, the shift applied to the operand is only temporary.
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EXAMPLE 7.2 Let’s begin with two 8-bit numbers and shift one four places to the left and the other two
places to the right, as we see in the code fragment in Figure 7.3.

// a = 0000 0011unsigned char a = 0x3;

// b = 1100 0101

// prints…0011 0000

// prints …0011 0001

unsigned char b = 0xC5;

printf (“ a shifted 4 places left is %x\”, a << 4);

printf (“ b shifted 2 places right is %x\”, b >> 2);

// prints…0000 0011printf (“ a is %x\”, a );

// prints …1100 0101printf (“ b is %x\”, b );

0000 0011

0011 0000

a << 4;

1100 0101

0011 0001

b >> 2;

Figure 7.3 Using the Bitwise Operators to Set and Reset Bits Within a
Data Word

Note that, the values of the two operands will remain unchanged.

Let’s repeat the earlier example now using the left shift operator as shown in Figure 7.4.EXAMPLE 7.3

unsigned char bitPattern0 = 0x1; // bitPattern0 = 0000 0001

// assume portShadow holds 1010 0110

if (portShadow & (bitPattern0 << 5) // if bit 5 is set, the AND will give a nonzero result

{

// set bit3 reset bit 5 and update portShadow

// portShadow = (1010 0110 & ~(0010 0000)) | (0000 1000)

// portShadow = (1010 0110 & 1101 1111) | (0000 1000)

// portShadow = 1000 1110

portShadow = (portShadow & ~(bitPattern0 << 5) ) | (bitPattern0 << 3);

setPort(portShadow);

}

Figure 7.4 Using the Bitwise Operators to Set and Reset Bits Within a Data Word

Now, let’s look at a slightly more complex problem.

The data is to be read in from a microprocessor port using an access function getPort() andEXAMPLE 7.4

then tested for the pattern 0001 1010. Like setPort(), such a function is typical on mostgetPort(), setPort()
microprocessors supporting port I/O. The function reads the port and returns the state of
the port signals.
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In this example we execute the following:

• Read in the data from the port.
• Reset all bits, except those of interest to zero.

We implement the reset operation by defining a mask with 1’s in the positions of interest
and 0’s elsewhere and then ANDing the mask with the data.

Bits with a value of 1 in the pattern will appear as 1’s in the result. All other bits will
appear as 0’s. The mask operation is important to ensure that the subsequent pattern match
is restricted to the relevant bits.

Next, we form the bitwise exclusive OR ( ^ ) between the word under test and the
desired pattern. If the pattern is present, the result should be all 0’s.

These steps are illustrated in the code fragment in Figure 7.5.

unsigned char getPort(void); // port access function prototype

unsigned char testPattern0 = 0x1A; // testPattern0 = 0001 1010

unsigned char mask = 0x1E; // mask = 0001 1110

unsigned char portData = 0x0; // working variable

// assume port holds 1101 1011

portData = getPort(); // read the port

if !((portShadow & mask) ^ testPattern0) // will give a zero result if pattern present

{

printf( “pattern present \n”;

}

Figure 7.5 Using the Bitwise Operators to Test for a Pattern Within a Data Word

7.2.3 Arithmetic Operations

We can take advantage of the bit shift operations to improve system performance on certain
arithmetic operations. Recognizing that binary multiplication by two is simply a left shift
and that division by two is a right shift, one can perform such operations when necessary
rather than using the corresponding operations in the math package.

Some basic operations can be implemented as in Figure 7.6.

EXAMPLE 7.5 Multiply by x where x is 2, 4, 8, …

result = number << x;

Divide by y where y is 2, 4, 8, …

result = number >> y; Figure 7.6 Using the Bitwise Operators to Perform
Arithmetic

Some slightly more complex examples can be implemented as given in the code module
in Figure 7.7.
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EXAMPLE 7.6
Multiply by x where x is a simple number such as 5, 6, 9, 10, 12,…

result = (number << 2) + number; // multiply by 5, …0101

result = (number << 2) + (number << 1); // multiply by 6, …0110

result = (number << 3) + number; // multiply by 9, …1001

result = (number << 3) + (number << 1); // multiply by 10, …1010

result = (number << 3) + (number << 2); // multiply by 12, …1100

Figure 7.7 Using the Bitwise Operators to Perform Arithmetic

Little is gained by more complex operations.

7.3 POINTER VARIABLES AND MEMORY ADDRESSES

7.3.1 Getting Started

We have been looking at variables that hold different types of data with different values.

int myAge = 39;
float mySpeed = 54.52;
char myAnswer = ‘t';

We know that those variables are stored in memory somewhere and that the differ-
ent types require different amounts of memory. At this point, we should be asking several
questions. How does one know where the variables are stored? How does one know howwhere, how
the variables are stored? Are large data objects stored the same way as smaller ones? How
should one pass a large data object into a function? These questions are more relevant to
embedded applications than to those on the desktop because often in embedded applica-
tions, one is trying to optimize the amount, organization, and use of memory in the system.
The desktop application typically does not have such concerns. Let’s see how to begin to
answer these questions.

Each variable that is defined has a storage place somewhere in memory and a value indefined
that location independent of whether the variable is initialized or assigned. That place has
an address. As each of the program’s variables is stored, the system memory will begin to
look like that in Figure 7.8.

3000

3001

5A00

5A01

myData0

CD00

CD01

myData1

myData2

myData3

Figure 7.8 A Typical View of Data Storage in Memory
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When one works with data, that is, variables, one can read their values, modify their
values, or ask where they are stored. We have learned that variables hold different types of
values, integers, floats, chars, and so on. In C, the type of the value of a variable can be a
memory address as well. An address is just another variable with a value. Up to that point,
it is nothing special. However, now some confusion can potentially arise.

As we learned when we first started working with the intrinsic types, they are simply a
collection of bits in memory. It was not until a type was associated with the collection that
it took on a meaning as an integer or char or float. If we look at the 16-bit quantity, 0xFE89,
there is nothing to distinguish it as a variable’s value or a variable’s address. The compiler is
no smarter. Therefore, to reduce the confusion, each variable that holds an address is given
a distinguishing name and type – pointers. Thus, a pointer is a variable whose values arepointers
addresses in memory – nothing more and nothing less.

Consider the standard C declaration, definition, and initialization in the context of the
memory fragment given above.

unsigned int myData0 = 0x3;

In response to such a declaration, the compiler

myData0 • Allocates 16 bits of memory to hold the variable myData0, assuming that we are
working with 16-bit integers in our microprocessor. This is both a declaration and a
definition.

• Places value 3 (0x3) into those 16 bits.

• Associates an address such as 0x3000 in memory where the data is stored with the
variable myData0.

myData0

address of

Subsequently, when we write myData 0, we are actually referring to the data at location
0x3000. If we wish to know where data is stored, that is, at which address in memory, we
simply ask. We use the address of operator &, and the compiler responds with the appro-
priate information. If we write

&myData0; // read address of myData0

the compiler returns 0x3000 as the place where data is stored. Now, if we write

int *myData0Ptr = &myData0;

the following occurs. The compiler

• Allocates 16 bits of memory to hold the (pointer-type) variable myData0Ptr.myData0Ptr
myData0 • Finds the address of myData0 (which is 0x3000) and places that value into the 16 bits

at that address.

We use the symbol * to tell the compiler that this variable is a pointer. We use a dis-
tinguishing name such as myData0Ptr to tell us (or people working with the code) that this
variable is a pointer. This is good coding style.

When we are dealing with pointers and pointer declarations, knowing how to read them
sometimes helps to make their role a little clearer.
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Starting with the declaration and assignment,
EXAMPLE 7.7

int *myData0Ptr = &myData0;

the code fragment on the left of the assignment operator is read in several steps from
right to left:

1. myData0Ptr – the first part.

2. is a pointer – * the second part.

3. to an integer – int the third part.

4. myData0Ptr is a pointer to an integer.

One more time,

float* anOtherPtr = &myFloatVar;

we read

1. anOtherPtr – the first part.

2. is a pointer – * the second part.

3. to a float – float the third part.

4. anOtherPtr is a pointer to a float.

If we assume that the compiler put the pointer variable myData0Ptr (remember, it’s
just another variable) at memory address 0xCD00, we now have the picture shown in
Figure 7.9.

myData0Ptr,
dereference operator

3000

3001

5A00

5A01

myData0

CD00

CD01

myData1

myData2

myData3

myData0Ptr

0x3

0x3000

Figure 7.9 A Pointer Refers to a Variable in Memory
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We can retrieve the value that myData0Ptr refers to by using the dereference
operator, *, preceding the pointer variable. Thus, if we write

int myData1 = *myData0Ptr;

The value 0x3 is assigned to myData1 using the steps shown in Figure 7.10.myData1

Get the value contained in the pointer variable myData0Ptr, 0x3000. 

Go to the address (0x3000) specified, pointed, or referred to by that value.

Get the value of the variable, myData0, at memory address 0x3000–this will be

the value 0x3.  

Assign that value (0x3) to the variable myData1. 

3000

3001

5A00

5A01

myData0

CD00

CD01

myData1

myData2

myData3

myData0Ptr

0x3

0x3000

0x3

myData1 = *myData0Ptr

1

2

1

1

2

3

4

4

3

Figure 7.10 Using a Pointer to Retrieve the Value of a Variable in Memory

Similarly, if we write

myData3 = 0x4;
*myData0Ptr = myData3;

myData0Ptr
The value 0x4 is assigned to the memory location referred to by the pointer variable

myData0Ptr using the steps listed in Figure 7.11.
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Assign the value 0x4 to the variable myData3. 

Get the value contained in the variable myData3–0x4. 

Get the value of the pointer variable myData0Ptr, 0x3000. 

Go to the address (0×3000) specified or pointed to by that value.

Assign the value contained in the variable, myData3 to the variable at

memory address 0×3000, myData0—this will be the value 0x4.  

3000

3001

5A00

5A01

myData0

CD00

CD01

myData1

myData2

0x4

myData0Ptr

0x4

0x3000

0x3

myData3 = 0x4;

*myData0Ptr = myData3;

3

4

1

1

2

3

4

5

2

5

myData3

Figure 7.11 Using a Pointer to Change a Variable in Memory

EXAMPLE 7.8 Let’s try this (see Figure 7.12).

/*

 * A First Look at Pointers

 */

#include <stdio.h>

void main(void)

{

int myData0 = 0x3;

int myData1 = 0;

int myData2 = 0;

int myData3 = 0;

int *myData0Ptr = &myData0; // myData0Ptr is a pointer to int

// initialized to point to myData0

myData1 = *myData0Ptr; // myData1 now contains the value 3

printf ("The value of myData1 is: %d\n", *myData0Ptr);

4 eulav eht sniatnoc won 3ataDym //;4x0 = 3ataDym

*myData0Ptr = myData3; // myData0 now contains the value 4 as well

printf ("The value of myData3 is: %d\n", *myData0Ptr);

return;

}

Figure 7.12 Working with Pointers

This program will print

The value of myData1 is: 3
The value of myData3 is: 4
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7.3.2 Simple Pointer Arithmetic

We have learned that a variety of arithmetic operators can be applied to a C variable. It is
reasonable to ask if those same operators can be applied to a pointer variable. The answer
is yes and no. Let’s first see what cannot be done.

Pointers cannot be added, multiplied, or divided. With a little bit of thought, these
restrictions make sense. Pointers cannot be added, multiplied, or divided by a scalar. These,
too, make sense. In both cases, one has to ask: If such operations were legal, does the result
of the arithmetic operation give a meaningful answer?

On the other hand, a pointer variable and a scalar can be added. The result is a pointer
variable – specifically, a pointer variable that refers to a memory address that is offset
from the original address by the size of the offset in bytes. Conversely, two pointers can
be subtracted; the result is a scalar. The value of the scalar is the size of the offset (in bytes)
separating the two pointers.

On the surface, all this appears to be rather straightforward. Below the surface, it is still
straightforward as long as one recognizes that there is some minor pointer magic going on.
Let’s see what that magic is and, at this point, if it really is only minor.

As we have learned, different variable types occupy different amounts of memory. The
number of bytes required to store a type can be determined by applying the C sizeof operator
to that type.

sizeof(type)

The application of the operator returns the number of bytes required to store an
operand of the specified type. The operand may be an intrinsic type or a user-defined
type.

What is happening under the hood when the following expression is written

myPointer0 = myPointer1+ anInteger

is that the compiler actually computes

myPointer0 = myPointer1+ anInteger * sizeof(type of myPointer1)

Such an operation gives a new pointer value that refers to a memory location that is
separated from the original by a Scaler number of variable instances of the specified type.
Let’s take a look in memory.

EXAMPLE 7.9 Let myPointer1 be of type pointer to integer and placed at memory location 0x3000. Let’s
further assume that an integer is 16 bits – two bytes on the machine. If we write:

int* myPointer0 = myPointer1 + 4;

the code fragment is interpreted as:

int* myPointer0 = myPointer1 + 4 * (sizeof ( int ) );
= 0x3000 + 4*2
= 0x3008

The variable myPointer1 will now refer to the address 0x3008.
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EXAMPLE 7.10 Let’s repeat the previous example; only now we will use a negative integer. Once again, let
myPointer1 be of type pointer to integer and placed at memory location 0x3000. We write:

int* myPointer0 = myPointer1 - 4;

the code fragment is interpreted as:

int* myPointer0 = myPointer1 - 4 * (sizeof ( int ) );
= 0x3000 - 4*2
= 0x2FF8

The variable myPointer1 will now refer to the address 0x2FF8.

Returning to the problem of subtracting pointers, we should now see that the difference
between two pointers is computed by the compiler as:

pointer1 - pointer0 / sizeof(type)

Remember that when we write the name of a variable – in this case, a pointer – it is
synonymous with writing its value and that value is an address.

The meaning and result of any of the following code fragments should now start to
become clear.

int* myPtr = anAddress;
myPtr+1;
myPtr++;
myPtr+3;
myPtr – 1;
--myPtr;

Each of the operations algebraically adds a scalar value to a pointer. However, one
must be careful when using the auto increment (decrement) operator and know when the
pointers are dereferenced. For the auto increment (decrement) operator, prefix placement
says to do the arithmetic and then evaluate the pointer variable, while postfix placement
says to evaluate the pointer variable and then do the arithmetic.

The code fragments in Figure 7.13 do not all accomplish the same thing, nor do they
leave the value of the pointer in the same state. Let’s assume that the value of the pointer
starts out at 0x3000, that the value 0x3 is stored at location 0x3000, and that we are working
with 16-bit integers.

int aVal = *myPtr++;

1. myPtr will be dereferenced and will return 0x3000 because * is 

higher precedence than ++.

2. 0x3 will be assigned to aVal.

3. myPtr will be incremented by the size of one integer to 0x3002.

Evaluation

Figure 7.13 Precedence with Pointers and Pointer Operations
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int aVal = *(myPtr++);

Evaluation

1. The operation inside the parentheses will be evaluated first. myPtr will be 

evaluated as 0x3000 and this will be the return value from the operation.

2. Before the return, myPtr will be incremented by the size of one integer to 

0x3002.

3. The value 0x3000 is returned–the value before the increment.

4. 0x3 will be assigned to aVal because this is the value stored at memory 

location 0x3000.

int aVal = *myPtr+1;

1. myPtr will be evaluated as 0x3000 and dereferenced.

2. The value at memory location 0x3000 will be returned.

3. 1 will be added to the value returned from memory location 0x3000 to 

yield 0x4.

4. 0x4 will be assigned to aVal.

Evaluation

int aVal = *(myPtr+1);

Evaluation

1. myPtr will be evaluated as 0x3000.

2. 1 will be added to 0x3000 to give 0x3002.

3. The value at memory location 0x3002 will be returned and assigned to aVal.

Figure 7.13 (Continued)
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7.3.2.1 Pointer Comparison

Another form of arithmetic on pointers is comparison. In reality, what is being compared are
addresses. Such a comparison is meaningful only if the addresses are in the same address
space.

Legal comparisons are as follows.

==, !=
The two pointer values are or are not the same address
<, <=, >=, >
The two pointer values are or are not refer-
ring to higher or lower addresses

7.3.3 Const Pointers

The const qualifier applied to pointers can be somewhat confusing. This confusion
occurs because there are three different interpretations based on placement of the const
keyword:

Pointer is const Pointer is const
Value of the pointer cannot be changed and must be initialized at the time of

declaration.
Thing pointed to is const

Value of the object cannot be changed.
Thing pointed to is

const
Both are constBoth are const

as illustrated in Figure 7.14. Stated alternatively, if the keyword const appears to the left
of the *, the object pointed to is constant; if the keyword appears to the right of the *, the
const pointer is constant.

char myChar = ‘a’;

Object is Constant Pointer is Constant

char * ptr = &myChar

const char * ptr = &myChar

char * const ptr = &myChar

const char * const ptr = &myChar

Figure 7.14 Pointers and Const

Reading a pointer declaration from right to left helps to lessen the confusion a bit.
Looking at the second and third entries in the previous table, we have:

const char* ptr = &myChar;
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Read this as:

ptr is a pointer to a character constant – the character is
constant, it can't be changed.
char* const ptr = &myChar;

Read this as:

ptr is a constant pointer to a character – the pointer is
constant, it can't be changed.

EXAMPLE 7.11 The simple program in Figure 7.15 illustrates how we work with pointers and the const
qualifier.

#include <stdio.h>

void main(void)

{

// declare some working variables

const char myChar0 = 'a';

char myChar1 = 'b';

const char* ptr0 = &myChar0;

char* const ptr1 = &myChar1;

// *ptr0 = 'c'; // illegal ptr0 points to a constant

*ptr1 = 'd'; // ok, the pointer not the object is const

ptr0 = &myChar0; // ok, the object is const not the pointer

// ptr1 = &myChar1; // illegal, the pointer is const

return;

}

Figure 7.15 Working with Pointers and Const

One can initialize a pointer to a const object with the address of a nonconst object.
Doing so states we will not change an object that can legally change. We cannot assign
the address of const object to a pointer to a nonconst object. The object may be changed
through the pointer. One can cast the address of a const object to a pointer to a nonconst
object. This can be dangerous. It is defeating the intent of the const.

EXAMPLE 7.12 const int a;
int * aPtr = &a; // illegal
int* aPtr = (int*) &a; // legal but dangerous

7.3.4 Generic and NULL Pointers

7.3.4.1 Generic Pointers

The pointer variables that we have been working with must always refer to a variable that
is of the same type as the pointer. Such a restriction is imposed to ensure that the compiler
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returns the proper number of bytes from memory whenever the pointer is dereferenced. It
is occasionally convenient to be able to use the same pointer to refer to a variable of any
type.

To support such a capability, ANSI/ISO C introduces the generic pointer. The genericgeneric pointer
pointer is a pointer variable that can hold the address of a variable of any type. Such a pointer
is said to be a pointer of type void or a void * pointer. Traditionally, this was done by castingvoid, void*
the pointer to a variable of type pointer to char, then casting back to the proper type before
dereferencing. The void* pointer was introduced to mitigate the obvious confusion that can
result from using a char* pointer.

The void * pointer is guaranteed to be large enough to hold a pointer to any type of
object, except a function type. A pointer to a variable of any type can be converted to a
void* pointer and back again without losing any information.

An assignment to a void* pointer requires the use of the cast operator to remove the
type information from the variable. To be able to dereference the value contained in the
void* pointer, the process must be reversed; that is, the void* pointer must be cast back to
a pointer of the original type. Because all of the type information has been taken away, a
void* pointer cannot be dereferenced directly.

Assigning to a generic pointer:EXAMPLE 7.13

unsigned int* myIntPtr; // declare a working pointer
void * myGenericPtr; // declare a generic pointer
unsigned int myValue = 3; // declare an integer variable
myGenericPtr = (void*) (&myValue); // find the address of myValue and

// cast to a void*

To dereference the generic pointer, it must be cast back to a pointer of the original type.
Dereferencing the generic pointer:

myIntPtr = (unsigned int*) myGenericPtr; // recast myGenericPtr back
// to original type

7.3.4.2 Null Pointers

Recall that when a variable in C is declared and defined, no default value is automatically
assigned. One certainly can dereference a pointer that has not been initialized or to which
no specific value has been assigned. Dereferencing treats the pointer’s value as an address;
however, what the address is referring to is not known. It could refer to another part of the
program, the operating system, or some other piece of code. Such bugs can be very difficult
to find because, generally, the system will crash shortly after the errant dereference. Initial-
izing values for global or static pointers vary with compiler vendor. The value 0 is typically
used. Dereferencing such a value usually gives a runtime error followed by program ter-
mination. This is never a desirable result, but it is particularly unpleasant for embedded
applications.

ANSI/ISO C offers a solution with the definition of a special pointer, the null pointer,null pointer
whose value is guaranteed not to point to any object or function. That value is given as

(void*)0

and is defined as a macro in the header file <stddef.h>, where it is given the name NULL.<stddef.h>
Good programming style recommends that all pointers have the value NULL when not
assigned to any object or function. The pointer must be assigned a valid address to some
value before dereferencing.
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7.4 THE FUNCTION

A C program is simply a collection of functions. A special set of these called library
functions are predefined and are found in the Standard C Libraries. Most functions, however,
are user defined. These will be our first focus.

main() We have already written one function, main(). As we write larger programs, we will
need to write more and sophisticated functions. We will also comment later on the general
rules for writing functions; the principal rule will be to keep things simple.

We talked earlier about the desirability of decomposing a program into modules. The
modules we write are further decomposed into functions. If we are careful with the designs
and if we document everything well, future designers working with the code will be able to
use those modules and functions without ever needing to know the details of their internal
implementation. If we are very clever, we will be able to change and improve (reduce the
required amount of memory, increase speed, lower power) these functions and still main-
tain the same external behavior. Our goal is to design our functions to have a robust and
persistent public interface so that those utilizing them will never have to modify the internal
code.

We create a function by defining it. Defining a function entails specifying and designing
a function header and a function body.

defining
function header,

function body

7.4.1.1 Function Header

The function header specifies the function name, the return type, and a parameter list. The
header is also called a prototype.

function name,
return type,

parameter list,
prototype 7.4.1.2 Function Name

The function name is a C identifier. As we learned in our study of variables, the function’s
identifier is how it is referred to or invoked or called when needed in the application.referred to, invoked,

called
7.4.1.3 Arguments or Parameter List

The arguments comprise a comma-separated list, enclosed in parentheses, that appears after
the function name. The parentheses and the arguments are called the argument or parameter
list. The number, type, and order of the arguments are called the signature of function.
The parameters are given values when the function is invoked, called, or executed. The
arguments can be used to:

argument or parameter
list

signature

input arguments
output arguments

• Send data into the function; such arguments are input arguments.

• Retrieve data from a function; such arguments are output arguments.

7.4.1.4 Return

Another method by which data can be returned from a function is to use its return statement.
When a value is returned from a function in such a way, the function is said to have a return
value. The type of data returned is called the return type. One can think of the function’s
return value as replacing the function call at the place in the program where the function
was invoked. Sometimes functions have nothing to return; they have a return value of void.

return

return value
return type

void
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7.4.1.5 The Function Body

A function is simply a series of C instructions enclosed in curly braces. That collection of
instructions expresses the function body. This is where the real work gets done. Both the
general form of a function and a specific instance are presented in Figure 7.16.function body

Syntax

returnType functionName ( arg0, arg1…argn-1 )

{

body

}

int multiply(int first, int second)

{

// this is the function body

return first * second;

}

Figure 7.16 The Function Syntax

7.4.2 Using a Function

By itself, a function may be interesting or even elegant, but it is of little use unless one does
something with it. Using a function is called executing, evaluating, invoking, or calling the
function. The function is executed by performing a function call. The function performing
the function call is called the calling function, and the function being executed is called the
called function. All functions are created equal; any function can call any other function,
including itself.

executing, evaluating,
invoking, calling,

function call,
calling function,

called function
Consider the arithmetic function that performs the multiplication of two integers as we

have described earlier. One can write the function body such that it is able to multiply the
first and second arguments and return the product. Questions to think about include:

• How do we call the function?

• How do we pass in the numbers to be multiplied?

• How do we use the product that is returned?

Let’s step inside the function and see what happens when the function is called.
We will:

• Call the function.

• Pass variables into the function.

• Perform a computation in the function.

• Return from the function.

• Return a variable from the function.
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The code fragment in Figure 7.17 defines a simple function, computeArea(), that com-
putes the area of a specified rectangle.

#include <stdio.h>

// function prototype

int computeArea (length, width);

void main(void)

{

// declare and initialize some variables

int length =10;

int width=20;

int area=0;

area = computeArea(length, width); // this is the function call

printf("the area is: %d\n", area); // displays 200

return;

}

int computeArea(int first, int second)

{

int answer;

answer = first *second;

return answer;

}

Figure 7.17 Working with Functions

To get a function to execute the lines of code contained in the body, one must call the
function. The call is effected by writing the name of the function followed by the argument
list, enclosed in parentheses, as a line of code in a program. This is shown in the line:

area = computeArea(length, width); // this is the function call

Observe that the arguments of computeArea() are not first and second, but are length
and width. The names length and width are in the scope of the main() function; they are not
visible to computeArea(). The names first and second are in the scope of the computeArea()computeArea(), first,

second,
length, width, main()

function and are not visible outside of that function. To get data into the function so that
it can be assigned to the function’s internal variables, it has to be passed in through the
function’s arguments. Recall that the exchange takes place via the stack. The operation is
illustrated in Figure 7.18.
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area = computeArea(length,width); // this is the function call

first

second

Stack

Figure 7.18 Passing Data to a Function Via the Stack

make a copy, length
first, width

second, passes
arguments

When the computeArea() function is called, the compiler will make a copy of length,
name the copy first, and place that variable onto the stack. Similarly, a copy of width will
be created, be named second, and placed onto the stack. We say such a process passes
arguments to the function.

area
main()

computeArea(),
context switch, context

Thus, when the C program reaches the line given above, it determines that a value
is to be assigned to the variable area. However, the value does not exist; it must be
calculated. At this point, the compiler stops executing in main(), and flow of control is
passed to the -computeArea() function. The change in flow of control is called a context
switch. Instruction execution moves from the context in which the call was encoun-
tered to that which contains the block of instructions intended to perform the specified
operation.

For designers of embedded applications, it is important to understand how function
calls are managed. In most cases, it is sufficient to let the compiler take care of the
details. However, there are times when it is necessary to get involved. Understanding the
mechanics of the process can provide an understanding of how the program works, what
the bottlenecks might be, how to optimize the flow if necessary, and if it is not working,
perhaps why.stack frame

We know that variables are local to a function, but exactly where are they stored in
memory? The answer is that they are stored in a stack frame, which is also sometimes
called an activation record. The stack frame is dynamically allocated and populated when
the function is called. It contains:

• Copies of all the variables used as arguments.

activation record

• Copies of any local variables from the original context as necessary, which saves the
existing context. These will be restored on return.

• A place for the return value.

• The address in the calling function where execution is to jump when the call is com-
plete. This is known as the return address. The return address is always the addressreturn address
of the next machine instruction after the call.

As long as the function is executing, the stack frame remains in memory, on the stack.
This means that if a function calls another function or itself, a new stack frame is created
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and added to the top of the stack. When a function exits, the values of all variables in the
original context are restored, any return value from the called function is assigned as des-
ignated in the calling function, flow of control returns to the original context, and its stack
frame is removed from the stack. Removal occurs by modifying the top of stack pointer.
The old stack frame is not erased. As a result, it should be very obvious why one should
never return the address of a local variable. Returning a local variable is permissible, how-
ever, because that value can be retrieved prior to deleting the stack frame of the called
function.

In embedded applications, one does not have the luxury of unlimited memory. Thus, if
too many stack frames are added to the stack, the result is a stack overflow. Under such astack overflow
condition, the stack frame and all its contents can be lost. Such a loss means that variables
in the original context cannot be restored, but, worse, the return address is gone.

It should now be evident that when computeArea() is encountered in a code module,
the compiler makes the copies of length and width, names them first and second, pushes

length, width, first,
second

computeArea()
allocating a variable

on the stack

them onto the stack, and jumps to the opening brace of the computeArea() function.
It should now be understood that the phrase allocating a variable on the stack simply
means the variable is stored in the stack frame associated with the function that declared
that variable.

The function body for computeArea() is now given as:

int computeArea(int first, int second)
{

int answer;
answer = first*second;
return answer;

}

When invoked, the computeArea() function will retrieve the two variables from the
stack and assign the values to the internal variables first and second. Execution entails eval-computeArea()

first, second uating each line of (machine code) in the computeArea() function to calculate the result:
answer.answer

Answer, however, belongs to – is in the scope of – the computeArea() function. When
the line

return answer;

is executed, a temporary copy of answer is made and returned to main(). Like the

copy of answer, main()

incoming variables, that copy is placed onto the stack as we see in Figure 7.19.
The return statement in computeArea() is the end of the function. After this statement

executes, all of the copies of variables made for computeArea() to use and pushed onto
the stack earlier are destroyed. All that is left is the copy of answer (which is a constant).
Execution resumes in main() where the copy of answer is now assigned to area. After the
assignment is made, the copy of answer is no longer valid.
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answer = first*second;
return answer;

first

second

Stack

answer

Stack

Figure 7.19 Returning Data from a Function via
the Stack

When the program is compiled, the body of the function will be stored in memory
much as is seen in Figure 7.20. The key point here is that the code comprising the body
of the function has an address and, in this example, that address is 0x6FAC. We will work
more with such addresses shortly.

answer = first * second
return answer

6FAC

Figure 7.20 The Function Body in Memory

Observe that only the implementation portion of the function is stored. The parameters
passed in and, thus, the local variables are stored on the stack.

7.4.3 Pass By Value

In the program just described, we stressed that the variables passed into and returned from
the function were copies of the original variables. The C language is called a pass by valuepass by value
language. This means that although the variables inside the body of the function have the
same values as the originals, they are not the original variables. Consequently, any changes
made to those values while in the function body are not reflected in the original variables;
the original variables are in a different local scope.



�

� �

�

302 Chapter 7 The Software Side – Part 2: Pointers and Functions

The same is true for any variables declared within the function body; such variables
cannot be accessed in the original calling function. Once again, the local scopes are
different. If we return such a variable, we are only returning its value. Any variables
declared within the function body are not valid as soon as the enclosing scope is exited.

The pass by value semantics of the C language is a very good source of programming
bugs. The common lament is, “I made a change to the variable, I can see the change, but,
it still has the original values back here. ... I don’t understand this.” The code module in
Figure 7.21 will illustrate the problem.

EXAMPLE 7.14
#include <stdio.h>

/*

Demonstrate pass and return by value in C

*/

int myFunction(int aValue);

void main(void)

{

// declare and initialize some working variables

int myValue = 5;

int aReturnVal = 0;

myFunction(myValue);

// will show myValue as 5...no change

printf("main(): myValue is: %i\n", myValue);

// will show aReturnValue as 0...no change

printf("main(): aReturnVal is: %i\n", aReturnVal);

// by assigning to aReturnValue, we copy the returned value

aReturnVal = myFunction(myValue);

// will show aReturnValue as 9

printf("main(): aReturnVal is: %i\n", aReturnVal);

return;

}

int myFunction(int myValue)

{

// declare and initialize a working variable

int aReturnValue = 0;

// change the value of the input parameter

// this change will not appear in main

myValue = myValue + 4;

// will show myValue as 9

printf("myFunction: aValue is: %i\n", myValue);

aReturnValue = myValue;

return aReturnValue;

}

Figure 7.21 Passing to a Function by Value
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As is evident, any changes made to the variables passed in to myFunction() are visible only
while within the scope of that function, even if the same names are used as in the callingmyFunction()
function.

7.4.4 Pass By Reference

Although C is a pass by value language by default, it is sometimes necessary to be able to
pass the original variables into a function, operate on those variables, and have the results
persist outside of the function. Under such circumstances, pass by reference semantics arepass by reference
required.

Such a capability is not difficult to achieve. If one knows where the variable to be
modified is stored in memory, one can simply go to that location and perform the desired
operations. Thus, it is possible to change the original object. How does one find out where
the object is stored within a function? The address in memory of where the data is stored is
passed into the function through a pointer variable.

Let’s modify the previous example to work with the original data. Note that when using
pass by reference, one does not have to return the modified value. That change is already
reflected in the value of the variable as seen in the code module in Figure 7.22. Thus, we
save the time to copy the value onto the stack as well as the time to copy the stack value to
a local variable in the calling routine.

EXAMPLE 7.15 #include <stdio.h>

/*

Demonstrate pass by reference in C

*/

void myFunction(int* aValuePtr);

void main(void)

{

// declare and initialize a working variable

int myValue = 5;

// pass in the address of the data

myFunction(&myValue);

// will show myValue as 9...the original has been changed through the pointer

printf(“main(): myValue is: %i\n”, myValue);

return;

}

void myFunction(int* myValuePtr)

{

// change the value of the input parameter this change will appear in main

*myValuePtr = *myValuePtr + 4;

// will show myValue as 9

printf(“myFunction(): myValue is: %i\n”, *myValuePtr);

return;

}

Figure 7.22 Passing to a Function by Reference
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7.4.5 Function Name Scope

Without additional qualification, the visibility of the name of a function is restricted to the
scope in which it was declared. However, the name of the function declared in one file may
be made visible to other files through the qualifier extern, as was discussed earlier. Usingextern
such a qualifier, one can make the name – the identifier – of the function known to the linker
and, thus, make it available for use in other contexts.

information hiding

There are also times when one wants to restrict the function name from general use.
This is what is called information hiding. The C++ and Java languages make widespread
use of such capability, although the implementation in those languages is a bit different. In
C, one can accomplish information hiding by putting the function name into a separate file
and qualifying it with the keyword static as is seen in Figure 7.23.static

// staticFunct0.c

#include <stdio.h>

// make the function name available

// in this file

extern void myFunct0(void);

// this name will not be available

extern void myFunct1(void);

void main (void)

{

myFunct0();

// results in compile error -

// the function name is not visible

myFunct1();

return;

}

// containFunct0.c

#include <stdio.h>

// function prototypes

void myFunct0(void);

// function not visible outside of this file

// …remove static to make visible

static void myFunct1(void);

// define the functions

void myFunct0(void)

{

int x = 3;

printf(“x is %i\n”, x);

return;

}

// remove static to make visible

static void myFunct1(void)

{

int y = 4;

printf(“y is %i\n”, y);

return;

}

Figure 7.23 Controlling the Visibility of a Function Name with the Static Qualifier

With such a qualification, the name is not exported – made visible to – the linker. Even
with the extern qualifier, the name remains hidden and, thus, is not available for use by
other functions, as we saw with static variables.

7.4.6 Function Prototypes

In the example program, the line near the top that looks like a function header is called a
function prototype; it provides some useful information to the compiler.function prototype

// function prototype
int computeArea (int length, int width);
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main()

Initially, this appears to be duplicate information; it seems that the compiler should
be able to get the necessary information from the function header. One problem arises,
however. It is not uncommon to define a function, that is, provide the header and then
provide the actual implementation, later in the program (often in another file), following
some other function such a main() that uses it. To ensure that a function call is correct, the
compiler examines:

• The expected return type.

• The order, number, and type of arguments provided by the caller.

• The function identifier.

It then tries to match these against the name, signature, and return type for functions
that it knows about. If there is no match, the compiler does not know which function body
to associate with the call, so it guesses – it is preferable that guessing by the compiler
be limited. Such guessing can lead to runtime errors because, without the prototype, the
compiler cannot do any type checking.

What happens if a prototype is not provided? If the function is defined before being
called, there is no problem. The compiler has sufficient information to perform all of its
checks. Otherwise the compiler starts guessing again.

To keep the compiler happy and to enable full-type checking through the prototype,
it is sufficient to simply declare the function. The declaration is done by listing the return
value (type), the function name, and the function’s signature at the top of the program. In
the prototype, it’s only necessary to specify the parameter types; the specific variable names
are not necessary.

Coding Style

Although the variable names are never used by the compiler, they can provide additional
information about the intent of each parameter to users of the function.

Good coding style strongly recommends including the names.

Which is more useful as the prototype for computing the area of a rectangle?

int f1(int, int);

or

int computeArea(int length, int width);

Although both are syntactically correct, the second, using a descriptive function name
as well as meaningful parameter names, can significantly improve the readability of a
program, mitigate against possible errors, and simplify future enhancements to the func-
tion. Often, all of the function prototypes will be placed into a common header file, which
can then be included when needed.

The only function that does not require a prototype is main() because there is only one
such function in the program. It is the same function prototype in all C programs, so the
compiler already knows everything about it.

Coding Style

When we write a function, we follow the same general guidelines that we did for vari-
ables. Always select meaningful and relevant names. Because functions can sometimes
be rather complex or may be visible only from their calling interface, good annotation
becomes very important. We provide such documentation in a function header.
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As one gains experience in designing and writing functions and their documentation,
each person will probably evolve his or her own style and preferences. The template shown
in Figure 7.24 is a good place to start.

/*

∗ Function Name with Signature

∗ Short Description of intent/purpose of the function

∗ Input Parameters with short description and range of legal values

∗ Return Values with short description and range of legal values

∗ Side effects of the Function—What it might change that could affect other parts of the program.

∗ Invariants—Things the function should not change

∗ Revision History—Identify who, when, and what changes have been made to the function.

∗ Citation of Code Source or Reference if developed by another author

*/

Figure 7.24 A Template for a Function Documentation Header

7.4.7 Nesting Functions

When one function is used inside of a second function, it is called nesting. A fair questionnesting
is, “How deeply can functions be nested?” The question has a relative answer. The compiler
makes copies of the variables used for arguments in the function, pushes them onto the stack
for use in the function, and then destroys the copies when the function completes. It seems
reasonable that all the copies should hang around until the most deeply nested function call
completes.

A simple model of such a situation is a collection of airplanes “stacked up” waiting
to land. When the system runs out of the stack memory the executing program will crash.stack
The amount of stack memory varies with operating systems and is usually adjustable if
needed. In embedded applications, because of memory limitations, this limit is reached
sooner rather than later.

Some compilers will try to estimate the amount of stack space required by looking
at first level function calls within a function and trying to adjust the necessary stack size.
Detecting recursion, or two or more functions calling one another, is a much more complex
problem. As designers, it’s our responsibility to anticipate and manage the stack size. We
do this through information provided by the compiler vendor in the documentation for the
-compiler.

7.5 POINTERS TO FUNCTIONS

The pointer variables we have discussed so far have held the addresses of variables or data.
We refer to them as data pointers. Since the value of a pointer variable is an address and
the body of a function has an address in memory, there is no reason one cannot use a
pointer variable to hold the address of a function body. Such pointers are called function
pointers.

data pointers

function pointers
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The syntax for a function pointer, given in Figure 7.25, is a little more complex and,
perhaps, more confusing than that for the data pointer. With a little practice, the complexity
will disappear.

Syntax

return type (* functionPointer) (<arg0, arg1...argn>)

arg list may be empty

Figure 7.25 Declaring a Pointer to a Function

Let’s look at a couple of examples to see what this means.

We make the following function pointer declaration:EXAMPLE 7.16

int (* intfunctPtr) (void);

We read the declaration in several steps:
intFunctPtr

1. is a pointer to a function.

2. the function takes no arguments.

3. the function returns an int.

The parentheses enclosing the pointer, intFunctPtr, are important and necessary. With-intFunctPtr
out them, we would have a prototype for a function that takes no arguments and returns a
pointer to an integer.

Let’s try another one,

double (* doublefunctPtr) (int, char);

We read the declaration in several steps:
doubleFunctPtr

1. is a pointer to a function.

2. the function takes two arguments, one of type integer and the other of type char.

3. the function returns a double.

As with the variables in C, the name of a function is equivalent to its address in memory.
More specifically, for a function that address is the location where the body of the function
is stored. Thus, to initialize or assign to a function pointer, one simply writes the function’s
name on the right-hand side of an assignment operator.

We first declare a function pointer and then a function to point to. After that, we simplyEXAMPLE 7.17

make the assignment.

int (* intFunctPtr) (); // declare a function pointer
int myFunction(void); // declare a function

intFunctPtr = myFunction; // point to the function
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Observe that in assigning the function address to the pointer variable, we only use the
function’s name. It is not necessary to give the function’s signature or return type.

A function pointer can be dereferenced in several ways. The syntax is given in
Figure 7.26.

syntax

 (* functionPointer) (<arg0, arg1...argn>)

or

functionPointer (<arg0, arg1...argn>)

arg list may be empty Figure 7.26 Dereferencing a Pointer to a
Function

EXAMPLE 7.18 The code fragment in Figure 7.27 illustrates how we declare, assign a value to, and deref-
erence function pointers.

unsigned int anInt = 3; // declare some working variables

unsigned char aChar = ‘a’;

//;)()rtPtcnuFtni*(tni declare a function pointer

double (*doubleFunctPtr)(int, char); // declare another function pointer

int myFunction(void); // declare a function

double yourFunction (int, char) // declare another function

intFunctPtr = myFunction; // point to the first function

doubleFunctPtr = yourFunction; // point to the second function

retnioptsrifehtecnerefered//;)()rtPtcnuFtni*(

 (*doubleFunctPtr)(anInt, aChar ); // dereference the second pointer

Figure 7.27 Working with Pointers to Functions

Using a function, one can encapsulate a piece of functionality that can be used in several
places throughout our application. We have a single implementation and multiple calls to
that function. Such a capability is powerful and can substantially reduce the size of an
application if the body of such a function is moderately sized and is used in a number of
places. Of course, we are trading off reduced code size for additional overhead in making
the function call.

When we use pointers to functions, we gain an additional level of capability and flexi-
bility. By using a pointer to refer to a function, we have the ability to pass the functionality
to another function with the same ease that we did a simple variable. In the same way that
we use a single pointer to refer to a number of different variables, it is possible to use the
same function pointer to refer to a number of different functions.

With that kind of capability, one can design a computational module, for example, that
takes as input a pointer to a mathematical function, the arguments to that function, and
returns the result of the computation. The computational module does not have to know
anything about the internal design of the functions it is evaluating.
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Let’s see how this works with the simple program in Figure 7.28.

EXAMPLE 7.19 // Pointers to Functions used as Function Arguments

#include <stdio.h>

// function prototypes

int add(int a1, int a2);

int sub(int a1, int a2);

// myFunction has a three parameters,

// a pointer to a function taking 2 ints as arguments and the argument values, and returning an int.

int myFunction (int (*fPtr)(int, int), int, int);

void main(void)

{

// declare some working variables

int sum, diff;

// Declare fPtr as a pointer to a function taking 2 ints as arguments and returning an int

int (*fPtr)(int a1, int a2);

// assign fPtr to point to the add function

ddanoitcnufehtotstnioprtPf//;dda=rtPf

sum = myFunction(fPtr, 2, 3); // pass fPtr to myFunction()

printf ("The sum is: %d\n", sum); // prints The sum is: 5

// assign fPtr to point to the sub function

busnoitcnufehtotstnioprtPf//;bus=rtPf

diff = myFunction(fPtr, 5, 2) )(noitcnuFymotrtPfssap//;

printf ("The difference is: %d\n", diff); // prints The difference is: 3

return;

}

// perform requested binary computation and return result

int myFunction (int (*fPtr)(int a1, int a2), int aVar0, int aVar1)

{

// variables a1 and a2 are placeholders - they are not used

// dereference the pointer and return value

return (fPtr(aVar0, aVar1));

}

// add two integers and return their sum

int add(int a1, int a2)

{

return (a1+a2);

}

// subtract two integers and return their difference

int sub(int a1, int a2)

{

return (a1-a2);

}

Figure 7.28 Working with Pointers to Functions
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Let’s look at the code fragment in Figure 7.29 from the program above.add(int,int)

// Declare fPtr as a pointer to a function taking 2 ints as arguments and returning an int

int (*fPtr)(int a1, int a2);

// assign fPtr to point to the add function

dda noitcnuf eht ot stniop rtPf //;dda = rtPf

sum = myFunction(fPtr, 2, 3); // pass fPtr to myFunction()

printf ("The sum is: %d\n", sum); // prints The sum is: 5 

Figure 7.29 Working with Pointers to Functions

The first line declares a pointer to a function. That pointer can then be used to refer to
the function add(int,int) that had been declared earlier. One does so by simply assigning the
address of the function to the pointer. One can now pass the pointer, along with a couple of
numbers to be added, to a second function, where the function pointer is dereferenced and
the result is computed, returned, and then assigned to the variable sum.

In the code fragment in Figure 7.30, the process is repeated, only now the function
pointer is used to refer to the subtract function.

// assign fPtr to point to the sub function

bus noitcnuf eht ot stniop rtPf //;bus = rtPf

diff = myFunction(fPtr, 5, 2); // pass fPtr to myFunction()

printf (“The difference is: %d\n”, diff); // prints The difference is: 3

Figure 7.30 Working with Pointers to Functions

The same pointer has been used to refer to two different functions. In neither case does
myFunction() know anything about the computation it is performing; it simply dereferencesmyFunction()
the pointer.

The function pointer will play a significant role in building an operating system kernel.
We will introduce that topic shortly. Several additional pieces of information are necessary
first.

7.6 STRUCTURES

The final intrinsic C language data type that we will study is the structure. We learned
earlier that an array or a string is a homogeneous collection of variables grouped under the
same name and treated as a single entity. The structure data type permits one to form astructure

heterogeneous heterogeneous collection of variables that can be grouped under a single name and treated
as a single object. The semantics are similar to the C++ or Java class. Through the structure
data type, one can also define new data types that allow the basic C language to be extended.

The newly defined types are first-class types – they are treated exactly as any of the
intrinsic types. We will begin with the basic concept.
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7.6.1 The Struct

From a mathematical perspective, a point in a Cartesian coordinate system can be described
by two integers, as illustrated in Figure 7.31. However, we don’t think of the point that way.
We simply think of it as a point. We are accustomed to treating those two variables as a
single object and to referring to different points in space. We think of a variable of type
point.point

(x,y)

Figure 7.31 A Point in a Cartesian Coordinate System

In C, we can capture that concept and express the two attributes of a real-world point
in the data type called a struct. Thereafter, we can refer to and work with entities of the typestruct
point. We will see an example of how we do this shortly. Let’s first examine the struct.point

The syntax and general format for a struct are given in Figure 7.32. We see that the
declaration of a structure in C begins with the keyword struct, which must precede the
identifier. We will learn how to use a typedef shortly to make such a declaration more read-typedef
able. Once the struct is declared, we can create instances of it just as is done with any of
the intrinsic types.

syntax

struct StructTag

{

struct body;

};

struct StructTag anInstance;
Figure 7.32 Syntax and General Struct Format

The structure tag, which is optional, is used as an identifier for the structure. If we
choose not to use an identifying name, the struct is designated as anonymous. The body ofanonymous
the struct is enclosed in curly braces and comprises a heterogeneous collection of variables
that are called data members. Each line in the body is terminated with a semicolon. The
body cannot contain functions, but can include pointers to functions. The closing brace for
the struct is terminated with a semicolon. This is in contrast to other blocks in the language
such as a looping construct.

Like the declarations of intrinsic variable types, the declaration of a struct does not

data members

allocate any memory. It simply brings the identifier name into the namespace. Memory for
the data members is not allocated until an instance is created. The declaration simply says:
“The following variables will be grouped together; that grouping will be known by this
identifier. An instance of the data type will be created later if necessary.” Such treatment of
the type is no different from any of the intrinsic types. Naming of the type integer simply
specifies the characteristics of the type when one is eventually created.
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Coding Style

We generally make the first letter of the structure tag upper case to distinguish a structure
type from a variable name (usually lower case first letter) and from a symbolic constant
(usually all upper case letters).

One can express the struct using a Unified Modeling Language (UML) object diagram,
as shown in Figure 7.33.

Struct Name

+attributes

+ (*operations)() Figure 7.33 The Struct Expressed as a UML Object Diagram

Because the struct data type in the C language does not support functions, if such capa-
bility is required, one must use pointers to functions. This should not present any problem.

To express the point in Cartesian space using a struct, we will select the tag name Point.EXAMPLE 7.20
The data members will be the two integers defining the point in two-dimensional space as
in Figure 7.34. The UML diagram is presented first followed by the C declaration.

Point, data members

struct Point

{

int x;

int y;

};

Point

+x : int

+y : int
Figure 7.34 A UML Object Diagram for the Point Data
Type and the Corresponding Struct Declaration

Such a declaration has created a new type called Point. One can now create instancesPoint
of a Point:

struct Point aPoint1;
struct Point aPoint2;

Writing the keyword struct for each declaration becomes tedious quickly. One can usestruct
the typedef construct to fix this problem, as we see in the code fragment in Figure 7.35.

typedef struct

{

int x;

int y;

} Point;
Figure 7.35 Using a Typedef to Simplify the Struct Type Specification

Now we have it. The identifier Point is an alias for the struct declaration.

EXAMPLE 7.21 Following the typedef, one can now create several instances of a Point.

Point Point aPoint1;
Point aPoint2;
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7.6.2 Initialization

Like the array, one can initialize the data members of a struct by following the declaration
with a list of initializing values, as given in Figure 7.36. There is a one-to-one correspon-
dence between each of the data members and the initializing values.

syntax

struct StructTag

{

struct body;

};

struct StructTag anInstance = (initializer list);

Figure 7.36 Initializing a Struct Instance

The following code fragment creates an instance of a Point that has the initial coordinatesEXAMPLE 7.22

of 100 and 200.

typedef struct
{

int x;
int y;

} Point;
Point pt = (100, 200);

7.6.3 Access

One can access each of the data members in an instance of the struct by using a fully
qualified name. That is, we give the instance name followed by the member name using
a construct of the form

structureName.member

EXAMPLE 7.23 The following code fragment creates an instance of a Point that has the initial coordinates
of 100 and 200 and then prints the values of the two coordinates.

typedef struct
{

int x;
int y;

} Point;
Point pt = (100, 200);
printf(“x = %i y=%i\n”, pt.x, pt.y);

The identifier, pt., designates the specific instance of the struct Point in the same way
that int aVar might designate an instance of the type int. The x or y designates which dataim aVar
member of the instance pt. we are interested in.

As with a function, the body of a struct represents a distinct local scope. Variables
declared within the body of a struct are in the scope of that struct. In the preceding example,
we could not, for example, simply write:

x = 50;
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because we have no way of distinguishing a variable with the identifier x in the struct versus
one with the same name elsewhere in the program. By specifying the context in which
the variable exists, pt.x – in this case within the Point instance variable pt – the identifier
ambiguity is resolved.

7.6.4 Operations

The only legal operations on a struct are:

• Copying.

• Assignment to as a unit.

• Taking address, using the address of the operator, &.

Structs cannot be compared. Operations such as:

Point{…};
Point pt1, pt2;
if (pt1 == pt2)
{
}

are illegal.

7.6.5 Structs as Data Members

7.6.5.1 Accessing Members

Since a struct is a user-defined type and since one can declare instances of that type, there
should be no reason that a data member of a struct could not be an instance of another struct.
Such is, in fact, the case. Continuing with the Point example, a rectangle is fully specified
by naming its opposite vertices. Expressing this concept graphically gives the diagram in
Figure 7.37.

pt0

pt1

Figure 7.37 A Rectangle is Specified by two Points

We start with the UML object diagram for the rectangle. One can also say that the Rect-

Point

angle is composed of two points. Such a relationship can be expressed in the compositioncomposed
diagram shown in Figure 7.38.

+pt1 : Point
+pt2 : Point

Rectangle

+pt1 : Point

+pt2 : Point

Rectangle

+ x : int

+ y : int

Point
1 2

Figure 7.38 Expressing the Rectangle as a Composition of
Points
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The Point and the Rectangle can be defined as C structs shown in Figure 7.39. Once
again, we will use the typedef in the declaration to simplify matters.

typedef struct

{

int x;

int y;

} Point;

typedef struct

{

Point pt1;

Point pt2;

} Rectangle; Figure 7.39 Using a Typedef to Simplify the
Type Specification of a Point and a Rectangle

The order in which the two structs are declared is significant. Recall what we learned
about function prototypes earlier. Since the declaration of a struct defines a new data type,
one must make certain that it has been declared before it is used in a subsequent declaration.
If the Rectangle was declared prior to the declaration of the Point, any attempt to compile
the code fragment would have resulted in an error.

Accessing a data member of struct type within a struct is a simple extension of what
we have done so far.

Given the declaration:

Rectangle r1;
r1.pt1.x

Refers to the x coordinate of pt1

r1.pt1.y

Refers to y coordinate of pt1

7.6.5.2 Initialization and Assignment

The initialization of a data member of struct type within a struct is a bit trickier. One cannot
initialize an instance of a Rectangle with a bracketed list of points:

Rectangle r1 = {pt1, pt2};

Values for the data members can be assigned, however. The following code fragment
provides values for the two data members.

Point p1 = {10, 20};
Point p2 = {20, 30};
Rectangle r1;
r1.pt1 = p1;
r1.pt2 = p2;

7.6.5.3 Functions

Let’s now see how to put the struct to work. Some of the things that one might like to
know about a Rectangle are its area and its perimeter. Since the C struct does not support
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functions, we will use pointers to functions. First the UML diagram and then the C definition
are presented in Figure 7.40.

typedef struct

{

Point pt1;

Point pt2;

int (*area)(Point pt0, Point pt1);

int (*perimeter) (Point pt0, Point pt1);

} Rectangle;

+pt1 : Point

+pt2 : Point

+ (*area)(in pt0 : Point, in pt1 : Point) : int

+ (*perimeter)(in pt0 : Point, in pt1 : Point) : int

Rectangle

Figure 7.40 Adding Function Capability to a Struct

The object diagram shows that the Rectangle has two data members of type Point and
two members that are pointers to functions. Each function takes two parameters of type
Point and returns an int.

The design can now be turned into C code.
For this example, we will build the project from three separate files:

• A header file containing the struct definitions and the function prototypes – rect.h asheader file
included

Points, Rectangles
identified in Figure 7.41. The header will be included in the two other files because
they must know about Points and Rectangles.

typedef struct

{

int x;

int y;

} Point;

typedef struct

{

Point pt1;

Point pt2;

int (*area)(Point pt0, Point pt1);

int (*perimeter) (Point pt0, Point pt1);

} Rectangle;

int computeArea(Point pt0, Point pt1);

int computePerimeter(Point pt0, Point pt1); Figure 7.41 Writing a Header File for the
Struct Declarations

• An implementation file containing the definitions of the functions used to computeimplementation file
linked the rectangle’s area and perimeter is given in Figure 7.42. This is a C source file and

will be linked into the project.
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#include “rect.h”

// Rectangle area function

int computeArea(Point pt0, Point pt1)

{

int area = (pt1.x - pt0.x) * (pt1.y - pt0.y);

return area;

}

// Rectangle perimeter function

int computePerimeter(Point pt0, Point pt1)

{

int perimeter = 2*(pt1.x - pt0.x) + 2*(pt1.y - pt0.y);

return perimeter;

}

Figure 7.42 Writing the
Implementation File for the Struct
Definitions

• The main implementation file appears in Figure 7.43. This is a.c source file and the
place where the work gets done.

#include <stdio.h>

// bring in struct definitions and function prototypes

#include “rect.h”

void main (void)

{

// declare and instance of Rectangle

Rectangle myRectangle;

// declare some working variables

int myArea = 0;

int myPerimeter = 0;

// assign values to instance data members

myRectangle.pt1.x = 5;

myRectangle.pt1.y = 10;

myRectangle.pt2.x = 10;

myRectangle.pt2.y = 20;

// assign values to instance function pointers

myRectangle.area = computeArea;

myRectangle.perimeter = computePerimeter;

// compute the area and perimeter

myArea = myRectangle.area(myRectangle.pt1, myRectangle.pt2);

myPerimeter = myRectangle.perimeter(myRectangle.pt1, myRectangle.pt2);

printf(“the area and perimeter are: %i, %i\n”, myArea, myPerimeter);

return;

}

Figure 7.43 Writing the Main Implementation File
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Observe how the area and perimeter functions are invoked and in particular, how the
parameters were passed in.

7.6.6 Pointers to Structs

A struct has an address in memory; therefore, one can use a pointer variable to refer to
it exactly, as was done with pointers to any of the other variables we have studied. One
can write:

typedef struct
{

int pt1;
int pt2;

} Rectangle;
Rectangle myRect;
Rectangle* rectPtr;
rectPtr = &myRect;

This code fragment declares an instance of a Rectangle and an instance of a pointer
to a Rectangle; then it assigns the address of the instance to the pointer variable. Now let’s
look at accessing members of the rectangle.

7.6.6.1 Accessing Members

Since

*rectPtr

identifies the struct, the code fragment

(*rectPtr).pt1

refers to the member pt1. The parentheses around the pointer must be included because
the . has higher precedence than * .

Without the parentheses,

*rectPtr.pt1

is interpreted as

*(rectPtr.pt1)

which is illegal, as pt1 is not a pointer.
Because such pointer operations are so common, the C language defines a special short-

hand symbol, ->. That notation allows one to replace the construct

(*ptr).member

with

structPtr -> member

The -> symbol is typed as the two characters: - followed by >.
Using the shorthand notation, one may write:

rectPtr -> pt1;

The notation says that:

• rectPtr is pointer to a struct

• pt1 is a member
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Thus, if one has:

Rectangle r1;
Rectangle *r1Ptr = &r1;

the following are equivalent:

r1.pt1;
r1Ptr -> pt1;

7.6.7 Passing Structs and Pointers to Structs

Passing an instance of a struct or a pointer to such an instance to a function is the same as
any of the simpler intrinsic types. Let’s look at an example.

In this example, we will declare two functions, as given in Figure 7.44. One will accept anEXAMPLE 7.24

argument of type struct by value and the other by reference using a pointer. We access the
data members exactly as was done outside of the function.

// Passing Structures to Functions

#include <stdio.h>

// declare the struct

typedef struct

{

int aVar0;

int* aVar1Ptr;

}Data;

//     Declare the function prototype

void funct0(Data aBlock);

void funct1 (Data* aBlock);

void main(void)

{

Data my Data;

// Declare and define a variable

int varData0 = 20;

// assign values to the struct data members

myData.aVar0 = 10;

myData.aVar1Ptr = &varData0;

// Will print on execution:

// The variables values are: 10, 20

// Pass the struct to the function by

// value then by reference

funct0(myData);

funct1(&myData);

return;

}

void funct0(Data aBlock)

{

// Retrieve the data from the struct

// Using the member selector

printf ("The variables values are: ");

printf ("%i, %i\n",    aBlock.aVar0,

                               *(aBlock.aVar1Ptr));

return;

}

void funct1(Data* aBlockPtr)

{

// Retrieve the data from the struct

// Using the pointer to member selector

printf ("The variables values are: ");

printf ("%i, %i\n", aBlockPtr->aVar0,

*(aBlockPtr->aVar1Ptr));

return;

}

Figure 7.44 Passing Structs to Functions
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Unlike arrays, the struct is passed by value in C by default. In an embedded application,
passing a large struct by value can potentially cause the stack to overflow, thereby leading
to unexpected system crashes. The problem is made significantly worse if one or more of
the data members is an array

Coding Style

Passing a struct to a function by value is generally not efficient.
Passing by reference is the preferred way.

Coding Style

It is not considered good practice to declare an array as a struct data member and then
to pass that struct into a function.

7.7 THE INTERRUPT

An interrupt is very similar to a function call. The major difference between the two is that
the function invocation is synchronous to the normal program flow of control; the inter-
rupt invocation originates with some event either inside or outside of the system and is
asynchronous to the normal program flow of control. Among the minor differences, we
find that variables can be passed into and returned from a function; one can neither pass a
variable into nor return a variable from an interrupt. The reason will become clear shortly.
First let’s look at the structure of the interrupt control flow.

7.7.1 The Interrupt Control Flow

An interrupt scheme is used so that one can be working on one job and then, when an

synchronous
asynchronous

important issue arises, immediately be notified. It is not necessary to continually check to
see if the event has happened. A good simple model for an interrupt is the telephone. It is
not necessary to sit by the telephone all day waiting for a call to come in – although, perhaps
some people do. The ring provides notification that new information is arriving.

There are three major pieces to the interrupt structure:

• The interrupt event and source.

• The interrupt service routine (ISR).

• The interrupt vector table.

7.7.2 The Interrupt Event

An interrupt event can originate from a variety of sources. These sources may be in one
of the many pieces of hardware in the system or in some piece of software. The interrupt
is used to signify that some event of interest has occurred and that it must be dealt with.
Potential events can include a timer expiring, an external signal changing state, or the result
of a calculation or measurement exceeding a prespecified value.

Different microprocessors and microcomputers permit different numbers and kinds of
interrupts. Some may be designated as software interrupts, whereas others are relegated
to signaling hardware events. The number of interrupts may range from as few as one to
as many as 12–16. One typically does not have the luxury of assigning any interrupt to
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any arbitrary event. Some are designated to signal specific events; one for each different
timer in the system, one for detecting a bad or illegal op-code, or one to signify that an
analog-to-digital conversion is complete are several examples.

We also often find that interrupts are assigned different priorities. The processor manu-
facturer may specify that a timer interrupt has a higher priority than the conversion complete
signal from the A/D or the bad op-code interrupt higher than both. Such a priority scheme
is used to handle the cases of several interrupts occurring at the same time or an urgent
condition occurring while we are working on a less critical one. Interrupts are generally
numbered, in order of decreasing priority, from 0 to n−1, if we have n interrupts.

7.7.3 The Interrupt Service Routine – ISR

When an interrupt occurs, it is necessary to do something, and to be able to do something,
one must know what one is supposed to do. In a software program, one knows what needs
to be done, and that is accomplished by executing a series of instructions. With a function,
the task to be accomplished comprises the body of the function. For the interrupt, that body
of code is called the ISR.

interrupt service
routine

(ISR)
The structure of an ISR is no different from the functions with which we have been

dealing. With no other contextual information, one could not tell them apart. The template
for an ISR is given in Figure 7.45.

void ISRName(void)

{

body

}
Figure 7.45 A Template for an Interrupt Service Routine (ISR)

Observe that the return type is specified as void and that the function’s signature is
similarly specified as void.

One must write an ISR for each interrupt that will be used in a system; the reason will
become clear very shortly.

Coding Style

When we write an ISR, our goal should be to make that routine as short and simple as
possible. While we are in the routine, we are spending time away from the main line
code, which is typically our primary focus. An ISR that exceeds 15–20 lines of C code
is probably too long.

7.7.4 The Interrupt Vector Table

When one writes and uses a function, one specifies the prototype and defines the function
body. To invoke the function, one enters the name of the function, with the appropriate
arguments, as a line of code in the program. When the program flow reaches the line of
code containing the call, a context switch to the code comprising the function body is made
and the code is executed, as was discussed earlier.

The interrupt presents a more interesting challenge. Since the interrupt is asynchronous
to the normal flow in the program, there is no place to put the call. There must be another
scheme; this is where the interrupt vector table comes in.
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To see how this works, remember that the code comprising the body of the function
resides in memory somewhere. That memory location has an address. Using a pointer to a
function and assigning the address of the body of the function to that pointer then derefer-
encing that pointer evaluates the function code. Herein lies the secret.

Let’s build a table. In its basic implementation, this table is no more complex than an
array. If we have eight interrupts, we will have an array with eight rows and one column.
Let’s declare our array as follows:

void (*isrFunctionPtr)(void) aTable[8];

That is, we have an array of eight pointers to functions; those functions take no argu-
ments and return no value. In each array entry, we put the address of the body of each ISR.

Here are the mechanics. As noted earlier, each interrupt has a number; in this case those
numbers will be 0–7. One can use these values as indices into the array. Thus, for example,
if we put the address of the ISR for interrupt 2 into index position 2 of the array and write

aTable[2]();

we will evaluate the function body for that interrupt.
The table so created is called an interrupt vector table. The vector table is built auto-interrupt vector table

matically by the microprocessor’s internal control logic. It is still up to the designer to make
certain that the proper address for each ISR is entered into the correct position in the table.

Again, based on the microprocessor’s control logic, when the event assigned to each of
the interrupts occurs, then flow of control automatically “vectors” to the index in the table
associated with that interrupt. The contents of that location are interpreted as the address
of the corresponding ISR. Flow of control is automatically redirected to that location. The
interrupt is said to be handled. If a specific address had not been entered or if an incor-handled
rect one was entered, the process does not care. The redirection proceeds to that erroneous
address. This is why, if one is going to use a specific interrupt, an ISR must be written to
handle the interrupt and the address of the ISR must be entered into the vector table.

We can now use the graphic presented in Figure 7.46 to see how this process works.

code

code

Interrupt
Service Routine

code

interrupt

Interrupt Occurs

Sequential Flow

return to original code

switch to ISR

0

1

2

n−1

Interrupt Vector Table

isr0Ptr*

isr1Ptr*

isr2Ptr*

isrn−1Ptr*

main()

Figure 7.46 Following an Interrupt

In the graphic, the program is executing the mainline code. That process is interrupted
by an event on interrupt 1. That interrupt is recognized by the system and the system finds
the pointer at index 1 in the interrupt vector table. The pointer is dereferenced, causing a
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context switch to the ISR associated with interrupt 1. Execution continues in the ISR until
a return is encountered. At that time, control returns to the point in the original code that
was interrupted when the event occurred, the original context is restored, and execution
continues.

The sequence of steps involved in the context switch to the ISR is exactly like the
sequence we encountered in the context switch to the body of a function. That is, the current
state of the system is saved on the stack, the return address is saved on the stack as well,
and the address of the first line of the ISR (as determined by dereferencing the function
pointer in the interrupt vector table) is put into the program counter. The only difference is
that we do not have to save any parameters to pass into the ISR or any values to return onto
the stack.

At this point one should ask, “How does one get the address of the ISR into the vector
table?” This is a very good question, to which the answer is not obvious. The method that
one uses depends on the compiler or assembler that one is using to write and to build the
firmware for the application to run on the processor. At the assembler level, each vendor
has an instruction to enter the address into the vector table. These are typically wrapped (a
standard high-level language technique) in a function call that is part of one of the support
libraries the compiler vendor will provide.

7.7.5 Control of the Interrupt

At this point, we have examined the basic operation and flow of control of the interrupt
process. We have noted the similarities and some of the differences between a function call
and an interrupting event. There remain several additional differences in how we control an
interrupt versus a function invocation. Let’s look at these now.

7.7.5.1 Enable–Disable

The flow of a control process under interrupts can be enabled or disabled. We do not have
such an ability with a function invocation. What such a capability means is that by using the
proper control instruction, one can choose to permit or prohibit interrupts from affecting
the normal flow of control through the program. There are several occasions when such a
capability is useful.

The most obvious time to use such a capability is when there is no need to use any
interrupts. We do not want an extraneous (noise or error) signal generating an interrupt
when we have made no provisions to handle such a thing. Another occasion occurs when
we have a critical task that we must perform in a timely manner and cannot afford to devote
time away from the job.

Many systems will force all interrupts to be disabled immediately following the occur-
rence of an interrupting event. They will remain disabled (by the system) for one instruction
after the context switch has occurred to give the user time to disable them for a longer time
if necessary. Such a situation would be similar to getting a telephone call in the middle
of responding to a telephone call. Since the interrupting events are all asynchronous with
respect to each other, such a thing can easily happen.

7.7.5.2 Recognizing an Interrupting Event

When an interrupting event occurs, the microprocessor is most likely in the middle of
executing some instruction. Most processors will complete the current (machine-language
level) instruction before responding to the interrupt. Once the instruction has completed, the
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interrupt process continues. One of the early steps in the handling sequence is to acknowl-
edge the interrupt. How and when this is done is processor specific.

7.7.5.3 Interrupting and Masking an Interrupting Event

The disable and enable capability provides global control over interrupt behavior; we would
often like much finer-grained control. For most microprocessors, such capability comes in
at least two forms, both of which are executed through what is called a masking process.masking process

In the same manner that we can call a second function from within a first, an interrupt
that has a higher priority than the current level can occur. The first form of masking uti-
lizes the different priorities of the interrupts. With this form, the microprocessor supports
the ability to disable all interrupts below a certain level or priority. Thus, if the system is
responding to an interrupt at levels (or with priority) 5, one can block all interrupts below
level 2, for example. Since those at levels 3 and 4 are higher priority than the current one, we
may not want to allow them to be recognized during the time that we are handing the level 5
interrupt. However, an event at level 2 may be sufficiently critical that we should not ignore
it. The microprocessor compiler or assembler will provide the appropriate instruction to set
the mask if the processor supports such capability.

The second form of mask provides for an even finer-grained management. This form
gives control over the individual interrupts. Associated with the set of interrupts that the
processor supports is what is called an interrupt mask register. The mask register is a vector
of bits, one for each supported interrupt, as we see in the graphic in Figure 7.47 for a system
with four interrupts.

m0 m1 m2 m3
Figure 7.47 Following an Interrupt

The register is typically implemented at the hardware level in the processor. Each mask

interrupt mask register

bit can be independently set to either a logical 1 or 0. If the bit is set to a logical 1, the inter-
rupting event will be recognized by the interrupt subsystem; otherwise it will be ignored.
Because most interrupting events are transient, if we choose to ignore an event, it is most
often the case that we cannot later come back and look at it. Once again, the means to set
or reset the individual bits is a processor-specific operation and instruction.

7.8 SUMMARY

In this chapter, we covered four elements of the C lan-
guage – bitwise operators, functions, pointer variables, and
structs – that are essential to the development of the soft-
ware side and interfacing with the hardware side of embed-
ded systems. In addition, we looked at two important

uses of pointers: pointers to functions and interrupting
events.

We have now covered the major elements in the C lan-
guage that are necessary for our remaining studies of embedded
-systems.

7.9 REVIEW QUESTIONS

Bitwise Operators

7.1 What is the difference between a C language logical oper-
ator and the bitwise operator with the same name?

7.2 What are some of the applications for which one might
use a bitwise operator?
7.3 What is a shadow variable, and why might we use such a
thing?



�

� �

�

7.9 Review Questions 325

Pointer Variables and Memory Addresses

7.4 What is the difference between a pointer variable and a
typical data variable, for example?

7.5 Following declaration and definition, a variable is stored
somewhere in memory. How can one find out where the variable
has been stored?

7.6 If a pointer variable holds the address of a variable in
memory, how do we retrieve the value of that variable?

7.7 Can the value of a variable be changed through a pointer
to that variable? If so, how?

7.8 Can two pointer variables be added or multiplied in the
same way as nonpointer variables? If so, what is the result?

7.9 Can a pointer variable and a scalar be added? If so, what
is the result?

7.10 Are the expressions myPtr+ 1 and myPtr++ equivalent?

7.11 Are the expressions *myPtr++ and *(myPtr++) equivalent?
Why or why not?

7.12 Can two pointer variables be compared using the standard
C logical operators? If so, what is the meaning in each case?

7.13 The const qualifier may be applied to a pointer variable.
Explain how the interpretation of the const and the pointer
change based on where the const is placed in a declaration.

7.14 What is a generic pointer?

7.15 Can a generic pointer be dereferenced? Why or why not?

7.16 What is a NULL pointer?

7.17 What is the difference between a NULL pointer and a
generic pointer?

Functions

7.18 What is a function header, and what are its major compo-
nents?

7.19 What is the purpose of a function’s parameter list?

7.20 What is the purpose of a function’s return type?

7.21 How many data variables can be returned through a func-
tion’s return-type variable?

7.22 What is the signature of a function, and why is it impor-
tant?

7.23 What is the purpose of a function’s body?

7.24 Describe how data is passed into a function.

7.25 Describe how a data variable can be returned from a
function.

7.26 What is a stack frame or an activation record?

7.27 Identify all of the steps that typically occur when a
function is called. Be specific.

7.28 What is meant by the expression pass by value with
respect to passing data in to a function?

7.29 What is meant by the expression pass by reference with
respect to passing data in to a function?

7.30 Can a function declared and defined in one file be used in
another? If so, how?

7.31 Can functions be nested?

7.32 Can functions call other functions?

7.33 Can a function call itself?

Pointers to Functions

7.34 Why would one wish to use a pointer to a function?

7.35 What is the general syntax for declaring a pointer to a
function?

7.36 How does one assign a pointer to a function?

7.37 If a pointer to a function is declared and assigned to point
to a specific function, to what is it pointing?

7.38 Can a pointer to a function be used to point to different
functions at different times?

7.39 How can one dereference a pointer to a function?

7.40 Can one pass data into a function that is invoked via a
pointer? If so, how?

Structures

7.41 What is the major difference between a C struct and other
C containers?

7.42 Can a C struct contain both data members and function
members?

7.43 What is a structure tag, and what is it used for?

7.44 Can one create an instance of a struct?

7.45 When a struct is declared, is memory allocated to hold the
member variables?

7.46 When is memory allocated to hold a struct’s member vari-
ables?

7.47 How can the member variables in a struct be initialized?

7.48 Can the member variables in a struct also be structs?

7.49 Can the member variables in a struct be arrays?

7.50 How can we access member variables within a struct?

7.51 Can we declare and define a pointer to a struct?

7.52 How can we access member variables in a struct through
a pointer to the struct?

7.53 What are the only legal operations that can be performed
on a struct?

7.54 Can one struct be assigned to another?

7.55 Can a struct be passed as a data variable into a function?
returned from a function?
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Interrupts

7.56 What is the major difference between a function call and
an interrupt?

7.57 What are the major pieces of an interrupt structure?

7.58 What is an interrupt event?

7.59 What is an interrupt service routine? Why is it necessary?

7.60 What is the difference between an interrupt service routine
and a function body?

7.61 What is an interrupt vector table? What is its purpose?

7.62 What do we mean when we say that an interrupt has been
handled?

7.63 Identify and briefly describe the steps necessary to handle
an interrupt.

7.64 Explain what it means to enable or disable an interrupt.

7.65 Explain what it means to mask an interrupt.

7.66 What is the difference between enabling/disabling and
masking/unmasking an interrupt?

7.10 THOUGHT QUESTIONS

Bitwise Operators

7.1 Without writing any code, describe how two binary num-
bers can be compared using bitwise operators?
7.2 Without writing any code, describe how a specific bit
-pattern within a binary word can be identified using bitwise
operators?

Pointer Variables and Memory Addresses

7.3 Discuss the advantages and disadvantages of using pass
by reference versus pass by value in an embedded C program.
Be specific with your points.
7.4 Which data structure(s) is(are) automatically passed by
reference in a C program? Why do you think such to be the case?
7.5 When two pointers are compared using the = operator,
what is actually being compared?
7.6 When two pointers are compared using the== operator,
what is actually being compared?
7.7 Can we assign one array to another using the = operator?
Why or why not?
7.8 Explain, in detail, elaborating on the underlying process,
why the following can be written and evaluated with the correct
results.

int x[2] = {0, 1, 2};
float y[2] = {1.1, 2.2, 3.3};
int* xPtr = x;
float* yPtr = y;
xPty++;
yPtr++;

7.9 What is the result of evaluating the steps in the code
fragment:

int x = 2;
float y = 3.7;
int xPtr = &x;
float yPtr = xPtr;

Can the pointer variable yPtr be dereferenced? If so, what
will be returned?

7.10 What values of y and z result from evaluating the code
fragment:

int w;
float x = NULL;
int wPtr = &w;
float xPtr = &x;
int y;
float z;
y =*wPrt;
z=*xPtr;

7.11 A two-dimensional array in C is built using
one-dimensional arrays and pointers. Explain how this can be
done. Illustrate using a simple drawing.

7.12 Describe how to extend the design in Question 7.11 to an
arbitrary number of dimensions.

7.13 Why do we use generic pointers? Give several examples
in practical embedded applications for which such use might be
appropriate?

7.14 Does the value of a pointer variable always have to refer
to an address in ROM or RAM? If not, to what other entities can
it refer?

Functions

7.15 Identify and describe each of the steps involved in a func-
tion call. Be specific about any registers, data structures, or
addresses that may be involved. How can we return several val-
ues, of different types, from a function?

7.16 Can a pointer to an array be passed to a function? Why
would we wish to do so? Can you cite several real-world
examples illustrating why such a thing might be useful?

7.17 Can a C function call itself? If so, is there a limit on the
number of times? If so, how is the limit set?

7.18 If a C function can call itself, discuss the possible conse-
quences.

7.19 When are the variables local to a C function declared?
defined? initialized?
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7.20 How many data variables can be returned through a func-
tion’s return-type variable?
7.21 How can we return multiple variables of the same type
from a function?
7.22 How can we return multiple variables of different types
from a function?
7.23 How can we return multiple variables of different types
from a function if the return type is void (not void*)?
7.24 When a pointer to a local variable that was declared in
a called function is returned to the calling function, can that
pointer be dereferenced in the calling function? Explain why or
why not? If the pointer can be dereferenced, will the result be
the value of the local variable.
7.25 To what memory address does control flow return to when
the function is complete – the address that it was at when the
function call occurred, the address following, or the address pre-
ceding?

Pointers to Functions

7.26 Are the following declarations equivalent? Why or why
not?

int (*myFunction)(char val0, int val1);
int *myFunction(char val0, int val1);

7.27 Can a pointer to a function be passed as an argument into
a function?
7.28 Should a pointer to a function be initialized? If so, what
should that value be? If not, why not?
7.29 Pointers support several different arithmetic operations
such as the addition of a scalar to the pointer. Are these oper-
ations supported on a pointer to a function? If so, please explain
the results of applying each such operation.

Structures

7.30 How can we include a function in a struct?
7.31 Can a struct have more than one function member?
7.32 Can we declare an array of structs? Are there any con-
straints?
7.33 Can we compare structs using the == operator? If not,
why not?
7.34 Can we assign one struct to another using the = operator?
If not why not?

7.35 Why is including arrays in a struct data type ill advised
in an embedded C program if an instance of that struct may be
passed as an argument to a function?
7.36 Can one declare an array of structs in which the data mem-
bers for each struct are of different types; for example, one struct
containing ints, a second floats, and a third chars? If not, why not
and if so, how?
7.37 Can one declare an array of structs containing both data
and function members in which the struct members in each struct
are of different types? If not, why not and if so, how?

Interrupts

7.38 If an interrupt service routine is not assigned to a particular
interrupt and the interrupt occurs, what will happen?
7.39 Identify and describe each of the steps involved in han-
dling an interrupt. Be specific about any registers, data struc-
tures, or addresses that may be involved. How can we return
several values, of different types, from a function?
7.40 Why do interrupt service routines typically accept no
arguments and have no return value?
7.41 Describe the structure and contents of a typical interrupt
vector table?
7.42 To what memory address does control flow return to when
the interrupt is complete: the address that it was at when the
interrupt occurred, the address following, or the address preced-
ing?
7.43 An interrupt may be enabled or disabled under program
control. Why do we wish to be able to do such a thing?
7.44 If interrupts have been disabled, will the interrupts still
occur? Please explain your answer.
7.45 What are some of the possible side effects of disabling
interrupt?
7.46 An interrupt may be masked under program control. How
is masking different from disabling?
7.47 Under what circumstances might we wish to mask versus
disable an interrupt? Explain your answer.
7.48 If interrupts have been masked, will the interrupts still
occur? Explain your answer.
7.49 Some interrupts are said to be nonmaskable. What might
this mean, and why might we wish to so designate certain
interrupts?
7.50 Give some examples of situations under which we would
want to preclude interrupt masking.

7.11 PROBLEMS

Bit Manipulation

Using the bit manipulation operators, develop and test C pro-
grams to perform the following.

7.1 Starting with the word 0xF0A6, reset bit 3, set bit 6, set
bit 8, reset bit 13.
7.2 Starting with the word 0xCB43, determine if the word
contains the pattern 0x43 in the least significant byte.
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7.3 Starting with the word 0xCB43, determine if the word
contains the pattern 0xB4 anywhere in the word.

7.4 Starting with the word 0x7C5E, determine if bit 7 is reset
and bit 14 is set. If so, complement bits 6 and 12.

7.5 Develop a C program that will accept a pointer to an array
of 16 unsigned chars and return an unsigned char that is the result
of exclusively ORing the contents of the array using the bitwise
exclusive OR.

The value being retuned is called a Block Check Sum and
is used in error management schemes, which will be discussed
in a later chapter.

Data Types

Containers are a commonly used data type in many embedded
applications. Please provide the Use Case and Class Diagrams
for each of the following containers. Next, provide the C code
for each container data type. Verify that your implementation is
consistent with your model.

7.6 A link in a singly linked list.

7.7 A singly linked list.

7.8 A link in a doubly linked list.

7.9 A doubly linked list.

7.10 A queue.

7.11 A priority queue – the highest priority stored item is
always returned.

7.12 A stack.

7.13 A FIFO container.

7.14 A LIFO container.

7.15 A circular list.

Tools and Algorithms

7.16 Using nested ifs, write a function min3 that returns the
smallest of three int. values passed to it as parameters. Also write
a function max3 that returns the largest of its three int. parame-
ters.

7.17 Formulate a decimal to binary conversion program in C
as a subroutine. Any program that invokes the subroutine passes
two addresses through main memory locations. The first of these
is the address of a 3-byte main memory buffer that the clients
are to use for storing input decimal digit characters. The second
address is the location of the converted binary number.

Draw a data and control flow diagram for the design.

7.18 Formulate a binary to decimal conversion program in C
as a subroutine. Any program that invokes the subroutine passes
two addresses through main memory locations. The first of these
is the location of the binary number to be converted. The second
is the address of a 3-byte main memory buffer from which the
clients retrieve converted decimal digit characters.

Draw a data and control flow diagram for the design.

7.19 Using the routine from Problem 7.17, design a program
that converts a three-digit BCD (binary coded decimal) number
to ASCII.

Draw a data and control flow diagram for the design.

7.20 Write a function tableInit( ) that sets every element of an
array of integers to a particular value. The function takes three
parameters: the array, its size, and the initial value.

7.21 Write a function tableFill( ) that generates random integer
values in the range of 0–100 to fill an array. Note: this is dif-
ferent from tableInit( ) in Problem 7.20. The function takes two
parameters: the array and its size. Make certain that you check
the array boundaries.

7.22 Write a function tableAverage( ) that computes and returns
the average of a subset of N elements of an array of ints. Test with
a small program that uses tableFill() to fill the array with values.

7.23 Using the function tableFill( ) to fill an array, use selection
sort to sort the array. In selection sort, we first find the largest ele-
ment in the array and exchange it with the first element’s value.
We then find the next largest element in the array and exchange
it with the second element’s value. We continue the process until
the array is sorted.

7.24 Repeat Problem 7.23 using the bubble sort algorithm.

7.25 Repeat Problem 7.23 using the C library function QSort.

7.26 Write a C program that accepts two points and computes
the distance between them. Given two points (X1, Y1) and (X2,
Y2), the distance between them is:

√
(X1 − X2)2 + (Y1 − Y2)2

7.27 The values for the coordinates are integers, and the result
must be expressed as an integer. What is the worst case error
resulting from the calculation?

7.28 The following program to average a collection of values
produces incorrect results if the number of values is greater than
INT_MAX, if any input value is greater than INT_MAX, or if
the sum is greater than LONG_MAX. Rewrite the program to
avoid these problems.

7.29 Write a program that is part of an automatic screening sys-
tem on a factory assembly line. The module accepts integer data
representing a parameter on the component being manufactured,
places each into the appropriate category, and returns the tag for
the category and the number of entries in the category. For this
design, the categories are: 100–90, 89–80, 79–70, 69–60, and
59–0.

7.30 Define a probe that can be inserted into a function as a
test coverage device. The probe is to track if the function is
called and, if so, how many since the program was started. For
a function, the probe is to track how many times the function is
called.

The probe is to respond with the appropriate tracking infor-
mation when the function containing the probe is queried. It will
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be necessary to figure out the best way to present the query.
Demonstrate your probe on several different functions.

Applications

7.31 In the C language, the struct cannot hold function mem-
bers; thus, we include functions by using pointers to functions.
Combining data and the functions that operate on that data can
be a very powerful tool in developing embedded applications.

(a) Give the class diagrams for three structures. The three
structures will share a common data variable called sharedData
through pointers to that data. The three functions will be get-
Data(), compute(), and outputData().

The function getData() will bring data into the system, com-
pute() will multiply the data by 2, and outputData() will send
the data out of the system.

(b) Give the data and control flow diagrams for such a system.

7.32 Write the C code corresponding to each of the structures
that were modeled in Problem 7.31.

7.33 Design an array containing each of the structures in Prob-
lem 7.32. Design a C program that will continually walk through
the array and evaluate the function contained in each struct.

Software is a significant component in an embedded sys-
tem. The following problems address that portion of application
development. For each of these designs, your complete package
should include, as appropriate:

• A use case diagram for your design.
• A class diagram for each of your modules.
• A sequence diagram for your design.
• A data and control flow diagram for your design.
• A tested C implementation of your design.

7.34 Design and implement an automatic coffee pot with the
following capabilities: the controls must include the ability to
set the start time on a 24-hour clock, reduce the temperature to
warming, annunciate when the brew cycle is complete, and stop
water flow if the pot is removed from its receptacle.

7.35 Design and implement a digital watch with the following
capabilities: the controls must include a 12-hour time expressed
in hours, minutes, and seconds, AM and PM tracking and
annunciation, alarm, and the ability to set the alarm and time
values.

7.36 Design and implement a washing machine with the fol-
lowing capabilities: the controls must include the ability to set
water temperature, washing start times, modes (presoak, nor-
mal, permanent press, delicate), and annunciation of tempera-
ture, times, and mode.

7.37 Design and implement an oven control with the following
capabilities: the controls must include the ability to set temper-
atures, cooking start and stop times, modes (bake, broil, clean),
and annunciation of temperature, times, and mode.

7.38 Design and implement a module implementing a four-seat
passenger entertainment system with the following capabilities
on a commercial aircraft: the entertainment system should sup-
port the ability for each of the four passengers to program and
control:

Movie selection
Audio selection
A gaming console.

7.39 Design and implement a seat belt–engine–door lock inter-
lock with the following capabilities: the engine cannot start if
the seat belt is not fastened; the doors automatically lock when
the engine is started.
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Part 2 DEVELOPING THE FOUNDATION

• Chapter 8: Safety, Security, Reliability, and Robust Design

• Chapter 9: Embedded Systems Design and Development – Hardware–Software
Co-Design

• Chapter 10: Hardware Test and Debug

Chapter 8

Safety, Security, Reliability, and
Robust Design

THINGS TO LOOK FOR …

• The definitions of security, reliability, and safety.

• The need for good specifications.

• The need for secure, reliable, and safe hardware and software designs.

• Vulnerabilities and measuring vulnerabilities.

• The definitions of and difference between faults, failures, and errors.

• The need for context when measuring security, reliability, and safety.

• Internal and external security needs.

• What should be protected and how.

• Guidelines and approaches for developing safe, robust, secure, and reliable designs.

• How to use failure modes analysis to help identify potential problems in a design.

• Identifying runtime faults using built-in tests.

• Understanding internal and external attacks.

• Implementing security solutions and countermeasures.

• Damage control and fault recovery.

8.1 INTRODUCTION

As we have learned, embedded systems are universal; from a handful of computers a few
years ago, we now literally count them in the billions. The days of ubiquitous computing

Embedded Systems: A Contemporary Design Tool, Second Edition. James K. Peckol.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/college/peckol
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are not too far in the future and may even be here now. We are encountering embedded
computers in our daily lives at an increasing rate. Microprocessors, microcontrollers, and
the like are found in systems ranging from the complex to the mundane. Among the com-
plex systems, we have aircraft flight control systems and sophisticated medical equipment.
On the mundane side, we see the familiar washing machine and, of course, children’s toys.
Failures in such systems can have a significant and resounding impact. As embedded com-
puting becomes more widespread, issues of security, safety, and reliability in such systems
are becoming correspondingly more important. Today, reliability and safety are an integral
part of the design of any embedded system. To that couple, we must now add security as
an essential third foundational consideration in every system design.

People often confuse safety with reliability and robustness; all are important issues but
they are distinct concepts. In this chapter, we will introduce the basic concepts of security,
safety, reliability, and robustness in embedded applications, formulate definitions for each,
and identify their differences. We will examine several real-world examples in which minor
oversights have led to either significant or potentially significant and costly failures. We
will establish the need for secure, robust, and reliable hardware and software and some
of the relevant vocabulary. We will then examine several approaches that may be applied
to the design of the major hardware and software subsystems to help to ensure a secure,
safe, reliable, and robust embedded system. Finally, we will conclude with some tools and
techniques that can be used to detect and manage problems that may occur during system
operation.

We observe that as embedded systems have become an increasingly integral component
of our high tech world, attacks on such systems, ranging from children’s toys to worldwide
financial institutions and top secret government organizations, have become similarly pan-
demic and routine. In response, we fully recognize the need to now welcome and include
security as a third essential and integral part of the design of any embedded system. System
security must be addressed with the same or greater level of diligence as system safety and
reliability.

In our discussions of safety and reliability, we will classify faults into the two major
categories: errors and failures. An error will be considered an inherent characteristic of theerrors

failures system such as a design error or misunderstood specification and a failure typically the result
of a system component breaking or wearing out. An electrical or mechanical failure will be
further characterized as something that cannot be designed away because all physical things
fail eventually. That said, the engineer’s goal should be to make the system’s operating life
as long as possible considering other design constraints. We will then analogously carry that
model into the area of embedded systems security or, more specifically, vulnerabilities.

Under such a model, we can classify security vulnerabilities into three major cate-vulnerabilities
errors

weak protection
intentional damage

gories: errors, weak protection, and intentional damage. As we did with our earlier dis-
cussion of safety and reliability, we consider an error type security vulnerability to be an
inherent characteristic of the system. Examples of such a vulnerability include design error
or misunderstood specification that can be discovered and utilized as a portal through which
to attack the system. A weak protection vulnerability is an oversight, misuse, or neglect in
managing external system access control. An intentional damage type vulnerability is either
the system protection being physically circumvented or physical damage inflicted on the
system with the objective of disabling or inhibiting the protection or the function of the
system.

Carrying the earlier note forward, no security system is invincible. What is designed
by humans can eventually be beaten by humans. In our studies of safety and reliability, we
set a goal that the probability of a recognizable fault (to the user) or failure of a system be as
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small as possible. The goal was to make eventually as distant as possible and any potential
damage as small as possible. That same goal should be the basis for security considerations
in any system design.

We will stress that system reliability and safety cannot be tested into a system, rather,
they must be considered and addressed prior to the finalization of the System Requirements
and Design Specifications documents. The same requirement holds even more strongly for
system security, which also must be considered on “day one” of a project, not one day
during development, and not as a routine release of updates.

The essential starting point of any design process is understanding what is to be
designed. With embedded system security, the essential component is first understanding
what the problem is and then what can be done to solve or minimize it. In this chapter,
from the system perspective, we will endeavor to identify potential vulnerabilities, security
needs, and how such needs can be addressed. From the attack perspective, we will
survey common attack paradigms, propose solutions and countermeasures, and examine
techniques for damage control.

Over the years, the need for increased system or component reliability has led to
the development of self-repairing structures or schema. The need for increased security
leads to the same requirement. The three wise monkeys philosophy “see no evil, hear
no evil, speak no evil” is not a viable or valid solution to system security, safety, or
reliability.

8.2 SAFETY

We will begin with a discussion of safety. Once again, we note that safety is distinct from
reliability. Nonetheless, both are interrelated or perhaps interdependent. A risk is any event
or condition that is deemed to be undesirable. Risks can be small or they can be large. A
safe system is one that is ideally free from risk. In reality, a safe system is one that has been
carefully and fully analyzed to identify all potential risks. Each risk is then evaluated and
assessed to ensure that, should it occur, it does not present unacceptable consequences to
people or to equipment.

One can relate security, safety, and reliability through the following simple relation-
ships.

Risk = Probability of Failure • Severity
Increased Risk →Decreased Safety

Safety appears indirectly on the left-hand side of the first relationship. The second
expression suggests an abductive relationship between risk and safety. Increasing the risk
associated with an embedded application implies that the safety of the system decreases;
however, it is not guaranteed to be so. Risk can be effectively managed if the system is
designed to operate in a safe, secure, and reliable manner using good engineering practices.

Reliability affects the probability of failure component on the right-hand side of the
equation which, combined with the severity component (small or large), gives us the risk.

probability of failure
severity

Building a prototype chemical processing plant with an innovative, yet not thoroughly
tested, control system (probability of failure) in the middle of a populated area (high sever-
ity) rather than far out in the country side (low severity) poses different levels of risk.
Although the control system’s probability of failure may be the same in both cases, the
consequences are not. In any event, neither is a reasonable thing to do.
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Among the list of potentially undesirable conditions comprising risk, we can include:

• Interference with life support functions.

• Supply of misleading information to safety personnel and to control systems.

• Release of energy.

• Release of toxins.

• Failure to alarm when hazardous conditions arise.

Safety hazards can occur in a system through misuse, improper, or unsafe specifica-
tions, or failures in some component of the system.

8.3 RELIABILITY

Let’s look at the reliability component of the equation. One must remember that designing
a system is one thing; designing a reliable system is another. One measure of reliability is a
measure of up-time or the availability of a properly operating system. Today the expression
five or six 9’s in reference to the reliability of many applications is commonly used. With
such a statement, one demands that the system be up and available 99.999 or 99.9999% of
the time. This constraint translates to a down time of 3–31 seconds per year.

Reliability is becoming increasingly important in the design of many of today’s sys-
tems for a variety of reasons. We are becoming the victims of our own successes – hoist with
our own petard, as they say. Embedded systems are finding their way into areas where the
typical user knows very little about the proper operation of the products they buy. Conse-
quently, future designs must become increasingly tolerant of unexpected or improper inputs
or (un)intentional misuse.

A few years ago, the computer lived a relatively comfortable life in an air-conditioned
room with good, clean power systems feeding it. Today, embedded systems need to be road
warriors. Their operating environment is hot, dirty, electrically noisy, humid, and inter-
connected via poor power distribution systems, in addition to confronting perhaps a dozen
other difficulties as well. We must keep such conditions in mind as we develop tomorrow’s
systems.

An embedded application that has been sent to Saturn or put on the bottom of the ocean
is a bit difficult to pop over and repair. Systems today must be able to operate for extended
periods with little or no chance for maintenance. Not too many years ago, anyone with
a screwdriver, wrench, and a hammer was an expert auto mechanic. Today, typically one
needs a garage full of sophisticated test equipment to perform even a basic tune-up. The
same trend is occurring in all of the systems that we are designing. Yesterday’s telephone
had a simple dial and one made telephone calls with it. Today’s cell phone supports pic-
tures, games, music, e-mail, text messages, and – almost as an afterthought – even does
telephone calls. The complexity of today’s systems is bringing increasingly larger numbers
and varieties of components into the design, and these designs are being forced into smaller
and smaller containers. Each hardware component that we include in a system has a failure
rate and each component’s failure rate will impact the overall failure rate and thus reliability
of the system.

Let’s look at how to begin solving the problem. To start, one must recognize that a
secure and reliable system begins at the specification and design stage, not at the prepro-
duction stage. Security and reliability (and quality) cannot be tested into a product no matter
how good the test suite is or how many times the tests are executed. Little effort is required
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for one to design a test suite that will ensure that a system with known errors or failure
modes will pass even the most stringent test.

The goal should be to identify all potential faults before a product ever arrives at
a customer’s site. With the complexity of today’s systems, this goal will be approached
asymptotically. Today, statistical-based methods are often used to analyze a design and to
make assessments as to how many bugs remain. On occasion, and after considered thought,
a product will be released if the estimated number of bugs is below a certain threshold.

At the end of the day, however, security and reliability are somewhat soft measures – not
soft in the sense that they cannot be measured but soft in the sense of their meaning. Several
common-sense descriptors may apply in the general case.

• The product consistently performs in a manner that the customer expects.
For many embedded systems, this consideration mainly means meeting all per-

formance constraints. For example, moving and processing high-quality video and
audio cannot tolerate delays. Such delays produce distortion in the delivered image
or sound.

• The mean time between failures (MTBF) is long.
All physical things fail eventually; one wants the time before/between failures to

be as long as is reasonable. When monitoring signals during nuclear testing or when
performing experiments using an atomic accelerator, a long time can be measured in
fractions of second. On the other hand, today’s automobile manufacturers are quoting
guarantees of 100 000 miles or more on certain parts.

A better objective is to ensure that the MTBF is long in the context of the useful life
of product. At a recent meeting, a colleague who works in the research department
of a major company said, “long term is if the demo keeps working until the director
has approved the funding for the next phase of the research.” This colleague knows
his context … perhaps too well.

• The system responds in a deterministic way.
People have grown accustomed to having a product respond the same way each

time they use it. Customers lose their sense of humor if each time they use a product,
it responds in a different, and perhaps, unpredictable way. An excellent book, The
Design of Everyday Things by Donald A. Norman (Doubleday, 1988), explores this

The Design of
Everyday Things

problem within a more general scope.

• The system responds or fails gracefully in response to out-of-bounds or unexpected
inputs and recovers if possible. When designing a system, the goal should be to always
ensure that when the system fails, it fails gracefully and safely.

When people are using a product, they are going to try to do things that perhaps had
not been anticipated during design. While certainly one cannot think of everything,
one must consider how a design will respond under such conditions. Understanding
and safely managing the behavior of a system in response to an input whose value is
unexpected or within a range that suddenly becomes significantly larger or smaller is
important. Such was the case recently in a European space program. We will look at
this problem in greater detail shortly.

• The system is secure.
Simply having a password does not make the system secure. In addition, successful

phishing attacks or “temporarily” dropping the security wall because it’s inconve-
nient are becoming commonplace. A critical and essential component of security is
ensuring that the security is secure, stable, and consistent.
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Failing gracefully and safely is often of critical and life-saving importance.Failing gracefully
Failing safely Every recent model of automobile on the road has a number of embedded

microprocessor-based systems controlling everything from the radio to the fuel flow
and braking systems. Though annoying, an abrupt failure in the radio is certainly
less disturbing than having the fuel system shut down while in the process of passing
a truck just ahead of an even bigger truck coming the opposite direction. Consider,
too, our modern aircraft. Many passengers would die if they were flying at 35 000 ft
and the system controlling cabin pressure and oxygen flow suddenly quit and had to
be reloaded on the ground. Good engineering practice demands graceful failure and
it demands that a backup system be ready if failure occurs.

8.4 FAULTS, ERRORS, AND FAILURES

A fault is any system condition or state deemed to be incorrect or unacceptable. Faults can befault
transient characterized by duration and frequency. A fault may be transient, that is, the result of some

temporary external event, such as the effect that sun spots may have on a telecommunication
satellite. Such faults are referred to as soft.soft

intermittent
periodic, aperiodic

A fault may be intermittent, occurring as the result of some unstable hardware or a
marginal design. An intermittent fault may be either periodic or aperiodic. My coffee
grinder that turns on when the door on a running microwave is opened or an aperiodic
confluence of signals occurs leading to hazards in combinational logic are examples.

permanent
hard

errors
failures

A fault may be permanent, as might result from an incorrect design, but more often
arises from a failed hardware component. Permanent faults are known as hard faults.

Based on their nature and origin, faults are classified into two major categories: errors
and failures. An error is considered to be static, an inherent characteristic of the system
that results from a design error or an incorrect, misunderstood, or disregarded specifica-
tion. Included in this category are faults that occur because of some incorrect or improper
user action. Such faults are included because they are permitted to occur rather than being
detected and blocked, which indicates a breakdown in the design path somewhere.

A failure is viewed as a dynamic event, as something that occurs at a specific time,failures
generally while the system is operating. When a fault occurs, the system can be affected in
a number of different ways. Some of the more common consequences of a fault include:

• Action – an inappropriate action taken or an appropriate action not taken.

• Timing – actions taken at an inappropriate time, either too early or too late.

• Sequence – an action that is skipped or is executed out of sequence.

• Quantity – an inappropriate amount of energy or reagent used.

When a system fails, we have a system that once functioned properly and now no longer
does so. Failures usually occur in the field when some hardware component breaks or wears
out. Software, on the other hand, does not break or wear out through or from use.

Faults that occur in an electrical or a mechanical component in the system can be
reduced, however, they cannot be designed away. Ultimately, components will fail. Prob-
lems originating in the hardware can be addressed in a number of different ways; one
common approach is to design into the system multiple instances of critical components.
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8.5 ANOTHER LOOK AT RELIABILITY

Finding volumes of material written on reliability is relatively easy. While it is beyond the
scope of this text to cover the field of reliability in any significant depth, the goal is to
stress the importance of both reliability and safety in the design of embedded systems and
to try to introduce some of the important considerations. Thus, in this section, we present
some of the fundamental ideas, identify the potential problems that one should think about
in any solid design, and propose some alternate solutions by which these issues can be
addressed.

The first question that should be answered is: “What is reliability?” One simple, formalWhat is reliability?
definition suggests that reliability means that the probability that a system will fail is less
than some threshold. Is this reasonable? What does fail mean? Systems that fail regularly
and yet are considered highly reliable exist, from a user’s point of view. To see such a
system, one does not have to look much beyond the Internet or the telephone system. We
use each of these systems every day, and yet we are unaware of the routine failures of
individual pieces.

Thus, proposing a workable definition of reliability needs a bit more thought. The task
of ensuring the reliable (and safe) operation of embedded systems occurs at several places
during its lifetime. At the start of a new project, the main objective is to ensure a proper
and safe design. We endeavor to design the system in such a way that potential faults aresafe design
identified early and avoided or eliminated during the later stages of development.

Once the design is complete and the product is in the customer’s hands, we assume
that, to the best of our knowledge and ability, the design is correct and that the product has
been manufactured properly (or that any manufacturing defects that did occur have been
identified during the production test and then corrected). The focus now shifts to detecting
any faults that might occur in the field. Such faults may originate either from inside thedetecting any faults
system or from without. We do not want to just let them happen. Once a fault has been
detected, efforts shift to managing the fault. Management can range from a graceful andmanaging the fault
safe shutdown to limiting the damage, issuing a warning and continuing with decreased
capability, or activating redundant components.

Modern intelligent and self-diagnosing/correcting systems can detect anomalous
conditions and potentially reconfigure themselves (if they support multiple configurations)
or work around problems. Failures may occur but never be detected. On communication
networks such as the Internet, packet transfers fail continuously but recover through
retransmission or other means on a regular basis. Such systems are said to be fault

fail
fault tolerant

tolerant.
With this recognition, we can define reliability in an embedded system as:

The probability that a failure is detected by the user is less than a specified threshold.

8.6 SOME REAL-WORLD EXAMPLES

A solid understanding of the system requirements, a good specification, and a well-executed
design form the foundation for developing a safe, reliable, and robust embedded systems.
Nonetheless, these design elements do not eliminate the need for comprehensive testing. We
cite three cases in point. All of these are space-borne applications; one resulted in complete
loss of the system and two came very close. Each had at least one fundamental flaw that
should have been identified either during design or test.
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8.6.1 Big Word … Small Register

The first case involves the rocket designed and developed by the European Space Agency
that was mentioned earlier. The Ariane 5 was designed and built over a 10-year period at
a cost of over $7 billion. Within less than a minute following its initial launch, the rocket
was gone. The problem was register overflow.

At the heart of the guidance and control system on the rocket were an inertial guidance
computer, a steering computer, and an array of sensors to collect the data needed for the
flight control computations. The sensors produced a 64-bit data word; the guidance system
used a 16-bit word. The root of the problem lay in the guidance system. That system had a
long history of successes on previous versions of the rocket. It made good sense to reuse a
system with a proven track record. On launch, the path of the earlier rockets was straight,
whereas that of the Ariane 5 had a slight dogleg. The sideways movement of the rocket was
naturally reflected in the output data from the ship’s sensors. The inertial guidance system’s
computer assigned that 64-bit data value to one of its own 16-bit words – the root of the
problem.

Earlier, the engineers had dismissed the difference in word sizes as a potential problem
because that particular piece of velocity data “would never get that large, particularly since
it never had on the previous rockets.” The new engine, however, was faster than the older
models. When the abrupt sideways movement occurred, the sensor data overflowed the
(16-bit) word in the guidance computer, thereby yielding an erroneous, out-of-range result.
The computer responded by shutting itself down and passing control to the backup unit. The
backup unit, with identical hardware and software, produced the same incorrect result (we
will discuss the caveats with identical designs shortly). When the onboard steering computer
received the erroneous data from the guidance system computers, it assumed that a course
correction was necessary and issued the command to execute that correction. The abrupt
change caused the rocket to swerve off course and begin disintegrating. Self-destruction
was automatically triggered; that part of the design worked as required.

8.6.2 It’s My Turn – Not Yours

The next example presents a problem that will be examined more fully in our study of
operating systems and how to schedule and coordinate tasks within an application. The Mars
Pathfinder arrived on Mars in 1997 about midyear. The mission was widely proclaimed as
nearly perfect. After a few days of executing its task of collecting meteorological data, the
system began resetting itself. Accompanying each reset was a loss of the collected data.
Of course, the onboard computer got the blame. The “software glitches” occurred because
“the computer was trying to do too many things at once,” according to the newspapers.

In reality, the root cause of the problem was that lower priority tasks were able to
acquire and hold resources that were needed by the higher priority, more important tasks,
thereby effectively blocking them. Let’s examine what happened.

Involved in the problem were three tasks that had to be executed. The first was a man-
agement task that used the internal information bus to move certain kinds of data (including
the meteorological data) within the space craft; it was assigned a high priority. The commu-
nications task, which did not need the information bus but took a long time to execute, was
assigned medium priority. Finally, the task of collecting meteorological data was assigned
a low priority. Thereafter, the collection task ran rather infrequently, but it still used the
information bus to broadcast its data.



�

� �

�

8.6 Some Real-World Examples 339

Now the problem. The first task was not doing anything, so the meteorological task
would run to dispatch its information. The high-priority bus manager, now seeing that data
needed to be sent to the various parts of the system that required the data, got ready to run.
Unfortunately, the meteorological task was using the bus. Therefore, the higher priority task
had to wait until the bus was available. In the meantime, the communication task had to run
occasionally. Since the communication task had a higher priority than the meteorological
task and did not need the information bus, it could preempt the lower priority task and run
with no problem. Because the communication task was quite slow, the watchdog timer,
doing its job, would notice that the information bus task had not run for quite a while and
conclude that something had gone terribly wrong. Once again, doing its job, the watchdog
timer would reset the system.

We will discuss this problem and potential solutions in greater detail in our discussion
of operating systems and scheduling.

8.6.3 Where Do I Put My Stuff?

For our last example, let’s look at another Mars mission. Shortly after landing on Mars early
in 2004, the rover Spirit suddenly went silent. As with many such problems, the root cause
was to be found much earlier in the mission. While the craft was in route, the team on the
Earth recognized that some serious problems existed with the software package that had
been launched with the rover. The problems were identified and corrected; a new image
was compiled and sent on its way to the spacecraft and installed on the rover.

The computer system on board the rover has a memory system comprising both RAM
and flash memory. The flash memory stores the executable code images that get loaded into
RAM when the system is booted. At runtime, then, the real-time operating system and all
other executable code is resident in the RAM memory.

In addition to the code bits, the flash memory also holds other files (including image
data from the system’s cameras) that contain data collected by the rover’s subsystems prior
to transmission to Earth. Such files are held until a communication window opens, at which
point the data is downloaded. The communication protocol dictated that all such files be
held until confirmation that the data had been fully and correctly received on Earth. At that
time, the system is commanded to delete the aforementioned files. In addition to the files
just mentioned, the flash memory also held other miscellaneous data associated with the
initial software (that had been updated) but never deleted.

Sometime before the rover went silent, a script was uploaded to identify and delete
all such extraneous files. Part of the upload failed; the old information remained. Some-
what later, the data collection tasks needed additional file space and the rover’s computer
attempted to perform the allocation. The attempt exceeded the number of files that the RAM
space allowed and an exception was raised. The task attempting the allocation was sus-
pended and a reboot commenced. The operating system, a UNIX™ derivative, attempted
to rebuild the directory structure to include the additional space. Unfortunately, sufficient
RAM was unavailable to do so and a reboot commenced ... and commenced ... and com-
menced. Eventually, the problem was recognized on the ground and a command was sent
to reboot without mounting the flash file system. That succeeded and, one by one, the old
files were manually deleted. When complete, the system was rebooted with the flash file
system and all was right on Mars once more.

The problems that occurred in each of these three cases are safety, reliability, and qual-
ity issues. These problems should have been recognized and corrected during the design
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phase of the projects. Their discovery should not have been delayed until after the systems
had been delivered. The problems were neither complex nor obscure. As we design and
develop today’s embedded applications, it is incumbent upon us to always pay attention to
the low-level details of our design.

8.7 SINGLE-POINT AND COMMON MODE FAILURE MODEL

Before we can discuss designing safe, secure, and reliable systems, we must establish a
base and a context. A number of years ago, a noted researcher and scientist was lecturing
about intelligent systems. He raised the question, “Is a system intelligent if it can cross a
busy street without getting hit by a car?” “What if the car is going really fast?” “What if the
car is going really really fast?” “What if it’s a stealth car and it is going so fast you can’t
see it?” The point he was making is that it is always possible to hypothesize situations in
which a system might fail and that cases may exist in which the fault is not recognized until
it is too late. One must understand the context in which the system is to operate; only then
can one begin to design and assess the safety and reliability of the system accordingly. For
the current studies, we will establish the following base line.

A safe system design is one that will ensure that the failure of a single component or the
failure of multiple components due to a single failure event does not lead to an unsafe
condition.

The first step toward achieving such an objective must begin with the specification and
the design.

8.8 SAFE SPECIFICATIONS

Without knowing and understanding the potential hazards and security vulnerabilities, one
cannot proceed with the design. To identify the hazards and vulnerabilities, one must firstidentify the hazards

and vulnerabilities identify the context in which the system is to operate. The hazards encountered by a space
craft are different from those seen by a pacemaker and are different again from what a cell
phone might encounter. Once the hazards and vulnerabilities that must be dealt with are
known and understood, the design process can proceed. However, knowing the potential
hazards is only part of the problem. A second part of the operating context is the potential
risk to the environment. Risk assessment must include effects on people, equipment, andpotential risk
the natural environment.

Focus then shifts to the system being designed. If the initial analysis has determined that
the potential risks are minimal, incorporating additional or extraordinary safety measuressafety measures
into the design is probably not necessary. If such is not the case, then methods to mitigate
the risk must be added. On the space station, failure of the system that provides a breathable
atmosphere for the astronauts represents significant risk. Alternatives outside of the system
such as a space suit may be a reasonable safety measure. Others might include an emergency
oxygen generator that is activated immediately on failure of the controller for the primary
system.

With the preliminary analysis completed, the results of that analysis must be incorpo-
rated into the Systems Requirements specification. Every specification that we write should
include a list of agencies, safety standards, and proprietary guidelines with which the system
complies.



�

� �

�

8.9 Safe, Secure, and Robust Designs 341

A very small sampling of such agencies around the world includes the following.

In the United States

• The Underwriters’ Laboratory

• The Federal Communications Commission

• The Food and Drug Administration

• GMPs – Good Manufacturing Practices

• The Federal Aviation Agency

• The Atomic Energy Commission

• NASA

• NIST

• IEEE

• ACM

In Canada

• The Canadian Standards Agency

In Germany

• TUV – Test agency that certifies products for the European Community Inter-
national

• ISO – International Standards Organization

• International Atomic Energy Agency

8.9 SAFE, SECURE, AND ROBUST DESIGNS

The next step in the process of developing safe, secure, and robust designs is to focus on the
design itself. We will start with considerations at the project level, move on to the high-level
design of the system, examine potential failures in the major functional components of the
system, and finally, propose methods by which those failures and security issues can be
addressed.

8.9.1 Understanding System Requirements

Requirements definition is the process of identifying and understanding what the needs of all
interested parties are and then documenting those needs as written definitions and descrip-

Requirements
definition

tions. The focus is on what problem the system has to solve. The emphasis is on the worldwhat
in which the system will operate, not on the system itself. The process of identifying and
specifying requirements is covered in detail in Chapter 9 on design. Here, the emphasis is on
the role that such specifications play in the safety, security, and reliability of an embedded
system.

The design of an embedded application is made up of a series of translations that begin
with the customer’s requirements and lead to the system hardware and machine code that
runs on that hardware. Errors arise whenever any one of these translations fails to accu-
rately reflect the initial intention. The single largest cause of such errors, and ultimately of
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unreliable systems, is simply one of translation or misunderstanding – meters to feet, for
example.

At every step through the development process, each of the current deliverables must
be critically reviewed for conformance with the specified requirements as well as for proper
and improper operation. In addition, for each deliverable or set thereof, the question “What
can possibly fail?” must be posed, documented, and not necessarily solved at the require-
ments definition stage but addressed later during design.

8.9.2 Managing Essential Information

Good documentation management is essential to developing reliable, high-quality hardware
and software. At the outset, a project directory structure should be formulated and set up.
All of the sources, tools, drawings, and documentation should be under a version control
system. A number of very good commercial packages are available. On the software side,
two that are included with the various UNIX and LINUX™ releases are RCS – The RevisionRCS – Revision

Control System
CVS – Concurrent
Versioning System

Control System – and CVS – The Concurrent Versioning System. However, source control is
not just for the traditional software side of the project. With the increasing use of modeling
tools and hardware design languages, the hardware side of the project can generate as many
source code modules as the software side.

A typical project directory might have a high-level structure something like that given
in Figure 8.1.

Binaries

Project

SourcesToolsDocumentation MakefilesSpecifications Data DictionaryLibrariesDrawings Test

Figure 8.1 Typical Project Directory Structure.

Proper management of the version control system is an important part of hardware or
software source management. With most version control systems, the source is checked in
to a vault or repository. To make changes to a particular module, the designer checks the
module out. Such a process gives the designer a copy of the original and then locks thecopy
original. Under such a protocol, the original can only be checked out to another designer as
a read only document.

The designer next makes the desired modifications to the source and tests the changes
with the rest of the modules. Such testing ensures that the changes operate as intended and
have not broken any other functionality of the system. The next step now depends on the
project.

If this module is the only one being changed, it can safely be checked back into the
vault. However, if other modules are in a state of flux as well, the module should be checked
in to a holding area within the vault awaiting completion of modifications on all the other
modules. Once agreement is reached among the team, a system build should be executed
and tested. Only after being successfully tested should all modules be moved from the
holding area into the main archival area.
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8.9.3 The Review Process

Once the requirements are identified and formalized, they should be reviewed with the
customer. One must make certain that understanding and concurrence have been achieved
prior to starting the detailed design. The review process is not complete at this point,
however.

Several times during the course of the development, design reviews are essential. Gen-
erally, these reviews occur toward the latter part of each phase as the deliverables begin to
take shape. During the early stages of the project, the reviews are necessarily high level. The
review focuses on functional descriptions and decomposition, high-level interface defini-
tions, potential failure modes, and gross parameters and signal flow. The goal is to identify
errors in understanding or conception, standards violation, safety, or security issues.

As the design progresses and system-level issues are resolved, the level of detail
addressed by the design reviews should similarly increase. On the hardware side, emphasis
should be on the major hardware blocks and the components from which they are built. Of
significant importance are critical timing issues, potential data flow bottlenecks, possible
electromagnetic interference (EMI) susceptibility, and likely failure modes and their
consequences. On the software side, the initial focus is on the algorithms, races, potential
critical sections, thread management, and so on. The objectives are to identify lockup
conditions, the potential for data corruption, system security vulnerabilities, or software
impacts on any time constraints. Later in the process, the software emphasis shifts to the
actual code (called code inspections and code walkthroughs). During the reviews, one

code inspections
code walkthroughs

must ask hard questions of and about the design and insist on answers.
This point cannot be stressed too strongly. Changes/corrections early in the design

process are relatively inexpensive whereas those made later in the design usually become
increasingly more expensive. Again, recall the “hockey stick curve.”

The pre-review analysis should be done by teams of people and should not include
the designer(s) of the hardware or software under review. Once the analysis is complete,
everyone should walk through the design as well as the specific hardware and software
components, resolving any questions that have come up during the analysis.

A typical review process would look like the one illustrated in Figure 8.2.

Select a Review

Team

Distribute all

Documentation

Identify and

Discuss Problems
Propose Solutions

as Appropriate

Formalize

Resolution of
Identified Problems

Team

Members Analyze

and Understand

the Design

Meet with Designer

to Conduct the
Review

Figure 8.2 Typical Review Process.

As engineers, we are and should be proud of our work. That pride is good; however,
as one proceeds through a development, to be successful and deliver a quality product, one
must practice what is called egoless design.egoless design

Satisfying specified requirements is just part of executing the design. Safe and secure
operation of the design outside of those specified boundaries must be verified as well. Dur-
ing development, one must try to break the design. Verifying system behavior at boundary
conditions cannot be avoided. One cannot assume that just because the system behaves as
expected and specified for the proper inputs that it will do so for all inputs and critical input
combinations.
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8.9.4 Bug Lists

As the development proceeds and moves into the module, subsystem, and system debug,
test, and integration, one should maintain an active bug list. The accepted view is that bugs
are only found on the software side. Such is no longer the case. Software underlies most
contemporary hardware designs. The bug list should identify each bug in detail. The bug
list should also, as much as possible, provide a set of steps whereby the bug can be dupli-
cated. As each bug is fixed, the root cause of the problem as well as a brief description
of the fix should be noted and documented. The bug should then be checked off the list
but not removed. Sometimes the little guys have a way of reappearing. Furthermore, such
information is always good for a postmortem analysis of the project.

8.9.5 Errors and Exceptions

Errors are static events that arise as the result of a design miscalculation or oversight or fromerrors
exceptions an incorrect or misunderstood specification. Exceptions are unexpected and undesirable

events that occur at runtime and are distinguished from errors because the system has the
possibility of recovering from these situations. Exception handling is intended to enable the
program to deal with such problems in a constructive way.

Too often, error and exception handling is left as something to do when the job is
completed. For the most part, the obvious errors are caught at compile time; most of the
other errors are handled when they arise as the development progresses through the debug
and integration phases. Finally, and to our embarrassment, one must deal with the previ-
ously undiscovered errors/exceptions that arise at trade shows or after the product has been
released and is in the hands of the first customer.

The last-named errors are those that, humorously, we can call phase of the moon errors.phase of the moon
errors These seem to have a certain mythical quality about them. They only happen occasion-

ally and can never (or almost never) be reproduced. Nonetheless, these reclusive ones are
real and are extremely difficult to track down. When they do surface, too often the typi-
cal response is, “let’s reset the system and see if it happens again.” Usually, what we are
trying to find obstinately refuses to be found, at least immediately, and, often, they are dis-
missed as imagination, but the unidentified anomaly will always return sometime. When
trying to resolve errors of this type, one should never take the “hope for the best” approach.
Everything possible should be done to try to recreate and resolve the error.

Good Design Practice One should never deal with bugs by resetting the system and
hoping that they go away.

The complexity of today’s systems is increasing the demand for a more proactive
approach to error management. Exceptions as well as exception handling and recovery need
to be addressed more formally. The problem of exception management must be considered
from the initial stages of the design rather than as something that gets incorporated after the
job is complete. Bruce Eckel, a noted expert and writer on the C++ and Java languages,
points out that one of the most powerful ways to improve program robustness is through
the proper handling of exceptions.

Traditional exception handling in C ranges from none to immediate mode handling
such as an assert macro or an error handler of some sort accessed using a goto, the Cassert, goto, setjmp,

longjmp library functions setjmp and longjmp, or returning an error value or code from a function.
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The assert macro is a standard C library macro that evaluates its argument and, if the
argument is nonzero, the macro does nothing. Otherwise, the program terminates. Assert is
an all or nothing approach that was originally intended for use during the debugging phase
of a project. When used, the macro is often disabled using #define statements before the
code is -delivered. Forcing an embedded application to abort and terminate is not robust
exception management.

The syntax for the assert macro is given in Figure 8.3. The code fragment shown inassert
Figure 8.4 illustrates the use of the assert macro to ensure that a pointer is not NULL prior
to dereferencing it.

syntax

void assert( int anExpression)

Figure 8.3 Assert Macro Syntax.

void aFunction(int* aPtr)

{

#ifdef DEBUG

assert(aPtr); // test for a NULL pointer during debugging

#endif

printf(“The value is: %d \n”, *aPtr);

return;

}

Figure 8.4 Using the assert macro.

The C library functions setjmp and longjmp are intended to implement an elemen-setjmp, longjmp
tary form of jump and can be used to handle abnormal or exceptional conditions. Each
of these functions is implemented as a macro in the C language. Their syntax is given in
Figure 8.5.

syntax

int setjmp (jmp_buf environment);

int longjmp(jmp_buf environment, int status); Figure 8.5 Syntax for the setjmp and
longjmp Functions.

The flow of control proceeds as follows:

• setjmp stores the caller’s context or environment in what is called a jump buffer – a
buffer of type jmp_buf – which is a C implementation specific array.

• Before executing a longjmp, setjmp must have been executed to save the environment;

setjmp
jmp_buf
longjmp

setjmp returns a 0.

• When a subsequent longjmp is executed, the environment stored in the jmp_buf is
restored and execution resumes after the setjmp. The value of the status variable is
returned.
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#include<setjmp.h>

#include<stdio.h>

#include <stdlib.h>

// test function

int divider(jmp_buf env, int num, int denom)

{

if(0==(denom)) 

// we have an exception - return status as 1

longjmp(env,1);

else

// normal return

return num/denom;

}

int main(void)

{

// set up jump buffer

jmp_buf env;

// declare some working variables

int status, num, denom, quotient;

// prompt for input

printf("Enter two integers numerator and denominator please\n");

scanf("%d%d",&num,&denom);

// save the environment

status=setjmp(env);

// on first pass status is 0 - flow will skip the if

// longjmp will return here and set status

if(status!=0)

{

// we have an exception 

printf("Divide by zero - status is: %i\n", status);

// try to recover

printf("Enter two integers numerator and denominator please\n");

scanf("%d%d",&num,&denom);

}

// normal return

quotient = divider(env,num, denom);

printf("The quotient is: %i\n", quotient);}

Figure 8.6 Using setjmp and longjmp.

We can see how this works in Figure 8.6.
If the denominator is not zero, the divider() function takes a normal exit; otherwise,divider()

longjmp the exit is through the longjmp. The status variable gets set as a side effect and the program
attempts to recover.
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One should be very careful using this mechanism in an embedded application. If recov-
ery fails, the system is stuck in an infinite loop. The design must address such a possibility
and implement a more graceful failure management scheme.

Languages like C++ and Java have much more sophisticated and powerful exception
handling mechanisms than does the C language. Those mechanisms, however, are outside
the scope of this text. If one is working with them, understanding how exceptions are han-
dled in those languages so as to take advantages of the methods is important.

8.9.6 Use the Available Tools

Some of the most powerful steps that one can take toward improving the safety and relia-
bility of designs are very often the simplest. On the software side, one of those steps begins
with the compiler. Most compilers support various warning levels. The levels typically
range from no warnings to treating any warnings as errors. Set the warning level high. Warn-
ings should not be ignored; they are generated for a reason. Understand and resolve each one
as it occurs. The goal should be to identify any errors at compile time rather than at -runtime.

Variable typing is another area in which the available tools can be used to advantage.
Three different kinds of typing are defined: strong, weak, and none. With strong typing, typeweak, strong, none
conformance is strictly enforced. Operations cannot be called on an object unless the exact
signature of the operation is defined by the object’s type. A violation of the type is detected
at compile time. With no type enforcement, an object of any type can be used as an object
of any other type at any time. Type violations may not be known until runtime – with poten-
tially disastrous consequences, one might add. On the other hand, weak typing is a mix of
strong and no typing. C and C++ fall into this category. C++ and Java tend toward stronger
typing and C toward the weaker. With weak typing, it is possible to ignore, suppress, or be
unaware of type information.

8.10 SAFE AND ROBUST DESIGNS – THE SYSTEM

The typical embedded system core comprises a microprocessor(s), a memory subsystem,
a time base, a collection of peripheral devices, a watchdog timer, a bus system, a power
system, and a reset system. In Figure 8.7, we repeat an earlier block diagram of such a
system for reference.

8.11 SYSTEM FUNCTIONAL LEVEL CONSIDERATIONS

Faults can occur in any one of the pieces that make up the embedded system core. We will
utilize this core in a control application. A risk assessment has determined that failure of
the control function poses a moderate risk. To manage the risk, an alarm component will
be added to the core. In addition, the system is interacting with a remote application that
requires reliable and secure data exchange.

8.11.1 Control and Alarm Subsystems

Both the main control function and the alarm subsystem (which may include system shut-
down responsibility) require computational capability. One should avoid designing the sys-
tem to utilize the same microprocessor for both the command and the alarm functions.
If the microprocessor fails in the control task, it will be unable to invoke alarms or shut
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Figure 8.7 Typical Embedded System Block Diagram.

the system down. If possible, the safety components should be designed as a separate
subsystem. Failure of either the main microprocessor or the one managing the safety ele-
ments does not constitute a single-point failure that will lead to system failure. We make the
assumption that the failure of either microprocessor is an independent event. Both failing
(nearly) simultaneously constitutes multiple failures that violate the original assumption of
a single-point failure.

8.11.2 Memory and Bus Subsystems

Utilizing separate microprocessors for the alarm and control subsystems without also ded-
icating separate memory and bus subsystems as well defeats the gains from segregating the
processors. Sharing either creates a single-point failure potential.
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8.11.3 Data Faults and the Communications Subsystem

The communications subsystem brings commands and data into the system from the exter-
nal world and/or sends the same in the other direction. Corrupted information can jeopardize
the safety, security, reliability, and robustness of the system. Of initial concern is the abil-
ity to distinguish between valid and corrupted data. Thereafter, any erroneous information
must be dealt with either by correcting the error or utilizing the exchange protocol or an
encoding algorithm.

8.11.4 Power and Reset Subsystems

Both the main control function and the alarm subsystem require power to operate. As with
the alarm subsystem, one should avoid designs that utilize the same power system for both
the command and the alarm functions. Often, when designing a safety critical system, the
safety/alarm components are powered by an uninterruptible power supply (UPS). Thus, if
the power subsystem for the main system fails, the alarm capability remains operational.
One could also design an alarm monitoring system into the main system. Failure of the
power supply for the alarm and shutdown subsystem could trigger a compromised state
alarm via the main system. If the design utilizes a common power system, the potential for
a single-point failure exists and can be a significant problem.

Every system should have a Power On Reset (POR) capability to ensure that all thePower On Reset (POR)
comprising storage elements start in a known state. A common reset to the two major blocks
of the system prevents either from doing its job. The main block and the safety critical block
should each have a POR from its own supply.

8.11.5 Peripheral Device Subsystems

Hard or soft failures in any of the peripheral devices can affect the operation of the appli-
cation in a number of ways. A hard failure in any device eliminates the services it was
intended to provide. A soft failure, in which the device appears to be functioning but is
actually returning incorrect data or performing an incorrect operation, potentially raises a
higher safety risk. Either failure presents two problems: identifying the occurrence of the
fault and dealing with the consequences. Identifying the fault can be addressed through
built-in self-test functions running in the background. Coping with the loss of a (critical)
device is a design phase issue that is dealt with in the same manner as the control and alarm
faults.

8.11.6 Clock Subsystem

System designs that utilize the same clock or time base for both command and alarm func-
tions have a potential common point for failure. In the system described earlier, both the
main control function and the watchdog subsystem require a clock to operate. A watchdog
timer is like the dead man’s throttle on a train. If not reset on a regular basis, the watchdogdead man’s throttle
timer forces the system into a fail-safe state. If a shared clock is used, failure of the clock
prevents the microprocessor from resetting the watchdog timer. At the same time, such a
failure also prevents the timer from advancing. Independent clocks, similar to independent
microprocessors, mitigate the effect of the simultaneous failure of two clocks.

We will now examine each of these pieces of functionality and present system-level
alternatives for supporting robust and reliable designs while reducing safety risks. One
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must bear in mind that the incorporation of any of the design alternatives must take into
consideration the context and requirements of the specific application.

8.12 SYSTEM ARCHITECTURE LEVEL CONSIDERATIONS

Let’s now look at some possible hardware architecture alternatives for addressing the con-
trol and alarming subsystems. Highly reliable systems fall into three classes, based on their
capabilities following failure. The first are called fail operational2 (read as fail operationalfail operational2, fail

operational squared). Such systems can tolerate two single-point failures and continue to operate with
full capability. The systems of the second group are called fail operational. They will tol-
erate one single-point failure and still continue to operate with full capability. Following
failure, those systems in the third group can continue to operate but at diminished capability.

Based on such classifications, one can build safety into a design at a number of different
levels. How that is done generally involves trading off increased cost for reduced risk. At the
one extreme, fail operational2 capability often entails incorporating fully redundant paths
of control and separate safety critical elements or error detection-correction capability into
the architecture. At the opposite extreme, sufficient capability is added to the design to
ensure minimum performance or, at the very least, annunciation and graceful failure.

8.12.1 Fail Operational2/Fail Operational Capability

At the component level, fail operational2 capability commonly involves some form of vot-fail operational2

ing scheme. The implementation comprises an odd number of channels of control and a
voting protocol to decide on the validity of incoming signals and outgoing controls. The
basic case is denoted triple module redundancy (TMR) and is shown in Figure 8.8. In thistriple module

redundancy (TMR) figure, we are focusing on potential failures in the three channels, not in the voter or alarm.
Clearly, both the voter and alarm are vulnerable to single-point failures.

System 0

Voter

Input

Input

Input

Output

Alarm
Alarm

System 1

System 2

Figure 8.8 Triple Module Redundancy.

The design we have illustrated uses three separate sensors, one for each system. A
reduced alternative would be to use a single sensor and bus the output to all three systems.
Such a modification can be made if the reliability of the sensor is known to be very high. For
this design, all three systems are on line and making decisions. The voter examines each of
the outputs and selects the value on which two (or more) agree. With such a design, the best
one can do is fail operational capability. The decision must be made at design time as to
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how the system should behave should two units fail. Alarm capability is added to announce
the first failure and then, if necessary, the occurrence of a second.

By adding two more systems, one can achieve fail operational2 capability. Such a con-
figuration, as shown in Figure 8.9, is called N module redundancy (NMR). The voter is

N module redundancy
majority (NMR)

slightly more complex. The output is now determined based on the results of the majority.
N must always be an odd number to ensure that operationally a tie cannot occur.

System 0

System 1

Input

Input

Input

Output

System N−1

Majority
Voter

Alarm

Alarm

Figure 8.9 N Module Redundancy.

The next variation on the approach is driven by the design of the individual systems.
The systems may be implemented with the same or with different designs.

8.12.1.1 Same Design

In the first alternative, all of the individual designs are physically identical. One must ensure
that single-point failure will not affect all channels. The advantage of such a scheme is that
improved system robustness is achieved at minimal design cost. Additional systems are
simply copies of the original design. The disadvantage is that a common failure mode, such
as a design flaw, can appear in all systems. If the design has a susceptibility to certain kinds
of input errors, then when one system is affected, the error will affect all systems. Recall
the Ariane 5 rocket.

8.12.1.2 Alternative Designs

The use of alternative designs implements redundancy by replicating systems. Each design
is physically different and yet has the same public interface, that is, implements the same
functionality. The advantage of such an approach is that a common failure or design flaw
has a low probability of being replicated in all of the systems used for control. The sys-
tem can detect/respond to certain kinds of input errors. The disadvantage, of course, is
cost. The scheme is implemented in several different ways. One approach is to make all
elements functionally the same. That is, all channels implement the same behavior, which
can be achieved in different ways. Generally, however, the implementation uses different
hardware and software. Such a design is the most expensive of the three alternatives. For
added reliability, the input sensors may be duplicated or, if deemed necessary, these may
be different as well. One of the major commercial aircraft manufacturers, for example, uses
microprocessors from several different vendors in its cabin pressure management system
to guard against a common design error or fault susceptibility in any of the processors.
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8.12.2 Reduced Capability

The next approach gives somewhat reduced capability under failure.

8.12.2.1 Lightweight Redundancy

As an alternative to full operational capability under failure, the design may support a criti-
cal subset of the output signals and add additional alarm capability. Such a scheme is called
lightweight redundancy. A secondary system with alarm, annunciation, and some controllightweight

redundancy capability accepts a subset of the inputs. The secondary system then calculates a subset
of the outputs while monitoring the actions taken by the primary channel. If a difference
exists in the calculated output values and the primary outputs are out of bounds, a warning
is issued.

The intent is to identify gross failures and to focus on fault detection rather than tol-
erance. The secondary system can provide a subset of critical functionality and outputs as
necessary but cannot completely fill in for the main system in the event of failure. The block
diagram for such a system appears in Figure 8.10.

Primary
System

Secondary
System

Outputs

Warning and
Annunciation

Subset of
Primary

Output Set

Primary

Inputs

Output Tracking

Subset of
Primary

Input Set

Primary
Outputs

Figure 8.10 Lightweight Redundancy.

8.12.2.2 Monitor Only

An alternative to lightweight redundancy, with somewhat less capability, implements a
primary system with a separate monitoring function. The monitoring subsystem does not
support any of the primary functionality.

The primary system is charged with implementing the necessary actions while the mon-
itor subsystem is responsible for keeping track of what actions need to be taken. The monitor
channels also track the physical environment to ensure that the results of the actions are
appropriate and correct. The sensing utilized by the monitor subsystem is separate from
that of the primary system. The sensors for the primary system are strictly dedicated to that
job, although a subset may be directed to the secondary subsystem.

The objective of such an approach is to have the monitor subsystem identify primary
system failures and inform the appropriate fault-handling mechanisms. A failure in the
monitor subsystem does not affect the primary system except indirectly, that is, the loss
of monitoring capabilities and associated responses. Nonetheless, we must still identify,
and eliminate, points of single failure. The two channels exchange messages to ensure
proper and continuing operation of each. The block diagram is now refined as illustrated in
Figure 8.11.
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Figure 8.11 Monitor Only System Configuration.

8.13 BUSSES – THE SUBSYSTEM INTERCONNECT

The various components in the system are interconnected by one or more bus structures.
These busses comprise the address, control, and data signals necessary for proper operation
of the system. The embedded world commonly utilizes variations on three general config-
urations: the star, the ring, and the multidrop bus. Each has certain advantages and certainstar, ring, multidrop
disadvantages. We will discuss the detailed operation of each in a subsequent chapter. For
now, the intent is to examine each from a reliability perspective.

8.13.1 The Star Configuration

The star configuration, shown in Figure 8.12, implements a master–slave arrangement.star, master–slave
Device-to-device communication must go through the master device. During the transmit
operation, the master device at the center directs all of the activities and message exchange
with all of the other devices. During the slave’s receive operation, the master transmits to
the desired destinations.

Slave

Devices
Master

Device

Figure 8.12 Star Bus Configuration.

If a link or slave device failure occurs, communication with the other devices can con-
tinue. While a portion of the functionality is lost, the system can still be operated at a reduced
level. Loss of the master device will, of course, result in a permanent or hard failure.

8.13.2 The Multidrop Bus Configuration

The multidrop bus is a variation on the star architecture, as Figure 8.13 shows. A bus master
may or may not be used. This simple bus is probably one of the more commonly used
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Device i Device i + n

Figure 8.13 Multidrop Bus Configuration.

architectures. Devices may be designed with several different levels of capability: all can
transmit or receive; some can transmit only, while others may receive only. Failure of the
link at a single device will not compromise the entire net. A severed net, however, can
prevent communication beyond the severed point.

8.13.3 The Ring Configuration

The basic ring structure is shown in Figure 8.14. The ring configuration also serves as
the basis for token ring type networks. This configuration typically has no bus master (on
some occasions, one of the nodes is designated as lord). Each device accepts all of the
messages circulating within the ring. If a device receiving the message is the addressed
device, the message is accepted; otherwise, the message is passed on to the next device.
Such a configuration has been utilized for many years as the basis for IBM’s token ring.
When configured with one node designated as lord, people have gotten into the hobbit of
referring to the architecture as a Tolkien ring. Variants on the ring architecture are common
in communication networks in automotive or aircraft applications.

Figure 8.14 Ring Bus Configuration.

Failure of the link in the basic ring configuration still permits full interconnection of
all comprising nodes. If one of the links is lost, the architecture reduces to the multidrop
bus configuration. A variant on the ring adds a second inner ring, as we see in the leftmost
network in Figure 8.15.

Dual Ring Alternate Links

Severed

Two Separate
Links Severed

Figure 8.15 Multiring Bus Configuration.
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Traffic flows in one direction on the outer ring and in the opposite direction on the inner
ring. On failure, the loss of a single link on either ring still leaves one of the rings intact, as
we see in the center drawing, which shows two alternate failures. If both links are severed
between any adjacent nodes, as in the right-hand drawing, a single ring remains intact.

8.14 DATA AND CONTROL FAULTS – DATA BOUNDARY VALUES

One of the essential steps during the early phases of a design is the definition of the interface
signals among the system functions and then the modules. This process involves specifying
the type and range of each signal. As each of those decisions is made, one must furthertype, range
consider how the system will behave/respond if the input data either does not match the
expected type or exceeds the specified range. In addition to deciding what to do if the
signal exceeds the specified range, one must also consider the proper course of action if
(and when) the signal returns to the proper values.

The problem can be addressed from both the design and operational sides. During
design, one must ensure that the input data is in bounds prior to incorporating it in any
calculations or before making any irrevocable decisions. Furthermore, one must decide
how to treat out-of-bounds values at runtime.

Under no circumstances should an out-of-bounds piece of input data ever be mapped,
without warning, into one that is in bounds. That said, boundary tests must be incorporated
into the runtime code to confirm that input data has values (and types) that are within the
specified upper and lower bounds. Furthermore, one needs to decide what to do if such
bounds are exceeded. Alternatives include:

• Hold at max or min value

• Alarm

• Combination.

8.14.1 Type Conformance

The task of ensuring type conformance for input signals is somewhat easier in an embedded
application because we have greater control over inputs and their characteristics than one
might find in the typical desktop application. Runtime type mismatch should not be a major
issue. We will discuss such issues in greater detail when we address security issues.

When new features are added to a legacy design, one must be sure that existing func-
tions are invoked with the proper signature. Extra care must be taken when the application
is written in a language such as C++ that supports overloaded functions.

8.14.2 Boundary Values

Figure 8.16 illustrates a typical signal and a specified range or limits on that signal. At points
A and B, the signal is at the low and high boundaries, respectively; at these two points, the
signal value remains in range.

At C1, the signal exceeds the specified range in the negative direction and continues
decreasing. It reaches a negative peak and begins increasing, crossing the lower bound at
C2. The increase continues until the upper bound is crossed at D1. The behavior at the
lower bound is repeated at the upper bound, and eventually the signal crosses back into the
specified range at D2.
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C1

B

C2

D1 D2

A Figure 8.16 Signal Illustrating Possible Range
and Limits.

The signal values at points A and B are valid and must be accepted as proper inputs.
The design and subsequent tests should confirm that behavior. The signals at points C and
D, however, exceed the specifications. At both sets of points, we have several choices:

• Ignore the out-of-range values.
• Detect the out-of-range values, issue a warning, and continue operating. When or if

the signal returns to the proper range, continue operation with annunciation of the
original fault.

• Detect the out-of-range values, issue a warning, and terminate operation.

Several choices also exist as to what values to assign to the signal at these points:

• Accept the actual value of the signal.
• Map the actual value into the maximum or minimum value but do not use the value

other than for annunciation.
• Whatever the choice, the system must be thoroughly tested at such values to ensure

proper operation.

8.15 DATA AND CONTROL FAULTS – THE COMMUNICATIONS SUBSYSTEM

To be useful, any embedded application must interact with the outside world and the internal
modules must interact with each other. Such interaction necessarily involves the exchange
of data. During the course of that exchange, the data can become corrupted. In that event,
what should be done?

8.15.1 Damaged Data

At runtime, the possibility always exists that data will be damaged by noise, EMI, or cross
talk within the system. See the discussions on such effects on signal quality in Chapters 20
and 21. One can ask several questions about such faults. Are the aberrant data detectable?
Detectable faults are those that can be distinguished from legitimate data, whereas unde-
tectable faults masquerade as legitimate data. What is the extent of the damage? Is the
damage a single bit, several bits, a group of bits, or is it substantial – the complete loss
of an input channel? What is the appropriate or best response? Alternatives range from
ignoring the problem to attempting complete recovery.

Let’s examine each of these alternatives, starting with being able to detect the
faulty data.

8.15.1.1 Detectability

Faulty data contains a detectable error if it can be distinguished from legitimate data. One
measure of the ability to detect corrupted data is related to the distance between legitimate
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words in the language. The term distance being referenced here refers to the number of bitsdistance
that must be changed to map one valid data word into another. Such a difference is denoted
as the Hamming distance after R.W. Hamming who first proposed the idea. Put anotherHamming distance
way, the Hamming distance is given by the number of bits that must be changed before
one valid data word is converted into another. The larger the Hamming distance between
legitimate words, the greater must be the extent of the damage before an error is incorrectly
interpreted as correct.

Consider a 3-bit piece of data. With three bits, eight possible combinations are possible,
as illustrated on the vertices of the labeled cube in Figure 8.17.

000 001

011010

100

110 111

101

Figure 8.17 Graphical Illustration of Distance Between
Data Words.

Each edge represents a unit distance. Between any two adjacent nodes, only a single bitunit distance
needs to change to convert one pattern into the next. Within any of the faces of the cube, two
bits must change to convert patterns on diagonally opposite nodes from one to the other.
The nodes are separated by a Hamming distance of two. Finally, on the full cube, three
bits must change to convert patterns on diagonally opposite vertices or nodes – a Hamming
distance of three. Thus, if valid data words have a Hamming distance of two, for example,
a data word must sustain two faults before one valid piece of data is converted into another.

To try to minimize the possibility that corrupted data will be interpreted as valid data,
we try to maximize the Hamming distance between valid data words. Doing so, however,
reduces the number of combinations available for a specified word size.

For the 3-bit word, specifying a Hamming distance of three permits only three different
sets of two valid data words each: {(000, 111), (010, 101), (001, 110)}. A Hamming distance
of two gives four possible sets of four valid data words each.

It can be shown that a minimum Hamming distance of two is required to be able to
detect any single-bit error in a transmitted data word. It can also be shown that minimumdetect
distance of three is necessary to be able to correct any single-bit error. Generalizing, for acorrect
block of code words with a minimum Hamming distance of 2m + 1, it can be shown that
up to m bit errors can be corrected. Furthermore, if the minimum Hamming distance is

m bit
correct, m bit,

2m + n + 1, then it is possible to correct up to m bit errors and to detect up to n bit errors.detect, n bit

8.15.1.2 Extent

From the outset, data is subject to the vagaries of the environment. Such errors may com-
prise single or several bits; these errors occur when a bit is dropped or added to a data stream
or when one bit is transformed from one state to another. Group-bit errors occur when a
group of spatially close bits are corrupted. Such errors are referred to as burst errors. Sub-burst errors
stantial bit errors occur when there is a major loss of integrity in the physical link. We can
address errors in the first two categories in a number of ways. Little can be done for those
in the third.
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8.15.1.3 Response

When data is corrupted, one can detect the damaged bits and signal that an error has
occurred, or one can detect and then correct the problem (depending on the extent of
the error). However, the cost (time and added bits) of the correction algorithm must be
considered.

8.15.2 Managing Damaged Data

Several alternatives exist for dealing with data that has been corrupted. The choices are
simple: ignore it, detect it, or detect and correct it. For either of the last two alternatives,
additional information must be incorporated into the data object. The amount of additional
information that is needed depends on the kinds of faults to be detected and the intended
response.

8.15.2.1 Parity

The simplest form of detection is called parity. The basic scheme appends a single bit toparity
odd parity each data word or block. When using odd parity, the total number of one bits (including

the parity bit) must be odd. If the data word has an odd number of one bits, a 0 is added; if
the data word has an even number of one bits, a 1 is added.

For even parity, the total number of one bits (including the parity bit) must be even.even parity
If the data word has an odd number of one bits, a 1 is added; if the data word has an even
number of one bits, a 0 is added. Before the data is used, the parity is recomputed and
compared with the expected. A mismatch indicates an error. If there is no mismatch, the
best that can be said is that either no errors have occurred or an even number of errors have
occurred.

The advantage of such a scheme is that it is simple and detects all odd numbers of
errors. The simplicity of the approach, however, also gives rise to several problems. The
approach does not work reliably for burst errors and, also, it is a “detection only” scheme.

The basic parity codes have a Hamming distance of two. That is, 2-bit changes are
required before one valid data word is changed into another.

EXAMPLE 8.1 Three-bit words are used in Figure 8.18 to illustrate how to compute and check the
parity bit for each of the schemes.

When checking for errors in this example, only single-bit errors are assumed to have
occurred.

8.15.2.2 Linear Codes

Implementing data error detection using the basic parity scheme is sufficient for many appli-
cations. If greater detection as well as correction capabilities are necessary, then a more
sophisticated approach is appropriate. A good first step toward adding greater capabilities
to a fault management scheme utilizes an encoding scheme that generates a family of codes
called linear codes. Such codes are designated linear because the arithmetic combinationlinear codes
of two existing words gives a third word that is also in the set of valid code words.

The term encoding in the current context refers to the process of adding parity bits toencoding
the data word to provide enhanced detection and correction capabilities. Code, code word,
or encoded word specifies the data word with the additional parity bits. The first types of
linear codes that we will look at are called the Hamming codes.Hamming codes
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Generating

Original
Data 

Odd Even

Data Parity Data Parity

000 000 1 000 0

001 001 0 001 1

010 010 0 010 1

011 011 1 011 0

100 100 0 100 1

101 101 1 101 0

110 110 1 110 0

111 111 0 111 1

Checking

Data 

Received

Odd Parity Even Parity

Result Result

0000 Error Valid

0001 Valid Error

0010 Valid Error

0011 Error Valid

0100 Valid Error

0101 Error Valid

0110 Error Valid

0111 Valid Error

1000 Valid Error

1001 Error Valid

1010 Error Valid

1011 Valid Error

1100 Error Valid

1101 Valid Error

1110 Valid Error

1111 Error Valid

Figure 8.18 Generating and Checking Parity for a 3-bit Data Word.

8.15.2.2.1 HAMMING CODES
A strategy developed by Hamming demonstrated a method for encoding data words with
a minimum distance of three. Following encoding, data could be transmitted with the
assurance that on reception, any single-bit error could be corrected and any double-bit
error could be detected.

To execute the encoding process, one must specify the number of data bits and the
number of parity bits. These two are related as follows.

Encoded word length = 2p − 1
Number of parity bits = p
Number of data bits = 2p − p− 1

The approach requires that the parity bits be inserted into the data field in a particular
way. Starting with the first bit position, any position that is a power of two should contain a
parity bit; all remaining positions are used to store data bits. Thus, positions 1, 2, 4, 8, …
will hold parity bits. The approach also specifies the bits over which each of the parity bits
computes parity. The assignment works as follows.

Numbering begins from the least significant bit, which is labeled bit 1.

1. Parity bits are placed in bit positions: 1, 2, 4, 8, 16 … Data bits are placed in the
other positions.
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2. The parity bits are chosen such that they provide even parity over the following
groups of bit positions:

a. P0: 1, 3, 5, 7, … P0 will be in position 1

b. P1: 2, 3, 6, 7, 10, 11, … P1 will be in position 2

c. P2: 4, 5, 6, 7, 12, 13, 14, 15 … P2 will be in position 4

The encoded word appears as in Figure 8.19.

7 6 5 4 3 2 1

D3 D2 D1 P2 D0 P1 P0 Figure 8.19 Hamming Encoding Scheme
for a 4-bit Data Word.

Upon reception, the parity bits are recomputed. If the recomputed set of parity bits is
all zero, the received word contained no errors; otherwise, the binary value of the bits in the
recomputed set identifies the bit that is in error. At that point, the designated bit can simply
be inverted.

The data word is illustrated in Figure 8.20.

4 3 2 1

1 1 0 1
Figure 8.20 Sample Data Word.

The encoding is given as in Figure 8.21.

7 6 5 4 3 2 1

1 1 0 0 1 1 0

Figure 8.21 The Data Word is Encoded.

Assume that the encoded word shown in Figure 8.22 is received.

7 6 5 4 3 2 1

1 0 0 0 1 1 0

Figure 8.22 Corrupted Received Data Word.

Each of the parity bits is computed as:

P0: {1, 3, 5, 7} parity is 0
P1: {2, 3, 6, 7} parity is 1
P2: {4, 5, 6, 7} parity is 1.
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The check is showing a value of 110, binary 6. Indeed, bit 6 is the one that is incorrect.
Had the check number been 0, the received word would have been correct.

8.15.2.2.2 BLOCK CODES
Block codes are the subset of linear codes in which error management is performed overblock codes
blocks of data words rather than individual words. Among the simpler implementations of
such codes are the block check codes. Encoding data using such codes begins with comput-block check codes
ing parity for each individual word as we did earlier. Next, a group of words is aggregated
into a block or frame, and a parity word called a block check sum is computed over theblock check sum
entire block. The block check sum is a simple extension of the single parity bit idea, and it
applies to a complete block or frame of data. The block check sum is computed according
to the following rules.

1. The parity of each individual word is computed as in the base case; the parity bit is
now referred to as a “lateral” or “row” parity bit.

2. A parity word is computed for the block as follows.

Bit 0 – Parity of bit 0 of all words in the block
Bit 1 – Parity of bit 1 of all words in the block
Bit n – Parity of all lateral parity bits in the block.

This word is called “longitudinal” or “column” parity.
Figure 8.23 schematically illustrates a block of data (made up of 4-bit words) and the

two parity checks for the data block.

D0D1D2D3 P

Word 0

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6

Word 7

Word 8

Lateral Parity Check

Longitudinal Parity Check

Block Check Word

Figure 8.23 Computing Lateral and Longitudinal Parity in a
Block Check Scheme.
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As a variation on the scheme, one may elect to use odd parity in one direction and even
parity in the other. Under such a variation, the parity bit in the lower right-hand corner of
the block is ignored. The advantages of the block check sum are that it is simple and detects
all single-bit errors as well as many double-bit errors. Nonetheless, some simple errors can
still escape detection. Like the single-parity bit scheme, block check sum does not work
reliably for burst errors; also, it is a detection-only algorithm.

EXAMPLE 8.2 In this example, a block size of eight data words is defined. Each data word will com-
prise 4 bits. We will use even parity for each word and odd parity for each column in the
block (see Figure 8.24).

1 1 0 0 0

0 1 1 1 1

0 1 1 0 0

0 1 0 1 0

1 1 1 0 1

0 1 1 0 0

1 0 0 1 0

0 0 1 0 1

0 1 0 0 0

D0D1D2D3 P

Word 0

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6

Word 7

Word 8 Figure 8.24 Computing Lateral and Longitudinal
Parity in a Block Check Scheme.

8.15.2.2.3 CYCLIC ENCODING
The next level of sophistication utilizes a scheme called cyclic encoding. Such codes are acyclic encoding
subset of linear codes and are quite effective at both error detection and correction. They are
designated cyclic because a new code word is obtained from a circular shift of an existing
one. Recall that the linear block codes accomplished the same thing by adding valid code
words (a shift by two). Their very nature makes cyclic encoding quite easy to implement
in hardware, particularly using field programmable gate array (FPGA) or very large-scale
integrated (VLSI) circuitry.

Much of the material introduced in this section is based on the work of Evariste Galois,
an accomplished mathematician who lived in France in the early 1800s. His work has made
significant contributions to many of the encoding and encryption methodologies we have
today. Sadly, Monsieur Galois seems to have been more skilled with mathematics than he
was with a pistol. He died in a duel in Paris at the young age of 21.

Of the cyclic codes, the cyclic redundancy check (CRC) encoding (commonly used incyclic redundancy
check (CRC) various memory systems) is probably the best known. The full details of the underlying

theory of cyclic encoding are well beyond the scope of this text. The following discussion
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is intended to introduce some of the vocabulary and general concepts but does not have
sufficient depth to permit one to design a complex system from scratch. The interested
reader is encouraged to explore any of the numerous excellent texts on communication and
coding theory that are available.

At the root of the approach is the notion of a polynomial associated with a binary
sequence of bits. The polynomial, over a Galois Field of two elements – GF(2), is written
in terms of a dummy variable, usually x, and is of the form

f(x) =
n−1∑
i=0

aix
i (8.1)

The associated sequence of n− 1 bits is then given as: [an−1, an−2, … a1, a0]. Note that
the polynomial will be of order n− 1 when the sequence is of length n.

For the set of bits [1011], we will have,

a3 = 1, a2 = 0, a1 = 1, and a0 = 1

and the corresponding polynomial:

f(x) = x3 + x + 1 (8.2)

Furthermore, according to Galois Field arithmetic, we can define addition and multi-
plication as shown in Figure 8.25.

Addition

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0

Multiplication

0 • 0 = 0

0 • 1 = 0

1 • 0 = 0

1 • 1 = 1 Figure 8.25 Galois Field Addition and
Multiplication.

As with the other encoding methods, the goal is to add sufficient redundant information
to an encoded word such that we are able to detect or detect and correct a specified number of
bit errors in a received word. The more redundant information that is added, the greater will
be the extent of the damage that can be repaired. As we learned with the linear Hamming
codes, properly selecting the redundant bits is where the real work begins.

Let’s look at the math first. Start with a binary sequence of length k and append n–k
additional parity bits. The result will be an n-bit word. That word now has the form

[dk−1, dk−2, … d1, d0, rn−k−1, rn−k−2, … r1, r0],

which can be written in polynomial form as

m(x) =
n−1∑

i=n−k

dix
i +

n−k−1∑
i=0

rix
i (8.3)



�

� �

�

364 Chapter 8 Safety, Security, Reliability, and Robust Design

or equivalently as

M(x) = xnD(x) + R(x) (8.4)

where M(x), D(x), and R(x) represent the three polynomials.
We can take advantage of such an equation as follows.
First, let

• n and k be integers, k> n
• D(x) be a k bit binary number expressed in polynomial form
• G(x) be an (n− k) bit number expressed in polynomial form
• R(x) be an (n− k) bit number expressed in polynomial form

Observe:

1. D(x) is shifted to the left by n places.

D(x) ⋅ 2n (8.5)

2. Then it is divided by G(x) to give a quotient and a remainder:

D(x) ⋅ 2n

G(x)
= Q(x) + R(x)

G(x)
(8.6)

3. Next, the remainder portion is added to both sides of the equation.

D(x) ⋅ 2n

G(x)
+ R(x)

G(x)
= Q(x) + R(x)

G(x)
+ R(x)

G(x)
(8.7)

4. Finally, simplifying:

D(x) ⋅ 2n + R(x)
G(x)

= Q(x) (8.8)

According to Galois Field arithmetic, the two remainder expressions on the right-hand
side of the equation in line 3 (both expressing the same binary number) will cancel, giving
the equation in line 4. Consequently, if the polynomial given by the expression

F(x) = D(x) ⋅ 2n + R(x) (8.9)

is divided by G(x), there will be no remainder. The binary sequence associated with F(x)
represents the encoded data word that is transmitted.

In operation, the data is encoded according to the steps outlined above and the resulting
binary sequence is sent. When the received word is divided by G(x), a remainder of zero
will indicate that no error has occurred. The upper k bits will be the data. If the result of
the division is not zero, an error has occurred. The remainder can then be used to identify
which bit(s) are in error.

The magnitude of n− k, the number of parity bits added, determines the extent of
the code’s ability to detect and correct errors. The number G(x) is called a “generator”
polynomial. This polynomial is not arbitrary – it represents what is called a “primitive” or
“irreducible” or “unfactorable” polynomial. Care must be taken in selecting the polynomial
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to ensure the desired error management. The choice determines the number and type of
errors that can be detected. The remainder bits indicated above are called the frame checkframe check sequence
sequence.

The encoding can be executed using a simple circuit such as the one given in the block
diagram in Figure 8.26.

g1 g2 gn−k−Α1

FF0 FF1 FF2
FFn−k−1

gate

data

D(x)

Encoded
Word

Figure 8.26 An n–k Stage Shift Register Encoder.

In the diagram, the gate, gi, indicates a connection or logical 1 if the corresponding
coefficient in G(x) is present and a logical 0 otherwise. The encoding operation proceeds as
follows. The message is shifted into the encoder and to the output, MSB (most significant
bit) first. After all the bits of the message are shifted out, the switch is placed in the upper
position, the feedback is broken by disabling the feedback gate, the encoder is reconfigured
as a shift register, and its contents (the remainder bits) are sent to the output as well.

The received message may have been corrupted during transmission; the goal of the
receiver is to recover the original data. When the encoded word is received, it is processed by
a circuit similar to that on the encoding side as shown in Figure 8.27. The circuit computes
what is called the syndrome of the received message.syndrome

g1 g2 gn−k−1

FF0 FF1
FF2 FFn−k−1

data

Figure 8.27 An n–k Stage Syndrome Calculator.

After the entire encoded word has been received, if the syndrome is 0 (all flip-flopssyndrome
contain logical 0), the word was received correctly. Because there is no remainder, no
error has occurred. Otherwise, there was an error. To identify the bit in error, the input to
the decoder is connected to logical 0 and clocked. Starting with the MSB of the received
message, successive bits are examined. When the contents of the decoder contain the
value: 0000 … 01, the current bit of the message is in error. After all the bits have been
shifted through, if the decoder does not contain all 0’s, an uncorrectable error has occurred.
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With the proper choice of generator, one can detect

• All single-bit errors

• All double-bit errors

• All odd numbers of bit errors

• All error bursts< n+ 1

• Most error bursts≥ n+ 1.

Similar techniques can be used to detect and correct multiple-bit as well as certain
families of burst errors. Typically, error correction relies on detection and re-transmission
rather than computation by the receiver.

EXAMPLE 8.3 In this example, once again, the design will utilize a 4-bit data word which sets the
value of k to four. If we wish to correct all single-bit errors, then the Hamming distance
must be three. Three additional bits will be sufficient; thus, the encoded word length, n,
will be seven. From a table of generator polynomials (which can be found in any of the
references on coding theory cited at the end of the text), we select the following polynomial.
The generator is implemented as given in Figure 8.28,

G(x) = 1 + x + x3 (8.10)

g1

FF0 FF1 FF2

FB

data

D(x)

Encoded

data

Q0
Q1 Q2

Figure 8.28 A (7–4) Stage Shift Register Encoder.

Let’s begin with the data word 0101. Expressing this as a polynomial in x

D(x) = x + x3 (8.11)

we will build the encoded word as illustrated in Figure 8.29. For the encoding process, the
switch in the encoder is in the down position; thus, starting from the MSB (on the right-hand
side), each bit is simultaneously sent into the encoder and out of the system. After four time
periods, the parity check bits are in the encoder. During the next three time intervals, the
contents of the encoder are shifted out.
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Time FB Q0 Q1 Q2

0 1 0 0 0

1 0 1 1 0

2 0 0 0 1

3 1 1 1 0

4 0 0 1 1

5 0 0 0 1

6 0 0 0 0

7 0 0 0 0

Time

0

1 1

2 0 1

3 1 0 1

4 0 1 0 1

5 0 0 1 0 1

6 1 0 0 1 0 1

7 1 1 0 0 1 0 1

Figure 8.29 Encoding the Data Word 0101.

The properties of the cyclic codes make them very useful for incorporation into
error-detection schemes associated with the transmission of large frames of data as might
be found in memories. Three of the most commonly used generator polynomials are those
identified as CRC-16, CRC-32, which are 15th and 31st-order polynomials, respectively,
and CRC-CCITT, which is also a fifteenth-order polynomial.

These polynomials are given in Figure 8.30.

CRC - 16

CRC- - CCITT

CRC - 32

f x( ) x16 x2 1+ +=

f x( ) x12 x5 1+ +=

f x( ) x32 x26 x23 x22 x16 x12 x11 x10 x8 x7 x5 x4 x2 x 1+ + + + + + + + + + + + + +=

Figure 8.30 Several Standard Commonly Used Generator p\Polynomials.

8.16 THE POWER SUBSYSTEM

As we have seen, we have a number of levels on which safety and reliability can be
addressed and ensured. We can see the application of this if we analyze the power
subsystem. On the one extreme, the design specification can stipulate that on loss of power
the system will continue to operate at full capability for some specified length of time. The
power source used in such applications is called an UPS. On the opposite extreme, the

uninterruptible power
source or supply (UPS)

specification may simply require ensuring a graceful shutdown.
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8.16.1 Full Operation

The duration of full operation following power loss is the critical factor here. If the duration
is “unlimited,” then a source of power comparable to that which was lost must be provided.
One approach is to implement a redundant power subsystem based on an architecture anal-
ogous to that which was used in the TMR system architecture.triple module

redundancy (TMR) The block diagram for such a system is given in Figure 8.31.

Monitor

Power

V2V1V0

Figure 8.31 A Triple Module
Redundant Power System.

In this configuration, one of the three power sources will be connected to the system.
The monitor is tracking the output of the selected source. Voting is not needed since the
required voltage is known; it is also clear when the level is not at the proper value. If the
selected power supply output falls out of specification, it is switched off and one of the two
remaining is selected as the main supply. A second failure repeats the process.

A number of variations on this scheme are possible. As we learned with the TMR
approach, the designs of the supplies can be identical or different. The implementation can
be simplified by reducing the number of supplies from three to two.

8.16.2 Reduced Operation

To ensure continued operation of a subset of the system’s capabilities, the previous design
can be modified to supply power only to the critical portions of the system as illustrated in
the next block diagram in Figure 8.32.

Module0 Module1 Module2 Module3V1V0

Monitor

Figure 8.32 A Power System With Double Module Redundancy Supporting Critical
Subsystems.
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Module0 Module1 Module2 Module3V0

Monitor

Action0

Action1

Action2

Action2
Action1 Action0

Reset

Figure 8.33 A Power System Implementing Multiple Trip Points.

A variation on the scheme in Figure 8.32 assumes a single supply with a series of set
points that trip with a decrease or fluctuation in the supply voltage, as seen in Figure 8.33.

Such an approach works well if the system’s operating environment is subject to occa-
sional brownout or other low-voltage conditions. Associated with each trip point is a set
of actions that must be taken to reduce the load on the supply and to backup critical data.
The final trip point causes a system-wide reset action to occur and, thereby, ensures that the
logic voltages that have come out of regulation cannot cause erratic behavior in the micro-
processor or other logic circuitry. In addition to unburdening the power system as power
falls, the actions can also initiate backup sequences and place modules into a low-power
mode as appropriate and as needed.

8.16.3 Backup Operation

The previous schemes assume that none of the power sources are batteries. Two final simple
schemes are intended merely to hold critical data or settings until normal system power
returns.

The first design, illustrated in Figure 8.34, utilizes a backup battery that has a voltage
large enough to hold the module in a low-power mode. The battery voltage must also be
lower than that of the main supply, otherwise the battery, rather than the main supply, will

Module0 Module1 Module2 Module3V0

Primary
Source Battery

Backup

V1

V1 < V0

Figure 8.34 A Power Subsystem Implementing Battery Backup.
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be supplying power to the system. A trickle charge circuit could also be added to charge
the battery from the primary source during normal operation.

The second circuit utilizes a large capacitor as a temporary power source. During nor-
mal operation, the capacitor is charged from the primary source. When primary power fails,
the capacitor voltage can be used to hold system power for a very short time. A circuit such
as that shown in Figure 8.35 is most appropriate under transient power conditions rather
than for extended periods.

Module0 Module1 Module2 Module3V0

Primary
Source

V1

Storage
Capacitor

Figure 8.35 A Power System Implementing Short-Term Power Loss Protection.

8.17 PERIPHERAL DEVICES – BUILT-IN SELF-TEST (BIST)

Ultimately, all the hardware and software come together in the application. If we have
properly executed the design and testing of the system, then the probability that it will per-
form reliably (according to its specification) in the customer’s hands will have improved
substantially. Nonetheless, one will always have to deal with component failures. In addi-
tion, during operation, one has little control over the actual specific values of signals that
come into the system. These two concerns provide the basis for a two-pronged approach
to addressing runtime issues. To address data and control faults, one utilizes the bounds or
limits on values or rates of change incorporated during the design as we discussed earlier.
To deal with failures, one relies on built-in self-test hardware and software.

8.17.1 Self-Tests

Self-tests are a set of basic tests the system can execute. In developing and incorporatingbasic
such tests into a design, the goals are to ensure that critical elements of the system are
working and to establish a basis for action if the system fails or locks up.

Self-tests fall into two general categories: those invoked on demand and those runningon demand
background in the background. Such built-in tests target the major components of the system hardware.

The focus is on the hardware because it is the hardware, not the software, that is going to
fail. Any such tests should be as unobtrusive as possible so as to not impact the performance
of the primary tasks of the system.

Self-tests invoked on demand are a “sanity check” to ensure that the system’s coredemand
components are functioning properly. In an embedded application, these self-tests are
often initiated at power up and then their status is reported on completion. Like the time
spent compiling a program, the time spent testing prior to runtime only occurs once. Thus,
although having the system power up quickly is desirable, the time is not critical.

Background tests can be as simple as a watchdog timer that must be periodically reset
by the CPU or as complex as a test suite running in the background. The consequences of
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a watchdog timer reset failure can be as extreme as a complete system reset or as benign as
a warning or error message.

A periodic test suite can check the system busses for stuck lines, ROM memory for a
signature (CRC check), or RAM for failed or stuck bits. In addition, one may check math
processing, built-in A/D accuracy by measuring a known reference, or the D/A integrity by
executing a conversion at the cardinal points. Power supply voltages can be easily moni-
tored as well. The power supply tests identified earlier in this chapter are most definitely
appropriate here and will not be repeated. The next few paragraphs discuss further tests that
one might consider incorporating into a design.

8.17.2 Busses

Address, data, and control busses interconnecting all of the major components in an embed-
ded system are essential elements for its normal operation. A failure on any of these compo-
nents can cripple or severely restrict system operation. The major difficulty in performing
a self-test on the busses is that the instructions and data fetched from memory must also
use those busses. In the presence of a bus failure, the ability to execute a test suite may
be severely limited. Consequently, if one is to implement such tests, an alternate way of
acquiring test instructions and storing working data must be provided.

We can accomplish this in several ways. The key to any such scheme, however, is that a
means by which the test can be automatically invoked and terminated must be established;
otherwise, the problem is simply being moved or exacerbated.

The most straightforward approach is to have a small amount of memory available
that does not sit on the main bus. A number of microcontrollers and microcomputers that
have several thousand bytes of ROM and RAM onboard can be found. The remainder of
the firmware and RAM comprises an offboard memory system. The system memory map
can be configured such that the test suite is in the onboard component. A system timer
(set to an appropriate priority) can be configured to interrupt periodically. The associated
ISR – interrupt service routine – (in internal ROM) can then execute a quick bus test.

Many of today’s larger integrated circuits have incorporated JTAG ports that are
intended for testing the device. As a second approach, one can consider using that port
at runtime to bring instructions into the processor in support of the bus test portion of
the built-in suite. Without onboard memory, the download sequence would have to be
triggered and executed by offboard means.

If the main processor does not support onboard memory, a third alternative introduces a
small auxiliary microcontroller into the design. In the simplest manifestation, the job of the
test processor could be to confirm the integrity of the main busses. At the opposite extreme,
the auxiliary microcontroller could be charged with the task of executing the complete test
suite. Once again, invocation of the device would have to be automatic.

Presuming that a means has been devised to get the tests started, we find two categories
of faults are of interest: stuck-at faults and bridge faults. With any testing, one should always

stuck-at faults,
bridge faults

start with the simplest tests first and, generally, with a known answer. The easiest way to
know the answer is to set it up in advance. We will come back to this.

First, in a typical, well-designed bus, each of the system modules is isolated from the
bus by buffers and tristate drivers, as seen in the bus fragment shown in Figure 8.36. The
initial visibility, therefore, is of the main bus – up to the inputs of the buffers. A stuck-at
fault or bridge fault will be affecting one or more signals in that context.

The initial objective is to try to define a known quiescent state for the bus. That step
begins with ensuring that no modules are driving the bus, which can be accomplished by
“disabling” all of the tristate drivers. All modules should be only listening and each of the



�

� �

�

372 Chapter 8 Safety, Security, Reliability, and Robust Design

Module

Main
Bus

Enable/Disable

Bit i

Bit j

Figure 8.36 A Buffered Bidirectional
Bus.

bus lines should be in a known state. That state should be defined either by pull-up resistors
or by some other means – such a practice is part of basic bus design.

A known pattern is placed onto the bus and then read back. The process is repeated
with the complemented pattern. Perhaps one of the better patterns is alternating 0’s and 1’s
followed by alternating 1’s and 0’s. If this test succeeds, we have confirmed that each bus
line, individually, can be driven to either logic state and that no two logically adjacent signal
lines are shorted.

Certainly, such patterns can be provided in a variety of ways. One interesting method
entails implementing a “data source” that is independent of the test firmware. The bus frag-
ment in Figure 8.37 gives one means to do so. The two enable signals used to select either
of the two patterns are controlled by the source of the test.

Vcc

Bit i

Bit j

Main
Bus

Enable 1

Enable 0
Figure 8.37 A Hardware-Based Bus Data Generator.
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Once the state of the system bus has been confirmed, some of the peripherals on that
bus can be tested. The memory system is probably the next logical thing to test.

8.17.3 ROM Memory

Presumably, the contents of the ROM have been confirmed at start-up via a CRC test or
similar means. The underlying assumption at runtime is that those contents are not going
to change, and the focus is on accessing the device.

Thus, two kinds of tests can be conducted to confirm performance. The first entails
storing a known set of patterns in the memory. Ideally, one would want to ensure that each
individual address bit is working and that none is shorted to one another. A simple confi-
dence test would require that a known pattern be stored at the set of locations that has each
of the address bits in the logical 1 state and all others in the logical 0 state. Programming
such a pattern and then controlling normal firmware accesses make this scheme somewhat
tricky. A test that confirms only the data signals and a small subset of the addresses dictates
storing known patterns in a more restricted set of addresses and then reading that pattern
back. As with the bus test, selecting a pattern that can confirm that each individual data line
can be asserted and deasserted and that no two are shorted should be sufficient.

8.17.4 RAM Memory

Executing a confidence test is somewhat easier on RAM than on ROM. The simplest test
for RAM begins by reading a memory location to save the data currently stored there. Next,
a known pattern is written to that location and read back. The pattern is complemented and
the process is repeated. The original data is then restored to its proper location. The data
and address patterns are chosen to exercise each of the signal lines in either state and to
confirm that they are not shorted.

8.17.4.1 Peripheral Devices

Tests for confirming the operation of each peripheral device comprising the system are
typically specific to that device. Trying to propose tests for each could take up the rest of
this text. Thus, substituting general philosophy for specifics, let’s look at some things that
can be done.

For measurement devices, provide a known source that can be measured. For stimulus
devices, provide a known stimulus and a way to measure that value and then compare the
measurement against the known value. Confirm that any timing devices will expire after
a known duration. If the system includes both measurement and stimulus devices, try to
devise a test that permits one device to test the other.

8.17.4.2 What to Do If a Test Fails?

Devising self-tests is easy. Deciding what to do if the test fails is more difficult, and con-
trolling shutdown, if necessary, can be even more difficult. Spend time thinking this portion
of the problem through. Several alternate architectures and approaches have been proposed
in the opening of the chapter. These suggestions are certainly not the only alternatives, and
they may not be the best alternatives for a specific system.

However the self-tests are formulated, they should be kept simple and be incorporated
into the design in such a way that a failure within the testing subsystem will not cause the
entire system to fail.
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8.18 FAILURE MODES AND EFFECTS ANALYSIS

Before concluding the current studies of reliability and safety in embedded applications,
we will introduce one analysis tool that can be used to assess the vulnerability of a design
to real-world faults. The tool is a Failure Modes, Effects, and Criticality Analysis; it isFailure Modes, Effects,

and Criticality
Analysis

also known simply as a Failure Modes Analysis. Such an analysis was first utilized in the
aerospace industry to identify potential problems or failures (and their effects) with an air-
craft, spacecraft, or satellite system in the early stages of the design. The basic approach is
to try to first identify the possible failure modes, that is, try to hypothesize what might go
wrong with a system. Once such a set is collected, the possible failure modes are examined.
Each is then assumed to have occurred and the consequences of the particular failure are
assessed. Although anticipating every possible failure is not feasible, the analysis enables
us to identify and to design out many common failure modes.

In practice, a failure modes analysis can be conducted at any level or phase of the
design cycle. At the system level, the top-level functions are analyzed to try to identify
which of the major pieces of functionality of the system might fail and where such a failure
may occur then to prioritize which are the most critical. At a lower level, concerns move to
the subsystems and the components that make them up. We hypothesize how each of the
inputs (outputs) may fail, and we study the consequences of such a failure on overall system
behavior. The same analysis can be conducted with a focus on manufacturing. In each case,
the goal is to anticipate failures and to take preemptive actions to eliminate those failures
or to mitigate their effects if the failure mode(s) cannot be designed out.

A failure modes analysis is performed utilizing the following steps. Remember that
these steps are intended as a guide, not a checklist.

• Ensure that those performing the analysis have a clear and complete under-
standing of the system.

• Have a set of drawings appropriate to the level at which the analysis is to be
performed. Work at the system level should be guided by a high-level functional
diagram or a block diagram. At lower levels, a schematic or logic diagram is
essential.

• Walk through each component (subsystem to logic gate) of the system and
make note of the possible failure modes of each.

• Identify the effects of each of the identified failure modes.

• Identify the severity, risk, and probability of occurrence of each identified fail-
ure mode.

• Prioritize the list and identify how each will be handled.

Example 8.4 performs a failure modes analysis on the serial communications subsys-
tem of the core implementation.

EXAMPLE 8.4 An EIA232 Interface subsystem is shown in Figure 8.38.
The system accepts serial data, converts it to parallel, does a parity check on the data,

and transmits it over a parallel bus to some other subsystem. The interface also accepts data,
in parallel from the other subsystem, converts it to serial, adds a parity bit, and sends the
word back over the serial port.
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Figure 8.38 EIA232 Interface Subsystem.

At the system level, we will focus on static faults – those identified as stuck-at type
faults. Dynamic, or hazard-type, faults tend to be dependent on implementation and must
be included in a failure analysis at the design level.

Table 8.1 illustrates how the analysis might proceed. For each component, each failure
mode is identified, the effect of each such failure is analyzed, the probability of such a
failure occurring is determined, and the severity of the effects if it does occur is assessed.

Additional information can easily be included if deemed necessary. The final analysis
should be included in the complete documentation package for the system.

The remainder of the table would be entered in a similar way. The probability numbers
shown are for illustration only. All have been assigned the same value based on the assump-
tion that these are all of the same logic family and that a significant variation across the
family will not be present. In practice, the failure probabilities would come from the com-
ponent vendor, from extensive testing and characterization of the part, or from field failure
data for similar parts. The severity value of 1 assumes that failure of any of these elements
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Table 8.1 High-Level Failure Modes and Effects Analysis.

Component Failure Effect Probability/
severity

RS 232 to TTL
Receiver

Input or output
stuck at 1

Start bit or data never recognized 0.000 75/1

Input or output
stuck at 0

Continuous start bit or constant data
assumed

0.000 75/1

16 X clock Output stuck With no clock, data cannot be
received or transmitted

0.000 75/1

Start Bit Detect Data Input stuck See RS 232 to TTL Receiver failure
modes

0.000 75/1

Clock input stuck Cannot detect start bit 0.000 75/1
Control input stuck Cannot detect end of frame 0.000 75/1

Bit Sample
Counter

Clock input stuck Cannot determine sample point for
incoming data

0.000 75/1

Enable input stuck Either counter cannot be started or
cannot be stopped

0.000 75/1

Sample output
stuck

Bit counter will not advance, and
data cannot be shifted into serial to
parallel register

0.000 75/1

Bit Counter Sample input stuck Cannot count number of incoming
bits

0.000 75/1

Enable input stuck Either counter cannot be started or
cannot be stopped

0.000 75/1

Frame complete
output stuck

Either cannot detect end of frame or
continuously signal end of frame

0.000 75/
10.000 75/1

of the subsystem would render it inoperable, and thus each is critical to the subsystem’s
proper operation.

By identifying such faults early in the design process, one can ensure that they are
effectively dealt with as the design progresses. Suddenly finding a critical failure mode as
the project is ready to be released to production or in the field can be expensive.

8.19 SECURITY – LOOK BEHIND YOU

When we opened this chapter, we identified and addressed system vulnerabilities from the
perspective of safety and reliability. We will now revisit those from the perspective of secu-
rity as we address the third member of our trio of elements essential to the design of any
embedded systems. We noted earlier in this chapter that we must address system security
with the same or greater level of diligence that we do with system safety and reliability. To
begin that journey down that path, we must first, of necessity, understand the problem. That
said, let’s go.

8.20 UNDERSTANDING THE PROBLEM – LOOKING AT THE SYSTEM

As a first step in understanding the problem, we will examine the system on which we are
working and the environment in which we are working.
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Embedded systems:

• Are generally a complex of hardware and software components.

• Can be subject to cost, power, size, weight, or processing power constraints that are
substantially different from those found in the traditional mainframe, server, or desk-
top machine.

• Typically operate in hostile environments such as an automobile, aircraft, medical
monitoring device, the human body, or polluted lake or river that are outside of a
clean, climate-controlled, or protected area.

• May be battery powered and potentially lack a clean power source and ground.

• Classically have a rich input and output structure for sensing and measuring analog
and digital signals and managing events from and sending control signals to devices
in the external world.

• Can emit electromagnetic signals or thermal profiles during runtime and can be sus-
ceptible to similar such signals from outside sources.

• Are frequently connected to a wide or local area external network (WAN or LAN).

8.21 ANALYZING THE PROBLEM – LOOKING AT POTENTIAL VULNERABILITIES

Given the characteristics of the typical embedded system and the recognition that such
systems have become targets for attack, let us now look at potential system weaknesses
that portend an avenue for such an attack.

• On the hardware side, critical components such as the memory subsystem and the sys-
tem processor(s) can easily be attacked from the outside. Using a variety of schemes,
the memory subsystem can be compromised through the installation of malicious
code or the extraction, modification, and subsequent reinsertion and reuse of modified
software to alter the intended behavior and function of the system. Damaging, (par-
tially) inhibiting, or redirecting the processor(s) function can negatively and poten-
tially dangerously affect the intended behavior of the system.

• The term software will be used to refer to the code used to implement the embedded
systems’ control algorithms, the algorithms implementing any of the applications, or
any of the application’s data. Thus, on the software side, problems can arise because of
errors or oversights in the initial proprietary design and coding of the software control
algorithms, or subsequently through similar errors with the addition of new features
or capabilities, the utilization of similarly damaged, intentionally faulted third party
packages, or the use of “security tools” such as virus scanners containing extra crafted
packets. Lack of attention to data structure boundaries can easily enable unintended
access to memory beyond the intended limits of the container(s).

• Cost, power, physical, or temporal constraints unique to embedded designs may
preclude the incorporation of features, tools, or other safeguards utilized to combat
intruder tampering or attack in other, less constrained, systems.

• Operation in less controlled or foreign environments can suggest an operating loca-
tion that is significantly separated from routine monitoring by the operator and offers
easier or uninhibited access to the attacker.

• Operation off the power grid, and thus potentially limited or constrained power
sources, can lead to an increased focus on the primary function of the system with
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corresponding neglect or lack of inclusion of the tools that can detect and potentially
thwart an outside attack.

• The input and output structure, essential to the function of the intended task(s), can
provide a broad avenue via system busses for the introduction of and an easy ride for
malware into the system. Signals and events brought in through the system’s inputs
generally ultimately find their way into the system’s memory subsystem. Careless
management of such inputs can facilitate directing crafted packets into memory orCrafted packets
building a code module in memory that can later be invoked to execute the attack.
System outputs/control signals can be read, altered, or blocked potentially to damage
the system or systems under control.

• Easy access to thermal or system current signatures or free flowing electromagnetic
signals emitted from the system during runtime can offer a significant amount of unin-
tended yet valuable information. Such signals can be captured and reverse engineered
to reconstruct and read the patterns in the system commands and data being used to
manage, direct, and execute the system’s intended function or to express access or
control codes used by the system. See the material on signal integrity in Chapters 2,
20, and 21.

• Wired or wireless connections and communication with a master control station, with
subsystems within a distributed architecture, or with peripheral measurement and
control devices open yet another highway or set of highways on or from which to
launch attacks.

• Wired or wireless networks shared between a critical embedded system and other
nonrelated devices.

• Associated with the external world connections is the need to ensure that any individ-
ual(s) trying to access the system is (are) properly authorized to do so. When such an
access is attempted, the stated identity or identities must be confirmed to be consistent
with those claimed and that incoming messages or commands have not been altered,

• At the end of the day, however, the largest problem is human. Phishing attacks facili-
tated by carelessness are among the more common and potentially more devastating.

8.22 UNDERSTANDING THE PROBLEM – LOOKING AT THE ATTACKS

We now shift our focus to the attacks themselves and look at some of the more frequent or
widespread and the motivation for such attacks. We will begin with the software.

8.22.1 Looking at the Software

Today the C language is one of the more commonly used implementation languages in
embedded software design. Looking into its history, when C was developed by Brian
Kernighan and Dennis Ritchie, for all intents and purposes, it was a high level assembly
language. The language gave the designer substantial control over the lower level details
of the hardware while facilitating the development of the higher-level functionality. Bereft
of repeated attacks on their systems, features and capabilities to detect design errors or
to repel such intrusions were not recognized nor designed into the language. Later, some
such capabilities and protection have grown into languages like C++ or Java.

Many of the potential software vulnerabilities in embedded systems today are simply
rooted in programming errors, weak access control, neglect, or simply over confidence.
One of the easiest ways to compromise an embedded system is to get malicious code into
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the memory system. Any arrays or stacks are considered part of the memory subsystem.
The C language does not check for, nor prohibit, writing beyond the end of an array or
stack into the memory following either data structure. If such memory has been allocated
and populated, writing over it can potentially affect the intended or desired operation of
the system by corrupting any valid data that had been written there. Whether the memory
had been allocated or not, enabling a foreign block of code to be inserted into the memory
subsystem can easily bring malware into the system.malware

stack frame When a function is called, a stack frame is created, populated with relevant data includ-
ing the caller’s return address, register values, and the passed and returned variable values.
The stack frame is then pushed onto the stack and the stack pointer incremented to the
“next” available stack location. Two potential problems arise here.

The first problem occurs because the C language does not check to see if the stack
pointer or other address pointer has gone beyond the valid address/size limit of the stack.
The second issue arises when a function returns. On return, the stack pointer is decremented
to point to the previous stack frame or, if none, to the original top of the stack. However, the
contents of the portion of memory from the just used stack frame are neither erased nor set
to NULL. Those values still exist and can be easily read – they have an address in memory
and will persist until another function call or operation potentially overwrites them as we
see in the code example in Figure 8.39.

#include <stdio.h>

#include <stdlib.h>

int* f0();

int f1();

int main()

{

    int* intPtr0;

    int myVar0 = 0;

)(1f ni elbairav lacol ot ssecca dilavni //;)(0f = 0rtPtni    

    printf("the value is: %d \n", *intPtr0); // will print: the value is: 9

nettirwrevo )(0f ni elbairav lacol //;)(1f = 0raVym    

    printf("the value is: %d \n", myVar0);  // will print: the value is: 5

    printf("the value is: %d \n", *intPtr0); // will print: the value is: ?????

    return 0;

}

int* f0()

{

    int myVar0 = 9;

    return (&myVar0);

}

int f1()

{

    int myVar1 = 5;

    return (myVar1);

}

Figure 8.39 Persistent Stack Values.

Vulnerable containers are not limited to the stack or the familiar array. A string in C is
implemented as a NULL terminated char array. Copying a non-NULL terminated C string,
character by character into another container, until a NULL is encountered, could enable
the acquisition of all kinds of information.
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A technique called code injection is another practice utilized to introduce attack codecode
injection into a system memory. The attacker exploits a weakness in a vulnerable tool or language to

enable the injection of invalid or untrusted data into a program. The result can lead to data
loss or corruption and potentially to denial of access.

A typical job for an embedded system is measuring and converting analog voltage
signals from a variety of peripheral sensors into digital form using an analog to digital (A/D)
converter. Such sensors are intended to be collecting data relative to the task at hand. The
results of such measurements are usually routed as binary patterns to a buffer in memory.
If such sensors are replaced by a precision voltage calibrator, the calibrator output can be
carefully controlled to produce precise voltage signals that when measured and converted
to the corresponding binary patterns by the A/D, can build an operational machine language
malware code module in memory.

Earlier we noted that a foreign block of code inserted into the memory subsystem can
easily bring malware into the system. Antivirus or cybersecurity software is a block of code,
intentionally installed on a system to prevent, identify, and remove malicious software from
the system. To do its job, such a package typically has unlimited access to every corner of the
system; such freedom can be an open door to an attack. A supposedly benign cybersecurity
package was installed on the computers of the National Security Agency (NSA) where
it was able to identify and facilitate the acquisition of a plethora of top secret tools and
documents.

The C++ language supports overloaded functions. Consider the case of the following
prototypes of an overloaded function set:

EXAMPLE 8.5
1. void f1(int* aPtr);

2. void f1(char* bPtr);

3. void f1(parent* parentPtr);

4. void f1(void* dPtr);

The set of variable definitions:

int a = 3;
char b= ‘b’;
child aChild;
float d = 5.3;
int* aPtr = &a;
char* bPtr = &b;
parentPtr = &aChild;
dPtr* = &d;

Now the set of function calls: f1(aPtr);

1. f1(bPtr);
2. f1(parentPtr);
3. f1(dPtr);

Function call “1” will invoke function f1(int* aPtr), call “2” will invoke func-
tionf1(char* bPtr), and call “3” will invoke functionf1(parent* parentPtr)
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because the child class instance contains a parent component. The potential problem arises
with the function call f1(void* dPtr). The argument type dPtr does not match the
signature of any of the overloaded functions. Because none of the overloaded functions has
a signature float*, the type of the argument dPtr will be side effect cast from float* to void*,
and function “4” will be invoked. Function calls “3” and “4” can provide a straightforward
path to introducing malware into the system.

Many processors, FPGAs, (complex) programmable logic devices (CPLDs), and other
peripheral devices today contain JTAG ports that are intended to be used to perform bound-
ary scan tests on the system. Such ports also often play multiple roles during the design,
development, and debug of the system. During the early phases, the code under develop-
ment is downloaded onto the system via the JTAG port to “program” it. Later, the same
port is essential to an effective test of the system while in production and later to help to
identify and isolate problems. Once again, such a port provides an undesired and vulnerable
gateway into the system.

An interrupt or internal or external event, is often responded to directly or necessitates
a context switch to handle the event. The first step in temporarily changing to a new context
requires saving the current one. A change to the saved state, prior to the return, provides
another opportunity for an attacker to gain control of or damage the system.

If the system is required to or simply capable of supporting local or remote access to
enable management of the system or downloading from an external source, we find yet
another common attack portal. Once in the system, the malware can easily reach out to
the operating system, the OS kernel, to applications, or to other aspects of system func-
tion and control. Such capability typically begins with weak or unmanaged passwords or
authentication. Another potential weakness is the use of web browser or similar proprietary
technology on either side of the link to support control or updating the system coupled with
negligent or lax updating of such devices with the latest security patches.

8.22.2 Looking at the Hardware

On the hardware vulnerabilities side of the problem, attacks can be classed into two major
categories. The first are those that are aimed at gaining access to and/or controlling the
system. The second are those focused on negatively impacting the normal operation of the
system.

Access attacks are either eavesdropping on command and/or data exchanges or uti-Access attacks
lizing the underlying inherent electrical physics (see the discussion of signal integrity in
Chapters 20 and 21) of the device to collect then reverse engineer such signals to identify
and use signal patterns to enable the reconstruction of access codes, passwords, or control
sequences.

When an electrical device, such as a simple logic gate or a more complex one such
as a microprocessor CPU, changes state, a corresponding change in the current flow in the
system occurs. A change to a logical 0 yields a slight current increase and the opposite
switch to a logical 1 produces a small decrease. A similar effect occurs with changes to the
emitted electromagnetic radiation corresponding to device state changes or from different
sounds or audio patterns emitted from the system during operation.

Knowing the operation that the embedded system is performing, repeatedly executing
that operation, then measuring and correlating the EMI emissions supporting the opera-

Electromagnetic
interference

tion, system current changes, temperature changes, or sounds emitted during the operation,
enables the potential reconstruction of the corresponding data and control patterns and
timing.
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Negative impact attacks are intended to cause the system to malfunction or toNegative impact
attacks completely prevent operation. Many embedded systems are battery powered and utilize

an activity schedule intended to minimize power usage. Continually issuing commands,
subverting power-down periods, or routinely activating high-power peripheral devices can
lead to excessive power usage and premature battery drain. A reduced or limited power
level within the system may preclude the activation of subsystems intended to detect and
block intruders. In the extreme, a fully drained battery can effectively halt the operation of
the system.

Depending upon the design, an embedded system may require some form or internal
temperature management, ranging from mechanical devices such as fans or a cooling fluid
flow through the system to controlled and limited use higher current devices. Subverting
such cooling has the potential of damaging or destroying sundry subsystem components
and, thereby, partially or fully impeding operation and corrupting data collection or control
signal generation.

Input sensors and output control signaling can easily be damaged. Once again, fun-
damental electromagnetic physics provides the means to couple unwanted and corrupting
signals into data streams from or to such devices.

8.23 DEALING WITH THE PROBLEM – PROTECTING AGAINST THE ATTACKS

Given the number of ways that an embedded system can be compromised, how should
one address the problem? As we stressed repeatedly earlier, the problem must be seriously
addressed on day one, when the system requirements are being defined and the design
specification written. Good system security cannot be an afterthought.

In Chapter 5, we learned about unified modeling language (UML) modeling and,
specifically, Use Cases. A critical component to a Use Case is an enumeration of the
exceptions to that Use Case. In that list, we should endeavor to identify where and how
that Use Case could be attacked. A similar tool can be a simple variation on Failure Modes
and Criticality Analysis in which system vulnerabilities are searched for. Recognizing the
potential for attack is the first step in planning a defense.

8.23.1 Protecting the Software

Protecting the software begins with a solid, well designed, secure operating system or
kernel. As the development of the system proceeds, good, disciplined design and coding
practices are essential. In the following, the term identifier is used to collectively refer to
variables, constants, and function names. We will begin with the following. We note that
engineering and the design cycle are an iterative, not a one pass process. Iterative does not
mean that we keep guessing until something works but, rather, that we continually revisit all
steps, as necessary, to ensure a safe, reliable, secure design that meets all initial or modified
requirements. See the material of Co-Design in Chapter 9.

8.23.1.1 First Steps

8.23.1.1.1 THE OPERATING SYSTEM
Looking first at the operating system, a number of technologies have been conjoined to try to
make a potential successful attack as distant as possible and to minimize any potential dam-
age should an attack occur. Such an architecture is based upon a philosophy called MILS,Multiple Independent

Levels of Security that is, an architecture supporting Multiple Independent Levels of Security. The design is
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grounded upon a small microkernel that implements the concepts of separation and
managed information flow. To that end, the following security policies form the heart of
the approach.

Managed information
flow

1. Information cannot flow between partitioned applications unless allowed by the
security policy.

2. Data within an application cannot be accessed by other applications.

3. If an application is attacked or damaged, any damage cannot propagate to other
applications.

4. A policy called periods processing ensures that information in one portion of theperiods processing
system cannot be leaked to another portion through traditional paths such as regis-
ters or memory buffers.

Know and understand your system. In conjunction with the hardware, build a complete
and accurate (memory) map for the system. Know the address or range of addresses for each
piece of hardware in the system. During the boot process, check and ensure that each step
in the boot process is accessing only the proper addresses and in the proper order and that
any accesses are only to valid addresses.

8.23.1.1.2 THE CODE
There are some preliminary steps that should be taken at the beginning and then routinely
throughout the development cycle. At this stage, we are thinking about and planning the
design of the system; see Chapter 9.

Partition the system into highly cohesive, loosely coupled modules. Within each mod-
ule, use identifier names that are suggestive of the intended function of each and ensure that
every variable is initialized with a first use default value.

Keep the code within each module simple, that is, clear and easy to read and under-
stand, constructively criticize, and test. A complex, obfuscated design may win first prize
in the International Obfuscated C Contest, but complex code can become error prone and
vulnerable very quickly.

Avoid using globally visible identifiers and qualifiers. A key rule of thumb in designing
software for an embedded system is to make as little visible as possible. The C language
does not support the concept of namespaces found in languages like C++. Consequently,
for all intents and purposes, all identifiers are in the global namespace. An important first
step in the process of information hiding is to not use global variables. If they must be used,
ensure that they are initialized and then protect/restrict/control access.

Identifiers defined as static are invisible and inaccessible outside of the scope wherestatic
they were defined. Use such a qualification to hide and restrict access to critical identifiers.
The extern qualifier in C enables a nonstatic identifier defined in one module to be utilizedextern

nonstatic in others. Although sometimes useful, such a practice can be dangerous and should be
avoided.

The const qualifier can potentially be dangerous. When applied to function parametersconst
or other variables, the qualifier ensures that the function parameters or other variables can-
not be changed within the function, code block, or module. However, when combined with
the volatile qualifier, the parameters or variables may be changed by sources apart fromvolatile
the working context. In the context of the C language, the term const means that the qual-
ified identifier is internally read only and potentially externally accessible, whereas C++
interprets a const qualifier to mean that the qualified entity is constant.
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Depending on the compiler, the associated optimizer may be designed to try to make
the code simpler and faster. The optimizing algorithm will often do so by removing certain
“nonessential” variables or code blocks. By doing so, however, the algorithm may be remov-
ing intended pieces of (defensive) functionality. To ensure that such intended functions are
left untouched, they can be qualified with the keyword volatile.

The volatile keyword can be appropriately used to protect the counter implementing
a delay loop, preserve a pointer to a memory mapped peripheral register, or to shield a
global variable shared between an ISR and other modules. However, such a qualification
also indicates that the value of the protected variable can be changed from outside the sys-
tem. Further qualifying the variable with the const qualifier signals that the system’s internal
user has read only privilege and that the external user had both read and write privilege. The
const volatile pair should be avoided if possible and carefully designed if not.

Ensure that every code block has only one entry and exit point. Do not permit or design
asynchronous entry or exit from any code block. Leaping into the middle of a code block
is leaping into trouble.

The job of an optimizing compiler is to minimize or maximize specific attributes of
a software program or module. Typically, the objective is to minimize execution time or
memory requirements. The conversion from a high level language such as C to the target
processor’s assembly or machine code can potentially entail transforming the original algo-
rithms into semantically equivalent versions. Such a conversion may open unintended doors
into the system. Any assembly code so generated should be inspected and thoroughly ana-
lyzed for potential unintended vulnerabilities prior to incorporation into the final product.

8.23.1.2 Second Steps

8.23.1.2.1 THE OPERATING SYSTEM

Throughout the development cycle, perform routine challenges and simulated detailed
attacks on the system model. See fuzz testing discussed in Section 8.23.1.3. Schedule andfuzz testing
regularly repeat the challenges after the system has been deployed.

8.23.1.2.2 THE CODE

Ensure that someone or a team, other than the designer, routinely conducts serious code
inspections, walk throughs, and design reviews over the course of the development. “Looks
good to me” is not a serious review.

Perform a detailed failure modes, effects, and criticality analysis (FMECA) for all sys-
tem, module, function, and block inputs and outputs.

Do not disable compiler warnings and constructively evaluate each warning that does
occur.

Utilize strong versus weak type checking. With strong typing specified, the compiler
is more likely to generate either an error or refuse to compile if the parameter(s) passed
to a function does not closely match the type(s) specified in the signature of the func-
tion. With weak typing, the compiler may accept or cast (implicit type conversion) passed
parameters into a function that may then produce unpredictable or unintended and poten-
tially dangerous results. For each function, switch (case statement), or if-else construct,
have a default/error return or exit. See also the earlier comments on overloaded functions
in C++.

Conditional or branching constructs are not testing for False or True; in C they are
testing for 0 or not 0. If the tested condition evaluates to 0, the test for equality fails and the
path is not taken. Any other value (large, small, positive, or negative) is not 0 and the path
will be taken.



�

� �

�

8.23 Dealing with the Problem – Protecting Against the Attacks 385

The following expression and test for equality is correct and valid:

if (aVar == aValue);

If the two operands are not equal, the parenthesized expression is 0, and the path qual-
ified by the “if” expression is not taken. However, if a minor typing error occurs to create:

if (aVar = aValue);

first,aVar is assigned the value ofaValue. Then,aVar is evaluated and returnsaValue,
which is typically not 0, and the qualified path is taken, which may create a problem.

Good coding style recommends writing such tests as follows.

if (aValue == aVar);

Now if one of the = operators is dropped, the attempt to assign aVar to aValue,
which is an rvalue, will fail and be rejected by the compiler because an rvalue can
only appear on the right hand side of an assignment. The value of an rvalue can be
assigned but cannot be assigned to, that is, an rvalue cannot appear on the left hand side
of an assignment statement. If the path is always taken, it may be taken at the wrong time
or under the wrong conditions leading to a potentially serious problem.

Manage all data containers to ensure that data cannot be written beyond the bounds
of the container. The starting and ending addresses of a container are known; thus, so is
the size.

When working with arrays, remember that the starting index of a one dimension array
is 0 and the ending index is N− 1, where N is the number of entries. Testing if an array index
that is <= N will go beyond the container is a problem as us illustrated in Figure 8.40.

#include <stdio.h>

#include <stdlib.h>

int main()

{

    int i = 0;

    int anArray[5];            //  array contains 5 elements

    for(i = 0; i <=5; i++ )  //  write to 6 elements, 1 past end

    {

       anArray[i]=i;

    }

   //  prints 6 elements 0..5

    for(i = 0; i <=5; i++ )

    {

       printf("array value at index %d is %d \n", anArray[i], i);

    }

    return 0;

}

Figure 8.40 Write Beyond the End
of an Array.

8.23.1.3 Third Steps

The strategy for testing the software for design flaws, oversights, or potential vulnerabilities
mirrors that utilized for the hardware. Whether testing hardware or software, keep in mind
that the critical objective in testing is to identify and correct problems with the design and
not simply to show that it works. Tests should be designed for and applied to all boundary
condition values for all variables and functions with the intent of finding problems with
the code.
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The process begins with knowing and thoroughly understanding the target being tested.
The process then proceeds with the following steps:

• Specify the target’s inputs and outputs.

• Develop the input test case vector suite(s).

• Identify the target’s expected outputs for each test case.

• Execute the tests.

• Track and collect test results.

• Compare the results with the corresponding expected results.

• Identify and correct any identified problems.

Test suites can be classified into three categories, black box, gray box, and white boxblack box
gray box

white box
testing, based upon foreknowledge of the target’s internals. Black box testing assumes no
knowledge of the target’s internal design, white box assumes full knowledge, and gray box
reflects partial knowledge.

8.23.1.3.1 BLACK BOX TEST
Black box tests assume no knowledge of system or subsystem internals. The target is tested
from a purely external perspective and is, therefore, data driven. The test cases are generated
and applied. Test failure aborts the test and the fault(s) should be identified and fixed. Testing
resumes from the beginning. Black box testing requires that module interfaces be clearly
defined. A major weakness with such tests is that the tests can be exhaustive and, thus, very
time consuming. Because of the lack of knowledge of the system or subsystem internals,
black box tests may miss dead code or certain paths through the code.

8.23.1.3.2 WHITE BOX TESTING
White box tests assume perfect knowledge of system or subsystem internal implementation.
Testing further requires that module interfaces be clearly defined. Tests are logic driven and
the target is tested from an internal point of view. Test cases are generated and applied. The
tests are designed to exercise every internal path and code segment. Test failure aborts the
test, and the fault(s) are identified and fixed. Testing then resumes from the beginning.

8.23.1.3.3 GRAY BOX TESTING
Gray box tests are a mix of white and black box testing. The method applies when the
system utilizes modules we did not design, such as complex large or very large integrated
circuits, gate arrays, or library modules.

8.23.1.4 Fourth Steps

Document, date, and assign a version number for each change following release of the
product and ensure at each boot that the version numbers of all modules are consistent with
those expected to be in the system.

Testing the system software once, then deploying without a revisit because it has been
tested is a weak defensive strategy. That said, security is never perfect; what was put together
by humans can be broken by humans. Operators and other users are routinely looking for
new ways to work around or bypass the “annoying” access requirements.

The systems, technologies, repairs, users, data, potential updates over time can often
appear routine. With such changes, new risks can be and often are introduced. To mitigate
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such issues, a routine regimen of testing to identify and ferret out weaknesses should be an
integral part of any maintenance or system update plan.

8.23.2 Software Testing Tools

As technology has continued to evolve, embedded systems have grown more sophisticated
and complex. Tools supporting their development and testing have correspondingly become
increasingly valuable and essential. However, it is important to recognize that tools alone
are not the full answer to the problem. Accompanying any tools must be a well thought out,
consistent, and detailed testing strategy.

Today a growing number of tools are available. Let us look at several of these. Keeping
in mind that this list is neither comprehensive nor complete.

Static analysis, is a debugging method that examines the code without actually exe-static analysis
cuting the program. The process can help to ensure that the code complies with industry
and company standards. Tools such as PC-lint perform a static code analysis and indicatePC-Lint
suspicious or wrong source code.

The software testing method called Modified Condition/Decision Coverage (MC/DC)
is similar to Failure Modes Effects and Criticality Analysis (FMECA). MC/DC is taken from
the avionics and aerospace industries and is intended to ensure sufficient testing of Level A
software, which is software that supports fail operational or fail operational2 performance.

Modified Condition/
Decision Coverage

Failure Modes Effects
and Criticality

Analysis
See the earlier discussions in this chapter on reliability.
MC/DC requires that:

• Each module entry and exit point is invoked.

• Each decision tests every possible outcome.

• Each condition in a decision tests every possible outcome.

• Each condition in a decision is shown to affect, independently, the outcome of the
decision.

The code fragment in Figure 8.41 illustrates testing for specified/required conditions
and decisions on the four variables, A, B, C, and D, to ensure that they are in the proper
state to permit the operation being tested for to proceed.

int go = 1;

if (A && B) 

{

if (C || D)

{

return go;

}

}

else

{

return ~go;

} Figure 8.41 A Simple MC/DC Test.

One interesting approach is called fault seeding. The method intentionally plants aFault Seeding
number of faults into the system. Testing then proceeds as normal. When the tests are com-
plete, the number of seeded faults is identified. The assumption is made that the test cannot
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distinguish between seeded and nonseeded faults. Thus, if x% of seeded faults remain, then
x% of nonseeded faults probably remain as well.

An excellent and effective technique for testing basic combinational logic circuits in
production is to apply large sequences of random binary patterns to the device inputs. A
software testing method called fuzz testing or fuzzing employs a similar idea. The goal withfuzz testing

fuzzing such a scheme is to discover and identify programming errors or security weaknesses in
the system and user software. To wit, the software package under test is stimulated with
sequences of random, invalid, or unexpected data. The objective is to initiate and identify
potential crashes, exceptions, memory leaks, or failures to intended or expected code func-
tionality. An important property of the test data is that it must appear to be sufficiently valid
to avoid immediate rejection by the supporting software tools. Yet, such data must also be
robust enough to be able to trigger unintended or unexpected behaviors when downloaded
or applied to the system.

As with any testing, focusing the test design and the testing on areas that can potentially
lead to the most damage is important. Earlier, we discussed the concept of a trust zone.
A weakness or design oversight in the access protocol to a trust boundary can facilitate
opening a door for an attack. Thus, such areas should be given high priority when executing
a fuzz test strategy.

8.23.3 Protecting the Hardware

Protecting the hardware, like protecting the software, begins with good, disciplined design,
implementation, and test practices. We repeat that engineering and the design cycle are an
iterative, not a one pass process, and iterative does not mean that we keep guessing until
something works. Rather, we continually revisit all steps, as necessary, to ensure a safe,
reliable, secure design that meets or exceeds initial or modified requirements.

8.23.3.1 First Steps

The following are some preliminary steps that should be followed at the start of a develop-
ment cycle and then routinely thereafter. At this stage, we are thinking about and planning
the design of the system.

Know and understand your system. Build a complete and accurate (memory) map for
the system. Know the address or range of addresses for each piece of hardware in the system.
Use this information in conjunction with the boot process to detect attempts to alter the boot
sequence.

8.23.3.2 Second Steps

Moving from concept to design is the next step. Design and incorporate a con-
trolled/limited/restricted access hardware self-test. At power on/boot time, that test should
be able test and confirm that each piece of hardware is functional and is at its proper
location with the proper identification prior to initiating or enabling the system’s runtime
function.

Such tests should be independent of and isolated from the system’s runtime hardware
and software. The controlled access (codes and technique) should also be different from
those used for primary system access and control. Both are supported by MILS operating
system specifications.

As is done for high reliability fail operational or fail operational2 systems, the design
of the self-test subsystem and the runtime subsystem should utilize different hardware and
processor types as well as separate power systems and data and control busses.
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Access attacks that utilize a system’s inherent behavior and characteristics to support
reverse engineering that system’s safety critical signals are called side channel attacks. Two

side channel
attacks

major categories of such attacks are timing attacks and EM or electromagnetic attacks. Atiming attacks
electromagnetic

attacks
third category, attacks on power and temperature, could be included.

Timing attacks attempt to track data movement into and out of the device’s secure CPU
or other secure devices. Tracking then analyzing the patterns and pattern frequency of the
data flow has the potential of enabling uncovering secret keys or other critical data.

EM attacks focus on the fundamental electromagnetic physics of the device during
operation. When electrical devices change state, an accompanying change in current flow
occurs in the device that results in a change in the associated electromagnetic field. See the
discussions on signal integrity in Chapters 20 and 21.

Power and temperature attacks take advantage of Ohm’s Law: current flowing through
a resistance or impedance yields a change in power (I2R) across the device and a change in
the temperature of the device.

8.23.3.2.1 BLUNTING TIMING AND EM ATTACKS
EM and timing attacks can be blunted in two major ways: eliminate or significantly reduce
emissions from the system and eliminate or obfuscate the relationship between the emis-
sions and the data.

• Eliminating Emissions
Emissions can be controlled using the familiar guarding and shielding techniques.
Guarding is commonly used in low noise contexts to prevent or mitigate mutual or

guarding
shielding

stray capacitive or inductive (electrical or magnetic) coupling between environments.
Once again, see the discussions on signal integrity in Chapters 20 and 21.

Shielding is similar and such techniques are often utilized in a design to support
compliance with FCC standards specifying limits on a device’s electrical emissions
and susceptibility to external emissions. Such techniques can also be employed to
block tell-tale internal emissions from a running system. Electrically driving a guard
or shield can serve to enhance the efficacy or such tools.

Filtering and/or conditioning the power line can be helpful; however, such tech-
niques are not perfect and can pass miniscule electrical signals that can be sufficient
to enable the attacker to derive correlations between control and data.

An alternative to the traditional copper alloy cables is the fiber optic versions that are
designed to carry information between two places using light-based technologies. The basic
optical fiber cable comprises a core and a surrounding cladding material. The core and
cladding material are selected such that a light beam moves down the cable by repeat-
edly reflecting off cable walls due to the difference in the refractive index of the core and
cladding material. With the proper choice of materials and beam incident angle with respect
to the cladding walls, there will be total internal reflection of the beam, as illustrated intotal internal reflection
Figure 8.42. Digital data can thus be converted into a series of corresponding light pulses
and transmitted down the channel. With total internal reflection of the light beam, external
detection of the signals from outside the cable will be extremely difficult if not impossible.

Light Beam

Cladding Core

Figure 8.42 Fiber Optic Cable.
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Attempts to compromise the cable to intercept the beam will affect the internal reflection,
leading to corruption of the beam and thus the data. Such damage and corruption can then
be easily detected.

• Obfuscating Emissions
Side channel attacks rely on identifying and recognizing the relationship between
the system’s data and the corresponding emissions. Seeding the transmission with
random data patterns can increase the difficulty of identifying and isolating valid data
patterns. Such patterns can be based upon random number generators or synthesized
white, pink, shot, or flicker noise.

An important note, however, is that mathematically-based random number genera-
tors are actually pseudorandom. That is, their patterns are periodic and will eventually
repeat. Such a feature can be a benefit, however, if such patterns are creatively comin-
gled with the actual data.

Patterns based upon naturally occurring phenomena can be truly random. Radioac-
tive decay is one such example.

8.23.3.2.2 BLUNTING POWER AND TEMPERATURE ATTACKS
Such attacks can be mitigated by reducing the power by reducing the current that flows in
the device. Such is a noble goal in the design of embedded systems from the start. Neg-
ative impact attacks on input sensors and output controls, utilizing fundamental electrical
physics, can also be blunted through judicious guarding and shielding.

External intra-system communication networks need to be reinforced with the same
diligence and efficacy as those coming into the system. Such networks should not be shared
with other nonrelated devices.

As we discussed earlier when we examined high reliability systems, each link should
utilize an odd number of channels. In addition, each link should have different access codes
and different methods of encryption, coupled with a voting scheme can significantly raise
the level of difficulty for an attack.

8.23.3.2.3 BLUNTING ACOUSTIC EM AND THERMAL IMAGING ATTACKS
The audible sounds or EM and thermal profiles that a running embedded system emits, if
collected and carefully analyzed, can be used to identify what operations the system may
be performing. Such information can be subsequently utilized to negatively affect runtime
operation. A very simple technique can be employed to counter the attack. Put the system
in a box. Secure physical enclosures can aid in mitigating the risk of the clandestine instal-
lation of microphones or thermal or EM monitoring instrumentation that can be utilized to
track and collect runtime signatures of acoustic, EM emissions, or thermal behavior.

8.23.3.3 Third Steps

When discussing the four steps in protecting the system software, we recommended that
a routine regimen of testing to identify and ferret out weaknesses should be an integral
part of any design and maintenance plan. This same recommendation applies to the system
hardware as well.

8.23.4 Protecting a Network Interface

An embedded system can typically have two sets of input/output ports. One supports mea-
surement from and control transactions with peripheral devices to affect the system’s tasks.
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The other supports commands to and the return of data and status from the system. Like
protecting the hardware and software, protecting a network interface begins with good, dis-
ciplined design and implementation practices. We stress, once again, that engineering and
the design cycle are an iterative rather than a one pass process. Iterative does not mean that
we keep guessing until something works. Rather the intent is that we continually revisit
all steps, as necessary, to ensure a safe, reliable, and secure design that meets the initial or
modified requirements.

8.23.4.1 First Steps

The following are some preliminary steps that should be taken at the start of a development
cycle and routinely revisited throughout. At this stage, we are thinking about and planning
the design of the system.

• Know your network and your system. Know and understand the context in which
the system will be working and the kinds, and nature, of the information sent to
and returned by the system. Information sent to the system will typically comprise
command and control transactions to invoke and manage its intended function. Infor-
mation returned by the system will typically comprise status and/or the results of
measurements it has made.

• Examine and understand the capabilities, limitations, and weaknesses of the various
algorithms and protocols for system integrity, authentication, and privacy that are
available and under consideration for use in the system.

8.23.4.2 Second Steps

Moving from concept to design, we examine several techniques that can help to secure the
integrity of the communication with the system.

If the system supports or requires an external proprietary or public network for access
and control, any transactions must be secure and potentially scrambled. Avoid plain text
transactions to and from the system. Select and utilize an encryption function to map such
data to a more secure form denoted ciphertext. A number of cryptographic methods areciphertext
available to help in supporting encryption of the system’s communication.

8.23.4.2.1 ENCRYPTION / DECRYPTION
Encryption is process of utilizing an algorithm, potentially coupled with a secret key, toEncryption
transform data into a code, thereby enabling only those with the key to have access, that is,
decrypt and read the data. Decryption reverses the process by utilizing a similar algorithmDecryption
to retrieve the original message. Three basic schemes are first illustrated graphically in
Figure 8.43.

The keys are typically based upon prime numbers and can be several 100 bits long.
Such keys are intended to be only known to the transmitting and receiving devices and
the individual(s) with authorized access. Such algorithms can be classified into two basic
categories: those that utilize a special key and those that do not. Key-based algorithms are
further classified into public key and private key.Public key

Private key With private key algorithms, also known as symmetric key, both sender and receiver
share a single key. The Data Encryption Standard (DES), which utilizes a 56-bit secretData Encryption

Standard (DES) key, is an early example of a private key algorithm. The DES algorithm is now considered
insecure because of its small key size.
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Figure 8.43 Basic Encryption/Decryption Schemes.

Non-key algorithms, also known as hash, message digest, checksum, or digital finger-hash
message digest

checksum
print, employ a hashing function or algorithm that takes an arbitrary string (the message) as

digital fingerprint
input and produces a fixed length string as output. With such a scheme, two different mes-
sages being hashed to the same value should be impossible. Thus, if the receiver hashes
a received message and the result of the hash is a different value from the intended, the
receiver can know that the message has been tampered with.

The MD5 algorithm, which produces a 128-bit hash value, is an example of such a hashMD5 algorithm
function. However, while still in use, like the DES algorithm, MD5 has been designated as
essentially broken.

Public key algorithms are supported by two keys: one public and one private. A mes-
sage is encrypted using the public key and decrypted using the private. RSA is an example of
such an algorithm. The encryption utilizes a public key and the decryption utilizes a private
key. The keys are 512 bits long and are computed based upon very large prime numbers.

• Key Management and Agreement
The secure key(s) must be kept inside of a secure device that is itself protected by a
combination of hardware and software systems that must be able to subvert any unau-
thorized access attempts. Such a device is often referred to as a Secure Operations
Center (SOC) or TrustZone.Secure Operations

Center (SOC)
TrustZone

If a large number of embedded systems must be dealt with, managing secret keys
for all can become a challenge. A mechanism to aide in supporting the task is known
as the key-agreement protocol. The protocol allows multiple parties to agree on a keykey-agreement

protocol such that each can affect the outcome. An important aspect of such protocols is that
they do not reveal to any covertly listening individuals what key has been agreed upon.
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• Authentication
Moving inside the system, trusting incoming data, the access attempt, and trusting
the sender are the next issues.

TCP Three-Way-Handshake
The three-way-handshake protocol is used by transmission control protocolthree-way handshake
(TCP) to establish and setup a connection between two participants over an
IP-based network. One participant is considered a client and the other a server;
both share a secret key that we identify as ck for client key and sk for server key.

client key
server key

According to the protocol, a connection between two hosts is established
in three steps: it is the three-way-handshake.
The client, who wishes to establish a connection, will:

• Select a random number Nc.
• Encrypt Nc using ck: E(Nc, ck)→enc

Nc is now encrypted.
• Send a SYN or synchronize packet with the encrypted random number,
enc, and the client id to the server.

The server receives the message and responds:

• Decrypt enc: D(enc, sk)→denc

Received number is now decrypted.
• Compute denc → denc +1
• Encrypt denc +1 using sk: E(denc+1, sk)→edenc+1

denc +1 is now encrypted.
• Select a random number Ns.
• Encrypt Ns using sk: E(Ns, sk)→ens

Ns is now encrypted.
• Send a SYN-ACK or synchronize-acknowledge packet with edenc+1

synchronize-
acknowledge

and the encrypted random number ens to the client.
The client receives the message and responds:

• Decrypt edenc+1:D(edenc+1, sk)→? denc +1
Received number is now decrypted.

• If decrypted number matches the Nc+1, the server is confirmed.
• Decrypt ens: D(ens, ck)→dens

Received number is now decrypted.
• Compute dens → dens +1
• Encrypt dens +1 using ck: E(dens+1, ck)→edens+1

dens +1 is now encrypted.
• Send an ACK or acknowledge packet with edens+1 to the server.
• The server receives the message.
• Decrypt edens+1:D(edens+1, sk)→dens +1

Received number is now decrypted.
• If decrypted number matches the Ns+1, the client is confirmed.

Digital Signatures
Trusting the data is the next issue. Trusting the data is partially addressed
using digital signatures, which are a mathematically based scheme forDigital Signature
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verifying the legitimacy of digital data. The Digital Signature Algorithm
(DSA) was developed by NIST, the National Institute of Standards and
Technology.
Such signatures are a routine component of typical cryptographic protocols.
The objective of the digital signature is to authenticate the source, verify that
the message was from the alluded source even if denied, and confirm that the
message had not been altered in transit.
To accomplish its verification task, the scheme utilizes three algorithms also
known as (GSV) – Generate, Signing, Verifying:Generate, Sign, Verify

Key Generation
Randomly select a private key, prk, from an available set of such keys and
return the private key (prk) – public key (puk) pair.

Signing
Generate a digital signature (dsig) given a signature algorithm (SA), a dig-
ital message (DM), and a private key (prk).

SA(DM, prk) → disg

Send the signed message with signature.
Receive the signed message with signature.
Verify

For the given received message (RDM), public key (puk), signature (dsig)
and signature verification algorithm (SVA), accept or deny the message.
Does SVA(RDM, puk) not equal or equal RDM?

Digital Certificate
The final step is confirming the message source, i.e. the owner of the pub-
lic key. This is known as nonrepudiation. Here we are looking to ensure,nonrepudiation
with high confidence, that the data and the source of the data are genuine
and legitimate.
Such assurance can be accomplished through an electronic Digital CertificateDigital Certificate
that is used to prove the identity of the key owner. The certificate includes
information about the owner of the certificate and the digital signature of theDigital Signature
certificate issuer that has verified the digital certificate’s contents.certificate issuer

• Guarding the Keys to the Henhouse

The approaches to securing the system frequently depend upon secret keys that
are typically stored in the system. However, if these keys are lost or broken, the
embedded system can potentially be compromised. Consequently, security mea-
sures must be established within the system, and those measures must ensure that
the keys are secure. Any attempts to compromise that security must be prevented.
As mentioned earlier, the secure key(s) must be kept inside of a secure device
that is itself protected by a combination of hardware and software systems that
must be able to subvert any unauthorized access attempts. Once again, such a
device is often referred to as a Secure Operations Center (SOC) or TrustZone. A
high-level diagram of such a device is given in Figure 8.44.

Unlike a physical key, the secure keys are a pattern of binary bits and are typically
held in a Secure ROM similar to secure data held on a person’s passport. That ROM must,
therefore, be held in the SOC.
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Figure 8.44 Secure Operations Center.

When needed, such keys need to be transferred to RAM where they can be used to
support outside world information exchange. Like the data transfer from a passport when
checking onto an aircraft, the Secure ROM to RAM transfer occurs in clear text. If the
transfer is affected over a system bus in clear text, then during that time data compromise
is possible. To mitigate such a possibility, the RAM should be implemented in the SOC. A
similarly secure boot loader should ensure that the system executes a clean boot of all of
the proper and legitimate firmware and that any attempts to alter or defeat the boot loader
should be blocked.

The keys stored in the ROM can also be encrypted. However, the keys to the encryption
of the secret keys now have to be held somewhere and protected and the problem repeats.
Limited and controlled access to the SOC and enclosed memories and a task assigned to
the memory management unit (MMU) can help; however, the probability that ultimately
someone can defeat the protection exists. The goal should be to make that process as difficult
and complex as possible.

In Chapter 14, we discuss a power management technique called Power Gating, inPower Gating
which the power to designated subsystems is lowered or turned off during passive periods
to aide in reducing system power consumption. Care must be taken when using such a
technique. If the trust zone is included in the set of subsystems for which the power can be
controlled, then it becomes vulnerable to side channel attacks. If the technique is employed,
then the trust zone, at the minimum, should be segregated and managed by a separate system
in a manner similar to that discussed earlier in this chapter under fail operational capability.

8.23.5 Firewall

Taking an external view of an embedded system, a denial-of-service attack is an attack ondenial of service attack
a system initiated with the intent of diverting or preventing it from performing its intended
job. Such an attack typically commences by flooding the targeted machine or resource with
superfluous requests, potentially from a wide variety of sources, in an attempt to overload
the system and prevent some or all legitimate requests from being fulfilled.

A basic firewall, illustrated in Figure 8.45, is a tool that can help to handle and mitigatefirewall
such attacks. In the context of embedded systems, the firewall is considered to be host-based
and comprises a layer of software on the system that monitors and controls traffic into and
out of the system.

Fundamentally, in this context, the firewall is a router or set of routers and a filter that
act, in concert, as a gatekeeper to screen network traffic between the Internet and a trusted
and secure local site. The device utilizes a set of security rules to manage and control traffic
into or out of the secured device.
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External

Network
Router0 Router1

Secured

Embedded

System

Gateway

Firewall

Figure 8.45 Basic Firewall Block Diagram.

In the diagram, the two routers apply those rules to every incoming and outgoingrouters
packet. For example, the routers may block all incoming network packets directed to a par-
ticular IP address or TCP port, thereby protecting the secure device from a flood of packets.
The gateway views the packets from an application perspective. The gateway analyzes each
message according to sets of specified criteria and rules, then decides whether to accept,
transmit, or discard a message. Thus, the only traffic allowed into or out of the system is
that specified in the access policy and security rules.

To facilitate the aforementioned goal of forestalling any successful attack to the distant
future, we can introduce another interpretation of the term “firewall.” In the larger sense,
a firewall is essentially a barrier, designed and installed with the intention of preventing
undesired events from intruding into a protected area. Building on the MILS model dis-
cussed earlier, rather than a single firewall protecting access to a protected area, implement
a cascade of firewalls, each with a different protocol that must be ultimately followed to
gain access to the trusted area. With such a scheme, an attack that compromises/breaches
one impediment will not be immediately successful and, if detected, can raise an alert to
the system.

8.24 CLOSURE

Given the growing number of attacks on embedded systems, and following the guidelines
discussed in this chapter, we conclude with a few simple words.

First, backup, potentially replicate, and isolate the most critical and essential parts of
the system. Then, be prepared. Extend and support that preparation with a plan of action
put together which anticipates that an attack might occur.

Second, if such an attack does occur, quickly initiate an assessment of the situation and
the extent of the damage.

Third, try to limit and minimize any additional damage.

8.25 TOMORROW

Current research and successes in the AI areas of deep learning, supervised, unsupervised,
and reinforced learning are showing significant progress in solving complex problems.
These tools are showing great promise and potential as aides in recognizing and repelling
attacks on embedded systems. They are also showing the same potential as weapons for ini-
tiating and conducting such attacks. The tools and methods that we have discussed in this
chapter have a limited lifetime. We need to be continually diligent in our efforts to ensure
the security of our systems.
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8.26 SUMMARY

In our studies, we have taken the first small steps toward design-
ing and developing safe, secure, robust, and reliable embedded
systems.

We have established the need for reliable hardware and
software, introduced some of the vocabulary, and looked at sev-
eral of the hardware and software approaches that we may take
at the system and architectural levels to help to ensure that
we develop a reliable product. We have also presented some
approaches that we can use at runtime to detect problems. As
we have noted, we believe that the detailed concerns, more in
depth analysis, and possible solutions to specific the issues are
better dealt with closer to where the those hardware and software
concepts are introduced and discussed.

We have introduced, examined, and discussed the grow-
ing and increasingly critical problem of security in embedded
systems and established the need for reliable hardware and soft-
ware.

Regarding security, we stressed that detailed problem def-
inition/analysis is the starting point in achieving a successful
solution. We broke down the potential attack targets into the sys-
tem hardware, software, and command and data exchange with
the external world. We then identified some of the potential vul-
nerabilities and security needs in each of these areas and how
such needs can be addressed.

From the attack perspective, we looked common attack
paradigms and proposed possible safeguards and countermea-
sures. We have, however, stressed that no security system is
invincible. At the end of the day, what was designed by humans
can eventually be beaten by humans. The goal is to make the

path to eventually as difficult, complex, and as far in the future
as possible and to reduce any potential damage as much as pos-
sible.

Finally, we stressed that safety, security, and reliability can-
not be tested in nor can they be added as the product is being
released to production. These aspects of any embedded design
must be addressed on day “one” of the development cycle.

Our goal in these pages has been to raise awareness of the
growing issues of embedded system safety, security, and reliabil-
ity and to take the first steps into addressing them. This chapter is
not a comprehensive nor exhaustive treatment of the problems.
Please see the references cited in the Further Reading section at
the end of this book for a wealth of additional material on this
subject. However, it is important to recognize that the problem
is continually changing.

As a final caveat with respect to the security aspects,
assume that I can design a system that I guarantee will be impos-
sible to attack. That said, the inherent weakness in such a state-
ment and such a system is the human factor. A typical real-world
example is the manager who lowered the protecting firewall
because it was bothering workmen working on the system; the
system was successfully attacked within microseconds. A sec-
ond example is the system in which the corporate and customer
data transactions and controls for the air conditioning were on
the same network; the people working on the air conditioning
needed and were given the passwords.

Someone, somewhere will always be careless or convinced
to loan the keys to the henhouse. Diligence is an extremely
important key to protecting an embedded system.

8.27 REVIEW QUESTIONS

Safety and Reliability

8.1 What is security

8.2 What is safety?

8.3 What is reliability?

8.4 What is the difference between safety and reliability?

8.5 What is the difference between security and reliability?

8.6 What role does context play in the definitions of safety,
security, and reliability?

8.7 Why are safety, security, and reliability important con-
cerns in the design of an embedded application?

8.8 What role do specifications play in safety, security, and
reliability?

8.9 What is the difference between a fault, a failure, and
an error with respect to safety and reliability? Give several
examples of each that are different from those in the text.

8.10 What is the difference between a fault, a failure, and an
error with respect to security? Give several examples of each
that are different from those in the text.

8.11 What are some of the characteristics of an embedded sys-
tem that make them potentially vulnerable to an attack?

8.12 What are some of the potential weaknesses of an embed-
ded system that offer an avenue for attack? Can you think of
others that are not listed in the text?

The Design Process

8.13 What is the purpose of keeping bug lists?

8.14 What is the purpose of a design review?

8.15 When should one begin to consider identifying potential
security vulnerabilities and when should one begin addressing
them?
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8.16 What is Fail Operational Capability? Fail Operational2

Capability? Give several examples of each. Explain why such
capability is important in each of your examples.

8.17 What is lightweight redundancy?

Busses

8.18 Explain the benefits of the star, ring, and multidrop bus
configurations.

8.19 Explain some of the disadvantages of the star, ring, and
multidrop bus configurations.

Dealing with Data

8.20 What is type conformance? Why is it important?

8.21 What are boundary values on data that comes into a sys-
tem?

8.22 Give several ways by which data coming from an outside
source into an embedded system can be damaged.

8.23 Give several alternative approaches that can be utilized in
an embedded application to deal with damaged data.

8.24 What is Hamming distance?

8.25 If another designer tells you that her code has a Hamming
distance of three, what is she telling you?

8.26 What is parity?

8.27 What are linear codes? block codes?

8.28 What are cyclic codes?

8.29 What is a burst error?

8.30 What are some of the possible causes of burst errors?

8.31 What is fuzzing?

8.32 What is a side channel attack? What are the major cate-
gories of such attacks?

8.33 What is data encryption? decryption?

8.34 With respect to a network interface, what is
authentication?

8.35 What is a TrustZone? a Firewall?

The Power System

8.36 Give several examples of possible failures in the power
system of an embedded application.

Self Testing

8.37 What are built-in self-tests?

Failure Modes Analysis

8.38 What is failure modes analysis?

8.39 What are some of the benefits of conducting a failure
modes analysis?

8.28 THOUGHT QUESTIONS

Safety and Reliability

8.1 Are safety and reliability concerns more or less important
in an embedded application when compared to a nonembedded
system? Why or why not?

8.2 What is risk? Give several examples of low- and high-risk
embedded applications. Identify several embedded applications
that may either be high or low risk depending on their operating
context.

The Design Process

8.3 Identify the major system-level functional considerations
that help to ensure a safe and reliable design.

8.4 What are some of the architectural-level considerations
that help to ensure a safe and reliable design?

8.5 What are some of the major hardware and software issues
that should be examined during a design review?

8.6 What does Fail Gracefully mean? Give several examples
and explain why such capability is important in each of your
examples.

Busses

8.7 Explain some of the advantages of the star, ring, and mul-
tidrop bus configurations. Give several examples where each
might be used. Explain the benefit(s) in each case.

8.8 Give several examples where the star, ring, and multidrop
bus configurations might not be the best choice. Explain your
reasoning in each case.

8.9 Discuss the reliability aspects of the star, ring, and mul-
tidrop bus configurations and possible causes and consequences
of failure in each.

Dealing with Data

8.10 Who specifies the boundary values on data coming into the
system? Why is it important to test program input data against
such values?

8.11 What possible actions can be taken by an embedded appli-
cation for data values that are within specifications, at specifica-
tions, outside of specifications? When do such actions become
required rather than optional? Give several examples of data



�

� �

�

8.29 Problems 399

values in each category. For each of your examples identify when
the actions you have specified are required or optional.

8.12 Explain the difference between odd and even parity. Why
would one use one scheme over the other?

8.13 What are the limitations of a basic parity scheme? What
are the advantages?

8.14 What is the maximum amount of information that we can
gain if a simple parity check shows no error? shows an error?

8.15 If the computed parity on a received code word agrees with
the value that was received, what do we know about the correct-
ness of the received data?

8.16 If the computed parity on a received code word disagrees
with the value that was received, what do we know about the
correctness of the received data?

8.17 What advantages do block codes have over a basic parity
scheme? When would one use a block coding scheme instead of
a basic parity scheme? What are the additional costs of a block
code scheme?

8.18 How do cyclic codes compare with basic, linear, and block
encoding schemes? Consider factors such as ease of implemen-
tation, complexity, and runtime complexity.

8.19 When should one consider using an error-detection/
correction scheme as part of a data exchange? Give several
examples.

8.20 What major costs does one incur when using an error-
detection/correction scheme?

8.21 What are some of the security concerns with respect to an
embedded system network interface?

8.22 When should one consider using an encryption/decryption
scheme as part of a network interface? Give several examples.

8.23 With respect to a network interface, explain how
authentication works.

8.24 Explain the purpose of a Secure Operations Center and
how such a thing might work.

8.25 Explain the purpose of a Firewall and how such a thing
might work.

The Power System

8.26 Identify possible design solutions to address possible
failures in the power system of an embedded application.
Discuss the advantages and disadvantages of each of your
proposed solutions.

Self-Testing

8.27 Discuss several advantages and disadvantages of built-in
self-tests.

Failure Modes Analysis

8.28 During what stage of the development life cycle should
failure modes analysis be used? Why?

8.29 What kinds of failures should be considered?

8.29 PROBLEMS

8.1 The chapter discussed the loss of the Ariane 5 rocket and
attributed the failure to a mismatch between the word size in
the sensors and the word size in the guidance system. Propose
a series of tests that might have identified the problem prior to
launch.

8.2 Propose an addition or a modification to the guidance and
control system in the Ariane 5 rocket that would have managed
the data in such a way as to have prevented the loss of the rocket
without modifying the existing register sizes.

8.3 The chapter introduced a problem that occurred on the
Mars Pathfinder in which a lower priority task was able to indef-
initely block a higher priority task. Propose a series of tests that
might have identified the problem prior to launch.

8.4 Propose a software or hardware modification that might
prevent the blocking problem on the Pathfinder.

8.5 Provide a detailed hardware block diagram for the design
of the voting block for the fail operational2 system architecture
using different designs as presented in the chapter.

8.6 Develop a UML sequence diagram expressing the nec-
essary activities and responses to three failures in a fail
operational2 system architecture.

8.7 Provide a detailed software pseudocode design of the vot-
ing block for the fail operational2 system architecture using dif-
ferent designs as presented in the chapter.

8.8 Compare the strengths and weaknesses of the hardware
and software voters discussed in Problems 8.5 and 8.7. Would
your analysis change if the same design was used for each of the
redundant systems? If so, how?

8.9 As an alternative to the fail operational2 system archi-
tecture, the chapter proposes a design utilizing lightweight
redundancy. Develop a UML sequence diagram expressing the
necessary activities and responses to a failure in the system
architecture utilizing lightweight redundancy.

8.10 In the system architecture utilizing lightweight redun-
dancy, propose a detailed hardware block diagram or software
pseudocode design that identifies when a problem has occurred
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and affects the assumption of the reduced control responsibility
and the warning and annunciation.

8.11 Propose a hardware or software strategy for detecting,
annunciating, and managing a node or link failure in a system
utilizing a star bus configuration.

8.12 Repeat Problem 8.11 for a system utilizing

(a) A multidrop bus configuration.

(b) A single ring bus configuration.

8.13 Using an array as the model for a typical data container
for storing unsigned integers,

(a) Identify all of the boundary conditions that should be
tested for.

(b) Write a software program that will implement the tests
identified in part (a).

8.14 Design an algorithm that accepts data from an external
source. Data values that fall in the range of ±4.0 are consid-
ered to be valid; data values exceeding the range are considered
invalid. If the data is within range, it is to be displayed. If val-
ues fall outside of the valid range, a warning is to be issued and
displayed and no additional data accepted until the warning is
acknowledged. Use sinusoidal data in the range of ±5.0 to verify
the performance of your algorithm.

8.15 Extend the design in Problem 8.14 to issue the warning
and display the ceiling and floor values of the data but con-
tinue to accept input data. If the input data value returns to the
specified range, the warning annunciation is to continue until
acknowledged, but the current incoming data values are to be
displayed.

8.16 Give a Verilog design for a system that will accept an 8-bit
word, in parallel, append an odd parity bit, and output the result-
ing 9-bit word.

8.17 Repeat Problem 8.16 by writing a software algorithm to
accomplish the same task.

8.18 Give a Verilog design for a system that will accept a 9-bit
word, in parallel, check for odd parity, and output the 8-bit data
word if the received parity is correct; otherwise issue an error.

8.19 Repeat Problem 8.18 by writing a software algorithm to
accomplish the same task.

8.20 Give a Verilog design for a system that uses a Hamming
code for error management. The system should accept an 8-bit
data word, in parallel, encode the data, then output the resulting
code word.

8.21 Repeat Problem 8.20 by writing a software algorithm to
accomplish the same task.

8.22 Give a Verilog design for a system that will accept a 16-bit
word that has been encoded using a Hamming code. The system
should then check and output the corrected 8-bit data word.

8.23 Repeat Problem 8.22 by writing a software algorithm to
accomplish the same task.

8.24 Give a Verilog design for a system that uses a block code
for error management. The system should accept a 15-word
block of 8-bit data words one word at a time, generate odd parity
over the individual words, and even parity over the block, out-
put each of the 15 9-bit data words, followed by the block check
character.

8.25 Repeat Problem 8.24 by writing a software algorithm to
accomplish the same task.

8.26 Give a Verilog design for a system that will accept a block
of data words encoded as specified in Problem 8.24; then check
the parity for each data word and for the block. The system
should output each of the 8-bit data words, issue a word error
if the parity is incorrect for any word, and issue a block error if
the block check word is in error.

8.27 Repeat Problem 8.26 by writing a software algorithm to
accomplish the same task.

8.28 Give a Verilog design for a system that uses cyclic encod-
ing based on the following generator polynomial for error man-
agement.

g(x) = x8 + x7 + x6 + x4 + 1

(a) Use your design to encode the word 1011001.

(b) Verify that your design can detect a single-bit error in a
received code word.

8.29 Repeat Problem 8.28 by writing a software algorithm to
accomplish the same task.

8.30 Implement the design for the monitoring and control sys-
tem for the full-operation 15.0 VDC redundant power supply
system discussed in the chapter. You can assume that values
of the supply voltages are acquired through an analog-to-digital
converter.

8.31 Implement the design for the monitoring and control sys-
tem for the reduced-operation 15.0 VDC power supply system
that utilizes four set points discussed in the chapter. You can
assume that values of the supply voltages are acquired through
an analog-to-digital converter. Choose the set point to be in the
range of 4–14 VDC. Explain the reasoning behind each of your
choices.

8.32 Design a built-in self-test for a 256 K by 8 SRAM. You
must ensure that no data is ever corrupted as a result of your test.
Your test must be able to operate while normal memory opera-
tions are taking place. Is your design done in hardware, software,
or a combination? Explain your choice.

8.33 Design a power up self-test for a 256 K by 8 ROM that
utilizes a block check scheme. Is your design done in hardware,
software, or a combination? Explain your choice.

8.34 Give the pseudocode for an algorithm that verifies the
operational integrity of an embedded application at power up.
State any assumptions.



�

� �

�

8.29 Problems 401

8.35 Perform a failure modes and effects analysis on the fail
operational2 system architecture developed in Problem 8.5. State
any assumptions.

8.36 Perform a failure modes and effects analysis on a system
utilizing a star bus configuration. State any assumptions.

8.37 Provide a detailed block diagram for an alarm clock that
also provides day and month annunciation. Perform a failure
modes and effects analysis on such a system. State any assump-
tions.

8.38 Provide a detailed block diagram for an entertain-
ment system that includes a television, stereo, DVD recorder
and player, PC, and Internet connection. Perform a failure
modes and effects analysis on such a system. State any
assumptions.

8.39 Provide a detailed block diagram for a Trustzone that is
different from the one presented in the text. State any assump-
tions.

8.40 Develop an algorithm that will run at boot time and
ensures that each hardware and software block or module is
at the proper address(es). Document the algorithm and state
assumptions and possible weaknesses.

8.41 Develop and explain the full set of test cases to cover
MC/DC for the code fragment in Figure 8.41.

8.42 Develop, explain, test, and demonstrate a
three-way-handshake protocol for a system of your design to
ensure that proper and valid commands are legally entered into
a system of your design. Develop an MC/DC suite for your
protocol.
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Chapter 9

Embedded Systems Design and
Development – Hardware–
Software Co-Design

THINGS TO LOOK FOR…

• Things to consider in a design.

• The traditional product development life cycle.

• The Co-Design methodology and life cycle.

• An overview and motivation for the Co-Design methodology in the embedded world.

• The goals and steps to design in the Co-Design methodology.

• The need to understand the environment and the system being designed.

• The difference between requirements definition and design specification.

• Formulating a design specification.

• Techniques and major phases of hardware/software Co-Design.

• Motivation for and objective when partitioning a system.

• Coupling and cohesion and why they are important.

• The differences between functional and architectural models of a system.

• Modeling under Co-Design.

• Modeling tools and methodologies.

• Motivation for and timing of static and dynamic analysis of a design.

• Co-Simulation, Co-Synthesis, and Co-Verification.

• Capitalization and reuse of designs.

• Archiving the project.

• Requirements traceability.

Embedded Systems: A Contemporary Design Tool, Second Edition. James K. Peckol.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/college/peckol
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9.1 INTRODUCTION

In this chapter, we will study the major phases of the embedded systems development pro-
cess. The more detailed aspects of that process will be explored in conjunction with the
design and test of the specific hardware and software elements of the system.

We will learn that design is the process of translating customer requirements into
a working system and that the complexity of contemporary systems demands a formal
approach and formal methods. Working from a formal specification of a problem, we will
look at ways of partitioning the system as a prelude to developing a functional design.
We will then examine the process of mapping a functional model on to an architectural
structure and ultimately to a working prototype. To help ensure the robustness of the ulti-
mate product, we will illustrate how to critically analyze the design both during and after
development.

We will also look at several other important considerations in the design life cycle,
including intellectual property (IP), component/module reuse, and requirements manage-
ment and the archival process.

As we begin to think about a new product or as we add new features to an existing one,
we must look at things from many different points of view. The most important of these
perspectives is the customer’s, as he or she finances the development of the product either
directly through an agreed upon contract or indirectly through a purchase. The best design
is of little value if no one is willing to buy it. So, we pose the question: “What kinds of
things should be considered?”

If we look at products, we must know how to measure costs and features. We mustcosts, features
real, perceived needs be able to identify and distinguish between real and perceived needs. Too often when we

talk with customers about new products, the essential “requirement” in the next generation
product is that which was missing when a problem arose this morning.

It is important to learn how to make market and technology trade-offs. Several yearsold technology
old markets ago the very simple table shown in Figure 9.1 was proposed. Taking old technology into

old markets is a reasonable and safe strategy. These are the niche markets and often provide
support and evolutionary growth for products that are no longer in a vendor’s mainstream
offering. Taking new technology into new markets is difficult and risky. At the same time, thenew technology, new

markets rewards can be very high. The personal computer is a very good example. Xerox and Apple
both had limited success with their early offerings. The people and the full technology were
simply not ready. Taking new technology in to an existing area or existing technology in tonew, existing
a new area is easier. At least one portion of the problem – the market or the technology – is
well understood and well developed.

Technology

New

New

Old

Old

Market

Figure 9.1 Market–technology Trade-off
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We must understand the importance of deadlines and costs. Product development isdeadlines, costs
based on a (directly or indirectly) negotiated contract between us and the customer(s). Fail-
ure to respect development and delivery costs or schedules leads to loss of sales, market
share, and credibility.

We also must always consider security, reliability, safety, and quality in the products
we design. We learned about these in Chapter 8. Beyond an obvious need to work properly,
the product must be robust. Simply put, “Does it do what it’s supposed to?” and “How does
it behave with unexpected inputs?” Robust means much more than this, however. Robust

security, reliability,
safety,
quality
robust

also implies that the system performs even if it is partially damaged, or under extreme
temperature conditions, or if it is dropped. If a product does what it is supposed to do but
is fragile and buggy, the product is not robust.

The documentation we produce to accompany the product must be clear anddocumentation
understandable. The product must be easy to use – intuitive rather than counterintuitive.
Post-sales support, including the correction of bugs, is very important. Lack of quality haspost-sales support
two costs. The first is obvious and immediate – the cost to repair, which is often small. The
second is a hidden cost – the loss of customer confidence and sales – and it can be very
large. Once confidence lost, it is very difficult to regain.

A Simple Example

Years ago, when developing some of the early microprocessor-based embedded systems,
we would encounter problems as we debugged the hardware and software. At that time,
tools were few and far between. This was a new field.

One very powerful tool for helping to track down such problems is called a logic
analyzer. It allows one to follow which instructions the processor is executing (in real
time) and learn why stuff goes in and never comes out. We had to have one, so, our
company purchased two of them from two different vendors.

The analyzer from vendor A arrived, was out of the box, on the bench, connected to
the system, and making useful measurements within 10–15 minutes. Only several days
later did anyone think to take a look at the manual. The analyzer from vendor B had a
user interface that rivaled a 1040 tax form. Its 1-in. thick manual was equally cryptic and
demanded several hours of study before even the simplest measurements could be made.

Guess which instrument always has a queue of people waiting to use it and guess
which vendor sold us many more instruments?

9.2 SYSTEM DESIGN AND DEVELOPMENT

System design and development is a challenging problem. What makes it fun and exciting
is its very large creative component. There are no rules, no steps to follow to make one
creative. There are, however, a large collection of rules to ensure the opposite. Consider
a new child. Each comes into this world, eyes wide open with a million questions. Why
is the sky blue? Why is the sun yellow? Why can’t we see the air? Where does air come
from anyway? What do we do? We put them in school. We teach them the rules. Walk into
any group of little ones and ask, how many of you can sing? How many of you can draw?
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Almost every tiny hand leaps up. Go into any similar group of adults and ask the same
questions. Everyone is suddenly fascinated with their shoes. One hand may slowly come
up. Why? We place too many restrictions on our thinking. Sure, we may need 10 million
dollars worth of electronic equipment to give our voice perfect pitch, but so what. We need
to remove artificial restrictions that we impose on our thinking.

Look at the little ones drawing or coloring. What do we tell them? No, people aren’t
purple. Cows can’t fly. Fish don’t have legs – anymore. Oh, and by the way, always color
in the lines… and let’s also learn how to be creative.

9.2.1 Getting Ready – Start Thinking

Okay, let’s start. Driving is always a good place to begin. The rules are easy. Keep the
yellow line on your left and the white on your right – except in Britain and several other
places. Now the chance to be creative. In the autumn in the northern parts of the world, the
days are warm, but the nights start getting colder. Often there is a bit of fog that makes an
appearance as well. By the morning, the fog and chill have combined to give a very fine
glaze of ice on the road. We call this black ice; it gives us the opportunity to be creative.
Hop in the car and race out onto the road. What’s this nonsense about staying in the lines?

Now that perhaps we have decided that maybe we can be just a little creative, let’s
begin to explore.

As we begin thinking about a new design, we will discover that there are a lot of things
to be considered. The problem may not always be what it seems at first blush. Roger van
Oech in A Whack on the Side of the Head (Warner Brooks, 1983), says “Always look forA Whack on the Side

of the Head the second right answer.” He’s right. As we begin, it is important to understand the problem
to make sure that we are solving the right problem. Consider the illustration in Figure 9.2.
Which one is the correct image? Is it the old lady or the young one?

Figure 9.2 Old Woman–young
Woman

Figure 9.3 Goblet or Statue

When we begin trying to solve a problem, it is important to talk with everyone involved;
to listen to different opinions; to see how the design might affect the people who have to
work with it.
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We have to take the time to look at different views of the problem, to look at it from both
the inside and the outside. Based on our view, we can have a couple of different interpreta-
tions of the problem presented in Figure 9.3. Are we building a goblet, or are we building
two statues?

There will always be occasions in which we have too much information, too many
opinions, or too many details. Remember the old expression of not being able to see the
forest for the trees. The same holds true as we begin trying to understand a problem during
the early stages of a design. Look at this next drawing in Figure 9.4. What do you see? This
interesting design looks perhaps like a snowflake. This is a case in which we have too much
information.

Figure 9.4 Too Much
Information

Figure 9.5 Remove Some
Information

Let’s remove some of the information as in Figure 9.5; if we take a more abstract view of
the problem, the solution is easier to see.

Now that we have a start, let’s look at the design problem. Let’s look at each design as
a chance to explore.

9.2.2 Getting Started

Designing and developing embedded systems does raise some interesting challenges and
does require a large number of decisions. Some of those decisions require knowledge about
the problem, others require knowledge about the tools and techniques that may be available,
and still others choose methods for approaching the solution. There will often be still more
things to think about that are not related to the technical part of the problem at all. The
collection of things we do as we move from requirement to application is often called the
product life cycle.product life cycle

Like so many other things in life, there are probably as many different product life-cycle
models as there are people designing these systems. Who said there isn’t any creativity?
Each of these models has its supporters, and each also has its group of detractors. The goal
in the next few pages is to introduce some of the more important things one should think
about when executing a design, to present several of the more common life-cycle models,
and to present some guidelines for things that have worked on successful projects. Despite
what they tell you, there are no hard and fast rules – well, perhaps there are a few: learn
a lot with each project, have fun, and do the job right, to the best of your ability. It is also
important to learn to fail successfully. Let’s get started.
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9.3 LIFE-CYCLE MODELS

The product life cycle of an embedded application is purely a descriptive representation. It
breaks the development process into a series of interrelated activities. Each activity plays a
role of transforming its input (specification) into an output (a selected solution). The steps
are organized according to a design process model – the life-cycle model. Formality indesign process model,

the life-cycle model design provides the structure for a development that lets us creatively explore the design
while using the tools to manage some of the more mechanical issues. We use the structure
as an aid rather than as something that encumbers design.

As we have commented already, the related literature presents a variety of pro-
posed approaches and models. At the end of the day, all have the same basic goal,
however: they all have similar phases. Perhaps we could more accurately say that they
all have similar needs or goals or objectives. These needs are very simple, as shown in
Figure 9.6. Several of the historically more common models or approaches are listed in
Figure 9.7.

• Find out what the customers want.

• Think of a way to give them what they want.

• Prove what you’ve done by building and testing it.

• Build a lot of the product to prove that it wasn’t an accident.

• Use the product to solve the customer’s problem.

Figure 9.6 Fundamentals of Design

• Waterfall

• V Cycle

• Spiral

• Rapid Prototype
Figure 9.7 Common Life-cycle Models

Today, we are continually developing new models. But whichever model we choose,
the most important point is to understand the meaning and intent or objective of each phase
or step in the process. Understand the deliverables for each step as well as the necessary
outputs and inputs that are required to move, conclude, or enter each phase in the selected
model. Then follow those and don’t take shortcuts. We will look briefly at each of these
four models momentarily. Before we do so, let’s look at another model that fits just about
any phase of engineering; it looks something like the one shown in Figure 9.8.

Figure 9.8 The Hockey Stick Curve
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This is called the hockey stick model or curve; its shape is strongly suggestive of wherehockey stick model
the name originated. We have talked about how important it is to address reliability and
safety early in the requirements specification and design phases of the life cycle. The hockey
stick curve, shown in Figure 9.8, provides an intuitive feel as to why. If we label the horizon-
tal axis as time and the vertical one as cost, and apply it here, we see that the longer we delay
in addressing those issues, the greater the cost will be. Cost is not limited to money alone.

Let’s begin with the Waterfall model. Use your artistic creativity here. Its name evokesWaterfall model
its sound, which evokes the philosophy and approach engendered in the model.

9.3.1 The Waterfall Model

The Waterfall model represents a cycle – specifically, a series of steps appearing much likeWaterfall model
a waterfall, sequentially, one below the next, as we see in Figure 9.9.

Specification

Preliminary
Design

Detailed Design

Implementation

Review
and Revise

Review
and Revise

Review 
and Revise

Review 
and Revise

Figure 9.9 The Waterfall Life-cycle Model

The steps are:

• Specification

• Preliminary design

• Design review

• Detailed design

• Design review

• Implementation

• Review.

Together, these capture each of the needs we identified earlier. Successive steps are
linked like a chain. Such a linking tends to say: Complete this phase and go on to the next.

Complete this phase
and go on to the next
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Observe that each phase is also connected to the previous phase. That reverse con-
nection provides an essential verification link backwards to ensure that the solution (in its
current form) agrees with and follows from the specification. With the Waterfall model, the
recognition of problems can be delayed until later stages of development where the cost of
repair is higher (the hockey stick curve). The Waterfall model is limited in the sense that it
does not consider the typically iterative nature of real-world design.

9.3.2 The V Cycle Model

The V Cycle is similar to the Waterfall model except that it places greater emphasis onV Cycle
the importance of addressing testing activities up front instead of later in the life cycle.
Each stage associates the development activity for that phase with a test or validation at the
same level. Each test phase is identified with its matching development phase, as we see in
Figure 9.10. In the diagram, we have:

• Requirements ↔ System/Functional Testing
• High-level Design ↔ Integration Testing
• Detailed Design ↔ Unit Testing.

Decomposition

System
Specification

Preliminary
Design

Detailed
Design

Code

System Test

System
Integration

Performance
Test

Integration
Test

Unit Test

Specification Test and EvaluationDesign and Development Implementation and Maintenance

Verification and Validation

Verification

Specification

Design

Validation

Implementation

Verification

Verification

Requirements

Figure 9.10 The V Life-cycle Model

We identify the major phases of a project life cycle across the top of the drawing.
These phases extend from specification to customer delivery and post-delivery support.
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If one follows the sequence down the left-hand side of the drawing, one can see that the
specification and design procedure utilizes a top-down model, whereas implementation
and test proceed from a bottom-up model, as is reflected on the right-hand side of the
drawing.

It is evident that each development activity builds a more detailed model of the system
and that each verification step tests a more complete implementation of the system against
the requirements at that phase. The development concludes the design and design-related
test portion of the development cycle of the system with both a verification and a validation
test against the original specification.

9.3.3 The Spiral Model

The Spiral model was proposed and developed by Barry Boehm in A Spiral Model of Soft-
ware Development and Enhancement (Computer, May 1988). A simplified version of that
model is presented in Figure 9.11.

Spiral model, A Spiral
Model of Software
Development and

Enhancement

Cost
Identify and

resolve risks

Plan Next

Iteration

Evaluate

Alternatives

Determine

Objectives

Develop

Deliverables

Start

Release

Figure 9.11 The Spiral Life-cycle Model

The model takes a risk-oriented view of the development life cycle. Each spiral
addresses the major risks that have been identified. After all the risks have been addressed,
the Spiral model terminates, as did the Waterfall and V models, in the release of a
product.

Like the earlier models, the Spiral model begins with good specification of the require-
ments. It then iteratively completes a little of each phase. Its philosophy is to start small,
explore the risks, develop a plan to deal with the risks, and commit to an approach for the
next iteration. The cycle continues until the product is complete. Boehm’s model contains
a lot more detail than the one presented in Figure 9.11. In both cases, each iteration of the
spiral involves six steps, as shown in Figure 9.12.
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• Determine objectives, alternatives, and constraints.

• Identify and resolve risks.

• Evaluate alternatives.

• Develop deliverables—verify that they are correct.

• Plan the next iteration.

• Commit to an approach for the next iteration.
Figure 9.12 Spiral Life-cycle Model

The Spiral model is an improvement on the Waterfall and V models because it pro-
vides for multiple builds as well as several opportunities for risk assessment and customer
involvement. On the negative side, it is elaborate, difficult to manage, and does not keep all
developers occupied during all of the phases.

9.3.4 Rapid Prototyping – Incremental

The Rapid Prototyping model is intended to provide a rapid implementation (hence the
name) of high-level portions of both the software and the hardware early in the project. TheRapid Prototyping

model approach allows developers to construct working portions of the hardware and software in
incremental stages. Each stage consists of design, code and unit test, integration test, and
delivery. At each stage through the cycle, one incorporates a little more of the intended
functionality.

The prototype is useful for both the designer and the customer. For the designer, it
enables the early development of major pieces of the intended functionality of system. By
doing so, it helps to establish and verify the structural architecture as well as the control
flow through the system. Such an approach permits one to identify major problems early
(the hockey stick curve again).

The customer benefits by having the opportunity to work with a functional unit much
earlier in the development cycle than with any of the three previous models. The customer
can use the prototype in the intended context to provide feedback to the designers about
any problems with the design.

Such feedback is a critical aspect of the approach because it encourages backwards or
reverse flow through the process. It can be used to refine or change the prototype in order
to correct the identified problems and to ensure that the design meets the real needs of the
customer.

The prototype can be either evolutionary or throwaway. It has the advantage of having
a working system early in the development process. As noted, problems can be identi-evolutionary,

throwaway fied earlier, and it provides tangible measures of progress. To be effective, however, the
rapid prototyping approach requires careful planning at both the project management and
designer levels.

Be careful how the prototype is used:

Caution: The prototype should never turn into the final product.

Let’s now move into the design process. Design begins with the real world where we
are trying to solve problems in order to make our lives easier.
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9.4 PROBLEM SOLVING – SIX STEPS TO DESIGN

As we have learned, embedded systems touch almost every aspect of our daily lives. Such
applications can comprise thousands of lines of code, large heterogeneous collections of
microprocessors, very large-scale integrated (VLSI) components, and array logics. Such
collections may also include a variety of legacy components; we cannot afford to redesign
each new system from the ground up. They may utilize a mixture of different forms of
control, such as event driven, reactive, time based, or data flow constructs, to orchestrate a
mixture of different technologies to solve a customer’s problem.

Components or IP may come from a variety of different sources for which we may
not have access to internals. Those components may be distributed around an office or
around the world. Systems comprising multiple cores on a chip (Systems On a Chip [SOC])
are becoming increasingly more common and we are accelerating toward networks on a
chip (NOC). Artificial Intelligence (AI) and the Internet of Things (IOT), with all their
pluses and minuses, are also becoming a reality. Yesterday, embedded system design drew

Internet of Things
(IOT)

primarily from the field of digital logic augmented by some support from a new field called
software engineering. Today, the boundaries of embedded design grow increasingly fuzzy
as knowledge and skills from virtually all fields of engineering and computer science are
drawn upon and have become essential.

Our designs are often subject to contradictory constraints on cost, size, power, speed,
safety, and reliability. At same time, they are becoming increasingly sophisticated and pow-
erful as well as larger yet smaller. The ubiquitous microprocessor – or multicore processor,
coupled with our advances in the design and development of large-scale integrated circuits
supported by our progress and developments in the software fields are creating opportuni-
ties to explore designs that push the edges our current science and technology. Today, the
successful deployment of embedded applications requires new approaches and new tools
to be utilized to address and manage these complexities. Yet the typical developer often
continues to use methodologies and principles that can be quickly overwhelmed by the
complexities and demands of modern systems. The problem is growing worse, particularly
with multicore devices, increasing speeds, decreasing circuit geometries and component
sizes, and (widely) distributed systems. As sizes decrease and speeds surge, the effects on
the quality of signals from parasitic devices rooted in fundamental physics are becoming
an increasingly challenging issue. Yesterday, we could design then build our system on our
laboratory bench. Today, with designs approaching or exceeding the million transistor level,
traditional methods are no longer viable.

The modern creative design and development process begins with an abstracted notion
of the system to be built. Hopefully, we learned years ago that the first step to design is
not to grab the nearest keyboard or processor and start hacking out code or wiring parts
together. With today’s complex systems, planning and thought before starting are essential
to any successful, secure, reliable, and safe design. Computer-based tools and methods have
become an essential part of that process.

When we begin the design of a new product or have to incorporate several new features
or capabilities into an existing one, we begin with a set of requirements usually stated in
text form. The goal is to map those requirements – the real world – through a series of
transformations into a solution – the abstract world. During the design process, we move
from the concrete, real world into the abstract. These steps comprise what we describe
as good design engineering practices. If one takes the central elements from each of the
potpourri of life-cycle models, one finds that good system designers and successful projects
generally proceed using a minimum of six steps, as listed in Figure 9.13.
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• Requirements definition

• System specification

• Functional design

• Architectural design

• Prototyping

• Test Figure 9.13 Six Steps to a Successful Deign

The formality of each step depends on the complexity of the end product. If you are
working alone or with several others in your own company on a smaller project, a white
board in the center of the garage can often suffice. If you are orchestrating a project that
includes developers, manufacturers, and regulations in several countries around the world
(which is becoming increasingly common today), the need for formality increases. When
working with each of these phases of a product life cycle, we must remember that they are
guidelines – collective best practices. They are not a checklist to a successful project, and
they are not exhaustive.

Today the contemporary design process must also enforce IP (intellectual property),
capitalization, and reuse at every design stage. The days of Bob Widler (the father of the opIP (intellectual

property) amp) lecturing about integrated circuit design in the bars of Silicon Valley are long gone.
One must also consider traceability in both the forward and reverse directions. Traceability
captures the relationships between requirements and all subsequent design data and helps
in managing requirements changes.

We have taken our first steps into the embedded systems development cycle. Often our
view on the journey focuses on the hardware. Working with the six steps, let us now bring
in the software side and integrate the concurrent development of both the hardware and the
software using the methodology called Co-Design. We begin with an overview of such aCo-Design
process.

9.5 HARDWARE–SOFTWARE CO-DESIGN

In the earlier sections of this chapter, as a foundation for our next steps, we introduced
and examined several of the more commonly used development cycles. For many years,
the traditional design approach has followed these classical models. Underlying most
such models has been the philosophy in which we design the hardware components,
then design the software components, and then bring the two together. Often, the hard-
ware components significantly lagged the software components and yet the software
had to fit the hardware and correct any errors in the hardware design that may be
discovered late in development and test process. The hockey stick curve makes another
appearance.

Today’s designs are continually increasing in complexity, decreasing in size, operat-
ing at higher frequencies, and utilizing a growing breadth of exciting new technologies.
Integrated circuit mask costs are in the millions of dollars; the cost of an error in time
and dollars can be significant. Spending time testing and debugging later in the devel-
opment cycle where cost of change is higher (hockey stick curve again) can add to the
problem. The problem is only partially mitigated with the introduction of programmable
logic devices (PLDs). Today, the evolving world of design is demanding tools and supportProgrammable logic

devices that can match the challenges of new and advanced product features that can meet customer
expectations.
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9.5.1 The First Steps

Today, the Co-Design methodology, which builds on ideas underlying earlier models, isCo-Design
bringing a fresh view to the world of embedded design. The approach supports the iterative
combined and “simultaneous” design, development, and test of the hardware and soft-
ware components with the objective of meeting and optimizing system-level requirements
through well-reasoned trade-offs between these components. Following the six steps to
successful design, the key points in the process are to (iteratively) specify, design, develop,
and test both the hardware and software aspects of the system concurrently to meet required
performance and functional objectives. The goals, as with any design or design process, are

Specify
Design

Develop
Test

to increase productivity – reduce the design cycle time, improve product quality, security,
reliability, and safety, and for tomorrow’s designs, one pass silicon on application-specific
integrated circuits (ASIC)s or custom ICs.

9.5.2 Traditional Embedded Systems Development

Before we look at the Co-Design methodology in depth, Let us start with a quick overview
of the traditional embedded systems development process. As we know, most embedded
systems share a common structure and common development cycle. Through such a cycle,
the embedded design is developed. Figure 9.14 gives the high-level flow and identifies the
major elements of such a cycle. Specifically, the hardware design involves the design of the
components, the printed circuit boards (which are becoming an increasing challenge), and
the system. The software design may entail the design of the high-level assembly language
and machine code. Work at the assembly language level requires detailed knowledge of the
microprocessor architecture and its register structure. The hardware or software constituents
may also include legacy components.

Immediately following formulation of the high-level architecture, the contemporary
approach has been to break the system into hardware and software components. Each
component would be developed separately, often by separate teams. Generally, hardware
development lagged behind the software development. Lead times on parts and the fabri-
cation of custom circuitry slowed the process but had to be finished first, before software
was introduced and integrated.

Such an approach limits hardware–software trade-offs. Interactions between them are
determined or discovered later in development. Late integration led to the philosophy of
“let the software fix the hardware problems…we can send out updates later,” potentially
poor quality designs, last second modifications, slipped schedules, costly design changes,
the need for routine updates to correct problems over the product’s lifetime, and possibly
canceled projects.

The development cycle illustrated in Figure 9.14 reflects the potential for a high degree
of concurrent hardware and software development following the specification of the system
architecture. Such concurrency demands greater cooperation between all designers. Shorter
times to market mitigate against an extended trial and error approach, although such an
approach actually worked quite successfully during the Soviet space program. The tradi-
tional development cycle puts an increased demand that errors be identified and corrected
early, that requirements be very well established and understood prior to the start of the
design, and that a predictable schedule is essential. Under such constraints, the increased
reuse of legacy components could help to reduce the design and development time. Such
observations naturally lead to a Co-Design approach. Let’s now look at the various elements
of the Co-Design process in a bit more detail.
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Figure 9.14 Traditional Embedded Development Cycle
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9.6 HISTORY

As we begin to explore the Co-Design process, we will start with a look at where we
came from. Early computers were known as complex instruction set computers; the CISC
architecture. Work at IBM plus other places led to simpler architectures and a significant
reduction in the numbers and complexity of instructions. These machines became known

Complex Instruction Set
Computer

CISC
as reduced instruction set computers or the RISC architecture. Such a change simplified theReduced Instruction Set

Computer
RISC

design of both the hardware and software, thereby increasing the speed of computation and
simplifying and improving performance and flow of control through the machine. In partic-
ular, the flow associated with context switching. Today’s ARM (Advanced RISC Machine)
processor evolved from this early work.

Simultaneously, work continued on compilers for such machines. Developed “indepen-
dently” or serially, such a process led to two designs – hardware followed some time later
by the software, neither of which was optimal. The thought occurred that if the develop-
ment and optimizations of the two components could be executed simultaneously it would
be possible to improve both.

The fundamental concepts behind Co-Design that have been around for approximately
30–40 years started to gain traction around 20–25 years ago with the first international work-
shop. The approach evolved from thoughts and research in several areas. On the hardware
side, the recognition that microprocessor-based systems were becoming a growing and
increasingly important area for traditional IC and system designers. On the software side,
the development and growth of software engineering and the recognition that software was
becoming an integrated and essential component in future chip and system designs. The
development of both the hardware and the software were supported by work in synthe-
sizing designs from behavioral models. Models, and modeling, have grown to become a
significant and integral component of the Co-Design process.

The early objectives of the Co-Design methodology were to gain control of the design
of the hardware- and software-based systems and to ensure greater predictability in meeting
initial goals and requirements. Supporting such objectives was the desire to give designers
tools to assess and verify that the delivered system met the specified speed, power, cost,
reliability, performance, and complexity goals while enabling them to explore and evaluate
alternative designs at the detailed level without having the cost of a full implementation.
As noted, essential to the Co-Design methodology was the use of computer-based tools and
models. – the Unified Modeling Language (UML) and the Structure Analysis and Design
methodology have become very good tools contributing to and supporting that process.

Unified Modeling
Language

Structured Analysis
and Design

9.6.1 Advantages of the Co-Design Methodology

The Co-Design methodology permits both the hardware and the software to influence the
design during early stages of development and supports a continual verification of the design
and design alternatives throughout the development cycle. Co-Design supports and encour-
ages models and the interoperability of hardware and software design tools throughout
process, particularly during architecture definition. It enables greater exploration of design
trade-offs and more interesting architectures. Reuse is an integral part of the process, specif-
ically of components whose behaviors have been previously verified and co-verified as part
of an existing design. Such reuse enables one to reduce integration and test times, leading
to quicker time to market, and to approach the boundary of one pass silicon. Be careful
here, however. We may be moving a design flaw in an original design where it was not a
problem forward to where it may become one. The European Space Agency’s Arianne 5
rocket is one such example.
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9.7 CO-DESIGN PROCESS OVERVIEW

The hardware/software Co-Design approach to embedded systems design suggests tools
and approaches/methodologies that integrate the design and development of both the hard-
ware and the software components. Co-Design focuses on the following major areas of the
embedded development cycle:

• Ensuring a sound hardware and software specification as input to the process.

• Decomposing the system into functional modules.

• (Iteratively) partitioning and mapping the functional modules onto the hardware and
software.

• Based upon the hardware–software partition, formulating the architecture for the sys-
tem to be designed.

• An iterative process of hardware–software synthesis, simulation, and verification.
Following the six steps to successful design, the Co-Design process comprises a

number of subprocesses. The UML echoes many of these same ideas. Included among
these are:

• System Specifications – Requirements and Design
Develop and validate the specification for both sets of components. This is an essen-

tial and core aspect of the approach.

• Functional Decomposition
Partition the system into major functional blocks.

• Partitioning – Co-Design
Partition and map the functional blocks onto hardware and software components;

define and refine the inter process communication.

• Modeling – Architecture
Develop a system architecture from the hardware and software models that takes

into consideration both aspects and works to model the complete system then validate
those models. Synthesize hardware–software interfaces.

• Co-Synthesis – Prototype
Synthesize both the hardware and software components from higher-level models.

Software synthesis will target specific tasks to designated hardware components and
hardware synthesis will decompose computation steps into clock cycles then bring
two pieces together under co-simulation.

• Co-Simulation – Prototype
Simulate the architecture using the modeled hardware running real software. Later

we migrate toward real hardware. The goal is to keep both simulations – hardware
and software – synchronized to ensure proper performance in the ultimate target
platform.

• Co-Verification – Test
Verify that the architecture meets the specification.

• Repeat the Process
Explore alternate partitions as necessary or appropriate.

Such processes require both coarse and fine-grained computer-based tools and support.
In particular, the processes of co-synthesis, co-simulation, and co-verification are limitedco-synthesis

co-simulation
co-verification

by the processing power of our tools. What advantages and disadvantages do multicore
processors bring to this need for tools?
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9.8 THE CO-DESIGN PROCESS

We now move from the traditional embedded development cycle given in Figure 9.14 to that
in Figure 9.15. The latter figure presents the high-level flow through the Co-Design develop-
ment cycle and identifies the major elements of the process. The focus of the methodology
is on the design and synthesis aspects. Its domain is indicated in the boxed portion. It is
important to note that, as with the design of any kind of well-conceived and developed sys-
tem today, we must begin by identifying the stated requirements and capturing these in a
formal specification. Such recognition holds, independent of any approach used.
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Figure 9.15 The Co-design Development Cycle
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Examining the Co-Design methodology a little closer, we can list the essential concepts
that underlie and guide the process:

Ideals

• Transparent methods of modeling hardware and software.
• Transparent design and analysis techniques.
• Interoperability of tools and methods.
• Seamless migration of pieces of functionality between hardware and software.
• An iterative design approach.
• The ability to quickly evaluate a number of different hardware–software partitions

and trade-offs.
• The ability to evaluate system performance in a unified design environment.
• The ability to incrementally segue real hardware and software into models and sim-

ulations.
• The ability to seamlessly move from high level models into real hardware and soft-

ware.
• The ability to work at multiple levels of abstraction.

As we study and practice the design and development of any serious large-scale sys-
tems, we must consider both the system to be designed and the environment in which it must
operate. The abstract view given in Figure 9.16 captures this. We will refine the model assystem

environment our discussion evolves and we iteratively develop ideas.

Environment

Environment System
Inputs

Outputs

System

Figure 9.16 The System and Its
Environment

As our design progresses, we decompose the top-level system block into modules and
subsystems. Some of those modules will be hardware, some software, and some in a middle
area that may be combinations of both.

Components that must or should be either hardware or software are generally clear.
We can say: this part must be hardware or this part must be software. For example, the
power supply, display, communications port are necessarily hardware. We can agree that
the operating system and associated communications drivers are necessarily software.
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Graphically we have expressed the situation in Figure 9.17. We have a gray area
between the hardware and software where the implementation approach not precisely
defined. Co-Design focuses on this area; those components that may be either hardware,
software, or both. In such cases, we are making engineering decisions or trade-offs related
to speed, cost, size, weight, or other factors.

Hardware

Hardware or

Software

Software
Software Design

Techniques

Co-design

Hardware

Design

Techniques

Figure 9.17 Expanded View of an
Embedded System

Co-Design emphasizes models – working from the abstract to the concrete. It is inher-
ently a top-down process that flows as illustrated in high-level blocks in Figure 9.18. Recall
that the major elements of the Co-Design process include: specification, functional decom-
position, partitioning, Co-design, modeling, architecture, co-synthesis, co-simulation, and
co-verification. In our discussions, we will go through each process step and examine the
critical points.
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Figure 9.18 The Co-Design Process
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9.9 LAYING THE FOUNDATION

As we begin to explore the product development cycle, we will walk through each of these
six steps. Rather than focus on how one particular model approaches the interpretation of
these steps, we will try to identify the essential elements of each. The approach that we will
present is top down and iterative.

The first two steps focus on capturing and formalizing the external behavior of the
system. The remaining four move inside the system and repeat, as desired or necessary, the
process for the development of the internal implementation that gives rise to the desired
and specified behavior. As we will do from the outside, we will move from the general to
the specific, capturing and specifying each aspect of the design on the inside.

A major task, once we start to move inside the system, will be that of decomposing
and refining the design from a nebulous entity that someone needs into the product that
meets that need. We will first decompose (organize) the collection of customer’s wishes
into functional blocks that are then partitioned and mapped into an architecture. That archi-
tecture provides the aggregate of hardware and software modules that will make up the
ultimate system. The final step in the design cycle is that of bringing the design together
into a prototype, testing, and ultimately into production.

Because there is not one right answer, the problem represents a challenge and an oppor-
tunity to be creative. A colleague who worked on numerous designs of a particular piece
of measurement technology once said, “although each design performs exactly the same
function, each also represents an opportunity to explore a new approach that is better than
the old.” That colleague built a career around doing what everyone else said could not be
done… including some of the top names in the industry. One of the best ways to learn how
to do something is simply to do it; so, let us get started. As we walk through each of the
steps in the Co-Design process, we will see how they apply to the following design. We
begin with a textual description.
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EXAMPLE 9.1

Designing a Counter

Stating the Problem

As a senior development engineer at Your Time Is Our Fre-
quency, Ltd.com, you’ve just finished one project and are now
getting ready to head off to the next. As part of the early
planning of that projet, you and one of the marketing folks
are traveling around the country talking with people from
a number of different engineering firms. You are trying to
determine what features your customers would like to see in
the next generation product.

You’ve been on the road with this guy for a couple of weeks
now and are anxious to get home. All the cities are beginning
to look exactly alike. Tuesday, this must be Cleveland…
hmmm, looks just like the last three cities. Oh well. This
is the last customer for this trip. This morning, you’re talk-
ing with High Flying Avionics, Inc. It’s interested in a new
counter that can be used on several of its avionics production
lines.

Following several hours of discussion with one of the manu-
facturing managers, you identify most of their requirements.
Your discussion with them follows.

Business is a little slow right now and money is tight, so we
don’t have a large budget to purchase a lot of different new
instruments. In fact, ideally, we’d like to be able to use the
same instrument on several of our lines.

Today, we have our technicians running most of the tests
manually but, in future, we’d like to be able to automate as
many of these tests as we can. As we upgrade our systems,

we’d like to be able to operate several of these counters
remotely from a single PC. Here are some of the other things
that we’d like to be able to do.

As part of our ongoing efforts to improve production and
flow through our lines, we monitor the rate at which units
arrive into each of the major assembly areas. To do that, we
need to be able to track how many of our navigation radios
come down a production line each hour. Because we support
small-quantity builds of different kinds of radios, the rate at
which the units come past the monitoring points is not con-
stant. As each radio arrives at an entry point, it breaks an IR
beam. On most of the lines, breaking the beam generates a
1-μs-wide, negative going 5.0 V pulse. However, we do have
several older lines that we must still support. On these, the
pulse is positive going.

On several of the newer lines, we have to measure fre-
quency up to 150 000 MHz. We also have several tests
for which we must measure frequencies in the range of
50 KHz± 0.001 KHz and 100 Hz with 0.001 Hz resolution.
On another line, we have several instruments with output
signals that have a duration up to 1.0000± 0.0001 ms and
others that have a duration of up to 9.999–10.000 ms and
up to 1.000± 0.001 seconds. These signals are not periodic.
Finally, we have several periodic signals on those same units
that we must be able to measure with the same accuracy and
resolution.

9.10 IDENTIFYING THE REQUIREMENTS

The development of a well-conceived and well-designed system must begin with a require-
ments definition. Such a need holds, independent of the life-cycle model that one chooses to
work with. Unlike the people in the drawing in Figure 9.19 paraphrased from an unknown
author, we cannot begin a design until we know what we are supposed to be designing.

The goal of the requirements identification process is to capture a formal description of
Requirements
identification

the complete system from the customer’s point of view and then to document these needs
as written definitions and descriptions. Such documentation forms the subsequent basis for
the formal design specification.Design specification

Very often, we use the natural language of the customer and of the application context.
We do so because such a formal expression of the requirements forces the early discussion
and resolution of many complex problems, involving a variety of people with expertise in
many different areas, particularly those who are knowledgeable in the application domain.
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The First Day of a New Project

Figure 9.19 Starting a New Project

We express the role that the requirements definition plays between the customer and those
who execute the design with the accompanying simple graphic in Figure 9.20.

Customer

Requirements
Definition

The Design Process

Figure 9.20 The Interface Between the Customer and the
Design Process

The requirements definition provides the interface between the customer and the
engineering process. It is the first step in transforming the customer’s wishes into the
final product. One can see, then, that the requirements definition is a description of
something that is wanted or needed. It identifies and captures a set of required capabilities
or operations. As one begins to identify all the requirements, as noted earlier, it is
important to consider both the system to be designed and the environment in which it is to
operate.

At this early stage in the product life cycle, the goal is to capture and express purely
external views of the environment, the system, and their interaction. With respect to the
system, one refers to such a view as its public interface. One tries to identify what needs to
be done (and how well it needs to be done) starting with the user’s needs and requirements.what

how well The first abstract model of the environment and of the system given earlier is repeated in
Figure 9.21 and captures this. From the diagram, it is evident that the environment surrounds
the system. The inputs to and outputs from the system can come from or go to anywhere
in the environment. As one begins, one should make no assumptions about the extent of
either.
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System

Environment

Figure 9.21 The System and its
Environment – Step 0

The first step is to abstract and consolidate that view so that both appear as the black
boxes seen in Figure 9.22. The initial focus must be on the world or environment (the appli-
cation context) in which the system is to operate. Next, one follows with an increasingly
detailed description of the role played by the system in that environment, and at each step
one adds to and refines the requirements.

Environment System
Inputs

Outputs
Figure 9.22 The System and Its
Environment – Step 1

From the perspective of the environment, one can see that the requirements definition
must include a specification for the containing environment, a description/definition of the
inputs and outputs to and from that environment, a description of necessary behavior of the
system, and a description of how the system is to be used.

From the system’s point of view, one starts at a high level of abstraction with an outsideOutside view
view. One develops the definition(s) that are appropriate for that level. As was done when
specifying the environment, through progressive refinement, one moves to lower levels of
abstraction and a more detailed understanding and definition.

At this stage in the development life cycle, as the definition of the requirements solidi-
fies and is ultimately formalized into a specification, one should be unencumbered by plans
for implementation. The focus should be on the high-level behavior of the system. The
complete, accurate, and internally consistent specification must be available before one can
start formal design. Ideally, it should be executable and, thereby, able to work in conjunc-
tion with a modeling tool suite. Such an executable specification ultimately serves as the
basis for validation of the system.

Although an executable specification is a laudable goal, achieving that goal can become
difficult when one must include support for nonfunctional constraints, integrate legacy
components into an abstract model, and potentially combine different domain-specific lan-
guages and semantics.

9.11 FORMULATING THE REQUIREMENTS SPECIFICATION

The objective of specification process is to capture the description of both the complete
system and the environment. Such a description should be structured, understandable, and



�

� �

�

426 Chapter 9 Embedded Systems Design and Development – Hardware–Software Co-Design

verifiable. Our first focus must be on the world or environment in which system is to operate.
We follow with an increasingly detailed description of the role played by the system in the
application. At each step, we add to the specification.

From Figures 9.21 and 9.22, and as stated earlier, our design must include a model of
the containing environment, a description/definition of the inputs and outputs, a description
of necessary behavior, and a description of how system is to be used. We start at a high level
of abstraction with an outside view of the system. We then develop the model(s) appropriate
for that level. Through progressive refinement, we move to lower levels of abstraction, to a
more detailed model.

Let’s now examine some of the things that one should think about when starting to
identify and capture the requirements and when trying to define them in a formal specifi-
cation. The form, extent, and formality of such a specification depends on the project on
which one is working, the target audience, and the company for which one is working.
Remember, too, that it is a product that is being delivered, not a pile of paper. As a rule of
thumb, the specification should be the absolute minimum necessary to capture and clearly
identify all of the necessary requirements.

In capturing requirements, one strives to be very specific about the details from therequirements
user’s point of view. Bear in mind that one is identifying and formalizing the requirements.
One still cannot begin to design until the specification has been completed and the cus-specification
tomer has agreed to it. Remember, too, that one should not be discussing microprocessors,
memory, peripheral chips, or software modules at this point in the development process.

As one begins the designs, one usually has some general ideas, casual discussion, and
thoughts but nothing firm. One can use these as a guide in directing the steps, but one
cannot design from them. It is important to be careful, however, not to rely too heavily on
preconceived ideas; one should always be open to alternative approaches. Starting to code
or draw logic diagrams at this point is inviting major problems as the project proceeds. In
all likelihood, the project will fail.

For the environment component of the specification, one must identify and establish
a detailed picture that includes all inputs, outputs, and characterization of the functional
behavior for each of the relevant entities that make up the target environment. We must
know and understand how the environment is interacting with and affecting our system as
well as the effect(s) on the environment of the system’s output(s). For the system, we require
a description of all inputs and outputs as well as a complete description of the functional
and operational behaviors and the technological constraints.

At this juncture we can naturally ask: how can one get such information about (let alone
model) the system and the environment without describing or knowing implementation of
the system? The internals are inherently unknown at this point. How does one capture the
desired behaviors?

9.11.1 The Environment

A reasonable first step begins with defining and describing the environment, the world in
which the system must operate. The environment is a temporal world; it is a heterogeneous
collection of entities of one form or another. It comprises the collection of physical devices
to which the system is interconnected as well as any physical world attributes that the sys-
tem intends to measure or control or that can have an effect on the system. The initial goals
in understanding the environment are to identify all relevant entities, then characterize their
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effects on the system, and vice versa. When the requirements specification has been com-
pleted, one should have all the necessary information about such entities, with sufficient
detail to support moving forward to begin developing the solution.

9.11.1.1 Characterizing External Entities

Each entity that makes up the environment is characterized by a name and an abstracted
public interface. That interface consists of the entity’s inputs and outputs as well as its func-
tional behavior. The specification of the external environment should contain the following
for each entity.

• Name and Description of the Entity
The name should be suggestive of what the entity is or does. The description should

present the nature of the entity. Is it data, an event, a state variable, a message? An
entity may be something that is to be controlled – for example, the rudder on an
aircraft or the clear air turbulence that must be accounted for in such a control system.

• Responsibilities – Activities
What activities or actions is the environment expected to perform? The hydraulic

system moving the rudder is part of the environment. Its action or responsibility is to
move the rudder in response to the signal coming from the system being designed.

• Relationships
What are the relationships between the entity and its responsibilities or activities?

Is that relationship causal or responding? Is it a producer or a consumer?

• Safety and Reliability
Safety and reliability issues must be included early in the specification process.

With respect to the environment, at the requirements stage, the focus is primarily on
safety. The goal is to identify all safety critical issues and hazards so that they can be
addressed in detail in the system design specification. One should also identify any
regulatory agencies under whose auspices the system will operate.

9.11.2 The System

The focus next shifts to the system’s point of view. The same questions posed for the envi-
ronment are now asked about the system. As with the characterization of the environment,
the initial goals are to identify all the aspects of the public interface of the system and then
characterize their effects on the environment and vice versa. For the system component,
we must have a description of all inputs and outputs, a description of the functional and
operational behavior, and an identification of all technological constraints.

Let us use the requirements description and definition as a starting point. Such a defini-
tion describes the customer’s need; it is something that is desired. We talk with the customer.
The analysis of the system leads to a synthesis of reality in the form of a model.

For the system, we formulate the design from three perspectives:

• Functional view
Defines the system’s internal functions and the relationships between and amongst

those functions.

• Operational view
Captures and express the behavior of those functions.
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• Technological view
Formulates a hardware and software solution to the problem, identifies the compo-

nents comprising solution, and the implementation of the functional behavior on the
hardware that is consistent with the identified constraints.

At this stage, for our system and based upon these perspectives, we develop three types
of specification: the functional specification, the operational specification and the technical
specification.

1. Functional Specification
The functional specification enumerates and describes the functions or opera-

tions to be performed by system on or in the environment. These are the external
functions in contrast to internal implementations. They give a description of the
behavior of the environment under the operation of the system for these functions.
The specification poses and answers the question: “How does the system affect the
environment?”

We view the system from the point of view of the user’s needs and requirements.
We must observe or hypothesize what the system must do in its environment. This
can be done in UML through Use Cases. We must observe how the system inter-
acts with objects in its environment; such a view is purely external. Knowing the
environment means modeling the objects without the system and understanding and
describing the relationships between them. The functional specification gives us the
bulk of our high order requirements.

2. Operational Specification
We are now capturing the detailed requirements and constraints. The operational

specification focuses on the behavior, performance, information details, methods
and approaches to be used in system. It leads ultimately to the Design Specification.

3. Technological Specification
The technological specification includes high-level timing and timing constraints,

geographic distribution constraints, characteristics of the interface, and implemen-
tation constraints.

Our high-level model now takes on the form of the diagram in Figure 9.23.

SystemEnvironment

Functional

Description

Functional

Specification

Operational

Specification

Technological

Specification

Inputs

Outputs

Figure 9.23 Refining the System Specification
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9.11.2.1 Characterizing the System

Characterization of the system begins with identifying inputs and outputs.

9.11.2.1.1 SYSTEM INPUTS AND OUTPUTS
The system interacts with the real world through the entities described and defined in the
environmental characterization. The inputs to the system are the outputs from environmen-
tal entities and the outputs from the system are the inputs to the environmental entities. One
can easily see that the system I/O has already been characterized in environmental entity
specification.

For each such I/O variable, the following information is already available:

• The name of the signal.

• The use of the signal as an input or output.

• The nature of the signal as an event, data, state variable, and so on.

Name
Use

Nature

Working with the environment specification, one can write the structure, domain of
validity, and physical characteristics of each signal. To these, one can add any technical or
technological constraints that are identified.

9.11.2.1.2 FUNCTIONAL VIEW
As was done with the specification of the environment, focus now turns to the function that
the system is intended to perform. Before it is designed, the system appears as a black box.
It can only be viewed from an external point of view. A section on functional behavior is
now included in the specification.

The functional description defines the external behavior of the system. It characterizes
the effects of the system outputs on the environmental entities and the system’s intended
response to inputs from the environmental entities. It elaborates on how the system is used
and to be used by the user. Such a specification is equivalent to developing a model of the
system.

The functional description can be captured in a variety of ways. One effective approach
is to use the UML tools discussed earlier. One can construct one such view through use

use case
class diagrams

state charts
activity diagrams

data and control flow
diagrams

case and class diagrams. Another view can be gained through high-level state charts and
activity diagrams; data and control flow diagrams commonly used in structured design
methodologies give a third view.

As one formulates these diagrams and the specification, care must be taken to ensure
that:

• The specified (and ultimately modeled) states are appropriate to the application.
states

actions
• The actions associated with system I/O that are captured in the specification are nec-

essary to express functional specification and accurately reflect the desired (external)
behavior of the system as perceived and intended by the customer.

• The conditions or constraints on its behavior are only a function of the system inputs,
conditions

constraints
the specified states, the internal events, and the appropriate time demarcation (relative
or absolute).

• The possible exceptions associated with each of the use cases.exceptions
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9.11.2.1.3 OPERATIONAL VIEW
With respect to the operational specification, operational means the manner in which a
function must operate, what conditions are imposed on the operation, and the range of
operation. This specification is dynamic.

Such a specification must consider concrete numbers (precisions and tolerances) quan-
tifying all variables in the functional specification, all operating conditions, and all ordinary
and extraordinary operating modes. The known information may contribute to producing
and evaluating a design and may include domain specific knowledge and proprietary or
heuristically known to customer.

9.11.2.1.4 TECHNOLOGICAL VIEW
The technological specification includes all specifications relevant to the hardware and soft-
ware design. We can easily identify six areas that should be considered:

1. Geographic constraints
For distributed applications, we must consider items such as topographies and

communications methods. We must also identify restrictions on usage and environ-
mental contamination.

2. Electrical considerations for interface signals
Such considerations include characteristics and constraints on any electrical I/O

signals. These are driven by the external environment and may be beyond the control
of the designer.

3. User interface requirements
A system such as a medical or instrumentation device may have an interface to

the external world. We must consider presentation method(s) and protocols.

4. Temporal considerations
The system may have hard or soft real-time constraints imposed. The constraints

may specify delays on signals originating from external entities, responses to system
outputs by external entities, and internal system delays.

5. Maintenance, Reliability, Safety, Security
The system may have requirements for diagnostic tests, remote maintenance, or

remote upgrade. We must have concrete numbers for MTTF (Mean Time To Fail-
ure), MTBF (Mean Time Before Failure), and environmental and safety issues. We
must address performance under partial or full failure. We must identify security
vulnerabilities.

6. Electrical Considerations
Electrical characterization of internal signals and behavior includes power con-

sumption, supplies, tolerance to degraded power, characterization of signal levels,
times, frequencies, etc.

9.11.2.1.5 SAFETY, SECURITY, AND RELIABILITY
In formulating the safety, security, and reliability requirements for the system, the focus
is on the high-level objectives of each and on the strategy for achieving those goals. Rele-
vant information can be taken from the exceptions component of the UML Use Cases or a
preliminary Failure Modes and Effects analysis.
The safety considerations should address:

Safety guidelines, rules, or regulations under the governing agencies identified under
the environment portion of the specification.
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The security considerations should address:

Potential vulnerabilities.
Potential pre-, during, and post-attack defense strategies.

With respect to reliability, one can specify:

The system uptime goals.
Potential risks, failures, and failure modes.
Failure management strategy.

IDENTIFYING THE REQUIREMENTS

Starting from the trip report from High Flying Avionics, Inc., which discussed its needs for
a new counter, let’s put the requirements specification together.

Example 9.1
Designing a Counter

(cont.)
As a first step in the thought process, one extracts and summarizes the essential infor-

mation from the trip report. By doing so, one can begin to focus on what should be included
in the requirements specification. From the discussions with the customer, a high-level
sketch of the system and the environment captures the essential parts of the problem. The
next step is to begin to formalize the model of the system and the environment, as illustrated
in Figure 9.24. Let’s put the Requirements Specification together.

Navigation

Radio

Counter

Computer

(Future)

Factory

User

Figure 9.24 The System and Its Environment – Step 2

In its initial configuration, the environment contains:

• A set of navigation radios that are to be tested.

• The user who is doing the testing.

• The factory.

Signals flow from the navigation radio to the counter, but not the reverse. The factory has
inputs to the counter as well; these include the power system and the ambient environment
in the factory. The user’s interaction is bidirectional. The user must select and configure
the measurement to be made and then view the results once the measurement is com-
plete. For the computer, the signal interchange with the counter similarly occurs in both
directions.
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In the developing model, the factory can be viewed as an aggregation of test lines
and the radios to be tested. Later, the remote computer is to be added. The system to be
designed, that is, the counter, interacts with all three entities. Such an interaction is reflected
in Figure 9.25.

Frequency Period

System to be Designed

Interval

Digital Counter

User Input Measurement Display

Events

Figure 9.25 The System as an Aggregation of Components

Now let’s move to the next level of detail.

The Environment

• The customer has stated that the counter is to operate in a factory environment on any
of several productions lines. Based on such an understanding, one can make certain
assumptions about temperature, power, and ambient lighting.

• Time intervals and frequencies on the navigation radios and events from equipment
monitoring the production line are to be measured.

• The time intervals may be either periodic or aperiodic but cannot be both.
• The polarity of the event signal to be counted can be either positive or negative going.
• The data display and the annunciation for mode and range are the only outputs

expected from the counter.
• The assumption is made that the signals to be measured are independent of one

another.
• In future, commands will be sent from a computer to the counter to direct its operation.

Data will be sent from the counter to the computer.

The Counter

• The counter must have the ability to measure time intervals and frequencies and to
count events.
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• The frequencies are fixed but span a range of values.
• The time intervals span a range of values and may be either periodic or aperiodic, but

they cannot be both.
• The counter will support the user’s ability to manually select mode and measurement

range for all input signals.
• The counter will continue to make and display the selected attribute of the signal until

power to the system is turned off or until the user makes another selection.
• The counter will measure only one signal at a time.
• An event can be modeled as an aperiodic time signal.
• The design will be sufficiently flexible to allow future inclusion of the ability to send

commands from a computer to the counter to direct its operation.
• The response of the counter to remote commands will be the same as its response to

front panel selections, with the exception that measured data will be sent from the
counter to the computer as well as to the front panel display.

The next step is to formalize, in a specification, what is known about the system to be
designed. The document, the System Requirements Specification, opens with a summary of

System Requirements
Specification

the design.

System Requirements Specification for a Digital Counter

System Description

This specification describes and defines the basic require-
ments for a digital counter. The counter is to be able to mea-
sure frequency, period, time interval, and events. The system
supports three measurement ranges for each signal and two
for events. The counter is to be manually operated with the
ability to support remote operation in future. The counter is
to be low cost and flexible, so that it may be utilized in a
variety of applications.

Specification of External Environment

The counter is to operate in an industrial environment in
a commercial grade temperature and lighting environment.
The unit will support either line power or battery operation.

System Input and Output Specification

System Inputs

The system shall be able to measure the following signals.

Frequency in Three Ranges

• High range up to 150.000 MHz

• Mid-range up to 50.000 KHz

• Low range up to 100.000 Hz

Period in Three Ranges

• High resolution up to 1.0000 ms

• Mid-resolution up to 10.000 ms

• Low resolution up to 1.000 s

Time Interval in Three Ranges

• High resolution up to 1.0000 ms

• Mid-resolution up to 10.00 ms

• Low resolution up to 1.000 s

• Voltage range 0.0–4.5 VDC

Events—Up to 99 events in one minute

All signal inputs will be:

• Digital data

• Voltage range 0.0–4.5 VDC

System Outputs

The system shall measure and display the following signals
using a 6-digit display.

Frequency in Three Ranges

• High range up to 200.000± 0.001 MHz

• Mid-range up to 200.000± 0.001 KHz

• Low range up to 200.000± 0.001 Hz

Period in Three Ranges

• High resolution up to 2.000± 0.0001 ms

• Mid-resolution up to 20.00± 0.01 ms

• Low resolution up to 2.000± 0.001 s



�

� �

�

434 Chapter 9 Embedded Systems Design and Development – Hardware–Software Co-Design

Time Interval in Three Ranges

• High resolution up to 2.0000± 0.0001 ms

• Mid-resolution up to 20.00± 0.01 ms

• Low resolution up to 2.000± 0.001 s

Events in Two Ranges

• Fast up to 200 events in one minute

• Slow up to 2000 events in one hour

User Interface

The user shall be able to select the following using buttons
and switches on the front panel of the instrument.

Mode

Frequency, Period, Time Interval, Events Range

Frequency, Period, Time Interval –
High, Mid, Low
Events – Fast, Slow

Trigger Edge

Frequency, Period, and Events

Rising or falling edge

Time Interval

Rising to rising edge
Falling to falling edge
Rising to falling edge
Falling to rising edge

Reset
Power ON/OFF

The measurement results shall be presented on a 6-digit dis-
play; leading zeros will be suppressed. The display shall be
readable in direct sunlight and from any angle.

The front panel will appear as follows.

Freq Period Intrvl Events

Start

MHz

KHz

Hz

Range

Trigger Edge

Stop

ms min

sec hr

Pwr

Use Cases

The use cases for the counter are given in the following two
diagrams.

User

Measure Frequency

Measure Period

Measure Interval

Count Events

Local Mode

Reset

Remote Mode

User

Measure Frequency

Measure Period

Measure Interval

Count Events

Reset

The first indicates manual operation through the front
panel and the second through a remote connection to a com-
puter.
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The remote option will not be included in the initial model
but will be incorporated in a later release. The time of that
release is to be determined.

Execution of the selected measurement function will not
depend on how (local or remote) that function was selected.

At power ON, the default mode is to measure frequency.
All ranges will default to their highest value.

Measure Frequency The counter will continuously mea-
sure and display the frequency of the input signal on the
currently selected range as long as the Frequency mode is
selected.

If the frequency of the input signal exceeds the maximum
allowable value on the selected range, the display will present
the full-scale reading and will flash.

If the frequency of the input signal is below the minimum
allowable value on the selected range, the display will present
a zero reading.

If the input signal returns to a value within the bounds of
the range, the value of the frequency will be displayed.

The range may be changed at any time by depressing the
range select push button.

The user may elect to measure frequency starting on the
positive or negative edge of the signal by depressing the start
trigger edge push button.

Measure Period The counter will continuously measure
and display the period of the input signal on the currently
selected range as long as the Period mode is selected.

If the period of the input signal exceeds the maximum
allowable value on the selected range, the display will present
the full-scale reading and will flash. If the period of the input
signal is below the minimum allowable value on the selected
range, the display will present a zero reading.

If the input signal returns to a value within the bounds of
the range, the value of the period will be displayed.

The range may be changed at any time by depressing the
range select push button.

The user may elect to measure a period starting on the pos-
itive or negative edge of the signal by depressing the start
trigger edge push button.

Measure Interval The counter will continuously measure
and display the duration of the selected portion of the input

signal on the currently selected range as long as the Interval
mode is selected.

If the duration of the selected portion of the input sig-
nal exceeds the maximum allowable value on the selected
range, the display will present the full-scale reading and will
flash.

If the duration of the selected portion of the input signal
is below the minimum allowable value on the selected range,
the display will display zero.

If the input signal returns to a value within the bounds of
the range, the value of the duration of the selected portion of
the input signal will be displayed.

The range may be changed at any time by depressing the
range select push button.

The user may elect to commence measuring the interval
on the positive or negative edge of the signal by depressing
the start trigger edge push button.

The user may elect to terminate the measurement interval
on the positive or negative edge of the signal by depressing
the stop trigger edge push button.

Note that the signal duration from positive edge to posi-
tive edge or negative edge to negative edge is the same as the
period of the signal.

Events The counter will continuously count and display
the number of occurrences of the input signal on the currently
selected range. The accumulated count will be reset to 0 at
the end of the select count duration.

The range may be changed at any time by depressing the
range select push button.

The user may elect to increment the count on the positive
or negative edge of the input signal by depressing the start
trigger edge push button.

If the number of accrued counts exceeds the maximum
allowable value on the selected range, the display will present
the full-scale reading and will flash.

System Functional Specification

The system is intended to make four different kinds of
digital measurement in the time and frequency domains com-
prising frequency, period, time interval, and events. The
activities associated with the measure frequency mode are
shown in the following diagram.
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Measure Frequency

Get Range

Open Meas. Window

Close Meas. Window

Read Counter

Display Value Min. Display Value Max

Enable Flash Display

Format Data

Update Display

[under range] [over range]
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The time and frequency measurements will be imple-
mented to provide three user selectable resolution ranges:
high frequency range/shorter duration signals, a second for
midrange frequency/midrange duration signals, and a third
for low frequency/longer duration signals. The events mea-
surement capability will support two selectable counting
durations, shorter and longer.

For frequency, period, and events measurements, the user
will be able to select either a positive or negative edge trig-
ger. For interval measurements, the user will be able to select
the polarity of the start and stop signals independently.

Operating Specifications

The system shall operate in a standard commercial/industrial
environment:

Temperature range 0–85 ∘C
Humidity up to 90% RH noncondensing
Power 120–240 VAC 50 Hz, 60 Hz, 400 Hz, 15 VDC

The system shall operate for a minimum of
eight hours on a fully charged battery.

The system time base shall meet the following specifications:

Temperature stability 0–50 ∘C
<6× 10−6

Aging Rate

90 d <3× 10−8

6 mo <6× 10−7

1 yr <25× 10−6

Reliability and Safety Specification

The counter shall comply with the appropriate standards

Safety: UL-3111-1, IEC-1010, CSA 1010.1
EMC: CISPR-11, IEC 801–2, −3, −4, EN50082–1

MTBF: Minimum of 10 000 hours.

9.12 THE SYSTEM DESIGN SPECIFICATION

The System Design Specification formalizes the qualitative view of the system given by the
System Requirements Specification to present a more quantitative view. Thus, the purpose
of the Design Specification step, in part, is to capture, express, and formalize the purely
external view of the system identified during requirements definition. We have identified

System Design
Specification,

System Requirements
Specification

WHAT needs to be done starting from needs and the user’s requirements; we now quantify
those WHATs. The step requires a solid understanding of the system behavior, the environ-
ment, and the system in the environment. At the end of the day, it continues to focus on the
what and how well of the design, rather than the how.
The formal design specification must be written in precise language stating specific require-
ments of the system. It can include:

• Tables

• Equations or algorithms

• State or flow diagrams

• Formal design language

• A pseudo language.

Unless there are exceptional and limited circumstances, it does not include:

• Schematics

• Code

• Parts lists.
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Nonfunctional specifications have to be added; we use these to explain constraints such as:

• Performance and timing constraints
• Dependability constraints
• Cost, implementation, and manufacturing constraints.

Whereas the Requirements Specification provides a view from the outside of the system
looking in, the Design Specification provides a view from the inside looking out as well.
Notice also that the Design Specification has two masters:Requirements

Specification
Design Specification • It must specify the system’s public interface from inside the system.

• It must specify how well the requirements defined for and by the public interface arehow
to be met by the internal functions of the system.

The specification is written in the designer’s language and from the designer’s point of
view. It serves as a bridge between the customer and the designer, as we see in Figure 9.26.

Customer

Requirements

Specification

Engineers

Design

Specification

The Design Process

Figure 9.26 The Customer, the Requirements, the Design, and
the Engineer

We have seen that the Requirements Specification is written in less formal terms withRequirements
Specification

Design Specification
the intent of capturing the customer’s view of the product. The Design Specification must
formalize those requirements in precise, unambiguous language.

Putting the inevitable changes that occur during the lifetime of any project aside for
the moment, we find that the design specification should be sufficiently clear, robust, and
complete that a group of engineers could develop the product without ever talking to the
author of the specification.

Design Note

A good litmus test of the viability of a design specification is the question, “If I send this
to my colleague (who is working for one of our subcontractors in another country), will
he or she understand this?” If the answer is no, the specification should be reexamined.
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9.12.1 The System

As part of formalizing and quantifying the system’s requirements, one must attach concrete
numbers, tolerances, and constraints to all of the system’s input and output signals. All
timing relationships must be defined. The system’s functional and operational behaviors
are described in detail.

9.12.2 Quantifying the System

The quantification of the system’s characteristics begins with the inputs and outputs, based
on the specified requirements. The necessary technical details are added to enable the engi-
neer to accurately and faithfully execute the actual design.

• System Inputs and Outputs
For each I/O variable, the following are specified:

• The name of the signal.
• The use of the signal as an input or output.
• The nature of the signal as an event, data, state variable, and so on.

Starting with the requirements specification, we provide detailed descriptions as
necessary and incorporate any additional technical or technological constraints that
may be needed.

• The complete specification of the signal, including nominal value, range, level tol-
erances, timing, and timing tolerances.

• The interrelationships with other signals, including any constraints on those
-relationships.

• Responsibilities – Activities

• Functional and Operational Specifications
The functional and operational specifications that will quantify the dynamic

behavior of the system are now formulated. The functional requirements specifica-
tion identifies the major functions that the system must perform from a high-level
view. The operational specification endeavors to capture specific details of how
those functions behave within the context of the operating environment.

The manner in which a particular function must operate, the conditions imposed
on the operation, and the range of that operation are now captured. The specifica-
tion must consider concrete numbers – precisions and tolerances.

All variables in the functional specification, all operating conditions, and all
Precisions
Tolerances

ordinary and extraordinary operating modes must be quantified. The specification
may include domain-specific knowledge that is proprietary or heuristically known
to the customer. Such knowledge can be very important to the design.

In stating the specific design requirements for the system, one can use tables,
equations, or algorithms, formal design language, or pseudocode, flow diagrams,
or detailed UML diagrams such as state charts, sequence diagrams, and time lines.
Schematics, codes, or parts lists are not included, except in limited circumstances.

• Technological (and Other) Specifications
The technological portion includes all detailed and concrete specifications that

are relevant to the design of the system hardware and software. Five areas that
should be considered can easily be identified.
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1. Geographical constraints
Distributed applications can span a single room, can expand to include a

complete factory, or can encompass several countries. Consequently, one must
address both the technical items such as interconnection topologies, commu-
nications methods, restrictions on usage, and environmental contamination as
well as nontechnical matters such as costs associated with the physical medium
and its installation.

2. Characterization of and constraints on interface signals
The assumption is made that signals between the system and the external

world are electrical, optical, or wireless or that they can be converted into or
from such a form. The necessary physical characterization of each is obviously
going to depend on the type of signal. That is, an electrical signal is specified
differently from an optical signal.

Since many of the interface signals may be driven by the external environ-
ment, potentially they are beyond the designer’s control. Therefore, it is impor-
tant to gain as much information about them as possible.

3. User interface requirements
If the system interfaces to such external world devices as medical or instru-

mentation equipment, how information is presented and whether any relevant
and associated protocols exist must be considered. There may also be standards
that govern how such information must be presented.

Consider the significant risk that would arise if each avionics vendor pre-
sented critical flight information and controls to the aircraft pilot in a different
way. The near disaster at Three Mile Island in 1979 arose, in part, because of
the confusion caused by too much information.

4. Temporal constraints
The system may have to perform under hard or soft real-time constraints.

Such constraints may specify delays on signals originating from external enti-
ties, responses to system outputs by external entities, and/or internal system
delays.

5. Electrical infrastructure considerations
There must be a specification for the electrical characteristics of any electri-

cal infrastructure. Included in this portion of the specification are power con-
sumption, necessary power supplies, tolerances and capacities of such supplies,
tolerance to degraded power, and power management schemes.

• Safety and Reliability
In formulating the design requirements for the safety and reliability of the system,

the focus shifts to the detailed objectives of each and to the strategy for achieving
those goals.
Safety considerations should address:

• Understanding and specifying any environmental and safety issues.

The reliability specification should include:

• Requirements for diagnostic tests, remote maintenance, remote upgrade, and their
details.

• Concrete numbers for MTTF and MTBF of any built-in self-test circuitry.
• Concrete numbers for MTTF and MTBF of the system itself.
• Consideration of system performance under partial or full failure.
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Let’s now bring everything together.

Quantifying the Specification

We will now continue with the development of the counter. The system Design Specification

Example 9.1
Designing a Counter

(cont.)
will follow, but extend, what has been captured in the Requirements Specification. The focus
will now be on providing specific numbers, ranges, and tolerances for signals that are within

Design Specification
Requirements
Specification the system.

Once again, we will put together any thoughts about the environment and the system
prior to writing the specification.

Environment

Specifications relating to the environment have been discussed earlier. There are no
changes here.

Counter

• When specifying measurement and stimulus equipment, the specifications for that
equipment are generally 10 times (one order of magnitude) better than those for the
signals that must be measured or generated.

• That margin is provided when specifying the range and tolerances on the counter’s
measurement capabilities.

• Specifications on counting events are based on the granularity of the timing of the
interval during which the events are counted.

• The values to be displayed at the measurement boundaries are now defined.
• The next step is to provide any additional detail that may be needed and to fully

quantify the counter specifications.

System Design Specification for a Digital Counter

System Description

This specification describes and defines the basic require-
ments for a digital counter. The counter is to be able to mea-
sure frequency, period, time interval, and events. The system
supports three measurement ranges for each signal and two
for events. The counter is to be manually operated with the
ability to support remote operation in future. The counter is to
be low cost and flexible so that it may be utilized in a variety
of applications.

Specification of External Environment

The counter is to operate in an industrial environment in
a commercial grade temperature and lighting environment.
The unit will support either line power or battery operation.
Specific details are included under Operating Specifications.

System Input and Output Specification

System Inputs

The system shall be able to measure the following signals:
Frequency in Three Ranges

• High range up to 150.000 MHz

• Mid-range up to 50.000 KHz

• Low range up to 100.000 Hz

Period in Three Ranges

• High resolution up to 1.0000 ms

• Mid-resolution up to 10.000 ms

• Low resolution up to 1.000 s
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Time Interval in Three Ranges

• High resolution up to 1.0000 ms

• Mid-resolution up to 10.00 ms

• Low resolution up to 1.000 s

Events

• Events to 99 per minute

• Signal level 0–4.0 V± 0.5 V

• Transition time 10 ns< trisetfall <50 ns

Voltage Sensitivity

• 50 mV RMS to ±5.0 V ac signal+ dc signal

All signal inputs will be:

• Digital data

• Voltage range 0.0–4.5 VDC

System Outputs

The system shall measure and display the following signals
using a 6-digit display.

Frequency in Three Ranges

• High range

Measure: 0200± 0.0001 MHz
Display: 0–200.000 MHz

• Mid-range up to 200.000 KHz

Measure: 0–200± 0.0001 KHz
Display: 0–200.000 KHz

• Low range up to 200.000 Hz

Measure: 0–200± 0.0001 Hz
Display: 0–200.000 Hz

Period in Three Ranges

• High resolution up to 2.0000 ms

Measure: 0–2.00 000± 0.00 001 ms
Display: 0–2.0000± 0.0001 ms

• Mid-resolution up to 20.00 ms

Measure: 0–20.0000± 0.0001 ms
Display: 0–20.000± 0.001 ms

• Low resolution up to 2.000 s

Measure: 0–2.0000± 0.0001 s
Display: 0–2.000± 0.001 s

Time Interval in Three Ranges

• High resolution up to 2.0000 ms

Measure: 0–2.00 000± 0.00 001 ms
Display: 0–2.0000± 0.0001 ms

• Mid resolution up to 20.00 ms

Measure: 0–20.0000± 0.0001 ms
Display: 0–20.000± 0.001 ms

• Low resolution up to 2.000 s

Measure: 0–2.0000± 0.0001 s
Display: 0–2.000± 0.001 s

Events in Two Ranges

• Fast up to 200 events in one minute

Measure: 0–200± 1 event
Display: 0–200± 1 event

• Slow up to 2000 events in one hour

Measure: 0–2000± 1 event
Display: 0–2000± 1 event

User Interface

The user shall be able to select the following using buttons
and switches on the front panel of the instrument:

Mode

Frequency, Period, Time Interval, Events

Range

Frequency, Period, Time Interval – High,
Mid, Low

Events – Fast, Slow

Trigger Edge

Frequency, Period, and Events

Rising or falling edge
Time Interval

Rising to rising edge
Falling to falling edge
Rising to falling edge
Falling to rising edge

Reset

The reset button will clear the display
to all 0’s and reset the internal timing/
counting chain.
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The counter will be placed in the frequency
mode with the range set to KHz, and the
trigger edge set to rising.

Power ON/OFF

The measurement results shall be presented on a 6-digit LED
display; leading zeros will be suppressed.

The decimal point will move to reflect the proper value for
the range selected as the range push button is pressed.

The front panel will appear as follows:

Freq Period Intrvl Events

Start

MHz

KHz

Hz

Range

Trigger Edge

Stop

ms min

sec hr

Pwr

Use Cases

The use cases for the counter are given in the following two
diagrams.

User

Measure Frequency

Measure Period

Measure Interval

Count Events

Local Mode

Reset

Remote Mode

User

Measure Frequency

Measure Period

Measure Interval

Count Events

Reset

The first indicates manual operation through the front
panel, and the second through a remote connection to a com-
puter.

The remote option will not be included in the initial model
but will be incorporated in a later release. The time of that
release is to be determined.

Execution of the selected measurement function will not
depend on how (local or remote) that function was selected.

At power ON, the default mode is to measure frequency.
All ranges will default to their highest value.

Measure Frequency The counter will continu-
ously measure and display the frequency of the
input signal on the currently selected range as
long as the Frequency mode is selected. The fol-
lowing use cases are defined for the Frequency
mode.

User

Measure Frequency

Select Mode

Select Range

Select Trigger

Edge
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If the frequency of the input signal exceeds the maximum
allowable value on the selected range, the display will flash
and will present one of the following values based on the
selected range,

• 200.000 MHz

• 200.000 KHz

• 200.000 Hz

If the frequency of the input signal is below the minimum
allowable value on the selected range, the display will present
a zero reading.

If the input signal returns to a value within the bounds of
the range, the value of the frequency will be displayed.

The range may be changed at any time by depressing the
range select push button.

The user may elect to measure frequency starting on the
positive or negative edge of the signal by depressing the start
trigger edge push button.

Measure Period The counter will continuously measure
and display the period of the input signal on the currently
selected range as long as the Period mode is selected. The
following use cases are defined for the Period mode.

User

Measure Period

Select Mode

Select Range

Select Trigger
Edge

If the period of the input signal exceeds the maximum
allowable value on the selected range, the display will flash
and will present one of the following values based on the
selected range:

• 2.0000 ms

• 20.000 ms

• 2.000 s

If the period of the input signal is below the minimum
allowable value on the selected range, the display will present
a zero reading.

If the input signal returns to a value within the bounds of
the range, the value of the period will be displayed.

The range may be changed at any time by depressing the
range select push button.

The user may elect to measure period starting on the pos-
itive or negative edge of the signal by depressing the start
trigger edge push button.

Measure Interval The counter will continuously measure
and display the duration of the selected portion of the input
signal on the currently selected range as long as the Interval
mode is selected. The following use cases are defined for the
Interval mode.

User

Select Mode

Select Range

Select Start
Trigger Edge

Measure Interval

Select Stop

Trigger Edge

If the duration of the selected portion of the input signal
exceeds the maximum allowable value on the selected range,
the display will flash and will present one of the following
values based on the selected range.

• 2.0000 ms

• 20.000 ms

• 2.000 s

If the duration of the selected portion of the input signal
is below the minimum allowable value on the selected range,
the display will display zero.
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If the input signal returns to a value within the bounds of
the range, the value of the duration of the selected portion of
the input signal will be displayed.

The range may be changed at any time by depressing the
range select push button.

The user may elect to commence measuring the interval
on the positive or negative edge of the signal by depressing
the start trigger edge push button.

The user may elect to terminate the measurement interval
on the positive or negative edge of the signal by depressing
the stop trigger edge push button.

Note that the signal duration from positive edge to posi-
tive edge or negative edge to negative edge is the same as the
period of the signal.

Events The counter will continuously count and display
the number of occurrences of the input signal on the currently
selected range. The accumulated count will be reset to 0 at
the end of the select count duration. The following use cases
are defined for the Events mode.

Users

Count Events

Select Mode

Select Range

Select Count
Edge

Input Output

Time Base

Measurement

Power Subsystem

Display

Controls

Input Signal

Measured

Values

If the number of accrued counts exceeds the maximum
allowable value on the selected range, the display will flash
and will present one of the following values based on the
selected range:

• 200 minutes

• 2000 hours

The range may be changed at any time by depressing the
range select push button.

The user may elect to increment the count on the positive
or negative edge of the input signal by depressing the start
trigger edge push button.

System Functional Specification

The system is intended to make four different kinds of dig-
ital measurements comprising frequency, period, time inter-
val, and events.

The time and frequency measurements will be imple-
mented to provide three user selectable resolution ranges:
high frequency range/shorter duration signals, a second for
mid-range frequency/mid-range duration signals, and a third
for low frequency/longer duration signals. The events mea-
surement capability will support two selectable counting
durations, shorter and longer.

For frequency, period, and events measurements, the user
will be able to select either a positive or negative edge trig-
ger. For interval measurements, the user will be able to select
the polarity of the start and stop signals independently.

The system will be designed so as not to preclude the
incorporation of a remote access option in future.

The system comprises six major blocks as given in the
following block diagram.
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Input Subsystem The input subsystem shall provide the
ability for the user to select any of the measurement func-
tions, ranges, and triggering polarities. The subsystem also
selects and routes the input signal to the appropriate portion
of the measurement subsystem.

Output Subsystem The output subsystem implements the
range, edge selection, control information, and data format-
ting for proper presentation on the front panel display.

Time Base The time-base subsystem is a phase locked loop
and divider chain driven from a 100-MHz crystal oscilla-
tor. This subsystem will provide two clock phases to drive
the internal control and decision logic. Each phase will be
200.0000± 0.0001 MHz.

The time base will also provide the following frequen-
cies that are used to define the measurement windows for the
events and frequency measurements and provide the count-
ing frequencies for the time interval and period measure-
ments.

• Frequency – 200.0000± 0.0001 MHz

• Period – 100.0000± 0.0001 MHz

• Time Interval – 100.0000± 0.0001 MHz

• Events – 10.00± 0.01 Hz

Measurement Subsystem The measurement subsystem
provides the logic and control to execute the measurements
of time and frequency.

• The frequency measurement will be
implemented by opening a window for
1.00± 0.01 seconds. During the time the win-
dow is open, the measurement subsystem will
gate the unknown input frequency into a seven
stage binary coded decimal (BCD) counter.
When the window closes, the counter will con-
tain the value of the unknown frequency.

The activities necessary to execute a fre-
quency measurement are given in the following
diagram.

• The period and time interval measurements will
be made by opening a window on the speci-
fied signal edge. While the window is open, a
frequency of 100.0000± 0.0001 MHz will be
gated into a seven-stage BCD counter. When
the window closes, the counter will contain the
values of the unknown time interval.

• The counter will contain the number of events
that occurred during the measurement interval.

• The events measurement will be made by open-
ing a window for 1.00± 0.01 seconds for the
fast mode and 3600.0± 0.1 seconds for the
slow mode. During the time the window is
open, the measurement subsystem will gate the

unknown input to a four-stage BCD counter.
When the window closes, the counter will con-
tain a measure of the number of events that
occurred during the time interval.

Power Supply Subsystem The power supply subsystem
will provide the following voltages at the specified current
levels to the internal logic.

+5.0 ± 0.01 VDC @ 10 A
+15.0 ± 0.01 VDC @ 500 mA
-15.0 ± 0.01 VDC @ 500 mA

At power on, there shall be a negative going reset signal.
That signal shall remain in the low state for a minimum of
10 ms and shall have the ability to sink up to 1A.

Display The instrument display shall display the results of
the selected measurement on a 6-digit, 7-segment red LED
display. The layout of the major features and functions is
given in the earlier diagram.

Operating Specifications

The system shall operate in a standard commercial/industrial
environment.

Temperature Range 0–85 ∘C

Humidity up to 90% RH noncondensing
Power Automatic line voltage selection

• 100–120 VAC± 10% 50, 60,
400 Hz± 10%

• 220–240 VAC± 10% 50, 60 Hz± 10%

The system shall operate for a minimum of eight
hours on a fully charged battery.

Net weight/size 2.75 kg, H: 90 mm×W:
200 mm×D: 300 mm

The system time base shall meet the following specifications.

Temperature stability 0–50 ∘C

<6× 10−6

Aging Rate

90 d <3 × 10−8

6 mo <6 × 10−7

1 yr <25 × 10−6

Reliability and Safety Specification

The counter shall comply with the appropriate standards:

Safety: UL-3111-1, IEC-1010, CSA 1010.1
EMC: CISPR-11, IEC 801–2, −3, −4, EN50082–1

MTBF: Minimum of 10 000 hours.
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Measure Frequency

Get Range

Open Meas. Window

Close Meas. Window

Read Counter

Display Value Min. Display Value Max

Enable Flash Display

Format Data

Update Display

[under range] [over range]
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9.13 SYSTEM REQUIREMENTS VERSUS SYSTEM DESIGN SPECIFICATIONS

Examining the different steps that have been outlined up to this point, we find a lot of
duplication. It would seem that the System Design Specification and System Requirements
Specification are just different names for the same thing. But they are not; requirements and
specifications are fundamentally different types of descriptions.System Design

Specification,
System Require-

mentsSpecification Requirements: Give a description of something wanted or needed. They are a set of
needed properties.

Generally, requirements come from the marketing, product planning, or sales depart-
ment, and they represent the customer’s needs. The requirements definition and specifica-
tion is not concerned with the internal organization of the system. Rather, it is intended to
describe what a system must do and how well it has to do it, not how it does it.

The System Design Specification is generated by engineering as an answer to and a
description of how to implement the requirements. Then the two groups negotiate and iterate
until the requirements and specifications are consistent.what

how well, how,
System Design

Specification Specification is a description of some entity that has or implements those properties.

The system design specification is a means of translating the description of needs into
a more formal structure and model.

Nonetheless, every part of the design needs another specification. Specifications can
and do exist at various levels as the design is refined and elaborated. Different things must
be quantified and at different levels of detail during different phases of the product devel-
opment. The System Design Specification may require that an intersystem communicationSystem Design

Specification channel transfer data at the rate of 10 000 bytes per second at a specific bit error rate. The
detailed Hardware and Software Specifications establish the requirements and constraints
on their respective components to be able to meet those specifications.

A specification is a precise description of the system that meets stated requirements.
Ideally, a specification document should be:Hardware,

Software
Specifications

System Design
Specification

• Complete

• Consistent

• Comprehensible

• Traceable to the requirements

• Unambiguous

• Modifiable

• Able to be written.

The Design Specification should be expressed in as formal a language or notation asDesign Specification
possible, yet readable. Ideally, it should also be executable. It should focus precisely on the
system itself and should provide a complete description of its externally visible character-
istics, that is, its public interface. External visibility clearly separates those aspects that are
functionally visible to the environment in which the system operates from those aspects of
the system that reflect its internal structure.
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Once again, using the space program as an example of the importance of ensuring that
all team members know, understand, and agree on all specifications. The Mars Climate
Orbiter was launched in 1999. Four months into the mission the ground computers were
being used to adjust the spacecraft’s trajectory. Almost immediately, it was recognized that
the something wasn’t functioning correctly. The data from the ground computers and the
spacecraft didn’t agree. It turned out that the spacecraft was using metric units and the
ground computer was using imperial units. The spacecraft made it to Mars; however, the
unit mismatch led to loss of the craft during a landing attempt.

9.14 EXECUTING THE HARDWARE–SOFTWARE CO-DESIGN PROCESS

We have looked at the first several steps in the Co-Design process: formulating a require-
ments specification and a design specification. At this point in the development cycle, all
of the system requirements have been identified, captured, and formalized.

Based upon these documents, let’s now examine how we execute the design itself. Our
focus moves inside the system and changes from what to how as we begin the process of
specifying and designing the detailed functionality that gives rise to the external behavior.
The design process proceeds by:

• Identifying the major functions in the system.
• Partitioning the functions into hardware and software components.
• Refining inter-process communication.

• Modeling the hardware and software functions.
• Formulating the architecture.
• Co-synthesis.

• Synthesizing hardware–software interfaces.
• Software synthesis – Target specific tasks to hardware components.

• Hardware synthesis – Decompose computation steps into clock cycles.
• Co-simulation.
• Co-verification.

9.15 FUNCTIONAL DECOMPOSITION

As we move from formal specification to detailed design and implementation, we start by
identifying and decomposing the major functions that give rise to and support the system’s
requested behavior. We want to ensure that we take a disciplined approach to the design of
system hardware and software.

Goals:

1. Utilize strategies for developing the design solution from well-defined statement of
problem.

2. Use a variety of tools to aide in rendering the system’s complexity understandable
and tractable.

3. To attack the complexity of by partitioning into modules and organizing the modules
into hierarchies.

4. Begin to establish criteria for evaluating the quality, reliability, and safety of the
design.
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Thus, the purpose at this stage of the Co-Design development cycle is to begin the task
of finding an appropriate internal functional architecture for the system. We are beginning to
formulate how the requirements that have been identified can be implemented. The current
focus is on analyzing and thoroughly understanding the details of the problem. Though
such an analysis, a somewhat loose understanding of the design can be transformed into a
precise description. The result should be a detailed textual or graphical description of the
system that is a complete, consistent, functional definition of the required behavior.

To establish an appreciation for a functional model of a system, consider an aircraft.
If an aircraft is the system to be designed, the top-level functional model should probably
not consist of more than three major functions: take-off, fly, and land. With such a view,
we make no statements about such issues as the support structure for the aircraft (wheels,
skies, pontoons), the propulsion system (jet, rocket, propeller), or the method of lift (wings
in a conventional aircraft or blades in a helicopter). Early on, these are not important; such
decisions can be postponed until later. The advantage of such an approach is early flexi-
bility – time to explore before beginning to constrain the system. A functional description
simply formalizes the intended behavior of the design.

The functional description should be written to be understood by those knowledgeable
in the application domain and by those who will do the hardware and software develop-
ment. The specification must also be such that it can be reviewed by the many diverse and
interested parties and tested against reality. If it is too complex to read and understand, no
one will read it. When the completed project is delivered, it is too late to discover that the
customer’s view and developer’s view of reality are very different.

The first step in managing the complexity is partitioning or decomposing the initial
high-level view into modules. We set the goals of such a process:

• The system should be partitioned so that the function of each module is easy to under-
stand.

• Each module should solve one well defined piece of the problem.

• Partitioning should be done so that connections between modules are only introduced
because of connections between pieces of problem.

• Partitioning should assure that connections between modules are as independent as
possible.

A first functional decomposition is carried out based upon a search of essential inter-
nal variables and events in the system. The design process then consists of successive
refinements or decompositions for each function (using exactly the same process) until
elementary or leaf functions are obtained. Suchdecomposition forms a functional or behav-Functional or

Behavioral
Model

ioral model of the system. The model expressed, by the collection of such functions, should
be sufficient to verify the design quality and to assess and evaluate system safety, behavior,
and performance.

During modeling and verification, the system’s operations and associated performance
requirements are allocated to the internal functions and the relations between such functions
are defined. Such a process also allows one to estimate the expected performance of the
system.
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As with the Requirements and Design Specifications, ideally, the functional modelRequirements and
Design

Specifications
should be executable so as to permit verification with respect to the specification. There
are tools today that will allow us to do this. One such tool is a behavioral Verilog model.
UML is also beginning to make executable models a reality.

The functional model is different from the specification and also from the physical
architecture that will be developed next. The specification describes the external behavior of

external
internal

the system; the functional model targets the internal behavior that will lead to the external.
The architectural model addresses the physical hardware and software components onto
which the functions are mapped.

In Figure 9.27, we illustrate a first-level decomposition of a simple input/output task.
It is important to recognize that the functional decomposition is just that, a hierarchical
decomposition; it is not a flow chart. The illustrated decomposition captures and expresses
the requirement that the system must support receiving data from and transmitting
data to the outside world. Associated with the task, is a required code conversion to
ASCII.

Input-Output

Task

Receive

Data

Transmit
Data

Predefined Library
Function

Convert to ASCII

Figure 9.27 First-level I/O Task Decomposition

Each of these functions may be further decomposed as necessary. If required, the
second-level functions may also be successively refined to give the detail needed to under-
stand and to execute the design.

The next step in the analysis is to identify the messages that flow between the user or
other active external objects and the system as well as the internal signals that flow between
the major functional blocks. We identify how the user will interact with the system in order
to make it do what it is intended to do.

Let’s now apply our understanding of partitioning to the functional design of counter
system. First and foremost, we must continue to postpone the idea of working with the
specific data structures, bits, bytes, microprocessors, or array logics for a while longer.
Though important later in the process, at the moment, they limit explorations and can bias
the functional decomposition of the system.
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Identifying the Functions

The first diagram, in Figure 9.28, presents an aggregation of the objects in the system. ThatExample 9.1
Designing a Counter

(cont)
aggregation includes both the environment and the counter being designed.

Navigation Radio

Measurement System 

User Counter
Remote

Computer
Factory

Test Line

Peripheral to the System

System to be Designed

Follow-on Component

Nav. Radio 

Figure 9.28 A Model of the Environment and the Counter as an Aggregation of Objects

The model of the measurement system is expressed as a collection of:

• The user

• The factory

• The future remote computer

• The counter.

The factory is an aggregation of test lines and numbers of navigation radios that mustaggregation,
composition be tested. Note that we are using the looser term aggregation rather than composition here.

Functional Decomposition

The Design Specification provided a high-level block diagram of the system. For this prob-
lem, such a diagram provides a good starting place for the initial hierarchical decomposition
of the system. Figure 9.29 elaborates on the counter component and gives one possible
decomposition for that system.

The interface to the outside world is segregated into two functional blocks. The first
is associated with the presentation of information to the user. The second is charged with
bringing in information from the user and other tasks necessary to support the measure-
ment. Both functional blocks are further decomposed into local operations versus remotepresentation of

information,
bringing in

information

operations.
Such a choice is made in the first case because the display is considered an output

function and control an input function. In the second case, two different sets of functionality
and different grammars for expressing the user’s commands are anticipated. Front panel
operations tend to be rather straight forward; remote operations can be a bit more involved.
Certainly, these are not the only choices.



�

� �

�

9.15 Functional Decomposition 453

Counter

Input Measurement Output User I/FTime Base Power

Freq. Time Count ControlDisplayRemote

Remote

Local

Follow-on Component

Local

Follow-on Component

Local Remote

Figure 9.29 A Possible Hierarchical Decomposition of the Counter System

The next drawing in Figure 9.30 captures the interface between the counter and the
surrounding environment.

Counter

Radio

Test Line
Mode

Range

Measurement

Mode = [Frequency | Period| | Interval | Events]

Range = [High | Medium | Low]

Signal = [Frequency | Period | Interval]

Signal

Edge

Edge = [Rising | Falling]

Event

Reset

Mode

Range

Measurement

Edge

Reset

Remote

Computer

User

Figure 9.30 The Counter–environment Interface
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Based upon the decomposition in Figures 9.29 and 9.30, Figure 9.31 now expresses aExample 9.1
Designing a Counter

(cont.)
high-level functional partitioning and the signal flow between the major functional blocks.
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Figure 9.31 A Functional Partition of the Counter System

Next, the system architecture is formulated and functions are then mapped onto the
hardware and software blocks comprising the system.

9.16 PARTITIONING AND MAPPING TO AN ARCHITECTURE

The purpose at this stage in the development cycle is to find an appropriate internal func-
tional architecture for the system. Throughout all of the previous discussions, modularity,
and encapsulation have been repeatedly stressed. We will look first at why such an approach



�

� �

�

9.16 Partitioning and Mapping to an Architecture 455

is recommended and then at what should be considered as the process of decomposing and
ultimately as partitioning the system into hardware and software modules proceeds.

9.16.1 Initial Thoughts

So, to the first question, “Why do we do this?” Reuse is one important reason. With each
new design, one should always look to the previous project as well as the next one. What
can be used from the last project to expedite the development of this one? How can the
current design be implemented to support a future feature? Are there parts of this design
that can be used in future projects.

Second, many compilers generate object code in segments, one for each module or
translation unit. Such actions may place size restrictions on the individual modules. Poor
module builds can significantly affect memory accesses, increase cache misses, promote
thrashing, and significantly reduce performance.

Third, work assignments are often made on a module by module basis. Module bound-
aries should be defined to minimize interfaces amongst different parts of the system. Such
a practice simplifies the process of subcontracting some of the work as well. Security
issues also must play a role when subcontracting is considered. Whether working for a
toy company or on a sensitive government project, one needs to consider what informa-
tion to make available to outside vendors. By properly decomposing a system, the portions
that can be outsourced and those over which control should be retained can be more easily
identified.

Fourth, the modules should be packaged with the goal of stabilizing the module inter-
faces during the early part of the design.

Fifth, partitioning the system into well-defined loosely coupled modules helps to ensure
a safe, secure, and robust design. Such an approach helps to prevent a failure or attack in one
part of the system from propagating into and affecting another. See Chapter 8 for further
discussion on embedded security.

The importance of partitioning a new design should be evident; the next step is to
examine the process for doing so. The process starts with the top-level system then pro-
gressively refines that model into smaller and more manageable pieces that can more easily
be designed and built.

Initially, the focus is on a functional view of the system rather than specific pieces of
hardware and software. It is important to understand and to capture the behavior at a high
level first. The next step will then be to map those functions, that functionality, onto the
hardware and software as necessary to satisfy the constraints identified during the initial
phases of the design. Partitioning is important during the early stages of the development
of the system to aid in attacking the complexities of a large system and then later as a guide
in arriving at a sound physical architecture.

As we begin to think about organizing the system into the collection of pieces that
will ultimately implement the customer’s requirements, one should continually look at the
problem from both a high-level view and from a more detailed view. It is important to
remember that developing a partition is not a onetime process; it is not necessary to be
perfect the first time. The partitioning process will probably need to be repeated several
times before a satisfactory and workable decomposition is successfully achieved that meets
all the specifications.
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Prior to beginning the system partition, there are some general thoughts.:

1. Remember that with every rule or guideline, there must always be room for
exceptions.

2. Each module should solve one well-defined piece of the problem.

3. Mixing functionality across modules makes all aspects of the development and sup-
port process much more difficult and fragile. By doing so, one can easily create
noodle hardware and spaghetti code – an excellent meal for security attacks. Future
changes to such modules will be very difficult to implement and can easily lead to
unexpected side effects and unrelated pieces of the system suddenly not working.

4. The system should be partitioned so that the intended functionality of each module
is easy to describe and understand.

Although it is desirable to have well-defined modules, with simple interfaces, that
solve nicely encapsulated pieces of the problem, sometimes in embedded applica-
tions one does not have such a luxury because of performance or economic con-
straints.

If the design can be described to and understood by other parties, then they will
be able to maintain it and to extend it as necessary throughout the product’s lifetime.
Remember, over half of the engineers who are involved in embedded systems design
do not do new designs; they maintain and enhance existing designs.

During development, easy to understand designs will lead to fewer surprises as
the design nears completion. All interested parties should be able to follow the
design and comment as the process unwinds. A design that is too complex quickly
discourages early criticism. Typically, people will not take the time to learn what
the system is to do. Unfortunately, such early acceptance often is replaced by later
rejection and potentially major redesign efforts. Although it is important to be proud
of one’s work, one should practice what is called egoless design and always seek
out others constructive ideas.

5. Partitioning should be done so that connections between modules are only intro-
duced because of connections between pieces of problem.

One should not put a piece of functionality into a module just because there is
nowhere else for it to go.

6. Partitioning should assure that connections between modules are as independent as
possible.

7. Once again, keep like things together. Such a practice helps to reduce errors. Parti-
tioning is also done to help meet the economic goals of the design.

When forming partitions, the process must be considered from a number of viewpoints.
Taking only a single point of view or neglecting any one can have significant long-term
effects. At the end of the day, the system may meet neither the customer’s expectations nor
the performance specifications.

As the decomposition process proceeds, the design should first be considered from a
functional point of view. The outcome from the decomposition steps is a functional modelfunctional
that can be used to define the system architecture. Among the many things that should be
considered, two that should appear early in the process are the coupling and the cohesive-
ness of the modules into which the system is being decomposed. The goal is to developloosely coupled

highly cohesive loosely coupled, highly cohesive modules. Let us see what these mean.
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9.16.2 Coupling

Coupling is a heuristic that provides an estimate of how interdependent the modules are.coupling
Tightly coupled modules will generally utilize shared data or interchange control infor-
mation. As module interdependence increases, so does the complexity of managing those
modules and the more difficulty one will have in:

• Debugging the design during development.

• Troubleshooting the system in the event of field failures.

• Maintaining the modules and system.

• Modifying the design to add features or capabilities.

• Ensuring a secure system.

The major goal is to make the system’s modules as independent as possible and to
reduce or minimize coupling.

Design Heuristic. The lower the coupling, the better job that has been done during par-
titioning.

During the early stages of the design, think about the following to help to reduce
coupling:

1. Eliminate all unessential interaction between modules.
If a particular piece of functionality or shared parameter is not part of the intended

task of two modules, then eliminate it.

2. Minimize the amount of essential interaction between modules.
While this sounds the same as the previous point, it is not. If an early analysis

establishes that some interaction with another module is necessary, effort should be
made to reduce the complexity of that required interface. The goal is to keep things
simple.

3. Loosen the essential interaction between modules, if possible. Unless the environ-
ment demands a high degree of coordination between several modules to accom-
plish a task or to ensure error free communication, simply pass the module the
information necessary to get the job done. Thereafter, wait for an indication that the
task has completed. Execute some other part of the task.

Some of the ways to help to reduce complexity include:

a. Reduce the number of interconnections between modules and thereby, reduce the
number of pieces of data that must flow between modules.

b. Try to take the most direct route to a signal or piece of data as appropriate.
In some cases the best implementation is to use a proxy as an interface to a signal

or piece of data. In general, however, it is best to reduce the number of modules
involved.
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c. In general, avoid using shared global variables. A better method is to pass data into
a module via its parameter list or calling interface.

With embedded applications, however, at times such sharing is critical to meeting
time constraints. For security reasons, however, such sharing should be constrained
and controlled.

d. Avoid arcane interconnections between or among modules. A guiding principle
underlying all design is to keep things simple.

e. Don’t hard code values into a module’s parameter list or calling interface unless
absolutely necessary. We must do so on occasion when an interface module or port
must be at a specific address location; do not make this a general practice.

9.16.3 Cohesion

An idea related to coupling is cohesion. The notion of coupling addresses the partitioningcoupling, cohesion
of a system; cohesion addresses bringing the pieces together. Cohesion is a measure of
strength of the functional relatedness of elements in a module. The goal is to create strong,
highly cohesive modules whose elements are genuinely and tightly related to one another.
Conversely, elements should not be strongly related to elements in another module. We
want to maximize cohesion and minimize coupling.maximize, minimize

The use of cohesion as a reliability and quality metric has been around since the
mid-1960s. A number of years of refinement and integration of the ideas of many people
studying various designs and design approaches led Constantine and Yordon, Structured
Design (Prentice-Hall, 1979), to formulate a cohesion scale based on an ease of mainte-
nance metric.

Let’s look at several different kinds of cohesion.

Functional cohesion. The module implements a single task, and all comprising
elements contribute to the execution of that one task.

Sequential cohesion. The module implements a task as a sequential set of proce-
dures. The output data of each procedure becomes the input data to the next.
All of the comprising elements are involved in one of those procedures.

Communicational cohesion. The module implements a task that has a number of
procedures working on the same set of input data such as an image processing
task.

Procedural cohesion. The module implements a number of procedures that may or
may not be related to a common activity. Control, rather than data, flows from
one procedure to the next.

Temporal cohesion. The module implements a number of unrelated procedures or
activities that are sequentially ordered in time.

Logical cohesion. The module implements a number of procedures that are possible
alternative methods for accomplishing a task. A subset of those alternatives is
selected by an outside user to actually execute the task.

Coincidental cohesion. The module aggregates a number of unrelated procedures.
Such cohesion, or lack thereof, should not be used.
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We compare the different kinds of cohesion and coupling from several different per-
spectives in Table 9.1. The ranking is Excellent/Easy = 5 …Poor/Difficult = 1.

Table 9.1 Comparison of Coupling and Types of Cohesion from Different Perspectives.

Cohesion Coupling Ease of
modification

Ease of
understanding

Ease of
maintenance

Functional 5 5 5 5
Sequential 4 4 4 3–4
Communicational 3 3 3 3
Procedural 2–3 2–3 2–3 2
Temporal 1 3 3 2
Logical 1 1 2 1
Coincidental 1 1 1 1

Cohesion and coupling analyses provide a good set of metrics by which to begin to
assess the high-level architectural aspects of a design. Remember, however, that both are
guidelines. The work to ensure that the design is solid and that it is thoroughly tested still
needs to be done.

There are plenty of good designs that require tightly coupled modules; CDMA cell
phones are a good example. One can have tightly coupled multiprocessor designs as well
as designs based on message passing. The implication is not that one design is right or
wrong, or better than the other; it is just how it was done to meet the requirements.

9.16.4 A Few More Considerations

With today’s systems, a spatial point of view is often essential. This is an external view ofspatial
the system and it yields a distributed functional architecture. With such a view, performance
and communication costs are taken into consideration. Closely associated with the spatial
viewpoint is that of resource allocation; again, this is an external view. Such efforts resultresource
in a “resource architecture.” Once again, performance, costs, and dependability are factors
that must be considered.

Finally, one must consider the hardware and the software. Decomposition becomes a
hardware
software

design process that leads to a hardware architecture as was discussed earlier. Now perfor-
mance must be considered. As embedded developers, we are playing a direct role in the
design and selection of the hardware platform as well as the software environment. Making
trade-offs intelligently in these two areas can take us a long way toward developing a safe,
robust, and high-quality/high-performance system.

9.16.5 Approaches to Partitioning and Mapping

As we take this next step in the design process flow, our objective is to allocate opera-
tions comprising system behavior to the hardware and/or the software. There are a variety
of different methods by which to attack the partitioning problem. We recognize that there
are two extremes: a software-oriented model and a hardware-oriented model. The former
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initially puts everything into software while moving time critical pieces of functionality to
hardware as necessary to meet time or speed constraints. The latter initially puts everything
into hardware while moving nontime critical pieces of functionality to software as appro-
priate to meet cost constraints. That said, let us begin by codifying the various approaches
according to main properties or characteristics.

9.16.5.1 The Approach

• The model. Typically the system is expressed as a graph (from graph theory) derivedmethods
from an abstraction of the system design specification.

• Cost function. One metric for assessing a partition is to ask the question: How does
such a partition negatively impact system performance? The question suggests devis-
ing a partition cost function that guides the partitioning algorithm toward minimizing
the value of the function. In theory, the best partition is one that yields a minimum
value.

Such a function should measure the consequences of hardware/software allocation
bounded by two extremes: all hardware and all software and the effects on system
timing behavior, power consumption, and memory loading.

Partitioning in software analyzes the statistical behavior of the executing program
to drive the algorithm. Partitioning in hardware is looking at static allocation of func-
tionality.

• Granularity. Is usually based upon elements of the specification language: processes,
tasks, loops, etc.

Let’s now delve down and examine some methods that can be utilized to execute an
approach.

9.16.5.2 The Method

At this stage in the process of developing a system architecture, our goal is to map the func-
tional blocks that we have identified to hardware, software, or both. How is the partitioning
executed? What is the algorithm?

Possible alternatives include aggregating or grouping elements, iteration, mathematical
relations, or greedy heuristics that build the solution sequentially then picks the “best” local
decision without consideration for consequences. Here, with the various alternatives, best
is subjective based upon the application and the designer(s).

We will now look at several different partitioning methods.

9.16.5.2.1 METHOD 1 DUE TO KUMAR
We can view the system being designed as comprising the following abstract sets:

• Set of hardware resources.
• Set of available software functions.
• The communications and control between the hardware and software units.
• Set of functions to be implemented. Such functions, determined by an earlier func-

tional decomposition of the system, will be assigned to the hardware, software, or
communications.

Formally, as we see expressed in Eq. (9.1) and modeled Figure 9.32, we have a map-mapping
functional blocks

physical hardware
communications

blocks

ping, F, from the set comprising our starting functional blocks to the physical hardware,
software, and communications blocks.

F∶finctional blocks → hw, sw, comms (9.1)
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Decomposition
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SW COMMS

Figure 9.32 Mapping from Functional Blocks onto System
Components

To these we add the set shown in Method 2.

9.16.5.2.2 METHOD 2 DUE TO VAHID
• Set of performance constraints.

• A hardware size specification.

• A software size specification.
For functions to be designed and implemented for real-time systems, performance con-

straints are generally temporal. As we explore alternate partitions for the system, the goal is
to find a partition of loosely coupled highly cohesive modules that satisfies the performance
constraints and optimizes the hardware and software sizes. Such an assignment ultimately
determines the speed of the operation.

Speed of operation can also be assessed in terms of the delay through the associated
functions. However, note that the results of the partition and allocation process can poten-
tially induce additional delays. Such delays are born from the inter-module communications
overhead that can affect the available bandwidth of bus between processor and the periph-
eral hardware, accelerator hardware, and memory system. Alternately, as more software
tasks are allocated to the processor, we are increasing processor utilization. Such an increase
can be viewed as positive or negative.

9.16.5.2.3 METHOD 3 DUE TO MAHAPATRA AND VAHID
Numerous Co-Design tools exist for addressing partitioning problem; functional partition-functional partitioning
ing is one such approach. Functional partitioning refines the system’s functional specifica-
tion into multiple subspecifications. Each such subspecification expresses the functionality
of a hardware or software component within the system. The resulting components are
synthesized into gates or code for the target system.

Viewed at an abstract level, the system to be partitioned is interpreted as a collection
of procedures that we can model as set of procedures with a single top-level procedure:

F = {f0, f1,… fn-1} · · · (9.2)

Once again, these are the pieces of functionality that we determined earlier during
functional decomposition. The procedures are structured into a call graph in which each
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node is a procedure and each arc is procedure call. A procedure call is modeled as a simple
processor with read and write capability. See the later discussion of finite state machine
(FSM) based models.

The execution of the set F is modeled as procedures executing sequentially with no con-
current operation. The objective is to map procedures to a software program and a Hardware
Description Language (HDL) program, as illustrated in Figure 9.33. This method is similar
to Method 1 discussed earlier.

Procedures

System or

Application N-way

Partitioning

Algorithm

Partitioned

Space

Microprocessor

FPGA

SW Algorithm

Figure 9.33 Mapping Procedures to Hardware and Software

The functional partition operation creates a partition P = {p0, p1, … pm - 1} containing
M parts or groups pk; M is of size 2 or more. Each part or group may be a hardware pro-
cessor, a software processor, an ASIC or other PLD such that each fi is mapped to one and
only one pk. As we see in Figure 9.33.

We have equations (9.3) and (9.4):

F = ∪pk (9.3)

pi ∩ pj = 0 for all i, j, i ≠ j (9.4)

Each pk is implemented on single abstract processor. The abstract processors are mutu-
ally exclusive and may exist on same physical hardware device or software procedure.
System operation, after partitioning, is the same as before. Subsequent to the partition, no
restriction is placed on the synthesis process. We may implement the process’ procedures
such that they operate in parallel, provided that data and timing constraints are satisfied.
The procedures are not mutually exclusive after partitioning, the processors remain so.

9.16.5.2.4 METHOD 4 DUE TO VAHID
Vahid proposes the three-step partitioning method given in Figure 9.34. Prior to the appli-
cation of the partitioning algorithm, the method serves as a guide to the process to reduce
design time or the algorithm’s runtime.
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Figure 9.34 Partitioning Tasks

The goal of the preliminary decomposition is to enter with the grain as large as possible,
which supports maximum pre-estimation of partition and the application of heuristics for
segregation. Components of system are included in a procedure only if segregation would
yield inferior solution.

9.16.5.2.5 METHOD 5 GRANULARITY
A key component in partition trade-offs is the granularity of the procedures entered into the

granularity
fine grained
procedures

N-way partitioning algorithm. Clearly fine-grained procedures give greater visibility into
the system under design and flexibility in the allocation to blocks comprising the partition.
However, such a process can be quite computationally intensive and potentially can limit
the heuristics that require iterative estimations of the partition.

Coarse-grained procedures can reduce runtime complexity for sophisticated partition-
coarse-grained

procedures
ing algorithms. Grouping behaviors into atomic (indivisible) units eliminates partitions that
may benefit from separating them.

There are some transformations that can help to guide the granularity selection
problem.

• Inlining. Replace a procedure call by its contents. This can make the granularity finer
and increases the code size. Inlined procedures may later be eliminated.
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• Exlining. The converse of inlining. Sequences of statements are replaced by a proce-
dure containing only those statements. We distinguish two types:

• Redundancy in which two or more nearly identical procedures are replaced by one and
Computation in which large sequences of statements are refined into several smallerRedundancy

Computation procedures. Statements within a procedure are highly correlated and ensure that a
group of related statements is not decomposed during N-way assignment. The process
moves toward finer granularity.

• Cloning. Make a copy of a procedure for use by specific caller. We make a trade-off
between code space, communication needs, and efficiency.

9.16.5.2.6 METHOD 6 PRE-CLUSTERING
Pre-Clustering is similar to but different from defining a granularity. The goal now is to
reduce number of procedures that need to be allocated to groups then merge those proce-
dures whose separation would never lead to a good solution. That is, those that should never
be separated in a good partition.

Consider the following: let procedure A contain 25 statements and let A be called from
10 separate locations in procedure B. There will be significant calling overhead between
potential groups. Inlining A in B will add 225 new lines to the program. Cloning leads to
similar problems. It is better to combine the two into the same cluster prior to partitioning.

Pre-clustering is different from granularity definition. Procedures under consideration
to be clustered may not be able to be exlined. Calls to such procedures are not adjacent; typ-
ically, they are scattered throughout the specification. Pre-clustering is also different from
the N-way assignment that follows. Each cluster does not represent a hardware, software, or
other group. Thus, it is not a clustering operation and not guided by normal design metrics.

In the general algorithm for pre-clustering after granularity selection, each procedure
is expressed as node in a graph. The graph is fully connected and each edge weighted
with closeness of associated nodes. This is similar to routing in telecoms networks. The
closest pair merged into a new node; merging is repeated until no pair has a closeness
measure below a specified minimum. Closeness is an empirical measure. Examples include
communication bit density between nodes, shared hardware, or shared procedures, one in
each set for example.

9.16.5.2.7 METHOD 7 N-WAY PARTITION
With the N-Way Partition algorithm, the objective is to allocate procedures to a set of
processors. A variety of heuristics may be used to create an initial solution. Statisti-
cal techniques include random distribution, genetic algorithm methods, or simulated
Annealing–Hill Climbing. Be careful to avoid local minima with long runtimes. Greedy
heuristics is a linear time heuristic that moves nodes to reduce the cost function. Port calling
seeks to balance access to shared ports. The guiding heuristic tries for balanced allocation.

9.16.5.2.8 METHOD 8 GRAPH-BASED MODELS DUE TO ERNST AND HENKEL
The model associates nodes with elementary operations. Such operations derive from state-
ments in the associated specification. The process begins with an all software implementa-
tion. The initial step is to identify bottlenecks that can be eliminated by migrating selected
operations to hardware. The initial step is followed by a closeness estimation between oper-
ations. Principal operations include:

• Data operations, which explore the number of common variables among operations.

• Loop index operations, which comprise initialization, increment, and compare.
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• Control operations, which examine the distance between invocations of the same
operation or immediately successive operations.

• Operator operations, which examine similarities between the operators add and sub-
tract and shift left or right.

The next step is to estimate the communications overhead when elements are moved or
exchanged among partitions. One such metric can be the density of data exchange amongst
partitions. Finally, partitioning is implemented by two nested loops: the inner loop uses
statistical methods such as simulated annealing and the outer loop is synthesis based to
refine inner loop estimates.

9.16.6 Evaluation of a Partition

With each partition, we must revisit our boundary conditions. In doing so, we ask: is per-
formance improved when a piece of functionality is moved from software to hardware and
are hardware complexity and size improved when a piece of functionality is moved from
hardware to software.

Example 9.1
Designing a Counter

(Cont.)

Mapping to Hardware and Software

From the functional decomposition, using Method 1, we now map the major functional
blocks into the hardware and software modules, as illustrated in Figure 9.35.

Signal Input Measurement
Data Format

Output
User I/FTimebasePower System

Hardware Software

Figure 9.35 Mapping to Hardware and Software

9.17 ARCHITECTURAL DESIGN

Returning to the development of the system, when executing an architectural design, the
goal is to select the most appropriate solution to original problem based upon the evaluation
of variety of architectures and the choice of the best-suited hardware/software partition-
ing and allocation of functionality for the selected architecture. We now proceed with that
process.

9.17.1 Mapping Functions to Hardware

The view of a partition now changes to reflect a more detailed understanding of the system
and involves the mapping or allocation of each functional module onto specific or the
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appropriate physical hardware or software block(s). Such a mapping completely describes
the hardware implementation of the system and the allocation of the software.

As noted earlier, one should always endeavor to broaden the scope of the architectural
design so as not to preclude possible future enhancements. Certainly, this involves a bal-
ancing act between generality and practicality as well as simultaneously satisfying other
specified requirements. Nonetheless, the plan should be for a system that evolves over its
lifetime; if this is done well, add-ons or modifications, that are an inevitable component in
the life and evolution of today’s systems, will be much easier.

Now, the major objective of the architectural design activity, as we have alluded, is
the allocation or mapping of the different pieces of system functionality to the appropriate
hardware and software blocks. The process is based upon the detailed functional structure.
The performance requirements are analyzed and finally the constraints that are imposed
by the available technologies as well as those that arise from the hardware and software
specifications are taken into consideration.

The important constraints that must considered include such items as:

• The geographical distribution.

• Physical and user interfaces.

• System performance specifications.

• Timing constraints and dependability requirements.

• Power consumption.

• Legacy components and cost.

Such constraints are strong factors for deciding which portions of the system should be
implemented in (which) hardware and which portions should be done in (which) software.
The situation was illustrated earlier in Figure 9.17. The area between the hardware and
software where the implementation approach is not constrained was identified as the area
of Co-Design. In selecting the components that make up this area, one is making informed
and well-reasoned engineering decisions or trade-offs of speed, cost, size, weight, as well
as many other factors.

The ultimate mapping onto such an architecture initially establishes a hardware and a
software partition of the system. The constrained hardware portion of the system is spec-
ified by a physical architecture that may comprise one or more microprocessors, complex
logical devices or array logics, or/and custom integrated circuits. It is important to keep in
mind that with today’s systems, these microprocessors and microcontrollers can take on a
variety of personalities: CISC (complex instruction set), RISC (reduced instruction set), or
DS) (digital signal processing core). The constrained software can be easily separated from
the hardware. The remaining, unconstrained hardware and software portions fall into the
Co-Design area.

9.17.2 Hardware and Software Specification and Design

The system Design Specification gives a detailed quantification of the system’s inputs, out-
puts, and functional behavior based upon our original requirements. The functional decom-
position is analogous to those steps taken in defining the requirements. As the architecture
of the design now begins to take shape, the objective is to determine, as fully as possi-
ble, the specifications for each of the physical components in the system and the interfaces
between them.

The specification of the hardware for the entire system is decided by defining the hard-
ware architecture and all its properties. The specification of the software is obtained by
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defining the software implementation or block diagram (using any of a variety of methods)
for each software component of the architecture.

Each functional subset to be implemented in software is described by a detailed soft-
ware specification that expresses the priority of each task and the spatial (data coupling),
and temporal dependence relations between tasks. UML diagrams, including detailed state
charts, timing diagrams, sequence diagrams, activity diagrams, and collaboration diagrams,
can all be very useful at this stage in the design.

A software implementation may or may not use a real-time kernel. With an off-the-shelf
real-time kernel, the development time is reduced, but not the factory cost or time-based
performance specifications. For systems that do not use a real-time kernel (which repre-
sent 80–90% of small and medium systems) one can achieve a better optimization of the
design when addressing high-speed hard real-time constraints. Under such circumstances,
the solution is being hand tailored to the specific problem rather than adapting a general
purpose solution to a specific case.

For the software design, the following must be analyzed and decided:

• Whether to use a real-time kernel or not.

• Can several functions be combined in order to reduce the number of software tasks?
If so, how?

• A priority for each task.

• An implementation technique for each intertask relationship.

When it is appropriate, a real-time kernel or the services of an operating system can be
used. In general, the main objective is to reduce the complexity of the organizational part
in order to reduce the size and complexity of the software and the resulting development,
testing, and debugging times.

Under such circumstances, a frequent choice is the Rate Monotonic Scheduling policy
Rate Monotonic

Scheduling
(this will be discussed in Chapter 12; more frequently executed tasks are assigned a higher
priorities). Permanent functions (those that run continuously without an activating event)
and some cyclic functions without timing constraints are usually implemented within a
background task.

For the implementation of intertask relationships, it is desirable to use procedure calls
as much as possible, thereby simplifying the organizational part and reducing the inter-
task overhead. Such an implementation is only possible between functions with increasing
relative priorities. Tasks triggered by hardware events are invoked through the processor
interrupt or polling subsystems.

For each specific subpart of the system in which the partition is not obvious, a detailed
specification is written; the final hardware/software partition is determined through a pro-
cess of successive refinements as was done in the earlier decomposition process. Each
hardware/software partition must also identify and include the hardware interfaces and the
software drivers to support any inter-component communication.

The result is a complete mapping of all remaining functions and functional relations
onto the hardware architecture. Among the important criteria that we strive to optimize are:

• Implementation (or factory) cost.

• Development time and cost.

• Performance and dependability constraints.

• Power consumption.

• Size.
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Developing the Architecture

The next step in developing the counter begins with formulating the hardware architec-Example 9.1
Designing a Counter

(Cont.)
ture; the software architecture follows. We then map each of the functions identified ear-
lier onto the architecture. The diagram in Figure 9.36 presents a first cut at the hardware
components.
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System

Reset

Figure 9.36 The Hardware Architecture of the Counter

In the design, the microprocessor, the display, the front panel controls, and the power
system are clearly hardware. In theory, the clock system as well as the counter-divider chain
and associated control could be implemented, in part, in software. However, the frequency
at which the counter is intended to operate (200 MHz) biases the decision toward a hardware
solution.

The data and control flow diagram in Figure 9.37 identifies the major software tasks,
shared data, and I/O. The front panel task is continually checking (directly by polling or
indirectly by interrupt) the state of the front panel for user input. A change in input is
captured and passed to the display task (which will update the display accordingly) and
to the measurement task. The measurement task issues the appropriate commands to the
external counter-divider chain control block. At the end of each measurement, the raw data
is read from the counter-divider and passed to the output task.

The output task properly formats the data and sends it to the display task for display on
the front panel. The master control task manages the scheduling of all tasks and performs
any necessary housekeeping or other duties as necessary.
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Figure 9.37 Data and Control Flow Diagram for the Counter System

9.18 FUNCTIONAL MODEL VERSUS ARCHITECTURAL MODEL

With the architectural model formulated, in retrospect, a good question that one might ask
at this stage is, “Why is it necessary to design a functional model and an architectural
model?” Well, let’s see. We start by looking at any system – hardware, software, a mix,
it doesn’t matter. It quickly becomes evident that the internal organization of a system is
based on a collection of components and interconnections between them. An appropriate
model has to include elements both at functional level and at the architectural level to be

functional level
architectural level

able to represent, design, and evaluate hardware/software systems. Such a distinction is an
essential building block of the Co-Design methodology.

9.18.1 The Functional Model

The functional model describes a system through a set of interacting functional elements.
The design proceeds at a high level without an initial bias toward any specific implementa-

interacting functional
elements

tion. We have the freedom to explore, to be creative, to make hardware–software trade-offs.
The behavior of a functional element is best described with a hierarchical and graphi-
cal model. The functional modules will interact using one of the following three types of
relations:

• The shared variable relation, which defines a data exchange without temporal depen-
dencies.
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• The synchronization relation, which specifies temporal dependency.

• The message transfer by port, which implies a producer/consumer kind of relation-
ship.

We will discuss each of these when we study processes and inter-process communica-
tion. All of them are critical in the design and development of today’s embedded systems.

9.18.2 The Architectural Model

The architectural model describes the physical architecture of the system based on real
hardware components such as microprocessors, arrayed logics, special purpose processors,
custom circuitry, analog and digital components, and the many interconnections between
them.

9.18.3 The Need for Both Models

These two views, when considered separately, are not sufficient to completely describe the
design of contemporary systems. It is necessary to add the mapping between the functional
viewpoint and the architectural one. Such a mapping defines a (functional) partition and
the allocation of functional components to the hardware and/or the software elements. Such
a process is also called architectural configuration.

The functional model, located between the specification model and the architecturalmapping
functional viewpoint

architectural
architectural

configuration
functional model

model, is suitable for representing the internal organization of a system. It explains all
necessary functions and the couplings between them – expressed from the point of view
of the original problem. Using such a scheme leads to a technology-independent solution.
In particular, with this kind of model, all or part of the description can be implemented
either in software or hardware. Once again, ideal for the Co-Design methodology.

The functional model is the basis for a coarse-grain partitioning of the system. Such
a partitioning leads naturally to the selection of which functions to implement in hardware
or software. The architectural structure is finer grained and generally follows from thearchitectural structure
functional model; the architecture may also be imposed a priori.

9.19 MODELING TOOLS AND LANGUAGES FOR CO-DESIGN

We have now formulated a high-level architecture for the system. The next steps are
Co-Synthesis and Co-Simulation, i.e. mapping the architecture to an executable model,
synthesizing the model, and simulating the system running the modeled hardware and
software. Before taking that step, let us look at some of the available modeling tools and
methods.

Specifying and modeling complex contemporary embedded designs draws upon wide
variety of tools and methods. We want to be able to model and conjoin both the hardware
and the software and, thus, we must have a seamless way of expressing both and ultimately
segueing in the real physical hardware. Solid models, as well as modeling and specifica-
tion languages, are essential for comprehending, expressing, managing, and validating the
design. It is important to keep in mind that no one tool does everything for all phases of the
development process.

The Co-Design process utilizes a variety of models at different levels and for different
reasons. For the structural and hierarchical aspects, we utilize system description languages
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such as: SDL, SpecCharts, VHDL, Verilog, or Esterel. DSP requirements may be met with
C/C++ or Matlab. Control aspects are addressed by variations on FSMs.

We have already encountered a system level model. Such an early model is generally
necessarily behavioral. From the system level, we move to an architectural level model
and subsequently to data flow and detailed level design models. As we proceed, we will
look briefly at the motivation for modeling, what we are modeling, and the essential char-
acteristics for a modeling method. We will then examine several different models and
modeling/specification languages and try to point out the utility and limitations of each.
This list is neither comprehensive nor complete.

To open, we are looking at what is called a model of computation (MOC). Such a model
model of

computation(MOC)
is an abstract specification of how a computation can progress and is typically hierarchical.
In model driven engineering (which is a growing part of contemporary design), an MOC

logic circuit
finite state machine

RAM
pushdown automata

Turing machine

explains how the behavior of the whole system is the result of the behavior of the compo-
nents. We can classify MOCs into the following five categories: logic circuit, FSM, RAM
(comprising a CPU and RAM) a pushdown automata, and a Turing machine.

9.19.1 Why are We Modeling?

Primarily we use models to represent a description of a real system or one that will become
real when it is designed. Models give us different views – external, internal, abstract, behav-
ioral, or structural – of our system. The model gives us means to describe characteristics
of system to be designed and provides a basis for later simulation, test, verification, and
validation. Models are cheaper and easier to change than building a complete system to test
a design concept or parameter variation. Models allow us to execute tests that may be too
hazardous or impossible to run during preliminary development considering the underlying
physics.

Today’s familiar cell phone, sporting a design comprising over one million transistors,
is virtually impossible to implement and test on the traditional laboratory bench. Intercon-
necting that many transistors is only a small part of the problem; signal integrity issues
within the system are the real problem. Modeling offers the only viable solution.

In the design process, the model precedes the actual physical hard design. It provides
the opportunity to rapidly explore a variety of alternative approaches cheaply and quickly.

9.19.2 What are We Modeling?

To effectively formulate a good model, we must understand what we are modeling. Our
target is embedded applications. We are modeling the system, the environment, and the
effects of the environment on the system and vice versa. We are modeling the synchronous
or asynchronous control and resulting movement of data through a system. That movement
can be sequential or parallel, finite or infinite. We know that embedded systems can be:

• Reactive. The system runs continuously and responds or reacts to signals from the
external environment.

• Time based. Events and actions are synchronously scheduled.

• Often real-time. Time constraints are imposed on its behavior.

• Heterogeneous. Composed of hardware and software pieces.

• Supported by different development environments.

We need to distinguish the model from the language used to express the model.
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9.19.3 Characterizing the Model

An essential part of the Co-Design process is having a good working model of the system
to be designed. In the early stages of the development process, we are modeling the func-
tionality of that system, not executing the detailed design of the system. This means that we
are examining both the physical details, the implementation of the hardware and software,
and the effects of the real-world. The model expresses an abstraction of the real-world. It
is intended to give an abstract representation of a portion of the real-world; it allows us to
temporarily ignore certain details as we gain understanding of the problem. To be useful,
we can hypothesize some essential general capabilities of the model:

• Abstraction. It must allow us to express and examine the behavior of the complete
system, unburdened by the details of sub-components.

• Refinement. It must allow us to express and decompose behavior of the system at
different levels of granularity.

• Structure. It must be able to express the system as set of interconnected modules.

• Communication. It must support an inter-module communication method.

• It must express the anticipated behavior or aspect being modeled in a comprehensible
format.

• It should be easy to interpret.

9.19.4 Classes of MoCs

Two classifications or levels of model are particularly useful: conceptual and analytic, i.e.
control-dataflow and structural.

9.19.4.1 Conceptual Model

The conceptual model is behavioral in nature and precedes the analytic. It allows us to work
at a higher level of abstraction. It uses a symbolic means to capture the qualitative aspectsconceptual

analytic
component interaction

client–server
communicating

sequential

of the problem. It is particularly useful during the early stages of design for formulating the
specification, aiding in the early stages of partitioning the system, then later developing a
high-level architecture. It should allow us to grasp and to work with the complexities of a
design, to explore the functional behavior and to focus on essential details while ignoring
others.

9.19.4.2 Analytic Model

The analytic model permits analysis at lower levels of detail. It uses mathematical or logical
relations to express the quantitative physical behavior of the design. It is useful during the
middle and later stages of design, the later stages of partitioning, in modeling and analyzing
detailed architectures, verifying detailed performances, making performance trade-offs, and
testing real-world effects. It is more structural in nature. Let’s now examine several different
classes of MOC.

The Component Interaction class models systems that mix data driven and demand
driven styles of computation. The Client–Server model can be viewed as demand driven;Component

Interaction the push-pull interaction between producer and consumer exhibits data driven behavior.
The Communicating Sequential Processes class, represented by Ptolemy, expressesCommunicating

Sequential Process such processes as Java threads.
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The basic FSM enumerates the states and the rules for transitioning between states.FSM
Execution is an ordered sequence of state transitions that utilizes the notion of guards that
constrain when a state transition should be taken. Such a scheme works well in control type
applications.

Dataflow models react to data available on inputs, perform computations on the dataDataflow
then emit results on the output. In the dataflow class, we have the following models.

• With Process Networks communication is achieved via streams of tokens. Each tokenProcess Betworks
is an arbitrary data structure operated on by the MoC. The approach models processes
that communicate via buffered message channels. The models are loosely coupled and
provide easy support for concurrent or distributed operation.

• Synchronous Data Flow models are a special case of the more general process net-
Synchronous Data

Flow
works. Restrictions or limitations are on the understanding of deadlocks and bounds
on operations. Such modules execute sequentially to complete the task and support
computations that operate on streams of data tokens. The schedule of operations is
statically determined.

• Discrete Event models react to events occurring at an instant of time. An event com-Discrete Event
prises a value and a time stamp. Such a model is applicable to systems that respond
to input events and produce output events either at the same time or at a future time
instant.

• Continuous Time class models components that interact through continuous time sig-Continuous Time
nals and provide support for analog aspects of some circuits.

9.19.5 A Look at Some Models

To be effective, models should give us ability to express and support:

1. Modularity and hierarchy. They should be able to express static and dynamic behav-
ior and both structural and functional construction.

2. Relationships among subsystems. They should be able to express sequential and
concurrent flow of control and inter subsystem synchronization and communication.

3. Communication amongst tools.

4. The use of legacy designs or behaviors and they should be executable and, thereby,
should enable verifying the system throughout design process.

5. Models should be executable.

Let’s look at some of the more commonly used models and languages identified
earlier. Repeating, we can classify MOCs into the following five categories: logic
circuit, FSM, RAM (comprising a CPU and RAM), a pushdown automata, or a Turing
machine.

The example MOCs that follow are not a or the final architecture for an embedded
system design; rather, we view them as building blocks: a modeled architecture that serves
as a platform for a Co-Simulation of our system may comprise/utilize several of these.
As we bring a project to its final design, we may iterate and model several variations on
the architecture along the way as we make trade-offs and explore alternatives to reach an
optimal design that satisfies all specifications.
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9.19.5.1 The Logic Circuit

The logic circuit is a physical device that realizes a Boolean function. The logic circuit can
be modeled as a directed acyclic graph, as shown in Figure 9.38.

A B

E = D•(A + B)

DC

E

Figure 9.38 Logic Gate MOC

9.19.5.2 The Random Access Machine – RAM

The Random Access Machine – RAM MOC is modeled as two FSMs: RAM-CPU and
RAM as shown in the diagram is shown in Figure 9.39.

ALU

PC

Register

Decode
Out

CMD

RAM – CPU RAM

In
Memory

Address

Figure 9.39 CPU-RAM MOC

The RAM component holds N words, each identified by an address. It has one output
word: outword and three input words: cmd, read, and write.

cmd: read, write, nop
read: outword ← data @ adx
write: data@adx← inword

The RAM-CPU component comprises a CPU that implements a fetch and execute cycle
as it alternately reads an instruction from RAM and executes it. The RAM MOC is similar
to the Turing machine but supports random access.

9.19.5.3 The Turing Machine

The basic Turing Machine is a hypothetical computing device formulated by the British
mathematician Alan Turing. The machine is capable of simulating any computer algorithm.
The system comprises a program that drives a read-write head. The head interfaces to a tape
and under the control of the program, it can read from or write to the tape and move to the
left or the right, i.e. make a state change. The basic Turing machine is shown in the diagram
in Figure 9.40.
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Read-Write Head

TAPE

Control-Program
Figure 9.40 Turing Machine MOC

9.19.5.4 The Pushdown Automaton Machine

The Automaton MoC is a less capable special case of the Turing Machine. It uses a stack
rather than a tape.

9.19.5.5 The Basic Finite State Machine

The FSM gives a simple, behavioral description of a hardware or software system. Its
input/output function or relationship is computed by a finite automaton expressed as
directed cyclic graph. The nodes in the graph define discrete states in the modeled entity.
The arcs or edges, labeled with input/output data pairs, reflect relations and changes in
state in the modeled entity. Typically one of the comprising states is defined as the initial

Initial state
Terminal state

state; there may also be a node expressing a terminal state.
The basic finite state machine is defined as a quintuple given in Eq. (9.5):

M = {I,O,S, δ, λ} (9.5)

I – Finite nonempty set or vector of inputs
O – Finite nonempty set or vector of outputs
S – Finite nonempty set or vector of states
δ – Mapping I×S→ S
λ1 – Mapping I×S→O – Mealy Machine
λ2 – Mapping S→O – Moore Machine

Two models, Mealy and Moore, are distinguished by their output function. In the Mealy
machine, the output is a function of the current state and the input, whereas, in the Moore
machine, the output is a function of state only. We can express the basic machine as shown
in Figure 9.41. Note the Mealy and Moore next state mappings.

Next State and

Output Function
Input Queue

Inputs

Outputs

State

I × S
I × S

S

S
O 
O

Figure 9.41 The Basic State Machine
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9.19.5.5.1 LIMITATIONS
There is a theoretical limit on computational power of the basic FSM model. It has limited
useful memory; using states not efficient. One encounters a state space explosion for large
problems and it is impractical for large numbers of inputs.

When it is necessary to express concurrent activity, one must use a combination of
several machines, coupled by transition conditions between them. Under such conditions,
once again we get a state space explosion.

The nature of the FSM makes it difficult to continuously refine. FSMs are inherently
synchronous and the system is in single global state at each time instant. If we design a
complex system by interconnecting one or more machines, outputs to inputs, we must have
some form of synchronization either through a common clock or handshake scheme. There
are a number of variations of the basic FSM at the core of different models and modeling
languages. Each addresses one or more of the limitations with this model.

9.19.5.6 Communicating Finite State Machines

To begin to address some of limitations of the basic FSM, we will examine several examples
of what are called Communicating finite state machines. Such machines support communi-
cations with other similar machines, as shown in Figure 9.42.communicating finite

state machine

FSM
FSM

FSM

FSM

FSM

Figure 9.42 Communication Finite State Machine

9.19.5.7 Extended FSM

A first example of a communicating FSM is called an Extended Finite State Machine
(EFSM). The EFSM model is expressed as a network of FSMs with a communicationextended finite state

machine mechanism that is used to orchestrate the operation of the model. This is a key addition
to the basic machine; the communication channel is nondestructive. An event can be read
many times by the receiver. The simplest form of communication is the familiar shared
variable; intra-system communication is synchronous. The descriptive power of the EFSM
is equivalent to a Turing machine. The extended model appears in Figure 9.43.

Modifications to the basic FSM include:

1. The addition of a (set of) variables or (FIFO) queues. The variables have a name
and can hold abstract objects restricted to the integer type.

2. The queues are restricted to transferring integers.
3. The addition of a collection of logical or arithmetic operators that operate on con-

tents of queues.

We see that the next state is function of present state, inputs, variables, and information
from other machines. The output also becomes a function of variables that are computed as
a function of present state, inputs, and variables.
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Input Queue Outputs

Next State and

Output Function

State S

Variables: V

I × S × V

I × S × V
S × V
F(V)

S

O 
O
V

Figure 9.43 Extended Finite State Machine

9.19.5.7.1 LIMITATIONS
The model is at too low of a level to easily support specification. Generally, formal spec-
ification languages such as Esterel, SystemC, VHDL, Verilog, or State Charts are more
effective.

9.19.5.8 Co-Design FSM

The second such model is called the Co-Design FSM. Its design is intended to address issuesCo-Design FSM
with the synchronous model underlying concurrent FSMs. Such a model implies that all
comprising state machines must change state at same time. However, software implemented
in a single processor environment requires interleaving actions in time; we cannot have
parallel activity. The Co-Design FSM addresses issues of timing and coordination.

Similar to the EFSM, the CFSM model is expressed as a network of FSMs with a
communication mechanism that is used to orchestrate the operation of the model. State
changes in the comprising FSMs are asynchronous with respect to each other. Thus, the
system is globally asynchronous. The time to compute a next state change can be different
in each machine and can be unbound in the limit if the implementation is not known.

The communication mechanism between machines is based upon timed events rather
than simple integers like the EFSM. An event is defined by the triple given in Eq. (9.6):

Event = {N,V,T} (9.6)

N – The name of the event.
V – The value
T – A positive integer denoting the time of occurrence

Event transfer uses an unacknowledged protocol: the receiver does not acknowledge
receipt of the event. Two kinds of events defined:

• Trigger events that provide the basic synchronism mechanism in a CFSM. They aretrigger
used one time, which is called a destructive read, and cause a state transition in the
target machine.

• Pure Value events that cannot cause a state change directly but can be used to selectpure value
from alternate possibilities involving the same set of trigger events.
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The operation of the CFSM comprises four phases:

1. Idle.

2. Detect an input event.

3. Execute a transition according to which events are present and match the associated
transition relation.

4. Emit an output event.

Consequently, a state transition triggered by an input signal is reflected sometime later
in an output change.

A timed trace of events is an ordered sequence in time. Time is monotonically non-
decreasing. No two events with same name can occur simultaneously. This implies that no
communication channel can carry two values at the same time, for example, two instances
of the same interrupt.

The globally asynchronous nature of the CFSM facilitates partitioning the system
model into hardware and software components. The low-level structure of individual
CFSMs makes the synthesis of hardware or software rather straightforward.

9.19.5.8.1 LIMITATIONS
The communication mechanism is very specific. It does not easily support complex data
types or data transformations. It can model other schemes such as blocking messages and
shared variables; it can be cumbersome, however. Similar to the EFSM, it is too low level
to easily support specification. Generally, formal specification languages more effective.

9.19.5.9 Program State Machines

The program state machine extends the FSM by integrating a hierarchical concurrentprogram state machine
FSM and programming language concepts. The model is similar to the RAM MOC. In the
machine, the concept of state represents a distinct mode of computation. Only a subset of
program states can be active at any one time carrying out an associated computation or
operation.

A program state can be compound, i.e. made up of a set of program states, or elemen-
tary, in which it comprises a single program state. Compound states may be executing in
sequence or in parallel, similar to the UML State Chart and are, thus, useful for model-compound

elementary
State Chart

ing multitasking operation. Elementary states are modeled as a sequential algorithm in an
imperative language. Assignments are the only statements in such a language responsible
for a change in state.

Transitions between sequential program states are of two types:

• Transition Immediate arcs, in which the transition occurs as soon as a conditionTransition Immediate
active – inactive

communition
complete – not

complete
Transition on

Completion

becomes true, independent of the state of subprogram states: active – inactive or com-
putation complete – not complete. Such arcs are intended to address reset or exception
conditions such as interrupts.

• Transition on completion arcs, in which the transition occurs when the state has fin-
ished an activity. Such behavior is similar to signal-wait and signal-continue seman-
tics in semaphores and monitors and are loosely analogous to guard conditions in
UML state charts.
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9.19.5.9.1 LIMITATIONS
Communication and synchronization between concurrent states is modeled through shared
memory; no other means are provided.

9.19.5.10 UML State Charts

State charts can be viewed as a graphical specification language. They are a powerful tool
for modeling and specifying the dynamic behavior of reactive objects. They extend the basic
FSM by supporting hierarchical decomposition or refinement, concurrency, the notion of
delays and timeouts, and support a history mechanism. Concurrency can be very useful for
expressing simultaneous sequential behaviors in control systems. The history mechanism
allows one to re-enter state at same point and contest it was in when previously exited.

UML State Charts are discussed in detail in Chapter 5.

9.19.5.11 Petri Nets

The Petri Net is useful for expressing and validating the behavior of a system. Like State
Charts, they support concurrency, and thus can be used to express both sequential and par-
allel behavior as well as behavior hierarchy.

The Petri Net is a bipartite graph comprised of nodes or places, transitions, and tokens.
A node is represented by a circle and corresponds to conditions that may hold in the sys-
tem. A place may or may not have a token. Transitions are represented by a rectangle and

place
transition

token
express events that may occur. Tokens signify the assertion of an associated condition and
are expressed as a small solid circle or dot within a place. Figure 9.44 illustrates several
basic structures.

sequence

transition 1 2

place

alternative synchronization concurrency

Figure 9.44 Basic Petri Net Structures

A Petri Net is marked by placing tokens on the various places. When all incoming arcs
to a transition have a token, the transition fires, which corresponds to the occurrence of the
associated event. All tokens on input arcs are removed and a token is placed on all outgoing
arcs. The result is change in state of the system as illustrated in Figure 9.45.

9.19.5.11.1 LIMITATIONS
Like the basic FSM, the Petri net is flat, thus presenting difficulty in expressing structural
hierarchy. Its complexity rapidly increases and communication between parallel threads
can only occur through shared variables.
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Figure 9.45 Execution

9.19.5.12 Kahn Process Network

The Kahn Process Network model is similar in structure to the Extended and Co-Design
FSMs. The structure comprises a networked collection of processes. The processes, like
finite automata, perform a mapping from input sequence to output sequence. The model
supports distributed control and distributed memory.

The processes run autonomously and communicate via tokens through unbounded
FIFOs. Like a CFSM, tokens can only be written or read once. Writes are nonblocking
and Reads are blocking. Processes synchronize through a blocking Read operation. A pro-
cess is either executing, following an Execute command, or communicating, following a
Send of Get command, and the behavior is deterministic.

9.19.5.13 Control Flow – Data Flow – CDFG Graphs

Control and data flow graphs provide another means to express control and data flow in
a system. We have explored them already under our discussion on structured design. The
basic organization comprises control and data nodes. Control nodes interconnect to capture
the expected control flow operations such as sequences, branches, concurrent operations,
and loops. Each is linked to a data flow block.

The data flow block encapsulates a set of data computations. Each computation
sequence is expressed as a directed acyclic graph. A data node expresses an arithmetic,
logical, relational operation, or a read or write to or from memory or an external port.

9.20 CO-SYNTHESIS

Material based upon
Mahapatra at Texas A&M
Lavagno et al.
As we saw in an earlier diagram, partitioning, simulation, and synthesis work in con-

cert. In addition, at the end of the day, they must implement the system that we are designing.
We will now look at the synthesis component.
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Synthesis is a wide-open problem. We find that there are many different commercial,
as well as research-based, tools available. Many of the commercial tools focus on the hard-
ware. We will look at the general considerations without delving into details of specific
tools.

Synthesis entails turning HDL code into hardware and software into firmware. Our sys-
tem comes with a specification, a set of hardware and software resources, a mapping – via
the partition onto an architecture. Our target architecture comprises collection of black
boxes. These black boxes are charged with executing the hardware and software tasks within
the evolving design.

The hardware comprises a microprocessor, microcontroller, microcomputer, or combi-
nation thereof. It is certainly possible to have multiple copies of each; for now, we consider
a single copy. We also have a set of hardware modules including memories, I/O devices,
complex programmable logic devices (CPLDs), ASICs, and/or field programmable gate
arrays (FPGAs).

The software, or more appropriately ultimately the firmware, includes a collection of
firmware processes: the operating system, a kernel, device drivers, flow control, co-routines,
function/procedure calls, concurrent operations, and error/exception management. In addi-
tion, we have the data, control, and address busses interconnecting these as well as support-
ing the interface between the hardware and software and the schedule, i.e. the control flow
managing all operations.

A specific implementation of these black boxes is defined during the synthesis por-
tion of the co-development. The basic implementation takes on following form shown in
Figure 9.46.

Microprocessor

Software

Function

Memory System
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Figure 9.46 The Modeled System

9.20.1 Constraints

Mapping to a physical implementation can potentially encounter a number of constraints.
Such constraints and evaluation criteria are similar to those we encountered when proposing
and evaluating partitions. Constraints of particular concern include:

• The ability to meet specification requirements. At the end of the day, one must satisfy
the Requirements Specification.
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• The ability to meet time constraints, including the time performance of constituent
algorithms and real-time deadlines.

• The ability to meet communications costs both in time and in the complexity of the
implemented solution.

• Size and weight constraints, which hold for both the software and the hardware. For
the hardware, the design must fit within hardware components and for the software,
the memory loading.

• Fundamental physics in the form of signal integrity issues and constraints exacerbated
by substantially decreasing hardware footprints and increasing operating frequencies
(in reality, the associated signal decreasing rise and fall times). The Free Software
Foundation does an excellent job in mapping high level software to machine code.
However, they are not confronted with the fundamental physics from our friends
Maxwell et al.

Today, the current state of the art imposes some restrictions on the hardware architec-
ture that arises from our successes in the hardware arena. The current state of hardware
synthesis tools is far ahead of those in software domain. Many of these perform very well.
Synthesis from VHDL, Verilog, or SystemC is rather straightforward. Our desire is to make
problem computationally more tractable as the power of the tools continues to increase.

Thus, to minimize the cost of a particular partition, we have a contemporary bias toward
using off-the-shelf processors and easily synthesizable logic devices such as FPGAs. In
such an environment we have libraries of proven components. Today, FPGA technology
has advanced to point where a processor core can easily be dropped into middle of a CPLD
device. The mapping from an HDL to array logic is well understood. Nonetheless, there
remains much room for research and improvement.

ASICs and full custom ICs are expensive in both time and money. Once again, we
have a bias toward ASICs that can be implemented from legacy libraries. Although more
expensive than FPGAs, they are less costly than a full custom implementation.

Thus, while certainly improvements can always be made, there are also interesting
areas are in software synthesis and in developing the associated tools. Once again, there
have been many advances in this area. Code generators and template based software devel-
opment are no longer novelties. Herein our focus can be on software component of the
problem.

9.20.2 Software Synthesis

Translating a sequence of behavioral statements into a standard implementation language
such as C or C++ is a relatively straightforward task. More difficult is formulating and
meeting scheduling requirements and real-time constraints for the application.

Although this is rapidly changing today, the application is typically built on single
processor accompanied by collections of programmable logics. The implication is that,
in reality, with a single CPU we only have a single real thread of control. Consequently,
concurrent threads of execution that may work well in a model but must be flattened into
linear or sequential execution order can present a challenge. Thus, in a simple case, four
threads executing concurrently in a model only receive one fourth of CPU rather than all
of it. We can increase CPU speed by four times, which can often be impractical, or extend
the time constraints.
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9.20.2.1 System Characterization

The systems we are considering are reactive and often real-time. During modeling and
partitioning, such systems naturally decompose into concurrent pieces of functionality.
The mapping of the model to the software/firmware must respect such a decomposition.
Significant elements of modeled concurrency that must be considered when executing
the mapping include: communication, synchronization, computational flow, and timing
constraints.

9.20.2.2 Scheduling

As is evident with migration to a physical implementation, the scheduling of the software
execution on the hardware can be challenging problem. We have already examined schedul-
ing algorithms in context of the study of operating systems. There, we saw that scheduling
algorithms fall into several categories:

• Static. The schedule is determined at compile time.

• Quasi-static. Some schedule decisions are made at compile time while others are
made at runtime.

• Dynamic. Schedule determined at runtime by a dedicated piece of software.

Such schedulers may rely on pre-determined information to establish execution order
and some runtime information; these may be nonpreemptive or preemptive. The same rules
and objectives apply now. As with all other aspects of the Co-Design process, we are mak-
ing trade-offs. These include: scheduling (of processes) flexibility, minimizing scheduling
overhead, the costs of context switching, and reliability and predictability which now grow
more important as we move toward final implementation.

For embedded applications with (hard) real-time deadlines, we prefer a static, nonpre-
emptive implementation. We can relax to quasi-static with limited preemption and certainly,
there are cases in which preemption is necessary. Such an approach moves toward relia-
bility and predictability, certainly reduces (runtime) flexibility, and minimizes scheduling
overhead.

9.20.2.3 Synthesis Methods

Most approaches to synthesizing the software component decompose the problem into sets
of cooperating tasks then schedule according to classical algorithms or ad hoc techniques
driven by knowledge of the problem and domain. Such an approach is limited to special
purpose systems, which are ideal for such an approach. Let’s now look at several different
approaches to this problem.

9.20.2.3.1 SYNCHRONOUS MODEL
Approach due to Berry, Benveniste

The concepts involved originate with synchronous languages used for embedded devel-
opment. As we have seen, such languages include: Esterel, in which the semantics are based
upon a reactive model for synchronous and parallel systems and compile into FSMs that
can then be executed; Lustre, a synchronous data flow language targeted toward reactiveLustre
systems, specifically control and monitoring systems; and Signal, in which the semantics
is based upon model of multiple clocked flows of data and events.
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The synchronous model utilizes a synchronous interpretation of time and underlies
several contemporary synthesis tools. The synchronous approach is a familiar one in engi-
neering. Continuous time is divided into discrete units. The approach utilizes two common
models: event driven and input or data driven. Schematically the models execute as followssynchronous

event driven
input driven
data driven

in Figure 9.47:

do forever do forever

for each clock tick for each input event
get inputs compute system outputs

compute system outputs update internal state

update internal state end for

end for Event Driven
Data Driven

Figure 9.47 Data Driven and Event Driven Models

The underlying structure of the authors’ approach builds a mathematical framework
in which the model is time synchronized to one or more clocks. The system advances
“synchronously” accordingly and exhibits concurrent deterministic behavior. The authors’
propose an ideal model of reactive systems in which system outputs are produced
synchronously with inputs. Such outputs occur “instantly.” Intra-system communication
implements an instantaneous broadcast model in which signals are visible and reacted
upon at the time of emission. The approach implements a global interleaving of input
signals that determines how (asynchronous) inputs are managed and effects computed in
time.

9.20.2.3.2 EXECUTION
The design of the software system is event driven and begins with the Esterel model. It
derives a single FSM from a collection of concurrent modules. Inter module communica-
tion becomes rather complex. The generated software emulates the syntactically derived
hardware implementation from the Esterel program.

The synchronous approach avoids using a schedule. With each sensed event, the reac-
tion by the system to all events present is computed and executed. With such an approach,
we have a precise determination of the performance in (idealized) time. The real world
component is accommodated, as appropriate, for context. Most other approaches map con-
current processes onto cooperating tasks and formulate a schedule for execution subject
to timing constraints given in specification. One such approach uses the rate monotonic
scheduler.

9.20.2.3.3 RATE MONOTONIC SCHEDULE BASE
Approach due to Cochran

Scheduling, based upon the rate monotonic analysis (RMA) algorithm, uses a staticrate monotonic
analysis
(RMA)

assignment of priorities with preemption. Deadlines are equal to the invocation period and
it is assumed that system overhead is negligible. Recall that given such a hypotheses, if a
given set of tasks can be scheduled by a static priority algorithm, it can be scheduled by the
RMA algorithm.

The algorithm is extended to include: synchronization constraints, high priority I/O
via interrupt service routines (ISRs), context switching overhead, multiple processors, and
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deadline management. The author accommodates multiple processors to evaluate the abil-
ity to schedule a selected allocation of tasks to the processors and provides feedback on
potential bottlenecks and deadlocks.

9.20.2.3.4 RATE MONOTONIC EXTENSION
Approach due to Chou, Walkup, Borriello

Earlier work (Esterel and StateCharts) used an idealized timing model as we have
seen with the Synchronous model. It assumes that simple computations take zero time.
Computations that violated the assumption are modeled as external signals to the sys-
tem. Time constraints on such signals are prohibited. The authors extend such a model by
adding timing constraints. The method accommodates both fine and coarse-grained timing
constraints.

The specification is Verilog based and uses such constructs to provide structured con-
currency that is augmented by watchdog-style preemption similar to the UML guard or
the familiar watchdog timer. An associated action is invoked when a specified condition
is met.

Timing constraints are specified using modes. A mode requires a scope or context in
which a specified set of timing constraints must be met until one of the watchdogs triggers
and either disables or forces an exit from the mode. When such a transition is initiated, each
concurrent branch target to be disabled is allowed to run until a safe exit point is reached.

Similar to State Charts, modes express different states for the operation: initialization,
normal operation, error recovery. Constraints on min and max inter-event separation can be
defined either within the mode or based upon a set of events in several modes.

Scheduling is performed within a mode and proceeds by identifying a cyclic order of
operations that preserves I/O rates and timing constraints. Then, transforming each mode
into an acyclic partial ordering is done by unrolling and splitting, if there are multiple par-
allel loops. Finally, the partial order is linearized, based upon a longest path algorithm and
checked for feasibility then start times are assigned to all operations.

The Co-Synthesis phase leads to an operational system prototype. A prototype imple-
mentation includes:

• Detailed Design

• Debugging

• Validation

• Testing

Prototyping is naturally a bottom-up process, as it consists of assembling individual
parts and fleshing out more and more of the abstract functionalities. Each level of the
implementation must be validated. That is, it must be checked for compliance with the
specifications on the corresponding level in the top-down design.

Under the Co-Design methodology, the hardware and software implementations can
be developed simultaneously and potentially involve specialists in both domains, hopefully
reducing the total implementation time and yielding a top quality product. Often this doesn’t
happen in reality. Typically, the software leads hardware; however, the Co-Design approach
is gaining in popularity. In either case, a complete solution can be generated and/or synthe-
sized both for the hardware (in the form of ASICs, standard cores, etc.) and the software
(in the form of software functions and the hardware/software interfaces). The resulting pro-
totype can then be verified and trade-offs made as the design evolves.
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9.21 IMPLEMENTING THE SYSTEM

Activities in this step are highly dependent on the technology used. Remember, the pro-
totype is a tool for understanding and confirming system design as well as making imple-
mentation trade-offs. It is a proof of concept. A word of caution, do not rush the analysis
or design to get to the prototype. Also, do not be afraid to throw the prototype away. For
small projects, it sometimes works to try to transform the prototype into the final prod-
uct. For larger projects, it is usually more of a proof-of-concept that almost never can be
migrated.

Remember, those who hurry through the design and coding because there’s a lot of
testing to do are going to be spending long nights getting things to work and even longer
nights with unhappy customers. For some reason, customers don’t seem to have much of a
sense of humor when the failure of a product they have purchased has just cost them several
million dollars. If you are selling to a general market, your company has just lost several
million in R&D costs and you still do not have a product to take to market. So now, it is
even worse, because you have missed an opportunity for sales revenue with a product that
you cannot sell because it is poorly conceived, or it still is not ready.

9.21.1 Analyzing the System Design

We have been studying the system design process while moving from requirements to a
design and, ultimately, an implementation. Now that the first level design is in place, it must
be critically analyzed. This step provides several important checks on the design, first, and
foremost, it verifies that the solution meets the original requirements and specifications. At
this stage in the design flow, it may also be necessary to trade-off different architectural and
functional or hardware and software aspects of the design. Such trade-offs must be made
according to criteria identified in the original specification.

The first step entails a static analysis of the system. At this stage, the architecture of the
system is examined. Of immediate interest is not how the system will behave at runtime. The
major objectives are to have a system that is easy to understand, build, test, and maintain.
All too often new designers (and, unfortunately, some who should know better), proclaim
“… but it works!!!” or “…we can always send out updates later!!!.” If a design needs
routine and repeated updates, the design in fundamentally flawed. For systems that we’re
proud to put our name on, getting it to work is only one very small part of the job. Moreover,
it is easy to get a one-off version of any system to work. Making one or 10 million of the
same design in production that will ultimately work safely and reliably is a much larger
challenge.

The main goal in any design is to work ourselves out of a job. We want the design
to be so reliable and so well documented that any future modifications and extensions are
effortless. The caveat, of course, is that one must also know what sufficient reliability is and
when to stop documenting. Well documented means just enough so that people can easily
understand the design, but not so much that it becomes the primary deliverable.

9.21.1.1 Static Analysis

Static analysis should consider three areas:

1. Coupling
We have examined this aspect of a design already. Coupling is related to number

and complexity of the relationships that exist amongst the various system modules.
It also gives a measure of implications of a change. The goal is loose coupling.
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2. Cohesiveness
Another issue that is worth re-stressing, cohesiveness is a measure of functional

homogeneity of elements that comprise the modules. This applies to both the com-
ponents and the relations. One must consider both external and internal views.
External cohesion begins with the appropriate naming and meaning of the con-
stituent elements. Internally, the structure and relationships among components are
analyzed. For example, coupling through shared data is more cohesive than mes-
sages. Messages imply a temporal dependency.

3. Complexity
Two kinds of complexity are identified: functional and behavioral.
Functional complexity is characterized by:

• The number of internal functions and relational components.
• The goal is to keep these small. Generally, as the number of functions and

relations decreases so does the complexity of the design. Note, this does not
mean to sacrifice clarity.

• Interconnections amongst elements comprising each module.
• The earlier discussion of coupling applies here as well. Keep things simple.

Behavioral complexity is characterized by

• The number of inputs and outputs.
• Once again, the target is a smaller number.
• The length and ease of reading and understanding the description of the mod-

ule.
• If several paragraphs or a page of written text (in sub-6-point font) are required

to describe the function of one of the modules, that module is probably too
complex. To simplify such descriptions, use tables, logical equations, or pseu-
docode.

• The flow of control through the module and the number and structure of state
variables.

• Have a single major thread of control through the module and keep the number
of states small.

9.21.1.2 Dynamic Analysis

The objective in performing a dynamic analysis on the system is to determine how it will
behave in a context that closely approximates the ultimate working environment. Dynamic
analysis considers the following:

• Behavior Verification
The goal is to ensure that the behavior of system, in its operating environment,

meets the operational specification. That is, does it perform the functions it was
intended to perform as it was intended to perform them? This verification includes
behavior at the boundaries of those functions. To be able to do so, of course, we need
a good specification in the first place.

• Performance Analysis
Performance Analysis ensures that the system, in its operating environment, meets

the performance specification. The focus is on specific values for inputs and outputs.
We will discuss this in a later chapter.
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• Trade-off Analysis
A Trade-off Analysis is necessary to determine an optimal solution for the given

constraints and objectives. Such an analysis, based upon only small set of perfor-
mance criteria, may affect the ultimate success or failure of the product.

9.22 CO-SIMULATION

Material based upon:

Polis and Ptolemy projects at UCB
Mahapatra at Texas A&M
Lavagno et al.

In the early days of embedded design, hardware always lagged the software. Design
errors and flaws often remained hidden until later stages of the project development. Today
partitioning and simulation go hand in hand. Using behavioral model simulation conjoined
with other simulation tools, we can produce a much better simulation earlier in the project
development cycle.

Simulation, in its many forms, remains one of our best tools for verifying and validat-
ing an evolving design against our incoming specification. Recall that Co-Design is iterative
process. Part of the process involves partitioning system into hardware and software parts.
To ensure a good partition, we must simulate against the initial specification, use the simula-
tion results to modify partition, and repeat the process until a satisfactory solution reached.
We see this in the diagram in Figure 9.48 that reflects a portion of the Polis design flow.

Pattioning

Harware

Software
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Hardware

Software

Interface

Synthesis

Optimied Code
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Hardware

Hardware
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Figure 9.48 Co-simulation Cycle
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Let us examine the co-simulation block first then the synthesis block. If we examine
the flow, we cannot afford to build a hardware platform for each iteration as we try out the
design, make adjustments, and try again. It is simply too expensive and takes too much time.
We want to be able to iterate through the process a number of times, refining the design with
each iteration. The desideratum during the early stages of design is that we want maximum
flexibility. During the later stages of a design, we would like to be able to introduce physical
hardware including the processors, FPGAs, and ASICs. Of these, the ASICs would be the
most difficult since take most time to build. Certainly, we could have processors and FPGAs
earlier.

To satisfy our objectives during early stages, we use simulated hardware running real
software. Later we migrate toward real hardware. Our goal is to be able to execute the
software as fast as possible and we want to keep both simulations synchronized to ensure
proper performance in in the ultimate target platform.

To accomplish such a goal, one could simulate the target hardware design running
on a general purpose HDL based simulator then execute the software solution on such a
simulation or on a host that is faster than the target platform. For larger systems, such an
approach becomes quickly impractical.

9.22.1 Tools Supporting Modeling

Co-Design tools enable today’s designers to work at a high level of abstraction as well
as at the detailed level to enable them to gain a high level of confidence that when the
system is ultimately fabricated it will perform according to initial specifications. Our typical
simulation platform comprises the computer and the hardware and software each modeled
as a process. Hybrid environments add co-processors to assume part of the computational
load. The remainder remains in software.

We distinguish between simulation and emulation. With simulation, we model
simulation
emulation

the software and hardware and we make best effort to duplicate the real system. With
emulation, we augment with hardware, as necessary, to ensure that we meet all timing
requirements.

Emulation is termed to be cycle accurate. This is usually done with FPGAs or somecycle accurate
similar device. Emulation becomes essential when trying to identify higher speed, time
critical operations. If we are designing a system to operate in the GHz region, we are not
going to do that with a software simulation. Under such a circumstance, we are using a
hybrid or extensible simulation. Emulator based or driven simulators have difficulty with
behavioral based models.

9.22.2 Types of Simulations

We identify several major types of simulation: gate level, cycle based, event driven, and data
flow. We may use several different simulators or simulation methods during the course of
design. It is important to always choose the best tool for the job.

Gate Level Simulations

Gate level
Cycle based

Event driven
Data flow

Gate level simulations try to replicate, as much as possible, the gate level imple-
mentation behavior of the CPU. The method is highly inefficient and impractical
for larger systems.

Cycle-Based Simulations
Cycle-based simulations simulate the bus interface and associated timing. The

program is executed on a high-level instruction set interpreter. Signal state is
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evaluated at positive or negative going clock edges; this provides information
about the number of clock cycles necessary for given instruction sequence
between I/O operations. Such an approach is used most often in large complex
designs that have a significant number of tests/ necessary computations. It is
approximately 10 times faster than an event driven approach. Such simulators
have difficulty with asynchronous designs and suffer a severe time penalty.

Event Driven Simulations
Event driven simulations are more accurate than cycle based. The value of every

active signal is computed for every device during a clock cycle as a signal propa-
gates. A signal is simulated for both value and temporal behavior. The event driven
approach is used most often when a timing analysis must be performed or there is
a need to test for race conditions and their consequences. The approach is clearly
very computationally intensive and requires a significant computational platform
if it is to be completed in reasonable time.

Data Flow Simulations
With data flow simulation, as the name suggests, the focus is on the flow of the

data through the system. Generally, this approach is used for high-level simulation
to verify overall functionality and correctness/validity of algorithms. Signals are
expressed as a stream with no notion of time. Functional blocks are linked by
signals and execute when data is present. See Petri nets. A simulator scheduler
determines order of execution.

9.22.3 Approaches

There are various approaches that we can take to executing the co-simulation. In such an
execution, we must address several issues:

• At what level are we simulating?

• How do we simulate the components comprising a mixed environment?

• How do we simulate all components at the same time?

• The software simulator typically runs faster that the hardware one, how do we syn-
chronize the two?

Let us look at a couple ways to address these issues.

9.22.3.1 Detailed Processor Model

Processor components simulated by an event driven model include: memory, data path,
control path, bus, instruction decoder, etc. Interaction between the processor and other
components also uses the event driven model. Gate level simulation is done using a behav-
ioral model; an event model is too slow. Our high-level model looks like that in Figure 9.49.

Gate Level HDL

Software

ASIC Model

HDL Simulator

Back plane

Figure 9.49 High Level Processor
Model
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9.22.3.2 Cycle-Based Simulation – Bus Model

Cycle-based simulation uses discrete event shells to simulate the bus interface. Such a
model is not concerned with executing the software associated with the processor(s). The
focus is low-level bus–memory types of interactions. Software is simulated using an instruc-
tion set architecture (ISA) model. The model provides timing information, in clock cycles,
for a given sequence of instructions between I/O operations and trades speed for accuracy.
The detailed model is now extended as illustrated in Figure 9.50.

ISA Modelm HDL

Bus Function Model

Host Based Program

ASIC Model

HDL Simulator

Back plane

Figure 9.50 Cycle-based Simulation – bus Model

9.22.3.3 Instruction Set Architecture – ISA Mode

Using the ISA model, we simulate the instruction set in C. The C program then acts as
interpreter for the embedded application. The software is executed on the ISA model, which
provides the timing details for the co-simulation. The ISA model can be more efficient than
a detailed model of a processor. It does not need the high overhead of a discrete event model.
The detailed model now modified as given in Figure 9.51.

ISA Model

C Program

Host Based Program

Software

ASIC Model

HDL Simulator

Figure 9.51 ISA Mode

9.22.3.4 Compiled Model

Again, attacking the hardware speed problem, assuming a slower target processor. If we
are trying for a more accurate software timing model, we translate the embedded software
specification to native software code for the processor upon which the simulation being
executed. Software execution on the host provides timing details on the interface (to the
software) to the co-simulation. Accuracy depends upon interface information. The model
is now modified as in Figure 9.52.
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ASIC Model

Back plane

HDL Simulator

Software Complied

to Native Host Code

Host Based Program

Figure 9.52 Compiled Model

9.22.3.5 Hardware Model

If target processor(s) are available or can be modeled using an FPGA, the physical
hardware can be incorporated into the simulation. This is an ideal model during the later
stages of development and we gain a substantial improvement in simulation speed. The
disadvantage is that such hardware must be available. We now have the hardware model in
Figure 9.53.

Back plane

Processor

or

FPGA Based Model

ASIC Model

HDL Simulator

Figure 9.53 Hardware Model

We have seen several approaches to Co-Simulation. These work well when focused on
one or a few aspects of the process. We have commented several times earlier that we want
the simulation to be able to follow design evolution. As the design matures, the tools should
be able to support evolution.

We are suggesting that the Co-Simulation support follows several levels of abstraction.
During the early stages, the hardware and hardware synthesized models are not available.
We use a functional model to make hardware–software trade-offs. During the middle stages,
the functional model segues into a netlist model. Later, with the hardware confirmed, we
can migrate back to a higher-level model for hardware.

9.22.3.6 Master Slave Model

One approach to attack the problem is to decompose the simulation into pieces as we might
do with a network. We architect a simulation comprised of a master simulator and several
slave simulators. The master invokes the slave by procedure call as necessary. With such a
scheme, we compromise concurrent simulation. Such a model appears as Figure 9.54.
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Master

Slave

HDL

C Simulator

HDL Interface

Figure 9.54 Master Slave Model

9.22.3.7 Distributed Co-Simulation

An alternative approach utilizes a more distributed simulation. We can easily envision
a widely distributed model with pieces of simulation residing at different vendors, uni-
versities, and companies all conjoined into a sophisticated simulation for very complex
problems.

The architecture utilizes a co-simulation (software) bus and transfers data between
simulators using procedure calls. A number of such schemes are available. The bus can
take many forms: a “local” bus, the Ethernet, or wireless. Such an architecture can support
concurrency amongst simulators. Managing time is the critical element. We need to ensure
that all elements of the simulation are synchronized.

Such a model appears as in Figure 9.55.

HDL Simulator

System Bus Interface

C Program

Software Bus Interface

Co-Simulation Bus

Figure 9.55 Distributed Co-simulation

9.22.3.8 Heterogeneous Modeling – The Ptolemy Project

The current incarnation of this environment is Ptolemy II. It is designed as an environ-
ment for the simulation and prototyping of heterogeneous systems using the strengths of
the object oriented methodology for modeling each subsystem efficiently and naturally.
The system uses Java for its object capabilities and is designed to take advantage of several
capabilities built into Java. Network integration can support distributed simulations, migrat-
ing code, built-in threading, and user interface capabilities. It uses XML for persistent data
representation and designs are expressed in XML.
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Its sophisticated type system supports type inference and data polymorphism.
Components can operate on multiple different data types. Supporting behavior types, the
components and domains have interface definitions. There is further support for static and
dynamic structure.

The Ptolemy environment introduced the notion of domain polymorphism. Compo-
nents can be designed to operate in multiple domains and interact with other components
in a wide variety of domains.

9.22.3.9 Domains

The key to the heterogeneous approach is support for wide a variety of different design
styles, including real-time and distributed computing, distributed discrete events, and timed
multitasking. Such styles are called Domains.Domain

A domain implements a computational MoC for each particular type of subsystem that
makes up a design. The MoC is the semantics of interaction between modules or compo-
nents and provides the means to support concurrency and time in different ways. Supported
domains include: synchronous data flow, which is data driven and statically scheduled,
dynamic data flow, which is data driven and dynamically scheduled, discrete event, andsynchronous data flow

dynamic data flow digital hardware model. It uses a functional simulator developed by Stanford and supports
models ranging from detailed gate (structural) to behavioral.

9.22.3.10 Classes of MoCs

The Ptolemy environment supports the following classes of MoCs:

• Component interaction
Models systems that mix data and demand driven styles of computation.

Client–server can be viewed as demand driven whereas push-pull interaction
between producer and consumer exhibits data driven behavior.

• Communicating Sequential Processes
Ptolemy expresses such processes as Java threads.

• FSM
Enumerates states and rules for transitioning between states. Execution is an

ordered sequence of state transitions and utilizes the notion of guards introduced
in UML which constrains when transition taken. The model works well in control
types of applications.

• Dataflow
Modules react to data available on inputs and perform computations on such data

and emit the resulting data as output. Such a model is similar to the dataflow level in
the Verilog language.

• Process Networks
Communication is via streams of tokens. Each token is an arbitrary data struc-

ture operated on by the MoC. The approach models processes that communicate via
buffered message channels. The models are loosely coupled which provides easy sup-
port for concurrent or distributed operations.
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• Synchronous data flow
The synchronous data flow model is a special case of the more general process net-

works. Restrictions are on the understanding of deadlocks and bonds on operations
Modules execute sequentially to complete the task. The model supports computations
that operate on streams of data token. The operation schedules is statically deter-
mined.

• Discrete event
Modules react to events occurring at instant of time. An event comprises a value

and time stamp. The model is applicable to systems that respond to input events,
produce output events either at same time or at some future time instant.

• Continuous time
Models components that interact through continuous time signals. It provides sup-

port for analog aspects of some circuits.

9.23 CO-VERIFICATION

It is assumed that verification has followed each iteration through the partition-simulate-
synthesize cycle. It is further assumed that we have been doing all the appropriate analysis
of our design throughout. We are now in the latter stages of the development. We have
completed a “final” synthesis of our design and must confirm that it satisfies our original
system specification.

9.23.1 Hardware–Software Co-Verification

Hardware–Software Co-Verification gives us a means for testing and stressing our design
long before we have a physical prototype available. We endeavor to reduce risk by identi-
fying problems earlier rather than later. As today’s designs become increasingly integrated,
visibility into the internals of the devices becomes more and more limited.

Unfortunately, traditional tools such oscilloscopes and hardware logic analyzers rely
on being able to connect to and monitor important signals such as system busses or other
data and control signals. With no places to connect to, they lose their effectiveness,

The JTAG port was developed with intention of giving some access. The attendantJTAG
difficulty is that it must be designed into the system early in the process and consumes
valuable internal real estate and I/O pins. Another tool, Signal Tap, developed initiallySignal Tap
by Altera, provides a very effective way of implementing a soft logic analyzer onto
an FPGA.

Driven by the high costs of errors in silicon coupled with increasing demands to reduce
time to market, our desire is to verify that our design is correct prior to first silicon. Through
Co-Simulation and Co-Verification we strive to verify the hardware–software interface,
accelerate the firmware debug process, and exercise the boot code, hardware and software
diagnostics, device drivers, board support packages, and some application code.

It is recognized that a good model improves the probability of a solid design. How-
ever, models are not perfect. Modeling every hardware and hardware–software interaction
quickly becomes impractical as we move toward smaller and higher performance systems.
A circuit that may perform superbly on paper or as a distributed prototype may suffer sig-
nal integrity issues such as severe noise, cross talk, and electromagnetic interference (EMI)
contamination as geometries are reduced and operating frequencies increase (rise and fall
times decrease) in today’s designs.
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9.23.2 Tools Supporting Simulation and Verification

To enable us to effectively Co-Simulate and Co-Verify our designs, we must have good
tools at all levels of the process. Today there is a great variety of commercially available
tools to help the embedded developer. Information on each of these can be found with the
various vendors. Let us look at capabilities such tools have or should have.

9.23.2.1 Basic Capabilities

Most such tools share a common set of basic capabilities. These include control of hardware
and software simulation at all levels of the development process. Essential is support for ini-
tialization and breakpoint synchronization set in either the hardware or software domains.
Encountering a breakpoint in either should support halting and potentially later resuming
the system from the point where the system was halted. The ability to pass variables between
hardware and software environments is also necessary. Finally, support for various levels of
abstraction that includes high-level behavioral HDL or C/C++ models, detailed component
structural level and hardware emulators that can range from complete software abstraction
with hardware stubbed out and interface modeled to system in silicon.

9.23.2.2 Levels of Abstraction

Let us now examine the necessary abstraction levels supported by many tools in a bit more
detail.

• Software only – Complete abstraction
The hardware is stubbed out and the interface is modeled or the application

interfaces with stubbed out or modeled hardware through a device driver. Such an
approach enables the functionality of the software to be tested and excludes detailed
and constrained timing and asynchronous types of events.

• HDL simulation of hardware
The approach can include a functional model of system bus. Such a model can

execute atomic (indivisible) bus cycles, include reads and writes to supporting arrayed
logics with correct bus timings, and support modeling and handling asynchronous
events such as interrupts. The method does not reflect the internals of the system CPU,
missing registers, internal peripherals such as timers or signal converters but aids in
debugging peripheral module functionality from the bus side when developing device
drivers.

• Instruction Set Simulation (ISS) – Modeling the CPU
Modeling of the system CPU or digital signal processor is usually done as a

C/C++ behavioral-level model. The simulation may run as a separate process under
Unix/Linux. Such a process is separate from the HDL simulation sockets or similar
inter-process communication scheme used to exchange information. The approach is
not cycle accurate; however, an HDL wrapper surrounding the ISS model approach
can be cycle accurate.

• CPU Emulator
With the CPU/DSP model extricated from the system and replaced by ICE mod-

ule(s) for actual processor(s), it is possible to accurately replicate CPU bus cycle
timing, thereby provide a robust platform for software development.

• Complete HDL Model
Supporting a complete HDL model gives a full HDL implementation of a complete

system that can be executing at the register transfer level (RTL) or discrete device
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level. The approach tends to be more useful for developing the hardware rather than
the software side. It is useful for verifying detailed and critical timing, hardware and
software interactions, the boot process and memory interfaces and subsystems.

• Hardware Emulation
Under such an emulation, the hardware is modeled through some form of arrayed

logic. Specifically this is an emulation; however, execution speed approaches that of a
full ASIC. Contemporary arrayed logics can support the inclusion of CPU cores that
will enable and facilitate both hardware and software debug.

9.24 OTHER CONSIDERATIONS

Several other factors must also be taken into consideration. The product must be able to
be manufactured and tested. Such factors must be addressed early in the definition and
design process. The three additional complementary and concurrent activities that need to
be considered in today’s business world are capitalization, reuse, and requirements and
traceability management. Let us look briefly at capitalization; design reuse is one of the
central threads in this text.

9.24.1 Capitalization and Reuse

9.24.1.1 Capitalization

Capitalization is an essential element of the contemporary design process. Specifically,
proper and efficient exploitation of intellectual properties (IPs) is very important today.
Intellectual properties are designs, often patented, that can be sold or licensed to another
party to develop and sell as (a part of) their product. The company MIPS, for example,
designs computer architectures. It doesn’t actually do any implementation itself, the design
is its product; the ARM corporation does a similar thing.

9.24.1.2 Reuse

Any consideration of component reuse is an activity that should be addressed and done
during the functional and architectural design phases of the development process. Such
activities can be considered sometimes during prototyping as well. The end purpose is to
help designers shorten development cycles,

Component reuse is facilitated in two ways: present and future.

• Present
By identifying external (existing) functional or architectural components that can

satisfy some portions of the currents system’s desired functionality.

• Future
By identifying components of the solution under design that can or will be reusable

on other or future projects or products.

To be reused, a component needs to be:

• Well defined

• Properly modularized

• In conformance to some interchange standard.
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A well thought out, well designed module will be much easier to adapt to a new situa-
tion than one that someone pieced together for some ad hoc purpose and barely got working.
The same is true for a portion of a well-modularized system.

If, during the design phase, one makes decisions with an eye to modules that could be
reused, the chances of such reuse are greatly enhanced. Finally, if the goal is for a module
to have wider applicability than a local venue, then the designs must accommodate existing
national and international standards. With today’s international market growing daily, it is
incumbent upon us to design to such standards.

Once again, the real-world intrudes and trade-offs are part of the process. When design-
ing for reusability or striving for a modular design, other factors need to be considered. If
there is not enough ROM space for the code if it is designed to be completely modular,
the design may be modified to be very application specific. While the decision might cre-
ate problems in the future, we will end up with a noncompetitive product if the budget is
exceeded.

9.24.2 Requirements Traceability and Management

9.24.2.1 Requirements Traceability

Requirements traceability refers to the ability to follow the life of a requirement (from the
original specification) in both the forward and reverse directions through the entire design
process and the design. Traceability is potentially a one-to-many relationship between a
requirement and the components it relates or traces to (or that implement it).

An accurate and complete record of traceability between requirements and system
components provides several important pieces of information through the product life cycle.
Among these are:

• The means for the project manager and (potentially) the customer to monitor the
development progress.

• A path that can be used during the verification and validation of the product against
the original specification. Knowing where and how a specified requirement has been
implemented facilitates confirming that the requirement has been faithfully imple-
mented.

• A means of identifying which hardware or software modules are affected if a require-
ment changes.

9.24.2.2 Requirements Management

• Requirements management addresses.

• Requirement modifications.

• Changes.

• Improvements.

• Corrections.

During the design, such changes are difficult to avoid for many reasons. Therefore, a
clear procedure that facilitates a way to accommodate and track such modifications has to
be used during the complete design process.



�

� �

�

9.25 Archiving the Project 499

9.25 ARCHIVING THE PROJECT

When the product has finally been released to production, some work remains to be done.
During development, a tremendous amount of important design information has been pro-
duced. Most of that information must be retained for a variety of reasons.

If the product follows the typical life cycle, bugs that must be fixed will be discovered
as customers use the product. There will be future revisions; new features will be expected
and added and the next generation product will build on the current, to name just a few. The
obvious question is, What must be saved?

The problem of dealing with what to archive is no different from confronting the orig-
inal design. That said, we use the same approach and start at the top. The typical project
will have had many contributors. A basic list can include:

• Product planning

• Design and development

• Test

• Manufacturing

• Marketing

• Sales.

Each group will have information, knowledge, documentation, and tools that will be
important in the future. Let’s focus on the technical subset of these: design and development,
test, and manufacturing. In earlier studies of safe and robust design, we identified a typical
software project directory structure. That diagram is presented in Figure 9.56 for reference.

Binaries

Project

Source Tools DocumentationMakefiles Data DictionaryLibraries Specifications

Figure 9.56 A Typical Project Software Directory

Each of the groups participating in the development should have a similar directory
documenting their portion of the project. The project directories and all their contents are
one of the main items that must be archived. These are obvious.

Now, let’s consider the less obvious. Today, software, firmware, and software tools are
essential to the design and development of any embedded system. If the source code or
the ability to rebuild from sources is lost, any future work on the project will be seriously
impaired. Today, source code no longer means just the C, C++, Java, or assembler listing
in electronic form or on magnetic media.

All of those tools run on a computer and are routinely modified or updated by their
vendor. All of those tools also have a product life cycle and ultimately will no longer be
supported. If the archived tools will not execute on today’s computer running today’s oper-
ating system, they are of little use. Today, in addition to archiving the end product, archiving
the complete development environment – computer, hard drive, operating system, and so
on – is well worth considering. The documentation for the tools should be included in that
list as well.
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An essential step, once the collected archive has been set, is to conduct what is called
a virgin build. A virgin build begins with a completely new environment or context. Next,virgin build
the archived tools are installed and set up. The tools are run, as appropriate, and tested to
see if the designated components of the product can be recreated. If the process fails, the
missing components must be identified, added to the archive, and the process repeated.

Too often, over the span of the product development we build simple special-purpose
tools to help manage the tasks of developing and building the system, and when creating
the archive we forget that they are an essential part of the build or synthesis. The virgin
build quickly reveals when those tools are missing.

Today, the financial investment in all aspects of a project development is significant.
Retaining and protecting that investment for future use is an important closure to the cycle.

9.26 SUMMARY

In this chapter, we have reviewed the major phases of the
traditional development process for embedded systems. We
have learned that the complexity of contemporary systems now
demands a more formal approach, more formal methods, and
tools to support that process. To accommodate such demands,
we introduced the hardware/software Co-Design development
cycle and methodology. We learned that the main goal of the
methodology to provide the means by which engineers can
simultaneously develop the hardware and the software and iden-
tify and solve design problems early in process. The more
detailed aspects of that process are covered in conjunction with
the study of the design and test of the specific hardware and soft-
ware elements of the system.

We have seen that design begins with an understanding
the environment in which the system being developed will need
to work then moves to translating customer requirements into
a working system. Following a formal specification, under the
Co-Design process we identify the major functional blocks and
then look at ways to partition the functions onto the high-level
hardware and software modules as a preliminary step leading
to a mapping onto an architectural structure. With an architec-
ture in hand, we introduced and examined tools and methods
for creating a system model as input to the Co-Synthesis phase.
The synthesized model became the input to the Co-Simulation
phase for test, verification, and validation. We concluded with

a working prototype, meanwhile, analyzing the system design
both during and after development. We have learned that design
is an iterative process in which the described Co-Design phases
are repeated as necessary to ultimately yield a safe, secure, and
reliable system that meets the customer’s requirements.

We have looked at several other important considerations in
the design lifecycle. These include intellectual property, compo-
nent/module reuse, requirements management and traceability,
and the archival process.

We recommend not being afraid to throw a prototype away.
For small projects, it sometimes works to try to transform the
prototype into the final product. For larger projects, it is usually
more of a proof-of-concept that almost never can be migrated.

We have further noted that those who hurry through the
design and coding because a lot of testing needs to be done are
going to be spending long nights getting things to work and even
longer nights with unhappy customers. For some reason, cus-
tomers do not seem to have much of a sense of humor when the
failure of a product they have purchased has just cost them sev-
eral million dollars. If you are selling to a general market, your
company has just lost several million in R&D costs and you still
do not have a product to take to market. So now, it is even worse,
because you have missed an opportunity for sales revenue with
a product that you cannot sell because it is poorly conceived, or
it still is not ready.

9.27 REVIEW QUESTIONS

Introduction

9.1 The chapter opened with a discussion of several kinds
of things that should be considered when beginning the design
of a new product. Please identify and briefly discuss each
of these.

9.2 Why are deadlines and cost important when developing a
product?

9.3 Why is it important to consider reliability, security, safety,
and quality in an embedded design?

9.4 Why is product documentation important?

The Product Life Cycle

9.5 What is a product life cycle?
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9.6 The chapter introduces and discusses several different
product life-cycle models. What are the basic goals that each
model shares?

9.7 What are the four life-cycle models presented in the
-chapter?

9.8 Identify and briefly discuss the steps that comprise
the Waterfall life-cycle model.

9.9 Identify and briefly discuss the steps that comprise the V
life-cycle model.

9.10 Identify and briefly discuss the steps that comprise the Spi-
ral life-cycle model.

9.11 What is the underlying motivation of the rapid prototyping
life-cycle model?

9.12 Following the discussion of the commonly used develop-
ment cycles, the chapter introduces the Co-Design methodology.
What are the basic goals of this model and how does it differ
from the traditional models?

9.13 Identify and briefly discuss the steps that comprise
the Co-Design life-cycle model.

9.14 The chapter identified six steps usually found in success-
fully completed projects. Identify and briefly discuss the intent
and purpose of each of these.

9.15 What is intellectual property?

The Design Process – Requirements
Identification

9.16 An essential first step in designing a product is identifying
the requirements. What are the major goals of this step?

9.17 For whom is the requirements documentation written?

9.18 Why is it important to consider the system’s operating
environment when identifying requirements?

9.19 Why should requirements identification not con-
sider the detailed hardware and software components of
the design?

9.20 What are some of the important things to identify
when considering and specifying the system’s operating
environment?

9.21 What are some of the important things to identify when
considering and specifying the system?

The Design Process – Design Specification

9.22 The requirements specification provides an external view
of a system. What view does the design specification provide?

9.23 What is the primary purpose of the design specification?

9.24 For whom is the design specification written?

9.25 The chapter identified three major areas that should be
examined and considered when formulating a design specifica-
tion. What are these?

9.26 The chapter identified five sets of constraints that should
be examined and considered when formulating a design specifi-
cation. What are these?

9.27 What are the major differences between system require-
ments and design system specifications?

The Design Process – Partitioning a System

9.28 What are the purpose and goals of the partitioning pro-
cess?

9.29 The chapter outlines several general guidelines for parti-
tioning a system. What are these, and why is each important?

9.30 What are the major considerations at the start of the parti-
tioning process?

9.31 What is the meaning of the term coupling with respect
to partitioning a system?

9.32 What is the meaning of the term cohesion with respect
to partitioning a system?

9.33 The chapter identifies several different kinds of cohesion.
Identify and briefly describe each of them.

9.34 As the partitioning process is executed, what are the major
guideline that should be directing the process?

9.35 Several partitioning methods were presented. Choose two
and describe how they work.

The Design Process – Functional Design

9.36 What are the purpose and goals of a functional design?

9.37 For whom is the functional description written?

9.38 What is one of the first steps that should be undertaken
when starting a functional design of a system?

9.39 What is the difference between a specification and a func-
tional model of a system?

The Design Process – Architectural Design

9.40 What are the purpose and goals of an architectural design?

9.41 For whom is the architectural design developed?

9.42 What are some of the major constraints that should be con-
sidered when formulating a system architecture?

9.43 What is the relationship between the functional design of a
system and the architecture of the system?

9.44 What are some important criteria that should be consid-
ered when mapping a functional design onto an architecture?

The Design Process – The Prototype or Model

9.45 What is the purpose of the prototype or modeling phase
of a product design?

9.46 What steps are included in developing a model?

9.47 For whom is the model developed?
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The Design Process – The Analysis

9.48 What are the goals and objectives of the analysis phase
of a product design?

9.49 The analysis process should entail both a static and a
dynamic analysis. What are the major objectives of each?

9.50 A static analysis of a system design should consider three
areas. Identify and briefly describe each of these.

9.51 A dynamic analysis of a system design should consider
three areas. Identify and briefly describe each of these.

The Design Process – Other Considerations

9.52 Why should capitalization and reuse be considered to be
important activities in the development of any product?

9.53 What is the purpose of requirements traceability and man-
agement? Why is it important?

9.54 What are some of the essential parts of a product develop-
ment process that should be archived at the end of that process?

9.28 THOUGHT QUESTIONS

Introduction

9.1 The chapter opened with a discussion of several kinds
of things that should be considered when beginning the design
of a new product. Identify and briefly discuss each of these.

9.2 Deadlines and cost are important when developing a prod-
uct. Discuss why, citing several real-world examples to illustrate
your point.

9.3 What are the short- and long-term consequences of ignor-
ing or not paying sufficient attention to reliability, safety,
and quality in an embedded design? Give several real-world
examples to illustrate your point.

9.4 Documentation is an important part of any embedded
product. Give several examples of the kinds of documentation
that are necessary to support a product.

The Product Life Cycle

9.5 The chapter identified five steps usually found in suc-
cessfully completed projects. Discuss the possible consequences
of skipping or reducing any of these steps.

9.6 Discuss the reasoning behind and the benefits of develop-
ing a new product according to one of the life cycles discussed
(or one that was not covered that you may be aware of).

9.7 Why is the intellectual property content of a product
important today?

9.8 What kinds of things can be considered to be intellectual
property?

9.9 Identify and elaborate on the consequences of not protect-
ing the intellectual property content of a product.

The Design Process – Requirements
Identification

9.10 Why is identifying the requirements of an embedded sys-
tem an essential first step in the design?

9.11 Discuss the consequences of not identifying the require-
ments prior to beginning design.

9.12 What factors about the system’s operating environment
should be taken into consideration when identifying system
requirements? Please give specific examples of environmen-
tal factors that should be considered, coupled with the kinds
of products for which such considerations might apply.

9.13 How would you answer someone who tells you that they
can keep all the requirements in their head, that there’s no need
to write all of them down?

9.14 What role does the requirements specification play in the
debug and test of an embedded design?

The Design Process – Design Specification

9.15 What role does the design specification play in the debug
and test of an embedded design?

9.16 Please give specific examples of the kinds of information
that should be included in a design specification. Explain your
choices of information.

9.17 How much detail should be specified when describing
and quantifying the system’s behavior and input and output sig-
nals? the environment?

9.18 The design specification is considered to be a living doc-
ument. What does this mean? Why is this important?

9.19 A version control system is generally used to manage
code revisions on most embedded designs. Should the require-
ments and design specifications be managed in a similar man-
ner? Explain your thinking.

The Design Process – Partitioning a System

9.20 During which stage of the design of a system should par-
titioning occur?

9.21 Discuss possible trade-offs that one might consider when
formulating a system partition. What are the pros and cons
of each of the items that you suggest?

9.22 Once a partition has been achieved, is there ever any rea-
son to revisit the process? Please explain your answer and your
reasoning?
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9.23 What are some of the consequences of designing modules
that are highly interdependent?

9.24 What are some of the steps that one can take to reduce cou-
pling in a design? Explain the specific benefits gained from each.

9.25 What are some of the consequences of designing modules
that are loosely cohesive?

9.26 What are some of the steps that one can take to improve
cohesion in a module? Explain the specific benefits gained
from each.

The Design Process – Functional Design

9.27 What are some of the primary aspects of an embed-
ded system design that are captured through a functional
design?

9.28 To what level of detail should a functional decomposition
of a stem proceed?

9.29 Why is it important to retain links between the system
requirements specification and the functional modules identified
during the functional decomposition process?

The Design Process – Architectural Design

9.30 What are the purpose and goals of an architectural design?

9.31 For whom is the architectural design developed?

9.32 What are some of the major constraints that should be con-
sidered when formulating a system architecture?

9.33 What is the relationship between the functional design of a
system and the architecture of the system?

9.34 What are some important criteria that should be consid-
ered when mapping a functional design onto an architecture?

The Design Process – Modeling the System

9.35 What is the purpose of developing a model for the design?

9.36 What do the terms Co-Synthesis and Co-Simulation mean
and what are the goals of these two processes.

9.37 What are the general capabilities of a model?

9.38 For whom is the modeling phase conducted?

9.39 In the chapter several MOCs or models of computa-
tion were introduced. Choose two and describe their strengths
and weaknesses.

9.40 In the chapter, the designer was cautioned that prototypes
should never turn into a final product. Discuss the pros and cons
of such a statement.

The Design Process – The Analysis

9.41 What are the goals and objectives of the analysis phase
of a product design?

9.42 The analysis process should entail both a static and a
dynamic analysis. What are the major objectives of each?

9.43 A static analysis of a system design should consider three
areas. Identify and briefly describe each of these.

9.44 A dynamic analysis of a system design should consider
three areas. Identify and briefly describe each of these.

The Design Process – Other Considerations

9.45 Why should capitalization and reuse be considered to be
important activities in the development of any product?

9.46 What is the purpose of requirements traceability and man-
agement? Why is it important?

9.47 What are some of the essential parts of a product develop-
ment process that should be archived at the end of that process?

9.29 PROBLEMS

Designing Systems

In the problems in this chapter, we will begin to put the
formal design methodologies that we have learned into practice.
In several of the earlier chapters, we approached these systems
from either the hardware or the software side. We will now bring
those together.

Let’s now take each of those systems and apply the methods
that we have studied in this chapter. For each of these systems,
we will begin with identifying requirements and move to the
architectural stage. Certainly, any of these can easily be carried
into the laboratory as more extensive projects.

For each system, consider that you have started your own
company and are going to specify, design, and manufacture the
product. Thus, you are the one establishing the formal design

specifications.
For each system:

(a) Identify the requirements. Be sure to identify any safety
and reliability requirements that might be appropriate.

(b) Write a basic requirements specification. Refer to the
example in the chapter.

(c) Formalize the requirements in a design specification. Refer
to the example in the chapter.

(d) Develop a functional design for the system. Iden-
tify the major functional elements of the system and the
intercommunication between each function. Be certain to
include the interaction with the environment with your
design.
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(e) Execute the architectural design. Map each of the functions
onto the hardware and software.

1. Design an automatic coffee pot with the following capabili-
ties.

The controls must include the ability to set the start time
on a 24-hour clock, reduce the temperature to warming and
annunciate when the brew cycle is complete, and stop water
flow if the pot is removed from its receptacle.

2. Design a digital watch with the following capabilities.
The controls must include 12-hour time expressed in

hours, minutes, and seconds, AM and PM tracking and
annunciation, alarm, and the ability to set the alarm and time
values.

3. Design a washing machine with the following capabilities.
The controls must include the ability to set water temper-

ature, washing start times, modes (presoak, normal, perma-
nent press, delicate), and annunciation of temperature, times,
and mode.

4. Design an automatic oven control with the following capa-
bilities.

The controls must include the ability to set temperatures,
cooking start and stop times, modes (bake, broil, clean), and
annunciation of temperature, times, and mode.

5. Design a module implementing a four-seat passenger enter-
tainment system with the following capabilities on a com-
mercial aircraft.

The entertainment system should support the ability for
each of the four passengers to program and control:

• Movie selection
• Audio selection
• A gaming console.

6. Design a seat belt–engine–door lock interlock with the fol-
lowing capabilities.

The engine cannot start if the seat belt is not fastened. The
doors automatically lock when the engine is started.

7. Design a new toy bank that we see in Figure P9.1.

Oddly-Evenly

Patterns

Figure P9.1

The toy is intended to let children have fun while learning
to save money.

When the child puts in 0 or 2 coins – pennies, nickels,
dimes, or quarters – the ODDLY eye will flash according to
how much money was put in. If the little one puts in 1 or 3
coins, the EVENLY eye will similarly flash.

8. A new temperature monitoring system that utilizes an
analog-to-digital converter to collect data at various points
in a yogurt production process is to be designed. The con-
trol logic accepts the input signals shown and generates the
output signals as specified in Figure P9.2.

t1 t2 t3

sample convert autozero

start doneTend Tend

Figure P9.2

Upon receipt of a start signal, the system must cycle
through the three time intervals – t1, t2, and t3 – and com-
mand the following operations to take place: Sample, Con-
vert, and Autozero.

The system is to respond to the input signals as shown in
the diagram. At the end of time t3, as signaled by the Tend

input, the system must return to its initial state and wait for
a start input.

The times, t1–t3, are not inputs to the system; they merely
identify the length of each interval.

The signals start, done, and tend are inputs to the system.
They identify the start or end of the intervals as indicated.

The system must have several output signals to control the
electronics doing the conversion. The control logic is in one
room, and the analog-to-digital converter is in another. There
is a limit to the number of wires in the cable connecting the
two portions of the system.

The system must accept analog signals from eight differ-
ent points around the tank where the yogurt is fermenting.

9. You have been hired by Let There Be Lyght – Signals
Abound, Ltd. to design a traffic control system. The design
your predecessor proposed failed at a critical time while he
was in the middle of the intersection testing it.

The intersection you must control is shown in Figure P9.3.
Your design must meet the following specifications:

L1

L2

Figure P9.3

(a) Each light, L1 and L2, has two states, ON or OFF.
(b) If a car arrives at the intersection and the light in its

direction is OFF, it may proceed through the intersection.
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(c) If a car arrives at the intersection and the light in its direc-
tion is ON, the car must stop. A timer is started. At the end
of six time units, the light is turned OFF, a second timer
is started, and the car may proceed. After 12 time units
have elapsed on the second timer, the light is turned ON
again.

(d) The cars must not collide.

10. Your team is working on the audio portion of a larger home
entertainment system. The system combines a mix of new
and legacy components that must be understood and inte-
grated into a high-quality system.

The volume control for the system is marked with the
decimal digits 0–5. Based upon the input selection, the selec-
tor outputs the single BCD digit corresponding to the level
selected. Selection 0 outputs BCD 0, selection 1 outputs
BCD 1, and so on.

Our gain stage, however, requires a value in the range of
0–15. Thus, we must design a circuit that will multiply that
single-digit BCD number by 3 to give us the proper value as
shown in the block diagram in Figure P9.4.

BCD Input
(0..5)

Gain Value

(0..15)

Figure P9.4

The input to the system may come from any of four dif-
ferent sources, a CD player, a DVD player, a Tuner, and a
Joystick. Each of these devices produces a stream of data
four bits wide.

Consequently, it is necessary to design a circuit that will
select any of these data streams and route it into the system
bus as shown in the block diagram in Figure P9.5.

4

4

4

4

4

CD Player

DVD Player

Tuner

Joy Stick

System

Bus

Figure P9.5

The output from the system may be sent to any of four
different devices: a digital-to-analog converter, a digital dis-
play, a memory, and a glitzy graphic output.

Each of these devices requires a stream of data four bits
wide. We must design a circuit that will route data from the

system bus to any of these devices as shown in the block
diagram in Figure P9.6.

4

4

4

4

4

DA Converter

Digital Display

Memory

Glitzy Display

System

Bus

Figure P9.6

Although the system bus is four bits, internally the system
controller uses an 8-bit word. Thus, data must be brought
into the controller four bits at a time and assembled into an
8-bit word. We must design a Data Assembler as an interface
between the system bus with the system controller as shown
in the block diagram in Figure P9.7.

System Controller

Data Assembler

System Bus

4

8

Figure P9.7

The Data Assembler must operate according to the following
algorithm:

The first four bits appear on the bus accompanied by a
DV – Data Valid signal.

The DV transitions from a logical 0 to a logical 1 to signify
that the data on the bus is valid.

The four bits of data are loaded, in parallel, into the most
significant four bits of an 8-bit shift register.

The DV transitions from a logical 1 to a logical 0.
An output signal, Shift Left, is generated to enable the shift

register to be clocked four times.
The second four bits appear on the bus accompanied by a

DV – Data Valid signal.
The DV transitions from a logical 0 to a logical 1 to signify

that the data on the bus is valid.
The four bits of data are stored into the most significant four

bits of the 8-bit shift register, thereby building up the com-
plete 8-bit word.

The DV transitions from a logical 1 to a logical 0.
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A Load Complete output signal is generated to signify that
the data has been captured.

The system needs a clock source that has a 0.5-μs period as
part of the system time base. An 18-MHz clock source is
the only one available in the system.

11. Design the basic control system for a self-driving car. Fol-
low the Co-Design methodology and develop the full set of
documentation. Be sure to consider safety, security, and reli-
ability.

12. Choose a system of your own.
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Hardware Test and Debug

THINGS TO LOOK FOR …
• The vocabulary of testing.
• The reasons for debugging, troubleshooting, and testing.
• The need for planning, specifications, test procedures, and test cases.
• Steps and heuristics for the debugging process.
• Identification and isolation of common faults in combinational and sequential circuitry.
• Tests for the designer and for the customer.

10.1 INTRODUCTION

Formulating a testing, debugging, or troubleshooting strategy should occur early in the
design and development process. Ideally, it should be concurrent with the hardware and
software development.

Most often, when we come up with an idea for any new design, we begin with a plan.
We think about what the system will do; we think about its features, its capabilities, and
its functionality. Debugging, troubleshooting, and testing are no different. We must have a
plan. Without a plan, we can’t be sure what we are looking for, or what it might look like
if we find it, or when we are finished.

We will begin the study of test by introducing some of the relevant vocabulary.
Understanding the terminology facilitates understanding the requirements of a test or test
strategy, as well as the capabilities and limitations of the equipment utilized to execute the
strategy. Earlier discussions of the effects of microprocessor word size on real numbers
and subsequent computations now provide a basis for understanding, formulating, and
interpreting measurements during the test process. We will then present a high-level model
for a testing strategy; examine and motivate the need for planning, specifications, test
procedures, and test cases; and examine several views, ranging from black to white box
models, for approaching test. Finally, we will move into testing during the different stages
of the product life cycle.

10.2 SOME VOCABULARY

As a prelude to the study of debugging and testing, it is important to understand some
of the vocabulary of the area. Making measurements or generating signals is rather

Embedded Systems: A Contemporary Design Tool, Second Edition. James K. Peckol.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/college/peckol
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straightforward. Doing so properly is more of a challenge. In part, the vocabulary will
illustrate where the challenges lie. As we do so (philosophy aside), it is important to
recognize that physical entities exist, they have attributes, and, based on fundamental
physics, those attributes have values independent of any ability to measure them or to
replicate them. Herein lie most of the challenges.

True Value The actual or inherent value of a physical quantity.

UUT/DUT Unit Under Test / Device Under Test.

Accuracy The measure of an instrument’s capability to approach a true or absolute
value.

Resolution Measure of ability to discern the value of a measurement. Expression of the
value measurement to 1, 2, or 3 decimal places provides three levels of
resolution of the true value of the measured value.

Variance Has no unit of measure. Variance provides an indication of the relative
degree of repeatability of a set of measurements; that is, how closely the
values of series of repeated measurements agree with each other.

Mean Measure of the central value of a set of measurements and is given by the
following equation. mi is the value of an individual measurement.

mean = 1
N

N−1∑
i=0

mi

Root Mean Square The square root of the average of the squares of a set of values and given by
the following equation. mi is the value of an individual measurement.

rms =

√∑
N

(Yi)2

N

Bias Measure of how closely the mean value in a series of repeated measurements
approaches the true value.

Residual Measured value minus the mean.

Golden Unit Unit whose behavior is completely known used as a standard.

Statistical
Tolerance Interval

Estimate of the amount of measurement variability due to the test system,
excluding the UUT variability. Test limits must be outside the STI limits.

Test Limits Upper and lower physical limits of the measurement.

With some of the basic vocabulary in hand, we begin by formulating a high-level
strategy.

10.3 PUTTING TOGETHER A STRATEGY

Although the words debugging, testing, and troubleshooting all have the same generaldebugging, testing,
troubleshooting objectives, they represent three different tasks; they are undertaken at different times during

the product’s lifetime and with different underlying assumptions. Debugging is done during
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the early phases; testing is done before delivery; and troubleshooting afterwards. Debugging
does not assume that the design has ever worked. Debugging is a process utilized to identify
the cause of problems that occur in the design and implementation of a system as it is
incrementally made to work. Testing begins with the assumption that the design is correct.
It is a process charged with identifying any faults that may have been introduced during
the manufacture of the system and ensuring that a properly working product is delivered
to the customer. Troubleshooting begins with the premise that the design is correct andtroubleshooting
that the product worked at one time. The troubleshooting process seeks to identify which
hardware component(s) have failed. The focus is on the hardware because, as was stated
earlier in the discussion of safety and reliability, software components do not wear out and
fail during use.

During the early stages of product development, any debugging plan is likely to be
less formal. Most of it will probably be in the designer’s head. Normally, the person
who designed the circuit or the software should have a good idea of what to look for
in terms of both Unit Under Test (UUT) functionality and the potential cause(s) of any
anomalous or unintended behavior. Such is not always the case, however, so outlin-
ing a well-reasoned and orderly strategy is an excellent first step to help to focus the
process.

As the design evolves and progresses through the development cycle, the need
for a more formal approach becomes essential. In production, formal test procedures,
based on a formal test plan, are required. In the field, troubleshooting procedures
for the customer or the field service personnel are an essential part of a product’s
deliverables.

In the ensuing discussion, the terms test plan, test specification, test procedure, and test
cases are used in a generic sense. They apply equally to debug, test, and troubleshooting;
only the initial presumptions and focus will differ for each. Although the main focus of the
chapter is on the hardware side, the vocabulary, strategy, and philosophy apply equally well

test plan,
test specification,

test procedure,
test cases

to the software side.

10.4 FORMULATING A PLAN

Testing in industry is not taken lightly. In companies that know what they are doing, it
is a very serious task. For example, let’s consider the approach of a very large manufac-
turer of electronic test and measurement equipment. For many large companies, there is
a full, highly qualified test group. For smaller companies, the approach may be to take
several senior engineers off design projects and have them thoroughly test a (new) prod-
uct with the intention of finding problems before the design is approved for release to
production.

In some cases, the engineers have no knowledge of the specifics of the software or
hardware inside of the box; they simply try to break it. Such testing is also called stressstress testing
testing because the idea is to try to stress the software or hardware to break it or to find
potential problems before they surface in a delivered product.

With a high-level overview, it is possible to begin to see how to put the high-level
concepts to use. It is important to remember that testing is an integral part of all phases of
product development, including design. Testing is done for four main reasons, as shown in
Figure 10.1.

Each of these reasons has a different objective and scope and tests different aspects of
the design. All such requirements should be found in the System Test Plan and subsequent
Test Specification. Remember: like the System Requirements Document that was discussed

System Test Plan
Test Specification
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• To verify that any of the following performs as intended:

Code module or hardware prototypes

Subsystem or collection of subsystems

System interfaces

• To ensure that the system meets specification

• To ensure that any changes to the system work

Do not alter other intended functionality.

• To ensure that the system functions properly after being built

Figure 10.1 Principal Reasons to Test

earlier in the context of original design, the Test Plan identifies what tests need to be carried
out. It describes in general terms the following information:

• What is to be tested?
• The testing order within each type of test.
• Assumptions made.
• Algorithms that may be used.

Testing formality increases as the system moves toward the latter stages of develop-
ment. Testing to ensure functionality can be reasonably informal; we still should have some
form of plan. As the system begins to come together, formality must increase. Today’s sys-
tems are becoming too complex. It is becoming too easy to miss critical, yet subtle, points.

A Test Plan begins the process. It describes in general terms what must be tested. Such aTest Plan, what
Requirements
Specification

how

plan is based on the initial requirements captured in the Requirements Specification. It may
specify how the testing will be carried out, the testing order within each general category
of test (input, output, processing), as well as any assumptions that are made.

Consider a simple AND gate as a Unit or (device) under test UUT/DUT (see Figure 10.2).EXAMPLE 10.1

IN1
OUT1

IN2 Figure 10.2 Unit Under Test

A test plan might be similar to the following:

• First verify the following static behavior of the device

a. Ensure that the circuit functions as a logical AND gate according to its spec-
ified truth table.

b. Verify the following signal values: VOHmin, VOLmax, VIHmin, VILmax.

• Then verify its dynamic behavior.

a. Confirm the following parameters: 𝜏PDHL, 𝜏PDLH, 𝜏rise, 𝜏fall,

When putting an informal or formal test plan together, remember that the goal is to
capture the essence of what must be tested. Keep things simple, precise, and to the point.
The plan is not intended to be the next great novel.
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The test plan establishes a strategy. During debugging, an informal test plan guides
the process. During this phase, the behavior of the design is examined from a high level.
Does a 5-V signal appear on this pin? Does the counter work? Is the proper sequence of
control signals being generated? Once again, informality, yet precision, is appropriate. As
the design matures, testing must be based on concrete values and tolerances.

10.5 FORMALIZING THE PLAN – WRITING A SPECIFICATION

The Test Specification evolves from and formalizes the test plan in a manner analogous to
the relationship between the Requirements Specification and Design Specification studied
earlier. The test specification includes a description of and specification for each test. As
with the test plan, its focus remains on what is being tested. Analogous to the design speci-
fication studied earlier, the test specification also begins to establish how the tests are to be
carried out and what the appropriate test stimuli and test limits should be. The test speci-

Test Specification
Requirements
Specification

Design Specification
what
how

fication assigns specific values, limits, and tolerances to all of the parameters to be tested
based on what was stated in the design specification. These values ultimately lead to con-
straints, requirements, and specifications for the test equipment to be utilized in creating
and conducting the tests.

The test specification that is used during the design phase will often serve as a base on
which to build the production test strategy. The full complement of tests utilized during the
design phase to ensure compliance with the system specifications is generally not needed
once the product is in production. Upon release to production, the design is assumed to be
correct. A specific subset to confirm continued compliance is definitely appropriate.

The test specification for the UUT will now take on a more formal appearance as we
see in the next example.

Verify the following static behavior of the device:EXAMPLE 10.2

a. Ensure that the circuit functions as a logical AND gate according to its specified truth
table.

IN1 IN2 OUT1

0 0 0
0 1 0
1 0 0
1 1 1

b. Verify the following signal values and limits:

VOHmin 2.4± 0.003 VDC

VOlmax 0.4± 0.001 VDC

VIHmin 2.0± 0.003 VDC

VIlmax 0.8± 0.001 VDC

Next, we must verify its dynamic behavior.
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Confirm the following parameters:

𝜏PDHL 15.0± 0.05 ns
𝜏PDLH 15.0± 0.05 ns
𝜏 rise 5.0± 0.001 ns
𝜏 fall 5.0± 0.001 ns

The test specification provided a quantified description of what must be tested. Now,
those tests must be carried out. During the debugging phase, the procedures and approaches
may be based primarily on heuristic experience. In production, such an approach gives way
to more formal methods.

10.6 EXECUTING THE PLAN – THE TEST PROCEDURE AND TEST CASES

The Test Procedure and Test Cases specify how the test plan and specification are to beTest Procedure,
Test Cases,

how
implemented and must provide the detailed lists of the necessary equipment and the steps
for each test. These documents first decompose the plan into a series of blocks in much the
same way we first decomposed the overall design into functional modules. Each block has
a specific behavior, parameter, or set of related parameters in the system that it is testing.
It gives the order of the test steps, values, and ranges of stimuli to be applied to the UUT
during each test step. It specifies the values and ranges of the resulting measurements for
each step. A series of (related) test cases is called a test suite.test suite

Test case design is essential for testing at any level. The content of test cases will, of
course, vary with the specific nature and intent of each individual test. During the early
stages of test, one must test the design for behavior with following three kinds of values:

• Expected values
• Unexpected values
• The boundaries of expected values, inside, outside, and at the boundary.

Recall the earlier comments in the chapter on safety and reliability.
The test values may be randomly generated test vectors or statistically based patterns.

Such an approach is reasonable for combinational logic; however, it falls down on sequential
types of relationships. See the earlier discussions of testing sequential circuits.

To describe the efficacy of a test, the phrase test coverage is used. Test coverage pro-test coverage
vides the percentage of hardware, software, or system tested in a specific test or series of
tests. When putting the test cases together, one must ensure that every path through the
system is traversed at least once with signals of both polarities for the hardware cases and
with variables of nominal and extreme values for the software cases.

During test, the emphasis is primarily on the system’s behavior as manifest through
various hardware signals. The purpose of the underlying firmware is to produce the intended
or specified hardware behavior. Access to such hardware signals is gained through test
points and/or test connectors. Access to software-driven results comes indirectly through
those same signals. These are a signal or sets of signals, internal to the UUT, that can be
observed directly via a probe point or connector that is incorporated into the circuit or
system during design. When direct access to signals (inside of a complex component) is
not available, boundary scan or similar techniques are used.
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The test suite must evolve with testing. As faults are found and fixed, further tests are
often suggested that may find similar faults that were not in the original test design.

The details of the test procedures strongly depend on the test system being used. Often
such systems are a combination of commercial instruments, such as power supplies, func-
tion generators, or digital word generators, and proprietary circuits designed specifically for
the test system. During debugging, one may use more sophisticated analysis equipment such
as data generators and logic analyzers or oscilloscopes to help to verify the design. In pro-
duction, it is assumed that the design is good; testing serves to identify defects introduced
during manufacturing.

10.7 APPLYING THE STRATEGY – EGOLESS DESIGN

Let’s now follow the test process from the initial stages of testing prior to release to man-
ufacture. The process commences with testing for ourselves and then moves to testing for
our customer.

A key element of debug and testing during the early phases of the development life
cycle is egoless design. What does design have to do with test? At this stage, testing beginsegoless design
with the initial specification as the basis for evaluating the preliminary designs. As we dis-
cussed in Chapter 8, such evaluation occurs through design reviews, code walkthroughs,
and code inspections. One cannot let the belief that the best widget ever witnessed by
humankind has just been designed to get in the way of an unbiased assessment of that
design to determine if it is really the case. It is essential that ego not be part of the review
process.

Design reviews, code walkthroughs, and code inspections must be done by someone
else. As is often the case when proofreading one’s own writing, schematics, or code, our
brain ensures that they appear exactly the way we want them to rather than as it is actually
written or designed.

10.8 APPLYING THE STRATEGY – DESIGN REVIEWS

During the early stages of product design, we are really testing for ourselves. That testing
does not start when the first few pieces are on a laboratory bench or a couple of high-level
algorithms have been coded up. In reality, it must begin much earlier ,during the design
process.

A good first step in this direction is to hold design reviews as the design of the
system progresses. Initially, such a review can ensure that everyone understands the
high-level specifications and functionality of the system. Thereafter, a design review
preceding the architectural phase can confirm detailed functionality. As the design
progresses, at least one review prior to moving to prototype can ensure that the mapping
from function to processors, field programmable gate arrays (FPGAs), or application
specific integrated circuits (ASICs) is sound. The formality of such reviews can vary
with need. They can range from a simple exchange of drawings and code among the
team members to detailed reviews with reviewers who are not directly involved with the
project.

No matter how one chooses to proceed, it is important that the review be conducted in
a constructive manner. All participants should recognize that a good review helps to ensure
a more robust product at the end of the day.
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10.9 APPLYING THE STRATEGY – MODULE DEBUG AND TEST

As the design moves along the development cycle, the first prototypes of the individual
modules are built and ready for a smoke test, as the jargon goes. The phase now enteredsmoke test

debugging is called debugging. During this phase, the goal is to identify all of the different kinds of
errors and faults that might have occurred in the development of a new or modified circuit,
software module, or system.

Caution: When running a smoke test. There is strong scientific evidence that most elec-
tronic circuits have an embedded smoke demon whose presence is essential to keeping
the circuit working. Empirical evidence seems to support the theory, as we can show
that once the smoke demon is released from the circuit, it no longer works.

On both sides, we have design errors and oversights that have escaped earlier analysis,
modeling, and reviews. On the hardware side we have implementation issues such as wiring
errors (which often lead to stuck-at types of faults) and incorrect or incorrectly installed
parts that have occurred during the prototype build.

To effectively debug the design, it is essential to know what behavior is being tested,
how the necessary and appropriate stimuli are going to be produced, and how the results
are going to be analyzed.

The debug and early test of the design begins with the individual hardware and soft-
ware modules. Once it is confirmed that these are operating as intended, they are integrated
into larger and larger pieces; the process is repeated at each step. When debugging and
testing modules, we generally recognize three kinds of testing, distinguished by the level
of available knowledge of the internals of what is being tested: Black Box, White Box,Black Box, White Box

Gray Box and Gray Box. Such classifications and methods of test apply equally to hardware and
software.

10.9.1 Black Box Tests

Although the more information one has available prior to formulating the test cases and
test suite the better, complete and detailed information is not always available. The module
may have a design that is proprietary to a particular vendor. Under such circumstances,
complete information as to what signals the device required to effect the necessary outputs
and the detailed characteristics of those output signals (both static state and dynamic state
transition) is absolutely necessary. Without such information, one cannot ensure the proper
or most efficient test of the module.

When debugging or testing such modules, we use what is called a black box testingblack box testing
strategy strategy. Black box tests are data driven. Each module is tested from an external point of

view. The method assumes no knowledge of system or subsystem internals. Consequently,
black box testing requires that module interfaces be well thought out, clearly defined, and
well understood.

Based on knowledge of the behavior of the module as expressed through its public
interface, test cases can be generated and then applied. If a test case fails, the test process
is aborted; the cause of the fault is identified and fixed. Continuing the test suite under a
failed condition can yield results that in all likelihood are invalid. Depending on the rigidity
of the test constraints, one may find it necessary to begin the test suite from the beginning
rather than from the point of failure following a failure.
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Consider the system and its accompanying truth table shown in Figure 10.3.EXAMPLE 10.3

IN1

IN2

OUT 1

IN 2

0
1
0

1

IN 1

0
0
1

1

OUT 1

0
0
0

1

UUT

Figure 10.3 Basic System – Black Box View

If the relationship expressed in the truth table in the figure is the extent of the informa-
tion that is available, then to ensure that the system is functioning properly, it is necessary
to apply each of the input patterns and confirm the proper output. This is the best that can
be done, or to put it another way, this is the minimum that must be done.

One of the significant weaknesses with black box testing is that, potentially, the test
must be exhaustive. Such a test can be very time consuming and it may miss certain paths
or dead code inside the black boxes.

10.9.2 White Box Tests

When complete information about the internals of a module is known, we can use what is
called a white box testing strategy. White box tests are logic driven. Each module is tested

white box testing
strategy

from the public interface as well as the internal point of view.
White box testing assumes perfect knowledge of system or subsystem internals. Test

cases and the test suite are designed, generated, and applied to exercise every internal path
and code segment. Like black box testing, a test case failure aborts testing until the fault is
identified and fixed. Once again, potentially testing may resume from the beginning.

Let’s now consider a somewhat different view of the system in Figure 10.4 with its
accompanying truth table. The inside of the box is now visible.

EXAMPLE 10.4

IN 1

IN 2

OUT 1

IN 2IN 1 OUT 1

0 0

0

1

1

0

0 0
1 0

1 1The System

Figure 10.4 Basic System – White Box View

Based on complete knowledge of the internals of the system, one can now see that
testing can be 25% simpler – and cheaper. Now, one can easily confirm the effect on the
output when either input is in the logical 1 or logical 0 state. All that must be added is
the one test to establish behavior when both inputs are logical 1. There is no need to test
the condition that both inputs are logical 0. With complete knowledge, one can eliminate
one test. The savings can be significant when a large number of units must be tested.

10.9.3 Gray Box Tests

A gray box testing strategy is a mix of white and black box testing. Such an approach applies
when the system includes modules designed by an outside vendor. Examples include com-

gray box testing
strategy

plex large-scale integrated (LSI) or gate arrays on the hardware side and library modules
or canned algorithms on the software side.
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10.10 APPLYING THE STRATEGY – THE FIRST STEPS

Never wait until a module or subsystem is completely built and coded before beginning
to test. Never build or code the entire system and then try to debug it. This is a sure path
to disaster. Start slowly, get individual modules working first and then combine them into
larger and larger pieces of the system.

As part of a strategy, one should give some thought to the order in which debugging
and testing should proceed. Some of the major areas that one might want to think about
include

• The parts.

• The power system (power supplies and ground).

• The reset system.

• The clocks and timing.

• The system/component’s inputs and outputs.

10.10.1 The Parts

Check clocking (orientation) on all parts, and make certain that they have been installed
in the board properly. Different kinds of parts are marked in different ways. Examine the
semiconductor devices first; such devices include integrated circuits, transistors, and diodes.

Figure 10.5 illustrates two 14-pin Dual Inline Package’s (DIP). On such packages,Dual Inline Packages
(DIP) usually either a small dot or a semicircle is used to identify pin 1. With the orientations

shown, pin number 1 is on the upper left. The pin numbers increment and wrap around the
end as illustrated.

1
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14

13

12

11

10

9

8

1

2

3

4

5

6

7

14

13

12

11

10

9

8 Figure 10.5 Top View – Dual Inline
Package with Pin Numbers

Usually, the pin opposite from pin 1 is the VCC (voltage supply) pin where a +5 V
DC power supply is to be connected. Diagonally across the power pin is the GND (ground)
pin. These two pins are placed as far from each other as possible to prevent any accidental
shorting between the two, as this may damage the whole chip in an instant.

It is important to remember that as ICs become more complex, so do the packages. For
each device, it is always safest to refer back to the vendor’s data sheets.

When using transistors, look for the emitter, base, and collector for bipolar devices
and the gate, source, and drain for MOS devices. Several different possibilities are given in
Figure 10.6, which illustrates two common configurations for bipolar devices.

When working with diodes, one should be able to identify the anode and the cathode.
For the small signal diodes (which is what are commonly used), the cathode end of the diode
is marked with a small ring. A typical diode package will appear as shown in Figure 10.7.
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C
B

E C
B

E

Figure 10.6 Transistor Packages

Figure 10.7 Diodes

When working with passive electronic parts such as resistors, inductors, or small valued
capacitors, one is generally not concerned with part orientation. Of major concern with these
devices is making certain that the part with the correct value and correct power rating for
the application is installed.

During design, make certain to do a wattage calculation in addition to a value cal-
culation for each part. One must go beyond the familiar I2R calculation. A check of the
vendor’s data sheets will reveal that there are specifications for AC power, DC power, and
pulsed power. These are different and one must use the appropriate specifications for the
specific application.

Electrolytic capacitors are polarized; it is very important that they be installed in the
circuit with the correct orientation. However, installing them backwards is definitely more
interesting. Under such circumstances, and with a sufficiently high voltage applied, they
will explode. Such a mistake generally does not impress people who are working around
you. However, prior to exploding they are known to give off some marvelous smoke, the
color of which depends on the type of dielectric used.

Electrolytic capacitors are marked with a + on the positive lead or a series of rings,
or indentation near the negative end. Some of the larger devices will have a small cross on
the top. Don’t confuse this with the plus sign. This is a blowout hole in case the device has
been installed improperly and the smoke demon manages to extricate itself. The capacitor
internals vent through this port rather than allowing the device to send shrapnel throughout
the laboratory or factory, which is even less impressive.

Make certain that the proper current limiting is provided for all LEDs used in the sys-
tem. Without the proper current-limiting resistors, the devices may burn out shortly after
power is applied.

10.10.2 Initial Tests and Measurements – Before Applying Power

We are almost ready to apply power to the circuit for the first time. Before doing so, however,
we should check a couple of more things. It is assumed that before the circuit was actually
built the impedance between any of the power rails and ground was measured and that these
all showed open. That measurement is repeated after the parts have been installed.

One may get several possible results. The measurement could still yield an open or very
high-valued measurement. If such is the case, power has not been properly connected to the
components; that must be corrected before proceeding. If the measurement shows less than
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5Ω, then there is a strong possibility of a short or very low-impedance path between the
two rails. Once again that must also be corrected prior to moving on.

Applying the voltage and raising the current limit in hopes that the short will go away
are challenging to the smoke demon. Don’t do it. The measurement should be greater than
approximately 10–15Ω and less than 10 KΩ.

When making such a measurement, one may encounter an interesting phenomenon.
The impedance initially reads 10–15Ω and then begins to increase. Such behavior is easily
explained. Most modern multimeters measure resistance by injecting a known current into
the circuit and then making a voltage measurement across the port. By properly selecting
the magnitude of the injected current, the voltage that is read corresponds directly to the
resistance. An increasing resistance value is reflecting the result of the measurement current
charging capacitors inside of the system.

Finally, when using bench supplies while debugging, remember to check the current
limit and voltage settings on the supplies.

10.10.3 Initial Tests and Measurements – Immediately After Applying Power

Power is now on the system. What to look for first is smoke or fire, of course. If some
wiring problems have escaped early scrutiny and are now causing problems, turn the power
off quickly. With smoke or fire, there is generally a good indication of the source of the
problem. Put the fire out and get the problem fixed first before proceeding.

Next, check the current that is being drawn. Use either the meter on the bench power
supply or a separate instrument. The amount of current the circuit is consuming gives a
strong early indication of potential problems with the system. What should be a reasonable
level?

“Reasonable” depends on the kind of logic being used (TTL or CMOS), how many
parts are in the system, the voltage level, and whether or not there are floating (unused)
inputs among other things. Let’s establish a base line. Assume that the system has approx-
imately 25–30 ICs comprising a mix of small-scale integrated (SSI), medium-scale inte-
grated (MSI), and a couple of small programmable logic devices. For a TTLS design, the
current should be in the range of 1–2 A. For a CMOS design, one should measure less than
1 A. If the measurement shows a very low value (close to 0 A), then it can be assumed
that power is not properly connected to the system. On the other hand, an excessive value
indicates a potential wiring error, an improper part, or a part installed incorrectly.

For CMOS logic in particular, one should always define the inputs of unused gates. If
the inputs are not defined, the unused gates may be partially turned on and actually draw
more current than the remainder of the circuit. If the circuit includes a number of LEDs or
seven segment displays, each LED is going to draw about 5–15 mA. So, each seven-segment
LED display may contribute around 100 mA or more to the power budget.

If the amount of current the circuit is drawing is within the range of what is expected,
one should next check the temperature of the components. Feel the board and look for hot
spots. These are an indication of incorrect wiring, incorrect parts, or a part that is improperly
installed. Once again, it is important to have a heuristic feel for what the temperature of the
components should be.

If you are working with a TTL board and it is cold, then there is a problem. It is most
likely not powered or does not have power connected to all parts of the circuit. If a compo-
nent feels as hot as a 20–40 W light bulb, then it is too hot. A normal CMOS board should
feel about the same temperature as the surface of the laboratory bench. A TTL board should
be a bit cooler than a morning coffee or tea cup.
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10.11 APPLYING THE STRATEGY – DEBUGGING AND TESTING

The module or system now has power applied and we can begin to execute our various test
cases to confirm its operation. In the next several sections, we will begin by identifying
some of the places to start to look for gross problems. Then we will move through some
strategies for debugging combinational and sequential logic circuits.

10.11.1 The Reset System

Every system should incorporate a Power ON Reset (POR) signal. Starting any system in a
known state is simply good engineering practice. During the debugging phase, every pro-
totype module should provide manual access to and control of the POR signal. On initial
application of power, the unit being tested should be held in the reset state, and the ini-
tial values of the available state variables should be confirmed prior to further testing and
debugging. Such a practice enables one to always start the process from a known point.

As testing starts to progress, the first step in debugging nonfunctioning sequential logic
is to confirm that the POR signal is in the non-reset state.

10.11.2 The Clocks and Timing

During the debug phase, one may be using a bench function generator or an oscillator that
is built into the system. When using a bench source, prior to connecting it to the circuit,
make sure that it is configured properly. Always check the level and offset of the signal.
One should always do this with an oscilloscope. The first measurement should be to verify
where ground is set on the scope.

In either case, make certain that the clock is operational and that the frequency and
amplitude are correct. Remember that a current limit (fan-out) applies to the clock as well.
Check the rise and fall times to verify that they are within the desired limits. If the clock is
too heavily loaded, the rise and fall times will be long and the risk that the parts will enter
a metastable region during switching will increase. Finally, make certain that the clock is
connected to all the appropriate parts.

10.11.3 The Inputs and Outputs

The next step is to move to the heart of the testing and debugging process, confirming
the behavior of the system. The key to confirming system behavior is to fully understand
what the behavior should be. Although such a statement may seem obvious to the system
designer, this simple statement gives most people the greatest difficulty when debugging.
What is meant here is that one must know what output value to expect for each selected
input combination.

One cannot know whether or not the set of input signals accomplished anything mean-
ingful without knowing what they were intended to demonstrate. Furthermore, any dis-
agreement between the anticipated and actual results can provide the first clue toward
identifying the root cause of the discrepancy.

Although the heuristic holds throughout the testing and debugging phase, the initial
steps, in particular, should start with a small portion of the system using as simple an input or
set of inputs as possible. Ideally, the input set should be DC signals, a repeating time-varying
signal, or a known transient. One should remember that a failure during the debugging
process should lead to a shift in strategy from ensuring behavior of the design to identifying
the root cause of the fault.
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The set of input and corresponding output signals combined with the order in which
they are applied form the basis for the test cases in the test procedure. While mainly informal
during early testing and debugging, the set is culled and formalized during the later phases
of the design cycle.

As the process now unfolds, we will look first at testing and debugging of combina-
tional logic and then at sequential logic. But first we will have a short digression.

10.11.4 Sudden Failure during Debugging

Let’s now assume that we have been working on the circuit for some time and have been
approaching debugging and integration tasks methodically, adding and debugging one func-
tional subcomponent at a time. So far, three of the five modules in the system have been
debugged and integrated, and now the fourth is added. The new module does not work
(although it worked as a stand-alone component). Furthermore, the first three modules now
fail to work properly. If module 4 is disconnected from the circuit, the original components
once again work properly. Repeated tests on module 4 alone fail to identify any possible
faults. What could the problem be?

Consider a simple model. A Thévenin equivalent circuit can be developed for each of
the five components in the system. As each one is integrated, the system can be modeled
as in the sequence of drawings shown in Figure 10.8.

Z1

Vcc

Z2

Z3 Z1

Vcc

Z2

Z3

Z4

Z1

Vcc

(a) (b) (c) (d)

Z1

Vcc

Z2

Thévenin Model
One- and Two-Element System

Thévenin Model
Three- and Four-Element System

Figure 10.8 Modeling a System as Components are Added

For the current discussion, assume that the Thévenin equivalent impedance of each
module is the same. Initially, the current demand is given as:

I1 = VCC
Z

(10.1)

The second module is now added. Since the impedances are in parallel, the current
requirement is now:

I2 = 2 ⋅ VCC
Z

= 2 ⋅ I1 (10.2)

As modules are continuously added, the equivalent impedance continues to decrease.
After the fourth module is added, the current required is now:

I4 = 4 ⋅ VCC
Z

= 4 ⋅ I1 (10.3)
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The Thévenin model for the power supply is given in Figure 10.9.

Vth +

−

Zsource

I

Vcc

Figure 10.9 Power Supply Basic Model

It is now evident that as the current demand increases, there will be an increasingly
larger drop across the internal impedance of the power supply, with a consequent decrease
in the output voltage. To remedy the problem, one must increase the current limit if a bench
supply is being used or modify the design of the supply if that is required to provide a
greater drive capability.

In the next several sections, we will apply some of the concepts that we learned earlier
in our discussions of testing combinational and sequential logic to the problem of debugging
new designs. We will find that the problems of test and debug are very similar and that we
can utilize much of the same strategy.

10.12 TESTING AND DEBUGGING COMBINATIONAL LOGIC

One objective of the early test cases is to show that the circuit and software modules, or
subsystem and system, meet the core behavioral requirements. Boundary condition testing
occurs later in the process. The test stimuli should reflect the basic requirements and should,
in theory, yield the anticipated output signals. One should not exhaustively apply all input
patterns. Rather, another early goal is to ensure that all possible paths from input to output
are verified.

When a test fails, the debugging process starts. At this stage, it is not known if the design
for the module being tested is correct. Sherlock Holmes, the fictional detective, proposed an
interesting strategy that can easily be applied to debugging and troubleshooting: eliminate
everything that is not causing the fault and what’s left is the culprit. Thus, when debugging,
one should use test stimuli that can eliminate circuit paths that are not contributing to a fault
being isolated. Such knowledge derives from the clear understanding of the behavior of the

eliminate everything
that is not causing the
fault and what’s left is

the culprit
module being tested – white box testing.

In contrast, in formal test, one begins with the assumption that the circuit is good,
and the objective is to prove such is the case by confirming that each path can pass the
necessary signals properly. The test vectors used in test are often a subset of those used
during debugging.

10.13 PATH SENSITIZING

To be able to effectively test or debug a circuit, one must apply the appropriate test sig-
nals (test vector) and observe the consequences of such signals on the circuit. A signal
is said to be directly observable if its behavior can be seen (tested) directly at card edge
or test point and indirectly observable if it can only be seen through some intermediate

directly observable
indirectly observable

component.
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One simple and effective approach for determining the necessary stimuli for both test
and troubleshooting is based on what is called path sensitizing. With such an approach,path sensitizing
first identify a path from the signal under test (or fault) to an observable circuit output.
Next choose values for the remaining signals, as appropriate, such that any changes in the
circuit output under test are only a function of the signal being tested.

We will begin with the two basic logic gates in Figure 10.10 as a first model. Although
we are using logic gates to illustrate the method, they can easily model more general
conjunctive or disjunctive relationships between inputs and output in either hardware or
software.

1

A

B

B

A

C

C
0

Figure 10.10 Path Sensitizing

For an AND (conjunctive) function, one must ensure that all inputs, except the one
under test, are in the logical 1 state. Assume that we wish to test the behavior of input signal
A. We place the input signal B into the logical 1 state. Under such a condition, any changes
to the output, C, are only a function of changes in the input, A. Thus, a stuck-at condition
on A is directly observable on C. That is, if the signal A is changed and the corresponding
change is not reflected on C, one can conclude that a stuck-at condition exists on A. We
state that the fault has been forwarded to an observable output.fault has been

forwarded For an OR (disjunctive) function, we sensitize the path by placing all nets not on the
path in the logical 0 state. Once again, changes in the output reflect only those on input A,
and a stuck-at condition on A appears on C.

10.13.1 Single Variable–Single Path

Path sensitizing can be used to test and debug the accompanying circuit in Figure 10.11.

A

B

C

D

Figure 10.11 Basic Combinational Logic Circuit

10.13.1.1 Testing

To test the circuit, one must show that signals A, B, and C will propagate to D or are blocked
subject to the logical constraints of the circuit. Input C is a logical choice to start with since
it is the simplest. If debugging is necessary, hypothesize a stuck-at state on the output D
and work backwards.

Going forward for the moment to test C, one must ensure that the upper leg of the AND
gate is in the logical 1 state, thereby sensitizing the lower path to the signal C. The required
system state can be achieved by assigning either A or B a value of logical 1. The state of
the other input does not matter.

That condition is represented with the don’t care value on B in Figure 10.12.
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A

B

C
D

1

1
x

Figure 10.12 Basic Combinational Logic Circuit

Now the output D is solely a function of the input C. We test by first applying a logical 0
and then a logical 1 to C and confirming the proper behavior for the signal D and indirectly
partially confirming the correct operation of the output AND gate.

A and B are tested by reversing the roles. To test A, sensitize that path first by making
C a logical 1 and then by making B a logical 0. Now the output D is solely a function of
the input A. Testing B follows similarly, as reflected in Figure 10.13. As a side effect of the
two test cases, the correct logical operation of the AND and OR gates is now confirmed.

1

0

1

A

B

D
C

Figure 10.13 Basic Combinational Logic
Circuit

Observe that six of the eight possible combinations of the three inputs are sufficient to
confirm the proper logical operation of the circuit.

10.13.1.2 Debugging

Debugging or troubleshooting a fault in the circuit follows naturally. As noted, first hypoth-
esize a stuck-at fault on signal D. The root cause of the problem can be either direct via a
fault on the output or indirect via one of the inputs to the AND gate. To isolate the fault,
choose the test vector that sensitizes path C as it is the simpler.

One must first confirm that the net A+B is in the logical 1 state. If not, pursue that
path. Otherwise, the reasoning process proceeds as follows.

One knows how the output should behave if C is changed.

• If the desired changes are evident on D, move to the left and troubleshoot the
A+B net.

• If the behavior of both of the AND gate inputs is correct, follow the D net.

• If AND gate input nets are not functioning properly, work backwards following
the signal path that is not behaving properly.

10.13.2 Single Variable–Two Paths

In the logic circuits discussed earlier, the two paths are independent; that is, they do not
share any common signals. At the next level of complexity the two paths share a common
signal. Consider the configuration in Figure 10.14 as a simplified model of a more general
circuit or system architecture.
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C

B

A

D

Figure 10.14 Basic Combinational Logic
Circuit with Two Independent Signal Paths
and Shared Common Signal

In reality, this fragment is not much more complex than the previous one. If the signal
B is held at a logic 1, then one can easily verify the paths from A or C to the output as in
Figure 10.15 for the path from A. The path from C follows in a similar manner.

C

B

A

D1

0
0

Figure 10.15 Basic Combinational Logic
Circuit with Two Independent Signal Paths
and Shared Common Signal, One Path
Sensitized

Verifying the effects of the common signal, B, is not much more complex. By holding
first A to a logical 1 and C to a logical 0, one can verify the upper path. Reversing the values
on A and C gives visibility through the lower path as can be seen in Figure 10.16. Once
again the path through C follows naturally. To debug or troubleshoot such a configuration,
the same reasoning is followed as is used in developing the test cases.

C

B

A

D

0

1

0

Figure 10.16 Basic Combinational Logic
Circuit with Two Independent Signal Paths
and Shared Common Signal, One Path
Sensitized

A slight modification is made to the circuit. The output OR gate is replaced with an
AND as in the drawing in Figure 10.17.

C

B

A

D

Figure 10.17 Basic Combinational Logic
Circuit with Two Independent Signal Paths
and Shared Common Signal

With the altered output configuration, one can no longer use a single sensitized path to
confirm proper full logical operation. One can still use a single path to confirm the behavior
of signal flow from A or C. However, to test signal flow from B, one must send signals
through both paths to D as in Figure 10.18.
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C

B

A

D

1

1

Figure 10.18 Basic Combinational Logic
Circuit with Two Independent Signal Paths
and Shared Common Signal, Both Sensitized

First, the two paths are sensitized with logical 1 values on the A and C inputs. Observe
that to test the function properly, one must execute the two single-path tests from A and
C to the output first. Otherwise, one will be unable to determine if a stuck-at condition on
either of the two interior AND outputs results from A (C) or B.

10.14 MASKING AND UNTESTABLE FAULTS

The circuit in Figure 10.19 contains a static 1 hazard associated with the signal B. Under
the proper conditions, a 1→ 0 transition on B can produce a transient 1 on the output D.

C

B

A

D

Figure 10.19 Basic Combinational
Logic Circuit with a Static Hazard

As we learned earlier, to eliminate the hazard, one can mask the change by includingmask
the extra conjunct, AC, as illustrated in Figure 10.20. One side effect of making such a
change is that we now have a circuit with an untestable potential fault. If the output of theuntestable
bottom AND gate is stuck-at-1, then the fault will be indistinguishable from a proper logical
1 on the same signal line.

C

B

A

D

Figure 10.20 Basic Combinational Logic Circuit with Redundant Paths of
Control
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Such a situation occurs because the term AC is redundant, as can easily be shown by
plotting the expression on a Karnaugh map. That is, one can show that the circuit output,
D, is independent of the added term.

Since single faults are being considered, we will not consider that a stuck-at-1 fault
on any of the AND gates above will also mask a stuck-at-0 fault on any of the remaining
nets feeding the OR gate. Such a fault will also prevent one from effectively testing the
remaining nets.

When a logic circuit has redundant literals or terms such as is seen here, then a fault
in such an expression (here the stuck-at-1 condition) can be masked by others (here ABC
or ABC) in the circuit implementation. Such faults are said to be untestable; they can only
occur in circuits to which we have incorporated redundancy.

The circuit fragment presented here models the more general problem that is encoun-
tered in systems with redundant paths of control. In such systems, one must find a way to
disable the redundant paths during test. The best way to accomplish this is strongly depen-
dent on the specific design.

With redundant paths of control, the strategy for debugging and troubleshooting
changes from that of getting exact information to that of maximizing what can be gained
from the circuit. Once again, maximizing the knowledge gained from a failure depends
directly on how well the correct operation of the module is understood.

For the current module, the initial objective should be to confirm that one can set the
signal D to a logical 0. Failing that, the most that can be learned is that one of the inputs (or
the output) is stuck-at-1. One can then backtrack and test each of the input nets. If each of
the member inputs can be driven to either state, then one concludes that it is the output that
is stuck. Otherwise, the appropriate diagnostic process is to work slowly backward from
the suspect input(s).

10.15 SINGLE VARIABLE–MULTIPLE PATHS

In practice, systems are rarely limited to a single output. With multiple outputs, it is often
found that several have one or more variables or logical expressions in common. Such a
situation can be modeled with the circuit fragment given in Figure 10.21.

C

B

A

D

F

G

Figure 10.21 Basic Combinational Logic Circuit with
Multiple Outputs

Observe that both outputs share the net that carries the conjunction of signals B and C.
The test is started by sensitizing the portion of that path carrying the signal B, as seen

in Figure 10.22. Note that both outputs must be examined to verify the complete BC net.
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Figure 10.22 Basic Combinational Logic Circuit with Path
to Multiple Outputs Sensitized

C can be tested in a similar manner and the remaining paths to the two outputs are
tested as before. By holding B to a logical 1 and C to a logical 0, we sensitize the path for
A. The same set of inputs also sensitizes the path for D.

To debug or troubleshoot, assume a stuck-at fault on the output of either E or F. To
begin, A and D are placed in the logical 0 state and C in the logical 1 state. The net express-
ing the conjunction of A and B should be in the logical 0 state.

Exercising input B through a 1-0-1 sequence should cause corresponding changes in
both outputs. A change in only one provides two pieces of information: the net expressing
the conjunction of B and C is functioning properly, and most likely the fault is with the
output of the unchanging OR gate.

The diagnosis is confirmed by placing signal C in the logical 0 state and the sig-
nal B in the logical 1 state, thereby disabling the lower AND gate (and the correspond-
ing output nets) and sensitizing the path from A. Either A or D can then be toggled as
appropriate.

10.16 BRIDGE FAULTS

Recall that a bridge fault occurs when a connection among two or more signals exists where
none had been originally intended. Generally, such faults will be identified during a good
manufacturing defects test that would detect the unintended low-impedance path. During
debugging, without the aid of such a test, one must fall back on one or more variants of a
functional test.

A card edge input bridge, fault such as the one in Figure 10.23, can be tested
using a path sensitization scheme coupled with a test using complementary values for
signals B and C. We debug or troubleshoot the fault in a similar way, testing whether
first one and then the other (B or C) can propagate the intended value to the circuit
output.

C

B

A

F

D Figure 10.23 Bridge Fault
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An approach to identifying an (internal or card edge) output bridge fault such as those
in the next two circuit fragments in Figure 10.24 begins with the same approach used for
stuck-at faults.
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F

D

Figure 10.24 Bridge Faults

The objective is to propagate a signal via either path to the corresponding output. For
the circuit on the left, we initially test for the ability to drive the signals R and F to opposite
states. Failing to do that, we debug by confirming that the disjunctive inputs (the outputs
of the individual AND gates) can be placed individually into the desired states. Success
suggests a problem with the OR gate outputs, in particular a bridge based on the single-fault
assumption. Failure initiates a trace backward along the path of the signal that could not be
controlled.

For the circuit on the right, the objective is to propagate both logic states through one
path while disabling the other. If one path dominates, any attempts to propagate signals to
the output on the other path will fail. If both paths are equal, attempts to alter the output
state via either path will fail. We debug or troubleshoot by confirming that the signals on
the two disjunctive paths can be altered.

A feedback bridge fault, such as those illustrated in the two circuit fragments in
Figure 10.25, presents a more interesting challenge. Starting with the pieces, the first step
is to determine what is known.
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A

F

D

C

Figure 10.25 Feedback Bridge Faults

If the signals coming into the logic block are on the card edge, one can generally
assume that the tester or data generator will have sufficient capability to overdrive the fed
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back output signal. For the circuit on the left, the input pattern [0→ 1→ 0, 1, 0, x] on
the respective inputs [A, B, C, D] will identify the fault. Similarly, the pattern [1, 1, 0,
0→ 1→ 0] on the respective inputs [A, B, C, D] will identify the problem in the circuit
fragment on the right. Observe that for the right-hand circuit the output should never
change because C should block forward signal propagation. However, the feedback fault
also provides the means to overdrive the output and force a signal change.

If the signals driving the logic block are from an internal net, then one must assume
that at least two outputs are fighting: signal F and the output of the device driving either A
or D. We test and troubleshoot as was done with the “outputs tied” bridge fault in the earlier
discussions.

10.17 DEBUGGING – SEQUENTIAL LOGIC

Turning on, debugging, and troubleshooting the sequential machines provide the opportu-
nity to apply engineering creativity, imagination, and intuition. Sequential logic introduces
time as a variable, which somewhat complicates the test and debug process. With combi-
national logic, the desired (or perhaps undesired) output appears shortly after the inputs
are applied. In contrast, in a sequential system, getting to the desired state often involves a
specific (and sometimes tedious) series of input patterns (Refer back to the earlier chapters
on finite-state machines, FSMs.).

Efficiently debugging sequential circuitry requires a bit of forethought and planning.
As discussed earlier, the first step in debugging is taken during design. In any system, one
should always provide a master reset input to any latch or flip-flop based logic. The signal
provides the means by which to place the machine into a known initial state. Of course,
if that fails, we have a place to begin troubleshooting. Moreover, that is a combinational
problem, and we have just studied those.

At this point, one can take a variety of paths. One good approach is to verify the state
machine’s truth table – we call this strategy verify the truth table strategy. Two tools are
essential to begin the task: a data generator and a logic analyzer. The first gives the ability to

verify the truth table
strategy

write and produce a series of test vectors that can be applied to the circuit’s input to produce
the desired transitions. The second provides the means to monitor and collect the values of
the machine’s outputs for each input vector.

We will use the simple pattern recognition circuit studied earlier to illustrate the
approach. The state diagram and truth table for the system are presented in Figure 10.26.

0/01/0 C DA B
1/0

0/0
0/0

1/1

0/0

Present
State 

Next State /
Output 

X = 0 X = 1

A B/0 A/0

B B/0 C/0

C D/0 A/0

D B/0 C/1

Figure 10.26 Simple Pattern Recognition State Machine
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For this example, we will use a simple binary assignment for the state variables, which
will yield the excitation table given in Figure 10.27.

Present State

Next State / Output

X = 0 X = 1

A 0 0 B/0 0 1 / 0 A/0 0 0 / 0

B 0 1 B/0 0 1 / 0 C/0 1 0 / 0

C 1 0 D/0 1 1 / 0 A/0 0 0 / 0

D 1 1 B/0 0 1 / 0 C/1 1 0 / 1

Figure 10.27 Excitation Table

The first step is to write a test vector that will apply the master reset and, thereby, force
the system to its initial state, A, the {00} state. The next step is to select a state transition to
be verified and write a homing or initialization sequence that will send the machine to the
state just before the transition. For this example, we elect to test the transition from state C
{1,0} to state D {1,1}.

Starting from state A, we create the data generator pattern: {Reset, X} = {(0,0), (1,0),
(0,1)}. If the machine is functioning properly, it should be in state C. Next, we write a
vector to effect the transition. The new vector is added to the data generator pattern: {Reset,
X} = {(0,0), (1,0), (1,1), (1,0)}.

The logic analyzer is connected to the circuit and the set of test vectors is entered into
the data generator. Following application of the suite of vectors, the following sequence for
the state variable and output variable transitions should be captured on the logic analyzer
as {M, N, Z} =.

0 0 0
0 1 0
1 0 0
1 1 0

One additional input vector will now confirm the output logic for Z as well. This pro-
cess is repeated for each transition to be verified.

Recall that in the formal model of the FSM, the next state is given by the mapping:

δ ∶ IxS → S (10.4)

All this equation states is that the output of a flip-flop comprising the FSM depends
on the combinational logic providing the input. Thus, if a failure occurs, the data generator
can be used to debug the combinational logic portion of the machine, exactly as was done
with a pure combinational logic system earlier.

In order for the test just completed to succeed, there must have also been successful
transitions from A to B and then to C. From the results of one test, we have confirmed a
significant portion of the logic. A failure also lays the groundwork for a debugging strategy.
In such an event, we split the state transition sequence in half – do a binary search. We ask:
“Did we get to state C?” If not, we explore the early transitions; otherwise we examine the
later ones.
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10.18 SCAN DESIGN TESTING

The strategy for debugging sequential machines using scan design techniques is rather
straightforward. The flip-flops are at the heart of the circuit and the technique, so it is best
to ensure that they are functioning properly first. We repeat the drawing of a state machine
with scan design support in Figure 10.28.

X0

X1

Xn–1

Y0(t+1)

Z0

Z1

Zk–1

Y1(t +1)

Scan In

Y0(t)

Y1(t)

Ym–2(t)

Combinational Logic

Memory

Device

Memory
Device

Memory
Device

Ym–3(t +1)

Ym–1(t +1)

Ym–1(t)
Memory
Device

Ym–2(t +1)

Select (T/~N)Scan Out

Figure 10.28 Basic State Machine with Scan Path Logic

Initially the select input is placed into the test mode. With the flip-flops configured
as a shift register, a pattern of alternating 0’s and 1’s is entered on the scan in input and
monitored on the scan out output. If the pattern that has been entered appears properly on

select, test
scan in

scan out
the output, we assume that the devices are working correctly and can proceed.

If the output appears as a constant 0 or 1, then we infer that one of the devices (or its
input) is malfunctioning. If manual access to the individual flip-flop pins is possible, we
debug by probing those signals. If such access is not available, little can be done.

Assuming that the necessary access is available, the first debugging step is to verify the
reset signal (if it is present) to ensure that the machine is not being held in the reset state.



�

� �

�

532 Chapter 10 Hardware Test and Debug

The same is done with the preset signal. Next, the presence of the clock on each device
is confirmed. If those signals are operating properly, the flip-flop outputs are examined to
determine how far through the register the test pattern has correctly propagated.

Once the flip-flops are confirmed to be functioning correctly, the combinational logic
is addressed. If one is using a test for stuck-at strategy, then the test mode is selected andtest for stuck-at

strategy, test
normal

test
scan out

the shift register and the primary inputs {Xn} are used to enter the test vectors to be applied
to the combinational net. The logic is switched to normal mode and the state of the {Ym(t)}
signals is strobed into the flip-flops. Going back to the test mode once again allows the state
of the combinational logic to be shifted out through the scan out, line where it and the {Zk}
values are compared with the proper values.

A verify the truth table strategy is not much more complex. Let’s repeat the previousverify the truth table
strategy exercise and see how scan design now applies. As a first step, select a state transition to

be verified. Next, select the test mode, shift in the values for {Ym(t)} that will cause thetest
normal transition, enter the normal mode, execute the transition, go back to test, and clock out and

confirm the flip-flop state. This process is repeated for each transition to be verified. The
truth table is redrawn in Figure 10.29 for reference.

Present

State 

Next State / Output

X = 0 X = 1

A B/0 A/0

B B/0 C/0

C D/0 A/0

D B/0 C/1

Figure 10.29 UUT State Machine Transition Table

Once again, a simple binary assignment for the state variables is used; this will yield
the excitation table given in Figure 10.30.

Present State

Next State / Output

X = 0 X = 1

A    0 0 B/0    0 1 / 0 A/0    0 0 / 0

B    0 1 B/0    0 1 / 0 C/0    1 0 / 0

C    1 0 D/0    1 1 / 0 A/0    0 0 / 0

D    1 1 B/0    0 1 / 0 C/1    1 0 / 1 Figure 10.30 UUT State Machine
Transition Table

The test begins by placing the machine into state A, the {00} state. The initialization
is accomplished by placing the FSM into the test mode and entering the pattern {00} on
the scan in line. The X input is placed in the logical 0 state and the state machine into the
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normal mode. The output, Z, is confirmed to be in the logical 0 state. Next the machine is
clocked one time to execute the transition to state B, the {01} state. The test mode selection
is reasserted, and the contents of the flip-flops are shifted out and examined to ensure that
the proper transition occurred.

Table 10.1 illustrates the test sequence for the first two rows of the state table.

Table 10.1 Test Sequence

Step Select Action State Scan In Scan Out Input Output

1 Test Two clocks, enter starting
state {0,0}

00 00 — — —

2 Normal Enter Input/Read Output 00 — — 0 0

3 Normal One clock, enter next state 01 — — 0 0

4 Test Two clocks, shift out
current state shift in next
starting state {0,0}

01 00 01 — —

5 Normal Enter Input/Read Output 00 — — 1 0

6 Normal One clock, enter next state 00 — — 1 0

7 Test Two clocks, shift out
current state shift in next
starting state {0,1}

00 01 00 — —

8 Normal Enter Input/Read Output 01 — — 0 0

9 Normal One clock, enter next state 01 — — 0 0

10 Test Two clocks, shift out
current state shift in next
starting state {0,1}

01 01 01 — —

11 Normal Enter Input/Read Output 01 — — 1 0

12 Normal One clock, enter next state 10 — — 1 0

13 Test Two clocks, shift out
current state shift in next
starting state {1,0}

10 01 00

14–19 Continue with remaining
states

If a failure occurs, the combinational logic is debugged exactly as was done with a
pure combinational logic system earlier. The one difficulty may be limited visibility into
the internal nodes of the circuit.

10.19 BOUNDARY-SCAN TESTING

The approach one takes to debugging larger parts of the system is often directed by the tech-
nologies that have been used to execute the designs. Today, we frequently are working with
ASICs, complex programmable logic devices (CPLDs), array logics, or custom-designed
integrated circuits. These are VLSI class components. In such a context, boundary-scan
methods can provide a very powerful tool.
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TDI TDO TDI
TDO TDI TDO TDI

TDO

Figure 10.31 Boundary-Scan Circuit Configuration

If the system has been designed to support boundary-scan capability, the high-level
architecture appears as in Figure 10.31. From here, testing is based on a three-point
strategy:

• Test the tester.
• Test the device interconnect.
• Test the devices.

Starting with the test the tester heuristic in the initial step ensures that thetest the tester
boundary-scan infrastructure is functional. One simple way to do this is to force
each device in the system to connect its instruction register between its Test Data In (TDI)
and Test Data Out (TDO) pins. There is now a path from the TDI signal on the input
side of the system, through all the devices to the TDO signal on the output side of the
system. Each device in the chain can be directed to place a 1-0 pattern into the IR. The
combined pattern, which will propagate through all devices in the chain, can be detected
at the output. If the appropriate number of 1-0 pairs does not appear, one can assume that
there is a problem in the system.

Next the interconnections between the devices in the system are verified. Generally,
the system uses a bus structure to exchange commands or data between the constituent
devices. These interconnections can easily be checked using the input/output capabilities
of the boundary-scan cells on the various scan paths.

To see how this might work, consider the circuit fragment in Figure 10.32. Three kinds
of faults have been incorporated.

Next the EXTEST (refer back to Chapter 4) instruction is used to propagate various
test patterns through the scan register. A reasonable choice is to begin with all 0’s and then
all 1’s. With such patterns, the stuck-at (including open) faults are identified. These faults
will appear as a bit with the opposite value of the test pattern – for a stuck-at 0 and a pattern
of 1’s, the 0 will appear and vice versa. Testing follows with an alternating 0-1 test pattern
to identify the bridge-type faults: two consecutive bits appearing with the same value.

Finally, we might use the RUNBIST instruction to command the individual devices
to execute their self-test sequences or some version of INTEST to test the device’s
internal logic. After completing the self-tests, the following will have been confirmed:
the boundary-scan infrastructure is working, the most common manufacturing faults
(stuck-at, open, or bridge) have been detected, and each of the devices that supports
boundary-scan in the system is present and has a basic level of functionality. One must
include other nonboundary-scan tests in the test suite to cover the remaining untested
devices. Additional, more detailed tests can be included as deemed necessary.

As with the scan design approach, if a failure is detected, debugging can be a bit com-
plex. Generally, when using scan design or boundary-scan tools, the system is made up of
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Integrated Circuit

or
Printed Circuit Board Logic

+V

device i
device i + 1

Figure 10.32 Boundary-Scan Interface Configuration

mainly VLSI class devices. Once again, we are going to have only limited visibility into
the internals of the devices. Such a restriction is not as severe as it may first appear long
term. Remember, in production the objective is to identify manufacturing defects, and such
defects are going to be external to the devices.

10.20 MEMORIES AND MEMORY SYSTEMS

The strategy for debugging memories and memory systems follows directly from the
techniques discussed in Chapter 4, Section 4.20, for testing memories and will not be
repeated here.

10.21 APPLYING THE STRATEGY – SUBSYSTEM AND SYSTEM TEST

Once the individual modules are tested and their behavior has been confirmed, they are
integrated and tested in larger subsystems until the complete system comes together. Many
of the techniques used at the module level still apply.

Of critical concern as subsystems are built and tested are the more insidious dynamic
and interaction problems that frequently occur as larger and larger portions of the system
are integrated. Designing and building individual modules that perform a desired function is
rather straightforward. Ensuring that several such modules function properly together when
signal delays, noise, temperature, and other aberrations from the real world are at play is a
more complex and challenging problem. Bringing all of the system modules together into
a properly functioning product offers one the opportunity to use a myriad of engineering



�

� �

�

536 Chapter 10 Hardware Test and Debug

tools and skills. Once again, a full understanding of the design forms an essential basis on
which this phase of the process is built.

As the remaining modules and subsystems are integrated, one must now also consider
several additional things: estimating how many bugs remain in the product and developing
tests that grow with the product. In large complex systems there is always the potential that
some unthought-of combination of signals will produce an undesired behavior.

During testing, the engineers may keep a log of the defects that turn up and rank them
on a scale of 1–5, for example, with 5 being critical (system crashes), 4 being serious (lost
functionality), and so on down to 1. A product may be considered to pass if no. 4 or 5 level
defects are logged against it in 40 hours of testing. If a defect is found, the clock starts over
again.

10.22 APPLYING THE STRATEGY – TESTING FOR OUR CUSTOMER

Remember that testing for the customer begins at the specification stage of design. At
this phase, we need to distinguish between production tests and ongoing testing for prod-Alpha and Beta Tests,

Verification Tests,
Validation Tests

uct support. Testing comprises a three-pronged attack comprised of Alpha and Beta tests,
Verification Tests, and Validation Tests.

10.22.1 Alpha and Beta Tests

The intent of alpha and beta tests is to gain real-world experience with the system. Early
versions of the product are given to selected customers or internal users. The goal is to have
the product used as it is intended and expected to be used.

Alpha tests occur shortly after system design. We assume that the first implementa-Alpha tests
tion has been completed and a comprehensive internal test suite has been conducted and
passed. Alpha testing is usually done by an in-house group of quality assurance testers when
hardware and software development teams release the product.

Beta tests follow the incorporation of the fixes for bugs or unwanted features discoveredBeta Tests
during alpha tests. Beta testing is usually done by a group of friendly users from outside
the company.

Both the alpha and beta tests series may be repeated any number of times until
the required level of confidence in the new product is reached. These tests are very
important because they give us the first look at how the design will operate in a real-world
environment.

10.22.2 Verification Tests

Verification testing is designed to prove that the product meets its specification. These tests
are not as comprehensive as some of the earlier system testing that was conducted. Remem-
ber that the efficacy of this test suite is only as good as the original specifications. When
thinking about putting a verification suite together, it might be useful to consider developing
a reduced regression suite.

10.22.3 Validation Tests

The intent of validation testing is to prove that the verification test suite is testing what it is
supposed to test, that it is making the required measurements within the required tolerance,
and that it can identify faults. The validation suite is executed prior to releasing tests to
production and whenever a product or its tests are modified.
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10.22.4 Acceptance Tests

The acceptance test suite is a set of tests the customer uses when accepting a product.
Such a suite may include any or all verification and validation tests. Later, during produc-
tion acceptance tests may be randomly applied to ensure that quality standards are being
-maintained.

10.22.5 Production Tests

Once a product has been released to production, one assumes that the system is designed
correctly and that it meets all specifications. Production tests are not developed to verify
the integrity of the design. Often, they are a subset of the verification tests. In writing these
tests, we imply a twofold goal:

1. Test the system the least amount necessary to ensure a quality system – that it meets
specifications and will not be dead on arrival at the customer site.

2. Test as quickly as possible.

Production testing does not add any value to the product; it is a cost. If one could
guarantee the quality of the component parts and the quality of manufacturing, such tests
could go away.

10.23 SELF-TEST

Self-tests were discussed in some detail in the chapter on reliability and safety. The follow-
ing paragraphs provide a brief summary of that discussion.

Self-tests are a series of built-in tests the system can execute. In developing and incor-
porating such tests into a design, the goals are to ensure that the system is working and to
use the test results as a basis for action if the system fails or locks up. Self-tests fall into
two general categories: those invoked on demand and those running in background.

on demand, in
background

10.23.1 On Demand

Self-tests invoked on demand are a sanity check to ensure that the system is basically oper-
ational. These tests are often done at power up and report a status on completion.

Caution: When developing such tests, the process of simply executing the test often
requires that most of the system be working.

10.23.2 In Background

Background tests can be as simple as a RAM read/write test or as complex as a test suite to
check the system busses for stuck lines, memory for ROM signature, or RAM for failed or
stuck bits. In addition, one may check math processing, built-in A/D accuracy by measuring
a known reference, or the D/A integrity by executing a conversion at the cardinal points.

Caution: Anything added to a system for testing can fail as well.
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10.24 SUMMARY

In this chapter we began the study of test by introducing some of
the relevant vocabulary. We then formulated a high-level model
for a testing strategy and motivated the need for planning, spec-
ifications, test procedures, and test cases. We followed with the
main reasons for debugging, test, and troubleshooting, and we
learned how the modeling and simulation tools studied earlier
in the context of original design can apply to the test problem
as well.

We examined test and the test process from several per-
spectives that ranged from black to white box models. We

moved into the various kinds of testing that take place dur-
ing the different stages of the product life cycle. We began
with the early phases of the test and debug strategy by exam-
ining the debugging process, and we studied how to iso-
late common faults in combinational and in sequential logic.
We concluded with a brief look at testing for the customer
and some of the various kinds of tests that one performs in
production.

10.25 REVIEW QUESTIONS

Defining a Strategy

10.1 Debugging, troubleshooting, and testing have similar
goals, but occur at different times during a product’s lifetime
with a different set of premises. When does each of these occur?

10.2 What are the underlying assumptions about the design at
the start of debugging? troubleshooting? testing?

Formulating a Plan

10.3 What are the four main reasons for testing a design?

10.4 What is stress testing, and what is its purpose?

10.5 What is a test plan, and what is it based on?

10.6 What is the purpose of a test plan?

10.7 What is a test specification, and what is it based on?

10.8 What is the purpose of a test specification?

Executing the Plan

10.9 What is a test procedure? What is its purpose?

10.10 What is a test case, and what is it based on?

10.11 What is the purpose of a test case?

10.12 What is a test suite?

Applying the Strategy – Egoless Design

10.13 What is egoless design?

Applying the Strategy – Design Reviews

10.14 What is the purpose of a design review?

10.15 During what stage of the development life cycle should
a design review be held?

10.16 Who should participate in a design review?

Applying the Strategy – Module Debug and Test

10.17 What is a smoke test?

10.18 During the early stages of debugging, what kinds of prob-
lems are typically identified?

10.19 What is a black box test? gray box test? white box test?

10.20 What do the expressions directly observable and indi-
rectly observable mean in the context of debug and test?

10.21 What is fault forwarding?

10.22 What is path sensitizing?

Applying the Strategy – Subsystem and
System Test

10.23 What kinds of problems are likely to occur at the subsys-
tem and system test level?

10.24 When is a system test process complete?

Applying the Strategy – Testing for
the Customer

10.25 What is an alpha test? beta test?

10.26 What are the goals and objectives of alpha tests? beta
tests?

10.27 What are the goals and objectives of verification tests?
validation tests?

10.28 What are the goals and objectives of acceptance tests?
production tests?

10.29 What are the goals and objectives of self-tests?

10.30 What is the difference between on demand and back-
ground self-test?
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10.26 THOUGHT QUESTIONS

Defining a Strategy

10.1 We have found that the processes of debugging, trou-
bleshooting, and testing have similar goals, but occur at different
times during a product’s lifetime, processes with a different set
of premises. How do the strategies and goals for each of these
differ?

10.2 Why is a sound strategy essential for effective debugging,
troubleshooting, or testing?

10.3 How does testing strategy change with product type, for
example, a video game, a medical device, or a robot control
system?

10.4 Some say that design should be a top-down process while
debug and test should be bottom up. What do they mean?

10.5 When formulating a self-test strategy, what things should
one consider? Explain each of your choices.

10.6 Discuss the pros and cons of fault seeding as a test
strategy.

Formulating a Plan

10.7 The chapter cites four main reasons for testing a design.
Can you propose others?

10.8 Beyond testing the functionality of the hardware and
software components in an embedded design, what other kinds
of tests should be performed? Explain your thinking behind your
proposal.

10.9 What information should be included in a test plan?

10.10 What information should be included in a test
specification?

Executing the Plan

10.11 How does a test procedure differ from a test specifica-
tion?

10.12 What kinds of signal values should be tested under a test
suite?

10.13 What range of signal values should be utilized during
debugging and prior to release to production?

10.14 What range of signal values should be utilized following
release to production?

10.15 Is it necessary to apply all combinations of input signals
to test a system? Why or why not?

10.16 When a debugging test fails, what kind of informa-
tion should be recorded and kept? Please explain each of your
recommendations.

10.17 What is test coverage? Why is it important?

10.18 What should be the next steps following a test failure dur-
ing debug? during stress testing? during production test? during
alpha or beta test?

Applying the Strategy – Egoless Design

10.19 Why is egoless design considered to be part of test?

Applying the Strategy – Design Reviews

10.20 Design reviews should be held several times during a
product’s development cycle. What aspects of the product design
should be examined during each of those design reviews?

Applying the Strategy – Module Debug and Test

10.21 When formulating a debugging strategy, what are some
of the major areas that one should consider?

10.22 What is fault masking? Why is it a potential problem?

10.23 On the software side of test, what is dead code?

Applying the Strategy – Subsystem and
System Test

10.24 What kinds of problems are likely to occur at the subsys-
tem and system test level?

10.25 Propose and discuss capabilities that can be incorporated
into a hardware design that can facilitate debug and test; a soft-
ware design.

10.26 When can one say, prior to release to production, that the
system test process is complete?

Applying the Strategy – Testing for the
Customer

10.27 What should one do following completion of an alpha
test phase? beta test phase?

10.28 Can sufficient testing ensure the quality of a product?

10.29 Why is production testing considered a burden rather
than a benefit?

10.30 If a failure has occurred either on the system bus or within
the memory subsystem, how can a self-diagnostic program be
executed?

10.31 Discuss some of the benefits of an on-demand self-test?

10.32 Are there circumstances under which it is reasonable to
release and ship a product that has known bugs? Explain your
thinking.
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10.27 PROBLEMS

Debugging and Testing Systems

In the problems in this chapter, we will take the next steps in the
product development life cycle. In earlier chapters we looked
at the formal approaches to design, the detailed design of the
hardware side and the software side. In this chapter, we have
examined two aspects of that process: debug and test. In the first,
we assume that the first cut at the design of the hardware and
software modules that comprise the design is complete. In the
second, the product is ready to go into production.

As we learned in the chapter, a strategy, a plan, is essential
in both endeavors. We will now address each of those parts of
the process.

For the systems designed in Problems 9.1–9.10 at the end
of Chapter 9:

(a) Formulate a debugging strategy. What module should be
debugged first, what inputs should you use, what outputs should
you expect to see? How should you begin to integrate the mod-
ules? What should you do on failure?

(b) Formulate a test plan. Tie this plan back to the original
requirements. What should be tested? How extensively? How
can you generate test inputs, outputs? Should you do boundary
condition testing? Is running/testing the system at full operating
speed important?
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PART 3 DOING THE WORK

• Chapter 11: Real-Time Kernels and Operating Systems

• Chapter 12: Tasks and Task Management

• Chapter 13: Deadlocks

• Chapter 14: Performance Analysis and Optimization

Chapter 11

Real-Time Kernels and Operating
Systems

THINGS TO LOOK FOR …

• Understanding of tasks and threads.

• The motivation for multitasking and multiprocessing.

• Understanding of the basic concepts and vocabulary of multitasking and multiprocess-
ing.

• The definition of an operating system kernel.

• Meaning of foreground–background systems.

• Understanding of task control blocks.

• The description of an operating system and its responsibilities.

• The major responsibilities and architecture of an operating system.

• Characteristics that distinguish a real-time operating system.

• The meaning of and differences between soft and hard real-time systems.

• The different kinds of stacks in a system and their role in context switching.

11.1 INTRODUCTION

A typical embedded system solves a complex problem by decomposing it into a number
of smaller, simpler pieces called tasks that work together in an organized way. Such a sys-
tem is called a multitasking system. Several important aspects of a multitasking designMultitasking

Embedded Systems: A Contemporary Design Tool, Second Edition. James K. Peckol.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/college/peckol
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include exchanging/sharing data between tasks, synchronizing tasks, scheduling taskexchanging/sharing
synchronizing,

scheduling, sharing
resources, operating

system, real-time

execution, and sharing resources among the tasks. The piece of software that provides the
required coordination is called an operating system. When the control must ensure that
task execution satisfies a set of specified time constraints, the operating system is called a
real-time operating system (RTOS).

This chapter provides an introduction to and motivation for implementing tasks and
multitasking as a design strategy for an embedded application. We will introduce some of
the necessary terminology and examine the critical role of time in developing and deploying
many embedded applications.

We will start by examining the tasks themselves and look at some of the problems that
arise when we seek to build, operate, and control a system made up of a number of indepen-
dent tasks. We will introduce the operating system as one means to coordinate and control
the task execution so as to ensure that the higher level application performs as we desire.
We will identify the major responsibilities of an operating system, examine the character-
istics and capabilities that distinguish an RTOS, and then study the core set of requirementsRTOS – Real-Time

Operating System of the OS as embodied in the kernel. We will identify the central responsibilities of and the
basic architecture for various control strategies. Finally, we will look at different kinds of
stacks and their role in managing context switches associated with task state changes, task
preemption, or interrupts.

11.2 TASKS AND THINGS

Let’s open the discussion with an invitation to a small group of special friends. We invite
them over for an evening filled with music, a gourmet meal, and perhaps some congenial
philosophical discussions while dining. For our friends, it is important that everything be
perfect. We want each of the dishes that are being prepared to finish at the same time so that
they are cooked to perfection and can all be presented at the table together. As we plan the
meal, we have to decide when we must start cooking the meat, the fish, the vegetables, the
rice or potatoes or noodles. If we have scheduled everything properly, they will all finish
together and culminate in a marvelous banquet; if not, we order out and then rely on the
music and conversation.

At some point, all of the different dishes are cooking together. We have broken the main
task – cook the meal – down into a number of smaller ones, subtasks, that can be done at
the same time. However, since there is only one of us, we cannot devote all of our attention
to each of the subtasks all the time. Therefore, we continually check one dish and then the
next to make sure that everything is proceeding smoothly – add a little salt here, adjust the
flame a bit there, add a little wine to that sauce, adjust the seasoning on this one, start that
one. We can capture the meal preparation in a high-level UML activity diagram as shown
in Figure 11.1.

The common approach to designing an embedded application follows the same pat-
tern. The application comprises a number of tasks that must be completed in order for the
intended application to be completed. In the preparation of the meal, we are working on
several of the tasks at the same time; in the application, the CPU is being shared among the
tasks so that each can progress.

In the earlier studies of design, as with the meal, we learned to partition the application
first into major functions and then into smaller pieces. Ultimately, we mapped those pieces
onto the hardware and software modules. Each of the software modules that comprise the
embedded program is simply a collection of instructions – the firmware – that direct the
system’s central processing unit, the CPU, to carry out a prescribed job. If the partitioning
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Set Menu

Prepare Stock

Add Veggies

Eat

Clean Fruit

Puree Fruit

Add Sugar

Evening with Friends

Enjoy Meal

Manage Seasoning

Season Fish

Steam Fish

Clean Fish

Simmer

Prepare Meat

Season Meat

Cook Meat

Make Sauce

Add Salt

[Needs Salt]

Reduce Sauce Serve Fish

Prepare Garnish

Adjust Flavoring

Put into Freezer

Remove from Freezer and Serve

[Lightly Frozen]

Clean Veggies

Steam Veggies Prepare Sauce

Serve VeggiesServe Soup

Sereve Meat and Sauce

Figure 11.1 Activity Diagram for Preparing a Meal for Friends
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is done well, each of the smaller modules will naturally become one of the tasks that make
up the application.

11.3 PROGRAMS AND PROCESSES

An embedded program, made up of a collection of firmware modules, is a static entity. It can
do no useful work unless it is running or executing. When a firmware module is executing,running, executing

process, task it is called a process or task. These words are often used interchangeably. When a process
is created, it is allocated a number of resources by the operating system. These can include
a process stack, memory address space, registers (through the CPU), a program counter,
I/O ports, network connections, file descriptors, and so on. These resources are generally
not shared with other processes.

During execution, the contents of the program counter are continually changing as the
process moves from instruction to instruction within the program, reading, manipulating,
and writing data. That data may be produced by the application, read from the system’sdata
memory, or entered into the system from some external source, such as sensors, switch
closures, or remote applications. The currently executing instruction (identified by the value
of the program counter) and the present values of the associated data in memory or in
registers are collectively known as the process state. The process state may contain theprocess state
values of a large number of other pieces of information as well.

11.4 THE CPU IS A RESOURCE

The traditional view of computing focuses on the program. One says that the program, orprogram
more specifically a task within the program, is running on the computer. In an embedded
application, we change the point of view to that of the microprocessor. Viewed with respect
to the microprocessor – more specifically, the CPU – the CPU is being used to execute the
firmware. The CPU is another resource that is available for use by the task to do its job as
illustrated in Figure 11.2.

Stack

Data
(Address Space)

Firmware
(Address Space)

Status Resources

CPU

Single Process

Figure 11.2 A Model of a Single
Process (the CPU is a Resource)

As is evident from this figure, when a task enters the system it takes up
space – -memory – and uses other system resources. The time that it takes to com-
plete is called its execution time. The duration from the time when it enters the systemexecution time,

terminates, persistence until it terminates is called its persistence. If there is only a single task in the system, there
will be no contention for resources and no restrictions on how long it can run.
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If a second task is added to the system, potential resource contention problems arise.
Generally, there is only one CPU and the remaining resources are limited. The problem is
resolved by carefully managing how the resources are allocated to each task and by con-
trolling how long each can retain the resources.

The main resource, the CPU, is given to one task for a short while and then to the other.
If each task shares the system’s resources back and forth, each can get its job finished. If the
CPU is passed between the tasks quickly enough, it will appear as if both tasks are using
it at the same time. We will thus have a system that models parallel operations by time
sharing a single processor. The execution time for the program will be extended, but the
operation will give the appearance of simultaneous execution. Such a scheme is called
multitasking; the tasks are said to be running concurrently. The concept can easily be

appearance,
multitasking,
concurrently

extended to more than two tasks as Figure 11.3 illustrates.

Stack

Data
(Address Space)

Firmware
(Address Space)

Status Resources

CPU

Stack

Data

(Address Space)

Firmware

(Address Space)

Status Resources

CPU
Stack

Data
(Address Space)

Firmware

(Address Space)

Status Resources

CPU

Process

Process

Process

Process

Figure 11.3 Multiple Processes

11.4.1 Setting a Schedule

Under such a scheme, in addition to the CPU, the processes are sharing other system
resources as well such as timers, I/O facilities, and busses. Despite the illusion that all
of the tasks are running simultaneously, in reality, at any instant in time, only one process
is actively executing. That process is said to be in the run state. The other process(es) is/are
in the ready waiting state. Such behavior is illustrated in the state and sequence diagrams

run
ready waiting

in Figure 11.4 for a system with three tasks. One task will be running while the others are
waiting to be given the CPU. With the ability to share the CPU among several tasks, the
problem of deciding which task will be given the CPU and when arises.

As with many similar such problems in real life, a schedule is set up to specify when,schedule
under what conditions, and for how long each task will be given use of the CPU (and other
resources).
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Running
Ready

Waiting

Task0 Task1 Task2

Figure 11.4 State Chart and Sequence Diagram for a System with Three Tasks

The criteria for deciding which task is to run next are collectively called a scheduling
strategy. Such strategies generally fall into three categories:scheduling strategy

1. Multiprogramming, in which the running task continues until it performs an opera-
tion that requires waiting for an external event (e.g. waiting for an I/O event or timer
to expire).

2. Real-Time, in which tasks with specified temporal deadlines are guaranteed to com-
plete before those deadlines expire. Systems using such a scheme require a response
to certain events within a well-defined and constrained time.

3. Time sharing, in which the running task is required to give up the CPU so that
another task may get a turn. Under a time-shared strategy, a hardware timer is used to
preempt the currently executing task and return control to the operating system. Suchpreempt
a scheme permits one to reliably ensure that each process is given a slice of time to
use the operating system.

11.4.2 Changing Context

A task’s context comprises the important information about the state of the task, such as thecontext
values of any variables (held in the CPU’s registers), the value of the program counter, and
so forth. Each time that a running task is stopped – preempted or blocked – and the CPU ispreempted, blocked

ready, switch, context given to another task that is ready, a switch to a new context is executed. A context switch
first requires that the state of the currently active task be saved. If the task that is scheduled
to get the CPU next had been running previously, its state is restored and it continues whererestored
it had left off. Otherwise, the new task starts from its initial state. As is evident, a context
change entails a lot of work and can take a significant amount of time.
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The earlier state diagram is now extended in Figure 11.5 to reflect a task entering the
system, being preempted, and terminating.

Executing
Ready
Waiting

Terminated
Exit

Blocked/
Waiting

New
Enter

Figure 11.5 A Basic Diagram of Possible Task States

11.5 THREADS – LIGHTWEIGHT AND HEAVYWEIGHT

As we learned earlier, a task or process is characterized by a collection of resources that are
utilized to execute a program. The smallest subset of these resources (a copy of the CPU
registers including the program counter and a stack) that is necessary for the execution of
the program is called thread. Think about the basic Turing machine. Sometimes the subset
of resources is also called a lightweight thread, in contrast to the process itself which may
be referred to as a heavyweight thread. A thread can be in only one process, and a process

thread
lightweight thread

heavyweight thread
without a thread can do nothing.

11.5.1 A Single Thread

The sequential execution of a set of instructions through a task or process in an embedded
application is called a thread of execution, or thread of control. Recall that the thread has a

thread of execution,
thread of control

stack and status information relevant to its state and operation and a copy of the (contents of)
the physical registers. During execution the thread uses the code (firmware), data, CPU (and
associated physical registers), and other resources that have been allocated to the process.physical
Figure 11.6 presents a single task with one thread of execution. The model is referred to as
a single process–single thread design.

single process–single
thread design

running, blocked,
ready, terminated

When we state that the process is running, blocked, ready, or terminated, in fact, we
are describing the different states of the thread.

If the embedded design is intended to perform a wide variety of operations with
minimal interaction, then it may be appropriate to allocate one process to each major
function to be performed. Such systems are ideal for a multiprocess–single thread

multiprocess–single
thread

implementation.
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Data
(Address Space)

Firmware

(Address Space)

Resources

Stack

Status

Thread
CPU

Figure 11.6 Single Process–Single Thread

11.5.2 Multiple Threads

Many embedded systems are intended to perform a single primary function. The operations
to be performed by that function are all interrelated. During partitioning and functional
decomposition, we should seek to identify which of those actions would benefit from par-
allel execution. We might consider allocating a subtask for each type of I/O.

The nature of an application executing as a single primary function suggests that the
associated process should be decomposed into a number of subtasks executing in parallel.
At runtime, the process can pass the CPU around to each of these subtasks, thereby enabling
each to do its job.

We now see that each of the smaller jobs has its own thread of execution. Such a system
is called a single process–multithread design. Unlike processes or tasks, threads are notsingle

process–multithread independent of each other. They can access any address within the process, including other
threads’ stacks. Why is this important to note?

Of significance is that a context switch between threads can be substantially simpler
and therefore faster than between processes. When switching between threads, much less
information must be saved and restored. Figure 11.7 illustrates one such task with multiple
threads.

Data

(Address Space)

Firmware

(Address Space)

Resources

CPU

Stack

Status

Thread

Stack

Status

Thread

Stack

Status

Thread

Figure 11.7 Single Process–Multiple Threads
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An operating system that supports tasks with multiple threads is, naturally, referred tomultithreaded
operating system as a multithreaded operating system.

We can easily extend the design of the application to support multiple processes. We
can further decompose each process into multiple subtasks. Such a system is, as expected,

multiprocess–multithread
design

called a multiprocess–multithread design.

11.6 SHARING RESOURCES

Based on the discussions up to this point, one can now identify four categories of multi-
tasking operating system.

1. Single process–single thread, as the name implies, has only one process and, in an
single process–single

thread
embedded application, that process runs forever.

2. A multiprocess–single thread supports multiple simultaneously executing processes;
multiprocess–single

thread
each process has only a single thread of control.

3. A single process–multiple threads design supports only one process; within the pro-

single
process–multiple

threads cess, it has multiple threads of control.
4. A multiprocess–multiple threads implementation supports multiple processes, and

multiprocess–multiple
threads

within each process there is support for multiple threads of control.

The major distinguishing feature among each of these schemes is which resources
the process and hence thread(s) is/are using and where the resources come from. First the
resources. At a minimum, a process or task will need:

• The code or firmware, the instructions.

These are in memory and have addresses.

• The data that the code is manipulating.

The data starts out in memory and may be moved to registers. The data has addresses.

• The CPU and associated physical registers.
• A stack.
• Status information.

These are reflected in each of the previous diagrams. The first three items are shared
among member threads, and the last two are proprietary to each thread. Note that each
thread does have a copy of the registers, however. There are often other necessary resources
as well, such as timers, measurement or signal-generation resources, and I/O ports.

11.6.1 Memory Resource Management

11.6.1.1 System-Level Management

Most microprocessor designs today are still based on the von Neumann architecture, in
which the program (instructions) is stored in memory in the same manner as any other
piece of information (data). When a process is created by the operating system, it is given
a portion of that physical memory in which to work. The set of addresses delimiting that
code and data memory, proprietary to each process, is called its address space. That addressaddress space
space will typically not be shared with any other peer processes. However, when multiple
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processes are concurrently executing in memory, an errant pointer or stack error can easily
result in memory owned by other processes being overwritten.

The system software must restrict the range of addresses that are accessible to the
executing process. A process (thread) trying to access memory outside its allowed range
should be immediately stopped before it can inflict damage on memory belonging to other
processes. One means by which such restrictions are enforced is through the concept of
privilege level.privilege level

Processes are segregated into those that have supervisor mode capability and those thatsupervisory mode
user mode have user mode capability. User mode limits the subset of instructions that a process can

use. To be able to access the entire memory space requires supervisory mode access.
Processes with a low (user mode) privilege level are simply not allowed to perform cer-

tain kinds of memory accesses or to execute certain instructions. When a process attempts
to execute such restricted instructions, an interrupt is generated and a supervisory pro-
gram with a higher privilege level decides how to respond. The higher (supervisor mode)
privilege level is generally reserved for supervisory or administration types of tasks that
one finds delegated to the operating system or other such software. Processes with such
privilege have access to any firmware and can use any instructions within the microproces-
sor’s instruction, set as we see in the diagram of the processor’s firmware address space in
Figure 11.8.

Supervisory Mode

Address Space

User Mode

Address Space User Mode
Access

Supervisor Mode

Access

Firmware

Figure 11.8 Address Space Access Privileges

11.6.2 Process-Level Management

A process may create or spawn child processes. When doing so, that parent process maychild processes
choose to give a subset of its resources to each of the children. The children are separate
processes and each has its own data address space, data, status, and stack. The code portion
of the address space is shared.

A process may create multiple threads. When doing so, that parent process shares mostmultiple threads
of its resources with each of the threads. These are not separate processes but separate
threads of execution within the same process. Each thread will have its own stack and status
information.
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Figure 11.3 illustrates that, in contrast to lightweight threads, processes or tasks existprocesses or tasks
in separate address spaces. Therefore, one must use some form of messaging or shared
variable for intertask exchange. Processes have a stronger notion of encapsulation than
threads since each thread has its own CPU state but shares the code section, data section,thread
and task resources with peer threads. It is this sharing that gives threads a weaker notion of
encapsulation.

11.6.3 Reentrant Code

Child processes and, consequently, their threads share the same firmware memory area. As
a result, two different threads can be executing the same function at the same time. Func-
tions using only local variables are inherently reentrant. That is, they can be simultaneouslyreentrant
called and executed in two or more contexts.

Local variables are copied to the stack and each invocation will get new copies. On
the other hand, functions that use global variables, variables local to the process, variables
passed by reference, or shared resources are not reentrant. One must be particularly careful
to ensure that all accesses to any common resources are coordinated. When designing the
application, one must make certain that one thread cannot corrupt the values of the variables
in a second. Any shared functions must be designed to be reentrant.

Coding Style

It is good practice to make certain that all functions are reentrant. One never knows when
a future modification to the design may need to share an existing function.

11.7 FOREGROUND / BACKGROUND SYSTEMS

The foreground/background model for managing task execution decomposes the set of tasks
comprising the application into two subsets called background tasks and foreground tasks.
The traditional view of such systems allocates tasks that interact with the user or other I/O

foreground/background
model, background

tasks, foreground tasks
devices to the foreground set and the remainder to the background set. The interpretation
is slightly modified in the embedded world.

The foreground tasks are those initiated by interrupt or by a real-time constraint that
must be met. They will be assigned the higher priority levels in the system. In contrast,
background tasks are noninterrupt driven and are assigned the lower priorities. Once started,
the background task will typically run to completion; however, it can be interrupted or pre-
empted by any foreground task at any time. Often separate ready queues will be maintained
for the two types of tasks. Schedules, scheduling, and priorities will be discussed in the next
chapter.

The background tasks should include all those that do not have tight time constraints.
Tasks that are designed to continuously monitor system integrity or involve heavy process-
ing are good candidates.

11.8 THE OPERATING SYSTEM

An embedded operating system provides an environment within which the firmware pieces,operating system
the tasks that make up an embedded application, are executed. Perhaps the easiest way
to first view an operating system is from the perspective of the services it can provide.
Internally, operating systems vary greatly in both design and the strategy for delivering
such services.



�

� �

�

552 Chapter 11 Real-Time Kernels and Operating Systems

To begin, an operating system must provide or support three specific functions.

1. Schedule task execution.
2. Dispatch a task to run.
3. Ensure communication and synchronization among tasks.

The scheduler determines which task will run and when it will do so. The dispatcherscheduler, dispatcher
intertask or
interprocess

communication
kernel

performs the necessary operations to start the task, and intertask or interprocess communi-
cation is the mechanism for exchanging data and information between tasks or processes
on the same machine or on different ones. The kernel is the smallest portion of operating
system that provides these functions.

In an embedded operating system, such functions are captured in the following types
of services:

• Process or Task Management
The central component of task management entails the creation and deletion of user
and system processes as well as the suspension and resumption of such processes.
How the task management responsibilities are handled determines, in large part,
whether the OS can be defined as real time. Additional responsibilities include the
management of inter-process communication and of deadlocks. Deadlocks arise
when two or more tasks need a resource that is held by some other task.

• Memory Management
Among other responsibilities, memory management services include the tracking and
control of which tasks are loaded into memory, monitoring which parts of memory are
being used and by whom, administering dynamic memory if it is used, and managing
caching schemes.

• I/O System Management
Management of system input and output can include a wide range of responsibilities.
An embedded application must interact with a great variety of different devices. In
more complex systems, such interaction occurs through a special piece of software
called a device driver. In a well-designed system, the internal side of that softwaredevice driver

common calling
interface, application

programmer’s
interface API

has what is called a common calling interface – an application programmer’s inter-
face (API). The motivation in such an approach is to permit the application software
to interact with each of the different devices in the same way. With UNIX™, for
example, everything looks like a file. The operating system must manage the inter-
action between each of those devices and the users or tasks in the application. Also
included in such interaction is the caching and buffering of all input and output trans-
actions as necessary.

• File System Management
As the name suggests, file system management responsibilities are directed toward
the creation, deletion, and management of files and directories. Recall the discussions
about file management problems with the Mars rover Spirit. In that instance, the
directory structure could not be created during boot because of available memory
limitations.

Another task that falls under the auspices of the file management portion of the OS is
that of working with nonvolatile storage if such capability is included in the system. Duties
can include routine backup of any data that is to be saved as well as emergency backup,
either as power is failing or as some other catastrophic event is occurring to the system.
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• System Protection
As discussed earlier, ensuring the protection of data and resources in the context of
concurrent processes is an important and essential duty for the operating system. Such
a duty is more acute in the context of a von Neumann machine.

• Networking
In the context of a distributed application, the operating system must also take on the
responsibility of managing distributed intra-system communication and the remote
scheduling of tasks.

• Command Interpretation
The operating system in machines such as the familiar desktop computers that directly
interact with the user provides the interface to that user’s application. In embedded
applications that support provisions for user interaction, the task is implemented via
a variety of software drivers supported by the OS that interact with the hardware I/O
devices. As commands and directives come into the system, they must be parsed,
checked for grammatical accuracy, and directed to the target task.

11.9 THE REAL-TIME OPERATING SYSTEM (RTOS)

A RTOS is primarily an operating system. In addition to the responsibilities already enu-
merated, this special class of operating system ensures (among other things) that (rigid) time

real-time operating
system (RTOS)

constraints can be met. The RTOS is commonly found in embedded applications because, as
noted, in certain such applications, if such requirements are not met, the performance of the
application is inaccurate or compromised in some way. Such systems are often interacting
with the physical environment through sensors and various types of measurement devices.
RTOS-based applications are frequently used in scientific experiments, control systems, or
other applications where missed deadlines cannot be tolerated.

Often, people misuse the term real time to mean that the system responds quickly. Such
an interpretation is only partially correct. The key characteristic of an RTOS is deterministic
behavior. By this term we mean that given the same state and same set of inputs, the next
state (and any associated outputs) will be the same each time the control algorithm utilized
by the system is executed.

In earlier discussions, we identified the two extremes in real-time behavior: that which
is termed hard real time and that designated soft real time. Behavior that falls into the
first category is sufficiently characterized such that system delays are known or, at least,

hard real time, soft
real time

bounded. These systems are said to be operating correctly if they can return results within
the specified timing bounds. Behavior classified as soft real time ensures that critical tasks
have priority over other tasks and retain that priority until complete. A real-time task cannot
be kept waiting indefinitely. We will return to this discussion shortly.

11.10 OPERATING SYSTEM ARCHITECTURE

Most contemporary operating systems are designed and implemented as a hierarchy of what
are called virtual machines, as illustrated in Figure 11.9. Organized like the onion modelvirtual machines
discussed earlier, the only real machine that the various pieces of functionality within the
operating system see is the underlying physical microprocessor; specifically, the OS sees the
CPU, the memory, and the concrete I/O devices. The hierarchy is designed such that each
layer uses the functions/operations and services of lower layers. The primary advantage of
such an approach is increased modularity.



�

� �

�

554 Chapter 11 Real-Time Kernels and Operating Systems

Microprocessor Hardware
and

Hardware Resources

Thread Management

CPU and Resource
Scheduling / Dispatching

System and User
Memory Management

Command Interface
System I/O

(Embedded)
Application

Intertask
Communication

Figure 11.9 Operating System Virtual Machine Model

A typical architecture for an operating system appears in Figure 11.10. In some
architectures, the higher level layers have access to lower levels through system calls
and hardware instructions. The existing calling interface between levels is retained while
providing access to the physical hardware below.

Microprocessor Hardware
and

Hardware Resources

Thread Management

CPU and Resource
Scheduling / Dispatching

Intertask
Communication

System and User

Memory Management

Command Interface

System I/O

(Embedded)

Application

Figure 11.10 Typical High-Level Operating
System Architecture

With such capability, an interface can be made to appear as if it is a machine executing
a specific set of instructions as defined by the API. The idea can be logically extended so
as to create the illusion that the tasks at each level are running on its own machine. Each
level in such a model is called a virtual machine.virtual machine

With such an approach, one could run entirely different operating system as an applica-
tion within the primary OS. Such a virtual machine implementation can be difficult to effect
in general. There is not always a good match between the hardware on the real machine and
that required by the emulated or virtual machine. The real machine may have two I/O ports,
one serial and one parallel, for example, and the emulated machine may need three serial



�

� �

�

11.11 Tasks and Task Control Blocks 555

and two parallel ports. Clearly, one cannot create more physical ports than exist in reality;
therefore, the remaining necessary ports must be virtual.

11.11 TASKS AND TASK CONTROL BLOCKS

A traditional or RTOS orchestrates the behavior of an application by executing each of
the tasks that comprise the design according to a specified schedule. That schedule and
its management in an RTOS can determine success or failure of the design. Each task or
process is represented by a task or process control block (TCB).

task,
task or process control

block (TCB)

11.11.1 The Task

A task or process simply identifies a job that is to be done within an embedded application.
More specifically, it is a set of software (firmware) instructions, collected together, that are
designed and executed to accomplish that job. An embedded application is thus nothing
more than a collection of such jobs. How and when each is executed is determined by the
schedule and the dispatch algorithms; how and what data are acted upon by the task is
specified by the intertask communication scheme. The performance of each of these three
operations determines the robustness and quality of the design.

11.11.2 The Task Control Block

In a tasked-based approach, each process is represented in the operating system by a data
structure called a task control block (TCB), also known as a process control block. The TCB
contains all of the important information about the task. A typical TCB, which contains the
following information, is illustrated in Figure 11.11:

task control block
(TCB),

process control block

• Pointer (for linking the TCB to various queues).

• Process ID and state.

• Program counter.

• CPU registers.

• Scheduling information (priorities and pointers to scheduling queues).

• Memory management information (tag tables and cache information).

• Scheduling information (time limits or time and resources used).

• I/O status information (resources allocated or open files).

Pointer State

Process ID

Program Counter

Register Contents

Memory Limits

Open Files

Etc. Figure 11.11 Task Control Block
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TCB allocation may be static or dynamic. Static allocation is typically used in embed-
ded systems with no memory management. There are a fixed number of TCBs; the memory
is allocated at system generation time and placed in a dormant or unused state. When a task
is initiated, a TCB is created and the appropriate information is entered. The TCB is then
placed into the ready state by the scheduler. From the ready state, it will be moved to the
execute state by dispatcher. When a task terminates, the associated TCB is returned to the
dormant state. With a fixed number of TCBs, no runtime memory management is necessary.
One must be cautious, however, not to exhaust the supply of TCBs.

With dynamic allocation, a variable number of TCBs can be allocated from the heap
at runtime. When a task is created, as was done with a static allocation, the TCB is created,
initialized, and placed into the ready state and scheduled by the scheduler. From the readyready

execute state, it will be moved to the execute state and given the CPU by dispatcher. When a task
is terminated, the TCB memory is returned to heap storage. With a dynamic allocation,
heap management must be supported. Dynamic allocation suggests an unlimited supply
of TCBs. However, the typical embedded application has limited memory; allocating too
many TCBs can exhaust the supply. A dynamic memory allocation scheme is generally too
expensive for smaller embedded systems.

When a task enters the system, it will typically be placed into a queue called the EntryEntry Queue,
Job Queue Queue or Job Queue. The easiest and most flexible way to implement such a queue is to

utilize a linked list as the underlying data structure. Thus, the last entries in the TCB hold
the pointers to the preceding and succeeding TCBs in the queue. One certainly could use
an array data type as well. However, some flexibility is compromised later in the imple-
mentation of the OS. Whether a queue, an array, or some other data type is used to hold the
TCBs, the entries must all look alike. Such a requirement will impose some restrictions on
how the TCB is implemented.

In C, the TCB is implemented as a struct containing pointers to all relevant information,
as seen in the C code fragments in Figure 11.12. Because the data members of a struct must
all be of the same type, the pointers are all void* pointers. The skeletal structure for a typical
TCB identifying the essential elements, the task, and an example set of task data are given
in the C declarations presented in Figure 11.12.

The first entry in the TCB in the figure is a pointer to a function – taskPtr. That functiontaskPtr
embodies the functionality associated with the task. The function’s parameter list comprises

// The data passed into the task

struct taskData

{

int taskData0;

int taskData1;

char taskData2

};

// The task

void aTask(void* taskDataPtr)

{

function body; 

}

// The task control block

struct TCB

{

void (*taskPtr)(void* taskDataPtr);

void* taskDataPtr;

void* stackPtr;

unsigned short priority;

struct TCB* nextPtr;

struct TCB* prevPtr

};

Figure 11.12 Task Control Block
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the single argument of type void*. Because we do not wish to place any restrictions on the
kinds of information that is passed into the task and because we do not want to force each
task to take the same kinds of data, we utilize a struct as the means through which to pass
the data into the task. To satisfy the requirement that all TCBs must look alike and yet be
able to retain flexibility on what data is passed into the task, the type information associated
with the data struct is removed by referencing it through a void* pointer. Within the task
itself, the pointer must be cast back to the original type before it can be dereferenced to get
the data.

Each task will have its own stack. The third entry in the TCB is a pointer to that stack.
The fourth entry gives the priority for the task. The fifth and sixth entries are pointers used
to link the TCB to the next and previous TCBs in any of the aforementioned queues.

11.11.3 A Simple Kernel

Let’s now develop a rudimentary operating system kernel through a progression of simple
examples to see how all of these pieces might work together. We will assume that three
simple jobs are to be scheduled and performed:

• Bring in some data.

• Perform a computation on the data.

• Display the data.

The initial example will be a simple queue of functions operating on shared data. In this
example, an array will be used as the underlying data type of the queue. The system will run
forever and each task will be scheduled and executed in turn. An important characteristic of
such an implementation is that each task will run to completion before another is allowed
to run.

The second example will declare a TCB for each task. The TCB will contain the task
(referenced through a pointer to the function implementing the task) and the data that
will be passed into that task. The task queue will still be implemented using an array,
and the scheduling and dispatching algorithm will be retained. As in the first example,
each task runs to completion. Both designs are expressed in the data flow diagram in
Figure 11.13.

Get

1.0

Data Buffer

Increment

2.0

Display

3.0

Remote Output

Remote Input

Figure 11.13 Three Asynchronous Tasks Sharing a Common Data Buffer
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The software listing in Figure 11.14 gives a first cut at the design of a simple operatingEXAMPLE 11.1
system kernel.

void main(void)

{

// queue indexint i=0;

// declare a shared dataint data;

int* aPtr = &data; // point to it

void (*queue[3])(void*); // declare queue as an array of pointers to

// functions taking an arg of type void*

queue[0] = get; // enter the tasks into the queue

queue[1] = increment;

queue[2] = display;

while(1)

{

queue[i] ((void*) aPtr); // dispatch each task in turn

i = (i+1)%3;

}

return;

}

void get (void* aNumber) // perform input operation

{

printf ("Enter a number: 0..9 ");

*(int*) aNumber = getchar();

// discard crgetchar();

*(int*) aNumber -= '0'; // convert to decimal from ascii

return;

}

void increment (void* aNumber) // perform computation

{

int* aPtr = (int*) aNumber;

(*aPtr)++;

return;

}

void display (void* aNumber) // perform output operation

{

printf ("The result is: %d\n", *(int*)aNumber);

return;

}

// Building a simple OS kernel - step 1

#include <stdio.h>

// Declare the prototypes for the tasks

void get (void* aNumber); // input task

void increment (void* aNumber); // computation task

void display (void* aNumber); // output task

Figure 11.14 A Simple Operating System Kernel
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The design in Example 11.1 is now modified in Figure 11.15 to utilize task control blocks.EXAMPLE 11.2

// Building a simple OS kernel - step 2

#include <stdio.h>

// Declare the prototypes for the tasks

void get (void* aNumber); // input task

void increment (void* aNumber); // computation task

void display (void* aNumber); // output task

// Declare a TCB structure

typedef struct 

{

void* taskDataPtr;

void (*taskPtr)(void*);

}

TCB;

void main(void)

{

// queue indexint i=0;

int data;

int* aPtr = &data; // point to it

TCB* queue[3]; // declare queue as an array of pointers to TCBs

// Declare some TCBs

TCB inTask;

TCB compTask;

TCB outTask;

TCB* aTCBPtr;

//  Initialize the TCBs

inTask.taskDataPtr = (void*)&data;

inTask.taskPtr = get;

compTask.taskDataPtr = (void*)&data;

compTask.taskPtr = increment;

outTask.taskDataPtr = (void*)&data;

outTask.taskPtr = display;

// Initialize the task queue

queue[0] = &inTask;

queue[1] = &compTask;

queue[2] = &outTask;

// schedule and dispatch the tasks

while(1)

{

aTCBPtr = queue[i];

aTCBPtr->taskPtr( (aTCBPtr->taskDataPtr) );

i = (i+1)%3;

}

return;

}

// declare a shared data

void get (void* aNumber) // perform input operation

{

printf ("Enter a number: 0..9 ");

*(int*) aNumber = getchar();

discard cr//getchar();

*(int*) aNumber -= '0'; // convert to decimal from ascii

return;

}

Figure 11.15 A Simple Operating System Kernel
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void increment (void* aNumber) // perform computation

{

int* aPtr = (int*) aNumber;

(*aPtr)++;

return;

}

void display (void* aNumber) // perform output operation

{

printf ("The result is: %d\n", *(int*)aNumber);

return;

}

Figure 11.15 (Continued)

There are potentially two basic problems with the designs in the previous two examples.
The first arises from the flow of control through the set of tasks. Because each task holds
the CPU until it completes, if any of the tasks does not relinquish control, the system hangs
forever. Case in point is the get() task, which depends on the user entering a piece of data.get()
The second potential problem arises from how the intertask communication is affected.
All of the tasks share a common variable, data. In the present design, two of the tasks aredata
reading the data and only one is writing the data. Moreover, since only one task can be
active at any one time, there is no problem.

The first problem can be addressed by using interrupts. Rather than waiting for data to
be entered, the get() task can be decomposed into two pieces. The first task can prompt for
data to be entered and then exit. The second, with invocation based on a keyboard interrupt,
can read data when it is available.

To implement the design improvement, several modifications must be made. The
interrupt service routine (ISR) must be written, and the ISR must be added to the vectorinterrupt service

routine ISR table.

11.11.4 Interrupts Revisited

Since each processor and cross-compiler manages interrupts using a proprietary protocol,
we will illustrate the generic procedure by mixing pseudocode with the C routines. To that
end, we will define the pseudocode function setVect() as shown in Figure 11.16.setVect()

When called, the function will enter the pointer to the ISR function into the designated
slot in the interrupt vector table.

Each processor associates the supported interrupts with the corresponding hardware or
software function or source. Interrupts may originate inside or outside of the processor and
may be proprietary to the system or to the user.

When defining and using interrupts, one must be certain that an ISR be written and
assigned to every interrupt that is being used and to ensure that the routine is assigned to the

Syntax

void setVect(unsigned int intNum, void(anISR*)(void));

intNum interrupt number

anISR the interrupt service routine

Figure 11.16 Specifying an Interrupt Service Routine
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proper interrupt. If an interrupt is used and no ISR is written or assigned, when the interrupt
occurs the (invalid) contents of the associated slot in the vector table will be interpreted as
the address of the ISR. The processor will vector to that address in memory which has
no meaningful code associated; the execution of subsequent instructions (or data for that
matter) can potentially cause the system to crash.

Most microprocessors support several levels of control of the interrupt. In this context,
control specifies the ability of the system (and ultimately the process) to accept or ignore
interrupts. The highest level of control is provided by enable and disable instructions. As theenable, disable
names suggest, the enable instruction permits an interrupt to be recognized by the system.
The disable instruction does the opposite.

The second level of control is implemented through masking. Such capability permitsmasking
one to selectively listen to or ignore individual interrupts. Typically, the microprocessor
supports a mask register with one bit associated with each interrupt. If the mask bit is a
logical 1, the associated interrupt will be recognized when it occurs. Similarly, when the bit
is a logical 0, the interrupt will be ignored. If masking is supported, normally at least one
of the interrupts will be designated as nonmaskable. That is, the interrupt must be listenednonmaskable
to and responded to. Generally, nonmaskable interrupts are associated with system-level
functionality and are often disaster management tools.

The third level of control assigns a priority to each interrupt. Higher priority interrupts
can interrupt those with lower priority, but not vice versa. In most cases, the priority of each
interrupt is set by the microprocessor manufacturer.

An interrupt can be viewed as an asynchronous function or a subroutine call. The
mechanics of handling an interrupt (by the system) duplicate most of those we encountered
with function calls. Like the function call, under interrupt the system state information is
held on the stack and restored on return. Consequently, as is also found with the function
call, it is possible to overflow the stack. If, under a priority-based scheme, interrupts are
permitted to interrupt an interrupt in its ISR at the same level, the potential for stack over-
flow exists and must be managed. The normal solution is to disable or mask the interrupts
as appropriate to ensure that overflow cannot occur. When disabling or masking interrupts,
bear in mind that the causative event still occurs; the system simply does not respond. Thus,
when working with interrupts and ISRs, always keep the routine as simple and short as pos-
sible. An ISR with more than a 12–18 lines of code is probably too long. The objective is to
respond to the interrupt, do the minimum amount of work that absolutely needs to be done,
and then exit the ISR; further processing, if necessary, can be done in one of the tasks or
foreground processes.

Example 11.3 illustrates the use of an interrupt to manage the asynchronous input to
the system from the keyboard. In the design, all of the tasks now access the shared variable
globally as illustrated in the data and control flow diagram in Figure 11.17.

Prompt
1.0

Prompted

Data Buffer

Data Available

Get Data
2.0

Increment
3.0

Display
4.0

Remote Output
Remote Input

Figure 11.17 Using an Interrupt to Manage Asynchronous Keyboard Input
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The design in Example 11.2 is now modified in Figure 11.18 to incorporate interrupts.EXAMPLE 11.3
Observe that each task checks one of the control variables to determine whether it

should execute its body or simply return. Such a scheme is used to ensure a loosely coupled

// Building a simple OS kernel - step 3

#include <stdio.h>

3tpurretninotpurretnilliwbkeht//;3x0TNIBKenifed#

typedef enum aBool{FALSE, TRUE}; // create a boolean value

typedef unsigned char boolean; // create a boolean type

// Declare the globals

boolean prompted = FALSE; // user data requested

boolean dataAvail = FALSE; // user data available

atadderahsaeralced//;atadtni

// Declare the prototypes for the tasks

ksattpmorp//;)diov(tpmorpdiov

void increment (void); // computation task

ksattuptuo//;)diov(yalpsiddiov

// Declare the prototype for the ISR

void getDataISR (void); // get data ISR

// Declare a TCB structure

typedef struct 

{

    void (*taskPtr)(void);

}

TCB;

void main(void)

{

xednieueuq//;0=itni

TCB* queue[3]; // declare queue as an array of pointers to TCBs

// Declare some TCBs 

TCB promptTask;

TCB compTask;

TCB outTask;

// Declare a working TCB pointer

TCB* aTCBPtr;

Figure 11.18 A Simple Operating System Kernel
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// Initialize the TCBs

promptTask.taskPtr = prompt;

compTask.taskPtr = increment;

outTask.taskPtr = display;

 // Initialize the task queue

queue[0] = &promptTask;

queue[1] = &compTask;

queue[2] = &outTask;

// Enter the keyboard ISR into the interrupt vector table

setVect(KBINT, getDataISR);

//  Schedule and dispatch the tasks

while(1)

{

aTCBPtr = queue[i];

aTCBPtr->taskPtr();

i = (i+1)%3;

}

return;

}

// perform input operation)diov(tpmorpdiov

{

if (!prompted)

{

printf ("Enter a number: 0..9 ");

prompted = TRUE;

}

return;

}

// perform computation)diov(tnemercnidiov

{

if (dataAvail)

{

data++;

}

return;

}

Figure 11.18 (Continued)
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// perform output operation)diov(yalpsiddiov

{

if (dataAvail)

{

printf ("The result is: %d\n", data);

prompted = FALSE;

dataAvail = FALSE;

}

return;

}

// keyboard ISR

// perform input operation)diov(RSIataDtegdiov

{

data = getchar();

// discard cr;)(rahcteg

// convert to decimal from ascii;'0'=-atad

dataAvail = TRUE;

return;

}

Figure 11.18 (Continued)

design. The knowledge of whether a specific task has enough information to execute is best
kept with the task rather than with the scheduler. The negative aspect of such a decision is
that the overhead of the function call will be incurred whether or not any real work gets
done by the task.

In a tightly coupled design, tailored for a specific purpose, such knowledge could be
moved to the scheduler. Under such circumstances, the overall flow of the system must be
analyzed to confirm that the approach has a temporal advantage.

11.12 MEMORY MANAGEMENT REVISITED

The architecture of most contemporary embedded applications is built around multiple
tasks/threads. If the design supports the ability to preempt or block a running task or thread
and initiate another, there must be a switch to a new context. A context switch often involves:

• Saving the existing context.

• Switching to the new one.

• Restoring the old one.
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These three steps can consume a significant amount of time. When operating under
real-time constraints, the time required to affect the switch can be critical to the success or
failure of the application.

The information that must be saved from an existing context may be as simple as the
program counter and stack pointer for the original context or as complex as the state of the
system at the time the switch occurs. The typical minimum includes:

• The state of the CPU registers, including the CPU.

• The values of local variables.

• Status information.

The saving of such information can be accomplished in several different ways.

• Duplicate Hardware Context
Duplicate Hardware

Context
Some microprocessor architectures significantly reduce the amount of information
that must be saved and restored by simply switching to a duplicate or alternate context
rather than devoting time to save the old, load a new one, and then restore the original
on return.

• TCBsTask Control Blocks
These are best for systems ranging in complexity from those built around a simple
kernel to those utilizing a more full-featured operating system.

• Stack(s)Stack(s)
These are best for interrupt only, foreground/background types of systems, or state
machine-based systems.

In the later study of system performance, we will analyze the context switch in detail.
Here, the study will examine several alternate methods for supporting such a switch. In any
switch to a new context, some information must be saved.

11.12.1 Duplicate Hardware Context

The typical microprocessor has a limited number of general purpose registers. When a
context switch is necessary, the values contained therein must be saved prior to the switch
and then restored on return. Some microprocessors provide some hardware support for a
context switch by substantially increasing the number of available general purpose registers.

At the software level, several different contexts can be defined and a subset of the
registers allocated to each. For example, with 64 general purpose registers, four different
contexts, each with 16 general purpose registers, can be defined. Thus, each context can
have a set of registers called R0–R15, as illustrated in Figure 11.19. When the switch is
to occur, rather than saving the contents of the current set of registers, the system simply
switches to a new hardware context. An assembly language instruction of the form add(R3,
R1, R2), for example, can be executed in all contexts simultaneously without concern for
data corruption.

Because the different contexts are a logical interpretation of the register set at the soft-
ware level, there is nothing precluding overlapping contexts. That is, a subset of registers
can be included in two adjacent contexts as depicted in Figure 11.20. In this illustration,
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Figure 11.19 General-Purpose Registers
Organized as Four Different Contexts
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Figure 11.20 General-Purpose Registers
Organized with Overlapping Contexts
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the 14th and 15th registers appear as registers E and F in context 0 and as registers 0 and
1 in context 1. Using such a scheme, variables can easily be passed between contexts with
no overhead.

11.12.2 Task Control Blocks

When a system is implemented using the TCB model, each TCB will contain all relevant
information about the state of the task. To affect the context switch, necessary task state
information is copied to the TCB. The TCB can then be inserted into the appropriate queue
and the status and state information for the new or resumed task can be entered into the
system variables. If the running task has been preempted, the TCB will be linked into the
ready queue waiting for the CPU to become available. Based on the scheduling algorithm,ready
it may or may not be the next task to run. If the task has blocked, the TCB will be linked
into the waiting queue for the required resource. When the resource becomes available, the
task will move to the ready queue.

11.12.3 Stacks

The stack is a rather simple data structure used for storing information associated with a
task or thread. It is an area set aside in memory as part of system allocation. The information
is held in a data structure similar to TCB called a stack frame or activation record. Typical

stack frame,
activation record

information that must be stored is illustrated in Figure 11.21.

Lower Stack Storage

Saved registers including
PC+1, the return address

Local Variables

Low Address

High Address

Start of Current Stack Frame

Top of Stack

Figure 11.21 Information Stored in a Stack Frame

When a stack is used, procedures must be written to manage the processes of saving,
accessing, and removing information to or from the stack. Such procedures are initially
invoked as part of a function call or by the interrupt handler prior to a context switch.
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In the case of an interrupt, further interrupts are temporarily blocked to allow the mechanics
of the switch to occur. The stack management procedures are also invoked when returning
to the calling context to restore the original state.

The current top of the stack is identified by a variable called the stack pointer. Whenstack pointer
an activation record is added to the stack, the stack pointer is advanced. Top of stack and
stack pointer advanced have several different interpretations. Based on implementation,
top of stack can be interpreted either as the next available empty location on the stack orempty
as the location of the last valid entry. Figure 11.21 shows the stack growing from low to
high memory. An alternative implementation grows the stack from high to low memory.
Thus, it is important to always read the documentation for the particular implementation
being used.

The stack data type generally supports the following operations:

Push – Add to the top of the stack.
Pop – Remove from the top of the stack.
Peek – Look at the top of the stack.

Three kinds of stack are identified:

• Runtime

• Application

• Multiprocessing

11.12.3.1 Runtime Stack

In stack-based designs, the runtime stack is under system control and may be shared byruntime stack
other processes or threads. The stack size is known a priori and there is usually no dynamic
allocation, although one tries to build in some buffer space. This is known as defensive
design.

Design Heuristic

As part of any design, always try to anticipate and accommodate the unexpected.

Thus, at runtime, one must ensure that not too many stack frames are pushed on to the
stack; otherwise, there is potential for overflow, eventually leading to a system crash.

A difficulty with a single runtime stack in a TCB context arises from the access seman-
tics of the stack, which permit access only to the top of the stack. Consider a simple system
comprising two tasks, T0 and T1. If T0 is running and blocks on an I/O operation, for
example, its state information is saved on the stack. T1 now starts and similarly blocks. In
the meantime, the I/O operation for T0 completes and it is ready to resume. However, its
state information is contained in the second entry on the stack.
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The single runtime stack can work in a foreground/background model. Tasks in the
background will generally run to completion. Real-time tasks, driven by interrupts, will
push then pop stack frames onto the stack, thereby precluding the need to access an entry
that is not at the top of the stack. Interrupts within interrupts do not present a problem as
long as the stack size is not exceeded.

11.12.3.2 Application Stacks

This is an interesting approach. The single-stack model can be extended by incorporating
several additional stacks, as we see in Figure 11.22. The design is utilizing a runtime stack
as well as multiple application stacks to simplify the management of multiple tasks in aapplication stacks
preemptive environment.

Runtime Stack

Application Stack0

Application Stack1

Application Stack2
Figure 11.22 A Stack Architecture
using a Runtime Stack and
Application Stacks

On interrupt, the runtime stack holds a pointer to the application stack associated with
the initial or preempted task or thread. The preempting process now works with a new
stack. If that task is subsequently preempted, the existing context is held on the preempted
task’s application stack, and a pointer to new application stack is placed on the runtime
stack.

The save and restore interface functions must be modified to store/restore with respect
to the current context as the runtime stack is unwound. Such a scheme can provide a very
fast context switch.

Could such a design be applicable to multithreaded systems?

11.12.3.3 Multiprocessing Stacks

Multiprocessing in the current context refers to working with multiple processes rather
than multiple processors. Multiprocessing stacks are similar to the main runtime stack.
When a task is started, among other resources, it is allocated its own stack space. In con-
trast to application stacks, which are managed by the foreground task (assuming a fore-
ground/background versus a TCB architecture), the process stack is managed by the owner
process. It is allocated from heap when the process is created and returned to the heap when
the process exits.
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11.13 SUMMARY

In this chapter we began the first portion of our study of tasks,
threads, multitasking, the operating system, and the RTOS. We
elaborated on the central responsibilities of an operating system,
examined the characteristics and capabilities that distinguish an
RTOS, and then identified the core set of requirements of the
OS as embodied in the kernel. We then illustrated such capa-
bilities through the design of several versions of a primitive

operating system kernel. We introduced some of the necessary
terminology and examined the critical role of time in developing
and deploying many embedded applications. Finally, we looked
at different kinds of stacks and their role in managing context
switches associated with task state changes, task preemption, or
interrupts.

11.14 REVIEW QUESTIONS

Programs and Processes

11.1 What is the difference between a program and a process?

11.2 What is the difference between a task and a process?

11.3 What is execution time? persistence?

11.4 Explain what is meant by task or process concurrency.

11.5 Why do we say that most of the time concurrent execu-
tion is only an illusion?

11.6 What is a process or task schedule? scheduling strategy?

11.7 Identify the major states in which a task or process within
an embedded application might exist.

Threads

11.8 What is a thread?

11.9 What is the difference between a task or process and a
thread?

11.10 What is a lightweight thread? heavyweight thread?

Sharing Resources

11.11 Identify several of the primary system resources that a
task or process might require and use.

11.12 Identify several of the major responsibilities associated
with managing the memory resource in an embedded design.

11.13 What is supervisor mode in a memory management
scheme? User mode?

11.14 Identify several major responsibilities associated with
process management.

11.15 What is reentrant code?

Foreground/Background Systems

11.16 What is a foreground/background system?

11.17 What are some of the strengths of a foreground/
background model?

11.18 What is the difference between a foreground and a back-
ground task?

Kernels and Operating Systems

11.19 What is an operating system?

11.20 Identify and explain the core responsibilities of an oper-
ating system.

11.21 What are the major components of an operating system?
Briefly describe the responsibilities of each component.

11.22 What is a real-time operating system?

11.23 What are some of the major characteristics that distin-
guish a real-time operating system from one that is not real time?

11.24 What is a task control block? What are some of the major
components of a task control block?

11.25 What is an operating system kernel?

11.26 What is the difference between an operating system and
an operating system kernel?

Interrupts

11.27 What is an interrupt? Why is it used?

11.28 What is an interrupt number? What is its purpose?

11.29 What is an interrupt service routine? What is its purpose?

11.30 What is an interrupt vector table? What is its purpose?

11.31 Describe the sequence of steps that are necessary to han-
dle an interrupt once one has occurred.

11.32 In the context of managing interrupts, what do the enable
and disable commands do?

11.33 What is an interrupt mask? What is it used for?

Changing Contexts

11.34 What is a context switch?

11.35 Identify several different kinds of stack that one might
find in an embedded application.
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11.15 THOUGHT QUESTIONS

Programs and Processes

11.1 Can an embedded application have more than one pro-
cess? If so, give several examples when one might want to design
such a system. Discuss the advantages and disadvantages of such
a design.

11.2 The chapter identified three general scheduling strate-
gies. What are these strategies, and what are their differences?

11.3 Give several examples of embedded applications when
each of the scheduling strategies identified in question 11.2
might be used. Give several pros and cons for the choice of strat-
egy for each application.

Threads

11.4 Can a task or process have more than one thread? If so,
what is the advantage of such a design? Are there disadvantages?

11.5 When should we use a heavyweight thread? a lightweight
thread?

Sharing Resources

11.6 Why is the supervisor mode necessary? When is it nec-
essary? Under such circumstances, identify and elaborate on
several problems that might occur if it is not used.

11.7 Are there embedded applications when the supervisor
mode is not necessary? If so, give several examples and discuss
why it is not necessary.

11.8 Why is it good practice to ensure that all functions are
reentrant?

11.9 Give several examples of functions that are not reentrant.

Foreground/Background Systems

11.10 What kinds of embedded designs are best suited for
implementation using a foreground/background model?

Kernels and Operating Systems

11.11 Discuss possible strengths and weaknesses of the archi-
tectural strategy used in most contemporary operating systems.

11.12 Identify some way in which an embedded operating sys-
tem might be different from the one in your desktop computer?
In what ways might they be the same?

11.13 When might one elect to use a foreground/background
model in an embedded design? a basic kernel? a full-featured
operating system?

11.14 Give several examples of when it would be necessary to
incorporate real-time capabilities into the strategies discussed in
Question 11.11.

Interrupts

11.15 Give several examples of where an interrupt mask might
be used.

11.16 What is interrupt priority? Why is it used? What deter-
mines the priority of an interrupt?

Changing Contexts

11.17 Identify several cases when a context switch might be
necessary in an embedded application.

11.18 Identify several events internal to an embedded system
that might cause a context switch. Identify several events exter-
nal to the system that might cause a context switch.

11.19 Identify and describe each of the major steps in a con-
text switch when duplicate hardware is available; in a design
using task control blocks; when a stack is used; in a fore-
ground/background system.

11.20 Give several examples of embedded applications when
each of the different kinds of stack discussed in this chapter
might be used. Identify several pros and cons for your choice
of stack in each application.

11.16 PROBLEMS

11.1 Give an example of an embedded application that has at
least three tasks that run concurrently. Give a UML activity dia-
gram expressing the behavior of these tasks.

11.2 Give a sequence diagram illustrating the context switch
between the tasks in the system designed in Problem 11.16.1.

11.3 Give a UML class diagram for the single process illus-
trated in Figure 11.2.

11.4 If an embedded system has five processes with the
following execution times, propose a schedule in which the
average waiting time is the smallest: P1(9), P2(25), P3(4),
P4(8), P5(12). Illustrate the schedule using a UML sequence
diagram.

11.5 Present a UML activity diagram to illustrate the behavior
of tasks in each of the following operating systems.
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(a) Single process–single thread

(b) Multiple process–single thread

(c) Single process–multiple threads

(d) Multiple process–multiple threads

For each case, identify which resources each process or thread
is using.

11.6 Give an example of a function that is not reentrant. Give
an example of a function that is reentrant. How would you mod-
ify your first function to make it reentrant?

11.7 Consider implementing an embedded system to con-
trol a traffic light as a foreground/background system. Each
direction supports a left turn (right turn if traffic normally
drives on the left hand side) and pedestrian-activated crosswalk
control.

(a) Which tasks are foreground tasks?

(b) Which tasks are background tasks?

(c) Give a UML state diagram illustrating the behavior of the
system during a change from north–south green to east–west
green. Be certain to consider the operation with and without a
left (right) turn and with and without a pedestrian.

(d) Give a UML sequence diagram for the events in part (c).

11.8 Repeat Problem 11.7 for a microwave cooker.

11.9 Repeat Problem 11.7 for a washing machine.

11.10 Repeat Problem 11.7 for a video-on-demand entertain-
ment system for a large hotel.

11.11 Consider implementing an embedded system to control
a traffic light as an RTOS-based system. Each direction supports
a left turn (right turn if traffic normally drives on the left-hand
side) and pedestrian-activated crosswalk control.

(a) Which tasks are the major tasks?

(b) Give a UML state diagram illustrating the behavior of the
system during a change from north–south green to east–west
green. Be certain to consider the operation with and without a
left (right) turn and with and without a pedestrian.

(c) Give a UML sequence diagram for the events in part (c).

11.12 Repeat Problem 11.11 for a microwave cooker.

11.13 Repeat Problem 11.11 for a washing machine.

11.14 Repeat Problem 11.11 for a video-on-demand entertain-
ment system for a large hotel.

11.15 Provide a UML class diagram for a task control block
(TCB). Implement the design using a C struct data structure.

11.16 Design a method that would enable the dynamic alloca-
tion and deallocation of TCBs as tasks are created or terminated.

11.17 Modify the design in Example 11.2 to support a dynamic
number of tasks in the task queue without using malloc and free
(C) or new and delete (C++) while retaining the array as the
queue container.

11.18 Provide a UML class diagram for a task queue that sup-
ports the dynamic insertion and deletion of tasks.

11.19 Implement the task queue specified in Example 11.2 to
use a doubly-linked list as the underlying data type for the queue
container.

11.20 Combine the subsystems in Problem 11.16 and
Problem 11.19.

11.21 Modify the design of the TCB in Problem 12.15 to sup-
port a task priority number in the range of {0–9}. Assume 0 is
the highest and 9 the lowest priority.

Incorporate the modified TCB design into the task queue
design in Problem 11.19. Modify the access method to always
return the highest priority task.

11.22 Modify the design of the TCB in Problem 11.15 to sup-
port the inclusion of an estimate of execution time number in the
range of {0–99}.

Incorporate the modified TCB design into the task queue
design in Problem 12.19. Modify the access method to always
return the shortest task.

11.23 Give a high-level description of how the system in
Figure P11.1 works. You should not need more than 10 lines.

Task
2.0

Task
1.0

Data In
Temp Buffer

Common Buffer

Data 
Available

Ready

Figure P11.1

11.24 Write a C program to implement the design given in the
data/control flow diagram in Problem 11.23.
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Tasks and Task Management

THINGS TO LOOK FOR…

• The role of time in embedded designs.

• The definitions of reactive and time-based systems.

• The differences between preemptive and nonpreemptive systems.

• The need for effectively scheduling the use of the system CPU(s).

• The criteria for making scheduling decisions.

• Common scheduling algorithms.

• Real-time scheduling considerations.

• How scheduling algorithms might be evaluated.

• Methods for intertask communication.

• The critical section problem and several solutions.

• Methods for task synchronization.

12.1 INTRODUCTION

In the previous chapter we introduced some of the basic concepts and methods involved
in controlling multitasking systems. We learned that foreground/background systems can
be effective under real-time constraints and that the basic responsibilities of the operating
system comprise task scheduling, intertask communication, and task dispatch. In addition,
we introduced some of the issues associated with the context switch in preemptable systems.

In this chapter, we will examine the scheduling problem and intertask communication
in greater detail. The resource management aspects of task scheduling and dispatch will be
covered in the following chapter. We will open by continuing the discussion of time and
the critical role it plays in the design of embedded applications by introducing the concepts
of reactive and time-based systems. We will present and discuss various metrics for spec-
ifying and assessing a task schedule. We will then investigate several different scheduling

reactive, time-based
systems

algorithms and analyze task synchronization and intertask communication in some detail.
The focus will be primarily from the perspective of either a kernel-based or more complete
operating system-based control strategy.

Embedded Systems: A Contemporary Design Tool, Second Edition. James K. Peckol.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/college/peckol
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12.2 TIME, TIME-BASED SYSTEMS, AND REACTIVE SYSTEMS

12.2.1 Time

We have already briefly encountered time and the important role it plays in the design and
execution of embedded applications. We will now explore that role in greater detail.

We define two different measures of time: absolute and relative, based on what theabsolute, relative

interval
duration

measurement is referenced to. Absolute time is based on real-world time; relative time is
measured with respect to some reference. Time is further qualified as either an interval
or a duration; these are distinct. An interval is marked by specific start and end times; a
duration is a relative time measure. Equal intervals must have the same start times and the
same stop times; nonequal intervals can have the same duration. This difference is captured
in Figure 12.1.

Equal Intervals

Equal Intervals

Equal Durations

Equal Durations

Figure 12.1 Equal Intervals and Equal Durations.

12.2.2 Reactive and Time-Based Systems

Embedded systems are classified into two broad categories: reactive and time based. Reac-reactive, time based
tive systems, as the name suggests, contain tasks that are initiated by some event that may
be either internal or external to the system. An internal event may be an elapsed time or a
temporal bound on data that has been exceeded. An external event is the recognition of a
switch that has been activated or an external response to an internally generated command,
for example. Typically, the initiating events are asynchronous to the normal activity of the
system. Foreground/background systems are a good example of those classed as reactive.

Time-based systems are those systems whose behavior is controlled by time. Such atime-based systems
absolute, relative

following an interval
relationship can be absolute – an action must occur at a specific time; relative – an action
must occur after or before some reference; or following an interval – an action must occur
at a specified time with respect to some reference. The behavior in time-based systems is
generally synchronous with a timing element of one form or another. Time-shared systems
are a good example of those classed as time based.

The relevance of time in embedded applications becomes clear when trying to schedule
tasks and threads, that is, deciding when and how often each is executed. Tasks or threads
that are initiated with repeating duration between invocations are called periodic; otherwise
they are designated as aperiodic. A repeating duration is called the period. The time to
complete a task is called the execution time.

periodic
aperiodic, periodic

execution times
jitter
delay

In a periodic system, variation in the evoking event is called jitter. The time between
the evoking event and the intended action is called the delay. When designing a system,
each context in which it is anticipated that the system will be operating must be examined
to determine the significance of jitter and delay with respect to specified time constraints.
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An action that must occur by a specified time is defined as hard or is said to have ahard, hard deadline
hard real-time hard deadline. A missed deadline in such cases is considered to be a partial or total system

failure. A system is defined as hard real-time if it contains one or more tasks containing
such constraints. Such systems may have other tasks that do not have temporal deadlines.
The major focus, however, is on the hard deadlines.

Systems with relaxed time constraints are defined as soft real-time. Such systems maysoft real-time
meet their deadlines on average. Soft real-time systems may be soft in several ways:

• Relaxation of the constraint that missing the deadline constitutes system failure. Such
a system may tolerate missing the specific deadline provided some other deadline or
timeliness constraint is met – the average throughput, for example.

• Evaluating the correctness of timeliness as a gradation of values rather than pass or
fail.

Systems with tasks that have some relaxed constraints as well as hard deadlines are
defined as firm real time.firm real time

predictability

when, how
periodic

Real-time systems are those in which correctness demands timeliness. Most such sys-
tems carefully manage resources with respect to maintaining the predictability of timeliness
constraints. Such predictability gives us a measure of accuracy with which one can state in
advance when and how an action will occur. We elaborate by annotating the durations,
events, jitter, and actions. Figure 12.2 illustrates a periodic system typical of a time-based
design.
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Figure 12.2 Task Activity in a Periodic Time-based System.

In the figure, the period of the recurrence of the tasks is defined. The evoking event
occurs with respect to the start of the period. The first rectangle expresses the variation
in the actual invocation with respect to the intended. Such jitter may arise from variations
in the system’s ability to respond to a timer expiring, for example. Once the event occurs,
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the second rectangle captures the delay in getting the task started. When the task begins to
execute, the third rectangle accounts for any initialization or similar operations that must
occur before the intended action takes place. The intended action occurs during the time
indicated by the fourth rectangle. After the action completes, the fifth rectangle mirrors the
entry actions with any necessary cleanup before the task completes. The sixth rectangle
accounts for variation in exiting the task.

The diagram also marks the latest time at which the intended action could complete and
still meet the time constraints on the period. The duration between the completion deadline
and the start of the next cycle is equal to that between the end of the action and the end of
the exit jitter.

Figure 12.3 illustrates an aperiodic system that is typical of a foreground/backgroundaperiodic
design. Notice how the minimum and maximum times are specified.
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Figure 12.3 Task Activity in an Aperiodic Foreground/Background Design.

The invocation of aperiodic tasks is not fixed in time – they are asynchronous to the
operation of the core system. Thus, there can be no jitter because there is no expected time
for the initiating event. The duration between such tasks is called interarrival time. Such ainterarrival time
time is critical when one needs to determine how to schedule real-time tasks. Under such
circumstances, the lower bound on interarrival time must be identified. Such things as the
maximum number of events occurring within a given time interval may also need to be
considered.

Table 12.1 captures timeliness constraints with respect to whether the task is soft or
hard real-time.

At this point, we should be sufficiently comfortable with some of the terminology that
we can start to investigate the control of embedded systems in greater detail. We will begin
with the problem of task scheduling.
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Table 12.1 Hard and Soft Real-time Timeliness Constraints.

Property Nonreal-time Soft real-time Hard real-time

Deterministic No Possibly Yes
Predictable No Possibly Yes
Consequences of late
computation

No effect Degraded performance Failure

Critical reliability No Yes Yes
Response dictated by
external events

No Yes Yes

Timing analysis possible No Analytic (sometimes)
stochastic simulation

Analytic, stochastic
simulation

12.3 TASK SCHEDULING

How efficiently and effectively a task moves through the various queues along the control
path following its arrival and how effectively and efficiently the CPU is utilized during such
a movement establish the quality of the embedded design. An essential component of that
control strategy is the algorithm used to schedule the allocation of the CPU.

In a multitasking system, the main objective is to have some process using the CPU
at all times. Such a scheme maximizes the usage of that resource. Which task is running
at any specific time is based on a number of criteria. It is the scheduler’s responsibility to
ensure that the CPU is efficiently utilized and that the various jobs are executed in such an
order as to meet any required constraints.

When working with a scheduling algorithm, one must also consider the priority ofpriority
the task. Priority is assigned by the designer and is based on a variety of different crite-
ria. We will examine these shortly. Such criteria are used to resolve which task to execute
when more than one is waiting and ready to execute. Tasks with higher priority execute
preferentially over those with lower priority.

In a real-time context, a task that can be determined to always meet its timeliness con-
straints is said to be schedulable. A task that can be guaranteed to always meet all deadlines
is said to be deterministically schedulable. Such a situation occurs when an event’s worst
case response time is less than or equal to the task’s deadline. When all tasks can be sched-

schedulable
deterministically

schedulable
uled, the overall system can be scheduled.

Scheduling decisions must be made during the design phase of the system develop-
ment, since such decisions involve trade-offs that affect and optimize the overall perfor-
mance of the system. When the system specification stipulates hard deadlines, one must
ensure that the implementing tasks and their associated actions can meet every deadline.
Soft deadlines naturally give more flexibility.

12.3.1 CPU Utilization

In addition to satisfying time constraints, a goal in formulating a task schedule is to keep the
CPU as busy as possible, ideally close to 100%, but with some margin for additional tasks.
Such a metric is referred to as CPU utilization. In a practical system, utilization shouldCPU utilization
range between 40% for a lightly loaded system and 90% for one that is heavily loaded.
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For a single periodic task, CPU utilization is given as

ui = ei∕pi
uI fraction of time task keeps CPU busy
ei execution time
pi for periodic task is the period

(12.1)

One can express a similar relationship for aperiodic tasks.
CPU utilization information can be used in conjunction with a sequence diagram to aid

in assessing when each of the tasks can and needs to run.

12.3.2 Scheduling Decisions

Two key elements of real-time design – repeatability and predictability – are absolutely
essential in the context of hard deadlines. To ensure predictability, one must completely
understand and define the timing characteristics of each task and properly schedule those
tasks using a predictable scheduling algorithm. The first step in developing a robust sched-
ule is knowing when a scheduling decision must be made.

Scheduling decisions are made under the following four conditions:

running, waiting
running, ready
waiting, ready

1. A process switches from the running to the waiting state – initiated by an I/O request.
2. A process switches from the running to the ready state – when an interrupt occurs.
3. A process switches from the waiting to the ready state – the completion of I/O

activity.

4. A process terminates.

nonpreemptive

preemptive

If only conditions 1 and 4 are used to make a scheduling decision, such scheduling
is called nonpreemptive. Under such scheduling criteria, a process keeps the CPU until it
decides to release, that is, when it terminates or switches to the waiting state. Otherwise,
the schedule is called preemptive.

12.3.3 Scheduling Criteria

Today there are a great number of different scheduling algorithms. When making a choice,
one must consider the properties of the various algorithms coupled with what is considered
important or essential for the specific application. In the following sections, we identify
several of the more common metrics. The list is, by no means, complete, nor is it universally
applicable.

12.3.3.1 Priority

In a design that utilizes priority as a part of the scheduling criteria, the designer must crit-
ically assess each task in the system to establish the appropriate priority. The scheduler
utilizes such information at several different times. If no task is running or if a task termi-
nates, the highest priority task among the tasks that are ready will be selected to run next.
Under a preemptive scheduling policy, if a lower priority task is executing when a higher
priority task arrives, the arriving task preempts the executing task. The lower priority task
is then suspended. The suspended task resumes when the higher priority task completes or
blocks waiting for some resource. If no task with a higher priority ever arrives, the executing
task runs to completion.
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Although a priority scheme seems to ensure that the most important tasks will always
complete, such is not always the case. With preemption, the problem of blocking arises.
Blocking occurs when a task needs a resource that is owned by another task.

blocking

Consider several examples.

Case 1
1. Task A has higher priority than Task B.

2. Task B starts and reserves Resource R1.

3. Task A preempts Task B.

4. Task A begins execution and becomes blocked at the point that Resource R1 is
needed.

5. Task A must suspend and allow B to complete, thereby releasing R1.

A second case introduces a problem called priority inversion. A problem of this naturepriority inversion
occurred on one of the Mars missions. (Please see Chapter 8 on safety and reliability.)

Case 2
We have three tasks: Task A, Task B, and Task C.

Task A has the highest priority and Task C the lowest.

1. Task C starts and reserves Resource R1.

2. Task A enters and preempts Task C.

3. Task A begins execution and becomes blocked at the point that Resource R1 is
needed.

4. Task A must suspend and allow C to continue, hopefully releasing R1.

5. Task B preempts Task C and does not need R1.

6. Task B completes and allows Task C to resume.

It is easy to create a situation in which the highest priority task is blocked forever. A
high priority task that can be scheduled in isolation may fail in a multitasking context. In a
hard real-time context, one must ensure a bound on priority inversion.

12.3.3.2 Turnaround Time

Turnaround time specifies the interval from the time of the submission of a task until itsturnaround time
completion. Included is the time spent waiting to get into memory, the time waiting in the
ready queue, and the time spent executing on the CPU or doing I/O.

12.3.3.3 Throughput

Coupled with turnaround time is throughput, the number of processes that are completedthroughput
per unit of time. Throughput depends, of course, on the complexity of the task. One should
be careful when working with a throughput metric. A system may exhibit a very high
throughput, but if the turnaround time is excessive we may not be able to meet our timeliness
constraints.
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12.3.3.4 Waiting Time

In embedded applications built around a kernel or full OS, the path a task takes through the
system involves a number of different queues. When a user or system task initially enters
the system, it is put into an entry queue. When all of its necessary conditions are satisfied
such that it can run when the CPU is available, it is placed in a ready queue. Tasks may also
arrive at the ready queue via other paths as well – for example, if they have been interrupted
by a higher priority task or if they have blocked on an I/O operation that has completed.
When a process is put into the ready queue, it waits until it is selected for execution. At
such a time, it is dispatched – given the CPU to execute.

During execution, the process may issue an I/O request and be placed in an I/O queue,
request a resource that may not be immediately available, or create new subprocess(es)
and wait for their termination. Processes waiting for a particular resource may be placed in
the queue for that resource. That queue is often called a device queue. When a process is
terminated, it is removed from all queues. Its TCB and all resources are deallocated.

waiting time Minimized waiting time as a criteria in scheduling algorithm execution and I/O time
affects only time spent waiting in queues. Evaluation includes all time in waiting queues.

12.3.3.5 Response Time

Response time is yet another consideration. For an interactive system, turnaround time mayresponse time
first response not be the best measure. Instead, the time from submission to first response is considered.

The time taken for the first response is not the time to the first output.

12.4 SCHEDULING ALGORITHMS

Although it is beyond the scope of this text to go into details of all the many scheduling
algorithms, it is informative to look at a number of them. Several of the very simplest includeasynchronous

interrupt
event driven, polled,
polled with a timing

event

asynchronous interrupt event driven, polled, and polled with a timing event. With such
algorithms, the control strategy is architected to support one or a few tasks. Scheduling and
dispatch are automatic. Intertask communication either does not exist or it relies on global
variables. Though simple, such algorithms can be essential in cases with hard deadlines.

12.4.1 Asynchronous Interrupt Event Driven

One of the simplest scheduling schemes is asynchronous interrupt event driven. Certainly,
the asynchronous nature of the scheme calls into question the use of the word “schedule.”
Under such an approach, the system is constrained to operate in a basic one-line infinite loop
until an interrupting event occurs, as is illustrated in the code fragment shown in Figure 12.4.

global variable declarations

isr set up

function prototypes

void main (void)

{

local variable declarations

while(1); // task loop

}

ISRs

function definitions

Figure 12.4 An Event-driven Schedule Algorithm.
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As such, the design is a special case of the foreground/background model. In this case, the
design has no background tasks. The design can also be considered to be reactive.

When an interrupting event occurs, flow of control jumps to the associated Interrupt
Service Routine (ISR), where the designated task is executed; flow then resumes in the
infinite loop. Generally, the event originates from some external source. We will look at an
extension to the event-driven approach in which the event derives from a system timer.

The overall behavior of such a system can be difficult to analyze because of the non-
deterministic nature of asynchronous interrupts. However, it is rather straightforward to
determine the post-event behavior for systems with a single interrupt or the behavior of the
highest priority interrupt in systems with more than one interrupt.

12.4.2 Polled and Polled with a Timing Element

The basic polled algorithm is among the simplest and fastest algorithms. The system con-
tinually loops, waiting for an event to occur. The difference between the polled algorithm
and the event driven is that the polled algorithm is continually testing the value of the polled
signal looking for a state change. The interrupt-driven design, on the other hand, does noth-
ing until the event occurs. Only then does it respond. Schematically, the algorithm is given
as shown in Figure 12.5.

global variable declarations

function prototypes

void main (void)

{

local variable declarations

while(1) // task loop

{ // test state of each signal in polled set

if then construct

or

switch statement

}

}

function definitions Figure 12.5 A Polling-based
Schedule Algorithm.

Such a scheme works well for a single task. It is completely deterministic. The time to
respond to the event is computable and bounded. In the worst case, let’s assume the event
occurs immediately after the test instruction. Under such a circumstance, the response time
is the length of the loop. Polled with a timing event is a simple extension. The scheme
uses a timing element to ensure a delay action after a polled event is true. Such a technique
deskews the incoming signals.

The polled model is also a special case of the foreground/background model. In con-
trast to the event-driven schedule, the polled model has no foreground tasks. The design
implements a reactive system.

12.4.3 State Based

The next approach implements the flow of control through the task set as a finite automaton
or state machine. The two basic implementations of the finite-state machine (FSM), Mealy
and Moore, are distinguished by the implementation of the output function: in Mealy the
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output is a function of the current state and the input, and in Moore the output is a function
of the current state only. The basic machine can be expressed as illustrated in Figure 12.6.

State: S

Input Queue

S
I x S O

O

S

Next State and

Output Function

I x S

I

O

Figure 12.6 A Basic State Machine
Model.

The state machine can easily be implemented as either a set of case statements, as an
if-then, or if-then-else construct.

Some of the limitations of such an approach begin with the theoretical limit on the
computational power of the finite-state machine. Using states is not efficient, and the state
space explosion for large problems makes the approach impractical for systems with large
numbers of inputs. There is a rich set of variations on the basic FSM, however, some of
which address the various limitations of the basic implementation. A state-based design is
reactive in nature.

12.4.4 Synchronous Interrupt Event Driven

The next level of sophistication entails constraining the asynchronous event used in the
opening algorithm to one that is synchronous, based on a timer. Such a system continually
loops until interrupted by a timing signal (which is typically internally generated). Thetiming

time-sharing systems

timing/interrupt event triggers a context switch to an ISR that manages it. A schedule based
on a periodic event is defined as fixed rate. In contrast, an aperiodic schedule is defined
as sporadic. Such a synchronous interrupt-based scheme can work with multiple tasks and
is the basis for time-sharing systems. The design is an example of a time-based system,
although it is reacting to a special interrupt.

12.4.5 Combined Interrupt Event Driven

A simple variation on the two interrupt event-driven designs is to permit both synchronous
and asynchronous interrupts. In such a system, priority is used to select among tasks that
are ready when the timing interrupt occurs. If multiple tasks are permitted to have the same
priority, then selection from among ready tasks proceeds in a round robin fashion. Naturally,
higher priority tasks will be given preference at any time.

12.4.6 Foreground–Background

A system utilizing a foreground–background flow of control strategy implements a combi-foreground–background
foreground

background
nation of interrupt and noninterrupt-driven tasks. The former are designated the foreground
tasks and the latter the background tasks. The background tasks can be interrupted at
any time by any of the foreground tasks and are, thus, operating at the lowest priority.
The interrupt-driven processes implement the real-time aspects of the application; the
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interrupt events may be either synchronous or asynchronous. All of the previous algorithms
are special cases of foreground/background designs in which either the foreground (polled
systems) or the background (interrupt based) component is missing.

12.4.7 Time-Shared Systems

In a time-shared system, tasks may or may not all be equally important. When all are given
the same amount of time, the schedule is periodic, and when the allocation is based on
priority, the schedule is aperiodic. Several of the more common algorithms are examined
in the ensuing paragraphs.

12.4.7.1 First-Come First-Served

A very simple algorithm is first-come first-served and is easily managed with a first-in-
first-out (FIFO) queue. When a process enters the ready queue, the task control block (TCB)
is linked to the tail of the queue. When the CPU becomes free, it is allocated to the process
at the head of the queue. The currently running process is removed from the queue. Such an
approach is nonpreemptive and can be troublesome in a system with real-time constraints.

12.4.7.2 Shortest Job First

The shortest job first schedule assumes that the CPU is used in bursts of activity. Each task
has associated with it an estimate of how much time the job will need when next given the
CPU. The estimate is based on measured lengths of previous CPU usage. The algorithm can
be either preemptive or nonpreemptive. With a preemptive schedule, the currently running
process can be interrupted by one with a shorter remaining time to completion.

12.4.7.3 Round Robin

The round robin algorithm is designed especially for time-shared systems. It is similar to
first-come first-served, with preemption added to switch between processes. A small unit
of time called time quantum or slice is defined, and the ready queue is treated as a circulartime quantum, slice
queue. The scheduler walks the queue, allocating the CPU to each process for one time
slice. If a process completes in less than its allocated time, it releases the CPU; otherwise,
the process is interrupted when time expires and is put at the end of queue. New processes
are added to the tail of the queue. Observe that if the time slice is increased to infinity, round
robin becomes a first-come first-served scheduler.

12.4.8 Priority Schedule

Shortest job first is a special case of the more general priority scheduling class of algorithms.
A priority is associated with each process and the CPU is allocated to the process with the
highest priority. Equal priority jobs are scheduled first-come first-served or in round robin
fashion. The major problem with a priority schedule is the potential for indefinite blocking
or starving–priority inversion. The algorithms can be either preemptive or nonpreemptive.

12.4.8.1 Rate-Monotonic

With a preemptive schedule, the currently running process can be interrupted by any
other task with a higher priority. A special class of priority-driven algorithms called
rate-monotonic was initially developed in 1973 and has been updated over the years. Inrate-monotonic
the basic algorithm, priority is assigned based on execution period; the shorter the period,
the higher the priority.
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Priorities that are determined and assigned at design time and then remain fixed during
execution are said to use a static or fixed scheduling policy. The ability to schedule a set of
tasks is computed as a bound on utilization of the CPU, as shown in Eq. (12.2).

n−1∑
i=0

ei

pi
≤ n

(
2

1
n − 1

)

e = Execution time of the task

p = Period of the task

(12.2)

This approach makes the following assumptions:

• The deadline for each task is equal to its period.
• Any task can be preempted at any time.

The expression on the right-hand side gives a bound on CPU utilization; the bound is
extreme, that is, worst case. If it cannot be met, a more detailed analysis must be performed
to prove whether or not the task can be scheduled. The above equation sets a CPU utilization
bound at 69%. Practically, the bound could be relaxed to around 88%, and the tasks can still
be scheduled.

The basic algorithm given above simplifies system analysis. Scheduling is static, and
the worst case occurs when all the jobs must be started simultaneously. Formal analysis that
is beyond the scope of this text leads us to the rate-monotonic schedule also known as the
critical zone theorem.critical zone theorem

Critical Zone Theorem

If the computed utilization is less than the utilization bound, then the system is guaran-
teed to meet all task deadlines in all task orderings.

It can be shown that rate-monotonic systems are the optimal fixed-rate scheduling
method. If a rate-monotonic schedule cannot be found, then no other fixed-rate scheme
will work. The algorithm is defined as stable, which means that as additional, lower prioritystable
tasks are added to the system, the higher priority tasks can still meet their deadlines even if
lower priority tasks fail to do so. The initial algorithm bases assurance upon the assumption
that there is no task blocking. The basic algorithm can be modified to include blocking as
illustrated in Eq. (12.3).

n−1∑
i=0

ei

pi
+ max

(
b0

p0
, … ,

bn−1

pn−1

)
≤ n

(
2

1
n − 1

)

The terms bi give the maximum time task i can be

blocked by a lower priority task

(12.3)

With a nonpreemptive schedule, a currently arriving higher priority process is placed
at the head of the ready queue.

12.4.8.2 Earliest Deadline

A dynamic variation on the rate-monotonic algorithm is called earliest deadline. The ear-earliest deadline
liest deadline schedule uses a dynamic algorithm with priority assigned based on the task
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with the closest deadline. The schedule must be established and modified during runtime,
for only then can the deadline(s) be assessed.

A set of tasks is considered schedulable if the sum of the task loading is less than 100%.
It is considered optimal in the sense that if a task can be scheduled by other algorithms, then
it can be scheduled by the earliest deadline.

The algorithm is not considered stable. If the runtime task load rises above 100%, some
task may miss its deadline. Generally, it is not possible to predict which task will fail. This
uncertainty adds greater runtime complexity. The scheduler must continually determine
which task to execute next whenever such decisions must be made. Such analytical methods
are more complex than fixed-priority cases.

12.4.8.3 Least Laxity

The least laxity algorithm is similar to the earliest deadline with slightly tighter constraints.least laxity
In addition to the deadline, the time to execute the task is considered. Task priority is based
on the following relationship. It should be clear that a task with negative laxity cannot meet
its deadline.

laxity = deadline − execution time (12.4)

The schedule is then based on the metric using ascending laxity. On paper it is a rather
straightforward concept. However, it means that one must know the exact value of the exe-
cution time, or at least an upper bound on it. Furthermore, the values must be updated with
each system change.

The least laxity algorithm can be utilized in systems with a mixture of hard and soft
deadlines. Hard real-time tasks can be given priority over those with less rigid constraints.
However, it has weaknesses similar to those found with the earliest deadline algorithm;
that is, it is not stable. In addition, it has a greater runtime burden than the fixed schedule
schemes. The algorithm tends to devote CPU cycles to tasks that are clearly going to be late
and, thereby, causes more tasks to miss deadlines.

12.4.8.4 Maximum Urgency

The maximum-urgency-first algorithm includes features of both the rate-monotonic and themaximum-urgency-first

criticality

critical, noncritical

least laxity algorithms. As a first cut, it assigns priority according to the task’s period, as is
done with the rate-monotonic algorithm. Next, a binary criticality task parameter is added.
The criticality parameter is used to decompose the tasks into two sets: critical and non-
critical. Then the least laxity algorithm is applied to those in the critical set. The criticality
parameter and the priority assignment are assessed at runtime.

If no critical tasks are waiting, then tasks from the noncritical set are scheduled.
Because the critical set is based on the rate-monotonic algorithm, the schedule can be
structured so that no critical task fails to meet its deadline.

The major advantage of the algorithm is the simplicity of the static priority component
and reduced runtime burden compared with full least laxity. The algorithm, however,
lacks some flexibility. The rate-monotonic component assumes unconstrained preemption.
Typically, short deviations are well tolerated; longer deviations can lead to missed
deadlines.

Maximum-urgency-first is best applied to tasks that are well understood and for which
blocking constraints are easy to determine. The dynamic scheduling contribution from least
laxity potentially can compensate by elevating a task’s priority. The algorithm has some of
the runtime complexity of pure least laxity and is best applied to tasks that can vary in their
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ability to miss deadlines. It can be thought of primarily as a rate-monotonic algorithm with
some runtime checking to ensure that deadlines can be met.

12.5 REAL-TIME SCHEDULING CONSIDERATIONS

A real-time system may be hard or soft real-time, and the task scheduling may be static
or dynamic. For a dynamic hard real-time schedule, the process is submitted along with a
statement of the time required to compute and to do I/O. If, following assessment of the
task’s requirements, the scheduler accepts the task, it guarantees that the task will complete
on time. Otherwise, it rejects the task as nonschedulable. Such a guarantee calls for resourceresource reservation
reservation and requires the scheduler to know exactly how long each operating system
function takes, along with a completion time guarantee. Such a restriction is impossible for
systems with secondary storage or using virtual memory algorithms.

A soft real-time schedule is less restrictive. Such a schedule does require that critical
processes have priority over the less critical. Implementing a soft real-time system requires
careful design of the scheduler and other related aspects of the operating system. There
is a further requirement for priority scheduling. Real-time processes must have the high-
est priority, and that priority must not degrade over time. Such a constraint is relatively
easy to ensure. Furthermore, the dispatch latency must be small; thus, system calls must be
preemptable.

Such a requirement can be accomplished in several ways. One approach is to insert
preemption points, where the system can check to see if a high-priority process needs to
be run. Alternatively, the entire kernel can be made preemptable. In such a case, all kernel
data structures must be protected and one must have synchronization methods.

conflict phase
dispatch phase

The preemption process has two components: a conflict phase and a dispatch phase.
During the conflict phase, preemption of any process running in the kernel is permitted.
The lower priority process must release needed resources. The next step is a context switch
to the high-priority process. In the dispatch phase, the process moves from the ready state
to the run state.

12.6 ALGORITHM EVALUATION

With the plethora of algorithms and each having its own parameters, selecting the proper and
appropriate one can be difficult. To begin the evaluation, one must first establish assessment
criteria. For example, CPU utilization, response time, or throughput may be the most critical
factors in a design. Next, the candidate algorithms must be evaluated against the selection
criteria. Once again, there are a variety of methods.

12.6.1 Deterministic Modeling

A major class of methods is called analytic evaluation. The approach uses the candidateanalytic evaluation
algorithm and a representative system workload to produce a formula or number from which
to evaluate the algorithm. One such method is called deterministic modeling. To see howdeterministic modeling
this works, consider the following processes and workloads.

Process Burst time

P1 10

P2 20

P3 3

P4 7

P5 12
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Figure 12.7a–c illustrate the results of evaluating the following scheduling algorithms
against the example workload.

• First-come first-served.

• Shortest job first.

• Round robin.

Starting with the first-come first-served, each algorithm will be evaluated with the goalfirst-come first-served
of achieving the shortest average wait time.

(a) First-Come First-Served

Process Waiting Time

Average 28 time units

P1-10

P1

P2

P3

P4

P5

0

10

32

42

49

P2-29 P3-3 P4-7 P5-12

Figure 12.7a The First-come First-served Algorithm.

It is assumed that the jobs arrive into the system in the order shown. With this algorithm,
the average wait time is computed to be 28 time units.

Next is the shortest job first schedule.shortest job first

(b) Shortest Job First

Process Waiting Time

Average 13 time units

P3

P4

P1

P5

P2

0

3

10

20

32

P2-29P3-3 P4-7 P1-10 P5-11

Figure 12.7b The Shortest Job First Algorithm.

Now, the average wait is 13 time units. The algorithm achieves a two to one improve-
ment over the FIFO schedule.

For the round robin algorithm the time slice is set to 10 time units. Under such a con-round robin
straint, jobs P1, P3, and P4 will complete in their allotted time. P2 and P5 will have to be
preempted and returned to the queue.
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(c) Round Robin

Process Waiting Time

Average 23 time units

P1-10

P1

P2

P3

P4

P5

0

32

20

23

40

P2-9P2-10P2-10 P3-3 P4-7 P5-10 P5-2

Figure 12.7c The Round Robin Algorithm.

Now the average wait is 23 time units. In the above example, clearly the shortest jobshortest job first
first algorithm should be the choice as it performs the best against the specified metric.

As can be seen, deterministic modeling is simple and fast, but it does require exact
knowledge of the process times, which often can be difficult to establish. One obvious
solution is to measure the process times over repeated executions. Such data collection can
be done more easily in the embedded world than in the applications world because one
generally knows the task mix in advance.

12.6.2 Queuing Models

If the system being designed is one in which the processes can vary from day to day, there
may be no static set of processes and times that can be used in a deterministic model.

Statistical studies have shown that task execution generally consists of a cycle of CPU
execution followed by I/O activity. The CPU and I/O bursts alternate until the job is finished.
The frequency of the bursts tends to be fairly predictable and is typically independent of
machine or process. As a first-order approximation, such behavior can be modeled as the
exponential graph given in Figure 12.8. One can measure or compute the distribution of
CPU and I/O bursts over a collection of tasks and determine a similar distribution for process
arrival times. Based on these two distributions, for most algorithms it is possible to compute
average throughput, utilization, waiting times, and so on.

Burst Duration

F
re

q
u

e
n

c
y

Figure 12.8 CPU or I/O Burst Duration vs. Frequency.

The computer can be modeled as a collection or network of servers, with each server
having an associated queue. Knowing the arrival and service rates, one can compute uti-
lization, the average queue length – n, and the average wait time – w. The average arrival
time is specified as 𝜆. Thus, if the system is in steady state, the number of processes leaving
a queue is equal to the number of processes arriving, and one can write:

n = λ × W (12.5)

Little’s Formula The expression relating the three variables is known as Little’s formula. The approach
is useful because it is valid for any scheduling algorithm. Knowing any two variables, one
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can compute the third. Though useful for comparing algorithms, it has limitations. The
mathematics of complex algorithms and distributions is difficult to work with. The arrival
and service distributions are complex, and the queuing models are only an approximation
of the real system.

12.6.3 Simulation

To produce a more accurate evaluation of a scheduling algorithm, one can use simula-
tions. Such an approach requires models of the computer system and the processes as
well as appropriate data to drive the simulation. Often such data is collected from a trace
of actual processes by recording the actual events on a real system. Simulation can be
expensive, but it is growing in popularity and is becoming an increasingly powerful and
effective tool.

12.6.4 Implementation

As another alternative, one can simply build and test the system. Certainly, this is the most
accurate method. Once again, the difficulty is the cost.

12.7 TASKS, THREADS, AND COMMUNICATION

12.7.1 Getting Started

A multitasking/multithreading system supports multiple tasks and those tasks will have
one or more threads. Important jobs in any multitasking system include exchanging
data between tasks and between threads, synchronizing tasks and threads, and sharing
resources.

exchanging data
synchronizing,

sharing resources
In the not too recent past, such activities were limited primarily to tasks or threads

within a single microprocessor. Today, one finds a growing use of Field Programmable
Gate Array (FPGA)-based designs utilizing devices that support the inclusion of multiple
microprocessor cores within a single-gate array. Consequently, it is not uncommon for
communication, synchronization, and sharing to involve tasks on multiple processors.
We will find that certain assumptions can be made when tasks are localized that can-
not be made when working with multiple distributed processors or other centers of
computation.

12.7.2 Intertask / Interthread Communication

When tasks are operating independently, systems have few, if any, conflicts, chances for
corruption, or contentions. Real systems, the interesting ones, must deal with the challenge
of such problems. In real-world systems, resource sharing and intertask synchronization
and communication must take place in a robust, safe, and reliable manner. Interaction
between tasks may be direct or indirect and must be synchronized and coordinated. We
want to prevent race conditions – conditions under which the outcome of a computa-
tion depends on the order in which tasks execute. Such an exchange is illustrated in
Figure 12.9.

We see, then, that interaction and interchange among tasks requires three basic com-
ponents: the information that is to be interchanged, the places where the information can
be found, and where it is ultimately to be put, coupled with the conventions that govern
the interaction and interchange. These requirements are captured in the following model of
inter-process communication and synchronization.
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U

Embedded

Application

Task 0

Task 1Information

Exchange

Control

Figure 12.9 Intertask Communication.

• The information – the data or signals being moved.

• The place or places from which the information is moved to or from.

• The control and synchronization of actions and the movement of the information.

information
place, places

control,
synchronization

In such a model, the places – that is, the source and destination(s) for the exchange – areplaces
identified variously by named variables or by pointer variables holding memory addresses.
Control and coordination comprises a number of different techniques ranging from flags or
status bits to interrupts or managed access into critical areas under the control of semaphores
or monitors. Information is moved either through shared variables or messages on busses

shared variables,
messages

internal to the microprocessor that (except in rare circumstances) were of little immediate
concern to us.

Let’s begin our study of intertask communication and synchronization by looking at
the shared information component. Such sharing can occur in a variety of ways. In subse-
quent chapters, we will extend the model to include centers of control outside of the core
microprocessor.

12.7.3 Shared Variables

Such sharing can occur in a variety of ways. We will begin with the simplest model: shared
global variables.

12.7.3.1 Global Variables

One fundamental solution for exchanging data among tasks is a shared memory environ-
ment. In such an environment, global variables can be a very effective mechanism forglobal variables
sharing information. Global variables have the obvious problems that arise when two or
more tasks require the ability to read a piece of global data and potentially modify its value.
The major advantage of globals is that they do not have to be copied to the stack during
a context switch. By obviating the need for such copying, critical time in hard real-time
systems can be saved. Properly managed, global variables can be an effective tool.
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12.7.3.2 Shared Buffer

A shared buffer is an exchange technique in which two processes share a common set ofshared buffer
producer memory locations, as seen in the data flow diagram in Figure 12.10. A producer of the data

puts it into the buffer, and a consumer removes it. Once again, there are several obviousconsumer
problems. If one process is faster than the other, the potential for overrun or underrun arises.
Clearly, identifying the proper buffer size (for the application) and access protocol is critical
to avoiding such problems. Even with the proper buffer size, the producer and consumer
must always check the state of the buffer before inserting or removing an item.

Task T1Task T0

Shared Buffer

Figure 12.10 Intertask Communication Using a Shared
Buffer.

Good design practice recommends adding methods of the form

bool isFull() or bool isEmpty()

to the public interface of the container. Such methods should always be invoked prior to a
read from or write to the buffer.

12.7.3.3 Shared Double Buffer – Ping-Pong Buffer

The shared double buffer model permits two tasks to share two (or more) common setsshared double buffer
of memory locations. Shown in the data and control flow diagram in Figure 12.11, the
configuration is also called a ping-pong buffer.ping-pong buffer

Task T1Task T0

Shared Buffer B0

Shared Buffer B1

Figure 12.11 Intertask Communication Using a
Shared Double Buffer.

Several control schemes can be used with a ping-pong buffer. One implementation
begins with both buffers being empty. T0 is designated as the producer and T1 as the con-
sumer. During operation, task T0 will write to buffer B0 until it is full. In the meantime,
T1 is blocked because there is no data available. Once B0 is filled, T0 will signal T1 and
switch to writing to buffer B1.
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T1 can now begin reading the data from B0. When T1 has removed all the data from
B0, it signals T0 that the buffer is empty. If T0 has filled B1, T1 can begin reading from
that buffer; otherwise it waits. Similarly, if T0 finishes writing to B1 before T1 has emptied
B0, then it must block. The operation of the buffer scheme is illustrated in the two skeletal
code fragments in Figure 12.12. Such an approach can be a very effective “buffer” between
processes that are running at different rates. One buffer is being filled while the other is
being emptied. Improved robustness requires that the consumer block on a lack of data and
the producer must avoid overrunning the buffer; thus, it blocks on a full buffer.

Task T0

while(1)

...

if (B0 == EMPTY)

repeat

produce item in nextB0

until (B0 == FULL)

signal (T1, FULLB0)

endif

 if (B1 == EMPTY)

repeat

produce item in nextB1

until (B1 == FULL)

signal (T1, FULLB1)

endif

…

end while

Task T1

while(1)

...

if (B0 == FULL)

repeat

consume item in nextB0

until (B0 == EMPTY)

signal (T0, EMPTYB0)

endif

 if (B1 == FULL)

repeat

consume item in nextB1

until (B1 == EMPTY)

signal (T0, EMPTYB1)

endif

…

end while

Figure 12.12 Two Tasks Exchanging Information Using a Shared Buffer.

A second variant on the ping-pong buffer utilizes more than two buffers. Consider that
we have two tasks, T0 and T1; the first task can produce data at a rate of 4 MHz but the
second can only consume at 1 MHz. To further complicate the problem, let’s also assume
that the buffer can only be written to at a 1 MHz rate. An implementation to solve the
problem is given in the data and control flow diagram in Figure 12.13.

Task T1

Task T0

Shared Buffers B0 and B1

Shared Buffers B2 and B3

Figure 12.13 Information Sharing Between
Tasks Executing at Different Speeds.

The execution of the synchronization scheme is given in the pseudocode fragments in
Figure 12.14. Each buffer is written to at the 1-MHz rate. The buffers are filled in bursts in
T0 and read at a more uniform rate in T1.
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Task T0

while(1)

...

if (B3 == EMPTY)

repeat

produce item in nextB0

produce item in nextB1

produce item in nextB2

produce item in nextB3

until (B3 == FULL)

signal (T1, FULLB3)

endif

 …

end while

Task T1

while(1)

...

if (B3 == FULL)

repeat

consume item in nextB0

consume item in nextB1

consume item in nextB2

consume item in nextB3

until (B3 == EMPTY)

signal (T0, EMPTYB3)

endif

 …

end while

Figure 12.14 Information Sharing Between Tasks Executing at Different Speeds.

12.7.3.4 Ring Buffer

A ring buffer scheme uses a FIFO structure as illustrated in the schematic representationring buffer
in Figure 12.15. The structure permits simultaneous input and output using head and tail
pointers. Task T0, the producer, adds data to the buffer and task T1, the consumer, removes
it. As with the other buffers, one must take precautions to properly manage overflow and
underflow.

head

tail

Task T0

Task T1

Figure 12.15 Information Sharing Using a Ring Buffer.

12.7.3.5 Mailbox

A mailbox is another data structure with access semantics that are similar to those usedmailbox
for the queue. Two or more tasks can use the mailbox to pass data or for synchronization.
Generally, one finds mailboxes included in full-featured operating systems. Two opera-
tions on the data structure are defined: a write operation called post and a read operationpost,
called pend.pend
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When a task posts data to the mailbox, a flag associated with the mailbox is raised,
indicating that data is available. A task that may be pending or waiting on that flag is alerted
and can then read the data, resetting the flag.

The pend and post operations present the following public interface:

post (mailbox, data) // post to mailbox
pend (mailbox, data) // pend on mailbox

At first sight, the pend operation may appear to be the same as a poll because a poll
task continually interrogates the polled variable (occupying the CPU) looking for a change
in state of the signal. In contrast, however, the pending task is suspended (giving up the
CPU) while there is no data available only to be awakened when data becomes available.
Thus, in the case of a polling operation, the CPU is devoted to testing the state of the poll
signal, whereas the pend operation frees the CPU to another task. A variety of things can be
passed through a mailbox, a single bit or flag, a single data word, a pointer to a data buffer,
or a more elaborate message.

The data and control flow diagram is given in Figure 12.16.

Task T1Task T0

mailbox

post
pend

Figure 12.16 Information Sharing Using Messages
and a Mailbox.

One straightforward implementation of the mailbox data type utilizes a queue as the
underlying container. In the basic implementation, the queue is of length one and, thus,
the post operation fills the mailbox, precluding further posts until a pend operation takes
place to empty the mailbox. If several tasks are pending on a flag, the enabled task resets
the flag. Such a scheme blocks multiple accesses to the resource from a single flag. Other
implementations extend the queue length, thereby supporting a queue of pending elements
rather than a single entry. Such a scheme may be useful when there are multiple independent
copies of a critical resource. Another variation on this latter design utilizes a priority queue
and thence permits a priority to be assigned to each message. The associated pend operation
will always read the highest priority message first.

12.7.4 Messages

The methods for intertask communication discussed up to this point have relied on a
mutually agreed upon memory location to at least begin the exchange. Today’s embed-
ded applications are becoming increasingly distributed. With such an expansion, the
need for synchronization and information interchange remains and, to some extent,
increases.
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To execute such an exchange, one can build on the concept of mailboxes. Using
a mailbox-based approach, data – now the message – is sent to a named mailbox or
destination. The named mailbox now becomes the address of the message destination. The
message may or may not be buffered at the source of the message – a source mailbox – or at
the destination – a destination mailbox. Such a scheme, however, is not mutually exclusive
with shared memory.

A message-based approach, called an inter-process communication facility (IPC), sup-
ports two operations, send and receive. These are analogous to the pend and post operations
used for mailboxes. Continuing the analogy, messages may be of fixed or variable size. If
tasks T0 and T1 wish to use messages to exchange information, they must first establish a

inter-process
communication

send, receive, pend,
post

communication link and then proceed to send and receive the messages.
As noted earlier, with the increasing use of multiprocessor core FPGAs, the commu-

nication link can be between processors within the same gate array as well as between
physically and geographically separated microprocessors.

As one begins to think about message exchange, several questions immediately arise,

• How is the link established?

• Can the link be associated with multiple tasks?

• How many links are there between a pair of tasks?

• What is the link capacity and are there buffers?

• What is the message size?

• Are links unidirectional or bidirectional?

We will look at several of these questions but defer the last two to a later chapter in
which we present a more in-depth discussion of networking and remote systems.

When considering implementation methods, one may choose:

• Direct/indirect communication.

• Symmetric/asymmetric addressing.

• Auto or explicit buffering.

• Send by copy or reference.

• Fixed or variable message size.

12.7.4.1 Communication

A message can be moved from one place to another, either directly or indirectly, via somedirectly, indirectly
intermediate point or points. Each way has advantages and disadvantages.

12.7.4.1.1 DIRECT
When using a direct communication scheme, each process must explicitly name the
sender/receiver of the message. Messages are logically of the form:

send (T1, message) // send message to task T1
receive (T0, message) // receive message from task T0
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The link is automatically established between every pair of processes or threads within
a process. For a system with four different processes, the configuration in Figure 12.17 gives
full, bidirectional interconnection among all of the processes. Several important points need
to be considered with such an implementation:

• The individual tasks may or may not be physically collocated. On one extreme,
they may be within the same FPGA. On the other, they could be in several different
countries.

• Full interconnectivity is not efficient for larger numbers of tasks. A hierarchical
scheme in which a smaller subset of the tasks is so interconnected may be more
feasible to implement and manage. Consider the Internet as a good model.

T0 T1

T3T2 Figure 12.17 Four Fully Interconnected Tasks.

Using a direct communication scheme, each task only needs to know each other’s iden-
tity; that is, the link is associated with only two processes. The link may be unidirectional
or bidirectional.

The exchange can be expressed by the modified data flow diagram in Figure 12.18.
Note that a buffer is associated with each process, although this may not be the case in all
implementations. More specifically, the buffer will probably be attached with an I/O task.

Task T0 Task T1
network

Buffer B0 Buffer B1

Figure 12.18 Information Exchange Between Two Tasks
Over a Network.

EXAMPLE 12.1
Consider the skeletal structure between two tasks – a producer task, T0 and consumer
task, T1. Task T0 produces the data and stores it in a buffer it shares with the send
task. The send task takes the data from the buffer and formats it into a message that it
sends as the payload in a message to task T1, the consumer task. T1 then reverses the
process.
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The activities by both tasks during the exchange are first expressed in the activity dia-
gram in Figure 12.19 and then in the sequence diagram in Figure 12.20.

produce item

send item

Receive item

Consume item

Producer Consumer

Figure 12.19 Activity Diagram Illustrating a
Producer–consumer Exchange.

Task T0

Send Task Receive Task

Task T1

data ()

Message()

data()

Figure 12.20 Sequence Diagram Illustrating a Producer–consumer
Exchange.
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Finally, the code fragment shown in Figure 12.21 reflects the operation of the two tasks.

while(1)

...

produce item in nextB0

 ...

send (T1, nextB0)

…

end while

while(1)

...

receive(T0, nextB1)

 ...

consume item in nextB1

 …

end while

Figure 12.21 Code Fragment Illustrating a Producer–consumer Exchange.

Observe that the scheme uses symmetrical addressing; the sender and receiver mustsymmetrical
addressing name each other. The disadvantage of such an approach is that it ties the process name to

the implementation, thereby making future changes more difficult.
If asymmetric addressing is used, the sender only names the recipient.asymmetric addressing

12.7.4.1.2 INDIRECT
With an indirect approach, messages are sent to or received from a shared variable, generally
in the form of a mailbox. Thus:

send (M0, message) // send message to mailbox M0
receive (M0, message) // receive message from mailboxM0

The link is established only if the tasks/threads have a shared mailbox or similar
container. The link may be associated with multiple processes and there may be multiple
links between processes. As with the direct scheme, the link may be unidirectional or
bidirectional. The modified data flow diagram takes the form shown in Figure 12.22, in
which two tasks are illustrated. The interconnecting links are shown as bidirectional.

Task T0 Task T1

network

Buffer B0 Buffer B1

mailbox

network

Figure 12.22 Indirect Information Exchange Between Two Tasks
Over a Network Using a Shared Mailbox.
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Now, consider three processes: T0, T1, and T2, all of which wish to exchange messages
via the shared mailbox M0. Furthermore, let T0 send and T1 and T2 receive. The question
of who gets the message, T1 or T2, arises.

One possible solution is to associate the link with at most two processes. Thus, only
one process is allowed to receive at a time. As an alternative approach, the system could
select a receiver. A third approach can be based on the owner of the mailbox.

If a task owns the mailbox, one can easily distinguish between the owner, who can only
receive (there is no reason to send a message to ourselves other than as a built-in test), and
the user, who can only send. Since each mailbox has a unique owner, there is no ambiguity.
If the system owns the mailbox, then it exists independent of any process or thread.

12.7.4.2 Buffering

A buffer or buffers may be associated with the link. Error management aside, for the
moment, buffering establishes the number of messages that can be safely sent out onto the
link with the assurance that they will be received properly at the destination. If messages
are sent too quickly, the receiver may not have sufficient time to accept and process one
message before the next one arrives.

Three possible buffering schemes can be identified.

• The link has zero capacity.
That is, the link cannot store messages. The sender must wait for the receiver to

accept the message either by delaying or through a handshake. Such a scheme is called
a rendezvous or an Idle RQ protocol.

rendezvous
Idle RQ protocol

• The link has bounded capacity.
Associated with the link is a message queue of length n. If there is space remaining

when the sender wishes to transmit, a message can be placed into the queue and the
sender can continue. Otherwise the sender must wait for space.

• If the link has unbounded capacity, it can be viewed as having infinite length.
The sender can post a message and continue. There is no wait. It is important

to recognize that the criterion here is that the sender does not have to wait. If the
receiver can remove the incoming data quickly enough, a buffer size of one will
suffice and can still be called unbounded. Such a scheme is called a Continuous RQ
protocol.

Continuous RQ
protocol

All of the approaches to intertask communication that we have discussed are captured
in Figure 12.23.

12.8 TASK COOPERATION, SYNCHRONIZATION, AND SHARING

In addition to sharing information, the tasks in a multitasking system or the processors
in a multiprocessor system are often charged with cooperating/synchronizing with each
other as they execute the application. Cooperating tasks (and threads) or processors can
affect or be affected by other tasks (and threads) or processors. They may directly share a
logical address space (both code and data) or be allowed to share data only through any
of the various shared variable models that have been discussed. Such concurrent access to
common data can result in data inconsistency, aberrant or unexpected system behavior, and
potentially complete system failure.
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Global Variable

Shared Buffer

Ping-pong

Ring or FIFO

Mailbox

Buffer

direct connection

indirect connection

network

network

network

shared variable

Must establish
protocol

link

Owned by

system

process

mailboxmailbox

Task T1Task T0 message

Figure 12.23 Alternative Approaches for Intertask Communication.

12.8.1 Critical Sections and Synchronization

Northern Scotland is beautiful, rugged, and lightly populated. There are few roads, with
little traffic. Many of the roads are narrow, bucolic, single-lane driving challenges popu-
lated with passing places and sometimes even narrow bridges as seen in the accompanying
simple drawing in Figure 12.24. As the two cars arrive, the bridge clearly presents a problem
since it is only wide enough for a single car to cross at any time. Not having both vehicles
simultaneously occupying this critical section of the road is most certainly beneficial to all
concerned.

If each car is modeled as a process and the bridge as a shared resource, the problem is
expressed using the data flow diagram in Figure 12.25.

One possible solution to the problem is to control access to the bridge by placing a
rock on the edge of the bridge. When a car approaches the bridge and wants to cross, it
must stop first, pick up the rock, drive across, and then put the rock back on the other side
of the bridge. If the rock is not available, the car must wait.

Of course, it is necessary to make several underlying assumptions for the solution to
be feasible. The first assumption is that no one decides to see how far they can throw the
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Figure 12.24 A Critical Section.

Car1Car0

bridge Figure 12.25 A Shared Variable Critical Section.

rock or forgets to return it. Second, two people don’t arrive simultaneously and decide to
fight over the rock. If two people do try to grab the rock at the same time (in the olden days
we may have had clan warfare), today we have learned to play nice and share – after you;
oh no, after you. The third assumption is that the musical group from England doesn’t go
rolling off with it as a souvenir.

The data flow diagram is extended and illustrated in Figure 12.26 in order to add
control, and the design begins to look a bit like a mailbox.

rock
rock

Car1Car0

bridge

Figure 12.26 Adding Control to Manage a Critical
Section.

Let’s examine how concurrent access to a shared resource can be manifest in a design.
Consider the problem that subsequently arises in the accompanying pseudocode and code
fragments. Implemented is a simple data transfer between two tasks, one a producer and
the other a consumer, via a shared buffer. The buffer has a limited capacity of n items. The
transfer must be managed to ensure that the producer does not try to put data into the buffer
when it is full and the consumer must not try to take data out when the buffer is empty. A
variable count provides a measure of the number of items in the buffer. It is incremented
when an item is added and decremented when one is removed. The data flow diagram for
the shared buffer is given in Figure 12.27.
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Task T1Task T0

Shared Buffer B0 - n items

Figure 12.27 Producer–consumer Exchange Through a
Shared n Item Buffer.

The behavior of the system is first captured in the state chart in Figure 12.28. Observe
that for the producer task, T0, the transition from idle to the write state is guarded by the
not full condition on the buffers. Similarly, the transition into the read state is guarded bynot full

not empty the not empty condition in the consumer diagram.

idle inc cnt

data available/write [not full] terminate

write

idle dec cnt

[not empty]

read

terminate

Producer Task T0

Consumer Task T1

Figure 12.28 State Chart Diagram Modeling a Producer–consumer Information Exchange.

The problem is then expressed in pseudocode (see Figure 12.29).

Task T0 - Producer 

while(1)

If not full 

add item 

increment count 

else 

wait for space

end while

Task T1 - Consumer

while(1)

If not empty

get item

decrement count

else

wait for item

end while

Figure 12.29 Pseudocode Modeling a Producer–consumer Information Exchange.

The C code fragments are given in Figure 12.30.
As with the attempts at simultaneous access to the bridge, there is a potential prob-

lem with simultaneous access to count. The value of the variable count depends on whichcount

critical section

task accesses it and in which order. Because the two tasks are running asynchronously,
the variable may have any of three different values at any instant in time. Like the bridge,
count represents a critical piece of data or critical section shared between the two processes,
T0 and T1.

In general, a critical section is a resource that several tasks may be sharing such as an
I/O port or a segment of memory in which they are reading and writing common variables.
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Task T0 - Producer 

int in = 0;

while(1) 

{

// produce an item nextT0

// wait for room

while (count == MAXSIZE);

B0[in] = nextT0;

in = (in + 1) % MAXSIZE;

count++;

}

Task T1 - Consumer 

int out = 0;

while(1) 

{

while (count == 0); // wait for item

nextT1 = B0[out];

out = (out + 1) % MAXSIZE;

count--;

// consume an item nextT1

}

Figure 12.30 C Code Fragment Modeling a Producer–consumer Information Exchange.

Such variables may be as simple as a single bit or as complex as a file or a table. As was the
goal in crossing the Scottish bridge, while a task is working with a piece of data or some
other resource in a critical section, we want to prevent access by all other processes. That
is, one wants to ensure mutually exclusive access.mutually exclusive

The need to control access to a shared resource or to common data gives rise to one form
of process or processor synchronization that is called mutual exclusion synchronization. A

synchronization,
mutual exclusion
synchronization,

condition
synchronization

second form of synchronization is called condition synchronization. For the case of mutual
exclusion synchronization, the objective is to make certain that two processes are not in their
critical sections at the same time. Condition synchronization, on the other hand, requires
that a process delay or block until a specified condition is true (or false).

The need to share and to coordinate access exists only if there is more than one task or
processor that wishes to use a nonsharable resource or to modify common data at the same
time. This is a key point. If the resource is sharable or if the tasks are executing read only
operations, there will be no problem.

As we sought to accomplish with the simple bridge management schemes, the solution
to the critical section problem requires a control algorithm or protocol that regulates access
to the shared area. At a high level, the protocol should be such that a task wishing to access
the critical section should check to see if anyone else is using the variable; if not, announce
to all other tasks that it is now going to use the variable, do its work, and then tell everyone
when it is finished.

An abstract model of the structure of a task with a critical section can be depicted as
shown in Figure 12.31.

while(1)

noncritical code

end while

entry section

critical section

noncritical code

exit section

Figure 12.31 An Abstract Model of a Critical Section.
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The code relevant to the critical section is enclosed in the three rectangles shown in the
figure. The top rectangle, the entry section, acts as the gatekeeper controlling access to theentry section

exit section critical region. The bottom rectangle, the exit section, serves to tell the world that the task
that had been using the critical variable is now finished.

Any solution to the critical section problem must satisfy the following requirements.

mutual exclusion

deadlock

• It must ensure mutual exclusion in the critical region.
If a task is in the critical section, no other task may be allowed in.

• It must prevent deadlock.

progress

If two or more tasks are trying to enter the critical section, one must succeed.
• It must ensure progress through the critical section.

If no task is in the critical section and some other task wishes to enter, only tasks
that are not in the exit section rectangle can affect which task enters the critical section
next. Furthermore, a task wishing to enter cannot be prohibited from doing so indef-
initely.

• The solution must ensure bounded waiting.bounded waiting

An upper limit must be set on the number of times a lower priority task can be blocked
by one with a higher priority once it has made a request to enter.

atomic
Let’s examine several possible solutions to the critical section problem. We will begin

with a flag-based approach. Prior to doing so, however, we introduce the word atomic as a
qualifier to an operation.

Atomic Operation

One that is guaranteed to terminate and is indivisible when applied to either examining
a program variable or modifying the state of such a variable.

Indivisible simply means that, once started, the operation carries through to comple-
tion without interrupt. From a coarse-grained perspective, the operation appears as a single
statement; from a fine-grained view, the operation may actually comprise several steps. The
full sequence of steps must be guaranteed to complete and to do so uninterrupted.

12.8.2 Flags

To protect a critical section, the first goal is to ensure mutually exclusive access. This exclu-
sion can be accomplished using flags embedded in an atomic operation. The method is
illustrated using two flags and two processes. Expansion to a greater number of processes
follows logically.

Define two processes, T0 and T1. Let them share a critical section. Define two Boolean
flags, T0Flag and T1Flag, to mark which process is in the critical section. Finally, define
the atomic operation, await, which is expressed in pseudocode as shown in Figure 12.32.await

await( condition )

{

statements

} variable. 

Figure 12.32 Await Statement Pseudocode Model.

Condition is a Boolean expression on which a task, thread, or processor waits until itcondition statement
evaluates to true. Statements comprise a set of actions that are to be performed when the
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condition evaluates to true. If the condition evaluates to true, execution proceeds through
the statements comprising the body of the await construct. An important assumption here
is that when a process is awaiting a condition, other processes have the opportunity to run.

await
awaiting

Otherwise there is a deadlock.
Using the await operation, one can now re-examine the earlier shared buffer problem.

The await statements are expressed, one for each task, as:

await(!T1Flag) {T0Flag = true;}
await (!T0Flag){T1Flag = true;}

Next, the await statements are used to control access to the critical section – the variable
count. First, we look at the producer (see Figure 12.33a).

await
count

Task T0 - Producer 

int in = 0;

while(1) 

{

// produce an item nextT0

while (count == n); // wait for room

B0[in] = nextT0;

in = (in + 1) % n;

await( !T1Flag ) {T0Flag = true;} // entry section

noitceslacitirc//;++tnuoc

noitcestixe//;eslaf=galF0T

}

Figure 12.33a Managing a Critical Section Using the Await
Statement. Producer Side.

Then we look at the consumer (Figure 12.33b).

Task T1 - Consumer 

int out = 0;

while(1) 

{

while (count == 0); // wait for item

nextT1 = B0[out];

out = (out + 1) % n;

await( !T0Flag ) {T1Flag = true;} // entry section

noitceslacitirc//;--tnuoc

noitcestixe//;eslaf=galF1T

// consume an item nextT1

}

Figure 12.33b Managing a Critical Section Using the Await Statement.
Consumer Side.
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It is rather straightforward to show that this scheme satisfies the first three conditions
for solving the critical section problem. Ensuring eventual access is a bit more involved and
is contingent on the scheduling policy.

12.8.3 Token Passing

Another possible solution to the shared buffer problem is an extension of the rock-passing
protocol developed for the Scottish bridge problem. We define a flag or token. To ensure
sharing of the data, only one token is issued. The token is continuously passed from task to
task; any task wishing to access the critical section can only do so when it has the token,
as illustrated in the state chart in Figure 12.34. The transition from state A to state B, from
which the access to the shared variable occurs, is guarded by the requirement of possessing
the token.

State A

Access Buffer [have token]

State B

Task Ti

Figure 12.34 State Chart Modeling a Token Passing Protocol as a Solution to the Critical Section
Problem.

Although there is now controlled access to the critical section, several problems arise
immediately:

1. A task or processor that does not want to share holds onto the token forever.

2. The task or processor with the token crashes for an extended time.

3. The token gets lost or corrupted because of noise.

4. The task or process with the token terminates or leaves the system without releasing
the token.

5. How does one identify a new task or processor that gets added to the system?

One possible solution to all of these problems is to borrow an idea from our net-
work colleagues. A system-level task, charged with managing the token, is added. The task
includes a watchdog timer. Each time the token is released, the timer is reset. If the timer
expires, a ping message is sent to all tasks or processors querying for the token. If no one
responds, a new token is generated.

Borrowing again from the network people, each time a task or processor enters or leaves
the system, it must register with the token management task. Alternatively, the system task
could periodically query for new entries into the system.

It is evident that such a protocol satisfies all of the requirements stipulated above and
thus does solve the critical section problem. The approach, however, adds a significant intra-
and inter-system communication burden as well as extra overhead to each task.

12.8.4 Interrupts

Another approach to solving the buffer problem centers on managing interrupts. Since the
problem only arises in a single-processor context when preemption is allowed, preventing
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preemption solves it. Disallowing all preemption is a bit too extreme in most cases. Taking
a more surgical approach offers a more practical path.

Referring back to the earlier figure describing a task with a critical section, we should
be able to solve the problem if interrupts are disabled when entering the rectangle labeled
entry section and re-enabled in the section labeled exit section.entry

Using such an approach, one can encounter some of the same problems discovered
with a token-based method. Specifically, if a task implements a long or infinite loop in its
critical section, interrupts may be disabled for an extended period.

The problem can be solved with a variation on the solution developed for the
token-based scheme. Rather than disabling all interrupts, when the entry code segmententry
is entered, all interrupts below a specified level are disabled or masked. A timer that can
interrupt at a level above that set by the mask is enabled. If the timer expires, the system
can preempt the offending task and handle it as is appropriate for the design.

Once again, an interrupt-based approach meets the requirements for solving the critical
section problem. The one caveat is that such an approach will not be effective in a multipro-
cessor approach utilizing shared memory, as we only have the ability to manage interrupts
on our own processor.

12.8.5 Semaphores

A protocol to protect a critical section was suggested by Professor Edsger Wybe Dijkstra,
a distinguished computer science pioneer from Rotterdam, The Netherlands. Dr. Dijkstra
has made significant contributions to almost every aspect of the field of computing science.

As his solution to the critical section problem, he devised what is called a semaphore.
semaphore

atomic
In its simplest form, a semaphore is a Boolean variable or an integer, S, that can be accessed
only through two atomic operations:

wait - P(S)
signal - V(S)

proberen
to test, verhogen,

to increment
The letters P and V are the first letters of the Dutch words proberen, which means to

test, and verhogen, which means to increment. At this point in the discussion, the value of
a semaphore will reflect whether or not access to the critical variable is available. The word
“atomic” qualifying the access operations for the semaphore is important, as was discussed
earlier for the await operation.

wait
signal, test

set
The wait operation tests the value of the semaphore, and if it is false, sets it to true. The

signal operation sets the value to false. The wait operation performs its job in two steps: test,
then set. These steps must be seen from outside of the wait as a single, atomic operation.wait, test, set

wait The sequence of events illustrated in Figure 12.35 should not be possible. In the situa-
tion presented, the two tasks, T0 and T1, are executing. T0 currently has the CPU and needs

T1

T0

T1: wait

T0: wait

test

test set

set

T1 interrupt and execute a wait

Figure 12.35 A Nonatomic Model
of a Flag Used to Protect a Critical
Section.
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to enter the critical section. It executes the wait. If the test and set operation is not atomic,
T0 could complete the test portion and see that the resource is available. In the meantime,
task T1, which has a higher priority, interrupts and also needs the resource. It, too, executes
the wait, which it is allowed to complete. Task T1 then exits, and T0 resumes where it left
off and sets the flag. Both processes now believe that they have mutually exclusive access
to the critical area.

As long as neither task changes the value of the critical variable, everything will work as
expected. However, a write operation by either task can potentially create a serious problem.

The operations may be defined by the code fragments presented in Figure 12.36.
Observe the similarity with the await operation.

wait(s) 

{

while (s);

s = TRUE;

}

s initialized to FALSE

signal(s) 

{

s = FALSE;

}

Figure 12.36 A Model of Semaphore Behavior.

Bear in mind that, as with the await control statement, although shown as several steps,await
the wait must execute as a single, atomic operation. Lest the reader think that the semicolon
following while is in error, it is not. Such a construct forces a task to block as long as the
semaphore is set.

The test and set operation (abbreviated in various texts as TS, TAS, or TNS) is imple-test, set
mented as a hardware instruction on many processors.

The semaphore can now be used to protect a critical resource, as demonstrated in the
two code fragments presented in Figure 12.37.

Task T0

{

…

wait(s) 

critical section

signal(s)

…

}

Task T1

{

…

wait(s) 

critical section

signal(s)

…

}

Figure 12.37 Protecting a Critical Section with a Semaphore.

The task that executes the wait(s) first will gain access to the critical section. The second
task will block, waiting for the other task to execute the signal. Thereafter, it, too, can
proceed.
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12.8.6 Process Synchronization

One can use the semaphore in a slightly different way to force the execution order of several
asynchronous tasks. For the basic case, consider an application with two such tasks, T0 and
T1, which are cooperating on a portion of the application. Task T0 contains a function f(s0),
and task T1 contains a function, g(s1). Their execution order is critical; the function f(s0)
must be executed before g(s1). To achieve such a synchronization, we define the semaphore
sync and initialize it to TRUE. The code fragments in Figure 12.38 illustrate the design.

Task T0

{

 ...

f(s1);

signal(sync); // signal

...

}

Task T1

 {

...

wait(sync); // wait

g(s2);

...

}

Figure 12.38 Using a Semaphore to Control the Order of Execution.

Observe that because sync is initialized to TRUE, T1 will execute g(s2) only after T0
executes statement f(s1).

12.8.7 Spin Lock and Busy Waiting

The one disadvantage of using semaphores for synchronization as we have described earlierwait
busy waiting

spin lock
is that when a wait for a shared resource or event, for example, is encountered, the encoun-
tering process is blocked and must loop continuously while waiting. Such a phenomenon
is called busy waiting. Under such a condition, the waiting processes waste CPU cycles
that other processes could use productively. The lock on the critical section is called a spin
lock because the process spins while waiting for the lock to open. Of course, the advan-
tage of such a lock is that there is no context switch that can take significant time. If the
lock is expected to be held for only a short time, the spin lock can be particularly useful in
time-critical situations.

12.8.8 Counting Semaphores

The semaphores we have looked at are called binary semaphores; they can take on eitherbinary semaphores
counting semaphores one of two values. The definition can be expanded slightly to permit the semaphore to take

on a range of values from 0 to N− 1; such semaphores are called counting semaphores.
Each such semaphore has an integer value and (potentially) a list of associated pro-

cesses. When a process executes a wait operation and the semaphore is not available, ratherwait
than wait the process can block itself. Through the block operation, the process places itselfblock
in a waiting queue associated with the semaphore. The state of the process is changed to
waiting and control is transferred to the scheduler. The blocked process can be restartedwaiting
when some other task executes a signal operation. The restart operation is initiated by asignal
wakeup operation that places the task in the ready state and into the ready queue. Countingready
semaphores can be particularly useful when we must manage a pool of identical resources.
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The definition of the semaphore operations is modified slightly, as seen in the code
fragments in Figure 12.39. Nonetheless, the modeled operation of the semaphore remains
atomic. The semaphore now defined as s is initialized to 0.

wait(s)

{

s = s+1;

if (s > 1)

{

add process to waiting queue;

block;

}

}

signal(s) 

{

s = s-1;

if (s >1)

{

remove process from waiting queue;

wakeup(p);

}

}

wait(s)

{

s = s+1;

if (s > 1)

{

add process to waiting queue;

block;

}

}

Figure 12.39 A Code Fragment Modeling a Counting Semaphore.

Note that the block operation suspends the invoking process and the wakeup resumesblock, wakeup
execution of the blocked process. Both operations are provided by operating system calls.
Observe that the waiting list can be implemented by a linked list and perhaps implement as
FIFO or a priority queue.

12.9 TALKING AND SHARING IN SPACE

So far, we have discussed the problems of sharing, cooperation, and synchronization
among asynchronous tasks. Let’s look at an application in which we can begin to use these
concepts.

12.9.1 The Bounded Buffer Problem

First let’s describe the objective. One of the major goals in designing embedded applications
is to ensure that they perform in a highly robust manner that tolerates faults and misuse.
Consider the problem shown in Example 12.2.

EXAMPLE 12.2 The application is to build the data management portion of an extensible digital imaging
system to be used on the next generation Rovers that will engage in an ongoing exploration
of Mars.

The goal of the mission is to conduct a series of detailed studies of the Martian surface
and surrounding environment. The system is configured with several cameras that can con-
tinuously collect a variety of image data. The data may include infrared scans, atmospheric
analysis, or topographic mapping.

The imaging system is mounted on the Rover. Data is collected in a buffer and then
uploaded to an orbiting satellite that will subsequently transmit the image data to any one
of a number of tracking stations on the Earth.

Because the objective is to map or sample as much of the environment as possible
during each mission as data is collected, it is stored into any one of a set of N smaller
buffers rather than one large one. With such a scheme, there is no waiting for one buffer
to be emptied before scanning can begin again, thereby maximizing the transfer on both
sides. Thus, as each buffer is filled, image data is directed to the next free buffer. So as not
to miss communication with one of the various Earth stations, the mother ship must upload
the collected data as soon as it becomes available.
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The block diagram in Figure 12.40 illustrates the system.

buffer 0

buffer n-3

buffer n-2

buffer n-1

Figure 12.40 Information Sharing Utilizing an n Buffer Design.

To solve the problem we first identify the essential requirements.
There are a couple of things that must be managed: the count of the number of free/full

buffers and controlled access to a specific buffer for reading and writing the image data.
Next, we work on a solution.
The imaging system is a producer of data and the satellite is a consumer. We will use

semaphores to manage access to the variables specifying the number of full or empty buffers
and, thence, access to those buffers. To begin, we define the semaphores:

mutex Provides mutual exclusion for accesses to buffer pool – initialized to the value 1
empty Count number of empty buffers – initialized to n − 1
full Count number of full buffers – initialized to 0

The algorithm works as follows.
The producer will check to see if there are empty buffers; if so, wait for exclusive access

to the buffer pool. Once access is gained, the producer will add the data, then exit. On the
consumer side, the consumer will see if any buffers have data available; if so, will wait for
exclusive access. When the buffer pool is open, the consumer will retrieve the data and exit.

The producer code fragment is illustrated in Figure 12.41.

Task T0–Produce–Rover Side 

while(1)

...

produce an item T0Item

...

wait(empty); // wait for available buffer

wait(mutex); // buffer available 

// wait for exclusive access to buffer pool

...

add T0Item to buffer; // copy image data to buffer 

...

signal(mutex); // signal buffer pool available

langis//;)lluf(langis  data available

...

end while

Figure 12.41 A Solution to the Bounded Buffer Problem: The Producer Side.
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The consumer code fragment is illustrated as shown in Figure 12.42.

Task T1–Consume–Satellite Side
while(1)

// wait for data to become available;)lluf(tiaw

...

...

wait(mutex); // wait for exclusive access to buffer pool

remove T1Item from buffer; // retrieve image data

signal(mutex); // signal buffer pool available

// signal date read;)ytpme(langis

...

consume item T1Item // use image data

...

end while 

Figure 12.42 A Solution to the Bounded Buffer Problem: The Consumer Side.

The problem just described is a classic synchronization problem known as the Bounded
Buffer Problem.

Bounded Buffer
problem

12.9.2 The Readers and Writers Problem

A new engineer proposes that, as there are a number of buffers, the imaging system can
be enhanced by permitting data to be collected from several cameras at the same time and
stored in one of the buffers. Also, data can be uploaded using several links and, thereby,
speed up that process as well.

To demonstrate its operation, the engineer quickly puts together a simple model of the
system. It works well most of the time but occasionally data gets corrupted and he or she
cannot understand why.

The proposed design exhibits one of the classic problems. We have a data object that
must be shared among several concurrent processes. Some may want to upload (read) and
others may want to store (write). The processes are referred to as readers and writers.readers, writers

When operating, if multiple readers access the data simultaneously, there is no problem.
If a writer and any other process access the shared data simultaneously, then there is the
potential for a big problem. This problem is referred to as the readers-writers problem.readers-writers

There are several variations to the problem.

First Readers-Writers: No reader waits unless a writer has obtained access of shared
variable.
Second Readers-Writers: Once a writer is ready, it performs the write as soon as possible.
If a writer is waiting, no new reader started.

Let’s see how the young engineer’s problem can be solved. We will present a solution
to the first readers-writers problem. To start, we define the terms:

Semaphores mutex, wrtSem, both initialized to 1
mutex Used to ensure mutual exclusion when numReaders is updated
wrtSem Used to ensure mutual exclusion for writer access
numReaders Integer count of the number of readers currently accessing the shared

buffer pool, initialize to 0
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Each writer process must check for exclusive access to the buffer pool before writing.
We ensure this by protecting the pool with the semaphore wrtSem. The code fragment forwrtSem
the writer is given in Figure 12.43.

Writer Process

1==meStrwroftiaw//;)meStrw(tiaw

// wrtSem = 0

...

// critical section

perform writing;

...

signal(wrtSem); // wrtSem = 1

...

Figure 12.43 The First Readers and Writers Problem: The Writer Side.

As many readers as desired are permitted, provided that no other process is access-
ing the buffer pool to change the data. The code fragment for the reader is given in
Figure 12.44.

Reader Process

while(1)

wait(mutex); // wait while mutex == 1

// mutex = 0

numReaders++; // inc number of readers

if (numReaders ==1) // if i’m the only reader

wait(wrtSem); // make sure no writers 

// wrtSem = 1

end if

signal(mutex); // mutex = 0

// critical section
...

Perform reading;

...

wait(mutex); // wait for mutex == 1

// mutex = 0

numReaders--; // dec number of readers

if (numReaders ==0) // no readers

signal(wrtSem); // wrtSem = 0

end if 

signal(mutex); // mutex = 0

...

end while

Figure 12.44 The First Readers and Writers Problem: The Reader
Side.
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Observe that in the entry section of the critical section, if the entering task is not the
only reader, then there must already be other readers. Such a condition implies there can-
not be any writers. Otherwise, one must check to ensure that there are no writers before
proceeding.

If a writer is in the critical section, n readers are waiting, one reader is queued on
wrtSem, n− 1 readers are queued on mutex, and if a writer executes signal(wrtSem), it maywrtSem

mutex, signal(wrtSem) resume the waiting readers or one waiting writer. The decision is made by the scheduler.
The tacit assumption being made is that the buffers that are being written to or read

from are managed to ensure that neither underflow nor overflow occurs.

12.10 MONITORS

The semaphores we have studied are a fundamental method for synchronism. However,
they are a low-level mechanism and it is easy to make errors with them. An alternative
solution uses a data type called a monitor. Monitors are program modules that offer moremonitor
structure than semaphores, with an implementation that can be as efficient.

A monitor is a data abstraction mechanism that encapsulates a representation of an
abstract object. The monitor provides a public interface as the only means by which inter-
nal data may be manipulated. Note that this is similar to a class in either C++ or Java.
The monitor contains an internal (private) variable to store the object’s state and proce-
dures (methods or function members) that implement the operations on the object. Mutual
exclusion is satisfied by ensuring that procedures in the same monitor cannot execute simul-
taneously. Conditional synchronization is provided through condition variables.condition variables

A monitor is used to group a representation and implementation of a shared resource.
It has an interface and a body. The (public) interface specifies those operations providedinterface, body
by the resource, while the body contains variables that represent the state of the resource.
Internal procedures implement the operations specified in the interface. The monitor can
be schematically illustrated as shown in Figure 12.45.

monitor monName

{

initialization statements

procedures

permanent variables

}

Figure 12.45 The Monitor – A Typical Structure.

The procedures implement the visible operations. All processes in the monitor share
the permanent variables. They are denoted permanent because they retain their values on
exit as long as the monitor exists. Such behavior occurs in C or C++ with static variables.
The procedures may also have local variables.

By virtue of being an abstract data type (ADT), the monitor is a distinct scope. Only
the procedure names are visible outside of the monitor – the public interface. Permanent
variables can only be changed through one of the visible procedures. Statements within
the monitor cannot affect variables outside the monitor, that is, those in a different scope.
Permanent variables are initialized before any procedure is called. The initialization is
accomplished by executing initialization procedures when the monitor instance is created.
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The major difference between the monitor and a class in C++ or Java is that the mon-
itor is shared by multiple concurrently executing processes or threads. Consequently, the
threads or processes using a monitor may require mutual exclusion to the monitor variablesmutual exclusion
as well as synchronization to ensure that the monitor state is conducive to continued
execution.

Mutual exclusion is usually implicit; synchronization is implemented explicitly.synchronization
Different processes require different forms of synchronization. The implementation of the
necessary synchronization is accomplished through condition variables. An external task

condition variables
active

or thread calls a monitor procedure. The procedure is active if a thread or task is executing
a statement in the procedure. At most, one instance of a monitor procedure is active at any
one time. The simultaneous invocation of two different procedures or two invocations of
the same procedure is not permitted.

By definition, the procedures execute with mutual exclusion that is ensured by the
language library and operating system. Mutual exclusion is generally implemented by using
locks or semaphores and by inhibiting certain interrupts.

12.10.1 Condition Variables

Condition variables are used as part of the synchronization process and are intended to
delay a task or thread that cannot safely continue until the monitor’s state satisfies some
Boolean condition. Note that condition variables are similar to the guard conditions in Uni-
fied Modeling Language (UML) state charts. They are then used to awaken the delayed
process once the condition becomes true. A condition variable is an instance of a variable ofcond
type cond.

cond myCondVar;

The declaration can only occur inside the monitor. The value of the condition variable
is a queue of delayed processes. Initially, the queue is empty. The value on the queue can
only be accessed indirectly, for example, to test its state.

empty(myCondVar);

A thread can block on a condition variable:

wait(myCondVar);

Execution of the wait causes the task to move to the rear of the queue and to relinquishwait
exclusive access to the monitor. A blocked process is awakened using

signal(myCondVar);

Execution of a signal causes the task at the head of the queue to awaken.signal
Observe that the execution of signal seems to cause a dilemma. Upon execution, two

tasks have the potential to execute: the awakened task and the signaling task. Such a situ-
ation seems to contradict the requirement that only a single task or thread can be active in
the monitor at any one time.

There are two possible paths for resolution:

• Signal and Continue. The signaling task continues, and the awakened task resumes at
Signal and Continue

nonpreemptive
some later time. Such a scheme is considered nonpreemptive; the process executing
the signal retains exclusive control of the monitor.
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• Signal and Wait. This is considered to be preemptive. The task executing the signalSignal and Wait,
preemptive relinquishes control and passes the lock to the awakened task. The awakened process

preempts the signaling process.

The process is described in Figure 12.46.

Condition Variable

Queue

Executing in

MonitorEntry Queue

Signal and Continue

Signal and Wait

Call Monitor

Monitor Free

Wait

Return

Signal and Wait

Figure 12.46 A State Diagram Model for a Monitor.

The operation/synchronization occurs as follows. A task calls a monitor procedure. If
another task is executing in the monitor, the caller is placed into the entry queue. When the
monitor becomes free, as a result of a return or wait, one task moves from the entry queuecalls

entry queue
return, wait

into the monitor.
If no other tasks are executing, the calling task passes through the entry queue and

begins executing immediately. If the task executes wait on a condition variable while exe-
cuting in the monitor, it enters the queue associated with that variable.

When the task executes a Signal and Continue on a condition variable, the task at the
head of the associated queue now moves to the entry queue. If a task executes a SignalSignal and Continue

entry, Signal and Wait and Wait on a condition variable, the task at the head of the associated queue moves to the
monitor and the task executing in the monitor moves to the entry queue.

12.10.2 Bounded Buffer Problem with Monitor

Let’s revisit the bounded buffer problem and implement the design with a monitor. As
before, there is a pool of n buffers. We will assume that each can hold one item.

Define a monitor boundedBuffer.
Define the following condition variables:

notEmpty Signaled when buffer count >0
Tracks empty buffers, initialized to 0

notFull Signaled when buffer count <n− 1
Tracks full buffers, Initialized to 0



�

� �

�

12.10 Monitors 617

Define the procedures:

put(data) Puts data into a buffer when space available
get(data) Gets data from a buffer when data available

Define the protected entity:

bufferPool The monitor can be implemented as shown in Figure 12.47.

monitor boundBuffer

bufferPool;

count = 0;

0>tnuocnehwdelangis//;ytpmEtondnoc

n<tnuocnehwdelangis//;lluFtondnoc

put(anItem)

{

while(count == n) wait (notFull);

put anItem into a buffer

signal (notEmpty);

}

get(anItem)

{

while(count == 0) wait (notEmpty);

get anItem from a buffer

signal (notFull);

}

Figure 12.47 A Monitor Solution to the Bounded Buffer Problem.

Code fragments for the implementation are illustrated in Figure 12.48.

Producer

while(1)

...

produce item anItem

...

boundBuffer.put(anItem)

...

end while

Consumer

while(1)

...

boundBuffer.get(anItem)

…

consume item anItem

...

end while

Figure 12.48 Using the Monitor in the Producer and the Consumer to Solve the
Bounded Buffer Problem.
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12.11 STARVATION

When working with semaphores and monitors, a potential problem called starvation exists.
That is, one process is permanently prevented from running. Such a situation can occur
when a process is waiting within a monitor or semaphore and other processes are added or
removed in last-in-first-out (LIFO) order.

12.12 DEADLOCKS

When working in a multitasking environment, one can create a second problem called a
deadlock. A deadlock occurs when each process in a set of processes needs resources thatdeadlock
are held by other processes in that set in order to continue. We will study the deadlock
problem and examine several possible solutions in depth in the next chapter.

12.13 SUMMARY

In this chapter we continued the discussion of time and the crit-
ical role it plays in the design of embedded applications by
introducing the concepts of reactive and time-based systems. We
have studied, in some detail, the basic responsibilities of task
scheduling and intertask communication in the operating sys-
tem. We have examined a number of different criteria for assess-
ing scheduling algorithms; we learned the difference between
static and dynamic scheduling, and we looked at several algo-
rithms in each category.

We have looked at two categories of intertask communica-
tion – shared variables and message exchange – and at several

ways by which we can implement those strategies. We have
learned that a side effect of using shared data is the need for coor-
dinated access by the tasks and threads comprising the system.
We have seen that such a shared data, called a critical section,
can be managed by several methods, including semaphores and
monitors. Finally, we studied several classical models for shared
data problems and how such problems can be solved using
semaphores and monitors.

12.14 REVIEW QUESTIONS

Time, Time-Based Systems, Reactive Systems

12.1 What is the difference between an interval and a dura-
tion?

12.2 What is a time-based embedded system? a reactive
embedded system?

12.3 What is the difference between a periodic and an aperi-
odic event or operation?

12.4 Explain what is meant by delay in an embedded applica-
tion by jitter.

12.5 What is meant by the expressions hard or hard deadline
in a real-time embedded context?

12.6 What is firm real-time? soft real-time?

Scheduling

12.7 What is meant when a task is said to be schedulable?
deterministically schedulable?

12.8 What is CPU utilization? Why is it important?

12.9 When are scheduling decisions made?

12.10 What is the difference between a preemptive and a non-
preemptive system?

12.11 Several scheduling criteria were outlined in the chapter.
What are these?

12.12 What are the different scheduling algorithms identified
in the chapter?

12.13 What is deterministic modeling? A queuing model?

12.14 What is simulation? emulation? What is the difference
between them?

Intertask Communication

12.15 What are the three primary components that make
up the intertask communication model introduced in this
chapter?
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12.16 One method introduced in the chapter for exchanging
information between tasks was called shared variables. What
does this mean?

12.17 Message exchange was introduced as another means by
which information might be exchanged between tasks in an
embedded application. What does this mean?

12.18 What is a rendezvous in a message exchange model?

12.19 What is a buffer in a message exchange model?

Task Cooperation, Synchronization, and Sharing

12.20 What is a critical section?

12.21 Describe what is meant by the entry and exit sections
with respect to a critical section.

12.22 What requirements must be met in order to solve a criti-
cal section problem?

12.23 What is meant by the expression atomic operation?

12.24 What does the expression test and set mean?

12.25 What is a semaphore?

12.26 Discuss how a semaphore can be used to solve the critical
section problem.

12.27 What is a spin lock?

12.28 What is a counting semaphore?

12.29 What is the bounded buffer problem?

12.30 What is the readers and writers problem?

12.31 What is a monitor?

12.32 How does a monitor meet the specified requirements for
solving a critical section problem?

12.33 What is starvation?

12.34 What is a deadlock?

12.15 THOUGHT QUESTIONS

Time, Time-Based Systems, Reactive Systems

12.1 What is the difference between absolute time and relative
time? Give two examples of each in an embedded application.

12.2 Give two examples of periodic and aperiodic events or
operations in an embedded application.

Scheduling

12.3 Give an example of an embedded application for which
each of the scheduling criteria discussed in the chapter might be
best suited. Explain and justify your answer.

12.4 The chapter introduces several different scheduling algo-
rithms. For each algorithm presented, give an example of an
embedded application for which the algorithm might be best
suited. Explain and justify your answer.

Intertask Communication

12.5 The chapter introduced several shared variable models.
Identify each of these and explain how each works.

12.6 For each of the shared variable models, identify a
strength and a weakness.

12.7 Give an example of an embedded application in which
each of the shared variable models might be used. Explain and
justify your choice.

12.8 Explain how message exchange as a means for exchang-
ing information between tasks in an embedded application
might work.

12.9 Discuss the advantages and disadvantages of message
exchange versus shared variables in an embedded application.

12.10 Explain the difference between direct and indirect com-
munication in a message exchange model? Give an example of
each and explain the pros and cons of each approach in your
selected applications.

12.11 Explain the difference between symmetric and asymmet-
ric addressing in a message exchange model. Give an example
of each and explain the pros and cons of each approach in your
selected applications.

12.12 Several different buffering schemes were introduced.
What were these? Give several advantages and disadvantages
of each approach.

12.13 Give an example of an embedded application in which
each of the buffering schemes might be used. Explain and justify
your choice.

Task Cooperation, Synchronization, and Sharing

12.14 Give an example of a critical section in an embedded
application and explain why it exists.

12.15 Why should a test and set operation be atomic?

12.16 The chapter presents several alternate solutions to the
critical section problem. Describe each and discuss its advan-
tages and disadvantages.

12.17 Discuss the advantages and disadvantages of using a
counting versus binary semaphore in embedded applications.
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12.18 Give several examples of embedded applications in
which a binary or counting semaphore is used. Explain and jus-
tify your choice in each case.

12.19 What real-world problem is the bounded buffer problem
modeling?

12.20 Give several examples of embedded applications
containing a bounded buffer problem.

12.21 What real-world problem is the readers and writers
problem modeling?

12.22 Give several examples of embedded applications
containing a readers and writers problem.

12.23 How does a monitor differ from a binary semaphore?
Counting semaphore?

12.24 Explain the purpose of condition variables in a monitor.

12.16 PROBLEMS

12.1 Present a UML sequence diagram to illustrate the behav-
ior of an embedded design comprising four tasks in the
polled set.

12.2 Complete the design of the basic polled algorithm given
in Figure 12.5 for a system with four tasks in the polled set.
Model each task as a mod Ni counter that is incremented each
time the task is polled.

12.3 You have a digital event, a positive transition on a signal
line, that you must respond to within 40 μs. As the designer, you
need to determine the best way to handle such a signal. You have
two choices, polling or an interrupt. You are in a design review
and must present a case justifying one or the other.

(a) Present the pros and cons of polling.

(b) Present the pros and cons of an interrupt-based scheme.

(c) For a polled scheme, give a detailed description of neces-
sary steps prior to polling, during polling, and after the event
occurs. Be specific.

(d) For an interrupt-based scheme, give a detailed description
of necessary steps prior to the interrupt, during the interrupt, and
after the interrupt has been handled. Be specific.

(e) What happens in both cases (polled and interrupt) if all
interrupts are globally disabled?

(f) What happens in the interrupt case if no ISR is set up at the
interrupt vector location?

12.4 You have a task that must respond to an external event
at five different times during a cycle. For two of the times, t2

and t3, the response is considered hard real-time and for three of
the times, t0, t1, t4, the response is considered soft real-time, as
shown in Figure P12.1.

time

t0 t1 t2 t3 t4

Figure P12.1

As the designer, you can choose only one of the following
methods to accommodate the external event: polled, interrupt, or
polling an interrupt. Discuss the advantages and disadvantages
of each method.

12.5 Design an embedded system to control a traffic light uti-
lizing a state-based schedule. Each direction supports a left turn
(right turn if traffic normally drives on the left-hand side) and
pedestrian-activated crosswalk control.

12.6 Design an embedded system to control a portable per-
sonal entertainment system utilizing a state-based schedule. The
system must support the ability to: turn on/select a song to play,
play the song, suspend playing, replay a song, turn off.

12.7 Implement a first-come first-served scheduling algorithm
utilizing a doubly linked list based task queue.

12.8 Repeat Problem 12.7 a for a shortest job first scheduling
algorithm.

12.9 Repeat Problem 12.7 a for a round robin scheduling algo-
rithm.

12.10 An embedded system has three processes with the fol-
lowing execution times and periods: P1(4, 16), P2(3, 12),
P3(2, 8).

(a) What is the CPU utilization for such a system?

(b) Can the set of tasks be scheduled using a rate-monotonic
schedule?

(c) If the set of tasks can be scheduled, give the UML sequence
diagram for the schedule.

12.11 An embedded system has three processes with the fol-
lowing execution times and periods: P1(4, 16), P2(3, 8), P3(2, 7).

(a) What is the CPU utilization for such a system?

(b) Can the set of tasks be scheduled using a rate-monotonic
schedule?

(c) If not, what changes would have to be made to enable the
set of tasks to be scheduled using a rate-monotonic schedule?

12.12 An embedded system has five processes with the follow-
ing execution times and periods: P1(5, 40), P2(5, 60), P3(4, 16),
P4(6, 48), P5(12, 96).

(a) What is the CPU utilization for such a system?
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(b) Can the set of tasks be scheduled using a rate-monotonic
schedule?

(c) If the set of tasks can be scheduled, give the UML sequence
diagram for the schedule.

12.13 An embedded system has three processes with the fol-
lowing execution times and periods: P1(4, 16), P2(3, 8), P3(2, 7).

(a) What is the CPU utilization for such a system?

(b) Can the set of tasks be scheduled using an earliest deadline
schedule?

(c) If the set of tasks can be scheduled, give the UML sequence
diagram for the schedule.

12.14 Provide a C algorithm to schedule a set of three tasks
using an earliest deadline schedule.

12.15 Repeat Problem 12.14 to schedule a set of three tasks us
for a least laxity schedule.

12.16 An embedded system has the following three jobs, pro-
cesses, and resources. Devise a schedule using the shortest job
first algorithm that will achieve optimum utilization of resources
and system throughput.

3 Jobs: J1, J2, J3

3 Resources: A/D

3 Processes: Measure M

CPU Compute C

I/O Output O

J1 Time units J2 Time units J3 Time units

M1 1 M1 2 M1 3

C1 1 C1 3 C1 3

M2 2 M2 1 M2 2

C2 3 C2 2 C2 2

O1 3 M3 2 M3 3

M3 2 C3 3 C3 3

C3 1 O1 2 O1 2

O2 1

Total 14 15 18

12.17 Repeat Problem 12.16 using a rate-monotonic schedule.

12.18 Repeat Problem 12.16 using an earliest deadline
schedule.

12.19 An embedded application is designed as three tasks. The
requirements for each are given in the following table.

Task Priority Period Time units

1 1 7 2

2 2 16 4

3 3 31 7

(a) Can the three tasks be scheduled using a nonpreemptive
scheduling scheme? Why or why not? If so, show the schedule
using a UML sequence diagram.
(b) Can the three tasks be scheduled using a preemptive
scheduling scheme? Why or why not? If so, show the schedule
using a UML sequence diagram.
(c) Can the three tasks be scheduled using a time slice schedul-
ing scheme? Why or why not? If so, what is the value of the time
slice to ensure minimum average wait time for all three tasks.
Show the schedule using a UML sequence diagram.

12.20 Give a UML class diagram for a buffer that can be shared
between two tasks.
12.21 Provide a C implementation of the buffer specified by the
class diagram in Problem 12.20.
12.22 Provide a Verilog model of the buffer specified by the
class diagram in Problem 12.20.
12.23 Give a UML class diagram for a ping-pong buffer that
can be shared between two tasks.
12.24 Give a UML sequence diagram for the operation of a
ping-pong buffer.
12.25 Provide a C implementation of the ping-pong buffer
specified by the class diagram in Problem 12.24.
12.26 Provide a Verilog model of the ping-pong buffer speci-
fied by the class diagram in Problem 12.24.
12.27 Give a UML class diagram for a ring buffer that can be
shared between two tasks.
12.28 Provide a C implementation of the ring buffer specified
by the class diagram in Problem 12.27.
12.29 Provide a Verilog model of the ring buffer specified by
the class diagram in Problem 12.27.
12.30 A shared memory scheme is to be used as a means of
exchanging blocks of data between two tasks, T0 and T1. The
number of blocks of data to be exchanged and their location is
not fixed.

(a) Give a data/control flow diagram for the shared memory
system.

(b) Explain how your memory system works using a UML
sequence diagram and by describing a complete cycle that
includes the following: Write by T0 – Read by T1 – Write by
T1 – Read by T0. Be certain to explain how each task knows
when and how much to read or write.

(c) How would your design change if three tasks were involved
in the exchange?

12.31 As the chief engineer for Make Me Rich Consultancy,
you have been hired by a start-up embedded systems company
Inside Your Stuff, Ltd. It seems that it has designed (in less than
two weeks) a hard real-time control system for Fastern Yours
Processes, Etc. The control system supports the following two
operations on a collection of data items, a0, a1, a2 … an–1,

get (i)––Returns the value of ai
put (i, aValue)––Assigns a Value to ai
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The control system has three asynchronous processes that
must perform the following transactions:

p0: x = read (j); y = read (i); write (j, 52);
write (i, 27);

p1: x = read (k); write (i, 43); y = read (j);
write (k, 72);

p2: write (k, 25); x = read (i); y = read (j);
write (i, 27);

Occasionally, the system produces incorrect results and
Fastern Yours Processes, Etc. is threatening to return the sys-
tem. It is now 3 : 30 in the morning and you are at the Fastern
Yours Processes site with a not so happy customer and a system
that is running pretty slowly.

(a) When Inside Your Stuff, Ltd. said it had designed a hard
real-time system, what did they mean?

(b) Can you identify the problem and explain why it is occur-
ring?

(c) Can you propose a fix? Explain why your solution will solve
the problem?

12.32 A colleague has built a simulation of a portion of a
telecommunications block. He explains that the system uses a
shared buffer that accepts blocks of characters from a measure-
ment process P1 and forward blocks of data to the output pro-
cess, P2. He has written the following routines, one for P1 and
one for P2.

full = 0
max = buffer size
p1Generate( )
{

while (full < max)
{

buffer(head) = anItem;
(head = head + 1) mod max;
full++;

}
}

full = 0
max = buffer size
p2Transmit( )

{
while (full > 0)
{

anItem = buffer(head);
(head = head - 1) mod max;
full–;

}
}

Occasionally the system either loses data or forwards incor-
rect data.

(a) Can you explain why?

(b) Please propose (in detail) a way to fix the problem. Modify
the existing code as necessary.

(c) Show how your design solves the problem.

12.33 In the pastry corner of the kitchen of a small restaurant,
we find two world-class chefs, grumpy Pierre des Oeufs and
Jean “la loupe” Farouche, who despise each other. Nonetheless,
they must work in the same place and share the same resources.
Each is responsible for a different kind of cookie. Here are the
recipes:

Grumpy Pierre Jean la loupe

Mix 1 cup of milk with
2 eggs

Add 1 cup of sugar
Add 1 cup of flour
Bake in oven at 170∘C for

10 min

Preheat oven to 190∘C
Mix 1 cup of water with 1

cup of flour
Add 1 cup of sugar
Add 1 egg
Bake in oven for 5 min

In the kitchen, we have,

One giant carton of milk
One giant crate of eggs
Two large sugar bowls
One large container of flour
One cold water tap
One small oven that has space for one batch of cookies

The previous consultant who tried to schedule the work of
Pierre and Jean had a sudden job change to Cinque Terre on the
Italian Riviera where he now spends his days sun-drying porcini
mushrooms.

Your predecessor was actually quite clever and modeled
the two chefs as processes. You find the following bits of code
(encrusted with cookie dough) and partially implemented chef
processes. Please complete the design.

You have the following nonatomic (they can be interrupted)
subroutines available:

getEggs( numEggs ) // retrieves numEggs
// from the crate
// of eggs

getFlour( numCups ) // retrieves numCups
// from the flour
// container

getMilk( numCups ) // retrieves and
// pours numCups
// from milk carton

getSugar( numCups ) // retrieves numCups
// from the
// sugar bowl
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getWater( numCups ) // retrieves numCups
// from the tap

putIntoOven( numMinutes ) // puts cookie
// tray into oven
// for numMinutes

setOvenTemp( numDegrees ) // sets oven
// temperature to
// numDegrees

Initialize the following semaphores:

Semaphore eggCrate =
Semaphore flourContainer =
Semaphore sugarBowl =
Semaphore waterTap =
Semaphore oven =
Semaphore milkCarton =

Complete the two chef processes:

process grumpyPierre( )
{
}
process jeanlaLoup( )
{
}

12.34 A now defunct engineering firm was hired to design the
switching system in a small town railway station. Its final design
appears as shown in Figure P12.2.

Signal 2 Signal 1Train 2 Train 1

Figure P12.2

Signals 1 and 2 may be Red, Yellow, or Blue.
If Train 1 is approaching Platform 1, it must turn Signal 2,

then Signal 1, to Blue before proceeding. Similarly, if Train 2
is approaching Station 2, it must turn Signal 1, then Signal 2 to
Red.

A train may only change the signal (to Red or Blue) if the
signal is in the Yellow state.

When Train 1 leaves Station 1, it must turn Signal 1, then
Signal 2, to Yellow. Similarly, when Train 2 leaves Station 2, it
must turn Signal 2, then Signal 1, to Yellow.

(a) Are there any problems with the scheme described above?
If so, identify what they are.

(b) Will such a scheme prevent collisions? Justify your answer.
If not, propose a solution that will.

(c) Will such a scheme prevent deadlocks? Justify your answer.
If not, propose a solution that will.
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Chapter 13

Deadlocks

THINGS TO LOOK FOR …

• Scheduling tasks and resource management.

• The problem of deadlock in a shared resource environment.

• The necessary and sufficient conditions for deadlock to occur.

• How to prevent, avoid, and detect deadlocks.

• How to recover from a deadlock state.

13.1 INTRODUCTION

In the previous two chapters, we have addressed several important aspects of task man-
agement in embedded systems; among these were scheduling task execution and intertask
communication. In this chapter, we will examine aspects of the scheduling and dispatch of
tasks with respect to managing task demands for resources. To that end, we will introduce
the problem of deadlock in a shared resource, multitasking environment. We will identifydeadlock
the necessary and sufficient conditions for deadlock to occur. First, we examine ways to pre-
vent or avoid deadlock and then we study methods for detecting a deadlock if, despite best
efforts, a deadlock does occur. We conclude by presenting several techniques for recovering
from a deadlock state.

13.2 SHARING RESOURCES

A multitasking or multiprocessing embedded system has a finite number of resources such
as timers, analog-to-digital converters, digital-to-analog converters, and I/O ports. Often
several tasks may compete for those resources. When such a request is made, and if the
requested resources are not available, the task or processor blocks. The implementation of
a semaphore or monitor with waiting queue, for example, can result in a situation in which
two or more processes wait indefinitely. Such a situation is called a deadlock.

Consider the following simple problem in which there are two tasks, T0 and T1,
and two resources, R1 and R2. Let each task have two counting semaphores, S0 and S1.

Embedded Systems: A Contemporary Design Tool, Second Edition. James K. Peckol.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/college/peckol
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Furthermore, let each need both resources to execute its job. Now, let

T0 set wait(S0) // wait for R1 increment S0 (= 1)
T1 set wait(S1) // wait for R2 increment S1 (= 1)

Now let

T0 set wait(S1) // wait for R2 increment S1 (= 2)
T1 set wait(S0) // wait for R1 increment S0 (= 2)

The system is now stuck; neither process can continue.
Today the problem of deadlocks is treated rather casually. As systems become more

complex and the number of tasks and threads increases, the problem will have to be
addressed.

13.3 SYSTEM MODEL

To begin, we formulate a model of the deadlock problem. Any embedded system has a
limited number of resources. On one hand, if all systems were architected as a single task
or if all the tasks in a multiple-task system have mutually exclusive resource demands, dead-
locks cannot occur. On the other hand, for most designs, as tasks enter the system, they are
going to need those resources. If the system is going to support preemptive multitasking,
those resources will have to be shared. Making this same statement another way, one can
say that from the perspective of a single task, a deadlock is not a problem. When analyz-
ing deadlocks – their cause, prevention, detection, and correction – the problem must be
considered from a system level. One must take into consideration all of the tasks in the
system.

A first high-level model decomposes the problem into two pieces: a set of tasks and a
set of resources. Tasks are largely equivalent; resources are not. One can, therefore, form atasks resources
coarse-grained partition on the set of resources. One possible partition decomposes the set
into two groups – those that are identical and those that are not. Although such a decompo-
sition seems reasonable, one must quantify what constitutes identical resources and what
distinguishes them from those that are not. Unlike the factors that were considered when
decomposing a problem statement into functional blocks, such a process for resources is a
bit more straightforward.

For the current model, identical resources are considered to be those for whichidentical resources
multiple interchangeable copies of the same resource exist. For example, if the system
has two analog-to-digital converters, two digital-to-analog converters, three serial I/O
ports, or eight memory buffers, then one can consider instances of each type of resource
to be interchangeable. Allocation of any one to a task may be sufficient. On the other
hand, dissimilar resources are those that are unique for one reason or another. Of these,dissimilar resources
for example, there may be only a single copy, such as the highest priority interrupt or a
single serial I/O port. The current state of the model can be expressed graphically as in
Figure 13.1.

To use a resource, a task must request the resource in advance. Such a situation is
critical in tasks with hard real-time constraints. The task may request as many resources
as it wishes but may not exceed the total number of available copies of the resource.
Under normal operation, the task may only utilize resources according to the following
protocol.
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T0

T1

T2

R0
R0

R0

R1

R1

R2
R2

R2

R2

R3

R4

R5

Tasks

Resources

Identical

Resources

Dissimilar

Resources

Figure 13.1 System State as a Collection of Tasks and Resources

• Request
If the resource is not available immediately, the requesting process must wait.

• Use
The resource is allocated to the task that operates on or uses the resource.

• Release
When the task or thread is finished with the resource, return it to the allocat-

ing task.

13.4 DEADLOCK MODEL

From the earlier discussion and empirical analysis, one can infer that a set of tasks is in a
deadlock state if every member of the set is waiting for the event that can only originate
with another member of the set. Looking at the resource utilization protocol, we see that
such events arise from resource acquisition and release. Revisiting the earlier discussion
of shared resources, we note that if all tasks cooperated, one would not have a deadlock.
Furthermore, since the system is controlling resource allocation, then it seems that herein
lies the root cause of the problem. Restating, if the system can allocate resources in the
“proper” way and if tasks would release them in the “proper” way, the deadlock problem
can be solved.
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That said, if one knows what constitutes an “improper” way, it can be avoided. First,
however, it is necessary to identify under what conditions a deadlock may occur.

13.4.1 Necessary Conditions

A deadlock is only possible if each of the following four conditions holds simultaneously.
These conditions are necessary, not sufficient, and not independent.

1. Mutual Exclusion
Once a resource has been allocated to a process, it has exclusive control over that
resource. The resource is considered to be nonsharable mode.

2. Hold and Wait
There must be tasks or threads holding a resource and requesting additional
resources that are being held by other tasks or threads.

3. No Preemption
Resources cannot be preempted.

4. Circular Wait
A system state exists such that each process in a set of processes {T0 … Tn−1} is
holding a resource and requesting a resource that is held by another process, thus,
T0 waiting for resource held by T1
T1 waiting for resource held by T2
…

13.5 A GRAPH THEORETIC TOOL – THE RESOURCE ALLOCATION GRAPH

One can begin to understand and formally analyze a deadlock using a resource allocationresource allocation
graph graph. Such a graph is a formalized model of the earlier figure capturing the tasks and

resources. It is a directed graph that contains a set of nodes or vertices, V, and a set of
directed arcs or edges, E. The nodes represent both the set of system tasks and the set of
available resources. Such an interpretation thus partitions the nodes into two subsets:

Set of processes {Pn}
Set of resources {Rm}

The edges may be partitioned similarly; one set contains edges directed from the task to
the resource, and the second contains edges directed from the resource to the task. An edge
directed from the task expresses a request for a resource and toward the task, an allocationrequest, allocation
of the requested resource. Thus, we have the two sets of edges:

{Pn} to {Rm}
{Rm} to {Pn}

A directed edge from Pi to Rj

Pi → Rj

signifies that Pi has requested resource Rj and is currently waiting. Such an edge is called
a request edge. A directed edge from Rj to Pirequest edge

Rj → Pi

denotes that Rj has been allocated to Pi. Such an edge is called an assignment edge.assignment edge
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Let’s again return to the earlier drawing. Each task is presented as a circle. A set of
resources (a resource node in a resource allocation graph) is represented as a small rectan-
gle. Each copy of a resource is indicated by a dot or small circle in the rectangle.

The earlier drawing can now be expressed formally as in Figure 13.2.

T0

Tasks

Resources

Identical Resources Dissimilar Resources

R0

T1 T2

R1 R2 R3 R4 R5

Figure 13.2 System State as a Collection of Tasks, Similar and
Dissimilar Resources

Consider the resource allocation graph drawn in Figure 13.3. The following situation
exists.

T0 Tasks

Resources

R0

T1 T2

R1 R2R3 R4

R5

Resources

Figure 13.3 A Resource Allocation Graph Showing Resource
Requests and Allocations

Sets

Processes

T = {T0, T1, T2}

Resources

R = {R0, R1, R2, R3, R4, R5}

Edges or allocations

E = {T0→R3, T1→R4, T2→R1, R0→T0, R0→T1, R3→T1, R4→T2, R5→T2}
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Resource Instances

3 of R0
2 of R1
3 of R1
1 of R3
1 of R4
4 of R2

Process States

T0
Holding 1 R0
Waiting for R3

T1
Holding 1 R0 and 1 R3
Waiting for R4

T2
Holding 1 R4 and 1 R5
Waiting for R1

Using techniques from graph theory, we can show that if the graph does not contain any
cycles, then no process in the system will be deadlocked. If a cycle does exist, however, thenpotential
the potential for deadlock exists; this does not guarantee that deadlock exists or will occur.

To understand why, consider the case in which there is only a single instance of each
resource; a cycle implies that a deadlock has occurred. A cycle thus becomes a necessary
and sufficient condition. But if there are multiple instances of the resource, a cycle doesnecessary sufficient

necessary, not
sufficient

not necessarily imply deadlock. Now the cycle expresses a necessary but not sufficient
condition.

The graph in Figure 13.3 does not have any cycles with the allocation and requests that
currently exist. The system does not have a deadlock. Although the loop involving T0, T1,
R0, and R3 appears to be a cycle, remember that this is a directed graph. For a cycle to exist,
all the edges must flow in the same direction.

Let’s look at two examples, the first, in Figure 13.4, has a cycle and a deadlock while
the second, in Figure 13.5, has a cycle but no deadlock. In Figure 13.4, T1 has been allocated
one copy of R5 and is requesting the use of R1. However, one copy of R1 has been allocated

T0 Tasks

Resources
R0

T1 T2

R1 R2R3 R4

R5

Resources

Figure 13.4 A Resource Allocation Graph
With a Cycle (T1, R1, T2, R5) and a Deadlock

T0 Tasks

Resources
R0

T1 T2

R1 R2R3 R4

R5

Resources

Figure 13.5 A Resource Allocation Graph
With a Cycle (T1, R1, T2, R5) and no Deadlock
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to T0 and one to T2. At the same time, T2 is requesting to use R5. Neither T1 nor T2 can
advance. Furthermore, the second copy of R1 has been allocated to T0. Nonetheless, T0
is blocked because it is waiting for R3, which has been allocated to T1. Hence, deadlock
exists.

In the second case, the same cycle involving T1, R1, T2, and R5 occurs. However, T0
can be granted use of resource R3. When it terminates, R1 will be released and T1 can
continue.

13.6 HANDLING DEADLOCKS

Three general philosophies can be used to manage the deadlock problem. In dealing with
deadlocks, we follow a philosophy and approach that is similar to that used when designing
safe and reliable systems. The initial objective is to try to design the system so that the
problem does not happen. It is possible, however, that such an approach can add significant
cost or complexity to the design. Depending on the system that is being designed, one
may find that it is more efficient to simply let the problem occur then fix it if or when
it does occur. This approach works well when the problem occurs very infrequently and
is relatively easy to detect and correct. A third approach is simply to ignore the problem,
assuming (or hoping) that it will not occur. This is not a good solution. Let’s look at the
first two.

We will start by examining ways to prevent a deadlock condition from occurring. In the
opening discussion, four necessary conditions for deadlock were identified. One approach
for addressing the problem is to ensure that one of the necessary conditions cannot occur.
Such a method is called deadlock prevention. If the operating system has sufficient knowl-deadlock prevention

deadlock avoidance

edge about a process and the resources that the process will require, those requirements can
be compared against what is and will be available were the task to run. Based on such fore-
knowledge, the operating system can decide to delay the task if the potential for deadlock
exists. Such an approach is called deadlock avoidance. A hard real-time task or thread will
have such information.

13.7 DEADLOCK PREVENTION

Prevention is the easiest solution. James W. Havender of IBM suggested three ways of
preventing one of the various necessary conditions from occurring. He did not address the
first condition, that of mutual exclusion. Let’s understand why.

13.7.1 Mutual Exclusion

When executing a design, one must ensure mutually exclusive access for each nonsharable
resource in the system. Such resources include certain communication ports or any of the
shared variables that support multiple writers. For sharable resources, one does not require
such a restriction. Stored tables, input only ports, or similar external interfaces are examples
of such resources. These can be accessed at any time by any process. In most cases, one
cannot prevent deadlocks by denying mutual exclusion. Like those just identified, certain
resources are naturally nonsharable.
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13.7.2 Hold and Wait

The hold and wait situation arises when a process has resources and issues a request for
additional ones. One can address the problem by stipulating that the task cannot ask for
resources if it already has some. Two cases must be considered: a new task and one that has
been running.

Case 1. A new task or thread must request and be granted all required resources before
being allowed to run. Such a protocol is essential for a task or thread with a hard deadline.

The problem with such a solution is that if, for example, a task only uses a resource
once just before it terminates, that resource will be unavailable to other tasks that could
have used and released it long before it is needed. The disadvantage of this approach is a
potentially low utilization of resources.

Case 2. If an executing task requests additional resources, it must give up those it
already has. Thus, it is not holding any resources and can now complete the request and
allocation. If some of the released resources are later required, they are re-requested.

Although the second approach addresses the problem of low resource utilization, it
opens the possibility of starvation. A lower priority task that needs a resource that is in high
demand may have to wait indefinitely.

13.7.3 No Preemption

To address the no preemption condition, it is stipulated that under certain conditions a task
must voluntarily relinquish its resources. Such a requirement, once again, leads to two cases.
They differ as to when the task must give up the resources.

Case 1. If a task is holding resources and needs additional ones that are not available, it
must wait. Under such a condition, it must give up all resources it is currently holding. A list
is then built identifying the resources it currently has plus any additional ones for which the
task is requesting. The task is resumed when it can regain all of its original resources and
the new ones it requested.

Case 2. If a task requires some additional resources, a two-step protocol is followed.
First, determine if the requested resources are available. If so, allocate them and continue.
Second, if they are not, check to see whether they are with another process that is also
waiting for resources. If the requested resources are with another waiting process, require
the waiting process to relinquish the resources and allocate them to the requesting process.
Otherwise, simply block.

The disadvantage of either approach is that the task may have completed a significant
part of its job. Those intermediate results may be lost. The advantage of the second approach
over the first is that resources are not given up unless and until necessary. The resource may
never be needed and, therefore, the time and effort devoted to managing the resource will
be wasted.

13.7.4 Circular Wait

The circular wait is a special case of the hold and wait condition. To prevent a circularhold and wait
total

linear order
wait, a total or linear order is placed on all resources. One such order is the ≤ (less than or
equal); that order is a total order on the set of integers, for example. We observe that for
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any two integers, one of them will be less than or equal to the other. Next, a unique integer
is assigned to each resource in the system, thereby producing the set R = {Ri}. Then the
order is placed on the set of resource types R = {R0, R2, … Rm−1}.

When a process requires a resource, the stipulation is made that it can only request
resources in increasing order of enumeration. Once again, there are two cases: a new task
and a currently running task that needs additional resources.

Case 1. A new task may request any resources it wishes. This is similar to what we
have already seen for addressing the hold and wait problem.

Case 2. A running task makes a request for any desired resources.

a. One approach is to constrain a task to request additional resources only in increasing
order of enumeration. If multiple copies of a single resource are needed, they must
be requested all at once.

b. An alternative approach stipulates that if additional resources are needed, for
example, Rj, then the task must release any resources {Ri} such that i< j.

The pros and cons of this approach are similar to those already mentioned for hold
and wait.

13.8 DEADLOCK AVOIDANCE

Algorithms aimed at preventing deadlocks do so by managing requests for resources so
as to ensure that at least one of the necessary conditions for deadlock cannot occur. Two
of the major drawbacks of such a strategy are a possible reduction in system throughput
(because of the burden of resource management) and low resource utilization. Algorithms
that strive to avoid deadlocks require and utilize deeper information from the task about
how and when resources are requested.

Consider a system with the following resources: a timer, R0, and an A/D converter, R1,
and two tasks, T0 and T1. Now assume that each task requires the timer and the A/D. The
resource allocation graph in Figure 13.6 has a cycle and a deadlock. On the other hand, if
one knows in advance when, during a task’s execution, each will need the resource, it is
possible to establish a schedule that will ensure no deadlock.

T0

R0

T1

R1
Figure 13.6 A Resource Allocation Graph With a Cycle and a
Deadlock
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There are a great many different avoidance algorithms, each of which requires differ-
ent amounts of advance information. Let’s analyze a simple one to see how the process
might work.

13.8.1 Algorithms Based on the Resource Allocation Graph

In the boundary case of systems with one instance of each resource, one can use a simple
extension to the resource allocation graph to avoid deadlocks. The intent of such an exten-
sion is, once again, to introduce additional information into the system that will enable
anticipation of problems before they actually occur. To this end, we introduce an edge type
called a claim edge. A claim edge Ti →Rj announces to the system that task Ti may requireclaim edge
and thus claim the specific resource Rj. The edge has similar, yet relaxed, semantics to
request edge. The direction of the edge is the same and is expressed as a dashed line in the
allocation graph.

The avoidance algorithms that utilize the additional edge require that advance notifi-
cation for all anticipated resources be issued before the process starts executing. Thus, all
claim and request edges will be reflected in the resource allocation graph. The restriction
may be relaxed only if no resources have been allocated – that is, only if all other edges from
the process are claim edges. Formalizing such requirements, we now develop the following
protocol.

At the time that the task enters the system, all claim and request edges for the task
are known and declared. Thereafter, when a task Ti requests a resource Rj, the correspond-
ing claim edge is converted to a request edge. In a similar fashion, when a resource Rj isclaim edge,

request edge released by the task, that request edge is converted back into a claim edge. Thus, a dead-
lock can be avoided only if the conversion into a request edge does not result in a cycle. If
a cycle does not exist, allocation and subsequent conversion will leave the system in a safe
state.

Consider the resource allocation graph in Figure 13.7. Observe that if T1 requests and
is allocated R1, the allocation cannot be made, even though it is available, since such an
allocation will create a cycle and, thus, an unsafe state. Under such a circumstance, if T0
requests R1, there is a deadlock.

T0

R0

T1

R1
Figure 13.7 A Resource Allocation Graph With Three Claim,
Edges
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13.8.2 Banker’s Algorithm and Safe States

When designing a system with more than one instance of each resource, avoidance algo-
rithms based on a resource graph will not work. The next algorithm that we will examine,
the banker’s algorithm, will work for such systems, albeit somewhat less efficiently. Thebanker’s algorithm
algorithm is the work of Dijkstra; the name derives from a banker who is working with a sin-
gle source of money from which he makes loans and to which he adds the payments. When
applying the algorithm to scheduling resources, the client is the process and the money is
the resource.

According to the banker’s algorithm, the lender has a certain amount of money that
can be used for making loans. When a client enters the bank and asks for money, he or she
must specify, in advance, the maximum amount of money needed. The client’s request will
be honored if the request does not exceed the total amount of money the banker has.

The client may have to wait to obtain the full amount requested; however, it will be
available eventually as other clients return the money they have borrowed. Furthermore, if
the client has been given a portion of that requested, an additional request does not require
that the initial amount be repaid immediately. The understanding is that the total will even-
tually be repaid. Such an approach applies directly to the resource allocation problem for
deadlock avoidance.

In the discussion of prevention schemes, it was proposed that the hold and wait or
circular wait conditions could be avoided by simply giving each task all the resources it
requested in advance. We now take a finer-grained, dynamic view of this approach based
on Dijkstra’s algorithm.

As a task enters the system, it is required that it declare in advance the maximum num-
ber of resources of each type it is going to need during execution. Using such knowledge,
one can allocate resources if they are available and if a sequence of requests, allocations, and
deallocations can be found so as to ensure that each process will eventually complete – even
if each process requires its maximum number of resources. It is evident, then, that it should
be possible to construct an algorithm, based on the banker’s algorithm, that will ensure that
the system will never enter a deadlock state. Such an understanding establishes a basis for
deadlock avoidance with multiple copies of a resource. Let’s see how this can work.

resource allocation
state

Define a resource allocation state to be characterized by the following three measures:

1. The number of available resources.

2. The number of allocated resources.

3. The maximum number of resources requested by the processes.

Any such state is valid or safe if resources can be allocated to each process in somesafe
safe sequence order and avoid a deadlock. Such a sequence of allocations is called a safe sequence. Thus,

one can declare that the system is in a safe state if, from that state, there exists a safe
sequence.

Formally, a sequence of task executions <T0, T1 … Tn− 1> is a safe sequence for the
current allocation state if, for each Ti, the resources that Ti can still request can be satisfied
by the currently available resources plus the resources held by all Tj such that j< i. Observe
that if the needed resources are not available, Ti can simply wait until some subset of the Tj
has finished. At such a time, one can then have the necessary resources. When Ti finishes,
Ti+ 1 can obtain the needed resources. If no such sequence exists, the system state is unsafe.unsafe
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The allocation states for the system are decomposed in the accompanying Venn dia-
gram in Figure 13.8. Observe that a safe state cannot be a deadlock state. One can also see
that a state that is not safe is not necessarily a deadlock state but that it can lead to one.
Let’s look at a simple example.

Safe Not Safe

deadlock

Figure 13.8 Venn Diagram Illustrating
Safe, Not Safe, and Deadlocked Situations

EXAMPLE 13.1 We will look at a basic case first in which instances of a single resource are being allocated.
Consider a system with an A/D that can accept and convert analog data from any one of 10
different inputs or channels. Using a multiplexer, we can connect signals from a number of
different sources onto each input.

Figure 13.9 illustrates such a design for a four-channel A/D converter.

T0

T0

T0

T1

T2

T4

T2

T2

T1

T3

T3

Analog to Digital

Converter

ch 0

ch 1

ch 2

ch 3

Figure 13.9 An A/D Converter as a Shared Resource

In the four-channel design given, task T0 requires a maximum of three channels, task
T1 requires two channels, task T2 three channels, task T3 two channels, and task T4 one
channel.

Returning to the 10-channel system, three different tasks must use the A/D to make a
number of different measurements. The tasks have the requirements and have been allocated
the resources (channels) indicated in Figure 13.10.

The current state is safe. We have allocated eight of the channels and have two remain-
ing. We can schedule the resources such that if we give the remaining two channels to T0,
it can run to completion, freeing up five. Four of those five can then be given to task T2,
allowing it to finish, and finally T1 can complete. We see that all tasks will eventually finish.
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Task

A/D

Maximum Current

T0 5 3

T1 4 1

T2 8 4

Total Allocated 8 Figure 13.10 Task Requirements
and Allocations

EXAMPLE 13.2 Let’s now look at how a poor allocation can lead to an unsafe state. We start at the same
initial state (see Figure 13.11).

Task

A/D

Maximum Current

T0 5 3

T1 4 1

T2 8 4

Total Allocated 8

Figure 13.11 Task Requirements and a Poor Allocation

Rather than permitting T0 to run, a request from T1 for two additional channels is
honored. Such an allocation allows T1 to continue for a short while. However, when it
issues a request for the last resource that it needs, there are none available. Furthermore,
the other two tasks are blocked as well, and a deadlock now exists.

Thus, the allocation given in Figure 13.11 can lead to an unsafe state.

With the luxury of hindsight, these two examples show that a safe state is one in which
there is at least one resource allocation sequence that will allow all tasks to finish eventually.
One can also see that the existence of an unsafe state does not inherently lead to a deadlock.
It does show that, with an improper allocation, such a condition can occur.
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13.9 DEADLOCK DETECTION

If the system utilizes neither a prevention nor an avoidance algorithm, a deadlock may
occur. In such an environment, the system must provide an algorithm to determine whether
such a state has occurred as well as one to recover from the deadlock.

13.9.1 Detection in a Single-Instance Environment

When designing a system in which there is a single instance of each resource, then, as was
done earlier, one can begin with the resource allocation graph. From the resource allocation
graph, a wait-for graph is developed by removing the nodes of type resource and then col-wait-for graph
lapsing the edges as appropriate. The result of such a process is a graph with only processes;
a deadlock then exists if and only if the reduced graph contains a cycle.

Starting with the resource allocation graph, the left-hand graph in Figure 13.12, the set
of resources {R1 … R6} is removed. Removal of those nodes results in the reduced graph
in the right-hand figure.

T0

T1 T2

T4

T3

R2

R5

R0

R6

R3 R4

R1

T0

T1 T2

T4

T3

Figure 13.12 A Resource Allocation Graph and the Associated Wait-for Graph

It is immediately evident that the graph on the right has several cycles and, thus, has a
number of processes in the deadlock state.

13.9.2 Deadlock Recovery

When it has been determined that a deadlock exists, the objective changes from detection
to recovery. Several courses of action are open. Ignoring the deadlock is not one of the
reasonable alternatives. One can always inform the users that such a situation exists and
let them handle it. Such an approach is often difficult in an embedded system. Another
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possibility is to let the system recover automatically. Selecting automatic recovery leads to
two general schemes: a termination signal can be sent to all deadlocked processes (one at
a time), or the processes can be preempted one at a time and their resources temporarily
taken.

13.9.2.1 Task Termination

The drastic approach of terminating all deadlocked processes will clearly have the desired
effect, but at significant cost, since the tasks may have been running for some time. Fol-
lowing such an action, it is most likely that all results may be lost. On the other hand,
terminating processes, one at a time, until a deadlock cycle is eliminated involves consider-
able temporal overhead. As each process is aborted, the deadlock detection algorithm must
be rerun.

Extreme care must be taken when terminating a task because doing so may leave a
resource or the system in an unknown, unusable, or dangerous state. One must also deter-
mine which process to terminate. The problem is similar to that encountered when trying to
schedule usage of the CPU. The objective is to terminate processes so as to do the least
damage, incur minimal cost, and ensure an efficient recovery. Some things to consider
include:

• Task priority.

• The time since starting the task and the remaining runtime.

• The resource mix and quantity.

• The resource demand to complete.

• The number of tasks/threads to be terminated.

13.9.2.2 Resource Preemption

The process preemption alternative to termination entails successive preemption of the task
and its resources and their subsequent allocation to other processes until the deadlock cycle
is broken. If preemption is used, three issues must be considered.

1. Selection of a task to preempt.
One must determine the order of preemption to minimize the cost. When making
such a decision, the same factors are considered as when process termination is
assessed.

2. Rollback.
If a resource is preempted, what should be done with the preempted task? Certainly,
it cannot continue from its current state. One alternative that can be used is the
same as that used when developing software or writing long documents. A backup
is saved periodically. Such a backup gives a snapshot of the state of the system
called a checkpoint. When a process and its resources must be preempted, it
can be restarted – rolled back – sometime in the future to the last checkpoint.rolled back
All resources and the state of the process are restored to values at the last
checkpoint.

However, one may not be able to determine a completely safe internal state of the
system or for external devices being controlled. It is rather tricky to roll back the
temperature of a chemical process or the yeast in a fermenting batch of beer in a
brewery and hold it for a little while. Such factors must be taken into consideration
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when deciding which processes to preempt. Generally, the simplest solution is a
complete rollback, subject, of course, to the earlier considerations. That is, abort the
task and restart it.

One can try to roll back as far as necessary to break the deadlock. Such a strategy
entails maintaining information on all the running tasks and threads.

3. Starvation.
How does one ensure starvation will not occur? One strives to ensure that the

resources are not always preempted from the same process.

13.10 SUMMARY

Deadlock occurs when two or more processes are waiting for an
event that can only be caused by one of the waiting processes.
There are three major methods for addressing the problem.

1. Use a protocol to ensure that the system will never enter
a deadlock state.

2. Allow the system to enter a deadlock state and the
recover.

3. Ignore the problem.

Deadlock occurs if, and only if, four conditions (mutual
exclusion, hold and wait, no preemption, and circular wait) occur
simultaneously. We prevent deadlock by ensuring that one of the
conditions will not occur.

If a system does not employ a protocol to ensure that
deadlock does not occur, then a detection and recovery scheme
of some form or another must be employed. If a deadlock is
detected, we can recover by global or selective termination of
tasks (threads) or resources.

13.11 REVIEW QUESTIONS

A Model of Tasks and Resources

13.1 What is a deadlock in an embedded application?

13.2 What is the typical protocol that a task will use for han-
dling resources?

13.3 What is the difference between deadlock and starvation?

A Deadlock Model

13.4 What are the necessary conditions for a deadlock to
occur?

13.5 Give a real-world example in which a deadlock can
occur.

13.6 What is a resource allocation graph?

13.7 Within a resource allocation graph, what is a request
edge? an allocation edge?

Deadlock Prevention

13.8 Describe the conditions under which the necessary
condition hold and wait cannot occur.

13.9 Describe the conditions under which the necessary
condition no preemption cannot occur.

13.10 Describe the conditions under which the necessary con-
dition circular wait cannot occur.

Deadlock Avoidance

13.11 What strategy underlies most deadlock avoidance algo-
rithms?

13.12 One strategy for avoiding deadlock utilizes a modified
allocation graph. Describe that strategy.

13.13 In the context of the banker’s algorithm, what is a
resource allocation state?

13.14 Under what conditions is a resource allocation state
defined as safe?

13.15 What is a safe sequence?

13.16 What is an unsafe state?

13.17 Can a safe state be a deadlock state?

13.18 Is an unsafe state guaranteed to be a deadlock state?

Deadlock Detection

13.19 What is a wait-for graph?

13.20 How is a wait-for graph developed? What does a cycle in
a wait-for graph imply?
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13.12 THOUGHT QUESTIONS

A Model of Tasks and Resources

13.1 What is the minimum number of tasks in an embedded
system necessary for a deadlock to occur? Why?

13.2 Is an embedded system with two tasks guaranteed to
eventually encounter a deadlock? Why or why not?

13.3 Resources within an embedded application can be col-
lected into groups of resources that are considered identical and
into groups that are considered dissimilar. When can a set of
resources be considered to be identical? dissimilar?

13.4 Can tasks be partitioned into groups of identical and dis-
similar tasks?

A Deadlock Model

13.5 Review Question 13.5 asks for a real-world example in
which a deadlock can occur. Show that the four necessary con-
ditions for deadlock hold for your example.

13.6 What are the conditions necessary for starvation to
occur?

13.7 What does a cycle in a resource allocation graph imply?

13.8 Is a cycle in a resource allocation graph a necessary and
sufficient condition for deadlock? Why or why not?

13.9 How can one ensure that a deadlock will not occur in an
embedded system?

13.10 Would you consider the consequences of a deadlock to
be more or less severe in an embedded system than a desktop
computer? Why?

Deadlock Prevention

13.11 One approach to preventing deadlocks proposes ensuring
that one of the necessary conditions cannot occur. Why can one
not prevent deadlocks by enforcing mutually exclusive access to
resources?

13.12 Discuss some of the problems that accompany the dead-
lock prevention strategy.

13.13 Can you think of ways to avoid many of the problems
identified in Question 13.12 and yet be able to utilize the pre-
vention strategy?

Deadlock Avoidance

13.14 What strategy underlies most deadlock avoidance algo-
rithms?

13.15 One strategy for avoiding deadlock utilizes a modified
allocation graph. What is the major limitation of such resource
graph based algorithms?

13.16 Briefly describe how the banker’s algorithm works for
deadlock avoidance.

13.17 Can you think of how the banker’s algorithm can be
extended to multiple resources?

Deadlock Detection

13.18 If an embedded application does not prevent or avoid
deadlocks, is it possible to determine whether deadlock has
occurred? If so, how?

13.19 If a deadlock has occurred in an embedded system, is
recovery possible? If so, how?

13.20 Task termination is proposed as one strategy for deadlock
recovery. What are the major disadvantages of such a strategy?

13.21 When using a termination strategy, what things should
be considered?

13.22 Resource preemption is proposed as an alternative to the
task termination strategy. What are the major disadvantages of
such a strategy?

13.23 When using a preemption strategy, what things should be
considered?

13.13 PROBLEMS

13.1 The dining philosophers problem is one of the classic
examples of a synchronization and, ultimately, a deadlock prob-
lem. As the story goes, Edsger Dijkstra posed a question on an
examination in which five computers competed for the use of
five different tape drives. Subsequently, Anthony Hoare, recast
the problem as the dining philosophers.

Hoare’s version of the problem places five philosophers sit-
ting around a table alternately thinking or eating. In front of
each philosopher is a plate filled with food; between each plate
is a chop stick. To be able to eat, a philosopher must have two
chopsticks. Each has taken a vow of silence and, therefore, they
can never speak to one another.

The result: possible deadlock.

(a) Model the problem and resources using a resource alloca-
tion graph. Does the graph contain a potential cycle?

(b) Based on the conditions necessary for deadlock discussed,
why is there the possibility for deadlock?

(c) Propose a solution to the problem that avoids the deadlock.
Give a pseudocode implementation and describe why your solu-
tion avoids the problem.

(d) Propose a solution to the problem that prevents the dead-
lock. Give a pseudocode implementation and describe why your
solution avoids the problem.
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13.2 A proposed design for an interchange in a mass transit
system is shown in Figure P13.1.

Signal 2

Station 2Station 1

Signal 1Train 2 Train 1

Figure P13.1

Signals 1 and 2 may be Red, Yellow, or Blue.
If Train 1 is approaching Station 1, it must turn Signal 2,

then Signal 1, to Blue before proceeding. Similarly, if Train 2 is
approaching Station 2, it must turn Signal 1, then Signal 2, to
Red.

A train may only change a signal (to Red or Blue) if the
signal is in the Yellow state.

When Train 1 leaves Station 1, it must turn Signal 1, then
Signal 2, to Yellow. Similarly, when Train 2 leaves Station 2, it
must turn Signal 2, then Signal 1, to Yellow.

(a) Are there any problems with the scheme described above?
If so, identify what they are.

(b) Will such a scheme prevent collisions? Justify your answer.
If not, propose a solution that will.

(c) Will such a scheme prevent deadlocks? Justify your answer.
If not, propose a solution that will.

13.3 An embedded control system supports the following two
operations on a collection of data items: a0, a1, a2 … an−1,

read(i) Returns the value of ai
write(i, aValue) Assigns aValue to ai

The control system has three asynchronous processes that
must perform the following transactions:

p0: x = read (j); y = read (i);

write (j, y+13); write (i, x-27);

p1: x = read (k); write (i, x-3);

y = read (j); write (k, x+y);

p2: write (k, 25); x = read (i);

y = read (j); write (i, x-y);

(a) Using a resource allocation graph, determine whether there
is the possibility of deadlock for this system.

(b) Based on the conditions necessary for deadlock discussed,
why is there the possibility for deadlock?

(c) Does a safe sequence for the execution of these tasks exist?
If so, what is it?

13.4 Consider the following problem. Two tasks are sharing a
FIFO queue. Either task can write to or read from the FIFO.

(a) Can you hypothesize a situation in which deadlock can
occur?

(b) Use a resource allocation graph to illustrate your theory.

13.5 Earlier, we studied the bounded buffer problem. We have
an embedded system, S1, that must exchange information with
a second, similar system, S2, over a network. The network is
designed to use the TCP/IP protocol. With such a protocol,
when the connection is established, an input buffer and an output
buffer are set up on each side of the connection.

When a message is to be sent over the network, it is first
copied into the sender’s output buffer. When the message is sent,
the sender’s buffer is cleared and the message is placed into the
receiver’s input buffer. When the receiver reads the message, the
input buffer is cleared.

(a) Can you hypothesize a situation in which deadlock can
occur? Hint: A task cannot be writing to a buffer and reading
from a buffer at the same time.

(b) Can you propose a solution to the problem?

13.6 On holiday in Venezia – Venice – the city of canals, you
book a quaint pensione, Casa Rosa della Quercia, a few miles
upstream on the Canal San Marco and settle down for some rest
and relaxation.

Figure P13.2 shows a rough layout of the canals and sur-
rounding area near your pensione. The shaded areas are land
masses or islands, the black areas are points of tourist interest,
and the rest is water.

Tourist Pick-up

Gelateria

Main Island and

Gate

A

B

C

Bypass

Canal San Marco

Nomanisan

Wine and Cheese

Shop

Figure P13.2

The small canals, A, B, and C, are rather narrow. It seems
that there are two kinds of gondolas – the sports utility gondo-
las (SUGs) and the small racy ones, the fleet sports gondolas
(FSGs). Several of the FSGs are easily able to pass each other.
However, only one SUG is able to get through at any one time.

If the wrong kinds of gondolas enter a canal from the oppo-
site directions, they will be unable to pass and one must back out
causing great delays.

Over a friendly bottle of good Italian red wine, you and
the great contemporary Italian inventor, Vito del Lampada, dis-
cuss how to solve the problem. Vito says that he can develop a
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light of some kind if that might help. He proposes to develop a
remote-controlled two-color (Red and Green) light such as that
shown in Figure P13.3.

Figure P13.3

(a) Devise an algorithm that will prevent two SUGs or a SUG
and an FSG from entering the canal at the same time. Explain in
detail how your design works and how it will solve the problem.
Be certain to identify the minimum number of lights you will
need and where they will be placed.

(b) What features/capabilities are you going to ask Vito to put
into the light/remote control system?

(c) Does your solution require any equipment other than your
buddy’s light? If so, what might that be?

13.7 Consider the traffic deadlock shown in Figure P13.4.

Figure P13.4

(a) For the system, what are the resources and what are the pro-
cesses?

(b) Draw a resource allocation graph capturing the processes
and resources.

(c) Does the graph contain a cycle?

(d) Show that the four necessary conditions for deadlock hold.
Be precise.

(e) Give a simple rule that will avoid deadlocks in the system.

(f) Show how or why your scheme will avoid deadlocks.

13.8 We have an embedded system with four tasks, T0–T3,
and three resources, R0–R2. The system has nine instances of
R0, three instances of R1, and six instances of R2. After the sys-
tem has been running for a while, we have the state shown in
Figure P13.5.

Task

R0 R1 R2

Reqd. Alloc. Reqd. Alloc. Reqd. Alloc.

T0 3 1 2 0 2 0

T1 6 5 1 1 1 1

T2 3 2 1 1 4 1

T3 4 0 2 0 2 2

Figure P13.5

(a) If task T1 requests and is allocated one additional instance
of resources R0 and R2, will this lead to a safe state?

(b) If so, what is the proper sequence of task execution that will
ensure no deadlock?

(c) Propose a resource request and allocation from the above
state that would not lead to a safe state.



�

� �

�



�

� �

�

Chapter 14

Performance Analysis and
Optimization

THINGS TO LOOK FOR …
• The reasons why performance analysis and optimization are important in embedded

applications.
• Some of the limits on analysis and improvement.
• The kinds of performance on which we focus.
• The vocabulary of performance quantification.
• The levels at which we can evaluate performance and make trade-offs.
• The basic flow of control constructs at different levels of program.
• How to determine the execution times of such constructs at the assembler level.
• What the performance metrics time loading, response time, and memory loading are

and how we measure them.
• Common mistakes made when analyzing performance and for improving performance

in time, reducing power consumption, and memory access.
• A high level view of embedded systems power consumption.
• Definitions of zero, static, and dynamic power consumption.
• Identification of potential sources of current leakage and static power consumption.
• Approaches for reducing static power consumption.
• Identification of potential sources of dynamic power consumption in hardware.
• Approaches for reducing hardware dynamic power consumption.
• Identification of potential sources of dynamic power consumption in software.
• Approaches for reducing software dynamic power consumption.
• Power management approaches.

14.1 INTRODUCTION

The speed at which an embedded application operates is only one small aspect of its over-
all performance. As today’s applications become increasingly ubiquitous, expectations are
broadening. Delivery vehicles are becoming smaller and smaller; necessary features are

Embedded Systems: A Contemporary Design Tool, Second Edition. James K. Peckol.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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becoming more complex and are expanding; battery technology is improving, albeit more
slowly than demand. How well a design meets all of the often conflicting requirements is
quantified by what we term the performance of the system.performance

In this chapter, we will begin by introducing some of the relevant vocabulary and trying
to capture a workable definition of performance. We will then examine several metrics by
which we can begin to assess performance in embedded systems, such as response time, timeresponse, time, time

loading
memory loading

loading, and memory loading. As part of the study of time loading, we will discuss the basic
flow of control constructs that comprise most contemporary software programs. We look
at such constructs first from a C and then from an assembler level. The objective is to learn
how to perform a detailed timing analysis by counting instruction times. Such an analysis
is often necessary when hard real-time constraints must be understood and accommodated.
We will conclude with an assessment of how utilizing cache can affect performance
and with an introduction to power management, including several ways to reduce power
consumption.

14.2 GETTING STARTED

Is performance important? Yes! Faster, smaller, cheaper, lower power, are all definitely
better assuming, of course, that the design meets all the specified constraints. Such char-
acteristics are all very important in embedded systems and are becoming more so every
day. During design, one must often trade-off speed, power, memory size, and cost to meet
specified constraints; to be able to do so, one must have concrete numbers. Such techniques
become more and more significant as the size and complexity of modern systems increase.
Smaller systems and larger systems require different rules and different approaches.

When studying performance, we will follow the same approach that we have been
using throughout this text. We will start at the top with an abstracted view of the problem
and work down to the details.

14.3 PERFORMANCE OR EFFICIENCY MEASURES

14.3.1 Introduction

An embedded system comprises an aggregation of hardware and software components that,
taken together, is intended to provide a desired service or behavior. The specification often
stipulates that certain aspects of that behavior or those services meet a specified set of
constraints. Working from the specification, the engineer will optimize the relevant portions
of the design to meet or exceed those requirements.

The words optimization and performance of a system mean many things to many peo-optimization,
performance ple. Although one can say that these are all inherently good, at the end of the day, what do

they really mean? What is being optimized? What kind of performance is being examined?
What is performance? With any design, there are many aspects that one can optimize and
there are many different measures of performance.

Performance or efficiency usually means “time” (to run) or “space” (memory used),
“power” (consumed or battery life), and “cost” (to the customer). How does one measure
efficiency? Many ways are available. One could simply run the program, see how long it
takes, see how much memory it uses, measure its power consumption, and add up the cost
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of the parts. The difficulty is the significant variability one encounters when running the
program.

• What input data?

• What hardware platform?

• What compiler?

• What compiler options?

Just because one program is faster than another right now, will it always be faster? Any
algorithm, method, or protocol has certain overhead. The choice of compiler, language, or
processor can have as much as a 100% effect on the results. Therefore, at first cut, these
are not really significant. For the moment, they are details; one can usually wait for a faster
machine and, presumably, the problem goes away. However, the choice of the fundamental
algorithm can make a significant difference.

Let’s begin to quantify. We can begin to focus on several major areas; we have already
identified the following:

• Complexity

• Time

• Power consumption

• Memory size

• Cost

• Weight.

Other considerations to think about include:

• Development time

• Ease of maintenance

• Extensibility.

In the course of our studies, we will examine several of these areas. For each such
measure, one must consider:

• Best or Minimum Case

– When referring to time, the emphasis is on measuring the ability to complete a task.time
Such a measure is an essential quantity in many real-time scheduling algorithms.

– With respect to cost, power, or weight, the metric becomes a value below whichcost, power, weight
one cannot remove any more parts.

– With respect to size, one is looking for the smallest amount needed.size
• Average Case

– Gives a typical measure; often, this is sufficient.

• Worst Case

– The largest or longest value of a particular measure. When we refer to time, we aretime
looking at an upper or lower bound on a schedule.
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14.3.2 The System

The scope of the analysis and optimization problem is restricted to the architecture and
internal components of the system and how their behavior is manifest through the public
interface to that system. The internal architecture of a typical embedded system comprises
a root hardware platform and may also include a number of peripheral devices. Thus, from
the embedded point of view, we consider hardware to comprise:hardware

• Computational and control elements.
• Communication subsystem.
• Memory.

We consider software (firmware) to be:software (firmware)

• Algorithms and data structures.
• Control and scheduling.

To optimize the performance of the combined system, one must consider each hardware
and software component. When optimizing or trading off different aspects or features of the
system, the reference against which decisions are made must be the specification. Based on
the specified requirements, the task becomes one of identifying the level at which perfor-
mance is to be measured, deciding on the meaningful parameters at that level, and selecting
reasonable and proper values for the things that are going to be measured or optimized. As
designers, this is our job.

14.3.3 Some Limitations

Before addressing the problem of performance improvement/optimization, one must quan-
tify limits of what can be done. From Amdahl’s law one can write:

Ttotal

Timproved
=

Ttotal

(Ttotal − Tcomponent) +
Tcomponent

n

(14.1)

Ttotal = System metric prior to improvement.
Timproved = System metric after improvement.

Tcomponent = Contribution of the component to be improved to the system metric.
n = the amount of the improvement.

EXAMPLE 14.1
Consider a system with the following characteristics: the task to be analyzed and improved
currently executes in 100 time units and the goal is to reduce execution time to 80 time
units. The algorithm under consideration in the task uses 40 time units.

100
80

= 100

(100 − 40) + 40
n

(14.2)

Simplifying gives a value of 2 for n. The analysis shows that to meet the new per-
formance goals, the algorithm execution speed will have to be decreased to 20 time units.
Whether or not such a goal can be met is resolved by the designer; the analysis merely
identifies the extent of the necessary improvement.
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EXAMPLE 14.2 Consider a system with the following characteristics: the task to be analyzed and improved
currently executes in 100 time units and the goal is to reduce execution time to 50 time
units. The algorithm to be improved uses 40 time units.

100
50

= 100

(100 − 40) + 40
n

(14.3)

Simplifying gives a value of −4 for n. The algorithm speed will have to run in negative
time to meet the new specification. Clearly this is a noncausal system.

With such restrictions in mind, we can now investigate the various performance mea-
sures, beginning on the software side. The first metric will be the algorithm and program
complexity.

14.4 COMPLEXITY ANALYSIS – A HIGH-LEVEL MEASURE

Complexity analysis provides a high-level or heuristic view of algorithms and system soft-
ware. The intent is to abstract away effects of the hardware on the analysis. Specifically,
time will be measured in steps of time or time ticks, and memory quantified in units of stor-steps, time ticks, units
age. Using such metrics, we will assume that each elementary operation will take one step
and that each elementary object will occupy one unit of memory. Of course, quantifying
what comprises an elementary operation will be necessary.

Complexity analysis is used when one is looking for higher level measures for com-
paring the relative performance of different designs. The analysis is conducted at a very
coarse-grained level, looking for orders of magnitude types of comparison and effects as the
problem size increases. Nanosecond differences in execution time or microwatts of power
consumption are not relevant at this early stage of analysis. The goal is to focus on the larger
issues first.

When the analysis moves to the instruction level, the approach will be at a much finer
grain. At that time, the analysis will focus on specific machines and limited blocks of code.
At the lower level, the objective changes to optimizing a specific algorithm or identifying
upper and lower bounds on a sequence through a piece of code.

Let’s analyze a very simple algorithm that accepts as input an array of integers and theEXAMPLE 14.3

number of elements in the array (Figure 14.1). We have numbered each line of the algorithm
for easier reference later.

1 int total (int myArray[], int n) 

2 {

3 int sum = 0;

4 int i = 0;

5 for ( i = 0; i < n; i++ )

6 {

7 sum = sum + myArray[i];

8 }

9 return sum;

10 } Figure 14.1 An Algorithm to Sum the Elements of
an Array.
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Analysis of Total

1. Describe the size of the input in terms of one or more parameters. The input to the
algorithm is the array of integers, and the size of that array is given as n. The size
of the problem is set to n.

2. Count how many steps are required to execute the algorithm for an input of that size.
For the current analysis, a step is interpreted to be an elementary operation such as
+ or = or the subscripting operation.

We can analyze each line of the algorithm as follows:

Line 1: Two push onto the stack operations – this happens once.
2 operations

Line 3: One assignment operation – this happens once.
1 operation

Line 4: One assignment operation – this happens once.
1 operation

Line 5: Three operations – the initialization of i happens one time, the comparison
against n happens n times, and the increment of i happens n times.
2 * n+ 1 operations

Line 7: Three operations – the index operation, the sum calculation, and the
assignment to sum. Each operation happens n times.
3 * n operations

Line 9: One return operation – this happens one time.
1 operation

Final: 5 * n+ 6 operations

The expression for the number of operations in the code fragment in the last example
can be interpreted as a function of n; that is, the number of operations to execute the
algorithm depends directly on the size of the container. Thus, one can write a complexity
function for the algorithm:

f(n) = 5n + 6 (14.4)

Now let’s explore a bit with this expression to see how it behaves. Of particular interest
is how the number of operations changes as the size of the original container is modified.
Such an analysis is motivated by the observation that, through such a study, one can reach
a reasonable estimate of the computational load of the algorithm for larger problems.

If one makes a couple of back-of-the-envelope calculations, the growth of the algorithm
with input is evident:

n = 10=> 54 steps
n = 100=> 504 steps
n = 1000=> 5004 steps
n = 1 000 000=> 5 000 003 steps

Based on the simple calculations, two things become apparent: the number of oper-
ations seems to be growing in linear proportion to n, and the relative significance of thelinear proportion
number 4 on the final answer is decreasing.
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14.5 THE METHODOLOGY

Example 14.3 and the analysis that followed are typical of the approach one takes to gain an
understanding of the complexity of an application. Such a measure enables one to perform
trade-off analyses early in the design cycle. Summarizing the approach:

1. Decompose the problem into a set of basic operations.

2. Count the total number of such operations.

3. Derive a formula, based in some parameter n that is the size of the problem.

4. Use order of magnitudes estimation to assess behavior.

For example, one may have one algorithm for which the number of operations
increases linearly with increasing input size, as in the preceding example. An alternate
algorithm might increase as the square of the size of the input. Yet another might behave
as 2n.

14.5.1 A Simple Experiment

Another simple order of magnitude experiment provides some interesting results. The
experiment will study several familiar growth functions to see how each behaves as the
size of the input is increased (see Table 14.1). The growth functions are:

• Linear

• Quadratic

• Logarithmic

• Exponential.

Table 14.1 The growth of several functions vs. size of input.

N 10N N2 N3 log2N Nlog2N 2N

8 80 64 512 3 24 256
16 160 256 4096 4 64 65 536
32 320 1024 32 768 5 160 ∼4× 109

64 640 4096 26 144 6 384 ∼16× 1018

128 1280 16 384 2 097 152 7 896 ∼256× 1036

256 2560 65 536 ∼16× 106 8 2048 ∼6× 1076

512 5120 262 144 ∼1× 108 9 4608 ∼2× 10149

1024 10 240 1 048 576 ∼1× 109 10 10 240 ∼1× 10200

With any analysis, one should always check boundary conditions. Relevant and neces-
sary questions include: If this piece of code is completely eliminated, how fast would the
program run? If the CPU is infinitely fast, how fast would the program run? If the cost of
this part was $0.00, how much would the system cost?

Such questions give a quick approximation for comparison. For the experiment con-
ducted above, we assume that science and engineering make incredible breakthroughs far
surpassing Moore’s law, and within three years CPU performance is one billion times faster
than what is available today.
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14.5.2 Working with Big Numbers

Now for the important question of the day: How much will that help if the algorithm
grows as 2N? Examining the results of the experiment, if we were able to achieve such
a breakthrough we find that performance on a problem with an input of size 1000 would
improve from 10200 to 10191. This sounds impressive, but what does it mean in real num-
bers? Let’s return to the back-of-the-envelope.

Suppose there is an algorithm for which the number of operations is proportional to
n!, that is, n factorial. Assume that for an input of size 10, the algorithm takes 1 ms to run.
The execution time for an input of size 12 is 12! = 12× 11× 10!, which is 132 times longer
than 1 ms: 132 ms. Not too bad, so where is the problem? Continuing, let’s make n 14. For
n = 14, the runtime is approximately 24 seconds. Continuing again, for n = 16, the runtime
is about 1.6 hours; for n = 18, the runtime is about 1.4 years; and for n = 20, the runtime is
about 500 years.

If the same algorithm is executed on a machine for which the performance has been
improved from 10200 to 10191, runtime will decrease from 10197 to 10188 seconds. One year
is approximately 31× 106 seconds long.

14.5.3 Asymptotic Complexity

During the experiment assessing the complexity formula for the simple summing algo-
rithm, we observed that as the size of the input increased the effect on the total of the least
significant digit decreased. When we reexamine that expression,

f(n) = 5n + 4 (14.5)

we find that not only does the effect of the 4 decrease, but the 5 is also inaccurate. The
reason is that on most CISCs – complex instruction set computers – the operations <, [],
+, =, ++ require varying amounts of time. As a result, for the calculations, one can safely
ignore that multiplier. What is important is that the increase/decrease in the total number of
operations is linear in n. As n gets large, one can concentrate on the highest order term andlinear

highest order drop lower order terms such as +4 and the constant coefficient of the highest order term.
From such recognition, one can state that for the expression 5n+ 4, the bound on the

number of operations grows asymptotically like n. Such an interpretation provides a meansgrows asymptotically
for approximating the complexity of an algorithm. Such an approximation is referred to
as the asymptotic complexity of the algorithm. Although the method ignores many of theasymptotic complexity
lower level details, one is enabled to concentrate on the bigger picture.

14.6 COMPARING ALGORITHMS

When comparing algorithms, typical questions that can be asked include:

• What is the worst case performance (upper bound) of a particular algorithm?

• What is the average case performance of a particular algorithm?

• What is the best possible performance (lower bound) for a particular type of problem?

Using complexity analysis, we can now (partially) answer the question, “Given algo-
rithms A and B, which has better performance in time?” Such a question is equivalent to
asking, “Which algorithm has the smaller asymptotic time bound?”
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Specific values of n will probably lead to different (and generally uninformative)
answers. However, conducting a boundary analysis enables one to compute and to compare
the growth rates for arbitrarily large values of n, that is, the asymptotic case. Such an

growth rates,
asymptotic case

analysis provides a basis for comparison of the algorithms.

Caution: At the same time one must be careful not to forget the context in which the
analysis is conducted. If one can ensure that the input size remains small, the asymptotic
growth rate is not the proper metric to be using.

The abstracted function that we have defined gives a bound on the complexity of an
algorithm that is approached asymptotically. Thus, one can state that the complexity of an
algorithm approaches that bound or is on the order of that bound.

approaches
on the order of

If such a function is expressed as a function of the problem size, N, and that function
is called g(N), then one can say that (the complexity of) a function is on the order of g(N).
That comparison can be written as

f(N) = O(g(N))

If there is a constant c such that
f(N)< c g(N) for all sufficiently large N,
read “f(N) is order g(N)” or

“f(N) is big-O of g(N)”

14.6.1 Big-O Notation

Try to think of the expression f(N) = O(g(N)) as f(N) grows at most like g(N) or f grows
no faster than g, ignoring constant factors for large N. Once again, g(N) gives an upper
bound on the behavior of f(n). Of interest is the rate of change of a function, not a single
value.

f(N) grows at most
like g(N)

f grows no faster
than g

Remember that big-O is not a function but a notation, a means of describing something.
We never read the symbol = in this context as equals!equals

Definition

Function f(N) is O(g(N)) if there is a constant C and a value N0, such that
f(N) is ≤C*g(N), for N≥N0.

An earlier experiment examined how several different functions of N grew as the mag-
nitude of N increased. That information can now be used to specify bounds on growth.
Table 14.2 captures and compares several of the more common bounds.

Once again, N specifies the input size.
In the table, complexity increases from top to bottom. The complexity ranking in the

table reveals that as the size of the input grows, any algorithm of a smaller order will be
more efficient than an algorithm of a larger order. As noted earlier, however, context is
important, as is reflected in Figure 14.2.
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Table 14.2 Common bounds on complexity vs. input size.

O(k) = O(1) Constant Time, complexity is independent of number of data items
O(logbN) = O(log N) Logarithmic Time
O(N) Linear Time, complexity proportional to size
O(N log N)
O(N2) Quadratic Time
O(N3) Cubic Time
…
O(kN) Exponential Time
Nanyinteger is called “polynomial” time

1000

750

500

250

0
0 25 50 75 100 0 125 25 37.5 50

0.1y2=0(N2)

0.1y2=0(N2)

5N=0(N)

N log(N)=0(N log(N))

100

75

50

25

0

5N=0(N)

N log(N)=0(N log(N))

Figure 14.2 Algorithm Order vs. Efficiency.

For an input size below 50, the time performance of an algorithm that is of O(N2) will be
better than one that is of O(N). Beyond that value, the roles reverse. We also plot the behav-
ior of an O(Nlog(N)) algorithm for comparison. Note that for values below approximately
12 the O(N2) still gives the best performance.

14.6.2 Big-O Arithmetic

Big-O arithmetic is based on the following simple rules.

• Order common functions from smallest to largest.

1, log(N), N, Nlog(N), N2
, N3

, … , 2N
, 3N

, …

• Ignore constant multipliers.

300 N + 5N4 + 6 • 2N = O(N + N4 + 2N)

• Ignore everything except the highest order term.

N + N4 + 2N = O(2N)

Let’s look at a couple of examples.
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EXAMPLE 14.4 5N + 4 = O(N)

Certainly it is also true that: 5 N+ 3 = O(N2).
That is, its growth rate is no faster than N2 or N! or 2N for that matter.
The objective is to identify the tightest bound, the best indication of performance.

37N5 + 7N2 − 2N + 1EXAMPLE 14.5

Starting with the smallest term, as N increases, the 1 becomes insignificant; the same holds
first for the N and then for the N2. The 37N5 remains.

The multiplicative constant is neglected; the expression is O(N5).

14.7 ANALYZING CODE

As one gains facility in analyzing and understanding the behavior of a system, it becomes
evident rather quickly that even the most complex parts of a system are ultimately composed
of fundamental modules. Most modules or pieces of the system are linear; consequently,
one can take advantage of the benefits of superposition. The most immediate benefit is that
an algorithm can be decomposed into its constituent pieces, analyzed, and the individual
pieces summed. Such an ability, however, does not obviate the need to understand both the
algorithm and the context.

Let’s now analyze several of the basic flow of control constructs that are commonly
found in many algorithms. The analysis at this stage will be conducted from the big-O

flow of control
constructs

perspective; shortly, the same constructs will be examined from the perspective of time
performance.

14.7.1 Constant Time Statements

The execution of constant time statements, as their name suggests, is constant, indepen-
dent of the size of the input. Such expressions are designated to be O(1), of order 1. Such
statements include:

• Declarations and initializations of simple data types:

int x, y;
char myChar = ‘a';

• Assignment statements of simple data types:

x = y;

• Arithmetic operations:

x = 5• y + 4• z;

• Array referencing:

A[j]

• Referencing/dereferencing pointers:

Cursor = Head -> Next;

• Most conditional tests:

if ( x < 12 ) …
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14.7.2 Looping Constructs

Looping constructs are a common flow of control mechanism. From a complexity point of
view, any loop analysis has two parts:

1. Determine the number of iterations to be performed.
2. Determine the number of steps per iteration.

14.7.2.1 For Loops

The basic for loop is shown in Figure 14.3.

int sum = 0;

for ( j = 0; j < N; j++ ) 

sum = sum + j ;

Figure 14.3 The Basic for Loop.

• Number of iterations.
The loop executes N times (from 0 to N − 1).

• Number of steps per iteration.

4 = O(1) steps per iteration

1. The sum sum+ j

2. The assignment sum =
3. The auto increment j++
4. The comparison j<N

Total time is N ⋅ O(1) = O(N ⋅ 1) = O(N)

The code fragment in Figure 14.4 is a variant on the basic for loop.

int sum = 0;

for ( j = 0; j < 100; j++ ) 

sum = sum + j ;

Figure 14.4 A for Loop of Fixed Size.

• Number of iterations.
• The loop executes 100 times (0–99).
• Number of steps per iteration.

4 = O(1) steps per iteration

1. The sum sum+ j
2. The assignment sum =
3. The auto increment j++
4. The comparison j<N
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Total time is 100 ⋅ O(1) = O(100 ⋅ 1) = O(100)

The complexity of this loop is constant.
That this loop is faster makes sense when N≫ 100.

14.7.2.2 While Loops

Analysis of the while loop shown in Figure 14.5, duplicates that of the for loop.

bool done = false;

int result = 1

int n;       // n has some value

while ( !done ) 

{

 result = result * n;

 n--;

 if ( n <= 1 ) done = true;

}

Figure 14.5 The while Loop.

• Number of iterations.
The loop terminates when done== true, which happens after n iterations.

• Number of steps per iteration.

3 = O(1) steps per iteration

1. The multiply result • n

2. The assignment result =
3. The auto decrement n−−

Total time is N ⋅ O(1) = O(N ⋅ 1) = O(N)

14.7.3 Sequences of Statements

For a sequence of statements, simply compute their individual complexity functions and add
them up. If the two loops are executed in sequence, the result is as shown in Figure 14.6.

int j, k, sum = 0;

for ( j = 0; j < N; j++ )

for ( k = 0; k < j; k++ )

sum = sum + k * j;

for (i = 0; l < N; l++ )

sum = sum - i;

Figure 14.6 Sequences of Statements.
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The complexity is given as:

Total time is N3 +N = O(N3)

14.7.4 Conditional Statements

Conditional statements are no more difficult to analyze; one just has to consider all of the
components. Starting with the simple branch statement, as shown in Figure 14.7, assume
that statement1 has a time complexity that is O(n2) and that statement2 has a complexity of
O(n). With such a construct, some of the kinds of analyses that must be undertaken when
designing real-time systems should be becoming clear. To understand the algorithm, oneworst case complexity

maximum running
time

must consider worst case complexity. One must ask, for this algorithm and for all inputs of
size n, what is the maximum running time?

if (condition) 

statement1;

else

statement2;

Figure 14.7 Conditional Statements.

For this example, we conclude that the worst case time complexity is O(n2) based on
the possibility of continually (or at least frequently) executing statement1.

14.7.5 Function Calls

Function calls present the next level of complexity. Decomposing the problem, we see that
the time complexity of a function call is made up of four components:

Cost = the call+ passing the arguments+ executing the function+ returning a value

Let’s examine each in turn.

• Making and returning from the call.
The function call itself is independent of the size of the input. The complexity is O(1).

• Passing the arguments.
The complexity of this component depends upon how the arguments are passed.
– Pass by value. The entire object must be copied and put onto the stack, which can

be an expensive operation, particularly if dynamic memory allocation is supported.
– Pass by reference. A reference to the object is put onto the stack. A copy of the

object is not created. The time complexity should be constant.
• Determining the cost of execution.

The complexity depends on the task being executed. We must decompose and analyze
the components of the function body.

• Determining the cost of return.
The complexity of the return depends on how the value is returned. The return can be
either by value or by reference; the former is more expensive than the latter.
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14.8 ANALYZING ALGORITHMS

Let’s examine several searching and sorting algorithms and determine their complexity.
We will start with search and then move to sort.

14.8.1 Analyzing Search

14.8.1.1 Linear Search

The linear search algorithm is given in Figure 14.8, and each line is numbered for reference.

// Return index of x if found, or -1 if not

1. int find (int A[], int size, int x) 

{

2. unsigned char gotIt = -1;

3. unsigned int i;

4. for ( i = 0; i < size && gotIt < 0; i++ )

{

5. if ( A[i] == x ) 

6. gotIt = i;

}

7. return gotIt;

} Figure 14.8 Analyzing a Linear Search
Algorithm.

The worst case performance of the algorithm will be assessed first.

Line 1: Three push onto the stack operations – this happens once.

3 operations

Line 2: One assignment operation – this happens once.

1 operation

Line 3: One assignment operation – this happens once.

1 operation

Line 4: Five operations – the initialization of i happens one time, the comparison
against size, the comparison against 0, the AND operation – these happen
size times each, and the increment of i happens size times.

3 • size+ 2 operations

Line 5: One comparison operation – this happens size times.

size operations

Line 6: One assignment operation – this happens once.

1 operation

Line 7: One return operation – this happens once.

1 operation

Final: 5 • size + 8 operations
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The worst case complexity is O(N) when N is the size of the container. The best case
performance is achieved when the target value is always the first entry in the container.
Under such circumstances, the best case complexity is constant, that is, O(1). One can also
argue convincingly that the number of operations, on average, will be (size/2). Nonetheless,
the complexity is still O(N), linear in the size of the container.

14.8.1.2 Binary Search

The binary search algorithm has a worst case complexity of O(log2N) where N is the size
of the search range. Computing this value will be left as an exercise.

14.8.2 Analyzing Sort

14.8.2.1 Selection Sort

The code for the selection sort algorithm is given in Figure 14.9. The sort routine and the
helper search routine are cooperating to execute the sort; both must be considered.

void selectionSort (int a[ ], int lower, int upper) 

{

// declare some working variables

int low = 0;

int smallest;

int working;

for (low = lower; low<upper; low++) 

{

// find index of smallest element

smallest = findSmallest(a, low, upper);

// swap smallest with current top of container

working = a[low];

a[low] = a[smallest];

a[smallest] = working;

}

return;

}

int findSmallest(int a[ ], int lower, int upper) 

{

int smallIndex = lower;

int i = 0;

for (i=lower+1; i<=upper; i++) 

{

if (a[i] < a[smallIndex]) 

smallIndex = i;

}

return smallIndex;

}

Figure 14.9 Analyzing a Selection Sort Algorithm.

Starting with the function selectionSort, we see that it iterates N times, where N is theselectionSort
sort range. Next, we can ask, how much work is done each time? For this algorithm, rather
than look line-by-line, we will take a more expeditious path. Let’s look at the pieces and
estimate the complexity of each. In doing so, we neglect operations that are independent of
the size of the input.

1. findSmallest()
The number of for loop iterations within the function is given by:

N-1 + N-2 + N-3...1
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Since the search range decreases by “one” with each pass, the total work can be
computed as the sum of the first N numbers.

N • N − 1
2

2. By the three lines comprising the swap operation:

N - 1 calls → N - 1 exchanges

3. By other statements:

Each exchange → 3 assignments

The final total is given as:

Total = N • N − 1
2

+ 3 • (N − 1) (14.6)

The complexity of selection sort thus reduces to:

O

(
N2

2

)
⇒ O(N2)

14.8.2.2 Quick Sort

The quick sort algorithm has a worst case complexity of O(N log2 N). Computing this value
will be left as an exercise.

14.9 ANALYZING DATA STRUCTURES

We will now examine two important containers: the array and the linked list. For each, we
will look at the following fundamental operations.

• Insert/delete at the beginning.
• Insert/delete at the end.
• Insert/delete in the middle.
• Access at the beginning, the end, and in the middle.

For the analysis, we assume that each of the data structures is allocated at compile time
and does not support runtime allocation.

14.9.1 Array

Two cases must be considered for each operation: whether the operation is to be executed
as an overwrite or as an insert. The first case will not require moving data, whereas the
second will.

• Insert/delete at the beginning
In the overwrite mode, inserting an element is done in constant time. The complexity
is O(1).

In the insert mode, each element of the container must be moved to make room for
the new element. Thus, the complexity is O(N), where N is the number of elements
in the array.

The complexity of the delete operation is the same as that for the insert mode, O(N).
Each element in the container must be moved to fill the void.
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• Insert/delete at the end
The insert and delete operations at the end of the array in either mode are done in
constant time. No elements need be moved; thus, the complexity is O(1).

• Insert/delete in the middle
The operation comprises two pieces: finding the element then performing the insert
or delete. The array supports random access; thus, finding the element is a constant
time operation. In the overwrite mode, inserting an element is also done in constant
time. The complexity is O(1).

In the insert mode, all elements below (with higher index) must be moved to make
room for the new element. For the two boundary cases, we only move a single ele-
ment, or we move all elements but one. Thus, the complexity is, on average, O(N/2),
or simply O(N), where N is the number of elements that need to be moved.

The complexity of the delete operation is the same as that for the insert mode for
both the boundary and typical cases, O(N).

• Access at the beginning, the end, and in the middle.
These accesses are all constant time operations since the array supports random
access.

14.9.2 Linked List

• Insert/delete at the beginning
Inserting or deleting a link at the head of a linked list involves the modification of a
couple of addresses. These operations are independent of the size of the list; thus, the
complexity is O(1).

• Insert/delete at the end
For either of these operations, two cases must be considered. If a reference to the tail
of the linked list is maintained, then either operation can be completed in constant
time.

On the other hand, if only the head reference is retained, then one must first find
the tail of the list. Such an operation depends on the number of elements in the list;
thus, the complexity in such a case is O(N), where N is the size of the container.

• Insert/delete in the middle
The operation comprises two pieces: finding the element and performing the insert
or delete. The linked list does not support random access; thus, finding the element
depends on the number of elements in the list. Like the delete at the end, the access
is of order N and the insert or delete is constant. Thus, either of these operations has
complexity O(N).

• Access at the beginning, the end, and in the middle
Like insert or delete in the beginning, the end, or the middle of the linked list, the
time complexity is controlled by the amount of time to find the element. Thus, either
of these operations will have complexity that is the same as the corresponding insert
or delete operations.

14.10 INSTRUCTIONS IN DETAIL

We have looked at order of magnitude measures and comparisons for algorithms. Even-
tually, the code must be written, compiled, and run on the microprocessor. In real-time
systems, this is where the interesting design issues and challenges arise. In a hard real-time
system, a few nanoseconds can mean the difference between success and failure of a design.
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We will now move inside of the algorithm to examine the temporal performance of each
of the instructions in detail. As with any other tools and approaches that one is working
with, the tools, the problem, and the context must be thoroughly understood. Analyzing
individual instructions or sequences of instructions, which will be done shortly, is most
definitely not appropriate for an entire program. Rather, the technique is used and applied
to understand and to optimize a critical set of instructions.

Once again, we assume that a program or algorithm is made up of several common flow
of control constructs. The basic constructs will be analyzed in detail; these components can

flow of control
constructs

be combined later as needed.
Several additional caveats are in order.

1. Single thread of execution is assumed.

2. The analysis is conducted at the assembly language level. Each different compiler
is going to generate somewhat different assembly code, even for the same target.
The analysis must be based on the compiler that is generating the final code for the
microprocessor used in the design.

3. Compilers support different options for the compilation process. Such variations
include the size of the target memory. Different code may be generated for a small
memory model versus a large memory model.

Consistency is the key word. Always perform the analysis on the code that will ulti-
mately be embedded in the system being designed.

14.10.1 Getting Started

After the high-level code to be analyzed is identified, the analysis is conducted on the
assembly language listing. Most contemporary compilers will not generate such a listing
automatically. However, the option to do so is generally available. Once one has a complete
assembly listing, the specific instructions that are of interest can be identified.

From the processor vendor’s assembly language manuals, one then determines the time
for each instruction. This time can vary with any of the following.

• Addressing mode of instruction.

• The piece of memory from which the instruction or data must be fetched:

Immediate
Register
Primary
Secondary.

When computing times, it may be necessary to use minimum, maximum, or average
numbers depending upon the objective at hand. For example, is one looking for the longest
path or the shortest? Is the objective to meet a deadline, or is to it ensure that a value doesn’t
change too quickly?

14.10.2 Flow of Control

As the design and implementation of increasingly complex embedded systems continue,
it is not going to be possible to develop a solution based on executing a few lines of
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code. Rather, the designs are going to be implemented as collections of cooperating tasks
and threads. Some of the tasks will be scheduled according to a predetermined algorithm,
whereas others will be invoked asynchronously in response to internal or external events.

The invocation of each new task or thread will entail a change from a current context to
a new one and may involve saving the current context and retrieving an old one. Depending
on the tasks to be performed, such a series of operations will take varying amounts of time
and can be critical in a real-time system. To be able to effectively design embedded systems,
one must thoroughly understand the flow of control both inside and outside of the system.
Essential to such an understanding is the ability to analyze, in time, the flow of control
through the system.

The flow of control – the single-threaded path of execution – through most contempo-
rary programs can be modeled and analyzed as a composite of four basic elements:

• Sequential

• Branch

• Loop

• Function call.

We have already analyzed each of these constructs from a big-O or order of magnitudebig-O
perspective. We will now examine them, first from a C language level and then in greater
detail at the assembler level.

14.10.2.1 Sequential

A sequential block is a set of instructions each of which is executed in sequence – that is, in
the order that the instructions appear in the program and ultimately in program memory, our
firmware. Such a set of instructions may include declarations, definitions, or assignments
(Figure 14.10).

Figure 14.10 Sequential Flow.

14.10.2.2 Branch

A branch is the simplest construct that allows the flow of a thread of execution through the
program to be altered. One of several branches can be selected based on some condition.
Graphically, this type of construct is seen in Figure 14.11 and appears in high-level code as
statements such as:

Decision

Point

Figure 14.11 The Branch.

if else
switch or case
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In the assembler, the branch will be implemented as a series of jump or branch instruc-
tions, depending on the assembler.

14.10.2.3 Loop

The loop construct expresses a set of instructions that is repeatedly executed until some
termination condition is met. As the diagram in Figure 14.12 illustrates, a decision about
whether to execute the code block can be made before entering the loop – the code may not
be executed – or after the loop – the code is executed at least once.

Code

Decision

Point

Decision

Point

Figure 14.12 The Loop.

A construct of this type is seen in high-level instructions of the form:

do or repeat
while
for

and in the assembler as a coordinated collection of jumps.

14.10.2.4 Function Call

The most complex flow of control component is the function call. In this component, the
current context is exited, a set of instructions is executed in a new context, and then flow
returns to the initial context. Such a construct can be found in a

Function, Procedure or Subroutine call
Interrupt Handler and Interrupt Service Routine
Co-Routine

Context is interpreted as the information that characterizes the current executing envi-
ronment of the program and includes items such as

• Program counter
• Auto variables
• Register contents
• State of globals.

The flow of control is illustrated in Figure 14.13.

function
function call

code i

code i+1

Figure 14.13 The Function Call.
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14.10.3 Analyzing the Flow of Control – Two Views

The major components that can be used to analyze the flow of control at the instruction level
have now been identified. For each type, we begin with a high-level language program that
embodies the construct and then we present and analyze an assembly language implemen-
tation.

The essential point to remember is that the assembly language implementation is com-
piler and processor dependent. The analysis that follows should be used as a methodology
for analyzing a system rather than a set of specific steps to be followed.

The C and assembly language-level implementation of each of the flow of control con-
structs will be presented. The assembler instructions are those of an Intel microcontroller;
however, the process can be applied to any machine. Each instruction is annotated with its
execution time. The processor on which these times are computed is running at 20 MHz.
Such a clock rate is not unusual for an embedded microcontroller and is typically sufficient
for many smaller applications.

14.10.3.1 Sequential Flow

The code fragment given in Figure 14.14 represents a typical set of instructions that one
might encounter in a C sequential flow.

// make a couple of declarations 

int a = 10;

int b = 20; 

// perform an arithmetic operation followed by an assignment

c = a + b;

Figure 14.14 Analyzing Sequential Flow – the C Level.

The C fragment is now expressed in assembler in Figure 14.15. Each instruction is
annotated with its execution time.

ldbse R0,#0AH // load 10 into a temp register 400 ns

push R0 // push the local variable onto the stack 600 ns

ldbse R2,#14H // load 20 into a temp register 400 ns

push R2 // push the local variable onto the stack 600 ns

add R0,R2 // c ← sn 004b + a 

push R0 // push the local variable onto the stack 600 ns

Total  3000 ns

Figure 14.15 Analyzing Sequential Flow – the Assembler Level.

14.10.3.2 Branch

if - else construct

The code fragment in Figure 14.16 is a typical example of a branch construct.
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if (a == b)

c = d + e;

else

c = d - e;

Figure 14.16 Analyzing the Branch – the C Level.

The assembler code is shown in Figure 14.17. We assume that the variables a–e have
already been loaded into registers R1–R5.

cmp R1,R2 // compare R1 and R2 400 ns

jne @0002 // if they are not equal branch to 800 ns for branch taken

// label @0002 400 ns for branch not taken

add R3,R4,R5 // R3 <- R4 + R5 500 ns

br @0003 // go to label @0003 700 ns

@0002:

sub R3,R4,R5 // R3 <- R4 - R5 500 ns

@0003:

Total 1700–2000 ns

Figure 14.17 Analyzing the Branch – the Assembler Level.

Observe that for the branch construct, execution times will be different for the case
when the branch is taken and when it is not. These numbers must be considered in context. If
a hard real-time constraint is associated with this branch, then the worst case number, 2000,
must be used. Such a choice will determine the best execution time that can be guaranteed.
If only general performance is being assessed, however, one might consider averaging the
two values.

14.10.3.3 Loop

A typical loop construct in C appears as in the code fragment shown in Figure 14.18.

while (myVar < 10)

{

i = i + 2;

myVar++;

}

Figure 14.18 Analyzing the Loop – the C Level.

The basic loop leads to the assembler code fragment in Figure 14.19. We assume that
myVar has been loaded into R1 and i into R0.
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@0004: // start of the while loop

cmp R0,#0AH // compare myVar with 10 400 ns

jge @0004 // if greater than or equal to 10 800 ns for branch taken

// jump to label @0005  400 ns for branch not taken

add R0,#2 // increment I by 2 500 ns

inc R1 // increment myVar 300 ns

br @0004 // jump to start of while loop 700ns

@0005:

Total 1200–2300 ns

Figure 14.19 Analyzing the Loop – the Assembler Level.

As was done with the branch, one must consider the operating context when using the
times from such a construct. Under a hard real-time constraint, one must use the worst case
value. The numbers shown are for a single pass through the loop.

14.10.3.4 Function Call

A procedure call, illustrated in the code fragment in Figure 14.20, is the most complex of
the flow of control constructs. The procedure call is not particularly more difficult but it
is a bit more involved. The process is considered from a high level first. Assume that the
program is loaded at address 0x3000 in code memory. Let the instructions be executed until
flow reaches address 0x3053. At this time, a procedure is encountered and the following
steps are now executed:

3000 Code

3053 Function Call F1()

3054 More Code

5000 F1

    Function Code

5053 Return
Figure 14.20 Analyzing the Function Call – the C Level.

1. The return address is saved.
• Several important things should be noted here
• The address that is saved is 0x3054
• The following information is entered onto the stack

• Return address
• Parameters
• Local variables in both old and new contexts.

This step can be very time consuming. In a context with a hard real-time con-
straint, one may choose to implement the code in line, and perhaps in the
assembler, if the timing constraints warrant.

As an exercise, write a simple function call for your processor and compile
the program so that you get the assembly listing. Look at the instructions, and
associate a time with each. How long does the invocation take?
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2. The address of the procedure, 0x5000, is put into the program counter (PC).

3. The instruction at 0x5000 begins executing.

4. Execution continues until we reach address 0x5053.

The return is now encountered and we get a series of actions similar to those for the
call.

The stack gets

Return values
Stack loses

Return address
The return address is put into PC

Additional steps may be necessary to delete the stack frame on return. How tempo-
rally expensive is this sequence of operations?

5. Execution continues at 0x3057.

A representative code fragment is given first in C (as might exist in main()) in
Figure 14.21, then in assembler in Figure 14.22 for one possible implementation of the
function call.

int myVar0 = 30;

int myVar1 = 40;

myVar1 = myFunction(myVar0); Figure 14.21 Analyzing the Function Call – the C
Level.

sn 006 kcats eht otno 0raVym hsup //0raVymhsup

sn 0011llac noitcnuf eht etucexe //noitcnuFymllacl

// the call pushes the contents of the PC 

// (the return address) onto the stack, adds 

// the displacement between the current PC and 

// the address of the function to the PC

sn 004retniop kcats eht tnemercni //2#,PSdda

ld myVar1,Tmp0 // put the function return value into myVar1 400 ns

Total 2500 ns

Figure 14.22 Analyzing the Function Call – the Assembler Level.

A couple of variables are declared; one is passed to the function and the other is used
to hold the return value. The code fragment in main() will be examined first, followed by
that in the body of the function. We assume that myVar0 has already been stored in R0 and
myVar1 has been stored in R1.

The C code in the function body appears as shown in Figure 14.23.

int myFunction(int aVar)

{

int localVar = 15;

localVar = localVar + aVar;

return localVar;

}
Figure 14.23 Analyzing the Function Call – the C
Level.
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The assembler implementation is given in Figure 14.24. Had there been a second pro-
cedure call in procedure myFunction(), an identical process would have been initiated. The
process can be repeated multiple times. However, one must be aware that the stack can
overflow if too much is pushed on. Under such a circumstance, information, particularly
the return address, gets lost.

push Tmp01 // pushes a temp variable onto the stack 600 ns

ld Tmp01,SP // puts the stack pointer into that local variable 400 ns

sn 004retsiger pmet a otni 51 daol //HF0#,raVlacol esbdl

add localVar,aVar[Tmp01] // use indexing into stack to get passed in arg 600 ns

ld Tmp0, localVar // use global temp to return local variable 400 ns

sn 008 kcats eht pop //10pmT pop

sn 0011noitcnuf gnillac ot nruter // ter

// puts top of stack into PC

Total 4300 ns

Figure 14.24 Analyzing the Function Call – the Assembler Level.

The function call has consumed almost 7 μs, 2500 ns to save the context and 4300 ns
to execute the function and return.

Observe how the authors of the compiler for this processor handled the return value.
From the times given above, the push and pop operations consume 1.4 μs in contrast to the
load that requires 400 ns. By using a global temporary register rather than the stack, they
improved performance by almost 300% on that sequence.

14.10.3.5 Co-routine

A co-routine is a special kind of procedure call in which there is a mutual call exchange
between cooperating procedures – that is, two procedures sharing time. The mechanics are
the same as the simple procedure call and so is the time budget. The major difference is that
a conventional procedure executes until the end unless it leaves under extraordinary circum-
stances. Co-routines exit and return throughout the body of the procedure. Usually, the exit
and return are executed under the direction of a third process or procedure. Graphically, the
process appears as shown in Figure 14.25.

Procedure 0 Procedure 1

Control
Procedure

Figure 14.25 The Co-routine.
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The control procedure starts the process. Each context switch is determined by any of
the following:

• Control procedure

• External event – a timing signal

• Internal event – a data value

The process continues until both procedures are completed. With each switch, the
appropriate information from the current context must be saved. Such activities incur a
significant time burden. If such a construct is used in a time-constrained context, then one
must permit preemption as appropriate. The co-routine sequence is analyzed exactly as was
done with the procedure call.

14.10.3.6 Interrupt Call

An interrupt is another special kind of procedure call. In this case, the initiator is some
asynchronous internal or external event. As is illustrated in Figure 14.26, normal execution
proceeds in the foreground task. When the interrupt occurs, control is first transferred to
the interrupt handler and then to the appropriate interrupt service routine (ISR).

Foreground
Task

Interrupt Handler

ISR

Figure 14.26 The Interrupt.

The analysis of an interrupt follows that for the function call. Most processors complete
the current instruction before initiating the context switch. Thus, since it is not generally
known which instruction is being executed when the interrupt occurs, the longest is selected.
Such a choice gives an upper bound. To this number, one must add the time for the context
switch exactly as was done for the function call except that no variables are pushed onto
the stack. Values cannot be passed into an ISR. The return from the ISR is the same as the
function call except that, once again, no variables need be returned.

When working in a context with hard real-time constraints, one must analyze the code
as has been done above to establish an exact or bounded execution time. Any program can
be built from the basic constructs that have been studied above.

14.11 TIME, ETC. – A MORE DETAILED LOOK

As has been repeatedly stressed, time is one of the more critical constraints that must
be considered when designing embedded systems. Up to this point, analysis has taken a
coarse-grained view of system (software) performance using order of magnitude estimates
on algorithm complexity. The time performance of the basic flow of control constructs at
the assembler level has been studied as well. The next step is to move inside the individ-
ual hardware components and software tasks to learn where and how time affects their
performance.
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When looking at the time performance in embedded systems, one must consider both
hardware and software timing. On the hardware side, one must consider the internal delays
of the hardware components as well as delays through external elements or systems as
appropriate. Software performance is affected by both the path through the program and
the timing of individual instructions, as we have seen.

In examining time, we are interested in several things: exact times if computable,
bounded times if exact times are not computable. We may also consider measuring the
times over a large sample of units. The other important consideration is that the times be
deterministic, that is, they are known and predictable.

Time is an important factor in analyzing and specifying the performance of most
embedded applications and can be expressed in a number of different ways, as will be
evident shortly. Its importance notwithstanding, time is not the only consideration. Several
other factors should also be considered. Let’s take a look at these.

14.11.1 Metrics

When discussing embedded system performance, several simple measures can be used.
One of the more common ones is response time – the interval between the occurrence ofresponse time
an event and the completion of some associated action (typically the first useful action).
Sometimes, such an interval is also referred to as execution time or throughput. How-execution time

throughput ever, these terms are different. The former is the time to complete the entire task, whereas
the latter is the number of tasks completed per unit time. In a pipelined system, once the
pipe is full, the throughput could be very high, yet the execution time per task is much
slower.

Another important metric, time loading, is the percentage of time that the CPU is doingtime loading
useful work – that is, working on user rather than system jobs. There is no point in opti-
mizing the performance of the application program to the nanosecond level if 90% of the
CPU resources will be devoted to running the system tasks.

Similar to time loading, memory loading, is the percentage of usable memory beingmemory loading
used (by the application rather than the system). Most non-hard real-time applications are
multitasking and use a virtual memory scheme of one form or another. In hard real-time
applications, however, we generally avoid using such schemes. If the amount of mem-
ory allocated to the application is sufficiently small that the system is continually paging,
then, most likely, the responsibility for low performance lies with the system rather than
the program. Nonetheless, one still must be conscious of the need to reduce the size of a
program.

Let’s take a more detailed look at each of these metrics; we will start with response
time.

14.12 RESPONSE TIME

Response time is the interval between an event and the completion of the associated action.
For example, one might issue a command to an A/D to make reading and receive an event
from the A/D signifying completion of the task. More accurately, however, response time is
driven by the type of system involved – for example, the time between issuing a command
to an A/D to make a reading and receiving the event from the A/D signifying completion
of the task. In the following sections, we examine different control flow segments and the
response time of each.
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14.12.1 Polled Loops

Polled loops are the simplest and best understood. The response time consists of three
components:

1. Hardware delays in the external device to set the signaling event.

2. Time to test the flag.

3. Time needed to respond to and process the event associated with the flag.

1. External Hardware Device Delay.
Two cases must be considered:

(i) The response through the external system to a prior internal event.

(ii) An asynchronous external event.

CASE 1

Figure 14.27 gives a graphical expression of the problem.

Internal Event Delay through
External System

Response from
ExternalSystem

Causal System

Responding System

Figure 14.27 The Delay Path Through an External Device.

In analyzing the behavior one must consider:

• The time to get to the polling loop from the internal causal
event.

• The delay through the external device.

• The time to generate the response.

The timing can be complicated to analyze, particularly if
the triggering event takes several different paths through an
external device. In fact, it may not be possible to calculate the
exact value. Alternatively, one can place an upper bound on the
time. Such a constraint sets a minimum limit on hard real-time
behavior.

In time, the picture looks like that in Figure 14.28. We label
the time through the external device 𝜏ed1.

Internal Event

Time to Loop

Best Case Arrival Worst Case Arrival

Time Through External Device

Worst Case 

Response

Figure 14.28 Analyzing the Delay Path Through an External
Device.

CASE 2

The problem now appears as illustrated in Figure 14.29.
In such a case, one cannot determine when the event will

occur.

Asynchronous

External Event

Originating

System

Receiving

System

Figure 14.29 An Asynchronous Event From an External
Device.
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2. Flag Time
Flag time is determined from the execution time of the machine’s bit test instruction.
Label this time 𝜏f.

3. Processing Time
Processing time is the time to perform the task associated with the triggering event.
The triggering event may be either internal or external. This time must include the
time to reach the flag from the current instruction. We make the assumption that we
are in the polling loop and not at the test instruction. One must consider the best,
worst, and average times. One must also include the time to reset the flag and to
execute the task. We call this time 𝜏p.

One can consider anticipating the event if it is necessary to meet a very high-speed
requirement with a slow causative process or device. Anticipation is implemented by arming
the system so that when an event occurs, everything is set up to go. One could use hardware
as an implementing mechanism and consider a small window to respond to the event.

In computing the processing time, one must consider two cases, the first event and the
nth event. For the first event, the loop is unburdened. In such a case, one has the minimum
time to execute. If the loop permits events to queue, for the nth event time must be added
to complete some subset of the n− 1 previous events. Such a time can be bounded by n− 1
times the time to process a single event.

14.12.2 Co-routine

In a noninterrupt environment, the time for a co-routine may be computed directly or, more
often, bounded, which we compute as the worst case path through each component.

14.12.3 Interrupt-Driven Environment

An interrupt-driven environment is the most complex of the calculations because one is
dealing with asynchronous events that can be nondeterministic. Events probably will not
occur in the same sequence each time the program is executed. One can set a bound on the
complexity of the computation by assuming only one such event can occur.

Several affecting factors include interrupt latency, the time for the context switch, the
schedule, and the task execution time. For the context switch, the following times must be
considered:

• Context switch to the interrupt handler.

• Acknowledging the interrupt.

• Context switch to the processing routine.

• Context switch back to the original context.

The schedule may be nonpreemptive or preemptive. A preemptive schedule with fixed
rate scheduling is the easiest to compute. Let’s look at the pieces.

14.12.3.1 Preemptive Schedule

• Context Switch
The time for the context switch can be computed directly by identifying the instruc-
tions at the assembler level and counting the time each takes.
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• Task Execution
When computing the time for the task execution, typically three values are considered:
the minimum, average, and maximum times. These times can be computed, once
again, by counting instruction times.

• Interrupt Latency
When computing interrupt latency, two cases must be considered:
1. Highest priority device.
2. Lower priority device.

CASE 1 Highest Priority Device

Three factors are examined:

1. The time from the leading edge of the interrupt in the
external device until that edge is recognized inside the
system.

2. The time to complete the current instruction if inter-
rupts are enabled. Most processors complete the current
instruction before switching context. Some proces-
sors do permit an interrupt to be recognized at the

microinstruction level. Thus, the time is going to be
bounded by the longest instruction.

3. The time to complete the current task if interrupts
are disabled. This time will be bounded by the task
size.

As a first cut, one can say that the time is bounded by the
longer of the latter two factors.

CASE 2 Lower Priority Device

If one is working with a lower priority device, two cases must be
considered. First, the interrupt occurs and is processed. In such a
case, the time is computed as shown above. Second, the interrupt

occurs and is interrupted. Unless interrupts are disabled, the sit-
uation is nondeterministic. In critical cases one may have to
change the priority or place limits on the number of preemptions.

14.12.3.2 Nonpreemptive Schedule

Since preemption is not allowed, times are computed as in highest priority case above.

14.12.4 Meeting Real-Time Constraints

A distinguishing characteristic of real-time systems is that they have specified hard or soft
time constraints that must be met. To be able to meet hard real-time deadlines, we must be
able to determine, prior to deployment, whether or not deadlines can be met.

Certainly one approach is to consider and schedule assuming worst case behavior.
While such an approach ensures that constraints can be met, it potentially yields relatively
poor performance.

We have seen several general classes of schedule:

• Static
The schedule is determined and set before deployment, and is typically implemented
as units of the least common multiple of task durations. The major problem is, once
again, inefficiency.

Typically, such an approach does not need an operating system (OS) and can easily
be implemented with a basic kernel and simple task queue. The approach is most
effective when the number of tasks is fixed and subject to very little modification. To
be effective, however, we still must have knowledge of worst case times.
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• Priority
Under such a schedule, tasks are assigned a priority. Although not required, such sys-
tems generally use a Real Time Operating System (RTOS) that supports preemption.
The RTOS has the potential of being more efficient than a static scheme and also
ensures that the highest priority task is running at any time.

The difficulty is that the worst case response times are not immediately obvious,
particularly for individual tasks and interrupts and the associated handlers. Without
such knowledge, it becomes very difficult to try to use a priority scheme.

We can develop such an understanding using an approach called Deadline
Monotonic Analysis. The scheme provides the means to analyze how tasks in a
priority-based schedule interact and to ascertain the worst case response times for
tasks, interrupts, and the interrupt handlers.

14.12.4.1 Deadline Monotonic Analysis

To work through a deadline monotonic analysis, we establish preliminary set of simplifying
assumptions then relax several as we develop the analysis.

Assumptions:

• We have a fixed set of tasks with known priorities.

• Any task can be ready to run at any time; however, there is a known minimum interval
before the task can be ready again.

• Execution duration is bounded.

• A task cannot suspend itself and cannot wait or block an event.

• A task deadline must be less than or equal to its period. This assumption is related to
the second one above.

• Duplicate priorities not allowed.

• Tasks are preemptable and cannot be delayed by lower priority tasks. Under such
conditions, tasks cannot disable interrupts or share data under a semaphore.

• The time to schedule and execute a context switch is known and bounded.

As we proceed, we will examine and modify the last two assumptions.

14.12.4.2 Vocabulary

Let’s now introduce some the necessary vocabulary.

Ti – Period of task i

The time between successive instances of a task being ready to run.

Ci – Execution time on system processor for task i

This is strictly the task execution time of the ith task and does not include the time
for any nontask processing of other tasks or interrupts.

Ri – Response time of task i

The time between a task becoming ready to run and completing its worst case
execution time. Note, the execution time will include the time for any nontask
processing and other tasks or interrupts.



�

� �

�

14.12 Response Time 677

Ii – Time for other tasks and interrupts during task i
Di – Deadline for task i

The time when a task must be completed. Clearly a task will always meet its dead-
line if Di ≥ Ri.

14.12.4.3 Analysis

From the above definitions, the following relationship is clear:

Ri = Ci + Ii (14.7)

If we know the task execution time, Ci, the problem reduces to finding Ii.
Given a second task j, the number of times, N, that task j can preempt the executing

task, i, is given by the ceiling of the ratio of the response time for task i and the period of
task j. Thus:

N =
[

Ri

Tj

]
(14.8)

For a given integer x, the ceiling function returns the smallest integer ≥x from which
we can compute the total time consumed by the second task.

time =
[

Ri

Tj

]
• Cj (14.9)

From Eq. (14.9), we can easily compute the time consumed for all tasks. We simply
sum the values over all the higher priority tasks, Thp:

Ii =
∑

kεThp

[
Ri

Ti

]
• Ck (14.10)

Substituting back into Eq. (14.7) above we have following:

Ri = Ci +
∑

kεThp

[
Rn

i

Tj

]
• Ck (14.11)

Which leads us to the recurrence relationship:

Rn+1
1 = Ci +

∑
kεThp

[
Rn

i

Tj

]
• Ck (14.12)

Now we extend the relationship in Eq. (14.11) to relax the restriction of no blocking.
The case when the task can be blocked by a lower priority task is called priority inversion.

Ri = Bi + Ci +
∑

kεThp

[
Ri

Tj

]
• Ck (14.13)

Term Bi expresses the time when such blocking occurs and includes the time for all
blocking tasks. Computing the value of Bi can be difficult; placing a restriction on such
blocking makes the problem more tractable. That restriction now becomes: a higher priority
task can be blocked at most one time by all lower priority tasks. Such a restriction is called a
Priority Ceiling Protocol.

Priority Ceiling
Protocol
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14.12.4.4 Priority Ceiling Protocol

The priority ceiling protocol stipulates that each semaphore has a ceiling priority. That is,
the priority of highest priority task that can lock a semaphore. Such a task can simultane-
ously hold multiple semaphores that must be locked and unlocked in a nested pattern.

Lock 1
Lock 2

Lock 3
Unlock 3

Unlock 2

Unlock 1

Using the instant inheritance algorithm which stipulates that when a task locks ainstant inheritance
semaphore, the priority of the task is raised to the ceiling priority of that semaphore. When
the task unlocks the semaphore, the task’s priority is restored to the original value. As a
consequence, the lock always succeeds; no other task can have the semaphore locked. If
so, such a task would have ceiling priority and be running and the current task could not
be running.

Based upon such knowledge, we can now compute the blocking time for task i. First,
we define Tlp as the set of tasks with lower priority than task i. Next, we examine the set
of semaphores that can be locked by each task j in Tlp. and select the subset of all such
semaphores that have ceiling priority higher than that of task i. We define such a subset as
Sj. and define Timej,s as the time task j holds semaphore sk in Sj.. We now have:

Bi = max∀jεThp,∀skεSj
(Timej,s) (14.14)

Let’s now look at including the overhead for the scheduler and a context switch. We
recognize that the scheduler is running continuously, thus we have two components added
to the time burden.

1. Time to execute basic scheduler when no tasks need to be handled.
2. Time to manage actual context switch.

For a given duration and task with period Tk, the scheduler can be summoned a number
of times given by:

invocations = t
TK

(14.15)

The time burden for a single task is then given by:

time =
(

t
Tk

)
• CtaskK (14.16)

The burden for all tasks follows simply:

.timetotal =
∑

∀tasksεtotalScheduledTasks

(
t

Tk

)
• CtaskK (14.17)

The time to execute the basic scheduler for the same duration:

timeschedule =
(

t
Tschedule

)
• Cschedule (14.18)
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In this case we have,

Period of the scheduler – Tschedule
Worst case execution time of scheduler – Cschedule

Combining, we now have Eq. (14.19):

timeschedule = Si =
(

t
Tschedule

)
• Cschedule +

∑
∀tasksεtotalScheduledTasks

(
t

Tk

)
• CtaskK

(14.19)
Adding the time burden for the scheduler overhead to our response time for task i, we

have:

Ri = Si + Bi + Ci +
∑

kεThp

⌈(
Ri

Tj

)⌉
• Ck (14.20)

The final piece of the equation includes the time burden for the context switch, Cswitch.
The burden comprises several components:

1. Time to suspend and save task i.

2. Time to restore and resume task i.

3. Time to activate preempting tasks.

4. Time to suspend and save preempting tasks.

The first two items are included once; the latter two items must be included for each
possible preempting task. Adding this final component, we now have:

Si + Bi + Ci + Cswitch +
∑

kεThp

[
Ri

Tj

]
• (Ck + Cswitch) (14.21)

In Eq. 14.21, the first instance of Cswitch covers items 1 and 2 and the second instance
covers items 3 and 4.

14.13 TIME LOADING

Time loading is the percentage of time that the CPU is doing useful work. By useful work
we mean the execution of those tasks for which the embedded program has been designed.
Analyzing time loading entails understanding the execution times of the constituent mod-
ules. These times are computed by first finding the time spent in both the primary tasks and
the support or secondary tasks then computing the ratio of:

Primary

Primary + Secondary

To compute the times, three primary methods are used:

• Instruction counting

• Simulation

• Physical measurement.
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14.13.1 Instruction Counting

Instruction counting requires that the code actually be written. At the end of the day, count-
ing the number instructions is the best method to determine the time loading due to the code
execution time.

For periodic systems, the total time loading is computed by summing the time loadingperiodic
values for each of the individual tasks. The value for an individual task is computed by first
determining the execution time for the task then dividing by its cycle time. For sporadicsporadic
systems, the maximum task execution rates are used, and the percentages are combined
over all of the tasks. This gives a total time loading. For example, if we have,

Total time loading is T

Ti is cycle time for ith task
Ai is execution time for ith task

For n tasks,

T =
n∑

i=1

Ai

Ti
(14.22)

Effective instruction counting requires an understanding of the basic flow of control
through a piece of software. Often altering the flow of control involves context switch.

14.13.2 Simulation

Though essential in some cases, other cases exist for which instruction counting is of lim-
ited utility, particularly if one must analyze more than a handful of instructions. As noted
earlier, we find many other factors such as memory accesses, addressing schemes, and loop
iterations that can contribute to time loading. To effectively use simulation as a design and
development tool, one must have a complete understanding of the system and must also
have an accurate and representative workload against which to run the simulation. From
such an understanding, one can then begin to develop an accurate model of the system. The
model can include hardware, software, or both. Tools like VHDL or Verilog can be used to
model the hardware; a variety of software modeling tools is also available. System C is one
such tool that can be used to model both hardware and software. Modeling can be done at
a variety of levels based on the kind of information that is being sought.

It is beyond the scope of this text to present more than a brief introduction to simulation
and models. However, lack of coverage here should in no way be interpreted as limiting their
importance. For large systems, it is simply not practical to count all of the instructions;
simulation and modeling are the only viable tools.

14.13.2.1 Models

The two major categories of models are behavioral or conceptual and structural or analytic.behavioral,
conceptual,

structural, analytic
The first category is usually based on symbols to represent qualitative aspects, whereas the
second uses mathematical or logical relations to represent physical behavior.

We develop and apply models at a variety of levels and for a variety of reasons. The
most common models are shown here.
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14.13.2.1.1 SYSTEM-LEVEL MODEL
The system-level model is described by a hierarchical structural model and is represented
by a set of communicating functions or processes. Typically, the functions are specified
using a behavioral model.

14.13.2.1.2 FUNCTIONAL MODEL
A functional model expresses the system under design as a collection of functions. Its struc-
ture is hierarchical and graphical, and describes a system by a set of interacting functional
elements. The behavior of each element is independent of any future hardware or software
implementation.

14.13.2.1.3 PHYSICAL MODEL
The physical model describes the architectural structure of the system based on real com-
ponents and their interactions.

14.13.2.1.4 STRUCTURAL MODEL
A structural model specifies the organization of the system based on the components in
the system and the interconnections among those components. The model includes both
functional and physical-level elements as well as the mapping between them. The model
binds the functional to the physical views and can be used at any level of abstraction.

14.13.2.1.5 BEHAVIORAL MODEL
There are a wide variety of models in this category. As noted earlier, such a model is usually
based on symbols to represent qualitative aspects, and behavior is frequently expressed as
a function of time.

14.13.2.1.6 DATA MODEL
A data model or entity-relation model represents the world in terms of entities and their
attributes and the relations between/among those entities.

14.13.3 Timers

Timers can be associated with various busses or pieces of code in the system. One can then
start the timer when entering the block of code to be timed and stop the timer on exit. Such
an approach is best for timing blocks of code. The approach is not particularly effective for
a long program.

14.13.4 Instrumentation

Another effective way of assessing the performance of a system is simply to measure it.
Numerous instruments, such as the basic logic analyzer and code analyzer, permit a system
to be instrumented and its performance to be assessed qualitatively. Such instruments can
measure maximum and minimum times, time loops, identify nonexecuted code, and cap-
ture rates of execution, among other things. Such instruments can also identify the most
frequently used code so that it may be optimized in the future. The major caveat with any
such measurements is that they are only as good as the input to the system. If you are not exe-
cuting both typical and boundary condition applications, the quality of any measurements
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is suspect. Furthermore, it is very important to remember that the measurements are not
predictive. That is, one cannot say that the measured values guarantee performance of the
system under all circumstances. Any such instruments should be used with caution. Test
equipment can provide a significant amount of useful information, but we must keep what
we learn in perspective.

14.14 MEMORY LOADING

Today, in many applications, the amount of available memory appears to be unlimited. In
many cases, however, it is not. At the end of the day, actual amount of memory used may
have to be reduced to save weight in such applications as aircraft or spacecraft. Memory may
be limited by severe cost constraints, such as those found in very high-volume consumer
products such as televisions or the automobile. Instances may arise when one must eliminate
parts to reduce power, as is common in portable systems, such as cell phones or the PDA. In
such cases, one must optimize the use of what memory is available. As we learned earlier,
memory has several different components: code space, data space, and system space. Recall
once again that we optimize a design to focus most of the resources on getting the target
application completed. Memory loading is defined as the percentage of usable memory
being devoted to that application.

14.14.1 Memory Map

The memory map is a useful step for understanding the allocation and use of the available
memory. For reference, a typical memory map is presented in Figure 14.30.

System Memory

RAM

Instructions

(Firmware)

Stack Space

Memory Mapped I/O

and DMA

Figure 14.30 A Typical Memory Map.

The total memory loading will be the sum of the individual loadings for Instructions,
Stack, and RAM. The loading is given by:

MT = Mi • Pi + MR • PR + MS • PS (14.23)

The values Mi reflect the memory loading for each portion of memory. The values Pi
represent the percentage of total memory allocated for the program. MT will be expressed
as a percentage.
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EXAMPLE

Let the system be implemented as follows:

MI – 15 megabytes
MR – 100 kilobytes
MS – 150 kilobytes

PI – 55%
PR – 33%
PS – 10%

This gives a value for MT of:

MT = 0.55 • 15
15.25

+ 0.33 • 0.1
15.25

+ 0.1 • 0.15
15.25

MT = 54%

Observe that memory mapped I/O and direct memory access (DMA) space are not
included in the calculation. These are fixed by the hardware design.

14.14.2 Designing a Memory Map

When designing a memory map, allocate the minimum amount of memory necessary for the
instructions and the stack, but be sure to allow room for future growth. Leave the remaining
amount of RAM for application program(s).

14.14.2.1 Instruction/Firmware Area

This portion of memory space is generally ROM of one form or another, hence its label
firmware. The firmware contains the program that implements the application. Memory
loading is computed by dividing the number of user locations by the maximum allowable
number of locations. We get:

MI =
UI

TI
(14.24)

14.14.2.2 RAM Area

This portion of memory space is generally used for storing program data. Such data also
includes any global variables and what are called RAM registers in some CPU architectures.
Occasionally, RAM may be used for storing instructions, which is done to improve the
instruction fetch speed or to support modifiable instructions. Generally, however, we prefer
to avoid such things. Once again the instructions are called firmware because instructions
are not intended to be changed.

The size of the RAM area is determined at design time. Thus, loading can only be
determined after the design is completed. Memory loading is computed by dividing the
number of user locations by the maximum allowable RAM area. Doing so gives:

MR =
UR

TR
(14.25)
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14.14.2.3 Stack Area

The stack area is the portion of memory space used to store context information and auto
variables. Depending on the design, one may have multiple stacks in this area of memory.
From the point of view of the memory loading calculations, the multiple stacks are modeled
as one single stack. The capacity is generally determined at design time and the size is based
on use at runtime.

For the current calculations, one can establish a bound. Assume a maximum number
of tasks and call that number Tmax. Next, assume a maximum stack allocation for each task.
Call the allocation Smax. From the number of tasks and individual task stack allocation, the
maximum stack size can be computed as:

Us = Smax • Tmax (14.26)

Memory loading is computed by dividing US by the maximum allocated stack area to
yield:

MR =
UR

TR
(14.27)

With memory allocation, remember, Occam’s razor applies – never allocate more space
than necessary. Most operating systems allow for user control over the stack size. Specify a
size, based on your analysis of your system, that is large enough to get the job done without
being too large. Be certain to understand the problem, for stack overflow can be danger-
ous. If you are developing multithreaded to multitasking applications without a purchased
kernel, carefully manage how the stack is allocated and deallocated.

14.15 EVALUATING PERFORMANCE

When analyzing and quantifying the performance of any system, we are interested in the
best information available. Of course, exact times are preferred if those times are com-
putable or measurable; otherwise bounded times can be used if exact numbers are not
available. Determining performance data can be accomplished by using any of a variety
of methods. In our discussion of time loading above, three techniques for acquiring perfor-
mance information were identified: analytical modeling, simulation, and measurement.

The key consideration in deciding which of these techniques to use is the stage in the
development cycle that the system is in. Measurement is possible only if the system or one
similar to the proposed system already exists. Otherwise, analytic modeling or simulation
are the only alternatives. A set of criteria for selecting an evaluation technique is presented
in Table 14.3.

Table 14.3 Evaluating performance methods, stages, and criterion.

Criterion Analytic modeling Simulation Measurement

Stage Any Any Post-prototype
Time required Small Medium Varies
Tools Analysis Computer languages Instrumentation
Accuracy Low Moderate Varies
Trade-off evaluation Easy Moderate Difficult
Cost Small Medium High
Scalability Low Medium High
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One must remember that any performance measurement is valid only when that mea-
surement is considered in the context of the environment; the environment establishes the
system workload. Performance analysis cannot be delayed until the design is completed
and the product is ready to ship. At that time, corrective actions are too late and the cost of
recovery may be too high.

14.15.1 Early Stages

During the early stages of a design, very often one is constrained to use modeling tech-
niques. When developing that model, the following should be considered.

• The model should be hierarchical. In this way, a complex system can be modeled
by decomposing the system into simpler parts. Useful techniques include progressive
refinement, abstraction, and the reuse of existing (known) components.

• The model should be able to express concurrent and temporal interdependencies
among physical and modeled elements. With such an ability, one can begin to under-
stand the dynamic performance of the system and the interactions among the con-
stituent elements.

• Ideally, the model should be graphical; such a presentation makes interaction easier.
Such a model is not absolutely necessary, however.

• The model should have parameters that permit worst case and scenario analysis. Thus,
boundary condition analyses can be performed.

• The model should support movement in time. That is, one should be able to
(repeatedly) verify the performance of the system model forwards and backwards
in time.

14.15.2 Mid-stages

During the mid-stages of the design, real components are becoming available. One can
begin using prototype modules and integrating those modules into subsystems.

14.15.3 Later Stages

During the later stages of the development, one can begin integrating the pieces into larger
and larger portions of the system. At this time, we are now prepared to begin exercising
integrated subsystems.

14.16 THOUGHTS ON PERFORMANCE OPTIMIZATION

When investigating how to improve the performance of a system, one should think of a few
obvious things. In this context, we will assume that performance means response time and
time loading.

14.16.1 Questions to Ask

When optimizing, important issues to think about include

• What is being optimized?
If this question cannot be answered, one should rethink the problem and the design.
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• Why is a particular portion of the system being optimized?
What is the intended effect of the optimization?

• What will be the effect on the overall program if the module being optimized is elim-
inated from the program?
Presume a module under study has zero execution time or requires no memory. If the
effect on the performance of the system is minimal, then spending the effort to reduce
that module’s execution time or memory requirements, may not be worthwhile.

• Is the optimization appropriate to the operating context?
For example. Don’t optimize for floating point performance if the system is intended
to work only with integers.

14.17 PERFORMANCE OPTIMIZATION

Let’s now look at a few ways by which one can begin to improve system performance.
Once again, we will assume that performance means response time and time loading. We
will look first at some of the more common mistakes that are often made when assessing
and trying to improve performance.

14.17.1 Common Mistakes

When working to improve or optimize the performance of a design, be aware of the follow-
ing common misconceptions.

• Expecting improvement in one aspect of the design to improve the overall perfor-
mance proportional to improvement.
The context in which one is working must be understood. A 100% improvement in
an aspect of a design that contributes to only 1% of the overall performance is going
to have minimal large-scale impact.

• Using hardware independent metrics to predict performance.
A good example is code size. A large executable module does not necessarily imply
a slower program; often, we trade one parameter, such as size, for another, such as
speed. Remember the difference between macros or inline definitions and subrou-
tines.

When we use a macro or inline function body, we are doing so for speed. We are
making a conscious decision to trade off increased memory for additional speed. With
an inline definition, the cost (in time) of the function call is eliminated – no stack frame
to create or destroy, no copying of variables, and so on.

• Using peak performance.
Peak performance is the classic “your mileage may vary situation;” that is, it is a
boundary value problem. Peak performance is useful information and allows one to
make limiting statements about a design. By knowing the peak performance of the
system, one knows that over a wide range of contexts, one will not be able to do better.
These values are approached asymptotically.

• Comparing performance based on a couple of metrics.
Examples are clock rate, instruction per clock cycles, or instruction count. Higher
clock rate or more instructions per cycle do not guarantee better performance. Recall
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the early Pentium processors, which were the last of the family optimized for 16-bit
word size. As the succeeding generation was introduced, people found that a 16-bit
program would actually execute faster on the older machines – with a lower clock
rate – than on the new ones.

• Using synthetic benchmarks.
Code may be and can be optimized to excel on benchmarks that may never be
encountered in the real world, yet such is standard practice. Be sure to read the fine
print.

14.18 TRICKS OF THE TRADE

Response times and time loading can be reduced in a number of ways. Here are several
sample approaches.

1. Perform measurements and computations at a rate and significance that are con-
sistent with the rate of change and values of the data, the type of arithmetic, and
the number of significant digits calculated. Often in embedded applications, we are
interacting with the external world. Temperature, for example, is typically a very
slowly changing entity. Measuring change at a sampling interval greater than one
second is wasting CPU cycles.

2. Use lookup tables or combinational logic.
Table lookup is much faster than making a measurement or calculating a value,
scaling data, or converting from one form to another during a typical execution.

3. Certain arithmetic calculations can be implemented through shifting operations
rather than using a standard mathematical computation. Scaling a value by a
constant is a logical operation. Use table lookup. Multiplying two integers is
also a combinational logic problem. Store the product in a ROM and look the
answer up.

4. Learn from the compiler experts. Compiler writers commonly use many tricks to
reduce code size and to improve speed performance. Learn the techniques, yet be
careful when and where you apply them at the same time.

Optimizing can also cause problems. For example, one may be unpleasantly sur-
prised if a value is put into a register, assuming that it will be there and unchanged
and not have to be reloaded, only to find out several instructions later that such an
assumption is not so. The value of the variable may have been modified by some
other routine. One has the same problem with shared variables. C++ has the volatile
and const qualifiers to deal with such situations.

5. Loop Management.

Loop-Invariant Optimization
Pre-calculate any values that will not change within a block of repeated code so that
it is not necessary to compute the value with each iteration. Some good compilers
will already do this. Use a pre-computed value rather than recompute the value each
time. Such a technique can be particularly significant if, for example, the operand
requires an indirect memory access, for. Another case occurs when working with
several arrays in which the indices differ by integer value.
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The code can easily be rewritten and simplified using pointers

int offset = 0;
for(i = 0; i < k; i++)
{
for(j = 0; i < m; j++)
{

*(aPtr + offset) = *(bPtr + offset) + *(cPtr + offset);
offset++;

}
}

The code fragment assumes starting at index 0 for all arrays.

Unroll Loops
Consider the following simple code fragment.

for(j = 0; j < 4; j++)
a[j] = a[j]*8;

The loop can be unrolled in several ways.

CASE 1

a[0] = a[0]*8;
a[1] = a[1]*8;
a[2] = a[2]*8;
a[3] = a[3]*8;

CASE 2

for (j =0; j < 2; j++)
{
a[j] = a[j]*8;
a[j+1] = a[j+1]*8;

}

Loops and Arrays
Arrays are a commonly used data structure. A simple modification in how arrays
are accessed can have a large impact on performance. Consider the code fragment:

for(j = 0; j < x + 3 ; j++)
{
a[j] = b[j] + c[j];

}
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Observe that the test parameter is computed with each iteration of the loop. For a
large value of x, such an operation can accumulate substantial time. A good com-
piler should spot and optimize the computed value in a test parameter.

Without relying on the compiler, move the computation outside of the context of
the loop:

int tempVar = x + 3;
for(j = 0; j < tempVar ; j++)
{
a[j] = b[j] + c[j];

}

Now the value of tempVar is computed just a single time.

Nested Loops
Let’s modify the preceding example into a nested loop on several multidimensional
arrays:

for(i = 0; i < k; i++)
{
for(j = 0; i < m; j++)
{

a[i][j] = b[i][j] + c[i][j];
}

}

6. Flow of control optimization.
When using branches or switches, avoid repeated jumps or tests. Consider the fol-
lowing assembly code fragment.

Instead of…
je $2
$1: ...
$2: jmp $3 ...
We write…
je $3
$1: ...
$2: jmp $3 ...

For the following C code fragment, instead of the first fragment, we write the
second. It may also be possible to set x to value before entering the switch and only
change if necessary.
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switch (y)
{

case 0: x = x+1;
case 1: x = x+2;
case 2: x = x+1;

}

switch (y)
{

case 0:
case 2: x = x+1;
case 1: x = x+2;

}

In the next code fragment, the first implementation is replaced with the second.

while(1)
{
if (light==ON)

light = OFF;
else

light = ON;
}
while(1)
light = ∼light;

7. Use registers and caches.
Languages such as C and C++ support register-type variables. Utilizing such types
is usually advantageous. Register operations are faster than memory operations.
When working with C or C++, register qualification on the variable declaration
requests that the compiler put the variable into the register. Although the compiler
may not comply, one can ensure that the variables are placed into registers by writing
the code at the assembly level.

Some processors support caching. Use caching to store frequently used variables.
Access from the cache is more rapid than access from general-purpose -memory.

8. Use only necessary values.
An early implementation of tracking mouse movement in X Windows entailed gen-
erating a series of interrupts as the mouse was moved from one place to another.
Such a scheme was quickly replaced when the performance turned out to be rea-
sonably glacial.

As another example, consider moving a graphic image from one place on a screen
to another. Rather than redrawing the complete image several dozen times, we only
reflect a graphic wire frame during movement. A similar situation exists when slew-
ing a variable from one value to a second. Typically, one is only concerned about
the final value; the system can be designed with such a recognition.
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9. Optimize a common path or frequently used code block. The most frequently used
path or highly used code segment should be the most highly optimized.

10. Use page mode accesses.
For main memory accesses, set the row address and modify only the column
address, in essence moving pages/blocks of data.

11. Know when to use recursion versus iteration.
Knowing when to use recursion is important. Some obvious places include process-
ing recursive data structures or in “divide and conquer” algorithms. Such algorithms
divide a problem into subproblems, solve each subproblem recursively, and com-
bine the individual subproblem solutions.

When should iteration be used instead? Such times include nonrecursive data
structures, problems without an obvious recursive structure, and functions with a
large “footprint,” especially when many iterations are needed.

In theory, any iteration can be rewritten using recursion, and vice versa (at least
in theory). However, the rewrite is not always simple. Iteration is generally more
efficient, faster, and takes less memory. As a compromise, if the problem is natu-
rally recursive, first design the algorithm recursively and then convert to an iterative
solution if needed for efficiency.

Suppose the last action of a function is to make a call back to itself. In a
stack-based implementation, local variables are pushed onto the stack when the
function (recursive) call is initiated. When the function terminates, the values for
the local variables will be popped off the stack and restored. Doing this last step is
pointless since the recursive call was the last operation of function. The values that
just got restored are discarded.

When the last action of function is a recursive call to itself, using the stack is not
necessary, as no local variables need to be saved. Instead, on entering the function
for the first time, declare and initialize a set of working variables to the values of
the incoming parameters. After each pass through the repeated code, modify the
working variables as appropriate and branch to the beginning of the function.

If the last executed statement of a function is a recursive call to the function itself,
the call can be eliminated by assigning the calling parameters to the values specified
in the recursive call and then repeating the whole function.

A recursive call is at the very end of the function known as tail recursion. A smart
compiler can automatically rewrite the function using iteration.

12. Macros and Inlining Functions
Each function call requires that a stack frame be built to store the necessary infor-
mation about the current context so that it may be restored on return. Such a process
can be very expensive, particularly in situations with tight time constraints.

The C language supports macros based on the #define directive. Such a directive
allows the body of the function to be placed directly inline in the code, thereby
avoiding the cost of a function call.

When used in such a way, the #define directive declares the macro and a for-
mal parameter list. The parameterized macro is invoked by writing its name, a left
parenthesis, one actual argument for each formal parameter, separated by commas,
followed by a right parenthesis. If no formal parameters, exist one must include
an empty argument list. White space may appear between the name and the left
parenthesis.
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EXAMPLE 14.6
#define sum(x,y) ((x) + (y))
// On expansion, the expression for sum in all cases
// will be replaced by the macro body (x + y)

x = sum(2•a, b) / sum (c,d); → (2•a + b) / (c + d)

x = sum(2•g(a,b), h(a,b)) / sum (c,d); → (2•g(a,b) + h(a,b)) / (c + d)

The #undef macro is the companion to #define. It is used to make the name of the macro,
myMacro, for example, no longer defined. The #undef causes the preprocessor to forget themyMacro
macro definition of myMacro. Once myMacro is undefined, it can be given a new definition
using #define.

The C++ language supports a similar construct called inline. The motivation is theinline
same – that is, to avoid the cost of a function call by replacing the function call with
the function body. Like other optimization techniques, we always have a trade-off. Here,
the trade-off is increased memory size for better speed performance.

14.19 HARDWARE ACCELERATORS

One technique that can be used to gain a significant performance increase with respect
to a software implementation is to move some of the functionality to hardware. Such a
collection of components is called a hardware accelerator. The accelerator is often attachedhardware accelerator
to the CPU bus. Communication with the CPU is accomplished through many of the same
techniques that have already been discussed:

• Shared variables.
Implemented as data and control registers located in accelerator.

• Shared memory locations.
We may use DMA.

Using shared locations comes with all of the problems that we discussed earlier. The
shared variables must be managed using semaphores, monitors, or some other scheme.

An accelerator is distinguished from a co-processor. The accelerator does not gener-
ally execute instructions; its interface appears as I/O and is designed to perform a specific
function and is generally implemented as an application specific integrated circuit (ASIC),
field programmable gate array (FPGA), or complex programmable logic device (CPLD).
With increasing capabilities in today’s arrayed logics, however, the distinction between the
accelerator and a co-processor is diminishing. Typically, a co-processor is tightly integrated
with the CPU and has the ability to execute instructions.

Hardware accelerators are used with functions whose operations do not map well onto
the CPU. Possible examples include:

• Bit and bit field operations.

• Differing precisions of arithmetic calculations.

• Very high-speed arithmetic.

• Fast Fourier Transforms (FFT) calculations.

• Multiply operations.



�

� �

�

14.21 Low Power – A High-Level View 693

• Very high-speed or associative searches.

• High-demand input or output operations, with tight timing constraints and high
throughput.

• Streaming applications including high-speed audio and video. With such applica-
tions, delays in the time domain translate directly to distortion in the frequency
domain.

14.20 INTRODUCTION – TARGET LOW POWER

Today the embedded world is moving at an increasingly rapid pace to smaller and smaller
hand held or other types of portable devices conjoined by an increase in the scope and
capabilities of such devices. However, each increase in capability is accompanied by
demands for increased power to make these capabilities possible. A common thread
through all such applications is the need for longer and longer battery life. This require-
ment translates to low power consumption, which makes the job more interesting and
challenging.

In our earlier studies into performance analysis and optimization, we briefly touched on
some of the hardware and software contributors to embedded systems power consumption.
We now want to delve into and explore this problem in greater depth.

In this section, we revisit the power consumption problem, then study and explore some
of the possibilities those same technologies offer to address it. Contemporary technologies
dictate that any embedded system will consume power and, therefore, a means must be
found to provide that power. We can attack the problem by either increasing the amount
of power available to the system or decreasing the amount needed. The objective herein
is to identify the sources of the power consumption and examine methods by which such
consumption can be reduced.

As we proceed, we will be using the terms static and dynamic in various contexts; the
meanings of each usage should be clear from the context.

14.21 LOW POWER – A HIGH-LEVEL VIEW

When we take a high-level view of an embedded system, we see that it can be in any one
of three power states:

• Power Off. The system is not connected to any power source, not mains, battery, or
harvested. We define this is our zero reference state.

Power Off
Zero reference

• Power On Static. The system has power applied but has not initiated any pre-taskPower On Static
activity such as booting, initialization, or self-test; nor are any tasks running. The
static state can also include the state in which the system has been running and has
entered an idle or a low power state. In any such cases, power consumption will be

Idle
Low power

Static power
based solely on the hardware portion of the system. We define the power off state as
the lowest or base level of static power consumption.

• Power On Dynamic. The system has power applied and has initiated minimal activ-
ity. The Power On Dynamic state is identified as the lowest or base level of dynamic

Power On Dynamic
Base Level

power consumption. When the system is engaged in performing its worst case operat-
ing activity, that level is identified as maximum dynamic power consumption. Power
consumption levels of between these two extremes typify those comprising normal

Maximum dynamic
Normal dynamic

dynamic activity.
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Recognizing that different levels of power consumption can exist in a system at differ-
ent times, a fair question to ask is: “What are the contributors to the power consumption
at each of the levels?” We’ll begin our examination with the base level of static power
consumption.

14.21.1 Zero Power Consumption

As noted, in the base state, the system is not connected to any power source and is not
consuming any power. This base state was defined as the base or zero reference state forZero reference state
the system.

14.21.2 Static Power Consumption

14.21.2.1 Sources of Static Power Consumption

At the lowest level, static power consumption originates from two sources. The first is the
basic quiescent system power consumed by powered devices, following power ON, with
no software running. Such an assemblage comprises the minimum set of hardware that is
essential to the proper operation of the system and can include a variety of fundamental
supporting devices, such as the system time base oscillators and timers of various kinds
with their associated circuitry. In some systems, this level of power consumption may also
include minimal communications and any essential peripheral devices.

The second source of static power consumption results from currents drawn by sys-
tem components or devices that flow through bias, impedance matching, or state defining
impedances that are connected to the inputs or outputs of such devices and that can provide
a path directly or indirectly to ground. Such currents, known as leakage currents, are oneLeakage current
of the largest contributors to static power consumption.

Leakage current is a fundamental, physical, quantum effect in semiconductor devices
in which mobile charge carriers tunnel from the gate, through an insulating region, to the
substrate or between the source and drain in Metal Oxide Semiconductor (MOS) transistors,
and between the collector and emitter in bipolar junction transistor (BJT) devices, eventu-
ally finding a path to ground. The phenomenon increases as the thickness of the insulating
region in the transistors decreases. While the leakage occurs primarily within a device, we
can also see it between device interconnects and through the printed circuit board (PCB)
material.

The diagram in Figure 14.31 illustrates typical leakage currents in a MOS and a BJT
transistor device. For the MOS device, the leakage occurs between source (S) and drain (D)
and across the gate (G) oxide. Leakage in BJT devices occurs from collector (C) and base
(B) to emitter (E).

MOS Device

Leakage Currents

Bipolar Device

Leakage Currents

D G E B CS

SiO2

Leakage Currents
Substrate

Leakage Currents

Figure 14.31 MOS and Bipolar Leakages.
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The diagrams in Figure 14.32 illustrate several common impedance configurations with
associated leakage currents. In each case, an input (impedance) circuit is connected to the
device; the device can be either an analog or a digital component. The purposes of the
various input circuits include:

Digital Device

• To define the state of unused inputs or inputs that are driven by a tristate driver that
is in a high impedance mode.

• To define the termination impedance of a driven line in a bus or networked context.

Analog Device

• To define or establish an input bias state.

Input

Signal

Leakage

Current

Device

V

Pulldown Impedance PullUp Impedance

Input

Signal

Input

Signal

Leakage

Current

Leakage

Current

Leakage

Current

Device

V

Impedance Marching

Split Termination

Impedance Marching

Biased Termination

Device

V

Input

Signal

Leakage

Current

Device

V

V
V

Leakage

Current

Figure 14.32 Leakage Currents in Common Configurations.

In the diagrams, the device can be as simple as a single logic gate, transistor, or opera-
tional amplifier or as complex as a CPU, FPGA, A/D convertor, or analog control subsys-
tem. The current directions shown are merely illustrative; in practice, the direction of the
current flow will be dependent specific device and type.

14.21.2.2 Addressing Static Power Consumption

14.21.2.2.1 POWER GATING
Looking at the circuits in Figure 14.32, the pull-up and pull-down impedance networks
provide paths for leakage currents to flow. Utilizing a technique defined as power gatingpower gating
can help to significantly reduce leakage current power consumption.

Power gating is a scheme invoked during passive periods, following power ON, and
during normal idle or sleep periods punctuating active periods. When activated, the pull-up
and pull-down devices are disconnected from the power rails and clocks and other timing
elements are turned off. Doing so can significantly reduce or eliminate substantial portions
of leakage current power consumption. The devices are reconnected or re-enabled as needed
when active periods commence or resume.

When utilizing power gating, however, one must ensure that disconnecting state defin-
ing impedances from device inputs does not allow the device to enter an intermediate
(metastable) state in which partially conducting semiconductor elements provide a path
to ground.
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One important issue that can occur when utilizing power gating in a static or dynamic
context is the need to ensure minimum delay in reconnecting the impedance networks.
Such a scheme is often referred to as a zero-delay technique. A second important issue iszero delay
to ensure that the devices managing the connections do not provide an alternative leakage
path to ground.

14.21.2.2.2 FLOATING INPUTS
When working with small-scale integrated circuit (SSI) or medium-scale integrated circuit
(MSI) logic devices or some of the more complex very large-scale integrated (VLSI) or
FPGA devices, having some portions of the device unused it is not unusual. All such unused
components should be put into a low power state. In particular, devices should not be left
with unused open or floating input pins. Under such conditions, active components can enter
a state in which the implementing series transistors are both ON or partially ON, thereby
connecting power to ground and, thus, significantly increasing the current draw.

When complementary output symmetry MOS (CMOS) logic was first developed, a
colleague reimplemented an earlier design for a subsystem in a weather satellite using the
new logic devices. He expected to see a significant decrease in power consumption. To his
disappointment, power consumption actually increased. Following a little debugging, he
observed that he had left inputs on the unused gates in his ICs unconnected. After properly
connecting them so that the unused parts were disabled, he was excited to see that his power
consumption had dropped below even what he had calculated and expected.

14.21.2.2.3 DIGITAL INPUTS AND OUTPUTS
To ensure accurate input signal recognition and proper operation of a digital device, logic
1 or high signals into the device cannot be lower than a specified minimum value and logic
0 or low signals cannot be higher than a specified maximum value. Pull-up or pull-down
resistor networks are often used to define the state of an unused inputs driven by a tristated
driver, as was illustrated for several circuits in Figure 14.32. As such, such networks can be
a significant source of power consumption.

If a pull-down resistor is used, the value needs to be small enough such that for a
floating (tristated driver) input, leakage current through the resistor from the driven device
cannot yield a voltage that exceeds a specified maximum low level VILmax value. At the same
time, the resistor must be large enough to enable a driven logic 1 input above the specified
minimum VIHmin value, which a very small pull-down impedance value may not permit.
Further, if the pull-down resistor is too small, a large current flow from a device trying to
drive to a logic 1 signal can add to system power consumption. The general design heuristic
in such cases is to use a large value pull-up rather than a pull-down resistor.

14.21.2.2.4 PCB LEAKAGE CURRENTS
Another source of leakage currents arises from the leakage resistance of the standard printed
circuit board. Both surface contaminants and the dielectric impedance of the implementing
material (typically FR4, a glass fiber composite) can provide paths for such currents to flow,
potentially to ground. From Ohm, current through an impedance yields power: V2/R or I2R.
Such leakage problems can be significantly reduced or eliminated by well-designed guards.
See the material on signal integrity in Chapters 20 and 21.

14.21.3 Dynamic Power Consumption

Turning to dynamic power consumption, we begin with a very high-level model of the
system and its power consumption. We view the embedded system as a simple black box
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with an external supply as we see in the upper diagram in Figure 14.33. Looking inside
the black box, as illustrated in the lower diagram, we see the state diagram reflecting the
behavior of the system when power is first applied to the system. We move from Power
OFF to Static then to Dynamic power consumption. With the voltage applied, current flows
into the box from the power source. Following Power ON, the typical system will enter a
boot up or initialization state and has initiated minimal activity.

Voltage

Voltage
Pwr

OFF

Zero

Pwr

OFF

Static

Dynamic

Boot

Idle

Task

0

Task

N–1

Figure 14.33 States of Power Consumption.

As the system, or a portion thereof, transitions from a passive state to a dynamic state,
a significant current surge can occur as the current that the active elements are requiring
increases. Following the initial activity, the system may enter an Idle State or any of theIdle State
states in which it is now running both the hardware and software as it is performing its
intended tasks.

The dynamic state can be characterized as being comprised of varying groups of parts
with differing levels of activity ranging from OFF, to sleep, to idle, to low power, or to fully
active. When the system is engaged in performing its worst case operating activity, as noted
earlier, the state is identified as the level of maximum dynamic power consumption. PowerMaximum dynamic
consumption levels between these two extremes typify normal dynamic activity and evolveNormal dynamic
to and from different levels, corresponding to the levels of activity.

14.21.3.1 Sources of Dynamic Power Consumption – Hardware

Sources of the hardware contribution to dynamic power consumption can classified into
two major groups:

• Pure hardware comprises those components that are essential to the core operationPure hardware
of the system in its active state and, therefore, must be operational full-time.
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Potential devices in this category can include (portions of) the main CPU, the
necessary subset of cores in a multicore system, ROM-based instruction memory
and RAM external to the CPU, essential input and output drivers, important system
peripherals, the system clock and time base as well as other critical components.

• Pure controlled hardware comprises those components that can be turned off and dis-Pure controlled
hardware connected from power or those that can be turned off or put into an idle, low power,

or sleep mode yet remain connected to power. Potential devices in this category can
also include (portions of) the main CPU, the nonessential subset of cores in a mul-
ticore system, certain timers, ROM-based instruction memory, and RAM external to
the CPU.

14.21.3.1.1 PARASITIC DEVICES AND SWITCHING
Digging deeper into the real world, circuit components live in regions populated by demons
discovered by hundreds of physicists in times past. Gauss, Lenz, Maxwell, Faraday, and all
their friends explored, introduced, and taught us of the black magic world populated by
electromagnetic fields and passive parasitic resistors, capacitors, and inductors of all sorts
and varieties. Switching current through any of these parasitic, seemingly invisible, devices
will consume power.

Figure 14.34 illustrates typical totem pole output configurations of standard CMOS and
bipolar devices. Generally, parasitic capacitances to ground will also exist on the inputs and
outputs of the devices as illustrated. That capacitance can be, and often is, the parallel com-
bination of a number similar parasitics from different nearby sources. During switching,
an additional current flow, I1 and/or I4, will occur to charge or discharge the capacitances,
thereby adding a component to the dynamic power consumption.

Input
Output OutputInput

I1
I3

C C

CMOS Input and Output

Configurations

Bipolar Input and Output

Configurations

I4 I4I3
I1

I2
I2

V

V

Figure 14.34 CMOS and Bipolar Totem Pole Input and Out Configurations.

In either case, the device can source current through the top transistor when the input
is a logical 0 and sink current through the bottom transistor when the input is a logical 1.
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The current level spikes when the input changes state because the transistors do not switch
states from conducting to nonconducting or vice versa in zero time. As a result, there will
be an interval when both transistors are in the linear region and, thereby, providing a path
through which a transient current spike, I2, can flow from the supply voltage to ground, as
shown in Figures 14.35 and 14.36.

Figure 14.35 Current Flow During a State
Switch.

Figure 14.36 Current Flow During a State
Switch.

CMOS
DC

The top or bottom transistor is OFF, which gives very low power consumption.
In the logic low output state, the sink current is coming from the gate circuit of a
following device (or devices). In the logic high output state, the source current is
going to the gate circuit of a following device (or devices).

AC
Both devices are ON for a short interval as shown in Figure 14.35 and the sink and
source currents now go through both devices to ground.

TTL
DC

The top or bottom device is OFF. However, power consumption is higher than with
CMOS. With a logic low output, the sink current is coming from the emitter or a
diode circuit of a following device. With a logic high source, the current going to
the emitter or diode circuit of a following device.

AC
Both devices are ON for a short interval as shown in Figure 14.36. The sink and
source currents now go through both devices to ground.
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The total power consumed by the device is given by Eq. (14.28):

P = (C + C0)V2f + idcV + Pleakage (14.28)

V Supply Voltage
idc DC current
C External capacitive load
Co Internal output capacitance
f Frequency of operation – switching frequency
Pleakage Power resulting from leakage current

The frequency-dependent portion arises, in part, from the totem pole device output
configuration because, as noted, both devices may be ON for a short time when both are con-
ducting during a state switching operation. In addition to the parasitic devices, both board
level and distributed bypass capacitors are often added to a circuit board by the designer to
local sources of current and to help reduce switching noise.

A similar, albeit exacerbated, situation occurs with a tri-state multiplexor illustrated
in Figure 14.37. This particular circuit is designed to route serial data from any of three
sources to the destination. The specific source is chosen by selecting the corresponding
enable (E) control and deselecting the other two, which then routes the source data to the
destination. Observe that the parasitic capacitance on the signal line to the destination will
be the parallel combination of the output parasitic capacitance from the drivers, C1, and the
input parasitic capacitance of the receiver, C2.

Source0

Destination

E0

Source1

E1

C1

Source2

E2

V

C2

Figure 14.37 Tristate Multiplexor.

When the data stream of 0’s and 1’s passes through a source logic device, a possible
contention may occur during the transitions from 0 to 1 and 1 to 0, as discussed above.
An additional conflict occurs when an alternative source device is selected. Because the
devices do not switch from driving to tristate or vice versa in zero time, during the transition
period between one source device being enabled and the other being disabled, possibly both
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can be trying to drive the output line. Now, we potentially have a contention, yielding a
high current draw, if one device is trying to drive the output line high and the other is trying
to drive the output line low. The flow of control when disabling one driver and enabling
another should be break, disable (possibly delay) before make, enable.

Break before Make
Disable
Enable

14.21.3.1.2 PULL-UP AND PULL-DOWN RESISTORS
Following the earlier discussion, the node connecting the outputs of the tristate devices
and the input to the destination device should be connected through a pull-up resistor to
a positive voltage source. Otherwise, if all source devices are disabled, the input to the
destination device will be left floating. As a result, the destination device is enabled to
enter a state in which the implementing transistors are partially on and, thereby, connecting
power to ground, which can significantly increase the current draw.

The state-defining resistor should be a large pull-up to power rather than a small
pull-down to ground. If implemented as a pull-down device, leakage current can flow from
the input of the destination device, through the resistor to ground, thereby adding to the
system power consumption.

14.21.3.1.3 POWER ON – POWER OFF
Switching subsystems and peripheral devices from ON to OFF when they are not needed
has the potential benefit of significantly reducing power consumption. During the transition
periods from ON to OFF and then to ON again, the subsystems are not responding to con-
trols as they would be in their full active state. As a result, once again, device contention
can lead to a transient high current draw. Contention aside, as the devices are switching to
the active state, a current surge is also likely.

14.21.3.2 Sources of Dynamic Power Consumption – Software

Although the idea may seem strange at first, software can indirectly have a significant effect
on system power consumption. Such effects can result from the kinds of instructions and
algorithms used, the physical location of the code, and how the software is controlling the
various internal and external subsystems.

Studies have shown that memory and transfers in and out of memory tend to be among
the more expensive operations in terms of power usage performed by processor. Here, the
term memory is refers to the main memory, which is typically implemented using DRAM,
not the cache, which is typically implemented using static random access memory (SRAM).
DRAM has been shown to be approximately seven times more expensive than SRAM.

Polling loops and function calls are common flow of control constructs in an embedded
system. The polling loop is continually fetching instructions from memory and testing for
the occurrence of an internal or external event. The execution of a function call entails a
context switch. Prior to executing the switch, the common practice is to save the current
context on the stack or in memory so that it can be restored on return. Both the poll and
the function call operations may require memory accesses, and the poll may also require an
I/O access. From these, we find some of the leading power consumers. The problem grows
worse, as we see from Eq. (14.28), as the frequency of such operations increases.

Examining the function call in greater detail, the function call entails a context switch
that involves saving the current state (context) in memory or on the stack (which is also
memory) prior to the switch then restoring it on return. The data that is saved and restored
typically includes the state of any CPU registers currently being used, potentially local
variables, passed variables, returned variables, and the return address.



�

� �

�

702 Chapter 14 Performance Analysis and Optimization

In an embedded system, the designer has full knowledge of system behavior. Such
knowledge, coupled with thoughtful design, can potentially eliminate or minimize such
memory accesses. If CPU registers are not modified in the called function, the values in
the register do not need to be saved. A return address and a limited number of passed and
returned variables saved in special registers will consume less power than several memory
accesses.

A portion of an embedded system implemented as a von Neumann machine with a hier-
archical direct mapped caching scheme is illustrated in Figure 14.38. The DRAM-SRAM
power consumption ratio cited earlier in this chapter assumes a cache hit. A cache miss
requires a main memory access and main memory is typically DRAM. Cache memory is
usually SRAM because it is faster. From the cited ratio, one can see that using a hierarchical
cache-based memory architecture can have a significant negative effect on system power
consumption.

Data

Address

Data

Data

Instructions

Instructions

Main Memory

DRAM

Cache Memory

SRAM

Figure 14.38 Cache Memory
System.

If a code fragment implements a loop, repeated function call, or poll, the possibility
exists that instruction blocks, data blocks, or both will continuously need to be moved from
main memory to the cache and modified data moved back to main memory. Once again, a
heavy use of memory with the attendant power consumption will result.

14.22 ADDRESSING DYNAMIC POWER CONSUMPTION – HARDWARE

Dynamic power consumption can be addressed in several ways. A simple technique for
managing the power consumption in embedded applications draws from familiar schemes
often used at home. Turn off the portions of system that are not being used. Such a scheme
has been used for years in the space program on the space station, in both orbital and
interplanetary satellites, as well as the shuttle and the Mercury, Gemini, Apollo capsules.
Therein, the hardware is battery powered. The batteries must be recharged, which is done
via solar panels of one form or another.

Today it is possible to fly from Seattle to London in nine hours. A laptop computer
or other such tools have evolved to a comparable typical battery life; progress continues
to be made. Absolutely, a laptop is still an embedded application. As engineers, we are in
a continuous race between battery technology and the demand for more and more pow-
erful yet smaller features. All such features require power. Our technology is helping and
fighting us.
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14.22.1 Power Management Schemes – Hardware

To begin to address the power consumption problem as part of the design, one must formu-
late the power management strategy at the outset. Such an approach is exactly the same as
that taken when examining safety and reliability issues, system security, and when studying
a system test.

On one extreme, simply turning the power off to specified subsystems is a possibility. In
such a state, power consumption is limited to leakage. As with other metrics, the power off
alternative sets a lower bound on consumption. The opposite extreme is to apply power to
all parts of system and to make certain that all parts are operating. In such a state, power con-
sumption approaches its maximum and that sets an upper bound. The upper bound is softer
than lower bound. To see why, refer back to the earlier discussion on the software effects
on power. The goal is somewhere in the middle, governed once again by the requirements
and design specifications.

Based upon such a goal, the system components can be segregated into two categories:
those that must remain powered up and those that may be powered down. The former are
referred to as static components and the latter as dynamic components.

static, dynamic
components

Such a scheme sounds simple … and is at the high level. Like everything else being
considered, certain trade-offs need to be made. One must:

1. Decide which portions of the system to power down. These may be all dynamic
components or subgroups based upon need or not need.

2. Recognize that components cannot be shut down instantly.

3. Recognize that components cannot be powered up instantly.

4. Recognize that components being powered ON may initiate current transients.

5. Recognize that current may surge during power down or power up transitions.

These factors can be expressed graphically with a simple first cut as in Figure 14.39.

Time

Power Up

Power Down

Power

Figure 14.39 Basic for a System
Power Down–Power Up Sequence.

We will use a topographic mapping satellite as the application. As the satellite is cir-
cling the Earth collecting data, data is sent to a ground station at known points in orbit
when the satellite is over the appropriate station. There is no reason to keep the transmitter
powered up when it is not in a position to transmit. Further, the timing of the orbit is known
with sufficient resolution that one can know, in advance, when it is necessary to transmit.
After passing the ground station, the transmitter can be shut down and re-enabled shortly
before reaching next download point. The locations of each ground station are also known
in advance. Such a fixed schedule, similar to the rate monotonic scheduling algorithm, is



�

� �

�

704 Chapter 14 Performance Analysis and Optimization

among the simplest and very effective ways to reduce power consumption. Observe that
this approach is also similar to the round robin schedule with no preemption.

The next level of sophistication is to recognize that the schedule may not be fixed. The
problem now moves from deterministic to probabilistic. Knowledge of the current history of
the system and understanding of the problem can be used to anticipate when to shut dynamic
portions of the system down. Such an approach is denoted predictive shutdown. Observe
that such a scheme is commonly used in branch prediction logic in an instruction pre-fetch
pipeline. Using such a scheme can, however, lead to premature shutdown or restart.

A related idea is to control the algorithm with an associated timer rather than a set
schedule. The timer monitors the activities of the devices to be dynamically controlled. If
the timer expires, the device is powered down. The device is reactivated on demand. We’ve
already used such a scheme in a watchdog timer. One can also find the scheme in personal
computers that, among other things, bring up a screen saver (which is still consuming power
albeit at a lower level) if no activity is detected for a while.

The next level of sophistication draws from basic queuing theory. Under such a scheme,
there is a resource or producer and a service provided by a system whose power is beingProducer

Consumer controlled. There is also a consumer, the portion of the system that needs the service, and
a queue of service requests. A power manager monitors the behavior of the system (the
producer, the consumer, and the queue). The power manager can utilize a schedule based
upon Markov modeling that maximizes system computational performance while satisfying
the specified power budget.

Let’s look at an example of simple power management. A simple data/control flow
diagram is shown in Figure 14.40.

Power Manager

Request
Queue

Producer

State

Command
Request

Event

Requests

Consumer

Figure 14.40 Data/Control Flow Diagram for a Queue-Based
Power Management Model. Source: Derived from Pedram 2001.

We will apply this scheme to the topographic satellite as an exercise.

14.22.2 Advanced Configuration and Power Interface (ACPI)

Power consumption can be addressed in several ways. Certainly one hardware solution forAdvanced
Configuration and

Power Interface
(ACPI)

devices with low power requirements is to turn portions of the system off. The Advanced
Configuration and Power Interface (ACPI) is an international standard for such applica-
tions. Surprisingly, software can also contribute to power reduction.
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The ACPI is an industry standard power management scheme that was initially applied
to the PC and more specifically the Windows™ operating system. In recent years, ACPI has
been targeted to an increasingly wider variety of operating systems.

The standard provides some basic power management facilities as well as an interface
to the hardware. The software, more specifically the operating system, provides a power
management module. The operating system must specify the power management policy for
the system. To do so, it uses the ACPI module to send the required controls to the hardware
and to monitor the state of the hardware as input to the power manager. The behavior of the
ACPI scheme is expressed in the state diagram in Figure 14.41.

Power Failure/Power

OFF

G3

G1G2
Wake

S1 S2S3S4
Sleeping

OFF

Working
Legacy

Soft OFF

G0

Figure 14.41 ACPI Standard Block Diagram. Source: Drawing Adapted
from ACPI Standard.

The standard supports five global power states.

1. G3 – hard off or full off.
Defined as a physically off state – the system consumes no power.

2. G2 – soft off requires full OS reboot to restore system to full operational condition.

3. G1 – sleeping state – the system appears to be off. The time required to return to an
operational condition is inversely proportional to power consumption.
Substates
S1 – low wakeup latency – ensures no loss of system context.
S2 – low wakeup latency state – has loss of CPU and system cache state.
S3 – low wakeup latency state – all system state except for main memory is lost.
S4 – lowest power sleeping state – all devices are off.

4. G0 – working state in which the system is fully usable.

5. Legacy state – the system does not comply with ACPI.

14.22.3 Dynamic Voltage and Frequency Scaling

As we know, when an embedded system operates, it consumes power. Thus, the objective
in many designs is to reduce the demand for power as much as possible. On the one hand,
turning power off will yield a zero power budget but with little accomplished. Full power,
full time to all devices, will achieve the opposite. A frequently used intermediate scheme



�

� �

�

706 Chapter 14 Performance Analysis and Optimization

to reduce overall power consumption, discussed in the next section, applies power to sub-
systems only when needed. In all such cases, when applied, the voltage is at full supply
value.

Rather than being constrained to binary values of power ON or OFF, a more efficient
approach would be to be able to operate at power levels between the extremes at selected
levels of reduced performance. Turning all the lights off in your house can certainly save
energy and money but at the cost of operating in the dark. Lowering the bulb output to a
percentage of maximum output can enable tasks to get done and save energy and money.
Let’s explore this further.

Consider once again the earlier formula relating switching frequency and voltage to
power consumption in Eq. (14.28). The dynamic portion of that equation is repeated here
as Eq. (14.29).

P = AV2FC (14.29)

Can we take advantage of this relationship? From the formula, if either V or F can be
reduced or controlled, then the reduction of P can follow.

Dynamic voltage and frequency scaling is a runtime scheme that dynamically managesDynamic voltage and
frequency scaling the system voltage and frequency to lower or higher levels commensurate with the task(s)

and needs at hand. Contemporary technology can implement devices that support various
low(er) voltage operating modes. Lower clock frequencies can then be coupled with such
lower voltage modes to further reduce power consumption.

Examining the two components, when the workload of an embedded system ebbs, the
system frequency can be reduced. The effect of such a reduction will be fewer instructions
executed per unit time; however, the necessary work can still get done and, with proper
scheduling; real-time constraints can also still be met. When the workload increases, a cor-
responding frequency increase can follow with increased performance.

Switching to a lower voltage mode will similarly affect system performance. A fall on
effect is that devices operating at lower voltages and frequencies will consume less power
and operate at reduced temperature. As a result, system cooling requirements potentially
decrease. The decrease may lead to fans or other cooling devices running at lower speeds
or shutting down.

Proper scheduling of dynamic reductions and tasks commensurate with operational
demands is an important requirement for and component of such scaling. Variations of the
least laxity and maximum urgency scheduling algorithms can be appropriate here.

14.23 ADDRESSING DYNAMIC POWER CONSUMPTION – SOFTWARE

As mentioned earlier, the software being used can be examined for its impact on power
consumption. Some of the initial places to look include,

• The algorithms that are used.

• The location of the code (memory accesses can have significant impact on power
consumption).

• The use of software to control various subsystems.

To be able to analyze and then control a particular aspect of performance, one must be
able to measure that aspect both before and after the modification.
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14.23.1 Measuring Power Consumption

For the moment, assume that the goal is to reduce power consumed by the processor. To
such an end, measuring power consumption is two-step process,

Measure

1. Identify the portion of the code to be analyzed. Typically, the portion of the code in
question will be a loop of one form or another; however it does not need to be.

2. Measure the current consumed by the processor while the code is being exercised.

3. Modify the loop such that the code comprising the loop is disabled. Ensure that the
compiler hasn’t optimized the loop out.

4. Measure the current consumed by the processor.

Reduce
Once the amount of power consumed has been identified, the next step is to try to
reduce it if appropriate or possible. Studies have identified several software factors
that can contribute to processor power consumption.

Included among the contributors are:

• The kind of instruction.

• The collection or sequence of instructions executed.

• The locations of the instructions and their operands.

Memory (sub)systems and transfers into and out of main memory have been shown
to be the most expensive operations (in terms of power) performed by the processor. The
DRAM is such a subsystem.

As pointed out earlier, it is evident that using a caching scheme can have a signifi-
cant effect on system power consumption. If a cache is used, the size should be optimized
to reflect the minimum size that gives the required temporal performance. This almost
becomes an empirical process.

Other optimizations include the following:

1. Power aware compilers.
Such compilers take an instruction-level view of the problem and modify the sched-
ule of bus activity.

2. Use registers efficiently.
Bring a value into the register and leave it there for reuse.

3. Look for cache conflicts and eliminate them if possible.
For instruction conflicts, rewrite the code if possible. It may be necessary to move
the code. For scalar data conflicts, the data can be moved to different locations.
Arrayed data can also be moved to an alternative location or the access pattern can
be changed.

4. Unroll loops.
One must be careful, however, that the unrolled loop does not result in cache misses.

5. Eliminate recursive procedures where possible, thereby eliminating the overhead of
a function call.
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14.23.2 Caches and Performance

Based on the locality of reference characteristic of most contemporary programs, one can
use small amounts of high-speed memory to hold a subset of the instructions and data for
immediate use. Such a scheme gives the illusion that the program has unlimited amounts of
high-speed memory. In fact, the bulk of the instructions and data are held in memory with
much longer cycle/access times than available in the system CPU.

One major problem in real-time embedded applications is that cache behavior is non-
deterministic. Predicting when a cache miss or hit will occur can be difficult. As a con-
sequence, it is difficult to set reasonable upper bounds on execution times for tasks. In the
extreme case, one can certainly assume that every access is a miss; this is overly pessimistic.
One can also be the optimist and assume that every access is a hit; this is folly.

The problem is rooted in two sources: conditional branches and shared access with
preemption. Today, a number of very good branch prediction algorithms are available.
Nonetheless, one cannot know for certain, in advance, which branch will be taken – not
even Robert Frost. Such knowledge is important because one path may be a cache hit and
the other may cause a cache miss.

The path taken and a successful cache access may vary with iteration. The problem is
exacerbated with pipelined architectures. Pipelining techniques are used to pre-fetch data
and instructions while other activities are taking place. The selection of an alternate branch
requires that the pipe be flushed and refilled. A side effect is the potential for a cache miss,
thereby extending the time delay.

In a multitasking or interrupt context, one task may preempt another. In such a context,
the preempting task may require different blocks of data or instruction, with the conse-
quence that we may get a significant number of cache misses as tasks switch. A similar
situation arises during the instruction cycle in a von Neumann machine. In such a machine,
instructions and data share the same physical memory. With such an architecture, one may
force cache misses based on instruction and data fetches.

Let’s elaborate on the problem of shared access. Consider a direct mapping caching
scheme. Recall that blocks or lines from main memory are mapped into cache modulo the
cache size. If we have a 1 K cache with blocks of 64 words, such blocks from main memory
addresses 0, 1024, 2048, and so on, are all going to map to block 0 in cache.

Let’s assume the following memory map. Instructions are loaded starting at location
1024, and data is loaded starting at location 8192. Consider the accompanying simple code
fragment.

for (i = 0; i < 10; i++)
{

a[i] = b[i] + 4;
}

On first access, the instruction access will miss and bring in the appropriate block from
main memory. The instruction will execute and have to bring in data. The data access will
miss and bring in the appropriate block from main memory. Because block 0 is occupied,
the data block will overwrite the instructions in cache block 0. On the second access, the
instruction access will again miss and bring in the appropriate block from the main memory.
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The miss occurs because the instructions had been overwritten by the incoming data. The
instruction will execute and have to bring in the data again. The data access will also miss
again and bring in the appropriate block from the main memory again. Because block 0
is again occupied, the data block will overwrite block 0 again. The process will repeat,
thereby causing serious performance degradation. In fact, performance is actually worse
with a cache. Not only do we now have the main memory accesses, but we also have the
time burden of searching and managing the cache. The continued main memory accesses
can also increase the power consumption of the system.

Possible solutions to the shared access problem under a cache-based design include:

1. Use a set associative rather than a direct mapping scheme, which can help to mitigate
some of the effects of the direct mapping scheme.

2. Move to a Harvard or Aiken architecture.

3. Support an instruction cache and a data cache.

The advantage of the last-named approach is that one can support multiple accesses per
clock cycle. The two caches can be designed to different criteria and also utilize different
architectures, for example, direct and set associative.

One scheme that may be used to address the preemption problem is to give each task
its own portion of the cache. Such a scheme is called a Smart Memory Allocation for Real
Time (SMART) cache. Cache can be decomposed into restricted portions and a common
portion. A critical task is assigned a restricted portion(s) on start-up. All cache accesses are

Smart Memory
Allocation

for Real Time
(SMART)

restricted to those partitions and to the common area. The task retains exclusive rights to the
restricted areas until it terminates or is aborted. Such a restriction includes preemption by
other tasks. The method for assigning partitions remains an open problem. Various heuristic
schemes have been explored and utilized.

14.24 TRADE-OFFS

Often, improved performance is an optimization issue that involves trading several contra-
dictory requirements. Such requirements may include speed, memory size, cost, weight, or
power. We must spend time at the start of a design to thoroughly understand the application
and any associated constraints.

14.25 SUMMARY

In this chapter, we have studied several measures of performance
in embedded systems. We began with the vocabulary we use
to talk about performance then introduced several of the com-
mon measures. Those measures started at a high level with big-O
analysis then moved to a lower level of detail when we examined
the performance of common flow of control constructs. We then
looked at several metrics for assessing embedded performance
such as response time, time loading, memory loading and with
an assessment of how cache can affect performance.

We concluded with an introduction to power manage-
ment, including several ways to reduce power consumption.

The discussion favored reducing power consumption over pro-
viding larger power sources to accommodate increasing power
demands growing out of advances in evolving technologies.
Three levels of power consumption were identified and defined
as zero, static, and dynamic. Each was analyzed and poten-
tial sources identified. Of the sources, current leakage and
SRAM and DRAM memories were identified as some of the
larger contributors to power consumption in embedded systems.
Approaches for reducing hardware and software dynamic power
consumption were then discussed, including several power man-
agement schemes.
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14.26 REVIEW QUESTIONS

Performance

14.1 What is meant by the performance of an embedded appli-
cation?
14.2 What is the difference between an optimization and a
trade-off?
14.3 Does performance optimization apply equally to the
hardware and software components comprising an embedded
system?
14.4 What is Amdahl’s law?

Complexity Analysis

14.5 What is meant by the expression “complexity analysis”?
14.6 What is the purpose of performing a complexity analysis
on a software algorithm?
14.7 What are the basic steps that make up a complexity
-analysis?
14.8 What is big-O notation?

Analyzing Instructions

14.9 Identify the major factors that can affect the time perfor-
mance of an instruction.
14.10 What is a reasonable scope for performing an instruction
analysis within an embedded application?

Performance Metrics

14.11 In an embedded application, what is meant by the terms
response time? throughput? memory loading? time loading?
14.12 For each of the performance metrics identified in Ques-
tion 14.11, suggest one means by which we can measure the
value of the metric.
14.13 Identify and describe the three major components of a
response time analysis of a polled loop.

14.14 Identify and describe the major components of a
response time analysis of a preemptive schedule in an embedded
application.
14.15 What is a memory map?

14.16 When should a performance analysis be conducted on an
embedded application?

14.17 What is meant by zero, static, and dynamic power con-
sumption?

14.18 What is one of the largest contributors to power con-
sumption in an embedded system?

14.19 Is embedded system power consumption a function of
operating frequency?

Performance Optimization Considerations

14.20 What are some of the important questions that one should
ask both before and during a performance optimization analysis?
14.21 What are some of the common mistakes that might be
made during a performance optimization analysis?
14.22 What is a hardware accelerator? How does it differ from
a co-processor?
14.23 Why is power usage included in performance?
14.24 What are some of the effects that the embedded software
can have on power usage?
14.25 How can we measure the effect that a software algorithm
can have on power consumption?
14.26 What are some of the effects that the embedded software
can have on power usage?
14.27 How can we measure the effect that a software algorithm
can have on power consumption?
14.28 Explain the term power gating.
14.29 What is meant by the term floating input with respect to
a circuit device?

14.27 THOUGHT QUESTIONS

Performance

14.1 Identify the major criteria by which the performance of
an embedded application may be measured. Do these criteria
apply to all embedded applications?
14.2 Give an example of an embedded application in which
one or more of the criteria listed in Question 14.1 would be con-
sidered important. For each identified application and criteria,
why are the criteria considered to be important? What are the
consequences for failure to meet the criteria?
14.3 Discuss the stages during the development process at
which we should conduct a performance analysis? Explain why

you have selected each stage of the development cycle. What are
several criteria that should be used during the analysis?
14.4 What information do we gain when applying Amdahl’s
law to the problem of performance optimization?
14.5 Explain how a floating device input can affect power con-
sumption in an embedded system.

Complexity Analysis

14.6 Explain the difference between linear, quadratic, log-
arithmic, and exponential growth with respect to a software
algorithm.
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14.7 What does the term asymptotic complexity mean? Give
an example.
14.8 We use various types of containers in an embedded appli-
cation to hold data. We can read, insert, or delete data from the
top, bottom, or middle of a container. Discuss the effect on the
performance of an algorithm when using each of the four major
containers that we have studied.
14.9 What is a reasonable scope for performing a big-O anal-
ysis within an embedded application?

Analyzing Instructions

14.10 Big-O analysis gives a macro view of program perfor-
mance; analysis of blocks of instructions gives a micro view.
What kind of information are we trying to gain with respect to
an embedded application from each type of analysis?
14.11 Should the time performance of a block of instructions
be analyzed at the source code (e.g. C or C++. assembly) or
object code level? Why?

Performance Metrics

14.12 Describe the methods by which we can perform a time
loading analysis of an embedded application. Discuss the advan-
tages and disadvantages of each.
14.13 The chapter presents several alternative models we may
use in analyzing the performance of an embedded application.
Describe each and elaborate on the kind of information we are
trying to gain from each model.

14.14 How can one use a microprocessor’s built-in timer to aid
in a performance analysis?
14.15 A memory map is said to be useful in performing a mem-
ory loading analysis. How might this be done?

Performance Optimization Considerations

14.16 The chapter identified several “tricks of the trade” that
might be utilized to help reduce time loading and response times.
What are these? Discuss why such techniques might be useful.
14.17 When should one consider using a hardware accelerator
in an embedded design? Give several examples and identify the
benefit in each case.
14.18 Discuss the effects of caching and virtual memory
schemes on the time performance of an embedded application.
14.19 Give several pros and cons of caching and virtual mem-
ory schemes in an embedded application.
14.20 Cite several examples of instances when caching might
be useful and explain why.
14.21 Identify and discuss several schemes that we can use to
optimize power usage in an embedded application. An Internet
search might reveal some interesting answers.
14.22 What is the Advanced Configuration and Power Interface
standard? Does it or can it apply to embedded applications?
14.23 Can the embedded systems memory organization affect
the performance of an embedded system? How?

14.28 PROBLEMS

14.1 Compute the time loading for the two independent nested
loops given in the code fragment presented in Figure P14.1.

int j, k, sum = 0;
for ( j = 0; j < N; j++ )

for ( k = N; k > 0; k-- )
sum += k + j;

Figure P14.1

14.2 Repeat Problem 14.1 for the two interdependent nested
loops given in Figure P14.2.

int j, k, sum = 0;
for ( j = 0; j < N; j++ )

for ( k = 0; k < j; k++ )
sum = sum + k * j;

Figure P14.2

14.3 Design and implement a recursive function that com-
putes the factorial of N numbers. Implement the same function
using an iterative design. Compare the time loading for N having
the values 10, 100, and 1000.

14.4 The binary search algorithm has a worst case complexity
of O(log2N) when N is the size of the search range. Provide the
complexity analysis to show that this is correct.

14.5 The quick sort algorithm has a worst case complexity of
O(N log2 N) when N is the size of the search range. Provide the
complexity analysis to show that this is correct.

14.6 Compute the time complexity for the following opera-
tions on the queue data structure.

• Insert/delete at the beginning
• Insert/delete at the end
• Insert/delete in the middle
• Access at the beginning, the end, and in the middle.

14.7 Repeat Problem 14.6 for the stack data structure.

14.8 Examine and analyze an assembly language implemen-
tation of passing a single variable into a function via the stack.
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Compare the time loading for such an operation with accessing
the same information using a global variable. Discuss the advan-
tages and disadvantages of each approach.

14.9 A simple embedded application is using a schedule based
on polling with a timing element. What is the smallest timing
element that the system will support using one of the built-in
timers? Using a delay loop written as a series of assembly lan-
guage instructions?

14.10 An embedded application utilizes an external interrupt to
signal that an event has occurred. In response to the event, the
application must perform an action following a delay.

(a) What is the smallest delay that can be accommodated if the
delay is implemented as a series of assembly instructions? What
is the worst case error?

(b) What is the smallest delay if a timer is used? What is the
worst case error?

14.11 Distortion in the frequency domain in an FFT is deter-
mined, in part, by errors in sampling in the time domain. For
your system, what is the best-case error, in time, if the analog-to
digital converter readings are:

(a) Scheduled using an interrupt from one of your system –
timers?

(b) Scheduled using a delay implemented as a series of assem-
bly language instructions?

(c) Scheduled by polling the timer interrupt?

What are the advantages and disadvantages of each approach?

14.12 Design and build a linked list abstract data type (ADT).
Compute the complexity to add/delete an element from the head,
the tail, and the middle of the linked list. Perform the computa-
tion on a linked list of the following sizes: 10, 100, 1000.

14.13 Design and build a queue ADT using an array, a linked
list, and a binary tree as the underlying data structure. Compute
the complexity to add/delete an element from the tail or the head
of the queue for each implementation. Perform the computations
on a queue of the following sizes: 10, 100, 1000.

14.14 Design and build an array-based priority queue ADT
using an array, a linked list, and a binary tree as the underlying
data structure. Compute the complexity to add/delete an element
from the tail or the head of the queue for each implementation.
Perform the computations on a queue of the following sizes: 10,
100, 1000. How do the complexity and time change if the queue
is sorted?

14.15 Design and build a priority queue ADT using a heap
as the underlying data structure. Compute the complexity to
add/delete an element from the tail or the head of the queue for
each implementation. Perform the computations on a queue of
the following sizes: 10, 100, 1000. How do the complexity and
time change if the queue is sorted? Does the order in which the
data is entered affect the time loading? If so, by how much?

14.16 Write an algorithm min3 that uses a series of nested if
statements to determine the smallest of three integer values that
have been passed as parameters. Using your processor’s assem-
bly language manual, determine the execution time of the algo-
rithm.

14.17 Write the min3 algorithm in Problem 14.16 as a C macro
and a C function. Design two versions of a program, one that
uses min3 as a macro to determine the smallest of three numbers
and the other that uses it as a function. Using your processor’s
assembly language manual, determine the difference execution
time between the two implementations.

What is the difference in memory loading between the two?

14.18 Compare the minimum, average, and maximum time per-
formance between a C switch statement with 10 cases and a
series of if-else statements to identify a target from a set of 10
alternative values.

14.19 Design and build a one-millisecond delay block using C
language instructions. Build the same loop using your micro-
processor’s assembly language instructions. What is the error
for each implementation? What is the error in both cases if your
delays are used to implement a 10-ms delay? a 100-ms delay?

14.20 Design and build a one-millisecond delay block using
one of your microprocessor’s timer. What is the error in the
implementation? What is the error if your delay is used to imple-
ment a 10-ms delay? a 100-ms delay?

14.21 What are the advantages and disadvantages of the alter-
native approaches for implementing a delay that were studied in
Problems 14.19 and 14.20? Consider the behavior with respect
to a hard real-time deadline.

14.22 Write a piece of code that toggles a bit on one of the out-
put ports on your microprocessor each time it is executed. How
can this code block be utilized to determine the execution time
of a function?

14.23 A colleague has designed an embedded application that
utilizes a timer that is supposed to interrupt every 5 ms. She
is debugging the code and claims that she cannot determine
whether the timer is working properly. Suggest a way she can
instrument the code to enable her to determine whether the pro-
gram is entering the interrupt service routine and, if so, at what
interval.

14.24 As with most real-world sensing devices, the thermo-
couple is a nonlinear device. As a result, we approximate the
temperature corresponding to its corresponding output voltage
according to a power series equation given as

TM = c0 + c1V + c2V2 + … + cnVn

where:

V = thermoelectric voltage (microvolts)
cn = type-dependent polynomial coefficients
T = temperature (∘C)
n = order of the polynomial
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The calculated thermoelectric voltage generated at TM is
converted into an equivalent temperature value using such a
power series polynomial along with type-dependent coefficient
tables.

The National Institute of Standards and Technology (NIST)
publishes several tables for each thermocouple type containing
coefficients representing quadratic (second order), cubic (third
order), or quartic (fourth order). Voltage-to-temperature conver-
sion accuracy can be increased by using higher order coeffi-
cient tables, but at the cost of longer processing time to perform
the calculations. Accuracy can be further enhanced by select-
ing tables representing the narrowest temperature range for the
specific measurement application.

For a fourth-order polynomial for a J-type thermocouple
0–760 C with error range −0.9 to 0.7∘C, we have the following
coefficients:

Coefficients

c0 = 0.0
c1 = 1.9 323 799× 10−2

c2 = −1.0 306 020× 10−7

c3 = 3.7 084 018× 10−12

c4 = −5.1 031 937× 10−17

The following table gives the output voltage, in microvolts,
for the J-type thermocouple for the range 0–190 C.

0 10 20 30 40 50 60 70 80 90

0 0 507 1.019 1.537 2.059 2.585 3.118 3.650 4.187 4.26
100 5.269 5.814 6.360 6.909 7.459 8.010 8.562 9.115 9.669 10.224

Derive a lookup table that converts a measured voltage to
the corresponding temperature in one-degree steps. Design an
algorithm that utilizes a lookup table to implement the conver-
sion.

(a) Using the instruction times for your processor, compare the
time to perform the conversion using the fourth-order equation
with that for the lookup table.

(b) Compare the amount of memory required for each of the
two alternate approaches.

14.25 Repeat Problem 14.24 using a linear curve fit
(y = mx+ b) between 10∘ increments. Rather than storing all of
the precomputed temperatures, modify the design of the lookup
table to hold only the values for m and b.

14.26 The chapter presented an analysis of the time behavior of
a polled loop. Determine each value for the constituent times to
poll a single event in your system. What are the minimum and
maximum times for which you can respond to the event?

14.27 For your system, give a Unified Modeling Language
(UML) sequence diagram for all of the steps required to iden-
tify and respond to an external interrupt. What are the mini-
mum and maximum times for which you can respond to the
event? What effect will such variation have on a hard real-time
schedule?

14.28 An embedded application initiates the sequence of events
illustrated in Figure P14.3.

Embedded Application

External Device

0 ms 20 ms

time

E1 E3

E2

Figure P14.3

(a) For your processor, what are the minimum and maximum
times to which you will be able to generate event E3 using
polling? Using interrupts?

(b) What are the advantages and disadvantages of each
approach?

14.29 Using a C struct, design a probe data type that is inserted
as a static variable into a function to count the number of times
the function has been invoked. Demonstrate the probe on several
different functions.

14.30 Extend the probe data type in Problem 14.29 to include
two data members, enter and exit. In conjunction with one of
your system timers, use the probe to measure the execution time
of several different functions.

14.31 Design a simple application with three or four tasks.
Repeat Problem 14.30 to measure the execution time of the dif-
ferent tasks in your design.

14.32 Design a simple application that implements the follow-
ing:

1. Declares an array, unsigned short an Array[10000].
2. Fills the array with arbitrary data.
3. Contains three functions. Each accesses the array elements
via an index and then squares each element in the array, as
follows:

(a) Function0, as a C for loop in which each iteration squares
one element of the array.

(b) Function1, as a C for loop in which each iteration squares
two successive elements of the array.

(c) Function2, as a C for loop in which each iteration squares
four successive elements of the array.
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4. Contains three functions. Each accesses the array elements
via pointer and offset and then squares each element in the array,
as follows:

(a) Function3, as a C for loop in which each iteration squares
one element of the array.

(b) Function4, as a C for loop in which each iteration squares
two successive elements of the array.

(c) Function5, as a C for loop in which each iteration squares
four successive elements of the array.

(d) As each function is entered and exited, the function will tog-
gle a bit on an output port on your microprocessor as markers
that can be used to measure the length of time needed to perform
each calculation.

Compare the results of each of the six test cases in 3a–c and
4a–c.

14.33 Start with a two input TTLS Nand gate and a two input
CMOS gate. Devise a method to measure the current drawn by
the device and connect each to a supply and to ground. Measure
the current drawn by each device under each of the following
input configurations.

(a) Both inputs open and disconnected from each other.

(b) Both inputs open and connected to each other.

(c) One input connected to ground and the other open.

(d) One input connected to the supply and the other open.

(e) Both inputs connected to ground.

(f) Both inputs connected to the supply.
Compare and discuss the results in each of the cases for the

two logic families.

14.34 When it is over a ground station, the topographic map-
ping satellite discussed earlier has a five-minute window during
which time it can download data to the station. When the radio
is on, it consumes 10 W; when off, it consumes 0 W. Switching
the radio from the OFF state to the ON state takes 4 seconds
and consumes 50 J, and 2 seconds and 15 J to switch from ON
to OFF.

A download comprises a 20 second interval to transmit a
data block and 40 second interval to acquire a new block. Thus,
during a transmit window, five blocks of data can be down-
loaded.

Using the queue based power management scheme dis-
cussed in the chapter, compute the power consumed during a
download window …
(a) if the radio remains in the ON state for the full five minute
download window.

(b) if the radio is powered down at the end of a transmission
and powered up again when a new block is available.
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Part 4 DEVELOPING THE FOUNDATION

• Chapter 15: Working Outside of the Processor I: A Model of Interprocess
Communication

• Chapter 16: Working Outside of the Processor I: Refining the Model of Interprocess
Communication

• Chapter 17: Working Outside of the Processor II: Interfacing to Local Devices

• Chapter 18: Working Outside of the Processor III: Interfacing to Remote Devices

• Chapter 19: Programmable Logic Devices

• Chapter 20: Practical Considerations Signal Behavior in the Real World – Part
1 – Noise and Crosstalk

• Chapter 21: Practical Considerations Signal Behavior in the Real World – Part
2 – High-Speed Signaling

Chapter 15

Working Outside of the Processor
I: A Model of Interprocess
Communication

THINGS TO LOOK FOR …

• The extended model of interprocess communication.

• The meaning of information, control, and synchronization, addressing, and transport in
the context of external world information exchange.

• Critical components of the shared variable interpretation of the communication model.

• Critical components of the message-based interpretation of the communication model.

15.1 COMMUNICATION AND SYNCHRONIZATION WITH THE OUTSIDE WORLD

A few years ago, an embedded system utilized a microprocessor as the main control
element in various kinds of measurement or control systems. Today, in addition to those
applications, we have expanded into nearly every corner of the modern world. Yesterday’s

Embedded Systems: A Contemporary Design Tool, Second Edition. James K. Peckol.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/college/peckol
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systems with a processor and a few logic gates have become complex systems comprising
potentially several processors, programmable logic devices, networks, communications
systems, Application Specific Integrated Circuits (ASICs), and much more. In addition to
the familiar control and measurement elements of yesterday, today we are interfacing to
every kind of device imaginable.

In our earlier studies, the tasks, the processes with which we worked, were inside of
the microprocessor. In today’s distributed designs, some of these processes have migrated
to the outside world. That world outside of the processor is a heterogeneous complex of
hardware and software that we must understand, be able to talk about, and work with. The
requirements for synchronization and for exchanging data and information among tasks
inside of the microprocessor persist as we move to the outside. The unpredictability of
the physical environment, coupled with the distributed nature and vagaries of the external
hardware and software, make communication and synchronization a more interesting and
challenging problem.

In this chapter and the next, we will lay the foundation for how an embedded appli-
cation can interact with the external world. We will begin by extending the internal inter-
process and communication model developed earlier in Chapter 12 in Chapters 16–18 that
follow. Our first step will be to introduce the model and to briefly discuss each of its fourinformation, place

control and
synchronization,

transport

components: information, place, control and synchronization, and transport. We will then
follow with a more in-depth analysis of each component as we learn the important fun-
damental aspects of that component and how it can be manifest, in general, in concrete
applications.

In the next chapter, we will then subclass the model into two more specific models, one
focusing on local devices and the other on remote devices. Each is then studied in two steps.
First, the model is introduced and its unique characteristics are examined. Next, a detailed
discussion illustrates how it applies, in general, to real-world applications. Chapters 17
and 18 will illustrate the application of each model to specific real-world situations.

15.2 FIRST STEPS: UNDERSTANDING THE PROBLEM

We are now dealing with the portions of the von Neumann machine designated as InputInput
Output

I/O Subsystem
and Output. We view the hardware and software world outside of the main microprocessor
through a window that is collectively called the I/O subsystem. There ends the easy part
of the problem. In an attempt to bring some order to the wide variety of interfaces and
cacophony of exchange protocols with which the embedded designer must cope, we will
place external world devices into two general categories – those that are local and thoselocal

remote that are remote. Local devices tend to be in closer proximity (generally 1–3 m or less) to
the core system and typically have proprietary or specialized interfaces. Any tasks executing
on such devices are usually associated with the function of the specific device and are not
considered to be part of the embedded application proper. Interprocess communication and
synchronization with such devices is based primarily on variations on the shared variable
paradigm. Interaction with such devices will be characterized by a Local Device Model.Local Device Model

distributed tasks
Remote Device Model

Interaction with remote external devices begins with the notion of distributed tasks exe-
cuting on these devices and forms the basis for the Remote Device Model. Such tasks are
now often considered to be an integral and contributing part of the main application. Inter-
process communication and synchronization typically occur over a network using message
exchange. Such devices tend to be located at a greater physical distance (3–5 m or more).
However, today, with the growth of systems and networks on a chip, the model has expanded
to include external devices that are on the same die or within the same gate array.
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A small sampling of such devices in both categories includes:

• Analog-to-digital and digital converters.

• A wide range of analog and digital sensors.

• A variety of different kinds of (special purpose) processors.

• A vast collection of dedicated programmable logic devices or application-specific
integrated circuits.

• High-speed audio and video systems.

• File systems and storage devices to allow us to read and write data.

• Input devices to enable interaction with or control of other computers.

• Scanning and sensing devices to capture and bring in information.

• Display, recording, and printing devices to permit the display of a variety of data.

• Networks and communications systems.

• Remote applications.

Associated with each input or output device, is generally a software procedure called a
driver or device driver that supports interaction with the device. When studying input anddriver, device driver
output interaction with the external world, several things must be considered, notably:

• The source or destination for any exchange.

• The I/O ports on the microprocessor.

• Local and global memory address space.

• The nature of the exchange as an event, a shared variable, or a message.

• The I/O procedure invocation and any associated restrictions on that procedure.
event, shared variable,

message
• The location of the I/O driver.

• The protocol for the data exchange.

• Timing requirements.

• The physical medium of the exchange.

15.3 INTERPROCESS INTERACTION REVISITED

As part of earlier studies of interprocess communication and synchronization inside of the
microprocessor, we formulated a model based on three questions:

• What are we communicating?

• With whom?

• How do we control the exchange?

We repeat that model here for reference.

• The information – the data or signals being moved that convey our intent or ourinformation
places

control,
synchronization

goals.

• The place or places from which the information is moved to or from.

• The control and synchronization of actions and the movement of the information.
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In such a model, the source and destination for the exchange were variously iden-
tified by named variables or by pointer variables holding memory addresses. Control and
coordination comprised methods ranging from different flags or status bits to manage access
to critical areas under the control of semaphores or monitors. Information moved either
through shared variables or through messages on busses internal to the microprocessor that
(except in rare circumstances) were of little concern to us.

As our studies expand to include interaction with the world outside of the core pro-
cessor, the model of communication and synchronization similarly expands to include the
physical means of moving the information. In addition, details of the exchange that previ-
ously fell within the purview of the microprocessor must now be considered and accommo-
dated. The interprocess communication model developed earlier is now expanded to include
the external world and also includes the answer to the question,

• How do we get the information to where it is going?

The fourth component of the model becomes the physical means by which the infor-
mation is moved – the transport mechanism.

Our first formal view of the model begins as shown in Figure 15.1. The local and remote
models are subclasses from a parent model that defines the essential and common compo-
nents of each. Each subclass model implements the specific components as appropriate for
its context. Instances of either model implement the component as is appropriate to the
application and device where it applied.

-Information
-Place
-Control
-Transport

Interprocess Communication

Local Device Remote Device

Figure 15.1 The Interprocess
Communication Model

In summary, the components are given as:

• The information – the data or signals being moved that convey the intent or goals.information
• The place or places from which the information is moved to or from.places

control,
synchronization

transport mechanism

• The control and synchronization of actions and the movement of the information.

• The transport mechanism – the physical means by which it is moved.

These four major elements of the interprocess communication model are reflected in
Figure 15.2.
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Embedded
Application

Transport

Information CPU
External
World

Driver

Control

Place

Place

Task0

Task1Information
Exchange

Control

Information
Exchange

Control

Figure 15.2 The Four Major Elements of the Task Interaction Model

15.4 THE MODEL

We will begin our study of the extended interprocess communication and synchronization
model with an elaboration of each component. We will then study each of these components
in some depth in the contexts of the local and remote device models.

15.4.1 Information

The information – data or signals – will be expressed either directly as a voltage, a cur-
rent, and an electromagnetic wave, or indirectly as a fundamental physical quantity such as

information, data or
signals

pressure, strain, sonic, or temperature. In the latter case, the signal can be converted into
an electrical signal using a device called a transducer. Once inside of the microprocessor,transducer
these physical quantities are abstracted either as primitive types, such as integers or floats,
or as more complex data types, such as collections of primitive types or aggregates manifest
as structs or classes.

When data brought into or generated within the microprocessor is to be exchanged
with an external device, several potential difficulties can arise. First, one must remember
that not all processors or devices express data in the same way; one must be concerned
about different endianness and different word sizes. Such differences are evident in
even simple types such as integers. Furthermore, to permit the exchange of informa-
tion among such devices, one must ensure that more complex data types and values
are expressed in (or converted to) an agreed upon form before being sent to another
device.

The nature of the information that is exchanged is limited only by needs and imagina-
tion. Some of the exchanges will be unidirectional – either input or output only – whereas
others may be bidirectional. In the collection of embedded applications classed as measure-

unidirectional
bidirectional

ment and control devices, the outgoing information may be configuration data followed by
subsequent commands to execute a measurement or series of measurements; that returned
might be the results of those measurements. An analog-to-digital converter, or Charge
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Coupled Device (CCD) or Complementary Metal Oxide Semiconductor (CMOS) image
scanner, would fit into this category. In the category of outgoing only types of devices, one
may have to work with a digital-to-analog converter as part of a control system or with digi-
tal data transferred to an external storage device. For such applications, the information will
often appear as shared variables in one form or another, as discussed earlier in our studies
on intertask communication.

For larger, more complex applications, the system may be a component in a larger
and more sophisticated networked application that may be serving video on demand to
the passengers on a commercial airliner or production information around an automated
manufacturing site. In such cases, the information will most likely be expressed in the form
of messages that are exchanged using a standard protocol such as Transmission Control
Protocol (TCP)/Internet Protocol (IP) or I2C.

15.4.2 Places

In the expanded context, the source and destination for the exchange extends to locations
outside of the local address space. The memory location that was previously reached by
dereferencing a pointer may now be several meters away in a device that can only be reached
by message exchange. Any local address is meaningless; moving outside of the processor
means managing the remote access and exchange of information.

Nevertheless, we see that the source and destination of any exchanges are still identifiedsource, destination
by addresses. These addresses may be implicit – the destination device is directly connectedaddresses
to an output port or bus on the embedded processor or explicit; the source and destination
have an associated name of one form or another by which they can be referred to by other
devices in the system. The domain name as an alias for the actual IP address is a good
example.

The majority of the exchanges with which we will work are denoted point to point.point to point
In such cases, interaction is with a specific component, system, subsystem, or other piece
of equipment. The exchange may command a measurement, alter the configuration of the
component, direct it to perform a specific operation and return a value, set its output to a
designated value, or simply request status information.

For most embedded applications there is a single source for any exchange that is the
local system. The destination may include all of the subsystems comprising the application.
Such an exchange is known as a broadcast. A broadcast message is used to send the samebroadcast
information to all components. The information may direct all member subsystems to a
reset state, to initiate a self-test sequence, or to signal that the state of some system variable
has changed and that an update is necessary.

On occasion, the information to be sent is intended for a reduced subset of the member
elements. The exchange, referred to as a multicast, transfers information only to those formulticast
whom it is relevant – a communications or imaging subsystem on a commercial aircraft for
example. A firmware update to all imagers might be initiated with a broadcast message. If
a specific package is to be sent only to all first-class passengers, however, a multicast might
be used.

15.4.3 Control and Synchronization

The control and synchronization portion of the model is a combination of both hardwarecontrol,
synchronization and software. The hardware portion comprises the overall structure and organization

of the transport mechanism, any connected devices, and any necessary control signals.
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The software component includes a special collection of routines called drivers, which aredrivers
used to manage communication with individual devices or classes of devices.

The management of remote processes and information exchanges in the expanded
model is complicated by intra-and intersystem delays, as well as by failures of the trans-
port mechanism or of the remote devices themselves. The earlier model identified shared
variables and messages as the principal means for executing the exchange. We now expand
the scope of these concepts to include locations in remote address spaces.

The source or destination of a shared variable pair may now include an external device
such as a register or set of registers in a peripheral device to which one must write initializa-
tion or configuration values, or perhaps data buffer on such a device. The message model
will expand to include the invocation of methods or procedures on a remote external device.

15.4.4 Transport

The transport mechanism, the physical means by which the information is moved, can betransport mechanism
implemented by any of a great variety of physical mediums and configurations. Included
among the many choices are a simple piece of wire, a bundle of fiber-optic filaments, or the
surrounding air. The target of the exchange can be local – within the same gate array – or
it can be remote – across the office, the factory, the country, or the world.

The most common and most familiar means of transport today is the familiar copper
connection, although this preference is rapidly changing to fiber, air, or wireless. In the most
basic case, the transport medium is simply the necessary number of wires bundled together,
carrying electrical signals from one place to another. Today, however, I/O speeds are begin-
ning to track the increasing capabilities of the processing units. As the speed increases, so
must the quality of the communication channel.

We may use a number of design approaches to enable us to begin to ensure the neces-
sary increase in quality and reliability. Two of the main causes of electrical contamination
are crosstalk between adjacent conducting paths and noise induced from external sources.
Crosstalk can be addressed by alternating signal and ground conductors in the conducting
path or by twisting ground and signal conductors together. External contamination can be
attacked by using differential signals, shielding the entire cable or the individual twisted
pairs, or both.

Fiber optics provides an increased level of robustness. Prior to transport, the informa-
tion is converted into optical signals that move, without electrical interference, along thin,
optically conductive channels. At the end of the day, the objective remains the same: to
reliably move data and control information from one place to another. At the time of this
writing, fiber is a somewhat more expensive alternative to standard copper wire for most
applications. In addition to the cost of the material, the difficulty of making a connection
with low-cost tools remains. The strength of fiber optics is its immunity to most of the elec-
trical contamination that affects traditional wire. Both objections will change with time and
continued advances in technology.

Wireless, in the form of radio waves, offers another alternative to copper. A wireless
communication network is easy to install and works very well in areas where wire infras-
tructure is not in place or where a temporary connection is needed. It is cheaper and more
flexible than a wire-based approach. However, it is typically slower than wire and more
prone to errors from environmental interference.

The organization of the medium can range from a few signal lines with information
flowing in serial to a larger number of signals simultaneously transporting greater amounts
of the information. No matter which transport scheme is used, a solid understanding of all
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timing relationships, the strengths and limitations of the medium, and the transport protocol
is required.

15.5 EXPLORING THE MODEL

With that overview, we will now study each component of the model in greater detail. The
exchange can be characterized, analyzed, and designed from a number of different perspec-
tives. As we explore, we will begin at a high level and work down to specific details. Earlier
studies of interprocess communication and synchronization have provided a solid founda-
tion upon which we can build. The transport mechanism introduces a new consideration
into the designs. As a result, we will develop the extended model starting from this point.
We will begin with the vocabulary and basic concepts; these will be examined in depth as
the chapter unfolds. We will follow with some of the characteristics that distinguish the
different kinds of I/O interfaces and that one must consider and can use as part of a design.
These become important when making trade-offs during the early stages of a design.

15.5.1 The Transport Mechanism

The hierarchy given in Figure 15.3 identifies the two major elements of the transport mech-
anism: the physical level and the interconnection architecture.physical level,

interconnection
architecture

Physical Level

Architectural Level

Figure 15.3 The Two Major Elements of the Transport
Mechanism

We have already noted that the physical means by which information is moved can be
implemented in a variety of ways. On top of the physical medium is the interconnection
architecture or topology. The choice of interconnection topology and architecture can have
a significant effect on the performance (generally in time), reliability, and economic cost of
a system.

15.5.1.1 The Interconnection Topology

An important consideration in the design of the physical medium is its organizational topol-
ogy. In the local device model, such a medium implements an extension of one of the
familiar bus architectures; in the remote device model, the medium is more often calledbus

network a network. Whichever name is used, however, the intent is the same.
Among the vast number of ways of configuring the interconnection, in general one

finds three fundamental organizations. These are the Star (illustrated in Figure 15.4), theStar
Ring, Parallel Bus Ring (given in Figure 15.5), and the simple Parallel Bus (shown later in Figure 15.8). The

architecture of the transport mechanism in most contemporary embedded systems modifies
or extends one or more of these in some way. We have already looked at different aspects
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of these bus topologies in other contexts. Some of the material presented here will repeat
parts of those discussions.

Each configuration has certain advantages and disadvantages. For all configurations,
there are three kinds of messages:

• Those addressed to a single device (point to point).

• Those addressed to a subset of the devices (multicast).

• Those sent to all devices (broadcast).

Each of these configurations can find application in a (wired) local context, such as a
collection of microprocessors in a contemporary automobile, within a complex integrated
circuit, or in a highly distributed wireless or networked system of Internet appliances. As we
look at each of the three major topologies, we will present a high-level description of infor-
mation flow and fault tolerance. We begin with the star configuration.star

15.5.1.2 Star

The star configuration, illustrated in Figure 15.4, is a master–slave type of arrangement.master–slave
Device-to-device communication must go through the master. The transmit and receive
operations proceed as follows.

communication

Figure 15.4 The Star Network Architecture

15.5.1.2.1 TRANSMIT FROM MASTER TO SLAVE
The device designated as the master resides at the center of the system; this will typicallymaster
be the local system. The slave units are any of a variety of peripheral devices. All commu-
nication, which typically follows a command–response protocol, must originate from thecommand–response
master, which initiates and directs all the activities within the system and coordinates any
message exchange with other devices.

Transactions are typically read or write operations. A write operation sends informa-read, write
tion to the slave, and the read operation requests that information be returned.

15.5.1.2.2 RECEIVE FROM SLAVE TO MASTER
The transaction is initiated by a request from the master through the issuance of a read
command. That command may be used to request status information, perhaps the result of
a self-test or the retrieval of the results of some earlier requested operation.
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15.5.1.2.3 TRANSMIT/RECEIVE FROM ONE SLAVE TO ANOTHER
Transmission from one slave device to others is somewhat uncommon in star configurations.
The exchange can be executed in several ways. One approach requires that the master act
as the intermediary. Information moves from the source device to the master and then from
the master to the destination device. The shortcomings of such a scheme are pretty clear.
An alternative approach requires that the master configure the exchange by designating
one slave device as the source and the other(s) as the destination(s). Thence, the master
authorizes the exchange to begin and waits until it completes.

15.5.1.2.4 FAILURE
If one device or link fails, communication with others can continue, although system per-
formance may be/is degraded; the services of the failed slave device are lost, however. In
contrast, loss of the master represents a potential single-point failure unless a replacement
or backup scheme has been incorporated.

15.5.1.3 Ring

Variants on the ring are common in communication networks. We find it to be the basis
for token ring networks, for networks of embedded processors in an automobile or aircraft,
or within a system or network on a chip type of designs. Typically, there is no bus master,
and all devices are considered equal. The basic configuration is presented in Figure 15.5.
A more robust configuration utilizing two concentric rings is also presented.

communication communication

communication

Basic Ring Dual Ring

Figure 15.5 The Ring Network Architecture

Each device accepts all messages circulating in a ring. If a device receiving a message
is the addressed device, the message is accepted; otherwise, the message is passed on toaddressed
the next device on the ring.

15.5.1.3.1 TRANSMIT–RECEIVE
Because there is typically no bus master to control access to the bus and because all devices
are considered equal, a protocol must be established and used to decide who is able to
transmit messages and to use the bus.

Referring back to an earlier discussion of shared resources, the bus, in the ring, is a
critical and shared resource. We learned from the readers and writers problem that we canreaders, writers
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permit multiple readers but only a single writer. Access to the ring bus is a readers and
writers problem.

Any device can read – receive messages – from the bus. However, only one writer is
permitted. One approach that is commonly used to ensure that there is only a single writer
is to have a special message or packet called a token continually circulating in the ring. Atoken
device is only able to write when it has the token. When it finishes writing, it releases the
token and the process continues.

Another approach that is used is to implement a collision detection/retransmit scheme.
The underlying premise is that attempts at access are occurring randomly. Thus, when a
device wants to transmit, it first checks for activity on the bus. If it does not see any activity,
it puts its data onto the bus and looks for a collision (someone else may have had the same
idea). If it detects a collision, it ceases transmission and waits (backs off) a random amountbacks off
of time before repeating the process. With a lightly loaded bus or bursty transmissions, the
probability of repeated collisions is small. We will see several alternative approaches for
dealing with collisions when we study the I2C and Controller Area Network (CAN) busses
in Chapter 16.

15.5.1.3.2 FAILURE
The ring can provide a very robust context for information exchange. Consider first the
single ring given in Figure 15.6. If either of the failures shown in the accompanying drawing
occurs, the system can reconfigure itself into a parallel bus that will be discussed next. In
the event of a link failure (X on the link), full connectivity and communication with all
devices on the network can be maintained. If a device (X on the node) is lost, the system
has the same degraded performance encountered with the master–slave configuration.

Basic Ring

communication

Figure 15.6 Basic Ring Architecture with a
Single Failure

When implemented as two concentric rings, as in Figure 15.7, there are several possible
failure and recovery modes. If one link is lost, as shown with failures numbered as 1 or 2,
the system can reconfigure to a fully operational single-link system. If two links are lost, as
depicted with the failure numbered 3, once again, the system can reconfigure into a fully
operational single-link topology. If a device is lost, as reflected with the failure designated
4, the remaining devices are still fully interconnected via a single-ring configuration.

The double ring is also tolerant of second failures. Observe that failure 1 followed
by 2 leaves a fully operational system. Other combinations follow with varying levels of
degraded performance.



�

� �

�

726 Chapter 15 Working Outside of the Processor I: A Model of Interprocess Communication

communication

communication

Dual Ring

1

2

4

3

Figure 15.7 Dual-ring Architecture with
Multiple Failures

15.5.1.3.3 PARALLEL BUS
The traditional bus, shown in Figure 15.8, is a variation on the star architecture. There
may or may not be a bus master. The SCSI (Small Computer Systems Interface) subsys-
tem in the familiar program counter (PC) is a design that uses a master device called a
controller.

communication Figure 15.8 Parallel Bus Architecture

Such a simple bus is probably one of the more commonly used architectures. Device
interconnection occurs in a variety of different ways. Generally, all devices can receive
information whether it is data and commands or simply commands. The ability to transmit
may be more restricted, with some devices being designated as receive only.

As encountered with the ring configuration, the problem of controlling access to the bus
for transmit operations must be addressed. Alternatives range from those already discussed
with the star topology – designating a bus master – to variants on the token schemes, to the
implementation of a control bus to coordinate all transactions to the implementation of a
request/grant protocol.

15.5.1.3.4 TRANSMIT–RECEIVE
If there is a bus master, the protocol follows the one discussed in a similar context earlier.
The information exchange may be point to point, broadcast, multicast, or polled. All devices
can listen for and act on a message.

15.5.1.3.5 FAILURE
Failure modes and effects follow those discussed for the star configuration. An individual
device failure will not compromise the bus – assuming proper isolation. However, a severed
bus can prevent communication beyond the damage.
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15.5.2 Control and Synchronization

The control and synchronization aspects of the extended model of interprocess communi-
cation are characterized by:

• The flow of information.
• The I/O timing.
• The software drivers that manage the exchange.

The relationship among these is captured in Figure 15.9. Note that the control and
synchronization component sits on top of the transport mechanism.

Information Flow

Timing

Software Drivers

Transport Mechanism

Figure 15.9 The Three Major Elements of the Control and
Synchronization Mechanism

Shortly we will consider how local and remote exchanges can be expressed. At that
point, we will see that the lower level aspects of control and synchronization will be unique
to each type of exchange. For the moment, the analysis that follows applies to both.

15.5.3 Information Flow

Managing the movement of information includes controlling two aspects of the transport
process: the direction of the flow and the magnitude of the flow. We will first consider flow
direction.

15.5.3.1 Direction of Flow

If information is being sent in one direction only – sender to receiver or receiver to
sender – the transport is called simplex. If information is permitted to flow in both
directions, but in only one direction at a time, it is called half duplex. If the exchange
supports flow in both directions, possibly simultaneously, it is designated as full duplex.

simplex
half duplex
full duplex

Figure 15.10 shows each scheme.

Simplex Half Duplex Full Duplex

OR AND

Information Flow

Figure 15.10 Types of Information Flow
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15.5.3.2 Magnitude of the Flow

As with any other part of a design, the I/O subsystem design entails continual trade-offs.
Here, one of the early decisions evaluates cost versus speed. As the transfer rate through
the medium increases, so does the cost burden; at the same time, so does the amount of
information that can be conveyed with each transaction.

Flow magnitude quantifies the amount of information that is moved during a sin-
gle transaction. At the highest level, information can be sent in serial or in parallel.serial, parallel
Information sent in serial utilizes a narrow channel (one bit per transfer), while that sent
in parallel utilizes a wider channel and can move n bits (the width of the channel) per
transfer.

On the one extreme, the lowest cost mechanism is serial by bit. With such a design, a
lower flow rate is accepted in exchange for the simplicity and (typically) lower cost of the
transport. If the unit of exchange expands to a character, the width of the transport path is
increased and is accompanied by a corresponding increase in speed.

Serial by word (parallel by bit) once again increases the width of the transmission path.
As with the previous case, such an exchange might also be seen as parallel by character
with the proper encoding. In reality, we interpret parallel by character as the transmission
of multiple characters at the same time. At the opposite extreme, parallel by word entails
sending multiple words simultaneously.

Figure 15.11 tries to capture each of these ideas. In presenting the graphic, we will
assume that a character comprises 8 bits and a word 32 bits.

1 Line

Serial by Bit

8 Lines

Serial by Character

32 Lines

Serial by Word

N Lines

Parallel by Bit
N x 8 Lines

Parallel by Character

N x 32 Lines

Parallel by Word

Figure 15.11 Information Flow vs. Transmission Path

It was noted earlier in the discussion of performance that measurements and compu-
tations should be performed at a rate and significance consistent with the rate of change
and values of the data. The same heuristic applies to the movement of information. If a
serial channel is adequate for the application, there is no need to incur the cost and added
complexity of a high-throughput parallel channel.
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15.5.3.3 I/O Timing

The next important aspect of controlling and synchronizing the transport mechanism is the
timing of the exchange. The exchange with the outside world may be synchronous basedsynchronous
on some shared timing element or piece of information. The reference may be a common
clock or similar timing signal. Alternately, the timing information may be encoded in the
transmitted data. In such a case, the clock signal can be recovered or regenerated by the
receiver of the data.

The exchange may also be asynchronous, in which case there is no shared timing infor-asynchronous
mation between sender and receiver. The start of any specific transaction and subsequent
transactions are temporally independent. Synchronization is reestablished with each com-
ponent of the transaction.

15.5.3.4 Software Device Drivers

The software device drivers provide a significant portion of the software side of the control
and coordination of the outside world exchange. The sophistication and complexity of these
device drivers vary greatly with the sophistication and complexity of the embedded design
and of the devices themselves. The simple washing machine or microwave oven controller
will frequently implement the control routines as a few function calls that directly provide
and manage the control of and data exchange with any of the hardware.

On higher end, more powerful systems, these routines provide the interface between
the system software and application tasks and the physical devices to which they need to
communicate. One purpose of the device drivers is to provide a (common) high-level calling
interface in support of the I/O operation, while at the same time separating the users of the
devices from the low-level details of managing the physical hardware.

Whether ad hoc or more general purpose, the device driver will typically provide the
following capabilities:

• Support for registering the device with the system.

• Device initialization.

• Support for moving data to and from the device.

• Support for managing control events such as interrupts.

The device driver may reside in the main system microprocessor or in a dedicated
peripheral processor.

Whichever physical transport architecture or control and synchronization mechanism
is chosen for the design, the remaining two components of the model (the information and
the places) must be supported.

information
places

15.5.4 Places

The places component in the model, at the very minimum, identifies the destination of
any transfer. The means by which this information is acquired, represented, and conveyed
differs between the local devices and the remote devices. For local devices, typically onlylocal, remote
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a destination address is used. In contrast, remote devices will often include both the source
and destination address.

In the model, local devices are assumed to be in close proximity to the core system,
while remote devices are often at much greater distances and tend to be network based. In
the next chapter, we will begin with the local device model followed by a similar study of
the remote model.

15.6 SUMMARY

In this chapter, we have studied how an embedded application
can communicate and coordinate with the external world. We
extended the interprocess and communication model developed
earlier by adding a transport mechanism component. We studied
the meaning of information, control and synchronization, and
addressing in the context of the external world.

In the next chapter, we will continue to refine the model
by developing and examining the local and remote components

in greater detail from the points of view of a shared variable
and a message-based interpretation of the information exchange.
The objective is to establish the basic infrastructure and various
implementation architectures for both models. The subsequent
two chapters will study several real-world examples of each ren-
dering of the model.

15.7 REVIEW QUESTIONS

Communication with the Outside World

15.1 Identify the kinds of devices that an embedded application
may be required to exchange information with.

15.2 What are some of the considerations that must be taken
when designing and implementing an interface to an external
world device?

15.3 In an earlier chapter, an intertask communication model
was developed based on the answers to three questions. What
are those questions, and why are they important?

15.4 How is the earlier model of information exchange inside
of the processor extended to accommodate a similar information
exchange with the outside world?

The Transport Mechanism

15.5 What are the three major kinds of message exchange with
external world devices?

15.6 What are the major architectural topographies that may be
utilized to effect an interconnection with external world devices?

Control, Synchronization, and Sharing

15.7 The control and synchronization of an external world
exchange are characterized by what three aspects?

Information Flow

15.8 Identify the three kinds of information flow between the
source and destination of an external world exchange.

15.9 Identify and discuss the differing amounts of information
that may be moved during each segment of an exchange.

15.10 What is the purpose of a software algorithm called a
device driver in the context of an external world exchange?

15.11 Where is the device driver typically located in an embed-
ded application?

15.8 THOUGHT QUESTIONS

Communication with the Outside World

15.1 Identify and discuss possible problems that might arise
when data or signals must be exchanged with the out-
side world compared to a similar exchange inside of the
processor.

15.2 Identify and discuss how the source and destination of an
exchange with the outside world might be recognized during an
exchange with the outside world.

15.3 Identify and discuss how control and synchronization of
the exchange between source and destination might be imple-
mented to effect an exchange with the outside world.

The Transport Mechanism

15.4 Identify and discuss possible transport mechanisms that
might be used during the exchange between source and
destination.
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15.5 What are the strengths and weaknesses of each intercon-
nection topography that may be used for interconnection with
the outside world. Discuss each from the perspectives of perfor-
mance, reliability, and safety.

Control, Synchronization, and Sharing

15.6 What are some differences one might encounter when try-
ing to control or to synchronize with external world devices that
may not be encountered with internal processes? Discuss some
of the consequences of these differences for the design of an
embedded application.
15.7 Can a critical section exist in an exchange with an outside
world device? If so, how should it be solved?

15.8 Can a semaphore be used to control access to shared
information between internal and external processes? If so, how?
If not, are there alternatives?

15.9 Does the notion of an atomic test and set have meaning in
the context of synchronization with an external world device or
process?

Information Flow

15.10 Three different kinds of information flow between the
source and destination of an external world exchange are iden-
tified. Discuss the advantages and disadvantages of each form.
Focus, in particular, on performance, and reliability.

15.11 Differing amounts of information may be moved during
each segment of an exchange. Discuss the advantages and disad-
vantages of each such piece of information. Focus, in particular,
on performance, and reliability.

15.12 A software device driver provides a significant portion
of the control and coordination of an external world exchange.
What capabilities does such a driver typically provide?
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Chapter 16

Working Outside of the
Processor I: Refining the Model
of Interprocess Communication

THINGS TO LOOK FOR …
• Critical components of the shared variable interpretation of the communication model.
• Critical components of the message-based interpretation of the communication model.
• Various ways of implementing the shared variable and message-based interpretations

of the model.

16.1 COMMUNICATION AND SYNCHRONIZATION WITH THE OUTSIDE WORLD

In the previous chapter, we established the foundation for how an embedded application
can interact with the external world. We began by extending the internal interprocess and
communication model developed in Chapter 4 by incorporating a transport component.
That model is repeated here in Figure 16.1.

-Information
-Place
-Control
-Transport

Interprocess Communication

Local Device Remote Device

Figure 16.1 The Interprocess
Communication Model

Embedded Systems: A Contemporary Design Tool, Second Edition. James K. Peckol.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/college/peckol
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In this chapter, we will continue to refine that model by subclassing it into two more
specific models, one focusing on local devices and the other on remote devices. Each will
then be studied in two steps. First, the model is introduced and its unique characteristics are
examined. Next, a detailed discussion illustrates how it applies, in general, to real-world
situations. The following two chapters will illustrate the application of each to specific
real-world situations.

In the model, local devices are assumed to be in close proximity to the core system,
while remote devices are often at much greater distances and tend to be network based.
The model does not distinguish between macro peripheral devices that are implemented as
independent standalone units and micro devices that may be implemented within a single
system or network on a chip. We will begin with the local device model followed by a
similar study of the remote model.

16.2 THE LOCAL DEVICE MODEL

A high-level architecture of the local device model utilizing a local external bus is given
in Figure 16.2. In the model, the information, the source and destination, and the control
and synchronization over the local bus structure are supported through the following sets
of signals:

• Address

• Data

• Control.

CPU
Embedded

Application

Local Model

CPU

External

World

CPU

External

World

CPU

External

World

CPU

External

World

Local Bus

Local Network

Figure 16.2 The Local Device Model Architecture

The address information provides the means of identifying the places where the infor-address, places,
information data,

control
mation or data is to be written to or read from in the model. The control signals implement
the control and synchronization that is unique to the local device model and provide the
physical means by which a transaction is directed and coordinated. Each of these can be
implemented in a variety of ways depending on the nature and structure of the underlying
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I/O channel. It is not unusual for an embedded application even to support several different
schemes.

16.2.1 Control, Synchronization, and Places

The number and structure of the control signals in a local device model is generally
system-specific. Typical signals may include:

• Read/Write signals.

• Address/Data present or stable strobes.

• Clock – where the clock comes from, either a separate line or encoded in the data.

• Transmission direction.

• Ready or active.

• Synchronize.

• Reset.

• Power – may or may not be counted as a control signal.

The means for identifying the places involved in the exchange must consider the initial
set of devices that make up the system as well as any new devices that may be added during
runtime. If the system configuration either never changes or changes infrequently, address
assignment can be accomplished through a set of switches or a set of jumpers, as is done
on a Small Computer Systems Interface (SCSI) device, or it can be permanently assigned
at the time the device is built. Alternately, an approach that works very well for systems
that may have a somewhat more transient configuration uses what is called geographicgeographic addressing
addressing. With such an approach, the system’s management routine assigns an address
to every module on the bus each time the system in powered ON or each time a new device
is attached to the system and subsequently recognized. Such a process is sometimes called
enumeration. A device may or may not have the same address each time the system isenumeration
powered on.

How the address information is used to identify and support communication with a
device involves the usual trade-offs, including familiar constraints such as cost and speed.
Let’s look at a serial implementation first.

16.2.1.1 A Serial Model

When a serial addressing scheme is used, the address and data bits are sent as a serial stream
of 1’s and 0’s over the same physical transport medium. As illustrated in Figure 16.3, the
address appears on the bus first to select the receiver and the data follows.

Data Address

time

Figure 16.3 Information Transport Over a Single
Serial Bus

A higher level protocol must be used on top of the bit stream to distinguish between
data and address information and to ensure that data cannot be incorrectly interpreted as an
address, or vice versa. One approach is to have a common and specified message format
that each participant in the exchange understands and abides by.

The advantage of a serial system is low cost. In some applications, the cost of the
connection hardware and the physical transport mechanism is a major concern. For larger
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installations, spread out over a significant area, that cost can exceed that of the core system.
The disadvantage, of course, is reduced communication speeds.

Today, high-throughput Universal Serial Bus (USB), Firewire, and WIFI interfaces are
providing quite respectable performances. The main difficulty with such schemes is that to
achieve the same information transfer rates that are possible in a more parallel architecture,
the transfer rate has to be increased significantly. With increasing speed comes the need
for much more careful design of the physical transport mechanism. With such increasing
speeds, one begins to move into the world of transmission lines and differential signaling.
Analysis of signal integrity now requires the tools from electromagnetic field theory.

16.2.1.2 A Parallel Model

In a parallel system, the address transmission is commonly handled in either of two ways.
One approach is to transmit the address and data over the same physical bus. As illustrated in
Figure 16.4, the address precedes the data and operates much like the earlier serial method,
only faster since the bits are transmitted in parallel. Again, the address must be tagged to
distinguish it from data. Such a tag can be implemented either as part of the transmission
(again as was done with the serial implementation) or with control lines. In Figure 16.4
two control lines, the address and data strobes, are used. The polarity of the two strobes isaddress, data strobes
shown as low going. One could just as easily invert the polarity.

Addres/Data

Bus

Data Address

Data Strobe

Address Strobe

time

Figure 16.4 Information Transport Over a Single Parallel Bus

The strobes provide two benefits: (i) they simplify distinguishing between the two sets
of bits; and (ii) they enable one to deskew the signals, that is, to evaluate the signals when
they have had time to settle after being switched onto the bus. The address and data infor-
mation can be captured and stored using either a register or a latch.

The capture can be executed on either edge of the strobe for the register or on either
state for the latch, as shown in the portion of a logic diagram in Figure 16.5.

Address/Data

Bus

Address Strobe

Data Strobe

Address/Data

Bus

Address Strobe

Data Strobe

Address/Data

Bus

Address Strobe

Data Strobe

Address/Data

Bus

Address Strobe

Data Strobe

Registers Latches

Figure 16.5 Address/Data Capture On a Single Parallel Bus
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An alternative approach transmits the address and data over physically separate busses.
In such a configuration, the address bus need not be the same width as that used for the data;
the size depends on the architecture and requirements. The address and data are transmitted
simultaneously as seen in Figure 16.6. With such a scheme come significant improvements
in throughput.

Address Bus

Address i + 1

Data i + 1

Data Strobe

Address i

Data i

Data Bus

Address Strobe

time

Figure 16.6 Information Transport Over Separate Busses

In either case, the strobes are essential. Each identifies when the signals on a bus are
stable and valid. Without a strobe, there is no way to properly interpret the values of the
signals.

16.2.2 Information – Data

Whether realized as a serial or parallel bus, the data lines carry the information to be trans-
mitted or received. When implemented in parallel, they will typically carry one word. For
a system with 32-bit words, the data bus will be 32 bits wide and carry DB0–DB31. It
is important to determine which bit is the most significant bit (MSB) and which the least
significant bit (LSB). It is also important to determine whether the data is positive or neg-
ative true.

16.2.3 Transport

The physical transport of the information between the system core and local external
devices can utilize any of the schemas introduced in Chapter 15 . Most frequently, copper
wire provides the means for interconnection.

16.3 IMPLEMENTING THE LOCAL DEVICE MODEL – A FIRST STEP

16.3.1 An Overview

We will now study three different implementations of the local device model for an I/O
subsystem. The source of the data exchange with the external world may be either the
system microprocessor or an external peripheral processor. An exchange originating with
the main system microprocessor can be implemented as series reads and writes to loca-
tions in the system processor’s memory address space or through specifically designated
I/O ports.

memory address space,
I/O ports
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If a special peripheral processor is used, that device will interact with both the mainperipheral processor
processor and the peripheral devices. Communication with the main processor identifies
what needs to be done, and with the devices directs them to execute those requirements.
Figure 16.7 illustrates the interface from the microprocessor to the I/O ports and the memory
address space.

CPU

I/O Ports

Memory

Address Space Figure 16.7 Local Bus Model I/O Ports and Memory
Address Space

16.3.1.1 Main Memory Address Space

Most microprocessors or microcontrollers have limited on-board memory. To support more
complex applications, external memory must be used. To support access to external mem-
ory, the CPU address and data busses are made available outside of the processor. Conse-
quently, one can read data from or write data to any location that “appears” to be an address
within the processor’s primary memory address space, independent of whether that address
is physically inside or outside of the processor. One can take advantage of such a capability
to implement a simple interface to a peripheral device, provided that the device appears as
just another memory location to the processor.

For example, if the storage buffer in a digital imager is placed at memory address
location 0×3000 and a memory read from that address is executed, the stored data can be
accessed as if it were being read from a traditional array in memory at that same address.
Such a scheme is called memory-mapped I/O. The principal advantages of such a designmemory-mapped I/O
are easy implementation and low cost; the disadvantage is the additional burden the scheme
places on the CPU.

16.3.1.2 I/O Ports

On many microcontrollers or microcomputers there are a number of pins specifically dedi-
cated to bringing data into or sending data out of the device. Collectively, they are referred
to as I/O Ports and are different from the external memory bus.I/O Ports

The lines may be designated as Input, Output (unidirectional), or Input and OutputInput, Output, Input
and Output (bidirectional). Unidirectional lines tend to be static. The direction is established in hard-

ware and is usually done during initialization. Bidirectional lines are dynamic; the direction
is selected under program control based on the nature of the transaction. Usually, such sig-
nals are grouped in sets of four or eight lines, and the direction is set for an entire group.

An information exchange based on specifically designated I/O ports is called
program-controlled I/O. Its advantages over memory-mapped I/O are that it does not useprogram-controlled

I/O any of the main memory addresses and it eliminates the dual use of (and thus time burden
on) the memory address and data busses. The disadvantage is that the control of any
exchanges with peripheral devices remains under the auspices of the main CPU.



�

� �

�

16.3 Implementing the Local Device Model – A First Step 739

16.3.1.3 Peripheral Processor

If we move outside of the main system processor and incorporate a special-purpose proces-
sor to handle the interface to the various peripheral devices in the extended system, we have
yet another form of I/O. Such a processor is called a peripheral processor. The purpose ofperipheral processor
the device is to unburden the main processor from the details of the I/O operations and,
generally, to create a higher performance interface than might be possible with either of the
previous two designs.

We will now examine each of these three approaches to supporting input and output
operations in greater detail. We will start inside of the processor and then move to the
outside.

16.3.2 Main Memory Address Space – Memory-Mapped I/O

The idea behind memory-mapped I/O is to have I/O share a portion of the system’s mem-memory-mapped I/O
ory address space. The I/O address space is mapped into a subset of memory addresses;
the data path is common and shared. Thus, I/O reads and writes are done to the processor’s
memory address space exactly as one would any other memory access. The main advan-
tage of memory-mapped I/O is that it is easy to implement and is low cost. The principal
disadvantages are the lower I/O bandwidth and the extra burden placed on the CPU.

A memory-mapped I/O scheme is rather straightforward to implement. An address in
memory address space is assigned to each input or output device as illustrated in the partial
memory map presented in Figure 16.8. Here address 0×F000 is designated for the serial
communication device, 0×F010 for the measurement device, and 0×F100 for the display.
Such a mapping is also illustrated schematically in the block diagram in Figure 16.9.

I/O Space

F000

F010

F100

FFFF

Serial Comms

Measurement

Display

Figure 16.8 I/O Address Mapping to Memory Address
Space

Some devices may have multiple addresses: one for read and one for write, for example.
Typically, addresses are permanently fixed on the device or set using switches or jumpers.

The early program counters (PCs) used such a scheme because it was low cost and
simple to implement. As the PC proliferated, the increased development of a wide variety
of peripherals led to address conflicts, IRQ (interrupt request) conflicts, and limited expan-
sion capabilities. We will now walk through the design of a memory-mapped I/O scheme
for a hypothetical processor. It is assumed that the external device is connected to the
local system.
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0xF000

Embedded
Application

Serial Comms

Measurement

Display

0xF010

0xF100

address data and control
bus

LocalBus

Figure 16.9 Physical Address Assignment to Memory Addresses

16.3.2.1 Address Bus

The address lines, A0–A15, come out of the core processor on the memory expansion ports:
Ports 0 and 1. They will be valid during the address portion of an external bus cycle and are
multiplexed with the data, as discussed earlier.

16.3.2.2 Data Bus

For the processor, D0–D16 appear on Ports 0 and 1 following the address.

16.3.2.3 Control Bus

There are a minimum of four control signals:

• AS – Address Strobe – asserted high, the trailing edge identifies valid address.

• RD – Read-asserted low, the trailing edge identifies that the data has been read.

• WR – Write-asserted low, the trailing edge identifies that data has been written.

• Direction – logical 0 bus out; logical 1 bus in.

To support a read and write operation, the bus must support bidirectional communication.
The timing diagrams in Figures 16.10 and 16.12 illustrate the high-level timing for the

read and write operations.

Address/Data

Bus Data In Address

Address Strobe

Read Strobe

Read from Device

Direction

Figure 16.10 High-Level Timing For a Read Operation
From an I/O Device
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16.3.2.4 Read

For a read operation, the processor will set the direction of the bus to out, place the address
to be read from onto the bus, and issue the address strobe (AS). The address lines are usually
accepted from the bus and stored in buffer, as seen in Figure 16.11. On the external device,
after the address is received, it is decoded. If there are matches, the device then responds as
appropriate for the control signals.

Address Latch

A0

An–1

Address Strobe

74LS374

typ

A0

An–1

Figure 16.11 Address Storage On the I/O
Device From the Bus

The operation continues as the processor sets the direction of the bus to in and the
peripheral device places the data onto the bus accompanied by the read strobe to complete
the cycle. In the event of a block transfer, successive words in the block would be placed
onto the bus, each accompanied by a read strobe, until the transfer completed. Subsequent
addresses would not be necessary, and the direction of the bus would remain set to in until
all data was transferred.

16.3.2.5 Write

The write operation proceeds in a similar manner. The processor sets the direction of the
bus to out and places the device address onto the bus accompanied by the address strobe.
The addressed device accepts and decodes the address and waits for the incoming data.
For each data word to be transferred, the processor places the data onto the bus and issues
the write strobe. As with a block read operation, addresses for the remaining transfers are
unnecessary.

Address/Data

Bus
Data Out  Address

Address Strobe

Write Strobe

Write to Device

Direction

Figure 16.12 High-Level Timing For a Write Operation
From an I/O Device
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16.3.2.6 Bidirectional Bus

Higher speed systems with hard real-time constraints will often have two unidirectional
busses, thereby eliminating the cost of turning the bus around. The design in Figure 16.13
illustrates a first attempt at a bidirectional bus.

Bit B0

Bit Bn-1

direction

Vcc

Vcc

Bit B0(in)

Bit Bn-1(in)

Bit B0(out)

Bit Bn-1(out)

Device
Processor

Figure 16.13 A Bidirectional I/O Bus – design 1

Let’s look at the pieces of this system. First, notice that the bus lines are buffered as
they come off the bus into the device. This is done to ensure a known load on the bus. Next,
each of the bus lines has a pull-up resistor to VCC to ensure that there is never a floating
signal line.

This design uses a single control signal to select whether the processor or the device is
driving the bus. Such a scheme can create several different problems.

Consider the following sequence of events:

1. The state of the direction line is changed from logical 1 (device on the bus) to logical
0 (processor on the bus).

2. The state change will enable the tristate drivers on the processor and allow them to
begin driving the bus.

3. Simultaneously, the state change on the direction line begins to propagate through
the inverter to the tristate control on the drivers on the device. The delay through
the inverter permits both sets of drivers to be on the bus for the length of the
delay.

The consequences of having both sets of drivers on the bus simultaneously include:

• Excessive current draw as the drivers are fighting, producing noise in the power and
ground system.

• Excessive power consumption in the system.
• Potential damage to the drivers.
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The proper design executes a break-before-make switch by using two control lines.break-before-make
Before turning the bus around, the first step is to direct all devices to release the bus. This
is accomplished by placing the enable control line into the logical 0 state. Then the state ofenable
the direction control is changed. Finally, the devices are re-enabled onto the bus by placingdirection
the enable control line into the logical 1 state. The design appears in Figure 16.14.

Bit B0

Bit Bn-1

direction

Vcc

Vcc

Bit B0 (in)

Bit Bn-1(in)

Bit B0 (out)

Bit Bn-1(out)

Device
Processo r

enable

Figure 16.14 A Bidirectional I/O Bus – design 2

From the preceding timing diagrams, it is evident that the CPU must be involved in each
aspect of the exchange. Furthermore, the transfer rate for any such exchange is determined
by the rate at which the device can read or write data. A slower device can place a significant
burden on the CPU operation. It should be evident that utilizing the CPU in such an activity
in higher performance systems is not the best use of the resource.

On the software side of the picture, we have the following code fragments in Figure
16.15. In each case, anAddress is the address of the target device in I/O address space.anAddress

C

*anAddress = aValue; // Write to anAddress

aValue = *anAddress; // Read from anAddress

Assembler

LD aReg, anAddress; // Register ← anAddress

ST anAddress, aReg; // anAddress  ← Register

Figure 16.15 C and Assembler Code Fragments For a Write
and Read Operation to and From an I/O Device
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16.3.3 I/O Ports – Program-Controlled I/O

On many microprocessors, there are instructions in the CPU instruction set to execute the
transfer of data to and from the system.

The IN-type instructions are used to transfer data:

From
Specified memory location or I/O Port

To
Specified memory location or Register

The OUT-type instruction used to transfer data:

From
Specified memory location or Register

To
Specified memory location or I/O Port

The hardware implementation of the external infrastructure follows that utilized in the
memory-mapped design. The major difference is that a dedicated I/O bus, rather than an
external memory access bus, is used as the transport medium for the transfer.

The timing and instructions for utilizing the I/O ports are specified in the ven-
dor’s literature for each specific microcontroller or microcomputer. Its advantage over
memory-mapped I/O is that the port I/O is separate from main memory address space and
it eliminates the shared usage of the memory address and data busses. The disadvantage is
that the control of any exchanges with peripheral devices remains under the auspices of
the main CPU.

16.3.4 The Peripheral Processor

The memory-mapped or program-controlled I/O models require the CPU to be involved in
all transactions, including managing any of the detailed timing, which can place a significant
burden on CPU. In contrast, a peripheral processor scheme dedicates a (special-purpose)
processor to handle all I/O tasks. The basic architecture appears as a peripheral processor
that may or may not be connected to system memory. A high-level design is illustrated with
a simple block diagram as shown in Figure 16.16.

0xA03
SerialComms

Measurement

Display

0x879

0x5DE

peripheral
address data and control

bus

Embedded
Application

CPU

Peripheral
Processor

Memory

L
o
c
a
l B

u
s

Figure 16.16 A High-Level Block Diagram For Managing I/O Devices Using a Peripheral Processor
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Several different exchange algorithms, based on the various levels of involvement of
the main system bus, the CPU, and any nonperipheral devices, are possible. The following
alternative protocols are classified according to the level of the CPU involvement.

• The CPU must send to/receive from the peripheral processor while the peripheral
processor manages all I/O. The peripheral processor uses the system bus in bursts
during the exchange and signals the CPU when data is available.

• The CPU tells the peripheral processor where to find/put the data in memory. The
peripheral processor exchanges data with the memory, manages all I/O, and signals
the CPU when data is available. The peripheral processor uses the system bus in bursts
during the exchange or, for the case of direct memory access (DMA), for the duration
of the exchange. The scheme uses address passing and a shared buffer.

• The CPU enables a nonperipheral device and the peripheral processor to communi-
cate. The peripheral processor exchanges data with the device, manages all I/O, and
signals the device when data is available. It may signal the CPU when the transaction
is complete. The peripheral processor uses the bus in bursts during exchange or for
the duration of exchange.

The major advantage of using a peripheral processor is that the I/O speed and trans-
actions can be independent of the CPU, thereby unburdening an expensive resource. The
major disadvantages are the higher cost and complexity.

16.4 IMPLEMENTING THE LOCAL DEVICE MODEL – A SECOND STEP

We have now looked at three alternative architectures for executing the exchange with the
external world using a local device model. Let’s now take a more detailed look into the
control and synchronization component of that exchange. While working inside of the pro-
cessor, three types of interchange between tasks and threads were identified. Moving into
the local context outside of the microprocessor, little changes. Three types of interchange
remain possible: an event, a shared variable, and a message.event, shared variable,

message Remember that these are abstractions of more varied concepts. Within each type, there
are a wide variety of related signals. Thus, we see that the data exchange may be used with
the outside world or between tasks within the processor. Let’s revisit the three modes of
exchange discussed earlier.

16.4.1 Information Interchange – An Event

An event is any change in the state of a signal of interest. Usually, the event is assumed to be
a single signal that is asynchronous to the executing process. Every occurrence of the event
simultaneously activates functions or procedures associated with tasks that are linked to the
event. The occurrence of an event may or may not be stored in some way. This becomes an
important issue in real-time systems.

The event may be acquired in several ways. It can be sampled; one example is called
polling. In such a case, recognition of the event is synchronous with normal program flow. Inpolling, synchronous,

asynchronous,
interrupt

another form, it arrives asynchronous to the normal flow; one example is called an interrupt.
The processor is not required to respond to such events.

The control flow model for an event is given in Figure 16.17.

External
Task T1

Local
Task T0

Figure 16.17 Control Flow Diagram: Event-Based
Information Exchange With an I/O Device
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16.4.2 Information Interchange – A Shared Variable

A shared variable may be read or written by multiple processors or I/O devices. It is typically
used to exchange data between asynchronous processes. Because there are no interprocess
timing constraints, the integrity of data must be respected. Such shared data represents a crit-
ical section; it is important that it be protected with a semaphore, a monitor, or some other
means, as was done earlier for the case of shared data among tasks and threads. Ensuring
such protection is more difficult as one moves outside of the processor.

Shared variable(s) may be global. Normally, the use of globals is discouraged in tradi-
tional programming; often, we will use such schemes in real-time designs to eliminate the
cost (in time) of passing parameters via the stack. Here a global buffer area may be des-
ignated as a place into which data or a “pointer” to a buffer area may be held. The source
of the transaction may then issue a control event indicating that new information is now
available.

The direction of the transaction may be unidirectional or bidirectional and the operation
a simple Read or a Read/Write. The destination of the transaction may be a word or buffer
in a shared memory space or to one of several bits in I/O port space. For the more extensive
containers, generally, a pointer to the container is exchanged if the processes cooperating
in the exchange are working in the same address space. Pointer exchange will be infeasible
or meaningless for devices that are not sharing a common memory address space. The data
and control flow diagram in Figure 16.18 illustrates a shared variable exchange.

Shared Buffer B0

External

Task T1
Local

Task T0

Figure 16.18 Control Flow Diagram: Shared
Buffer Information Exchange With an I/O Device

16.4.3 Information Interchange – A Message

When a greater amount of information, coupled with a more sophisticated exchange proto-
col becomes necessary, the message model is preferred over the shared variable or the event.
The exchange is typically over either a proprietary interface, a modified standard such as
Electronic Industries Association (EIA) 232, or a dedicated version of one of the standard
channels such as USB or Firewire. The accompanying high-level diagram, in Figure 16.19,
adds a simple network to the local model.

As with shared variables, the direction of the message exchange may be unidirectional
or bidirectional, and the intent may be a simple Read or a Read/Write operation. A task
wishing to send or receive a message from a local peripheral device will provide the address
of a buffer to the I/O driver from which information is read or to which it is written by the
driver.

A data and control flow diagram for one implementation of the message model of the
local exchange is illustrated in Figure 16.19.
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network

External

Task T1

Local

Task T0

Buffer B0

Local I/O

Driver

Buffer B1

External

Device I/

O Driver

Figure 16.19 Control Flow Diagram: Message-Based Information Exchange With an I/O
Device

16.5 IMPLEMENTING AN EVENT-DRIVEN EXCHANGE – INTERRUPTS AND POLLING

An event-driven exchange of information with local devices is implemented in a variety
of different ways based on the level of control and information that is necessary. Whether
inside or outside of the processor, the necessary operations reduce to what we have already
learned: polling operations and interrupts. We will now examine each in a context that
moves beyond the bounds of the processor. Let’s look first at polling as a means of com-
pleting an exchange.

16.5.1 Polling

With a polling scheme, a control device is required. Such a device can be either the main
CPU or a peripheral processor. In the following discussions, we refer to either one as simply
the CPU. For such a scheme, flow of control is generally implemented as a polling loop.polling loop
In the polling loop, each external device that may require service or may have essential
information is interrogated. Service may be necessary on several occasions:

• During power up.

• On demand.

• As part of normal flow of control.

During power up, one may be completing the task of confirming system integrity
by requiring each local device or process to report its status. The event source may be a
piece of hardware that is reporting the results of a self-test or an initialization sequence.
It may also be the same information coming from a software process that is now up and
running.

When needed, the application may request that a hardware or software module execute
a self-test or an automatic calibration and return the results. The request may also be part
of a system integrity check or routine updates to the system configuration.

Alternatively, as an integral part of the task being executed, the application may
initiate some action, such as a switch closure or signal activation, and then continually
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test for results from such a request. Whatever the motivation, the algorithm precedes
as follows:

1. Send device address followed by specific request.

2. Receive a response.

The response may consist of a single signal, a word, state information,
or status. The result may be the state of the system or the result from a
requested action.

As a result of the response, we may choose further action or continue polling.

3. If further response
if send operation

When the device ready received – as appropriate
Transfer to appropriate routine
Execute transfer
Return to polling loop to look for result

else if collect status, results, or receive operation

Collect or receive, then continue polling other devices
Status may include self-test results, a ready condition after power up,
availability for additional transfer, data available, or completion of a
requested operation.

The general polling operation is expressed in the state diagram in Figure 16.20.
Following each response, flow of control may be temporarily switched to an associated
routine that handles the response.

Start

Address 1

Address 2

Response 2

Response 1

Service or

Get Information

Alternate path

Alternate path

Figure 16.20 State Diagram Describing a Typical System Polling Algorithm
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A limitation that one encounters with polling, as with the busy wait or spin lock studied
earlier, is that the CPU can do nothing else while polling. The advantages, however, are that
the process is deterministic and the time to complete the operation (or a specific phase of
the operation) is predictable based on instruction counting or direct measurement, as we
learned earlier. The worst case response will occur if the state of the signal being polled
changes immediately after it was sampled and the remaining code in the polling loop must
be executed prior to returning to the appropriate test. In real-time systems, with a hard
deadline, being able to analyze and to quantify the flow of control is absolutely essential.

16.5.2 Interrupts

Whether one is working inside or outside of the processor, the goal of an interrupt-based
exchange is the same as that of a polled approach. The major difference is that when using
interrupts, the CPU is not dedicated to monitoring the state of a signal input; it can be
engaged in other tasks. The source of the interrupt signals from outside of the processor
is generally going to be in the hardware. A typical microprocessor-based I/O system may
have one or more lines designated as external interrupts. Each such interrupt input mayexternal interrupts
potentially be connected to one or to several devices.

We will first examine how a single external interrupt, originating outside of the proces-
sor, might be managed. As the name suggests, an interrupt signal interrupts a background
activity (using a foreground/background model). As with internal interrupts, one must write
an interrupt service routine (ISR) to handle the event. The processor vendor will have des-
ignated a priority level and associated a source with each supported interrupt. The ISR is
entered into the vector table in exactly the same way as was done earlier for internally based
interrupts. Because of such a seamless structure between internal and external interrupts,
the management scheme will differ little from the one we have already studied.

16.5.2.1 Single Interrupt Line with Single Device

The first task in managing an external interrupt is the same as that for the internal cousin:
identify the source of the interrupt. Identifying the causative event and the device that initi-
ated the event is easy with only a single device. When the interrupt occurs, two actions are
possible: It can be ignored or responded to. We will discuss ignoring the interrupt and the
consequences shortly.

Responding to an external interrupt is no different from responding to an internal one.
It is not much more than a subroutine call.

The procedure is as follows:

1. Suspend the current process.

2. Save the current context.

3. Acknowledge the interrupt.

4. Branch to the ISR appropriate to interrupting device.

5. Execute the routine.

6. Restore the former context and resume the former process.

16.5.2.2 Single Interrupt Line with Multiple Devices

When dealing with multiple devices on a single interrupt line, the problem is only slightly
more complicated than with a single device. Figure 16.21 illustrates one method of
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Vcc

Device 0

Device 1

Devicen-1

Open Collector

Interrupt Input

Interrupt Acknowledge

Microprocessor

Figure 16.21 Block Diagram for a System Utilizing a Single External Interrupt to
Support Multiple Devices

connecting to the interrupt line. Each source connects using an open collector/drain driver
as shown in the figure.

In responding to the event, the CPU issues an acknowledge (ACK) informing the inter-acknowledge
rupting device that the interrupt has been recognized and the handling process will begin.
The acknowledge can be managed in several different ways. One approach is illustrated
with the block diagram in Figure 16.22.

ack

interrupt

Device 0 Device 1 Device n−1

Figure 16.22 Block Diagram For a System Utilizing a Single Interrupt With a Chained
Interrupt Acknowledge Scheme

In the design, the ACK is chained through the peripheral devices. Therefore, priority
is based on physical proximity to the controller. The closest device has the highest priority.
Each device in the chain must handle the ACK and pass it on or block the flow of the ACK
and execute its ISR routine. The design is similar to that in the token ring for selecting
writers.

An alternative acknowledgment scheme is coupled with the process of identifying the
source of the interrupt as we will see next.

16.5.2.2.1 IDENTIFYING THE INTERRUPT SOURCE
When multiple sources use a single interrupt, the identity of the device requesting service
must be determined and the possibility of multiple interrupts must be considered. We will



�

� �

�

16.5 Implementing an Event-Driven Exchange – Interrupts and Polling 751

address the problem of identification first. In addition, for the moment, it will be assumed
that only a single interrupt has occurred.

16.5.2.2.2 SINGLE INTERRUPT
A polling or a vectoring scheme both offer a simple and effective means to identify the
source of a single interrupt. We will look first at polling.

The polling operation begins when the interrupt occurs. At this point, the current task
is suspended and the flow of control switches to an ISR. The ISR will query each device
in turn. Once the source is identified, the interrupt will be acknowledged and the flow of
control will vector to the appropriate handler routine to manage the request and then return
and resume the suspended task. The code fragment shown in Figure 16.23 illustrates a
pseudocode implementation for the ISR.

interrupt service routine

{

repeat

query device

receive status

until (status == interrupt)

switch on device id

{

routine 0

•

•

•

routine n-1

}

return

}

Figure 16.23 Pseudocode Algorithm For Responding
to an Interrupt in a System Utilizing a Single Interrupt
With a Chained Interrupt Acknowledge Scheme

With a vector scheme, the device requesting service issues an interrupt. When the
interrupt is acknowledged, the interrupting device returns an identifier of some sort. The
identifier can be the device name or the address of the service routine, for example. The
sequence to handle the interrupt then proceeds as with the polled alternative.

16.5.2.2.3 MULTIPLE INTERRUPTS
With several devices on the same line, one must consider the possibility of having multiple
simultaneous and/or sequential interrupts. We will examine each of these cases next.

16.5.2.2.4 SIMULTANEOUS INTERRUPTS
The easiest solution for identifying the source is to handle each interrupt in turn in a round
robin fashion. The pseudocode for an ISR to implement the search is given in Figure 16.24a.
A priority-based scheme can be an effective alternative. Priorities can be assigned based on
physical proximity to the CPU (closer is higher priority), on an assigned value, or on the
time the interrupt occurred. In any case, the higher priority device gets serviced first. In the
latter case, a tie can still occur. The easiest solution is to manage them on a first-identified
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interrupt service routine

{

repeat

query device

receive status

if (status == interrupt)

{

switch on device id

{

routine 0

•

•

•

routine n-1

}

}

until no interrupting device identified

return

}

interrupt service routine

{

for each device

query device

receive status

if (status == interrupt)

{

add to list

}

end for

repeat

{

select highest priority from list

switch on device id

{

routine 0

•

•

•

routine n-1

}

}

until list empty

return

}

(a) (b)

Figure 16.24 (a) Pseudocode Algorithm For First-Come First-Served Scheme for Servicing
Multiple Simultaneous Interrupt. (b) Pseudocode Algorithm For a Priority Scheme For Servicing
Multiple Simultaneous Interrupts

first-served basis. Alternative approaches to resolving the tie are best left to the designer
who has a good understanding of the system and the application.

A pseudocode implementation for a round robin-based ISR is given in Figure 16.24a,
and a priority-based ISR is given in Figure 16.24b.

A third approach to resolving the interrupt source utilizes a vector-based scheme.
The process begins when the device requesting service issues an interrupt. When the inter-
rupt is acknowledged, the interrupting device returns an identifier. The identifier can be
the device name or the address of the service routine, for example. The sequence to han-
dle the interrupt then proceeds as with the polled alternative. Acknowledge messages can
be repeatedly issued until the interrupts are handled and the interrupt signal returns to the
inactive state.

16.5.2.2.5 SEQUENTIAL INTERRUPTS
If a second interrupt can potentially occur while the first is being handled, one can either
initially disable further interrupts and, thereby, ignore all that subsequently occurs until
the current ISR exits or assign a priority to each device. If a newly interrupting device has
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higher priority than the one being handled, it is managed in the same way as is done when
calling a subroutine from subroutine.

When incorporating a protocol that disables interrupts, it is important to thoroughly
understand the consequences. Because an interrupt is generally a transient event, it may
be gone by the time the system is ready to handle it. Under such a circumstance, one may
elect to implement a queue in which the event and its source are stored. This approach will
work well as long as the state of the context in which the interrupt occurred is not critical
or transient.

16.5.2.3 Multiple Interrupt Lines

When working with a processor that supports multiple external interrupts, the analysis from
the previous sections is easily extended. For each interrupt, one must consider the case of
a single device on each interrupt line and that for multiple devices per line. We will start
with a single device per line.

16.5.2.3.1 SINGLE DEVICE ON EACH LINE
For the case of a single device on each individual line, we treat that line as we did for a
single line with single device. To manage the multiple lines, we follow the model that we
established for the case of the single line with multiple sources. Thus, we can manage the
interrupt handling on a round robin basis, or we can assign priority to each line.

A priority-based design can proceed in several ways by using:

• External hardware

• Internal hardware

• Internal software.

EXTERNAL HARDWARE
To resolve priority-using external hardware, one can use a device called a prioritypriority encoder

encoder, shown as a high-level block diagram in Figure 16.25. The circuit can be pur-
chased as a Medium-Scale Integrated (MSI) device, or one can opt for a proprietary design
if commercially available components do not satisfy requirements.

Int 0

Int 1

Int n-1

Out 0

Out 1

Out m-1

Priority

Encoder

Figure 16.25 A Hardware Priority Scheme For
Managing Multiple Simultaneous Interrupts

The high-level behavior for the priority encoder is to accept n inputs and to present a
binary number corresponding to that input (based on its assigned and fixed priority) as an
output. For the drawing in Figure 16.25, assume Int0 has the highest priority as set by the
design of the encoder. Under such an assumption, when Int0 is asserted, the output set [Out0
… Outm−1] will contain the pattern binary 0. If Int0 is not asserted and any other interrupt
input, Inti is asserted, the output set [Out0 … Outm−1] will present the binary number
corresponding to Inti. If later Int0 is asserted or reasserted, then the output set [Out0 …
Outm−1] will assert binary 0 since Int0 has the highest priority. Processing of Inti by the
processor is suspended, and Int0 processing commences.
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The truth table in Figure 16.26 specifies an eight-line to three-line priority encoder.
Int0 is assumed to have the highest priority. A Valid output is added to ensure support forValid
the full eight priority levels. Without the valid output, one could not distinguish between
interrupt, Int7, and no interrupt active.

int0 int1 int2 int3 int4 int5 int6 int7 Out1 Out2 Out3 Valid

0 0 0 0 1

1 0 0 0 1 1

1 1 0 0 1 0 1

1 1 1 0 0 1 1 1

1 1 1 1 0 1 0 0 1

1 1 1 1 1 0 1 0 1 1

1 1 1 1 1 1 0 1 1 0 1

1 1 1 1 1 1 1 0 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 0

Figure 16.26 A Truth Table For an Eight Interrupt Priority Encoder

MANAGING WITH INTERNAL HARDWARE
The same scheme described earlier is implemented in hardware inside the processor or
controller chip.

MANAGING WITH INTERNAL SOFTWARE

The same scheme described earlier is implemented in software inside the controller or pro-
cessor chip.

16.5.2.3.2 MULTIPLE INTERRUPT LINES WITH MULTIPLE DEVICES ON EACH
When each interrupt line supports multiple devices, we begin with the same model we
developed for the single device case. Once an individual line is selected to be serviced, we
follow the single interrupt–multiple devices model.

16.5.3 Masking Interrupts

Masking is the process of ignoring an interrupt by preventing it from propagating to the
interrupt management hardware and software. As with other concepts we have looked at,
the scheme can be implemented in software or hardware. Figure 16.27 gives a hardware
implementation. A software design would be functionally equivalent.
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Int 0in

Int 1in

Int n-1in

Enab 0

Enab 1

Enab n-1

M 0

M 1

M n-1

Interrupt

Mask

Register

Int 0

Int 1

Int n-1

Figure 16.27 A Block Diagram For Masking Interrupts

To implement the scheme, a mask register is added to the system of interrupts. Anmask register
interrupt is selectively enabled by placing a logical 1 on the corresponding position in the
mask register and disabled by entering a logical 0. Microprocessors that support masking
will provide instructions in support of managing the mask register. Observe that the inter-
rupt can still happen; it is blocked, however, from initiating the internal interrupt signal. A
priority scheme could easily be incorporated into the design as well. A general term is of
the form

ei ⋅ ii ⋅ ii+1 ⋅ ii+2 ⋅ … . (16.1)

as shown in the truth table in Figure 16.26. Higher priority interrupts are those to the right.
When a processor supports a masking scheme, often a subset of the potential interrupts

is designated as nonmaskable. These are usually interrupts associated with critical systemnonmaskable
functions, such as an illegal instruction trap, that must be handled.

16.6 A MESSAGE

The diagram in Figure 16.28 adds basic network capability to the local model to support
simple message-based exchanges.

When messages are exchanged within the local system or between the local system
and connected peripheral devices, the receiving device must be able to accept the incoming
stream of information and then to detect and identify the start and end of a bit, the start and
end of a character, and the start and end of a message block or frame. These are known as
bit, character, and frame synchronization.

bit, character, frame
synchronization

The different transmission modes give rise to two general categories of message
exchange: asynchronous transmission, in which the receiver resynchronizes at theasynchronous
start of each bit, and synchronous transmission, in which the receiver resynchronizessynchronous
either continuously based on encoded clock edge transitions or at the start of each block
or frame.
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Embedded
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World

CPU

External
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CPU

External
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CPU

External

World

Local Bus

Local Network

Figure 16.28 A Block Diagram For a System Utilizing Both a Local Bus
and Local Network Architecture

Asynchronous communication is characterized by irregular intervals between the trans-
mitted data groups. The intercharacter spacing on the communication channel may vary
widely. There may be bursts of activity followed by long periods of inactivity. In contrast,
when blocks of regularly spaced data are transferred over a serial line, the transmitter and
receiver can be synchronized to a common clock, thereby permitting character transfer
at a much higher rate. Such a format is known as synchronous transmission. Generally,
synchronous transfer requires less overhead and, therefore, is more efficient than an asyn-
chronous design. Let’s now look at asynchronous communication and timing in greater
detail and then follow with a look at a synchronous approach.

16.6.1 Asynchronous Information Exchange

Because there is no inherent clock associated with an asynchronous exchange, coordination

synchronous
transmission

and synchronization are accomplished using a protocol that permits (re)synchronization of
the data to the receiving system’s internal clock. Both the protocols and the amount of data
exchanged can vary tremendously.

16.6.1.1 Strobes

Let’s look at several common design examples. The first is illustrated in Figure 16.29. In
one of the simpler designs, the source will transmit data in parallel, by word, and associate
a strobe with each outgoing word. The received data will not be acknowledged.
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data

strobe

strobe

Figure 16.29 Using Positive Going or Negative Going Strobes to Deskew and
Capture Asynchronous Data

Observe, as the timing diagram reflects, that the strobe can be of either polarity, the
data sampled on either edge, and the data transmission is sporadic. We use such a scheme
when speed is important and the probability of data corruption is low.

16.6.1.2 Strobe with Acknowledge

The next level of sophistication (and reliability) associates a strobe with each outgoing data
word. Receipt of the word is acknowledged with a return strobe or acknowledge as we see
in Figure 16.30. In the design, the sender blocks on receipt of the ACK.

data

strobe

ACK

Figure 16.30 An Asynchronous Data Capture Scheme
Utilizing a Strobe and Acknowledge

The strobe and acknowledge signals can be of either polarity.

16.6.1.3 Full Handshake

A full handshake confirms all phases of the exchange. As Figure 16.31 illustrates, the trans-
action begins at the receiver when it indicates that it is ready to accept data by placing its
control line into the logical 0 state.

Data

Sender

Receiver

Figure 16.31 An Asynchronous Data Capture Scheme Utilizing a Full
Handshake
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That low state initially (or the trailing edge following a transaction) tells the sender
that data may now be placed onto the bus. The sender responds by placing the new data
onto the bus, followed sometime later by the rising edge of the control signal. That action
informs the receiver that new data is on the bus and that it has settled and can be captured
correctly.

In response, the receiver raises its control line to inform the sender that data has been
received and that it may now be removed from the bus. The state change on the receiver side
prompts the sender to lower its control line, thereby acknowledging the receiver’s capture
of the data. The receiver then lowers its strobe to complete the transaction. The trailing
edge in the receiver control indicates to the sender that a new transaction may begin if data
remains to be sent.

16.6.1.4 Resynchronization

Another form of synchronization protocol entails generating a sampling signal on the
receiver side based on knowing the transfer rate and when the first data bit has arrived.
Such an approach is known as bit timing.bit timing

The approach works as follows. The transmitter and receiver are timed by independent
clocks. To capture the incoming signal reliably, one must know the length or duration of a
bit and when a transmission starts. In the ideal situation, the signal is sampled in the center,
which gives the maximum tolerance for errors on either side of the signal.

Such an approach can be implemented as illustrated in Figure 16.32.

Sample

data

receiver

clock

clock starts SampleSample

0 1 2 3 0 1 2 3 0 1 2

bit time bit time bit time

0 1 1

first bit

Figure 16.32 An Asynchronous Data Capture Scheme Utilizing Bit
Sampling at the Receive

The bit time and message length are agreed upon, in advance, by the sender and
receiver. It is also agreed in advance that the idle state of the data line will be a logical 1
and that a transition from logical 1 to logical 0 will signify the start of a transmission. In
the current design, we select a receiver clock with a period that is one-fourth of the bit
time; that is, there are four receiver clocks during each bit time.

The start of a character is signaled by the transition of the data line from logical 1
to logical 0. In response, the receiver clock is started, and the number of receiver clocks
is counted. Based on the agreed upon timing, it is known that the falling edge of the
second clock will be in the center of the data bit. At this point, the incoming data bit
can be stored. The falling edge of the sixth (two clocks+ four clocks) clock pulse will
occur in the center of the second data bit, which can now be stored. The process can be
repeated until all data has been received. For the current example, the stored data would be
read as 011.
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The block diagram in Figure 16.33 illustrates the design.

Receiver

Clock
Data

Sample Clock

(Counter

MSB)

Start

Detect

Shift Register

2 Bit Binary

Counter

Enable

Figure 16.33 A High-Level Block Diagram for a System Utilizing Bit Sampling at the Receiver

16.6.1.5 Analysis

The potential problems with an asynchronous approach include the following:

• It is difficult to test.
• Clock noise is more difficult to filter out.
• The protocol to identify the start/end of transmission is potentially a bit more complex

than a synchronous scheme.

At the same time, the asynchronous approach can offer several advantages.

• The devices within the system can run at different/differing speed.
• There will be no clock skew on long busses.

16.6.2 Synchronous Information Exchange

The asynchronous transmission schemes have several drawbacks, including the extra over-
head of control bits and the bit clock synchronization scheme, which becomes less reliable
at higher data rates. Such problems can be mitigated to a large extent with synchronous
transmission. Nonetheless, it is still necessary to achieve bit, character, and frame synchro-
nization. Frame synchronization is usually derived from bit or character synchronization.
With synchronous transmission, exchanges between the sender and receiver are synchro-
nized to the clock either directly or through signals encoded in the data.

16.6.2.1 Bit Synchronization

To achieve bit synchronization, a two-step process is typically used:

• Encode the clock in the data.
• Re-derive the clock from the data.

16.6.2.1.1 ENCODED CLOCK
To encode the clock in the data, three different methods or their variants are commonly used.

BIPOLAR ENCODING
When using bipolar encoding, binary 0’s and 1’s are represented by different polarity sig-
nals, as is shown in Figure 16.34. Each bit cell contains clocking information, as reflected
by the transition in the center of the bit cell.
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data

encoded data

1 0 0 1 1 1 10 0

0

1

+

0

–

Figure 16.34 Clock Encoding Using Bipolar Encoding

Observe in the diagram in Figure 16.34 that the signal returns to zero level after each
encoded bit. Such a scheme is referred to as return-to-zero (RZ) signaling. The approachreturn-to-zero (RZ)
requires three distinct signal levels.

MANCHESTER PHASE ENCODING
In a Manchester Phase Encoding scheme, a binary 0 is encoded as a high to low signalManchester Phase

Encoding transition and a binary 1 as a low to high signal transition. The transition occurs in the
center of each bit cell, which provides the clock information.

Observe in Figure 16.35 that the signal does not return to zero level after each encoded
bit. Such a scheme is referred to as a nonreturn-to-zero (NRZ) signaling.nonreturn-to-zero

(NRZ)

data

encoded data

0

1

0
1

1 0 0 1 1 1 0 1 0

Figure 16.35 Clock Encoding Using Manchester NRZ Phase
Encoding

MANCHESTER DIFFERENTIAL ENCODING
With Manchester Differential Encoding, illustrated in Figure 16.36, once again the tran-Manchester

Differential Encoding
center start

sition occurs in the center of each bit cell and provides the clock information. We have a
transition at the start of each bit cell only if the next bit to be encoded is a binary 0.

1 0 0 1 1 1 0 1 0

data

encoded data

0

1

0
1

Figure 16.36 Clock Encoding Using Manchester NRZI
Differential Encoding
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16.6.2.1.2 RE-DERIVING THE CLOCK
To re-derive the clock from the data, the transmission begins with a preamble, including
a synchronization sequence. A phase locked loop (PLL), based on a very stable receiverphase lock loop (PLL)
clock, is used to keep the sample clock locked to the signal transitions in the incoming
signal. Data must be encoded to ensure a sufficient number of signal transitions to retain
synchronization. At each transition, the sample timing is adjusted to ensure sampling in
the center of a bit. The design will tolerate intervals without transitions, provided there is a
stable fundamental clock.

The PLL is a conventional closed loop control system with some additions and modi-
fications. The basic structure for a closed loop system is given in Figure 16.37.

System Under

Control

Feedback

Input Output

Figure 16.37 Basic Feedback Control System

For the traditional analog closed loop control system, the input is algebraically added
to a signal that is modified and fed back from the output of the system. The result is an error
signal that serves as an input to the system under control. The objective of the system is to
drive the error signal to 0.

In the case of a PLL, the objective is to control a frequency. The basic block diagram
is presented in Figure 16.38.

Filter VCO

Input
Frequency Phase

Detection
Amp

Output
Frequency

Figure 16.38 Implementing a Phase Locked Loop Utilizing a Basic Feedback Control System

The output of the PLL is generated using a voltage-controlled oscillator (VCO). The
output of the VCO is fed back to a phase detector that compares the signal characteristics
of the input signal with those of the one being fed back. When the frequency and phase
difference between the input signal and the output of the VCO is 0, the system has lockedlocked
onto the input frequency. A difference in frequency and phase appears as an error voltage
that is filtered by the low pass filter shown, amplified, and provides an input voltage to the
VCO. The output of the VCO can now serve as the clock to our system. The input signal
to the PLL is of any of the encoded data streams we discussed earlier.

16.6.2.1.3 ANALYSIS
As we learned with the asynchronous approach, potential problems are also associated with
a synchronous design.
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• All devices must run at the same speed.

• Because of (potentially) different loading on clock versus data lines, we can have
different propagation delays along a bus.

• There is the possibility that the clock will arrive at the various destinations at different
times with respect to the data, as illustrated in Figure 16.39. Thus, one can easily get
clock skew (with respect to the data) on long busses, particularly at higher clocking
frequencies.

Data

Clock

Clock

Data

t0

t0

module 0

module n-1

Figure 16.39 Clock Skew On a Long Bus in a
Synchronous System

Some of the potential advantages of a synchronous design are:

• It is easier to test.

• Generally, the protocol is simpler than an asynchronous approach.

• It is easier to stay in sync with the data than with an asynchronous approach.

16.7 THE REMOTE DEVICE MODEL

As the demands on embedded systems grow in sophistication, so does the complexity of
their design. Heretofore the tasks doing the majority of the work in the application have
been primarily found in the main processor. The local device model we have been studying
has focused on and supported interaction with peripheral devices in close proximity to the
local system. Any tasks executing on such devices have associated with the function of
the specific device. Those tasks are generally not considered to be part of the application
proper.

The other component of external world interaction introduces the remote device model
and the notion of distributed tasks executing on such devices. These tasks are often consid-remote device model

distributed tasks ered to be a contributing part of the main application.
Figure 16.40 now adds remote capability to the expanding embedded system architec-

ture.
Up to this point, interprocess communication and synchronization has depended

primarily on familiar semantics utilizing a number of variations on the shared variable
paradigm. The local device model works well as long as the devices with which the
system is interacting are within 3–5 m of the controlling microprocessor. Frequently, the
data movement is done in parallel. Although such communication is far more efficient at
moving large numbers of bits than serial, it is not always as practical.

As we begin to expand to greater distances, our thinking shifts to a network-based
approach in which tasks can exchange information through messages. The sending process
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Embedded
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External

World

External

World

Remote Systems

Extended Network

Figure 16.40 Extending the External Intra-System Communication by Adding a Network

transmits a set of data values, the message, through the specified communication mediummessage
where it is accepted by the receiving process. The medium may be a channel or port. Thechannel, port
basic supporting operations are Send and Receive.Send, Receive

The major differences between the remote and local device models are reflected in
the details of the transport mechanism and the control and synchronization of the informa-
tion exchange. Most remote intra- and inter-system communications within a distributed
embedded system take place over a standard network using a serial scheme – EIA-232,
I2C, Ethernet, USB, and so on.

Any modern automobile provides an excellent example of such a system. Processors
throughout the vehicle manage everything from the fuel system to the passenger environ-
ment and entertainment systems. Internet and Internet appliances are further examples of
contemporary distributed embedded applications.

As we move to networked systems, we introduce a new collection of opportunities and
challenges. One of the basic goals is to ensure that the underlying architecture is invisible to
the tasks comprising the application. That is, from any task’s perspective, interaction with
other tasks should not depend on where the tasks are physically located or on the computing
engine on which each is executing. Furthermore, we want to be able to exchange informa-
tion with any part of the system both easily and seamlessly. The notion of highly cohesive,
loosely coupled modules that was introduced earlier continues now with movement outside
of the processor.

Challenges arise because of the very nature of the distributed system. With such sys-
tems, the possibility of local failures now exists. The system can experience hardware or
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software failures on any of the distributed portions of the application while the remain-
der of the system continues to operate. The designs must be tolerant of such failures. The
interprocess communication and synchronization problem is also exacerbated. As the appli-
cation becomes increasingly distributed, the communication delays become longer and
may become nondeterministic. The need to meet hard real-time constraints thus remains,
increasing the complexity of any analysis and modeling of such problems.

16.7.1 Places and Information

Figure 16.40 gave a high-level architecture for the remote device model. In the model,
the identity of the places where the information is to be written to or read from and theplaces, information
information itself are embodied in messages exchanged over the remote network structure.
The format of the message can be implemented in a variety of ways depending on the nature
and structure of the underlying protocol and supporting networks.

16.7.2 Control and Synchronization

The control and synchronization strategy is incorporated into the protocol by which thecontrol and
synchronization messages are exchanged.

16.7.3 Transport

The physical transport of the information between the system core and the remote exter-transport
nal devices can utilize any of the models introduced earlier in this chapter. Today, copper
wire remains the medium of choice; however, fiber and air are gaining widespread support.
Within programmable logic devices or networks on a chip, it is a silicon path.

16.8 IMPLEMENTING THE REMOTE DEVICE MODEL – A FIRST STEP

We will now begin our study of the message exchange portion of the remote device model.
Central to any such communications between electronic devices is the protocol for trans-
mitting and receiving the information or message. We will start with the transport level.
Message exchange in distributed embedded applications occurs either via a proprietary net-
work or one implemented according to one of the many standards. Typically, the transport
topology is serial and information flow is full duplex. Whether it utilizes a proprietary or
standard topology, the typical transport architecture comprises a hierarchy of virtual net-
works.

Above the physical portion of the transport mechanism will be a varying number of
software layers or levels, as illustrated in Figure 16.41. The function at each level or layer
on one machine interacts with the corresponding function at the same level on the second
machine.

At each level, potentially a different language, referred to as a protocol, is spoken.protocol
service consumer The function at each level is to provide services for the level above. Thus, between levels,

we have the relationship of a service provider and a service consumer. At each level, theservice provider,
protocols may be implemented in either hardware or software. Typically, the lower levels
are done in hardware and the upper in software.

The entire collection is called a network architecture and the set of protocols usednetwork architecture
protocol stack,

message
is called a protocol stack. The information sent on each level is called a message. It is
possible that a message on a higher level is composed of several lower level messages.
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Figure 16.41 An N Layer Network Architecture

Synchronization between or among distributed processes is accomplished through such a
message exchange.

Today, a wide variety of protocol standards are available. Although a proprietary net-
work and protocol must sometimes be used, given a choice one should opt for one of the
standards. The general objective of each standard is to facilitate message exchange in a spe-
cific application context such as small computer networks (EIA-232 or USB), simple local
area networks (Firewire, Bluetooth, I2C), automotive networks (Controller Area Network
[CAN] bus), or manufacturing environments (CAMAC). Though unique to their particular
context, most of these models trace their ancestry to two major protocol schemes or stacks,
OSI and Transmission Control Protocol (TCP)/Internet Protocol (IP).OSI, TCP/IP

16.8.1 The OSI and TCP/IP Protocol Stacks

The Open Systems Interconnection model (OSI) was proposed and developed by the Inter-
national Standards Organization (ISO). The OSI protocol specifies a seven-layer virtual

Open Systems Interconnection
Model (OSI)

Transmission Control
Protocol/Internet

Protocol (TCP/IP).

machine. The TCP/IP, comprises a five-layer virtual machine. We compare the two in
Figure 16.42. The physical and data link layers of OSI are combined into the host to network

physical, data link,
host to network

layer in TCP/IP.
The hierarchical architecture and layers for the OSI and the TCP/IP models are pre-

sented and compared in Figure 16.43. Observe that at the network layer and below, the
models are hardware based, and above that level, the model is expressed in software.
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Architectures for the OSI and TCO/IP Models
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Figure 16.43 The Network Architecture for the OSI and TCP/IP Models
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16.8.1.1 OSI – Physical Layer

The physical layer moves collections of bits (1’s and 0’s) over a communications channel.bits
There is no meaning or structure to the collections. At this level, concern is for mechanical
and electrical interfaces, the integrity of bits, and the physical characteristics of the bits.
Such characteristics include the number of volts and the width (in time) of each bit. Control
issues address how a connection is established and released.

16.8.1.2 OSI – Data Link Layer

The data link layer moves collections of bits aggregated as frames. The sender breaks theframes, data frames
acknowledgement

frame
data stream into data frames. The receiver acknowledges reception via an acknowledgment
frame. The data link layer must create and recognize frame boundaries, which is facilitated
by surrounding a frame with delimiters. The data link layer also manages flow control and
some error management.

16.8.1.3 TCP/IP – Host to Network

No significant requirements are specified at this level. The host system must simply be able
to connect to the network and to transmit or receive IP (Internet protocol) packets.

The OSI network layer corresponds to the TCP/IP Internet layer.network layer, Internet

16.8.1.4 OSI – Network Layer

In the OSI stack, the network layer manages the routing of a transmission from thenetwork layer
source to the destination. As part of that task, it must accommodate the different
characteristics between or among networks such as addressing, message size, and
protocols.

Activities are directed toward managing the network and the physical movement of
data; bits are collected into manageable packets. Above the network layer is a collection of
virtual machines that have the responsibility for managing the session.

16.8.1.5 TCP/IP – Internet Layer

The Internet layer is the key element of the TCP/IP model. It defines the official packet
format and protocol, the IP or Internet Protocol. The main task of the Internet layer

internet layer IP,
Internet Protocol

is to move a message comprised of packets from point A to point B. No requirement
is placed on the packet ordering during transmission or the route a packet may take.
During an exchange, all packets may or may not take the same route from source to
destination.

Both the OSI and the TCP/IP models support a transport layer. The basic purpose oftransport layer
this layer in either model is to isolate the application from the underlying mechanics of
managing the network below.

16.8.1.6 OSI – Transport Layer

The tasks of the transport layer in the OSI model include accepting data from the session
layer that is immediately above and then subdividing that data into packets that are

transport layer, session
layer network layer

compatible with the network layer below. The fundamental objective is to ensure that
the transactions are implemented such that the hardware appears invisible to the higher
layers.
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16.8.1.7 TCP/IP – Transport Layer

The TCP/IP transport layer is equivalent to the OSI transport layer and has similar
responsibilities. Two communication protocols are defined for the layer: TCP and UDP.
The former, TCP, is very reliable and ensures that a data stream originating on one machine

transport layer TCP,
UDP Transmission

Control Protocol

is delivered to any other machine on the network.
The latter, UDP – User Datagram Protocol – is considered to be unreliable in theUDP – User Datagram

protocol sense that message delivery is under a best effort constraint rather than guaranteed delivery,
as is found with TCP. UDP is designed for hosts who want to implement their own packet
sequencing and flow control. It finds application in request–response and client–server typerequest–response,

client–server applications in which speed is traded for accuracy.

16.8.1.8 OSI – Session Layer

In the OSI model, the session layer permits users on different machines to communicate.session layer
Like the transport layer, it supports movement of data between machines. However, it offers
a richer set of features and capabilities. At the session layer, we are moving from must
dos to offers to do. The layer manages dialog control; for single-direction transmission, itmust dos offers to do
tracks turns to send and manage tokens in token passing protocols. The session layer also
synchronizes transactions and reassembles the message if necessary. Such cases occur if
the transfer cannot be completed in a single session or if there is a major error such as a
line drop or node crash.

16.8.1.9 OSI – Presentation Layer

The goal of the presentation layer is to offer a generic set of solutions to common problems.presentation layer
Potential services include mapping the information, including types, structures, and encod-
ing, from the source computer representation to the network representation and then from
the network representation to the destination representation. We will discuss this process in
greater detail shortly.

The session and presentation layers in the OSI stack have no counterpart in the TCP/IPsession, presentation
layers, application

layer
model. Both models support the top level, the application layer.

16.8.1.10 OSI – Application Layer

This level also deals with incompatibilities between systems at opposite ends of the net-
work. Although there is some accommodation for hardware differences, the primary focus
is on the software. Potential incompatibilities important to embedded applications include
file systems and remote procedure execution. We will discuss remote procedures shortly.

16.8.1.11 TCP/IP – Application Layer

The application layer on the TCP/IP model duplicates most of the responsibilities that weapplication layer
have already identified in the OSI model.

In any distributed embedded design, understanding either of the base models facilitates
the understanding of protocols derived therefrom. When one elects to communicate using
any of the common standards, generally one integrates a commercially available protocol
stack rather than choosing a proprietary design. It is also important to recognize that the
OSI hierarchy is a model on which other protocols may be built. One typically does not
find a specific implementation in practice.
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16.8.2 The Models

Most distributed embedded systems will implement a message-based exchange utilizing
any of three patterns of communication and synchronization, client–server, peer-to-peer,
and group multicast.

client-server,
peer-to-peer group

multicast

16.8.2.1 The Client–Server Model

The client–server model, shown in the state diagram in Figure 16.44, closely parallelsclient–server
producer–consumer,

server
client, request-reply

the producer–consumer model we studied earlier. The model assumes that a server (or set
of servers, analogous to the producer) exists that is able to provide some service required
by some client. The client–server pattern involves the exchange of request–reply messages
according to the following sequence:

1. Client: Transmit a request to the server process and block.
2. Server: Execute the request.
3. Server: Return the reply to the client.

Request

Reply

Client

(Blocked)
Server

(Process)

Figure 16.44 The Client–Server Model for
Message-Based Exchange

The server process, analogous to the producer process, is aware of the message as soon
as it arrives. Activity in the sending process suspends or blocks until the reply is received,
thereby providing a form of synchronization. The process is commonly represented at the
language level as a remote procedure call (RPC), which thus hides the underlying commu-remote procedure call
nication operations – the invisibility of the infrastructure that was required earlier.

At the logical or functional level, the exchange appears to be directly between the client
and the server processes. In reality, the interchange is managed by the local kernel. Signals
move from or to the respective software drivers and to and from the physical network.

16.8.2.2 The Peer-to-Peer Model

The peer-to-peer model follows naturally from the client–server model. In the model, sev-peer-to-peer model
eral (peer or equal) processes cooperate to solve a problem or to share information. The
notion of a pre-designated client or server does not exist; rather, any member of the net-
work may request a service from or provide one to any of the others. Such an approach
can remove a potential bottleneck that arises in the client–server model when a number of
clients must interact with a single server at the same time. The peer-to-peer model permits
several nodes to provide the requisite services. Synchronization is achieved through the
message exchange as was done in the client–server model.

A portion of the architecture of such a system appears in Figure 16.45 as a minor
modification of that for the client–server.
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Figure 16.45 The Peer-to-Peer
Model for Message-Based Exchange

16.8.2.3 The Group Multicast Model

The group multicast model, shown in Figure 16.46, comprises a single sender and multiplegroup multicast
receivers. Such a scheme is used when it is necessary to pass information to all nodes within
the network. We may use such a scheme to force all nodes into a known state, to initiate a
system wide self-test, or to locate an object or service. In the last case, for example, the name
of the desired resource or service might be multicast to a group of server processes, the one
that holds the resource or that can provide the service responds. Similar ideas underlie Sun’s
Jini architecture. The USB uses a group multicast to require all nodes to “disconnect” from
the network and to listen at a known address as an initial step in the enumeration process.

Receiver 0

Receiver 1

Receivern-1
Sender

Figure 16.46 The Group Multicast
Model for Message-Based Exchange

The approach can be inherently fault tolerant. The same task can be multicast to mul-
tiple servers; if one fails, the task can still continue. Multicast also works well if the same
information is to be sent to a group of interested processes.
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The multicast is not mutually exclusive with the other communication and synchro-
nization patterns. In a peer-to-peer network, for example, a multicast might be used by a
node entering the network to announce its presence and the services it can provide.

16.9 IMPLEMENTING THE REMOTE DEVICE MODEL – A SECOND STEP

We will now examine the client-server and group multicast communication schemes in
greater detail. Peer-to-peer follows from client–server. We begin with the client–server
model by taking a look at the fundamental components of such systems, including the
underlying data structures and the messages.

16.9.1 The Messages

When designing and implementing distributed embedded systems, one quickly discovers
that remote operations make up a substantial proportion of the interactions between pro-
cesses. Such operations are initiated by one process sending a request message to another
process. The receiving process responds with an acknowledgment or a reply indicating that
the operation has been or will be carried out.

Viewed from the most abstract level, a message is simply a collection of bits, as we see
in Figure 16.47, and the exchange is the movement of those bits from one place to another.
To make the design of message-based communication tractable, rules are applied to the
exchange and to the interpretation of the bits.

Data

Figure 16.47 An Abstraction of the Basic
Message

16.9.2 The Message Structure

One such interpretation views others of the bits as data or payload and others as header
information. The payload is the information being transported. Moving the payload from

data, payload, header
information

addressing control and
synchronization

one place to another is the ultimate objective of sending the message. The header informa-
tion facilitates that job and is added by the communication driver to provide addressing and
control and synchronization information. The message now appears as in Figure 16.48.

DataHeader

Figure 16.48 A Header Added to the
Basic Message

Not all messages are the same size. They may be simple, occupying only a few words of
memory, or they can be complex, comprising a large number of blocks of data. The design
of the exchange process is cleaner and more robust if the bits are organized to ensure that
fixed sized groupings are always transferred. Such groupings are variously referred to as
datagrams or packets. There are times when padding or fill bits must be included to ensuredatagrams, packets
that the packets are the proper size if there is insufficient data available to complete the
packet. Figure 16.49 now gives a logical view of the message that has been divided into
packets.
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DataHeader

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Figure 16.49 The Basic Message Decomposed into Packets

16.9.3 Message Control and Synchronization

There are actually two kinds of control and synchronization in a message-based exchange:
the header information and the data transfer scheme.

16.9.3.1 The Header

The header information is overhead that is necessary for getting the data from one place to
another. This information is added (at each level within the protocol stack) by the commu-
nication driver software based on the requirements of the exchange protocol (at that level).
Potential header elements might include the destination address or message identifier infor-
mation. At minimum, this field identifies the destination for the message. If one is working
in a networked context, the header might also provide routing information and identify both
the sender and receiver of the message. The header field may also provide an indication of
the size of the message. This is done in several ways: there may be unique start and end
identifiers, or a start identifier and a length field.start, end

start identifier, length
field

The header generally includes information about the message type or structure. It may
be desirable to distinguish between data-type messages and command-type messages, for
example.

As was discussed in the earlier chapter on safety, an important element of communi-
cation is ensuring that the data given to the user following reception contains no errors that
may have occurred during transmission. Note that there is no guarantee that there will never
be transmission errors; these happen. Rather, at the end of the day, the guarantee is that, if
passed to a task, the data will be correct. As discussed earlier, this is accomplished through a
variety of schemes: all begin with recognizing that a transmission error has occurred. Thus,
to this end, in the header field one might elect to include error management information as
well. Such information may support detection only, for example, simple parity, or detec-
tion and correction with the inclusion of a block check or a cyclic redundancy check (CRC)
sequence.

16.9.3.2 The Transfer Scheme

The physical information transfer may follow a proprietary protocol or one of the stan-
dards or derivatives discussed earlier. Within such protocols, two kinds of services are
identified: connection oriented and connectionless. A connection-oriented service estab-connection oriented,

connectionless lishes the connection between the source and destination prior to the exchange of any data.
The exchange follows and the connection is terminated. Messages enter one end and are
extracted from the other end; ordering is preserved. The exchange is designated as reliablereliable
because the reply is effectively an acknowledgment. Such a scheme is referred to as cir-circuit switching

cuit switching. Each packet in Figure 16.50 will be sent, in turn, through the same physical
path.
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DataHeader

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Figure 16.50 The Basic Message Decomposed into Packets

A connectionless service does not establish a specific connection prior to the start of the
exchange. Each packet carries full address information; each may arrive at the destination
through any of several different routes and may not arrive in the same order in which it was
sent. Address information has been added to each packet shown in Figure 16.51. Such a
scheme is referred to as packet switching. A connectionless exchange is designated as best
effort.

packet switching, best
effort

HdrAdx
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HdrAdx
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DataAdx
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DataAdx
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DataAdx
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DataAdx
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DataAdx
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DataAdx

P9

DataAdx
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Figure 16.51 Address Information Added to Each Packet

Messages may be sent as a datagram service, in which the message is sent but the
receiver does not acknowledge; as an acknowledged datagram service, in which the message
is sent and the receiver acknowledges; or as a request-reply service, in which the sender

datagram
acknowledged

datagram request-reply
transmits a datagram containing a request and the receiver returns a datagram containing
the answer. This last-named scheme is often used in the client–server model.

16.10 WORKING WITH REMOTE TASKS

The next step in examining the inner workings of message-based aspects of the remote
device model begins with the client–server model. With this model, the processes (whether
local or remote) either provide a service or request one. The former are the servers and theservers clients
latter the clients. Any process may play either or both roles.

16.10.1 Preliminary Thoughts on Working with Remote Tasks

Before proceeding with the development of remote functionality, it is important to be aware
of several major differences between local and remote tasks. Starting at a high level, the
initial view of distributed client-server interaction is presented in the block diagram in
Figure 16.52.

The client and the server each assume direct communication with the other. The com-
munication link proceeds through the local kernel (client or server side) to the network and
then to the remote node (server or client side), where the message is interpreted and passed
to that local process.

At this level, the implementation seems rather straightforward. Such is not always the
case, however. Before taking the next step, let’s anticipate some of the problems that might
be encountered.
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Client

Kernel

Physical Network

Server

Kernel

Logical Communication

Figure 16.52 A High-Level View of a Client–Server Model

16.10.1.1 Local vs. Remote Addresses and Data

When working with distributed systems, one must remember that not all tasks are going
to be using the same memory space or be on the same machine. The different addressing
schemes and data formats must now be carefully considered. Data items in the programs are
expressed as primitives such as arrays, structs, and classes, as well as richer, more complex
structures built from these. In contrast, the information being exchanged in messages is
(inherently) flat or sequential.

One must also remember that not all processors express data in the same way – different
endianness or different word sizes are common. Such differences are evident in even simple
elements such as integers. To permit the exchange of information among computers, one
must ensure that, at some level, the data values are expressed in an agreed upon common
(external) form.

If all the components in an external system speak the same language, in the same
way, there may be no need for conversion. More often, the outside world is made up of
a heterogeneous collection of devices provided by a variety of different vendors. Under
such conditions, communication and information interchange become more of a challenge.
In such cases, part of establishing a connection may be negotiating a common language.
Another alternative is to elect to communicate in some native form; such communication
may have to include an architecture identifier.

16.10.1.2 Repeated Task Execution

When one is designing a distributed embedded application, one must consider the possibil-
ity that the request for an action or procedure invocation from a remote device may become
corrupted and, hence, rejected. One must also address the possibility that the complete mes-
sage may never be received. Consequently, the remote procedure may never be executed,
be partially executed, or be completely executed.

Any of these alternatives may lead to serious safety problems. Although the complete
execution of a requested remote procedure may seem innocuous, if confirmation that the
task completed is not received or properly interpreted by the sender, additional requests
may be issued. If the request is of the form, “decrease flow rate of an inhibitor or increase
the temperature of a process,” repeated requests may create serious safety problems. When
designing the exchange, one must consider:
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• How to avoid such duplicate messages.
• How to handle missed acknowledgments.
• How to handle both the success and failure of an operation.

In an attempt to anticipate and manage such situations, contemporary distributed
embedded applications incorporate what are called at most once semantics and atomic
transactions. We will examine both of these shortly.

at most once atomic
transactions

16.10.1.3 Node Failure, Link Failure, Message Loss

A distributed system is susceptible to a variety of failure modes not seen in the local model.
One can generally detect failure, but often it is not possible to distinguish between a link
failure, a node failure, or a message loss. Once a fault is detected, the appropriate action
can be taken.

16.10.2 Procedures and Remote Procedures

With these preliminary caveats in mind, we continue with the discussion. In a traditional
software application, perhaps the most commonly used means for encapsulating a set of
software instructions is the procedure. A procedure call is executed on the main processorprocedure call
by writing the name of the procedure followed by the associated parameters enclosed in
parentheses. When that procedure resides in a remote address space, we would still like to
be able to use similar semantics. Such an invocation is known as a RPC. One may also see
the terminology remote procedure invocation (RPI) used.

remote procedure call
(RPC) remote

procedure invocation
(RPI)

interface language
processor binding

service communication
driver request–reply

protocol

Remote procedure calls are similar to, yet different from, the familiar local procedure
calls. Support for the remote call generally includes an interface language processor, a
binding service, and a communication driver. The invocation is most commonly based on
a request–reply protocol. The client invokes a service by sending request messages to the
server. The server performs the requested service and sends a reply back to the client. Gen-
erally, the client waits for a reply before proceeding, analogous to a local call.

16.10.2.1 Calling a Remote Procedure – RPC Semantics

The RPC paradigm combines the familiar (local) procedure call model with the client-server
model. The goal of the RPC model is to have tasks interact with local and remote procedures
seamlessly.

When a local procedure is called, parameters and any return value are usually passed
into and returned from that procedure via a stack. Following the call, the calling procedure
then blocks waiting for the return. Such an approach is not possible with a remote procedure.
Nonetheless, it is desirable that the remote call appear as if it had been local.

The first step in creating such an illusion is to write stubs for the procedure that are
then placed on the client and server. These stubs have the same public interface – the same
procedure name, return type, and signature – as the full procedure. The public interface
masks the behind-the-scenes magic.

When the server process is ready, it will execute a blocking receive. When the client
performs the call, the input parameters are passed to the server as values to arguments in
a request message. To model local call semantics, following the call, the client blocks andrequest message
awaits the return.

When the message arrives, the server retrieves the parameters and executes the
procedure. Following execution, the output parameters are returned to the client in a
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reply message. The returned values replace the values of the corresponding variables inreply message
calling the context. Such a scheme is equivalent to pass by value semantics found in conven-pass by value

pass by reference tional procedures. Pass by reference semantics is more difficult to implement and requires
additional information about the parameters used as input, output, or both.

Because it is executed in a different context from the caller, the remote procedure can-
not see global or other variables in the calling context. Passing memory addresses or the
equivalent is meaningless. Arguments cannot directly include data structures or pointers to
memory locations.

The block diagram in Figure 16.53 illustrates the structure and flow of the operation.
As the diagram illustrates, when the client invokes a procedure that resides on a remote
server, that call is intercepted by the client stub.client stub

Client

Client Stub

Physical Network

Server

Logical Communication

Parameters Message

Server Stub

Parameters Message

Transport Transport

Figure 16.53 A Block Diagram View of a Remote Procedure Call

16.10.2.1.1 PASSING AND RETURNING PARAMETERS
The stub contains routines to put the parameters, return values, and any other data to be
interchanged into a format that is compatible with the network and with the remote system.
Such a conversion is called marshaling. The stub then builds a message containing thatmarshaling
information and forwards that request message to the transport driver. The message is sent
out over the network to the server node; there the process is reversed. Converting from a
network-compatible format to the format of the remote device is called unmarshaling.unmarshaling

The response from the server, following the execution of the requested procedure,requested reply
follows the same procedure to return the reply to the client. The remote procedure and
associated operations have the same structure as a local version.
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Marshaling begins with a collection of data types and then flattens or serializes thosemarshaling
structures into a sequence of basic data items. The data items are then converted into a
form that is suitable for transmission in an outgoing message. That is, they are translated
into an external representation. Marshaling can be “done by hand” in the sending program
or generated automatically from a formal specification of the data items to be transmitted.
A conversion “done by hand” means that the sending program explicitly converts each of
the data items from their internal (local) representation to the agreed upon external (remote)
representation. Unmarshaling is the process of reassembling the data to its equivalent formunmarshaling
(may not be an identical form) on arrival at the remote node or at the local node when a
response is returned.

16.10.2.2 The Transport

Single-message transport is supported by two operations, send and receive, as seen in ear-send, receive
lier chapters. To communicate, one process sends a message (a sequence of data items) to a
destination. The destination process receives the message. Earlier, communication betweenreceives
the sending and receiving processes was identified as synchronous or asynchronous withsynchronous,

asynchronous respect to a common clock. In the current context, these words have slightly different mean-
ings.

A synchronous exchange is accomplished by requiring that when a send is issued, the
client process blocks and waits until the corresponding receive is issued before sending out

synchronous, send
receive

the next request. Similarly, the receiving process will block and await an incoming message.
Such an exchange is called Idle RQ or Stop-and-Wait.

Idle RQ,
Stop-and-Wait

Significant improvements in performance can be gained if the constraints on receiving
the reply are relaxed, thereby making the exchange asynchronous. Under such a scheme,asynchronous send
rather than blocking following a send, the client process is allowed to proceed as soon as
the outgoing message is copied into a local buffer.

If the client does not block, the client and the server are working in parallel. The client
can send consecutive messages without waiting for a reply. Similarly, the server may queue
up several reply messages while working on the next call. Such a scheme is similar to the
pipelining techniques used to improve performance of the CPU instruction cycle or certain
kinds of computations and is called Continuous RQ.Continuous RQ

The nonblocking scheme can be used if the client tasks are computationally intense ornonblocking
if the client is working on a task that requires coordination with a number of servers. In the
former (blocking) case, the client can proceed with the next computation while the serverblocking
is working with the results of the first. In the latter (nonblocking) case, the client can send
all the requests off and then collect the replies as they come in. Such might be the case
when the client is in a master control console in an automated factory and the servers are at
the various assembly lines. The client can send out status request messages to each of the
distributed lines and then collect the results. Little is gained by forcing the client to wait for
each reply before sending the next.

16.10.2.3 Message Source and Destination

In the client–server model, there are a number of possible destinations for a message. The
possibilities include a process, or group of processes, a port or group of ports, a socket, or an
object. Thus, one of the arguments of a send operation is an identifier indicating the destina-send
tion of the message. Most operating systems will use a process or port. A port is a message
destination that has exactly one receiver but potentially many senders. On occasion, a port
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is also known as a mailbox. However, a mailbox always has a message queue, whereas amailbox
port may not.

In Internet protocols, the destination address is specified as a port number used by the
process and the Internet address of the computer on which the receiving process is running.
The problem that arises with such an approach is that the service must always be run on
the same machine for the address to remain valid. Recall our earlier discussions on internal
interprocess communication.

Ideally, one would like to have location transparency. To that end, location-independent
identifiers are used. Such an identifier is mapped by network driver and router software into
a lower level address to deliver the message. The approach naturally takes into account the
current location of the service, thereby enabling message destinations and services to be
changed without having to inform the clients of the new locations.

When working with a client–server implementation, communication is always in the
form of request–reply pairs. Normally, the communication is synchronous. That is, therequest–reply
client process blocks until the reply is returned. However, one can elect to implement an
asynchronous scheme when the client can afford to delay retrieval.

16.10.2.4 The Protocol

There are two primary ways by which a RPC capability can be incorporated into a design.
One approach is to utilize a programming language in which the mechanism is already built
in. The advantage of such an approach is that the RPC requirements can be dealt with by
language constructs similar to the way exceptions are handled in C++. An alternative is to
use a special-purpose interface language. The advantage of this approach is that the design
is not tied to a particular language or language environment.

The client–server protocol is often implemented as a trio of messages. Communica-
tions costs are low since only three system calls are required. The server reply message
is interpreted as an acknowledgment. The exchange is presented in the state diagram in
Figure 16.54.

DoOperation
GetRequest
SendReply

getReq

exec

sendReply

Request

Reply

Client
Server

DoOp

wait

continue

Figure 16.54 A State Diagram of a Client–Server
Exchange
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16.10.2.5 RPC Interface Definition

When writing a program in C or C++, the prototype for each function in the design is
specified. The compiler uses that information to ensure the proper binding of the procedure
call to the procedure body. An RPC interface definition provides the same information in a
list of procedures and associated signatures. The list identifies the procedures, the variables
types, and parameter types. For remote procedures we identify three basic parameter types:

• Input only – such parameters are only permitted to pass information into a remoteinput only
procedure.

• Output only – parameters of this type can only send information from the server tooutput only
the client. The same parameter cannot be used to send information back to the server.

• Input and Output – such a parameter can be used to send information to a server andinput and output
then used by the server to return information to the client.

Such a list enables the RPC system to identify which values to marshal into request
and reply messages.

Also included in the interface definition is similar information for those procedures
offered by the server that are visible to clients. The clients and servers use the service name
to refer each of the procedures.

16.10.3 Node Failure, Link Failure, Message Loss

The requirements in today’s embedded systems are placing high demands on safety and
reliability. An issue that is closely related to detecting and managing faults is managing the
delivery of messages. When working in a distributed context, the problem of duplicate and
lost messages is more acute than in a local context because there is greater opportunity for
corruption.

16.10.3.1 Node Failure and Loss

As an aid to the early identification of a link or node failure, one can use a handshaking
protocol monitored by a watchdog timer. At periodic intervals, both sites send an I-am-upI-am-up
message. If the watchdog timer expires, the client is not able to contact the server, or a
time-out has occurred using a request-reply-acknowledge protocol because a failure hasrequest-reply-

acknowledge occurred, further action must be taken.
The client can respond by polling the server or source of the expected I-am-up message.

If there is no response, no additional information has been gained. A second route can then
be tried. If there is a response, it is known that the server is up and the link has failed.
Otherwise, it is known that the server is down or the time-out is too short. If lengthening
the time-out fails, a server failure can be assumed. Such reasoning presumes no double
failure.

Suppose that the above detection protocol identifies a problem. When such exceptions
occur, the client process must be able to report and manage them in a safe and robust way.
For software exceptions, some languages such as C++ and Java provide constructs for han-
dling them. When no such means exist within the implementation language, the procedure
call can, at minimum, return an error code. For hardware exceptions, one can initiate a
protocol to allow the system to reconfigure to continue operation.

If the direct link to the receiver has failed and been identified, the information must be
rebroadcast to all other sites in the system, thereby allowing the routers to reconfigure. If
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the client believes the site has failed, every other site must be notified so that they will not
attempt to use failed node.

When a failed site is repaired, it must be reintegrated into the system. Reintegration
can be done by a handshaking procedure. Information to update routing tables also needs
to be broadcast. Queued messages may then be delivered to the site.

16.10.3.2 Message Loss

The RPC semantics must specify what happens when a procedure call is repeated. In a
distributed embedded application there is always a finite probability that an initial procedure
call, a reply message, or a return value may be lost. Therefore, it must be assumed that a
procedure call may be repeated.

Consider the following situation. An RPC is executed to increase the set point value on
a boiler by a certain number of degrees. The call is received and executed, but the acknowl-
edge is lost. The sender times out on the response and resends. Now, a potentially dangerous
situation exists: The set point should not be raised a second time.

The exact implementation of such semantics depends on whether or not the receiver
maintains state. For the case in which the server maintains state, the client holds state infor-
mation in some data structure. Subsequent client calls to the receiver build on the stored
information. However, a server crash can potentially lose that information unbeknownst to
the client. When the server (and client) does not retain state information, each transaction
stands alone.

Observe an analogous situation with MPEG-encoded data. The high data compression
and throughput speed are achieved by transmitting only the differences from a reference
frame. If the reference is lost, the subsequent differences are irrelevant.

Several of the more common RPC call semantics are expressed here.

16.10.3.2.1 MAYBE CALL
As the name suggests, under the following case the execution of the call is uncertain. The
request is sent and a timer is started. If the reply message is not received before the timer
expires, the safe exit is taken with no retry. However, there is no way of knowing if the
procedure call succeeded or if it was ever executed. The request message may have been
lost or the server crashed; or the procedure may be executed and the reply message lost.
Such semantics are unacceptable in an embedded application.

16.10.3.2.2 CALL AT LEAST ONCE
With such a scheme, unless the server has failed, it is known that the call has succeeded;
however, what is not known is how many times. If a timely reply is not received from the
server, the request message is retransmitted. Eventually, a reply is returned and received by
the client, indicating that either the call succeeded or the server has failed. In the former
case, the server may have received and executed the message more than once. If the server is
designed to be idempotent – that is, an operation can be performed repeatedly with exactlyidempotent
the same effect as if it had been executed once – there is no problem and such semantics are
acceptable. If all operations are idempotent, then there are no special needs for handling
repeated requests.

16.10.3.2.3 CALL AT MOST ONCE
At most once semantics requires that a request be executed either zero times or at most oneat most once
time. If the transaction cannot be completed, the request is abandoned or the state of the
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system is rolled back to that preceding the requested procedure invocation. As a caveat, one
must remember that it is not always possible to roll the state of a system back. As the old
expression goes, “we can multiply by zero, but, we can’t divide by zero.”

To deal with the rollback problem, the server tracks duplicate messages, for example,
by looking at a time tag associated with the message. Contemporary protocols are (easily)
designed to recognize as duplicates successive messages from the same client with the same
message identifier. These are filtered out. That is, if a duplicate message is received and has
been acted upon, the reply is retransmitted, but the operation is not re-executed. This scheme
requires a guarantee from the server that it will not process a repeat invocation of the same
call. The semantic is typically implemented on servers that retain state information.

16.11 GROUP MULTICAST REVISITED

An exchange used for communication from a single process to a group of processes is
called multicast. A multicast message can be viewed as a broadcast message to a subset ofmulticast
all recipients. It is a useful tool for constructing distributed systems that must

• Be fault tolerant, that is, require replicated services.

• Locate distributed services or resources. Client requests can be multicast to members
of group of servers.

• Work with replicated data.

• Support group update in the event of change.

When a process enters the system, it may wish to locate services or resources or
announce those services it can provide. To locate services, the process will multicast a
discovery query; to announce services, it will multicast a service announcement. Only thediscovery query

service announcement appropriate server responds to the discovery query. After the resource or service has been
located, the information is cached to reduce the need for further multicast messages. With
multicast, we can get improved performance through replicated data. Copies of data are
cached locally, and thus access speed is increased. Multicast can be used to update all
copies when data changes.

The multicast approaches used are described in the following sections.

16.11.1 Atomic Multicast

A message transmitted by atomic multicast must be received and acted upon by all tasks
that are part of the group or by none. Such a requirement ensures that all receivers are in
the same state after the operation. If one does not receive, then none receives. If a receiver
dies, then it is removed from the group.

16.11.2 Reliable Multicast

A reliable multicast makes a best effort to deliver a message to all members of the group;
however, there is no guarantee that all members will receive and act upon the message. An
unreliable multicast transmits a message only once.

An atomic transaction requires that the entire transaction be interpreted as a single,
indivisible unit of information. If the full request is not available, it is not acted upon. For
the atomic multicast, message ordering must be preserved. The ordering is implemented
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through first-in-first-out (FIFO) buffering on the receivers. All receivers must execute com-
mands in the same sequence. The strongest ordering is called a totally ordered multicast;
a less restrictive ordering is called casual ordering. Casual ordering assumes that if two
events occurred in the same process, they occurred in the order observed. For messages
sent between processes, we assume that the event of sending a message occurred before the
event of receiving it.

16.12 CONNECTING TO DISTRIBUTED PROCESSES – PIPES, SOCKETS, AND STREAMS

Let’s now look at how one might make a logical connection to a (remote) process. Three

totally ordered
multicast

casual ordering

alternatives are identified: pipes, sockets, and streams.pipes, sockets, streams

16.12.1 Pipes

Pipes are the earliest and most elementary type of interprocess communication mecha-
nism. They are simply an implementation of the classic producer–consumer model. Such a
scheme allows two processes to communicate through a buffer of finite size. That buffer is
implemented as a shared FIFO data type and thus supports only one-way communication.
The pipe is created by a process using a system call. Analogous to the descriptors returned
from a file access call, the system returns two pipe descriptors, one for reading and one for
writing.

The data flow diagram in Figure 16.55 expresses such a relationship. The bidirectional
flow illustrated in the figure is made up of two unidirectional flows.

Process 1Process 0

Pipe

Figure 16.55 A Data Flow Diagram of an
Information Exchange via a Pipe

The interchanged data is stored in FIFO order using standard read and write opera-
tions. The communication is one-to-one and the pipe exists only as long as the processes
do. However, one process could perform a write operation and terminate long before the
consuming process.

When the processes are on separate compute engines, the pipe is identified by the path
to its location. Such pipes are referred to as named pipes. Named pipes are restricted tonamed pipes
one domain and a single file system. Such a restriction is not particularly limiting for most
distributed embedded applications.

16.12.2 Sockets

The communication path between two processes can be modeled as a channel terminated
on either side by an endpoint or socket. In such a model, interprocess communication oper-socket
ations are based on sending messages between socket pairs; one belongs to each of two
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communicating processes. Each socket is identified by an address that is made up of a local
endpoint address (typically, a port number) and a global endpoint address, which is the host
address on the network (typically, the Internet address of the machine on which the socket
was created).

Communication can be either bidirectional or unidirectional; the communicating
tasks can be on the same or on different machines. Any process can create a socket
for use in communicating with another process. Like the pipe, a socket is created by a
system call, and also like the pipe, it has file I/O type semantics. The system call returns adescriptor
descriptor that becomes a handle or logical endpoint by which the socket is referenced in
future.

Before the sockets can be used to communicate, the destination process must bind thebind
descriptor to its socket address, which is the physical endpoint for communication. The
sender must do so as well if a reply is required. A system call used to execute the binding
requires a socket descriptor and a reference to a structure containing the socket address to
which the socket is to be bound. Once bound, a socket address cannot be changed. As was
found with the pipe or a file, a socket lasts until it is closed or until every process with the
descriptor exits.

When communication begins, messages to be sent are queued at the sending socket
until transmitted by the associated software driver. Similarly, they are queued in the receiv-
ing socket until they are accepted by the receiving process.

The pseudocode fragments shown in Figure 16.56 illustrate setting up a client and
server socket pair.

clientSocket = socket(aDomain, aType, aProtocol);

code

bind(clientSocket, clientAddress);

code

sendto(clientSocket, myMessage, serverAddress);

code

serverSocket = socket(aDomain, aType, aProtocol);

code

bind(serverSocket, serverAddress);

code

recvFrom(serverSocket, myBuffer, clientAddress);

code

Figure 16.56 Pseudocode for Setting Up a Client–Server
Socket Pair

The domain specifies the communication domain, which identifies the protocol familydomain
that will be used. The type identifies the semantics of the communication, a stream we willtype
discuss next, for example. Finally, the protocol stipulates the protocol that will be used forprotocol
the communication.

Today sockets are probably the most widely used interface for message-based inter-
process communication.
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16.12.3 Stream Communication

The notion of streams was developed by Dennis Ritchie of Bell Labs in the early 1980s. A
stream is another means by which one can connect a process to the many devices that make
up a distributed embedded application. Whereas pipes or sockets provide an interface to a
connection between two processes, a stream forms a connection between a device (more
specifically, the device driver) and an application process. Communication is byte-oriented
and full duplex, and is characterized by a stream head (which interfaces to the applicationstream head

stream end, driver end process), the stream end or driver end (which, naturally, connects to the driver software),
and zero or more stream modules or processing modules.stream modules,

processing modules The stream modules provide a means of implementing and dynamically configuring
device drivers. A module has an associated read queue for input and a write queue for
output. The modules are pushed into the stream, and thereby the queues are connected
together, much like a linked list, in FIFO order to form a data flow between the stream head
and the driver end.

In addition, the modules can perform basic operations on the byte stream as it moves
from the stream head to the driver end. For example, a module may read a line of data in,
discard the line termination, and store the data in a character buffer. The major benefits of
using such an approach are that it is modular and incremental. Once it is written, a module,
like a class instance, can be used in many different streams.

To use the stream protocol, two processes must first establish a connection between
their associated pair of sockets, as was illustrated in the previous section. This operation
is implemented through a series of system calls. The sockets are opened, bound to their
respective processes, and linked through another system call. The arrangement is asym-
metrical because one socket is listening for a connection (the driver end), while the other is
asking for a connection (the stream head). Once the connection is requested and accepted,
the server forks a new process to communicate with the client. It creates a new socket, pairs
that socket with the client socket, and resumes listening in original process and through the
original socket.

The connection can now be used to communicate in either or both directions. Data is
read immediately and in the order transmitted. The operation continues until the connection
is closed.

16.13 SUMMARY

In the previous chapter, we studied how an embedded applica-
tion can communicate and coordinate with the external world.
We extended the interprocess and communication model devel-
oped earlier by adding a transport mechanism component.

In this chapter, we continued to refine the model by exam-
ining the local and remote components from the points of view

of a shared variable and a message-based interpretation of the
information exchange in greater detail. The objective has been
to establish the basic infrastructure and various implementation
architectures for both models. The subsequent two chapters will
now study several real-world examples of each rendering of the
model.

16.14 REVIEW QUESTIONS

The Local Device Model

16.1 What are the three sets of signals utilized to effect an
information exchange in the local device model?

16.2 Give a list of signals that are typically included in the set
of control signals in the local device model. Briefly describe the
purpose of each.
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16.3 Identify several different commercially available device
interfaces that utilize a serial implementation of the local device
model.

16.4 Identify several different commercially available device
interfaces that utilize a parallel implementation of the local
device model.

16.5 The chapter identifies three models by which a periph-
eral device may be connected to the local processor. What are
these?

16.6 What is memory mapped I/O? an I/O port exchange? a
peripheral processor?

16.7 With respect to a bidirectional bus, what does break
before make mean?

Polling and Interrupts

16.8 What is polling?

16.9 What is an interrupt?

16.10 Give the sequence of steps to effect a polling operation.

16.11 Give the sequence of steps to effect an interrupt
operation.

16.12 What is the meaning of “interrupt priority”?

Local Networks

16.13 The chapter identified asynchronous and synchronous
communication modes as two different methods for exchanging
information over a local network. What are the most significant
differences between these two modes?

16.14 Three different asynchronous communication schemes
were identified in the chapter. What were these?

16.15 Several different methods were identified in the chapter
for encoding the clock information into the transmitted data
stream. What were these?

The Remote Device Model

16.16 What is a virtual network? network architecture?

16.17 What is a service provider? service consumer?

16.18 What is a protocol stack and what role does it play in the
remote device model?

16.19 The chapter identified two major protocol schemes. What
are these and what are their major differences?

16.20 What are the three more commonly used patterns of com-
munication and synchronization that one might find in embed-
ded systems?

16.21 Describe the typical structure of a message that might be
used in an exchange with a remote device. Explain the purpose
of each component.

16.22 What is the difference between a connectionless and a
connection-oriented service?

16.23 With respect to a procedure invocation, what is the dif-
ference between pass by value and pass by reference semantics?

16.24 Why do most remote procedure invocations use pass by
value rather than pass by reference semantics?

16.25 Describe the steps involved in executing a remote proce-
dure in an embedded application.

16.26 What does the term marshaling mean? unmarshaling?

16.27 Describe the remote procedure call interface and discuss
its operation.

16.28 Discuss how failures and errors are managed in a remote
device model.

16.29 What is an atomic multicast? reliable multicast?

16.30 What is a pipe? socket? stream?

16.15 THOUGHT QUESTIONS

The Local Device Model

16.1 Describe how address and data information are
exchanged in the serial implementation of the local device
model? What are the major advantages and disadvantages of
such an implementation?

16.2 Why are strobes used to accompany an address or data
exchange with a peripheral device? What would be the conse-
quences on the design if such strobes were not used?

16.3 Describe how address and data information are
exchanged in the parallel implementation of the local device
model? What are the major advantages and disadvantages of
such an implementation?

16.4 The chapter identifies three models by which a periph-
eral device may be connected to the local processor. Give
several examples of real-world devices that utilize each model.
Discuss why the interface model might have been chosen and
the strengths and weaknesses of the approach.

16.5 For each device in Question 16.4, from a performance
perspective, what would be the consequences of implementing
the interface using one of the other two models?

16.6 Discuss the advantages and disadvantages of memory-
mapped I/O.

16.7 What are the strengths and weaknesses of memory-
mapped I/O? an I/O port exchange? a peripheral processor?
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16.8 A bidirectional bus is commonly used to send data to and
receive data from a peripheral device. Describe the sequence of
steps that should be used to turn the bus around from sending to
receiving, for example.

16.9 Why is a break before make scheme used on a bidirec-
tional bus?

Polling and Interrupts

16.10 Polling and interrupts have been identified as two meth-
ods for managing the flow of information from sender to
receiver. Discuss the advantages and disadvantages of each.

16.11 Give several real-world examples for which a polling
scheme would be the best choice. Justify the choice, citing the
effects of using an interrupt scheme.

16.12 Give several real-world examples for which an interrupt
scheme would be the best choice. Justify the choice, citing the
effects of using a polling scheme.

16.13 Describe how the source of an interrupt can be
identified in each of the following configurations: single
interrupt–single device, single interrupt–multiple devices,
multiple interrupts–single device per line, and multiple
interrupts–multiple devices per line.

16.14 Why would an interrupt priority scheme be used in an
external device interface in an embedded application?

Local Networks

16.15 What are the respective advantages and disadvantages
of the asynchronous and synchronous communications modes
from a reliability perspective?

16.16 What are the respective advantages and disadvantages
of the asynchronous and synchronous communications modes
from a performance perspective?

16.17 Give several real-world examples of devices using
either an asynchronous or a synchronous communications
mode.

16.18 What are the advantages and disadvantages of the three
different asynchronous communication schemes identified in the
chapter from the perspective of reliability?

16.19 What are the advantages and disadvantages of the three
different asynchronous communication schemes identified in the
chapter from the perspective of time performance?

The Remote Device Model

16.20 What is one of the more significant contributions that the
remote device model introduces into an embedded design?

16.21 How does the general format of the information
exchange among devices change in the remote device model
compared with that in the local model?

16.22 Give several examples of real-world networks that might
interconnect and exchange information with an embedded sys-
tem.

16.23 Give several examples of real-world systems that might
utilize each of the models identified in Question 16.22. Identify
when each may be used in an embedded application.

16.24 What are the advantages and disadvantages of a connec-
tionless and a connection-oriented service?

16.25 Identify and discuss several of the problems that may
arise in an information interchange in a remote device model
that may not occur in a local model.

16.26 Identify and discuss several of the problems that may
arise during a procedure invocation in a remote device model
that may not occur in a local model.

16.16 PROBLEMS

16.1 Design the hardware and software driver that will imple-
ment a byte-wide data transfer from your processor to a periph-
eral device. Each transfer must be accompanied by a strobe to
deskew the data. Draw the Unified Modeling Language (UML)
sequence diagram and the timing diagram reflecting the opera-
tion of your design.

16.2 Design the hardware and software driver that will imple-
ment a byte-wide bidirectional data transfer between your
processor and a peripheral device. Each transfer must be accom-
panied by a strobe to deskew the data. Draw the UML sequence
diagram and the timing diagram reflecting the operation of your
design.

16.3 For the bus design in Problem 16.2, describe the process
for turning the bus around from output from the processor to
input to the processor and vice versa.

16.4 Design the hardware and software driver that will
implement a byte-wide data transfer from your processor to a
peripheral device using a 4-bit data bus. Each transfer must be
accompanied by the appropriate control signals to deskew the
data. Draw the UML sequence diagram and the timing diagram
reflecting the operation of your design.

16.5 Design the hardware and software driver that will imple-
ment a byte-wide bidirectional data transfer between your pro-
cessor and a peripheral device using a 4-bit data bus. Each trans-
fer must be accompanied by the appropriate control signals to
deskew the data. Draw the timing diagram reflecting the opera-
tion of your design.

16.6 Repeat Problem 16.1 using a full handshake.

16.7 Repeat Problem 16.2 using a full handshake.
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16.8 There are a number of different methods by which an
address is associated with a peripheral device. Several of the
simpler ones are a set of jumpers or switches set to the desired
bit pattern. Design the logic that will accept a bit pattern from
a 4-bit address bus, compare the pattern against that set for the
device, assert a match signal if the incoming address and the set
pattern agree, and hold the match signal asserted until another
address is received. Identify all necessary control signals. Draw
the UML sequence diagram and the timing diagram reflecting
the operation of your design.

16.9 Using jumpers or switches to specify the address for a
peripheral device as suggested in Problem 16.8 has a number
of drawbacks. Identify at least three. An alternative approach
is called geographic addressing. With such an approach, each
device is assigned an address by a bus master when the
system is first powered on. Design the hardware and soft-
ware driver(s) that will implement a geographic addressing
scheme for a system that will support up to eight peripheral
devices.

16.10 Design the Verilog model, hardware, and the software
driver that will implement a byte-wide bidirectional data trans-
fer between your processor and four different peripheral devices
utilizing a star bus configuration. Each leg of the star supports
separate address and data bus components. In addition to the
address and data lines, identify all of the necessary control sig-
nals. Draw the timing diagram reflecting the operation of your
design.

16.11 Repeat Problem 16.10 for a single ring bus configuration.

16.12 Repeat Problem 16.10 for a parallel bus configuration.

16.13 Design the Verilog model, hardware, and software driver
that will transfer a 4-byte block of data from your processor.
Data is to be transferred from the processor one byte at a time,
converted to a serial data stream, and sent to a peripheral device.
Each outgoing bit is to be accompanied by a data clock. There
are to be no gaps in the data stream. Identify all of the necessary
control signals. Draw the timing diagram reflecting the operation
of your design.

16.14 Design the Verilog model, hardware, and software driver
that will accept an incoming serial data stream. Data is to be
accepted, one byte at a time, converted to parallel, and brought
into the processor. Each incoming bit is to be accompanied by
a data clock. Identify all of the necessary control signals. Draw
the timing diagram reflecting the operation of your design.

16.15 Design a hardware block that will accept the serial data
stream and clock described in Problem 16.13 and then output a
Manchester phase encoded data stream.

16.16 Design a hardware block that will accept a Manchester
phase encoded serial data stream and output a serial data stream
with each bit accompanied by a data clock.

16.17 Repeat Problem 16.15 to produce a Manchester differen-
tial encoded data stream.

16.18 Repeat Problem 16.16 to accept a Manchester differen-
tial encoded data stream.
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Chapter 17

Working Outside of the Processor
II: Interfacing to Local Devices

THINGS TO LOOK FOR …

• Some of the commonly used architectures for local device interfaces.

• Some of the strengths and weaknesses of the different architectures.

• The different transport mechanisms.

• The control and synchronization schemes utilized for the different architectures.

• The implementation of device and subsystem addressing in each of the different
designs.

17.1 SHARED VARIABLE I/O – INTERFACING TO PERIPHERAL DEVICES

In this chapter, we will continue to study the many ways that one can interact with
the seemingly endless array of peripheral devices in the world outside of the local
microprocessor. In the previous chapter, we studied network-based systems. The primary
purpose of such remote systems is to move information from one point within the system
to another or to utilize computational capability that may not be available in the local
components.

In the embedded world, we also routinely work with a wide variety of analog and
digital signals typically originating in or being sent to devices within the local proximity. As
inputs to the application, such signals can originate either from the environment surrounding
the application or from the myriad peripheral devices that may comprise the application.
As outputs, they may be generated as control signals to a portion of the application or as
captured data being sent somewhere for further processing. Such signals are dealt with more
effectively utilizing a shared variable model.

Analog signals may arrive directly or indirectly (transduced) as inputs from physical
world signals, or they may be produced as outputs from an internally generated digital data
source. Digital signals may also arise as inputs from physical world signals originating in
either the time or frequency domains or from a direct interface to a wide variety of peripheral
devices that produce digital data. As outputs, they may function as control or configuration
information for a peripheral device or information to be stored or displayed.

Embedded Systems: A Contemporary Design Tool, Second Edition. James K. Peckol.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/college/peckol
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In this chapter, we will introduce and study several different ways of generating and
working with analog and digital signals. The focus will be on producers and consumers
rather than the senders and receivers of information. For each design, we will examine the
transport mechanism, study how control and synchronism are affected, and investigate how
producers and consumers are identified. We will open with an analysis of several different
methods by which one can generate analog signals, and then look at how various physical
world analog signals can be converted into a digital form that is more appropriate for use in
the microprocessor. Three specific conversion algorithms – dual slope, successive approxi-
mation, and voltage to frequency – will be examined in some depth. Because the outputs of
the various sensors and transducers are typically nonlinear, we examine how to deal with
such nonlinearity.

We next move to generating digital signals as control inputs to several different kinds of
small motors including stepper and servo motors and as information that must be displayed.
We finally conclude by introducing and studying how time and frequency signals can be
measured.

17.2 THE SHARED VARIABLE EXCHANGE

The world of digital I/O in a local device model is frequently built around shared variables.
Events are used to signal a state change or to request an action; however, their ability to
convey significant information is limited. Like the exchange through messages, the objec-
tive in the shared variable model is to move information from a source to a destination.
That exchange, however, is somewhat less structured than that found in a message-based
model.

Implementations range from a basic architecture, in which the information comprises
sets of commands directing a peripheral device to perform some operation, to sophis-
ticated data collection, measurement, or command and control systems. In contrast to
message-based architectures, the shared variable model works well for one or two devices
in relatively close proximity to the local core processor.

Control and synchronization in shared variable systems is generally supported in
the driver firmware that is written specifically for the associated peripheral device or
application. Any error management is generally a function of the particular application.
The external interface is frequently implemented using either a memory-mapped I/O,
program-controlled I/O, or a separate peripheral processor.

The transport mechanism for the shared variable infrastructure tends toward a more
parallel implementation than the message-based scheme and can potentially involve several
tens of signals if wider address and data busses are considered.

17.3 GENERATING ANALOG SIGNALS

A great variety of applications require analog signals – for example, audio signals for a
sound or music system or a reference voltage that can be used in an analog-to-digital con-
verter (ADC). In many control systems, the stimulus or set point is often an analog level. In
such cases, the necessary signals are generated from a digital word using a device knowndigital-to-analog

converter (D/A) as a digital-to-analog converter (DAC) or D/A.
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17.3.1 Binary Weighted Digital-to-Analog Converter

The quality of the analog signal produced from a digital-to-analog converter is a direct func-
tion of the number of bits in the digital word that is being used as the input to the device and
the value or weight assigned to each bit. When weighted number systems were introduced
earlier, it was noted that a number can be represented in an arbitrary base according to the
formula in Eq. (17.1).

N =
n−1∑
i=0

wiSi (17.1)

1. w = the base or weight associated with each position

2. S = a symbol from the alphabet of symbols for the specific base

3. n = the number of positions in the number

For the input to a D/A, the symbols will be those from the binary system {0, 1}. The
weight will be a specified voltage level. The value of n will be the number of bits in the
digital word that is being converted to analog.

Working with a 4-bit word,EXAMPLE 17.1
If the weight of the least significant bit (LSB) is specified to have a value of 1 mv, the

following binary words will correspond to the indicated voltages:

0000 – 0 mv
0001 – 1 mv
0101 – 5 mv
1010 – 10 mv
1111 – 15 mv

The resolution of the number is clearly 1 mv; that is, each increment or step is equiva-
lent to 1 mv. The largest signal that expressed using such a weighted 4-bit number is 15 mv.

If the value of 1 μv is assigned to the weight of the LSB, the following binary words
will now correspond to the indicated voltages:

0000 – 0 μv
0001 – 1 μv
0101 – 5 μv
1010 – 10 μv
1111 – 15 μv

The resolution now increases to 1 μv; however, the largest signal that can be expressed
reduces to 15 μv.
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Let’s continue to work with a 4-bit word and examine the problem from a different per-EXAMPLE 17.2
spective. If we wish to use such a word to synthesize a voltage with a maximum value of
150 mv, then the LSB must have a weight of 10 mv. This value also determines the best
resolution that we can achieve in the design.

Figure 17.1 presents an ideal implementation of a 4-bit binary weighed digital-to-
analog converter (DAC or D/A converter). Observe that the resistors have been selected
to have a binary weighting. If a switch connected to ground is defined as a logical 0 and
one connected to the reference voltage as a logical 1, we can easily create the accompanying
Table 17.1.

1 K

+

-

+

−

Vout

2 K

4 K

8 K

1 K
VRef

msb

lsb

Figure 17.1 4-Bit Digital-to-Analog Converter

Table 17.1 Relationship Between Switch Closures and Output Voltage for an
Ideal Binary Weighted D/A

msb lsb Vout

0 0 0 0 0
0 0 0 1 1Vref/8
0 0 1 0 2Vref/8
0 0 1 1 3Vref/8
0 1 0 0 4Vref/8
0 1 0 1 5Vref/8
0 1 1 0 6Vref/8
0 1 1 1 7Vref/8
1 0 0 0 8Vref/8
1 0 0 1 9Vref/8
1 0 1 0 10Vref/8
1 0 1 1 11Vref/8
1 1 0 0 12Vref/8
1 1 0 1 13Vref/8
1 1 1 0 14Vref/8
1 1 1 1 15Vref/8
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By selecting Vref to be 8 VDC, in Example 17.2, then selecting the proper switch
combination, the resolution will be 1 V and we can theoretically produce any output value
in the range of 0 to 15 V.

To interact with such a device from a microprocessor, a register can be utilized as a
shared variable, as illustrated in Figure 17.2.

1 K

+

-

+

−

Vout

2 K

4 K

8 K

1 K

msb

lsb

R
e
g
is

te
r

write

L
o
c
a
l 
B

u
s

Address and Data

Figure 17.2 Basic Interface to a 4-bit Digital-to-Analog Converter

The data word corresponding to the desired voltage is written from the microprocessor
by the software driver to the register. If the design uses a Complementary Metal Oxide
Semiconductor (CMOS) register, the value of VrRef for each input bit to the D/A will be
5.0 V, the value of the output logical level of the register.

Such a theoretical model can serve as a good base for understanding how such devices
operate; however, this design has several fundamental problems.

1. The value of 5.0 VDC was specified for Vref. The accuracy and precision of the ref-
erence voltage directly affects those same attributes of the analog output signal. For
a CMOS device, the typical vendor specification for Voltage Output High (VOH)
is 4.95–5.0 VDC at a load of 1 μA; for a TTLS device, VOH ranges from 2.4 to
3.6 VDC. Such an error is generally not acceptable.

The output of the register should be used to select between a voltage source that has
been designed and calibrated to provide a reference voltage of the required accuracy and
precision and a clean reference of 0 VDC. In addition, the connection should be through a
switch (either mechanical in the form of a reed relay or electronic in the form of a Field
Effect Transistor, FET) that has a very low ON impedance and very high (approaching
infinity) OFF impedance.

2. The tolerances on the resistors should be consistent with the accuracy and precision
specified for the output analog signal. The best standard tolerances specified by the
Electronic Industries Association (EIA) are ±0.1%.

Electronic Industries
Association (EIA)



�

� �

�

794 Chapter 17 Working Outside of the Processor II: Interfacing to Local Devices

3. The exact values specified for the resistors in the design are not available as stan-
dard values. Laser trimming to such values can be expensive. For the resistors
used in the above design, standard 0.1% resistor values are specified as 1, 2, 4.02,
and 8.06 K.

17.3.2 R/2R Ladder Digital-to-Analog Converter

A more practical and widely used design utilizes what is called an R/2R ladder network, as
given in Figure 17.3 for a 4-bit DAC.

+

-

+

–

Vout

2R

RFVRef

msb

lsb

2R

2R

2R

2R

2R

R

R

R

V1

Figure 17.3 4-Bit Digital-to-Analog Converter using an R/2R Ladder
Input Network

If the switch for the Most Significant Bit (MSB) is connected to Vref and the others to
ground, the analysis in Figure 17.4 will give the corresponding output signal.

From the last step in the network transformation:

V1 = Vref
3

(17.2)

and for the op amp:

Vout = −V1 •
RF

2R
(17.3)
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2R

2R

2R

2R

2R

2R

R

R

R

VRef 2R

2R

2R

2R

2R

R

R

R

VRef

2R

2R

2R

2R

2R

2R

R

R

VRefV1 V1 V1

2R 2R

R

VRef 2R

2R

VRef

2R2R

V1V1

2R

Figure 17.4 Analyzing the 4-Bit R/2R Ladder Digital-to-Analog Converter when the
MSB Selected

Substituting Eq. (17.2) into Eq. (17.3) gives:

Vout = −Vref
6

•
RF

R
(17.4)

Performing a similar analysis for each of the three remaining bits gives us Table 17.2.

Table 17.2 Relationship between Switch
Closures and Output Voltage for an R/2R
Weighted D/A

Bit Output

Msb 3 −Vref
6

•
RF

R

2 −Vref
12

•
RF

R

1 −Vref
24

•
RF

R

0 −Vref
24

•
RF

R

Note that the ratios among the outputs are 8,4,2,1.
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Superposition can be applied to compute the output voltage for any of the 16 binary
combinations. The bit pattern 0101, for example, will give,

Vout = −
(

Vref
12

•
RF

R
+ Vref

48
•

RF

R

)

= − 5Vref
48(12)

•
RF

R

(17.5)

The R/2R ladder DAC is preferred to the earlier model for several reasons.

1. The design uses only two resistor values independent of the number of bits in the
conversion. More importantly, the absolute values of the resistors is not significant,
only their ratio. In design and fabrication, it is easier to hold a ratio than specific
values.

2. All resistors contribute equally to the output error in contrast to the varying contri-
bution evident in the previous model.

3. Monolithic implementations of the ladder are readily available.

The interface to the R/2R-based DAC from a microprocessor can be the same as that
in the earlier design. In such an implementation, care must still be taken to ensure that the
reference voltage meets specified accuracy and precision requirements. The means for con-
necting the reference voltage or ground to each resistor is also still subject to the impedance
constraints discussed earlier.

Let’s now look at several common analog measurements that can be made.

17.4 COMMON MEASUREMENTS

Most physical world analog quantities, such as pressure, temperature, strain, flow, or
weight, can easily be converted into some other form such as resistance, current, or voltage
using transducers or sensors. At the end of the day, capturing these signals reduces to
making a voltage measurement. On the digital side, most physical world quantities will
require measuring time or frequency.

17.4.1 Voltage

The ability to measure voltage is a fundamental part of electrical engineering. Most tech-
niques generally involve comparing the unknown voltage to a known reference. One highly
accurate method uses a bridge circuit; however, automatically nulling a bridge is not prac-
tical in embedded applications.

Early analog meters used the unknown voltage to deflect a meter movement against
a calibrated dial. Calibration was accomplished by noting the extent of the deflection by
a series of known reference values. Contemporary voltmeters implement the comparison
using digital methods. We will examine several of those methods.

17.4.2 Current

Current can be measured in several ways. One approach is to use what is called a current
shunt. Such a shunt is a precise resistor of known value inserted into the current path. Typical
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values range from 0.1 (or lower) to 1 Ω. Then the voltage drop across the shunt is measured,
and a bit of simple math and Ohm’s law gives the current. The disadvantage of using a shunt
is that the circuit must be broken to permit the shunt to be inserted.

An alternative approach that does not require interrupting the circuit entails wrapping
a coil of wire around the conductor and measuring the induced voltage. In either case, it is
voltage that is being measured.

17.4.3 Resistance

Resistance can be measured in several different ways. Like a voltage measurement, one very
accurate method is to use a bridge-type circuit. Also, like a voltage measurement, using a
bridge is typically not feasible in an embedded application. A second approach is to apply
a known current to the resistor and measure the voltage drop. Ohm’s law and some math
provides the resistance value.

17.5 MEASURING VOLTAGE

Voltage is an analog signal. Measuring such a signal means converting the analog value
into the equivalent digital value. The resulting binary value can then be used in subsequent
computations and control algorithms, or for display. The circuit to implement the conversion
is called an analog-to-digital or A/D converter. The quality of the conversion and, thus, the

analog-to-digital
converter, A/D

converter
measurement is assessed at minimum by its accuracy, resolution, and repeatability. Both
the accuracy and the resolution of the conversion are a direct function of the number of bits
in the word containing the digital result.

ADCs appear as an integrated peripheral on various microcomputers or as an external
peripheral device that is available from a number of different vendors. The objective in the
next few pages is not to create expert A/D designers but to introduce several of the more
common conversion methods that are used, identify the strengths and weaknesses of each,
and understand how we can develop an interface to them.

17.5.1 Dual Slope Analog-to-Digital Conversion

The dual slope approach to A/D conversion begins with a basic analog integrator configured
as presented in Figure 17.5.

Vout

Vin

–VRef

R

C

+

−

Figure 17.5 Analog Integrator

The transfer function for the circuit can be written as the equation:

Vout(t) = − 1
RC ∫

Vin(t)dt (17.6)
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If Vin(t) is a constant voltage, after an amount of time, t0, the output of the integrator
will reach a constant value of:

Vout(t) = −
Vin • t0

RC
(17.7)

If the switch in the above circuit is then connected to a voltage of value Vref after some
amount of time, t1, the output of the integrator will decrease to a value of zero. If the value
of Vref = Vin, then t1 will equal t0.

If the values for R and C are selected such that RC and t0 are equal, the circuit will
behave as is illustrated in Figure 17.6.

−Vin

t0 t1

Figure 17.6 Output for an Analog Integrator when the Input
is Switched between Equal but Opposite Voltages

Let Vref have a value of 10.0 VDC. It should be evident from the figure above that Vin
can also be permitted to have a maximum value of 10.0 VDC and still preserve the behavior
shown; that is, t1 will equal t0. It should also be evident that if Vin<Vref and t0 remains
fixed, then t1 will be less than t0. In particular, if Vin = 5.0 VDC, then t1 will be 1/2 of t0.
Generalizing, one can easily show that

t1
t0

= Vin
Vref

(17.8)

Figure 17.7 illustrates the relationship for several values of Vin along with the resulting
different values for t1.

−VRef

t0

t1

−VRef

2

Figure 17.7 Output for an Analog Integrator Showing the
Measure and Read Timing

Since the values of Vref and t0 are known, if one can measure the time t1, then the
computation of Vin is rather straightforward.

Now, select t0 to be 162/3 ms and design a timer that operates at 6 MHz in order to
measure the t1 time interval. These numbers may sound a bit arbitrary, but they are not. The
first is selected because it is the period of a 60 Hz sine wave – the line frequency in many
countries of the world. If we were in a country using 50 Hz power, we would select t0 to be
20 ms and adjust the oscillator frequency accordingly.

What difference does this make? Recall from calculus that the integral of a sine wave
over a full period is 0. Signals coupled in from the all power lines in the surrounding envi-
ronment are one of the major contributors to the noise in electronic circuits and systems.
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The closer that one can hold the duration of t0 to 162/3 ms, the better the line-related noise
rejection will be. In the limit, if the power company could hold the line frequency to exactly
60 Hz and if t0 could be held to exactly 162/3 ms, then the A/D converter would have infinite
line noise rejection.

The value of 6 MHz is selected because it accrues 100 000 cycles in 162/3 ms. Thus,
if the value of the input voltage is 10.0 VDC, the duration for t1 will be the same as the
duration of 100 000 cycles of the 6-MHz oscillator. If the input voltage is 5.0 VDC, the
duration for t1 will be equal to that for 50 000 cycles; for 2.5 VDC, the duration of t1 will
be equal to that for 25 000 cycles and so on. By properly placing the decimal point, one can
directly convert the duration measured for t1 into the value of the input voltage, Vin.

In a dual slope A/D converter, the time t0 is called the integrate interval and the time
t1 the read interval. The remaining necessary components can now be added to complete

integrate interval
read interval

the design of the converter, as shown in Figure 17.8.
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Figure 17.8 Block Diagram for a Basic Dual Slope Analog-to-Digital Converter
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The counter is implemented as a presettable, synchronous, binary, up counter with
tristate outputs; it serves a triple purpose in this design. In addition to being used to time
both the integrate and read intervals, it is used to time a third interval called autozero.integrate, read,

autozero We will see where this interval is used shortly. To ensure that it can accumulate 100 000
counts at a frequency of 6 MHz, in a 162/3 ms interval, the counter must be at least 17 bits.

To initiate a conversion, the microprocessor loads a value of (217 – 100 000) into the
register and issues a Start command to the state machine. The state machine responds byStart

Load issuing a Load signal to the counter, which thereby presets the counter to the value stored
in the register.

By setting such an initial value in the counter, after 100 000 counts or 162/3 ms, the
counter will overflow from 1FFFF to 00000, signaling the end of the integrate interval.integrate
The zero value is easy to detect and the counter can then immediately start timing the read
interval – from the zero state. The zero value in the counter also tells the state machine to
switch the input to the integrator from the unknown voltage to the reference voltage.

During the read interval, the integrator is integrating back toward zero from theread
unknown voltage that has been stored on the feedback capacitor and the counter is
incrementing from zero. When the integrator output reaches zero, the comparator changes
state, thereby signaling the state machine that the conversion is complete. The counter now
contains the digital equivalent of the input signal. The state machine in turn signals the
microprocessor by asserting the Complete line.Complete

To complete a measurement cycle, the A/D will execute what is called an autozero mea-autozero
surement. The motivation for such a measurement arises because any electronic circuitry
and signals are subject to variations resulting from external or internal noise, temperature,
or general drift in the behavior of the components as well as many other factors. Such vari-
ation can be partially compensated for by measuring the bias originating from such sourcesbias
and then algebraically adding that value to the actual measured value.

The bias is the value that is measured if the input to the system is connected to ground
or a signal with a known zero value. The autozero interval is generally approximately half
of the integrate interval. For this design, that will be approximately 8 ms or 50 000 counts.

Thus, sometime after issuing the Start command, the microprocessor will preset theStart
register with the value (217 – 50 000). After it has read the converted value from the counter,
the microprocessor will tell the state machine to execute the autozero measurement. In
response, the state machine will transfer the value stored in the register to the counter,
connect the input of the integrator to ground, and connect the output of the integrator to
the autozero capacitor. When the counter reaches zero, the cycle is complete and the bias
voltage will be stored on the autozero capacitor. That value will then be algebraically added
to the next measurement.

The complete cycle is now given in Figure 17.9.

–VRef

–VRef

2

integrate read autozero

Figure 17.9 Complete Integrate, Read,
and Zero Intervals for a Basic Dual Slope
Analog-to-Digital Converter
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A portion of the control of the measurement is implemented in software in the
microprocessor and a portion is managed by the state machine. Presetting initial values
for the integrate and autozero intervals into the register, issuing the Start command (to

integrate, autozero,
register, Start, Read

initiate a read or autozero interval), and the Read command to read the contents of the
counter following the conversion are relatively slow tasks that can easily be accomplished
in software. These tasks are done by the driver software in the microprocessor. Switching
the integrator input signal from the unknown voltage to the reference, responding to the
change in state of the comparator output, and disabling the clock to the counter are all
hard real-time critical operations that are best implemented in hardware. Let’s examine in
greater detail why such a decision was made.

These latter three tasks are the critical ones. A delay or other temporal error in switch-
ing from the unknown voltage to the reference voltage alters the length of the integration
interval, producing two effects: a reduction in the power line-related noise rejection and
potentially an incorrect value stored on the integration capacitor. Both will result in errors
in the converted value. A similar delay or temporal error in responding to a state change
on the comparator or in disabling the clock to the counter will alter the read interval and,read
thus, the number of accrued counts during that interval, thereby leading to an error in the
measurement.

There are two ways by which the microprocessor can be made aware of external event
information: interrupts and polling. For most microprocessors, the CPU will complete the
current instruction before responding to an interrupt. Because the external interrupt is asyn-
chronous to the internal activity of the microprocessor, one has no way of knowing which
instruction is being executed. In a Complex Instruction Set Computer (CISC) architecture,
different instructions require different numbers of clock cycles to complete. Thus, there is
an inherent temporal uncertainty in any response to an external interrupt. At best, one can
set an upper bound on response time; nonetheless, any uncertainty is reflected in errors in
the conversion. Polling for an event change can reduce the ambiguity to the length of the
polling loop, as was discussed earlier. However, the error remains.

Design Heuristic

When making hardware–software trade-off decisions, utilize hardware speeds when
necessary and take advantage of software strengths where speed is not critical.

The principal advantage of the dual slope A/D converter is its ability to reject
line-related noise if the integrate interval is set to the duration of a line cycle. That strength
is also one of its limitations. Each measurement requires one full power line cycle; the
conversion method is not appropriate for high-speed measurements.

17.5.2 Successive Approximation Analog-to-Digital Conversion

If high speed A/D conversion is necessary, the successive approximation, S/A, approach can
be very effective. The simple block diagram shown in Figure 17.10 illustrates the essence
of the approach.
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+

-
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−
Comparitor

Vin

VRef

sample

hold

Figure 17.10 Schematic Diagram for a
Basic Successive Approximation
Analog-to-Digital Converter

To make a measurement, the switch is placed in the sample position for some time, t0,sample
to allow the capacitor to charge to the unknown voltage. In the ideal case, t0 will approach 0.
The switch is then opened (placed in the hold position) and the reference voltage is adjustedhold
until the output of the comparator is 0. That is, until the two input voltages are equal.

Recall that the binary search algorithm locates the item of interest by starting in the
middle of a sorted container and comparing the value stored there with the item being
sought. Based on results of the comparison, the item has been found, or the upper or lower
half of the container should be searched. The process is repeated until the item is found or
the container has been exhausted. A slightly modified version of that algorithm is used in
the successive approximation A/D.

At the start of the conversion, the reference voltage is set to one-half of the full-scale
value and compared against the sampled value. If the reference is larger, its value is reduced
by half; similarly, if the reference is too small, its value is increased by half. In either case,
the algorithm is repeated until the proper value is found.

Clearly, the adjustable voltage reference is a key component in the S/A converter. The
accuracy and resolution of the measured voltage are directly dependent on the accuracy
and resolution of the voltage reference. In practice, the reference is derived from a
digital-to-analog converter. We will use the R/2R DAC developed earlier for the present
application.

We will set Vref as 5.0 VDC and the ratio RF/R as 6. Table 17.3 gives the corresponding
output voltages for the DAC.

Table 17.3 Input Bit vs. Output Voltages
for a 4-Bit R/2R Ladder DAC with 5.0 V
Reference

Bit Output

Msb 3 5.0
2 2.5
1 1.25

Lsb 0 0.625

The high-level diagram in Figure 17.11 brings all the pieces together.
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Figure 17.11 Block Diagram for a Basic Successive Approximation Analog-to-Digital Converter

A measurement is executed by initially entering the 4-bit binary word 1000 into the
register and issuing the Sample command. Following the algorithm outlined earlier, suc-Sample
cessive values are entered into the register until either the DAC output equals the unknown
voltage (based on the comparator output) or all possible DAC values are exhausted. The
latter case comprises three subcases: the unknown voltage is too large or too small, or the
best match within the resolution of the converter is reached. At that time, the state of the
switches represents the digital equivalent of the unknown voltage.

17.5.2.1 Sample and Hold

The sample and hold circuit is an essential component of the S/A A/D. The schematic insample and hold
Figure 17.12 gives a high-level diagram of one version implemented using two operational
amplifiers configured as voltage followers.

One must consider several factors in the design of a sample and hold circuit to ensure
that the data is accurately sampled and that the sampled signal does not change during
the subsequent A/D conversion. We will elaborate on each of these as we walk through a
conversion.
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Vin

sample
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−

hold

Vout

Figure 17.12 Sample and Hold Circuit

At the start of a conversion, the switch above is placed into the sample position, and thesample
acquisition time,
sample and hold

hold capacitor begins to charge. The acquisition time of the sample and hold is the amount
of time required for the value stored on the capacitor to reach the full value of sampled
signal plus the time for output of circuit to reach the value of input. The output will follow
the input until the circuit is put into the hold mode. The circuit must remain in the samplehold
mode until the output has reached full value.

Following acquisition, the circuit switches from the sample to the hold mode. The statesample, hold
change cannot occur in zero time; the time to make that transition is called the apertureaperture time
time. During this time, the output may change slightly, thereby losing an accurate represen-
tation of the unknown signal. Variation in the aperture time is called aperture uncertainty.aperture uncertainty
A design objective is to make the aperture time as close to zero as possible.

While the conversion is taking place, charge can leak off the hold capacitor, thereby
decreasing the stored voltage. The rate of such a charge loss during hold time is called the
droop rate. Clearly, one wishes to ensure very high-impedance paths for any connectionsdroop rate
to the capacitor.

If one is making repeated measurements and thus repeated samples, one must take
into consideration a phenomenon called dielectric absorption. When a voltage is applieddielectric absorption
across a capacitor, charge is stored in the dielectric of the capacitor. That charge cannot be
removed instantly, even if the capacitor is shorted. If a small signal is sampled after a large
one, the stored value of the smaller signal may be inaccurate because of charge left from the
larger one. Such a phenomenon affects the ability of the sample and hold circuit to respond
quickly to a substantial change in the sampled signal.

Any time one is working with operational amplifiers, one must also be concerned about
the usual offset and gain errors.

The main advantage of the successive approximation A/D when compared with the
dual slope approach is speed. The conversion requires one cycle for each bit attempt. In
a worst case scenario, a 16-bit converter will require eight cycles. Unlike the dual slope
converter, the S/A approach does not have any inherent noise rejection. Appropriate filtering
must be incorporated to handle any noise problems.

17.5.3 VCO Analog-to-Digital Conversion

A third alternative for implementing an A/D conversion is based on a voltage-controlled
oscillator (VCO). A VCO is a circuit that produces a frequency proportional to an input
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voltage. If the VCO is designed to produce a frequency of 50 KHz in response to a 5.0 VDC
signal, gating the frequency to a counter for one second will yield a value of 50 000 counts.
Appropriate placement of the decimal point gives the digital equivalent of the analog
voltage.

A high-level design for an A/D based on such a concept is given in Figure 17.13.
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Figure 17.13 Block Diagram for a Voltage-Controlled Oscillator-Based A/D

A measurement begins when the microprocessor loads a value into the Register and
issues a Start command. Following the Start command, the state machine issues the

Register
Start, state machine

following commands:

1. A Load command to transfer the contents of the Register into the Timer.Load, Register, Time
2. An Enable to the gate controlling the Clk to the Timer.Enable, Clk, Timer
3. A Convert command to connect the unknown voltage to the input of the VCO.Convert, unknown

voltage
After one second, the timer issues an Interval End to the State Machine, which respondsInterval End, State

Machine, Complete by disconnecting the unknown signal from the VCO and issues a Complete event to the
microprocessor. The microprocessor responds by asserting the Read signal to capture theRead

Counter state of the Counter.
In the diagram, the timer is designed to time a one-second interval. As was done withtimer

the counter design used in the dual slope converter, the timer counts up from a preset value
and signals when it overflows to the all-zero state. The number of bits in the timer and the
frequency of its clock affect the resolution of the window gating the unknown signal into
the VCO.

The hardware–software trade-offs in this design are similar to those in the dual slope
design and so will not be repeated here.
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17.6 MEASURING RESISTANCE

Let’s now put the A/D to work. The need to measure resistance arises in many embedded
applications. The target of the measurement may be the simple resistor, or the resistance
may be the transduction of some other physical parameter, such as strain – the “output” of
a strain gauge – or temperature – the output of a Resistance Temperature Device (RTD),
for example. In any case, the solution to the problem derives from Ohm’s law.

Like any other measurement, a great variety of methods can be used to measure resis-
tance. One commonly used approach is to inject a known current through the resistor and
measure the voltage drop across the resistor. The current should be sufficiently small that it
does not damage the resistive element or cause it to dissipate significant power. A typical
value is less than 100 mA with a preference for 1 mA or less.

The basic measurement technique is illustrated in Figure 17.14. The A/D can be any
of those that have been discussed, although it is certainly not restricted to those. The mea-
surement begins when the microprocessor issues a Start command. In response, the A/DStart
closes both measure switches, thereby connecting the current source and the A/D to the
unknown resistor. Once the measurement is complete, the A/D asserts the Complete signal
back to the microprocessor, which can then issue a Read command at any time to retrieveComplete

Read the measured value.
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Figure 17.14 Measuring Resistance

The conversion from volts to ohms is typically made in the associated measurement
driver. The motivation for doing so is to keep the measurement circuitry independent of the
specific measurement. Moreover, the conversion from voltage to resistance can easily be
performed at software speeds.

Such a measurement is called a two-wire measurement because the current source andtwo-wire measurement
the A/D are connected to the same points. A two-wire configuration gives rise to the problem
illustrated in the modified version of the circuit shown in Figure 17.15.

The measurement circuitry now includes the two parasitic resistors, R1 and R2. Both
exist and are sources of error in any measurement. As can be seen, the measured voltage
includes the drop across the unknown as well as that across the two parasitic components.
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Figure 17.15 Parasitic Resistances in a Two-Wire Resistance Measurement

Consequently, the computed value of the resistor will be in error by the series value of those
two additional resistors.

To compensate for the additional resistance, the measurement circuitry can be modified
slightly as illustrated in Figure 17.16.
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Figure 17.16 Using a Four Wire-Resistance Measurement to
Compensate for Parasitic Resistances

Certainly the initial parasitic resistors R1 and R2 remain; initially, it appears that the
problem has been compounded by the inclusion of two new ones, R3 and R4. The significant
difference is that with the configuration shown above the current flowing through either R3
or R4 is close to zero because the Thévenin-equivalent impedance looking back into the
A/D is designed to approach infinity. Thus, although the resistors may be there, the drop
across them is small compared to the drop across the unknown. Such a scheme is called a
four-wire measurement.

four-wire
measurement
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17.7 MEASURING CURRENT

A current measurement is similar to a resistance measurement. Once again, the measure-
ment can be implemented in a number of ways. One common method is to reverse the roles
of the current source and the resistance in the design for measuring resistance. The resistor
now becomes a current shunt – a precision resistor with typical values of 0.1–1 Ω inserted
into the current path. The voltage across the shunt is measured and converted to the equiva-
lent current using Ohm’s law and the known value for the shunt. Such a design is presented
in Figure 17.17.
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Figure 17.17 Measuring Current

As was done in the previous measurements, the process begins when the microproces-
sor issues a Start command. In response, the A/D closes both measure switches, therebyStart
connecting the current source and the A/D to the unknown resistor. Once the measurement
is complete, the A/D asserts the Complete signal back to the microprocessor, which can
then issue a Read command at any time to retrieve the measured value. The conversionComplete

Read from volts to amps will typically be done in the associated measurement driver.
The one drawback of using a shunt is the need to interrupt the current path to insert

the shunt. An alternate scheme is to utilize a coil of wire wrapped around the conductor
in which the current is to be measured and to measure the induced voltage. Basic physics
provides the conversion to current.

17.8 MEASURING TEMPERATURE

Like the other measurements discussed to this point, a large number of approaches can be
taken in making temperature measurements. One common and inexpensive technique is to
use a sensing device called a thermocouple.

The phenomenon of thermoelectricity was discovered by a German physicist, Thomas
Johann Seebeck, in 1821. He found that, when two wires made of dissimilar metals were
connected to each other at two points and the two junctions held at different temperatures,
a current will flow due to a phenomenon that is now called the Seebeck Effect. The forceSeebeck Effect

Seebeck thermal emf driving the current is known as the Seebeck thermal emf. The flow will continue as long as a
temperature difference exists between the two junctions. This electromotive force (voltage)
is the parameter measured in thermocouple thermometry.
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When a circuit containing two dissimilar metals is completed (as seen in Figure 17.18),
there will always be at least one additional thermocouple in the loop. The simple loop
shown contains two dissimilar metals A and B and two junctions: TM – measurement – and
TR – reference. The amount of current flowing is related to temperature difference.

A

B

TM TRVAB

Figure 17.18 A Basic Thermocouple

17.8.1 Sensors

Generally, thermocouples are alloys of several different kinds of metals, including, iron,
copper, nickel, chromium, aluminum, platinum, tungsten, and rhenium. Several of the
alloys have become so common that their trade names have come into familiar usage.
These include Constantan (copper–nickel), Chrommel (chromium–nickel), and Alumel

Constantan,
Chrommel, Alumel

(aluminum–nickel). Using these alloys conjoined with other metals leads to the more
common thermocouple configurations, many of which have been given a letter designation,
as presented in Table 17.4.

Table 17.4 Common Thermocouple Types

Type Alloy Range

J Iron Constantan −210 C to +1200 C
−8 to 70 mV

K Chrommel–Alumel −270 C to +1372 C
−6.5 to 54.8 mV

T Copper–Constantan −270 C to +400 C
−6.3 to 28.9 mV

R and S R–Platinum 13% Rhodium −50 C to +1768 C
−0.2 to 21.1 mV

S–Platinum 10% Rhodium −270 C to +400 C
−6.3 to 18.7 mV

Another kind of temperature sensor (transducer) is a RTD. The RTD is based on the
principle that conductivity of material changes in a predictable manner when the material
is subjected to different temperatures. The device is constructed using a coil of fine gauge
wire wrapped around ceramic core. The materials used include platinum, copper, nickel, or
tungsten, but most frequently platinum. The device has a high operating range, linear char-
acteristics, and long-term stability. Using such a device, the most accurate measurements
are made using a four-wire resistance measurement.

17.8.2 Making the Measurement

For a system using the basic thermocouple as the sensing device, the voltage (thermal emf)
is measured as shown in Figure 17.19. As noted, the materials comprising the thermocou-
ple are typically alloys of several different metals; the connection from the thermocouple to
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Figure 17.19 Measuring Temperature using a Thermocouple

the measurement device is frequently copper. Because copper is a different metal from the
thermocouple alloys, by making a connection to the thermocouple, additional thermocou-
ples are introduced as illustrated in the drawing. These additional thermocouples produce
the voltages VJunctA and VJunctB as shown. Examining the circuit in the drawing, observe
that the Voltage VAB will equal the algebraic sum of the voltages VJunctA and VJunctB. If
the thermocouple–copper junctions (JunctA and JunctB) are maintained at the same tem-
perature, they will act as a single thermocouple (driven by TR). Under such a condition,
when making the measurement, the voltage value that is read will be proportional to the
difference between TR and TM.

Once the voltage measurement of the thermoelectric voltage (VAB) is complete, the first
operation in converting that value into an equivalent temperature value is the algebraic addi-
tion of the voltage measured at the reference junction terminals (VJuncA and VJuncB) – this is
TR. The resulting sum represents an approximation of the thermoelectric voltage generated
at the temperature-sensing junction (TM in the figure).

17.8.3 Working with Nonlinear Devices

Thermocouples, like many other real-world sensors and transducers, have a monotonic non-
linear relationship between the physical parameter and the electrical signal that is actually
measured. In the United States, the National Institute of Standards and Technology (NIST)National Institute of

Standards and
Technology (NIST)

provides equations expressing such relationships. The equations are normally given in the
form of a power series accompanied by tables of coefficients corresponding to the type of
device and the ranges over which it is operated.

The mathematical operations for performing the conversion from the measured sig-
nal to the physical quantity are carried out in the software driver for the measurement
device. The significant overhead in evaluating the power series for each measurement is
an unreasonable burden in most applications. Thus, the series is often replaced by a lin-
earized version of the polynomial. Such an approximation can be a linear fit (y = mx+ b)
or a higher order fit based on the degree of conformity required for the application.

In general, the approximation comprises a number of linearized segments. The length
of each segment is determined by the required conformity to the actual curve for the mea-
surement being made. To see this, consider the following curves in Figure 17.20 that are
approximated by a linear curve fit.
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Figure 17.20 A Linear Approximation to a Nonlinear Curve

Curve III is more linear than curve I; potentially, it could be approximated by
two straight-line segments, whereas curve I probably would require three. A similar
phenomenon occurs in curves II and IV.

Once the segments have been computed, the reduced sets of coefficients for the lin-
earizing equations are stored in a table in ROM. For the linear fit, for example, the values
for each of the m and b pairs would be stored. To perform the conversion, the software
driver uses the measured signal to compute an index into the table of coefficients. The
appropriate set of coefficients is selected and used with the measured value to compute the
corresponding value of the physical quantity.

For thermocouple measurements, the temperature corresponding to the device’s output
voltage is approximated according to a power series equation given as:

TM = c0 + c1V + c2V2 + … + cnVn (17.9)

where
V thermoelectric voltage (microvolts)
cn thermocouple type-dependent polynomial coefficients
T temperature (C)
n order of the polynomial
The calculated thermoelectric voltage generated at TM is converted into an equivalent

temperature value using the (linearized) power series polynomial along with thermocouple
type-dependent coefficient tables.

NIST publishes several tables for each thermocouple type containing coefficients
representing quadratic (second order), cubic (third order), or quartic (fourth order).
Voltage-to-temperature conversion accuracy can be increased by using higher order coeffi-
cient tables, but at the cost of longer processing time to perform the calculations. Accuracy
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can be further enhanced by selecting tables representing the narrowest temperature range
for the specific measurement application.

For a fourth-order polynomial for a J-type thermocouple (−200 to 0 C with error range
−0.4 to 0.5 C and 0 to 760 C with error range −0.9 to 0.7 C), the coefficients are given in
Table 17.5.

Table 17.5 Coefficients for a J-type Thermocouple Polynomial

c0 = 0.0 c0 = 0.0
c1 = 1.884 385 0× 10−2 c1 = 1.932 379 9× 10−2

c2 = 1.202 973 3× 10−6 c2 =−1.030 602 0× 10−7

c3 =−2.527 859 3× 10−10 c3 = 3.708 401 8× 10−12

c4 =−2.584 926 3× 10−14 c4 =−5.103 193 7× 10−17

To perform a temperature measurement, the reference junction temperature (TR) and
the microvolt output of the thermocouple circuit are recorded. Next, the circuit output volt-
age is corrected for any deviation from 0 C in the reference junction by multiplying the
measured reference junction temperature by the appropriate Seebeck coefficient. For the
type J thermocouple, the value is 51.71 μV C−1. If a more accurate conversion is required,
the reference junction temperature can be converted into an equivalent thermoelectric volt-
age using a power series polynomial.

The calculated value of the reference junction voltage is then algebraically added
to the thermocouple circuit output voltage measured at the reference junction. The
new value represents an approximation of the thermoelectric voltage generated by the
temperature-sensing junction (TM) of the thermocouple. The calculated voltage can now
be converted into an equivalent temperature value as described earlier.

17.9 GENERATING DIGITAL SIGNALS

Several different kinds of digital signals may be required in an embedded application. These
often come into play in applications that utilize and therefore need to control various kinds
of motors. On other occasions, the interface to some form of display must be provided.
At other times the embedded application is providing the control for a piece of equipment
such as a printer, keyboard, CDROM, or video imager. The next several sections examine
representative examples of several of the more common of these applications.

17.9.1 Motors and Motor Control

The ability to control different kinds of motors is important in a host of contemporary
applications ranging from assembly robots to remotely controlled vehicles to the precision
positioning of medical instruments. Motors that are typically found in such applications fall
into three categories: DC motors, servo motors, and stepper motors.

17.9.2 DC Motors

Figure 17.21 gives a high-level diagram of the basic components of a DC motor.DC motor
These components comprise a stationary permanent magnet called a stator, a movablestator

rotor
brushes, commutator

(rotating) electromagnet called a rotor, and a system to connect power to the electromagnet
called brushes and a commutator.
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Figure 17.21 A Basic DC Motor

Operation of the motor proceeds as follows. When a voltage is applied across the elec-
tromagnet, the magnetic poles of the rotor are attracted to the opposite poles of the stator,
thereby causing the rotor to turn. As the rotor turns, the electromagnet becomes polarized
in the opposite direction and the poles of the rotor are now repelled by the nearer poles and
are attracted to the opposite poles of the permanent magnet causing the rotor to turn once
again.

Observe that the commutator is a split ring against which the brushes make physical
contact. One portion of the commutator is connected to one end of the electromagnet and
the other portion is connected to the opposite end. Through the action of the commutator,
the direction of the field in the electromagnet is continually switched, thus causing the rotor
to continue to move.

The actions of the commutator, brushes, and electromagnet are illustrated through the
simple model in Figure 17.22. The brushes are fixed. However, as the rotor rotates, the com-
mutator (which is attached to the rotor) acts like a switch, connecting the voltage source first
one way then the opposite way across the electromagnet, thereby changing its polarization.

As should be evident, the DC motor has the ability to turn through 360∘, continuously,
in one direction, when power is applied. If the applied voltage is held constant, the speed

+V

+V

Commutator

Electromagnet

Rotor

Brushes

Figure 17.22 Schematic of the Commutator,
Brushes, and Electromagnet in a DC Motor
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of the motor is also held constant; increasing or decreasing the applied voltage will have a
corresponding effect on the motor’s speed.

Using a scheme called pulse width modulation (PWM), the average magnitude of the
applied voltage can effectively be controlled and so can the motor’s speed. We will learnpulse width

modulation (PWM) how to do this shortly. As the speed of the motor decreases, so does its torque.
If the polarity of the applied voltage is reversed, the motor will run in the opposite

direction, as should be expected. We will use a circuit called an H bridge to manage the
reversal. Generally, a DC motor is not used for positioning tasks unless it is incorporated
into a control system that can provide position (and possibly velocity) feedback information.

17.9.3 Servo Motors

A servo motor is a special case of a DC motor to which position or velocity feedbackservo motor
circuitry has been added to implement a closed-loop control system. Like the DC motor,
the servo motor can rotate in either direction; however, generally the range is less than
360∘. Also like the DC motor, the servo motor is controlled by a pulse width modulated
signal; however, the signal is used to control position rather than speed. The servo motor
finds common use in systems such as remotely controlled systems, robotics applications,
numerically controlled machinery, plotters, or similar systems where starts and stops must
be made quickly and accurate position is essential.

17.9.4 Stepper Motors

A stepper motor is different from, and yet similar to, both the DC and the servo motor. Onestepper motor
major difference is that each of the latter motors moves in either the forward or reverse
direction with a smooth and continuous motion; the stepper motor moves in a series of
increments or steps. Figure 17.23 presents a high-level view of the essential elements of a
stepper motor.

Stator

Rotor

Permanent

Magnet

N

S

S

N

S

N

S

N

N

S

X1

X2

Y2

Y1

Electromagnet

Figure 17.23 Basic Components of
a Stepper Motor

The first point to observe is that the rotor is a permanent magnet rather than the stator
as in the DC and servo motors. The rotor in the motor in Figure 17.23 has two teeth and the
stator has four poles and four electromagnets.

In a stepper motor, the size of each step is specified in degrees and varies with the design
of the motor. The step size is selected based on the precision of the positioning required.
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The simple motor given in Figure 17.23 has a step angle of 90∘, based on the spacing of
the poles. Connections are made to the electromagnets through the signals marked X1, X2,
Y1, and Y2. Like the DC motor, the stepper can rotate through 360∘ and in either direction.
The speed of the motor is determined by the repetition rate of the steps.

17.10 CONTROLLING DC AND SERVO MOTORS

17.10.1 DC Motors

Both the DC motor and the servo motor require a pulse width modulated signal to control
either speed or position. PWM, as its name implies, is the process of using the width of
a pulse to convey information in a digital signal. For example, suppose that we have the

pulse width
modulation

(PWM), pulse
perfect square wave depicted in Figure 17.24.

50 150 250 350 Figure 17.24 An Ideal Square Wave

From this diagram, we can see that the period of the signal is fixed (in this case to 100
time units) and that the signal is in the high state 50 time units out of 100 possible time
units. Thus, the signal is ON for half of the period. The signal is said to have a 50% duty
cycle, where the duty cycle of a signal is defined as the percentage of time the digital signal50% duty cycle
is in the high state during the waveform’s period. Using this definition, we can easily seehigh
that the signal in Figure 17.25a has a 25% duty cycle and that in Figure 17.25b has a 75%
duty cycle.

50 150 250

(a) (b)

350 50 150 250 350

Figure 17.25 A Signal with (a) 25% Duty Cycle and (b) 75% Duty Cycle

Similarly, the signal in Figure 17.26a has a 0% duty cycle and, finally, that in
Figure 17.26b has a 100% duty cycle:

50 350250

(a) (b)

150 50 350250150

Figure 17.26 A Signal with (a) 0% Duty Cycle and (b) 100% Duty Cycle
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Assume that a DC motor is driven by a voltage signal ranging from 0 to 12 V. To run
the motor at full speed, a 12 V signal is applied; to run the motor at half speed a 6 V signal
is applied; to run the motor at one-quarter speed a 3 V signal is applied; and so on.

Based on these timing diagrams, if a signal with a 100% duty cycle is applied to the
motor, one will expect it to run at full speed; similarly, if a signal with a 0% duty cycle is
applied, the motor should stop. If a signal with a 75% duty cycle is applied, what should
one expect? The average voltage applied to the motor during each period of the waveform
is given by Eq. (17.10).

Vave = 0.75 • 12VDC + 0.25 • 0VDC
= 9VDC

(17.10)

That is, one should expect the motor to run at 75% of full speed. By using such a pulse
width modulated signal, the speed of a DC motor can be controlled because it is the average
voltage that determines its speed.average voltage

Today, it is not uncommon to find PWM capability built in to the microprocessor or
microcontroller. Under such circumstances, implementing the software side of the PWM
capability reduces to programming the desired period and duty cycle according to the
device’s data sheet. If PWM capability is not intrinsically supported and if the micropro-
cessor or microcontroller has a built-in timer, generating a PWM signal to the output ports
is rather straightforward.

For example, suppose that a PWM signal with a 75% duty cycle is required and the
signal’s period has been set to 100 ms. The signal can be implemented as follows: configure
a timer to time 75 ms, turn a digital output ON, and wait for the timer to expire. When the
timer expires, turn the digital output OFF and time 25 ms. The process can be executed
repeatedly to generate the 75% duty-cycle PWM signal. Observe that the frequency of the
signal is not changing, only its duty cycle.

In either case, the motor generally cannot be driven directly from the microprocessor’s
digital output ports. Rather, one must ensure that the hardware motor drivers can support
the current requirements for the intended motor. Several alternate implementations will be
discussed shortly.

17.10.2 Servo Motors

One can use a pulse width modulation (PWM) signal to control the position of a servo
motor in the following way. Every servo motor has a neutral or base position. The servo
is put into that position by applying a continuous train of pulses of a width specified by
the manufacturer of the servo. An internal feedback control system holds the servo in the
commanded position. To cause the servo to move in one direction, the width of the pulse
is increased, and to effect movement in the opposite direction, the width of the pulse is
decreased. The change in pulse width causes the movement; the repeated sequence holds
the position. These actions are illustrated in Figure 17.27.

The design may place a number of requirements on the servo motor, including the
ability to control the acceleration, velocity, and position to very tight tolerances. Slew rate,
the time that it takes for the servo to change from one position to another, is often another
critical parameter. As with so many other parts of the design, such constraints must be
identified and included in the design specification, not during the prototype development.
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50 150 250 350

Go to Neutral

Rotate Counterclockwise

Rotate Clockwise
Figure 17.27 Using a PWM Signal to Control a
Servo Motor

Motors are mechanical devices and, thus, typically have much looser time constraints
than one frequently finds in the control of their electronic counterparts. It is reasonable,
therefore, to consider controlling them directly by command from the microprocessor
unless there are other overriding considerations.

17.10.3 Controlling Stepper Motors

Controlling stepper motors is not that much more complicated than controlling DC motors,
although it may seem a lot like juggling as one tries to keep all the signals straight. The
earlier figure of the stepper motor is repeated here for reference. The polarization of the
electromagnets as illustrated in Figure 17.28a requires that the indicated input signals are
applied to X1, X2, Y1, and Y2: V to X1 and Y2 and 0 to X2 and Y1.
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Figure 17.28 Controlling a Stepper Motor
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If the input signals to V on X1 and Y1 and 0 to X2 and Y2 are now changed, the
polarization on the electromagnets changes to that shown in Figure 17.28b. The two north
poles at the top of the drawing will repel, and the north pole on the rotor will be attracted
to the south pole on the right-hand side of the stator. The rotor will thus move 90∘ in the
clockwise direction (see Figure 17.29).

X1 X2 Y1 Y2 Position

V 0 0 V 0o

V 0 V 0 90o

0 V V 0 180o

0 V 0 V 270o
Figure 17.29 Stepper Motor with 90∘ per
Step

Similarly, changes to the input signal levels shown in the accompanying table will
produce the rotor movements shown in Figure 17.30.
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Figure 17.30 Controlling a Stepper Motor

Extending the design to motors with a greater number of poles or stator teeth is a
straightforward application of the pattern illustrated. The variable will be the number of
times that the pattern will have to be repeated to achieve a full rotation as the number of
degrees per step will decrease.

The timing diagram for one cycle (not full rotation) is given in Figure 17.31.

X1

t1 t2 t3 t4 t1 t2

X2

Y1

Y2

Figure 17.31 Stepper Motor Control Timing Diagram
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Such a pattern can be generated in several ways, including:

1. Utilize four digital output lines from the microprocessor and base the signal timing
on an internal timer.

2. Utilize two digital output lines from the microprocessor and an external decoder
that will map the four possible combinations of the output lines to the necessary
drive signals. The timing is based on an internal timer.

3. Implement an external up/down counter (for bidirectional rotation). The counter can
be based on a four flip-flop design directly replicating the pattern in (1), thereby
minimizing the combinational decoding. Alternately, the design can utilize two
flip-flops and a decoding network, thereby replicating the design in (2).

17.10.4 Motor Drive Circuitry

Motors generally require more drive current than a typical microprocessor, Transistor-
Transistor Logic (TTL), or CMOS gate can provide. To provide that current, the control
signals being discussed are connected to a driver circuit rather than directly to the motor.
For unidirectional drive, any number of variations on the design in Figure 17.32 can be
used. The drive transistor must be able to sink the required motor current. The buffer is an
open collector driver. Thus, when the digital signal in is a logical 1, the base current forin
the transistor is supplied through the pull-up resistor rather than from the buffer. When the
digital signal in is a logical 0, the buffer can sink more current than a standard gate.

in

+V

+V

OC

Figure 17.32 Unidirectional Motor Drive

The diode is used to suppress the flyback voltage that is generated by the collapsing
field in the coil when the motor is switched OFF. If it is not included, the resulting voltage
can damage other parts in the circuit.

If the motor must support bidirectional rotation, one of the more commonly used driver
designs is called an H bridge or a variant called a half H bridge. The circuit has acquiredH bridge, half H bridge
such an appellation because its topology resembles an upper case H. One such design for
an H bridge is given in Figure 17.33.

All four of the gates are open collector or open drain devices. Thus, for example, if
input in1 is in the logical 0 state, the output of the open collector device is floating and thein1
base of Q3 is pulled to the supply voltage, thereby cutting it off.

If transistors Q2 and Q3 are turned ON and transistors Q1 and Q4 turned OFF, current
will flow from left to right through the motor winding. Conversely, if the states of the four
transistors are reversed, current will flow in the opposite direction and the motor will rotate
in the opposite direction.
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Figure 17.33 H Bridge Motor Drive

The four diodes are to suppress the flyback voltage that is generated by the collapsing
field in the coil when the motor is switched OFF or the direction is changed.

To control a DC or servo motor, the PWM signal is connected to one pair of the input
signals, in1 and in2, while the other input pair is connected to ground. To reverse the direc-in1, in2
tion of rotation, the input connections are reversed. Connections for a stepper motor follow
in a similar manner. For the stepper motor, one bridge will be required for each winding.

A design for a half H bridge is presented in Figure 17.34.

+V

+5VDC+5VDC

in1

Motor

Winding

Q1

Q4Q3

Q2
OC

in2

OC

Figure 17.34 Half H Bridge Motor Drive

If the input signals, IN1 and IN2, to the half H bridge are at ground and 5.0 VDC,
respectively, transistors Q1 and Q4 will be OFF while transistors Q2 and Q3 will be ON.
Current will flow through the winding from left to right in the drawing. If the input signals
are reversed, the states of the four transistors will be reversed and current will flow in the
opposite direction through the winding.

To control a DC or servo motor, the PWM signal is connected to one of the input
signals, IN1 or IN2, and the other input is connected to ground. To reverse the direction of
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rotation, the input connections are reversed. Connections for a stepper motor follow in a
similar manner. For the stepper motor, one bridge will be required for each winding.

Today numerous vendors provide an excellent selection of H bridge, half H bridge, and
other types of motor drive integrated circuits that should satisfy most design specifications.

17.10.5 Motor Drive Noise

Electric motors are notorious sources of noise in embedded applications. Such noise arises
from the switching currents in the windings in the motor as one can readily seen from the
simple equation for the voltage drop across an inductor:

V = L
di
dt

(17.11)

The large switching currents that are common in motors give rise to noise that
eventually appears throughout the ground distribution system as a contributor to ground
bounce – the movement of ground away from the reference 0.0 V.ground bounce

One way to address such a problem is to put the motors onto a power and ground system
that is physically separate from the rest of the logic and any precision analog circuitry. Any
necessary control signals are optically coupled into the isolated subsystem. Such a scheme
is illustrated in Figure 17.35.
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Figure 17.35 Using Optical Couplers to Isolate Motor Noise

17.11 LEDs AND LED DISPLAYS

Light-emitting diodes (LEDs), dot matrix, and multisegment LED displays are common
in many embedded applications. The amount of external hardware that should be included
in the design is determined by the current drive capabilities of the microprocessor output
ports and by I/O space limitations in the design.

Assume that limited hardware support from the processor and, therefore, most of the
design must be implemented outside of the processor. The designs can easily be migrated
to software if the necessary resources are available.

17.11.1 Individual LEDs

Most TTL and CMOS devices sink current better than they source it. An open collec-
tor or open drain device works very well as a driver. Such devices are designed to sink
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substantially more current than the standard gates and are available as either inverting or
noninverting drivers.

Assume that the application specifies that an annunciation be given when a certain
event is TRUE. If we assume the event is an active HIGH or HIGH TRUE signal, then the
inverting device should be selected. The schematic in Figure 17.36 illustrates the design of
the annunciator. The resistor is incorporated to limit the current through the LED, which
ranges from 20 to 60 mA. With LEDs, as the current level is increased, the brightness does
as well.

event

+V

330

Figure 17.36 Controlling an LED using Cathode Drive

17.11.2 Multi-LED Displays

The ubiquitous seven-segment or numeric display simply combines a number of individual
LEDs into a package with an appropriate lens to enable the display of any of the 10 decimal
digits (plus decimal points) when the proper LEDs are illuminated. A top view of the device
and several possible digits is shown in Figure 17.37.
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Figure 17.37 A Three-Digit LED
Display

The LEDs within the display are connected in either a common anode or a common
cathode configuration. Simply put, either all the anodes are connected together and the
drive signal is applied to the individual cathodes or vice versa as depicted in Figure 17.38
(omitting the decimal points).

a b c d e f g

a b c d e f g

Common Anode Common Cathode

Figure 17.38 Seven-Segment LED Display
Configurations

To drive the device, a Medium-Scale Integrated (MSI) part called a Binary Coded
Decimal (BCD) to Seven-Segment Decoder can be used. As the name suggests, the partBCD to Seven-Segment

Decoder takes four input signals, encoded as a BCD number, and produces seven output signals.
If those signals are connected to a seven-segment display as shown in Figure 17.39, the
proper LEDs will turn on to display the corresponding BCD number. The decimal points,
if necessary, would be controlled separately.
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Figure 17.39 Using a Seven-Segment
Decoder/Driver to Control a Common Anode LED
Display

The outputs on the decoder are implemented as open collector devices. In addition to
the four data inputs, the decoder has three, active low, control inputs. The first, ∼LT–Lamp
Test, when active, turns all seven segments ON. The remaining two support leading zeroLamp Test
suppression in multidigit displays. When enabled, the number 00789 would display as 789.
When the signal ∼BI (Blank Input) is active, all data outputs are OFF independent of theBlank Input
input data. When the signal ∼RBI (Ripple Blank Input) is active, all data inputs are low, allRipple Blank Input
data outputs are OFF, and the signal ∼RBO (Ripple Blank Output) is active.

When implementing a multidigit display, to save power, weight, and the cost of
parts, the decoder can be multiplexed among all of the display devices as illustrated in
Figure 17.40.
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Figure 17.40 A Multiplexed Four-Digit LED Display
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The design takes advantage of the fact that the human eye is able to integrate out
short-term transients in an image so that it appears to be constant. The operation proceeds
as shown in the timing diagram shown in Figure 17.41.

S0

S1

S2

S3

D0 − D3 D0 D1 D2 D3
Figure 17.41 Timing for the Anode
Drive in a Multiplexed Four-Digit
LED Display

The data for each digit to be displayed is successively written to one of the micropro-
cessor’s I/O ports as the input to the BCD to seven-segment decoder. A short time later, a
strobe is issued to turn ON the transistor in the corresponding display digit. The cycle is
repeated for all digits in the display.

The update rate must be high enough that interdigit flicker is not perceivable. Because
each digit is only enabled for (1/number of digits) of a display cycle, its average current will
be correspondingly reduced. To ensure the same brightness as a nonstrobed implementation,
the current limiting resistors will need to be modified.

17.12 MEASURING DIGITAL SIGNALS

The most common digital signals that are measured are those in the time and frequency
domains. In the time domain, we measure any of

1. The period of a periodic signal.

2. The duration of a signal.

3. The elapsed time between two events.

In the frequency domain we measure:

1. The frequency of a periodic signal.

2. The number of events per time for a periodic or aperiodic signal.

We now look at a portion of the detailed design of the counter that we began working
with in an earlier chapter.

17.12.1 The Approach

To implement a time domain measurement, a known signal is measured for an unknown
time, and for a frequency domain measurement, an unknown signal is measured for a known
amount of time (Figure 17.42).

For the measurements illustrated in the figure, there is a signal of an unknown duration
as reflected in the two regions marked as unknown time. If that signal is used to enableunknown time
a second signal of known frequency (actually it is the period that is important) into a
counter, the value in the counter at the end of the unknown time will provide a measure of
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unknown time

known signal

known signal

unknown time

Figure 17.42 Measuring a Known
Signal for an Unknown Time

the duration of the unknown signal. The resolution of the measurement is a direct function
of the frequency of the clock to the counter.

If the frequency to the counter is 1 MHz, then it is known that 1000 counts will occur
during a 1 ms interval and that the resolution of the measurement will be 1 μs. If at the end
of the measurement, 654 counts have accrued, the duration must have been 654 μs. The
diagram presented in Figure 17.43 simply reverses what is known.

unknown signal

known time

Figure 17.43 Measuring an Unknown Signal for a
Known Time

Here, the time is known and the goal is to determine the frequency of the unknown
signal. Thus, if the known duration is used as an enable to a counter, at the end of the time
the counter will have accumulated a number of counts. That is, we have events per time
or the frequency for a periodic signal. For an aperiodic signal, the count can be interpreted
either as an average frequency or events per time.

17.12.2 Working with Asynchronous Signals

When working with digital signals coming into the system that are asynchronous to the
internal clock, one must be aware of and properly manage metastable behavior. To that
end, the objective is to synchronize such a signal to the internal clock prior to trying to do
any significant work with it.

Many different approaches can be used to deal with the problem; one of the simpler
ones is given in Figure 17.44.

Q

Q

Q

Q

clock 1

D D

reset

synchronized signal

metastable signal

SET

CLR

SET

CLR

unknown signal
(function of clock 0)

Figure 17.44 Synchronizing an Asynchronous External Signal to an Internal Clock
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The unknown or incoming signal is a function of some clock outside of the system.
Consequently, there is no way of knowing when a state change will occur with respect to
the internal clock, clock1. As Figure 17.45 illustrates, the incoming signal may or may not
violate the setup time for the flip-flop. If the setup time is violated, the output of the first
flip-flop may enter a metastable state for some time.

setup time

1 32

unknown signal

clock1

Figure 17.45 Setup Time for an Asynchronous External Signal vs. an
Internal Clock

In Figure 17.45, if the unknown signal changes state in region 1, it will be recognized
correctly by the first clock pulse. If it changes state in region 3, it will be missed by the
first clock pulse but recognized by the second. A state change in region 2 creates a potential
problem. In such a case, the first flip-flop can enter a metastable state.

The metastability will be “filtered out” by the synchronizer and the unknown signal
will be recognized and synchronized properly if the following two conditions hold:

1. The unknown signal persists longer than two cycles of the internal clock, in this
case, clock1.

2. The metastable state is shorter than the period of clock1 minus the flip-flop setup
time.

17.12.3 Buffering Input Signals

In addition to having to deal with the asynchronous timing of external signals with respect
to the internal clock, it is also necessary to accommodate signal levels that exceed tradi-
tional logical levels. To do so, we use a buffer of some form. A circuit such as that shownbuffer
in Figure 17.46 will work well for signals with lower frequencies (less than 10 MHz).

R1

+

−

R2

Signal In

+

−
Signal Out

Figure 17.46 Buffering Input Signals
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For higher frequencies, the buffer must be designed using parts that are appropriate to
the frequencies being used. It is beyond the scope of this text to present analog design
at that level.

17.12.4 Inside vs. Outside

Many microprocessors have one or more built-in timers that can be utilized for making both
time and frequency measurements. The decision as to whether to use one of the internal
timers or build the measurement circuitry outside of the microprocessor is based on several
factors. For systems with lower performance constraints but with more restricted cost con-
straints, utilizing as much of the internal circuitry as possible is the preferable alternative.
Alternatively, when measuring signals with higher frequencies or shorter time durations
combined with possible hard real-time constraints, a greater portion of the design will need
to be implemented in hardware outside of the microprocessor.

A third alternative utilizes a combination of both external hardware and the internal
timers. The hardware component manages the higher speed/shorter duration measurement,
whereas the internal counter/timer deals with the slower portion.

17.12.5 Measuring Frequency and Time Interval

Consider an application that requires measuring the frequency of a signal in the range of
1 MHz. We will look at two of the several ways by which the measurement can be per-
formed. One approach requires that the period of the signal be measured and then converted
to frequency; this approach, of course, gives the period or interval measurement as well. A
second approach requires gating the signal into a counter for a known interval. For each,
we will examine an internal and an external implementation.

17.12.5.1 Measuring the Period – An Internal Implementation

When taking the first approach and implementing the design using an internal counter/timer,
one will have to increment the counter at a rate that is much higher than the frequency of
the unknown. This way, the frequency can be determined with adequate precision.

Figure 17.47 illustrates three different measurements that can be made using such a
technique.

unknown intervals

known signal Figure 17.47 Measuring Time

In one case, the period of a periodic signal can be measured. The interval spanned
by the rising and falling edges (or the falling and rising edges) of the signal can also be
measured.

To measure the period, the unknown signal is used as an interrupt into the micropro-
cessor. The interrupt is configured to trigger on a rising edge. When the interrupt occurs,
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the counter is started. At that point, the counter is incrementing at the known rate. When the
second interrupt occurs, the counter is disabled. Its contents, combined with the frequency
of the incrementing signal, provide sufficient information to compute the frequency of the
unknown signal, thus,

unknown frequency =
(

known period
see

count
• accumulated counts

)−1
(17.12)

The difficulty with this approach arises from the fact that the frequency of the internal
clock source to the counter may not be high enough to achieve the desired resolution.

17.12.5.2 Measuring the Period – An External Implementation

In contrast, if the measurement is implemented with external hardware, it is possible to
achieve much greater accuracy and precision, and the microprocessor is unburdened – it
does not have to directly participate in the measurement. One such implementation is shown
in Figure 17.48.
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Figure 17.48 Block Diagram for System to Measure the Period of a Signal Based on a Hardware
Implementation Outside of the Microprocessor

The high-level timing diagram for the system is shown in Figure 17.49. The Start signalStart
from the microprocessor initiates the measurement. In response, the state machine enables
the synchronizer. The synchronizer serves a dual role. In addition to synchronizing the
external signal to the internal clock, the second synchronizer flip-flop serves to delimit the
measurement. One to two clock1 pulses after the external signal makes a 0 to 1 transition,clock1

Enable
Complete

the Enable signal is asserted by the state machine, thereby starting the counter. On the
second 0 to 1 transition by the external signal, the Enable is deasserted and the Complete
event is sent to the microprocessor. The state of the counter, representing the period of the
unknown signal, can be read at any time after that.
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Start

Enable Synchronizer

Synchronized Signal

Unknown Signal

Enable Counter

Complete

Read

Figure 17.49 Timing Diagram for System to Measure the Period of a Signal Based on a
Hardware Implementation Outside of the Microprocessor

17.12.5.3 Counting for a Known Interval – An Internal Implementation

The second approach reverses the roles of the gate and the signal being counted. In this
case, the gate is opened for a known and specified interval, and the unknown signal is
used to increment a counter. When the interval ends, the counter contains the frequency of
the unknown signal. This relationship is illustrated in the timing diagram in Figure 17.50.

unknown signal

known time

Figure 17.50 Measuring the Frequency of an
Unknown Signal

For example, if the frequency to be measured is in the range of 1 MHz and the desired
precision is three digits, 1.000 MHz, then the window should be open for

window = 1000 counts •
1μ sec

count
= 1ms

(17.13)

To implement the measurement, a timer and a counter are needed. The unknown signal
is used as an interrupt into the microprocessor. When the first interrupt occurs, the timer
is started and the counter is incremented. The counter is incremented for each subsequent
interrupt until the timer expires. At that point, the external interrupt is disabled. The counter
will now contain the number of accrued counts, which translates directly to the unknown
frequency.
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The difficulty with this approach is that for higher frequencies the microprocessor is
going to be heavily burdened with processing all of the interrupts. For a sufficiently high
frequency, it may be possible to cause a stack overflow.

17.12.5.4 Counting for a Known Interval – An External Implementation

The measurement can also be implemented in hardware outside of the microprocessor. Such
a design is presented in Figure 17.51.

The high level timing diagram is given in Figure 17.52. In this design, as in the previ-
ous external hardware designs for other measurements, the process commences when the
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Figure 17.51 Block Diagram for System to Measure the Frequency of a Signal Based on a Hardware
Implementation Outside of the Microprocessor
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Figure 17.52 Timing Diagram for System to Measure the Frequency of a Signal Based on a
Hardware Implementation Outside of the Microprocessor
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microprocessor issues the Start command. In turn, the state machine enables the time base,Start
Enable Counter the synchronizer, and the counter. The time base generates a window, Enable Counter, for

a length of time consistent with the measurement being made. When the window duration
has expired, the Complete signal is asserted to the microprocessor, which responds with a
Read command to read the state of the counter.

Complete
Read

17.13 SUMMARY

In this chapter, we have studied several different ways of gen-
erating and working with analog and digital signals utilizing
the shared variable model. For each design, we examined the
transport mechanism, studied how control and synchronism are
implemented, and learned how producers and consumers can
be identified. We opened with a discussion of how to generate
analog signals, and then we studied various methods for con-
verting physical world analog signals into digital form for use

inside the microprocessor. Because of the nonlinear nature of the
various transducer signals, we examined how to deal with such
nonlinearity.

We then moved to the problem of generating digital signals
as control inputs to several different kinds of small motors and
as information that must be displayed. We finally concluded by
introducing and studying how time and frequency signals can be
measured.

17.14 REVIEW QUESTIONS

Generating Analog Signals

17.1 What is one of the main techniques that we use in a digital
system to generate analog signals?

17.2 How does the number of bits in a digital word affect the
quality of the output of a digital-to-analog converter?

17.3 What is an R/2R ladder, and what is it used for?

Making Analog Measurements

17.4 Please give three different ways by which we can mea-
sure voltage. Briefly explain the measurement technique used in
each case.

17.5 What are the three major intervals in a dual slope
analog-to-digital converter? Explain the purpose of each inter-
val.

17.6 Briefly explain how a successive approximation
analog-to-digital converter works.

17.7 What is the purpose of the sample and hold circuit in a
successive approximation A/D?

17.8 How does the operation of the sample and hold circuit
affect the accuracy of the conversion?

17.9 What are some sources of error in a sample and hold cir-
cuit?

17.10 How does analog-to-digital conversion using a
voltage-controlled oscillator work?

17.11 What are some of the major sources of error in a
voltage-controlled oscillator A/D converter?

17.12 Give several ways by which we can measure resistance.

17.13 Give several ways by which we can measure current.

17.14 Give several ways by which we can measure tempera-
ture.

17.15 When we say that a sensor output is nonlinear, what do
we mean?

17.16 Give several ways by which we can correct for nonlinear
signals.

Generating Digital Signals

17.17 Embedded systems will sometimes have to drive motors
as part of an application. What are three of the more commonly
used motor types in such applications?

17.18 What are the major differences between each type of
motor identified in Question 17.17?

17.19 What technique is commonly used to control the speed
or position of a DC or servo motor? Explain how the technique
operates.

17.20 What technique is commonly used for controlling step-
per motors? Explain how the technique operates.

17.21 What is an H bridge? What is it used for? Explain how it
operates.

Measuring Digital Signals

17.22 What are some of the more common digital measure-
ments that we might be required to make in an embedded appli-
cation?

17.23 Describe how we might measure frequency.

17.24 Describe how we might measure time.
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Working with Input Signals from External
World Devices

17.25 When working with input signals, what is the difference
between synchronous and asynchronous signals?

17.26 What is metastability?

17.27 What causes metastability?

17.28 Why do we buffer digital signals that are coming in from
external world devices?

17.29 Why do we buffer analog signals that are coming in from
external world devices?

17.15 THOUGHT QUESTIONS

Generating Analog Signals

17.1 Give several reasons why we might need to generate ana-
log signals in an embedded application.

Making Analog Measurements

17.2 What are some of the more common analog measure-
ments that we might be required to make in an embedded appli-
cation?

17.3 Give several reasons why we might have to make analog
measurements in an embedded application.

17.4 Give several examples of devices that produce analog
signals that might serve as inputs to an embedded application.
What kind of signal, voltage, current, or some other type might
come from such devices? Briefly explain the measurement tech-
nique used in each case.

17.5 In the chapter, we identified three different ways by
which we can measure voltage. Compare the advantages and
disadvantages of each measurement method.

17.6 Three major intervals in a dual slope analog-to-digital
converter were identified in the chapter. Do variations in the
duration of each interval have an effect on the measurement?
If so, what is the effect?

17.7 How does the operation of the sample and hold circuit
affect the accuracy of the conversion?

17.8 Give several examples of when measuring resistance
might be necessary in an embedded application.

17.9 Give several examples of when measuring current might
be necessary in an embedded application.

17.10 Give several examples of when measuring temperature
might be necessary in an embedded application.

Generating Digital Signals

17.11 What are the major differences between each type of
motor identified in the chapter?

17.12 Give several examples of applications that would require
one of the motor types identified in the chapter. Explain why the
type you have identified is the best choice for the application.

Measuring Digital Signals

17.13 Give several reasons why we might have to make digital
measurements in an embedded application.

17.14 Give several examples of devices that produce digital sig-
nals that might serve as inputs to an embedded application. What
kind of signal might come from such devices?

17.15 If we can make only one measurement, time or fre-
quency, how might we obtain the other one? What is the impact
of such a method on the time performance of an embedded appli-
cation?

Working with Input Signals from External
World Devices

17.16 What are some of the problems one encounters when
working with digital signals originating in external world
devices?

17.17 How can we deal with the problem of metastability?

17.18 How can we synchronize to external world digital sig-
nals?

17.19 How do we accommodate signals from the external
world that have levels that are outside of the valid range of digital
logic signals (i.e. are either too high or too low)?

17.16 PROBLEMS

17.1 Design the Verilog model, hardware, and a software
driver that can display the BCD digits 0–9 on a single-digit
LED display. Build the BCD to seven-segment decoder in
software.

17.2 Modify the design in Problem 17.1 to perform the
BCD to seven-segment conversion using an external hard-
ware decoder. Compare the costs and benefits of the two
approaches.
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17.3 Extend the design in Problem 17.1 to support a four-digit
LED display. Multiplexing hardware may be added; however,
the BCD to decimal decoding should still be implemented in
software.

17.4 Extend the design in Problem 17.2 to support a
four-digit LED display using only a single-hardware BCD to
seven-segment decoder. Additional multiplexing hardware may
be included as necessary.

17.5 An embedded system uses a processor that provides two
hardware timers. The multitasking application comprises four
tasks that require intervals of 1, 2, 6, and 10 μs be timed and
three tasks that intervals of 2, 5, 15, and 25 ms be timed.

Each timer is 16 bits and each is clocked at 10 MHz. A
16-bit value can be loaded into a timer using a software load
command.

Give the pseudocode for a time base that will support all of
the tasks.

17.6 An embedded application must be able to enable or dis-
able an aural alarm on any of eight different entrances to a secure
building. Design a system that can set the state (enabled or dis-
abled) of all alarms in a single transaction.

17.7 Extend the design in Problem 17.6 so that the state of all
of the alarms can be read in a single transaction.

17.8 Design the Verilog model, hardware, and a software
driver that can poll any of four different devices for status infor-
mation. Status information is to be returned from the polled
device as a single byte.

17.9 Design the Verilog model, hardware, and a software
driver for a system that supports interrupts from any of four dif-
ferent devices connected to a single interrupt line. Be certain to
address the problem of simultaneous interrupts.

17.10 Extend the design in Problem 17.9 to associate a priority
with each device.

17.11 An embedded system has three Input/Output devices (A,
B, and C). The processor has two input and two output lines
available for control. Devices B and C have the same priority. A
has higher priority than either B or C.

Design an I/O system for this computer that satisfies the
following requirements. In each case, be sure to specify how the
device requests service, how the service routine is invoked, and
how simultaneous requests are handled.

(a) Show a block diagram and explain an I/O scheme using
interrupts.

(b) Show a block diagram and explain an I/O system using
polling.

(c) How are simultaneous requests for service handled in
each case.

(d) Briefly discuss the advantages and disadvantages of each.

17.12 An embedded system is designed to control a home
entertainment system. The processor must bring in data from any

of four different sources: a CD player, a DVD player, a Tuner,
and a Joystick. The CD and the DVD player transfer 16-bit data
words, and the Tuner and Joystick transfer byte-wide data words.
Each transfer comprises four data words.

Design the Verilog model, hardware interface, and software
driver that will select any of these devices and transfer the data
via the system bus to the processor.

17.13 An embedded system is designed to control a home
entertainment system. The processor must send data to any of
four different devices: a Digital-to-Analog Converter, a Digi-
tal Display, a Memory, and a Graphic coprocessor. The D/A
converter and memory each support a 12-bit interface, the
Graphic coprocessor requires 16-bit data words, and the Dis-
play requires 8-bit words. Each transfer comprises four data
words.

Design the Verilog model, hardware interface, and software
driver that will select any of these devices and transfer the data
via the system bus from the processor to the device.

17.14 A peripheral device must receive a 16-bit data word in
two 8-bit pieces – least significant byte, then most significant
byte – according to the following sequence.

When a Ready signal from an external device is received:

– Generate a signal E1 to output the lower eight bits.
– Wait 𝜏d, then output the signal dStrobe.
– Wait 2𝜏d, then terminate the signals E1 and dStrobe.
– Generate a signal E2 to output the upper eight bits.
– Wait 𝜏d, then output the signal dStrobe.
– Wait 2𝜏d, then terminate the signals E2 and dStrobe.

(a) Describe the required transfer using a Unified Modeling
Language (UML) state diagram.

(b) Design the software driver to execute the described data
transfer.

17.15 The processor must accept a 10-bit serial data word
peripheral communications device. Each input data bit has an
accompanying clock as shown in Figure P17.1. Note, the clock
is running continuously.

10 Data Bits
Total

Data

Clock

Figure P17.1

The device must operate as follows.
The serial data line is in a quiescent state of logical 1, and

the input device is in the ready state.

• A logical 0 bit appears on the input.
• A counter is enabled to count incoming data bits.
• After 10 data bits have been received, a recComplete signal is

generated.
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• An error check circuit, which tests the incoming data for
errors, has an error output signal to indicate if the received
word contains an error. A logical 1 on the error signal
indicates an error.

• In either case, the circuit is to signal the processor that data is
available. If no error has occurred, the data is to be tagged a
valid and transferred into the processor.

If the error check circuit indicates an error when the
rec-Complete signal occurs, the device should mark the data as
invalid and send an error status word to the processor during the
transfer.

(a) Give a UML state diagram for the operation of the commu-
nications device.

(b) Give a timing diagram for the transfer from the communi-
cations device to the processor.

(c) Specify the format for the data and status words that will be
returned from the peripheral device.

(d) Write the software driver to interface with the peripheral
device.

17.16 Design a Verilog model, hardware interface, and soft-
ware driver that supports read and write access to a 1024× 8
SRAM over an 8-bit bus.

17.17 Design a Verilog model, hardware interface, and soft-
ware driver that support read and write access to a 1024× 8
SRAM using memory-mapped I/O. Assume a 16-bit external
address bus and an 8-bit data bus.

17.18 Extend the design in Figure 17.18 to support an LCD dis-
play that accepts data in a character serial format in 16 character
blocks.

17.19 A shared memory scheme is to be used as a means of
exchanging blocks of data between two tasks, T0 and T1. One
of the tasks is on the main processor and the other is executing
on an external device. The shared area occupies 2 K of memory
in a 16 K× 8 SRAM; however, the number of bytes written with
each exchange is variable.

(a) Present a design for the shared memory system.

(b) Using a UML sequence diagram, explain how your mem-
ory system works by describing a complete cycle that includes
the following: Write by T0 – Read by T1 – Write by T1 – Read
by T0.

(c) How does each task know when data is available and how
much data is available?

(d) Are there any potential problems with your design?

(e) How would your design change if three tasks were involved
in the exchange?

17.20 Create a lookup table containing sufficient “sampled”
data to reconstruct the following sinusoidal function:

v(t) = 2 sin (𝜔t) + 2

Let the frequency be 5 KHz and express each data sample
as a byte.

(a) Design a Verilog model, hardware interface, and software
driver to repeatedly write the data from the lookup table to
a DAC.

(b) What is the value, in volts, of the least significant data bit?

(c) On your system, what is the highest frequency for the sine
wave that can be supported?

(d) What limits the upper frequency?

(e) Why should the “sampling frequency” of your data be
slightly greater than twice the highest frequency?

17.21 Repeat Problem 17.17 by first storing the “sampled” data
in an external SRAM. What is the highest frequency sine wave
that can be supported with your modified design?

17.22 Repeat Problem 17.20 with a lookup table containing
sufficient “sampled” data to reconstruct the following sinusoidal
functions:

v1(t) = 2 sin (𝜔t) + 2

followed in time by

v2(t) = 3 sin(2𝜔t) + 3

Let the frequency be 5 KHz and express data sample as
a byte.

17.23 Repeat Problem 17.22 by first storing the “sampled” data
in an external SRAM. What is the highest frequency sine wave
that can be supported with your modified design?

17.24 Design a Verilog model, hardware interface, and soft-
ware driver to an 8-bit successive approximation ADC. Assume
that the analog input signal will be in the range of 0–5.0 VDC.

(a) What is the value, in volts, of the least significant data bit?

(b) What is the smallest full-scale error in a sample?

(c) Use your measurement subsystem to sample the following
voltages: 0.0, 1.0, 2.0, 3.0, 4.0, 5.0. Compare your measured val-
ues with the input voltages. What are the errors in your readings?

(d) Write a simple software loop to repeat the measurements
in part (c) 10 times. Plot your samples and the minimum and
maximum error for each cardinal point. Are the errors consis-
tent across the range of values? If not, how do you explain the
differences?

17.25 The basic measurement cycle for a dual slope ADC is
comprised of three subintervals, integrate or sample, read or
convert, and autozero, as discussed in the chapter.

Thus, the device can be in any one of three modes: sampling
the unknown signal, converting it to a digital value, or zeroing
out errors. Control signals sent to the A/D place it in one of the
three modes.

The integrate and autozero intervals are fixed and known
times. The read interval begins at the end of the integrate inter-
val and ends when a compare event is received from the A/D.
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The length of the read interval corresponds to the magnitude of
the unknown signal.

(a) Give a UML sequence diagram expressing the dual slope
A/D measurement cycle.

(b) Give a UML state diagram describing the operation of the
measurement cycle.

(c) Using pseudocode, write a task to perform a basic dual slope
A/D converter measurement cycle for execution on your proces-
sor. Be sure to specify any data storage that might be needed and
the minimum number of (A/D) control signals necessary, what
they do, and where they come from.

(d) Do any portions of the measurement cycle have timing con-
straints that may be critical?

(e) Based on your pseudocode, write the software driver to con-
trol the conversion.

17.26 Design a Verilog model, hardware interface, and soft-
ware driver to an 8-bit successive approximation ADC. Assume
that the analog input signal will be in the range of 0–5.0 VDC.

(a) Use your measurement subsystem to sample the following
sinusoidal function.

v(t) = 2 sin (𝜔t) + 2

(b) Compare your measured values with the input voltages.
What are the errors in your readings?

17.27 Design a software driver that will poll a periodic digi-
tal signal on an input port of your processor and, using a timer,
determine the period of the signal on the port.

(a) What is the shortest period that your design will support,
assuming that no other tasks are running?
(b) What is the worst case error in your measurement?

(c) What is the longest period that you can measure without
timer overflow?

(d) How would you modify your design to accommodate timer
overflow?

17.28 Design a software driver that will poll a periodic digi-
tal signal on an input port of your processor and, using a timer,
determine the frequency of the signal on the port.

(a) What is the highest frequency that your design will support
assuming that no other tasks are running?

(b) What is the worst case error in your measurement?

(c) What is the lowest frequency that you can measure without
timer overflow?

(d) How would you modify your design to accommodate timer
overflow?

17.29 Repeat Problem 17.27 by connecting the digital signal to
your processor’s external interrupt.

17.30 Repeat Problem 17.28 by connecting the digital signal to
your processor’s external interrupt.

17.31 Design the Verilog model, external hardware, and soft-
ware driver to measure the period of a digital signal in the range
of 0 to 100 μs.

17.32 Design the Verilog model, external hardware, and soft-
ware driver to measure the frequency of a digital signal in the
range of 0 to 100 KHz.

17.33 Design the Verilog model, external hardware, and soft-
ware driver to control the speed of a DC motor using a pulse
width modulation scheme. The output waveform should support
controlling the motor from full OFF to full ON based on the
value of an 8-bit control word. The hexadecimal value 0× 00
should correspond to a speed of 0 RPM, and 0xFF should corre-
spond to full speed.

(a) What is the smallest change in motor speed that you can
control?

(b) Based on your answer to part (a), what is the worst case
error in motor speed control?

17.34 Design the external hardware and software driver to con-
trol the position of a stepper motor assuming changes only in the
forward direction.

(a) What is the smallest change in motor position that you can
command?

(b) Based on your answer to part (a), what is the worst case
error in motor position?

17.35 Design the Verilog model, external hardware, and soft-
ware driver to control the position of a stepper motor in both the
forward and reverse directions.

(a) What is the smallest change in motor position that you can
command?

(b) Based on your answer to part (a), what is the worst case
error in motor position?
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Chapter 18

Working Outside of the Processor
III: Interfacing to Remote Devices

THINGS TO LOOK FOR …
• Some of the commonly used architectures for network-based interfaces.
• Some of the strengths and weaknesses of the different architectures.
• The different transport mechanisms.
• The control and synchronization schemes utilized for the different architectures.
• The implementation of device and subsystem addressing in each of the different designs.

18.1 COMMON NETWORK-BASED I/O ARCHITECTURES

We have been studying the many different ways that one can interact with and incorporate
the world outside of the core microprocessor into an embedded design. That world includes
devices that are local to the immediate context and those that may be substantially remote.
Let’s now look at some specific examples of how such techniques move from the textbook
to the real world.

In this chapter we will study four different, commonly used network-based input/output
designs. For each design, we will briefly examine the problems that motivated designers to
develop the interface, identify the contributions that each has introduced to the embedded
world, and cite the strengths and weaknesses of each approach.

Following the model of intertask communication and synchronization developed in
earlier chapters, for each scheme we will examine the transport mechanism, study how
control and synchronism are affected, and investigate how message senders and receivers
are identified.

We will open with an examination of the traditional RS-232, which is now the EIA-232
standard asynchronous serial interface. We will then explore a synchronous serial interface
approach utilized by the Universal Serial Bus (USB). The I2C bus as a small local area
network (LAN) will be the next design that we will study. Finally, we will conclude with the
Controller Area Network (CAN) bus, another type of LAN commonly used in automotive
applications.

These busses were selected because each represented a change in thinking about
the way information was exchanged in the context in which the design was applied.

Embedded Systems: A Contemporary Design Tool, Second Edition. James K. Peckol.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/college/peckol
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The underlying architecture and control/synchronization mechanisms utilized in the busses
that we will study here are representative of those found in most of the network-type busses
in use today. In this way you will understand the key aspects, strengths, and weaknesses of
each; you should try to identify what existing problem(s) the bus was intended to address,
determine whether you think it succeeded, and learn if it created new ones.

18.2 NETWORK-BASED SYSTEMS

Information exchange through messages is a universally used technique in embedded appli-
cations. Implementations range from a basic simplex architecture for moving collected data
to a remote site for storage or processing to sophisticated, robust, high-speed full-duplex
networks. In contrast to local device model architectures, which tend to consist of several
devices in relatively close proximity to the local application, network-based designs typi-
cally include a number of remote nodes or subsystems and are often geographically more
widely distributed.

The places, control and synchronization, and information in such systems is generallyplaces, control and
synchronization,

information
supported by the firmware in the device drivers on the local and remote machines. The
device drivers will often incorporate a formal protocol that manages the addressing, flow
of control, error management, and packaging of the payload. The transport mechanism fortransport
the network-based infrastructure is most often serial and involves only a limited number of
signal paths. We will begin with one of the more common message-based serial communi-
cation schemes. The current embodiment has evolved from what started life as the RS-232Electronic Industries

Association (EIA) standard from the Electronic Industries Association (EIA).

18.3 RS-232/EIA-232 – ASYNCHRONOUS SERIAL COMMUNICATION

18.3.1 Introduction

One of the more familiar asynchronous network-based I/O schemes in use today has evolved
from the RS-232 (now the EIA-232) standard model. The model, with its underlying stan-
dard, was initially developed in the early 1960s. At that time, a committee, the EIA, was
formed to develop a standard interface between a piece of computing equipment and a piece
of data communications equipment (DCE). At its inception, the RS-232 specification was
not intended as a network specification.

Before the days of broadband, DSL (digital subscriber line), or cable modems,
any data exchange between geographically separated sites was over the telephone
lines – affectionately referred to as POTS or the plain old telephone system. The underlyingPOTS, plain old

telephone system infrastructure for the telephone system was analog and the data to be sent was digital.
To remedy the seeming conflict, the digital data was modulated on the sending side into
a form that was compatible with the telephone system and then demodulated on the
receiving side back into a form that was compatible with the digital devices there. Themodulator–

demodulator
mod demod modem

modulator–demodulator pair and controlling process became shortened into mod demod
or further into modem.

The modem, or other equipment performing a similar task, was designated to be a piecedata communications
equipment (DCE), data

circuit terminating
equipment

of DCE. The current interpretation of the acronym is data circuit terminating equipment.
The digital source on either end was similarly designated to be a piece of data terminal
equipment (DTE).

data terminal
equipment (DTE)

The basic idea is rather simple and elegant. However, as we have learned, not
everything is always quite so. The digital exchange over the analog channel afforded
many opportunities for data corruption. As the importance of the data to be exchanged
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increased, so did the need for a more reliable means of affecting that exchange. In addition,
as the telecommunications field started to grow, so did the number of vendors offering
equipment – often with incompatible interfaces. As we will learn when we study the USB
interface, these requirements and expectations drove the need for standardization. The
standard that was adopted was the RS-232 interface. It specified signaling voltages, timing,
and functions as well as a protocol for exchanging information, the physical connectors,
and pin assignments for the equipment involved in the exchange. The specific equipment
was a piece of DCE and a piece of DTE.

Since 1960, the standard has seen three modifications. In addition to the name change
to EIA-232, several of the signals have been renamed and new ones have been added. The
most current version of the standard is designated EIA-232E.

Its ease of use has led to such a plethora of variations that the original intent of the
standard has become clouded or forgotten. Today these variations often appear under the
name RS-232, but in use they take a significant departure from the original intent. As a
result, significant amounts of time, money, and frustration are often spent trying to sort all
this out. Before we look at how RS-232 is typically misused, let’s look at its initial intended
purpose in a bit more detail.

18.3.2 The EIA-232 Standard

The EIA-232 standard specifies the signals and interconnecting lines between DTE and
DCE devices. The full standard specifies that the DTE device uses a 25-pin DB25P (male)
connector and the DCE end uses a mating 25 pin DB25S (female) connector. The standard
specifies signals for 22 of the available pins. Today a subset of these appears on a wide
variety of computing equipment, with cables terminating in DB9P and DB9S connectors.
In either case, the original cabling is parallel, straight through – no crossover connections.
The drawings in Figure 18.1 show the pin numbers on the DB-9 and DB-25 connectors as
well as the EIA-232 inputs/outputs to which they correspond.

1

13 25

14
1

1325

14

2 TXD - Transmitted Data
3 RXD - Received Data
4 RTS - Request to Send
5 CTS - Clear to Send
6 DSR - Data Set Ready
7 SG - Signal Ground
8 CD - Carrier Detect

20 DTR - Data Terminal Ready
22 RI - Ring Indicator

DTE - Data Terminal Equipment DCE - Data Communication Equipment

1

5
9

6

1 CD - Carrier Detect
2 TXD - Transmitted Data
3 RXD - Received Data
4 DTR - Data Terminal Ready
5 SG - Signal Ground
6 DSR - Data Set Ready
7 RTS - Request to Send
8 CTS - Clear to Send
9 RI - Ring Indicator

Figure 18.1 Pin Numbering for the DB-9 and DB-25 EIA-232 Connectors

Figure 18.2 gives a high-level picture of a representative early communications system.
Note, once again, that the RS-232 interface was strictly defined between a piece of DTE, a
computer of one form or another, and a piece of DCE, typically a modem.
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Modem Modem

Network

EIA-232
Interface

EIA-232
Interface

DTE
DCEDCE

DTE

Figure 18.2 A High-Level Representation of an Early Communication System

18.3.2.1 What It Is …

In addition to the lines for exchanging data, the standard also specified a number of hand-
shaking and status lines. The more familiar are identified in the following box, along with
their initial intended purpose.

TXD. Data transmission line from DTE to DCE.

RXD. Data transmission line from DCE to DTE.

DSR. Data Set Ready from DCE to DTE – intended to inform the DTE that the data set
has a valid connection, has completed whatever initialization might be necessary, and
is ready to engage in a message exchange. If the connection drops during the exchange,
this signal is deasserted.

DTR. Data Terminal Ready from DTE to DCE – intended to inform the DCE that the data
terminal has completed whatever initialization might be necessary, is ready to engage in
a message exchange, and would like to open a communication channel.

RTS. Request to Send from DTE to DCE – intended to inform the DCE that the DTE
had data to send and for the DCE to do whatever was necessary (dial, ensure carrier,
ensure a line, etc.) to effect the communication.

CTS. Clear to Send from DCE to DTE – intended to inform the DTE that the DCE had
done its job and data could now be sent.

CD. Carrier detect – intended to indicate that a connection has been established and an
answer tone has been received from the remote modem.

SG. Signal ground – the name says it.

18.3.2.2 What they Think It Is …

The contemporary view of an EIA-232-based system appears more like that in Figure 18.3.
Observe that the original modems have been replaced by what is now known as a

NULL modem. All too often today the CTS, RTS, DTR, and DSR lines are incorrectly usedCTS, RTS, DTR, DSR
for handshaking. Why is this a problem? Why will data potentially be lost using such a
scheme? Let’s return to the original configuration and consider the actual flow of data.

Handshaking, which is a type of flow control, is a way for one piece of DTE to
synchronize actions or the exchange of data with another piece of DTE. For example, if
data is sent to a printer at a rate higher than the printer can handle because of the speed
of printing, it will send a signal to the sending device to stop until it catches up. In theCTS – Clear to Send,

DSR – Data Set Ready EIA-232 specification, signals such as CTS and DSR are sometimes (mis)used to serve that
purpose.
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DTE DTE

EIA232 Interface

TDXTDX

RDXRDX

RTS

RTS CTS

CTS

DSR

DSR
DTR

DTR

NULL Modem

Signal Ground
Signal Ground

Figure 18.3 A Contemporary View of an EIA-232 Communication System

The original intent of an asserted signal on the DSR line was to inform the transmit-
ting device that the communications device (typically the modem) was ready to send data,
whereas a deasserted signal would indicate the opposite. The line should be asserted fol-
lowing power up (self-tests, other initialization, and establishing a connection) and should
remain in that state until the system is powered down. The signal CTS was/is intended to
indicate to the transmitting device that it is now OK to send data – that the physical line is
intact, that a carrier has been detected, and so on.

Let’s examine the exchange process a bit more closely to identify the problems that
can arise from using the DSR and CTS signals as part of a handshake protocol. Most
EIA-232-based systems use a Universal Asynchronous Receiver/Transmitter (UART) to
manage the message interface. Typically, such devices are double buffered to help unbur-
den the sending device. Similarly, on the receiving side, a UART is also used to manage

Universal
Asynchronous

Receiver Transmitter
(UART)

incoming data. Once again, a double buffer is incorporated.
Let’s walk through the diagram in Figure 18.4 and count how many characters may be

in transit at any time. Starting with the sender, there may be one in the local application that
is ready to be sent, two in the transmitting UART’s buffers, one in transit, and two in the
receiver’s buffers for a total of six characters.

Application

EIA232 Interface

Application

B
u

ffe
r 0

B
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r 1
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r 0
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ffe
r 1

ApplicationApplication

1 2
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UART UART

Local
Remote

Figure 18.4 Data Flow Through an EIA-232 Communication System

If the receiving device’s I/O driver (which is using the CTS/RTS pair for flow control)
finds that data is coming in faster than it can be processed, the driver will deassert the CTS
line. If the receiver’s I/O driver immediately switches from the receive thread to the process
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thread to start working with some of the data, it may lose up to six characters that are in
transit. A timer may help, but there is still no guarantee; why? To ensure the proper control
of data flowing between the sender and the receiver, that control should be incorporated
into the exchange protocol in the driver software.

18.3.3 EIA-232 Addressing

Because the original focus of the RS-232 interface was the exchange between a single piece
of DTE and a single piece of DCE, addressing was unnecessary. Addressing at a higher level
between systems connected through modems to the telephone system occurred naturally
through the corresponding telephone numbers.

Today, the vast majority of EIA-232 interfaces use neither a modem nor the telephone
system. Consequently, source and destination addressing must be implemented as part of
the message exchange protocol utilized by the specific application. The standard makes no
provision for such addressing.

18.3.4 Asynchronous Serial Communication

The EIA-232 standard utilizes an asynchronous communication scheme. Asynchronous
communication recognizes and accepts that there are irregular intervals between the sending
of pieces data.

To help clarify the operation, suppose that a serial communication line is set up to
transmit American Standard Code for Information Interchange (ASCII) characters as typed
by a person at a keyboard. The spacing between the transmissions of successive characters
will naturally vary widely and there may be long periods when no characters are typed or
sent. In such a situation, the receiving device needs to determine when a character is being
sent to prepare it to receive that character and sort out which part is data, which part is the
error-checking field, and so on … or even if it is a legitimate piece of data rather than noise.

This is accomplished by a procedure known as framing. In the context of EIA-232 dataFraming start, stop
exchange, each character is framed by a start and a stop bit as illustrated in Figure 18.5.

Start Data Stop Figure 18.5 Data Character Framing in
an EIA-232 Communication System

The start bit signals that a data character will follow and, thereby, enables the receiving
device to temporarily synchronize with the transmitting device. The stop bit signals the end
of the data character and provides time for the receiving device to get ready for the next one.

18.3.5 Configuring the Interface

Today the EIA-232 interface is implemented either as an integrated component within
a microprocessor or microcomputer or externally using a large-scale integrated (LSI)
US/ART – Universal Synchronous/Asynchronous Receiver Transmitter. The externalUS/ART – Universal

Synchronous/
Asynchronous

Receiver Transmitter

device may be a peripheral processor that is a component included in the microcomputer’s
supporting chip set or a general purpose device that is provided by another vendor.

Whichever method is used, the device must still be configured to ensure that the sender
and the receiver are speaking the same language. The typical minimum set of parameters
that must be configured are given in the following list.
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Baud rate. A measure of the speed at which a modem transmits data. Often this is incor-
rectly assumed to be a measure of the number of bits that are transmitted each second.
Baud rate is actually a measure of the number of signaling changes or events per second.

In the early days of digital communication one baud may have been 1 bit per sec-
ond; today’s technology permits a single event to encode more than one bit. Thus, for
example, a modem that is configured to transmit at 9600 baud is actually communicating
at 9600 bits per second by encoding 4 bits per signal event.

Bits per character. A specification of the size of the character being sent. Typical values
are 5, 6, 7, or 8 bits per character.

Parity. A specification of the parity over the character. Typical values are odd, even,
or none.

Number of stop bits. A specification of the number of stop bits to include. Typical values
are 1, 11/2, or 2. Two stop bits are rarely used today. This value originated with the old
teletypes that literally moved the carriage back to the start of each line. This mechanical
operation took some time to complete.

18.3.6 Data Recovery and Timing

With an asynchronous transmission scheme, the transmitting and receiving devices are each
operating on independent local clocks, which are usually designed to operate at 16X, 32X,
or 64X the baud rate. Why do we do this?

EIA-232 data recovery is based on a bit-timing scheme. Such a scheme works as fol-
lows. Each character is framed by a start bit and a stop bit. Once the start bit is detected, a bitstart, stop
timer is enabled to begin incrementing at the selected clock rate. The bit timer is designedbit timer
such that its period is given as:

timer period = clock rate
baud rate

(18.1)

For example, if the clock rate is 16X the baud rate, the period of the counter will be 16.

For 9600 baud, the clock rate should be 16 times that or 153.6 kHz.

Consequently, the bit timer, which has been enabled at the leading edge of the startbit timer, start
bit, will reach a count of eight at the center of the first data bit, as illustrated in Figure 18.6.

0 1537 11

sample

start bit data bit

0 1537 11

sample

Figure 18.6 Data Bit Sampling
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Furthermore, because the timer is incrementing modulo 16, it will again reach a count of
eight by the center of the second and succeeding data bits.

Observe that the Q output of the most significant bit of the bit timer makes a 0 → 1bit timer
transition when the count advances from 7 (0111) to 8 (1000). That transition can be used to
clock the incoming data into a shift register. The same transition can be used to increment
a second bit counter that counts the number of incoming data bits that have been stored.bit counter
When the agreed upon (by the sender and receiver) number of bits have been stored, it is
known that a full character has been received. Both the bit timer and bit counter return tobit timer, bit counter

start the quiescent state awaiting the next start bit.
The following are key elements to the approach working properly:

1. The sender and receiver must be operating at the same baud rate.

2. The sender and receiver must agree on the number of bits comprising a character.

3. The quiescent state of the data lines is known. The EIA-232 standard specifies this
to be the logical 1 state.

4. The sender must place the data line into the quiescent state for at least one bit time
between characters. This time is known as the stop bit.

The major advantage of the technique is that the sampling signal does not have to be
decoded from some counter state and, thus, cannot have any decoding spikes. Furthermore,
by sampling in the center of each bit, the maximum tolerance for error in bit timing is
designed into the receiver. Using such a scheme, we can resynchronize the receiver and
transmitter with each character. Although the clocks in the sending and receiving devices
are ideally operating at the same frequency, a difference of a percentage point or two in the
frequencies should not result in transmission errors.

18.3.7 EIA-232 Interface Signals

The EIA-232 data and control signals along with their voltage levels are summarized in
Table 18.1. A logical 1, known as a mark, corresponds to a voltage level between −3 andMark space
−15 V. A logical 0, or space, corresponds to a voltage level between +3 and +15 V. Such
values are intended to improve system noise immunity.

Table 18.1 EIA-232 Signal Levels

Notation Interchange
Voltage

Negative Positive

Binary state 1 0
Signal condition Marking Spacing
Function OFF ON

The internal logic levels in most contemporary embedded systems remain at the 5.0
VDC level. Consequently, outgoing and incoming EIA-232 signals must be buffered and/or
level shifted from or to standard logical levels before they can be used. Finally, note that
the data link remains in the marking state (< −3 V) until the start bit, a space (> +3 V),
is sent.
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18.3.8 An Implementation

The block diagram in Figure 18.7 gives a typical interface to the external UART-type device.
From the microprocessor’s point of view, the device can appear either as a memory-mapped
I/O device or as a special purpose peripheral processor.

Address

Data

RD

WR

Data Rec.

Tx Rdy

CTS

RXD

TXD

RTS

DSR

DTR

CD

CTS

RXD

TXD

RTS

DSR

DTR

CD

E
IA

 2
3
2
 In

te
rfa

c
e
 D

riv
e
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UARTMicroprocessor

Local Bus

Figure 18.7 Block Diagram for a UART Type Device

In the block diagram, the UART is a peripheral device sitting on the microprocessor
bus. The address lines serve the dual purpose of selecting the UART and identifying reg-Address
isters internal to the device that must be written to configure the device. The data linesdata
are bidirectional and contain data that is to be transmitted from or received by the UART.
Each exchange is accompanied by either an RD strobe to read a received character from
the UART or a WR strobe to send one. The Data Rec. line can be either polled or used toData Rec.
generate an interrupt when a character has been received. The Tx Rdy line indicates thatTx Rdy
the UART’s internal transmit buffer is empty and a new character can be transmitted. Like
Data Rec., the line can either be polled or used as an interrupt.

18.4 THE UNIVERSAL SERIAL BUS – SYNCHRONOUS SERIAL COMMUNICATION

When it is necessary to rapidly transfer larger blocks of regularly spaced data over a signifi-
cant distance, the overhead of resynchronizing the timing between sender and receiver with
each character can become significant. An alternative approach is known as synchronous
transmission.

synchronous
transmission

Start and stop bits are no longer needed. Both the sender and receiver are working,
directly or indirectly, from a common clock. That clock may exist as a separate signal on
the communication channel or it may be encoded in the data using any of the techniques
discussed in the previous chapter.
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Although synchronous transfer requires less overhead and, therefore, can be much
more efficient, its uses are more limited than asynchronous data transfer. Thus, today, asyn-
chronous implementations remain more widely used. This ratio is changing with some of
the newer interfaces, such as the USB or FireWire.

The USB provides a good example of a typical synchronous interface. Like the
EIA-232 interface, much of the low-level design work has been subsumed in a variety of
LSI interface chips. In most cases, one can simply include such devices as part of a design.
Nonetheless, it is still important to understand the motivation for the standard as well as
the underlying signaling and protocols.

18.4.1 Background

The factors leading to the creation of the USB parallel many of the factors that preceded the
development of the RS-232 standard. Among these are the cacophony of different interfaces
and associated connection schemes, limitations on and conflicts with system I/O resources,
and cost.

The goals that the developers set for themselves were rather mundane: any new system
should overcome existing shortcomings, and it should provide room for growth and expan-
sion. Such ideas are good to keep in mind at the start of each new design. More specifically,
the designers identified the following needs:

• Single connector type.

• Ability to attach many different peripherals to the same connector.

• Method to ease resource conflicts.

• Automatic detection and configuration of peripheral devices.

• Low cost for system and peripheral implementers.

• Enhanced performance capability.

• Support for attaching new peripherals.

• Support for legacy software and hardware.

• Low power implementation – support for green systems.

The ultimate solution did a very good job of addressing each of these needs. In par-
ticular, I/O resource limitations and conflicts, once all too common with legacy systems,
no longer exist. Each device residing on the USB is assigned an address known only to
the USB subsystem and, therefore, does not consume any of the primary system resources.
While the upper bound of 127 addresses may pose a limit in some large systems, this should
not be a problem in most distributed embedded applications. In addition to the 127 directly
accessible addresses, each USB device supports the number of ports called endpoints that
can be accessed indirectly.

18.4.2 The Universal Serial Bus Architecture

The design and implementation of the USB system follows the Open Systems Intercon-
nection (OSI) and Transmission Control Protocol/Internet Protocol (TCP/IP) network
architectures that we studied earlier. The USB uses a three-level hierarchy as shown in
Figure 18.8.
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USB Physical Layer

Host Controller

Root Hub

USB Driver

Host Controller Driver

Application

Logical Devices

Bus Interface

Application

Host or Local Side Client or Remote Side

Figure 18.8 Universal Serial Bus Network Architecture

On the host side, the block labeled Application contains the software drivers that pro-Application
vide the application programmer’s interface (API) to the USB-hosted device, as well as
the means to communicate with the application interface on the client side via the Host
Controller. On the client side, the Application block provides the drivers for the physicalHost Controller
device and the interface to the USB level below. Observe that on the host side the middle
two layers are logically split into two components: one that provides the interface to the
layer above and one that provides the interface to the layer below.

18.4.3 The Universal Serial Bus Protocol

All transactions in the USB system originate on the host side. The design does not support
interrupts from client devices. On the host side, the USB client initiates an exchange when it
calls the USB driver and requests a transfer. The client drivers supply a memory buffer that
is used to store data when sending to or receiving from the peripheral device. Each exchange
between an endpoint on the client side and the client driver takes place via a communication
pipe that is established by USB system software during device configuration. Such a pipecommunication pipe
implements a connection-oriented communication scheme.

When the client driver wishes to perform a transfer to/from an endpoint, it invokes
the USB driver to initiate the transfer by issuing an IO Request Packet (IRP). When the
IRP is received by the USB driver, it organizes the request into individual transactions
that are executed during a series of 1-ms frames. The driver sets up the transactions based

USB driver, IO
Request Packet (IRP)

frames
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on knowledge of the target device’s requirements, the needs of the client driver, and the
limitations and capabilities of USB.

The host controller driver then builds a linked list of data structures called transferhost controller driver,
transfer descriptors

host controller
descriptors. The list defines the transactions scheduled to be performed during a given
frame. The data structures contain all the information that the host controller needs to be
able to generate the transactions. These include:

• USB device address.

• Type of transfer.

• Direction of transfer.

• Address of device driver’s memory buffer.

The list of transfer descriptors is passed to the host controller, which then performstransfer descriptors,
host controller the transactions necessary to satisfy the client’s transfer request. Each transaction results in

data being transferred from the client’s buffer to the USB device or from the USB device
to buffer. When the entire transfer has been completed, the USB system software notifies
the client driver.

The root hub provides the physical connection points for the various USB devices.root hub
In addition, it controls power to USB ports, enables and disables ports, recognizes when
devices are attached to or removed from the ports, and maintains status information relevant
to the port.

18.4.4 USB Devices

The USB supports two kinds of devices: those designated as high speed and those desig-
nated as low speed. The high-speed devices see all transactions broadcast over the USB and
can be implemented as full-feature devices. They accept and send serial data at the maxi-
mum rate of 12 M bits/s. The low-speed devices are limited to a maximum throughput of
1.5 M bits/s. They see only those transactions that follow a special preamble packet. The
low-speed ports are normally disabled during full-speed transactions.

The preamble packets specify that the following transaction will be broadcast at low
speed. Hubs are thereby directed to enable low-speed ports; low-speed devices can now
accept low-speed bus activity.

18.4.5 Transfer Types

The USB specifies and supports four different transfer types: isochronous, bulk, interrupt,isochronous, bulk,
interrupt, control and control. High-speed devices support all four, whereas the low-speed devices only sup-

port the last two.
Isochronous transfers are those, such as high-speed audio or video, which must be

completed in constant time. Bulk transfers are intended for moving large amounts of data.
Although the USB does not support interrupts, one of the stated goals was the need to sup-
port legacy devices and many of those devices require interrupt support. Interrupt transfers
accommodate those devices by ensuring that the transfers occur at such a rate that inter-
rupts and associated information will not be lost. Finally, control transfers are designated
for managing the USB.
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18.4.6 Device Descriptors

In satisfying one of the stated goals of supporting new (as yet to be developed) devices,
the USB developers devised a clever scheme for managing the network configuration. Each
device that wishes to be attached to the USB describes itself to host software using a number
of descriptors. Four of the descriptors are organized in a hierarchical tree-like structure, as
shown in Figure 18.9. The remaining two have broader scope.

Device

Configuration

Interface

End Point

Figure 18.9 Universal Serial Bus
Descriptor Hierarchy

The descriptors provide the following information

Device Descriptor. Each device has one device descriptor that specifies the number ofdevice descriptor
possible configurations supported by the device. In addition, it contains informa-
tion about the default communication pipe to be used to the configure device and
any other general information about the device.

Configuration descriptor. Each device has one configuration descriptor for each con-
figuration that it supports. That descriptor provides relevant information about the

configuration
descriptor

configuration and specifies the number of interfaces, such as a CD/DVD ROM,
supported by the device when using the named configuration.

Interface descriptor. The interface descriptor contains information about the class ofinterface descriptor
the device supported by the interface as well as general information about the
specified interface and the number of endpoints it supports. A CD/DVD ROM
may require several different drivers based on its supported capabilities. Different
drivers may be necessary for audio, video, mass storage, or write capability, for
example.

Endpoint descriptor. Each device interface can support multiple endpoints or capabil-endpoint descriptor
ities. Each endpoint defines a point of communication with the configuration. The
descriptor provides information such as the transfer type that is supported by the
endpoint or the maximum transfer rate supported.

In addition to the four named descriptors, two others are supported.

String Descriptors. A human readable descriptor, called a string descriptor, can bestring descriptor
defined to provide information for or about each device, a given configuration, or
each interface supported by the device. The string descriptor expresses its infor-
mation in Unicode format.
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Class-Specific Descriptors. Class-specific descriptors provide the means of develop-Class-specific
descriptors ing descriptors that are not covered by the USB standard. These are analogous

to pragma statements in C or C++, which give software vendors the ability to
include product-specific information or requirements that may not be supported
by the language in general into a compiler. At present the following device classes
are defined:
• HID Device Class – Human Interface Devices.
• Communication Device Class.
• Monitor Device Class.
• Mass Storage Device Class.
• Audio Device Class.

18.4.7 Network Configuration

The host software is responsible for detecting and managing the configuration of all the
devices connected to the root hub. In the context of the USB, the process is commonly
referred to as USB device enumeration. The initial configuration process starts at the rootenumeration
hub when power is applied to the system. Following that process, devices can subsequently
be added or removed incrementally.

The enumeration process begins when the root hub, using a broadcast message, dis-
ables all ports and issues a reset command. Resetting a device forces it to respond to addressreset
zero as the default address and to enter a low-power configuration. Using such a scheme,
the configuration software can read every device’s descriptor at the same default address.
During configuration, each device will be assigned a unique address that the device will
respond to thereafter. Through such a scheme, the designers of the protocol eliminated the
possibility of address contention.

The host software then interrogates each device and reads the associated descriptors.
Through such a process, the configuration software determines the endpoints associated
with the device, if the demands of the endpoint can be accommodated based on remaining
free bandwidth and if bus power required by the device can be accommodated.

Devices may have multiple configurations, with each configuration descriptor repre-
senting a different set of resources that can be chosen. It is the responsibility of the host
software to ensure that all required resource requests can be satisfied. If the requests cannot
be met, then the configuration must be refused. Recall the earlier discussions on deadlocks.

During configuration, the specification requires that each device consume no more than
100 mA of bus current. Thereafter, the maximum bus power that the device will need is
determined from the configuration descriptor. The host software must verify that the bus
power required by the device can be supplied by the hub port.

Each different configuration defines a set of endpoints, and each endpoint knows the
amount of bandwidth it requires. Prior to admitting an endpoint to the bus, the host soft-
ware must verify that the bandwidth requirement by the endpoint can be satisfied. If suffi-
cient bandwidth is available, a link to the endpoint is set up and the required bandwidth is
reserved. After successfully allocating bandwidth to each endpoint within the device, the
device can be configured. If the bandwidth is not available, other configurations are checked.
If all alternative configurations also exceed the available bandwidth, then the device is not
configured.

Once a configuration has been accepted, the host software assigns a value correspond-
ing to the chosen configuration. That value is given to the configuration software through
the configuration descriptor. At this point, the device can be accessed by client software
and consume the max amount of current and bandwidth specified in its configuration.
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18.4.8 USB Transactions

A typical USB transaction comprises three phases, as shown in Figure 18.10:

1. Token packet phase
2. Data packet phase
3. Handshake phase

Token Packet
Phase

Data Packet
Phase

Handshake
Packet Phase

Single Transaction

Figure 18.10 USB Transaction
Phases

Each transaction begins with a token packet phase that identifies the type of the trans-token packet phase
action. When the transaction is intended for a specific device, its address is also included.
The token can further indicate that the packet will not be followed by additional packets or
that there may be two additional ones: the data and handshake packets.

data, handshake
packets

The data packet phase carries the payload, which can be up to a maximum of 1023
bytes during each single transaction. The actual size of the payload is dependent on the
type of transfer being performed.

Like the TCP protocol, all USB transfers (except the isochronous) are implemented to
guarantee data delivery. Isochronous transfers are implemented to support best effort similar
to the User Datagram Protocol (UDP) transfers under the TCP/IP protocol. The isochronous
transfers have no handshake phase. For all others, the handshake phase provides feedback
to the sender of the data indicating whether or not the transaction occurred without errors.
If errors have occurred, the error management scheme retries the transmission.

The format for all packets is given in Figure 18.11.

Synchronization Packet ID
Packet

Specific Data

Packet

CRC Bits End of Packet

Figure 18.11 USB Packet Format

Unlike the EIA-232 transactions in which synchronization occurs for each character,
the USB protocol resynchronizes for each packet. This task is accomplished through a spe-
cial synchronization sequence shown in Figure 18.11. The sequence, which consists of

Synchronization
sequence

seven consecutive 0s followed by a single 1, is utilized by a local phase locked loop to
resynthesize the data clock.

Packet identifiers specify the purpose and content of each packet. Identifiers arepacket identifiers
grouped into four major categories:

• Token packets
• Data packets
• Handshake packets
• Special packets.
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The format and length of each packet depends on its type. Token packets require four
bytes, bulk transfers are restricted to 64 bytes, and isochronous transfers are specified to be
1024 bytes.

18.4.9 USB Interface Signals

The USB implements a serial communications system. The signaling is differential, which
helps to mitigate the effects of noise on the lines and to ensure data integrity. Observe that
this is a different approach from that used by the EIA-232 standard. In that design, a signal-
ing level far in excess of the noise helped to ensure integrity. The basic USB communication
channel is configured as shown in Figure 18.12.

Cable Segment

Differential ReceiverDifferential Driver

D+

D−

Data Transmitted

Data Received

NRZI

Encoder
NRZI

Decoder

Figure 18.12 USB Communication Channel

The embedded system could be either the sender or the receiver of the data.
The USB implements a synchronous communication scheme. To provide timing infor-

mation, the clock is incorporated into the transmitted data using an NRZI (Non-Return to
Zero Inverted) encoding. The NRZI encoding scheme is as shown in Figure 18.13. Tran-
sitions in the data stream represent 0’s and no transitions represent 1’s. Observe that a
transition occurs on the encoded data at the start of each 0 bit in the raw data.

Data

Encoded Data

idle 0 0 0 0 01 1 1 1 1 1 10 0

Figure 18.13 USB NRZI Data Encoding

The NRZI encoder must maintain synchronization with the incoming data stream to
allow it to correctly sample the bits. The encoded data will be fed into a phase locked
loop (PLL), which will sense the bit transitions and reconstruct a synchronized clock as we
discussed earlier.

The data stream must be sampled within each data bit to determine whether a transition
has occurred since the last bit time. This is implemented by the decoder. A transition rep-
resents a zero bit, and no state change indicates that a one bit was received. The transitions
on the zero bits in the data stream permit the decoder to maintain sync with incoming data
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using the PLL. A long series of consecutive 1’s will have no transitions, thus potentially
resulting in a loss of sync. To solve this problem, a technique called bit stuffing is used.bit stuffing

The USB implementation of bit stuffing in the transmitter forces a transition into an
NRZI data stream whenever six consecutive 1’s have been encountered. The added bits
ensure that the receiver will detect a transition at least once every seventh bit time.

The extra zero bit will not cause confusion on decoding, even if the seventh bit is
a legitimate zero. After six 1’s, the receiver knows that the next bit received will be an
inserted zero and so, on receipt, discards it. The real zero will be received following and
interpreted correctly.

18.4.10 The Physical Environment

USB connectors are designed to permit any USB peripheral device to be attached to any
hub port. The USB subsystem supports two kinds of cables: low speed and high speed.

18.4.10.1 Low-Speed Cables

The low-speed cables, also referred to as subchannel cables, are intended only for 1.5 Msubchannel cables
byte/s signaling. The maximum cable length cannot exceed 3 m. The low-speed cables
support differential pair signaling; the signal pair may be nontwisted 28 AWG stranded
conductors. The low-speed cables do not require shielding.

18.4.10.2 High-Speed Cables

The high-speed cables require twisted shielded pair (TWSP). The maximum cable length
is extended to 5 m as long as the propagation delay is less than 30 ns over the length of
cable when operating in the range of 1 to 16 MHz. If such a constraint cannot be met, the
cable must be shortened. Beyond the noted differences, the low- and high-speed cables are
identical.

18.4.10.3 Cables and Cable Power

The USB cables support a limited amount of 5 VDC power that can be used by the peripheral
devices. The system normally supports up to 500 mA, although it may be as little as 100 mA
in certain implementations. The end view of the cable is given as illustrated in Figure 18.14.

Differential Signal Pair

28 AWG 

Unshielded and Untwisted

in low-speed cable

Twisted and shielded in

full-speed cable 

Power Lines

20–28 AWG Figure 18.14 USB Cable Structure
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18.4.11 Detecting Device Attachment and Speed

It is the responsibility of the root or other hubs and system software to automatically detect
the presence or absence of the device both during initial configuration and later when a new
device is attached or when one is removed from the bus. The same mechanism is used to
determine the speed of each device.

Detection is accomplished by monitoring the differential data lines after cable power
is applied to the port. The schematic in Figure 18.15 illustrates the device configured for
full-speed operation. The channel from the device back to the host has been left off.

15 K

+3.0-3.6 VDC

D+

27 ohms

D−

27 ohmsNRZI Data

OE

15 K

1.5 K

NRZI Data

High Speed Configuration

Figure 18.15 USB Communication Channel with High-Speed Device Attached

When no device is attached, the two pull-down resistors on D+ and D− ensure that the
signal levels on both data lines coming into the single-ended receivers are close ground.
When a device is connected to the network, it must provide a 1.5 kΩ pull-up resistor on
either the D+ line for a full-speed device or on the D− for a low-speed device.

When a device is attached, the pull-up resistor increases the signal on the associated
line through the voltage divider formed by the 15 kΩ and the 1.5 kΩ resistors. When the
hub detects one of the data lines approaching VCC and the other near ground, it knows that
a device is attached. By knowing which line is high, it can ascertain what kind of device has
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been attached. According to the specification, when either D+ or D− rises above 2.0 VDC
for greater than 2.5 μs, a device is detected as attached. When the device is removed and
both lines fall below 0.8 VDC for greater than 2.5 μs, the hub sets a status flag. The host
software polls hubs periodically to check for attachment or detachment.

18.4.12 Differential Pair Signaling

In Figure 18.15 we observe two things. First, the lines are terminated at the source using
27 Ω resistors; the drivers themselves have an output impedance of approximately 3–15 Ω.
Second, differential signaling is used. Differential pair signaling is used to reduce the effects
of noise that may be coupled into the signal path. Any noise coupled in will have an equal
effect on both lines. When the bus signal is converted back to a single-ended form, the noise
will be effectively canceled out.

Source or series termination is used to eliminate DC power consumption that is inherent
in a parallel termination scheme. The one disadvantage of such a scheme is that one full
round-trip is required before the signal reaches full amplitude.

The USB uses a half-duplex scheme. The device on either end can receive or transmit
but in only one direction at a time. Such a design requires that the drivers be placed into the
high-impedance state when not transmitting data.

18.4.13 Implementation

As with the EIA-232 interface, there are two principal means by which the USB interface
and support can be implemented as part of a distributed embedded application: first as an
integrated peripheral on the various microprocessor chips and second as an external chip
set. Today, a large number of USB chip set offerings are available. Most of these implement
a general-purpose parallel I/O structure similar in architecture to that seen for the US/ART
chips. Such a structure is compatible with the external central processing unit (CPU) bus
on most contemporary microprocessors.

18.5 I2C – A LOCAL AREA NETWORK

The I2C bus – Inter Integrated Circuit Bus – was developed in the 1980s by Philips Semicon-
ductor as a means of supporting communication among a set of chips internal to a specific

I2C bus – Inter
Integrated Circuit Bus

system. At its initial introduction, the bus was intended for small, lower speed systems. The
initial bit rate of 100 K bits/s has increased fourfold to 400 K bits/s today. In addition to its
low cost and ease of implementation, the I2C bus offers several interesting features that we
will expand on shortly.

18.5.1 The Architecture

The I2C bus utilizes a simple serial two-wire multimaster–slave architecture, as illustratedmultimaster–slave
in the high-level block diagram in Figure 18.16.

Devices with bus master capability are typically microprocessors, but they need not
be. Independent of bus master capabilities, any device on the bus has the potential to be
a sender or receiver – source or destination – of a transaction. The bidirectional I2C bus
implements what is known as wired AND signaling. Consequently, the only special interfacewired AND
circuitry that is required to connect a device onto the bus is two open-drain or open-collector
devices that enable the device to pull either line to ground. Each device on the bus has a
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Figure 18.16 I2C Bus Architecture Block Diagram

unique address independent of a physical device type, yet the device type is embedded into
the address.

Physically, in addition to ground, the bus comprises two signal lines, serial clock (SCL)serial clock (SCL)
serial data (SCD) and serial data (SCD) as illustrated in Figure 18.17.

SDASCL

SDAD 0SCLD 0

SDAINSCLIN

Device 0

SDASCL

SDAD 0SCLD

SDAINSCLIN

Device n−1

+V

SDA

SCL

Figure 18.17 I2C Bus Serial Clock and Serial Data Signals

The drawing reflects the details of the bus and its connection to several devices.

18.5.2 Electrical Considerations

The design of the I2C bus places no restrictions on the type of devices that may be connected
to the bus. Thus, one can configure a system with a mixture of various Transistor–Transistor
Logic (TTL) and Complementary Output Symmetry MOS (CMOS) families, each with its
own different supply voltage. To accommodate bidirectional communication with devices
operating on less than 5.0 VDC, it is recommended that a simple buffering circuit be
incorporated into the SCL and SDA signal paths, as shown in Figure 18.18. The two sub-
systems, operating at different voltage levels, are now separated from one another. Today,
the different voltage levels result from logic devices operating at either 5.0 V or 3.3 V.
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SDASCL

SDAD 0SCLD 0

SDAINSCLIN

Device 0

SDASCL

SDAD 0SCLD 0

SDAINSCLIN

Device n−1

+V2

SDA

SCL

+V1

SDA

SCL

Supply = + V2
Supply =+V1

Figure 18.18 I2C Bus Supporting Devices Operating

To support the standard (100 K bits/s) mode and fast mode (400 K bits/s) transfer rates,
the total bus capacitance must be less than 400 pf and the signal rise and fall times at 1000
and 300 ns, respectively. These are measured at the 30% and 70% points on the signal rather
than the traditional 10% and 90% points. These constraints naturally place a limit on the
number of devices that can be interconnected on the bus.

18.5.3 Basic Operation

Let’s now take a look at the basic bus operation in a system comprising a single master and
several slaves. We will look at both a master read and a master write operation.

The quiescent condition for both the SCL and SDA lines is the high state. A bus cycle
begins with a Start condition and ends with a Stop; these are always generated by the master.Stop, Start
A Start is signaled when the master causes a HIGH to LOW transition on the SDA line while
holding the SCL line in the HIGH state. A Stop is signaled by a LOW to HIGH transition
on the SDA line while holding the SCL line in the HIGH state.

An I2C address comprises seven bits. The four most significant bits (A7–A3) identify
the category of the device being addressed. The three least significant (A2–A0) identify a
programmable hardware address assigned to the device. Thus, up to eight instances of the
same type of device can be included in the system. For example, if a system included eight
serial EEPROMS (electrically erasable programmable read-only memory), each would
have the base address 1010 concatenated with one of the addresses 000–111.

Data is sent with the most significant bit first, with each bit accompanied by a clock
signal. Data can only change when the SCL line is in the LOW state. Data is transferred as
an unrestricted number of bytes; each byte must be acknowledged by the receiver. A trans-
action may be a write operation – master to slave – a read operation – slave to master – orwrite, read
a combination in which there is a change in transmission direction during a transaction.

The contents of a complete data transfer cycle are given as follows:

Start
Slave Address
Read / Write
Acknowledge
Data – Acknowledge (the pair is repeated as necessary)

Stop



�

� �

�

858 Chapter 18 Working Outside of the Processor III: Interfacing to Remote Devices

The message format is given in Figure 18.19.

Start

SDA

SCL

0.6

Address R/W

8

ACK
7 0.6

Data

7

Data

8

ACK
0.6

Data

7

Data

8

ACK

Stop

0..6

Data

7

Data

8

ACK

Figure 18.19 I2C Bus Message Format

For a read operation, the Read/Write bit will be a HIGH and for a Write, it will beread, Read/Write
a LOW. Following the ACK (which is generated by the slave and appears in bit 8), if theACK
ensuing operation is to be a Read, the master changes roles from transmitter to receiver andread
the slave from receiver to transmitter. Despite the reversed roles, the master still generates
the Stop and manages the end of the transaction.

18.5.4 Flow of Control

The transaction protocol requires that each data byte be acknowledged. The clock pulse
associated with the acknowledge (ACK) is generated by the master. During that clock time,
the transmitter (which may not be the master) must release the SDA line, allowing it to
float. The receiver must pull the SDA line LOW for the duration that the clock pulse on the
SCL line is in the HIGH state.

Under normal circumstances, following the ACK bit time, the master will release the
SCL line so that transmission may continue with the next byte. If, however, the receiver is
temporarily unable to proceed, it will hold the SCL line LOW, thereby extending the ACK
interval. When able to proceed again, the receiver will release the SCL line and transmission
continues. The timing diagram in Figure 18.20 illustrates the ACK interval extension.

0.6
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7 8

Data ACK
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Data
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7
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Figure 18.20 Acknowledge Extension

Following the end of a communication session with one slave, the master typically will
issue the Stop directive to end the session. If, however, it wishes to establish a connectionStop

Start with a different slave, rather than issue the Stop, the master will issue another Start, using
the address of the new device.
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18.5.5 Multiple Masters

Several problems can occur when a system has multiple masters. The first arises if two or
more masters try to talk at the same time; the second results from having multiple clocks in
the system. The first problem is resolved by arbitration and the second by synchronization.

arbitration,
synchronization

18.5.5.1 Arbitration

A master can initiate a transfer cycle only if the bus is not in use. As noted, such a cycle
begins when the master places the SDA line in the LOW state while keeping the SCL line
in the HIGH state. At this point, if multiple masters simultaneously issue a Start, there is
no way to distinguish among them. Thus, arbitration can only begin at the most significant
bit of the address.

Each device attempting to communicate on the bus drives the SDA line. The wired
AND aspect of the bus inherently gives priority to a device, driving the SDA line to the
LOW state. Each master is monitoring the SDA line and each knows the state of the bit it
has put onto the line. Therefore, if a master sees the SDA line in the LOW state, knowing
that it has set a HIGH, it will disable its data drive capability and back off. The arbitration
process can continue, bit by bit, for a number of SCL clock cycles until resolved.

If the losing master(s) also incorporates a slave function, the possibility exists that
the winning master is trying to address that slave. The losing master(s) must immediately
switch into the receiver mode.

18.5.5.2 Synchronization

Each master typically has its own internal clock, and each is responsible for generating the
SCL clock for the bus. Since each master clock is asynchronous with respect to the others,
for the arbitration scheme just described to work properly, the clocks must be synchronized.
The operation takes advantage of the wired AND connection scheme utilized by the I2C bus
and proceeds as follows.

A HIGH to LOW transition on the SCL line (originating from any of the masters)
directs each master to place its SCL driver in the LOW state and begins timing the LOW
duration for its SCL clock. When that interval expires, on one of the masters that device
places its SCL driver in the HIGH state. However, the SCL line may not follow if some
other master(s) is (are) still timing its LOW interval.

As each master completes timing the LOW SCL interval, it places its SCL driver in the
HIGH state, enters a wait state until the last device releases the SCL line, and then enters the
HIGH state. At that time, each master begins timing the HIGH duration for its SCL clock.
In a similar manner, the last device to complete timing its HIGH duration will change the
state of the SCL line to LOW.

Based on such a scheme, it is evident that for each master the LOW intervals will be
the same, as will the HIGH intervals. The LOW intervals will be set by the device with
the longest such interval and the HIGH intervals will be set by the device with the shortest
such interval.

18.5.6 Using the I2C Bus

Today a great variety of integrated circuit devices, including a plethora of different micro-
processors and microcontrollers, support the I2C bus. Such devices range from displays
and serial EEPROMS to analog-to-digital converters and video acquisition systems.
The bus can provide a highly effective lower speed network for locally distributed
embedded applications. The extent of the topographic distribution is subject to the 400 pf
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capacitive loading specification. Such a constraint suggests 20–30 devices and a maximum
signal path of approximately 10 m.

18.6 THE CONTROLLER AREA NETWORK – THE CAN BUS

The automobiles of today are significantly different from those Henry Ford introduced
over one hundred years ago. The introduction of larger and larger numbers of increasingly
sophisticated electronic systems into the modern automobile has led to a corresponding
increase in the size and complexity of the wiring harness interconnecting all of the devices.
To address the problem, Bosch, the German automotive manufacturer, developed a simple
two-wire serial communications bus, the CAN Bus or Controller Area Network. AlthoughCAN Bus,

Controller Area
Network

its initial target was the automotive industry, the acceptance of the CAN bus has expanded
well beyond that and is now supported by the International Standards Organization as the
standard ISO 11898 as well.

18.6.1 The Architecture

The CAN network corresponds to the physical and data link layers of the ISO/OSI reference
model. These layers are shown in the hierarchy in Figure 18.21 as reflected in the ISO
standard, ISO 11898. The remaining layers of the model are managed by the microprocessor
in software as appropriate.

Physical

Layer

CAN

Transceiver

CAN

Controller

Microprocessor

Data Link

Layer

Figure 18.21 CAN Bus Network Hierarchy

On the hardware side, the physical layer utilizes a twisted pair multidrop cable. It
includes the connectors and transceivers for getting onto and off of the bus as well. A basic
system is configured as shown in the high-level block diagram in Figure 18.22.

Unlike the I2C bus, the CAN bus does not require that one of the nodes is a master.
Nodes can be added to the network at any time; it is not necessary to power the system
down. The standard specifies that up to 30 nodes can be added to the bus.
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Figure 18.22 A Block Diagram for a Basic CAN Bus Network

18.6.2 Electrical Considerations

Electrically, the CAN bus utilizes balanced differential signaling similar to the approach
used by the USB – the current in each signal line is equal and opposite. Such a scheme sig-
nificantly enhances noise immunity, increases common mode noise rejection, and improves
fault tolerance over single-ended drive models. All are essential for the automotive envi-
ronment in which the bus is designed to operate.dominant, recessive

The two serial lines that make up the CAN bus are designated CANH and CANL. The
bus signaling protocol defines two states, dominant and recessive. Similar to the wired AND
configuration in the I2C bus, dominant will override recessive. When the transmitted data,
TXD, is a logical 0, the bus is in the dominate state; the CANH signal line is taken to 3.5 V
and the CANL is taken to 1.5 V, giving a difference of 2.0 V. When the transmitted data is
a logical 1, the bus is in the recessive (quiescent) state, which is set to 2.5 V. The timing
diagram in Figure 18.23 illustrates the two conditions.

The transmission rates on the bus range from 40 K bits/s over a 1000 m cable to 1 M
bit/s over a 40 m cable. The standard further specifies the maximum stub length off the main
bus to be 0.3 m.

TXD

CANH

CANL

CANH−CANL

RXD

2.5 V

3.5 V

1.5 V

0.0 V

2.0 V

dominant
recessive

Figure 18.23 A Timing Diagram Illustrating Dominant and Recessive Signaling on the CAN Bus
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The characteristic impedance of the cable is specified as 120 Ω, and it should be resis-
tively terminated at both ends with 120 Ω.

18.6.3 Message Types

The CAN standard refers to messages as frames. The protocol specifies support for fourframes
data frame, remote

frame,
error frame, overload

frame
arbitration field,

control
field,

data field, CRC field,
acknowledgment field

different kinds of frames. These include the data frame, the remote frame, the error frame,
and the overload frame.

Data frame. The data frame comprises the following fields: the arbitration field, control
field, data field, cyclic redundancy check (CRC) field, and acknowledgment field.
The arbitration field, which will be explained shortly, contains an 11-bit identifier
and the Remote Transmission Request (RTR) bit, which identifies the operation as
either transmit or receive. The control field contains information about the type of
message being sent and its length. The data field contains the payload of up to eight
bytes. The CRC field contains a 16-bit checksum used for error management. At
the end of a data frame, the transmitter examines the state of the acknowledgment
field. If the bit is in the recessive state, the message is retransmitted.

Remote frame. The remote frame is charged with requesting data from another node.
It mirrors the data frame with the exceptions that it contains no payload and the
RTR bit is recessive.

Error frame. The error frame is transmitted when a node detects an error in a message.
Such an action forces all other nodes in the network to send an error frame as well;
the original transmitter then resends the message that led to the error.

Overload frame. The overload frame is used in support of flow control. It is used to
force an extra delay between messages when a node is unable to process informa-
tion quickly enough.

18.6.4 Message Format

The standard CAN message format is given in Figure 18.24.

S
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Payload
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Figure 18.24 Standard CAN Bus Message Format

SOF (Start of frame). Single dominant bit that marks the start of a message. It also
serves to synchronize nodes following an idle period.

Identifier. Identifier and RTR bit form the arbitration field. It identifies the destinationarbitration field
and priority of the message. Higher priority messages have lower binary values.

RTR (Remote transmission request). Single bit, expressed as dominant when informa-
tion is required from destination node. Returned data can be used by any node.
Such a scheme helps to ensure data consistency across all nodes on the net.
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IDE. Identifier Extension, r0, and the Data Length Code (DLC) bit form the control
field for a standard message format, single dominant bit. It is used to indicate thatcontrol field
the extended format is not being used.

r0. Reserved bit
DLC (Data length code). Four-bit field identifying the number of bytes of data con-

tained in the message.
Data. The message payload comprising the data field. The payload can be up to eightdata field

bytes.
CRC (Cyclic redundancy check). CRC specifies the CRC field. This is a 15-bit fieldCRC field

that contains a check sum over the payload data.
ACK (Acknowledge bit, the ACK field). This is a single recessive bit in the originatingACK field

message plus delimiter. If the message is received correctly, the receiver overwrites
the bit with a dominant bit indicating that an error-free message has been sent. If
the bit is left recessive, indicating an error, the receiver does not accept the message
and the sender repeats the message.

EOF (End of Frame). EOF identifies the end of a CAN message frame.
IFS (Interframe Space). This is a 7-bit frame containing the amount of time for the

controller to place the received frame into the buffer area.

18.6.5 Basic Operation

18.6.5.1 Synchronization

Data sent over the CAN network is transmitted in NRZ (Non-Return to Zero) format. Such
a scheme enables the receiving node to synchronize with the sending node through clock
edges that have been encoded into the data stream. To ensure that edge information is trans-
mitted (in the event of long strings of 1’s or 0’s), a bit stuffing scheme is utilized. A string of
five consecutive 1’s or 0’s prompts the sender to insert a bit of the opposite polarity into the
data stream. Recall that a similar approach is utilized by the USB to ensure synchronization.

18.6.5.2 Error Management

Because of the stringent reliability requirements placed on the bus by the operating envi-
ronment, the CAN protocol utilizes a three-pronged attack on errors. Each message uses a
CRC check over the data payload. The CRC is recomputed by the receiver and compared
against that which was sent. Any difference flags a CRC error.CRC error

The format as well as the size of each received frame is checked against a known
template for the frame. Should there be a disagreement, a format error is noted.format error

Finally, each received frame must be acknowledged by a positive action – overwriting
the ACK bit with a dominant bit. Lack of such an action prompts retransmission.

At the bit level, a transmitter monitors the state of the bus. Any disagreement between
what was sent and the state of the bus indicates that an error has occurred.

18.6.5.3 Transmission and Arbitration

As noted earlier, the quiescent state of the CAN bus is recessive. Such a condition gives
rise to an interesting bus arbitration and access protocol. Note first that the CAN bus is
essentially a peer network. There is no bus master; thus, any node can potentially transmit
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on the bus and any time. The Ethernet utilizes a similar scheme. In the event of a collision on
the Ethernet, both (all) nodes back off and retry at a (random) later time. Any information
transmitted during the collision is lost. Such is not the case with the CAN bus.

The SOF signal is dominant; any device wishing to transmit will place a logical 0 onto
the bus. At the same time, each node is monitoring the state of the bus similar to the I2C
bus. If four nodes had placed their SOF signal onto the bus, each would see such a state on
the bus. The SOF signal on the bus is a valid bit – it has not been corrupted by the collision.

Following the SOF, each node assumes that it has the bus and will send its second
bit – the first bit of the identifier field. Each node again tests the state of the bus. If the bus
indicates dominant, any node that had set the bus state to recessive loses the arbitration and
leaves its drivers in the recessive state for the duration of the transmission.

If all nodes have set the bus state to dominant, the process continues with the third bit.
In any event, the state of the bus will be valid. No information has been lost. The process
repeats until all nodes but one have lost the arbitration. The timing diagram in Figure 18.25
depicts the arbitration process for four nodes.

TXD

Node 1

Node 2

Node 3

Node 4

tie tie tie tie tie4 out 2 out 1 out 3 wins

Arbitration-IdentifierSOF

Figure 18.25 CAN Bus Arbitration for Four Nodes

Node 4 loses on the third arbitration bit, node 2 on the fourth, and node 1 on the seventh.
Thus, node 3 is seen to ultimately win the arbitration. Observe that no information was
ever lost or corrupted during the arbitration. The destination node will properly receive the
complete transmission.

18.6.6 Using the CAN Bus

Today there is increasing support for and application of the CAN bus outside of the automo-
tive industries. The bus and protocol are specified and controlled by the international ISO
standard, ISO 11898. A number of semiconductor manufacturers offer integrated imple-
mentations of the CAN Transceiver and the Controller.



�

� �

�

18.8 Review Questions 865

18.7 SUMMARY

In this chapter, we studied four different, commonly used
network-based input/output designs. For each, we examined the
problems that motivated designers to develop the interface, iden-
tified the contributions that each has brought about, and cited
the strengths and weaknesses of each approach. For each archi-
tecture, we examined the transport mechanism, learned how

control and synchronism are affected, and explored how mes-
sage senders and receivers are identified. We began with the
traditional EIA-232 standard asynchronous serial interface and
then moved to the synchronous model utilized by the USB. We
concluded with the I2C bus as a small LAN and the CAN bus, a
LAN commonly used in automotive applications.

18.8 REVIEW QUESTIONS

Common Network-Based Architectures

18.1 The chapter introduces four common network-based
architectures. What are they?

The EIA-232 Interface

18.2 What was the originally intended purpose of the RS-232
(now EIA-232) interface standard?
18.3 What are the primary signals that comprise the EIA-232
interface standard? Give a brief description of each and its func-
tion in a data exchange.
18.4 What do the acronyms DCE and DTE mean?
18.5 What is a null modem? Explain how such a device works.
18.6 What is the format of an EIA-232 character?
18.7 Why is information exchange over the EIA-232 network
described as asynchronous?
18.8 In an EIA-232 exchange, what is the purpose of the start
and stop bits in a data character?
18.9 What is meant by the term baud rate?
18.10 What are the signaling levels for a logical 0, logical 1,
true or ON control signal, and a false or OFF control signal?

The Universal Serial Bus

18.11 What are some of the problems that the designers of the
USB are trying to solve?
18.12 What are some of the major contributions of the USB?
18.13 Does the USB implement interrupts?
18.14 What are the major elements of the USB protocol stack?
Briefly describe the function of each.
18.15 What is the purpose of the host controller? The root hub?
18.16 How is the address of a device made known to the USB
software?
18.17 What is a transfer descriptor?
18.18 What kinds of data transfer does USB support?
18.19 What is a device descriptor? What is its purpose?
18.20 How many kinds of descriptors does the USB support?
What is the purpose of each?

18.21 How many class descriptors does the USB support?

18.22 How many phases comprise a USB transaction? What
are they?
18.23 Do all USB transactions support guaranteed delivery of
data?

I2C – A Local Area Network

18.24 What are the two primary signaling lines on the I2C bus?
What is the function of each?
18.25 What are some of the problems that the designers of the
I2C bus are trying to solve?
18.26 What are some of the major contributions of the I2C?
18.27 How does the I2C differ architecturally from the USB and
EIA-232 busses?
18.28 What are the two primary signaling lines on the I2C bus?
What is the function of each?
18.29 Describe the steps involved in a bus master read opera-
tion on the I2C bus.
18.30 Describe the steps involved in a bus master write opera-
tion on the I2C bus.
18.31 Does the I2C bus support multiple masters?
18.32 With multiple masters, how is a bus contention situation
resolved?

The Controller Area Network – The CAN Bus

18.33 What are some of the more significant differences
between the CAN bus and the I2C, USB, and EIA-232 signaling?

18.34 What are some of the problems that the designers of the
CAN bus were trying to solve?
18.35 What are some of the major contributions of the CAN
bus?
18.36 What are the two primary signaling lines on the CAN
bus? What is the function of each?
18.37 The CAN bus signaling protocol specifies two states,
dominant and recessive. What do these terms mean in this
-context?
18.38 Describe the format for message that is sent over the
CAN bus?
18.39 How are errors managed on the CAN bus?
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18.9 THOUGHT QUESTIONS

Common Network-Based Architectures

18.1 What does each of the network architectures discussed in
the chapter introduce and contribute to simplifying the problem
of remote information interchange?

18.2 Compare and contrast the transport mechanisms used for
the four bus architectures discussed in the chapter. What are the
strengths and weaknesses of each?

The EIA-232 Interface

18.3 Why would one wish to use a null modem?

18.4 Why does the chapter advise not using the signals RTS,
CTS, DSR, DTR as hardware handshake signals for flow con-
trol?

18.5 Describe how a character is transmitted and received over
the EIA-232 network.

18.6 Propose a software protocol that could be used to control
the flow of data in an EIA-232 exchange.

18.7 Describe the EIA-232 transport mechanism.

The Universal Serial Bus

18.8 What are some of the more significant differences
between the USB and EIA-232 signaling?

18.9 Give examples of real-world devices that might utilize
each of the USB transfer types identified in the chapter.

18.10 Describe the USB transport mechanism.

18.11 Why does the USB use differential signaling?

18.12 Because the USB is synchronous, the receiver must have
knowledge of timing information from the source. How is this
accomplished?

18.13 How does the USB determine when a device is attached
to or removed from the bus?

18.14 What is the purpose of each of the different data transfer
types that are implemented in the USB?

I2C – A Local Area Network

18.15 What are some of the more significant differences
between the I2C and the USB and EIA-232 signaling?

18.16 What kinds of devices can be placed on the I2C bus? Give
some examples.

18.17 Describe the I2C bus transport mechanism.

18.18 Why would one want to have a multiple master architec-
ture on the I2C bus?

18.19 How would the I2C bus be utilized in an embedded
-context?

The Controller Area Network – The CAN Bus

18.20 What kinds of devices can be placed on the CAN bus?
Give some examples.

18.21 Describe the CAN bus transport mechanism.

18.22 What kinds of message types can be exchanged over the
CAN bus? Explain the purpose and meaning of each of the dif-
ferent types.

18.23 How are errors managed on the CAN bus? Compare the
CAN strategy with that of the other three busses that we have
studied in this chapter.

18.10 PROBLEMS

The EIA-232 Interface

18.1 The chapter discusses four different, commonly used,
networked architectures. The Electronic Industries Association
(EIA) specifies a number of others that can be found as part
of various embedded applications. Three of these include the
EIA-422, 423, and 485 architectures.

(a) How are these different from the four models discussed in
this chapter?

(b) Where might such models be used in an embedded applica-
tion?

18.2 Design a software flow control system for the EIA-232
network interface. Explain why your design prevents data char-
acters from being lost.

18.3 Typically, a Universal Asynchronous Receiver Transmit-
ter (UART) is used to manage data flow over an EIA-232 net-
work. Without using a UART, design a logic block that will
accept seven data bit characters, in parallel, from your micro-
processor, add an odd parity bit over the seven bits, convert each
to a 10-bit serial EIA-232 compatible character, and transmit the
character over a 9600 baud bit stream.

The Universal Serial Bus

18.4 Without using a UART, design a logic block that will
accept a serial EIA-232 compatible character from a 9600 baud
bit stream, perform a parity check on the incoming data, convert
the received data into a 7-bit word, signal the processor that data
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is available, and transfer the 7-bit characters into the processor
and indicate a parity error, if appropriate.
18.5 The chapter discussed the USB 1 interface. What dif-
ferent features and capabilities have been incorporated into the
USB 2 interface?
18.6 The USB 2 interface is intended to be backwards com-
patible with the USB 1 interface. How does the USB 2 design
distinguish between and handle high speed, full speed, and low
speed signaling?
18.7 How does the USB 2 interface differ from the FireWire
interface? What are the advantages of each?
18.8 Design a Verilog model and hardware block that will
accept the serial data stream and clock and output an NRZI-
encoded data stream.
18.9 Design a Verilog model and hardware block that will
accept an NRZI-encoded data stream and produce a serial data
stream with accompanying clock.
18.10 When data is received over the USB, the decoder sam-
ples a data stream during each bit time to check for transitions.
Such transitions permit the decoder to maintain synchronization
with incoming data. However, if the data to be transmitted con-
tains a long sequence of consecutive one bits, the output of the
NRZI will contain no transitions. Consequently, the receiver will
eventually lose sync. To remedy the problem, whenever six con-
secutive 1’s are encountered, a 0 is automatically inserted into
the data stream. Such a practice forces transitions into the NRZI
data stream, thereby ensuring that the receiver detects a transi-
tion every seventh bit time. Such a practice is called bit stuffing.

Design and implement a software driver that will imple-
ment the described bit stuffing algorithm.
18.11 Design and implement a software driver that will accept
a serial data stream such as would be produced in Problem 18.10
and remove any one bits that may have been inserted via a bit
stuffing algorithm.

I2C – A Local Area Network

18.12 Design and implement a software driver that will enable
a slave device to transfer a 256-byte block of data over the I2C
bus to a master.
18.13 Design and implement a software driver that will enable
a master device to request the transfer of a 256-byte block of
data over the I2C bus from a master.

The Controller Area Network – The CAN Bus

18.14 Give a detailed block diagram for a CAN Bus-based net-
work for a commercial aircraft passenger entertainment system.

18.15 Can the CAN bus support a streaming audio server? If so,
what is the maximum number of clients that could be supported?
Be certain to state any assumptions. If not, give a detailed timing
analysis explaining why not.

18.16 Give a detailed block diagram for a CAN Bus-based net-
work for a passenger environment management system for a
standard automobile.

Other Busses and Networks

18.17 Research the USB-2 bus.

(a) Describe the operation of the bus.

(b) Compare and contrast the operation and performance of
USB-2 with the USB-1 bus discussed in the chapter.

18.18 Research the FireWire bus.

(a) Describe the operation of the bus.

(b) Compare and contrast the operation and performance of
FireWire with the USB-1 and USB-2 busses.

18.19 Research the PCI Express bus.

(a) Describe the operation of the bus.

(b) Discuss the pros and cons of using the PCI Express bus as
a means of communicating with local peripheral devices in an
embedded application.

(c) Discuss the pros and cons of using the PCI Express bus as
a means of communicating with remote peripheral devices in an
embedded application.

18.20 Research the SPI (Serial Peripheral Interface) bus.

(a) Describe the operation of the bus.

(b) Discuss the pros and cons of using the SPI bus as a means
of communicating with local peripheral devices in an embedded
application.

(c) Discuss the pros and cons of using the SPI bus as a means of
communicating with remote peripheral devices in an embedded
application.

18.21 Compare the following busses: I2C bus, SPI bus, CAN
bus, and PCI Express.

(a) Identify the major differences in architecture among each of
these busses.

(b) Identify the major similarities in architecture among each
of these busses.

(c) Identify the major strengths and weaknesses of each.
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Chapter 19

Programmable Logic Devices

THINGS TO LOOK FOR …

• Why use programmable logic devices in embedded systems.

• How a programmable cell works.

• What is a Programmable Logic Device (PLD)?

• What is a (Complex) Programmable Logic Device (CPLD)?

• What is an Field Programmable Gate Array (FPGA)?

• What is an antifuse?

• The difference between a CPLD and an FPGA.

• The difference between Static Random Access Memory (SRAM) and antifuse-based
FPGAs.

• What is a programmable system on a chip?

• The PLD design process.

19.1 INTRODUCTION

Our hardware focus in previous chapters has been on the microprocessor, microcontroller,
and microcomputer. The world of embedded systems is continually changing. Today we
find an increasing number and variety of other components being designed into the appli-
cations to support the basic computing core. These devices are grouped as programmable
logic devices (PLDs). With such devices, we begin to move into the world of large and very
large-scale integrated (LSI) devices. Today these devices play a supporting role; tomorrow
they will provide a highly flexible hardware environment that will include, among other
things, very high-speed logic, multiple microprocessor cores, and dynamically reconfig-
urable systems.

The key strengths of these devices lie in their small geometries and their ability to take
advantage of the regularity in combinational logic and in certain kinds of memory elements.
With such regularity, the chip designs and layouts can be highly optimized. Included in this
category of devices we generally find (programmable) read only memories ((P)ROMs),
programmable logic arrays (PLAs), field programmable gate arrays (FPGAs), application
specific integrated circuits (ASICs), and full custom-designed integrated circuits.

Embedded Systems: A Contemporary Design Tool, Second Edition. James K. Peckol.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/college/peckol
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ASICs offer the designer the support of libraries of components that might include
logic gates, counters, arithmetic parts, and storage elements. These preexisting modules
enable the designer to complete a new design very quickly. In addition to the supporting
libraries, the component vendor will offer both synthesis and place and route tools to aid insynthesis, place and

route the development process. A full custom-integrated circuit is going to be faster and denser
than either the ASIC or PLD; however, the development cycle can be substantially longer.

In this chapter, we will provide an introduction to PLDs. Detailed design information
is better found in the data sheets and application notes from the various device manufactur-
ers. We will open with a brief discussion motivating the use of PLDs in embedded systems
and then examine the underlying logical concepts that have led to the development and
widespread use of PLDs. We will next move to the basic building blocks of PLDs and show
how these can be configured into useful tools. We will then look at the commonly used
technologies for implementing programmable devices and how they are able to store infor-
mation. We will present the basic structure of the devices, variations on I/O configurations,
and the fundamental architectures for the (Complex) Programmable Logic Device (CPLD)
and the FPGA, and then compare and contrast these architectures.

Next, we will introduce and study two of the more commonly used components: theCPLD, Gate Array,
Programmable System

on a Chip
CPLD and the Gate Array, as well as a more general-purpose device called a Programmable
System on a Chip. We will conclude with a look at several applications.

19.2 WHY USE PROGRAMMABLE LOGIC DEVICES?

Programmable logic device is a generic term that covers all subfamilies of programmableprogrammable logic
device logic. Unfortunately, it also refers to a particular architecture. Hopefully, the discussion

context will permit the reader to recognize when the term is being used in a general or a
specific sense.

We utilize the devices in our designs because generally, they are faster, consume less
power, and can support significantly more functionality in a much smaller package than
Small-Scale Integrated (SSI) and Medium-Scale Integrated (MSI) logics. There certainly
will be far less work involved in the layout of system printed circuit boards. The design
can be specified by a text file rather than on multiple pages of schematics. Certainly, some
may consider this to be a disadvantage. A PLD-based design also facilitates the reuse core
elements, thereby helping to get a new design to the market more quickly.

In the introductory chapter in this text, we observed that the contemporary world of
embedded systems is expanding at an incredible pace. The systems in which our designs
are embedded are growing smaller and smaller at probably the same or faster pace. Today, a
PLD can easily replace thousands of SSI and MSI gates and almost as many storage devices.
A portable music player or cellular telephone implemented with an equivalent number of
SSI devices would be enormous. Certainly, the reduction in size of our products alone would
be reason enough for using these devices.

Today, PLDs can be programmed to incorporate several Central Processing Unit (CPU)
cores. Now, in addition to the computing power of the main system processor, we can bring
several support processors to bear on special portions of the application. We learned ear-
lier that in a multitasking system we divide a problem into multiple cooperating tasks that
appear to be running simultaneously. With multiple core PLDs, we can begin to achieve
true multiprocessing both easily and economically. We can inexpensively offload some of
the special purpose tasks to the peripheral processor(s).

When we studied the design process, we learned that embedded systems are a mixture
of hardware and software pieces. The developing field of co-design addresses the challenge
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of mapping a functional design onto the hardware and software components that make up
the architecture of the system. With certain PLDs, the distinction between hardware and
software is becoming increasingly fuzzy; we find that PLDs can be dynamically reconfig-
ured to accommodate or adapt to the problem being solved. Such capabilities give us, as
engineers, much greater flexibility in developing our designs.

As our systems grow smaller in physical size, they are growing correspondingly larger
in capabilities and complexity. To implement those capabilities, we turn to more sophis-
ticated designs. We are putting an increasingly larger amount of circuitry into the same
package. Several years ago, after we drew the logic diagram for our system, we built a
breadboard of a prototype system. Although we had confidence in our designs, only the
most exceptional among us knew that their prototype would work, the first time, as the the-
ory had suggested. The problem was compounded by the physical realities of the real world.
The parasitic effects on a 12- to 18-in. square breadboard are substantially different from
those found on a production printed circuit board of the same circuit. As we learned in our
earlier studies of parasitic effects, the associated problems become worse as the geometries
get smaller. The problem is exacerbated as the operating frequency of today’s designs con-
tinues to increase. A hardware-based breadboard cannot accurately reflect the true behavior
of the design in the final product. PLD manufacturers have taken many of these issues into
consideration with the architecture and designs of today’s devices. In addition, they provide
tools to aid in the analysis and solution of these problems.

Today much of our design can be implemented using PLDs and are usually developed
using Verilog, VHDL, or some other hardware design language (HDL). Designing using an
HDL significantly simplifies the development process in comparison to a hardware-based
breadboard approach. Because the development path entails significant modeling of the
design and then repeated simulation and test (including real-world effects) of that model, by
the time that the design is programmed into the PLD, the probability of it working properly
the first time has been greatly increased. With a breadboard implementation of a circuit
prototype, correcting any design errors can entail several days of rewiring (think about
reprogramming the early computers). With the PLD and an HDL implementation of the
design, the same modifications can be completed in substantially less time (programming
in a high-level language beats rewiring any day).

These last few paragraphs have summarized many of the reasons for utilizing PLDs as
a design tool in our systems. In the sections ahead, we will examine these devices in greater
detail.

19.3 BASIC CONCEPTS

The underlying strength of the PLD is its ability to represent combinational logic in a sum
of products form, to build circuits as combinations of these (reduced) minterms, and to
store (and utilize) the outputs of the combinational nets. They are typically configured as
two-level AND-OR devices. The variables from which the logical equations can be built
are available in true and negated form. The product terms are simply the logical AND of
the variables, and the sum terms are built as the logical OR of the AND expressions.

The architecture of such a system is not difficult to visualize. It is made up of a uniform
network of interconnections and set of variables to produce the desired logical expressions.

Consider the simple layout in Figure 19.1. Observe that we have the asserted and
negated forms of each input variable. Each AND gate has available for input the true and
negated form of each variable, and each OR gate has the output of each AND gate available
as an input. In combination, we have an AND array followed by an OR array.
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Input 1

Input 0

Output 0

Output 1

Output 2

Figure 19.1 A Simple Combinational Logic Array

For the configuration above, with two input variables, call them A and B, we have four
possible minterms:

AB,AB,AB,AB

and with the specified three outputs, we can express up to three different sums of product
logic expressions based on which connections we choose to make (or break). In some imple-
mentations, all of the connections are present (in others, they are absent). To implement a
logic equation, we simply remove (or make) some of the connections.

EXAMPLE 19.1 Using the above device, we can implement the logical equation:

F = AB + AB

First AND

Make the A and B connections – these are indicated by small circles.

Second AND

Make the A and B connections – these are indicated by small circles.

First OR

Make connections to the first two legs and no connection to the third leg.

We can see that we have an AND array and an OR array as the final implementation in
Figure 19.2.

Utilizing such an architecture, we can realize any sum of products expression. The only
restriction we have is the size of the device, that is, the number of input and output pins and
the number of product terms available.
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B

A

F

Output 2

Output 1

Figure 19.2 Implementing an Exclusive OR

To enhance both their usefulness and their flexibility, PLDs are designed with a variety
of output configurations. Typically, these include the standard unidirectional combinational
output. This configuration may be extended to support bidirectional input and output (which
may also be programmable) as well as tristate control. These outputs may also be invertible
through a programmable XOR path. Latched or registered outputs support basic storage
and permit the design and implementation of sequential logics. These are illustrated in the
circuit fragments in Figures 19.3 and 19.4.

Figure 19.3a depicts an input driver supporting the true and negated states of a signal.
Figure 19.3b shows the tristate output driver, the state of that output being fed back into the
array, and the bipolar input signal.

(a) (b)

Figure 19.3 (a) Input Driver with True and Negated States. (b) Output Driver with
Tristate Output and Feedback into the Logic Array
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The latched or registered tristate output is shown in Figure 19.4. The output of the
storage element is fed back into the array from the Q output using a bipolar driver. Such
an approach balances the loading on the outputs of the storage element. The polarity of
the input to the storage element is controlled through the XOR device on the D input. The
polarity of the output signal is controlled by selecting the state of the input signal.

D

Q

QSET

CLR

Figure 19.4 Simple Registered Output Configuration

The architecture of the device may require that all storage devices use the same clock
and the same reset or clear signal. In the simpler devices, typically both the clock and the
clear signal originate from outside the PLD device. More complex devices may also support
a selection of internal or external clocking and reset sources.

19.4 BASIC CONFIGURATIONS

The core elements of programmable logics are found in four basic configurations:

• (P)ROM – (Programmable) Read Only Memory.
• PAL – Programmable Array Logic.
• PLA – Programmable Logic Array.
• PLS – Programmable Logic Sequencer.

19.4.1 The (P)ROM

The (P)ROM is the most general and flexible configuration. All combinations of the input
bits are programmable.

EXAMPLE 19.2 To use a read only memory (ROM) or PROM to implement the following logical expression:

F =
∑

(2, 11, 12)

we need a 16× 1 bit memory. Four address lines will enable each memory bit to be uniquely
addressed. The equation is implemented by storing a logical 1 in addresses 2, 11, and 12
while storing a logical 0 in all remaining.

The device will have a logical 1 as an output only when those addresses (or minterms)
appear on the device inputs. Each product term corresponds to 1 address.

A (P)ROM-based solution is generally appropriate only when a large number of prod-
uct terms are required.
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19.4.2 Programmable Array Logic – PAL

In the PAL or Programmable Array Logic device, the AND portion of the device is pro-
grammable and the OR portion is fixed. Such an architecture limits the number of product
terms in the sum. Furthermore, the product terms are not reusable and must be duplicated if
required. The implementation uses a fixed OR array. The output of each product term can
be connected to only one OR gate. Typically, the device supports bidirectional I/O pins and
tristate outputs with individual enables.

The structure of the device is shown in Figure 19.5. In the diagram, though drawn as
only a single input to each device in the arrays, each supports multiple inputs. The open
circles illustrate the programmable links.

Figure 19.5 Basic Programmable Array
Logic

19.4.3 Programmable Logic Array – PLA

In contrast to the PAL, in the PLA as shown in Figure 19.6, both the AND and the OR
portions of the device are programmable. Consequently, the product terms are reusable.

Figure 19.6 Basic Programmable Logic Array



�

� �

�

876 Chapter 19 Programmable Logic Devices

19.4.4 Programmable Logic Sequencer – PLS

The PLS, which is also referred to as a registered device, is simply a PLA plus flip-flop
storage elements. In most designs, the outputs of the storage elements are fed back to the
logic array to support finite-state machine design. For these devices, both the AND and OR
arrays are programmable. Once again, the product terms are reusable. A fragment of such
a device is shown in Figure 19.7.

Flip Flops

Figure 19.7 Basic Programmable Logic
Sequencer

19.4.5 PLA vs. PAL vs. (P)ROM

A PAL is the opposite of a PROM. We can view the PROM as an AND-OR array with
a fixed AND array and with all 2n AND possibilities available. If a design needs a large
-number of AND combinations, the PROM is a good option. Some example applications
include lookup tables, high-speed mathematics, or code translations.

If the design requires only a few AND combinations and not many of those are shared
between outputs, the PAL with the fixed OR array is a good choice. If complete flexibility
is necessary, the PLA with its programmable AND and OR arrays is more appropriate.

19.5 PROGRAMMABLE AND REPROGRAMMABLE TECHNOLOGIES

Programmable logic devices fall into two major categories: programmable and repro-
grammable. Those in the first category can be programmed one time and those in the
second multiple times.

19.5.1 Programmable Technologies

Devices that are one-time programmable are either built to order by the manufacturer of the
device or utilize a technology that will permit the designer to enter the desired configuration
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one time. Devices built by a vendor mirror the technologies studied earlier for implementing
ROM-type devices. Transistors are selectively included to produce the desired behavior.

Devices that can be programmed once, in the field, are often based on a technology
called the antifuse. In traditional electronics, a fuse is utilized in a circuit to protect againstantifuse
potentially damaging high currents by opening a conducting path when necessary. The anti-
fuse is designed to do the opposite. When a sufficiently high voltage is applied across an
amorphous silicon link between two metal conductors, a metal-crystalline alloy is formed
to complete the conducting path. The newly formed conducting path(s) enable the inter-
connection of generic blocks of primitive logic components to form more complex logic
circuits. Once the low-resistance path is formed, the process is irreversible.

19.5.2 Reprogrammable Technologies

Today’s (re)programmable logic devices are generally either Static Random Access Mem-
ory (SRAM) based or use variations on programmable ROM technologies. SRAM-based
architectures are built around volatile Read/Write memory cells that control the state of
intra-device connections. The device configuration and interconnection information are
held in a companion nonvolatile storage medium such as a PROM or similar flash type
of external boot device. One significant advantage of such an approach is that the configu-
ration of the device can be dynamically changed at runtime, thereby permitting the system
to adapt to the problem at hand.

Programmable ROM technologies fall into three broad categories: EPROM, Electri-
cally Erasable PROM (EEPROM), and FLASH. All of these devices are built on what are
known as floating gate technologies. To introduce the concept, we will begin with the mem-floating gate
ory fragment in Figure 19.8, which gives a high-level view of a portion of a programmable
AND array.

VDD

Di

Di+1

Bit 0

A0

A1

An-1

D
e
c
o
d
e
r

Rowi

Rowi+1

Bit 0

Bit 1Bit 1

Figure 19.8 Programmable ROM Memory Architecture
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Each column in the AND array implements a NOR type AND, that is, an AND of
low true signals. All transistors on a column must be OFF for the output to be logical 1.
Each N type transistor comprising the AND has two gates. One of the gates is floating,
that is, unconnected, and is surrounded by high-impedance insulating material as shown in
Figure 19.9.

n+

Gate Floating Gate

Substrate

n+

DrainSource

p

tox

Figure 19.9 Dual Gate Programmable Memory Device

Initially, the floating gate has no charge on it and thus has no effect on circuit oper-
ation. All transistors are effectively connected. When a positive voltage is applied to the
nonfloating gate, the transistor turns ON and the output of the associated AND is logical 0.

To program the device, a high voltage is applied to each location where a link is not
wanted, as shown in the first diagram in Figure 19.10. Through avalanche injection, a neg-
ative charge collects on the floating gate. When the programming voltage is removed, a
number of electrons are trapped on the floating gate as shown in the second graphic. The
trapped electrons cause an increase in the threshold voltage of the transistor to approxi-
mately 7.0 V, which thereby prevents the transistor from turning ON when a normal logical
1 is applied to the nonfloating gate as illustrated in the final drawing. The transistor is effec-
tively disconnected from the circuit. Tests have shown that the charge can be retained for
up to 10 years.
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Source
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n+

Substrate

n+
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p

5V

− − −

−−

5V

−−

Source
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− 2V

Figure 19.10 Programming a Dual Gate Programmable Memory Cell

In the early years, an ultraviolet light was used to erase the device. Under the ultraviolet
light, the floating gate becomes slightly conductive. Charges trapped during programming
are given enough energy to leak away. Such devices are known as EPROMs – erasable
PROMs.

Today’s devices are significantly improved from the early designs. The floating gate
is surrounded by an ultra-thin insulating layer. Rather than using an avalanche injection
scheme, charge is placed onto the floating gate using tunneling physics. The devices are also
electrically erasable. The device can be erased by applying a voltage of opposite polarity
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to the charging voltage on the nonfloating gate. Thus, we can use the same equipment as
was used to program the device. Cross-sectional diagrams of two contemporary types of
programmable device are given in Figure 19.11. The diagram on the left illustrates what
is called the electrically erasable device, EEPROM. That on the right is known as FLASH
technology.

n+

Gate
Thin Tunneling

Oxide 

Floating Gate

Substrate

Drain

Source p

Electrically Programmable

Tunneling Oxide

ETOX 

TOX

−

−

Program
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Gate Floating Gate

n+
Drain

Source

p
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Floating Gate Tunneling Oxide

FLOTOX
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Figure 19.11 Electrically Erasable Dual Gate Programmable Memory Cells

19.6 ARCHITECTURES

Independent of whether the PLD appears as a PLD, CPLD, or FPGA, the architecture of the
device comprises blocks of combinational logic and/or storage elements, the Input/Output
logic, and the interconnections between these blocks of functionality. The size (or grain)
and flexibility of the logic blocks and the speed and generality of the interconnection net
determine the power and capabilities of the device.

The PLD and CPLD devices tend to be coarser grained. The building blocks are gen-
erally referred to as macrocells. They can be viewed as the programmable logic equivalent
of MSI logic blocks. In contrast, the FPGA devices are usually finer grained with a very
rich interconnection topology. The building blocks, often built as lookup tables (referred to
as LUTs), tend to be the SSI logic equivalent.

Today, the devices range in capability from simple encoding or decoding networks
to the ability to implement a full CPU core (refer back to Chapter 1) with accompany-
ing peripheral devices. We will examine the architecture of these devices in greater detail
beginning with the PLD.

19.6.1 PLDs

The simplest devices are known as PLDs, or programmable logic devices (distinguished
from the general use of the term to describe the complete class of programmable devices).
The basic devices are intended to replace collections of combinational logic circuitry
implemented using SSI and MSI components. The devices are implemented as the AND
array–OR array pair discussed earlier.

Lattice Semiconductor provided an early implementation of such a device called a
generic array logic, or GAL16V8™ device. The GAL™ supports 16 inputs and 8 outputsgeneric array logic
that are configured as 10 input only, 2 output only, and 6 that are bidirectional. Each output
can accept up to seven product terms; each product term can have up to 32 inputs. The circuit
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fragment in Figure 19.12 illustrates an input and the two different output configurations.
The programmable exclusive OR gate provides the ability to invert the sense of the output
signal.

310

Input/Output

Output

Input

AND Array OR Array

Figure 19.12 Output Configurations for a GAL 16V8 PLD

With the addition of storage devices, the capability of the GAL16V8 is extended as the
GAL22V10™ to support the design and implementation of basic sequential digital circuits.
The device incorporates 10 D-type flip-flops with common clock and asynchronous reset
and individual synchronous preset into a structure called a macrocell. Each macrocell canmacrocell
be configured as registered or nonregistered. Output product term support is organized in
pairs: two support 8 product terms, two support 10, and so on, up to a maximum of 16.

The circuit fragment in Figure 19.13 illustrates typical unregistered and registered out-
put macrocells.

The macrocell building block concept forms the basis on which the larger and more
sophisticated CPLDs are built. The AND-OR array provides a fully interconnected mesh
within the macrocell. Full interconnectivity means that any macrocell can communicate
directly with any other macrocell.

Logic designs are developed either textually using any of a number of standard or
proprietary HDL such as Verilog, VHDL, or ABEL, or through schematic capture. Once in
electronic form, the design can be synthesized (using a tool that is similar to, yet different
from, a software compiler) into a form that is compatible with the tool used to program
the device.
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Figure 19.13 Registered and Unregistered Output Configurations for a GAL 22V10 PLD

19.6.2 CPLD

The CPLD provides significantly greater capability than the basic PLD. The functionality
of these devices ranges from what is found in the more powerful MSI devices to that in the
low ends of the LSI units. The general architecture comprises a collection of logic blocks
and an interconnection net. Each logic block contains an AND/OR array and a number of
macrocells. The basic structure, shown in Figure 19.14, illustrates a device with six logic
blocks, each containing eight macrocells.

Macrocell

Logic Block

AND/OR

Array

Interconnection

Network

Input/Output
Input/Output

Figure 19.14 Basic Architecture for a CPLD
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In addition to providing the means to route information from one logic block to another,
the interconnection net will often contain a global system clock and signals supporting
global set and reset controls for any sequential logic or memory elements.

Signal routing between logic blocks within the interconnection net will be supported
on several different levels. In some cases, full interconnectivity is not supported. Some
logic blocks may not be able to directly (or indirectly) exchange information with every
other logic block. In other cases, the interconnectivity is qualified. Qualification includes
direct connection to a limited subset of the logic blocks or connection to another block
via routing through one or two other blocks along the path. Such routing restrictions
may preclude fully utilizing all of the logic blocks or macrocells available in the
device.

Each logic block will contain a number of macrocells. Depending on the vendor and the
design of the part, within each logic block there will be a local interconnection mesh. When
the source and destination of a transfer are within the same block, the rate of exchange can
be significantly faster than between logic blocks.

Each macrocell will contain a rich and flexible set of logic functionality supporting
both combinational and storage capability. Storage, which can be selectively bypassed, is
generally implemented as either a D- or T-type flip-flop. The input to the flip-flop can be
selected from a number of different sources either internal to the macrocell or from with-
out. The flip-flop clock may be a global clock or built from product terms in the logic
array.

The macrocell Inputs and Outputs can include a variety of selectable capabilities. FromInputs, Outputs
above, an output signal may originate from either the storage element or a combinational
term from the AND/OR array. In what may seem unusual in today’s world of increasing
logic speeds, some devices support the capability to slow signal rise and fall times. A little
reflection on the fact that rapidly changing voltages or currents coupled with the pandemic
parasitic inductors and capacitors in our circuits are a significant source of noise explains
the oddity.

Tristate capability on I/O lines enables external information to be brought into the
logic equations implemented in the macrocells. Because the device may be interfacing
with a bus, each I/O line may also include a weak pull-up that can easily be over-
driven by an input signal but will define the state of the bus in an undriven or tristate
mode.

19.6.3 FPGAs

The FPGA provides capabilities on a par with the CPLD. As the technologies continue to
evolve, the distinctions between the two devices are becoming increasingly blurred. As
we saw earlier, the CPLD implements a coarse-grained architecture, built around logic
blocks and macrocells. The FPGA utilizes a finer-grained structure based on smaller
configurable logic blocks and a rich interconnection scheme. Each logic block in an
FPGA is far simpler than that in the CLPD, typically comprising some basic combi-
national logic implemented via a lookup table, a storage device, and a large amount of
internal I/O. The large number of flip-flops in the FPGA and rich interconnect capability
make the device much more flexible for the designer of embedded systems than the
CPLD.
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The FPGA is architected either as a SRAM device or via electrically programmable
antifuses. A SRAM-based design gives tremendous flexibility. At power ON, the configu-
ration is downloaded to the device as a serial bit stream from an external PROM. Because
it is a soft load, the configuration of the device can be dynamically changed at runtime in
response to the type of problem being solved. The configuration of an FPGA utilizing an
antifuse-based architecture is irreversibly set when the user of the device programs it.

A representative architecture for each type of device is given in the next three figures.
Figure 19.15 illustrates a segment of the general structure of a SRAM-based FPGA.
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Figure 19.15 Basic Architecture for a SRAM-based FPGA
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As is seen, the device is organized as an array of interconnected configurable logic
blocks. The devices on the periphery of the array connect to I/O blocks. Interconnection is
supported by a series of channels over which signals are routed using switch matrices. A
portion of a typical switch matrix is implemented as shown in Figure 19.16. In the diagram,
a signal on any row can be routed to any column simply by closing the switch at the desired
intersection. A signal on any column can be routed to any row in a similar way.

A

B

DC

Contact

Figure 19.16 Segment of a Matrix Switch

Figure 19.17 shows a portion of an antifuse-based architecture. The device com-
prises columns or rows of configurable logic blocks separated by an interconnection
channel. Connections are made from a logic block signal to a path in the channel by
programming the antifuse at the desired connection point to the low-resistance state. The
very small size of the antifuses permits the device to support a substantial number of
interconnections.
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Figure 19.17 Basic Architecture for an Antifuse-based FPGA
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19.7 THE DESIGN PROCESS

The design process for PLD-based systems differs little from what we have already dis-
cussed in earlier chapters. The development cycle is governed by the same cautions and
precautions. As we learned earlier, the embedded system development cycle begins with
identifying the requirements. For PLD-based designs, we are, more often than not, the
customer. Thus, we know the requirements. These requirements need to be documented
nonetheless. From the requirements, we write a formal design specification, quantifying
all of the signals and all of the constraints with which we must deal. Our requirements
and design specifications for the PLD naturally derive from those of the larger enclosing
system.

A PLD-based design will, by and large, be developed using one of the many HDLs,
such as Verilog or VHDL. Incorporating a programmable device into a system does not
eliminate the need for a detailed timing analysis of the portions of the larger system that
will be implemented in the PLD. Each device and device type is going to be different;
thus, it is important to work with the manufacturer’s data sheets and thoroughly understand
the behavior of the device and of any critical timing paths. Although the following list
is by no means exhaustive, some basic, yet important, timing specifications to be aware
of include:

τPD Propagation delay from input to output.
τCO Propagation delay from clock(edge) to output.
τCF Propagation delay from clock(edge) to internal flip-flop feedback.
τSU Setup time from inputs to clock(edge).
τH Hold time from inputs to clock(edge).

Clock management, signal routing and management, the partitioning of the logic into
appropriate blocks to maximize performance (including inter- and intra-block communi-
cation), and minimize power are essential parts of the design, modeling, and simulation
of the design. Our earlier discussion of module coupling and cohesion definitely applies
in the PLD context as well. Any device will ultimately be exchanging information with
other external companion devices. Properly assigning input and output pins and associat-
ing these assignments with corresponding logic functions and their internal placement can
have a significant effect on device performance. While focused on the design and devel-
opment of a PLD-based subsystem, remember that at the end of the day it is part of a
larger system. It must interact with and is subject to the same constraints as the containing
system.

Working with the vendor’s tools, the design is ultimately synthesized into an electronic
interchange format that can be used either to program the CPLD or to build a SRAM set or
antifuse pattern for an FPGA.

19.8 DESIGN EXAMPLES

We will now look at two embedded applications of PLD technology. These projects were
developed as part of an advanced embedded systems class at the University of Washing-
ton. Both projects use the Xilinx Spartan-III™ FPGA. The first system is a lane departure
detection system intended for use in a moving automobile; the second is the creation of a
MicroBlaze™ softcore CPU-based system and the port of the uClinux™ operating system,
custom-compiled for the MicroBlaze hardware environment.
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19.8.1 Lane Departure Detection Implementation and Acceleration

The project was designed and developed by Aaron Severance of the University of Wash-
ington, Seattle, WA, November 2005.

19.8.1.1 Introduction

A recent advance in safety technology in the automotive industry has been the design of
lane departure detection systems. These systems are designed to alert an unaware driver
that his or her vehicle has started to leave the designated lane. Such a system can be very
useful in alerting tired or distracted drivers of their potentially harmful state.

In order to function properly, such a system must be able to handle different size, color,
shape, and spacing of lane markings. One popular approach is to use a forward-looking cam-
era, mounted in the windshield of the vehicle, to examine the road. This approach’s utility
lies in its ability to analyze a large field of information and to be easily adapted/upgraded,
something that approaches utilizing specialized sensors lack.

Algorithmically, this can be accomplished using three main steps: edge detection, line
finding, and image space conversion. Edge detection is the process of reducing the amount
of information to be analyzed by selecting only portions of the image with a strong gradient.
Line finding does a transformation on the image in order to detect predominant lines in the
image, which should correspond to lane markings. Finally, image space conversion converts
the positions of the lines found in the image to positions in a real-world coordinate system,
relative to the position of the vehicle.

Implementation was done as a dual core processor system on a Xilinx Spartan-III
FPGA. The hardware and software configurations were created using Xilinx Platform Stu-
dio 6.2i, which included the MicroBlaze soft processor core that was used in the design. In
addition, Xilinx State CAD was used in order to design the custom hardware acceleration
logic.

19.8.1.2 Requirements

The lane detection problem reduces to two tasks: edge detection followed by line finding.

19.8.1.2.1 EDGE DETECTION
To identify an edge within a visual field, a region of the input must be specified to be the
region of interest (ROI). The edge detection routine must have an output that corresponds
to convolving the image with a 3× 3 Sobel vertical edge detection filter in the ROI. Any
pixels in the image not in the ROI must be set to zero. The convolution must not be circular;
the outermost pixels of the image, where a full convolution cannot be performed, must be
set to zero. Finally, a threshold input must be specified; pixels with edge strength below this
threshold must be set to zero.

19.8.1.2.2 LINE FINDING
Line finding was implemented using the Hough Transform, with the output bin of angles
equal in number to the input width of the image. Each of the left/right halves of the image
must be searched for one lane marking, with at least 𝜋/2 angles scanned. A line finding algo-
rithm must be able to identify the two peaks with the highest value in the output of the Hough
Transform as probable lane markings. An inverse Hough Transform must be provided; this
will allow for output to an image buffer of the lines identified as lane markings.
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19.8.1.3 Design

The design of the system was implemented through a set of phased deliverables. First, a
basic setup with the MicroBlaze processor was developed. Next, the code for edge detection
and line finding were ported to the setup. A dual processor system was then implemented,
and basic communication between the processors was established. The code was then par-
allelized, and functional, static, semidynamic, and dynamic approaches were examined.
Finally, the Sobelerator hardware accelerator was designed and tested.

The baseline system was designed using Xilinx Platform Studio’s Base System
Builder™. This allowed for the creation of a basic design including a MicroBlaze proces-
sor, OPB Synchronous DRAM (SDRAM) controller, and OPB timers. The necessary user
constraint file was also generated to map I/O correctly to the prototyping board used.

All code was written in C. In order to minimize code size, lookup tables for the sin and
cos functions used in the Hough Transform had to be precomputed rather than be generated
upon initialization of the program.

Because Base System Builder does not allow for more than one microprocessor, the
dual processor system had to be implemented in Platform Studio. Adding the hardware
simply required manually connecting cores to the appropriate busses and allocating space
for memory-mapped I/O appropriately. The two MicroBlaze processors share a common
OPB bus for peripherals and external memory. The two processors could also be connected
through Fast Simple Link (FSL) connections to examine the performance of message pass-
ing rather than shared memory.

Since there was only one external memory available, however, this message passing
system would not have the distributed memory of a typical point-to-point network and,
therefore, would be a poor model. Message passing was used through shared memory for
command information but all data was shared via pointers to buffers.

In addition, memory contention and critical sections had to be dealt with. For the sake
of keeping the code small and simple, it was decided to use no operating system, and the
MicroBlaze instruction set architecture (ISA) does not provide test and set instructions for
synchronization. A simple solution was to design the system as a master/slave setup rather
than true symmetrical multiprocessing. Communication then became a matter of sending
commands from the master and receiving acknowledgments from the slave. In order to
implement this in an extensible manner, a first-in first-out (FIFO) was modeled in memory,
using a circular buffer.

With the dual processor system in place, the code needed to be parallelized in order to
take advantage of the second processor. The edge detection algorithm requires the same
processing time for each pixel and has no interdependencies of data. It was, therefore,
decided that a static, data parallel partitioning should be sufficient. Testing later showed
that this assumption was correct. The runtime of the Hough Transform is dependent on the
number of points that must be examined, which may change between frames and between
different portions of a frame. A static partitioning then should not be optimal. Compared
against the static partitioning baseline would be a semidynamic partitioning scheme, where
the amount of the image to be processed by each processor would be updated between
frames, and a dynamic partitioning scheme, where blocks of pixels would be dynamically
assigned to each processor. A functional implementation would also be compared, where
one processor did lane finding while the other did edge detection of the previous frame.

Finally, the Sobelerator hardware accelerator was designed. Its purpose was to imple-
ment in hardware the additions, subtractions, shifts, magnitude and rounding operations
required to do edge detection. The FSL interface was chosen because of its simplicity and
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its low latency to the MicroBlaze’s data path. The design was initially developed in the
VHDL hardware description language. As the design progressed, Xilinx’s StateCAD™ was
used to generate the VHDL code for the Sobelerator from a specified state diagram. The
Sobelerator was designed to take 32-bit words consisting of four 8-bit pixel values as input.
This led to a shift-and-add design, allowing it to process a different pixel after each shift.

Separate code had to be written to take advantage of the Sobelerator. One change made
to the code was to not write the output of the edge detection performed by the Sobelerator
to a memory buffer but perform the Hough Transform on it directly.

19.8.1.4 Results

The assembled system was tested to make sure all functions worked correctly. The board
was able to receive and transmit images as bitmaps. The system was then tested on 16
input frames, taken from inside the front windshield of a Pontiac Sunfire outside of the
University of Washington campus. Times for performing the Sobel transform varied less
than 1% between frames. The combination of Sobel and Hough was able to identify lane
markings for some test images, as shown in Figure 19.18.

Figure 19.18 Lane Marking Detection

19.8.1.5 Section Summary

Lane Departure Detection was successfully implemented on a Xilinx Spartan-III FPGA.
The algorithms used were examined in a dual processor setup. Doubling the number of
processors gave less than a doubling of speed. For the given algorithms, a simple static
partitioning of the data gave the most consistent and generally fastest results. Using the
Sobelerator hardware accelerator gave a large gain in speed in the edge detection algorithm;
however, the line finding part of the algorithm dominated runtime.

19.8.2 Local Area Tracking System – LATS with uCLinux™ OS

The project was designed and developed by John Burnette and David Burnett of the Uni-
versity of Washington, Seattle, WA, November 2004.

19.8.2.1 Introduction

As a component in a larger project, an ultra wideband Local Area Tracking System (LATS)Local Area Tracking
System control unit, a MicroBlaze softcore CPU-based system utilizing a Xilinx Spartan-III has

been designed and developed. This CPU runs an implementation of uClinux, custom-
compiled for the MicroBlaze hardware environment.
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We employ and test the functionality of not only the overarching uClinux system, but
also the uClinux bootloader, Universal Asynchronous Receiver/Transmitter (UART) com-
munication systems, CPU data and instruction cache, and SRAM and flash memory as
both storage devices and as file systems. The end result is a MicroBlaze/uClinux-based
stand-alone system with many paths for future development.

19.8.2.2 Requirements

The uClinux OS was required to control most peripherals on the Spartan III™ development
board, including light-emitting diodes (LED)s, UARTs, LCD, flash memory, and SDRAM.
The implementation of uClinux interacted with other PCs via RS232, accepted input, and
provided output.

The OS had to be able to add new input and output paths to the maximum capacity of
the development environment. The uClinux kernel and boot loader were required to reside
on the flash memory, thereby allowing the OS to boot from a local memory system (flash)
rather than relying on re-download of OS on power cycle.

The principal job of the OS was to mediate the interaction of all the components in the
system (including user interface, display, networking, and communication components) and
to orchestrate safe handling of shared memory resources.

19.8.2.3 System Description

The system configuration for the LATS is given in Figure 19.19.

Control Unit
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Figure 19.19 LATS System High-Level Architecture
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The command and control center for the system is the uClinux OS, which runs on a
Xilinx Spartan III FPGA. This OS mediates the interaction between the remaining system
components, which include:

• UI interface.

• VGA interface.

• Network protocol.

• UWB communication interface (RF for now).

• Math unit – for matrix manipulation.

• LCD.

• RS232 communication interface.

19.8.2.4 Design Procedure

19.8.2.4.1 SOFTWARE – UCLINUX
An investigation of possible operating systems to control the LATS ultimately led to
uClinux as the preferred choice. A significant advantage of uClinux was that a version
was available; thus, the only necessary changes were those required for it to function with
Spartan III hardware. These changes included modifying the kernel configuration.

19.8.2.4.2 SOFTWARE – TEST APPLICATION
Design of the test application was very quick and straightforward; all that was needed was
a function to demonstrate some measure of hardware interaction while inside the uClinux
system. From previous work, a basic test suite was available and thus simplified the task.
The existing code was updated to work within Xilinx EDK 6.2 and integrated into the
uClinux image.

19.8.2.4.3 HARDWARE
The hardware for this project was set up using the Base System Builder and was modified
to meet our needs. These modifications included bug fixes, cache enabling, and processor
speedup.

The first step in the hardware development was to set up the hardware project using
the board support package (BSB). Then, we started with the bootloader source that was
provided in the mbvanilla_net™ distribution and modified it to work with our boardmbvanilla_net™
configuration.

Required changes included modifying the base addresses of system components and
integrating a new flash driver. These source files were compiled to work on the Microblaze
soft-core processor and to function as the primary means of directing the processor to boot
our kernel image and run our applications.

19.8.2.5 Test Plan

19.8.2.5.1 UCLINUX™
Testing uClinux’s functionality consisted of a straightforward verification of the file system
and responsiveness. After selecting the appropriate option from the bootloader, the sys-
tem should boot through a suite of standard startup routines, expand the file system, print
the uClinux logo, and present a console for interaction with the system. Typing alphanu-
meric characters should result in an echo back – this verifies basic UART input/output
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functionality of the system. Using the Linux™ cd and ls commands verify the presence of
those applications compiled into the uClinux image in the /bin directory. Typing ps -ef at
the command prompt ensures that Linux processes are running and the system is active.

19.8.2.5.2 TEST APPLICATION
Once the uClinux system booted to a command prompt, a test application was executed.
In an ideal world, it should turn an LED on and off and print to the screen via the UART
in response to a button on the development board. In addition, it should observe all the
usual program politeness: not crash the system, exit with Ctrl+C, and respond to the “kill”
command.

19.8.2.5.3 HARDWARE
One should download the hardware configuration bit stream to the target and run some
diagnostic code to make sure everything is working. Diagnostics should include reading
and writing to the SDRAM and flash, printing to the LCD, writing text to the UART, which
appears in a HyperTerminal™ session, and making the LEDs on the development board
blink.

19.8.2.5.4 SECTION SUMMARY
After a standard progression of research, investigation, design, prototyping, and debug-
ging, the FPGA hardware and basic uClinux operating system work together. While the
overall project was still some distance from completion, much was accomplished toward
developing a basis for future work.

19.9 SUMMARY

In this chapter, we began by motivating the use of PLDs as
an important tool and aid in developing contemporary embed-
ded systems; we then examined the underlying logical con-
cepts that have led to the development and widespread use of
PLDs. We started with the basic building blocks of PLDs and
how these are configured into useful tools. We then looked
at the commonly used technologies for implementing pro-
grammable devices and how programmable devices are able
to store information. We introduced the basic structure of the

devices, examined variations on I/O configurations, and studied,
compared, and contrasted the fundamental architectures for the
CPLD and the FPGA.

We introduced two of the more commonly used compo-
nents: the CPLD and the Gate Array, as well as a more general
purpose device called a Programmable System on a Chip. We
briefly addressed the PLD design process and concluded with a
look at several applications.

19.10 REVIEW QUESTIONS

Programmable Technology

19.1 Explain how a programmable cell works.

19.2 Are there different kinds of programmable cells? What
are the differences?

19.3 What is an antifuse?

19.4 Can programmable cells be reprogrammed? How?

19.5 How long can a bit be stored in a programmable cell?

19.6 What is a matrix switch?

Programmable Logic Devices

19.7 Why might we wish to use PLDs in an embedded
design?

19.8 What is a programmable logic device?

19.9 Explain how we can build logical functions using a PLD.

19.10 What is a CPLD?

19.11 What is an FPGA?

19.12 What is an antifuse device?

19.13 What is a lookup table, and what is it used for?
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19.14 What is the difference between a CPLD and an FPGA?

19.15 What are the two major kinds of FPGA?

19.16 Explain how a SRAM-based FPGA works.

19.17 What is the difference between SRAM- and
antifuse-based FPGAs.

19.18 What is a programmable system on a chip?

19.19 Identify and describe the output functionality commonly
found in PLDs.

Design

19.20 How does the design cycle for PLDs differ from that for
the standard embedded system in general?

19.21 How is the design cycle for PLDs similar to that for the
standard embedded system in general?

19.11 THOUGHT QUESTIONS

Programmable Logic Devices

19.1 Can we implement a PLD device without using a specif-
ically designed CPLD or FPGA? If so, how? If not, why not?

19.2 What are the advantages and disadvantages of using a
CPLD device versus a software implementation of the function
either in a microprocessor or in discrete hardware?

19.3 What are the advantages and disadvantages of using an
FPGA device versus either software implementation of the func-
tion in a microprocessor or discrete hardware?

19.4 What are the advantages and disadvantages of using a
SRAM FPGA device versus an antifuse-based device?

19.5 What are the advantages and disadvantages of using a
CPLD device versus an FPGA device?

19.6 What are the advantages and disadvantages of a matrix
switch?

19.7 What effect might using a PLD have on the noise
in a low-speed embedded system? A high-speed embedded
system?

19.8 Some PLDs provide the ability to decrease the output sig-
nal slew rate. Why is this done? Be specific in your analysis.

19.9 Why do some PLD vendors permit the user to define
extra ground pins on the device? Be specific in your analysis.

19.10 When might one wish to use a PLD versus either an ASIC
or full custom-designed integrated circuit?

19.11 Discuss some of the potential problems that one might
encounter in trying to implement a high-speed FPGA-based
design. Be specific in your answer. Consider propagation delays,
noise, path routing and lengths, and so forth.

19.12 How can one address the potential problem areas identi-
fied in Question 19.11?

19.13 Discuss the advantages and disadvantages of one-time
versus reprogrammable devices.

19.14 When should we use a PROM, PAL, or PLA-type device
in a design? Give several example applications where each type
of device might be appropriate.

19.15 While a PLD-based design may support multiple pro-
cessing cores, the programs that we develop today are generally
sequential rather than parallel. Rewriting a sequential problem
as a parallel implementation is challenging. Suggest some new
ways that we might think about problems to take advantage of a
multicore design.
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Chapter 20

Practical Considerations Signal
Behavior in the Real World –
Part 1 – Noise and Crosstalk

THINGS TO LOOK FOR…

• A high-level view of noise and noise sources in digital systems.

• The problem of power supply and ground noise and some of the root causes.

• Methods for mitigating power supply and ground noise.

• A board level attack and a distributed or local attack on noise.

• Analysis of crosstalk and inductive coupling.

• Ground planes.

20.1 INTRODUCTION – THE REAL WORLD AGAIN

In Chapter 2 we took our first steps into the real world when we learned from fundamental
electromagnetic physics that parasitic resistive, capacitive, and inductive devices can have
a significant effect on the basic quality of our signals. We will now take the next step on that
journey. Starting with the textbook world, we see that ideal systems switch in zero time,
are noise free, have no signal propagation delay, and consume no power. Moving to the
laboratory bench, we recognize that real systems have all these problems. As a result, we
need to be aware of and understand such problems, and to have tools to deal with them. We
must also keep in mind that no two systems are alike. Variation in physical world attributes
means that we must understand the root causes of problems, not memorize pre-packaged
solutions.

20.2 NOISE

We will begin our explorations with electrical noise. Noise in electrical circuits is unwanted
signals arising from a variety of different sources. Such signals are also often random in
nature. Potential sources can include any of:

Embedded Systems: A Contemporary Design Tool, Second Edition. James K. Peckol.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/college/peckol
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• Signals from external electrical sources coupled in from machinery, electric lights,
radio and television, or telecommunication equipment.

• Internally generated noise from system clocks, switching reflected in the power distri-
bution subsystem, capacitive and inductive coupling between signals, thermal noise,
or ground bounce.

As we learned in our earlier studies of parasitic devices, inherent in our signaling paths,
the signal quality problem tends to worsen with increasing frequency. High(er) frequencies
can lead to increases in the impedance of parasitic devices and decreases in signal edges or
other electrical features that can exacerbate the problem as the denominators decrease in
such common expressions as illustrated in Eqs. (20.1) and (20.2).

V = L
di
dt

(20.1)

I = C
dv
dt

(20.2)

A partial solution is to try to reduce the parasitic impedances or, correspondingly,
reduce the di or dv or increase dt in the above expressions.

Let’s look at several of these noise related issues and examine some ways to help solve
them. Keep in mind that there is no perfect solution and that each design will often contain
different problems and causes.

20.3 POWER SUPPLY AND GROUND NOISE

20.3.1 Common Path Noise

We will begin our examination of noise in electrical circuits with a phenomenon called
common path noise. Basic electrical theory dictates that currents must flow in a closedGround path Common

Path noise path. Thus, when a signal is sent from a source to a destination, it must return to the source.
The return path (closing the path) is termed a ground path. Common path noise is the result
of such returning signal currents flowing through a shared ground path coupled with the
inherent impedance of that path. The shared path can be a single wire, printed circuit board
(PCB) trace, or a ground plane. We will begin with portions of a system modeled by four
basic logic gates as illustrated in Figure 20.1.

Figure 20.1 Common Path Parasitic Inductance.

The solid lines show the forward currents from both portions of the circuit flowing
from source to destination and the dotted lines show that the return currents from both
portions of the circuit go through the shared ground path. As a result, returning currents
from either circuit can cause noise to be generated via the parasitic inductance of the ground
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path. As we’ve learned, the magnitude of the noise voltage will be the algebraic sum of all
returning currents, a function of the frequency of those currents, and of the value of parasitic
inductance, which increases with module separation.

Fundamentally, we are dealing with Ohm’s law and the work of numerous other physi-
cists. To ensure low common path noise, we must have low impedance (key word) ground
connections between gates. More generally, the signal path has three components:

1. The ground path.

2. The power path.

3. Path through the switching device between power and ground.

We identify the impedances in each of the three paths in Figure 20.2.

Zs

VccVcc
Zp

Zg Figure 20.2 Basic Circuit Impedance Model.

Noise can arise from signals in any of these segments. Such recognition gives rise to
three general rules for dealing with such problems.

1. Zg – Use low impedance (key word here) ground connections between gates – a
ground plane works very well.

2. Zp – The impedance between power pins on any two gates should be as low as the
impedance between the ground pins.

3. Zs – Establish a low impedance path between power and ground.

We will examine ways of achieving each of these.

20.3.2 Power Distribution Wiring

As we have seen, the power supply wiring (PSW) has a resistive component and an inductive
component.

20.3.2.1 Resistance

Let’s look at the resistance of the PSW first. Identifying the location of the power supply
relative to the other electrical components and the characteristics of the wiring is important.
The resistance of the PSW is easy to calculate and the expected operating current is known.
If resistance is problem, we can use a larger diameter wire.

Also, as we have seen, the magnitude of a pure resistance is not a function of frequency.
From Ohm’s Law, if we are experiencing a resistive voltage drop along the circuit wiring,
the power supply may also be designed with a remote sense to follow the voltage level at
far end of distribution and automagically adjust as shown in Figure 20.3.
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M

Zmeter in finity

Remote Sense

Power Supply

ZL

ZL

Figure 20.3 Power Supply with Remote Sense.

20.3.2.2 Inductance

The effects of inductance are a more difficult problem with which to deal. Rapidly changing
signals, acting across the power distribution inductance shown in Figure 20.4, can induce
voltage shifts between the supply and the logic it feeds. Such shifts are more sudden and
larger than those arising from the wiring resistance.

DC

V = L (di/dt)

+
−

Figure 20.4 Power Distribution Inductance.

The induced noise is given by the basic relationship in Eq. (20.1), repeated here as
Eq. (20.3).

V = L
di
dt

(20.3)

Observe that V increases as dt decreases, thereby making the noise voltage a direct
function of the signal rise and fall times (the dt in the denominator) and, thus, an indirect
function of its frequency. As the signal frequency increases, the rise and fall times naturally
tend to naturally decrease. Some array logics support control of the output rise and fall
times to aid in addressing just such a problem.
We have three possible approaches to deal with problem:

1. Use low inductance wiring.
2. Use logic immune to power supply noise.

3. Reduce the size of charging currents.

Do these help?
Inductance is a logarithmic function of wire diameter. As a result, solving the problem

just by increasing wire diameter is almost impossible. Differential logic signals are almost
completely immune to power supply fluctuation; however, such an approach is not cheap
and not particularly practical in many cases, although some vendors are moving in this
direction. Two approaches are available to attack the charging currents. Looking at the
right-hand side of Eq. (20.3), we can increase denominator or reduce the numerator.
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20.3.3 Board Level Bypass

Let’s look at the problem in the circuit in Figure 20.5. Assume that we are switching the
output of the gate from a logic 0 to a logic 1, which must charge the parasitic capacitor C1.
Further assume that our signal has a rise time of 5 ns and that C1 is 50 pf, which is typical
for 5–7 unit loads.

DC

L1

C1
I

+
−

Figure 20.5 Simple Switching Circuit.

We compute the maximum di/dt starting with Eq. (20.4), then add a little calculus.

i = C
(dv

dt

)
(20.4)

We get Eq. (20.5). A typical TTL signal gives a ΔV = 4.5 V when switching from logic
0 to logic 1. The state change gives us the charging current in Eq. (20.5).

max
di
dt

= 1.52ΔV
(𝜏rise)2

C = 1.5 × 107((amps)∕(second)) (20.5)

Assume we have two parallel power distribution paths: power conductor and a ground
plane, as illustrated in Figure 20.6.

Wire
glass epoxy

ground plane Figure 20.6 Power and Ground Distribution.

Specific formulas for such an inductance can become complex and can be dependent
upon the specific environment and circuit geometry. A generally accepted version for a wire
over a ground plane is given in Eq. ((20.6)).

Lpsw = (10.16) • (X) •
(

ln
(2H

D

))
= 186 nH (20.6)

L – Inductance in nH.
X – Length of wire Assume 10 in.
H – Height above ground Assume 0.1 in.
D – Diameter of wire Assume 20 AWG – 0.032 in.

We now compute peak switching noise voltage from Eq. (20.5). Below certain frequen-
cies, we will see that the impedance of PSW is sufficiently low that we don’t need to do
anything.
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V = Lpsw
di
dt

(20.7)

Vnoise = Lpsw

(di
dt

)
max

= (186 nH)(1.5 × 107amps∕second) = 2.8V

Looking at Eq. (20.7), three factors contribute to the noise voltage:

1. Lpsw

2. di

3. dt

The current and time are inherent in the design. Little can be done with these two
terms. Reducing the parasitic inductance of the PSW appears to offer the best opportunity.
Since that inductance is a function of the wire length, if we can reduce the length of the
path through which the switching currents have to flow, we should be able to reduce the
corresponding path inductance and, thus, the level of the noise voltage.

We can reduce the path length several ways. We can simply shorten the wire between
the power supply and the system. Such an approach is often impractical. Alternately, we
can provide a source of current closer to the demand.

From our basic electronics, we know that a capacitor can store charge and can be made
to release that charge. Thus, to bring the source of current closer to the demand, we will
install a capacitor, C2, as shown in Figure 20.7, to meet the short-term switching current
demands from the components on the PCB. We assume that the power supply is not on the
PCB and that C2 is installed on the PCB, generally at the card edge.

DC

board Power supply

C2

Kircho ffs Current Law

holds here
Path for charging current

shortened

Only smoothed current

flows in this part of wiring

C1

L1

+
−

BL1A A

Figure 20.7 Board Level Capacitor.

Observe in Figure 20.7 that by installing the board level bypass capacitor C2, we have
split the original current path and thus the parasitic inductor, L1, into two pieces. The path to
the switching device is now substantially shorter and the L1A piece must be smaller than the
original L1. Therefore, we will have a smaller inductor to deal with and a smaller inductive
noise voltage drop.

If the impedance of C2 is lower than that of the PSW, from Kirchhoff’s current law
(KCL), as illustrated in Figure 20.8, the majority of charging current for C1 will flow from
C2, along a shorter path rather than through the longer system PSW.
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C2
C2

C1
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X
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X PSX

i
PSi

i

Figure 20.8 KCL at C2.

20.3.3.1 Computing the Board Level Bypass Capacitor

We compute board level bypass cap as follows:

1. Estimate the maximum step change in the supply currentΔI due to gate switching as
shown in Eq. (20.8). This current will flow through the PSW, returning to the power
supply through the ground connection. Since we do not know when or which of the
gates will switch, we assume the worst case that all N gates switch simultaneously
at a known frequency.

The parasitic capacitors for all driven gates on the PCB are in parallel and,
thus, add.

ΔImax = NC
ΔVsignal

Δt
(20.8)

ΔImax = NC
ΔVsignal

𝜏rise

2. Determine or specify the maximum power supply noise that the logic can
handle – ΔVnoisemax.

3. Compute the maximum common path impedance, Xmax, as in Eq. (20.9).

Xmax =
ΔVnoisemax

ΔImax
(20.9)

Remember, Xmax is an impedance and, therefore, a function of signal frequency.
Typically, we can allocate all of the impedance to one lumped value. If not, we must
split the impedance up among the ground connection, the power connection, and the
path between power and ground.

4. Compute the parasitic inductance, Lpsw, and the impedance XL in the PSW. Com-
bine with Xmax as in Eq. (20.10) to find the frequency below which the inductive
impedance of the PSW is acceptable, that is – a low enough impedance.

XL = j𝜔L

∣ XL ∣= 𝜔L = Xmax =
ΔVnoisemax

ΔImax
= 2𝜋FLpsw (20.10)

We now want to determine the frequency at which we start to get into trouble
which gives us a worst case number.

Assume that all gates switch together at frequency F = Fpsw. Substituting Xmax
from Eq. (20.9) into Eq. (20.10), ΔVL for ΔVnoisemax, and ΔIL for ΔImax, then solv-
ing for Fpsw we get Eq. (20.12).

Fpsw =
(
ΔVL

ΔIL

)
1

2𝜋Lpsw
(20.11)
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From Eq. (20.10)

∣ xL ∣=
ΔVL

ΔIL
= Xmax

Fpsw =
Xmax

2𝜋Lpsw
(20.12)

Below Fpsw, we will get less noise than ΔVnoise and the PSW impedance is ade-
quate. The signal can travel through the PSW and noise will be below Vnoisemax.

5. Below Fpsw, the PSW is fine; we won’t need a board level bypass. Above Fpsw, we
add a bypass capacitor to take over, i.e. to shorten the path and lower the inductive
impedance.

We compute the value of the capacitor that has impedance Xmax at Fpsw as shown
in Eq. (20.13):

XC = 1
j𝜔C

= Xmax

𝜔 = 2𝜋F … let F = Fpws (20.13)

Cboardbypass =
1

2𝜋FpswXmax
(20.14)

20.3.4 Local Bypass Capacitors

Every PCB needs a relatively large bypass capacitor, Cboardbypass, to counteract the induc-
tance of the PSW. A single perfect capacitor on each board potentially could completely
solve distribution problem. We can compute the maximum frequency at which such a capac-
itor is effective. A good capacitor should be effective between Fpsw, where the PSW is
adequate, and Fboard bypass. At switching speeds above Fboard bypass, additional help is needed.

Repeating Eq. (20.12) for Fpsw:

Fpsw =
Xmax

2𝜋Lpsw
(20.15)

Let’s now look closer at Fboard bypass. The board level capacitor, C2, follows our earlier
basic high-level model as in Figure 20.9.

ESR

parasitic

C2

LC2
XLC2

Figure 20.9 Board Level Capacitor Model.

Based upon the board level capacitor model, we compute Fboard bypass, which will be
driven by LC2, in Eq. (20.16):

Fboardbypass =
Xmax

2𝜋LC2
(20.16)
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Unfortunately, no capacitor is perfect. As we know, every capacitor has some series
inductance. For the board level bypass we just added, we have LC2. The impedance of
LC2 increases with frequency. From our model, the capacitor also has a parasitic resistance
denoted equivalent series resistance (ESR). A typical value is approximately 0.1–1.1Ω.
Combining the individual impedances, the full capacitor impedance is given by Eq. (20.17):

Equivalent Series
Resistance

XC(F) = ESR + j
(−1

C𝜔
+ L𝜔

)
(20.17)

From which we compute the magnitude of capacitor impedance in Eq. (20.18):

∣ XC(F) ∣=
√

(ESR)2 +
( −1

2𝜋FC
+ 2𝜋FL

)2
(20.18)

20.3.4.1 Computing the Local Bypass Capacitors

As we saw in Eq. (20.16), such an inductance (LC2) causes the device impedance to increase
rather than decrease. At high frequencies, the extent of the problem depends upon the
impedance that must be maintained.

The best way to guarantee low impedance above Fboard bypass is to add another capacitor
with lower series resistance, C4. Remember how resistors in parallel add; the total will
be less than smallest. When we installed the board level bypass earlier, we reduced the
corresponding length of the switching current paths to the installed devices; let’s now repeat
the technique that we learned there.

Rather than adding another large capacitor, we achieve the same end by distributing a
number of small capacitors, between power and ground, in parallel, around the board, close
to the logic devices. The leads on the capacitors should be as short as possible. In doing so,
we accomplish several things.

First, once again, we bring the source of the switching currents closer the logic devices,
thereby reducing the path length and associated parasitic inductance. Then, since capacitors
in parallel add, we get the larger capacitance that we wanted. Since the impedances of induc-
tors in parallel decreases, we get the lower parasitic inductive impedance of the capacitor
that we wanted. This capacitive array now becomes the third piece of our solution.

Before we move ahead, let’s look briefly at our signaling environment. We will cover
the topic in greater detail in Chapter 21. Unlike a sinusoid, which comprises a single fre-
quency, a digital signal is considered broadband, that is, made up of components of many
different frequencies.

The spectral power density of a signal, measured in watts per Hz, illustrates how the
power in a signal or time series is distributed in frequency, i.e. where the power in the signal
is concentrated.

For a digital signal, the spectral power density is flat (even distribution) or can have
some decrease up to a point called the knee frequency, which is a heuristic estimate of the
highest frequency content of a signal. Above the knee frequency, the drop off (fewer watts
per unit frequency) can be much greater.

The knee frequency, Fknee, is typically defined as in Eq. (20.19):knee frequency

Fknee =
k

𝜏rise
(20.19)

Fknee – Frequency below which most of the energy in a digital pulse is concentrated.
𝜏rise – Pulse rise time measured at the 10–90% points of the rise edge of the signal.
K – Variously given as 0.35 or 0.5. The latter is more common.
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We now see that three factors dominate impedance between power and ground:

Low frequencies. Inductance of power distribution wiring 0 to Fpsw
Middle frequencies. Impedance of board level bypass Fpsw to Fboardbypass
High frequencies. Impedance of distributed capacitor array Fboardbypass to Fknee

We design capacitive array as follows.

1. Based upon our discussion above, we want the system to work up to Fknee. Thus,
we calculate the total inductance, Ltotal, we can tolerate at higher frequency.

∣ XL ∣=∣ L𝜔 ∣=∣ 2𝜋FL ∣

Fknee =
0.5
𝜏rise

Ltotal =
Xmax

2𝜋Fknee
=

Xmax𝜏rise

𝜋
(20.20)

2. Next, from data sheets we find the series inductance of the bypass capacitors (C3)
that we will use in the distributed array. A typical value will be around 1–5 nH for
a surface mount, through hole device.

Since Lequivalent for N parallel inductors of the same value is:

Lequivalent =
Li

N
(20.21)

We must put N devices in parallel to get the desired value for Ltotal. Thus, we
have:

Ltota1 =
LC3

N
(20.22)

which is what we want. Such a configuration reduces the total inductance and the
total impedance. We now rearrange Eq. (20.22) and compute the number of bypass
capacitors as in Eq. (20.23):

N =
LC3

Ltotal
(20.23)

3. The total array capacitance must have impedance less than Xmax at frequencies from
Fboardbypass up to Fknee. Remember that LC2 is the board level bypass parasitic.

From above:

Fboardbypass =
Xmax

2𝜋LC2
(20.24)

From,

XC = 1
j𝜔C

XC = Xmax and =2𝜋Fboardbypass

Carray = 1
2𝜋FboardbypassXmax

(20.25)

4. Finally, calculate the required capacitance value for the elements that will make up
the distributed array.

Celement =
Carray

N
(20.26)
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EXAMPLE
Let’s consider a CMOS board containing 100 gates. Assume 100 pF loads and 5 ns rise and
fall times.

Fknee =
0.5
5ns

Let the series inductance of capacitor be 4 nH and assume we want Xmax = 0.09Ω.
Thus,

Ltotal =
Xmax𝜏rise

𝜋
= 0.114 nH

N =
LC3

Ltotal
= 4nH

0.1l4 nH
= 35

Fboardbypass =
Xmax

2𝜋LC2
= 0.09Ω

2𝜋5 nH
= 2.86 MHz

Carray = 1
2𝜋FbypassXmax

= 0.86 μF

Celement =
Carray

N
= 0.02 μF

Design Heuristic: In addition to a large board level bypass capacitor of 2050 μF at the
board edge, every board should also have a capacitive array with one 0.01 μF or 0.02 μF
capacitor for every three ICs.

20.3.5 Power and Ground Planes

Parallel power and ground planes provide the 3rd level of bypass capacitance. Power and
ground planes have zero lead inductance and no ESR – and can help to reduce power and
ground noise at high frequencies.

We compute capacitance as in Eq. (20.27):

Cpowerplane =
0.225 𝜀rA

d
(20.27)

er – Relative electric permittivity of the insulator Assume 4.5 for epoxy PCB FR4
material

A – Area of shared power-ground plane (in2).
d – Separation between planes

20.4 CROSSTALK AND LOOPS

We know from Ampere’s Law that current flowing in a wire will produce a magnetic field.
From Faraday’s and Lenz’s work we know that a circuit moving in magnetic field has
induced currents. From the work of Gauss and others we know that charge and the poten-
tial difference between two conducting surfaces are related by a quantity called capacitance.
From these we see that Mother Nature is conspiring against us… and chuckling.

When we have adjacent conducting paths, capacitive and inductive physics couples
signals from one circuit into the other. Any time that we have two circuits, we have a mutual
capacitance. Voltages in one circuit create electric fields, and such fields affect other circuits.
Any time we have two loops, we have a mutual inductance. The current in one loop creates
a magnetic field, and such fields affect other loops.
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20.4.1 Crosstalk

Crosstalk arises from mutual capacitance and inductance between circuits. We will examine
each component separately. Consider first the simple circuit in Figure 20.10. Let’s look only
at capacitance.

IM CM

Circuit A

Circuit B Figure 20.10 Capacitive Coupling.

From our basic physics, we know that since we can’t instantly change voltage across a
capacitor, change in the signal on A must appear on B. The mutual capacitance CM injects
a current IM into circuit B proportional to rate of change of the voltage in circuit A, VA.

We can write a simplified approximation as Eq. (20.28):

IM = CM
dVA

dt
(20.28)

where IM is the crosstalk current.
The model is valid under the following assumptions:

• The coupled current is much smaller than primary current and does not load
circuit A.

• The coupled signal voltage on B smaller than the signal on A.

• The capacitor is a large impedance compared to the ground impedance in
circuit B.

We can estimate the crosstalk as a fraction of the driving voltage VA given:

• A known mutual capacitance CM.

• A fixed circuit rise time 𝜏rise.

• A known impedance in receiving circuit RB.

Using a Thevenin model:

1. We derive the maximum change in voltage per unit time from the change in
Circuit A.

dVA

dt
=

ΔVA

𝜏rise
(20.29)

2. Next, compute the mutual capacitive current.:

IM = CM
ΔVA

𝜏rise
(20.30)

3. Compute the crosstalk current in Circuit B as the impedance in the circuit times the
induced current. The induced crosstalk voltage is given as:

Vcrosstalk = IMBB (20.31)
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4. Finally, compute the crosstalk signal as the ratio between the induced voltage in B
with respect to the change in A.

Vcrosstalk

ΔVA
=

IMRB

ΔVA
=

RBCM

𝜏rise
(20.32)

Vcrosstalk = (ΔVA)
(

RBCM

𝜏rise

)

20.4.1.1 Preventing or Reducing Crosstalk

To prevent such coupling, we have several alternatives:

• Guarding. As shown in Figure 20.11, we route a ground trace so as to cut the path.
The Guard trace is grounded at only one end. The capacitance still exists but it cannot
couple into circuit B, and no current can flow in the Guard trace. Why?

circuit A

circuit B

Guard

Figure 20.11 Routing a Guard Trace.

• Twisted Pair. By twisting the conductors, the net crosstalk from alternating plus and
minus coupling cancels.

• Ground Plane or Ground Grid. Provides a return path directly under a trace to give the
lowest inductance and smallest loop area and minimizes the magnetic field interacting
with other traces. A ground plane is the preferred solution, but a ground grid provides
a good alternative.

20.4.2 Loops

Any electronic circuit contains loops; it’s the only way they work. Again, from our studies
of electromagnetic physics, a changing electromagnetic field passing through a circuit can
induce parasitic currents in the circuit. Such fields are everywhere; radio and television sta-
tions and electric lights are two sources. They can create problems with high flying aircraft
and objects launched into space.

Let’s look at simple circuit in Figure 20.12.

Circuit A

LM

+ −

I(t)

V(t)

Circuit B

Coupled noise source

voltage

Figure 20.12 Mutual Inductance.
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We know from our early physics colleagues that the mutual inductance LM couples a
voltage VM into loop B that is proportional to the rate of change of voltage in circuit A. We
can write a simplified approximation as Eq. (20.33):

Vcrosstalk = LM
diA
dt

(20.33)

The above expression is valid under following assumptions:

• The secondary impedance is small compared to impedance to ground of
circuit A.

• The coupled signal current in circuit B is smaller than the current in circuit A.

• The induced voltage across LM is smaller than the primary signal voltage and
attaching LM does not load circuit A.

We can estimate the crosstalk as fraction of the driving voltage VA given:

• A known mutual inductance LM.

• A fixed circuit rise time 𝜏rise.

• A known impedance in driving circuit RA.

We compute the crosstalk as follows:

1. Derive the maximum change in voltage per unit time.:

dVA

dt
= ΔV

𝜏rise
(20.34)

2. Assume loop A is resistively damped by RA and that the current and voltage are
proportional to each other. We compute the current in A:

dVA

dt
= RA

diA
dt

(20.35)

ΔVA

𝜏rise
= RA

diA
dt

diA
dt

=
ΔVA

RA𝜏rise

3. Compute the mutual inductive noise-induced voltage:

Vcrosstalk = LM
ΔVA

RA𝜏rise
(20.36)

4. Compute the crosstalk signal as the ratio between the induced signal and the causal
signal.:

Vcrosstalk

ΔVA
= Crosstalk =

LM

RA𝜏rise
(20.37)
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To prevent such coupling we have several alternatives. When laying the circuit out,
keep such loops as small as possible or nonexistent if possible. Circuit A in Figure 20.13 is
preferable to Circuit B.

4

3

2

circuit A

1

4

3

2

circuit B

1

Figure 20.13 Reducing Mutual Inductive
Coupling.

20.5 SUMMARY

We have examined a high-level view of noise and noise sources
in digital systems and introduced the problem of power sup-
ply and ground noise as well as some of the root causes. We
then looked at methods for mitigating power supply and ground
noise comprising both a board level attack and a distributed or
local attack. We determined a means to help to reduce switching

noise: every circuit board should have a large bypass capacitor
at the board edge and a distributed array of smaller capacitors
around the board. We concluded with, and analyzed, crosstalk
and inductive coupling and briefly looked at ground planes and
power consumption.

20.6 REVIEW QUESTIONS

Noise

20.1 What is noise in an electrical circuit?

20.2 What are potential sources of noise in an embedded sys-
tem?

20.3 What is the effect of higher frequencies on signal quality
in an embedded system?

20.4 What is common path noise?

20.5 Why is noise immunity important?

20.6 How can we deal with common path noise in an embed-
ded system?

20.7 How does a system power supply affect noise within an
embedded system?

20.8 Within the system power distribution network, what is
the largest contributor to unwanted noise?

20.9 What are the three potential approaches to deal with noise
in the power distribution network?

Board Level Bypass

20.10 The chapter recommends adding a larger capacitor
between power and ground at the point where power comes into
the system. How does this help to mitigate noise in the power
network on a board of module?

20.11 Is a board level bypass capacitor sufficient to eliminate
all switching noise on the power network?

Local Bypass Capacitors

20.12 What are local bypass capacitors?

20.13 Why are local bypass capacitors used?

20.14 Where do we install local bypass capacitors on a board?

20.15 What are power and ground planes? How do these planes
help to address noise in the power distribution network?

Crosstalk and Loops

20.16 What is meant by the term crosstalk?

20.17 What is the source of crosstalk in an embedded system?
Is it a function of signaling frequency?

20.18 Why is crosstalk a problem in an embedded system?

20.19 How can we prevent or eliminate crosstalk?

20.20 Why is there no current flowing in the Guard trace in
Figure 20.11? Why do we want that?

Real-World Gates – The Legacy of Physics

20.21 What are the parasitic devices of concern in a logic cir-
cuit?

20.22 What is the difference between resistance and
impedance?

20.23 Are both the resistance and impedance of the signal and
power distribution nets contributing to the system noise.
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20.7 PROBLEMS

20.1 Consider a digital board that you have designed for your
system. For that board, operating at its maximum frequency,
measure the value of maximum power supply noise in your sys-
tem. If you are measuring with an oscilloscope, make certain
that your probes are in the ×10 mode.

20.2 Using the value of maximum power supply noise from
Problem 20.1, specify the worst case power distribution noise

that you want the system to handle. Compute the value the board
level bypass capacitor that you will need for that board to meet
your specifications.

20.3 For the board you designed in Problem 20.1, Compute
the necessary number and value of local bypass capacitors you
will need.
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Chapter 21

Practical Considerations
Signal Behavior in the Real
World – Part 2 – High-Speed
Signaling

THINGS TO LOOK FOR…

• Signal integrity vocabulary and metrics.

• Issues associated with high-speed digital signaling and signal quality.

• Problems with and limitations of point-to-point wiring.

• The high-speed signaling and PCB environments.

• Modeling the signaling and PCB environments.

• Single-ended and differential signaling.

• Strengths, weaknesses, and concerns with several common layout topologies.

• Signal path termination schemes to mitigate signal quality/integrity issues.

• The eye diagram as a tool for examining signal quality.

21.1 INTRODUCTION – THE REAL WORLD YET AGAIN

In previous chapters, we began a venture into the real world with an introduction to parasitic
devices and the affects that they can have on intra-system signaling quality. We then exam-
ined electromagnetic noise within a system and explored some ways of reducing or elim-
inating its affects. We will now venture more deeply into the real world in which today’s
and tomorrow’s designs must exist and function.

Contemporary designs are characterized by escalating demands for greater functional-
ity, growing complexity, more widely distributed systems, and accelerating signaling data
rates. System data links and signaling are rapidly moving from the MHz world to the GHz.
Such rates are placing increasing demands on the quality and integrity of both intra- and
inter-system signals. At the same time, the physical world is placing greater and greater
challenges on and to the designer’s ability to ensure the required signal quality.

Embedded Systems: A Contemporary Design Tool, Second Edition. James K. Peckol.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/college/peckol
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Interestingly, high-speed digital design increasingly emphasizes the behavior of pas-
sive circuit elements. Specifically, high-speed digital design examines:

1. How parasitic, passive circuit elements, and the signaling path within the system,
are affecting signal propagation (ringing and reflection).

2. The interaction between signals (crosstalk).

3. The interactions with the external physical world and associated signals (electro-
magnetic emissions and interference).

In high-speed embedded systems, the physical, electrical, and mechanical designs can
affect signal quality. As a result, we must carefully consider behavior in both the “time” and
the “frequency” domains. At low frequencies, an ordinary wire will effectively short two
circuits. However, at high frequencies that same wire has too high of an inductive impedance
to function as short. As we move up in signal frequency, a ground wire measuring 0.01 Ω
at 1 KHz can measure up to 1.0 Ω or more at 1 GHz. Additionally, that ground wire can
acquire 40 Ω or more of inductive impedance due to the skin effect. If we plot the basicskin effect
electrical parameters on a log scale, as we did earlier, we see that few remain constant for
more than 10–20 decades of frequency. As a result, for every electrical parameter, we must
consider the operating range over which its behavior is consistent with that needed for our
design.

As we examine such systems in the context of the real world, we will provide a deeper
introduction to the concept of signal integrity. We will seek to quantify the concept of sig-signal integrity
nal quality or integrity and to learn why they are important. We will then look at potential
problems in the design and development of modern high speed digital systems that lead to
the loss of signal quality and identify possible root causes of such problems. We will intro-
duce potential tools and solutions; however, such approaches cannot guarantee to eliminate
all signal integrity issues. Our goal is to try to identify and reduce the root causes and to
mitigate, as much as possible, their effects. However, we must recognize that the system’s
design, implementation, and operation cannot be confined to a complete vacuum with no
physical world effects.

The design process is often a very intuitive and creative endeavor. Developing an
instinctive feel for what can affect signal quality is critically important to achieving a secure,
safe, reliable, and quality product. All engineers involved with the design of a product
should understand how their work can influence and affect the product’s performance.

The goal in the following material is to build upon what we have studied and to identify
challenges in modern high-speed digital system design, potential sources of such chal-
lenges, and things to avoid during the design process. We will present the concepts and
terminology associated with the area with the objective of providing knowledge of when
and where problems might occur and when to potentially seek additional expertise.

21.2 THE PROBLEM

In the digital world, the typical view of a digital signal is as a synchronous or asynchronous
temporal series of discrete binary values. Such a sequence is most commonly expressed
by or as a voltage waveform. In reality, digital signals are essentially analog in nature.
Such signals are subject to the effects and vagaries of the real world. When a signal is sent
from source to destination, it can/will be degraded by noise, both internal and external to
the system, distortion in time and level, and loss or reduction in amplitude. The quality
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or integrity of the signal is a measure of how faithfully the received signal represents the
transmitted signal in time, frequency, and amplitude.

In the earlier days of 1–20 MHz clock frequencies and 5–10 ns or more rise and fall
times, the major challenges were simply how physically to route signals in a wired circuit
and later on in a two-layer printed circuit board (PCB). Electrical properties of intercon-
nects were not important and the parasitic effects of the real world on a digital system
were negligible and often unrecognized. The quality of signals was not a concern. Noise
problems related to crosstalk and power supply noise, if they occurred, were addressed on
case-by-case basis.

A compounding problem during the early days was that the underlying physics of noise
was poorly understood. Knowledge of the effects of high frequencies were well understood
in the microwave field, but rarely did that knowledge find its way into the newly evolving
digital world. Digital designers often didn’t recognize or ignored the impact of parasitics
during the design phase, and there were only a limited number of tools available for accu-
rately detecting, measuring, or modeling parasitic effects.

As system clock frequencies moved into range of 100 MHz then to multiple GHz with
sub 5 ns rise and fall times, designers began increasingly to encounter signal quality prob-
lems. Understanding high frequency physical effects introduced by the circuit board, wires,
and interconnects became as important as the silicon design itself.

What are these signal quality problems? Let’s first examine a signal waveform shape in
the ideal world. A signal in a digital system, with ideal signal quality or integrity in the ideal
world, would have instantaneous rise and fall times with no ringing or over or undershoot as
in Figure 21.1. In the ideal real world, the rise and fall times are short but not instantaneous;
they have no ringing, no over or undershoot, or no edge distortion as in Figure 21.2.

Figure 21.1 Ideal World Signal

Figure 21.2 Ideal Real-world Signal

Moving from the ideal real world, let’s introduce some common terminology describ-
ing signaling problems in that new world: noise, switching noise, crosstalk, ringing, atten-
uation, jitter, period jitter, cycle-to-cycle jitter, nth-cycle jitter, aperture time, reflection,
ground bounce, transmitter output jitter, and capacitive loading. Wait, I have to worry
about all those things? Yes, and those problems fall into three categories: timing, noise,
and electromagnetic interference – EMI. Let’s see what these terms mean.

21.2.1 Terminology

21.2.1.1 Noise

Noise is a signal that is the algebraic sum of a signal from a source and unintended
or unwanted signals arising from inside or outside of system. Any such unintended or
unwanted signals are classified as noise. The primary effect of noise is to alter signal
amplitude.

21.2.1.2 Switching Noise

Switching noise is an unwanted signal induced in both power and ground traces or planes
as the result of current or voltage surges when switching devices change state. Switching
noise can also be coupled into clock lines and data busses.



�

� �

�

912 Chapter 21 Practical Considerations Signal Behavior in the Real World – Part 2 – High-Speed Signaling

21.2.1.3 Crosstalk

Crosstalk is a kind of noise that is capacitively or inductively coupled into the primary signal
path from the surrounding environment, such as foreign signal paths in close proximity or
signal sources outside the system, such as radio, television, cell phones, motors, etc.

21.2.1.4 Ringing

Ringing is a signal oscillations on the leading or trailing signal edge or a device output,
typically in response to a sudden change in signal state at the source.

21.2.1.5 Attenuation or Loss

Attenuation is the reduction in signal amplitude arising from the coupling of opposite polar-
ity signals or leakage through parasitic capacitive or inductive paths.

21.2.1.6 Jitter

Jitter is the temporal corruption of the signal through the short-term variation in time of
signaling edges from their ideal position with respect to a reference such as clock.

21.2.1.7 Period Jitter

Period jitter for a clock or periodic timing reference is the variation in period from the ideal.

21.2.1.8 Cycle-to-Cycle Jitter

Cycle-to-cycle jitter is the variation in signal period between two consecutive cycles.

21.2.1.9 Nth-cycle Jitter

Nth-cycle jitter is the variation in a signal’s period over N cycles.

21.2.1.10 Aperture Time

Aperture time is the duration during which the received signal can be reliably sampled
by receiver. Aperture time must fall within the setup and hold window of the receiving
device. Violation of setup or hold times can lead to metastability or incorrectly interpreted
or missed data.

21.2.1.11 Reflection

When a signal leaves the source, it travels down a signal path until it reaches the receiver.
Under certain circumstances, at the receiver, a portion of the signal’s energy is returned
back towards source, and a portion is absorbed in the load. The returned portion is called
the reflection. As a metaphorical example, consider a swimming pool filled with water.
On one end of the pool, produce a wave, and let the wave travel down the length of pool
to opposite end. When the wave reaches opposite end, some of the energy is absorbed
and a smaller wave returns to original side. The process is repeated until all the energy is
absorbed.
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21.2.1.12 Ground Bounce

In an electrical circuit, current flows in a closed path from source, through components,
returning via a ground path to the source. The ground path does not have zero impedance.
Ohm’s law states that current through an impedance yields a voltage that is proportional
to the product of the current and the impedance. When a device switches, a sufficiently
high current can be sent to ground where it can produce a transient signal that can raise the
voltage level of a local ground. With the local reference disturbed, the device can go into a
metastable or unknown state.

21.2.1.13 Transmitter Output Timing Jitter

Transmitter output timing jitter is a measure of the uncertainty with respect to transmitting
data at a given time. The diagram in Figure 21.3 illustrates ideal case. The sampling clock
edge is positioned at the data bit center, which maximizes the sampling window at the
receiver.

Clock

Data

tcycle

tcycle/2

Figure 21.3 Ideal Sampling Window

21.2.1.14 Capacitive Loading

Capacitive loading results from parasitic capacitors on busses, package and connector pins,
or device inputs or outputs. Such loading can lead to signal rise and fall time degradation.

One source of these problems is often rooted in the signal interconnects; specifically,
how the electrical properties of interconnects interact with a signal’s voltage and current
waveforms to affect performance. Here we consider performance to be the ability to accu-
rately move a piece of data, expressed as an electrical signal, from one place to another.

The interconnecting signal path within the circuit is called a net. The net has a phys-net
ical topology and an electrical impedance. As a signal propagates over a net, if the net
impedance is constant, the signal can typically pass practically undistorted. If the signal
encounters impedance discontinuities – pins, line width change, connectors, net changes
(branch, tee, or stub, see Sections 21.5 and 21.8.2), end of a net, change in layer or a
via – each discontinuity can cause the signal to be distorted from the original. The impact
of a discontinuity depends upon the rise/fall times of the signal, not its frequency. As the
rise/fall times decrease, the magnitude of the damage increases. Most common discontinu-
ities occur at the end of a trace, either a high-impedance open circuit at the receiver or a
low-impedance at the output driver, as shown in Figure 21.4.
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Drive Receiver

2 to 3 inches long

PCB Trace

Figure 21.4 Signal Distortion

Because of the effects of impedance discontinuities, the goal is to try to keep the
impedance constant throughout the net. This can be accomplished by doing three things:

• Using a PCB with constant or controlled impedance traces, typically transmission
lines.

• Using routing rules enabling the topology to maintain constant impedance down the
trace.

• Strategically placing resistors to support managing reflections.

21.3 THE WORKING ENVIRONMENT

Today’s circuits and systems are developed at two levels: the PCB and the integrated circuit
(IC). The latter includes microprocessors, Programmable Logic Devices (PLDs), Appli-
cation Specific ICs (ASICs), and custom Very Large-Scale ICs (VLSI). In addition, the
aforementioned circuits and systems support two primarily different kinds of signaling:
single-ended and differential.

The discussion of circuit analysis will focus on the PCB and the signaling. Problems
and solutions similar to those with the PCB arise in the IC design world; however, they are
potentially more complex because geometries are smaller. The signaling discussion will
initially address single-ended, then differential, signaling.

21.3.1 The Signaling Environment

In the working environment, we identified two major classes of signaling: single-ended,
which uses one signal wire and a ground wire to send signals from transmitter to receiver,
and differential, which uses two wires and a ground. In either context, the spectral power
density of a signal, measured in watts/Hz, illustrates how the power in a signal or time seriesspectral power density
is distributed in frequency, i.e. where the power in the signal is concentrated. Consider the
analogous audio VU (volume unit) meter that presents the amplitude or level of an audio
signal.

Unlike a sinusoid, which comprises a single frequency, a digital signal is made up of
components of many different frequencies. For a digital signal, the spectral power density
is flat (even distribution) or can have some decrease up to a point called the knee frequency,knee frequency
which is a heuristic estimate of the highest frequency content of a signal. Above the knee
frequency, the drop off (fewer watts per unit frequency) can be much greater.

Consider the Fourier series expansion of a periodic 50% duty cycle square wave
given in Eq. (21.1). As the frequency of a component increases, its contribution to the
signal decreases. At lower frequencies all components are contributing. As the frequency
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increases, fewer and fewer component frequencies contribute much. Bear in mind,
however, that the Fast Fourier Transform (FFT) and the power spectral density are not the
same thing.

f(t) = 2
π

( ∑
n=1,3,5…

(1
n

sin(2𝜋nFt)
))

(21.1)

F is the signal frequency and t is time
We can heuristically define the knee frequency using Eq. (21.2):

Fknee =
k

τrise
(21.2)

Fknee – Frequency below which most of the energy in a digital pulse is concentrated.
𝜏rise – Pulse rise time measured at the 10–90% points of the rise time.
k – Variously given as 0.35 or 0.5. The latter is more common.

Important time domain characteristics of any digital signal are determined primarily
by the signal’s spectral power density below Fknee.

Working with the circuit model in Figure 21.5, consider the following experiment as a
first order illustration. The parasitic resistor models the resistance of the net and the capac-
itor models the parasitic capacitive load at the receiver’s input. A data waveform is driven
into the net; the output of the receiver is monitored as the frequency of the input clock is
increased.

R

C CFsignal

R Vout

Figure 21.5 Observing the Knee Frequency in a First Order
Model with Parasitic Devices

The output voltage of the circuit is given by Eq. (21.3):

|Vout| = |Vin| 1√
1 + ω2R2C2

(21.3)

For this circuit, the knee frequency or half power point will occur at:

ω = 1
RC

Figure 21.6 illustrates the decrease in spectral density of the monitored signal.

0 dB
knee frequency

Frequency of input signal

spectrum down 6.8 dB

amplitude in half

20 dB / decade

Signal

Attenuation

−3 dB

Figure 21.6 Expected Spectral
Power Density of a Random Digital
Signal
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Keep in mind that Fknee is an imprecise measure of spectral content. However, we can
use it as a guide to classify frequency sensitive effects as insignificant, troublesome, or a
major problem. Often this qualitative assessment is good enough. Such a principle leads to
the following key points describing the qualitative properties of digital circuits:

• Any circuit that has a flat frequency response up to and including Fknee will pass a
digital signal practically undistorted.

• At Fknee, the circuit’s ability to process a step edge will be affected. A short rise time
may require an increase in Fknee.

• Above Fknee, the circuit will have little effect on the processing of the digital signals.

From this experiment we can deduce the following:

• The response of a circuit at high frequencies affects the processing of short-term
effects such as rise or fall time.

• The response of a circuit at low frequencies (longer periods) affects the processing of
longer-term events such as a steady state pulse.

• A circuit that passes high frequency events, e.g. rising or falling edges, does not pass
low frequency events well.

We can use Fknee as practical upper bound of spectral power content in digital signals.
Using the first order circuit from Figure 21.7, first look at circuit at Fknee. We will use the
earlier lumped capacitor model, neglecting the parasitic inductor and resistor. From the
circuit, we can estimate the reactance of the capacitor, XC, at Fknee in Eq. (21.4).

500 pf

50 ohm

initial edge ok

1 ns
5 ns 25 ns

x(t)
y(t)

input pulse

output pulse

step edge

slight droop

Figure 21.7 Circuit Output as a Function of Frequency

|xC| = 1
𝜔C

xC = 1
2π(FkneeC)

=
τrise

𝜋C
= 0.6Ω (21.4)

𝜏rise – rise time

The voltage divider, based upon the resistor and capacitor in Figure 21.7, gives an
output y(t) as a percentage of x(t) in Eq. (21.5).

y(t) =
( 50Ω

50Ω + 0.6Ω

)
• x(t) = 99%(x(t)) (21.5)
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At such a frequency, the capacitor acts like virtual short and the full amplitude of
leading edge comes through. The circuit passes the signal practically undistorted. Now
let the frequency of the signal into the circuit in Figure 21.7 decrease. As the correspond-
ing period of the signal increases, that is, as t approaches infinity or the signal frequency
approaches 0 or DC (direct current), the capacitor approaches an open circuit and we will
see the output level dropping.

Consider a 20 MHz square wave. The pulse width for such a signal will be 25 ns. In
Figure 21.7, over a 25 ns time interval, approximately equivalent of the pulse width of a
20 MHz signal, we get a slight droop.

|xc| = 1
𝜔C

= 1
2𝜋FC

Let

F = 20 MHz 25 ns

C = 500 pf

The capacitive reactance increases to an equivalent of 15Ω. The response of a circuit
and the effects on the response at lower frequencies are expressed in Eq. (21.6). Observe
that we now have a considerable amplitude decrease.

y(t) =
( 50Ω

50Ω + 15Ω

)
• X(t) = 76%(x(t)) (21.6)

21.3.2 The PCB Environment

The PCB environment comprises the following major pieces:

• Physical board.

• Constituent modules.

• Interconnection between and amongst modules.

• PCB input and output connections.

Earlier designs viewed the circuit board, the interconnect net, and the geometry as
separate entities. Modules were interconnected and connected to the I/O subsystem using
discrete point-to-point wires. As the technology evolved, the discrete wires were replaced
by copper traces on what became known as PCBs. While the topography of such inter-
connection nets evolved to require certain geometric standards, interconnection remained
essentially point-to-point. Technology and understanding of the PCB environment has con-
tinued to evolve such that today the PCB is considered as a system in its own right.

Greater attention must now be given to the construction of the PCB, the fabricating
material, the characteristics of the interconnections, and the topology of the interconnection
net to ensure that the electrical characteristics of the net are controlled and predictable. To
meet such requirements, point-to-point wiring must be replaced by controlled impedance
structures called transmission lines.transmission lines

Transmission line structures consist of:

• Conductive traces – usually copper buried in or attached to a dielectric or insulating
material – generally FR4 (fiberglass material) but can be Teflon or similar material.

• One or more reference planes – ground and/or power.
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Cross-sections of common transmission line structures are given in Figure 21.8. The
reference plane(s) is/are ground or ground and power.

Parallel Lines

Image Line Micro Strip Line Stripline

Twisted Pair

Reference Planes

Twisted

Shielded Pair

Co-axial Line

Figure 21.8 Common Transmission Line Structures

The two types of transmission line structures that are most commonly found in contem-
porary high-speed PCB designs are microstrip and stripline. Both are illustrated, in some
detail, in Figure 21.9.

T

Reference Plane

Microstrip

FR4

Wsignal copper

H T

Reference Plane

Reference Plane

Stripline

FR4

Wsignal copper

H

Figure 21.9 Microstrip and Stripline Transmission Line Structures

21.3.2.1 Microstrip

Microstrip is one of the more commonly used transmission line structures today. There are
two types of microstrip: buried or embedded and unburied. Buried or embedded is a trans-buried

unburied mission line that is embedded in the dielectric yet still has single reference plane. Unburied
is a transmission line that is routed on an outer surface of the dielectric. Unburied is more
commonly used; it has only a single reference plane and gives less inter-path isolation. How-
ever, all active components can be mounted on one side of the board. From Figure 21.9,
the impedance of the trace will be approximately 50Ω if the trace width, W, is held to 2H,
where H is the thickness of the PCB. The structure can radiate and is dispersive, whichdispersive
means that signals at different frequencies propagate at different speeds.

21.3.2.2 Stripline

Stripline has two reference planes with conductors that can be buried or routed on an inside
layer of the PCB. Stripline does not radiate, has no dispersion, and provides excellent iso-
lation between circuit traces. As a result, line widths can be narrower and more closely
packed. However, because of the additional layers and smaller line sizes, stripline can be
more difficult to fabricate than microstrip line.
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Multilayer PCBs can provide variety of microstrip and stripline structures. In the design
of either structure, the conductor geometry, and control of the conductor and dielectric lay-
ers, is critical. Particularly crucial to ensuring predictable transmission line characteristics
is the characteristic impedance (impedance looking into a transmission line) and the prop-

characteristic
impedance

propagation velocity
agation velocity (the velocity at which signal moves down a transmission line).

21.3.2.3 Signal Propagation

Electrical signals in conducting wires or circuit traces propagate at a velocity that is depen-
dent upon the surrounding medium. Factors that can affect propagation velocity include
the trace geometry and the dielectric material of the PCB, which is typically FR4. FR4 is a
material composed of fiberglass cloth with an epoxy resin binder.

Propagation velocity is measured in picoseconds per inch and the delay along the con-
ducting path increases in proportion to the square root of the dielectric constant of the
surrounding medium. The propagation velocity delays for several common mediums are
given in Table 21.1.

Table 21.1 Propagation Velocity vs. Surrounding Medium

Medium Delay (ps in−1) Dielectric constant

Air – Radio waves 85 1
Coaxial cable 129 23
FR4 PCB microtrip 140–180 2.8–4.5
FR4 PCB outer tracea 140–150 2.8–4.5
FR4 PCB inner tracerb 180 4.5

a Determines if electric field stays within board or goes into air.
b Note: Outer layer signals will always be faster than those on the inner layers.

From the diagrams and data above, we can make two observations.
Consider a system in which we have a 5-in. long data bus with 1 GHz signaling. Let the

signal be a square wave. At such a frequency, the signal will have a 1000 ps period. Place
some traces on an outer layer and others on an inner layer. From Table 21.1, a 40 ps in.–1

difference in propagation delay between inner and outer layers is possible. With 1 GHz
signaling and traces routed on both an inner layer and an outer layer, signals starting simul-
taneously at an initial point on the bus arrive at the destination with a potential signal skew
of 5× 40 ps = 200 ps. Such a difference is the equivalent to 20% of the signaling period. If
the signaling frequency is increased to 10 GHz, which is in the range of feasible today, the
signaling skew at destination is equivalent to 200% of the 100 ps signaling period.

Now, consider a signal that enters the conducting path at time t0. Let the signal propa-
gate the same distance down the two paths as shown in Figure 21.10.

t0 t0 t1

x y z

t2 t3 t4t1

z

Figure 21.10 Signal Propagating Along a Conducting Path
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In the circuit on the left, the signal reaches point z at time t1; however, in the circuit on
the right, the signal does not arrive until time t4. In the circuit on the right, when the signal
reaches point x at time t1, a potential difference will exist at that point between the forward
path and the return path. At points y and z, however, the potential difference will be 0 until
the signal reaches y at time t2 or z at time t4. Such a difference produces an electric field
between the forward and return conductors along the signal path. Further, when current
flows through the conductor, it produces a magnetic field around conductor.

21.3.2.4 Distributed Versus Lumped

If we look at the time duration of a signal with respect to its propagation delay through the
system, we find an interesting phenomenon. We can define a property called the effective
length of an electrical feature or characteristic such as a signal’s rising or falling edge.effective length

lumped Such a property governs whether to analyze a system using a lumped or distributed

distributed circuit model. In a lumped model, a signal change appears to all points connected to the
signal source at the same time, as shown in the left-hand drawing in Figure 21.10. In a
distributed model, a signal change appears to all points connected to the signal source at
different times, as shown in the right-hand drawing in Figure 21.10.

The effective length, eL, of a feature depends upon its duration and its propagation
delay through system. The effective length, eL, of a signal can be heuristically defined as
in Eq. (21.7).

eL =
τrise

D
(21.7)

eL = effective length in inches
𝜏rise = rise time
D = delay time on ps in.–1

Consider the intuitive extremes in Figure 21.10. If the signal rise time is less than the
propagation delay to its destination, all associated inputs see (similar levels of) the signal
at essentially the same time. However, if the signal rise time is greater than propagation
delay to the destination, all associated device inputs will see (different levels of) the signal
at different times as it propagates from source to destination.

The response of a system of conductors to an incoming signal depends greatly upon the
effective length of the fastest electrical feature in signal. A conductor is considered electri-
cally long if its physical length is a large fraction of the conducted signal’s wavelength.

Consider the following signals:

(i) 1 ns rise time – typical for ECL (emitter coupled logic) 10 K

140 ps in.–1 delay – PCB outer
We compute an effective length, eL, of 7.1 in.

(ii) 4 ns rise time – typical for TTLS (transistor transistor logic schottky)

140 ps in.–1 delay – PCB outer
We compute an effective length, eL, of 30 in.

What this means is that as a signal enters a trace and propagates along, the potential
is not uniform along the trace. The reaction of the system to the incoming pulse is simi-
larly distributed along the trace. We call systems that are physically small enough to react
together with uniform potential lumped. Larger systems, with nonuniform potential, are
called distributed. Classification into lumped versus distributed depends upon the rise or
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fall times of the signals flowing through and only indirectly on the frequency of the signals.
The rule of thumb or heuristic for PCB traces using point-to-point wiring versus transmis-
sion lines is that wiring shorter than 1/6 of the effective length behaves mostly in a lumped
fashion.

21.3.3 Point-to-Point Wiring

We will now examine point-to-point wiring and identify some of the potential shortcomings.
Consider today’s evolving systems that are increasingly designed and implemented with a
mix of hardware and software. Such a trend is giving rise to the field of Co-Design, which
requires a solid understanding of both. We can have the best software in world, but if signals
initiated by that software cannot accurately propagate down a net from point A to point B,
such software is of little use.

21.3.3.1 Signal Distortion

If we examine signal characteristics, we can observe two points: distributed circuits will ring
if unterminated and lumped circuits may or may not ring. We have already seen that ringing
arises in a circuit because of parasitic impedances. The extent of the ringing depends upon
the magnitude of a unit-less parameter called the quality factor or Q of the circuit. As the
value of Q increases, the damping of the circuit decreases and the slower circuit oscillations
die out. The percentage of signal overshoot can be computed by Eq. (21.8):

Percentage Overshoot = 100 • e
−

(
ζ•Π√
1−ζ2

)

(21.8)

Q = 1
2ξ

𝜁 Damping factor

The rule of thumb relating circuit Q and signal overshoot for a perfect step input is
given in Table 21.2.

Table 21.2 Q vs. Overshoot

Q Overshoot (%)

1 ∼15
2 ∼45
<0.5 None

Let’s assume we’ve designed a circuit, kept geometries small, and line lengths short
so that we can use a lumped model. We’ll use the simple series resistor–inductor–capacitor
circuit discussed earlier and illustrated in Figure 21.11 as a first order approximation.

wiring
wiring and package

parasitics

Figure 21.11 Basic Lumped Circuit Model
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We compute output voltage across the capacitor, differentiate to find the maximum value,
and then evaluate the solution at that point.

Thus, we have a decaying exponential with the maximum overshoot (Vovershoot) on the
output with respect to the step input signal (Vstep) as given in Eq. (21.9).

Vovershoot

Vstep
= e

−

(
𝜋√

4Q2−1

)

(21.9)

Calculating Q for this system, we assume a wire wrapped system using Transistor–
Transistor Logic (TTL). For a TTL driver, recall that Q is given by Eq. (21.10):

Q = 1
Rs

√
L
C

(21.10)

Rs – 30 Ω typical TTL driver source impedance
C – 15 pF typical parasitic capacitive load

We compute the inductance L for the wire as follows:
Assume round wire suspended above ground plane. We can get such a formula

in Eq. (21.11) from any good electrical engineers handbook or the Radio Engineer’s
Handbook.Radio Engineer’s

Handbook L = (5.0 x 10−9)(X)
(

ln
(4H

D

))
(21.11)

H – Height of the wire above ground – assume 0.3 in.

D – Diameter of wire wrap wire – 0.01 in.

X – Length of the wire – assume 3.5 in. for this example

L = 84 nH

Using Eq. (21.12) and this value for L, we compute a value of 2.5 for the Q of this
circuit.

Q =
√
(84 nH)∕(15 pf)

30 Ω
= 2.5 (21.12)

Working with Eq. (21.9), if we assume a positive going transition for Vstep from a logic
0 to 1 of 3.7 V, we compute a peak overshoot of 1.95 V. Remember that we will also have an
undershoot of approximately the same magnitude for a negative going step transition from
a logic 1 to 0.

Using Eq. (21.13) repeating from our work in Chapter 2, we now compute the natural
frequency, Fring, for this circuit, i.e. the frequency of the ringing:

ωn = 1√
LC

Hz

Fring = 1

2π
√

LC
Hz (21.13)

L = 84 nH

C = 15 pf

Fring = 140 MHz
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21.3.4 Electromagnetic Interference in Point-to-Point Wiring

EMI is a fundamental electrical physics phenomenon. Electronic circuits, whether imple-
mented using discrete point-to-point or printed wiring, are filled with current loops. Large
current loops are very good, albeit unintended, receivers of outside signals. Those carrying
rapidly changing signals can also function as very good transmitters.

21.3.4.1 EMI to Crosstalk in Point-to-Point Wiring

In Figure 21.12, we have two adjacent signal paths (loops). Current flow in one path (loop)
induces electron flow (current) in the adjacent. This phenomenon is referred to as crosstalk.crosstalk

O
R

IG
IN

A
L

IN
D

U
C

E
D

 E
L
E

C
T

R
O

N
F

L

O
W

Figure 21.12 Induced Current Flow

Working with that phenomenon, let’s examine the circuit in Figure 21.13, which mod-
els two subcircuits within a larger system.

Loop A

Loop B

Figure 21.13 Two Adjacent Circuits

Remember from our earlier work in electromagnetism, current flowing in Loop A in
Figure 21.13 produces a magnetic flux. Some of that flux couples into Loop B, which
then induces an electron flow in Loop B. The induced signal represents crosstalk or noise

crosstalk
noise

that yields a potential corruption of the signals in Loop B. The coupling can be expressed
as a shared or mutual inductance. Mathematically, the phenomenon of mutual inductance
between two parallel wires can be expressed as in Eq. (21.14):
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LM = L

⎛⎜⎜⎜⎝
1

1 +
(

s
h

)2

⎞⎟⎟⎟⎠
(21.14)

LM – Mutual inductance

L – Inductance of a single wire – From above 84 nH
s – Separation of two wires – assume 0.1 in

h – Height above board (ground plane) – assume 0.2 in.
LM – Mutual inductance 67 nH

The voltage induced in second loop given by Eq. (21.15):

V = LM
di
dt

(21.15)

di
dt

– the maximum rate of change in the current in the driving loop

Using Eq. (21.16), for a step change in voltage in loop A we get:

i = C
dv
dt

(21.16)

If we differentiate Eq. (21.16) then solve for the maximum rate of change in the current,
we can show that the maximum rate of change in the current in the above load capacitor is
given by Eq. (21.17):

di
dt

= 1.52ΔV
(τrise)2

C (21.17)

ΔV – Voltage swing – assume 3.7 V

𝜏rise – Rise time – assume 4 ns
C – Load capacitance assume 15 pf

di
dt

= 5.3 x106A∕s

We can now substitute into Eq. (21.15) to get:

V = 355 mV

which, in context, is a significant amount of voltage since, for a TTL circuit, we have
VOH ≈ 3.7 V and VOL ≈ 0.4 V.

We can effectively reduce the EMI and the resulting crosstalk by constraining the return
current to small loops.

21.4 THE TRANSMISSION LINE

We now move from point-to-point wiring to transmission lines. At high frequencies, trans-
mission lines are far superior to ordinary point-to-point wiring. Transmission line nets will
have less distortion, less electromagnetic radiation (EMI), and less crosstalk. However, they
do require more drive power.

Let’s begin with a section of a transmission line, identify the essential characteristics,
and, from these, formulate a basic model:



�

� �

�

21.4 The Transmission Line 925

• A transmission line is comprised of two parallel conductors.
• Energy is stored in electric and magnetic fields.

A magnetic field source can be represented by a series inductance, L.
An electric field source can be represented by a shunt capacitor, C.

• A PCB trace is not a perfect conductor and has a loss along its path.
The loss source can be represented by a series resistance, R.

• The circuit board dielectric material is not an infinite resistor, which leads to leakage
through the dielectric from the trace to the ground plane.

• The source of the leakage loss can be represented by a shunt conductance, G.

Let’s now put together a first cut at a high-level, distributed model of a transmission
line. The inductive and capacitive impedances are functions of frequency, and all parameters
are per unit length. To begin, we model an incremental section of the transmission line as
a two-port device, such as the one given in Figure 21.14.

x – Distance coordinate measured from one end of the conductor.
Δx – Increment of x coordinate.
v – Potential at point x of conductor.
Δv – Increment of potential over distance Δx.
i – Current in conductor at point x.
Δi – Increment of current between conductors due to both conductive and capacitance

effects in the interval Δx.

i

v

x

Δv

Δx

i+Δi

v+Δv

+
Δi

Figure 21.14 Distributed High-level Transmission
Line Model

For an ideal, infinite transmission line, the voltage at any point along the line is a perfect
copy of the input signal, delayed by the propagation delay of the line. The delay is the
inverse of the propagation or transmission velocity. From Figure 21.14, we now derive the
electrical model as in Figure 21.15.

R dx R dx

Δi

Δv

L dx v v + Δv
L dx

C dx C dxG dx G dx

Figure 21.15 Electrical Model of a
Transmission Line Section

In our model, ΔV arises from drops across the series resistance and inductance, and
Δi arises from leakage through the shunt capacitance, C, and conductance, G. From above,
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we can now write the difference equations in Eq. (21.18):

v(x + Δx) − v(x) = Δv(x) = −R(x)Δxi(x) − j𝜔L(x)Δxi(x)

i(x + Δx) − i(x) = −G(x)Δxv(x) − j𝜔C(x)Δxv(x) (21.18)

Converting the difference equations in Eq. (21.17) into differential equations gives us
Eq. (21.19):

dv(x)
dx

= −Ri(x) − j𝜔Li(x)

di(x)
dx

= −Gv(x) − j𝜔Cv(x) (21.19)

Solving these for separate equations in V and I gives Eq. (21.20):

d2v(x)
dx2

− (R + j𝜔L)(G + j𝜔C)v(x) = 0

d2i(x)
dx2

− (R + j𝜔L)(G + j𝜔C)i(x) = 0 (21.20)

The solutions now become Eq. (21.21):

v(x) = v1e−𝛾x + v2e𝛾x

i(x) = i1e−𝛾x + i2e𝛾x

𝛾 =
√
(R + j𝜔)(G + j𝜔C) (21.21)

𝛾 – the propagation constant (a unit-less constant that
expresses the change per unit length of a quantity
being measured).

v(x) – expresses the voltage at any point along the trans-
mission line.

Both the current and voltage equations are phasors and reflect the signals as a function
of distance along the signal path. With a little bit of math, we can write the characteristic
impedance of transmission line as Eq. (21.22):

Z0 = V
I
=

√
R + j𝜔L

G + j𝜔C
(21.22)

Letting 𝜔→∞, in the limit, yields a lossless transmission line as given in Eq. (21.23):

Z0 →

√
L
C

(21.23)

21.4.1 The Lossless Transmission Line

Looking at Eq. (21.21), if we assume a lossless transmission line from an impedance point
of view, R and G will often be very small, thus,

Let R = G = 0

The transmission line will now be purely reactive. The characteristic impedance, once
again, becomes Eq. (21.23).
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The Propagation Velocity (distance per time) is the inverse of the propagation delayPropagation Velocity
Propagation Delay

in/ps
(delay per distance). Recall that the delay depends upon the dielectric constant of the sur-
rounding medium. The propagation velocity, ⊖p, is in in/ps and given as Eq. (21.24). The
propagation delay, 𝜏p, is in ps/in and is given as Eq. (21.25).

Θp = 1√
LC

(21.24)

τp =
√

LC (21.25)

Based upon the lossless line assumption, the signal attenuation, 𝛼, will be given as 0.
The transmission line in Figure 21.16 is now a perfect delay line.

Vin

t = 0

Vin

t = length p

Figure 21.16 The Transmission Line
as a Perfect Delay Line

21.4.2 The Finite Transmission Line

Consider the circuit model given in Figure 21.17.

Figure 21.17 Finite Transmission Line

From a Thevenin perspective, looking back into the driver or source we have an
impedance ZS and looking forward into receiver or load we have an impedance ZL. We
now have the circuit model in Figure 21.18.

ZS

X = 0

−(V0)

+

− −

+

+(V0)

X = LPhasor Voltage

ZL
Vs

+

−I0
+I0

Figure 21.18 Finite Transmission Line

From an impedance perspective, we have the impedance segments from source, Zs, to
path, Z0, to destination, ZL, illustrated in Figure 21.19.

source signal path

ZS ZLZ0

destination

Figure 21.19 Path Impedances
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Because the system is linear, using the superposition of the forward and backward
signals along the path, we have the incident and reflected voltage and current waves given
in Eqs. (21.26) and (21.27).

V = V+
0
− V−

0
(21.26)

V is a phasor voltage at any point along the line: |V|∟Φ

I = I+0 − I−0 (21.27)

Observe that the current has changed direction and that the voltage has not. The voltage
remains the potential between the two conductors. From Thevenin and Ohm, we can express
the characteristic impedance at any point along the line as Eq. (21.28):

Z0 =
V+
0
+ V+

0

I+
0
− I−

0

(21.28)

Remember the voltages and currents are phasors of the form given in Eq. (21.29).

v(x) = 𝑣1e−𝛾x + 𝑣2e+𝛾x

i(x) = i1e−𝛾x + i2e+𝛾x (21.29)

If we let Vs be a sinusoid with frequency 𝜔, we then have the forward and reverse
forms of V0 given in Eq. (21.30):

V+
0 sin(𝜔t − 𝜙)

V−
0 sin(𝜔t + 𝜙) (21.30)

From Ohm, the ratio of V
I

at the load end must equal ZL. Using the superposition of
the incident and reflected waves, V at any point is given in Eq. (21.31) and I at any point is
given in Eq. (21.32).

V = V+
0 + V−

0 (21.31)

I = I+0 − I−0 (21.32)

Thus, we get Eq. (21.33):

V
I
=

V+
0 + V−

0

I+0 − I−0
= ZL (21.33)

Rearranging,

ZL =
V+

0 + V−
0

V+
0

Z0
−

V−
0

Z0

With a little bit of math we get Eq. (21.34):

Γ =
V−

0

V+
0

=
(

ZL − Z0

ZL + Z0

)

ΓGamma − reflection coefficent

V−
0 reflected wave

V+
0 incident wave (21.34)
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Rewriting, we get Eq. (21.35):

V−
0 = V+

0

(
ZL − Z0

ZL + Z0

)
= ΓV+

0 (21.35)

which gives a measure of the percentage of the incident signal from the source reflected
back, as we see in Figure 21.20.

VS ZLZ0
(V0)+

(V0)− =Γ (V0)+

+
Z0

Figure 21.20 Incident Signal from the Driver Reflected Off
the Receiver

Let’s now examine the boundary limits on Eq. (21.35). If the load impedance at the
end of the conducting path appears as a high impedance device, i.e. if the load appears as
an open circuit: Open Line ZL = ∞, then we have:

Γ =
ZL − Z0

ZL + Z0
= 1 (21.36)

which gives: V−
0 = V+

0 .

If the load impedance at the end of the conducting path appears as a low impedance device,
then the load appears as a short:

Shorted Line ZL = 0

Γ =
ZL − Z0

ZL + Z0
= −1 (21.37)

which gives: V−
0 = V+

0 .

If the load impedance at the end of the conducting path matches the characteristic
impedance of the path, we have a matched line:

Matched Line ZL =Z0

Γ =
ZL − Z0

ZL + Z0
= 0 (21.38)

There will be no reflection.
In general, the magnitude of the reflection coefficient will be ≤1, indicating that the reflec-

tions will eventually die out.

21.4.2.1 Transient Input

Let’s now consider a step input into the simple system in Figure 21.21. Looking from the
source into the signal path, we have an initial voltage divider between the source impedance,
ZS, and the characteristic impedance of the line, Z0. The outgoing signal, V1 is given by
Eq. (21.39).
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VS

ZS V1

Z0

Figure 21.21 Looking from the Source Into the Signal Path

V+
1
=

VSZ0

ZS − Z0

(21.39)

The signal travels down transmission line and reflects when it hits load as given in
Figure 21.22 and Eq. (21.40).

Z0

ZL

Figure 21.22 Incident Wave at the Load

V−
1
= ΓloadV+

1
(21.40)

The reflected wave travels back towards source where it reflects off the source as given
in Figure 21.23 and Eq. (21.41).

Z0

ZS

Figure 21.23 Reflected Wave at the Source

V−
2 = ΓsourceΓloadV+

1 (21.41)

That is, we now have Eq. (21.42):

V−
2 =

(
ZS − Z0

ZS + Z0

)(
ZL − Z0

ZL + Z0

)
V+

1 (21.42)

21.4.3 Reflections – Termination Schemes

Reflections on a transmission line algebraically add to outgoing signals from the source and,
thus, can have a significant negative effect on signal quality and the performance in a high
speed digital system. To mitigate such effects, one must find ways to eliminate, minimize,
or at least control them. Let’s look at possible ways to address such reflections. We have
three basic methods that we can utilize to attack the problem:

• Decrease the frequency of signal transmission.
Goal – to have reflections from one signal die out before the next signal follows.
This approach is typically not reasonable in a high-speed system.

• Shorten the signal path.
Goal – to have reflections reach steady state more quickly.

• Terminate the signal path with the characteristic impedance of the transmission line.
Goal – eliminate the reflections.
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21.4.4 Unterminated Signal Path

Let’s now examine three environmental conditions affecting the signal path and thus the
transmitted signal:

1. The line is unterminated.

2. The line is driven by a low output impedance device.

3. The line is driven by a high output impedance device.

We consider a line to be unterminated when neither the source nor the load impedance
matches the characteristic impedance of the line. Observe, once again, that even with LSI
and VLSI circuits we have many boundaries where we can have impedance mismatches,
which can lead to signal reflections.

Let’s now analyze an unterminated signal path driven first by a low source impedance
device and then by a high source impedance device.

21.4.4.1 Low Source Impedance – TTL/ECL Drivers

TTL and ECL devices have a low source impedance Zs compaired to the path’s character-
istic impedance Z0.

ZS << Z0

With an unterminated line, we have an infinite load impedance ZL compared to the
path’s characteristic impedance.

ZL = ∞

Under typical operation, the signal:

• Leaves source.

• Travels down the path to the load.

• Reflects off load.

• Returns back down the path to the source.

• Reflects off source with decreasing amplitude.

From Eqs. (21.41) and (21.42), we get Eq. (21.43):

V−
2 =

(
−Z0

+Z0

)(
ZL

ZL

)
V+

1 → −1 (21.43)

which gives a reflection coefficient Γ approaching −1. With a reflection coefficient of −1,
we have the following behavior:

• Successive reflections are of opposite signs and, typically, of decreased amplitude, as
shown in Figure 21.24.

• Two round trips (4 traversals) are required before successive signals have the same
polarity.

After a single round trip, V−
2 = −V+

1 as illustrated in Figure 21.24.
If the rise time of the signal is shorter than the round trip delay, 𝜏 line > 𝜏rise, we have a

distributed rather than lumped model and overshoot will be evident in the output signal.
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1 Round Trip delay

Figure 21.24 Signal Reflections in a Low-source Impedance
Unterminated Line

Overshoot can cause excessive current to flow in the input protection diodes in most
TTL/CMOS gates. The current returns through a chip’s ground pin, which can cause ground
bounce between the internal ground reference and the ground plane. In extreme cases, this
ground bounce can damage the input protection circuitry on a semiconductor device.

21.4.4.2 High Source Impedance – CMOS Drivers

CMOS devices have high source impedance Zs compaired to the path’s characteristic
impedance Z0.

ZS >> Z0

With an unterminated line, we have an infinite load impedance ZL compaired to the
path’s characteristic impedance.

ZL = ∞

From Eqs. (21.41) and (21.42) we get Eq. (21.44):

V−
2 =

(−ZS

+ZS

)(
ZL

ZL

)
V+

1 (21.44)

which gives a reflection coefficient Γ approaching +1. With a reflection coefficient of +1,
we have the following behavior:

• Successive reflections off the source are of the same sign.

After a single round trip, V−
2 = +V+

1 as illustrated in Figure 21.25. The response to the
input signal builds up monotonically from successive reflections.

1 Round Trip delay Figure 21.25 Signal Reflections in a High Source Impedance
Unterminated

21.4.5 Parallel Termination – End Terminated

Let’s now examine a terminated transmission line. The first question is how do we ter-
minate the line and the second is with what? We will explore answering these questions
by analyzing an infinite transmission line as represented in Figure 21.26 and an apparent
infinite transmission line in Figure 21.27.
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z0

Figure 21.26 Infinite Transmission Line

z0
z0

Z0

Figure 21.27 Apparent Infinite Transmission Line

If we send a signal down such a path in Figure 21.26 and observe its behavior, we never
see any reflections. Of course, the line is infinitely long so there is nothing to reflect off of.
Looking into the input port, we see an impedance Z0.

If we now split such a transmission line into two parts and look into the second part as
in Figure 21.27, we still have an infinite transmission line and, as a consequence, we will
still see impedance Z0 and never have reflections.

Now, if we replace the second part of the infinite line with an impedance Z0, then from
the signal’s perspective it will continue to see an impedance of Z0. The finite transmission
line looks and behaves like infinite transmission line. We will never have reflections; we
fooled the signal.

We observe that a transmission line of finite length, terminated with characteristic
impedance of the line, looks to the signal like an infinite transmission line. We can now
see that reflections can be eliminated by terminating a finite line with an impedance that
matches the effective impedance of line.

When the terminating resistance is placed at the receiving end of the transmission line,
it is called parallel termination. Thus, our goal is to have ZS = 0 and ZL = Z0. With parallelParallel Termination
termination, from Eqs. (21.41) and (21.42), we get Eq. (21.45). With ZL = Z0, we eliminate
the first reflection at the destination, and we have the case:

V−
2 =

(
ZS − Z0

ZS + Z0

)(
Z0 − Z0

Z0 + Z0

)
V+

1 (21.45)

As illustrated in Figure 21.28, with no reflection off source, we now have:

• Full amplitude input waveform down line.

• Reflections damped by terminating resistor.

• Nonzero static power dissipation.

Z0

0

C
Z0VsVs

+
Figure 21.28 Termination With the Characteristic
Impedance

As observed, with the termination scheme illustrated in Figure 21.28, we have the
potential of continuous nonzero static power dissipation in the terminating impedance if
the driver output, in the quiescent state, is a high or logic 1, which is definitely an unde-
sirable situation. Let’s look at two implementation schemes: biased termination and split
termination by which such a problem can be dealt with.
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21.4.5.1 End Terminated – Biased Termination

Let’s examine a technique by which we can operationally disconnect the termination resis-
tor when transmission ceases. Our terminated transmission line is given in Figure 21.29.
The biased scheme brings in a capacitor, here designated as C0. At DC, the capacitor appears
as an open circuit; the resistor is disconnected from ground.

DC Balanced

Z0

R0 = Z0

C0

Figure 21.29 Biased Termination

With a biased termination, the goal is to ensure that the termination spends approx-Biased Termination
imately half the time in each state (0 or 1) and to ensure that we have no DC power
dissipation.

In such an ideal case, during transmission, the voltage across the capacitor approaches
that in Eq. (21.46).

VC =
VOH − VOL

2
= ΔV

2
(21.46)

From which we get the average power dissipation in Eq. (21.47).

PRC =

(
ΔV
2

)2

Z0
= (ΔV)2

4Z0
(21.47)

C0

Z0

Z0

+Vs

C0

Z0

Z0

Figure 21.30 Computing the Signaling Rise and
Fall Times

Using the model in Figure 21.30, the time constant, 𝜏, for the rise and fall times for the
signals are given in Eq. (21.48).

𝜏 = 2Z0C (21.48)

Note that C is going to be the parallel combination of C0 and the parasitic capacitors.

21.4.5.2 End Terminated – Split Termination

The split termination scheme separates the terminating impedance into two pieces. A com-Split Termination
mon implementation for the split termination scheme is given in Figure 21.31.

Split

Terminationparasitic

Z0

R2

R1

VCC

Z0 = R1 ||R2

Figure 21.31 Split Termination
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Looking into output termination net as in Figure 21.32, we compute the Thevenin
equivalent impedance in Eq. (21.49) and the Thevenin equivalent voltage in Eq. (21.50):

R1

R2

VCC

Figure 21.32 Looking into the Termination Net

Rth =
R1R2

R1 + R2
= Z0 (21.49)

Vth = Vcc
R2

R1 + R2
(21.50)

For the split termination, we get a power dissipation of:

PR0 = (ΔV)2

2Z0
(21.51)

Looking into the termination net with R1 and R2 = 2 Z0 as shown in Figure 21.33,

R1
VS

+
R2 C R1 R2 C

Figure 21.33 Computing the
Signal Rise and Fall Times

the time constant for the rise and fall times for the signals becomes:

𝜏 = Z0C

In this case, C is the parasitic capacitance.
Often we cannot match line impedance exactly. Any resulting reflections that affect the

receiver’s noise margin may be acceptable. When selecting R1 and R2, we must adhere to
the following constraints:

1. The parallel combination of the two resistors should equal Z0.

2. We must not exceed IOH max or IOL max. The constraints on these currents are illus-
trated in Figures 21.34 and 21.35 and Eqs. (21.52) and (21.53).

R1IOH Idrive

R2

VCC

Figure 21.34 Current Limits Driving High

VCC − VOH

R1
−

VOH − VSS

R2
< IOH max (21.52)
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R1IOL Idrive

R2

VCC

Figure 21.35 Current Limits Driving Low

VCC − VOL

R1
−

VOL − VSS

R2
< IOL max (21.53)

21.4.6 Source Terminated – Series Termination

Another commonly used scheme for line termination is called source terminated. With suchsource terminated
a scheme, the termination is placed on the driving end rather than the receiving end, in series
with the signal path rather than in parallel, as shown in Figure 21.36.

Rs

C

Figure 21.36 Series – source Terminated

With series termination, the goal is to have ZS, the sum of RS and the driver out-
put impedance, to equal Z0, thereby giving a source reflection coefficient of 0, as in Eq.
(21.54). The unterminated receiver will have an impedance of infinity for ZL, thereby giving
a receiver reflection coefficient of 1 as given in Eq. (21.55).

ΓSource =
(

ZS − Z0

ZS + Z

)
Zs=Z0

= 0 (21.54)

ΓLoad =
(

ZL − Z0

ZL + Z

)
ZL=∞

= 1 (21.55)

With series termination we get:

• Half amplitude input waveform initially transmitted.

• Reflections from the load create full magnitude.

• Reflections damped at the source.

• No static power dissipation.

• Half the rise time of parallel termination.

With a reflection coefficient of +1 off the load, the reflected signal adds to incident
signal, as in Figure 21.37.
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0.5 Vs

Z0
Vs

+
0.5 Vs

Z0

Figure 21.37 Source Termination Reflections

21.5 DIFFERENTIAL SIGNALING

In contrast to single-ended signaling, differential signaling uses two wires rather than one
to send the signal. The earlier analysis of the PCB environment developed for single-ended
signaling applies to differential signaling as well. The main advantage of differential sig-
naling is superior noise immunity.

21.5.1 Environment

The differential signaling environment appears as in Figure 21.38. Any noise will affect
both of the two transmission lines with signals of the same polarity. The receiver, however,
sees a voltage difference between the two transmission lines in the differential pair, thereby
algebraically eliminating the noise. As a consequence, the differential configuration can
reject such common mode signals as crosstalk, power supply noise, and certain kinds of

Crosstalk
Power Supply Noise

Switching Noise
switching noise.

+

−

+

− Figure 21.38 Differential Signal Model

The inherent noise immunity and high gain of the differential amplifier reduce the
sensitivity to signal attenuation and permit lower signal levels. The approach improves
switching speeds, reduces power consumption, reduces net magnetic flux fields radiated
by opposite polarity signals, and cancels out reducing far-field EMI.

21.6 SIGNALS IN THE NONIDEAL (REAL) WORLD

The design of digital and embedded systems lives in the nonideal, real world. As we begin
a design, we often work with ideal signals. Now let’s identify and examine several basic
metrics used to characterize signals in the nonideal, real world; that is, signals used in the
design of high-speed digital systems. Violations of such metrics refer to waveform distor-
tions severe enough to violate timing requirements and potentially physically damage or
destroy input circuitry on receiving devices. We’ll begin with four basic metrics defined as
stubs, ringback, nonmonotonic edges, and return path discontinuities.
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Stubs In Figure 21.39, the main bus is indicated by the horizontal trace. The stub branches
off the main bus to another module, which is indicated by the vertical trace. Reflections off
that module can destructively interfere with signals on main bus. Such a phenomenon can
be present in essentially any real-world design.

Figure 21.39 Stub Branching off the Main Bus

Ringback illustrated in Figure 21.40, ringback identifies the amount of signal voltage that
rings back into the threshold region of a receiving device. The primary effect is a delay
in the transmitted signal being recognized and enabling the receiving device to respond to
the change in state of the input. A device in an indeterminate state for an extended time
can significantly increase skew between signals and potentially lead to false outputs from
receiving device.

delay

Time

VIH

VTH

VIL

Figure 21.40 Ringback

Nonmonotonic Edges illustrated in Figure 21.41, nonmonotonic edges occur when a signal
edge deviates from linear behavior through the threshold region. Such a phenomenon is
caused by stubs on longer traces of a multidrop bus.

Tansmitted signal Max prop time

Received signal

Time

VIH

VTH

VIL

Figure 21.41 Nonmonotonic Signal

Return Path Discontinuities A ground gap in the reference plane is illustrated in
Figure 21.42. In the top trace fragment, the signal flows in the trace and the return current,
indicated by the dashed line, flows under the signal trace.

Figure 21.42 Return Path Discontinuity
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In the bottom trace fragment, a gap exists in the copper in the ground plane indicated
by the vertical, striped area. The outbound signal flows in the trace, over the gap in ground
plane. However, the return current, indicated by the dashed line, flows around the gap in
the ground plane leading to a return path delay. In addition, the gap in the ground plane can
function as what is known as a slot antenna, thereby generating interference (noise) that
can be coupled into nearby conductors.

Overshoot or Undershoot As illustrated in Figure 21.43, excessive ringing, i.e. overshoot
or undershoot, can negatively affect the input circuitry of the receiving device. These neg-
ative effects can (i) damage or punch through the gate oxide, (ii) couple or connect into
the power system (both the supply voltage and the return path i.e. ground) through input
protection diodes, and (iii) potentially affect or delay output state switching.

Time
Undershoot

Overshoot

VIH

VTH

VIL

Figure 21.43 Overshoot or Undershoot

21.7 OTHER CONSIDERATIONS

Today in all aspects of our designs, we must focus increased attention on the following:

• Transmission lines and transmission line effects.
• I/O capacitance.
• Conduction path inductance.
• Impedance mismatches.

Silicon to lead frame to pin to trace.
Trace to pin to lead frame to silicon.
Inner layer variations.

• Signal routing
Trace length, impedance, signal propagation velocity.

• Signal termination schemes and values.
• Receiver setup and hold times.
• Power distribution and grounding schemes

Other aspects of the design environment that we need to pay close attention to include:

1. Signal rise and fall times.
2. Clock to Q times.
3. Setup and hold times.
4. Propagation delay down the trace from source to destination.
5. Signal skew.
6. Path discontinuities.
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21.8 EXAMINING THE ENVIRONMENT

With the many excellent hardware and software tools available today, it is beyond the cur-
rent scope to go into each in detail. As a start, simulation at different levels of detail or
granularity can be quite effective.

With a coarse-grained (low level of detail) view, tools and techniques supported by
Verilog or VHDL can be quite effective for looking at and modeling path and device delays
during the simulation phases of development. There are also many good, low cost or open
source simulators available.

For a more detailed (fine-grained) view, tools such as PSPICE and S-Parameters can be
very useful for signal and path modeling and analysis. A well designed behavioral model
of a design can be an effective aide in identifying how precision waveforms scatter from
ends of interconnects.

21.8.1 Test Equipment

In Chapter 10, we began the study of test by introducing some of the relevant vocabulary
and formulating a high-level model for a testing strategy. A number of laboratory tools are
available that can be very useful for examining the physical designs.

The time domain reflectometer (TDR) measures reflections resulting from signals trav-
eling through a transmission environment. The vector network analyzer (VNA) measures
network parameters of networks and is commonly used to measure s-parameters, which are
the frequency domain scatter parameters of two port networks.

Then there is the old standby. The oscilloscope remains a potent weapon in the battle
for ensuring and preserving signal integrity. Always have the probes on ×10 rather than
×1 to mitigate loading the sampled signal. We will now add the eye diagram to our testing
toolkit.

21.8.2 The Eye Diagram

A digital signal travels a difficult path from transmitter to receiver. As noted, a signal’s
integrity can be affected by external sources, such as PCB traces, connectors, or cables, as
well as internal sources, such as crosstalk from adjacent IC pins or PCB traces.

The simple eye diagram is a common indicator of signal quality in high-speed digital
transmission. The eye diagram derives its name from the diagram’s shape, which resembles
an eye-shaped pattern. It can give a quick view into a system’s performance and issues
leading to errors.

21.8.2.1 Generating the Eye Diagram

The eye diagram is generated by overlaying sweeps of different segments of a long data
stream. The specific triggering edge is not important, and the displayed pulse transitions
may go either way. Positive and negative going pulses are superimposed onto each other to
yield an open eye shaped pattern.

A properly constructed diagram should contain every possible bit sequence: patterns
of alternating 0’s and 1’s, isolated 1’s after long run of 0’s and vice versa, or other patterns
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that might indicate a design weaknesses. The objective of generating the eye diagram is to
gain insight into the nature of signaling imperfections that can lead to errors in interpreting
data bits at the receiver.

In working with the oscilloscope and probe to generate the diagram, determining where
to place the probe to generate a useful eye diagram and to aide in identifying source of
problems is very important. The scope probe should always be set to the ×10 rather than
the ×1 mode to mitigate signal loading. We must also recognize that probe placement and
grounding can significantly affect signals being measured and can yield differing (poten-
tially incorrect) displays based upon placement and grounding.

In the ideal signaling world, the eye diagram looks like rectangular box. In the real
world, signaling is imperfect, transmissions and communication are imperfect. Transitions
do not always align perfectly. The shape of diagram depends upon the triggering: clock
based, divided clock, or pattern trigger and the signal timing and amplitude, which can
cause the eye opening to decrease.

We illustrate the construction of an eye diagram by starting with a 3-bit signaling
sequence: the transmission and then the capture of eight 3-bit patterns. The eight com-
ponent patterns and the composite that make up the diagram appear as Figure 21.44. In the
figure, the horizontal axis is time and the vertical axes show the output signal from the
driver ranging between Voutput low (VOL) and Voutput high (VOH).

VOH

VOL

Time

VOH

VOL

Time

VOH

VOL

Time

VOH

VOL

Time

VOH

VOL

Time

Resulting Eye

VOH

VOL

Time

VOH

VOL

Time

VOH

VOL

Time

VOH

VOL

Time

Figure 21.44 Building the Basic Eye Diagram
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21.8.2.2 Interpreting the Eye Diagram

A completed eye diagram contains a large amount of parametric information. How can we
interpret that information, and what does it not show?

Looking first at what it will not show, the eye diagram will not reflect logic errors,
protocol problems, or the wrong bit(s) sent. It will show if a logic 1 is sufficiently distorted
to be interpreted as logic 0.

Let’s examine the completed diagram in Figure 21.45 to identify the basic metrics
identified earlier. We look at three important characterizing aspects of the aggregated traces:
the rise and fall times, jitter at the middle of the signal crossing point, and the overshoot
and undershoot.

The diagram in Figure 21.45 provides an instant graphic view of data that the engineer
can use to check and assess the signal integrity of the design and to identify problems early
in design cycle. When used in conjunction with bit error rate and other measures, it can
help to predict performance and to identify sources of problems.

Signal-to-noise ratio

At sampling point

Slope indicates sensitivity to timing error

Smaller is better

Best time to sample

Most open part of eye
Best signal-to-noise ratio

jitter

Time variation at signal crossing

Distortion

Set by signal-to-noise ratio

Figure 21.45 A Basic Eye Diagram

Examining our diagram, we can:

• See the best place to sample the signal.

• View the signal-to-noise ratio at sampling point.

• Track the amount of jitter and distortion.

• See the time variation at signal crossing.

• Assess the amount of jitter.

The eye diagram in Figure 21.46 illustrates the aperture time for logic 1 input.
In the diagram, the two voltages VIH and Vin specify the minimum and typical

high-level voltage input signal levels. The times tSU and th specify the setup and hold times
for an input signal. The width of the light filled box (tSU + th) sets setup and hold times,
and the height of the light filled box (Vin −VIH) sets valid input voltage levels. The gray
filled box must be inside and smaller than the light filled box.
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Aperture time

Vin

VIH

tsu th
Figure 21.46 Signal Aperture Time

21.9 BACK OF THE ENVELOPE EXAMINATION

21.9.1 A First Step Check List

Let’s put together a simple high-level check list as a guide for dealing with signal integrity
issues. Examining and grouping signals or variables with similar characteristics or function
involved in design provides a good starting point for analysis.

• Identify and classify signals
Source synchronous – Clock accompanies the data.
Common clock – Clock generated from single source feeds the driver to initiate a
transfer then issues a second clock to store the data at the receiver.
Controls – control signals within or between subsystems.
Clocks – clocks from multiple different sources utilized within a system.
Other special categories.

• Determine best estimates of system variable values
Mean values
Estimated maximum variations
Example variables
I/O capacitance
Trace length, propagation velocity, impedance
Inner layer impedance variations
Buffer drive capability and edge change rates
Termination impedances
Receiver setup and hold times
Interconnect skew specifications.

21.9.2 Routing and Topology

Signal routing and the associated net topology can have a significant impact on system
signal integrity. A key qualifier of such topology is symmetry. We must ensure that the net
topography appears symmetric from driver’s perspective. The length and loading should
be identical for each leg in the net and the impedance discontinuities at the junctions
minimized.
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21.9.2.1 Topology Alternatives

Let’s look at several of the more common routing and net topologies.

21.9.2.1.1 POINT-TO-POINT
The point-to-point topology, illustrated in Figure 21.47, is a simple and commonly used lay-
out option. The major concerns are the minimum and maximum line lengths and matching
line lengths in the same signal group.

Module 0 Module 1

Figure 21.47 Point-to-point Net Routing

21.9.2.1.2 HEAVY POINT-TO-POINT
The heavy point-to-point topology is illustrated in Figure 21.48. The major concerns are
the minimum and maximum line lengths, matching line lengths in the same signal group,
and keeping the stubs off the main interconnect short.

Module 0

Module 1

Module 2

Figure 21.48 Heavy Point-to-pont Net
Topology

21.9.2.1.3 T CONFIGURATION
The T configuration is illustrated in Figure 21.49. In such a configuration, Module 0 is
usually the driver. The major concerns are the minimum and maximum line lengths and
matching line lengths in same signal group. If the T legs are of equal length, Module 0
driving sees 1/2 characteristic impedance. One technique that is used to address the problem
is to make impedance of the T legs twice that of impedance at Module 0, which eliminates

Module 0

Module 1

Module 2

Figure 21.49 T Configuration Net
Topology
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impedance discontinuity. On the other hand, if the legs are not balanced, then if Module 1
or 2 is driving, we will get reflections.

21.9.2.1.4 STAR CONFIGURATION
In the star configuration, illustrated in Figure 21.50, the major concern is that the topology
is inherently unstable. With such a pattern, the signal delay in each path and the load in
each leg must be identical and that the electrical and physical line lengths must match.

Module 1

Module 0 Module 2

Module 3Module 4

Figure 21.50 Star Configuration Net
Topology

21.9.2.1.5 DAISY CHAIN
The daisy chain, shown in Figure 21.51, is a common topology for multidrop busses. The
major concern is that stubs are usually necessary to connect secondary modules to the main
buss and that such stubs capacitively load the main buss and thereby lower the effective
characteristic impedance.

Module 1

Module 0 Module 3

Module 2

Figure 21.51 Daisy Chain Net
Topology

21.10 SUMMARY

We identified some of the major issues associated with
high-speed digital signaling and signal quality, then exam-
ined the high-speed signaling environment relative to the PCB
and analyzed and modeled the signaling environment. Next,
we introduced and explored various signal path termination
schemes to mitigate signal quality/integrity issues. Then, we

moved to the differential signaling environment and intro-
duced some of the signal integrity vocabulary and metrics and
brought in the eye diagram as a tool for examining signal qual-
ity. We concluded by looking as the strengths, weaknesses,
and concerns with several common PCB signal path layout
topologies.
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21.11 REVIEW QUESTIONS

Ideal World to the Real World

21.1 How do we begin to characterize today’s embedded
designs?

21.2 What are the major differences between an ideal textbook
signal waveform and its real-world counterpart?

21.3 What kinds of signal quality problems are we beginning
to see in contemporary embedded designs?

21.4 The chapter identified a number of common terms for
describing signal quality problems. Select and explain four
of them.

21.5 What is an impedance discontinuity and how might it
affect signal quality?

21.6 How can we do to try to keep the impedance of the sig-
naling net constant?

21.7 What are the two major components of focus in the
high-speed working environment?

The Signaling Environment

21.8 Explain the term knee frequency?

21.9 What characteristics of a digital signal does the knee fre-
quency depend upon?

21.10 What does the knee frequency tell us about the basic
signaling properties of a high-speed digital circuit mean for a
transmission line?

The PCB Environment

21.11 What are the major components of the PCB environ-
ment?

21.12 What is a transmission line structure and what are it’s
major components?

21.13 Identify and describe three different transmission line
structures.

21.14 What is the difference between a microstrip line trans-
mission structure and a stripline structure.

21.15 What two factors are critical to ensuring predictable
transmission line characteristics?

21.16 What does the term dispersive mean with respect to the
signal propagation velocity in a microstrip transmission line?

21.17 What is FR4 material?

21.18 What is the effective length of an electrical feature?

Point-to-Point Wiring

21.19 What is meant by the term point-to-point wiring?

21.20 Explain the term overshoot with respect to a signal?

Electromagnetic Interference

21.21 What does the term EMI mean?

21.22 What does the term mutual inductance mean?

The Transmission Line

21.23 Compare a transmission line to point-to-point wiring.

21.24 What are the essential characteristics of a transmission
line?

21.25 For an infinite transmission line, how is the signal at any
point related to the input signal?

21.26 How is the delay of a signal down a transmission like
related to its propagation velocity?

21.27 What happens to a digital signal when it propagates to
the end of a transmission line?

21.28 Explain the term reflection coefficient.

21.29 What is the meaning of the term unterminated line?

21.30 What is the meaning of the expression parallel termi-
nated transmission line?

21.31 What is the meaning of the expression source terminated
transmission line?

21.32 What is the meaning of the expression bias terminated
transmission line?

21.33 What is the meaning of the expression split terminated
transmission line?

Differential Signaling

21.34 What is the difference between single-ended and differ-
ential signaling?

21.35 What is the main advantage of differential signaling?

21.36 What are common mode signals?

21.12 THOUGHT QUESTIONS

The Signaling Environment

21.1 Explain the term spectral power density?

21.2 What information can the Fourier series of a digital signal
tell us?

21.3 What is the cause of ringing in a circuit?
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21.4 Will a distributed circuit ring? Will a lumped circuit?

21.5 What effect can ringing produce on a digital signal?

21.6 What does the term natural frequency of a circuit mean?

21.7 What does the term Q of a circuit mean?

21.8 What does the term damping factor of a circuit mean?

21.9 How does the damping factor affect a digital signal?

21.10 What does the term natural frequency of a circuit
mean?

The PCB Environment

21.11 How is the impedance of a microstrip structure related to
the thickness of the PCB?

21.12 Explain the terms characteristic impedance and propa-
gation velocity of a transmission line.

21.13 Do signals propagate at the same velocity on all layers of
a multilayer PCB? through all different mediums?

21.14 What does the term radiate mean with respect to signals
in a transmission line?

21.15 How do we determine the effective length of an electrical
feature and what does it mean?

Point-to-Point Wiring

21.16 What is the cause of signal overshoot? Explain the term
overshoot with respect to a signal?

21.17 What are possible consequences of signal overshoot in a
circuit?

21.18 What does the term ringing mean with respect to a cir-
cuit?

21.19 What are possible consequences of ringing in a circuit?

21.20 How can the length of a wire affect its inductance and
what affect can increased length have of a signal’s quality?

Electromagnetic Interference

21.21 How can current flow in one circuit path affect the signal
quality in an adjacent path?

21.22 How can we reduce the effects of EMI in a net?

The Transmission Line

21.23 What does the term characteristic impedance mean for a
transmission line? Why is this important?

21.24 How does a signal reflected off the end of a finite trans-
mission line affect future arriving signals?

21.25 What is the approximate impedance looking into the
input of the typical digital circuit module?

21.26 How is reflection coefficient of a transmission line
related to the characteristic impedance of the line and the
impedance looking into the end of the line?

21.27 The chapter identified three ways by which signal reflec-
tions off the end of a transmission can be managed. Explain each
of these.

21.28 What are the disadvantages of a parallel terminated trans-
mission line?

21.29 What are the advantages of a bias terminated transmis-
sion line?

21.30 What are the advantages and disadvantages or a split ter-
mination transmission line?

21.31 What are the advantages of a source terminated transmis-
sion line?

Differential Signaling

21.32 Explain how and why differential signaling works to
reduce or reject common mode signals.

Signals in the Nonideal (Real) World

21.33 The chapter identified several basic metrics used to char-
acterize non-ideal, real world signals. What are these?

21.34 What are possible effects of violating such metrics?

21.35 The chapter identified five possible instances of such sig-
nal violations. Choose any three and identify the possible causes
and consequences of each.

21.13 PROBLEMS

Examining the Environment

21.1 Configure the circuit illustrated in Figure P21.1. Con-
nect the output of the driver to the input of the receiver using
a wire that is 2 in. long. Configure the signal generator to output
a 1 MHz square wave. Connect channel 1 of an oscilloscope to
the output of the driver with the probe in the ×10 mode and a
short ground connection. Connect channel 2 of the oscilloscope

to the input of the receiver with the probe in the ×10 mode with
a short ground connection. Trigger the oscilloscope at the 50%
point of the rising edge of channel 1.

(a) Measure the time difference between the rising edge of the
signal on the driver output to the rising edge of the signal on the
receiver input.

(b) Repeat the test with a 10 MHz signal.
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(c) Repeat the test with a 100 MHz signal

(d) Repeat tests a–c with a 6 in. wire connecting the driver to
the receiver.

Driver
Receiver

Figure P21.1 Propagation Delay Test Circuit

(e) Repeat tests a–c with a 12 in. wire connecting the driver to
the receiver.

Discuss what temporal differences you observed from driver
to receiver for the different signal frequencies and for each of
the different signal path lengths.

21.2 Design and implement a system such as is illustrated in
the Figure P21.2. Construct an eye diagram based upon a signal-
ing sequence comprised of 8-bit ASCII characters from Module
0 to Module 1. Configure the oscilloscope with the probe set on
×10 and a short ground connection.

Module 0 Module 1

Figure P21.2 Eye Diagram Test Circuit

Choose an initial frequency, construct the diagram then
construct diagrams at successively and increasingly higher fre-
quencies. Examine and analyze each diagram according to the
criteria listed in the chapter and illustrated in Figures 21.45 and
21.46.

21.3 Implement the test circuit illustrated earlier in the chapter
in Figure 21.5. Empirically determine the value of fknee for this
circuit.

21.4 Configure the circuit illustrated in Figure P21.3. The
circuit expresses a first order model of a signal path net. The

resistor models the resistance of the net, the capacitor mod-
els the parasitic capacitance, and the invertor models a digital
device.

C

R

Figure P21.3 Metastability Test Circuit

Set the initial values for the resistor and capacitor to their
smallest values. Connect channel 1 of an oscilloscope to the out-
put of the signal generator with the probe in the ×10 mode and
a short ground connection. Trigger the oscilloscope at the 50%
point of the rising edge of channel 1. Connect channel 2 of the
oscilloscope to the output of the gate with the probe set on ×10
and a short ground connection.

Perform experiments (a) through (c). For each experiment,
identify, monitor, and measure the characteristics of the follow-
ing designated signals, as specified, at the start, during, and at
the end of the experiment.

1. The temporal relationship between the 50% point of the
rising edge of the signal on channel 1 and the 50% point
of the corresponding edge of the signal on channel 2.

2. The values of the rise and fall times of the signal on
channel 2.

3. The difference between the rise and fall times of the signal
on channel 2.

4. The quality of the signal on channel 2 with respect to the
ideal.

(a) While monitoring the output of the invertor, slowly increase
the value of the resistor.

(b) Return the resistor to its original value and slowly increase
the value of the capacitor.

(c) Return the resistor and capacitor to their original values then
slowly increase the values of both.
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Verilog Overview: The Verilog
Hardware Description Language

THINGS TO LOOK FOR …

• The structure of a Verilog program.

• How to develop and use Verilog modules.

• The differences between gate-level, dataflow, and behavioral-level models.

• How to develop combinational and sequential circuit models at all three levels.

• The types of assignment at each level of modeling.

• How to specify and model real-world delays in a circuit.

• How to monitor and display dynamic circuit behavior.

• How to build a tester and test bench to evaluate a model.

A.1 INTRODUCTION

The circuits and systems that we are developing today are growing in capability and com-
plexity every day. Yesterday, a sketch on a piece of paper and a handful of parts were
sufficient to try out a design idea. Today, that is no longer possible. Today, the idea is mod-
eled using computer-based tools and languages, which are frequently synthesized into the
desired hardware implementation. We use two key words here, model and synthesize.model, synthesize

We first model the design, iterating until we are satisfied, and then we transform that
design into a Field Programmable Gate Array (FPGA) or Application Specific Integrated
Circuit (ASIC). A number of languages permit such a design approach; Verilog and Ver-
ilog Hardware Description Language (VHDL) are two of the more common. SystemC for
modeling both the hardware and software components is finding its way into an increasing
number of designs in the embedded world. In this text, we will use Verilog.

Verilog is a hardware design language that provides a means of specifying a digital
system at a wide range of levels of abstraction. The language supports the early conceptual
stages of design with its behavioral level of abstraction and later implementation stages
with its structural level of abstraction. The language provides hierarchical constructs that

behavioral
structural

Embedded Systems: A Contemporary Design Tool, Second Edition. James K. Peckol.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/college/peckol
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allow the designer to efficiently and effectively manage the complexity of contemporary
designs.

This appendix will introduce the Verilog language and present the important features
and capabilities used in this book. It does not purport to be a comprehensive study of the
language. We will begin with the basic components and organization of a Verilog program,
next examine the gate-level or structural, dataflow, and behavioral models for combinational
logic circuits, and follow with similar models for sequential circuits.

Design is only one aspect of the product development; each design must also be tested
to confirm that it meets specified requirements and the objectives of the modeling process.
To that end, each section will also discuss how one can formulate test suites to verify the
intended operation. The material on testing will lay the foundation for enabling the devel-
oper to build test cases that will support testing to the desired level. It is beyond the scope
of this text to present a comprehensive treatise on testing.

A.2 AN OVERVIEW OF A VERILOG PROGRAM

The structure of a Verilog program replicates the traditional way of designing, testing, and
debugging a module, subsystem, or system. As engineers, we design a circuit, we build
the circuit, and we take the circuit to our bench where we test it. On our electronics test
bench, we have test equipment. Such equipment consists of stimulus instruments, switches,
function generators, sophisticated data, or pattern generators. We also have measurement
equipment such as voltmeters – DVM (digital multimeter) or DMM (digital voltmeter),
oscilloscopes, logic analyzers, and network analyzers. The circuit consists of electronic
parts and wires. We build the modules by interconnecting the wires and electronic parts.
Once the circuit is built, we connect the test equipment to the circuit with wires. We now
have a picture that looks like that in Figure A.1. The circuit or module is called the unit
under test or device under test – UUT or DUT. A Verilog source program follows this
model. It comprises three major elements:

• A test bench.
• A collection of stimulus and measurement modules.
• A circuit or system that is being modeled.

test bench

UUT

stimulus

measure

wires

Figure A.1 The Structure of an Electronic Test System.

That circuit or system is made up of a number of logical components. A logical compo-
nent may be an atomic device, such as a logic gate, or a number of components or modules.
Each may, in turn, also be made up of other logical devices. The stimulus module pro-
vides signals into the UUT; the measurement module acquires/measures the corresponding
outputs of the UUT. A Verilog program, very much like the physical electronics bench, has
stimulus and measurement equipment connected to the circuit or system being modeled. As
is done on a physical bench, equipment is connected to the UUT using wires. On occasion in
a Verilog program, the stimulus and measurement equipment may be in the same software
module.
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A.3 CREATING A VERILOG PROGRAM

In order to perform a digital circuit simulation using Verilog we need to:

• Create a Verilog source file using a text editor.

• Synthesize and simulate the source file.

• Debug if necessary by looking at the simulation output.

The goal in writing a traditional program in a language such as C, C++, or Java is
to implement and run an application. In this case, the program is the final deliverable.
In contrast, a Verilog program has an initial purpose of modeling a circuit design.
Once the performance of the design is satisfactory, the program is used to synthe-
size a hardware circuit. The Hardware Description Language (HDL) program is an
intermediate step.

A.3.1 Some Concepts in a Verilog Source File

Before continuing, one should learn several important points about the language.

Case-sensitivity. Like C, C++, or Java, Verilog is case sensitive. If an error is encoun-
tered while compiling a Verilog source file, look for case errors.

Identifier Names. The rules for identifier names are similar to those found in C, C++,
or Java. An identifier name may contain any digit or letter as well as the underscore
and $ character. The first character must be a letter and the identifier cannot be a
Verilog keyword.

Annotation. The Verilog language supports both the C style multiple-line comment
and the C++ style single-line comment. The paired /* */ symbols state that all
text inside the delimiter is to be interpreted as a comment. The symbol // specifies
that all text on a line after the symbol is to be viewed as a comment.

White Space. The white space characters “space” and “tab” are ignored by the Verilog
compiler.

Block Delimiters. A sequential block comprises one or more statements that aresequential block
intended to act together. In C, C++, or Java, a block of statements is delimited
by a pair of curly braces, “{ }.” The Verilog language uses the Pascal-style
statements begin and end. The statements in a sequential block are executed in
the order that they are specified.

A.3.2 Modules

The module is the basic building block of Verilog. One can think of a module as a black
box. To make a system consisting of modules, we link up the individual black boxes with

module, black box
black boxes, wires

wires. One can also think of the modules as loosely analogous to the struct in C or as a class
in C++ or Java. Bear in mind that modules are not classes.

Like each of these data types, the module represents a user-defined type. Once defined,
instances of a module can be declared in the same manner as any of the intrinsic types. The
concept of module permits one to build complex systems by composing or aggregating
lower-level components. Like the C struct or the C++ or Java class, each module expresses
a distinct local scope. All variables declared and defined therein are visible only in that
scope.
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The module provides a structure for the design process. As the number of modules that
are defined increases, the more complex the design becomes. In such cases, it is convenient
to be able to verify functionality module by module.

The code fragment in Figure A.2 gives the general syntax and structure for a Verilog
module.

module moduleName(outputsList, inputsList);

outputs  // outputs from the module

inputs  // inputs to the module

reg  // local storage in the module

wire  // conduction paths in the module

initial   // initialize variables in block

block

always  // always execute statements in block

block

code  // your code

...

...

endmodule

Figure A.2 The Structure of a Verilog Module.

Observe first that each line in a Verilog module, except the last, must be terminated
with a semicolon. In C, C++, or Java, the scope of a block is delimited by curly brackets,
{}. In Verilog, the scope of a module is delimited by the key words module and endmodule.module, endmodule

A.3.2.1 Module Name

Analogous to a struct or class declaration, the declaration of a Verilog module begins with
the key word module, as illustrated in the opening line of the code fragment.

module moduleName(outputsList, inputsList);

Following the module keyword is the name of the module. The module name can now
be used as a type specifier.

Coding Style

Always try to select a module name that conveys the purpose or function of the module.

A.3.2.2 Inputs and Outputs Declarations

Following the module name, enclosed in parentheses, are the inputs and outputs to the
module. The inputsList and the outputsList are optional; however, they will be used mostinputsList, outputsList
of the time. The inputs and outputs can be specified in any order, even commingled (not a
good idea, though).
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Coding Style

The standard convention in Verilog is that the outputsList comes before the inputsList.
Always try to select input and output names that convey the meaning of the variables

Consequently, when the module is declared, each item in the inputsList and the out-
putsList must be identified in an input or output declaration as follows.

Syntax

output outputsList;
input inputsList

A.3.2.3 Nets and Variables

The Verilog language defines several different kinds of nets and variables. The net repre-nets, variables
sents a class of primitive data types that are used to model a node or an electrical connection
in a circuit. A net cannot be assigned to; it cannot hold a value. The value on a net results
from being continuously driven by the output of some logical device. If a net is not driven,
it takes on the default value of z meaning high impedance or floating. A Verilog variable,
like a variable in C, C++, or Java, can be assigned a value and will hold that value until a
subsequent assignment replaces the value.

A wire type is a kind of net and like real-world wires is used to connect the output ofwire
one logic element to the input(s) of other logical elements. Because it is a net, the value of
a wire can only be changed as the result of a gate or a behavioral statement driving it.

A reg is a kind of variable. The value of a reg or register can be changed directly byreg
an assignment. One should not confuse the Verilog reg with the hardware register. The reg
is simply an entity that can hold a value. The default value of a reg data type is “x,” or
unknown.

The syntax for the reg and wire declarations is given as:reg, wire

Syntax

reg regList;
wire wireList;

A.3.2.4 Declaring Multibit Signals

It is often necessary to represent multibit wires, for example, a 3-bit wire that can carry
digital signals representing the values 0–7. The types reg and wire can also be formed into
a bus such as:

Syntax

Big Endian
reg [msb:lsb] regList
wire [msb:lsb] wireList;

Little Endian
reg [lsb:msb] regList
wire [lsb:msb] wireList;
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where msb is the bit index of the most significant bit and lsb is the bit index of the leastmsb, Isb
significant bit. The value of the lsb index must be zero since bit position 0 conventionally
denotes the least-significant bit. Such statements configure a set of individual wires so that
they can now be treated as a group, for example,

wire [2:0] myWires;  // a 3-bit signal (a bus)

reg [15:0] aState;  // a 16-bit state holding value Figure A.3 Declaring Multibit
Signals.

The declaration, myWires, in Figure A.3 declares a 3-bit signal that hasmyWires

MSB (the 22's place) as myWires[2]
Middle bit of myWires[1].
LSB (the 20's place) as myWires[0]

The individual signals can be used just like any other binary value in Verilog. For example,
we could declare, as in Figure A.4.

and a1(myWires[2], myWires[0], C);
Figure A.4 Using a Multibit Signal.

This statement AND’s together C and the Least Significant Bit (LSBx) of myWires and putsmyWires
the result in the Most Significant Bit (MSB) of myWires.

This bus specification can be extended to input and output lists as well; that is, multibit
signals can also be passed together to a module (see Figure A.5).

module random(bus1, bus2);

output [31:0]    bus1;

input [19:0]      bus2;

wire c;

anotherRandom ar1(C, bus2, bus1);

endmodule
Figure A.5 Using Multibit Input and Output.

A.3.2.5 Subsets of Multibit Expressions

On occasion, it is necessary to break apart multibit values. We can do that by selecting a
subset of a value. For example, if we have, as in Figure A.6:

wire [31:0] myWires;

initial myWires[3:1] = ‘b101;
Figure A.6 Accessing a Subset of a Multibit Signal.

This would set

myWires[3] = 1
myWires[2] = 0
myWires[1] = 1
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All other bits of myWires will not be altered. One can also use the same form to take amyWires
subset of a multibit wire and pass it as an input to another module.

A.3.2.6 $display and $monitor Statements

The $display and $monitor are standard system tasks that enable one to see the states of$display, $monitor
certain signals in text form. The output is typically directed to the screen (or window). The
difference between the two statements is that $display is only evaluated when the directive
is encountered during execution. The $monitor statement is evaluated every time any of the
signals that is being monitored changes state.

The syntax for the two directives is given as:

Syntax

$display (["formatrString"], variableList);
$monitor (["formatString"], variableList);

The formatString is optional for both statements; both follow the C printf statement
syntax. The formatString is a text string containing format variables that are to be instan-
tiated, one-to-one, from the values specified in the variableList. The more commonly used

formatString
printf

variableList
format variables are given in Table A.1.

Table A.1 Verilog format variables.

Format variable Display

%b Binary
%d Decimal
%h Hexadecimal
%c Character

By convention, a logic high is denoted as a 1 and a logic low is denoted as a 0. An
unknown state is denoted as an x. The $display and $monitor output statements must be
placed within an initial or always block.

high
$display, $monitor

initial, always

A.3.2.7 $stop and $finish Statements

The $stop and $finish statements are system tasks that are used to either stop or finish a$stop, $finish
simulation. The former directs the simulation to the interactive mode and the latter termi-
nates the simulation. The $stop is used when the designer wishes to suspend the simulation$stop
prior to exit to examine the state of signal values.

The syntax for the two directives is given as:

Syntax

$stop;
$finish;
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A.3.2.8 $time Statement

The $time statement is a system function that returns the current time. The syntax is given$time
as:

Syntax

$time;

The statement can be included in a $display or $monitor statement as:

$display ($time, ["formatrString"], variableList);
$monitor ($time, ["formatString"], variableList);

A.4 THREE MODELS – THE GATE LEVEL, THE DATAFLOW, AND THE BEHAVIORAL

With this brief introduction to some elements of the Verilog language, we will next look
at how the language supports the modeling process. The Verilog language supports the
development of models at three different primary levels of abstraction. The gate-level modelgate level

behavioral level gives the most detailed expression and the behavioral level the most abstract. At the gate
level, modules are implemented by interconnecting the various logic gates much as one
would do when working with Small-Scale Integrated (SSI) and Medium-Scale Integrated
(MSI) components. This is also known as a structural model. At the dataflow level, thestructural

dataflow level module is implemented by specifying the movement of the data among the comprising
hardware registers. The dataflow model is analogous to the Register Transfer Level (RTL)
level used in specifying a microprocessor architecture. At the behavioral level, modelingbehavior level
is based on an algorithmic description of the problem without regard for the underlying
hardware.

The language does support modeling at the transistor level. However, work at that level
will not be discussed in this text.

We will begin at the gate level and work up. The path that we will follow will be to
use the three different levels at which the modeling process may be conducted as a means
of introducing the core aspects of the language. Following the discussion of the different
approaches, we will bring everything together with a discussion of developing a test module
and then couple the test module with the UUT in a test bench. Because working at the gate
level is the most familiar to many engineers, we will begin at that level and then move up
to higher levels of abstraction.

We will utilize the same combinational and sequential designs to illustrate how a model
is developed at each of the different levels. The combinational circuits will be a logic block
using an AND and an OR gate, which are extended to implement a NAND and a NOR
circuit. The sequential circuits will progress from a basic latch to a gated latch to a flip-flop
and, ultimately, to a 2-bit binary counter.

A.4.1 The Structural/Gate-Level Model

As the name suggests, at the gate level, we are working with the basic logic gates and
flip-flops that one finds in any detailed digital logic diagram. These devices model the
behavior of the parts that we can buy from any electronics store or that we might design
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into an ASIC or use in FPGA. Verilog supports the logic gates identified in Figure A.7 as
predefined intrinsic modules.

buf not

and  nand

or  nor

xor  xnor Figure A.7 Basic Verilog Logic Gates.

The prototypes for each of the gates are given in Figure A.8.

buf <name> (OUT1, IN1);   // Sets output equal to input

not <name> (OUT1, IN1);   // Sets output to opposite of input

and <name> (OUT, IN1, IN2);   // Sets output to AND of inputs

or <name> (OUT, IN1, IN2);   // Sets output to OR of inputs

nand <name> (OUT, IN1, IN2);   // Sets to NAND of inputs

nor <name> (OUT, IN1, IN2);   // Sets output to NOR of inputs

xor <name> (OUT, IN1, IN2);   // Sets output to XOR of inputs

xnor <name> (OUT, IN1, IN2);  // Sets to XNOR of inputs

Figure A.8 Basic Verilog Logic Gate Prototypes.

The device prototypes appear very much like those for a C or C++ function or pro-
cedure. The <name> for a gate instance must begin with a letter and, thereafter, can be
any combination of letters, numbers, the underscore _, or the $. Gates with more than two
inputs are created by simply including additional inputs in the declaration. Observe that the
output list appears first, followed by the input list.

EXAMPLE A.1 A five-input and gate is declared as

and <name> (OUT, IN1, IN2, IN3, IN4, IN5); // 5-input AND

A.4.1.1 Creating Modules

At the gate level, whether one is building a combinational or sequential logic circuit, a
Verilog module really is a collection of logic gates. Each time we declare and define a
module, we are creating that set of gates. We will look first at combinational logic models
and follow with sequential circuits.

A.4.1.1.1 COMBINATIONAL LOGIC
The structural or gate-level model of a combinational circuit reflects the physical gates used
to implement the design. To illustrate the basic process of creating a Verilog program and
modeling combinational logic at the gate level, we will begin with a simple circuit.

An example of a simple module begins with the logic diagram in Figure A.9; the mod-
ule requires a name, and we will call it AndOr.
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// Compute the logical AND and OR of inputs A and B.

module AndOr(AandB, AorB, A, B);

output AandB, AorB;

input A, B;

and myAnd (AandB, A, B);

or myOr (AorB, A, B);

endmodule

AND Gate

OR Gate

A

B

myAnd

myOr
AorB

AandB

Figure A.9 A Combinational Logic Circuit with Corresponding Structural Verilog Module.

We can analyze the module line by line.

// Compute the logical AND and OR of inputs A and B

The first line is a comment designated by the //. Everything on a line after a // is ignored.
Comments can appear on separate lines or at the end of lines of code.

module AndOr(AandB, AorB, A, B);
output AandB, AorB;
input A, B;

The top of a module begins with the keyword module indicating start of module, themodule
AndOr
outputs
inputs

name of the module, AndOr, and a list of signals connected to that module. Subsequent
lines first declare that the first two binary values generated by this module are outputs from
the module and the next two (A, B) are inputs to the module.

The next lines

and myAnd (AandB, A, B);
or myOr (AorB, A, B);

create instances of two gates: an AND gate called myAnd with output AandB and inputs AmyAnd, AandB
myOr, orOut and B and an OR gate called myOr with output orOut and inputs A and B.

We declare such intrinsic components the same as we did in C, C++, or Java with int,
float, or char.

The final line declares the end of the module.

endmodule

All modules must end with an endmodule statement. Observe that the endmodule state-endmodule
ment is the only one that is not terminated by a semicolon.

A.4.1.2 Using Modules

We build up a complex traditional software program by having procedures call subpro-
cedures or by combining classes into larger and more powerful class structures. Verilog
builds up complex circuits and systems from modules using a design approach similar to
composition or aggregation.

To illustrate the process, we will use the previous AndOr module to build a NandNorAndOr, NandNor
circuit. We begin with the logic diagram and Verilog module in Figure A.10.
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NandNor

AndOr

AND Gate

OR Gate

A

B

myAnd

myOr
AorB

AandB
X

Y

XnandY

XnorY

// Compute the logical AND and OR of inputs A and B.

module AndOr(AandB, AorB, A, B);

output AandB, AorB;

input A, B;

and myAnd (AandB, A, B);

or myOr (AorB, A, B);

endmodule

// Compute the logical NAND and NOR of inputs X and Y.

module NandNor (XnandY, XnorY, X, Y);

output XnandY, XnorY;

input X, Y;

wire XandY, XorY;

AndOr myAndOr (XandY, XorY, X, Y);

not n1 (XnandY, XandY);

not n2 (XnorY, XorY);

endmodule

Figure A.10 Defining and using a Combinational Logic Circuit with Corresponding Structural Verilog Module.

The NandNor module declares an instance of the AndOr module as it would any of
the intrinsic types. One can declare multiple instances of a submodule. Another instance
of the AndOr module could be added to the NandNor module. Each instance of theAndOr
submodule creates a new set of gates. Three instances of AndOr would create a total of
2•3 = 6 gates.

The wire statement is used to connect the outputs of the AndOr module to the two notwire
gates. These wires comprise a net that carries the signals from the output of the AndOr
module to the inverters.

Syntax

wire XandY, XorY;

A.4.1.3 Delays

In a perfect world, parts are ideal and signals flow through wires and parts with no delay;
in the real world, parts are not perfect. Signals are delayed by varying amounts. In Verilog,
we can model how long signals take to propagate through the basic gates in a circuit using
the # operator. The basic syntax is given as# operator

Syntax

#delay device;
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We modify the AndOr module in Figure A.11 to incorporate delays into the design to
model real-world behavior.

// Compute the logical AND and OR of inputs A and B.

module AndOr(AandB, AorB, A, B);

output AandB, AorB;

input A, B;

and #5 myAnd (AandB, A, B);

or #10 myOr (AorB, A, B);

endmodule

Figure A.11 Modeling Gate Delays – First Attempt.

The line

and #5 myAnd (AandB, A, B);

states that the AND gate takes 5 time units to propagate a change on the input to the
output, while the OR gate is twice as slow, taking 10 time units.

or #10 myOr (AorB, A, B);

Note that the units of time can be whatever we want as long as we use consistent
values.

In the perfect world, logic devices change state in zero time; in the real world we
rarely encounter such ability. To support modeling the time required for a signal to rise or
fall, Verilog also supports including device rise time and fall time. The syntax for all three
parameters is given as

Syntax

# (rise time, fall time, delay) device;

A.4.1.4 Defining Constants

Although one can use what are called magic numbers, a more robust design will use namedmagic, numbers
or symbolic constants, variables whose value is set in one place and then used throughout
a piece of code. The symbolic constant in Verilog is called a parameter. A parameter isparameter
defined and initialized using the following syntax.

Syntax

parameter = aValue;

The following code fragment illustrates the inclusion of a delay of two time units in a
part model.
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parameter propagationDelay = 2;
not #propagationDelay myNot(sigOut, sigIn);

Let’s modify the previous example to that in Figure A.12 to reflect a more professional
approach and also incorporate the signal rise and fall times.

// Compute the logical AND and OR of inputs A and B.

module AndOr(AandB, AorB, A, B);

output AandB, AorB;

input A, B;

parameter delay0 = 5;

parameter delay1 = 10;

parameter riseTime = 3;

parameter fallTime = 4;

and #(riseTime, fallTime, delay0) myAnd (AandB, A, B);

or #(riseTime, fallTime, delay1) myOr (AorB, A, B);

endmodule

Figure A.12 Modeling Gate Delays – Second Attempt.

The modified code sets the delay of the gates to delay0 and delay1, respectively, and
the rise and fall times to the values specified by the remaining two parameters. To speed up
either gate, one could simply change the value in the parameter lines to the desired values.

A.4.1.4.1 SEQUENTIAL LOGIC
Sequential logic is modeled at the gate level by first developing the appropriate flip-flop
module and then implementing the design as a composition of instances of that module, the
necessary gates, and interconnecting the components with wires. To illustrate the process
we begin with the basic SR (Set–Reset) latch, which is given in the logic diagram and
Verilog code fragment in Figure A.13.

// Gate Level Model S R Latch

module srLatch(q, qnot, s, r);

input s, r;

output q, qnot;

parameter delay0 = 2;

// implement the latch

nor #delay0 n0(q, r, qnot);

nor #delay0 n1(qnot, s, q);

endmodule

Set

Reset
Q

Q

Figure A.13 Defining an SR Latch with Corresponding Structural Verilog
Module.



�

� �

�

962 Chapter A Verilog Overview: The Verilog Hardware Description Language

The basic design can be extended to include an enable as an additional level of
control. The logic diagram and Verilog implementation, using the srLatch, are given in
Figure A.14.

// Gate Level Model 

// Gated SR Latch with clear

module gsrLatch(q, qnot, sg, rg, clr, enab);

input sg, rg, clr, enab;

output q, qnot;

parameter delay0 = 2;

 // Build the gating logic

not n0(nclr, clr); 

and and0(rL, rg, clr, enab);

and and1(sL, sg, clr, enab);

  // Build the basic RS latch 

nor #delay0 n0(q, rL, nclr, qnot);

nor #delay0 n1(qnot, sL, q);

 endmodule

Set

Reset

Q

Q

Gate

Reset'

Set'

Clr

Figure A.14 Extending the SR Latch with Corresponding Structural Verilog Module.

The master–slave implementation using the gated latch follows in Figure A.15.

// Use two SR Latches 

// in a master slave configuration to build a flip-flop

module srmsff(q, qnot, s, r, clr, clk);

input s, r, clk, clr;

output q, qnot;

not n0(nclk, clk); 

gsrLatch master(qm, qnotm, s, r, clr, clk);

gsrLatch slave(q, qnot, qm, qnotm, clr, nclk);

endmodule

S

R

Q

Q

G

S

R

Q

Q

G

S

R

clk

Set / Reset Flip-Flop

Q

Q

slavemaster

clr

Figure A.15 The Master–Slave SR Latch with Corresponding Structural Verilog Module.

We can now use the SR flip-flop to build a simple 2-bit synchronous binary up counter.
The logic diagram and Verilog model are shown in Figure A.16.
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S Q

QR

S Q

QR

clk

clr

B A

QB
QA // Build a two bit binary up counter

// using master slave SR flip-flops

module TwoBitCntr(qA, qB, clr, clk);

input clr, clk;

output qA, qB;

and a1(sA, qAnot, qB); 

and a2(rA, qA, qB);

srmsff FFB(qB, qBnot, qBnot, qB, clr, clk);

srmsff FFA(qA, qAnot, sA, rA, clr, clk);

endmodule

Figure A.16 A 2-Bit Binary up Counter using the Master–Slave SR Latch with Corresponding Structural Verilog
Module.

A.4.2 The Dataflow Model

Gate-level modeling is an effective approach for working with smaller problems. Such an
approach directly follows the typical detailed logic diagram and thus simplifies moving
from design to model and simulation. Embedded applications are continually increasing in
complexity. The SSI and MSI modules of yesterday are being replaced by ASICs, FPGAs,
and microprocessors. Developing a complete design at the gate level is no longer feasible.
Working at the gate level is similar to trying to write sophisticated application in assembler.
Although it can be done, such an approach is not practical.

Developing at a higher level is not without problems, however. The farther that one
moves away from the low-level details and increases reliance on tools to produce those
details, the greater the risk that the tools will produce a less than optimum design. The
ability to push the limits of a design and a technology comes from years of experience
and understanding of the problem. Tools can help us to solve the majority of the design
problems. They are not sufficiently advanced to solve all autonomously.

Dataflow modeling, as the name implies, views a design from the perspective of datadataflow modeling
moving through the system from source to destinations. In the digital world, such a view
is often referred to as RTL or register transfer level design. Contemporary tools are able to
accept a dataflow model as input and produce a low-level logic gate implementation through

RTL, register transfer
level

a process called logic synthesis.logic synthesis

A.4.2.1 Continuous Assignment

At the dataflow level, the design is modeled as the movement of data from module to module
in order to effect the application. That data moves over a net. Thus, a fundamental element
of such modeling is the ability to drive a value from a source module onto the interconnect-
ing net to the destination modules. In Verilog, such an ability is expressed by continuous
assignment. The continuous assignment statement is specified using the following syntax.continuous assignment
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Syntax

assign destination net = source net expression

The left-hand side of the continuous assignment must be either a scalar or vector (mul-
tiple lines) net. The right-hand side of the expression can be a net, register, or function call
return and must be of the same size as the left-hand side. A scalar cannot be assigned to a
vector and vice versa, for example.

A continuous assignment is always active. A change on the right-hand side forces eval-
uation of the left-hand side, with the resulting assignment of the right-hand side value to
the left-hand side net.

A.4.2.1.1 COMBINATIONAL LOGIC
We illustrate a combinational dataflow model using the AndOr circuit designed earlier. That
model, using the continuous assignment, is expressed in Figure A.17.

// continuous assignment

module AndOr(AandB, AorB, A, B);

output AandB, AorB;

input A, B;

wire AandB, AorB;

parameter delay0 = 10;

assign AandB = A&B;

assign AorB = A|B;

endmodule Figure A.17 A Combinational Logic Module using a
Dataflow Verilog Model.

The implementation of the function using the bitwise AND and OR operators should
be familiar from earlier work with their C counterparts.

A.4.2.2 Delays

Moving up one level of abstraction from the gate level does not preclude the need to model
real-world effects on circuit behavior. The Verilog model for delay at the dataflow level
follows naturally from that at the gate level.

The syntax is given as:

Syntax

assign #delay net

The model for the AndOr circuit designed earlier can include delays as seen in Figure A.18.EXAMPLE A.2
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// continuous assignment

module AndOr(AandB, AorB, A, B);

output AandB, AorB;

input A, B;

wire AandB, AorB;

parameter delay0 = 10;

assign #delay0 AandB = A&B;

assign #delay0 AorB = A|B;

endmodule Figure A.18 A Combinational Logic Module with
Gate Delays using a Dataflow Verilog Model.

The outputs of the system will now change 10 time units after either of the input signals
changes, as illustrated in Figure A.19.

Time, A, B, AandB, AorB

0 1, 1, x, x

10 0, 1, 1, 1

20 0, 0, 0, 1

30 0, 1, 0, 0

40 0, 1, 0, 1
Figure A.19 System Output from the
Circuit Module in Figure A.18.

Rise and fall time delays are incorporated in a similar manner. The syntax for all three
is given as:

Syntax

assign # (rise time, fall time, delay) net;

The model for the AndOr circuit designed earlier can include all three delays as seen inEXAMPLE A.3
Figure A.20.

// Compute the logical AND and OR of inputs A and B.

module AndOr(AandB, AorB, A, B);

output AandB, AorB;

input A, B;

wire AandB, AorB;

parameter delay0 = 10;

parameter rise = 5;

parameter fall = 7;

assign #(rise, fall,delay0) AandB = A&B;

assign #(rise, fall,delay0) AorB = A|B;

endmodule

Figure A.20 A Combinational
Logic Module with all Delays using
a Dataflow Verilog Model.
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The outputs of the system will now change 10 time units after either of the input signals
changes and reflect the rise and fall times as well, as illustrated in Figure A.21.

Time, A, B, AandB, AorB

0 1, 1, x, x

5 1, 1, 1, 1

10 0, 1, 1, 1

17 0, 1, 0, 1

20 0, 0, 0, 1

30 0, 1, 0, 0 Figure A.21 System Output from the
Circuit Module in Figure A.20.

A.4.2.3 Operators

The syntax and operators used in Verilog at the dataflow level follow that of the C language
very closely. Table A.2 gives the most commonly used operators.

Table A.2 Commonly used Verilog operators.

Operator Symbol Operation Operator Symbol Operation

Arithmetic + Add Equality == Equal
- Subtract != Not equal
/ Divide Logical ! Logical negation
* Multiply && Logical AND
% Modulus || Logical OR

Relational > Greater than Bitwise ∼ Bitwise negation
< Less than & Bitwise AND
>= Greater than or Equal | Bitwise OR
<= Less than or Equal Shift ≪ Shift left

≫ Shift right

A.4.2.3.1 SEQUENTIAL LOGIC
The following three code modules in Figure A.22 evolve the dataflow implementations of
the gated SR latch, the master–slave SR flip-flop, and the 2-bit binary counter designed
earlier at the gate level.

A.4.3 The Behavioral Model

The behavioral model increases the design abstraction by an additional level. Our thinking
about the design now moves above considerations of the flow of data within the system to
the algorithms that express the behavior of the system. At the behavioral level, the model
begins to take on more of the guise of a C or C++ program than a digital circuit. Flow of
control through the system is expressed in the familiar looping and branching constructs
rather than in logic gates.

A.4.3.1 Program Structure

At the behavioral level, one of the major differences between languages such as C or C++
becomes clear. Unlike either C or C++, in which flow of control is generally sequential,sequential

concurrent flow of control in Verilog is concurrent. Statements in C or C++ execute in series; those in
Verilog execute in parallel.
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// Use two SR Latches in

// a master slave configuration to build a flip-flop

module srmsff(q, qnot, s, r, clk, clr);

input s, r, clk, clr;

output q, qnot;

gsrLatch master(qm, qmnot, s, r, clr, clk);

gsrLatch slave(q, qnot, qm, qmnot, clr, ~clk);

endmodule

// Build a synchronous two bit binary up counter

// using master slave SR flip-flops

module TwoBitCntr(qA, qB, clr, clk);

input clr, clk;

output qA, qB;

wire sA, rA;

wire qA, qAnot, qB;

assign sA = qAnot & qB;

assign rA = qA & qB;

srmsff FFB(qB, qBnot, qBnot, qB, clk, clr);

srmsff FFA(qA, qAnot, sA, rA, clk, clr);

endmodule

// Dataflow Level Model

// Gated SR Latch

module gsrLatch(q, qnot, sg, rg, clr, enab);

input sg, rg, clr, enab;

output q, qnot;

wire rL, sL;

wire q, qnot;

// Build the gating logic

assign rL = rg & clr & enab;

assign sL = sg & clr & enab;

// Build the basic RS latch 

assign q = ~(rL | ~clr | qnot);

assign qnot = ~(sL | q);

endmodule

Figure A.22 Dataflow Models of the SR Latch, Master–Slave Flip-Flop, and 2-Bit Binary up Counter.

A.4.3.1.1 ALWAYS AND INITIAL STATEMENTS
At the behavioral level, a Verilog program is structured as a collection of initial and/or
always blocks. Each such block expresses a separate flow of control, and each will finish
execution independent of any other block. A module may define multiple initial and/or

initial
always, separate flow

of control
always blocks; however, such blocks cannot be nested. Beyond the input, output statements,
and parameter declarations, all behavioral statements must be included in either one of these
blocks.

The statements contained in an initial block (delimited by begin and end) are evaluatedinitial block, begin, end
one time at the start of a simulation. The statements contained in an always block (delimited
by begin and end) are evaluated continuously from the start of a simulation.
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The always and initial statements are two of the many keywords in Verilog that allowalways, initial
one to set stimuli to a module. The syntax for the initial statement is given as:

Syntax

initial
begin

Initial statements
end

The syntax for the always statement is:

Syntax

always
begin

statements to always be executed
end

A.4.3.2 Procedural Assignment

Assignment in the behavioral model differs from that in either the gate-level or dataflow
model. In the behavioral model, procedural assignment statements are used to update theprocedural assignment

continuous assignment state circuit variables. In the dataflow model, the continuous assignment construct continu-
ally updates the value of the net on the left-hand side. In contrast, in the behavioral model,
a value is only updated as the result of the execution of a procedural assignment statement.

Verilog supports two kinds of procedural assignment: blocking and nonblocking andblocking, nonblocking
sequential, parallel two kinds of blocks: sequential and parallel. Statements in a sequential block, which is

delimited by a begin and an end, are executed in sequence. Statements in a parallel block,
which is delimited by a fork and a join, are executed in parallel.fork, join

blocking assignment

same sequential block

Blocking assignment statements are executed in the order in which they are written in
a sequential block. They will block the execution of subsequent statements that appear
in the same sequential block; they will not block the execution of statements that appear
in a parallel block. A nonblocking assignment will not block subsequent statements in a
sequential block.

Put another way, a blocking assignment will successively evaluate the right-hand
side and then the left-hand side of each assignment statement in a sequential block. A
nonblocking assignment will evaluate all of the right-hand sides, then all of the left-handnonblocking

assignment sides of each statement in a sequential block.
The syntax for the two types of assignment is:

Syntax

Blocking
aVariable = aValue;

Nonblocking
aVariable<=aValue;
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A.4.3.3 Delays

Delays may be incorporated on either side of the assignment statement according to the
syntax:

Syntax

Blocking
aVariable = #d aValue;
#d aVariable = aValue

Nonblocking
aVariable<=#d aValue;
#d aVariable<= aValue

How each is interpreted can be a bit confusing.

A.4.3.3.1 BLOCKING
The first statement says:

Evaluate aValue, then block for d time units before assigning aValue to aVariable. Any
subsequent use of aVariable will get the new value.

The second statement says:
Block for d time units before evaluating aVariable = aValue. The variable aVariable

will have the value aValue d time units in future.

A.4.3.3.2 NONBLOCKING
The first statement says:

Evaluate aValue. Schedule aVariable to be updated d time units later; however, continue
processing other statements. Any other variables using the value of aVariable within the
next d time units will be assigned the old value.

The second statement says:
Wait d time units before evaluating aVariable = aValue. The variable aVariable will

have the value aValue d time units in future.
The examples in Figures A.23 and A.25 will illustrate the behavior for each of the four

cases in the same and in separate initial blocks.

From the execution of the code fragment in Figure A.23, we observe the output given inEXAMPLE A.4
Figure A.24.

• The variables a and g from the two initial blocks change state at time 10. The variables
(b and c) and (h, and i) follow similarly according to their specified delays or two and
four time units after a and g, respectively.

• After the blocking statements have been evaluated, the nonblocking statements are
evaluated.

• The variable d is assigned the value 1, 10 time units after the blocking statements in
the first initial block; the expression j<= 1 is evaluated 10 time units after the blocking
statements in the second initial block.

• The variables e and f are evaluated two and four time units, respectively, after the
blocking statements in the first initial block.

• Finally, the expressions k<= 1 and l<= 1 are evaluated two and four time units,
respectively, after the blocking statements in the second initial block.
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EXAMPLE A.5 // Illustrate Procedural blocking and non-blocking assignment

// Separate initial block

module blockingNonblocking();

// declare temp registers

reg a,b,c,d,e,f,g,h,i,j,k,l;

// initialize reg variables

initial

begin

a = 0; b = 0; c = 0; d = 0; e = 0; f = 0;

g = 0; h = 0; i = 0; j = 0; k = 0; l = 0;

end

initial

begin

// delay on right hand side

// blocking

a = #10 1;

b = #2 1;

c = #4 1;

// non-blocking

d <= #10 1;

e <= #2 1;

f <= #4 1;

end

// Illustrate Procedural blocking and non-blocking assignment

// Separate initial block

initial

begin

// delay on left hand side

// blocking

#10 g = 1;

#2 h = 1;

#4 i = 1;

// non-blocking

#10 j <= 1;

#2 k <= 1;

#4 l <= 1;

end

initial

begin

$display("\ttime, \ta, \tb, \tc, \td, \te, \tf, \tg, \th, \ti, \tj, \tk, \tl");

$monitor($time, " \t%b, \t%b, \t%b, \t%b, \t%b, \t%b, \t%b, \t%b, \t%b, \t%b, \t%b,

 \t%b",a,b,c,d,e,f,g,h,i,j,k,l);

#50 $finish(1);

end

endmodule

Figure A.23 Using Procedural Blocking and Nonblocking Assignment.
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time, a, b, c, d, e, f, g, h, i, j, k, l

0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

10 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0

12 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0

16 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0

18 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0

20 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0

26 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0

28 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0

32 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

Figure A.24 System Output from the Module in Figure A.23.

EXAMPLE A.6 // Illustrate Procedural blocking and non-blocking assignment

// Single initial block

module blockingNonblocking();

// declare temp registers

reg a,b,c,d,e,f,g,h,i,j,k,l;

// initialize reg variables

initial

begin

a = 0; b = 0; c = 0; d = 0; e = 0; f = 0;

g = 0; h = 0; i = 0; j = 0; k = 0; l = 0;

end

initial

begin

// delay on right hand side

// blocking

a = #10 1;

b = #2 1;

c = #4 1;

// non-blocking

d <= #10 1;

e <= #2 1;

 f <= #4 1;

// delay on left hand side

// blocking

#10 g = 1;

#2 h = 1;

#4 i = 1;

 // non-blocking

#10 j <= 1;

#2 k <= 1;

#4 l <= 1;

end

initial

begin

$display("\ttime, \ta, \tb, \tc, \td, \te, \tf, \tg, \th, \ti, \tj, \tk, \tl");

$monitor($time, " \t%b, \t%b, \t%b, \t%b, \t%b, \t%b, \t%b, \t%b, \t%b, \t%b,

\t%b, \t%b",a,b,c,d,e,f,g,h,i,j,k,l);

#50 $finish(1);

end

endmodule

Figure A.25 Using Procedural Blocking and Nonblocking Assignment.
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From the execution of the code fragment in Figure A.25, the results are given in
Figure A.26.

time, a, b, c, d, e, f, g, h, i, j, k, l

0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

10 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

12 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

16 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0

18 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0

20 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0

26 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0

28 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0

32 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0

42 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0

44 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0

48 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 

Figure A.26 System Output from the Module in Figure A.25.

The major differences between the two implementations are reflected in the evaluation
times for the variables d, e, f, g, h, and i.

A.4.3.3.3 COMBINATIONAL LOGIC
The next example, in Figure A.27, implements the earlier NandNor combinational logic cir-
cuit using a behavioral model and utilizing both the blocking and nonblocking assignments
with the right- and left-hand side delays.

module blocking_nonblocking();
reg a,b, AandB,AorB, AnandB,AnorB;
reg e,f, EandF,EorF, EnandF,EnorF;

// Blocking Assignment
initial
begin

a = 1; b = 1;
// Delay on the right hand side
AandB = #10 a&b;
AnandB = #11 ~AandB;

// Delay on the left hand side
#10 AorB = a|b;
#11 AnorB = ~AorB;

end

// Non-blocking Assignment
initial
begin

e = 1; f = 1;
// Delay on the right hand side

EandF <= #10 e&f;
EnandF <= #11 ~EandF;

// Delay on the left hand side
#12 EorF <= e|f;
#13 EnorF <= ~EorF;

end

initial
begin

$display("\t time\t a, \tb, \tAnandB, \tAnorB, \t\te, \tf, \tEnandF, \tEnorF");
$monitor($time, "\t%b \t%b \t%b \t\t%b \t\t%b \t %b \t %b \t\t%b", a,b, AnandB,

AnorB, e, f, EnandF, EnorF);
#50 $finish(1);

end
endmodule

Figure A.27 A Combinational Logic Module using a
Behavioral Verilog Model with Blocking and Nonblocking
Assignment.
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The outputs of the circuits for each of the cases in Figure A.27 are given in Figure A.28.
EXAMPLE A.7

time a, b, AnandB, AnorB, e, f, EnandF, EnorF

0 1 1 x x 1 1 x x

21 1 1 0 x 1 1 x x

25 1 1 0 x 1 1 x 0

42 1 1 0 0 1 1 x 0

Figure A.28 System Output from the Module in Figure A.27.

Observe that based on the order of evaluation of the nonblocking assignment, the
NAND operand is never assigned a valid value.

A.4.3.4 Flow of Control

The behavioral Verilog model supports many of the familiar flow of control constructs, such
as branches, switches, and loops. In addition, the language provides support for event-based
control.

A.4.3.4.1 EVENTS
Verilog supports four different types of event-based control. These are given as:event-based control
• Regular event
• Named event
• OR event
• Level.

Each is identified by the event control symbol, @. Verilog interprets an event as a
change in the value of either a net or a register. Such a change can be used to invoke the
evaluation of either a single statement or a block of statements.

The syntax for each is given as follows.

Syntax

Regular Event
@(signal) action
variable = @( signal) action
signal may be clock, posedge clock, negedge clock for example

Named Event
event anEvent // event is a keyword
always @(anEvent) action

OR Event
always @( signal1 or signal2 or signal3 or…) action

Level
always wait( signal) action // wait is a keyword
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A.4.3.4.2 BRANCHES
Like the C and C++ languages, Verilog utilizes the if and if else constructs to select alternateif, if else
paths of execution based on the value of a condition variable. Permitted combinations follow
the C and C++ syntax.

Syntax

if (condition)
statement;

if (condition)
statement1;

else
statement2;

if (condition1)
statement1;

else if (condition2)
statement2;

else
statement 3;

If statement comprises a block of statements, the block must be
delimited by the begin–end pair.

A.4.3.4.3 CASE STATEMENT
The switch or case statement in Verilog uses the Pascal rather than the C language syntax
as shown.

Syntax

case (expression)
label0: statement0;
label1: statement1;
.
.
labeln-1: statementn-1;
default: defaultStatement;

endcase
If statement comprises a block of statements, the block must be
delimited by the begin–end pair.

Unlike the C switch, once a statement or block of statements is evaluated, flow of
control leaves the case rather than continuing through the remaining alternatives.

A.4.3.4.4 LOOPS
The Verilog language supports the four common loop constructs:

• while
• repeat
• for
• forever.

The first three should be familiar from the C or C++ languages; the forever is unique
to Verilog. The syntax for each is given as follows.
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Syntax

while(test)
begin

loop body
end

repeat(repeatcount)
begin

loop body
end

for(init; test; action)
begin

loop body
end
init and action are usually assignments.

forever
begin

loop body
end

A.4.3.4.5 SEQUENTIAL LOGIC
The three code modules in Figure A.29 evolve the behavioral implementations of the gated
SR latch, the master–slave SR flip-flop, and the 2-bit binary counter designed earlier at the
gate and dataflow levels.

// Behavioral Level Model

// Gated SR Latch

module gsrLatch(q, qnot, s, r, clr, enab);

input s, r, enab, clr;

output q, qnot;

reg q, qnot;

always@ (~clr or enab)

begin

if(~clr)

begin

q = 1'b0;

qnot = 1'b1;

end

else

begin

if (s & ~r)

begin

q <= s;

qnot <= r;

end

else if (~s & r)

begin

q <= s;

qnot <= r;

end

end

end

endmodule

// Build a synchronous two bit binary up counter

// using master slave SR flip-flops

module TwoBitCntr(qA, qB, clr, clk);

input clr, clk;

output qA, qB;

reg sA, rA;

wire qA, qAnot, qB;

always@(posedge clk)

begin

sA = qAnot & qB;

rA = qA & qB;

end

srmsff FFB(qB, qBnot, qBnot, qB, clk, clr);

srmsff FFA(qA, qAnot, sA, rA, clk, clr);

endmodule

// Use two SR Latches in a master slave

// configuration to build a flip-flop

module srmsff(q, qnot, s, r, clk, clr);

input s, r, clk, clr;

output q, qnot;

gsrLatch master(qm, qmnot, s, r, clr, clk);

gsrLatch slave(q, qnot, qm, qmnot, clr, ~clk);

endmodule

Figure A.29 Behavioral Models of the SR Latch, Master–Slave Flip-Flop, and 2-Bit
Binary up Counter.
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The next code module in Figure A.30 illustrates a more commonly used approach for
modeling counting, timing, or registered types of designs. Rather than working with indi-
vidual flip-flops, the design is approached algorithmically.

// Build a synchronous two bit binary up counter

module TwoBitCntr(state, clr, clk);

input clr, clk;

output[1:0] state;

reg[1:0] state;

// Name the states

parameter state0 = 2'b00;

parameter state1 = 2'b01;

parameter state2 = 2'b10;

parameter state3 = 2'b11;

// Build a synchronous two bit binary up counter

always@(~clr or negedge clk)

begin

if(~clr)

begin

state = state0;

end

else case(state)

state0:

state = state1;

state1:

state = state2;

state2:

state = state3;

state3:

state = state0;

endcase

end

endmodule

Figure A.30 A Behavioral Model of a 2-Bit Binary up
Counter using a Case Statement.

A.5 TESTING AND VERIFYING THE CIRCUIT

Once the circuit is designed and modeled in Verilog, we move into the next phase. We first
need to verify that the model functions properly. The next step is to use it for its intended
purpose. To that end, we perform any functional, parametric, and stress tests on the design,
through the model, that we deem necessary to confirm the design before committing to
hardware.
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We will illustrate the verification phase of the process using the NandNor circuit thatNandNor
test bench was designed earlier. To do this we create a test bench. A test bench models the electronics

workbench. It comprises the measurement and stimulus instruments and the circuit to be
tested. The modules used for stimulus and measurement will go in a test module.

A high-level model for the test bench has the general structure shown in Figure A.31.

module MyTest bench;

parameter declarations

wires

circuit module declarations

test module declaration

endmodule
Figure A.31 A Model of a Verilog Test Bench.

The test bench plays the same role as does the main() function in C or C++ and themain()
top-level class in Java. It acts as the outermost container in the program.

A.5.1 The Circuit Module

We will use the NandNor circuit that we developed earlier as the circuit module to be tested
and verified. During test, we must confirm that each path through the logic circuit is func-
tional and that it performs according to specification. The logic diagram for the circuit is
repeated in Figure A.32 for reference.

NandNor

AndOr

AND Gate

OR Gate

A

B

myAnd

myOr
AorB

AandB
X

Y

XnandY

XnorY

Figure A.32 A Simple Unit Under Test.

A.5.2 The Test Module

As with other modules, the test module will have a set of inputs and a set of outputs. The
inputs to the test module will be the outputs of the UUT and will model the measurement
equipment. The outputs from the test module will be the inputs of the UUT. These will
model the stimulus equipment.

The tester module for the NandNor combinational logic is given in the code fragmentNandNor
in Figure A.33.

The opening lines of the test module identify the sets of inputs and outputs. These sig-
nals will come from the UUT and will send the stimulus vector to the UUT. The parameter,
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module Tester (X, Y, XnandYin, XnorYin);

input     XnandYin, XnorYin;

output     X, Y;

reg    X, Y;

parameter   stimDelay = 10;

//Stimulusinitial

begin

X = 1; Y = 1;

#stimDelay       X = 0;

#stimDelay       Y = 0;

#stimDelay       X = 1;

end

initial

//Responsebegin

display("\t Time, \t \tX, \t Y, \t XnandYin, \t XnorYin");

monitor($time, "\t \t %b, \t %b, \t %b, \t \t%b", X, Y, XnandYin, XnorYin);

end

endmodule

Figure A.33 A Tester Module for the Unit Under Test.

stimDelay, specifies the delay between the applications of successive test vectors. Next, the
test vectors are defined and appear as successive statements.

Four different combinations of the signals X and Y are applied to the circuit input. A
delay is specified between each stimulus application. The design of the NandNor circuit
assumes ideal parts. Had the logic gates included a delay, the stimDelay, between the appli-simDelay
cations of successive vectors would have provided time for the signal to propagate through
the logic block.

The test vectors are written as statements within an initial block. Thus, the test suiteinitial
is applied one time during the simulation. The circuit output in response to the set of test
vectors is presented using the $display and $monitor system tasks.

The tester for the behavioral sequential 2-bit binary counter module follows the same$display, $monitor
2-bit binary counter pattern, with several additions, and is presented in the code module in Figure A.34.

// Test module for two bit binary up counter

module tester(clr, clk, qA, qB);

input qA, qB;

output clr, clk;

reg clk, clr;

parameter stimDelay = 15;

parameter clkDelay = 5;

initial

begin

clk = 0;

clr = 0;

#stimDelay clr = ~clr;

repeat(16)

#clkDelay clk = ~clk;

end

initial

begin

$display("\tTime, \t\tqA, \tqB, \tclr, \tclk");

$monitor($time,"\t\t%b, \t%b, \t%b, \t%b", qA, qB, clr, clk);

end

endmodule

Figure A.34 A Tester Module for a 2-Bit Binary up Counter.
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A.5.2.1 Clocks and Resets

A synchronous sequential circuit will need a strobe, enable, or clock in order to operate.
Good designs also include a reset or clear signal to establish the initial state of the circuit.
Typically, these signals are supplied by the tester with a block of code such as the code
fragment in Figure A.35.

reg clk, clr;

parameter stimDelay = 15;

parameter clkDelay = 5;

initial

begin

clk = 0;

clr = 0;

#stimDelay clr = ~clr;

always

#halfPeriod clk = ~clk;

end
Figure A.35 Building a Clock.

A.5.3 The Test Bench

We will now bring everything together with the test bench. In the test bench, we instantiate
one copy of the NandNor gate – the UUT – and one copy of the tester. These are the stimulus
and monitoring instruments. Finally, we connect them together using wires as illustrated in
Figure A.36.

module MyTest bench;

wire XnandY, XnorY, X, Y;

NandNor aNandNor (XnandY, XnorY, X, Y);

Tester aTester (X, Y, XnandY, XnorY);

endmodule
Figure A.36 Building a Test Bench.

A.5.4 Performing the Simulation

If the simulation is now run, the test vectors are successively applied to the input of the
UUT. As the simulation executes, the $monitor system task will display the state of the
input and output signals and the system time at which the samples were taken. These appear
in Figure A.37.

Time, X, Y, XnandYin, XnorYin

0 1, 1, 0, 0

10 0, 1, 1, 0

20 0, 0, 1, 1

30 1, 0, 1, 0 Figure A.37 Output from Running the
Test Bench.

If the results are satisfactory, we can move on to the real work of confirming the design.
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A.6 SUMMARY

This appendix introduced the Verilog language and presented
the important features and capabilities used in this book. It does
not purport to be a comprehensive study of either the language
or the kinds of testing necessary to confirm an embedded design.

We began with the basic components and organization of
a Verilog program; then we examined gate-level or structural,
dataflow, and behavioral models for combinational logic cir-
cuits, and followed with similar models for sequential circuits.
Design is only one element of the product development. Each
design must also be tested to confirm that it meets specified
requirements. Then the model must be used for testing and ver-
ifying the original design. To that end, the appendix concludes

with a short discussion on how one can formulate a test bench
and test suites to verify the proper operation. The material on
testing establishes a foundation to enable the developer to build
test cases that will enable testing, verifying, and stressing to the
desired level.

Verilog and other hardware design languages such as
VHDL offer designers a rich and powerful set of tools to help
to attack today’s complex designs. It is beyond the scope of
this text to present a comprehensive treatise on testing or mod-
eling using a language like Verilog. The interested reader is
strongly encouraged to consult the reference material cited in
Further Reading.
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Symbols
#define 268
#define directive 258
#ifndef 268
#include 268

A
A Whack on the Side of the Head 406
ABEL 850
abstraction

concept of 250
levels of 250

acceptance tests see testing
accuracy, measurement 508
activation record 299

also called stack frame
active objects, UML 216
activity diagram, UML 228
actors, UML 218

supporting 218
A/D-analog to digital conversion techniques 797

dual slope 797–801, 804, 805
successive approximation lii 801–804
VCO-voltage controlled oscillator 135, 761, 804–805
voltage to frequency lii 790

ADC-analog to digital conversion also A/D 797
address of operator (&), C language 286
addresses, representing 36
ADT-abstract data type 614
aggregation 222, 432

see also related composition
allocating a variable on the stack 300
alpha tests 536

see related beta tests
ALU-Arithmetic and Logic Unit 21, 32

accumulator 21
arithmetic operations 32

add 32
divide 32
instruction set level 33
multiply 32
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subtract 32
logical operations 33

instruction set level
AND 33
CLR or SET 33
CLRC, SETC 33
NOT 33
OR 33
XOR 33

shift operations
instruction set level 34

shift arithmetic 34
shift logical 34
shift rotate 34

Amdahl’s Law 648
Ampere’s Law 79
analog to digital convertor 7
analog to digital convertor design

dual slope 797–799
autozero interval 799
autozero measurement 799
integrate interval 799
line frequency 801
power line related noise rejection 801
read interval 799

SA-successive approximation
hold 802
reference voltage 802
sample 802

VCO-voltage controlled oscillator 805–806
AND-OR device 871
ANSI/ISO C standard 250
API-application programmer’s interface 552
archival process 404
argument list see parameter list
array logics 56

see also PLD-Programmable Logic Device
Artificial 413
ASCII-American Standard Code for Information

Interchange 256
ASCII characters 842
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ASIC-Application Specific Integrated Circuit 2, 462, 481,
482, 485, 489, 490, 869

assembler 18, 246
assembly language 18, 246
assignment operator ( = ), C language 252
asymptotic complexity, big-O notation 615
asymptotic growth, big-O notation 652
attacks 370

electromagnetic 389
side channel 389
timing 389

await, critical section 602
condition 603

B
back-of-the-envelope calculations 650
bandwidth, memory 174

see also memory subsystem
beta tests 536

see related alpha tests
bias, measurement 508
big numbers 652
big-O notation 653–654

analyzing algorithms
linear search 659
quick sort 661
selection sort 660

analyzing code 655
analyzing data structures 661

array 661
linked list 662

comparing algorithms 652
asymptotic case 653
growth rates 653
on the order of 653

complexity analysis 658
conditional statements 658

worst-case complexity 658
constant time statements 6, 55
flow of control constructs 655
function calls 658
looping constructs 656

for loop 656
while loop 657

sequence of statements 657
BIST-Built in Self Test 370

background 370, 537
busses 371

bridge faults 371
stuck-at faults 371

JTAG ports 371, 381

on demand 370, 537
periodic test suite 371
peripheral devices 373
RAM 373
ROM 373

CRC 373
test failure 373

bitwise operators see C Language bitwise operators
BJT-bipolar technology 59
black box tests 514

see also testing, test category
block access time, memory subsystem 176
block size, memory subsystem 174
board level bypass 899

bypass cap 899
common path impedance 899
power supply wiring 854

Boehm, Barry 411
bottom up design 249
boundary condition testing 521
boundary scan testing 533
Bounded Buffer Problem

monitor solution 616
semaphore solution 610

branch, structural fault 93
branch and merge, UML

branch 227
merge 227

bubble chart see data flow diagram
bugs 249
Burnett, David 888
Burnette, John 888
busses, system 4
byte 255

C
C keyword 251, 253
C Language function

identifier 250
logical flow control

functions 296
called function 297
function call 297
return statement 297
return type 297
return value 297

operators
bitwise operators 280–284

arithmetic operations 284
logical operations 280
resetting 281
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shift (≪ , ≫) 282
testing 281

printf 955
qualifiers

const 258
volatile 267

scope 261, 262
storage class 263
type 252

C Language bitwise operators 279, 280–285
C program structure 268–271

function location 271
header
files 268
implementation files 268
legacy files 268
library 268
library files 272
linkage 269
makefile 270–271
multiple files 262, 264, 268
multiple module single file 262
separate file compilation 268
translation unit 268

cache 190–196, 234
associative mapped 190, 196–198

associative search 196
block-set associative 166, 198

set 198
2-way set associative scheme 198

cache hit 192
cache miss 192
caching scheme 192
dcache 190
direct mapped 166, 193–195

direct mapping algorithm 194
fully associative cache 198
icache 190
MAR-memory address register 193
non deterministic behavior 199, 581, 708
performance 708
replacement algorithm

LRU-Least Recently Used 196
also called FIFO algorithm

MRU-Most Recently Used 196
also called LIFO algorithm

tag table 195
coherent 195
dirty bit 195
time 195
valid bit 195

update
delayed write 195
write through 195

call action, UML call and return 224
called function 297
calling function 297
CAN Bus-Controller Area Network 765, 837, 860–864

architecture
ISO/OSI reference model 860

ISO standard ISO 11898 860, 864
operation

error management 863
CRC error 863
format error 863

NRZ-Non Return to Zero 863
synchronization 863
transmission and arbitration 863

CAN Bus messages
data frame 862

acknowledgement field 862
arbitration field 862
control field 862
CRC field 862
data field 862
overload frame 862

error frame 862
format 862
frames 862
overload frame 862
remote frame 862

CAN Bus signaling
balanced differential signaling 861
CANH 861
CANL 861

CAN Bus signaling states
dominant 861
recessive 861

capacitance
parasitic 75

capacitor 75
adjacent IC pins 75
behavior with frequency 74–78
impedance 76
parallel wires 75
parasitic 74

Cartesian product 116
checksum 392
class, UML 206
class diagram, UML 192–220

name 220
operations 220
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class diagram, UML (contd.)
properties 220

associations 220
attributes 220
multiplicity 220

class relationships, UML
containment 221

aggregation 221
composition 221

inheritance 221
interface 221
a kind of-AKO 221

clock 137
decision points

falling edge 138
high level 138
low level 138
rising edge 138

multiple phase vs. multiple clocks 138
system

debug 195
distribution 132
gating the clock 141
multiple phase 138–138

four phase 140
more than four phases 141
two phases 138

single phase 137
CMOS-Complementary Output Symmetry MOS 59, 60
code injection 380
code walk-through 513
Co-Design

approaches to Partitioning and Mapping 454
architectural model 465
architecture design 465, 468
characterizing the system 472
cohesion 458
co-simulation 418
co-synthesis 418, 480
coupling 486
co-verification 418, 495
co-design 415
evaluation of a partition 465, 481
functional decomposition 418, 449
functional model 450
functional specification 425
modeling 408
modeling tools and languages 470,473, 489
operational specification 425
partitioning 418, 459, 465
repeat 418

requirements specification 425
specify 418
system design specification 437
system specifications 418
technological specification 430
test 415, 418, 485

Co-Design-co-simulation 488
Co-Design development cycle 419
Co-Design-implementing the system 486
Co-Design Process Overview 419
cohesion 458

co-incidental 458, 459
communicational 459
logical 459
procedural 459
sequential 459
temporal 459

column address bits, DRAM memory 182, 183
combinational logic 131

drive
current 56
drive capability 60
fan in, fan out 60–64
sink current 60
source current 60

logic level 57–59
maximum 57, 60
minimum 57, 60
typical value 57, 58

noise 57
noise immunity

high level 58
low level 58

noise margin 58
common calling interface 542

see also API-application programmer’s interface
compilation 245

separate 268
compiler 245, 246
complex instruction set computers 266
component/module reuse 404
composition 222, 452

see related aggregation
Computers

CISC-Complex Instruction Set Computers 16
Harvard architecture 6
RISC-Reduced Instruction Set Computers 16
von Neumann 6

concurrency 216
concurrent tasks 216
const pointers, C Language 293
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const qualifier, C Language 258
context switch 299
control, system 3
control flow diagram 234

see DFD-data and control flow diagram
control logic 40

see related instruction cycle and instructions
control unit 34
costs, product 404, 405
CPLD-(Complex) Programmable Logic Device 114, 149,

381, 881–882
interconnection net 881
logic block 881
macrocell inputs and outputs 881

CPU-Central Processing Unit core 3, 870
datapath 3, 34, 38
input, subsystem 3
memory subsystem 3
output subsystem 3

CPU busses
address 4
control 4
data 4

CPU utilization, performance, analyzing 567
crafted packets 378, 379
create action, UML interaction diagram

223
critical section 600

atomic operation 604
await operation 604
bounded waiting 604
deadlock 604
entry section 604
exit section 604
flags 604
interrupts 606
monitor

condition variables 614
mutual exclusion 604
progress 604
semaphore

process can block 603
wakeup 609

starvation 618
token passing 606

cross compiler 246
Crosstalk 891
customer requirement 244, 421
CVS-Concurrent Versioning System 342
cyclic encoding 362–367

CRC-cyclic redundancy check 362

frame check sequence 365
Galois field 363
Galois field arithmetic 363
generator polynomial 364, 368
syndrome 365

D
D/A-Digital to Analog Converter 790

see also DAC-Digital to Analog Converter
DAC-Digital to Analog Converter 790, 796

binary weighted 790–791
R/2R ladder 794–796
R/2R ladder network 794

damping factor 88
data and control information, representing 2
Data Encryption Standard 791
data error management

damage
group of bits 356
several bits 356
single bit 356
substantial 356

data and control faults
boundary values 355
communications subsystem 356
damaged data 356

detectability 356
out of bounds inputs 355
parity 358
type conformance 355

detectable error 356
distance 357
extent 357

burst errors 357
response 357

detect 357
detect and correct 357

data flow diagram 234
see DFD-data and control flow diagram

data memory address, C Language 285
data pointers, C language 285
data store 248
data type, C language 250
dataflow modeling 963
DB9P (male) connector 839
DB25P (male) connector 839
DB9S (female) connector 839
DB25S (female) connector 839
DCE-Data Communications Equipment 838
dead man’s throttle 349

see also watch dog timer
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deadlines 405
deadlock 625

avoidance 631
Banker’s algorithm 635

resource allocation state 635
safe sequence 635
safe state 635
unsafe state 634

RAG-Resource Allocation Graph algorithms 599
claim edge 634
request edge 634

detection 638
wait-for graph 638

potential 630
prevention 631–632

circular wait 632
see also hold and wait

hold and wait 632
mutual exclusion 631
no preemption 632

problem 626
identical resources 626
necessary conditions 628
set of resources 626
tasks 626

recovery 638–640
resource preemption 639
task termination 639

debug and release builds 672
debugging xlvi 91, 507, 508, 510–536

combinational logic
bridge faults 527
masked fault 525
path sensitizing 521–525

single variable-multiple paths 526
single variable-single path 522
single variable-two paths 523

untestable fault 425
memories 535
sequential logic 529

boundary scan 531
test the tester 535

scan design 504
test for stuck-at strategy 532
verify the truth table strategy 529

verify the truth table strategy 529
subsystems and systems 535

declaration, variable 264
see related topic definition 264

declare
variable 251

decoding spike 139
Decryption 391
define

variable 251
definition, variable 251

see related topic declaration
denial-of-service attack 395
dereference operator ( * ), C language 288
design lifecycle 404
design process

archival 499
virgin build 500

characterizing the environment 426, 427
characterizing the system 427
decomposing and partitioning 454

cohesion 433
coupling 458

environment 425
how to do the job 407
identify requirements 423
reuse 497
spatial view 459
system outside view 426
what needs to be done 424
also called development cycle or life cycle

design process model 408
see also life cycle, models

design review 513
Design Specification, design process 451
destroy action, UML interaction diagram 224
development platform 246
device driver 481, 495
DFD-data and control flow diagram 234–237

data storage 236
elements 234

data and control flows 234
data sources and sinks 234
data stores 234
tasks and threads 234

modules 234
processes 234
sink 234
source 234
tasks 234

differential signaling 855
digital certificates 394
digital fingerprint 392
Digital Signature Algorithm 394
Dijkstra, Professor Edsger Wybe 607, 635
diodes 517
DIP-Dual Inline Package 516
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directly observable signal, debug and test 521
dispatcher, operating system 552
dissimilar resources, deadlock 626
distributed 716, 762
distributed application 216
distributed designs 716

see also remote device model
distributed model, signal propagation 72,493

see related lumped model
dividers and counters 125–131

asynchronous 125
counter 127

divider 127
divide by four 126
divide by two 124
Johnson 128–131
ripple 127
synchronous 125
timer 70,124

DMA-Direct Memory Access 7
documentation 249, 253
DRAM, conventional 173
DRAM-Dynamic RAM 181
DRAM system 183–189

address
CAS-column address strobe 168, 172
RAS-row address strobe 168, 172

control
RAS Cycle Time 181
RAS to CAS delay 181
Read-Write 186
refresh

address 185
management 181
refresh period 181

refresh arbitration 185
refresh cycle 172
refresh timing constraint 183

memory system interface 176
read cycle 172 , 188
restore or rewrite operation 166
timing 183
write cycle 172, 188

driver end 784
driver firmware 790

DSP-Digital Signal Processor 8
DTE-Data Terminal Equipment 838
DUT-Device Under Test 508, 510, 950
dynamic behavior, UML 215
dynamic fault 93
dynamic model, UML 215

dynamic power consumption
advanced configuration and power interface

704
dynamic power consumption-hardware 703
dynamic power consumption–software 706
dynamic voltage and frequency scaling 705
measuring power consumption 707
dynamically reconfigurable systems 869

E
ease of change, C program 249
eavesdropping 381
EDO-Extended Data Output, DRAM 182
EEPROM-Electrically Erasable PROM 167
effective length 920
efficiency 708
egoless design 513
EIA-Electronic Industries Association 746, 793
EIA-232 837

addressing 842
asynchronous serial communication 842
bit counter 844
bit timer 844
data recovery 843
interface signals 844

Data Rec 845
mark 845
space 845
Tx Rdy 844

EIA-232E, standard, current version 839
EIA-232 standard 839
electrolytic capacitors 517
electronics test bench, Verilog 950
embedded C program 249, 542
Encryption 391
EPROM-Erasable PROM 167
equal operator ( == ), C Language 251
quivalent series resistance 901
error management 863
errors 336, 341
evaluating performance

early stages 685
later stages 685
mid-states 685

event
request an action 790
state change 790

events 790
exception handling, C style

assert 344, 345
jmp_buf 345
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dynamic power consumption (contd.)
longjmp 345
setjmp 345

exchanging data and information, external 715
exchanging / sharing data, internal 542
executing the hardware-software co-design process

416
existing market 404
existing technology 404
extern, C Language 303

directive 304
storage class 243, 252

external, C Language
declaration 252
linkage 269

The Eye Diagram 940

F
Failure Modes and Criticality Analysis 374
Failure Modes Effects and Criticality Analysis

374
failure rate 334
fault consequences

inappropriate action 336
inappropriate quantity 336
inappropriate sequence 336
inappropriate time 336

fault seeding 387
faults, failures, and errors 331

fail 335
gracefully 335
operational 350
operational2 350

failure
probability of failure 333
severity 333

failures, system 336
fault 93, 336

errors 93
failures 93, 336
intermittent 93, 336
permanent 336
random 93
soft 336
systematic 93
transient 336

functional faults 93
logical fault model 92
single fault assumption 93

features, product 404
FET-Field Effect Transistors 59

FIFO algorithm 197
finite state system 112
Firewall 395
firmware 1, 4, 243
first class types 310
first order RC circuits 84
five or six 9’s, reliability 334
FLASH 167
flip-flop 132

hold time 132
propagation delay 132

clock
causative edge 132

maximum value 132
minimum value 132
typical value 132

setup time 132
types 110

D 111
J-K 111
R-S 111

float.h, C language header 251
floating inputs 96
FMECA-Failure Modes, Effects, and Criticality Analysis

384, 387
foreground / background system 541, 551

aperiodic design 574
external interrupt 753
interrupt driven 674
polled 583
runtime stack 568, 569
stack 567

fork and join, UML 226
fork 226
join 226
synchronization bar 227

formal test 521
FPGA-Field Programmable Gate Array 869, 879,

882–885
antifuse based design 877
interconnected configurable logic blocks 882

FPM-Fast Page Mode 181
framing 842
frequency 71
FSM-Finite State Machine 111, 114–116 also called

state machine and sequential machines
autonomous clocks 114
model 114

output functions 114
outputs 114
state variables 114, 115
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full duplex network 727
function, C Language 243, 279, 296–306

body 297
call 297
input arguments 297
name 296
nesting 306
output arguments 297
pointers 306
prototype 296, 304
return type 305, 307
signature 297

function call 297,665–666
function name 296 see also identifier, C Language
function prototype, C Language 304
function signature 296, 305, 355
functional design 414, 421, 871
fuzz testing 388
fuzzing 388

G
GALTM-Generic Array Logic 879
GAL16V8TM 879
GAL22V10TM 880
Gate Array 870
gates, logical devices 59
Gaussian distribution 57
Generate, Signing, Verifying 394
generic pointers ( void * ), C Language 295
global variables, C Language 551
glue logic 2
GND 516
golden unit 508
good engineering practice 336
gray box tests 386

see also testing, test category
green logics 57
ground 903
Ground Grid 905
Ground Plane 905
growth, big-O

linear proportion 664
growth functions, big-O 651

exponential 651
linear 651
logarithmic 651
quadratic 651

H
Hamming, R.W 357
Hamming Codes 363

Hamming distance 366
error correction 357
error detection 357
unit distance 357

hard real-time
constraints 467, 553, 575, 577

Hardware Specification 448
hardware vulnerabilities 381

access attacks 381
electromagnetic interference 381
negative impact 381

Harvard architecture 8
hash 392
Havender, James W 631
hazards, combinational logic

hazard 67
dynamic 67, 68
static 67

static-0 67
static-1 67

race condition 67, 100
critical race 67
decoding spike 67
glitch 67
non-critical race 67

HDL-Hardware Design Language 36, 496
high level language 245
highest order term 652
hockey stick model 408
hold and wait 628, 632, 635
HyperTerminalTM 891

I
I2 C bus-Inter Integrated Circuit Bus 788, 855–860

architecture
multi-master-slave 859

bus master 855
multiple masters 859

arbitration 859
synchronization 859

read 857, 858
SCD-serial data 856
SCL-serial clock 858
signals

address 857
Start 857
Stop 857

transaction protocol 858
wired AND signaling 859
write 857

identifier, C Language 251
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identifier name, C Language 250
IEEE 1149.1 152
IEEE Hidden Bit Format 258
IEEE Standard for Microprocessor Assembly Language

18
inductance 78

parasitic 72
inductor

impedance 73, 76
parasitic 75

information flow
control and synchronism 728

information hiding 204
instruction cycle 39

decode 39
execute 39
fetch 39
next 41

instruction set 18
instructions 18

address mode 20
direct 20
immediate 20
indexed or displacement 20
indirect 20
program counter relative 20
register direct 20
register indirect 20

address mode field 20
arithmetic 21
arity 14
binary operators 14
effective address 20
execution flow 26

branch 26
do, repeat, while, or for 28
entry condition loop 28
exit condition loop 28
if else, switch, or case 28
procedure or function call 29
sequential flow 26

flag register or condition code register 27
groups or fields 16
logical 18
1 operand instruction 15
2 operand instruction 14
3 operand instruction 15
operands 14
operate 14
operation code or op-code 16
operations 13

store 18
transfer 18

destination 19
source 19

types 19
unary operators 14

instructions, temporal analysis 662–671
assembler level 663
branch construct 664
C language level 664
coroutine 670
flow of control constructs 666
function call 665, 668
interrupt 671
loop construct 665, 667
procedure call see function call
sequential block 664
sequential component 664
sequential flow 664, 666

intentional damage 332
interaction diagram, UML 223

interaction
Event 223
Message 223
Rendezvous 223

internal linkage, C Language 272
International Obfuscated C Contest 383
Internet 395
Interpreting the Eye Diagram 942
interprocess communication model

components
control and synchronization 716, 717, 718, 720
information 17, 716, 718, 719
place 17, 716, 718, 720
transport 716, 722

mechanism 722
control and synchronization 716, 727

device drivers 722, 729
information flow 727

amount
parallel 719, 728
serial 728

direction
bidirectional 727
full duplex 727
half duplex 727
simplex 727
unidirectional 719

timing
asynchronous 729
synchronous 729
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model 716, 722, 733
places 720, 838

addresses 720
broadcast 720
destination 720
local 729
multicast 720
point to point 720
remote 729
source 720

transport
physical level

double ring 724
interconnection architecture 722
parallel bus 726
ring 724
star configuration 723
token 725

topology 722
transport mechanism 722

interprocess communication model, internal 589
control and synchronization 589, 600, 827

condition synchronization 603
critical section 600, 601, 603
critical sections and synchronization 600, 601
mailbox 593
mutual exclusion synchronization 603
producer-consumer 603
synchronization 600

information 590
messages 590
shared variables 590

places 590
named variables 590
pointer variables 590

interrupt 320–324, 560–564
disable 323, 561
enable 323, 561
event 279
events 279, 280
flow control 320, 321
handled 322
interrupt vector table 321
ISR-Interrupt Service Routine 321
mask register 324
masking 324, 561
non-maskable 561
priority 561
recognizing 323, 324

interrupt vector table 560

intertask communication, internal 552, 590,
591

also called interprocess communication model
control and synchronization

synchronizing 590
exchanging data 590
messages 590, 594–599

asymmetric addressing 595
buffering 599
Continuous RQ protocol 599
direct communication 595
Idle RQ protocol 599 see also rendezvous
indirect communication 595
IPC-interprocess communication 595
receive 595
rendezvous 599
send 595
symmetrical addressing 598

shared variables 590, 590–594
consumer 591
global variables 590
mailbox

pend 593
post 593

ping-pong buffer 591
see also shared double buffer

producer 591
ring buffer 593
shared buffer 591
shared double buffer 591

sharing resources 589
intrinsic type, C Language 245, 250, 252
I/O subsystem 3, 716

busses
bidirectional 372, 742

break-before-make 743
debugging

system inputs and outputs 439
device driver 717
distributed tasks 716
I/O device interface

generating signals
analog 790–796
digital 812–824

Local Device Model 716
remote 716
Remote Device Model 716

IP-intellectual property 404, 414
IR-Instruction Register 39
ISA-Instruction Set Architecture 3, 18–34
ISR-Interrupt Service Routine 321, 560
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J
J type thermocouple 713
JTAG port 495

K
kernel 552, 557–564

context switch
interrupt 560
ISR-Interrupt Service Routine 560

responsabilités 552
key-agreement protocol 392
knee frequency 901

L
latch 110, 115

gated 131
hold time 131
propagation delay 132
setup time 131

latency, memory subsystem 176
Lattice Semiconductor 879
leakage 700
LED-Light Emitting Diode 517, 821

displays 821
seven segment 822

common anode 822
common cathode 822

drivers 822
BCD to Seven Segment Decoder 822

Blank Input 822
Lamp Test 823

open collector 823
open drain 821

Lenz’s law 80
LFSR-Linear Feedback Shift Register 122
libraries, C language 272

custom 272
standard 272

library functions, C language 280
library module, C Language 247
life cycle 408

design process 414
six steps to design 413
models 408

Rapid Prototyping model 412–413
Spiral model 411–412
V-Cycle model 410–411
Waterfall model 409–410

lifeline, UML 224
LIFO algorithm 197
lightweight redundancy 352

limits.h, C Language header 262
linear codes 358–361

block check codes 361
block check sum 361
block codes 361
Hamming codes 359–361

linearization 810
link error 248
linkage 269
linker 248, 264
linker and loader 247
linker-loader 247
Local Bypass 900
local device model, interprocess communication model

715, 716
control and synchronization 735

asynchronous interchange 745
control event 746
interrupt 747, 749

acknowledge 749
mask register 755
masking 754
nonmaskable 755
single interrupt-multiple devices 754
single interrupt-single device 749
source 750

multiple interrupts 751
sequential interrupts 752
simultaneous interrupts 751
single interrupt 751

message
asynchronous 756
asynchronous transmission 756
bit synchronization 759
bit timing 758
encode the clock 759
full handshake 757
resynchronization 758
strobe 757
strobe and acknowledge 757
synchronization 758
synchronous 759
synchronous transmission 756

polling 747
polling loop 747
polling scheme 748
synchronous 746

information 734
parallel 736
serial 735

information interchange 745
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memory mapped I/O 739, 739–744
bidirectional bus 742

message 759
bipolar encoding 759
Manchester Differential Encoding 760
Manchester Phase Encoding 760
NRZ-non-return-to-zero 760

peripheral processor 744, 744–745
Program Controlled I/O 744
shared variable 745

places 734
enumeration 735
geographic addressing 735

I/O Ports 737, 738, 744
memory address space 737

transport 764
local variables, C Language 567
logic analyzer 495, 530
logic synthesis 1025
loops 923

mutual inductance 924
LSB-Least Significant Bit, Verilog multi-bit

953
lumped 921
lumped model, signal propagation 72

see related distributed model

M
MAC-multiply-accumulate 7
machine code 18
machine language 18, 244
macro processing, C Preprocessor 245
magic number, C Language 259
main(), C Language 248, 296
majority vote 351
make 271
make process 271
makefile 271
malware 271
Manchester Differential Encoding 760
Manchester Phase Encoding 760
MAR-Memory Address Register 39
maximal length sequence 122
maximal length shift register 122
MC/DC 387
MD5 algorithm 392
MDA-Model Driven Architecture 217
MDR-Memory Data Register 193
Mealy machine 116
mean 508
measurement equipment 950

measurements
analog signals 950–956

current 796
measurement 808

resistance 797
measurement 806–807
four wire measurement 807
two wire measurement 806

temperature
measurement 808–809

voltage 796, 797
digital signals 824–781

asynchronous signals 825
metastability 825

buffering 826
duration 824, 825
elapsed time 824
events per time 824
frequency 824, 825
frequency domain 824
period 824, 825
time domain 824

Meeting Real Time Constraints
Deadline Monotonic Analysis 676
Priority Ceiling Protocol 677

memory loading 682
see also performance, analyzing

memory management 165
duplicate hardware context 565
dynamic allocation 165
stack(s) 565
static allocation 165
Task Control Blocks 565

memory map 166, 188
memory mapped I/O, I/O subsystem 739, 790
memory resource management 549
memory storage devices 166–167

DRAM
EEPROM
EPROM
FLASH
PROM
ROM
SDRAM
Semi-static RAM
SRAM

memory subsystem 165
access

control
data line 167
read and write operations 167
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memory subsystem (contd.)
read 167
write 167

address 167
architecture 189

cache 189
CPU registers 189
primary memory 189

also called main memory
secondary memory 189

DRAM-Dynamic RAM 166
dynamic memory allocation 199
general memory interface 167

address inputs 168
control inputs 167, 168
data I/O 170

multiprogramming 201
overlays 201
RAM-Random Access Memory 166
ROM-Read Only Memory 166
SRAM-Static RAM 166
SRAM system 177

architecture 177
swapping 200
terminology

bandwidth 174
block access time 176
block size 174
latency 176
page 176

testing RAM memory RAM
fault model 204
voltage / current model 206

message digest 392
metastable 65
MicroBlazeTM 885, 886
microcomputer 2, 6
microcontroller 2, 7–8, 320
microoperations 34
microprocessor 2, 5–6, 72, 320
microprocessor cores 589, 869
misuse, consumer or operator 334
misusing EIA-232 signals 840
mod demod 838
model, design 949
model of computation 471

characterizing the model
classes of MOCs 494
tools 470

modem 838
Modified Condition / Decision Coverage 383

modulator–demodulator pair 838
monitor, condition variables 615
monitor, critical section 614–616

active 615
body 614
bounded buffer 616
condition variables 615
entry 616
interface 614
mutual exclusion 615
signal 615
signal and continue 616

non-preemptive 615
signal and wait 616

preemptive 615
Moore machine 116
Moore’s Law xlvi
MOS-Metal Oxide Semiconductors 59
MOS technology 59
motor control

DC motor
pulse width modulation 812

drive noise 821
ground bounce 821
isolated subsystem 821
optically coupled 821

motor drive 819
H bridge 819
half H bridge 819

servo motor 816
stepper motor 817

motors 812–814
DC motors 812

brushes 812
commutator 812
rotor 812
stator 812

servo motor 814, 815, 816
stepper motor 814, 817, 819

MSB-Most Significant Bit, numbers 257
MSB-Most Significant Bit, Verilog multi-bit 953
MSI-Medium Scale Integrated Circuits 2
MTBF-mean time between failure 335
multiple file program, C Language 243
Multiple Independent Levels of Security 382
multiple threads 548
multiprocessing 568
multitasking 549
mutual capacitance 70
mutual inductance 70
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N
namespace, C Language 251
natural language 423
necessary and sufficient conditions, deadlock 625
needs, customer

perceived 404
real 404

net, collection of signals 93
new markets 404
new technology 404
nibble 255
NIST-National Institute of Standards and Technology

810
NMOS 60
NMR-N Module Redundancy 351
noise see combinational logic, noise
nonlinear devices, sensors and transducers 810
nonmonotonic edges 937
non-repudiation 394
NRZ-non-return-to-zero 760
null character, C Language-stddef.h 295
null pointers, C Language 295
numbers, representing 8

big endian 9
little endian 9

numbers, working with 9–12
propagation of error

addition 11
multiplication 12

resolution 10
rounding 10
truncation 10

O
O(N) 654
O(N2 ) 654
O(Nlog(N)) 654
object code 245
object relationships, UML

associations 217
Oersted’s Law 80
old markets 404
old technology 404
OMG-Object Management Group 217
onion model 244
operating system 541–570

architecture 553
virtual machine model 553

asynchronous system I/O 557
concurrent task execution 545
Entry or Job Queue 556

functions
communication 552
dispatch 552
schedule 552

memory management 564–570
context switch 569
duplicate hardware context 565
stack(s) 567

activation record 567
application stack 569
empty, stack location 568
multiprocessing stack 568
runtime stack 568
stack frame 567
stack pointer 568

Task Control Blocks 567
multiprocess-single thread 549
multiprocess-multithread design 549
multitasking 545
multithreaded 549
RTOS-Real-Time Operating System 541

firm real-time 575
hard real-time 575, 577
soft real-time 575, 577

single process-multithread 549
single process-single thread 549
task state

ready 567
thread of execution or control 663

operating system, target 246
OSI-Open Systems Interconnection model 765–769

application layer 768
data link layer 767

acknowledgment frame 767
data frame 767
frames 767

network layer 767
physical layer 767
presentation layer 768
session layer 767
transport layer 767

OSI network architecture 846
overlays 189

P
packet 773
page, memory subsystem 188
PAL-Programmable Array Logic 875
parallel circuit board traces 74
parameter list 296

see also function signature
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parasitic
capacitor 90
components 85
device 72
resistor 72

parity 358
odd 358

partitioning the system 403
passing arguments 283

by reference 320
by value 320

PCB-Process Control Block 555
see also TCB-Task Control Block

performance 249, 645, 646
average case 647
best case 647
boundary conditions 651
worst case 647

performance analysis techniques
instrumentation 681
simulation 680

models
analytic / structural 681
conceptual / behavioral 681
data 681
functional 681
physical 681
system level 681

performance, analyzing
CPU utilization 577
memory loading 646, 682

memory map 682
response time 672
time 671

co-routine 637
execution time 671
interrupt driven environment 674
metrics 671
non-preemptive schedule 675
polled loops 673

external hardware device delay 673
flag time 674
processing time 674

preemptive schedule 674
context switch 674
interrupt latency 675
task execution 675

response time 671
throughput 671

time loading 646, 672, 679
instruction counting 680

periodic systems 680
sporadic 680

performance, evaluating 684–685
analytical modeling 684
measurement 684
simulation 684

performance, optimizing 646, 686–709
common mistakes 686
hardware accelerators 692
power consumption 693

caches 708
reducing power consumption 701

questions 747
tricks of the trade 687–691

periods processing 363
peripheral processor, I/O subsystem 729, 744
persistence 216, 217
Philips Semiconductor 855
photons 58
physical environment 716
physically distributed systems 216
PLA-Programmable Logic Array 874, 875
Platform StudioTM 834
PLD-Programmable Logic Device

architecture 879
bidirectional input and output 875
CPLD 879, 881–882
FPGA 879, 882–885
invertible outputs 873
latched or registered outputs 873
latched or registered tristate output 873
macrocell 880
PLD 879, 879–880
registered output macrocell 881
tristate output driver 882
unidirectional combinational output 872
unregistered output macrocell 880

categories
PAL-Programmable Array Logic 876
PLA-Programmable Logic Array 876

also FPGA
PLS-Programmable Logic Sequencer 876
PROM-Programmable Read Only Memory 876

design examples
Lane Departure Detection 885–888

design 887
Fast Simple Link 887
Hough Transform 887
MicroBlazeTM processor 887
requirements 887
Sobelerator hardware accelerator 887
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test 888
LATS-Local Area Tracking System 888

design 890
requirements 889
system description 889
test 890
test plan 890

design process 885
design specification 885
requirements specification 885
timing specifications 885
vendor’s tools 885

PLL-phase locked loop 135, 761
PLS-Programmable Logic Sequencer 874
PMOS 60
PN-Pseudo Noise sequences 122
Point to Point Wiring 917

electromagnetic interference 911
signal distortion 924

pointer, C Language 285
address of operator ( & ) 286
arithmetic 290
comparison 293
declaration 287
dereference operator ( * ) 287, 288
function 279, 296–301
struct 311
variable 285, 285–290, 296

poll 594
poll task 594
POR-Power ON Reset 120

debug 349
port shadow 281
portable source code 246
post sales support 405
POTS-Plain Old Telephone System 838
Power and Ground Planes 905
power consumption 707

idle state 697
maximum dynamic 697
normal dynamic 697

power gating 695
zero-delay 696

power management 646
power states 693

power off 693
power on dynamic 693
power on static 693
zero reference 693

preprocessing 248
preprocessor, C Language 245

primitive polynomial 123
printed circuit trace 71
private key 391
problem solving 413
process 543, 550

see also task
process scheduling 545
process state 544
processing modules 784
product life cycle 407
production test 511
program 245
program build process 268
program controlled I/O 738
program counter 665
programmable 414
programmable technologies 869

(re)programmable logic 869
programmable ROM 869

EEPROM-electrically erasable 877
EPROM, EEPROM, and FLASH 877
EPROM-erasable PROM 877
FLASH 879
floating gate 877

SRAM 877
programming languages

C 245
C++ 244
Java 244
Verilog 949

PROM-Programmable Read Only Memory 869, 874
propagation delay, modeling 69, 132

inertial delay 67
transport delay 67

prototype 404
evolutionary 412
throw away 412

PSOC-Programmable System on a Chip 870
public interface 218
public key 391
PWM-Pulse Width Modulation 814

Q
quality 334, 405
quality factor 88

R
Radio Engineer’s Handbook 922
RAG-Resource Allocation Graph 634

assignment edge 628
request edge 628
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RAS Cycle Time 181
rate multiplier 136
rate-monotonic

CPU utilization bound 584
RCS-Revision Control System 342
reactive system 573
Readers and Writers Problem 612–614
real-time xxxvi
real-time system xxxvii

firm real-time xxvii
hard real-time xxxvii
soft real-time xxxvii

reduced instruction set computers 16
redundancy

same design 351
redundant paths of control 525
reflection coefficient 928
register 6, 16, 34, 111, 116, 244

internal 6
operations 35

counting 35
incrementing / decrementing 35
parallel write 35
read 35
serial write 35
shifting 35

shift register 111, 112
width 116

register transfer language 36
reliability 321, 334–337, 405

bad examples 337–338
Ariane 338
Mars Pathfinder 338
rover Spirit 339

detecting faults 337
fault tolerant 337
managing faults 337
potential faults 337
redundancy

alternate designs 351
lightweight 352
monitor only 352

safe design 337
relocatable code 247, 248
remote device model, interprocess communication model

762, 771
client-server model 769
control and synchronization 764

atomic multicast 781
call semantics

call at least once 780

idempotent 780
call at most once 780
casual-ordering 782
continuous RQ 777
header 772
Idle RQ also stop-and-wait 777
length field 772
messages

control and synchronization 771
Receive 763
Send 763
start and end identifiers 772
start identifier 772
transfer

acknowledged datagram 773
best effort 773
circuit switching 772
connection oriented 772
connectionless 772
datagram 773
packet switching 773
reliable exchange 772
request-reply 773

distributed tasks 762
failure 775
group multicast model 770
information

discovery query 781
I-am-up message 779
maybe call semantics 780
messages 745, 771

structure
addressing 771
datagrams 771
header 771
information 771
packets 771
payload 771

protocol 764
protocol stack 771
reliable multicast 781
remote procedure call 775
request-reply-acknowledge protocol 779
RPC-remote procedure call protocol service

announcement 781
totally-ordered multicast 782

peer to peer model 769
places 763, 778

channel or port 763
mailbox 778

service consumer 764
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service provider 764
transport 764

bind 783
named pipes 782
pipes 782
receive 777
send 777
socket 782
socket descriptor 783
stream 782

stream end 784
also called driver end
stream head 784
stream module 784
also called processing modules

remote tasks 773
addressing schemes 771
at most once semantics 775
atomic transactions 775
binding service 775
blocking receive 775
client stub 776
communication driver 775
data 734
interface language processor 775
marshalling 777
parameter passing

by reference 776
by value 776

procedure call 775
remote 775

repeated execution 774
reply message 776
request message 775
request-reply protocol 775
RPC-remote procedure call 775
RPI-remote procedure invocation 775
unmarshalling 776

rendezvous 223, 599
reprogrammable technologies 877–879
requirements management 403
Requirements Specification 425
reset system 516
residual 508
resistive material 71
resistor

behavior with frequency 71–73
IC pin 71
parasitic 72
printed circuit trace 71
wire 71

resolution 508, 791
resource contention 545
response time 580

see also performance, analyzing
return action, UML call and return 224
return address, function call 299
return path discontinuities 937
right hand rule 78
ringback 937
risk 333
Ritchie, Denis 378, 784
RMS-root mean square 508
robust 234, 405
ROM-Read Only Memory 166, 168, 248

structure 168
ROM-Read Only Memory-Read cycle 169
routers 395
row address bits, DRAM memory 183
row refresh operation, DRAM memory 184
RS-232 837

also called EIA-232
RTL-Register Transfer Level xlii 1, 36–38, 956
RTN-Register Transfer Notation 36
RTOS-Real-Time Operating System xxxviii, 542

S
SA-analog to digital convertor design

successive approximation 801–804
safe design

alarm subsystem 347
bug lists 344
busses 353

multidrop 353
ring 354
star 353

clock subsystem 349
code inspection 343
code walkthrough 343
communications subsystem 349
egoless design 343
errors 344
identify the hazards 340
main control function 347
memory and bus subsystem 348
peripheral device subsystem 349
phase of the moon errors 344
power subsystem 349

backup operation 369
reduced operation 368
redundant power subsystem 368
UPS-uninterruptible power source 367
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safe design (contd.)
requirements 342
review process 343
safety measures 340
system 333, 334, 408
system architecture 350
variable typing 347

safety 331, 333–334, 404
safety agencies 341
safety and reliability 502
safety hazards 333
sample and hold

design considerations
acquisition time 804
aperture time 804
aperture uncertainty 804
dielectric absorption 804
droop rate 804

sample and hold circuit 804
saturation arithmetic 7
scan design testing 531

normal mode 532
scan in input 531
scan out output 531
select input 531
test mode 531

scheduler 552
scheduling 542, 546
scheduling algorithm evaluation 586–589

analytic evaluation 586
deterministic modeling 586
implementation 589
Little’s formula 588
simulation 589

scheduling algorithms 580–586
asynchronous interrupt event driven 580
earliest deadline 584
first-come first-served 583
foreground-background 583
interrupt event driven 583
least laxity 555
maximum-urgency-first 585

critical 585
criticality parameter 585
non-critical 585

optimal 555
polled algorithm 581
priority schedule 583
queueing models 588
rate-monotonic 583

CPU utilization bound 584

blocking 584
non-blocking 584

critical zone theorem 584
stable 584
static/fixed scheduling 584

real-time considerations 586
preemption

conflict phase 586
dispatch phase 586

preemption points 586
resource reservation 586

round robin 583
state based 581
synchronous interrupt event driven 582
time shared system 582
timing signal 582

Schottky 121
scope, name or identifier 261, 262, 261–263

file 262, 263
global 263
local 262
program or global 262

SDRAM-Synchronous DRAM 166, 181
second order RLC circuits 87
second right answer 406
Secure Operations Center (SOC) 392
Seebeck, Thomas Johann 808
Seebeck Effect 808
Seebeck thermal emf 808
self-diagnosing / correcting system 337
self-inductance 79
self test 537

see also BIST-Built in Self Test
semaphore, critical section 607–601

binary semaphore 609
busy waiting 609
counting semaphore 609
proberen-to test 608

see also semaphore, critical section, wait
process synchronization 609
ready 609
set 608
signal 609
spin lock 609
test 608
TS, TAS, TNS test and set operation 576
verhogen-to increment 607

see also semaphore, critical section, signal
wait 609
waiting 609
wakeup 609
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Semi-static RAM 166
send action, UML interaction diagram 225
sensors and transducers 745
sequence diagram, UML 225

Focus of Control 225
Lifeline 225

Messages 225
Object 225

sequential circuit 111
see also FSM-finite state machine

sequential execution 216
Severance, Aaron 886
shared double buffer 591–593
shared variables 790
sharing resources 542, 549, 551
shift register 117–124

LFSR-linear feedback 122
PISO-parallel in / serial out 121
pseudo-random 122
right shift by one-four bit shift register 119
shift right 117
SIPO-serial in / parallel out 121

short circuit fault, debug and test 94
sign bit, representing numbers 253
signal integrity 909

check list 943
signaling problems 911

aperture time 912
attenuation 912
capacitive loading 911
crosstalk 912
cycle to cycle jitter 912
ground bounce 913
jitter 912
noise 911
nth-cycle jitter 912
period jitter 912
reflection 912
ringing 912
switching noise 911
transmittter output jitter 913

signals
analog 789
digital

fall time 65
frequency domain 789
rise time 65
time domain 789

transport mechanism 789
Silicon Valley 414
simplex architecture 838

single point failure 351
skin depth 83
skin effect 83
SMART-Smart Memory Allocation for Real-Time 709
smoke test 514
soft real-time system xxxvii
software 4
software modeling 213
Software Specification 418
software vulnerabilities 378

malware 381
stack frame 379

source file 245
Sources 693
specification 249, 382

functional 428
operational 428
technological 428

electrical infrastructure 440
geographical constraints 440
interface signals 440
temporal constraints 440
user interface 440

SRAM-Static RAM 166
SRAM system

architecture
address register 180
data register 180
memory array 179

control
chip select 177
output enable 177

read cycle 177
write cycle 177

SSI–Small Scale Integrated Circuit 2
stack 30, 249, 284, 290

frame 299
see also activation record

overflow 300
pop 30
push 30
stack pointer 30
top 30

Standard Test Access Port and Boundary-Scan Architecture
150

start bit, EIA-232 842
state chart diagram, UML 228, 229

composite states 232
concurrent substates 233
deferred event 231
entry action 231
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state chart diagram, UML (contd.)
event(s) 230

call event 230
change event 230
signal 230
time event 230

exit action 231
guard condition 231
history substate 232
sequential substates 232
state 230
transition

triggerless 230
state diagram 113

arc 113
edge 113

head 113
tail 113

graph 113
cyclic graph 113
directed 113

head
final state 113

node 113
tail

initial state 113
vertex 113

state machine 229
see also FSM-finite state machine

state table
state

next 126
present 126

state variable 112
static external variables, C Language 270
static structure 215
stddef.h, C Language header file 295
stem 93
stem, signal origin 93
STI-statistical tolerance interval 508
stop bit, EIA-232 842
storage class, C Language 270

auto 263
extern 263
extern qualifier 265
register 263
static 263
typedef 263
volatile 263

stress testing 509
struct, C language 279, 311–319

anonymous 311
composition 314
data member access 313
data members 311
functions 315
header file 316
implementation file 316
initialization 315
memory address 318
operations 314
pointer to

accessing members 318
struct keyword, C Language 310
structural faults 93
structure, C language

tag 311
Structured Design 233
stuck-at fault model 93
stuck-at-one (s-a-1) 93

faults 95
stuck-at-one (s-a-1) faults 95
stuck-at-zero (s-a-0) 93
stuck-at-zero (s-a-0) faults 93–94
style 249
sub-channel cables 853
sum of products form 871

also called minterm form
symbol table 248
symbolic constant, C Language 251
symmetric-key 391
synchronization 599
synchronizing 542
synthesize, design 949
system
reactive 574
time based 574

aperiodic 574, 576
delay 574
execution time 574
firm real-time 575
hard deadline 574
hard real-time 575
interarrival time 576
jitter 574
periodic 574, 575
predictability 575
soft real-time 575

system architecture
physical architecture 470
structure 403, 471

system busses 4
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address 4
control 4
data 4
width 4

system design and development 403
System Design Specification, life cycle 441
System Requirements Specification, life cycle 423,

433
System requirements versus system design Specifications

448
system security 358
System Specification, life cycle 495
system state 112
System Test Plan, life cycle 509
System Test Specification, life cycle 509

T
Target Low Power 693

addressing dynamic power consumption-hardware 645,
702

addressing dynamic power consumption-software 645,
706

dynamic power consumption 645, 696
dynamic voltage and frequency scaling 705
static power consumption 693, 694, 695
zero power consumption 645, 693

target machine 245 246
target microprocessor 246
task 216, 495, 516

also called process
background 541
child processes 550
context 551
context switch 548
execution schedule 552
execution time 544
foreground 541
intertask communication 554
multiple threads 550
PCB-Process Control Block 555

see also TCB-Task Control Block
persistence 216, 544
privilege level 550

supervisor mode 550
user mode 550

re-entrant code 551
relative 574
scheduling 577
scheduling strategy 546

foreground / background model 551
multiprogramming 546

real-time 546
time-sharing 546

state
restored 546

task scheduling
also called process scheduling
blocking 546, 579
deterministically schedulable 581, 586
device queue 580
entry queue 580
I/O queue 580
non-preemptive 578
preemptive 578
priority 578
ready queue 579
schedulable 585
scheduling algorithms

shortest job first 587
scheduling criteria 578–580

priority 578
priority inversion 579

response time 580
throughput 579
turnaround time 579
waiting time 580

scheduling decisions 578
time quantum 583

TCB-task state
blocked 547, 579
dormant 556
execute 556
preempted 567
ready 556, 567, 578
ready waiting 578
run 545
running 578
terminated 547

terminates 544
task management

foreground / background model 551
operating system 551

TCB-Task Control Block 555, 556
also called PCB-Process Control Block

TCP/IP-Transmission Control Protocol / Internet Protocol
760, 765

TCP/IP model
application layer 768

IP-Internet Protocol 767
host to network 767
internet layer 767
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transport layer 768
TCP-Transmission Control Protocol 768
UDP-User Datagram Protocol 768

TCP/IP network architecture 768
temperature

measurement 808–812
sensors

RTD-Resistance Temperature Detector 806
thermocouples 808

thermocouple 810
reference junction 810

temporally distributed systems 216
test

see also testing
cases 509, 512
coverage 512
equipment 940
limits 508

test application 891
test procedure 509
Test Specification 509
test stimuli 511
test suite 512
test vectors 512
testing 91, 507, 508

alpha test 536
beta test 536
boundary scan testing

INTEST 534
RUNBIST 534

combinational logic
bridge faults 97–99

feedback configuration 97, 99
non feedback configuration 97

forwarded fault 522
indirectly observable signal 521
open circuit faults 93, 96
open gate inputs 90–91
path sensitizing 522

memory 202–198
address decoding logic 204
cell array 204
read/write drivers 204
read/write logic 204

RAM memory 204–208
address bit 206
aliased addresses 205
bit under test 204
bridge fault 204, 205
RAM fault model 204
resistance model 206

stuck-at address line fault 205
stuck-at-0 fault 204
stuck-at-1 fault 204

ROM memory 206–198
CRC-cyclic redundancy check 206
LFSR 206
ROM fault model 206
signature analysis 206

sequential circuits 111–152
boundary scan 149, 152

Instruction Register 150, 151
TCK-Test Clock 150
TDI-Test Data In 150
TDO-Test Data Out 150
TMS-Test Mode Select 150

distinguishing sequence 144
homing sequence 152
initialization sequence 152
scan design 144, 145, 152

scan in 148
scan out 148
scan path 148

strongly connected FSM 144
successor tree 145
terminal states 144
test pattern 143
test sequences 144
test vector 142
transfer sequence, FSM 142
Unit Under Test 142
weakly connected, FSM 144

test category
black box 514
black box tests 514
gray box 514
gray box tests 515
white box 514
white box tests 515

test strategy
black box testing strategy 514
gray box testing strategy 515
white box testing strategy 514

testing memory
soft errors 204

testing, acceptance test 537
thermocouple

sensor, nonlinear 810
thermoelectricity 808
Thevenin 98
Thevenin equivalent impedance 807
Thevenin model 520, 521
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thread 216
heavyweight 547
lightweight 547

thread of control 216
three-way handshake 393
time

absolute 574
duration 574
finite state machine 122
following an interval 574
interval 574
relative 574

time based system 573
time loading 645

see performance, analyzing
timing in latches and flip-flops 131
timing margin 133–134
tools, ASIC design

place and route 870
synthesis 870

top down design 249
top of stack pointer 300
totem pole 60
transducer 222, 719
translation process 245
translation unit, C Language 268
transmission lines 917

biased termination 933
buried 918
characteristic impedance 919
dispersive 918
embedded 918
finite 927
high source impedance 931
lossless 927
low source impedance 931
microstrip 918
model 925
parallel termination 932
propagation delay 927
propagation velocity 927, 939
reflected voltage 928
reflections 929
Source terminated 936
split termination 934
stripline 918
terminated 932
unterminated 921

tristate driver 89–90
TMR-Triple Module Redundancy 350
troubleshooting 96, 507–513

true value of physical quantity 508
TrustZone 395
TTL-Transistor-Transistor Logic 59
Twisted Pair 721, 860
type, C Language 243, 251–261

char integer 255
floating point 253, 256
fundamental 253
integral 251
intrinsic 252
long integer 256
short integer 256
signed 255
unsigned 255

type checking 305
type conversion, C Language

cast 261
explicit cast 261
implicit 261
promotion 261

typedef, C Language 267, 311
typing 347

none 347
strong 347
weak 347

U
UART-Universal Asynchronous Receiver/Transmitter 889
UML-Unified Modeling Language 114, 215
UML interaction 224

Call and Return 224
Create and Destroy 224
Send 224

UML activity diagram 429
UML dynamic modeling 223
UML object diagram 312
underscore, identifiers, C Language 250
unexpected input faults 335, 405
Unified Modeling Language 417
unresolved external reference, linkage 270
up time 334
US/ART-Universal Synchronous / Asynchronous Receiver

Transmitter 842
USB-Universal Serial Bus 845–855

addressing
enumeration 850
reset 850

architecture 846
configuration descriptor 849
device descriptors 849

class Specific descriptors 850
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USB-Universal Serial Bus (contd.)
configuration descriptor 849
endpoint descriptor 849
interface descriptor 849
string descriptor 849

device detachment 854
devices

high speed 848
low speed 848

interface signals 852
bit stuffing 853
differential pair signaling 855
NRZI-Non-Return to Zero Inverted 852
phase locked loop 852

physical environment
cables

TWSP-twisted shielded pair 853
high speed cables 853
low speed cables 853

also called sub-channel cables
low-speed ports 848
power 853

synchronous serial communication 845
USB-Universal Serial Bus device attachment

853
detection 853

USB system
protocol 847

communication pipe 847
driver 847
frames 847
host controller 847
host controller driver 847
IRP-IO Request Packet 847
preamble packet 848
root hub 847
transactions 847

data packet 851
handshake packet 851
packet identifiers 851
token packet phase 851

transfer descriptors 848
transfer types

bulk 848
control 848
interrupt 848
isochronous 848

Use Case 217
Use Case, UML 217

exceptional conditions 219
normal activity 219

user written module, C Language 248
UUT-Unit Under Test 142, 508, 950

also called DUT-Device Under Test

V
Validation Test 536
van Oech, Roger 406
variable, C Language

assignment to 252
identifier 251
initialize 252

variable lifetime 216
variable scope 216
variance 508
VCC, logic supply 516
VCO-voltage controlled oscillator 125, 761
Verification Test, testing 536
Verilog 871, 949
Verilog model

behavioral 949, 966–976
always block 967
begin 951
block

separate flow of control 967
blocking assignment 968
combinational logic 972
continuous assignment 968
delay 969
end 951
flow of control constructs 973

branches 974
event based control 973
if 974
if else 974
level 973
loop constructs 974

for 974
forever 974
repeat 974
while 974

named event 973
OR event 973
regular event 973
switch or case 974

initial block 968
non-blocking assignment 968
parallel block 968
procedural assignment 968
program structure 966
sequential 966
sequential block 968
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behavioral level 956
dataflow 956–967

combinational logic 964
continuous assignment 963
delays 964
operators 966
sequential logic 966

dataflow level 956
gate level 956

see also Verilog, structural
LFSR-Linear Feedback Shift Register 122
RTL-Register Transfer Level 963
sequential, flow 968
shift register 117
structural 949, 956–963

combinational logic 972
//-comment 958
constants 960
creating modules 957
delay 959
endmodule 958
magic numbers 960
module 958
parameter 960
sequential logic 961
symbolic constant 960
using modules 958
wire 959

structural level 956
testing 976

clocks and reset 979
initial block 978
simulation 979
test bench 979
test module 977
UUT 979

Verilog source file 951–956
always block 955
annotation 951
block delimiters 951
case-sensitivity 951
$display 955
@-event control symbol 973
$finish 955
formatString 955
identifier names 951
initial block 955
inputs 952
module 952

name 952

user defined type 951
$monitor 955
nets 953
# operator 959
outputs 952
sequential block 951
$stop 955
$time 956
type

reg 953
wire 953

variables 953
white space 951
wire

multi-bit 954
multibit subset 955

Verilog source program elements 950
system model 950
test bench 950
test modules 950

VHDL 880, 949
VIH 57
VIL 57
virtual machine 765, 767
virtual memory 189
VLSI-Very Large Scale Integrated Circuit 3, 533
VOH-Voltage Output High 57
VOL-Voltage Output Low 57
volatile 263
voltage 57
von Neumann machine 189

input and output 716
vulnerabilities 382

W
watch dog timer 370
weak protection 332
weighted number system 791
white box tests 521

see also testing, test category
Widler, Bob 414
The Working Environment 910

knee frequency 901
the PCB environment 917
The Signaling Environment 937
spectral power density 914

X
Xilinx Spartan-III TM FPGA 888, 889
Xilinx’s StateCADTM 888
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