
Evaluating regression model
performance
Now that we have a machine learning model that is fitted to predict the 3
month customer value, let's discuss how to evaluate the performance of this
model. As discussed previously, we are going to use R2, MAE, and a scatter
plot of predicted versus actual to evaluate our model. We need to get the
prediction output from our model first, as shown in the following code:

train_preds = reg_fit.predict(x_train)
test_preds = reg_fit.predict(x_test)

The scikit-learn package has implemented the functions to compute the R2

and the MAE in their metrics module. You can use these functions by
importing them into your environment, like the following code:

from sklearn.metrics import r2_score, median_absolute_error

As the names suggest, the r2_score function computes the R2 and the
median_absolute_error function computes the MAE. You can compute the R2

and MAE numbers, using the following code:

r2_score(y_true=y_train, y_pred=train_preds)
median_absolute_error(y_true=y_train, y_pred=train_preds)

As you can see from here, both functions take two parameters, y_true and
y_pred. The y_true parameter is for the actual target values and the y_pred
parameter is for the predicted target values. Using these codes, the in-sample
and out-of-sample values for R2 and MAE in our case look like the
following output:





Due to the randomness in splitting the sample set into train and test sets,
your might differ from these results. In our case, the in-sample R2 was 0.4445
and the out-of-sample R2 was 0.7947. On the other hand, the in-sample MAE
was 178.2854 and the out-of-sample MAE was 178.7393. Looking at these
numbers, we do not necessarily see a hint of overfitting or a big gap between
the in-sample and out-of-sample performances. 

Lastly, let's take a look at the scatter plot of predicted versus actual. You can
use the following code for this scatter plot:

plt.scatter(y_test, test_preds)
plt.plot([0, max(y_test)], [0, max(test_preds)], color='gray', lw=1, linestyle='--')

plt.xlabel('actual')
plt.ylabel('predicted')
plt.title('Out-of-Sample Actual vs. Predicted')
plt.grid()

plt.show()

The resulting plot looks as follows:

As you can see from this plot, the x-values are the actual values and the y-
values are the predicted values. As discussed earlier, the more the points that



are on the straight line, the better the predictions are. This is because points
on the straight line suggest that the actual values and the predicted values are
close to each other. Looking at this plot, the points seem to be positioned
around the straight line, which suggests that the predictions and the actual
values are not too far apart from each other.

The full code for this Python exercise can be found at the following repository: https://gith
ub.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.9/python/CustomerLifetimeValue.ipynb.

https://github.com/yoonhwang/hands-on-data-science-for-marketing/blob/master/ch.9/python/CustomerLifetimeValue.ipynb

