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Preface

It is our goal to write a compact, rigorous, self-contained, and accessible
graduate textbook on statistical estimation and inference that reflects the
current trends in statistical research.

The book contains three main themes: the finite-sample theory, the asymp-
totic theory, and Bayesian statistics. Chapters 2 through 4 are devoted to the
finite-sample theory, which includes the classical theory of optimal estima-
tion and hypothesis test, sufficiency, completeness, ancillarity, and exponen-
tial families. Chapters 5 to 6 are devoted to Bayesian statistics, covering prior
and posterior distributions, Bayesian decision theory for estimation, hypothe-
sis testing, and classification, empirical Bayes, shrinkage estimates. Chapters 8
through 11 are devoted to asymptotic theory, covering consistency and asymp-
totic normality of maximum likelihood estimation and estimating equations,
the Le Cam-Hajek convolution theorem for regular estimates, and the asymp-
totic analysis of a wide variety of hypothesis testing procedures. Two chap-
ters on preliminaries are included to make the book self-contained: Chapter 1
contains preliminaries for the finite-sample theory and Bayesian statistics;
Chapter 7 for the asymptotic theory.

The topics and treatment of some material are different from a typical
textbook on statistical inference, which we regard as a special feature of this
book. For example, we devoted a chapter on estimating equations and used
it as a unifying mechanism to cover some useful methodologies such as the
generalized linear models, generalized estimation equations, quasi likelihood
estimation, and conditional inference. We include a systematic exposition of
the theory of regular estimates, from regularity, contiguity, the convolution
theory, to asymptotic efficiency. This theory was then used in conjunction
with the Local Asymptotic Normal (LAN) assumption to develop asymptotic
local alternative distributions and the optimal properties for a wide variety of
hypothesis testing procedures that can be written as quadratic forms in the
limit.
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One of the features of the book is the systematic use of a parsimonious set
of assumptions and mathematical tools to streamline some recurring regularity
conditions, and theoretical results that are fundamentally similar. This makes
the development of the methodology more transparent and interconnected,
and the book a coherent whole. For example, the conditions “differentiable
under the integral sign (DUI)”, and “stochastic equicontinuity” are repeatedly
used throughout many chapters of the book; the geometric projection and
the multivariate Cauchy-Schwarz inequality are used to unify different types
of optimal theories; the structures of asymptotic estimation and hypothesis
testing echo their counterparts in the finite-sample theory.

This book can be used either as a one-semester or a two-semester textbook
on statistical inference. For the two-semester courses, the first six chapters can
be used for the first semester to cover finite-sample estimation and Bayesian
statistics, and the last five for the second semester to cover asymptotic statis-
tics. For a one-semester course, there are several pathways depending on the
instructor’s emphasis. For example, one possibility is to use Chapters 1, 3,
4, 7, 10, 11 for an advanced course on hypothesis testing; another possibility
is to use Chapters 1, 2, 5, part of 6, 7, 8, 9 as an advanced course on point
estimation and Bayesian statistics.

The book grew out of the lecture notes for two graduate-level courses that
we have taught for more than two decades at the Pennsylvania State Univer-
sity. Over this period we have revamped the courses several times to adapt to
the evolving trends, emphases, and demands in theoretical and methodologi-
cal research. The authors are grateful to the Department of Statistics of the
Pennsylvania State University for its constant support and the stimulating
research and education environment it provides. The authors also gratefully
acknowledge the support from the National Science Foundation grants.

State College Bing Li
April 2019 G. Jogesh Babu
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1

Probability and Random Variables

A brief outline of the important ideas and results from classical theory of
measure and probability are presented in this chapter. This is not intended
for the first reading of the subject, but rather as a review and a reference.
Occasionally some proofs are presented, but in most cases they are omitted,
and such omissions are indicated by saying “it is true . . . ”. These proofs are
easily found in standard texts on measure theory and probability, such as
Billingsley (1995), Rudin (1987), and Vestrup (2003). In the last section we
lay out some basic notations that will be repeatedly used throughout the book.

1.1 Sample space, events, and probability

Probability theory has three basic elements: outcomes, events, and probability.
An outcome is a result of an experiment. An experiment here means any action
that can have a number of possible results, but which result will actually occur
cannot be predicted with certainty before the experiment is performed. For
example, tossing a coin is an experiment, and the coin turning up heads is an
outcome; rolling a die is an experiment, and the die turns up 6 is an outcome.
The set of all outcomes of an experiment is the sample space, which is denoted
by Ω. For example, in the experiment of tossing a pair of dice, the sample
space is the set of 36 possible combinations of (i, j), i, j = 1, . . . , 6. A set of
outcomes, or a subset of Ω, is an event. Of course a single outcome is itself an
event, but when we think of it as an event, we think of it as a subset, rather
than an element, of the sample space.

1.2 σ-field and measure

In probability we are concerned with a class of events, which is formulated
as an algebraic structure called the σ-field. Intuitively, a σ-field describes the
world in which events occur, whose likelihood we would like to assess.

© Springer Science+Business Media, LLC, part of Springer Nature 2019
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2 1 Probability and Random Variables

Definition 1.1 A σ-field (or σ-algebra) over a nonempty set Ω is any col-
lection of subsets in Ω that satisfies the following three conditions:

1. Ω ∈ F ,
2. If A ∈ F , then Ac ∈ F ,
3. If A1, A2, . . . is a sequence of sets in F , then

∞∪
n=1

An ∈ F .

A set A in a σ-field F is called a F-measurable set, a measurable set, or
an F-set. It is easy to show that the collection of all subsets of Ω is a σ-field,
and the collection {∅, A,Ac, Ω}, where A ⊂ Ω, is a σ-field. Another simple
example is {∅, Ω}, which is, in fact, the smallest σ-field.

It is true that the intersection of any collection of σ-fields is itself a σ-
field. Let A be a collection of subsets of Ω. Then the σ-field generated by A is
defined as the intersection of all σ-fields that contain A. This is well defined
because the collection of all subsets of Ω, which must contain A, is a σ-field.
If Ω = R

k, the k-dimensional Euclidean space, and if A is the collection of all
open sets in Ω, then the σ-field generated by A is written as Rk. Members of
Rk are called the Borel sets. (Therefore Rk is the collection of all Borel sets).

A set Ω, together with a σ-field F of its subsets, is called a measurable
space, and is written as (Ω,F).

A measure is a mechanism that enable us to assign probability to each
event in a σ-field. It can also be understood as the length, the area, or the
volume, and so on, of a set.

Definition 1.2 A measure μ defined on a measurable space (Ω,F) is a map-
ping μ : F → [0,∞] such that

1. μ(∅) = 0,
2. If A1, A2, . . . ∈ F and Ai ∩ Aj = ∅ whenever i 	= j, then

μ
( ∞⋃

n=1

An

)
=

∞∑
n=1

μ(An).

A measure μ is called a σ-finite measure if there is a sequence of F-sets
{An} such that Ω = ∪∞

n=1An and μ(An) < ∞. It is called a finite measure
if μ(Ω) < ∞. It is called a probability measure if μ(Ω) = 1. There is no
essential difference between a finite measure and a probability measure; the
latter is introduced simply to conform to our daily convention that the largest
probability is 100%.

A set Ω, together with a σ-field F of its subsets, and a measure μ defined on
(Ω,F), is called a measure space. In the special case where μ is a probability
measure on F , (Ω,F , μ) is called a probability space. Often P is used, instead
of μ, to represent a probability measure.

Example 1.1 It is true that there exists a unique measure λ on (Rk,Rk) such
that for each open rectangle A in R

k, λ(A) is the volume of the rectangle. This
measure is called the Lebesgue measure.
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Example 1.2 Consider the measure space (R,R, λ), where λ is the Lebesgue
measure. Then λ is σ-finite: let An = (−n, n), then

∞∪
n=1

An = R, λ(An) < ∞.

Example 1.3 Let Ω = {ω1, ω2, . . .} be a countable set. Let F be the class of
all subsets of Ω. Then F is a σ-field. Let μ : F → R be defined as follows:
for any subset A of Ω, μ(A) = the number of elements in A. Then it is true
that μ is a measure on F . This measure is called the counting measure.

1.3 Measurable function and random variable

Let (Ω,F) and (Ω′,F ′) be two measurable spaces. Let f : Ω → Ω′ be a
mapping from Ω to Ω′. For any set A′ ⊆ Ω′, let f−1(A′) denotes the set
{ω ∈ Ω : f(ω) ∈ A′}. Suppose we have a measure μ on (Ω,F). Then we could
measure any set A in F by μ(A). But can we somehow use μ to measure any
set A′ in F ′? One possibility is to use the measure μ of the set in Ω that
maps to A′. To do so we need this set, f−1(A′), to be in F . This motivates
the following definition of the measurability of f .

Definition 1.3 The mapping f is measurable F/F ′ if, whenever A′ ∈ F ′,
f−1(A′) ∈ F .

Suppose (Ω′,F ′) = (Rk,Rk). If f : Ω → R
k is measurable F/Rk, then

we will say f is measurable with respect to F , or measurable F , or, simply,
measurable.

As mentioned at the beginning of this section, if μ is a measure on (Ω,F),
then any mapping f : Ω → Ω′ that is measurable with respect to F/F ′

induces a measure on F ′, in the following way. For any A′ ∈ F ′, define the
set function

ν(A′) = μ(f−1(A′)).

It is true that ν is a measure in (Ω′,F ′). This measure is written as μ ◦ f−1.
Suppose that (Ω,F , μ) is a measure space, and (Ω′,F ′) is a measurable

space. Suppose that the function f : Ω → Ω′ is measurable F/F ′. Let B ∈ F ′.
We say that f ∈ B almost everywhere μ (a.e. μ) if

μ({ω ∈ Ω : f(ω) /∈ B)}) = (μ ◦ f−1)(Bc) = 0.

If P is a probability measure, then f ∈ B almost everywhere P is also called
f ∈ B almost everywhere P . Note that in this case, P ({ω : f(ω) /∈ B}) = 0 is
equivalent to P ({ω : f(ω) ∈ B}) = 1.

For convenience, we abbreviate sets such as

{ω : f(ω) /∈ B}, {ω : f(ω) ∈ B}
as {f ∈ B} and {f /∈ B}.
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In the context of probability theory, a mapping X : Ω → R
k that is

measurable with respect to F/Rk is also called a random vector. If k = 1,
then the mapping is called a random variable. For general measurable spaces
(Ω,F) and (Ω′,F ′), a mapping X : Ω → Ω′ that is F/F ′ measurable is
called a random element. The notation X(ω) represents an evaluation, or a
realization, of an element ω ∈ Ω.

Suppose that X = (X1, . . . , Xk)T is a k-dimensional random vector on
(Ω,F , P ). Then X induces a probability measure, P ◦X−1 on Rk. We call this
probability measure the distribution of X, and write it as PX . Let a1, . . . , ak

be numbers in R and let a = (a1, . . . , ak)T . The function FX : R
k → [0, 1]

defined by

FX(a) =P ({ω : X1(ω) ≤ a1, . . . , Xk(ω) ≤ ak})
=PX({x : x1 ≤ a1, . . . , xk ≤ ak})

is called the cumulative distribution function of X. Evidently, the measure PX

uniquely determines the function FX through the above relation. In fact, FX

also uniquely determines PX . For this reason FX is also called the distribution
of X.

Let (Ω,F) and (Ω′,F ′) be measurable spaces, and X : Ω → Ω′ be a
random element. Let ΩX be the range of X, {X(ω) : ω ∈ Ω}. Then, regardless
of whether ΩX ∈ F ′, the class of sets {ΩX ∩ A : A ∈ F ′} is a σ-field. We
denote this σ-field as FX , and say that X is defined on (Ω,F) and takes
values in (ΩX ,FX).

The σ-field generated by a random vector X, written as σ(X), is the
intersection of all σ-fields with respect to which X is measurable. Two random
vectors X and Y on (Ω,F) of dimensions k and � are independent if, for any
A ∈ σ(X) and B ∈ σ(Y ), we have P (A ∩ B) = P (A)P (B). It is true that
σ(X) is equal to the collection of sets {X−1(A1) : A1 ∈ Rk}. It follows that X
and Y are independent if and only if, for any A1 ∈ Rk and B1 ∈ R�, one has
P (X ∈ A1, Y ∈ B1) = P (X ∈ A1)P (Y ∈ B1). The independence of several
random vectors, or a sequence of vectors, are defined similarly.

1.4 Integral and its properties

Let (Ω,F , μ) be a measure space. Let {A1, . . . , Ak} be a finite and measurable
partition of Ω; that is, A1, . . . , Ak are disjoint and ∪k

i=1Ai = Ω. Let f : Ω →
R be a nonnegative measurable function (with respect to F). Consider the
following sum

∑
i

[
inf

ω∈Ai

f(ω)
]

μ(Ai) (1.1)

In this summation, μ(Ai) or infω∈Ai
f(ω) are allowed to be ∞, and we adopt

the following convention:



1.4 Integral and its properties 5

⎧
⎪⎨
⎪⎩

0 · ∞ = ∞ · 0 = 0,

x · ∞ = ∞ · x = ∞, if 0 < x < ∞
∞ ·∞ = ∞

(1.2)

The supremum of this sum (1.1) over all finite measurable partitions is
defined to be the integral

∫
fdμ. That is

∫
fdμ = sup

∑
i

[
inf

ω∈Ai

f(ω)
]

μ(Ai).

If this number is finite, we say that f is integrable. If it is ∞, then we say
that f is not integrable, but has integral ∞.

For an arbitrary measurable function f : Ω → R, let f+ be defined by

f+(ω) =

{
f(ω) if f(ω) ≥ 0
0 otherwise

and let f− = (−f)+. Then f+ and f− are nonnegative measurable functions,
and f = f+ − f−. The integral of f is defined as

∫
fdμ =

∫
f+dμ −

∫
f−dμ,

if at least one of the terms on the right is finite. f is said to be integrable if
both terms on the right are finite. If

∫
f+dμ = ∞ and

∫
f−dμ < ∞, then f is

not integrable, but has definite integral ∞. If
∫

f−dμ = ∞ and
∫

f+dμ < ∞,
then f is not integrable but its definite integral is −∞. If both terms are ∞,
then integral of f is not defined.

Let A be a measurable set. Let IA be the indicator function of A; that is
IA : Ω → {0, 1} is defined by

IA(ω) =

{
1 if ω ∈ A

0 if ω /∈ A
.

It is true that fIA is a measurable function if f is measurable. Then
∫

fIAdμ
will be written as

∫
A

fdμ, and is called the integral of f with respect to
measure μ over the set A, whenever it exists.

An integral has the following properties.

Theorem 1.1

1. Let {A1, . . . , Ak} be a finite measurable partition of Ω, and f : Ω → R

be a nonnegative simple function; that is, f(ω) =
∑

i xiIAi
(ω) for some

nonnegative numbers x1, . . . , xk. Then
∫

fdμ =
∑

i xiμ(Ai).
2. If f and g are integrable and f ≤ g almost everywhere, then

∫
fdμ ≤∫

gdμ.
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3. If f and g are integrable and α and β are real numbers, then αf + βg is
integrable and ∫

αfdμ + βgdμ = α

∫
fdμ + β

∫
gdμ.

A property is said to hold almost everywhere with respect to a measure μ
(a.e. μ), if it holds for ω outside a measurable set of μ-measure zero.

Note that, part 2 implies that if f = g a.e. μ, then
∫

fdμ =
∫

gdμ. An
important consequence of part 1 is that, for any A ∈ F ,

μ(A) =
∫

IAdμ =
∫

A

dμ.

That is, the measure of a set A is the integral of the measure over that set.

Theorem 1.2 Suppose that f : Ω → R is measurable and nonnegative. Then

1. f = 0 a.e. μ if and only if
∫

fdμ = 0.
2. If

∫
fdμ < ∞ then f < ∞ a.e. μ.

Corollary 1.1 If f and g are measurable F and integrable μ and if
∫

A
fdμ =∫

A
gdμ for all A ∈ F , then f = g a.e. μ.

Proof. Note that∫
|f − g|dμ =

∫

{f>g}
(f − g) dμ +

∫

{f<g}
(g − f) dμ

Because {f > g} ∈ F and {f < g} ∈ F , the right hand side is zero. Hence∫ |f − g|dμ = 0 which, by part 1 of Theorem 1.2, implies that f = g a.e. μ. �

Corollary 1.2 If f : Ω → F is measurable F and integrable μ, and
∫

A
fdμ ≤

0 for all A ∈ F , then f ≤ 0 almost everywhere μ.

Proof. Since
∫

A
fdμ ≤ 0 for every A ∈ F , we have

∫
f>0

fdμ ≤ 0. Hence∫
I(f > 0)fdμ ≤ 0. But we know that I(f > 0)f ≥ 0. So

∫
I(f > 0)fdμ ≥ 0.

Therefore this integral must be 0. By part 1 of Theorem 1.2, I(f > 0)f = 0
a.e. μ. However, we know that

{ω : I(f > 0)f = 0} = {ω : f = 0} ∪ {ω : f ≤ 0} = {ω : f ≤ 0}.
Therefore, f ≤ 0 a.e. μ. �

Suppose that (Ω,F , P ) is a probability space, and X : Ω → R is a random
variable. Suppose that f : R → R is measurable R/R and that f ◦ X is
integrable with respect to P . Then∫

f ◦ XdP =
∫

f [X(ω)]P (dω)

is called the expectation of f(X), and is written as E[f(X)]. If X2 is in-
tegrable, then E[X − E(X)]2 is called the variance of X, and is written as
var(X).
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1.5 Some inequalities

A set A in a vector space is convex if, for any a1, a2 ∈ A, the line segment

{(1 − λ)a1 + λa2 : λ ∈ [0, 1]}

is in A. A real-valued function f defined on a convex set A is convex if, for
any a1, a2 ∈ A and λ ∈ (0, 1),

f((1 − λ)a1 + λa2) ≤ (1 − λ)f(a1) + λf(a2).

Such a function is strictly convex if the above inequality is strict whenever
a1 	= a2. Let (Ω,F , P ) be a probability space. We say that a probability
measure is degenerate if it is concentrated on a single point. The next theorem
is taken from Perlman (1974).

Theorem 1.3 (Jensen’s inequality) Let f be a convex function defined on
a convex subset C of R

p, and let X ∈ R
p be an integrable random vector such

that P (X ∈ C) = 1. Then

1. E(X) ∈ C;
2. Ef(X) exists and f(E(X)) ≤ E(f(X));
3. if f is strictly convex and the distribution of X is not degenerate then

f(E(X)) < E(f(X)).

Two positive integers, p and q, are called a conjugate pair if 1/p+1/q = 1.
If p = 1, then (1,∞) is also defined as a conjugate pair. Let (Ω,F , μ) be a
measure space.

Theorem 1.4 Suppose (p, q) is a conjugate pair, and f and g are measurable
functions on Ω. Then the following inequalities hold:

∫
|fg|dμ ≤

(∫
|f |pdμ

)1/p (∫
|g|qdμ

)1/q

, (1.3)

and (∫
|f + g|pdμ

)1/p

≤
(∫

|f |pdμ

)1/p

+
(∫

|g|pdμ

)1/p

. (1.4)

The first inequality is the Hölder’s inequality; the second is the Minkowski’s
inequality.

1.6 Logical statements modulo a measure

Recall that a statement holds almost everywhere μ if it holds everywhere
outside a measurable set of μ measure zero. This convention induces a logical
deduction system modulo a measure, which is now developed further for later
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use. Let (Ω,F , μ) be a measure space. Let S be a logical statement. We say S
is a measurable statement if {ω : S} ∈ F . Here, we should always understand
{ω : S} as {ω ∈ Ω : S}. We say that a statement holds for ω′ if ω′ ∈ {ω : S}.
We say that S holds on a subset A of Ω if S holds for every ω ∈ A; that is,
A ⊆ {ω : S}. We say that a statement S holds if it holds for every ω ∈ Ω;
that is {ω : S} = Ω. If a statement holds for ω, then we write S(ω). As an
example, let f : Ω → R be a measurable function. Let S be the statement
that f > 0. Because f is measurable F , f > 0 is a measurable statement.
The sentence “f > 0 holds for ω” means f(ω) > 0. So the symbol, (f > 0)(ω)
means f(ω) > 0.

In measure theory, many statements hold not for Ω but for a subset A of
Ω with μ(Ac) = 0 for a measure μ on Ω. For example, later on we will learn
that if E(X2) = 0, then all we can conclude is P (X 	= 0) = 0. We cannot
conclude X(ω) = 0 for every ω ∈ Ω. If a statement S only holds for ω on a
set A with μ(Ac) = 0, then we say S holds modulo μ, and write

S [μ].

For example, f > 0 [μ] means μ(f ≤ 0) = 0. What is interesting — and
extremely convenient — is that modulo μ statements obey the usual logical
laws, in the sense of the following proposition.

Proposition 1.1 Let S1, . . . , Sk be k logical statements. If, for every ω ∈ Ω,

S1(ω), . . . , Sk(ω) =⇒ S(ω), (1.5)

then S1 [μ], . . . , Sk [μ] =⇒ S [μ].

Proof. The expression (1.5) means that

{ω : S1} ∩ · · · ∩ {ω : Sk} ⊆ {ω : S},
which is equivalent to {ω : S}c ⊆ {ω : S1}c ∪ · · · ∪ {ω : Sk}c. Consequently,

μ({ω : S}c) ≤ μ({ω : S1}c) + · · · + μ({ω : Sk}c).

So if each term on the right is 0 then the term on the left is also 0. �

A practical implication of this proposition is that, when we are dealing
with a finite set of statements each of which holds modulo μ, we can make
logical deductions ignoring μ, and at the end state the conclusion modulo μ.
The premise of this simplification is that the modulus measure to be the same
for every statement involved. For different measures, the following proposition
is helpful.

Let μ and ν be measures on (Ω,F). We say that ν is absolutely continuous
with respect to μ if, for every A ∈ F , μ(A) = 0 =⇒ ν(A) = 0. In this case
we write ν � μ. We say ν and μ are equivalent if ν � μ and μ � ν. We write
μ ≡ ν.
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Proposition 1.2 Suppose ν � μ and S is a logical statement. Then S [μ] ⇒
S [ν]. In particular, if ν ≡ μ, then S [μ] ⇔ S [ν].

The next example illustrates a typical logical deduction modulo a measure
— the type in which we will often be engaged.

Example 1.4 Let ν and μ be two measures defined on a measurable space
(Ω,F) such that ν � μ. Let f1, f2, f3 be measurable functions from Ω → R.
Suppose we know f1f3 = f2f3 [ν] and f3 	= 0 [μ]. Then

f1f3 = f2f3 [ν], f3 	= 0 [ν],

which implies f1 = f2 [ν]. �

1.7 Integration to the limit

Suppose that (Ω,F , μ) is a measure space and f and {fn : n = 1, 2, . . .} are
real-valued measurable functions on Ω. If fn converges (a.e. μ) to a function
f , will the integral

∫
fndμ also converge to the integral

∫
fdμ? This is not

always true. Here is a counter example.

Example 1.5 Consider the measure space (R,R, λ), where λ is the Lebesgue
measure. Let

fn(x) = nI(0,1/n)(x).

Then fn(x) → 0 for all x ∈ R but
∫

fndλ = 1

for all n. Thus limn

∫
fndλ = 1 and

∫
limn fndλ = 0. �

We see that the point-wise convergence does not always imply the con-
vergence of the integral. Nevertheless, under reasonable conditions the above
situation can be ruled out. We now give several sufficient conditions under
which integration to the limit is valid.

Theorem 1.5 (Monotone Convergence Theorem) Suppose that {fn} and
f are measurable F . If 0 ≤ fn ↑ f a.e. μ, then

∫
fndμ ↑ ∫

fdμ.

This is the basic result for integration to the limit, from which other suf-
ficient conditions can be reasonably easily deduced.
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Theorem 1.6 (Fatou’s Lemma) Suppose that {fn} are measurable F and
fn ≥ 0. Then

∫
lim inf

n
fndμ ≤ lim inf

n

∫
fndμ. (1.6)

Proof. Let gn = infk≥n fk. Then 0 ≤ gn ↑ lim infn fn ≡ g. Hence
∫

gndμ ↑∫
gdμ. But gn ≤ fn. So

∫
gndμ ≤ ∫

fndμ. Hence

lim inf
n

∫
fndμ ≥ lim inf

n

∫
gndμ =

∫
gdμ ≡

∫
lim inf

n
fndμ,

as desired. �

Note that, under the conditions of Fatou’s lemma alone, it is not true that
∫

lim sup
n

fndμ ≥ lim sup
n

∫
fndμ. (1.7)

However, if fn ≤ g for some integrable g, then g − fn satisfies the conditions
of Fatou’s lemma, and we have

∫
lim inf

n
(g − fn)dμ ≤ lim inf

n

∫
(g − fn)dμ,

which implies
∫

gdμ −
∫

lim sup
n

fndμ ≤
∫

gdμ − lim sup
n

∫
fndμ.

Since
∫

gdμ is finite, we can cancel it out from both sides of the equality,
which then reduces to (1.7). The directions of the inequalities (1.6) and (1.7)
can be easily memorized if we notice that bringing limit (lim sup or lim inf)
inside an integral makes the integral more extreme (bearing in mind that the
lim sup case requires a dominating functions).

Note that, if lim infn fn = lim supn fn = limn fn, then (1.6) and (1.7)
imply

lim inf
n

∫
fndμ = lim sup

n

∫
fndμ =

∫
lim
n

fndμ.

That is, limn

∫
fndμ exists and coincides with

∫
limn fndμ. Essentially, this

is the argument of the Lebesgue’s Dominated Convergence Theorem, though
a more careful treatment than outlined above would allow us to remove the
requirement fn ≥ 0. See, for example, Billingsley (1995, page 209).

Theorem 1.7 (Lebesgue’s Dominated Convergence Theorem) Let {fn}
be a sequence of measurable functions such that |fn| ≤ g a.e. μ, where g mea-
surable F and is integrable μ. If fn → f a.e. μ, then f and fn are integrable
μ and

∫
fndμ → ∫

fdμ.
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The following theorem is an immediate consequence of Lebesgues’ Domi-
nated Convergence Theorem.

Theorem 1.8 (Bounded Convergence Theorem) Suppose that μ(Ω) <
∞ and that {fn} is a uniformly bounded sequence of measurable functions;
that is, |fn| ≤ C for some C > 0. Then fn → f a.e. μ implies that

∫
fndμ →∫

fdμ.

1.8 Differentiation under integral

Closely related to passing the limit inside an integral is passing a derivative
inside an integral. After all, derivative is a form of limit. So, inevitably, the
verification of the validity of this operation relies on the Dominated Con-
vergence Theorem (Theorem 1.7), whose sufficient condition in this case is
the Lipschitz condition. Differentiation under the integral sign will be used
heavily in the rest of the book. Instead of having to state the complicated
sufficient conditions involved every time we use this, we devote this section to
streamlining the condition of passing a derivative through an integral.

Let (Ω,F , μ) a measure space. Let Θ be an open subset of R
k. Let g :

Ω × Θ → R, and g(·, θ) is measurable for each θ ∈ Θ. Let B be a measurable
set in Ω.

Definition 1.4 Suppose

1. for each x ∈ Ω, g(θ, x) is differentiable with respect to θ, and
[∂g(θ, x)/∂θ]IB(x) is integrable with respect to μ;

2. for each θ ∈ Θ, g(θ, x)IB(x) is integrable with respect to μ the function
θ �→ ∫

B
g(θ, x)dμ(x) is differentiable;

3.

∂

∂θ

∫

B

g(θ, x)dμ(x) =
∫

B

∂g(θ, x)
∂θ

dμ(x). (1.8)

Then we say that g is differentiable with respect to θ under the integral over
B with respect to μ, and state this as “g satisfies DUI(θ,B, μ)”.

The following theorem gives sufficient conditions for DUI(θ,B, μ). It is es-
sentially the dominated convergence theorem applied to quotient. In this case
dominating function is related to the L1-Lipschitz condition. Let ei denote the
p-dimensional vector whose ith component is 1 and the rest of the components
are 0.

Theorem 1.9 Let B be a measurable set. Suppose

1. g(θ, x) is differentiable with respect to θ, and [∂g(θ, x)/∂θ]IB(x) is inte-
grable μ;
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2. there is a function g0(x) integrable μ such that, for each θ1, θ2 in Θ

|g(θ2, x) − g(θ1, x)| ≤ g0(x)‖θ2 − θ1‖

for each x ∈ B.

Then g satisfies DUI(θ,B, μ).

The second condition is simply the L1-Lipschitz condition for the variable
θ.

Proof. Let f(θ) =
∫

B
g(θ, x)dμ(x). Recall that a p-variate function, say f(θ),

is differentiable at θ0 if and only if, for every θ in a neighborhood of θ0, the
function f((1 − t)θ0 + tθ) is differentiable with respect to t at t = 0. Now for
any t ∈ R,

f((1 − t)θ0 + tθ) − f(θ0)
t

=
∫

B

g((1 − t)θ0 + tθ, x) − g(θ0, x)
t

dμ(x).

Since
∣∣∣∣
g((1 − t)θ0 + tθ, x) − g(θ0, x)

t

∣∣∣∣ ≤ g0(x)‖θ − θ0‖

for all x ∈ B, by the dominated convergence theorem (Theorem 1.7),

[f ′
t((1 − t)θ0 + tθ)]t=0 =

∫

B

[g′t((1 − t)θ0 + tθ, x)]t=0dμ(x)

This shows that f(θ) is differentiable at θ0. Now take θ to be ei, i = 1, . . . , p,
to prove the equality (1.8), where ei is the k-dimensional vector with its i
component being 1 and other components being 0. �

1.9 Change of variables

Suppose (Ω,F) and (Ω′,F ′) are measurable spaces, and T : Ω → Ω′ is a
mapping measurable F/F ′.

Theorem 1.10 A function f : Ω′ → R is measurable F ′ and integrable μ ◦
T−1 if and only if f ◦ T is measurable F and integrable μ, in which case

∫

A′
f(ω′)(μ ◦ T−1)(dω′) =

∫

T−1A′
(f ◦ T )(ω)μ(dω). (1.9)

So, the expectation of f(T ) can be represented in various ways:
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E[f(T )] =
∫

f(T (ω))P (dω)

=
∫

f(x)(P ◦ T−1)(dx)

=
∫

y(PT ◦ f−1)(dy),

(1.10)

where PT = P ◦ T−1

Example 1.6 Let (Ω,F , P ) be a probability space and let X : Ω → [0, 1]
be a random variable. Suppose that the distribution PX = P ◦ X−1 has the
following probability density with respect to the Lebesgue measure

f(x) =

{
1 0 ≤ x ≤ 1
0 otherwise

We can find the expectation E(eX) by definition or using the above change
of variable theorem. By definition,

E(eX) =
∫ 1

0

exf(x)dx =
∫ 1

0

exdx = e − 1.

Alternatively, let Y = eX . The range of Y is ΩY = [1, e]. For each a ∈ ΩY ,

FY (a) = P (Y ≤ a) = P (eX ≤ a) = P (X ≤ log a) =
∫ log a

0

dx = log a.

Thus applying the third line of (1.10) we have

E(Y ) =
∫ e

1

y(1/y)dy = e − 1.

We see that both methods give the same answer. �

1.10 The Radon-Nikodym Theorem

Suppose (Ω,F , μ) is a measure space and δ ≥ 0 is a measurable function.
Then it can be shown that the set function

ν(A) =
∫

A
δdμ, for all A ∈ F (1.11)

defines a measure on (Ω,F). The above equation is often abbreviated as

dν = δdμ.

Note that (1.11) implies that if μ(A) = 0, then ν(A) = 0. This leads to the
following definition.
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Definition 1.5 Let μ and ν be two measures on a measurable space (Ω,F).
Then ν is said to be absolutely continuous with respect to μ if, whenever
μ(A) = 0, A ∈ F , we have ν(A) = 0. In this case we write ν � μ.

The next theorem is the Radon-Nikodym theorem, which says that not
only (1.11) implies ν � μ, but the converse implication is also true provided
that μ and ν are σ-finite.

Theorem 1.11 (Radon-Nikodym Theorem) Suppose that μ and ν are
σ-finite measures. Then the following two statements are equivalent:

1. ν � μ,
2. there exists a measurable δ ≥ 0 such that ν(A) =

∫
A

δdμ for all A ∈ F .

By Corollary 1.1, if δ ≥ 0 and δ′ ≥ 0 both satisfy 2 then δ = δ′ a.e. μ.
The function δ is called the Radon-Nikodym derivative of ν with respect to μ,
and is written as dν/dμ. The Radon-Nikodym derivative dν/dμ is also known
as the density of ν with respect to μ. Radon-Nikodym theorem is the key
to many important probability concepts, such as conditional probability and
conditional expectation. The next theorem generalizes the equality

∫
IAdν =∫

IAδdμ to arbitrary measurable functions.

Theorem 1.12 Suppose δ is the density of ν with respect to μ and f is mea-
surable F . Then, f is integrable with respect to ν if and only if fδ is integrable
with respect to μ, in which case∫

A

fdν =
∫

A

fδdμ.

for all A ∈ F .

The next theorem connects three probability measures.

Theorem 1.13 Let P,Q, μ be probability measures on a measurable space
(Ω,F). If P � Q � μ � P , then

μ{p = 0} + μ{q = 0} = 0 (1.12)

P

(
q

p

dP

dQ
= 1

)
= 1, (1.13)

where p = dP
dμ , q = dQ

dμ .

Proof. By Theorems 1.11, and 1.12, we have (1.12), and for all A ∈ F ,

P (B) =
∫

B

dP

dQ
dQ =

∫

B

dP

dQ
q dμ.

By (1.12), the right-hand side can be rewritten as∫

B,p>0

dP

dQ
q dμ =

∫

B,p>0

dP

dQ

q

p
p dμ =

∫

B,p>0

dP

dQ

q

p
dP =

∫

B

dP

dQ

q

p
dP.

The result now follows by another application of Theorem 1.11. �
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1.11 Fubini’s theorem

Let (Ω1,F1, μ1) and (Ω2,F2, μ2) be two measure spaces. Let Ω = Ω1×Ω2 be
the Cartesian product of Ω1 and Ω2. We now describe a σ-field (say F) on
Ω, and a measure μ on (Ω,F).

Let F be the σ-field generated by the set of class

{A × B : A ∈ F1, B ∈ F2}.
A member of the above class is called a measurable rectangle. So F is the
σ-field generated by measurable rectangles. Sometimes the σ-field F is also
written as F1×F2. But note that this is not a Cartesian product in the usual
sense, which would have been {(A,B) : A ∈ F1, B ∈ F2}.

Let E ∈ F . Consider the sections of E:

Eω2 = {ω1 : (ω1, ω2) ∈ E}, Eω1 = {ω2 : (ω1, ω2) ∈ E}.
Theorem 1.14 If E ∈ F , then, for each ω1 ∈ Ω1, Eω1 ∈ F2, and for each
ω2 ∈ Ω2, Eω2 ∈ F1. Moreover, if f : Ω → R is measurable F . Then, for
each ω1 ∈ Ω1, f(ω1, ·) is measurable F2 and for each ω2 ∈ Ω2, f(·, ω2) is
measurable F1.

It is true that the function ω2 �→ μ1(Eω2) is F2-measurable, and the
function ω1 �→ μ2(Eω1) is F1-measurable. Thus the following set functions on
F are well defined:

π′(E) =
∫

Ω1

μ2(Eω1)μ1(dω1), π′′(E) =
∫

Ω2

μ1(Eω2)μ2(dω2), E ∈ F .

It turns out that if μ1 and μ2 are σ-finite, these two set function are in fact
the same function and they define a measure uniquely associated with μ1 and
μ2.

Theorem 1.15 If (Ω1,F1, μ1) and (Ω2,F2, μ2) are σ-finite measure spaces,
then

1. π′(E) = π′′(E) for all E ∈ F ;
2. Let π be this common set function. Then π is a σ-finite measure on F ;
3. π is the only set function on F such that π(A × B) = μ1(A)μ2(B) for

measurable rectangles.

The measure π is called the product measure of μ1 and μ2, and will be written
as μ1 × μ2.

According to this definition and the discussion at the end of Section 1.3,
two random vectors X and Y are independent if and only if their joint distri-
bution is the product measure of their marginal distributions. That is,

P ◦ (X,Y )−1 = (P ◦ X−1) × (P ◦ Y −1).

Fubini’s and Tonelli’s Theorems are concerned with the integration of a
measurable function f defined on Ω with respect to the product measure π.
We first state Tonelli’s Theorem.
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Theorem 1.16 (Tonelli’s Theorem) Suppose that (Ω1,F1, μ1) and (Ω2,F2,
μ2) are σ-finite measure spaces and f : Ω → R is a nonnegative and measurable
(F/R) function. Then the functions

∫

Ω2

f(ω1, ω2)μ2(dω2),
∫

Ω1

f(ω1, ω2)μ1(dω1) (1.14)

are measurable with respect to F1 and F2, respectively, and
∫

Ω1

[∫

Ω2

f(ω1, ω2)μ2(dω2)
]

μ1(dω1) =
∫

Ω2

[∫

Ω1

f(ω1, ω2)μ1(dω1)
]

μ2(dω2)

=
∫

Ω

f(ω1, ω2)π(d(ω1, ω2)). (1.15)

Thus, when f is nonnegative and measurable, its integration with respect
to the product measure can always be computed iteratively with respect to one
measure at a time, and the order of the iterative integration does not matter.
If f is not nonnegative, this is still true but requires the additional condition
that f be integrable with respect to π. This is called Fubini’s Theorem.

Theorem 1.17 (Fubini’s Theorem) Suppose (Ω1,F1, μ1) and (Ω2,F2, μ2)
are σ-finite measure spaces and f : Ω → R is measurable (F/R) and integrable
with respect to π. Then the functions defined in (1.14) are finite and measur-
able on A1 and A2, respectively, with μ1(Ω1 \ A1) = 0 and μ2(Ω2 \ A2) = 0.
Moreover, equality (1.15) still holds.

1.12 Conditional probability

Let (Ω,F , P ) be a probability space, and let A be a member of F . From the
elementary probability theory we know that if B is a member of F such that
P (B) 	= 0, then the conditional probability of A given B is

P (A|B) =
P (A ∩ B)

P (B)
.

We now define the conditional probability of A given a σ-field, which is a
generalization of the conditional probability given a set.

Let G ⊂ F be a σ-field. Let ν be the set function on G given by

ν(G) = P (A ∩ G) for G ∈ G

It is true that ν is a measure on G. The measure P , being a measure on F , is
also a measure on G. Moreover, if P (G) = 0, then

ν(G) = P (G ∩ A) = 0.
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Hence ν � P . By the Radon-Nikodym Theorem there is a nonnegative
function f that is measurable with respect to G such that for all G ∈ G,
ν(G) =

∫
G

fdP . That is

P (G ∩ A) =
∫

G

fdP for all G ∈ G.

Furthermore, by Corollary 1.1, if there is a nonnegative function g that is
measurable with respect to G satisfying the above relation, then g = f a.e.
P . This function f is a version of conditional probability of A given G. More
generally, we have the following definition.

Definition 1.6 Let A ∈ F , and G be a sub-σ-field of F . Then any function
f : Ω → R that satisfies the following conditions

1. f is measurable G and integrable P ,
2. for each G ∈ G,

∫

G

fdP = P (A ∩ G),

is called the conditional probability of A given G, and is written as P (A|G).

We emphasize that the conditional probability P (A|G) is defined as a G-
measurable function rather than a number. Following Billingsley (1995, Sec-
tion 33) we use P (A|G)ω to evaluation of this function at ω. The next theorem
shows that this function resembles a probability even thought it is not a prob-
ability.

Theorem 1.18 The function P (A|G) has the following properties almost ev-
erywhere P :

1. 0 ≤ P (A|G) ≤ 1,
2. P (∅|G) = 0,
3. If An is a sequence of disjoint F-sets, then P (∪nAn|G) =

∑
n P (An|G).

Proof. 1. We know, for any G ∈ G,
∫

G
P (A|G)dP = P (A∩G). Hence, for any

G ∈ G,

0 ≤
∫

G

P (A|G)dP ≤ P (G).

By the first inequality and Corollary 1.2, P (A|G) ≥ 0 a.e. P . The second
inequality implies that

∫
G

(P (A|G)− 1)dP ≤ 0 for all G ∈ G. By Corollary 1.2
again, P (A|G) − 1 ≤ 0 a.e. P . This proves part 1.

2. Since f = 0 satisfies
∫

G

0dP = P (∅ ∩ G)
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for all G ∈ G, f is a version of P (∅|G).
3. Let f =

∑
n P (An|G). Then

∫

G

fdP =
∫

G

∑
n

P (An|G)dP =
∑

n

∫

G

P (An|G)dP

=
∑

n

P (An ∩ G) = P (A ∩ G).

Hence
∑

n P (An|G) is a version of P (A|G). �

Now let X : Ω → R be a random variable. Let B ∈ R. We write

P (X−1(B)|G) = P ({ω : X(ω) ∈ B}|G)

as P (X ∈ B|G). So far we have defined the conditional probability as a G-
measurable function on Ω for a fixed set B ∈ R. Since this construction can
be carried out for each B ∈ R, P (X ∈ B|G) can also be viewed as a mapping
from R × Ω to [0, 1]. By intuition, as B varies in R, and for a fixed ω ∈ Ω,
P (X ∈ B|G) should behave like a probability measure on Ω. If fact, if it
were not for the qualification “almost everywhere P”, Theorem 1.18 amounts
exactly to this statement. This statement is valid in the following sense.

1.13 Conditional expectation

Let (Ω,F , P ) be a probability space and G ⊂ F be a sub σ-field. The defini-
tion of conditional expectation has similar motivation as that of conditional
probability, as demonstrated in the proof of the next theorem.

Theorem 1.19 Suppose that f : Ω → R is measurable F and integrable P .
Suppose G is a sub σ-field of F . Then there is a function f0 : Ω → R such
that

1. f0 is measurable G and integrable P ,
2.

∫
G

f0dP =
∫

G
fdP for all G ∈ G.

Proof. First, suppose that f ≥ 0. Define ν : G → R as the set function

ν(G) =
∫

G

fdP, G ∈ G.

Then, it can be shown that ν is a measure on G. Moreover, if P (G) = 0, then
ν(G) =

∫
G

fdP = 0. Hence ν � P . By the Radon-Nikodym Theorem, there
is a nonnegative function f0 : Ω → R, measurable G, f0 ≥ 0, such that

ν(G) =
∫

G

f0dP for all G ∈ G. (1.16)
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More generally, suppose that f is measurable F and integrable P . Let
f = f+ − f−. Then f+ and f− are also measurable F and integrable P . Let
f+
0 and f−

0 be constructed as above, then f0 is measurable G and integrable
P such that (1.16) is satisfied. �

This leads to the definition of conditional expectation.

Definition 1.7 Let f : Ω → R be a mapping that is measurable F and inte-
grable P . Suppose f0 : Ω → R is a mapping satisfying the following conditions:

1. f0 is measurable G and integrable P ,
2. For all G ∈ G we have

∫
G

fdP =
∫

G
f0dP .

Then the function f0 is called a version of the conditional expectation of f
given G, and is written as E(f |G).

Again, if the sub σ-field G is generated by some random element T , then
the E(f |σ(T )) is abbreviated as E(f |T ). Also notice that E(IA|G) coincides
with the definition of P (A|G).

We now describe several useful properties of the conditional expectation.
The next theorem and corollary connect the conditional expectation and the
projection in L2(P )-space.

Theorem 1.20 Let (Ω,F , P ) be a probability space, and G be a sub σ-field
of F . Suppose f : Ω → R is measurable F/R and integrable with respect to
P . Then the following statements are equivalent:

1. h = E(f |G) [P ];
2. for any function g : Ω → R measurable G/R such that fg is integrable P ,

we have
∫

(f − h)gdP = 0. (1.17)

Proof. 1 ⇒ 2. By 1, for any G ∈ G,
∫

IGhdP =
∫

IGfdP . In other words,
equality (1.17) holds for all indicator functions measurable G. Use three-step
argument to complete the proof of this part.
2 ⇒ 1. Any IG is measurable G such that fIG is integrable. �

Let L2(P ) be the collection of all functions that are measurable F/R and
square-integrable P ; that is,

{f : f measurable F/R,

∫
f2dP < ∞}.

Corollary 1.3 Let (Ω,F , P ) be a probability space, and G be a sub σ-field of
F . Suppose f ∈ L2(P ). Then the following statements are equivalent:

1. h = E(f |G) [P ];
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2. for any function g : Ω → R, g ∈ L2(P ), we have
∫

(f − h)gdP = 0. (1.18)

Proof. We only need to show fg is integrable. This follows from Hölder’s in-
equality (1.3). �

Corollary 1.3 can be interpreted as E(f |G) is the projection of f on to the
subspace of L2(P ) consisting of members of L2(P ) that are measurable with
respect to G. Define the inner product in L2(P ) as

〈f1, f2〉 =
∫

f1f2dP.

Then L2(P ), along with this inner product, is a Hilbert space. Let L2(P |G) be
the subset of L2(P ) consisting of measurable functions of G that are P -square
integrable. Then, it can be shown that L2(P |G) is a subspace of L2(P ). The
identity (1.18) can be rewritten in the form

〈f − E(f |G), h〉 = 0

for all h ∈ L2(P |G). This is precisely the definition of projection of f on to
the subspace L2(P |G). See, for example, Conway (1990, page 10). The next
Proposition is another useful property of conditional expectation.

Proposition 1.3 Suppose U, V are members of L2(P ) and G is a sub σ-field
of F . Then

E[E(U |G)V ] = E[UE(V |G)]. (1.19)

Proof. We have

E[E(U |G)V ] = E{E[(U |G)V ]|G}
= E[E(U |G)E(V |G)]
= E{E[E(V |G)U |G]}
= E[UE(V |G)].

This completes the proof. �

The identity (1.19) can be generalized to random vectors in an obvious
way. This proposition can be interpreted as “the conditional expectation is a
self-adjoint operator.” We can regard A : U �→ E(U |G) as a mapping from
L2(P ) to L2(P ) that transforms any member U of L2(P ) to the member
E(U |G) of L2(P |G). Thus, the identity (1.19) can be rewritten as

〈AU, V 〉 = 〈U,AV 〉,
which is the defining relation of a self-adjoint operator, see for example Con-
way (1990, page 33).
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1.14 Conditioning on a random element

In the last two sections we considered conditional probability and expectation
conditioned on a sub σ-field G of F . We now consider the special case where G
is generated by random elements. Let (Ω1,F1, P ) be a probability space and
(Ω2,F2) be a measurable space. Let T : Ω1 → Ω2 be a measurable function.
Let T−1(F1) denote the collection of sets {T−1(A) ∈ F1 : A ∈ F2}. Recall
that σ(T ) is the intersection of all sub σ-fields of F1 with respect to which T
is measurable. The following fact would be useful.

Lemma 1.1 T−1(F2) = σ(T ).

Proof. It suffices to show the following three statements

1. T−1(F2) is a σ-field;
2. T is measurable T−1(F2)/F2;
3. for each A ∈ F2, T−1(A) ∈ σ(T ).

The details are left as an exercise. �

For a function f : Ω1 → R measurable F1/R, we would like to further
investigate the special conditional expectation E(f |σ(T )), where σ(T ) is the
intersection of all sub σ-field of F1 with respect to which T is measurable.
Recall that E(f |σ(T )) is abbreviate as E(f |T ).

Lemma 1.2 A function h : Ω1 → R is measurable T−1(F2)/R if and only if
there is a mapping g : Ω2 → R that is measurable with respect to F2/R such
that h = g◦T .

A proof can be found in Halmos and Savage (1949). Recall that E(h|T ) is
a function from Ω1 to R that is measurable with respect to T−1(F2)/R. By
the above lemma it can be written as g◦T where g : Ω2 → R is measurable
F2/R. Two functions are of interest here‘: one is the composite function g◦T ,
and the other is the function g itself. We use E(f |◦T ) to denote the function
g. Thus E(f |T ) is defined on Ω1, but E(f |◦T ) is defined on Ω2.

Halmos and Savage (1949) gave the following construction of the condi-
tional expectation E(f |◦T ). See also Kolmogorov (1933).

Theorem 1.21 Let h : Ω1 → R be a measurable, nonnegative function that
is integrable with respect to P . Let Q be the measure on (Ω1,F1) defined by
dQ = hdP . Then

1. Q◦T−1 � P ◦T−1;
2. d(Q◦T−1)/d(P ◦T−1) = E(h|◦T ).

Proof. 1. Suppose A ∈ F2 and (P ◦T−1)(A) = 0. Then P (T−1(A)) = 0. Since,
by definition, Q � P , we have Q(T−1(A)) = (Q◦T−1)(A) = 0.
2. Let g = d(Q◦T−1)/d(P ◦T−1). Then g is a function from Ω2 to R measurable
F2/R. Moreover, for any A ∈ F2 we have
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∫

A

d(Q◦T−1) =
∫

A

gd(P ◦T−1).

By change of variable theorem we have
∫

A

d(Q◦T−1) =
∫

T−1(A)

dQ,

∫

A

gd(P ◦T−1) =
∫

T−1(A)

g◦TdP

So we have
∫

T−1(A)

dQ =
∫

T−1(A)

g◦TdP

But by definition of Q,
∫

T−1(A)
dQ =

∫
T−1(A)

hdP . In other words for any
B ∈ T−1(F2) we have

∫

B

hdP =
∫

B

g◦TdP

So g◦T is a version of E(h|T ). That is, E(h|◦T ) = g. �

To familiarize ourselves with the notation E(h|◦T ), the following relations
are helpful:

[E(h|◦T )](T (ω)) = [E(h|T )](ω),
E(g◦T |T ) = g◦T,

E(g◦T |◦T ) = g,

where, in the second and third equality, g is a function from F2 → R measur-
able F2/R.

1.15 Conditional distributions and densities

Let (Ω,F , P ) be a probability space, where P � μ for some σ-finite measure
μ on (Ω,F). Suppose X and Y are random elements defined on (Ω,F , P ),
with X taking values in (ΩX ,FX) and Y taking values in (ΩY ,FY ). Then
the mapping

FY × ΩX → R, (A, x) �→ P (Y −1(A)|◦X)x

is called the conditional distribution of Y given X. This mapping is written
as PY |X . The conditional distribution PX|Y is defined in the same way.

Because P � μ, we have P ◦X−1 � μ◦X−1, P ◦Y −1 � μ◦Y −1 (Problem
1.8). Let

PX = P ◦X−1, PY = P ◦Y −1, μX = P ◦X−1, μY = μ◦Y −1.
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Let ΩXY = ΩX × ΩY and FXY = FX ×FY . Let (X,Y ) be the mapping

(X,Y ) : Ω → ΩX × ΩY , ω �→ (X(ω), Y (ω)).

Then (X,Y ) is measurable with respect to F/(FX ×FY ) (Problem 1.10). Let
PXY = P ◦(X,Y )−1. Then (ΩXY ,FXY , PXY ) is a probability space, μXY is a
σ-finite measure on (ΩXY ,FXY ), and PXY � μXY . Let

fXY = dPXY /dμXY , fX = dPX/dμX , fY = dPY /dμY .

The function fXY is called the joint density of (X,Y ); fX the marginal density
of X; fY the marginal density of Y . Finally, let

fY |X(x|y) =

{
fXY (x, y)/fX(x) if fX(x) 	= 0
0 if fX(x) = 0

This function is called the conditional density of Y given X. It can be shown
(Problem 1.22) for each A ∈ FY , the function

x �→ ∫
A

fY |X(y|x)dμY (y) (1.20)

is a version of the conditional probability P (A|X). That is, the two mappings

(A, x) �→ P (Y −1(A)|◦X)x, (A, x) �→ ∫
A

fY |X(y|x)dμY (y)

are the same function modulo P .

1.16 Dynkin’s π-λ theorem

Let (Ω,F , μ) be a measure space and G ⊆ F be a sub-σ-field. Let f and g be
G-measurable function and are integrable with respect to μ. We often need to
prove that f = g [μ]. By Corollary 1.1 it suffices to show that

∫
A

fdμ =
∫

A
gdμ, for all A ∈ G. (1.21)

Dynkin’s π-λ theorem is very useful for this purpose. A class P of subsets of
Ω is called a π-system if

A1 ∈ P, A2 ∈ P =⇒ A1 ∩ A2 ⊆ P.

A class of subsets L of Ω is called a λ-system if

1. Ω ∈ L;
2. A ∈ L =⇒ Ac ∈ L;
3. if A1, A2, · · · are disjoint members of L, then ∪∞

n=1An ∈ L.
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Note that a λ-system is almost a σ-field except that the former requires
A1, A2, . . . to be disjoint. So a σ-field is always a λ-system but not vice-versa.
The following theorem is the π-λ theorem; its proof can be found in Billingsley
(1995, page 42).

Theorem 1.22 (Dynkin’s π-λ Theorem) If P is a π-system, L is a λ-
system, and P ⊆ L, then σ(P) ⊆ L.

We can use the π-λ theorem to prove f = g [μ] in the following way. Let
P ⊆ G be a π-system that generates σ-field G and let

L =
{
A ∈ F :

∫
A

fdμ =
∫

A
gdμ

}
(1.22)

If we can show
∫

A
fdμ =

∫
A

gdμ holds on P (that is, P ⊆ L) and L is a λ-
system, then G ⊆ L. That is, (1.21) also holds on G, which implies f = g [μ].

Corollary 1.4 Suppose G ⊆ F is a sub σ-field, f and g are real-valued
functions on Ω that are measurable with respect to G and integrable with re-
spect to μ. Suppose P ⊆ G is a π-system generating G and Ω ∈ P. Then∫

A
fdμ =

∫
A

gdμ for all A ∈ P implies f = g [μ].

Proof. It suffices to show that L defined in (1.22) is a λ-system. Since Ω ∈ P,
Ω ∈ L. If B ∈ L, then

∫
Bc fdμ =

∫
Ω

fdμ − ∫
B

fdμ =
∫

Ω
gdμ − ∫

B
gdμ =

∫
Bc gdμ.

So Bc ∈ L. If A1, A2, . . . are disjoint members of L, then
∫
∪∞

n=1An
fdμ =

∑∞
n=1

∫
An

fdμ =
∑∞

n=1

∫
An

gdμ =
∫
∪∞

n=1An
gdμ.

So ∪∞
n=1An ∈ L. �

1.17 Derivatives and other notations

We will frequently need to take derivative of a vector-valued function with
respect to a vector-valued variable. Let A be a subset of R

p, B a subset of
R

q, and f : A → B a differentiable function. Denoting the argument of f by
θ = (θ1, . . . , θp) and the components of f(θ) by f1(θ), . . . , fq(θ), we adopt the
following convention:

∂f(θ)
∂θT

=

⎛
⎜⎝

∂f1(θ)/∂θ1 · · · ∂f1(θ)/∂θp

...
. . .

...
∂fq(θ)/∂θ1 · · · ∂fq(θ)/∂θp

⎞
⎟⎠ .

The transpose of the above matrix will be denoted by



1.17 Derivatives and other notations 25

(
∂f(θ)
∂θT

)T

=
∂fT (θ)

∂θ
.

This convention also applies to the situation where f depends on another
variable, say x ∈ R

k; that is, f = f(θ, x).
The 3-dimensional array of the second derivatives

{∂2fi(θ)/∂θj∂θk : i = 1, . . . , p, j, k = 1, . . . , p}

will be denoted by ∂f(θ)/∂θ∂θT , which is a p × q × q array.
We will use the letter I or I(θ) to denote the Fisher information (as defined

in Section 2.4). We will use Ip to represent the p by p identity matrix. The
difference between I and Ip should be emphasized: the symbol with a integer
subscript always denotes the identity matrix. In addition, for a set A and a
variable x we use IA(x) to represent the indicator function. We should also
pay attention to the difference between Ip and IA: the former is indexed by
an integer represented by a lowercase letter; the latter is the indicator of a set
represented by an uppercase letter.

Problems

1.1. Let Ω be a non-empty set. Show that the classes of subsets in Ω

F1 ={all subsets of Ω},
F2 ={∅, Ω},
F3 ={∅, Ω,A,Ac}, where A ⊂ Ω

are σ-fields.

1.2. Let Ω be a set. Let F be a finite class of subsets of Ω. Suppose that F
satisfies

1. Ω ∈ F ;
2. If A ∈ F then Ac ∈ F ;
3. If A,B ∈ F then A ∪ B ∈ F .

Show that F is a σ-field.

1.3. Let Ω = R. Let a ∈ R. Show that the set {a} is a Borel set. Let a1, . . . , ak

be numbers in R. Show that {a1, . . . , ak} is a Borel set. Show that the set of
all rational numbers and the set of all irrational numbers are Borel sets. Show
that any countable set in R is a Borel set. A set is said to be cocountable if
its complement is countable. Show that any cocountable set in R is a Borel
set.
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1.4. A number a is algebraic if it is a solution to any equation of the form

m0 + m1x + · · · + mkxk = 0,

where m0,m1, . . . , mk are integers with mk 	= 0 and k = 1, 2, . . .. (For exam-
ple, a rational number is an algebraic number with k = 1). A number that is
not algebraic is a transcendental number. Show that the collection of all al-
gebraic numbers is a Borel set. Find the Lebesgue measure of this set. (Hint:
use the following facts: (i) a kth order polynomial has at most k roots; (ii) a
countable union of countable sets is a countable set.)

1.5. Let Ω1 and Ω2 be nonempty sets, and T : Ω1 → Ω2 is a function. Show
that

1. T−1(∅) = ∅;
2. For any A ⊆ Ω2, T−1(Ac) = [T−1(A)]c;
3. For A ⊆ Ω2 and B ⊆ Ω2, we have T−1(A ∩ B) = T−1(A) ∩ T−1(B);
4. For A ⊆ Ω2 and B ⊆ Ω2, we have T−1(A ∪ B) = T−1(A) ∪ T−1(B);
5. Let C be any non-empty set. If {Ac : c ∈ C} is a collection of subsets of

Ω2, then

T−1(∩c∈CAc) = ∩c∈CT−1(Ac), T−1(∪c∈CAc) = ∪c∈CT−1(Ac).

1.6. Suppose (Ω1,F1) and (Ω2,F2) are measurable spaces, and T : Ω1 → Ω2

is measurable F1/F2. Let T−1(F2) = {T−1(B) : B ∈ F2}. Show that T−1(F2)
is a sub σ-field of F1.

1.7. Let (Ω,F) and (Ω′,F ′) be measurable spaces and T : Ω → Ω′ be a
measurable mapping. Suppose that μ is a measure on (Ω,F). Show that μ ◦
T−1, as defined at the beginning of Section 1.2, is a measure on (Ω′,F ′).

1.8. Suppose (Ω,F) and (Ω′,F ′) are measurable spaces and μ and ν are two
measures defined on (Ω,F). Let X : Ω → Ω′ be a random element measurable
with respect to F/F ′. Show that, if ν � μ, then ν ◦ X−1 � μ ◦ X−1.

1.9. Suppose that (Ω,F) is a measurable space and f : Ω → R is measurable
F/R. Show that f+ and f−, as defined in Section 1.4, are measurable F/R.

1.10. Suppose (Ω,F), (ΩX ,FX), and (ΩY ,FY ) are measurable spaces and

X : Ω → ΩX , Y : Ω → ΩY

are functions that are measurable with respect to F/FX and F/FY , respec-
tively. Show that the function

(X,Y ) : Ω → ΩX × ΩY

is measurable with respect to F/(FX ×FY ).
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1.11. Show that any open set in R can be written as a countable union of
open intervals, and that the class of all open intervals also generates the Borel
σ-field.

1.12. Repeat the above problem with open intervals replaced by sets of the
form (−∞, a], where a ∈ R.

1.13. Let (Ω,F , μ) be a measure space and {fn} is a sequence of measurable
functions from Ω to R. Suppose that fn is decreasing and fn → f a.e. μ.
Suppose, furthermore, that fn is μ-integrable for some n. Use the Monotone
Convergence Theorem to show that

∫
fndμ → ∫

fdμ.

1.14. Let (Ω,F , P ) be a probability space. Let {An : n = 1, 2, . . .} be a
sequence of F-sets. The symbols lim infn→∞ An and lim supn→∞ An stand,
respectively, for the sets

∞⋂
n=1

∞⋃
m=n

Am and
∞⋃

n=1

∞⋂
m=n

Am.

If lim infn→∞ An = lim supn→∞ fn, then we call this common set the limit of
{An} and write it as limn→∞ An.

a. Show that lim infn→∞ An and lim supn→∞ fn are F-sets.
b. Suppose that {An} has a limit limn An = A. Show that inequalities (1.6)

and (1.7) hold for fn and f defined by

fn(ω) = IAn
(ω), f(ω) = IA(ω).

Then use these inequalities to show that limn→∞ P (An) exists and

lim
n

P (An) = P ( lim
n→∞An).

Thus P , as a set function defined on F , is continuous. The above relation is
called the continuity of probability. Evidently, this continuity also applies
to any finite measure μ.

1.15. Deduce the Bounded Convergence Theorem from Lebesgue’s Dominated
Convergence Theorem.

1.16. Let fn(x) be the probability density of N(0, 1/n), and let λ be the
Lebesgue measure. Show that limn

∫
fndλ 	= ∫

limn fndλ.

1.17. Suppose (Ω,F , μ) is a measure space and δ ≥ 0 is integrable with
respect to μ. Then the set function

ν(A) =
∫

A
δdμ

defines a measure on (Ω,F).
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1.18. Suppose that (Ω,F) = (Ω′,F ′) = (R,R). Let T : Ω → Ω′ be defined
by T (x) = x2. Define on (Ω,F) the measure

μ(A) =
∫

A

1√
2π

e−x2/2dλ(x), for any A ∈ F ,

where λ is the Lebesgue measure. How is μ◦T−1 defined in this case? Express
it in terms of its density with respect to the Lebesgue measure. Suppose
f : Ω′ → R is defined by f(y) = sin(y). What does the general formula (1.9)
reduce to in this case?

1.19. Let (Ω,F , P ) be a probability space and X be a nonnegative random
variable. Use Tonelli’s theorem to show that

∫ ∞

0

P (X ≥ t)dt = E(X).

If X is not necessarily nonnegative but has an integral, show that

E(X) =
∫ ∞

0

P (X+ ≥ t)dt −
∫ ∞

0

P (X− ≥ t)dt.

1.20. Suppose that (Ω,F , μ) is a measure space and G ⊂ F is a σ-field. Show
that μ is a measure on G.

1.21. Let (Ω,F , P ) be a probability space and G be a sub σ-field of F . Let
A ∈ F . Use the definition of conditional probability to show that E(IA|G) is
a version of P (A|G).

1.22. Use the definition of conditional probability to show that the set func-
tion defined in (1.20) is a version of the conditional probability P (A|X).

1.23. Let (Ω,F , P ) be a probability space and X be a random variable. Sup-
pose that G1 and G2 are sub σ-fields of F such that G1 ⊂ G2. Use the definition
of conditional expectation to show that

E[E(X|G2)|G1] = E(X|G1) a.e. P.

1.24. Let P1 and P2 be two probability measures defined on a measurable
space (Ω,F). Suppose that P2 � P1. Let δ = dP2/dP1 be the Radon-Nikodym
derivative of P2 with respect to P1. Suppose that δ > 0 a.e. P1. Show that∫

Ω
log(δ)dP1 ≤ 0 unless δ = 1 a.e. P1.

1.25. Let (Ω1,F1) and (Ω2,F2) be measurable spaces and T : Ω1 → Ω2 is
measurable F1/F2. Show that T−1(F2) is the smallest sub σ-field of F1 with
respect to which T is measurable.

1.26. If V ≥ 0 is a random variable and U is k-dimensional random vector,
then μ(B) = E (IB(U)V ) defines a measure on R

k.
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2

Classical Theory of Estimation

This chapter is a compact description of the classical theory of point estima-
tion (see, for example, Lehmann and Casella, 1998). Bias and variance are two
important criteria that characterize an estimator. The classical theory seeks
optimal estimator among the class of all unbiased estimators, in the sense
that it has the smallest variance. The optimal problem involved is intrinsi-
cally connected the notions of sufficiency, minimal sufficiency, completeness,
Fisher information, and Cramér-Rao lower bound. For example, an unbiased
estimator can always be improved by taking its conditional expectation given
a sufficient statistic, and becomes optimal by taking its expectation given the
complete and sufficient statistic. An important class of distributions where suf-
ficient and complete statistics are available is the exponential family, which
will also be covered in this chapter.

2.1 Families of probability measures

Let (Ω,F) be a measurable space. In statistics we do not know the “true”
probability model, or distribution, ahead of time. Instead, we would like to
estimate or infer about this distribution. This can be formulated as choosing
a distribution from a family of distributions. Thus in this section we explore
a variety of notions of families of distributions, which will be frequently used
in subsequent development.

2.1.1 Dominated and homogeneous families

Let M and N be two families of measures on (Ω,F).

Definition 2.1 We say that M is absolutely continuous with respect to N, or
M is dominated by N, if for any E ∈ F ,

P (E) = 0 for all P ∈ N ⇒ Q(E) = 0 for all Q ∈ M.

© Springer Science+Business Media, LLC, part of Springer Nature 2019
B. Li and G. J. Babu, A Graduate Course on Statistical Inference,
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We write this statement as M � N. If M � N and N � M, then we write
M ≡ N.

If M � N and N is a singleton {λ}, then we also say M is dominated by
λ. Furthermore, if both M and N are singletons, say {λ1} and {λ2}, then we
also say λ1 is dominated by λ2 (which agrees with our definition of λ1 � λ2 in
Chapter 1). Here, a useful fact is that a σ-finite measure is always equivalent
to a finite measure. Indeed, let λ be a σ-finite measure on (Ω,F), and let
{A1, A2, . . .} of members of F such that ∪An = Ω and λ(An) < ∞. Without
loss of generality, assume λ(An) > 0 for all n ∈ N. Let cn be a sequence of
positive number such that

∑∞
n=1 cn = 1. Let λ∗ be the set function defined

by

λ∗(A) =
∞∑

n=1

cnλ(A ∩ An)/λ(An),

It is left as an exercise to show that λ∗ is a probability measure, and λ∗ ≡ λ.

Definition 2.2 Let (Ω,F) be a measurable space. We say that a family of
measures M on (Ω,F) is dominated if it is dominated by a σ-finite measure.

A property of a dominated family is that it has an equivalent countable
subfamily. See, for example, Halmos and Savage (1949) and Lin’kov (2005).

Proposition 2.1 Let M be a family of probability measures on a measurable
space (Ω,F). Then M is dominated if and only if it contains a countable set
of probability measures N such that N ≡ M.

Proof. Since any σ-finite measure is equivalent to a finite measure, we can,
without loss of generality, assume the dominating measure λ to be a finite
measure. For each μ ∈ M, let fμ = dμ/dλ, and let Kμ = {fμ > 0}. An F-set
K is called a kernel if there is a μ ∈ M such that μ(K) > 0 and K ⊆ Kμ.
Any countable, disjoint union of kernels is called a chain.

We note that a union of countably many chains is a chain. This is because
such a set is the union of countably many kernels, which need not be disjoint.
Let us write this union as ∪i∈NKi. Let

M1 = K1, M2 = K2 \ K1, M3 = K3 \ (K1 ∪ K2), . . .

Then Mi are disjoint kernels satisfying ∪i∈NMi = ∪i∈NKi. Thus we see that
∪Ki = ∪Mi is indeed a chain.

Now let C be the collection of all chains and let λ◦ = sup{λ(C) : C ∈ C}.
Then there is a sequence {Cn : n ∈ N} such that λ(Cn) → λ◦. Let C◦ =
∪n∈NCn. Since Cn ⊆ C◦, λ(Cn) ≤ λ(C◦), and hence λ(C◦) ≥ λ◦. Since C◦ is
a chain, λ(C◦) ≤ λ◦. So λ(C◦) = λ◦.

Since C◦ is a chain, it can be written as a disjoint union ∪∞
i=1Ki, where

Ki ⊆ Kμi
for some μi ∈ M. Let N = {μ1, μ2, . . .}. Note that μi are probability

measures. We now show that N ≡ M. Since N ⊆ M, we have N � M.



2.1 Families of probability measures 33

To show M � N, let E be a member of F such that μi(E) = 0 for all
i ∈ N. Let μ be a member of M. We need to show that μ(E) = 0. Note that

μ(E) = μ(EKc
μ) + μ(EKμ) = μ(EKμ).

We will show that μ(EKμ) = 0. This measure can be decomposed as

μ(EKμ) = μ(EKμC◦) + μ(EKμ(C◦)c). (2.1)

Suppose μ(EKμ(C◦)c) > 0. Then λ(EKμ(C◦)c) > 0, and hence

λ(EKμ(C◦)c ∪ C◦) = λ(EKμ(C◦)c) + λ(C◦) > λ◦. (2.2)

However, because EKμ ⊆ Kμ, and

μ(EKμ) ≥ μ(EKμ(C◦)c) > 0,

(as implied by λ(EKμ(C◦)c) > 0), the set EKμ(C◦)c ∪ C◦ is itself a chain.
Thus the inequality (2.2) is impossible, which implies λ(EKμ(C◦)c) = 0,
which implies that the second term on the right hand side of (2.1) is 0.

Next, we show that the first term on the right hand side of (2.1) is also 0.
Since μi(E) = 0, we have μi(EKμKi) = 0. In other words

∫

EKμKi

fμi
dλ = 0

Because EKμKi ⊆ Kμi
, the density fμi

is positive on this set. Then the above
equality implies λ(EKμKi) = 0. However, because this is true for all i ∈ N,
we have λ(EKμC◦) = 0. Hence μ(EKμC◦) = 0. �

The next example illustrate the meaning of this proposition.

Example 2.1 Let Ω = (0,∞) and F = R ∩ (0,∞), and consider the family
of distributions M = {Pa : a > 0} defined on (Ω,F), where Pa is the uniform
distribution U(0, a). That is, for any B ∈ F ,

Pa(B) = a−1λ(B ∩ (0, a)),

where λ is the Lebesgue measure. Let λ0 be the Lebesgue measure on (0,∞).
Then it is easy to see that M � λ0. Let N = {Pn : n = 1, 2, . . .}. Let us show
that N ≡ M. Since N ⊆ M, we have N � M. To prove the opposite direction,
let B be a member of F such that Pa(B) > 0 for some a. Let n be an integer
greater than a. Then

Pa(B) > 0 ⇒ λ0(B ∩ (0, a)) > 0 ⇒ λ0(B ∩ (0, n)) > 0 ⇒ Pn(B) > 0.

This shows M � N.
Let us create a probability measure P that is equivalent to M. For any

B ∈ F , let



34 2 Classical Theory of Estimation

P (B) =
∞∑

n=1

2−nPn(B).

Then clearly P is a probability measure on (Ω,F). Furthermore, P (B) > 0 if
and only if Pn(B) > 0 for some n. Thus P ≡ N ≡ M. �

A special case of the dominated family is the homogeneous family. A family
of distribution M on (Ω,F) is homogeneous if any pair of members of M are
equivalent. For example, The family of distributions {N(μ, 1) : μ ∈ R} is a
homogeneous family.

2.1.2 Parametric families

Let Θ be a subset of Rp, and M∗ be the family of all distributions on (Ω,F).
Let P : Θ → M∗ be a function. Then the range of P , M = {Pθ : θ ∈ Θ},
is called a parametric family. A basic assumption for a parametric family is
identifiability.

Definition 2.3 A parametric family {Pθ : θ ∈ Θ} is said to be identifiable if
P : Θ → M∗ is an injection. That is, whenever θ1 = θ2, we have Pθ1 = Pθ2 ,
or equivalently, there is a set B ∈ F such that Pθ1(B) = Pθ2(B).

We say that a family of distributions M on (Ω,F) is a model if the true
distribution belongs to the family M. An important property of an identifiable
parametric family is the likelihood inequality, as given in the next theorem.
In the following, for a random variable Y defined on (Ω,F), we use Eθ(Y ) to
denote

∫
Y dPθ.

Theorem 2.1 Let {Pθ : θ ∈ Θ}, Θ ⊆ R
p, be a homogeneous and identifiable

parametric family dominated by a σ-finite measure λ. Let fθ = dPθ/dλ. Let
θ0 ∈ Θ. Suppose log fθ is integrable with respect to Pθ0 for each θ ∈ Θ. Then,
for any θ = θ0,

Eθ0(log fθ) < Eθ0(log fθ0).

Proof. Since Pθ � Pθ0 , Pθ � λ, and Pθ0 � λ, the Radon-Nikodym derivative
dPθ/dPθ0 is defined and

dPθ/dPθ0 = fθ/fθ0 .

By Jensen’s inequality,

Eθ0 log(fθ/fθ0) ≤ log[Eθ0(fθ/fθ0)] = log
∫

dPθ

dPθ0

dPθ0 = log 1 = 0. (2.3)

By identifiability, whenever θ = θ0, there is a set B ∈ F such that
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∫

B

fθ0dλ =
∫

B

fθdλ.

This implies λ(fθ0 = fθ) > 0. If fθ/fθ0 = c a.e. λ for some constant c, then
fθc = fθ0 a.e. λ. Integrating both sides of this equation with respect to λ
gives c = 1, which implies fθ = fθ0 a.e. λ, which is impossible. Hence fθ/fθ0

is nondegenerate under λ, and hence also nondegenerate under Pθ0 . By The-
orem 1.3, the inequality in (2.3) is strict whenever θ = θ0. �

2.1.3 Exponential families

A parametric family of special interest is the exponential family, which was
introduced by Darmois (1935); Pitman (1936); Koopman (1936). For more
information see also Barndorff-Nielsen (1978); McCullagh and Nelder (1989),
and Lehmann and Casella (1998).

Let (Ω,F) be a measurable space, and (ΩX ,FX , μ) a σ-finite measure
space with ΩX ⊆ R

m and FX ⊆ Rm. Let X : Ω → ΩX be a random vector.
Let t : ΩX → R

p be a function measurable with respect to FX/Rp, such that
∫

ΩX
eθT t(x)dμ(x) < ∞ for some θ ∈ R

p. We say that a measurable function
t : ΩX → R

p is of full dimension with respect to a measure μ on FX if for all
a ∈ R

p, a = 0, and all c ∈ R, we have

μ({x : aT t(x) = c}) > 0.

In other words, t has full dimension with respect to μ if the range of t does
not stay within a proper affine subspace of Rp almost everywhere μ.

Definition 2.4 Suppose (ΩX ,FX , μ) is a σ-finite measure space and t :
ΩX → R

p is a function of full dimension with respect to μ. Let

Θ =
{

θ ∈ R
p :

∫

ΩX

eθT t(x)dμ(x) < ∞
}

.

For each θ ∈ Θ, let Pθ be the probability measure on FX defined by

Pθ(B) =
∫

B

(∫

ΩX

eθT t(x)dμ(x)
)−1

eθT t(x)dμ(x), B ∈ FX . (2.4)

The family of measures {Pθ : θ ∈ Θ} is called an exponential family.

Since an exponential family is determined by μ, t, we denote it by Ep(μ, t),
where the subscript p indicates the dimension of θ. Several properties follow
immediately.

Theorem 2.2 An exponential family is identifiable and homogenous.
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Proof. Let Pθ1 and Pθ2 be two members of Ep(t, μ), and B ∈ FX . If Pθ1(B) =
0, then ∫

B

eθT
1 t(x)dμ(x) = 0.

Since eθT
1 t(x) > 0, we have μ(B) = 0. Since, by (2.4), Pθ2 � μ, we have

Pθ2(B) = 0. Hence Pθ1 � Pθ2 . By the same argument Pθ2 � Pθ1 . So Ep(t, μ)
is homogenous.

If Pθ1 = Pθ2 , then Pθ1(B) = Pθ2(B) for all B ∈ FX . Then

∫

B

(∫

ΩX

eθT
1 t(x)dμ(x)

)−1

eθT
1 t(x)dμ(x)=

∫

B

(∫

ΩX

eθT
2 t(x)dμ(x)

)−1

eθT
2 t(x)dμ(x).

Let b(θ) = log
∫

ΩX
eθT t(x)dμ(x). The above equation implies

eθT
1 t(x)−b(θ1) = eθT

2 t(x)−b(θ2) [μ].

This implies (θ1 − θ2)T t(x) = b(θ1)− b(θ2) [μ]. But since t has full dimension
with respect to μ, we have θ1 = θ2. �

Theorem 2.3 The parameter space Θ for an exponential family Ep(t, μ) is
convex.

Proof. Let λ ∈ (0, 1). Then ((1−λ)−1, λ−1) is a conjugate pair. Let θ1, θ2 ∈ Θ.
Let f = e(1−λ)θT

1 t and g = eλθT
2 t. By Hölder’s inequality,

∫

ΩX

e{(1−λ)θ1+λθ2}T t(x)dμ(x) =
∫

ΩX

fgdμ

≤
(∫

ΩX

f (1−λ)−1
dμ

)1−λ (∫

ΩX

gλ−1
dμ

)λ

=
(∫

ΩX

eθT
1 t(x)dμ(x)

)1−λ (∫

ΩX

eθT
2 t(x)dμ(x)

)λ

,

where both factors on the right hand side are finite because both θ1 and θ2
belong to Θ. Hence (1 − λ)θ1 + λθ2 ∈ Θ. �

A slightly more general definition of an exponential family involves a bijec-
tive transformation of the parameter θ. Suppose the conditions in Definition
2.4 hold. Let Υ be another subset of Rp, and ψ : Υ → Θ a bijection. Then,
for any θ ∈ Υ ,

∫

ΩX

eψT (θ)t(u)dμ(u) < ∞.

Let Pθ be the probability measure on (ΩX ,FX) defined by
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dPθ = c(θ;ψ, t, μ)eψT (θ)t(x)dμ, (2.5)

where

c(θ;ψ, t, μ) =
(∫

ΩX

eψT (θ)t(x)dμ

)−1

.

Then we call the family {Pθ : θ ∈ Υ} the exponential family with respect to
ψ, t, μ, and write this family as

Ep(ψ, t, μ).

Henceforth, whenever the first argument of Ep(·, ·, ·) is missing we always mean
the special case defined by Definition 2.4, where ψ is the identity mapping.
We will consistently use c(θ;ψ, t, μ) to represent the proportional constant
for Ep(ψ, t, μ). Again, if the argument ψ is missing, then c(θ; t, μ) means the
proportional constant for Ep(t, μ).

2.2 Sufficient, complete, and ancillary statistics

Let (ΩX ,FX) and (ΩT ,FT ) be measurable spaces. Let M be a family of
probability measures on (ΩX ,FX). Let X : Ω → ΩX and T : ΩX → ΩT

be mappings measurable with respect to F/FX and FX/FT , respectively.
Usually, ΩX and ΩT are Euclidean spaces and FX and FT are corresponding
Borel σ-fields, but we do not need to make such assumptions. The random
element X represents the data. The random element T represents a statistic.
Formally, a statistic is any measurable mapping defined on ΩX . Implicit in
this definition is that T does not depend on the measure P ∈ M, because
otherwise T would be a mapping from ΩX×M to ΩT . A statistic T is sufficient
with respect to the family M if, for any B ∈ FX , the conditional probability
P (B|T ) = P (B|T ) is the same for all P ∈ M.

Definition 2.5 A statistic T = T (X) is sufficient for M if, for each B ∈ FX ,
there is a function κB : ΩX → R, measurable T−1(FT )/R, such that for each
P ∈ M,

P (B|T ) = κB a.e. P.

The point of this definition is, of course, that κB is the same for all P ∈ M.
Note that, we do not require the measure zero set under each P to be the same
for all P . In other words, our sufficiency is not defined in terms of conditional
distribution but in terms of conditional probability. A common way to find
sufficient statistic is to use Fisher-Neyman factorization theorem, of which the
following theorem is a special case.

Lemma 2.1 Let P � P0 be two probability measures on (ΩX ,FX) and T :
ΩX → ΩT be a function measurable FX/FT . Then the following assertions
are equivalent.
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1. EP0

(
dP
dP0

∣
∣
∣T

)
= dP

dP0
[P0];

2. P (B|T ) = P0(B|T ) [P ] for any B ∈ FX .

Proof. 1⇒ 2. Since both P (B|T ) and P0(B|T ) are measurable T−1(FT ), it
suffices to show that, for any G ∈ T−1(FT ),

∫

G

P (B|T )dP =
∫

G

P0(B|T )dP.

We have
∫

G

P (B|T )dP =
∫

G

IBdP =
∫

IB

( dP

dP0

)
dP0

By 1, the right hand side is
∫

G

IBEP0

( dP

dP0

∣
∣
∣T

)
SdP0 =

∫

G

EP0(IB|T )
dP

dP0

dP0 =
∫

G

P0(B|T )dP.

2⇒ 1. It suffices to show that, for any B ∈ FX ,
∫

B

dP

dP0

dP0 =
∫

B

EP0

( dP

dP0

∣
∣
∣T

)
dP0.

The right-hand side is
∫

B

EP0

( dP

dP0

∣
∣
∣T

)
dP0 =

∫

IBEP0

( dP

dP0

∣
∣
∣T

)
dP0

=
∫

EP0(IB |T )
dP

dP0

dP0

=
∫

EP0(IB |T )dP

=
∫

B

dP

=
∫

B

dP

dP0

dP0,

as desired. �

Theorem 2.4 Suppose M is a family of probability measures on (ΩX ,FX)
that is dominated by a σ-finite measure λ. Then the following statements are
equivalent:

1. T is sufficient with respect to M;
2. There is a probability measure P0 such that M ≡ P0, and for every P ∈ M,

there is an hP : ΩX → R measurable T−1(FT )/R such that dP
dP0

= hP [P0].
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3. For every P ∈ M,

dP

dλ
= (gP ◦T )(x)u(x) a.e. λ

for some gP : ΩT → R measurable FT and u : ΩX → R measurable FX

integrable λ.

Note that we do not need to assume P0 ∈ M.

Proof. 2 ⇒ 1. Since dP
dP0

= hP [P0], we have EP0

(
dP
dP0

∣
∣
∣T

)
= dP

dP0
[P0]. By

Lemma 2.1, P (B|T ) = P0(B|T ) [P ]. Let κB = P0(B|T ) to complete the proof
of this part.
1 ⇒ 2. Let N = {P1, P2, . . .} be a subset of M such that N ≡ M. Let

P0 =
∞∑

n=1

2−nPn.

It is left as an exercise to prove that P0 is a probability measure and P0 ≡ M.
Let B ∈ FX , and let κB : ΩX → R be a function measurable T−1(FT )/R such
that P (B|T ) = κB [P ]. We claim that κB is also the conditional probability
P0(B|T ); that is, P0(B|T ) = κB [P0]. It suffices to show that, for any G ∈
T−1(FT ),

∫

G

κBdP0 = P0(B ∩ G).

Note that
∫

G

κBdP0 =
∞∑

n=1

2−n

∫

G

κBdPn.

Since Pn(B|T ) = κB [Pn], we have Pn(B ∩ G) =
∫

G
κBdPn. Hence the right

hand side above is
∞∑

n=1

2−nPn(B ∩ G) =
∞∑

n=1

2−n

∫

IGIBdPn =
∫

IGIBdP0 = P0(B ∩ G).

Let P be a member of M. Since P (B|T ) = κB [P ] and P0(B|T ) = κB [P0],
by Lemma 2.1, part 2, we have EP0(dP/dP0|T ) = dP/dP0 [P0]. Then hP =
EP0(dP/dP0|T ) satisfies the desired condition in part 2.
2 ⇒ 3. By 2, dP/dP0 = gP

◦T [P0], where gP : ΩT → R measurable FT . Since
P � λ and P0 � λ, we have

dP/dλ = (gP
◦T )dP0/dλ [λ]

where dP0/dλ is integrable λ.
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3 ⇒ 2. Suppose dP/dλ = (gP
◦T )u [λ]. Since dP/dλ ≥ 0 [λ], we have

(gP
◦T )u = (|gP |◦T )|u|. Let dP0 = |u|dλ. Then dP = (|gP |◦T )dP0, as desired.

�

If S is another statistic such that T is measurable σ(S) (that is, σ(T ) ⊆
σ(S)), then we say that S refines T . It is intuitively clear that if T is sufficient
and S refines T , then S is also sufficient, because T is a more concise summary
of the data. This is proved in the next corollary.

Corollary 2.1 Under the conditions in Theorem 2.4, if T is sufficient for M
and S refines T , then S is sufficient for M.

Proof. By Theorem 2.4, T (X) is sufficient forM if and only if EP0(dP/dP0|T ) =
dP/dP0 a.e. P0. Then

EP0(dP/dP0|S) = E[EP0(dP/dP0|T )|S]
= EP0(dP/dP0|T )
= dP/dP0,

which, by Theorem 2.4 again, is equivalent to S(X) being sufficient. �

Sufficient statistic means we can use T as the data without losing any
information about θ. This is a reduction of the original X. Naturally, if S
refines T and T is sufficient we prefer T , because the latter is a greater reduc-
tion of the original data. It is then natural introduce the concept the minimal
sufficient statistic.

Definition 2.6 A statistic T : ΩX → ΩT is minimal sufficient for M if

1. T is sufficient for M;
2. it is refined by any other sufficient statistic for M.

Another useful concept is the complete statistic.

Definition 2.7 Let T : ΩX → ΩT be measurable FX/FT . We say that T is
complete for M if, for any g : ΩT → R measurable FT /R such that g◦T is
P -integrable, we have

∫

g◦TdP = 0 for all P ∈ M ⇒ g◦T = 0 [P ] for all P ∈ M.

The statistic T is bounded complete for M if the above implication holds for
all FT -measurable bounded function g.

Note that bounded completeness is a weaker assumption than complete-
ness. These concepts are important in several ways. As we will see shortly,
under mild conditions, if a sufficient statistic is complete, then it is a min-
imal sufficient statistic. Also, in Chapter 3, we will see that the notion of
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(bounded) completeness is helpful for constructing uniformly most powerful
unbiased tests in the presence of nuisance parameters.

Suppose that M is a dominated family of probability measures on (ΩX ,FX).
Then there is a probability measure P0 such that P0 ≡ M. In the following, we
say that a random vector belongs to L2(P0) if each of its component belongs
to L2(P0).

Theorem 2.5 Suppose there exists a minimal sufficient statistic for M in
L2(P0). Then any complete and sufficient statistic for M in L2(P0) is minimal
sufficient for M.

Note that the statistics in the above theorem are allowed to be vectors. In
the following proof, for a random variable W, EP (W ) denotes the expectation
of W under P ; that is EP (W ) =

∫
WdP .

Proof. Let T ∈ L2(P0) be a minimal sufficient statistic for M, and U ∈ L2(P0)
a complete sufficient statistic for M. It suffices to show that U is measurable
with respect to T , for which it suffices to show U = EP0(U |T ). We note that

EP (U − EP (EP (U |T )|U)) = EP (U) − EP (U) = 0

for all P ∈ M. Because both U and T are sufficient, the conditional expecta-
tions given U or T are the same for all P . In particular,

EP (EP (U |T )|U) = EP0(EP0(U |T )|U).

Hence
EP (U − EP0(EP0(U |T )|U)) = 0

for all P ∈ M. By the completeness of U , we have U = EP0(EP0(U |T )|U).
However, because T is minimal sufficient and U is sufficient, T is measurable
with respect to σ(U). Hence EP0(EP0(U |T )|U) = EP0(U |T ). �

A statistic U : ΩX → ΩU is said to be an ancillary statistic with respect
to a family M of probability distributions over (ΩX ,FX) if P ◦U−1 is the same
for all P ∈ M. Basu (1955) proved the following well known result.

Theorem 2.6 (Basu’s Theorem) Suppose T : ΩX → ΩT is complete and
sufficient for M and U : ΩX → ΩU is ancillary for M. Then T and U are
independent under each P ∈ M.

Proof. We shall show that for any B ∈ FU we have

P (U ∈ B|T ) − P (U ∈ B) = 0 [P ].

Since T sufficient, the first term does not depend on P , and because U is
ancillary, neither does the second term. Moreover, we have



42 2 Classical Theory of Estimation

∫

[P (U ∈ B|T ) − P (U ∈ B)]dP = 0

for all P ∈ M. Since the integrand is a function of T independent of P , by
the completeness of T we have

P (U ∈ B|T ) = P (U ∈ B) [P ]

This means U and T are independent. �

2.3 Complete sufficient statistics for exponential family

In this section we derive the complete and sufficient statistic for an exponential
family. For this purpose it is useful to review the basic properties of analytic
functions.

Definition 2.8 A function f : R → R is real analytic on an open set G ⊆ R

if for any x ∈ G, there is an open neighborhood N of x such that, for all
x′ ∈ N ,

f(x′) =
∞∑

n=0

an(x′ − x)n,

in which the coefficients a0, a1, ... are real numbers.

In other words, an analytic function can be expanded as a power series
locally at each point in the region in which it is analytic. Thus, equivalently,
a real analytic function can be defined as a function that is infinitely differen-
tiable and that can be expanded as a Taylor series locally at any point in G.
The above definition can be generalized to functions with several variables,
say x = (x1, . . . , xp). In that case the power series is replaced by

f(x′) =
∑

ai1...ip
(x′

1 − x1)i1 · · · (x′
p − xp)ip ,

where the summation is over the index set

{(i1, . . . , ip) : i1, . . . , ip = 0, 1, 2, . . .}.
A complex analytic function is defined in the same way by replacing R by C,
the set of all complex numbers, and G by an open set in C. It is true that any
complex function from C to C that is differentiable is analytic. An analytic
function is global, in the sense that the overall property of the function can be
determined by its local property near a point. In this sense it behaves rather
like a polynomial. We know that a kth order polynomial cannot have more
than k solutions unless all the coefficients of the polynomial are 0. Similarly,
if the collection of roots of an analytic function contains a limit point, then
it is identically 0. This fact will be used in several places in later discussions.
See, for example, Rudin (1987, page 209).



2.4 Unbiased estimator and Cramér-Rao lower bound 43

Theorem 2.7 If f is a real analytic function on an open set G in R
p and if

{x : f(x) = 0} has a limit point in G, then f(x) = 0 on G.

The following is an important property of an exponential family of distri-
butions. It implies that if g(x) integrable then Eθg(X) is an analytic function
of θ provided that fθ is an exponential family.

Lemma 2.2 Let (ΩX ,FX , μ) be a measure space, where ΩX ⊆ R
p, and Θ

is a subset of Rp with nonempty interior. Suppose g(x)eθT x is integrable with
respect to μ for each θ ∈ Θ, then the integral

∫
g(x)eθT xμ(dx) is analytic

function of θ in the interior of Θ. Furthermore, the derivatives of all orders
with respect to θ can be taken inside the integral.

For a proof, see, for example, Lehmann and Romano (2005, page 49).

Theorem 2.8 Suppose Θ ⊆ R
p has a nonempty interior (— that is, it has a

nonempty open subset). Then the statistic t(X) is sufficient and complete for
the exponential family Ep(λ, t).

Proof. Since

dPθ

dλ
= eθT t(x)

(∫

eθT t(x)dλ(x)
)−1

is measurable with respect to t−1(Rp), by Theorem 2.4, t(X) is sufficient with
respect to Ep(λ, t). Let g be an integrable function of t such that

Eθg(t(X)) = 0 for all θ ∈ Θ.

Then, by the change of variable theorem,
∫

g(t)eθT tdν(t) = 0 for all θ ∈ Θ,

where ν = λ◦t−1. Because this integral is an analytic function of θ, and
because Θ contains an open set (and hence limit point), it is 0 over R

k. By
the uniqueness of Laplace transformation, g(t) = 0 [ν]. By the change of
variable theorem, g(t(x)) = 0 [λ]. Because Pθ � λ, g(X) = 0 [Pθ] for all
θ ∈ Θ. �

2.4 Unbiased estimator and Cramér-Rao lower bound

Let M = {Pθ : θ ∈ Θ}, where Θ ⊆ R
p, be a parametric family of prob-

ability measures on (ΩX ,FX). In this section, we will always assume that
M is dominated by a σ-finite measure λ, and that M is identifiable. For
a random vector U = (U1, . . . , Uk) defined on ΩX , we use E(U) to denote



44 2 Classical Theory of Estimation

the vector (EU1, . . . , EU2). For two random vectors U = (U1, . . . , Uk) and
V = (V1, . . . , V�) defined on (ΩX ,FX), we use cov(U, V ) to denote the matrix
whose (i, j)th entry is cov(Ui, Vj). Moreover, we define var(U) as cov(U,U).

A few more words about notation for expectation. In most of this book,
there is no need to make a distinction between the underlying probability
space (Ω,F) and the induced probability space (ΩX ,FX). That is, we will
simply equate these two probability spaces. In this case, a random variable X
is just the identity mapping:

X : Ω → ΩX , x �→ x.

So E(X) means the integral
∫

XdP =
∫

X(x)dP (dx) =
∫

xdP (dx). To be
consistent with the previous notation, it is helpful to still regard P as a prob-
ability measure defined on (Ω,F).

We now introduce the unbiased estimator of a parameter. In the follow-
ing, X is a random vector representing the data. Typically, X is a sample
X1, . . . , Xn, where each Xi is a k-dimensional random vector. In this case X
is an nk-dimensional random vector, ΩX is R

nk and FX is Rnk. Intuitively,
if we want to use a random vector u(X) to estimate a parameter θ, then
we would like the distribution of u(X) to be centered at the target we want
to estimate. This is formulated mathematically as the next definition. In the
following we will use Eθ and varθ to denote the mean (vector) and variance
(matrix) of a random variable (vector) under Pθ.

Definition 2.9 Let u : ΩX → R
p be a function measurable FX/Rp. We say

that u(X) is an unbiased estimator of θ if, for all θ ∈ Θ,

Eθ[u(X)] = θ.

For two symmetric matrices A and B, we write A � B if A − B is pos-
itive semidefinite; we write A � B if A − B is positive definite. The partial
ordering represented by � or � among matrices is sometimes called positive
semidefinite ordering, positive definite ordering, or Louwner’s ordering. The
following proposition is well known. See Horn and Johnson (1985, page 465).

Proposition 2.2 If A and B are positive definite, then

A � B ⇔ B−1 � A−1, A � B ⇔ B−1 � A−1.

The next lemma will be called the multivariate Cauchy-Schwarz inequality.
It is the basis of the famous Cramér-Rao inequality. We say that a function
f is square integrable with respect to a measure μ if f is measurable and f2

is integrable μ.

Lemma 2.3 (Multivariate Cauchy-Schwarz inequality) Let (Ω,F , μ) be
a measure space, and f : Ω → R

p and g : Ω → R
p be R

p-valued functions
whose components are square-integrable with respect to μ. Suppose that the
matrix

∫
ggT dμ is nonsingular. Then
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(∫

fgT dμ

)(∫

ggT dμ

)−1 (∫

gfT dμ

)

≤
∫

ffT dμ. (2.6)

The equality in (2.6) holds if and only if there is a constant matrix A ∈ R
p×p

such that f = Ag [μ]. Moreover, if
∫

ffT dμ is nonsingular then so is A.

Proof. Let

δ = f −
(∫

fgT dμ

) (∫

ggT dμ

)−1

g.

Then
∫

δδT dμ =
∫

ffT dμ −
(∫

fgT dμ

)(∫

ggT dμ

)−1 (∫

gfT dμ

)

.

This implies the inequality (2.6) because the left-hand side is positive semidef-
inite. The equality in (2.6) holds if and only if

∫
δδT dμ = 0, which happens if

and only if δ = 0 [μ]. That is,

f =
(∫

fgT dμ

)(∫

ggT dμ

)−1

g ≡ Ag [μ].

Then
∫

ffT dμ = A
∫

ggT dμAT . Since
∫

ffT dμ is nonsingular A must also be
nonsingular. �

Let fθ = dPθ/dλ. If log fθ(x) is differentiable with respect to θ, then the
partial derivative ∂ log fθ(x)/∂θ is called the score function (as a function of θ
and x). We denote the score function by sθ(x). Let I(θ) = varθ(sθ(X)). This
matrix is called the Fisher information. Let Ip be the p × p identity matrix.

In the rest of the book we will frequently assume that fθ(x) has a common
support, say A, for all θ ∈ Θ and that, for some function g(θ, x), g(θ, x)fθ(x)
satisfies DUI(θ,A, μ). For convenience, this lengthy statement is abbreviated
in the definition below.

Definition 2.10 We say that g(θ, x)fθ(x) satisfies DUI+(θ, μ), if the support
A of fθ(x) is independent of θ and g(θ, x)fθ(x) satisfies DUI(θ,A, μ).

We usually regard the Fisher information I(θ) as appropriately defined
only when both fθ(x) and sθ(x)fθ(x) satisfy DUI+(θ, μ). In this case, it is
easy to verify (by passing first two derivatives of θ through the integral with
respect to μ)

Eθ[sθ(X)] = 0

varθ[sθ(x)] = −E[∂sθ(X)/∂θT ].
(2.7)

More specifically, the first identity requires fθ(x) to satisfy DUI+(θ, μ); the
second requires both fθ(x) and sθ(x)fθ(x) to satisfy DUI+(θ, μ). These iden-
tities are called the information identities. We will have a closer look at them
in Chapter 8, where they play a critical role.
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The next two theorems, however, only require the first equality in (2.7) to
hold. So in this chapter, we define the Fisher information I(θ) as varθ[sθ(X)]
under the first equality in (2.7) without regard of the second equality in (2.7).

We now prove the Cramér-Rao’s inequality, which asserts that, under some
conditions, no unbiased estimator can have variance smaller than I−1(θ). This
is but a special case of a very general phenomenon. Later on we will see that
I−1(θ) is in fact the lower bound of the asymptotic variances of all regular
estimates, which cover a very wide range of estimates used in statistics.

Theorem 2.9 Let M = {Pθ : θ ∈ Θ} be a dominated identifiable parametric
family on a measurable space (ΩX ,FX). Let fθ = dPθ/dλ, where λ is the
σ-finite dominating measure. Suppose

1. U = u(X) is an unbiased estimator of θ such that all entries of the matrix
varθ(U) are finite for each θ ∈ Θ;

2. fθ(x) and u(x)fθ(x) satisfy DUI+(θ, λ);
3. I(θ) is nonsingular for each θ ∈ Θ.

Then, for all θ ∈ Θ,

varθ(U) � I−1(θ). (2.8)

Moreover, the equality holds if and only if u(X) = θ + I−1(θ)sθ(X).

Proof. Since fθ satisfies DUI+(θ, λ), we have

0 = ∂(1)/∂θ =
∫

∂fθ(x)/∂θdλ(x) = Eθ[sθ(X)]. (2.9)

This implies varθ[sθ(X)] = Eθ[sθ(X)sT
θ (X)] = I(θ). Let δθ(X) = u(X) − θ.

By Lemma 2.3,

varθ[u(X)] � Eθ[δθ(X)sT
θ (X)][Eθ(sθ(X)sθ(X))]−1Eθ[sθ(X)δT

θ (X)]. (2.10)

By (2.9),

Eθ[sθ(X)δT
θ (X)] = Eθ[sθ(X)uT (X)].

Moreover, because u(x)fθ(x) satisfies DUI+(θ, μ), we have

Eθ[sθ(X)uT (X)] =
∫

u(x)(∂fθ(x)/∂θT )dμ(x) = ∂θ/∂θT = Ip.

Therefore the right hand side of (2.10) is I−1(θ). This proves the inequality
(2.8).

By the equality part of Lemma 2.3, varθ[u(X)] = I−1(θ) if and only if

δθ(X) = Aθsθ(X)
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for some matrix Aθ. It follows that

Eθ[δθ(X)δT
θ (X)] = AθEθ[sθ(X)δT

θ (X)] = Aθ.

Hence Aθ = I−1(θ). �

We now discuss two problems related to this inequality. The first is about
reaching the lower bound. The second is about the practical situations where
the DUI+(θ, λ) condition is violated and the lower bound is exceeded. The first
problem is often referred to as the attainment problem in the literature. See,
for example, Fend (1959). The next theorem gives a solution to this problem.

Theorem 2.10 Suppose (ΩX ,FX) is a measurable space and M = {Pθ : θ ∈
Θ} is an identifiable parametric family dominated by a σ-finite measure λ. Let
fθ = dPθ/dλ. Further, suppose that

1. fθ(x) satisfies DUI+(θ, μ);
2. I(θ) is positive definite and its entries are finite.

Then the following statements are equivalent:

1. there is an unbiased estimator u(X) of θ such that varθ[u(X)] = I−1(θ);
2. X has the exponential-family distribution of the form

fθ(x) = eψT (θ)u(x)

(∫

eψT (θ)u(x)dν(x)
)−1

(2.11)

for some measure ν on ΩX dominated by λ, and some function ψ(θ) dif-
ferentiable with respect to θ satisfying

∂ψ(θ)
∂θT

=
∂ψT (θ)

∂θ
= I(θ).

Proof. 1 ⇒ 2. By Lemma 2.3, the equality in (2.8) holds if and only if sθ(x) =
Aθ(u(x) − θ) for some nonsingular matrix Aθ. This means

∂ log fθ(x)/∂θ = Aθu(x) − Aθθ

Hence there exist ψ : Θ → R
p and φ : Θ → R such that

∂ψT /∂θ = Aθ, ∂φ/∂θ = Aθθ, log fθ(x) = ψT (θ)u(x) + φ(θ) + v(x).

Thus

fθ(x) = eψT (θ)u(x)cθw(x).

So the density of X has the form (2.11) with dν = wdλ.
2 ⇒ 1. Since ψ → ∫

u(x)eψT u(x)dν(x) and ψ → ∫
eψT u(x)dν(x) are ana-

lytic, u(x)fθ(x) satisfies DUI+(θ, ν). Applying the fact that u(X) is unbiased
we find



48 2 Classical Theory of Estimation

Eθ(sθ(X)uT (X)) = Eθ(sθ(X)(u(X) − θ)T ) = Ip.

We also know that

sθ(X) =
∂ψT (θ)

∂θ
u(X) − ∂

∂θ
log

∫

eψT (θ)u(x)dν(x) = Aθu(X) + bθ.

Because fθ satisfies DUI+(θ, ν), we have Eθsθ(X) = 0. Hence bθ = −Aθθ;
that is,

sθ(X) = Aθ(u(X) − θ).

It follows that

Eθ(sθ(X)(u(X) − θ)T ) = Aθvarθ(u(X)) = AθI
−1(θ).

Hence Aθ = I(θ). But this implies

varθ[u(X)] = I−1(θ)varθ[sθ(X)]I−1(θ) = I−1(θ),

as desired. �

This theorem shows that the Cramér-Rao lower bound is achieved by an
unbiased estimator u(X) if and only if X has an exponential family distri-
bution with u(X) as its sufficient statistic. For any other distribution that
satisfies the relevant DUI+(θ, λ assumption, this bound cannot be reached
exactly.

When the DUI+(θ, λ) assumption is not satisfied, an unbiased estimator
can have smaller variance than I−1(θ), as the following example shows.

Example 2.2 Consider the case where Pθ is the uniform U(0, θ), θ > 0. That
is,

fθ(x) = θ−1I(0,θ)(x), θ > 0.

This family does not satisfy DUI+(θ, μ) because the support of fθ(x) depends
on θ. Since

∂(θ−1I(0,θ)(x))/∂θ = −θ−2I(0,θ)(x)

almost everywhere with respect to the Lebesgue measure, we have
∫

∂fθ(x)/∂θ dx = −θ−1.

On the other hand ∂[
∫

fθ(x) dx]/∂θ = 0. So

∂

∂θ

∫

fθ(x)dx =
∫

∂fθ(x)
∂θ

dx.

The score function for this density is
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sθ(x) = ∂ log fθ(x)/∂θ = −∂ log(θ)/∂θ + ∂ log I(0,θ)(x)/∂θ = −1/θ,

which is defined almost everywhere with respect to the Lebesgue measure.
Hence varθ[sθ(X)] = 0. So the inequality

varθ[u(X)] ≥ 1/varθ[sθ(X)]

does not hold for any unbiased estimator of θ with a finite variance.
In the above we have considered a single observation from U(0, θ) for con-

venience, but the conclusion for the situation where we have an i.i.d. sample
from U(0, θ) is essentially the same. �

2.5 Conditioning on complete and sufficient statistics

Unbiasedness is but one way of assessing the quality of an estimator — that
a good estimator should be centered around the target it intends to estimate.
Another way to assess the quality of an estimator is by its variance: a good
estimator should be more closely clustered around the target. In this section
we study how to find estimator with small variance. We first introduced a
lemma, often called the EV-VE formula.

Lemma 2.4 Suppose that the components of U belong to L2(P ). Then

var(U) = E[var(U |G)] + var[E(U |G)].

Proof. We have

var(U) = E(U − EU)(U − EU)T

= E[(U − E(U |G) + E(U |G) − EU)(U − E(U |G) + E(U |G) − EU)T ]

Note that

E[(U − E(U |G))(E(U |G) − EU)T ] = E[(U − E(U |G))E(UT − EUT |G)]

= E[E(U − E(U |G)|G)(U − EU)T ] = 0.

Hence

var(U) = E(U − EU)(U − EU)T

= E[(U − E(U |G))(U − E(U |G))T ]

+ E[(E(U |G) − EU)(E(U |G) − EU)T ]
= var(E(U |G)) + E(var(U |G))

as desired. �
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Let (ΩX ,FX) be a measurable space and M = {Pθ : θ ∈ Θ} be a
dominated and identifiable parametric family of probability distributions on
(ΩX ,FX). Let U be the class of all unbiased estimators U = u(X) of θ defined
on ΩX such that varθ(U) < ∞ for each θ ∈ Θ. The following theorem shows
that, given an unbiased estimator U ∈ U and a sufficient statistic T for M,
one can reduce the variance of U by taking the conditional expectation on
T . This is called Rao-Blackwell’s inequality. See Rao (1945) and Blackwell
(1947).

Theorem 2.11 Suppose U ∈ U and T is a sufficient statistic for M. Then
E(U |T ) ∈ U and

varθ(U) � varθ[E(U |T )].

Proof. We have

varθ(U) = varθ[E(U |T )] + Eθ[var(U |T )] � varθ[E(U |T )].

But E(U |T ) is an unbiased estimator of θ. �

If, in addition to being sufficient, T is also complete for M. Then taking
the conditional expectation of an unbiased estimator given T actually brings
the variance to the minimum. This is called the Lehmann-Scheffe theorem
(Lehmann and Scheffe, 1950, 1955).

Theorem 2.12 Suppose T = t(X) is complete and sufficient statistic for M,
and U is a statistic in U that is measurable σ(t(X)). Then for any U ′ ∈ U,
we have varθ(U) � varθ(U ′) for each θ ∈ Θ.

Proof. Since U ′ ∈ U, we have Eθ[E(U ′|T )] = θ for all θ. Moreover, U =
E(U |T ) and Eθ[E(U |T )] = θ. Hence

Eθ[E(U ′|T ) − E(U |T )] = 0 [Pθ] for all θ ∈ Θ.

Since T is complete,

E(U ′|T ) = E(U |T ) [Pθ] for all θ ∈ Θ.

Hence varθ(U ′) � varθ[E(U ′|T )] = varθ[E(U |T )] = varθ(U) as desired. �

So, if an unbiased estimator in U is measurable with respect to a complete
and sufficient statistic its variance reaches the lower bound among U. This
leads us to introduce the following notion of the optimal estimator among
unbiased estimators.

Definition 2.11 A statistic U ∈ U is called Uniformly Minimum Variance
Unbiased Estimator (UMVUE) if for any member U ′ of U we have varθ(U) ≤
varθ(U ′) for all U ′ ∈ U.
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The following result follows directly from Theorem 2.12 and Definition
2.11.

Corollary 2.2 Suppose there is a complete and sufficient statistic T for M.
Then for any U1, U2 ∈ U, we have E(U1|T ) = E(U2|T ) [Pθ] for all θ ∈ Θ.
Moreover, E(U1|T ) is the UMVUE.

The above corollary implies that there can be only one measurable function
of σ(T ) that is UMVUE. In fact, the uniqueness of UMVUE need not be
restricted to measurable functions of T . We now show that UMVUE is unique.
We first introduce a lemma.

Lemma 2.5 Suppose X and Y are p-dimensional random vectors defined on
a probability space (Ω,F , P ) whose entries belong to L2(P ). Then the following
statements are equivalent:

1. For any A ∈ R
p×p, var(X) � var(X + AY ).

2. cov(X,Y ) = 0.

Proof. Assertion 1 holds if and only if, for all t ∈ R
p, t = 0, we have

var(tT X) ≤ var(tT X + tT AY ).

Since A can take any value in R
p×p, if we let τ = At, then τ can take any

value in R
p for any fixed t = 0. Thus, assertion 1 holds if and only if, for any

fixed t = 0, f(τ) = var(tT X + τT Y ) is minimized at τ = 0, which happens if
and only if ∂f(0)/∂τ = 0 for any t = 0. Since

f(τ) = var(tT X) + 2cov(tT X,Y )τ + τT var(Y )τ,

assertion 1 holds if and only if cov(tT X,Y ) = 0 for any t = 0, which happens
if and only if cov(X,Y ) = 0. �

Theorem 2.13 Suppose M = {Pθ : θ ∈ Θ} is a dominated and identifiable
parametric family. A UMVUE, if it exists, is unique [Pθ] for each θ ∈ Θ.

Proof. Suppose U1 and U2 are both UMVUE. Then

varθ(U1 − U2) = varθ(U1) − covθ(U1, U2) − covθ(U2, U1) + varθ(U2).

Since both U1 and U2 are UMVUE, their variances are the same. So the
right-hand side of the above equality becomes

2varθ(U1) − covθ(U1, U2) − covθ(U2, U1)
= covθ(U1, U1 − U2) + covθ(U1 − U2, U1).

If A ∈ R
p×p, then U1 + A(U2 − U1) is an unbiased estimate, and hence
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varθ(U1) � varθ(U1 + A(U2 − U1))

By Lemma 2.5, covθ(U1, U2−U1) = 0. This also implies covθ(U2−U1, U1) = 0.
Therefore

varθ(U1 − U2) = 0.

Because Eθ(U1) = Eθ(U2) = θ, the above equality implies Eθ‖U1 −U2‖2 = 0.
Hence U1 = U2 [Pθ]. �

Example 2.3 In this example we develop the UMVU estimate for θ using
the Lehmann-Scheffe theorem under the setting of Example 2.2. Consider an
i.i.d. sample {X1, . . . , Xn} from U(0, θ). Thus (X1, . . . , Xn) has density

θ−n
n∏

i=1

I(0,θ)(Xi).

By the factorization theorem, the sufficient statistic is T = max(X1, . . . , Xn).
The distribution of T is Pθ(T < t) =

∏
Pθ(Xi < t) = (t/θ)n, and its density

is n(t/θ)n−1(1/θ). Hence

EθT =
∫ θ

0

tn(t/θ)n−1(1/θ) dt = nθ

∫ 1

0

sn ds =
n

n + 1
θ.

Let U = (n + 1)T/n. Then U is an unbiased estimate. We now compute its
variance:

varθU =
(

n + 1
n

)2

varθT =
(

n + 1
n

)2

(EθT
2 − (EθT )2).

The first two moments on the right hand side are computed to be

EθT =
n

n + 1
θ

Eθ(T 2) =
∫ θ

0

t2n(t/θ)n−1(1/θ)dt = nθ2
∫ 1

0

(s)n+1ds =
n

n + 2
θ2

Therefore

varθ(U) =
[

1
n(n + 2)

]

θ2.

By Lehmann-Scheffe’s theorem, U is the UMVU estimate if T is complete.
Let g be a function such that Eθg(T ) = 0 for all θ > 0. Then

∫ θ

0

g(t)tn−1dt = 0

Take derivative with respect to θ to obtain

g(θ)θn−1 = 0

for all θ > 0. Thus g(θ) = 0 for all θ > 0, and T is complete. �
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2.6 Fisher consistency and two classical estimators

In this section we introduce another important criterion, known as Fisher con-
sistency, to assess an estimator, besides unbiasedness and minimal variance.
Strict unbiasedness is often too strong and can exclude many useful estima-
tors. Fisher consistency is a more practical criterion, and, more importantly,
it often suggests the form of an estimator. Let M be a class of all probability
measures on (ΩX ,FX). A parameter can be viewed as a mapping from M
to R

p. For example, the mean parameter θ = EP (X) can be viewed as the
mapping

θ : M → R
p, P �→

∫

XdP.

Let P0 be the true probability model. Let X1, . . . , Xn be an independent
sample from X. For x ∈ ΩX , let δx be the probability measure on (ΩX ,FX)
defined by the set function δx : FX → R by

δx(A) =

{
1 x ∈ A

0 x /∈ A

It is left as an exercise to show that δx is a probability measure on (ΩX ,FX).
It is called the point mass at x. The set function defined by

Pn = n−1
n∑

i=1

δXi

is called the empirical distribution of X. It is left as an exercise to show that
Pn is a probability measure and for any measurable function f : ΩX → R,

∫

fdPn = n−1
n∑

i=1

f(Xi).

Definition 2.12 Let T = t(X1, . . . , Xn) be an R
p-valued statistic and θ0 be

a p-dimensional vector. We say that T is a Fisher consistent estimate of θ0 if
there is a mapping θ : M → R

p such that

T = θ(Pn), θ0 = θ(P0).

We next introduce two widely used estimators in statistics: the method
of moment (Pearson, 1902) and the maximum likelihood estimator (Fisher,
1922). Let M0 = {Pθ : θ ∈ Θ} be a dominated, identifiable parametric family
on (ΩX ,FX). Suppose X1, . . . , Xp are integrable with respect to Pθ. We define
the solution to the following system of equations

∫

XkdPθ =
∫

XkdPn, k = 1, . . . , p (2.12)

is the method-of-moment estimator of θ0. Let μ(θ) = (μ1(θ), . . . , μp(θ))T .
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Theorem 2.14 Suppose that the mapping θ �→ μ(θ) is injective and the vector

(∫

XdPn, . . . ,

∫

XpdPn

)T

.

is in the range of μ. Then the (unique) solution to (2.12) is Fisher consistent
for θ0, the parameter corresponding to the true distribution in M0.

Proof. Let θ : M → R
p be a mapping that satisfies

θ(P ) = μ−1

(∫

XdP, . . . ,

∫

XpdP

)

for any P ∈ M0 ∪ {Pn}.

Then

θ(Pθ0) = μ−1

(∫

XdPθ0 , . . . ,

∫

XpdPθ0

)

= μ−1 (μ1(θ0), . . . , μp(θ0)) = θ0.

Meanwhile, if we let T be the solution to (2.12), then

T = μ−1

(∫

XdPn, . . . ,

∫

XpdPn

)

= θ(Pn).

Hence T is Fisher consistent. �

Let us now turn to the maximum likelihood estimate. Let

�(θ;X1, . . . , Xn) =
n∑

i=1

log fθ(X).

The random function θ �→ �(θ;X1, . . . , Xn) is called the likelihood function.
The maximum likelihood estimator (MLE) is defined as the maximizer of the
likelihood function. That is,

T = argmax {�(θ : X1, . . . , Xn) : θ ∈ Θ} .

Clearly, it is equivalent to maximize the function n−1�(θ,X1, . . . , Xn). Thus
the maximum likelihood estimator can be defined alternatively as

T = argmax
{∫

log fθ(X)dPθ : θ ∈ Θ

}

.

Theorem 2.15 Suppose M0 is a dominated, identifiable parametric family
and the likelihood function �(θ,X1, . . . , Xn) has a unique maximizer over Θ
for each X1(ω), . . . , Xn(ω). Then the maximum likelihood estimator is Fisher
consistent.
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Proof. Since M0 is identifiable, by Theorem 2.1, for each θ′ ∈ Θ, the maxi-
mizer of ∫

log fθ(X)dPθ′

over Θ is unique and is equal to θ′ itself. Let θ : M → R
p be a mapping such

that

θ(P ) �→ argmax
{∫

log fθ(X)dP : θ ∈ Θ

}

for any P ∈ M0 ∪ {Pn}.

Let T be the maximum likelihood estimator. Then,

θ(Pθ0) = argmax
{∫

log fθ(X)dPθ0 : θ ∈ Θ

}

= θ0

θ(Pn) = argmax
{∫

log fθ(X)dPn : θ ∈ Θ

}

= T.

Thus T is Fisher consistent. �

Problems

2.1. Let (Ω,F) be a measurable space, and A be a nonempty set in F . Show
that {F ∩ A : F ∈ F} is a σ-field of subsets of A.

2.2. Let (Ω,F , λ) be a σ-finite measure space. Let A1, A2, . . . be a sequence of
F-sets such that λ(An) < ∞ and ∪nAn = Ω. Let cn be a sequence of positive
numbers such that

∑
n cn = 1. Define a set function λ∗ : F → R as

λ∗(A) =
∑

n

cnλ(A ∪ An)/λ(An),

where the quotients on the right are defined to be 0 if λ(An) = 0. Show that
λ∗ is a probability measure and λ∗ ≡ λ.

2.3. Let (Ω,F) be a measurable space. Let {Pn : n ∈ N} be a sequence of
probability measures on (Ω,F). Let {cn : n ∈ N} be a sequence of positive
numbers such that

∑
n∈N

cn = 1. For any A ∈ F , define

P (A) =
∑

n∈N

cnPn(A).

Prove:

1. the set function P : F → R is a probability measure on (Ω,F);
2. {P} ≡ {Pn : n ∈ N}.
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2.4. Let (Ω1,F1) and (Ω2,F2) be measurable spaces. Let T : Ω1 → Ω2 be a
mapping that is measurable F1/F2. Prove:

1. T−1(F2) is a σ-field;
2. if f : Ω1 → Ω2 is measurable with respect to F1/F2, then f is measurable

with respect to T−1(F2);
3. conclude that T−1(F2) = σ(T ), where σ(T ) is the intersection of all σ-field

with respect to which f is measurable.

2.5. Let (Ω1,F1) and (Ω2,F2) be measurable spaces, and T : Ω1 → Ω2 be a
mapping that is measurable with respect to F1/F2. Suppose Q � P are two
measures on (Ω1,F1). Show that

E(dQ/dP |◦T ) = dQ◦T−1/dP ◦T−1.

2.6. Let (ΩX ,FX) and (ΩT ,FT ) be measurable spaces and T : ΩX → ΩT

be measurable FX/FT . Let f : ΩX → R be measurable T−1(FT )/R. Let
t0 ∈ ΩT , and let x0 ∈ T−1({t0}).
1. Prove that f−1({f(x0)}) is a member of T−1(FT ); that is f−1({f(x0)}) =

T−1(F ) for some F ∈ FT ;
2. From x0 ∈ f−1({f(x0)}) = T−1(F ), prove that t0 ∈ F , and hence that

T−1({t0}) ⊆ T−1(F );
3. From T−1({t0}) ⊆ f−1({f(x0)}), prove that f is constant on T−1({t0});
4. Conclude that, whenever T (x) = T (x′) for x, x′ ∈ ΩX , we have f(x) =

f(x′). That is, f depends on x only through T (x).

2.7. Suppose X1, . . . , Xn are i.i.d. fθ(x) = θ−1e−
x−θ

θ , x > θ.

1. Find the MLE.
2. Find the method of moment estimator.
3. Find α and β so that αX(1) and βX̄ are unbiased.
4. Find the a linear combination of X(1) and X̄ so that it is unbiased and

have smallest variance among all such linear combinations.
5. Find an unbiased estimate based on X1 and Rao-Blackwellize it. What is

the improvement in the variance?

2.8. Suppose u(X) is an unbiased estimate of θ. fθ(x) is the density of X. Let
f
(k)
θ (x) be the kth derivative of fθ with respect to θ. Then

∫

uf
(k)
θ dμ =

{
1 k = 1
0 k = 2, . . . , r

So for any constants α1, . . . , αr, we have
∫

u(α1f
(1)
θ + · · · + αrf

(r)
θ )dμ = α1
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Let bk
θ = f

(k)
θ /fθ. These form the so called Bhattacharyya basis. (Bhat-

tacharyya, 1946). Then the above can be rewritten as
∫

u(α1b
1
θ + · · · + αrb

r
θ)fθdμ = α1

So use the Cauchy Schwarz inequality, to get

α2
1 ≤ varθ(u)varθ(α1b

1
θ + · · · + αrb

r
θ)

Hence, for any constants α1, . . . , αr we have

varθ(u) ≥ α2
1

varθ(α1b1θ + · · · + αrbr
θ)

2.9. Stein’s Lemma: Suppose X is a random variable having exponential fam-
ily density

eθT t(x)h(x)c(θ)

with respect to the Lebesgue measure. Suppose x is defined on an interval
(a, b) such that limx→x′ eθT t(x)h(x) = 0 for x′ = a, b. (a, b) is allowed to be
(−∞,∞). Then for any differentiable function g of x with E|g′(X)| < ∞. we
have

Eθ

{[
h′(X)
h(X)

+ θT t(X)
]

g(X)
}

= −Eθg
′(X).

In particular, if X has a normal distribution, then

cov[g(X),X] = var(X)E[g′(X)].

A more general version of equality will be further studied in Chapter 5.

2.10. Let {fθ : θ ∈ Θ} be a family of densities of X. Let u(X) be an unbiased
estimator of θ. Consider the function

ψθ(x) =
fθ+Δ(x) − fθ(x)

fθ(x)
,

where Δ is any constant. Suppose both u(X) and ψθ(X) have finite second
moment. Show that

varθ(u(X)) ≥ Δ2

varθ(ψθ(X))
.

This result is due to Hammersley (1950) and Chapman and Robbins (1951).

2.11. Let {Pθ : θ ∈ Θ} be a family of distributions of X. Let N be the class
of all statistics δ(X) satisfying the following conditions:



58 2 Classical Theory of Estimation

1. Eθδ
2(X) < ∞ for all θ ∈ Θ;

2. Eθδ(X) = 0 for all θ ∈ Θ.

Use Lemma 2.5 to show that, an unbiased estimator u(X) is a UMVU esti-
mator if and only if

covθ(u(X), δ(X)) = 0, for all θ ∈ Θ and all δ ∈ N .

Let (Ω,F , μ) be a measure space, and Θ be a subset of R
p. We say that a

function g : Θ × Ω → R is Lk(μ)-Lipschitz with dominating slope g0 ≥ 0 if∫
gk
0dμ and

|g(θ2, x) − g(θ1, x)| ≤ g0(x)‖θ2 − θ1‖

for any θ1, θ2 ∈ Θ. Suppose

1. g : Ω × Θ → R is differentiable with respect to θ modulo μ;
2. g is L2(μ)-Lipschitz with dominating slope g0 ∈ L2(μ);

Then, for any h ∈ L2(μ), the function h(x)g(θ, x) is L1(μ)-Lipschitz with
dominating slope hg0.

2.12. Let (Ω,F , μ) be a measure space, and Θ be a subset of Rp. We say that
a function g : Θ × Ω → R is Lk(μ)-Lipschitz with dominating slope g0 ≥ 0 if∫

gk
0dμ and

|g(θ2, x) − g(θ1, x)| ≤ g0(x)‖θ2 − θ1‖

for any θ1, θ2 ∈ Θ. Suppose

1. g : Ω × Θ → R is differentiable with respect to θ modulo μ;
2. g is L1(μ)-Lipschitz with dominating slope g0 ∈ L1(μ);

Then, for any bounded function h : Ω → R, the function h(x)g(θ, x) is L1(μ)-
Lipschitz with dominating slope |h|g0.

2.13. Suppose T is complete and sufficient with respect to M = {Pθ : θ ∈ Θ}.
Let U1 and U2 be two members of U. Show that E(U1|T ) = E(U2|T ) [Pθ],
for all θ ∈ Θ.

2.14. Show that if U be the UMVUE for θ, and V is any statistic whose
components are in L2(Pθ) and EθV = 0 for all θ ∈ Θ, then covθ(U, V ) = 0
for all θ ∈ Θ.
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3

Testing Hypotheses for a Single Parameter

The central idea of optimal hypothesis test is the Neyman-Pearson Lemma
(see Neyman and Pearson, 1933), which gives the form of the Most Powerful
test for simple hypotheses. The basic idea of the Neyman-Pearson Lemma can
be used to construct optimal tests for composite hypotheses, including one-
sided and two-sided hypotheses. This is achieved by applying the Neyman-
Pearson Lemma pointwise in the parameter spaces specified by composite
hypotheses. To do so we require special assumptions on the forms of the
distribution of the data, such as Monotone Likelihood Ratio and exponential
family. The discussion of this chapter will be focussed on testing a scalar
parameter. Vector-valued parameters will be treated in the next chapter.

3.1 Basic concepts

Scientific theories are posed as hypotheses; they uphold until refuted by suf-
ficient evidence. While no amount of data can “prove” a scientific theory, a
single instance can refute it. Suppose a hypothesis H implies an assertion A
whose truth or falsehood can be determined by observation (say by experi-
ments). If the observed facts are against A, then the hypothesis H is false.
New hypotheses are then to be formulated in the hope to accommodate the
observed facts that are inconsistent with the old hypothesis.

In a perfectly deterministic world, whether A is false can be determined
definitely, so that we can decide whether or not to reject H with certainty —
if H implies something that is false, then H itself must be false. In reality,
however, the falsehood of A can in most cases only be determined with a degree
of uncertainty. The need to make a decision in the face of uncertainty is the
chief motivation for statistical hypothesis testing. The basic logic underlying
statistical hypothesis testing is this: if H implies something unlikely, then H
itself is unlikely to be true.

Let (Ω,F) be a measurable space, and X be a random element, which has
range ΩX , together with a σ-field FX . Thus X is measurable F/FX . Let P0
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and P1 be two disjoint families of distributions defined on (Ω,F). Statistical
hypotheses are formulated as

H0 : P ∈ P0 versus H1 : P ∈ P1, (3.1)

where H0 is called the null hypothesis, and H1 the alternative hypothesis.
Note that the formulation (3.1) implicitly assumes that true distribution P
must be in one of the two families. That is, P ∈ P0 ∪ P1. If X falls into a
region that has small probability under P ∈ P0 — that is, if X is unlikely
whenever its distribution were from P0, then we can make a decision to reject
H.

Our action of rejecting or not rejecting H0 can be described by rejection
region, also called critical region. A rejection region is any set C ∈ FX such
that we reject H0 whenever X falls into C. That is, the region C describes a
rule of when to reject H0. This rule is called a nonrandomized test.

Definition 3.1 For a nonrandomized test described by C, let

α = sup
P∈P0

P (X ∈ C), β(P ) = P (X ∈ C), P ∈ P1.

Then α is called the type I error, or size, of the test, and β(P ) is called the
power of the test at probability P , and 1 − β(P ) is called the type II error of
the test at P .

Naturally, if H0 is true, we would like to reject H0 with a small proba-
bility, and if H0 is false (H1 is true), we would like to reject H0 with a large
probability. That is, ideally, we want to choose C so that the both the type
I and the type II errors are minimized. However, this is typically impossible,
as the following example shows.

Example 3.1 Suppose that X has a binomial distribution

fθ(x) =
(

n

x

)
θx(1 − θ)n−x, x = 0, 1, . . . , n, 0 ≤ θ ≤ 1.

We abbreviate this statement as X ∼ b(n, θ). Take n = 2. Then X has range
{0, 1, 2}. Suppose we are interested in testing the hypothesis

H0 : θ = 1/2 versus H1 : θ = 1/6.

The table below gives type-I and type-II errors and power of all possible
subsets of {0, 1, 2}.
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C Type I Type II Power

{0} 1/4 11/36 25/36
{1} 1/2 26/36 10/36
{2} 1/4 35/36 1/36
{0,1} 3/4 1/36 35/36
{0,2} 1/2 10/36 26/36
{1,2} 3/4 25/36 11/36
{0,1,2} 1 0 1

∅ 0 1 0

We see that there is no critical region for which α and β are both minimized. �

From this table we also see that using a nonrandomized test we cannot
control α at an arbitrary level. For example, no critical region has type-I error
exactly equal to 0.05. For a technical reason it is desirable to be able to control
α at an arbitrary level. This leads us to consider the following general form
of test

φ : ΩX → [0, 1], φ is measurableFX/R. (3.2)

The evaluation of φ at x is the conditional probability of rejecting H0 given
the observation X = x; 1−φ(x) is the conditional probability of not rejecting
H0.

Definition 3.2 A function φ of the form (3.2) is called a test. A test φ is
called a randomized test if, for some x ∈ ΩX , 0 < φ(x) < 1; it is a nonran-
domized test if φ only takes 0 or 1 as its values.

This general definition is consistent with Definition 3.1: If φ only takes 0
and 1 as its values, then the set C = {x : φ(x) = 1} is the rejection region in
Definition 3.1. If X ∈ C, we reject H0 (with probability 1) otherwise we do not
reject H0 (or reject H0 with probability 0). Because φ is assumed measurable,
C is necessarily a set in FX .

Definition 3.3 The test φ for H0 : P ∈ P0 versus H1 : P ∈ P1 is said to
have level of significance α, if

sup
P∈P0

∫
φ(x)dP (x) ≤ α. (3.3)

The left side of (3.3) is called the size of the test.

As a special case, a nonrandomized test φ is of significance level α if
P (C) ≤ α for all P ∈ P0. Also note the subtle difference between the size and
level of a test: the level of a test is an upper bound of the test. In other words
the level of a test whose size is α′ can be any number α satisfying α′ ≤ α ≤ 1.

Definition 3.4 The function βφ on P given by βφ(P )=
∫

φ(x)dP (x) is called
the power function of φ.
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3.2 The Neyman-Pearson Lemma

The simplest hypotheses H0 and H1 are ones in which P0 and P1 each contains
only one distribution on (Ω,F). That is, P0 = {P0} and P1 = {P1}. A
test that contains only one distribution is called a simple hypothesis. A test
that contains more than one distributions is called a composite hypothesis.
Testing simple hypotheses is only of limited practical interest, but it lays the
theoretical foundation for tests of composite hypotheses.

Consider the problem of testing a simple null hypothesis versus a simple
alternative hypothesis

H0 : P = P0 versus H1 : P = P1. (3.4)

Let 0 ≤ α ≤ 1. We seek a test φ of size α such that its power at P1 is greater
than or equal to the power at P1 of any other test of significance level α.

Definition 3.5 A test φ for simple-versus-simple hypotheses is a Most Pow-
erful (MP) test of size α if

1. βφ(P0) = α,
2. for any φ′ with βφ′(P0) ≤ α we have βφ(P1) ≥ βφ′(P1).

Note that 1 − βφ(P1) ≤ 1 − βφ′(P1) and hence an MP has minimum type-II
error among all tests of significance level α.

Does such a test exist? If so, is it unique? A fundamental result by Neyman
and Pearson (1933) will help in answering this question. See also Lehmann
and Romano (2005, Chapter 3) and Ferguson (1967, Chapter 5). Without loss
of generality, we can assume that there is a common measure μ on (Ω,F) that
dominates both P0 and P1 — for example, we can simply take μ = P0 + P1.

Lemma 3.1 (Neyman-Pearson Lemma) Let f0 and f1 be densities of P0

and P1 with respect to μ. Then any test φ of the form

φ(x) =

⎧⎪⎨
⎪⎩

1 if f1(x) > kf0(x)
γ(x) if f1(x) = kf0(x)
0 if f1(x) < kf0(x)

(3.5)

where 0 ≤ γ(x) ≤ 1 and k ≥ 0 is the MP of size
∫

φf0dμ.

Proof. Let φ′ be any test of level
∫

φf0dμ. We want to show that
∫

φdP1 ≥∫
φ′dP1. Since φ′ is a test,

(φ(x) − φ′(x))(f1(x) − kf0(x)) ≥ 0 for all x.

Thus ∫
(φ − φ′)(f1 − kf0)dμ =

∫
(φ − φ′)f1dμ − k

∫
(φ − φ′)f0dμ ≥ 0.
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Since φ′ is of level α,
∫

φf0dμ ≥ ∫
φ′f0dμ. Hence

∫
φf1dμ ≥

∫
φ′f1dμ,

as desired. �

The following proposition is a generalization of the intermediate value
theorem.

Proposition 3.1 Suppose ρ : R → R is a right continuous, nonincreasing
function satisfying

1. ρ(0−) = 1;
2. limx→∞ ρ(x) = 0.

Then for any 0 < α ≤ 1 there exists k ∈ [0,∞) such that α ∈ [ρ(k), ρ(k−)].

Proof. If α = 1 then α ∈ [ρ(0−), ρ(0)]. Now suppose 1 > α > 0. Let
S = {x : ρ(x) ≤ α}. This set is nonempty because ρ(x) → 0 as x → ∞.
Let k = inf S. It is easy to see that k < ∞. Since ρ(0−) = 1, we have
k ≥ 0. Let xn be a sequence in S approaching k. Then, by right continuity,
ρ(xn) → ρ(k), and we have ρ(k) ≤ α. Since ρ(x) > α for all x < k, we have
ρ(k−) ≥ α. �

Theorem 3.1 For any 0 < α ≤ 1, there exists a test φ of size α of the form
(3.5) with γ(x) = γ, a constant, and 0 ≤ k < ∞. Furthermore, if φ′ is MP of
size 0 < α ≤ 1, then it has the form (3.5) a.e. P0 and P1. That is,

P0(φ 	= φ′, f1 	= kf0) = 0, P1(φ 	= φ′, f1 	= kf0) = 0.

Note that the form (3.5) does not specify γ(x). In other words as long as
φ and φ′ are the same on {f1 	= kf0}, they are both of the form (3.5).

Proof. (Existence). For a test φ of the type (3.5) with γ(x) = γ, we have
∫

φf0dμ = P0(f1 > kf0) + γP0(f1 = kf0).

Fix 0 < α ≤ 1, and define

ρ(k) = P0(f1 > kf0) = P0(f1/f0 > k, f0 > 0).

Then ρ(·) is a nonincreasing, right continuous function with left limit ρ(k−) =
P0(f1 ≥ kf0). It is then clear that

ρ(0−) = 1, ρ(0) = P0(f1 > 0), lim
k→∞

ρ(k) = 0.
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It follows that (0, 1] ⊆ ∪{[ρ(k), ρ(k−)] : 0 ≤ k < ∞}. Hence for any 0 < α ≤ 1
there is a 0 ≤ k0 < ∞ such that

P0(f1 > k0f0) ≤ α ≤ P0(f1 ≥ k0f0).

If we take k = k0 in (3.5) and

γ =

⎧⎨
⎩

α − P0(f1 > k0f0)
P0(f1 = k0f0)

if P0(x : f1 = k0f0) 	= 0

0 otherwise,

then
∫

φf0dμ = α.
(Uniqueness). Let 0 < α ≤ 1, let φ be a test of the type (3.5) of size α,

and let φ′ be another MP of size α. Then
∫

φfidμ =
∫

φ′fidμ for i = 0, 1.
Consequently,

∫
(φ − φ′)(f1 − kf0)dμ =

∫
(φ − φ′)f1dμ − k

∫
(φ − φ′)f0dμ = 0.

Since (φ − φ′)(f1 − kf0) ≥ 0, it is 0 a.e. μ. This implies

μ({φ − φ′ 	= 0, f1 − kf0 	= 0}) = 0.

Since P0 � μ and P1 � μ we have the desired result. �

Existence and uniqueness of the MP test can also be established when
α = 0 if we adopt the convention (1.2). Let

φ(x) =

{
1 if f0(x) = 0
0 if f0(x) > 0.

(3.6)

By (1.2),

{f1 > ∞f0} ⊂ {f0 = 0}, {f1 = ∞f0} ⊂ {f0 = 0}, {f1 < ∞f0} ⊂ {f0 > 0}.
Thus φ in (3.6) has the form (3.5) with γ(x) = 1 and k = ∞ and satisfies

βφ(P0) =
∫

φf0dμ =
∫

f0>0

φf0dμ = 0.

To prove uniqueness let φ′ be another MP test of size α = 0. Since
∫

φ′f0dμ =
0, φ′ = 0 a.e. μ on {f0 > 0}. Since φ′ is the most powerful

0 ≥
∫

(φ − φ′)f1dμ =
∫
{f0=0}

(1 − φ′)f1dμ −
∫
{f0>0}

φ′f1dμ

=
∫
{f0=0}

(1 − φ′)f1dμ ≥ 0.



3.3 UMP test for one-sided hypotheses 67

Thus φ′ = 1 a.e. μ on {f0 = 0} ∩ {f1 > 0}. Since Pi(f0 = f1 = 0) = 0 for
i = 0, 1, we see that φ′ = 1 a.e. P0, P1 on {f0 = 0}. Thus, for i = 0, 1,

Pi(φ′ 	= φ) =Pi(φ′ 	= I{f0=0})
=Pi(φ′ 	= 0, f0 > 0) + Pi(φ′ 	= 1, f0 = 0) = 0.

In other words φ′ = φ a.e. P0, P1.

3.3 Uniformly Most Powerful test for one-sided
hypotheses

We now begin the process of generalizing the basic idea of the Neyman-
Pearson Lemma to composite hypotheses. A family of distributions indexed by
a parameter in a Euclidean space is called a parametric family. Let Θ be a sub-
set of the Euclidean space R

k. A parametric family is a set P = {Pθ : θ ∈ Θ},
where each Pθ is a probability measure on (Ω,F). Let Θ0 and Θ1 be a parti-
tion of Θ. That is, Θ0 ∩ Θ1 = ∅ and Θ0 ∪ Θ1 = Θ. Hypotheses (3.1) in this
context reduce to

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1.

For a parametric family, the power function βφ(Pθ) is a function of θ. We
will write βφ(Pθ) as βφ(θ). For a measurable function f of X, we write its
expectation

∫
fdPθ as Eθf(X).

In this section we consider the one-sided hypotheses. See Allen (1953),
Karlin and Rubin (1956), Pfanzagl (1967), and Lehmann and Romano (2005).
If Θ is an interval in R, and θ0 ∈ Θ, and if Θ0 = {θ ∈ Θ : θ ≤ θ0} and
Θ1 = {θ ∈ Θ : θ > θ0}, then the above hypothesis takes the special form

H0 : θ ≤ θ0 versus H1 : θ > θ0. (3.7)

This is called one-sided hypotheses. In this section we develop the UMP-α
test for one-sided hypotheses, and give the sufficient conditions under which
such a test exists.

3.3.1 Definition and examples of UMP tests

As in the case of simple versus simple hypotheses, we would like to find a
size α test that has the most power among all level α tests. When P0 and P1

are composite, however, the set of powers, {βφ(P ) : P ∈ P1}, is no longer a
number and we would like it to be large for all P ∈ P1. This is formulated
rigorously as the Uniformly Most Powerful test.

Definition 3.6 A test φ of size α, that is, supP∈P0
βφ(P ) = α, for testing
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H0 : P ∈ P0 versus H1 : P ∈ P1 (3.8)

is called a Uniformly Most Powerful test of size α if, for any φ′ of level α,
that is,

sup
P∈P0

βφ′(P ) ≤ α,

we have βφ(P ) ≥ βφ′(P ) for all P ∈ P1,

A Uniformly Most Powerful test of size α is abbreviated as a UMP-α test.
A natural way to find a UMP-α test is to apply the MP test for simple

versus simple hypotheses H0 : θ = θ0 versus H1 : θ = θ′ for each fixed θ′ > θ0.
However, the test φ obtained by such a procedure would in general depend
on θ′, and would therefore not be suitable for hypothesis (3.7), as it is not
specific to any particular point in Θ1.

However, in an important special case we can construct a test as described
above to obtain an MP test not specific to θ′. We first illustrate this by two
examples. For illustration, we first construct UMP-α test for the simple versus
composite hypothesis

H0 : θ = θ0 versus H1 : θ > θ0. (3.9)

Example 3.2 Let X be a b(n, θ) random variable and suppose we are inter-
ested in testing (3.9) for a θ0 ∈ (0, 1). We first pick any fixed θ′ > θ0 and
consider the simple versus simple hypotheses H0 : θ = θ0 versus H1 : θ = θ′.
Let

L(x) =
fθ′(x)
fθ0(x)

=
(

θ′

θ0

)x(
1 − θ′

1 − θ0

)n−x

.

By the Neyman-Pearson Lemma, the MP test for θ0 versus θ′ is

φ(x) =

⎧⎪⎨
⎪⎩

1 if L(x) > k

γ if L(x) = k

0 if L(x) < k

for some k and γ. Since θ′ > θ0, the likelihood ratio L(x) is increasing in x.
Hence φ is equivalent to

φ(x) =

⎧⎪⎨
⎪⎩

1 if x > m

γ if x = m

0 if x < m

where γ and m are determined by Eθ0(φ(X)) = α; that is

Pθ0(X > m) + γPθ0(X = m) = α.
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To be precise, we first find m such that Pθ0(X > m) ≤ α ≤ Pθ0(X ≥ m), and
define γ(m) = [α − Pθ0(X > m)]/Pθ0(X = m).

Clearly, the test φ depends only on θ0 and hence it is a size α MP test
for H0 : θ = θ0 versus H1 : θ = θ′ for every θ′ > θ0. This implies that it is a
UMP-α test for H0 : θ = θ0 versus H1 : θ > θ0. �

Example 3.3 Let X denote a Gaussian random variable with density

fθ(x) =
1√
2π

e−
1
2 (x−θ)2 ,

and let θ′ > θ0. As in the previous example, the likelihood ratio,

L(x) = fθ′(x)/fθ0(x) = exp[(x − θ0)2/2 − (x − θ′)2/2]

= exp[(θ20 − θ′2)/2 + x(θ′ − θ0)],

is an increasing function of x. Fix a θ′ > θ0. By the Neyman-Pearson Lemma,
the MP test for H0 : θ = θ0 versus H1 : θ = θ′ of size α is of the form

φ(x) =

⎧⎪⎨
⎪⎩

1 if fθ1(x) > kfθ0(x)
γ(x) if fθ1(x) = kfθ0(x)
0 if fθ1(x) < kfθ0(x)

which, because L(x) is monotone increasing in x, is equivalent to

φ(x) =

⎧⎪⎨
⎪⎩

1 if x > k′

γ(x) if x = k′

0 if x < k′
.

Furthermore, since X is a continuous random variable, Pθ0(X = k′) = 0.
Hence we can choose γ(x) arbitrarily without changing the size of φ. Choose
γ(x) = 0, and the above test reduces to

φ(x) =

{
1 if x > k′

0 if x ≤ k′ ,

where k′ is determined by

Eθ0(φ(X)) =
1√
2π

∫ ∞

k′
e−

1
2 (x−θ0)

2
dx =

1√
2π

∫ ∞

k′−θ0

e−
1
2x2

dx = α.

Again, φ is completely determined by θ0 and α, and is not specific to the θ′

we started with. Thus φ is UMP-α for testing H0 : θ = θ0 versus H1 : θ > θ0. �
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What makes it possible for us to construct UMP test from a collection of
MP simple versus simple tests in the foregoing examples is that the likelihood
ratio is monotone in X in both cases. In fact, such a construction is always
possible under the condition of monotone likelihood ratio, which we now for-
mally define. Let P = {Pθ : θ ∈ Θ ⊂ R} be a family of probability measures.
Suppose that each Pθ in P is dominated by a common density μ. Let fθ(x)
denote the density of Pθ with respect to μ.

3.3.2 Monotone Likelihood Ratio

The assumption of Monotone Likelihood Ratio for constructing one-sided
UMP tests, whose importance we have seen in the last two examples, is crys-
talized by Karlin and Rubin (1956); a more general form is given by Pfanzagl
(1967). See also Ferguson (1967) and Lehmann and Romano (2005).

Definition 3.7 Let P = {Pθ : θ ∈ Θ} be a one-parameter family of proba-
bility measures dominated by a measure μ, and let fθ = dPθ/dμ. The family
of densities {fθ : θ ∈ Θ} is said to have monotone likelihood ratio (MLR) in
Y (x) if for any θ1 < θ2, θ1, θ2 ∈ Θ, the likelihood ratio L(x) = fθ2(x)/fθ1(x)
is a monotone (nondecreasing or nonincreasing) function in Y (x) on a set on
which L(x) is defined.

Here, we say that L(x) is defined if fθ2(x) and fθ1(x) are not both 0. If
fθ1(x) = 0 and fθ2(x) > 0, we say that L(x) takes the value ∞. Also note that
according to this definition, if P has MLR in Y (x), then Y (X) is sufficient
for P. MLR can also be defined more generally without using densities; see
Pfanzagl (1967).

Since L(x) is nondecreasing in Y (x) if and only if it is nonincreasing in
−Y (x), for convenience we shall always assume L(x) to be nondecreasing in
Y (x) in the rest of this chapter.

Example 3.4 Let U(a, b) denote the uniform distribution on an interval
(a, b), and suppose that the distribution of X belongs to the family {U(0, θ) :
θ > 0}. This family has MLR in Y (x) = x. To see this, let θ2 > θ1 > 0.
Then f(x|θi) = θ−1

i I(0,θi)(x), i = 1, 2. Thus L(x) is θ2/θ1 on (0, θ1); it is ∞
on [θ1, θ2); it is not defined on [θ2,∞). Thus L(x) is nondecreasing on the set
on which it is defined.

Similarly, the family {U(θ, θ + 1); θ > 0} has MLR in x. Let θ2 > θ1. If
θ2 ≥ θ1 + 1, then L(x) is defined on (θ1, θ1 + 1) ∪ (θ2, θ2 + 1) and not defined
elsewhere. Note that L(x) = 0 on (θ1, θ1 + 1) and L(x) = ∞ on (θ2, θ2 + 1).
Hence the family has MLR in x. Suppose θ1 < θ2 < θ1 + 1. Then L(x) is
defined on (θ1, θ2 + 1) and is not defined elsewhere. Note that L(x) = 0 on
(θ1, θ2]; L(x) = 1 on (θ2, θ1 +1); L(x) = ∞ on [θ1 +1, θ2 +1). Thus the family
has MLR in x. �
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Example 3.5 For the double exponential

fθ(x) =
1
2β

exp
( − |x − θ|/β

)
,

where the scale parameter β > 0 is known, the likelihood ratio

L(x) = fθ2(x)/fθ1(x) = exp
{ 1

β

(|x − θ1| − |x − θ2|
)}

,

is given by

L(x) =

⎧⎪⎨
⎪⎩

exp
(
(θ1 − θ2)/β

)
if x < θ1

exp
(
(2x − θ1 − θ2)/β

)
if θ1 ≤ x < θ2

exp
(
(θ2 − θ1)/β

)
if θ2 ≥ x

So if θ1 < θ2, then L is continuous and nondecreasing in x. Hence the family
has MLR in x. �

However, Cauchy family does not have MLR in x.

Example 3.6 For Cauchy distribution with density

fθ(x) =
θ

π(x2 + θ2)
, θ > 0,

the likelihood ratio is

L(x) =
fθ2(x)
fθ1(x)

=
θ2
θ1

(
θ21 + x2

θ22 + x2

)
=

θ2
θ1

(
θ21 − θ22
θ22 + x2

+ 1
)

.

Obviously L(x) is symmetric in x. We know it is not a constant. Hence it is
not monotone. �

The next lemma is useful in deriving UMP tests for one sided tests.

Lemma 3.2 Suppose that the family of densities {fθ(x) : θ ∈ Θ} has MLR
(nondecreasing) in Y (x). If φ is a non-decreasing and integrable function of
Y , then βφ(θ) =

∫
φfθdμ is non-decreasing in θ.

Proof. Let θ1 < θ2, and let

A = {x : fθ2(x) < fθ1(x)} and B = {x : fθ2(x) > fθ1(x)}.

By definition, L(a) < 1 < L(b) whenever a ∈ A, b ∈ B. This implies that
Y (b) > Y (a) and hence that φ(b) ≥ φ(a). Therefore
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βφ(θ2) − βφ(θ1) =
∫

φ(fθ2 − fθ1)dμ

=
∫

A

φ(fθ2 − fθ1)dμ +
∫

B

φ(fθ2 − fθ1)dμ

≥ sup
a∈A

φ(a)
∫

A

(fθ2 − fθ1)dμ + inf
b∈B

φ(b)
∫

B

(fθ2 − fθ1)dμ ≥ 0,

where the last inequality holds because

inf
b∈B

φ(b) ≥ sup
a∈A

φ(a),

∫
A

(fθ2 − fθ1)dμ +
∫

B

(fθ2 − fθ1)dμ =
∫

(fθ2 − fθ1)dμ = 0,

and fθ2 − fθ1 < 0 on A. �

3.3.3 The general form of UMP tests

We now state the main result of this section. The theorem states, in essence,
that the construction similar to those in Examples 3.2 and 3.3 always gives
valid UMP test if the MLR assumption is satisfied.

Theorem 3.2 Suppose that the family {fθ(x) : θ ∈ Θ} has MLR (nonde-
creasing) in Y (x).

1. If α > 0, then the test φ defined by

φ(x) =

⎧⎪⎨
⎪⎩

1 if Y (x) > k

γ if Y (x) = k

0 if Y (x) < k

,

∫
φfθ0dμ = α (3.10)

is a UMP test for

H0 : θ ≤ θ0 versus H1 : θ > θ0. (3.11)

2. If α < 1, then the test φ′ defined by

φ′(x) =

⎧⎪⎨
⎪⎩

1 if Y (x) < k′

γ′ if Y (x) = k′

0 if Y (x) > k′
,

∫
φ′fθ0dμ = α

is UMP test for
H ′

0 : θ ≥ θ0 versus H ′
1 : θ < θ0. (3.12)
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The proof follows roughly the argument used in Examples 3.2 and 3.3.
Additional care must be taken, however, to extend the null hypothesis from
H0 : θ = θ0 in the examples to H0 : θ ≤ θ0 here, which is achieved using the
monotonicity of βφ(θ), as shown in Lemma 3.2. By the MLR assumption, the
likelihood ratio L(x) is a function of Y (x). We write L(x) as L0(Y (x)).

Proof of Theorem 3.2. First, we show that test (3.10) is UMP for testing
H0 : θ = θ0 versus H1 : θ > θ0. To do so it suffices to show that, for any fixed
θ1 > θ0, (3.10) is of the form

φ1(x) =

⎧⎪⎨
⎪⎩

1 if fθ1(x) > k1fθ0(x)
γ(x) if fθ1(x) = k1fθ0(x)
0 if fθ1(x) < k1fθ0(x)

for some k1 ≥ 0 and some function 0 ≤ γ(x) ≤ 1. Since γ(x) is arbitrary, any
test that takes value 1 on {fθ1 > k1fθ0} and 0 on {fθ1 < k1fθ0} has the above
form. Because the family {fθ : θ ∈ Θ} has MLR,

{x : Y (x) ≤ k} ⊂ {x : L0(Y (x)) ≤ L0(k)}.
Hence

{x : fθ2(x) > L0(k)fθ1(x)} ⊂ {x : Y (x) > k}.
Thus φ in (3.10) takes the value 1 on {fθ2 > k1fθ1} where k1 = L(k). For a
similar reason, it takes the value 0 on {fθ2 < k1fθ1}. Thus we have proved φ
is UMP for testing θ = θ0 versus θ > θ0.

Next, we show that φ is a UMP test of size βφ(θ0) for testing θ ≤ θ0
versus θ > θ0. Since, by Lemma 3.2, βφ(·) is monotone nondecreasing, φ has
size βφ(θ0). Let Ψ be the class of all tests of size βφ(θ0). That is,

Ψ = {ψ : sup
θ≤θ0

βψ(θ) ≤ βφ(θ0)}.

We need to show that βφ(θ) ≥ βψ(θ) for all θ > θ0 and all ψ ∈ Ψ . Let Ψ ′

be the class of all tests whose power at θ0 is no more than βφ(θ0). That is,
Ψ ′ = {ψ′ : βψ′(θ0) ≤ βφ(θ0)}. Clearly, Ψ ⊂ Ψ ′. But we have already shown
that βφ(θ) ≥ βψ′(θ) for all ψ′ ∈ Ψ ′.

The second part of the theorem follows by considering 1 − ψ, where ψ is
a size 1 − α test of the type (3.10). �

The next theorem establishes the existence of UMP test for one-sided
hypotheses.

Theorem 3.3 Suppose that the family {fθ(x) : θ ∈ Θ} has MLR in Y (x).
Then for any given 0 < α ≤ 1 and θ0 ∈ Θ, there exist −∞ ≤ k ≤ ∞ and
0 ≤ γ ≤ 1 such that φ in (3.10) has size α.
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Proof. Let Pθ0 denote the distribution corresponding go fθ0 . Choose k such
that

Pθ0(Y (X) > k) ≤ α ≤ Pθ0(Y (X) ≥ k)

and define

γ =

⎧⎨
⎩

α − Pθ0(Y (X) > k)
Pθ0(Y (X) = k)

, if Pθ0(Y (X) = k) 	= 0

0 otherwise.

Clearly, a test of the form (3.10) with k and γ chosen above satisfies
βφ(θ0) = α. By Lemma 3.2, then, the size of the test is α. �

3.3.4 Properties of the one-sided UMP test

We now further study the properties of the one-sided UMP test as given in
(3.10). The next corollary shows that the UMP test (3.10) not only has the
most power for θ > θ0, but also has the least power for θ < θ0.

Corollary 3.1 Suppose 0 < βφ(θ0) < 1. If φ is a test of the form (3.10),
then, for any test ψ satisfying βψ(θ0) ≥ βφ(θ0), we have βψ(θ) ≥ βφ(θ) for
all θ ≤ θ0.

Proof. From the proof of Theorem 3.2, 1−φ is the UMP test of size 1−βφ(θ0)
for testing H0 : θ = θ0 versus H1 : θ < θ0. Since β1−ψ(θ0) ≤ β1−φ(θ0), we
have

1 − βψ(θ) = β1−ψ(θ) ≤ β1−φ(θ) = 1 − βφ(θ)

for all θ ≤ θ0. Consequently, βψ(θ) ≥ βφ(θ) for all θ ≤ θ0. �

A typical comparison between the power of the UMP test φ and any other
test ψ of the same size is presented in Figure 3.1.

Recall that Lemma 3.2 states that if φ is a monotone function of Y (x)
then it has a nondecreasing power function. The next lemma shows that φ
has a strictly increasing power function if the parametric family {Pθ : θ ∈ Θ}
is identifiable and if φ is of the form (3.10). We say that a parametric family
of probability measures {Pθ : θ ∈ Θ} is identifiable if, whenever θ1 	= θ2,
Pθ1 	= Pθ2 , where the latter inequality means that there is a set A in (Ω,F)
such that Pθ1(X ∈ A) 	= Pθ2(X ∈ A). Thus, identifiability means different
parameters correspond to different probability measures. That is, the mapping
θ �→ Pθ is injective.

Theorem 3.4 Suppose that the family {fθ(x) : θ ∈ Θ} have (nondecreasing)
MLR in Y (x) and the corresponding family of probability measures {Pθ : θ ∈
Θ} is identifiable. Let φ be the test defined in (3.10). Then βφ(θ) is strictly
increasing over {θ : 0 < βφ(θ) < 1}.
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β(θ)

θ

Fig. 3.1. Comparison of power functions

Proof. Let θ1 < θ2 be numbers in Θ. As seen earlier in the proof of Theorem
3.2, the test φ defined in (3.10) is equivalent to

φ(x) =

⎧⎪⎨
⎪⎩

1 if fθ2(x) > k′fθ1(x)
γ(x) if fθ2(x) = k′fθ1(x)
0 if fθ2(x) < k′fθ1(x)

for some k′ and γ(x). By the Neyman-Pearson Lemma, φ is a size βφ(θ1) MP
test for H0 : θ = θ1 versus H1 : θ = θ2. If βφ(θ1) = βφ(θ2), then the test
φ∗(x) ≡ βφ(θ1) satisfies

(φ − φ∗)(fθ2 − k′fθ1) ≥ 0, and
∫

(φ − φ∗)(fθ2 − k′fθ1)dμ = 0.

So μ{(φ−φ∗)(fθ2−k′fθ1) 	= 0} = 0. Because βφ(θ1) 	= 0, whenever fθ2 	= k′fθ1 ,
we have φ 	= φ∗. And so

{x : fθ2(x) 	= fθ1(x)} ⊂ {x : (φ(x) − φ∗(x))(fθ2(x) − k′fθ1(x)) 	= 0}.
Thus we see that μ(fθ2 	= k′fθ1) = 0. In other words fθ2(x) = k′fθ1(x) a.e. μ,
which implies k′ = 1. This leads to a contradiction Pθ1 = Pθ2 . �

3.4 Uniformly Most Powerful Unbiased test and
two-sided hypotheses

In this section we consider two-sided hypotheses, which include three types
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I. H0 : θ = θ0 versus H1 : θ 	= θ0;
II. H0 : θ1 ≤ θ ≤ θ2 versus H1 : θ < θ1 or θ > θ2;

III. H0 : θ ≤ θ1 or θ ≥ θ2 versus H1 : θ1 < θ < θ2.

The way these tests are ordered above follows roughly according to how com-
mon they are in practice: for example hypotheses of type I are most commonly
seen. Technically, however, it is easier to develop the optimal tests following
the order of III→II→I, which will be the route we take.

Unlike the one-sided hypotheses, there are in general no UMP tests for
two-sided hypotheses. UMP tests always exists for hypotheses III, but they
do not exist for hypotheses I and II. This point is illustrated by the following
example.

Example 3.7 Suppose X is distributed as b(n, θ), 0 < θ < 1, and 0 < α < 1.
To test the null hypothesis H0 : θ = 1

2 versus the two sided alternative
H1 : θ 	= 1

2 we first consider the one-sided alternative hypothesis H+ : θ > 1
2 .

Then

φ+(x) =

⎧⎪⎨
⎪⎩

1 if x > c+

γ+(x) if x = c+

0 if x < c+,

with E 1
2
(φ+(X)) = α is UMP-α test for testing H0 versus H+. Similarly,

φ−(x) =

⎧⎪⎨
⎪⎩

1 if x < c−
γ−(x) if x = c−
0 if x > c−,

with E 1
2
(φ−(X)) = α, is UMP test of size α for testing H0 versus H− : θ < 1

2 .
Suppose φ0 is a UMP-α test for H0 versus H1. Then it is also UMP-α

for H0 versus H+. Consequently Eθ(φ0(X)) = Eθ(φ+(X)), for all θ ≥ 1
2 . Let

g(j) = φ0(j) − φ+(j). Then

0 = Eθ[g(X)] =
n∑

j=0

g(j)
(

n

j

)(
θ

1 − θ

)j

(1 − θ)n.

If we let η = θ/(1 − θ), then the above equality implies

n∑
j=1

g(j)
(

n

j

)
ηj = 0

for all η = θ/(1 − θ) ≥ 1. So g(j) = 0 for all j. In other words φ0(j) = φ+(j)
for all j. Using the same argument we can show that φ− ≡ φ0. Thus φ−(j) =
φ+(j) for all j, which is impossible.

For example if n = 4, α = 1
16 , then
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φ+(j) =

{
1 if j > 3
0 if j ≤ 3,

φ−(j) =

{
1 if j < 4
0 if j ≥ 4,

but φ+ 	= φ−. So there is no UMP test for the 2-sided hypotheses. �

3.4.1 Uniformly Most Powerful Unbiased tests

From Example 3.7 we see that UMP tests do not in general exist for two-sided
composite hypotheses, because one can always sacrifice the power for one side
and make the power for the other side as large as possible. Apparently, a
certain restriction should be imposed. A simple condition to impose is that
the power function, for θ in the alternative, should take values greater than
or equal to the size of the test. That is, the probability of rejecting the null
hypothesis when false is never smaller than the probability of rejecting the null
hypothesis when true. A test satisfying this condition is called an unbiased test
(Neyman and Pearson, 1936). The following definition formulates the concept
of unbiasedness in a more general setting than scalar parameter, which will
become important for later discussions. Again, P0 and P1 denote two disjoint
families of distributions.

Definition 3.8 A size α test φ for testing H0 : P ∈ P0 versus H1 : P ∈ P1

is said to be unbiased if α ≤ infP∈P1 βφ(P ).

Definition 3.9 A test φ is called Uniformly Most Powerful Unbiased test of
size α (UMPU-α) if

1. it has size α;
2. for any size α unbiased test ψ we have βφ(P ) ≥ βψ(P ) for all P ∈ P1.

If a UMP-α exists, then its power cannot fall below that of the test ψ(x) ≡
α, for P ∈ P1. So a UMP tests are unbiased. For a large class of testing
problems, where UMP tests fail to exist, there do exist UMPU tests. By a
similar argument, a UMPU-α test must be itself unbiased. To see this, let φ
be an UMPU-α test and let ψ ≡ α. Then ψ is unbiased of size α, and hence
βφ(P ) ≥ βψ(P ) = α for all P ∈ P1.

A fact about size-α unbiased tests that will be useful in our discussion is
that, if the power is continuous, then their power functions are constant on
the boundary of the two sets of probability measures specified by the null and
alternative hypotheses.

Proposition 3.2 Suppose that on P = P0 ∪ P1 is defined a metric, say ρ,
with respect to which βφ(·) is continuous. If φ is a size-α unbiased test, then
βφ(P ) = α for all P ∈ P̄0 ∩ P̄1, where P̄0 and P̄1 are the closures of P0 and
P1 with respect to the metric.
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Proof. Let P ∈ P̄0 ∩ P̄1. Then there is a sequence {P ′
k} ⊆ P0 and {P ′′

k } ⊆ P1

such that ρ(P ′
k, P ) → 0 and ρ(P ′′

k , P ) → 0. Thus

α ≥ lim
k→∞

βφ(P ′
k) = βφ(P ) = lim

k→∞
βφ(P ′′

k ) ≥ α,

as desired. �

The rest of this section is devoted to constructing UMPU-α tests for
hypotheses II and III and the UMP-α test for hypotheses I. We first introduce
some technical mechanism needed to construct optimal tests for two-sided
hypotheses.

3.4.2 More properties of the exponential family

We have seen that the families with MLR property play an important role in
constructing UMP test for one-sided hypotheses. Exponential families play a
similar role in constructing UMPU tests for two-sided hypotheses.

Specializing to the current context, the exponential family (2.5) becomes

c(θ)eη(θ)Y (x), (3.13)

where η is a monotone function of the parameter θ. Clearly, this family has
the MLR property. Examples of one-parameter exponential families include
normal {N(μ, 1) : μ ∈ R}, and binomial {b(n, θ) : 0 < θ < 1}. For example,
in the binomial case, the probability mass function is given by

fθ(x) =
(

n

x

)
θx(1 − θ)n−x = c(θ)eη(θ)Y (x),

where c(θ) = (1− θ)n
(
n
x

)
, Y (x) = x, and η(θ) = log(θ/(1− θ)). In this section

we study the properties of the exponential family that will be used frequently
in the subsequent exposition.

By Lemma 3.2, Theorem 2.7, and Lemma 2.2, if fθ has the form (3.13), if
φ is a nondecreasing function of Y (x) where Y (x) is as it appears in (3.13),
then βφ(θ) is either strictly monotone increasing in θ or constant in θ.

For a one-parameter exponential family (3.13), since Eθψ(X) < ∞ for
θ ∈ Θ, the power function βψ(θ) is an analytic function for any test ψ, and
the derivative with respect to θ can be brought inside the integral

∫
ψfθdμ.

(Here and in what follows, we use the dot notation to represent derivatives.
For example ḟθ(x) or simply ḟθ represents ∂fθ(x)/∂θ, and β̇φ(θ) or simply β̇φ

represents ∂βφ(θ)/∂θ.) Hence

β̇ψ(θ) =
∫

ψḟθdμ =
∫

ψ[ċ1(θ)/c1(θ) + Y ]fθdμ. (3.14)

If, in the above, we take ψ ≡ 1, then βψ(θ) ≡ 1, and β̇ψ(θ) = 0. It follows that
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ċ1(θ)/c1(θ) = −Eθ(Y ). (3.15)

Substitute this into (3.14) to obtain

β̇ψ(θ) = covθ(Y (X), ψ(X)). (3.16)

In other words, the power function of a test ψ for an exponential-family dis-
tribution is the covariance between the test and the sufficient statistic.

Suppose ψ and ψ′ are two tests with power functions βψ and βψ′ . If βψ(θ) ≥
βψ′(θ) for all θ, and if βψ(θ0) = βψ′(θ0) for some θ0 ∈ Θ0, then the minimum
of βψ(θ) − βψ′(θ) ≥ 0 is attained at θ0, and so ∂

∂θ

(
βψ(θ) − βψ′(θ)

)|θ=θ0 = 0.
Thus, if ψ′ ≡ α, βψ(θ) ≥ α for all θ and βψ(θ0) = α, then by (3.16), it follows
that ∂βψ(θ0)/∂θ = 0, which in turn implies

Eθ0(ψ(X)) = α and Eθ0(Y (X)ψ(X)) = αEθ0(Y (X)). (3.17)

3.4.3 Generalized Neyman-Pearson Lemma

For the study of two-sided hypotheses the following generalized version of the
Neyman-Pearson Lemma is also required (Neyman and Pearson, 1936).

Lemma 3.3 (Generalized Neyman-Pearson Lemma) Letf1, f2, . . .,fm+1

be integrable functions with respect to a measure μ and c1, . . . , cm be real num-
bers. Let

φ∗(x) =

⎧⎪⎨
⎪⎩

1 if fm+1(x) >
∑m

i=1 cifi(x)
γ(x) if fm+1(x) =

∑m
i=1 cifi(x)

0 if fm+1(x) <
∑m

i=1 cifi(x)

Then

1. For any test φ that satisfies
∫

φfidμ =
∫

φ∗fidμ, i = 1, . . . ,m, (3.18)

we have
∫

φfm+1dμ ≤ ∫
φ∗fm+1dμ;

2. If, furthermore, c1 ≥ 0, . . . , cm ≥ 0, then, for any φ that satisfies
∫

φfidμ ≤
∫

φ∗fidμ, i = 1, . . . ,m, (3.19)

we have
∫

φfm+1dμ ≤ ∫
φ∗fm+1dμ.

Proof. By construction,

(φ∗(x) − φ(x))
(
fm+1(x) −

∑
cifi(x)

)
≥ 0

for all x. This implies



80 3 Testing Hypotheses for a Single Parameter

∫
(φ∗ − φ)fm+1dμ ≥

∑
ci

∫
(φ∗ − φ)fidμ.

If (3.18) holds then the right hand side is 0, proving assertion 1. If c1 ≥
0, . . . cm ≥ 0 and (3.19) holds, then each summand on the right hand is non-
negative. So the right hand side is nonnegative, proving assertion 2. �

The following is another variation of the Neyman-Pearson lemma that will
be useful.

Lemma 3.4 Suppose that f1 and f2 are two functions integrable with respect
to μ. Let φ∗ be a test satisfying

φ∗(x) =

{
1 if f2(x) > kf1(x)
0 if f2(x) < kf1(x)

(3.20)

for some −∞ ≤ k ≤ ∞. Then, for any test φ that satisfies
∫

φf1dμ =
∫

φ∗f1μ
we have ∫

f1 �=0

φ∗f2dμ ≥
∫

f1 �=0

φf2dμ.

Proof. By construction

(φ∗(x) − φ(x))(f2(x) − kf1(x)) ≥ 0

for all x ∈ ΩX . Hence
∫

f1 �=0
(φ∗ − φ)(f2 − kf1)dμ ≥ 0, which implies

∫
f1 �=0

(φ∗ − φ)f2dμ ≥ k

∫
f1 �=0

(φ∗ − φ)f1dμ =
∫

(φ∗ − φ)f1dμ = 0.

�

3.4.4 Quantile transformation and construction of two-sided tests

Our construction of two-sided optimal tests hinges on a type of quantile trans-
formation, which we discuss in detail in this subsection. For a similar construc-
tion, see Ferguson (1967, Section 5.3). Let F be the distribution function of
a random variable Y . For 0 < ω < 1, define

F−1(ω) = inf{y : F (y) ≥ ω}.

This function is called the quantile function of Y . Its definition is illustrated
by Figure 3.2. We will use F (a−) to denote the left limit of F at a; that is,
F (a−) = P (Y < a). The following properties of F−1 will prove useful.
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Fig. 3.2. Quantile function

Lemma 3.5 Let 0 < ω < 1. Then:

1. F (y) < ω if and only if y < F−1(ω).
2. F (y) ≥ ω if and only if y ≥ F−1(ω).
3. F (F−1(ω)−) ≤ ω ≤ F (F−1(ω)).
4. If F is continuous at F−1(ω), then F (F−1(ω)) = ω.

Proof. 1. By the definition of F−1, if F (y) ≥ ω, then y ≥ F−1(ω). This shows
that y < F−1(ω) implies F (y) < ω. Now suppose y ≥ F−1(ω). Then F (y) ≥
F (F−1(ω)). Let Aω = {y : F (y) ≥ ω}. Then there is a sequence {yk} ⊆ Aω

such that limk yk = inf Aω = F−1(ω). Because yk ∈ Aω, yk ≥ F−1(ω). By
right continuity of F , we have limk F (yk) = F (F−1(ω)). But we also know
that F (yk) ≥ ω for each k. So F (y) ≥ F (F−1(ω)) ≥ ω.

2. This statement is equivalent to statement 1.

3. That F (F−1(ω)) ≥ ω has been proved in the proof of assertion 1. Also by
assertion 1, whenever y < F−1(ω), we have F (y) < ω. So F (F−1(ω)−) ≤ ω.

4. This is a direct consequence of assertion 3. �

Let γ be a number in (0, 1) and let Δ(y) denote the jump of F at y; that
is Δ(y) = F (y) − F (y−). Let

G(y, γ) = F (y) − (1 − γ)Δ(y) = F (y−) + γΔ(y),

Thus, G(y, 0) = F (y−), G(y, 1) = F (y), and

F (y−) ≤ G(y, γ) ≤ F (y), for 0 ≤ γ ≤ 1. (3.21)
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The variable γ “compensates” any discontinuity of F . Recall that, if Y is a
continuous random variable, then F (Y ) ∼ U(0, 1). This is no longer true for
discrete Y . However, a variation of this can be established for general Y using
G(y, γ), which compensates for any discontinuity. For 0 < ω < 1, let

γ(ω) =

{
[ω − F (F−1(ω)−)]/Δ[F−1(ω)] if Δ[F−1(ω)] > 0
0 otherwise.

(3.22)

Lemma 3.6 Let V be a random variable independent of Y , and V ∼ U(0, 1).
The random variable W = G(Y, V ) is distributed as U [0, 1].

Proof. Let 0< ω < 1. By (3.21), F (Y −)≤W ≤F (Y ). By part 1 of Lemma
3.5 we have {Y < F−1(ω)} = {F (Y ) < ω}. Now decompose the event {W <
ω} as

{W < ω} ={W < ω,F (Y ) < ω} ∪ {W < ω,F (Y ) ≥ ω}. (3.23)

The first event on the right-hand side of (3.23) can be rewritten as

{W < ω,F (Y ) < ω} = {F (Y ) < ω} = {Y < F−1(ω)}.
The second event on the right-hand side of (3.23) can be rewritten as

{W < ω,F (Y ) ≥ ω} ={W < ω,F (Y ) ≥ ω, F (Y −) < ω}
={W < ω, Y = F−1(ω)},

where the first equality holds because F (Y −) ≤ W , and the second holds
because F (Y −) < ω ≤ F (Y ) implies Y = F−1(ω). Moreover, Y = F−1(ω),
together with W < ω, implies F (Y −) < ω ≤ F (Y ). Hence

P (W < ω) = P (Y < F−1(ω)) + P (W < ω, Y = F−1(ω)). (3.24)

If Δ(F−1(ω)) = 0, then F is continuous at F−1(ω) and hence the second
term on the right-hand side above is 0. The first term is F (F−1(ω)−), which
is ω by part 4 of Lemma 3.5. Thus P (W < ω) = ω.

If Δ(F−1(ω)) > 0, then, by (3.24),

P (W < ω) =P (Y < F−1(ω)) + P (Y = F−1(ω))P (W < ω|Y = F−1(ω))

=F (F−1(ω)−) + Δ(F−1(ω))P (V < γ(ω)|Y = F−1(ω))

=F (F−1(ω)−) + Δ(F−1(ω))P (V < γ(ω))

=F (F−1(ω)−) + Δ(F−1(ω))γ(ω) = ω,

where the third equality follows from the independence between V and Y ; the
fourth follows from the assumption V ∼ U(0, 1), and the fifth follows from
the definition of γ(ω). Thus P (W < ω) = ω for each ω ∈ (0, 1), which implies
W ∼ U [0, 1]. �
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Now let X be a random variable (or vector) defined on (Ω,F) and Y : x �→
Y (x) be a real-valued measurable function. Let F denote the distribution of
Y .

Lemma 3.7 Let γ(ω) be as in (3.22). For each 0 < ω < 1, the function
defined by

φω(x) =

⎧⎪⎨
⎪⎩

1 if Y (x) < F−1(ω)
γ(ω) if Y (x) = F−1(ω)
0 if Y (x) > F−1(ω)

(3.25)

satisfies

φω(x) = E(I[0,ω)(G(Y (x), V ))) = E(I[0,ω)(W )|X = x), (3.26)

for all x, consequently E(φω(X)) = ω.

Proof. Let y = Y (x). Then by Lemma 3.5, part 1, and (3.21), if y < F−1(ω),
then G(y, γ) ≤ F (y) < ω for all 0 ≤ γ ≤ 1. So

E[I[0,ω)(G(Y (x), V ))] = 1.

If y > F−1(ω), then, by Lemma 3.5, part 3, F (y−) ≥ F (F−1(ω)) ≥ ω. So by
(3.21), G(y, γ) ≥ ω for all 0 ≤ γ ≤ 1, which implies

E[I[0,ω)(G(Y (x), V ))] = 0.

Finally, suppose y = F−1(ω). When Δ(y) 	= 0 we have

G(y, γ) < ω ⇔ γΔ(y) < ω − F (y−) = γ(ω)Δ(y) ⇔ γ < γ(ω).

So P (G(y, V ) < ω) = P (V < γ(ω)) = γ(ω). When Δ(y) = 0, G(y, γ) < ω
does not hold for any γ. So in this case P (G(y, V ) < ω) = 0 = γ(ω). This
completes the proof. �

Lemma 3.8 Let f denote the density of X with respect to a measure μ and
h a function of x such that

∫
f>0

|h|dμ < ∞. Let φω be as defined in (3.25)

with F being the distribution corresponding to Y (X). Then the function g :
[0, 1] → [0, 1] defined by

g(ω) =

⎧⎪⎪⎨
⎪⎪⎩

0 if ω = 0∫
f>0

φωhdμ if 0 < ω < 1

1 if ω = 1

is continuous on [0, 1].
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Proof. We have

g(ω) =
∫

f>0

φωhdμ =
∫

f>0

φω
h

f
fdμ

=
∫

f>0

E[I[0,ω)(W )|X = x][h(x)/f(x)] f(x)μ(dx)

= E[I[0,ω)(W )(h(X)/f(X))].

Let ε > 0 be such that 0 < ω − ε < ω < ω + ε < 1. Then

|g(ω + ε) − g(ω − ε)| ≤ E[I[ω−ε,ω+ε)(W )|h(X)/f(X)|].
The random variable I[ω−ε,ω+ε)(W )|h(X)/f(X)| is dominated by |h(X)/f(X)|,
whose expectation is finite. So by Lebesgue’s Dominated Convergence Theo-
rem,

lim
ε→0

E[I[ω−ε,ω+ε)(W )|h(X)/f(X)|] = E[I{ω}(W )|h(X)/f(X)|].

The right hand side is zero because I{ω}(W ) = 0 almost everywhere. Hence g
is continuous in (0, 1).

By a similar argument it can be shown that limω→1 g(ω) = 1 and
limω→0 g(ω) = 0. Thus g(ω) is continuous in [0, 1]. �

Lemma 3.9 Let f and h be densities of two probability distributions of X
with respect to μ such that μ{f = 0, h > 0} = 0. Suppose that h(x)/f(x)
is a non-decreasing function of Y (x). Then, for any 0 < α < 1, there exist
0 ≤ γ1, γ2 ≤ 1, −∞ ≤ t1 < t2 ≤ +∞ such that the test

φ(x) =

⎧⎪⎨
⎪⎩

1 if t1 < Y (x) < t2

γi if Y (x) = ti, i = 1, 2
0 if Y (x) < t1 or Y (x) > t2,

(3.27)

satisfies
∫

φfdμ =
∫

φhdμ = α.

Proof. Let φω be as defined in (3.25) with F therein being the distribution of
Y (X). For 0 ≤ u ≤ 1 − α, let

ψu(x) =

⎧⎪⎨
⎪⎩

φα(x) if u = 0
φα+u(x) − φu(x) if 0 < u < 1 − α

1 − φ1−α(x) if u = 1 − α

Clearly 0 ≤ ψu(x) ≤ 1, and by Lemma 3.7,
∫

ψufdμ = α for all u ∈ [0, 1−α].
That h(x)/f(x) is nondecreasing in Y (x) implies that the ratio is a function

of Y (x). Write this ratio as L(Y (x)). Then
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L(Y (x)) > L(F−1(ω)) ⇒ Y (x) > F−1(ω), and

L(Y (x)) < L(F−1(ω)) ⇒ Y (x) < F−1(ω).

Hence 1 − φω is of form (3.20) with f1 = f and f2 = h. So by Lemma 3.4,
taking φ∗ and φ therein to be 1 − φα and 1 − α, we have∫

f>0

φαhdμ ≤ α, and similarly,

∫
f>0

φ1−αhdμ ≤ 1 − α.

This implies, as ψ1−α = 1 − φ1−α and ψ0 = φα, that∫
f>0

ψ0hdμ ≤ α ≤
∫

f>0

ψ1−αhdμ.

The case that h(x)/f(x) is nonincreasing in Y (x) can be treated similarly.
Now by construction s(u) =

∫
f>0

ψuhdμ = g(α+u)−g(u) for u ∈ [0, 1−α].

Hence by Lemma 3.8, s(u) is continuous in [0, 1]. So there exists 0 ≤ u0 ≤ 1−α
such that s(u0) = α. But because μ({f = 0, h > 0}) = 0, s(u0) = α implies∫

ψu0hdμ = α, as to be demonstrated. �

Lemma 3.10 Suppose that f is the density of X with respect to a measure
μ, that Y (x) is a measurable function, and that there is an interval (−ε, ε)
such that, for each ζ in this interval,

∫
eζY (x)f(x)μ(dx) < ∞. Then, for any

0 < α < 1, there exist 0 ≤ γ1, γ2 ≤ 1, −∞ ≤ t1 < t2 ≤ ∞ such that the test
(3.27) satisfies ∫

φfdμ = α,

∫
φ Y fdμ = α

∫
Y fdμ. (3.28)

Proof. For ζ ∈ (−ε, ε), define

fζ(x) = c(ζ)f(x)eζY (x), where c(ζ) =
(∫

f(x)eζY (x)μ(dx)
)−1

.

Then {fζ : ζ ∈ (−ε, ε)} is an exponential family. Let ḟ(x) denote ∂fζ(x)/∂ζ|ζ=0.
Then, by (3.15),

ḟ(x)/f(x) = Y (x) −
∫

Y (s)f(s)μ(ds). (3.29)

Thus ḟ(x)/f(x) is monotone increasing in Y (x). Let L(Y (x)) = ḟ(x)/f(x).
Then

L(Y (x)) < L(F−1(ω)) ⇒ Y (x) < F−1(ω)

L(Y (x)) > L(F−1(ω)) ⇒ Y (x) > F−1(ω).
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It follows that φα, as defined by (3.25), is of the form

φα(x) =

{
1 ḟ(x) < L(F−1)(α)f(x)
0 ḟ(x) > L(F−1)(α)f(x)

By Lemma 3.4,
∫

f>0

(1 − φα)ḟdμ ≥ ∫
f>0

φḟdμ for any test φ that satisfies
∫

φfdμ = 1 − α. In particular,
∫

f>0

(1 − φα)ḟdμ ≥ (1 − α)
∫

f>0

ḟdμ = 0,

implying
∫

f>0

φαḟdμ ≤ 0. For the same reason,
∫

f>0

φ1−αḟdμ ≤ 0. Now define

ψu(x), for 0 ≤ u ≤ 1 − α, as in the proof of Lemma 3.9. Then
∫

f>0

ψ0ḟdμ ≤ 0 ≤
∫

f>0

ψ1−αḟdμ.

Because fζ is an exponential family, Y (X) has finite expectation. Conse-
quently

∫
f>0

|ḟ |dμ < ∞. Therefore, by Lemma 3.8,
∫

ψuḟdμ is continuous

in [0, 1−α]. So there is a 0 ≤ u0 ≤ 1−α such that
∫

f>0

ψu0 ḟdμ = 0 which, by

(3.29), implies the second equality in (3.28). �

3.4.5 UMP test for hypothesis III

We are now ready to derive the UMP test for hypothesis III: H0 : θ ≤ θ1 or
θ ≥ θ2 versus H1 : θ1 < θ < θ2.

Theorem 3.5 Let X be a random variable with a density given by (2.4).

(1) For θ1 < θ2 and 0 < α < 1, there exist −∞ < t1 < t2 < ∞, 0 ≤ γ1, γ2 ≤ 1,
such that φ defined by (3.27) satisfies

Eθ1φ(X) = Eθ2φ(X) = α. (3.30)

(2) Let φ be a test satisfying the conditions in part 1. Then, for any ψ that
satisfies Eθ1ψ(X) ≤ α, Eθ2ψ(X) ≤ α, we have Eθφ(X) ≥ Eθψ(X) for all
θ1 < θ < θ2.

(3) Let φ be a test satisfying the conditions in part 1. Then, for any test ψ
satisfying Eθ1ψ(X) = Eθ2ψ(X) = α, we have Eθψ(X) ≥ Eθφ(X) for
θ < θ1 or θ > θ2.

(4) Any test φ that satisfies conditions in part 1 is a UMP-α test for testing
H0 : θ ≤ θ1 or θ ≥ θ2 versus H1 : θ1 < θ < θ2.
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Proof. (1) By Lemma 3.9, there exist 0 ≤ γ1, γ2 ≤ 1 and −∞ ≤ t1 < t2 ≤ ∞
such that φ in (3.27) satisfies (3.30). If t1 = −∞ or t2 = ∞, then φ is a one-
sided test. By Theorem 3.4, the power of φ is strictly monotone and hence φ
cannot satisfy (3.30). So t1 and t2 are both finite.

(2) We first show that for any fixed θ ∈ (θ1, θ2), φ defined in (3.27) can be
written as

φ(x) ≡

⎧⎪⎨
⎪⎩

1 if fθ(x) > c1fθ1(x) + c2fθ2(x)
γ(x) if fθ(x) = c1fθ1(x) + c2fθ2(x)
0 if fθ(x) < c1fθ1(x) + c2fθ2(x)

for some c1, c2 ≥ 0 and 0 ≤ γ(x) ≤ 1. By Lemma 3.3 this implies that
Eθ(φ(X)) ≥ Eθ(ψ(X)) for any test ψ satisfying Eθi

(ψ(X)) ≤ α, i = 1, 2.
Note that

fθ > c1fθ1 + c2fθ2

⇔(c1fθ1 + c2fθ2)/fθ < 1

⇔[c1c(θ1)/c(θ)]e(θ1−θ)Y (x) + [c2c(θ2)/c(θ)]e(θ2−θ)Y (x) < 1.

Let a1, a2 be the solution to the following system of linear equations

a1e
(θ1−θ)t1 + a2e

(θ2−θ)t1 = 1

a1e
(θ1−θ)t2 + a2e

(θ2−θ)t2 = 1
(3.31)

Then

a1 = (e(θ2−θ)t2 − e(θ2−θ)t1)/det(G), a2 = (e(θ1−θ)t1 − e(θ1−θ)t2)/det(G),

where

G =
(

e(θ1−θ)t1 e(θ2−θ)t1

e(θ1−θ)t2 e(θ2−θ)t2

)
.

Since θ1 < θ2 and t1 < t2, we have

det(G) = eθ2t2+θ1t1−θ(t1+t2)(1 − e(t1−t2)(θ2−θ1)) > 0.

Now let g(t) = a1e
(θ1−θ)t + a2e

(θ2−θ)t. Since θ1 < θ < θ2, we have a1 > 0,
a2 > 0, and consequently

g′′(t) = a1(θ1 − θ)2e(θ1−θ)t + a2(θ2 − θ)2e(θ2−θ)t > 0

for all t. Thus g(t) is strictly convex on (−∞,∞). It follows that g(t) < 1
on t ∈ (t1, t2) and g(t) > 1 on (−∞, t1) ∪ (t2,∞). Let c1 = a1c(θ)/c(θ1) and
c2 = a2c(θ)/c(θ2). Then

g(Y (x)) < 1 ⇔ fθ(x) > c1fθ1(x) + c2fθ2(x),
g(Y (x)) > 1 ⇔ fθ(x) < c1fθ1(x) + c2fθ2(x). (3.32)
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Thus by (3.32), φ(x) = 1 if and only if fθ(x) > c1fθ1(x) + c2fθ0(x) and
φ(x) = 0 if and only if fθ(x) < c1fθ1(x) + c2fθ2(x). So by Lemma 3.3,

Eθ(ψ(X)) ≤ Eθ(φ(X))

for any test rule ψ satisfying Eθi
(ψ(X)) ≤ α.

(3) Let θ < θ1. In this case a1 > 0 and a2 < 0. So

lim
t→−∞ g(t) = 0, lim

t→∞ g(t) = −∞.

Moreover, g′(t) = 0 has a unique solution t = t0; in fact:

t0 =
1

θ1 − θ2
log

[
−a2(θ2 − θ)

a1(θ1 − θ)

]
.

These facts, together with g(t1) = g(t2) = 1, imply that g is strictly increasing
for t < t0 and strictly decreasing for t > t0 for some t0 ∈ (t1, t2). Consequently,
g(t) > 1 if and only if t1 < t < t2. Thus, as above by (3.32), we have for some
c1 > 0 > c2 that

1 − φ(x) = 1 ⇔ g(Y (x)) < 1 ⇔ fθ(x) > c1fθ1(x) + c2fθ2(x)
1 − φ(x) = 0 ⇔ g(Y (x)) > 1 ⇔ fθ(x) < c1fθ1(x) + c2fθ2(x).

Hence by Lemma 3.3,

Eθ(1 − ψ(X)) ≤ Eθ(1 − φ(X)),

whenever Eθi
(1 − ψ(X)) = 1 − α. A similar result holds for θ > θ2.

(4) Let ψ be any test of level α. Then βψ(θ1) ≤ α, βψ(θ2) ≤ α. Let φ be a
test satisfying the conditions in part 1. Then, by part 2, βφ(θ) ≥ βψ(θ) for all
θ ∈ (θ1, θ2). It suffices to show that φ is of size α. Let ψ1(x) ≡ α. By part 3,
βφ(θ) ≤ α for θ ∈ (−∞, θ1) ∪ (θ2,∞). Hence φ has size α. �

Figure 3.3 illustrates the relation between the power functions of φ and
ψ that appear in Theorem 3.5. This behavior is similar to that mentioned in
Corollary 3.1.

3.4.6 UMPU tests for hypotheses I and II

Let us now turn to the UMPU tests for hypotheses I and II. First, consider
hypothesis II.

Theorem 3.6 Suppose that the density of X belong to the exponential family
(3.13). Let θ1 < θ2 and 0 < α < 1. Then
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β(θ)

φ

ψ

θ

α

θ2θ1

Fig. 3.3. Comparison of the power functions

(1) There exists a test of the form

φ(x) =

⎧⎪⎨
⎪⎩

1 if Y (x) < t1 or Y (x) > t2

γi if Y (x) = ti, i = 1, 2
0 if t1 < Y (x) < t2,

(3.33)

where −∞ < t1 < t2 < ∞ that satisfies

Eθ1φ(X) = Eθ2φ(X) = α.

(2) Any test φ that satisfies the conditions in part 1 is a UMPU-α for testing
H0 : θ1 ≤ θ ≤ θ2 versus H1 : θ < θ1 or θ > θ2.

Proof. (1) Let φ0 be a test that satisfies the conditions in part 1 of Theorem
3.5 with α in (3.30) replaced by 1−α. Then φ = 1−φ0 has the desired form.

(2) Let ψ be any unbiased test of size α. Because the power function
βψ(θ) is continuous, we have βψ(θ1) = βψ(θ2) = α. Let ψ0 = 1 − ψ. Then
βψ0(θi) = 1 − α, i = 1, 2. Let φ be a test that satisfies the conditions in part
1. Then φ0 is a test that satisfies the conditions in part 1 of Theorem 3.5 with
α in (3.30) replaced by 1−α. By Theorem 3.5, βφ0(θ) ≤ βψ0(θ) for all θ ∈ Θ1

and βφ0(θ) ≥ βψ0(θ) for all θ ∈ Θ0. Therefore βφ(θ) ≥ βψ(θ) for all θ ∈ Θ1

and βφ(θ) ≤ βψ(θ) for all θ ∈ Θ0. Thus φ is a UMPU-α test. �

Next, consider hypothesis I.

Theorem 3.7 Suppose that the density of X belongs to the exponential family
(3.13). Let θ0 ∈ Θ0 and 0 < α < 1. Then

(1) There is a test φ of the form (3.33) such that

Eθ0φ(X) = α and Eθ0 [Y (X)φ(X)] = αEθ0Y (X). (3.34)
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(2) Any test φ that satisfies the conditions in part 1 is a UMPU-α test for
testing H0 : θ = θ0 versus H1 : θ 	= θ0.

Proof. (1) By Lemma 3.10 there is a φ0 of the form (3.27) with −∞ ≤ t1 <
t2 ≤ ∞ such that (3.34) holds with α replace by 1−α. Exclude the possibilities
of t1 = −∞ and t2 = ∞ using the similar argument as in the proof of part 1
of Theorem 3.5. Then φ = 1 − φ0 is the desired test.

(2) Suppose θ < θ0. By the generalized Neyman-Pearson lemma, any test
having the form

φ′(x) =

{
1 fθ(x) > k1fθ0(x) + k2ḟθ0(x)
0 fθ(x) < k1fθ0(x) + k2ḟθ0(x)

(3.35)

that satisfies βφ′(θ0) = α and β̇φ′(θ0) = 0 has maximum power at θ out of all
tests ψ satisfying βψ(θ0) = α and β̇ψ(θ0) = 0. Thus it has maximum power
at θ out of all unbiased tests of size α. We now show that any φ that satisfies
the conditions in part 1 is of the above form for some k1 and k2.

Let a1, a2 be the solution to the system of equations

a1 + a2ti = e(θ−θ0)ti , i = 1, 2.

Then,

a1 =
(
t2e

(θ−θ0)t1 − t1e
(θ−θ0)t2

)
/(t2 − t1)

a2 =
(
e(θ−θ0)t2 − e(θ−θ0)t1

)
/(t2 − t1).

Clearly a1 > 0 > a2 and hence as in the proof of Theorem 3.5, it follows that

a1 + a2t

{
< e(θ−θ0)t if t < t1 or t > t2

> e(θ−θ0)t if t1 < t < t2.

From the exponential family form (3.13) it can be deduced that there exist
k1, k2 such that

fθ(x) > k1fθ0(x) + k2ḟθ0(x) ⇔a1 + a2Y (x) < e(θ−θ0)Y (x)

fθ(x) < k1fθ0(x) + k2ḟθ0(x) ⇔a1 + a2Y (x) > e(θ−θ0)Y (x).

It follows then that

fθ(x) > k1fθ0(x) + k2ḟθ0(x) ⇔ Y (x) < t1 or Y (x) > t2

fθ(x) < k1fθ0(x) + k2ḟθ0(x) ⇔ t1 < Y (x) < t2

Thus φ is of the form (3.35). A similar result holds when θ > θ0. Thus we
see that, for any unbiased test of size α, Eθφ(X) ≥ Eθψ(X) for all θ. Finally,
since the null space Θ0 is the singleton {θ0}, φ has size α. This completes the
proof. �
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Theorems 3.5 and 3.6 give the general forms of the UMP or UMPU tests
for the two sided hypothesis. In practice, all we are left to determine are the
constants t1, t2, γ1, γ2. For hypotheses III and II, these can be determined by

Eθ1φ(X) = Eθ2φ(X) = α.

For hypothesis I, they can be determined by (3.34). If Y (X) has a continuous
distribution, then the values of γi are unimportant, and we usually take them
to be 0 or 1. If discrete Y (X), t1 and t2 are first determined so that the
solution for γ1 and γ2 are between 0 and 1. Then γ1 and γ2 are determined.
Typically numerical calculations are involved. The following example illustrate
the procedure.

Example 3.8 Let X1, . . . , Xn be i.i.d. N(θ, 1) random variables. The joint
density of X1, . . . , Xn is of the form (3.13), with Y (X1, . . . , Xn) =

∑n
i=1 Xi.

For hypotheses III and II, t1 and t2 in (3.27) and (3.33) are determined by
the following equations

Pθi
(Y < t1) + Pθi

(Y > t2) = α, i = 1, 2.

Since, under θ, Y ∼ N(nθ, n). The above equations reduce to

Φ

(
t1 − nθi√

n

)
+ 1 − Φ

(
t2 − nθi√

n

)
= α, i = 1, 2,

where Φ denotes the c.d.f. of a standard normal random variable. For example,
if n = 10, θ1 = 0, θ2 = 1, and α = 0.05. Then (t1, t2) is the solution to the
following system of equations

{
Φ(t1/

√
10) − Φ(t2/

√
10) + 0.95 = 0

Φ((t1 − 10)/
√

10) − Φ((t2 − 10)/
√

10) + 0.95 = 0

We can either solve this equation directly by, for example, the Newton-
Raphson algorithm or simplify this equation using the specific symmetric
structure of this problem. Note that N(0, 10) is symmetric about 0 and
N(10, 10) is symmetric about 10, and the two distributions have the same
variance. Therefore t1 and t2 are symmetrically placed about t = 5. In other
words t1 = 5 − t0 and t2 = 5 + t0 for some t0. Thus the above system of two
equations reduce the following equation

Φ

(
5 − t0√

10

)
− Φ

(
5 + t0√

10

)
+ 0.95 = 0.

Solving this equation numerically we find t0 ≈ 10.18. Thus, for testing III, we
reject the H0 if −5.18 < Y < 15.18, and for testing II, we reject H0 if Y falls
outside this region.
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For testing I, t1 and t2 are determined by solving equation (3.34), which
is Eθ0(Y ) = nθ0 in this example. So (3.34) reduces to

Φ

(
t1 − nθ0√

n

)
+ 1 − Φ

(
t2 − nθ0√

n

)
= α

∫ t1

−∞
t

1√
n

ϕ

(
t − nθ0√

n

)
dt +

∫ ∞

t2

t
1√
n

ϕ

(
t − nθ0√

n

)
dt = αnθ0,

(3.36)

where, in the second equation, ϕ denotes the p.d.f. of a standard normal
random variable.

Again, one can either solve these equations directly by a numerical meth-
ods or further explore the symmetric structure specific to this problem. Note
that the second equation is equivalent to covθ0(φ, Y ). Since φ is a function
of Y we will write it as φ(Y ). Since the distribution is symmetric about nθ0,
this covariance is 0 if φ is symmetric about nθ0. Thus, if we take t1 = nθ0− t0
and t2 = nθ0 + t0 for some t0 > 0 then the second equation is automatically
satisfied. Thus all we need to solve is the equation

Φ

(−t0√
n

)
+ 1 − Φ

(
t0√
n

)
= α

The solution to this equation is t0 =
√

nΦ−1(1 − α/2). That is, we reject the
hypothesis H0 in I if

Y > nθ0 +
√

nΦ−1(1 − α/2) or Y > nθ0 −
√

nΦ−1(1 − α/2).

For example, if θ0 = 1, n = 10, α = 0.05. Then we reject the null hypothesis
in I if Y < 3.80 or Y > 16.20. �

Example 3.9 Suppose X1, . . . , Xn are i.i.d. with p.d.f.

fθ(x) = θxθ−1I(0,1)(x), where θ > 0,

and we are interested in testing hypothesis I with θ0 = 1 and 0 < α < 1. The
joint p.d.f. of X1, . . . , Xn belongs to the exponential family, and is given by

θne(θ−1)Y (x1,...,xn), where Y (x1, . . . , xn) =
n∑

i=1

log xi.

Let us derive the distribution of Y under θ0 = 1. We know that Y = Y1+ · · ·+
Yn, where −Yi are i.i.d. Exp(1). Therefore −Y1−· · ·−Yn = −Y is distributed
as Gamma(n, 1). So Y has p.d.f.

(−t)n−1et/Γ (n), t < 0.

Since Y has a continuous distribution, we can ignore γ1 and γ2. The constants
t1, t2 in (3.33) are determined by
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∫ t1

−∞
tn−1etdt +

∫ 0

t2

tn−1etdt = (−1)n−1Γ (n)α,

∫ t1

−∞
(−t)n−1tetdt +

∫ 0

t2

(−t)n−1tetdt = α

∫ 0

−∞
(−t)n−1tetdt.

Let Γn denote the cumulative distribution of a Gamma(n, 1) random variable.
The above equations can now be represented as

Γn(−t1) + 1 − Γn(−t2) = α

Γn+1(−t1) + 1 − Γn+1(−t2) = α.

where t1 < t2 < 0. One can then use a numerical method to find t1 and t2.
For example, if n = 10, α = 0.05, then (t1, t2) ≈ (−17.61,−4.98). �

Problems

3.1. Let (Ω,F , P ) be a probability space space and let X : Ω → [a, b] be a
random variable on (Ω,F , P ). Let A ∈ F . Use the continuity of probability
measure to show that ρ(x) = P ({X > x} ∩ A) is a right continuous function
with ρ(x−) = P ({X ≥ x} ∩ A). Show that for any α ∈ [ρ(a−), ρ(b)] there is
an x0 ∈ [a, b] such that

P ({X > x0} ∩ A) ≤ α ≤ P ({X ≥ x0} ∩ A).

Here, the set A plays the role of {f0 > 0} in the proof of Lemma 3.1.

3.2. Let f and g be measurable functions on (Ω,F , μ). Let A ∈ F . We say
that f = 0 a.e. μ on A if μ({f 	= 0}∩A) = 0. Show that fg = 0 a.e. μ implies
f > 0 a.e. μ on {g 	= 0}.
3.3. Let f0 and f1 denote densities of uniform distribution on (0,1) and(

1
2
,
3
2

)
respectively. Find the most powerful test for H0 : f0 versus H1 : f1

for each α ∈ [0, 1].

3.4. Let X be a b(2, q) (binomial) random variable and f0 and f1 denote the
probability mass functions corresponding to b(2, 1

2 ) and b(2, 2
3 ). Find the most

powerful test for H0 : q = 1
2 versus H1 : q = 2

3 for each α ∈ [0, 1].

3.5. Suppose X is a random variable defined on (0,∞). Find the most pow-
erful test for the hypothesis

H0 : f0(x) =
1
2
e−x/2 versus H1 : f1(x) = e−x

for each significance level α ∈ [0, 1].



94 3 Testing Hypotheses for a Single Parameter

3.6. Let X1, . . . , Xn be an i.i.d. sample from the density fθ(x). Construct
UMPs test of size α when fθ(x) takes the following forms.

1. fθ(x) = θ−1e−x/θ, x > 0, θ > 0;
2. fθ(x) = θxθ−1, 0 < x < 1, θ > 0;
3. fθ(x) = 1√

2πθ
exp

{
− 1

2θ (x − 1)2
}

, −∞ < x < ∞, θ > 0;

4. fθ(x) = 4θ−4x3e−(x/θ)4 , x > 0, θ > 0.

3.7. Suppose X has density

f(x|θ) = c(θ)h(x)eθx, θ ∈ Θ

with respect to a measure μ. Here Θ is an open interval and c(θ) > 0 for all
θ ∈ Θ. Now let θ ∈ Θ. Show that there is an interval (−a, a) on which the
moment generating function MX(t) = Eθ

(
etX

)
is finite, and, furthermore,

MX(t) = c(θ)/c(θ + t).

3.8. Suppose that Y has density:

fθ(y) = c(θ)h(y)eη(θ)y

for some one-to-one differentiable function η. Let φ(t) a function of t. Show
that

(∂/∂θ)Eθφ(Y ) = η̇(θ)covθ(φ(Y ), Y ),

where η̇(θ) is the derivative of η with respect to θ.

3.9. Suppose X is a random variable having density fθ where θ ∈ Θ ⊆ R.
Let π be a probability measure defined on Θ. For a θ0 ∈ Θ, we are
interested in testing the hypotheses H0 : θ = θ0 against the alternative
H1 : θ is distributed as π. Here, we have treated θ as random. Let us say
that a test φ is best of size α if (i) Eθ0φ(X) = α, and (ii) for any other test
φ′ satisfying Eθ0φ

′(X) ≤ Eθ0φ(X) we have

EπEθφ(X) ≥ EπEθφ
′(X),

where, for example, EπEθφ(X) is the integral
∫

Θ
Eθ{φ(X)}π(θ)dθ. Show that

any test of the form:

φ(x) =

{
1 if

∫
Θ

fθ(x)π(θ)dθ > kfθ0(x)
0 if

∫
Θ

fθ(x)π(θ)dθ < kfθ0(x)

for some k > 0, is best of its size.
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3.10. A test φ for testing θ = θ0 versus θ > θ0 is said to be local best of its
size if, for any other test φ′ with βφ′(θ0) ≤ βφ(θ0), we have

β̇φ(θ0) ≥ β̇φ′(θ0).

In other words, the slope of the power at θ0 is maximized. Now define

φ0(x) =

⎧⎨
⎩

1 if ḟθ0(x) > kfθ0(x)
γ(x) if ḟθ0(x) = kfθ0(x)
0 if ḟθ0(x) < kfθ0(x)

where f(x|θ) denotes the density of X, k ≥ 0, and 0 ≤ γ(x) ≤ 1. Show that
φ0 is local best of its size. Here we assume that the derivative with respect to
θ and the integration with respect to x can be exchanged.

3.11. Suppose that X is a random variable with pdf (with respect to μ)
belonging to a parametric family {fθ : θ ∈ Θ}, where Θ ⊆ R. Consider the
hypotheses H0 : θ = θ0 versus H1 : θ 	= θ0. Assume that fθ(x) is twice
differentiable with respect to θ, and that the derivative ∂k/∂θk can be moved
inside the integral

∫ · · · dμ(x). Let φ0(x) be a test such that, for some k1, k2,

φ0(x) =

⎧⎪⎨
⎪⎩

1 if f̈θ0(x) > k1fθ0(x) + k2ḟθ0(x)
γ(x) if f̈θ0(x) = k1fθ0(x) + k2ḟθ0(x)
0 if f̈θ0(x) < k1fθ0(x) + k2ḟθ0(x)

and, moreover, k1 and k2 are so chosen that βφ0(θ0) = α and β̇φ0(θ0) = 0.
Show that, for any test φ that satisfies

βφ(θ0) = α, β̇φ(θ0) = 0

we have

β̈φ0(θ0) ≥ β̈φ(θ0).

Comment on why such a test would be of interest.

3.12. Let (X,Y ) be a bivariate random variable and, for simplicity, assume
both components to be continuous. Moreover, assume that E|Y | < ∞. Let

φ0(x) =
{

1 if E(Y |x) > k
0 if E(Y |x) ≤ k

, k ≥ 0.

Show that for any function φ(x) that satisfies 0 ≤ φ(x) ≤ 1 and Eφ(X) ≤
Eφ0(X), we have E{Y φ(X)} ≤ E{Y φ0(X)}.
3.13. Consider the simple versus simple hypotheses H0 : P versus H1 : Q,
where P and Q are probability measures with densities f and g with respect
to a measure. Let φ1 and φ2 be two tests such that
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1.
∫

φ1fdμ ≥ ∫
φ2fdμ

2. For some k ≥ 0, φ1 ≥ φ2 whenever g > kf and φ1 ≤ φ2 whenever g < kf .

Show that
∫

φ1gdμ ≥ ∫
φ2gdμ.

3.14. Show that the logistic distribution with location parameter θ, having
density

f(x|θ) =
ex−θ

(1 + ex−θ)2
, x ∈ R, θ ∈ R,

has monotone likelihood ratio. Write down the general form of UMPU-α test
for testing H0 : θ < θ0 against H1 : θ ≥ θ0.

3.15. Let Xi be independent and distributed as N(iθ, 1), i = 1, ..., n. Show
that there exists a UMP test of H0 : θ ≤ 0 against H1 : θ > 0, and determine
the test for a given α.

3.16. Suppose that F is a cdf and 0 < ω < 1. Show that

inf{y : F (y) ≥ ω} = sup{y : F (y) < ω}.

So F−1(ω) can be equivalently defined as either side of this equality. Give an
example in which

inf{y : F (y) ≥ ω} 	= inf{y : F (y) > ω}

for some ω.

3.17. Let X be distributed as Gamma(θ, 1); That is, its p.d.f. is given by

fX(x; θ) =
1

Γ (θ)
xθ−1 e−x, x > 0, θ > 0.

Suppose 0 < α < 1.

i. Derive the UMP-α test for H0 : θ ≤ 1 versus H1 : θ > 1.
ii. Derive the UMP-α test for H0 : θ ≤ 1 or θ ≥ 2 versus H1 : 1 < θ < 2.
iii. Derive the UMPU-α test for H0 : θ = 1 versus H1 : θ 	= 1.
iv. Derive the UMPU-α test for H0 : 1 ≤ θ ≤ 2 versus H1: θ < 1 or θ > 2.

3.18. Suppose X has a binomial distribution b(7, p). Let α = 0.20. Construct
the following tests:

i. The UMP-α test for H0 : p ≤ 0.5 against H1 : p > 0.5;
ii. The UMPU-α test for H0 : 0.25 ≤ p ≤ 0.75 against H1 : p < 0.25 or p >

0.75.
iii. The UMPU-α test for H0 : p = 0.5 against H1 : p 	= 0.5.
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3.19. Suppose that X is distributed as Exp(θ); that is,

fθ(x) =
1
θ
e−x/θI[0,∞)(x), θ > 0.

i. Find UMP-α test for testing H0 : θ ≤ θ0 versus H1 : θ > θ0.
ii. Find UMPU-α test for testing H0 : θ ∈ [θ0, 2θ0] versus H1 : θ /∈ [θ0, 2θ0].
iii. Find the UMPU-α test for testing H0 : θ = θ0 versus H1 : θ 	= θ0.

3.20. Mary needs to interview 5 people. Suppose each person (independently)
agrees to be interviewed with probability θ, and let X be the minimal number
of people she needs to ask in order to obtain the 5 interviews she needs.

i. Derive the probability mass function of X.
ii. Show that X has an exponential family distribution.
iii. Find the UMP-α test for the hypothesis H0 : θ ≤ 1/2 versus H1 : θ > 1/2,

where α = 0.05.

3.21. Suppose that X is a random variable with density belonging to a para-
metric family {fθ : θ ∈ Θ}, where Θ ⊂ R. Suppose that this family has
monotone likelihood ratio with respect to Y (X). We are interested in testing
the one-sided hypothesis H0 : θ ≤ θ0 versus H1 : θ > θ0. Suppose that φ1 and
φ2 are two tests satisfying the following conditions:

a. They are both functions of a statistic Y (X) and they are monotone non-
decreasing in Y (X);

b. Eθ0φ1(Y (X)) = Eθ0φ2(Y (X)) = α;
c. There is a k such that whenever Y (x) > k, φ1(Y (x)) ≥ φ2(Y (x)) and

whenever Y (x) < k, φ1(Y (x)) ≤ φ2(Y (x)).
d. The family {fθ : θ ∈ Θ} has a common support; that is, {x : fθ(x) > 0}

is the same set for all θ ∈ Θ.

Show that

i. βφ1(θ) ≥ βφ2(θ) for all θ ≥ θ0;
ii. βφ1(θ) ≤ βφ2(θ) for all θ ≤ θ0;
iii. Both tests are of size α;
iv. Both tests are unbiased.
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4

Testing Hypotheses in the Presence of
Nuisance Parameters

In this chapter we consider the hypothesis tests where more than one param-
eter is involved. Let P = {Pθ : θ ∈ Θ} be a parametric family of distributions
of a random vector X, where Θ is a subset of R

k. The families P0 and P1 are
{Pθ : θ ∈ Θ0} and {Pθ : θ ∈ Θ1} where {Θ0, Θ1} is a partition of Θ. Thus the
type of hypotheses we are concerned with is

H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1.

More specifically, we will discuss how to construct test for one of the k pa-
rameters that has optimal power for that parameter and all the rest of the
parameters. Without loss of generality, we assume that component to be the
first component, θ1, of θ. For example, a typical hypothesis we will consider
in this chapter is

H0 : θ1 = a vs H1 : θ1 �= a. (4.1)

where a is a specific value of θ1. In this setting

Θ0 = {θ ∈ Θ : θ1 = a}, Θ1 = {θ ∈ Θ : θ1 �= a}.
Our goal is to find a test that maximizes the power over all Θ1 among a
reasonably wide class of tests. The component of θ to be tested is called
the parameter of interest; the rest of the components are called the nuisance
parameters. Tests such as (4.1) are called hypothesis tests in the presence of
nuisance parameters.

Because of the uniform nature of this optimality, it is possible only under
rather restrictive conditions: unlike in the single parameter case, even the one-
sided hypothesis does not in general permit a UMP test. Thus in this chapter
we will be dealing with UMPU tests.

In our exposition we will frequently need to divide a vector (c1, c2, . . . , cp)
as its first component c1 and the rest of the components (c2, . . . , cp). To sim-
plify notation we use c2:p to represent (c2, . . . , cp).

For more information on this topic, see Ferguson (1967); Lehmann and
Casella (1998).
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4.1 Unbiased and Similar tests

In Section 3.4.1 we have already noticed that, if φ is an unbiased test and if the
function P �→ βφ(P ) is continuous, then the power function βφ(P ) is constant
on the boundary P̄0 ∩ P̄1. Under a parametric model the power function
is βφ(Pθ), is abbreviated as βφ(θ). The next proposition is the parametric
counterpart of Proposition 3.2.

Proposition 4.1 If βφ(θ) is continuous in θ and φ is unbiased then βφ(θ) is
constant on ΘB = Θ̄0 ∩ Θ̄1.

Thus, under the continuity of the power function, the class of all tests
whose powers are constant on ΘB contains the class of unbiased test. This
means if we can find UMP test among the latter class, then we can find the
UMP test among unbiased tests.

Definition 4.1 A test φ satisfying βφ(θ) = α on ΘB is an α-similar test. A
test φ is called uniformly most powerful α-similar (UMP α-similar) test for
testing (4.1), if

1. φ is α-similar;
2. for any α-similar test ψ, βφ(θ) ≥ βψ(θ) for all θ ∈ Θ1.

If we let Uα be the class of all unbiased tests of size α, and Sα be the class
of all α-similar tests. By Proposition 4.1, if βφ is continuous for all φ, then
Uα ⊆ Sα. Hence, if φ is UMP α-similar, then it is also UMPU test of size α as
long as we can guarantee φ itself is in Uα. This is proved in the next theorem.

Theorem 4.1 If the power function is continuous in θ for every test, and if
φ is UMP α-similar test for testing (4.1) with size α, then φ is a UMPU-α
test.

Proof. A UMP α-similar test φ is unbiased because the power βφ(θ) ≥
βψ(θ) = α for all θ ∈ Θ1, for the α-similar test ψ(x) ≡ α. By assumption, φ
has size α. Therefore φ ∈ Uα. �

In Section 2.2, we introduced the notions of sufficient, complete, and
boundedly complete statistics. In the parametric context, it takes the fol-
lowing form. A statistic T is sufficient for a subset A ⊆ Θ if, for any B ∈ FX ,
there is a function κB such that

Pθ(B|T ) = κB [Pθ] for all θ ∈ A.

A statistic T is complete for A if, for any σ(T )-measurable function g,
∫

gdPθ = 0 for all θ ∈ A ⇒ g = 0 [Pθ] for all θ ∈ A. (4.2)
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A statistic T is boundedly complete for A if the above implication holds for
all bounded σ(T )-measurable function g.

The basic idea underlying the construction of UMPU tests in the presence
of nuisance parameters is the following. Let Λ1 denote the parameter space of
θ1; that is,

Λ1 = {θ1 : (θ1, θ2:p) ∈ Θ}.
Suppose we want to test the hypotheses in (4.1) and suppose there is a suf-
ficient statistic S for θ2:p. Then the conditional distribution Pθ(·|S) depends
only on θ1. So let us write it as Pθ1(·|S). If this conditional distribution be-
longs to a one-parameter exponential family, then we can construct UMP (or
UMPU) tests for the one-parameter family

{Pθ1(·|S) : θ1 ∈ Λ1}.
using the mechanism studied in Chapter 3. However, the optimal power de-
rived in this way is in terms of the conditional distribution Pθ1(·|S), not the
original unconditional distribution Pθ of X. To link this conditional optimality
to the original unconditional optimality we assume that S is boundedly com-
plete for θ2:p, and employ the notion of Neyman structure, which in some sense
aligns a conditional distribution with an unconditional distribution through
bounded completeness.

To do so, we first introduce the concept of Neyman structure that is closely
tied to bounded completeness. Let α be a value in (0, 1), and T is a statistic.

Definition 4.2 A test φ(X) is said to have an α-Neyman structure with re-
spect to a statistic T if

Eθ(φ(X)|T ) = α

almost everywhere Pθ for all θ ∈ ΘB.

Obviously, if a test φ has an α-Neyman structure with respect to S, then
it is α-similar, because, for all θ ∈ ΘB ,

Eθφ(X) = EθEθ(φ(X)|S) = α.

The next theorem shows that, if S is sufficient and boundedly complete, then
the reversed implication is true.

Theorem 4.2 If S is sufficient and boundedly complete for θ ∈ ΘB, then
every test α-similar on ΘB has an α-Neyman structure.

Proof. Let φ be an α-similar test. Then Eθ(φ(X)) = α for all θ ∈ ΘB , which
implies

Eθ{E[φ(X)|S]} = α
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for all θ ∈ ΘB . By sufficiency of S for θ ∈ ΘB , the conditional expectation
Eθ[φ(X)|S] does not depend on θ ∈ ΘB . Hence we write E[φ(X)|S] instead
of Eθ[φ(X)|S] for θ ∈ ΘB . The above equality can be equivalently written as

Eθ{E[φ(X)|S] − α} = 0

for all θ ∈ ΘB . Since S is boundedly complete and since E[φ(X)|X] − α is a
bounded function of S, we have

E[φ(X)|S] − α = 0

for all θ ∈ ΘB , which means that φ has an α-Neyman structure with respect
to S. �

Sometimes we encounter the situations where ΘB is the union of finite
number of sets, and S is not complete sufficient for the whole boundary ΘB

but rather for each member of the union. More specifically, for any a ∈ Λ1,
let

Θ(a) = {θ ∈ Θ : θ1 = a}.
Let a1, . . . , as ∈ Λ1. Suppose ΘB is of the form

ΘB = ∪s
r=1Θ(ar) (4.3)

and S is complete and sufficient relative to each Θ(ar) but not necessarily on
ΘB . In this case the conclusion of Theorem 4.2 still holds, as shown in the
following corollary.

Corollary 4.1 If S is sufficient and boundedly complete for each Θ(ar), r =
1, . . . , s, then any test that is α-similar on ΘB has an α-Neyman structure
with respect to S.

Proof. Suppose φ is α-similar on ΘB . Then it is α-similar on each Θ(ar).
Because S is sufficient and complete on each Θ(ar), by Theorem 4.2 we have

Eθ[φ(X)|S] = α

almost everywhere Pθ all for θ ∈ Θ(ar) and for all r = 1, . . . , s. This means

Eθ[φ(X)|S] = α (4.4)

almost everywhere Pθ for all θ ∈ ΘB . Hence φ has an α-Neyman structure
with respect to S. �

Note that the equality (4.4) justifies writing Eθ[φ(X)|S] as E[φ(X)|S] in
this setting as the former does not depend on θ when θ varies over ΘB .

Thus, if we let Nα to be the class of all tests with α-Neyman structure,
then we have the following relations among the classes of unbiased tests of
size α, α-similar tests, and tests with α-Neyman structures:
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1. Uα⊆Sα under condition (A),
2. Sα ⊆ Nα under condition (B),
3. Nα ⊆ Sα,

where (A) and (B) are the conditions:

(A) the power function βφ(θ) is continuous for all tests φ;
(B) the set ΘB is the union (4.3), and S is sufficient and boundedly complete

for each Θ(ar).

Thus, under conditions (A) and (B), Uα ⊆ Nα = Sα. It turns out that finding
the UMPU test among Nα is inherently a one-parameter problem. In the next
section we investigate under what circumstances does there exist a sufficient
and boundedly complete statistic S for θ2:p.

4.2 Sufficiency and completeness for a part of the
parameter vector

In section 2.1.3 we introduced the exponential family for a single random
variable X. We now extend it to multiple random variables. Let X =
(X1, . . . , Xn), where X1, . . . , Xn are i.i.d., with each Xi having its distribution
in Ep(t0, μ0), where t0 : ΩX1 → R

p and μ0 is a σ-finite measure on ΩX1 , a
subset of R. For brevity, we write this as

X ∼ En
p (t0, μ0).

The joint density of (X1, . . . , Xn) with respect to the product measure μ =
μ0 × · · · × μ0 is

n∏
i=1

eθT t0(xi)/
∫

eθT t0(xi)dμ0(xi)

= eθT ∑n
i=1 t0(xi)/[

∫
eθT t0(xi)dμ0(xi)]n.

Let

t(x1, . . . , xn) =
n∑

i=1

t0(xi). (4.5)

Then the joint density of (X1, . . . , Xn) with respect to μ can be written as

eθT t(x1,...,xn)/
∫

eθT t(x1,...,xn)dμ(x1, . . . , xn).

Using essentially the same proof as that of Theorem 2.8, we can establish
the following theorem.

Theorem 4.3 Suppose (X1, . . . , Xn) ∼ En
p (t0, μ0), and Θ has a nonempty

interior. Then t(X1, . . . , Xn) is complete and sufficient statistic for Θ.
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For the rest of the section, the symbol X will be used to denote an i.i.d.
sample (X1, . . . , Xn).

An important property about the exponential family is that it is closed
under conditioning and marginalization: that is, the conditional distributions
and marginal distributions derived from the components of T also belong to
the exponential family. This fact allows us to extend Theorem 2.8 the marginal
and conditional distributions, so that we can speak of complete and sufficient
statistics for a part of the parameter θ. This is crucial for reducing a multi-
parameter problem to a one-parameter problem, so that we can use the results
from Chapter 3 to tackle the new problems in this chapter.

We first introduce a lemma. Let (U, V ) be a pair of random vectors defined
on (ΩU×ΩV ,FU×FV ), and let P and Q be the two distributions of (U, V ) with
P  Q. Let PU and PV |U be the marginal distribution of U and conditional
distribution of V |U under P ; let QU and QV |U be the marginal distribution
of U and conditional distribution of V |U under Q.

Lemma 4.1 Let P be the probability measure defined by

dP = a(u)b(v)dQ

where a and b are nonnegative functions such that
∫

a(u)b(v)dQ(u, v) = 1.
Then

(a) dPU (u) = a(u)
(∫

b(v)dQV |U (v|u)
)

dQU (u),

(b) dPV |U (v|u) =
b(v)dQV |U (v|u)∫
b(v′)dQV |U (v′|u)

.

Proof. (a) By Theorem 1.21 we have

P ◦U−1  Q◦U−1, d(P ◦U−1)/d(Q◦U−1) = E[a(U)b(V )|U = u].

Hence

dPU/dQU = a(u)E(b(V )|U),

which proves (a).
(b) Let B ∈ FU ×FV . Let P ∗ be the measure defined by dP ∗ = IBdP . Then,
by Theorem 1.21,

P ∗  P, P (B|U) = d(P ∗◦U−1)/d(P ◦U−1).

Also, by Theorem 1.21,

d(P ∗◦U−1) = EQ(IB(U, V )a(U)b(V )|U)d(Q◦U−1)
d(P ◦U−1) = EQ(a(U)b(V )|U)d(Q◦U−1).

So
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P (B|U) =
EQ(IB(U, V )a(U)b(V )|U)

EQ(a(U)v(V )|U)
=

EQ(IB(U, V )b(V )|U)
EQ(b(V )|U)

.

In particular, for any B ∈ FV we have

E(IB(V )|U) = E(IΩU×B(U, V )|U) =
EQ(IB(V )b(V )|U)

EQ(b(V )|U)
.

Another way of writing this is

PV |U (B|u) =
∫

B

b(v)
EQ(b(V )|U)

dQV |U (v|u),

which is the desired equality. �

We now apply this lemma to show that the marginal and conditional dis-
tributions associated with an exponential family remain to be from an expo-
nential family. This result is important in establishing the Neyman Structure.
Suppose t(X) is partitioned in t(X) = (u(X), v(X)) and, correspondingly, θ
is partitioned into (η, ξ), so that

θT t(X) = ηT u(X) + ξT v(X).

Let U , V denote the random vectors u(X) and v(X) and let u, v denote the
specific values of U, V . Recall that μ is the n-fold product measure μ0×· · ·×μ0.

Theorem 4.4 Suppose X = (X1, . . . , Xn) ∼ En
p (t0, μ0). Then:

(a) For each fixed ξ, there is measure μξ on (ΩU ,FU ) such that

dPU/dμξ = eηT u/
∫

eηT udμξ(u)

(b) For each fixed u, there is a measure μu on (ΩV ,FV ) such that

dPV |U (v|u)/μu = eξT v/
∫

eξT vdQV |U (v|u).

Proof. (a). Let ν = μ ◦ (u, v)−1. Then, the density of (U, V ) with respect to ν
is

fθ(u, v) = eηT u+ξT v/
∫

eηT u+ξT vdν(u, v).

Let θ0 = (η0, ξ0) ∈ Θ, θ = (η, ξ) ∈ Θ. Define P and Q by

dQ(u, v) = fθ0(u, v)dν(u, v), dP (u, v) = fθ(u, v)dν(u, v).

Let QU and PU be the marginal distributions of U under Q and P , respectively,
and let QV |U and PV |U be the conditional distributions of V |U under Q and
P , respectively. Then,
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dP (u, v) = fθ(u, v)dν(u, v)

=
fθ(u, v)
fθ0(u, v)

fθ0(u, v)dν(u, v)

= c(θ)e(η−η0)
T ue(ξ−ξ0)

T vdQ(u, v),

where

c(θ) =
∫

eηT
0 u+ξT

0 vdν(u, v)∫
eηT u+ξT vdν(u, v)

.

Then, by Lemma 4.1,

dPU (u) = c(θ)eηT ue−ηT
0 u

(∫
e(ξ−ξ0)

T vdQV |U (v|u)
)

dQU (u).

The assertion of part (a) follows if we let cξ(η) = c(θ) and

dμξ(u) = e−ηT
0 u

(∫
e(ξ−ξ0)

T vdQV |U (v|u)
)

dQU (u).

(b) By Lemma 4.1 again,

dPV |U (v|u) =
eξT ve−ξT

0 vdQV |U (v|u)∫
e(ξ−ξ0)

T vdQV |U (v|u)

=
eξT v

∫
eξT vdQV |U (v|u)

∫
eξT vdQV |U (v|u)e−ξT

0 vdQV |U (v|u)∫
e(ξ−ξ0)

T vdQV |U (v|u)
.

Now let

dμu(v) =

∫
eξT vdQV |U (v|u)e−ξT

0 vdQV |U (v|u)∫
e(ξ−ξ0)

T vdQV |U (v|u)

to complete the proof. �

In the next few sections, we will be concerned with the case where η = θ1
and ξ = θ2:p. The above theorem, together with Theorem 2.8, implies that,
when θ1 is fixed at a, the statistic t2:p(X) is sufficient and complete for θ2:p.
For easy reference we summarize this result as a corollary. The proof follows
directly from Theorem 4.4 and Theorem 2.8.

Corollary 4.2 Suppose X = (X1, . . . , Xn) ∼ En
p (t0, μ0). Let a be a real num-

ber such that

1. (a, θ2:p) ∈ Θ;
2. the set {θ2:p : (a, θ2:p) ∈ Θ} has a nonempty interior in R

p−1.
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Then t2:p(X) is sufficient and complete for Θ(a).

We will frequently need to make assumptions similar to 2 in the corollary.
To simplify discussion, let Ψ be the collection of all θ1 ∈ R for which there
exists a θ2:p ∈ R

p−1 such that (θ1, θ2:p) is an interior point of Θ. Obviously, if
the interior of Θ is nonempty, then Ψ is nonempty. Furthermore, it is easy to
see that, for every θ1 ∈ Ψ , {θ2:p : (θ1, θ2:p) ∈ Θ} has a nonempty interior in
R

p−1.

4.3 UMPU tests in the presence of nuisance parameters

In this section we construct the UMPU tests for several hypothesis about θ1
in the presence of the nuisance parameters θ2:p. First, let us show that we
can restrict our attention exclusively on those tests that depend on sufficient
statistics so long as the purpose is to maximize the power.

Lemma 4.2 Suppose T = t(X1, . . . , Xn) is sufficient for Θ. Then, for any
test φ(X), there exists a ψ◦t(X) such that

βφ(θ) = βψ◦t(θ) for all θ ∈ Θ. (4.6)

Proof. The test ψ◦t(X) = E[φ(X)|T ] satisfies the asserted property. �

For the rest of this section, any test we consider will be a function of a
sufficient statistic.

Theorem 4.5 Suppose

1. T = t(X1, . . . , Xn) is a sufficient statistic for Θ,
2. ΘB can be written as ∪s

r=1Θ(ar) such that T2:p is sufficient and complete
on each Θ(ar),

3. The power function βφ(θ) is continuous in θ for all tests φ.

Moreover, suppose that there is a test φ0(T ) such that

4. φ0 has α-Neyman structure with respect to T2:p,
5. Eθ(φ0(T )|T2:p) ≤ α [Pθ] for all θ ∈ Θ0,
6. For any test φ(T ) with α-Neymen structure with respect to T2:p, we have

Eθ(φ0(T )|T2:p) ≥ Eθ(φ(T )|T2:p) [Pθ] for all θ ∈ Θ1. (4.7)

Then φ0 is a UMPU-α test for testing H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1.

Proof. Let φ(T ) be an unbiased test of size α. By assumption 2 and Corollary
4.2, φ has α-Neyman structure with respect to T2:p. Hence, by assumption 6,
(4.7) holds. Then

Eθ(φ0(T )) ≥ Eθ(φ(T ))
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for all θ ∈ Θ1. Moreover, by assumptions 4 and 5

Eθ(φ0(T )) ≤ α for all θ ∈ Θ0

Eθ(φ0(T )) = α for all θ ∈ ΘB .
(4.8)

The first inequality implies

sup
θ∈Θ0

Eθ(φ0(T )) ≤ α.

The second equality in (4.8) and continuity of power (assumption 3) imply
there is a sequence {θk} such that φφ0(θk) → α. Hence

sup
θ∈Θ0

Eθ(φ0(T )) = α.

So φ0 has size α. Finally, let ψ(T ) ≡ α. Then by assumption 6,

Eθ(φ0(T )|T2:p) ≥ α for all θ ∈ Θ1,

which, combined with the first line in (4.8), implies φ0 is unbiased. �

This theorem provides us with a general guideline to construct UMPU
tests in the presence of nuisance parameters using the techniques developed
for developing UMP or UMPU tests for a single parameter. In the following
we will consider four types of hypotheses, with different Θ0, Θ1, and ΘB .

UMPU one-sided tests

We first consider the hypothesis

H0 : θ1 ≤ a vs H1 : θ1 > a. (4.9)

In this case

Θ0 = {θ : θ1 ≤ a}, Θ1 = {θ : θ1 > a}, ΘB = {θ : θ1 = a}.
Since X ∼ En

p (t0, μ0), T is sufficient for Θ, T2:p is complete and sufficient for
ΘB , and the power function is continuous for every φ. Thus conditions 1 and
2 in Theorem 4.5 are satisfied.

Let α ∈ (0, 1). Let t2:p be an arbitrary member of ΩT2:p . By Theorem 3.2,
as applied to the conditional family {PT1|T2:p(t1|t2:p; θ1) : θ1 ∈ Ψ}, there is a
test

φ0(t) =

⎧⎪⎨
⎪⎩

1 if t1 > k(t2:p)
γ(t2:p) if t1 = k(t2:p)
0 if u < k(t2:p)

, Eθ1=a(φ0(T )|T2:p = t2:p) = α (4.10)

such that, for any test φ(T ) with Eθ1=a(φ(T )|T2:p = t2:p) = α, we have
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Eθ1(φ0(T )|T2:p = t2:p) ≥ Eθ1(φ(T )|T2:p = t2:p) for all θ1 > a. (4.11)

By construction, both φ0(T ) and φ(T ) have α-Neyman structure with respect
to T2:p for the set ΘB . Moreover, note that any test with an α-Neyman struc-
ture must be in the form of φ(T ) as constructed above. Thus conditions 4 and
6 in Theorem 4.5 are satisfied. By Theorem 3.2,

Eη(φ0(T )|T2:p = t2:p) ≤ α for all θ1 ≤ a.

This implies condition 5 in Theorem 4.5. To summarize, we have the following
theorem.

Theorem 4.6 Suppose

1. X ∼ En
p (t0, μ0);

2. Θ has a nonempty interior in R
p;

3. a ∈ Ψ .

Then φ0 in (4.10) is a UMPU-α test for hypothesis (4.9).

The next example illustrates how to construct a UMPU-α test.

Example 4.1 Suppose that X1, . . . , Xn are i.i.d. N(μ, σ2), and we are inter-
ested in testing

H0 : μ ≤ 0 vs H1 : μ > 0. (4.12)

Note that

f(x|μ, σ2) =
1√
2πσ

exp{−(x − μ)2/(2σ2)}

=
1√
2πσ

exp
(
− μ2

2σ2

)
exp

(
μ

σ2
x − 1

2σ2
x2

)

= c(θ)eθT t0(x)

where θ = (θ1, θ2), t0(x) = (x, x2) and

θ1 = μ/σ2, θ2 = −1/(2σ2).

The hypothesis (4.12) is equivalent to

H0 : θ1 ≤ 0 vs H1 : θ1 > 0.

Let

T1 =
n∑

i=1

Xi, T2 =
n∑

i=1

X2
i .

By Theorem 4.6, we should look for UMP-α one sided test for the one-
parameter exponential family {fT1|T2(t1|t2;μ) : μ ∈ R}. That is
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φ0(t1, t2) =

{
1 if t1 > z(t2)
0 otherwise,

(4.13)

where z(t2) is to be determined by Eθ1=0(φ(T1)|T2 = t2) = α. Here and in
what follows, the symbol Eθ=a is used to denote Eθ where θ is evaluated at
a.

Later on in section 4.5 we will describe how to further simplify the test
using the Basu’s theorem (Theorem 2.6), but for now, let us carry through the
principle provided by Theorem 4.5. For simplicity, consider the case n = 2.
The critical point z(t2) is the solution to the equation

Pθ1=0(T1 > c|T2 = t2) = α.

Here and in what follows we use the standard notation Pθ=a to denote Pθ,
where θ is evaluated at a. Under H0, (X1,X2) is distributed as N(02, σ2I2),
where 02 is the vector (0, 0) and I2 is the 2 by 2 identity matrix. Then,
conditioning on X2

1 +X2
2 = t2, (X1,X2) is uniformly distributed on the circle

{x : ‖x‖ =
√

t2}. The inequality T1 ≤ t1 corresponds to an arc on the circle if
−√

2t2 < t1 ≤ √
2t2. Specifically, the distribution of T1|T2 when μ = 0 is

FT1|T2(t1|t2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if t1 ≤ −√
2t2

π−1 cos−1(−t1/
√

2t2) if −√
2t2 < t1 ≤ 0

1 − π−1 cos−1(t1/
√

2t2) if 0 < t1 ≤ √
2t2

1 if
√

2t2 < t1.

Thus, if α < 1/2, then

Pθ1=0(T1 > c|T2 = t2) = π−1 cos−1(c/
√

2t2) = α ⇒ c =
√

2t2 cos(πα).

For n ≥ 2 the development is essentially the same except that the arc length in
a circle is replaced by the corresponding area in a sphere in the n-dimensional
Euclidean space. However, this problem can be simplified and solved explicitly
using Basu’s theorem. �

The UMPU test for the hypothesis

H0 : θ1 ≥ a, H1 : θ1 < a

can be constructed using the above procedure by treating ζ1 = −θ1 as the
parameter to be tested.

Two-sided UMPU tests

Now let us carry out the generalization for the three hypotheses I, II, III
considered in section 3.2. Thus consider the following hypotheses:
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I′ H0 : θ1 = a vs H1 : θ1 �= a
II′ H0 : a ≤ θ1 ≤ b vs H1 : θ1 < a or θ1 > b

III′ H0 : θ1 ≤ a or θ1 ≥ b vs H1 : a < θ1 < b,

where a < b. Since the procedures for developing these tests are similar, we
will focus on II′. The development is parallel to the one-sided case except that
the boundary set ΘB is now the union of two sets, and the completeness and
sufficiency do not apply to the union but rather to each set in the union. This
aspect will be highlighted in the following development.

For hypothesis II′ we have

Θ0 = {θ : a ≤ θ1 ≤ b},
Θ1 = {θ : θ1 < a} ∪ {θ : θ1 > b},
ΘB = Θ(a) ∪ Θ(b).

As before, T is sufficient for Θ and the power function for any test is con-
tinuous. However, in this case T2:p is complete and sufficient Θ(a) and Θ(b)
separately, but not necessarily for their union. Nevertheless, as we have shown
in Corollary 4.1, this is enough to guarantee the Neyman structure. We have
then verified conditions 1, 2, 3 in Theorem 4.5.

Let Ψ and α be as defined previously, but with ΘB replaced by the new
boundary set. By Theorem 3.7, as applied to the one-parameter conditional
family {PT1|T2:p(t1|t2:p; θ1) : θ1 ∈ Ψ}, there is a test

φ0(t1, t2:p) =

⎧⎪⎨
⎪⎩

1 if t1 < k1(t2:p) or t1 > k2(t2:p)
γi(t2:p) if t1 = ki(t2:p), i = 1, 2
0 if u < k1(v) or t1 > k2(t2:p),

(4.14)

where −∞ < k1(t2:p) < k2(t2:p) < ∞ are determined by

Eθ1=a(φ0(T )|T2:p = t2:p) = Eθ1=b(φ0(T )|T2:p = t2:p) = α. (4.15)

Moreover, for any test φ(T ) that satisfies the above relation, we have

Eη(φ0(T )|T2:p = t2:p) ≥ Eη(φ(T )|T2:p = t2:p), for all η /∈ [a, b]. (4.16)

By construction, φ0(T ) ∈ Nα and φ(T ) is an arbitrary member of Nα. Thus
conditions 4 and 6 of Theorem 4.5 are satisfied. By Theorem 3.7, part 2, we
also know that φ0(T ) has size α for the conditional problem. That is,

Eθ1(φ0(T )|T2:p = t2:p) ≤ α for all η ∈ [a, b].

Thus condition 5 of Theorem 4.5 is also satisfied, leading to the next theorem.

Theorem 4.7 Suppose

1. X = (X1, . . . , Xn) ∼ En
p (t0, μ0);
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2. Θ has a nonempty interior in R
p;

3. a, b ∈ Ψ .

Then the test specified by (4.14) and (4.15) is a UMPU-α for testing II′.

We now state the forms of UMPU tests for Hypotheses I′ and III′ without
proof.

Theorem 4.8 Suppose the three assumptions in Theorem 4.7 are satisfied.
Let

φ0(t) =

⎧⎪⎨
⎪⎩

0 if t1 < k1(t2:p) or t1 > k2(t2:p)
γi(t2:p) if t1 = ki(t2:p), i = 1, 2
1 if t1 < k1(t2:p) or t1 > k2(t2:p)

,

where −∞ < k1(t2:p) < k2(t2:p) < ∞ that satisfies

Eθ1=a(φ0(T1, T2:p)|T2:p = t2:p) = Eθ1=b(φ0(T1, T2:p)|T2:p = t2:p) = α.

Then φ0(T1, T2:p) is a UMPU-α test for hypothesis III′.

Theorem 4.9 Suppose X ∼ En
p (t0, μ0), int(Θ) �= ∅, and a ∈ Ψ . Let

φ0(t1, t2:p) =

⎧⎪⎨
⎪⎩

1 if t1 < k1(t2:p) or t1 > k2(t2:p)
γi(t2:p) if t1 = ki(t2:p), i = 1, 2
0 if t1 < k1(t2:p) or t1 > k2(t2:p)

,

where −∞ < k1(t2:p) < k2(t2:p) < ∞ satisfy

Eθ1=a(φ0(T1, T2:p)|T2:p = t2:p) = α,

Eθ1=a(φ0(T1, T2:p)T1|T2:p = t2:p) = αEθ1=a(T1|T2:p = t2:p).

Then φ0(T1, T2:p) is a UMPU-α test for hypothesis I′.

The next example illustrates the construction of the UMPU test for
hypothesis I ′ for the mean parameter of the Normal distribution.

Example 4.2 Suppose, in Example 4.1, we would like to test the hypothesis

H0 : μ = 0 vs H1 : μ �= 0.

Then, by Theorem 4.9, the UMPU-α test has the form

φ0(t1, t2) =

{
1 if t1 < k1(t2), t1 > k1(t2)
0 otherwise,

where k1(t2) < k2(t2) are determined by
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Pθ1=0(T1 < k1 or T1 > k2|T2 = t2) = α

Eθ1=0[(I(T1 < k1) + I(T1 > k2))T1|T2 = t2] = αEθ1=0(T1|T2 = t2).

We shall discuss general solution later. For now, consider the simple case
n = 2. Since (X1,X2)|T2 = t2 is uniformly distributed on a circle with radius√

t2, the distribution of T1 given T2 is symmetric about 0. So if we take
k2 = −k1 = k then the second equation above is automatically satisfied (both
sides are 0). The first equation is equivalent to

Pθ1=0(T1 > k|T2 = t2) = α/2.

Thus k(t2) =
√

2t2 cos(πα/2). �

4.4 Invariant family and ancillarity

In this and the next sections we describe a special technique that simplifies
the process of finding UMPU-α test. As an illustration, consider testing the
hypothesis H0 : θ1 = 0 versus H1 : θ �= 0. Recall that in Example 4.1 we
needed to use the conditional distribution of T1|T2 to determine the critical
points k1 and k2 of the UMPU test, which was quite complicated. Moreover,
if we construct the UMPU tests from the first principle, then the critical
points are in general data dependent, which cannot be derived from a single
distribution such as an F or a chi-squared distribution. However, suppose we
can find a transformation g(T1, T2) such that

1. for each value of t2, g(t1, t2) is monotone (say, increasing) in t1,
2. for θ1 = 0, the distribution of g(T1, T2) does not depend on θ2 (that is,

this distribution is the same for all θ ∈ ΘB = {θ : θ1 = 0}).
Then, by Basu’s theorem, g(T1, T2) T2 under any Pθ where θ ∈ ΘB . Here
and in what follows, independence of U and V is denoted by the notation
U V . Conditional probabilities such as Pθ1=0(T1 > k(T2)|T2) can be written
as

Pθ1=0(T1 > k(T2)|T2) = Pθ1=0(g(T1, T2) > g(k(T2), T2))

In other words, if we let c to be the solution of

Pθ1=0(g(T1, T2) ≤ c) = α

and let k be the (unique) solution to g(k, T2) = c, then

Pθ1=0(T1 > k(T2)|T2) = α ⇔ Pθ1=0(g(T1, T2) > c) = α.

and the test
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φ0(T1, T2) =

{
1 if T1 > k(T2)
0 otherwise

, Eθ1=0(φ0(T1, T2)|T2) = α

is equivalent to

φ1(T1, T2) =

{
1 if g(T1, T2) > c

0 otherwise
, Eθ1=0(φ1(T1, T2)) = α.

Many classical tests, such as the chi-square test, the student t-tests, and the
F -tests can be shown using this mechanism to be UMPU tests. The critical
step in the above procedure is to find the transformation g. For this purpose,
we first introduce the notion of an invariant family of distributions.

Let (Ω,F) be a measurable space and P be a family of probability mea-
sures on (Ω,F). Let G be a set of bijections g : Ω → Ω. Let ◦ denote compo-
sition of functions. Suppose G is a group with respect to ◦. That is:

1. if g1 ∈ G, g2 ∈ G, then g2 ◦ g1 ∈ G;
2. for all g1, g2, g3 ∈ G, (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3);
3. there exists e ∈ G such that g ◦ e = e ◦ g for all g ∈ G;
4. for each g ∈ G there is a f ∈ G such that g ◦ f = f ◦ g = e.

Definition 4.3 A family of distributions P is said to be invariant under G if
for every g ∈ G and P ∈ P, we have P ◦g−1 ∈ P.

If P is invariant under G then each g ∈ G induces a function

g̃ : P → P, P �→ P ◦g−1.

It is left as an exercise to show that g̃ is bijective and the set G̃ = {g̃ : g ∈ G}
is itself a group. For a member P of P, we call the set

M(P ) = {g̃(P ) : g̃ ∈ G̃}

an orbit of G̃. If M(P ) = P, then we say the group G̃ is transitive.

Theorem 4.10 Let V be a random element defined on (Ω,F). Suppose:

1. P is invariant under G;
2. For each P ∈ P, g ∈ G, P ◦(V ◦g)−1 = P ◦V −1;
3. the group G̃ is transitive.

Then V is ancillary for P.

Proof. Let P ∈ P. Since M(P ) = P, it suffices to show that the distribution
of V is the same for all Q ∈ M(P ). Let Q1, Q2 ∈ M(P ). Then Q1 = P ◦g−1

1 ,
Q2 = P ◦g−1

2 for some g1, g2 ∈ G. By Exercise 4.6 we have

Q1◦V −1 = (P ◦g−1
1 )◦V −1 = P ◦(V ◦g1)−1

Q2◦V −1 = (P ◦g−1
2 )◦V −1 = P ◦(V ◦g2)−1.
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By assumption 2,

P ◦(V ◦g1)−1 = P ◦V −1 = P ◦(V ◦g2)−1.

That is, Q1◦V −1 = Q2◦V −1, hence V has the same distribution under Q1 and
Q2. �

Our treatment of this topic slightly differs from the treatment in classical
texts such as Ferguson (1967); Lehmann and Romano (2005), in that

(1) we do not assume P to be parametric — not for generality but for greater
clarity;

(2) we require P ◦(V ◦g)−1 = P ◦V −1 rather than the stronger assumption
V ◦g = V .

Example 4.3 Let X = (X1, . . . , Xn) be an n-dimensional random vector
whose density with Lebesgue measure on (Rn,Rn) is of the form

f(x1 − μ, . . . , xn − μ), μ ∈ R,

where f is a known density function on R
n. Let P denote the class of distri-

butions corresponding to these densities. Consider the group G consisting of
transformations

gc : R → R, (x1, . . . , xn) �→ (x1 + c, . . . , xn + c), c ∈ R.

This group is called the translation group. The random vector Y = gc(X) has
density

f(y1 − (μ + c), . . . , yn − (μ + c)),

which belongs to P. Hence the family P is invariant under G. Now let V (x)
be a function such that V (x + c) = V (x) for all c. For example, V (x) could
be x1 − x2. In addition, for any Pμ ∈ P, M(P ) corresponds to the following
family of densities

{f(y1 − (μ + c), . . . , yn − (μ + c)), c ∈ R},

which is P itself. Therefore, V (X) is ancillary for μ. In the special case where
X1, . . . , Xn are i.i.d. N(μ, 1), T =

∑n
i=1 Xi is complete and sufficient for μ.

Therefore T V (X). �

Example 4.4 Suppose that (X1, . . . , Xn) has density of the form

σ−nf(x1/σ, . . . , xn/σ), σ > 0.

Write this family of distributions as P. Consider the group of transformations
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gc : (x1, . . . , xn) �→ (cx1, . . . , cxn), c > 0.

If Y = cX then the density of Y is

(cσ)−nf(x1/(cσ), . . . , xn/(cσ)),

which belongs to P. Thus P is invariant under G. Furthermore, it is easy
to see that M(P ) = P for any P ∈ P. Let V (x) be a function that satisfies
V (x) = V (cx) for all c > 0. For example V (x) = x1/x2 satisfies this condition.
Then V (X) is ancillary for σ. In this special case where X1, . . . , Xn are i.i.d.
N(0, σ2), the statistic T =

∑n
i=1 X2

i is complete and sufficient for σ. Hence,
by Basu’s theorem T (X) V (X). �

Example 4.5 Suppose that (X1, . . . , Xn) has density of the form

σ−nf((x1 − μ)/σ, . . . , (xn − μ)/σ), σ > 0, μ ∈ R.

Write this family of distributions as P. Consider the group of transformations

gc : (x1, . . . , xn) �→ (cx1 + d, . . . , cxn + d), c > 0, d ∈ R.

Similar to the previous two examples, we can show that M(P ) = P for each
P ∈ P and P is invariant under G. Therefore any statistic V (X) satisfying
V (cX + d) = V (X) is ancillary for (μ, σ). If X1, . . . , Xn are i.i.d. N(μ, σ2),
then such V (X)’s are independent of the complete and sufficient statistic
(
∑n

i=1 Xi,
∑n

i=1 X2
i ). For example

(
X1 − X̄

S
, . . . ,

Xn − X̄

S

)
(X̄, S2).

where S2 is the sample variance
∑n

i=1(Xi − X̄)2/(n − 1) The statistic on the
left is called the standardized (or studentized) residuals. �

We now give an example where the invariant family is nonparametric.

Example 4.6 Let X be a p-dimensional random vector. The distribution of
X is said to be spherical if, for any orthogonal matrix A,

AX
D= X, that is, AX and X have the same distribution. (4.17)

If X has a density with respect to the Lebesgue measure, then (4.17) means
that the density of X is cf(‖x‖) for some probability density function f defined
on [0,∞) and some constant c > 0. Let τ be the transformation

R
p → R, x �→ ‖x‖.
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Let λ be the n-fold product Lebesgue measure. Then by the change of variable
theorem ∫

cf(‖x‖)dλ(x) =
∫

cf(s)dλ◦τ−1(s)

= c

∫
f(s)

dλ◦τ−1(s)
dλ(s)

dλ(s) = 1.

Hence

c =
(∫

f(s)
dλ◦τ−1(s)

dλ(s)
dλ(s)

)−1

≡ c(f).

Let D be the class of all probability density functions defined on [0,∞). Con-
sider the family of densities for X:

{c(f)f(‖x‖) : f ∈ D}.
Denote the corresponding family of distributions of X by P. Let G be the
class of all functions of the form

x �→ h(‖x‖)x/‖x‖, h ∈ G0,

where G0 is the class all bijective, positive, functions from [0,∞) to [0,∞). It is
clear that G is a group. For example, if y = h(‖x‖)x/‖x‖, then ‖x‖ = h−1(‖y‖)
and hence

x = y‖x‖/h(‖x‖) = yh−1(‖y‖)/‖y‖ ≡ g−1(y).

For any P ∈ P and g ∈ G, the density of Y = g(X) also has a spherical
distribution, because, if A is an orthogonal matrix,

AY = h(‖X‖)AX/‖X‖ = h(‖AX‖)AX/‖AX‖ D= h(‖X‖)X/‖X‖

where the last equality follows from AX
D= X. Since Y is also dominated by λ,

its density is also in P. So P is invariant under G. To see that and M(P ) = P
for any P ∈ P (that is, G̃ is transitive). Hence, any function V (x) satisfying
V = V ◦g for all g ∈ G is ancillary for P. One such function is V (x) = x/‖x‖.

We now show that ‖X‖ is complete sufficient on P. ‖X‖ is a sufficient
statistic, because the conditional distribution of X given ‖X‖ = r is uniform
on the sphere {x : ‖x‖ = r}. Now let u be a function of ‖X‖, independent of
f , such that

Efu(‖X‖) = 0 for all f ∈ D.

Take f to be the exponential distribution te−st, where t > 0. Then we have
∫ ∞

0

u(s)e−sttds = 0 ⇒
∫ ∞

0

u(s)e−stds = 0
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Consequently v(t) =
∫ ∞
0

g(s)e−tsds = 0 for all t > 0. Because v(t) is analytic
we see that v(t) = 0 for all t ∈ C. Hence, by the uniqueness of inverse Laplace
transformation, we see that u(s) = 0. Thus ‖X‖ is complete. By Basu’s the-
orem, any V (x) such that V ◦g = V is independent of ‖X‖. In particular,
(X/‖X‖) ‖X‖. �

4.5 Using Basu’s theorem to construct UMPU test

The development in the last section gives a general principle for constructing
UMPU test using statistics that is ancillary to the nuisance parameters. The
implementation is this principle is straightforward for the one-sided tests and
the two-sided tests II′, III′, where φ0(t1) alone appears in the conditional
expectations: we simply replace φ0(t1) by φ0◦V (t), and remove conditioning.
The situation is slightly more complicated for the two-sided test I′, where we
encounter an additional constraint of the form

Eθ1=a[φ0(T1)T1|T2:p = t2:p] = αEθ1=a(T1|T2:p = t2:p). (4.18)

In this case, we replace φ0(T1) by φ0(V ) and T1 by t1(V, T2:p), which is the
solution in t1 of the equation V (t1, t2:p) = v. Since V T2:p, the above
constraint (4.18) becomes

Eθ1=a[φ0(V )t1(V, t2:p)] = αEθ1=a[t1(V, t2:p)].

In the special case where t1(V, t2:p) has the linear form a(t2:p)V + b(t2:p), we
have

Eθ1=a[φ0(V )t1(V, t2:p)] = αEθ1=a[t1(V, t2:p)].

This is equivalent to

a(t2:p)E[φ0(V )V ] + αb(t2:p) = α[a(t2:p)Eφ0(V ) + b(t2:p)].

This happens if and only if

Eθ1=a[φ(V )V ] = αEθ1=a(V ).

We now use several examples to illustrate how to use Basu’s theorem to con-
struct UMPU test.

Example 4.7 In Example 4.1, let

V (t1(X), t2(X)) =
√

n − 1
n

t1(X)√
t2(X) − t21(X)/n

=
X̄

S
.
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Write t(x) = (t1(x), t2(x)). Then V ◦t(x) = V ◦t(cx) for any c > 0. By Example
4.4, V ◦t(X) is ancillary with respect to ΘB = {(0, σ2) : σ2 > ∞}. By Basu’s
theorem, V ◦t(X) t2(X). In the meantime, it is easy to check by differentia-
tion that V (t1, t2) is an increasing function of t1 for each fixed t2. Therefore
the UMPU test (4.13) is equivalent to

φ(t1, t2) =

{
1 if V (t1, t2) > k(t2)
0 otherwise,

where k(t2) is determined by the equation

Eμ=0[φ(T1, T2)|T2 = t2] = Pμ=0(V (T1, T2) > k)|T2 = t2) = α.

Because V (T1, T2) T2, the above equation is equivalent to

Pμ=0(V (T1, T2) > k) = α.

Because V (T1, T2) ∼ tn−1. We have k = tn−1(α), which is the one-sided t test.
The UMPU test for the two-sided hypothesis in Example 4.2 in its original

form is

φ(t1, t2) =

{
1 t1 ≤ k1(t2), t1 > k2(t2)
0 otherwise.

We cannot directly write the two constraints in terms of V because V is not
in the linear form a(t2)t1 + b(t2), and the second constraint

Eμ=0(φ(T )T1|t2) = αEμ=0(T1|t2) (4.19)

is no longer equivalent to

Eμ=0(φ(V )V ) = αEμ=0(V ).

However, because T1 T2, the null distribution of T1 given T2 is the same as
the marginal distribution of T1, which is symmetric about 0. Hence, as argued
earlier, the constraint (4.19) is automatically satisfied if we take k1(t2) =
−k2(t2). In other words the UMPU test is of the form

φ(t1, t2) =

{
0 if − k(t2) < t1 < k(t2)
1 otherwise,

where k(t2) is determined by Eμ=0(φ(T )|t2) = α. This can then be equiva-
lently written in terms of V as

φ(v) =

{
0 if V (−k(t2), t2) < V < V (k(t2), t2)
0 otherwise,

where, note that V (−k(t2), t2) = −V (k(t2), t2). Because V T2, V (k(t2), t2)
is a nonrandom constant determined by Eμ=0(φ(V )) = α. This constant then
must be tn−1(α/2). �
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The next example is concerned with testing the variance in the presence
of the mean as the nuisance parameter.

Example 4.8 Suppose that X1, . . . , Xn are i.i.d. N(μ, σ2). We are interested
in testing the hypothesis

H0 : σ2 ≤ 1 versus H1 : σ2 > 1. (4.20)

In the notation of Example 4.1, we can equivalently state the hypothesis (4.20)
as

H0 : θ2 ≤ −1/2 versus H1 : θ2 > −1/2.

The UMPU test is of the form

φ(t1, t2) =

{
1 if t2 > k(t1)
0 otherwise,

(4.21)

where k(t1) is determined by

Pθ1=−1/2 (T2 > k(T1)|T1) = α.

Let

V ◦t(x) = t2(x) − t21(x)/n.

Then V ◦t(x+c) = V ◦t(x) for all c ∈ R. Hence, by Example 4.3, V ◦t(X) is an-
cillary for ΘB = {(θ1,−1/2) : θ1 ∈ R}. Since T1 is complete and sufficient for
ΘB , by Basu’s theorem V ◦t(X) t1(X) for all θ ∈ ΘB . As V (t) is increasing
in t2 for each fixed t1, the test (4.21) can be equivalently written as

φ(t1, t2) =

{
1 if V (t1, t2) > k

0 otherwise,

where k is determined by the equation

Pθ2=−1/2 (V (T1, T2) > k|T1) = Pθ2=−1/2 (V (T1, T2) > k) = α

Since, under θ2 = −1/2, V (T1, T2) ∼ χ2
(n−1), k = χ2

(n−1)(α).
Now suppose we want to test the two-sided hypothesis

H0 : σ2 = 1 vs H1 : σ2 �= 1.

The UMPU-α test is of the form

φ(t) =

{
1 if t2 < k1(t1), t2 > k2(t2)
0 otherwise,
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where k1(t2), k2(t2) are determined by

Eσ2=1[φ0(T )|T2] = α, Eσ2=1(φ0(T )T1|T2) = αEσ2=1(T1|T2).

Because t2 is of the linear form V + t21/n, by the discussion at the beginning
of this section, the constraints can be replaced by

Eσ2=1(φ0(V )) = α, Eσ2=1(φ0(V )V ) = αEσ2=1(V ) = α(n − 1)

where the last equality follows from V ∼ χ2
(n−1). The values of k1, k2 can be

obtained by solving the above equation numerically. �

4.6 UMPU test for a linear function of θ

Many important statistical tests can be written as the test for a linear com-
bination of the components of the parameter θ. Let c1 = (α1, . . . , αp) ∈ R

p,
and let c1 �= 0 be a nonzero vector. Suppose we are interested in the param-
eter η1 = cT

1 θ. Let c2, . . . , cp be vectors in R
p such that C = (c1, . . . , cp) is a

nonsingular matrix. Then

θT t0 = (C−T CT θ)T t0 = (CT θ)T C−1t0 ≡ ηT u0.

Let L represent the linear transformation θ �→ CT θ. Then the exponential
family Ep(t0, μ0) can be written as Ep(u0, μ0◦L−1) = Ep(u0, ν0). So testing
hypothesis about η1 reduces to the problem in the last section.

The choice of c2, . . . , cp does not affect the result. A convenient choice is
as follows. Without loss of generality, assume the first component α1 of c1 is
nonzero. Then let ck = ek, k = 2, . . . p, where ek is the p-dimensional vector
whose kth entry is 1 and all the other entries are 0. In this case,

C−1 =

⎛
⎜⎜⎜⎝

1/α1 0 · · · 0
−α2/α1 1 0

...
. . .

−αp/α1 0 1

⎞
⎟⎟⎟⎠ .

The two examples are concerned with the well known two-sample prob-
lem for gaussian observations: the first is concerned with comparison of the
variances; the second is concerned with the comparison of the means. Both
examples are special cases of UMPU tests for linear combinations of θ as
described above. It is somewhat surprising that, in some sense, the comparison
of the means is more difficult than the comparison of the variances.

Example 4.9 Suppose that X1, . . . , Xm are i.i.d. N(μ1, σ
2
1) and that Y1, . . . , Yn

are i.i.d. N(μ2, σ
2
2). We are interested in testing
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H0 : σ2
2/σ2

1 ≤ τ versus H1 : σ2
2/σ2

1 > τ. (4.22)

Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn). By simple algebra we deduce
the joint density of (X,Y ) in the form of

c(θ)eθT t(x,y)

with respect to some measure on (ΩX × ΩY ,FX ×FY ), where

θ = (θ1, . . . , θ4) = (μ1/σ2
1 , μ2/σ2

2 ,−1/(2σ2
1),−1/(2σ2

2))

and

t(x, y) = (t1(x), t2(y), t3(x), t4(x))

= (
m∑

i=1

xi,

n∑
j=1

yj ,

m∑
i=1

x2
i ,

n∑
j=1

y2
j ).

In terms of θ, the hypothesis (4.22) can be rewritten as

H0 : θ4 ≤ θ3/τ vs H1 : θ4 > θ3/τ.

Let η4 = θ4 − θ3/τ , η3 = θ3, η2 = θ2, and η1 = θ1. Then, in terms of
η = (η1, . . . , η4), the hypothesis further reduces to

H0 : η4 ≤ 0 vs H1 : η4 > 0.

The parameter space is

Λ = {(η1, η2, η3, η4) : η1 ∈ R, η2 ∈ R, η3 < 0, η4 ∈ R}.

The boundary space is

ΛB = {(η1, η2, η3, 0) : η1 ∈ R, η2 ∈ R, η3 < 0}.

Note that

θ1t1 + · · · θ4t4 = θ1t1 + θ2t2 + θ3(t3 + t4/τ) + (θ4 − θ3/τ)t4
= η1u1 + · · · + η4u4.

So the UMPU-α test is of the form

φ(u) =

{
1 if u4 > k(u1:3)
0 otherwise.

(4.23)

Let u be the function (x, y) �→ (u1(x), u2(y), u3(x, y), u4(y)). Now consider
the statistic
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V ◦u(X,Y ) =
1
τ

∑n
j=1(Yj − Ȳ )2/(n − 1)∑m
i=1(Xi − X̄)2/(m − 1)

.

We write the above function as V ◦u(x, y) because the right hand side is indeed
such a composite function:

∑n
j=1(Yj − Ȳ )2∑m
i=1(Xi − X̄)2

=
u4 − u2

2/n

u3 − u4/τ − u2
1/m

. (4.24)

Note that we have, by construction,

u4 − u2
2/n ≥ 0, u3 − u4/τ − u2

1/m ≥ 0.

We will show

1. V (u) is increasing in u4 for each fixed (u1, u2, u3);
2. V ◦u(X,Y ) is ancillary for ΛB .

The validity of the first assertion is easily seen from (4.24). To show the second
assertion, let P = {Pη : η ∈ ΛB}, and consider the group G of transformations:

(x1, . . . , xm, y1, . . . , yn) �→ (cx1 + d1, . . . , cxm + d1, cy1 + d2, . . . , cyn + d2),

where c > 0 and d1, d2 ∈ R. Denote this transformation as gc,d1,d2 . Suppose
the distribution of (X,Y ) belongs to ΛB. Then the distribution of (X̃, Ỹ ) =
gc,d1,d2(X,Y ) is

N(μ̃1, σ̃
2
1) × · · · × N(μ̃1, σ̃

2
1) × N(μ̃2, σ̃

2
2) × · · · × N(μ̃2, σ̃

2
2)

with parameters
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ̃1 = cμ1 + d1

μ̃2 = cμ2 + d2

σ̃2
1 = c2σ2

1

σ̃2
2 = c2σ2

2

⇒ η̃4 = θ̃4 − θ̃3/τ =
1
c2

(θ4 − θ3/τ) = 0.

In other words, the distribution of (X̃, Ỹ ) stays in the family indexed by
ΛB . That is, P is invariant under G. In the meantime it is easy to see that
V ◦u(x̃, ỹ)=V ◦u(x, y). Finally, let (η1, η2, η3, 0) be any fixed point in ΛB. Then
the distribution of (X̃, Ỹ ) = gc,d1,d2(X,Y ) corresponds to the parameter

η̃1 = η1/c − (2d1/c2)η3, η̃2 = η2/c − (2d2/c2)θ3/τ, η̃3 = η3/c2.

Clearly, when (d1, d2, c) varies freely in R×R× (0,∞), the above parameters
occupy the whole space R×R× (−∞, 0). This means G̃ is a transitive group.
Hence, by Theorem 4.10, V ◦u(X,Y ) is ancillary for ΛB . By Basu’s theorem,
V ◦u(X,Y ) (u1(X), u2(Y ), u3(X,Y )). Therefore, the test (4.23) is equivalent
to
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φ(u) =

{
1 if V ◦u(X,Y ) > k

0 otherwise,

where k is determined by

Pη4=0(V ◦u(X,Y ) > k) = α.

Since, under any η ∈ ΛB , V ◦u(X,Y ) ∼ F(m−1),(n−1), the critical point k is
F(m−1),(n−1)(α). �

Now let us turn to the comparison of two normal means.

Example 4.10 Consider the same setting as the above example with σ1 =
σ2. Under this assumption (X,Y ) follows a 3-parameter exponential family

θ1t1 + θ2t2 + θ3(t3 + t4),

where t1, . . . , t4 are defined as in the above example. We are now interested
in testing H0 : μ1 = μ2 versus H1 : μ1 �= μ2, which is equivalent to

H0 : θ1 = θ2 vs H1 : θ1 �= θ2.

Let η1 = θ1 − θ2, and

θ1t1 + θ2t2 + θ3(t3 + t4) = (θ1 − θ2)t1 + θ2(t1 + t2) + θ3(t3 + t4)
≡ η1u1 + η2u2 + η3u3.

The UMPU test is of the form

φ(u) =

{
1 if u1 > k(u2, u3)
0 otherwise.

Now consider the statistic

(X̄ − Ȳ )/
√

m−1 + n−1√
[
∑m

i=1(Xi − X̄)2 +
∑n

i=1(Yi − Ȳ )2]/(m + n − 2)
. (4.25)

Because

X̄ = t1/m = u1/m,

Ȳ = t2/n = (u2 − u1)/n,
m∑

i=1

(Xi − X̄)2 +
n∑

i=1

(Yi − Ȳ )2 = u3 − u2
1/m − (u2 − u1)2/n,

the statistic (4.25) can be rewritten as
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[(m−1 + n−1)u1(X) − n−1u2(Y )]/
√

m−1 + n−1√
[u3 − u2

1/m − (u2 − u1)2/n]/(m + n − 2)
≡ V ◦u(X,Y ).

Ignoring constants, this function is

[(m−1 + n−1)u1(X) − n−1u2(Y )][u3 − u2
1/m − (u2 − u1)2/n]−1/2.

To show that this is an increasing function of u1, we differentiate it with
respect to u1 to obtain

[u3 − u2
1/m − (u2 − u1)2/n]−3/2[(m−1 + n−1)u1 − n−1u2]2

+ [u3 − u2
1/m − (u2 − u1)2/n]−1/2(m−1 + n−1) > 0.

Use similar argument as before, the distribution of V ◦u(X,Y ) is symmetric
about 0 given (u2, u3). Hence the second condition is automatically satisfied.

For this example, the full parameter space is Λ = R × R × (−∞, 0). The
boundary of the parameter space is ΛB = {0} × R × (−∞, 0). Consider the
group of transformations

gc,d : (x, y) �→ (cx + d, cy + d),

where c > 0 and d ∈ R. Let η be a fixed point in ΛB . For c > 0, d ∈ R, the
random vector (X̃, Ỹ ) has distribution Pη̃, where

η̃1 = 0, η̃2 = η2/c − (2d/c2)η3, η̃3 = η3/c2.

From this we can see that P = {Pη : η ∈ ΛB} is invariant under G and G̃ is
a transitive group. Finally, it is easy to see that V ◦u(gc,d(x, y) = V ◦u(x, y)
for all c > 0 and d ∈ R. Hence, by Theorem 4.10, V (X,Y ) is ancillary for P.
Thus the UMPU-α test has the form

φ(u) =

{
1 if V (u) > k

0 otherwise ,

where k is determined by

Pη1=0(V ◦u(X,Y ) > k) = α.

Because V ◦u(X,Y ) ∼ t(m+n−2), the critical point k is t(m+n−2)(α). �

4.7 UMPU test for nonregular family

So far we have been concerned with constructing the UMPU tests for expo-
nential families. In some special cases, UMPU-tests also exist for distributions
not in the exponential family. One such special case is the so called nonregular
family, where the support of Xi may depend on the parameter values. Rather
than discussing this family generally, we will use an example to illustrate how
to construct UMPU tests for these problems. For a more general discussion
about nonregular family, see Ferguson (1967, page 130).
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Example 4.11 Let X1, . . . , Xn be i.i.d. random variables uniformly dis-
tributed on (θ1, θ2). We are interested in testing

H0 : θ1 ≤ 0 vs H1 : θ1 > 0.

Let S = min1≤i≤n Xi and T = max1≤i≤n Xi. The joint density of X1, . . . , Xn

is

(θ2 − θ1)n∏n
i=1I(θ1,θ2)(Xi) = (θ2 − θ1)nI(−∞,θ2)(T )I(θ1,∞)(S).

By the factorization theorem (Theorem 2.4), (S, T ) is sufficient for X1, . . . , Xn.
This tells us that any optimal test can be based on (S, T ). The full parameter
space is Θ = {(θ1, θ2) : θ1 < θ2}; the boundary parameter space is ΘB =
{(0, θ2) : θ2 > 0}. We shall now show that T is complete and sufficient for
ΘB .

Note that, for any s < t satisfying s > θ1 and t < θ2 we have

P (s < S < T < t) =
(
(t − s)/(θ2 − θ1)

)n
.

From this we deduce the conditional density of S|T and the marginal density
of T as follows:

fS|T (s|t) = (n − 1)(t − s)n−2(t − θ1)−(n−1)I(θ1,t)(s), θ1 < s < t < θ2

fT (t) = n(t − θ1)n−1/(θ2 − θ1)n, θ1 < t < θ2.

From the first expression we see that, for any fixed θ1, T is sufficient for θ2.
Now let g(t) be a function of t such that Eθg(T ) = 0. Then

∫ θ2

θ1

g(t)n(t − θ1)n−1/(θ2 − θ1)ndt = 0

⇒
∫ θ2

θ1

g(t)(t − θ1)n−1dt = 0.

Since this is true for all θ2 > θ1, we have

(∂/∂θ2)
∫ θ2

θ1

g(t)(t − θ1)n−1dt = g(θ2)(θ2 − θ1)n−1 = 0 ⇒ g(θ2) = 0.

This means g(t) = 0 for all t > θ1. That is, for each fixed θ1, T is complete
for θ2.

The UMPU-α test for this problem is

φ(s, t) =

{
1 if s > k(t)
0 otherwise,

where
α = Eθ1=0(φ(S, T )|T = t) = (1 − (k(t)/t))n−1.

Thus k(t) = t(1 − α1/(n−1)). �



4.8 Confidence sets 127

4.8 Confidence sets

In this section we show that there is a direct association between the confi-
dence sets and the tests of hypotheses, and use it to convert an optimal testing
procedure to an optimal confidence set. We first consider the case where θ is
a scalar, with no nuisance parameters involved. We will confine our discussion
to nonrandomized tests. Suppose the distribution of X belongs to a paramet-
ric family P = {Pθ : θ ∈ Θ}, where Θ ⊆ R is a Borel set. Let FΘ be the Borel
σ-field on Θ.

Definition 4.4 A mapping C : ΩX → FΘ is called a confident set at confi-
dence level 1 − α, if

Pθ(θ ∈ C(X)) = 1 − α for all θ ∈ Θ.

In the above definition, the probability Pθ(θ ∈ C(X)) is to be understood
as

Pθ(X ∈ {x : θ ∈ C(x)}),

where X is random, but θ is non-random. To emphasize this point we will
say “the probability of C(X) covering θ” rather than “the probability of θ
belonging to C(X)”, though these two statements are logically equivalent.
For each a ∈ Θ, let φa : ΩX → {0, 1} be a size α nonrandomized test for the
simple versus composite hypothesis

H0 : θ = a vs H1 : θ �= a. (4.26)

Assume that, for each x ∈ ΩX , a �→ φa(x) is measurable FΘ. Consider the
following mappings

A : Θ → FX , A(a) = {x ∈ ΩX : φa(x) = 0},
C : ΩX → FΘ, C(x) = {a ∈ Θ : φa(x) = 0}.

That is, A(a) is the ‘acceptance region’ of the test φa, and C(X) is the
collection of a such that H0 : θ = a is not rejected based on the observation
X. The following relation follows from construction.

Proposition 4.2 For each θ ∈ Θ,

Pθ(θ ∈ C(X)) = Pθ(X ∈ A(θ)).

This proposition implies that A(θ) is an ‘acceptance region’ of a size-α
test for (4.26) if and only if C is a confidence set for θ with level 1 − α.

Obviously there are infinitely many confidence sets of level 1 − α. Then,
how to evaluate the performances of two confidence sets? Intuitively, a higher
performing confidence set should have smaller probability of covering a wrong
parameter value — if there were a confidence set that never covers a wrong
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parameter value, then it could tell us the correct value of θ perfectly. Thus it
is reasonable to require Pθ′(θ ∈ C(X)) to be small when θ′ �= θ, so that C(X)
has stronger discriminating power against incorrect parameter values. This
discriminating power is directly related to the power of a test, and the UMPU
property can be passed on to confidence set through the relation between a
test and a confidence set.

Definition 4.5 A (1 − α)-level confidence set C : ΩX → FΘ is unbiased if,
for any θ′ �= θ, Pθ′(θ ∈ C(X)) ≤ 1 − α.

The next theorem shows that a confidence set constructed from a UMPU
test inherits its optimal property.

Theorem 4.11 Let A(θ) be the acceptance region of UMPU test of size α of
the hypothesis (4.26). Let C(x) = {θ : x ∈ A(θ)}. Then

1. C is a (1 − α)-level confidence set;
2. If D is another (1 − α)-level confidence set, then

Pθ1(θ ∈ C(X)) ≤ Pθ′(θ ∈ D(X))

for all θ′ �= θ.

Proof. 1. That C(X) has level 1−α follows directly from the definition of C.
Let θ′ �= θ. Because A(θ) is unbiased, we have

Pθ′(θ ∈ C(X)) = Pθ′(X ∈ A(θ)) ≤ Pθ(X ∈ A(θ)) = Pθ(θ ∈ C(X)).

Hence C is unbiased.
2. Let D : ΩX → FΘ be another level 1 − α confidence set and let

B(θ) = {x ∈ ΩX : θ ∈ D(x)}.
Then φ(x) = 1 − IB(θ)(x) is a size α unbiased test. Hence

Pθ′(θ ∈ C(X)) = Pθ′(X ∈ A(θ)) ≤ Pθ′(X ∈ B(θ)) = Pθ′(X ∈ B(θ)),

as desired. �

Example 4.12 Consider the situation in Example 3.9, where X1, . . . , Xn are
i.i.d. N(θ, 1). As we showed in that example, the UMPU-α test for H0 : θ = a
vs H1 : θ �= a has acceptance region

A(a) = {(x1, . . . , xn) : a − n−1/2Φ−1(1 − α/2) ≤ x̄ ≤ a + n−1/2Φ−1(1 − α/2)}
So corresponding confidence set is

C(x) = {a : x̄ − n−1/2Φ−1(1 − α/2) ≤ θ ≤ x̄ + n−1/2Φ−1(1 − α/2)}.
This is a (1 − α)-level unbiased confidence interval, and is optimal among all
(1 − α)-level unbiased confidence intervals. �
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Now let us consider the problem of obtaining confidence sets for one pa-
rameter in the presence of nuisance parameters. Let θ = (θ1, . . . , θp). Without
loss of generality, we assume θ1 is the parameter of interest. In this section,
we assume that all tests have continuous power functions, which holds for
exponential families.

Definition 4.6 A (1−α)-level confidence set for θ1 is any mapping C : ΩX →
FΛ1 such that

Pθ(a ∈ C(X)) = 1 − α

for all a ∈ Λ1, θ ∈ Θ(a). A (1 − α)-level confidence set C for θ1 is said to be
unbiased if

Pθ(a ∈ C(X)) ≤ 1 − α

for all a ∈ Λ1 and θ /∈ Θ(a).

Let A(a) be the acceptance region of a size α test for

H0 : θ1 = a vs H1 : θ1 �= a (4.27)

The following result is similar to Theorem 4.11; its proof is omitted.

Theorem 4.12 Let A(a) be the acceptance region of the UMPU test of size
α for hypothesis (4.27). Let C(X) = {a : x ∈ A(a)}. Then

1. C is a (1 − α)-level confidence set for θ1;
2. if D is another (1 − α)-level confidence set for θ1, then

Pθ(a ∈ C(X)) ≤ Pθ(a ∈ D(X))

for all a ∈ Λ1 and θ /∈ Θ(a).

The type of optimality in Theorems 4.11 and 4.12 are called Uniformly
Most Accurate (UMA) in the literature, see for example, Ferguson (1967,
page 260). In particular, the optimal confidence sets in the two theorems are
called the UMA unbiased confidence sets (or UMAU confidence sets). We
now discuss specifically how to construct construct UMAU confidence sets for
exponential family X ∼ En

p (t0, μ0), where μ0 is dominated by the Lebesgue
measure. By Theorem 4.9, the acceptance region is in the form of an interval

A(θ1) = {(t1, . . . , tp) : k1(θ1, t2:p) < t1 < k2(θ1, t2:p)},

where we have added θ1 as an argument of k1, k2 because we are consider-
ing the family of all hypothesis of the form (4.27). Suppose k1(θ1, t2:p) and
k2(θ2, t2:p) are increasing functions of θ1 for each fixed t2:p. Let k−1

1 (t1, t2:p)
and k−1

2 (t1, t2:p) be the inverses of k1(θ1, t2:p) and k2(θ1, t2:p) for each fixed
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t2:p. Then, by Theorem 4.12, the UMAU confidence set of level 1 − α is the
interval

S(t1, . . . , tn) = [k−1
1 (t1, t2:p), k−1

2 (t1, t2:p)].

The next proposition shows that under some conditions (that are satisfied by
exponential families) k1(θ1, t2:p) and k2(θ1, t2:p) are increasing functions
of θ1 for fixed t2:p. Since the setting we have in mind is X ∼ En

p (t0, μ0), where
T1|T2:p = t2:p has a one-parameter exponential family distribution, we only
state the result for the one-parameter case.

Proposition 4.3 Suppose:

1. for each a ∈ Θ,

A(a) = {x : k1(a) < T < k2(a)} (4.28)

defines a size α UMPU test, φa = 1 − IA(a), for the hypothesis (4.26);
2. φa is a strictly unbiased test in the sense that Ebφa > Eaφa = α whenever

b �= a;
3. the family of distribution of T , say {Pθ : θ ∈ Θ}, has monotone (nonde-

creasing) likelihood ratio.

Then k1(a) and k2(a) are strictly increasing in a.

Proof. Let a < b, and a, b ∈ Θ1. Let φa and φb be UMPU tests of size α for
testing

H0 : θ = a vs H1 : θ �= a

H0 : θ = b vs H1 : θ �= b,

respectively. Since φa and φb are strictly unbiased, we have

Ea(φb(T ) − φa(T )) > 0, Eb(φb(T ) − φa(T )) < 0.

These rule out the possibilities A(a) ⊆ A(b) or A(b) ⊆ A(a). In other words,
among the 4 possibilities

k1(a) < k1(b)

{
k2(a) < k2(b)
k2(a) ≥ k2(b)

and k1(a) ≥ k1(b)

{
k2(a) < k2(b)
k2(a) ≥ k2(b)

,

we are left with two possibilities

k1(a) < k1(b), k2(a) < k2(b) or k1(a) ≥ k1(b), k2(a) ≥ k2(b). (4.29)

Let us further rule out the second possibility of the above two.
In this case the set A(b) is positioned to the left of A(a), which implies

there is a point t0 such that
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φb(t) − φa(t) = IA(a)(t) − IA(b)(t)

{
≤ 0 if t ≤ t0

≥ 0 otherwise.

Let r denote the likelihood ratio dPb/dPa. Then

Eb(φb − φa) =
∫

t≤t0

(φb(t) − φa(t))r(t)dPa(t) +
∫

t>t0

(φb(t) − φa(t))r(t)dPa(t).

However, because φb−φa ≤ 0 on {t ≤ t0}, the first term on the right is greater
than or equal to r(t0)

∫
t≤t0

(φb−φa)dPa. Similarly, because φb−φa ≥ 0 on {t >

t0}, the second term on the right is greater than or equal to r(t0)
∫

t>t0
(φb −

φa)dPa. Hence

Eb(φb − φa) ≥ r(t0)Ea(φb − φa) < 0,

which is a contradiction. �

We have learned in Chapter 3 that all the conditions except the strict unbi-
asedness are satisfied by exponential families. In fact, the strict unbiasedness
also holds for exponential families. See Lehmann and Romano (2005, page
112) for a proof of this result.

Problems

4.1. Prove Proposition 4.1.

4.2. Let (Ω,F) be a measurable space. Let G be a group of bijections from Ω
to Ω, and P be an invariant family of probability measures on (Ω,F). Let g̃
be the mapping P �→ P ◦g−1.

1. Show that g̃ : P → P is a bijection;
2. Show that G̃ = {g̃ : g ∈ G} is a group.

4.3. Let X1, . . . , Xn be i.i.d. U(0, θ) random variables with θ > 0. Show that
X(n) = max1≤i≤n Xi is complete and sufficient for {θ : θ > 0}.

4.4. Let X1, . . . , Xn be i.i.d. U(θ, θ + 1) and X(k) be the kth order statistic.
Show that (X(1),X(n)) is sufficient but not complete for {θ : θ ∈ R}.

4.5. Let X1, . . . , Xn be i.i.d. N(θ, θ2). Let

T =
n∑

i=1

Xi, S =
n∑

i=1

X2
i .

Show that (T, S) is sufficient but not complete for {θ : θ ∈ R}.
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4.6. Suppose (Ω1,F1), (Ω2,F2), and (Ω3,F3) be measurable spaces and P1 is
a probability measure on (Ω1,F1). Let f1 : Ω1 → Ω2 be a function measurable
with respect to F1/F2 and f2 : Ω2 → Ω3 be a function measurable with
respect to F2/F3. Show that

(P1◦f−1
1 )◦f−1

2 = P1◦(f2◦f1)−1.

4.7. Suppose X ∼ Gamma(2, θ), Y ∼ Exp(η), that is

fX(x; θ) = θ−1 x e−x/θ, x > 0, θ > 0,

fY (y; η) = η−1 e−y/η, y > 0, η > 0,

and X and Y are independent.

1. Derive the explicit form of the UMPU size α test for H0 : θ ≥ η versus
H1 : θ < η.

2. Derive the explicit form of the UMPU size α test for H0 : θ ≥ 2η versus
H1 : θ < 2η.

3. Derive the UMPU size α test for the hypothesis H0 : θ = η versus H1 :
θ �= η. Express the critical point as the solution to an equation.

4.8. Suppose X ∼ b(n, p1), Y ∼ b(m, p2), and X and Y are independent.
Derive the UMPU size α test for

H0 : p1 ≤ p2 vs H1 : p1 > p2.

Derive the conditional distribution involved in the test.

4.9. Suppose Y1, . . . , Yn are random variables defined by

Yi = Xiβ + εi,

where X1, . . . , Xn are numbers, β is the regression parameter, and ε1, . . . εn are
an i.i.d. sample from N(0, σ2). Here X1, . . . , Xn are treated as fixed numbers
(rather than random variables).

1. Find the canonical parameter θ = (θ1, θ2), and the complete and sufficient
statistics, say (T1, T2), for the canonical parameter θ.

2. Write down the generic form of the UMPU-α test for the hypothesis H0 :
β = 0 versus H1 : β �= 0, as well as the constraint(s). State the hypotheses
H0 and H1 in terms of the canonical parameter.

3. Write down the boundary of the parameter space ΘB. Which statistic is
sufficient and complete for θ ∈ ΘB?

4. Let Y and X denote the vectors (Y1, . . . , Yn) and (X1, . . . , Xn). Show that
the statistic

u(Y ) =
XT Y√

Y T (In − XXT /XT X)Y

is ancillary for ΘB. Here In is the n×n identity matrix. Comment on the
relation between this statistic and the statistic in part 3.
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5. Show that the test in part 2 is equivalent to

φ(Y ) =

{
1 if u(Y ) > c2, u(Y ) < c1

0 otherwise

for some constants c1 and c2 that do not depend on Y .
6. Write down the generic form of the UMPU-α test for testing H0 : σ2 = 1

versus H1 : σ2 �= 1, as well as the constraint(s). State the hypotheses in
terms of the canonical parameter.

7. Write down the boundary of the parameter space ΘB for the hypotheses
in part 6. Which statistic is sufficient and complete for θ ∈ ΘB.

8. Show that the

v(Y ) = Y T (In − XXT /XT X)Y.

is ancillary with respect to the boundary ΘB in part 7. Comment on the
relation between this statistic and the statistic in part 7.

9. Show that the test in part 6 is equivalent to

φ(Y1, . . . , Yn) =

{
1 if v(Y ) > c2, v(Y ) < c1

0 otherwise

for some constants c1 and c2 that do not depend on Y .

4.10. Let X1, . . ., Xn be an i.i.d. sample from a bivariate normal distribution

N

((
μ1

μ2

)
,

(
σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

))
.

We are interested in testing

H0 : ρ = 0 vs H1 : ρ �= 0.

1. Express the joint distribution of X as an exponential family; express the
above hypothesis in terms of a canonical parameter.

2. Give the general form of the UMPU size α test.
3. Show that the UMPU size α test can be equivalently expressed in terms

of

V =
√

(n − 2) R/
√

1 − R2,

where R is the sample correlation coefficient

R =
∑n

i=1(Xi1 − X̄1)(Xi2 − X̄2)√∑n
i=1(Xi1 − X̄1)2

∑n
i=1(Xi2 − X̄2)2

.

4. Show that, under ρ = 0, V ∼ t(n−2).

4.11. Suppose X ∼ Poisson(λ1), Y ∼ Poisson(λ2), and X and Y are inde-
pendant. Derive the UMPU size α test for

H0 : λ1 ≤ λ2 vs H1 : λ1 > λ2.
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5

Basic Ideas of Bayesian Methods

In the Bayesian approach to statistical inference, the parameter θ is treated
as a random variable, which in this chapter will be written as Θ, and is
assigned a distribution. This distribution represents our prior knowledge – or
ignorance – about this parameter before observing the data. Once the data,
as represented by a random vector X, is observed, we draw inference about Θ
by the conditional distribution of Θ|X. This conditional distribution is called
the posterior distribution.

The term “Bayesian” comes from the well known Bayes theorem, which
is a formula for computing the probability of several causes after a specific
outcome is observed. The approach to inference considered in Chapters 2–4,
where θ is a fixed number, is called the “frequentist” approach to distinguish
it from the new “Bayesian” approach.

Bayesian analysis is a vast area and in this and the next chapter, we
can only cover some basic ideas and machineries. For more extensive and
specialized discussions, see Berger (1985), Lee (2012), and O’Hagan (1994).

5.1 Prior, posterior, and likelihood

Let

(ΩX ,FX , μX), (ΩΘ,FΘ, μΘ)

be two σ-finite measure spaces, where ΩX is a Borel set in R
n, FX is the Borel

σ-field of subsets in ΩX , ΩΘ is a Borel set in R
p, FΘ is the Borel σ-field of

subsets in ΩΘ, and μX , μΘ are σ-finite measures. Let

Ω = ΩX × ΩΘ, F = FX ×FΘ.

Let P be a probability measure on the measurable space (Ω,F) that is domi-
nated by μX ×μΘ. Although we have used indices such as X and Θ, up to this
point we have not introduced the random vectors X and Θ, and the above
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construction are completely independent of any random vectors. In fact, it
is equally reasonable to use Ω1, Ω2 in place of ΩX , ΩΘ. Conceptually, it is
clearer to think about measurable spaces and their product before introducing
random elements.

Now let X be the random vector defined by

X : Ω → ΩX , (x, θ) �→ x,

and let Θ be the random vector defined by

Θ : Ω → ΩΘ, (x, θ) �→ θ.

The random vector X represents the data, which in this book is usually a set of
n i.i.d. random variables or random vectors. The random vector Θ represents
a vector-valued parameter.

The joint probability measure P determines the marginal distributions
PX = P ◦X−1, PΘ = P ◦Θ−1, and conditional distributions PX|Θ and PΘ|X .
As discussed in Chapter 1, conditional distributions such as PΘ|X are to be
understood as the mapping

PΘ|X : FΘ × ΩX → R, (G, x) �→ P (Θ−1(G)|X)x.

In the Bayesian context, PΘ is called the prior distribution for Θ; PX is
called the marginal distribution of X; PΘ|X is called the posterior distribu-
tion; PX|Θ is called the likelihood. We are usually given the prior distribution
PΘ and the likelihood PX|Θ. Our goal is to compute the posterior distribu-
tion PΘ|X and extract a variety of information about Θ from the posterior
distribution.

Since P � μX × μΘ, we have

PX = P ◦X−1 � (μX × μΘ)◦X−1 = μX ,

and similarly PΘ � μΘ. Let

fX = dPX/dμX , πΘ = dPΘ/dμΘ, fXΘ = dP/d(μX × μΘ).

Define

fX|Θ(x|θ) =

{
fXΘ(x, θ)/πΘ(θ) if πΘ(θ) �= 0
0 if πΘ(θ) = 0,

πΘ|X(θ|x) =

{
fXΘ(x, θ)/fX(x) if fX(x) �= 0
0 if fX(x) = 0.

It can be shown that fX|Θ(x|θ) is the density of PX|Θ in the sense that, for
each A ∈ FX , the mapping θ �→ ∫

A
fX|Θ(x|θ)dμX is a version of P (A|Θ). See

Problem 5.8. The same can be said about πΘ|X(θ|x).
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The functions πΘ, πΘ|X , fX , fX|Θ are called, respectively, the prior den-
sity, the posterior density, the marginal density of X, and the likelihood func-
tion. If we denote the probability measure PX|Θ(·|θ) by Pθ, then the likelihood
PX|Θ gives rise to a family of distributions

{Pθ : θ ∈ ΩΘ}. (5.1)

This corresponds to a parametric family of distributions of X in the frequentist
setting. Similarly, the likelihood function fX|Θ(·|θ) is simply the density of
fθ(x) of X in the frequentist context.

By construction, the posterior density can be expressed as

πΘ|X(θ|x) =
fXΘ(x, θ)

fX(x)
=

fX|Θ(x|θ)πΘ(θ)
fX(x)

∝ fX|Θ(x|θ)πΘ(θ).

In other words, the posterior density is the product of the prior density and
the likelihood function. This fact will be useful in later discussions.

The well known Bayes theorem can be derived as follows. Let G ∈ FΘ,
A ∈ FX . Then

P (Θ−1(G) ∩ X−1(A)) =
∫

X−1(A)
P (Θ−1(G)|X)dP

In the special case where A = ΩX , we have

P (Θ−1(G)) =
∫

Ω
P (Θ−1(G)|X)dP

Hence

P (X−1(A) ∩ Θ−1(G))
P (Θ−1(G))

=

∫
X−1(A)

P (Θ−1(G)|X)dP∫
Ω

P (Θ−1(G)|X)dP

Another way of writing this is

P (X ∈ A|Θ ∈ G) =

∫
X∈A

P (Θ ∈ G|X)dP∫
X∈ΩX

P (Θ ∈ G|X)dP

which is the Bayes Theorem.

5.2 Conditional independence and Bayesian sufficiency

Conditional conditional independence plays a prominent role in Bayesian anal-
ysis as in many other areas of statistics. In this section we give a careful treat-
ment of this subject. In connection with conditional independence we will also
discuss the role played by sufficiency in the Bayesian approach.

Recall that we say X and Θ are independent, and write X Θ, if, for any
A ∈ FX and G ∈ FΘ we have
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P (X−1(A) ∩ Θ−1(G)) = P ◦X−1(A) × P ◦Θ−1(G). (5.2)

Since

X−1(A) = A × ΩΘ, Θ−1(G) = ΩX × G,

relation (5.2) is equivalent to

P ◦(X,Θ)−1(A × G) = P ◦X−1(A) × P ◦Θ−1(G).

Now suppose G is a sub-σ-field of F = FX × FΘ. We now define conditional
independence given G.

Definition 5.1 We say that X and Θ are conditionally independent given G
if, for any A ∈ FX , G ∈ FΘ, we have

P (X−1(A) ∩ Θ−1(G)|G) = P (X−1(A)|G) × P (Θ−1(G)|G).

We write this relation as X Θ|G. Obviously, an equivalent definition of
conditional independence is

P ((X,Θ)−1(A × G)|G) = P (X−1(A)|G) × P (Θ−1(G)|G).

Let (ΩT ,FT ) be another measurable space and let T : ΩX → ΩT be a
function measurable FX/FT . We are interested in the conditional indepen-
dence

X Θ|T ◦X.

Intuitively, if we know T ◦X, then we don’t need to know the original data X
to understand Θ. It turns out this is closely related to the notion of sufficiency,
as the following theorem reveals.

Theorem 5.1 The following statements are equivalent:

1. For each A ∈ FX , P (X−1(A)|T ◦X,Θ) = P (X−1(A)|T ◦X) [P ];
2. For each G ∈ FΘ, P (Θ−1(G)|X) = P (Θ−1(G)|T ◦X) [P ];
3. X Θ|T ◦X.

Proof. 2 ⇒ 3. Let A ∈ FX and G ∈ FΘ. Then

P (X−1(A) ∩ Θ−1(G)|T ◦X) = E[IX−1(A)IΘ−1(G)|T ◦X]
= E[E(IX−1(A)IΘ−1(G)|X)|T ◦X]
= E[IX−1(A)E(IΘ−1(G)|X)|T ◦X]
= E[IX−1(A)E(IΘ−1(G)|T ◦X)|T ◦X]
= E(IX−1(A)|T ◦X)E(IΘ−1(G)|T ◦X).

Hence 3 holds.
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3 ⇒ 2. By Corollary 1.1, it suffices to show that, for any B ∈ σ(X) =
X−1(FX), we have

E[IBE(IΘ−1(G)|X)] = E[IBE(IΘ−1(G)|T ◦X)]. (5.3)

Because B ∈ X−1(FX), there is an A ∈ FX such that B = X−1(A). So

E[IBE(IΘ−1(G)|X)] = E[IX−1(A)E(IΘ−1(G)|X)]
= E[E(IX−1(A)IΘ−1(G)|X)]
= E(IX−1(A)IΘ−1(G))
= E[E(IX−1(A)IΘ−1(G)|T ◦X)].

By 3, the right hand side is

E[E(IX−1(A)|T ◦X)E(IΘ−1(G)|T ◦X)] = E[E(IX−1(A)E(IΘ−1(G)|T ◦X)|T ◦X)]
= E[IX−1(A)E(IΘ−1(G)|T ◦X)]
= E[IBE(IΘ−1(G)|T ◦X)].

Thus (5.3) holds.
1 ⇒ 3. Let A ∈ FX and G ∈ FΘ. Then

E[IX−1(A)IΘ−1(G)|T ◦X] = E[E(IX−1(A)IΘ−1(G)|T ◦X,Θ)|T ◦X]
= E[IΘ−1(G)E(IX−1(A)|T ◦X,Θ)|T ◦X]
= E[IΘ−1(G)E(IX−1(A)|T ◦X)|T ◦X]
= E(IΘ−1(G)|T ◦X)E(IX−1(A)|T ◦X).

Hence 3 holds.
3 ⇒ 1. Again, by Corollary 1.1, it suffices to show that, for any B ∈ σ(T ◦X,Θ),

E[IBE(X−1(A)|T ◦X,Θ)] = E[IBE(X−1(A)|T ◦X)]. (5.4)

Define two set functions

Q1(B) = E[IBE(IX−1(A)|T ◦X,Θ)]
Q2(B) = E[IBE(IX−1(A)|T ◦X)].

By Problem 5.6, σ(T ◦X,Θ) is of the form σ(P), where P is the collection of
sets

{T−1(C) × D : C ∈ FT ,D ∈ FΘ}.

Moreover P is a π-system, and T−1(ΩT ) × ΩΘ = Ω ∈ P.
By Corollary 1.4, it suffices to show that Q1(B) = Q2(B) for all B ∈ P.

Let B ∈ P. Then B = T−1(C)×D for some C ∈ FT , D ∈ FΘ. An alternative
way of writing the set B is
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B = (T−1(C) × ΩΘ) ∩ (ΩX × D) = X−1(T−1(C)) ∩ Θ−1(D).

Hence

Q1(B) = E[IX−1(T−1(C))IΘ−1(D)E(IX−1(A)|T ◦X,Θ)]
= E[E(IX−1(T−1(C))IΘ−1(D)IX−1(A)|T ◦X,Θ)]
= E(IX−1(T−1(C))IΘ−1(D)IX−1(A)).

Because IX−1(T−1(C))IX−1(A) = IX−1(T−1(C)∩A), the right hand side above
can be rewritten as

E(IΘ−1(D)IX−1(T−1(C)∩A)) = E[E(IΘ−1(D)IX−1(T−1(C)∩A)|T ◦X)]. (5.5)

However, by 3,

E(IΘ−1(D)IX−1(T−1(C)∩A)|T ◦X) = E(IΘ−1(D)|T ◦X)E(IX−1(T−1(C)∩A)|T ◦X),

where, because X−1(T−1(C)) ∈ σ(T ◦X), the second conditional expectation
on the right is

E(IX−1(T−1(C)∩A)|T ◦X) = E(IX−1(T−1(C))IX−1(A)|T ◦X)
= IX−1(T−1(C))E(IX−1(A)|T ◦X).

Hence we arrive at

E[E(IΘ−1(D)IX−1(T−1(C)∩A)|T ◦X)]
= IX−1(T−1(C))E(IX−1(A)|T ◦X)E(IΘ−1(D)|T ◦X)
= E(IX−1(T−1(C))IΘ−1(D)|T ◦X)E(IX−1(A)|T ◦X)

Substitute this into (5.5) to obtain

E(IΘ−1(D)IX−1(T−1(C)∩A)) = E[E(IB |T ◦X)E(IX−1(A)|T ◦X)]
= E[IBE(IX−1(A)|T ◦X)] = Q2(B),

as desired. �

The first statement of Theorem 5.1 is essentially the same as sufficiency in
the frequentist context, as we described in Chapter 2. In fact, if the statement
were made pointwise in θ rather than almost everywhere in the unconditional
probability P , then it is exactly the same as the frequentist sufficiency. The
second statement is what one might call “Bayesian sufficiency”, which means
that, if statistical inference is to be based on posterior probability, then we
can replace X with T ◦X without changing anything. Both of these statements
can be interpreted through conditional independence in statement 3.

The next theorem shows rigorously that frequentist sufficiency implies
Bayesian sufficiency. Let Pθ denote the probability measure PX|Θ(·|θ).
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Theorem 5.2 If T ◦X is sufficient for {Pθ : θ ∈ Θ}, then

X Θ|T ◦X.

Proof. Note that T ◦X is sufficient for {Pθ : θ ∈ Θ} means that, for any
A ∈ FX , there is a σ(T ◦X)-measurable κA such that

Pθ(A|T ◦X) = κA [Pθ] for all θ ∈ ΩΘ.

Let

Bθ = {x : Pθ(A|T ◦X)x �= κA}
B = {(x, θ) : Pθ(A|T ◦X)x �= κA}.

Then, by Tonelli’s theorem,

P (B) =
∫

ΩΘ

(∫
Bθ

dPX|Θ(·|θ)
)

dPΘ

=
∫

ΩΘ

(∫
Bθ

dPθ

)
dPΘ.

(pay attention to the difference between Pθ and PΘ). By sufficiency,
∫

Bθ
dPθ =

0 for each θ ∈ Θ. Hence P (B) = 0.
As shown in Problem 5.10, the mapping

(x, θ) �→ Pθ(A|T ◦X)x

is (a version of) the conditional probability (x, θ) �→ P (X−1(A)|T ◦X,Θ)x,θ.
Hence

P ({P (X−1(A)|T ◦X,Θ) �= κA}) = P (B) = 0.

That is,

P (X−1(A)|T ◦X,Θ) = κA [P ].

Let C be any set in σ(T ◦X) ⊆ σ(T ◦X,Θ). Then∫
C

κAdP =
∫

C
P (X−1(A)|T ◦X,Θ)dP =

∫
C

IAdP

Thus κA is a version of P (X−1(A)|T ◦X), and consequently

P (X−1(A)|T ◦X,Θ) = P (X−1(A)|T ◦X) [P ].

By Theorem 5.1, this is equivalent to Θ X|T ◦X. �

The next example illustrates how to find posterior distribution πΘ|X(θ|x)
and the marginal distribution fX(x) given the prior π(θ) and the likelihood
f(x|θ).
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Example 5.1 Suppose that X ∼ N(θ, σ2) and Θ ∼ N(μ, τ2), where σ2, μ
and τ2 are treated as known constants. A convenient way of finding π(θ|x) is
to view f(x|θ)πΘ(θ) as a functional of θ and identify its functional form with a
known density. Since fX(x) does not depend on θ we can ignore it in this pro-
cess. Specifically, f(x|θ)πΘ(θ) is proportional to (ignoring any multiplicative
constant that does not depend on θ):

exp
[
− (x − θ)2

2σ2
− (θ − μ)2

2τ2

]

∝ exp
[
−

(
1

2σ2
+

1
2τ2

)
θ2 +

( x

σ2
+

μ

τ2

)
θ

]
.

(5.6)

The right hand side is of the form exp(−(aθ2 + bθ)), where a > 0. Let c and
c1 be constants such that

(
√

aθ + c)2 = aθ2 + bθ + c1.

Then, 2
√

ac = b, c1 = c2. Hence the right hand side of (5.6) is proportional
to

exp[−(
√

aθ + b/(2
√

a))2] = exp(−(
√

a)2(θ + b/(2a))2]

= exp(−(θ + b/(2a))2/(2(1/
√

2a)2)].

This corresponds to a normal density with mean

E(θ|x) = −b/(2a) =
( x

σ2
+

μ

τ2

) (
1
σ2

+
1
τ2

)−1

(5.7)

and variance

var(θ|x) =
1
2a

=
(

1
σ2

+
1
τ2

)−1

. (5.8)

A more interpretable way of writing the posterior mean E(θ|x) is

E(θ|x) =
(

τ2

σ2 + τ2

)
x +

(
σ2

σ2 + τ2

)
μ.

Thus the posterior mean is the weighted average of x and μ, the former is
the maximum likelihood estimate based on {f(x|θ) : θ ∈ ΩΘ}; the latter is
the prior mean based on πΘ(θ). If τ2 is large compared with σ2, which means
we have little prior information about Θ, then we give more weight to the
maximum likelihood estimate; if τ2 is small compare with x, then we have
more prior information about Θ, and give more weight to μ.

To compute the marginal density fX(x), notice that

fX(x) = f(x|θ)π(θ)/π(θ|x).
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Treating x as the variable and everything else as constants, the right hand
side of the above is proportional to

exp
[
− (x − θ)2

2σ2
− (θ − μ)2

2τ2

]
/ exp

[
− (θ − E(θ|x))2

2var(θ|x)

]

We know that the expression must not involve θ — it is canceled out one way
or another. Discarding all the terms depending on θ, and all constants, the
above reduces to

exp
[
−1

2

(
x2

σ2
− E2(θ|x)

var(θ|x)

)]
.

By straight forward computation, we obtain that

x2

σ2
− E2(θ|x)

var(θ|x)
=

1
σ2 + τ2

(
x2 − 2xμ

)
+ constant

=
1

σ2 + τ2
(x − μ)2 + constant.

From this we see that X is distributed as N(μ, σ2 + τ2). �

The next example shows how to use sufficient statistic to simplify the
computation of posterior distribution.

Example 5.2 Suppose, conditioning on Θ = θ, X1, . . . , Xn is an i.i.d. sample
from N(θ, σ2), and Θ is distributed as N(μ, τ2) for some μ ∈ R and τ > 0.
To find the posterior distribution π(θ|X1, . . . , Xn), note that X̄ is sufficient
for {N(θ, σ2) : θ ∈ R}, and by Theorem 5.1,

π(θ|X1, . . . , Xn) = π(θ|X̄).

But we know that X̄|Θ = θ ∼ (θ, σ2/n) and Θ ∼ N(μ, τ2). So by Example
5.1, we have θ|X̄ ∼ N(E(θ|X̄), var(θ|X̄)), where

E(θ|X̄) =
(

τ2

σ2/n + τ2

)
X̄ +

(
σ2/n

σ2/n + τ2

)
μ,

var(θ|X̄) =
(

1
σ2/n

+
1
τ2

)−1

.

From this we see that

E(θ|X̄) → X̄ and var(θ|X̄) = σ2/n + o(1/n), as n → ∞.

This result is a special case of a general fact — in a later chapter we will
show that, as n → ∞, the posterior distribution is concentrated at the max-
imum likelihood estimate θ̂ with asymptotic variance 1/I(θ), where I(θ) is
the Fisher information. This example also shows that, as the sample size in-
creases, the effect of the prior distribution vanishes, and Bayesian estimate
becomes approximately the same as the frequentist estimate. �
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5.3 Conjugate families

The posterior density PΘ|X is typically difficult to compute explicitly. But in
a some special cases explicit and relatively simple solutions exist. One such
special case is when the prior and posterior distributions are of the same form.

Definition 5.2 We say that a family P of distributions on (ΩΘ,FΘ) is con-
jugate to a likelihood PX|Θ if

PΘ ∈ P ⇒ PΘ|X(·|x) ∈ P for each x ∈ ΩX

where PΘ|X is derived from (PΘ, PX|Θ).

By a posterior distribution derived from (PΘ, PX|Θ) we mean

dPΘ|X(·|x) = [f(x|θ)π(θ)/fX(x)]dμΘ.

Of course, if we let P to be sufficiently large, then it will always be conjugate
to PX|Θ. So the concept is useful only when P is relatively small and is easily
manipulated. The next example illustrates the idea.

Example 5.3 Suppose that X1, . . . , Xn|Θ = θ are i.i.d. Poisson(θ) random
variables. Then

f(X1, . . . , Xn|θ) =
n∏

i=1

θXi

Xi!
e−θ =

θ
∑

Xie−nθ∏
(Xi!)

. (5.9)

Suppose that Θ has a Gamma(α, β) distribution; that is

π(θ) ∝ θα−1e−θ/β , β > 0, α > 1. (5.10)

Then the posterior density π(θ|X1, . . . , Xn) is proportional to

θ
∑

Xi+α−1e−(n+1/β)θ.

Thus θ|X1, . . . , Xn has a Gamma(α∗, β∗) distribution with

α∗ = α +
∑

Xi β∗ =
1

n + 1/β
.

Hence the Gamma family (5.10) is conjugate to the Poisson family (5.9). The
advantage of conjugate prior is that (1) the posterior is easy to compute and
(2) prior and posterior have the same distribution with parameters bearing
the same interpretation. In other words, conditioning on X simply means up-
dating the parameter of the prior distribution. �

The phenomenon can be generalized to all exponential family distributions.
Let us first expand the notation of an exponential family to accommodate
transformation of parameters. We now evoke the more general definition (2.5)
of an exponential family, Ep(ψ, t, μ) that was introduced in Chapter 2.
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Theorem 5.3 If PΘ ∈ Ep(ζ, ψ, ν) and PX|Θ(·|θ)∈Ep(ψ, t, μ), then PΘ|X(·|x) ∈
Ep(ζx, ψ, γ), where

ζx(α) = ζ(α) + t(x), dγ(θ) = dν(θ)/
∫

eψT (θ)t(x)dμ(x).

Proof. Since PΘ ∈ Ep(ζ, ψ, ν), PX|Θ(·|θ) ∈ Ep(ψ, t, μ), we have

πΘ(θ) = eζT (α)ψ(θ)/
∫

eζT (α)ψ(θ)dν(θ), f(x|θ) = eψT (θ)t(x)/
∫

eψT (θ)t(x)dμ(x)

for some α ∈ R
p and θ ∈ Θ. Consequently,

π(θ|x) ∝ e(ζ(α)+t(x))T ψ(φ)/[
∫

eζT (α)ψ(θ)dν(θ)
∫

eψT (θ)t(x)dμ(x)]

∝ e(ζ(α)+t(x))T ψ(φ)/
∫

eψT (θ)t(x)dμ(x).

Hence

π(θ|x) =
e(ζ(α)+t(x))T ψ(φ)/

∫
eψT (θ)t(x)dμ(x)∫

e(ζ(α)+t(x))T ψ(φ)/
∫

eψT (θ)t(x)dμ(x)dν(θ)

So if we let

ζx(α) = ζ(α) + t(x), dγ(θ) = dν(θ)/
∫

eψT (θ)t(x)dμ(x)dν(θ)

then the posterior density belongs to Ep(ζx, ψ, γ). �

The algebraic manipulation employed in Example 5.3 and Theorem 5.3
to construct conjugate families can be summarized as the following general
scheme. We first inspect the functional form of θ �→ fΘ|X(θ|x) and identify
a (often parametric) family of functions of θ, say F = {θ �→ gα(θ) : α ∈ A}.
If F is closed under multiplication; that is, for any gα, gβ ∈ A, their product
gαgβ = gγ for some γ ∈ A, then any prior density in F would be conjugate to
fΘ|X . The resulting posterior density is of the form gγ .

Example 5.4 Suppose that X|θ is distributed as N(θ, σ2), where σ2 is
treated as a known constant. We want to assign a conjugate prior for θ. Ignor-
ing any constant (quantities not dependent on θ), the function θ �→ fX|Θ(x|θ)
is of the form

θ �→ exp
[(

− 1
2σ2

)
θ2 +

( μ

σ2

)
θ

]

So the family F takes the form

θ �→ exp
[(

− 1
2α2

)
θ2 +

(
α1

α2

)
θ

]
, α1 ∈ R, α2 > 0.

Note that, for any gα, gβ ∈ F , their product has the form
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exp
[(

− 1
2α2

− 1
2β2

)
θ2 +

(
α1

α2
+

β1

β2

)
θ

]

This function also belongs to F , because

− 1
2α2

− 1
2β2

= − 1
2γ2

,
α1

α2
+

β1

β2
=

γ1
γ2

,

where

γ2 =
(

1
α2

+
1
β2

)−1

, γ1 =
(

α1

α2
+

β1

β2

)(
1
α2

+
1
β2

)−1

.

So any prior of the form θ ∼ N(μ, τ2) is conjugate, and the posterior density
is of the form derived in Example 5.1. �

The next theorem shows that, if a family P is conjugate to F . Then the
convex hull conv(P) is also conjugate to F . Recall that, for a generic set S,
the convex hull of S is the intersection of all convex sets that contains S.
Alternatively, conv(S) can be equivalently defined as the set

{α1s1 + · · · + αksk : α1 + · · · + αk = 1,

α1 ≥ 0, . . . , αk ≥ 0, s1, . . . , sk ∈ S}.

If S is a class of probability measures, then, for any P ∈ S, α ∈ R, the product
αP is the measure defined by A �→ αP (A), where A is a set in a relevant σ-
field. A convex combination of a number of probability measures defined as
such is called a mixture.

Theorem 5.4 If P is conjugate to PX|Θ, then so is conv(P).

Proof. Suppose PΘ ∈ P. Then there exist

α1 ≥ 0, . . . , αk ≥ 0,
k∑

i=1

αi = 1, P 1
Θ, . . . , P k

Θ ∈ P

such that PΘ =
∑k

i=1 αiP
i
Θ. It follows that

f(x|θ)dPΘ =
k∑

i=1

αif(x|θ)dP i
Θ.

Integrating both sides over ΩΘ, we find

fX(x) =
k∑

i=1

αimi(x),
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where

fX(x) =
∫

ΩΘ
f(x|θ)dPΘ, mi(x) =

∫
ΩΘ

f(x|θ)dP i
Θ, i = 1, . . . , k.

Then

dPΘ|X(·|x) = [f(x|θ)/fX(x)]dPΘ

=
k∑

i=1

αi[mi(x)/fX(x)][f(x|θ)/mi(x)]dP i
Θ

=
k∑

i=1

αi(x)dP i
Θ|X(·|x),

where αi(x) = αimi(x)/fX(x), i = 1, . . . , k. Since

k∑
i=1

αi(x) =
m∑

i=1

αimi(x)/fX(x) = 1, αi(x) ≥ 0, i = 1, . . . , k,

P i
Θ|X(·|x) ∈ P, i = 1, . . . , k,

we have PΘ|X(·|x) ∈ conv(P). �

5.4 Two-parameter normal family

As with frequentist approach, the normal model is a classical and funda-
mental component of Bayesian analysis. It is important on its own but also
provides intuitions to analyze other models and illuminates connections with
frequentist methods. In this section we discuss specifically how to assign con-
jugate prior for the two-parameter normal likelihood X|θ, σ2 ∼ N(θ, σ2). Our
approach is similar to the one used by Lee (2012), but with a more systematic
use of notations, such as the Normal Inverse-Chi square distribution. We first
introduce the inverse chi-square distribution.

Definition 5.3 A random variable T is said to have an inverse χ2
(κ) distri-

bution with κ degrees of freedom if 1/T is distributed as χ2
κ. In this case we

will write T ∼ χ−2
κ .

If τ > 0, then we write T ∼ τχ−2
(κ) if T/τ ∼ χ−2

(κ). The next theorem gives
the density of the χ−2

(κ) distribution.

Theorem 5.5 Suppose that T has an inverse chi-square distribution of κ
degrees of freedom, then T has density

f(t) =
1

Γ (ν/2)2ν/2
t−ν/2−1e−1/(2t).
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Proof. Let U = 1/T . Then U ∼ χ2
(κ), which has density

g(u) =
1

Γ (ν/2)2ν/2
uν/2−1e−u/2. (5.11)

Therefore

fT (t) = g(1/t)|d(1/t)/dt| = g(1/t)/t2. (5.12)

Now combine (5.11) and (5.12) to obtain the desired density. �

We now use the inverse chi-square combined with normal distribution to
construct a conjugate prior for the likelihood N(θ, σ2). It will prove convenient
to introduce the following family of distributions.

Definition 5.4 Suppose λ and φ are random variables that take values in R

and (0,∞), respectively. If λ|φ ∼ N(a, φ/m) and φ ∼ τχ−2
(k), then the random

vector (λ, φ) is said to have a Normal Inverse Chi-square distribution with
parameters a,m, τ, k, where a ∈ R, τ > 0, and m, k are positive integers. In
this case we write

(λ, φ) ∼ NICH(a,m, τ, k),

The parameter a is interpreted as the mean of λ, m the sample size in the
prior distribution of λ, τ the scale of φ, and k the degrees of freedom of inverse
chi-square distribution. The next proposition gives the form of the p.d.f. of
an NICH random vector.

Proposition 5.1 If (λ, φ) ∼ NICH(a,m, τ, k), then its p.d.f. is of the follow-
ing form up to a proportional constant:

φ−1/2 exp
[(

− 1
2(φ/m)

)
λ2 +

(
a

φ/m

)
λ

]
φ−k/2−1 exp

(
−τ + ma2

2φ

)
.

(5.13)

The proof is straightforward and is left as an exercise. It turns out that
the NICH family is closed under multiplication, which is very convenient for
deriving the conjugate prior and the posterior distribution.

Proposition 5.2 The NICH family is closed under multiplication. That is, if
a1, a2 ∈ R, m1,m2, k1, k2 are positive integers, and τ1, τ2 are positive numbers,
then

NICH(a1,m1, τ1, k1) × NICH(a2,m2, τ2, k2) ∝ NICH(a3,m3, τ3, k3), (5.14)

where

m3 = m1 + m2,

a3 = (m1a1 + m2a2)/m3,

τ3 = τ1 + τ2 + m1a
2
1 + m2a

2
2 − m3a

2
3,

k3 = k1 + k2 + 3.
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Here and in what follows, the product of the type in (5.14) is interpreted as
the product of the corresponding probability densities.

Proof. By Proposition 5.1,

NICH(a1,m1, τ1, k1) × NICH(a2,m2, τ2, k2)

∝ φ−1/2 exp
[(

− 1
2(φ/m1)

)
λ2 +

(
a1

φ/m1

)
λ

]
φ−k1/2−1 exp

(
−τ1 + m1a

2
1

2φ

)

φ−1/2 exp
[(

− 1
2(φ/m2)

)
λ2 +

(
a2

φ/m2

)
λ

]
φ−k2/2−1 exp

(
−τ2 + m2a

2
2

2φ

)

= φ−1/2 exp
[
−

(
1

2(φ/m1)
+

1
2(φ/m2)

)
λ2 +

(
a1

φ/m1
+

a2

φ/m2

)
λ

]

φ−(k1+k2+3)/2−1 exp
(
−τ2 + m2a

2
2

2φ
− τ2 + m2a

2
2

2φ

)

= φ−1/2 exp
[
−

(
1

2(φ/(m1 + m2))

)
λ2 +

(
1

φ/(m1 + m2)
m1a1 + m2a2

m1 + m2

)
λ

]

φ−(k1+k2+3)/2−1 exp
(
−τ1 + m1a

2
1 + τ2 + m2a

2
2

2φ

)
.

If we write m1 + m2 as m3, the weighted average (m1a1 + m2a2)/(m1 + m2)
as a3, and k1 + k2 + 3 as k3, then the above can be written as

φ−1/2 exp
[
−

(
1

2(φ/m3)

)
λ2 +

(
a3

φ/m3

)
λ

]

φ−k3/2−1 exp
(
−τ1 + m1a

2
1 + τ2 + m2a

2
2

2φ

)
,

(5.15)

which matches (5.13) in Proposition 5.1 except the last term exp(· · · ). We
can then maneuver this term into the desired form by writing it as

exp
(
−τ1 + m1a

2
1 + τ2 + m2a

2
2 − m3a

2
3 + m3a

2
3

2φ

)
.

Thus, if we write

τ3 = τ1 + m1a
2
1 + τ2 + m2a

2
2 − m3a

2
3,

then (5.15) becomes the form in Proposition 5.1. �

Now suppose that X1, . . . , Xn|(φ, λ) are i.i.d. N(λ, φ) random variables,
where both λ and φ are treated as unknown parameters. From Chapter 4, we
know that (T, S) is sufficient for X1, . . . , Xn, where

T = X̄, S =
n∑

i=1

(Xi − X̄)2.
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Hence, (T, S) is also sufficient in the Bayesian sense; that is, the conditional
distribution of (λ, φ) given (X1, . . . , Xn) is the same as the conditional distri-
bution of (λ, φ) given (T, S). Moreover, we know that

T S|(φ, λ), T |(φ, λ) ∼ N(λ, φ/n), S|(φ, λ) ∼ φχ2
(n−1). (5.16)

The latter fact implies that S λ|φ. So we can factorize the joint distribution
of (T, S) as

f(t, s|λ, φ) = f(t|λ, φ/n)f(s|φ), (5.17)

where f(t|λ, φ) is the density of N(λ, φ) and f(s|φ) is the density of φχ2
(n−1).

The next proposition shows that the function (λ, φ) �→ f(t, u|λ, φ) is of
the NICH form.

Proposition 5.3 Suppose, given (λ, φ), X1, . . . , Xn are an i.i.d. sample from
N(λ, φ) with n > 3. Then the joint distribution of (T, S), viewed as a function
of (λ, φ), is of the form NICH(T, S, n, n − 3).

Proof. By (5.17), the joint density f(t, s) of (T, S) is proportional to

(φ/n)−1/2 exp
[(

− 1
2(φ/n)

)
λ2 +

(
t

φ/n

)
λ +

(
− t2

2(φ/n)

)]
(

s

φ

)(n−1)/2−1

exp
(
− s

2φ

)
1
φ

= (φ/n)−1/2 exp
[(

− 1
2(φ/n)

)
λ2 +

(
t

φ/n

)
λ

] (
φ

s

)−(n−3)/2−1

exp
(
−nt2 + s

2φ

)
.

Comparing this with the form in (5.13), we see that the right-hand side above
is of the form NICH(T, S, n, n − 3). �

Thus, if we assign (λ, φ) a prior NICH(a,m, τ, k), then the posterior dis-
tribution of (T, S) is proportional to the product of two NICH families, which
is again a NICH family. We state this result as the next theorem.

Theorem 5.6 Suppose, conditioning on (λ, φ), X1, . . . , Xn are i.i.d. N(λ, φ),
and the prior distribution of (λ, φ) is NICH(a,m, τ, k). Then the posterior
distribution of (λ, φ) given X = (X1, . . . , Xn) = x is

NICH (μ(x),m + n, τ(x), n + k) ,

where

μ(x) =
ma + nt(x)

m + n
,

τ(x) = τ + s(x) + ma2 + nt2(x) − (m + n)μ2(x),

where s(x) and t(x) are the observed values of S and T .
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An equivalent way of writing the conclusion of the above theorem is

φ|x ∼ τ(x)χ−2
(n+k), λ|φ, x ∼ N

(
μ(x),

φ

n + m

)
. (5.18)

Assigning the prior for (λ, φ) in this way also gives very nice interpretations
of the various parameters in the prior distribution. If we imagine our prior
knowledge about (φ, λ) is in the form of a sample, then m would be the
sample size, a would be the sample average, and τ/k would be the sample
mean squared error.

We now develop the marginal posterior distribution of λ|x based on the
above joint posterior distribution of (λ, φ)|x. By (5.18) we have

λ − μ(x)√
φ/(n + m)

|(x, φ) ∼ N(0, 1),
τ(x)
φ

|x ∼ χ2
(n−1+κ). (5.19)

Since the density of N(0, 1) does not depend on (x, φ), we have from the first
relation that

λ − μ(X)√
φ/(n + m)

(φ,X), (5.20)

which implies

λ − μ(X)√
φ/(n + m)

τ(X)
φ

. (5.21)

By relations (5.19) and (5.21), if we let

V =
√

n + m(λ − μ(X))√
τ(X)/(n − 1 + κ)

,

then V ∼ t(n−1+k). Moreover, (5.20) also implies

λ − μ(X)√
φ/(n + m)

φ|X, which in turn implies
λ − μ(X)√
φ/(n + m)

τ(X)
φ

|X.

So the posterior distribution of V given X is also distributed as t(n−1+κ). In
Chapter 6 we will discuss how to use this fact to draw Bayesian inference
about λ.

5.5 Multivariate Normal likelihood

We now consider the more general situation where X is a p-dimensional ran-
dom vector distributed as multivariate Normal N(a, Φ), where a ∈ R

p, and
Φ ∈ R

p×p is a positive definite matrix. When Φ is known, the situation is
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similar to Example 5.1, and it is relatively easy to generalize that example to
derive the conjugate prior, posterior density, and the marginal density of X.
We leave this as an exercise (see Problem 5.11).

When Φ is unknown and treated as a random parameter, we can develop
the conjugate prior and posterior distribution in a parallel manner as Section
5.4. We first define the inverse Wishart distribution, which is a generalization
of the inverse χ2-distribution.

Definition 5.5 Suppose Z1, . . . , Zk are p-dimensional random vectors that
are i.i.d. N(0, Σ), where Σ is a positive definite matrix. Then the distribu-
tion of U = Z1Z

T
1 + · · · + ZkZT

k is called the Wishart distribution with scale
parameter Σ and degrees of freedom p. We write this as

U ∼ Wp(Σ, k).

If V is a p-dimension vector whose inverse V −1 is distributed as Wp(Σ, k),
then we say V has an inverse Wishart distribution and write this as

V ∼ W−1
p (Σ, k).

The density functions of the Wishart and the inverse Wishart distribu-
tion are given by the next Proposition. For more information about these
distributions, see, for example, Mardia, Kent, and Bibby (1979).

Proposition 5.4 The density of U ∼ Wp(Σ, k) is given by

1
2kp/2Γp(k/2)

|Σ|−k/2|U |(n−k−1)/2 exp
[
−1

2
tr(Σ−1U)

]
,

and that of V ∼ W−1
p (Σ, k) is given by

1
2kp/2Γp(k/2)

|Σ|k/2|V |−(k+p+1)/2 exp
[
−1

2
tr(ΣV −1)

]
,

where | · | represents the determinant of a matrix, and Γp represents the mul-
tivariate Gamma function, defined by

Γp(a) = πp(p−1)/2∏p
j=1Γ [a + (1 − j)/2].

As in Section 5.4, for developing the conjugate prior and posterior distri-
bution for a multivariate Normal likelihood, it is convenient to introduce the
following class of distributions.

Definition 5.6 Suppose λ is a random vector that takes values in R
p, and Φ

is a random matrix that takes values in the set of all positive definite matrices.
If λ|Φ ∼ N(a,Σ/m) and Φ ∼ W−1

p (Σ, k), then the random element (λ, Φ) is
said to have a Normal Inverse Wishart distribution with parameters a,m,Σ, k,
where a ∈ R

p, Σ is a positive definite matrix, and m, k are positive integers.
We write this as

(λ, Φ) ∼ NIW(a,m,Σ, k).
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The form of the density of NIW(a,m,Σ, k) can be derived from the prod-
uct of N(a,Σ/m) and W−1

p (Σ, k). This is stated as the next proposition. The
proof is left as an exercise.

Proposition 5.5 If (λ, Φ) ∼ NIW(a,m,Σ, k), then the p.d.f. of (λ, Φ) is
proportional to

|Φ|−(k+p+2)/2 exp[−mλT Φ−1λ/2 + maT Φ−1λ] exp{−tr[Φ−1(Σ + maaT )/2]}.
Similar to the NICH family, the NIW family is also closed under multipli-

cation, as detailed by the next proposition. The proof is left as an exercise.

Proposition 5.6 Suppose m1, k1,m2, k2 are positive integers, a1, a2 are vec-
tors in R

p, and Σ1, Σ2 are positive definite matrices, then

NIW(a1,m1, Σ1, k1) × NIW(a2,m2, Σ2, k2) ∝ NIW(a3,m3, Σ3, k3),

where

m3 = m1 + m2,

a3 = (m1a1 + m2a2)/m3,

Σ3 = Σ1 + Σ2 + m1a1a
T
1 + m2a2a

T
2 − m3a3a

T
3 ,

k3 = k1 + k2 + p + 2.

Note that, in the univariate case, p = 1, so k3 = p + 3, agreeing with
Proposition 5.2.

We now develop the conjugate prior and posterior distribution for the
multivariate Normal likelihood. Suppose, conditioning on (λ, Φ), X1, . . . , Xn

are i.i.d. N(λ, Φ). Let

T = n−1
n∑

i=1

Xi, S =
n∑

i=1

(Xi − X̄)(Xi − X̄)T .

Then the following statements about (T, S) hold true.

Proposition 5.7 If (T, S) are as defined in the last paragraph, then

1. (T, S) is sufficient for (λ, Φ);
2. T S|(λ, Φ);
3. S|Φ ∼ Wp(Φ, n − 1), T |(λ, Φ) ∼ N(λ, Φ/n).

Again, abbreviating (X1, . . . , Xn) as X. From part 1 of this proposition
we see that the conditional distribution of (λ, Φ)|X is the same as the condi-
tional distribution of (λ, Φ)|(T, S). So we only need to consider the likelihood
(T, S)|(λ, Φ). By part 2 and part 3 of the proposition, this likelihood is of
the form N(λ, Φ/n) × Wp(Σ,n − 1). The next proposition asserts that, as a
function of (λ, Φ), this likelihood is of the NIW form.
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Proposition 5.8 Let f(t, s|λ, Φ) be the density of N(λ, Φ/m) and f(s|Φ) be
the density of Wp(Φ, n − 1). Then the function (λ, Φ) �→ f(t, s|λ, Φ)f(s|Φ) is
proportional to the density of NIW(T, n, S, n − p − 2).

The proof is similar to that of Proposition 5.3 and so it is left as an exercise.
When p = 1, the degrees of freedom in NIW(T, n, S, n − p − 2) reduces to
p − 3, agreeing with Proposition 5.3. From Propositions 5.5 to 5.8, we can
easily derive the posterior distribution of (λ, Φ).

Theorem 5.7 Suppose, conditioning on (λ, φ), X1, . . . , Xn are i.i.d. N(λ, Φ),
and the prior distribution of (λ, Φ) is NIW(a,m,Σ, k). Then the posterior
distribution of (λ, Φ) given X = x is

NIW (μ(x),m + n,Σ(x), n + k) ,

where

μ(x) =
ma + nt(x)

m + n
,

Σ(x) =Σ + s(x) + ma2 + nt2(x) − (m + n)μ2(x),

where t(x) and s(x) are the observed values of T and S.

5.6 Improper prior

5.6.1 The motivation idea of improper prior

Sometimes we do not have much prior knowledge about the parameter Θ and
would like to reflect this uncertainty in the Bayesian analysis. In this case
it is desirable to use a prior distribution that is in some sense “flat.” Unless
the sample space ΩΘ is a bounded set, a flat distribution cannot be a finite
measure. This leads us to the notion improper priors.

Definition 5.7 An improper prior is an infinite but σ-finite measure on ΩΘ.

One might ask if there is no prior information about the parameter, then
why should we use the Bayesian method in the first place? Under some cir-
cumstances the Bayesian method has some technical advantages over the fre-
quentist method. For example, when dealing with nuisance parameters we can
simply integrate them out from the posterior distribution, rather than trying
to condition on a sufficient statistic for the nuisance parameter, which may
not be available.

A frequently used improper prior is the Lebesgue measure, which can be
viewed as the uniform distribution on the whole line. The posterior distribu-
tion corresponding to an improper prior is typically a probability measure, and
it often leads to similar estimates to those given by the frequentist method.
However, the marginal distribution fX(x) corresponding to an improper prior
is typically also improper, as illustrated by the following example.
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Example 5.5 Suppose that X|θ ∼ N(θ, φ) where φ is treated as a known
constant. Let πΘ(θ) = 1 for all θ ∈ R. That is, the improper prior is the
Lebesgue measure. In this case, we have

πΘ|X(θ|x) ∝ 1 × e−
1
2

(x−θ)2

φ .

We see that Θ|x ∼ N(x, σ2). The marginal distribution of X can be obtained
formally from the equation

πΘ|X(θ|x)fX(x) = fX|Θ(x|θ)πΘ(θ) = fX|Θ(x|θ).

Therefore, fX(x) = fX|Θ(x|θ)/πΘ|X(θ|x) = 1, which is an improper distribu-
tion. �

As with proper priors, we can also assign improper priors sequentially
when there are several parameters.

Example 5.6 Suppose that X1, . . . , Xn|λ, φ are i.i.d. N(λ, φ), where both λ
and φ are unknown. Let (S, T ) be defined as in Section 5.4. Recall that the
likelihood (λ, φ) �→ f(s, t|λ, φ) is of the form

φ−1/2 exp
[(

− 1
2(φ/n)

)
λ2 +

(
t

φ/n

)
λ

]
φ−(n−3)/2−1 exp

(
− s

2φ

)

If we assign (λ, φ) the improper prior π(φ) = 1/φ and π(λ|φ) = 1, the posterior
density is of the form

φ−1/2 exp
[(

− 1
2(φ/n)

)
λ2 +

(
t

φ/n

)
λ

]
φ−(n−1)/2−1 exp

(
− s

2φ

)
.

Equivalently, the joint posterior distribution of (λ, φ) can be expressed as

φ|t, s ∼ sχ−2
(n−1), λ|φ, t, s ∼ N(t, φ/n)

These imply

λ − t√
φ/n

∣∣∣∣∣ x ∼ N(0, 1),
s

φ

∣∣∣∣ x ∼ χ2
(n−1),

λ − t√
φ/n

s

φ

∣∣∣∣∣ x.

So if we want to make posterior inference about the mean parameter λ, then
we can use the fact

√
n(λ − t)√
s/(n − 1)

∣∣∣∣∣ x ∼ t(n−1). (5.22)

Since the right hand side does not depend on x, this relation also implies
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√
n(λ − t)√
s/(n − 1)

X,

√
n(λ − t)√
s/(n − 1)

∼ t(n−1).

Interestingly, the statistic
√

n(λ − t)/
√

s/(n − 1) has the same form as the t
statistic in the frequentist setting.

If we want to draw posterior inference about φ, then we can use the fact

s

φ

∣∣∣∣ x ∼ χ2
(n−1) (5.23)

Again, this has the same form as the chi-square test in the frequentist setting.
In a later chapter we will see that posterior inference based on (5.22) and
(5.23) are exactly the same as discussed in Chapter 4. �

It is not always clear what is the real meaning of being noninformative.
Note that in the above example we assigned PΦ(φ) = 1/φ to the variance
parameter Φ, which is not “flat”. Is there any reason to use such priors?
Also, suppose we assign a uniform prior to a parameter Θ, then any nonlinear
monotone transformation of Θ would have a nonuniform distribution. Given
that a one-to-one transformation of parameter does not change the family
of distributions, it is not clear to which transformation should we assign the
uniform prior.

5.6.2 Haar measures

The Haar measures are generalizations of the Lebesgue measure, or the (im-
proper) uniform distribution over the whole real line. Lebesgue measure is
the Haar measure under location transformations (or translations): θ �→ θ + c.
The set of all translations form a group, and the Lebesgue is invariant un-
der this group of transformations. This leads naturally to the question: can
we construct improper distributions that are invariant under other group of
transformation. In general, are there something like Lebesgue measure for
any group of transformations? If so, then that would be a good candidate for
improper prior in the more general setting.

It turns out that there are actually two types of improper distributions
that are invariant under a group of transformations: the left and right Haar
measure. Let G be a group of transformations from ΩΘ on to ΩΘ, indexed by
members of ΩΘ; that is

G = {gt : t ∈ ΩΘ}. (5.24)

In a statistical problem, the group G is induced by an invariant family of
distributions, as discussed in Section 4.4. Specifically, suppose F = {Pθ : θ ∈
ΩΘ} is parametric family of distributions of X. We assume that there is a
group, say H, of transformations from ΩX to ΩX such that, for each h ∈ H,
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the induced measure Pθ◦h−1 is a member of F . That is, there exists a θ̃ ∈ ΩΘ

such that Pθ̃ = Pθ◦h−1. This induces a transformation from ΩΘ to ΩΘ that
maps θ to θ̃. The collections of all these mappings can be shown to be a group,
and this is the group G in (5.24), which is our starting point for constructing
the Haar measures.

Each gt ∈ G induces two types of transformations of θ:

Lt(θ) = gt(θ), Rt(θ) = gθ(t),

where Lt is called the left transformation, and Rt the right transformation.

Definition 5.8 A measure Π on ΩΘ is the left (right) Haar measure if it
satisfies

Π = Π◦L−1
t (Π = Π◦R−1

t ) (5.25)

for all t ∈ ΩΘ.

We can use the equations in (5.25) to determine the forms of the left and
right Haar measures. Take the left Haar measure as an example. Suppose π(θ)
is the density of Π, and assume that it is differentiable. Then the distribution
of θ̃ = Lt(θ) is Π◦L−1

t , with density

π̃(θ̃) = π(L−1
t (θ̃))|det(∂L−1

t (θ̃)/∂θ̃)|

where det(·) denotes the determinant of a matrix and |det(·)| its absolute
value. The first equation in (5.25) implies that π̃ and π are the same density
functions; that is,

π(L−1
t (θ))|det(∂L−1

t (θ)/∂θT )| = π(θ),

for all θ, t ∈ ΩΘ. Fix θ at any θ0 ∈ ΩΘ, and we have

π(L−1
t (θ0)) =

π(θ0)
|det(∂L−1

t (θ0)/∂θT )| ≡ g(t),

for all t ∈ ΩΘ. Let h(t) = L−1
t (θ0). Then it can be shown that h : ΩΘ → ΩΘ

is a bijection. So we have π(h(t)) = g(t) for all t ∈ ΩΘ. Putting θ = h(t), we
have

π(θ) = g(h−1(θ)).

The right Haar measure can be derived in exactly the same way. In the next
three examples we use this method to develop the left and right Haar measures
for three groups of transformations: the location transformation group, the
scale transformation group, and the location-scale transformation group.
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Example 5.7 Let ΩΘ = R, and let G be the group of transformations

gc(θ) = θ + c, c ∈ R.

Then

Lc(θ) = gc(θ) = θ + c, Rc(θ) = gθ(c) = θ + c.

Let us first find the left Haar measure. Let θ̃ = Lc(θ) = θ + c. Then θ =
L−1

c (θ̃) = θ̃ − c. If the density of θ is π, then the density of θ̃ is π̃ = π(θ̃ − c).
So we want π̃ and π to be the same function for all c; that is,

π(θ − c) = π(θ)

for all θ ∈ R, c ∈ R. Taking θ = 0, we have π(−c) = π(0) for all c ∈ R,
implying π(θ) = π(0) for all θ ∈ R. That is, the left Haar measure is propor-
tional to the Lebesgue measure. Since Lt = Rt, the right Haar measure is also
proportional to the Lebesgue measure. �

Example 5.8 Let ΩΘ = (0,∞), and let G be the group of transformations

ga(θ) = aθ, a ∈ (0,∞).

Then

La(θ) = ga(θ) = aθ, Ra(θ) = ga(θ) = aθ.

To determine the left Haar measure, let θ̃ = La(θ) = aθ, then θ = L−1
a (θ̃) =

θ̃/a. If the density of θ is π, then the density of θ̃ is

π̃ = π(θ̃/a)
∂(θ̃/a)

∂θ̃
= π(θ̃/a)/a.

The relation Π◦L−1
c = Π implies that π̃ and π are the same density function.

So we want π̃ and π to be the same function for all a; that is,

π(θ/a)/a = π(θ)

for all θ ∈ (0,∞), a ∈ (0,∞). Take θ = 1. Then we have π(1/a) = aπ(1)
for all a ∈ (0,∞), implying π(θ) = π(1)/θ for all θ ∈ R. That is, the left
Haar measure has density proportional to 1/θ. Since Lt = Rt, the right Haar
measure also has density proportional to 1/θ. �

Example 5.9 Let ΩΘ be the parameter space of two parameters, a real num-
ber μ and a positive number σ. That is ΩΘ = R× (0,∞). Let G be the group
of transformations
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gb,c(μ, σ) = (cμ + b, cσ), (b, c) ∈ R× (0,∞).

Then

Lb,c(μ, σ) = gb,c(μ, σ) = (cμ + b, cσ),
Rb,c(μ, σ) = gμ,σ(b, c) = (σb + μ, σc).

To determine the left Haar measure, let (μ̃, σ̃) = Lb,c(μ, σ) = (cμ + b, cσ).
Then

(μ, σ) = L−1
b,c (μ̃, σ̃) =

(
μ̃ − b

c
,
σ̃

c

)
.

If the density of (μ, σ) is π(μ, σ), then the density of (μ̃, σ̃) is

π̃(μ̃, σ̃) = π

(
μ̃ − b

c
,
σ̃

c

) ∣∣∣∣det
(

∂((μ̃ − b)/c, σ̃/c)
∂(μ̃, σ̃)T

)∣∣∣∣ .

The determinant on the right-hand side is

det
(

1/c 0
0 1/c

)
= c−2.

Hence we have the equation

π̃(μ̃, σ̃) = c−2π

(
μ̃ − b

c
,
σ̃

c

)
.

The relation Π◦L−1
t = Π implies π̃ and π are the same function for all b, c;

that is,

c−2π

(
μ − b

c
,
σ

c

)
= π(μ, σ)

for all μ, b ∈ R, c, σ ∈ (0,∞). Take μ = 0, c = 1, and we have

c−2π

(
−b

c
,
1
c

)
= π(0, 1).

Let μ = −b/c, σ = 1/c. Then c = 1/σ, b = −μ/σ, and

σ2π (μ, σ) = π(0, 1) ⇒ π (μ, σ) = π(0, 1)/σ2.

So, the left Haar measure has density proportional to 1/σ2.
To determine the right Haar measure, let

(μ̃, σ̃) = Rb,c(μ, σ) = gμ,σ(b, c) = (σb + μ, 1/σ).

Then
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(μ, σ) = R−1
b,c (μ̃, σ̃) =

(
μ̃ − bσ̃

c
,
σ̃

c

)
.

The density of (μ̃, σ̃) is

π̃(μ̃, σ̃) = π

(
μ̃ − bσ̃

c
,
σ̃

c

) ∣∣∣∣det
(

∂(μ̃ − bσ̃/c, σ̃/c)
∂(μ̃, σ̃)T

)∣∣∣∣ ,

where the determinant on the right-hand side is

det
(

1 −b/c
0 1/c

)
= c−1.

Hence the density of (μ̃, σ̃) reduces to

π̃(μ̃, σ̃) = c−1π

(
μ̃ − bσ̃

c
,
σ̃

c

)
.

The relation Π◦R−1
t = Π implies π̃ and π are the same function for all b, c;

that is,

c−1π

(
μ − bσ

c
,
σ

c

)
= π(μ, σ)

for all μ, b ∈ R, c, σ ∈ (0,∞). Taking μ = 0, c = 1, we have

c−1π

(
−b

c
,
1
c

)
= π(0, 1).

Let μ = −b/c, σ = 1/c. Then

π (μ, σ) = π(0, 1)/σ.

So, the right Haar measure has density proportional to 1/σ. �

5.6.3 Jeffreys prior

Another important class of noninformative prior is the Jeffreys priors, which
is defined as

πΘ(θ) ∝ [det I(θ)]1/2,

where I(θ) is the Fisher information

I(θ) = −Eθ

[
∂2 log fX|Θ(x|θ)

∂θ∂θT

]
.



5.6 Improper prior 161

A useful feature of Jeffreys prior is that it satisfies the usual transformation
law of measure. Suppose that φ = h(θ) is a one-to-one and differentiable
transformation of θ. If PΘ is a noninformative prior distribution we assign to
Θ and PΦ is the noninformative prior distribution we assign to Φ = h(Θ).
Then it is desirable to have

PΦ = PΘ◦h−1.

Contrary to intuition, this is not automatically satisfied. This is because PΦ

is not defined inherently by PΘ◦h−1, but rather it is subjectively assigned,
possibly without regard to this transformation law. Let πΘ and πΦ be the
densities of PΘ and PΦ with respect to the Lebesgue measure. Then, in terms
of these densities, the above transformation rule is

πΦ(φ) = πΘ(h−1(φ))|det(∂h−1(φ)/∂φT )|. (5.26)

The next theorem shows that Jeffreys prior satisfies the above transformation
rule.

Theorem 5.8 Let πΘ be Jeffreys prior density for Θ. Let Φ = h(Θ), where
h is a one-to-one differentiable function. Let πΦ be the Jeffreys prior density
for Φ. Then πΘ and πΦ satisfy the tranformation rule (5.26).

Proof. Let fX|Φ(x|φ) be the conditional density of X expressed in φ. That is

fX|Φ(x|φ) = fX|Θ(x|h−1(φ)).

Take the second partial derivatives with respect to φi, φj , i, j = 1, . . . , p, to
obtain

∂2 log fX|Φ(x|φ)
∂φi∂φj

=
p∑

k=1

p∑
�=1

∂2 log fX|Θ(x|θ)
∂θk∂θ�

∂θk

∂φi

∂θ�

∂φj
+

p∑
k=1

∂ log fX|Θ(x|θ)
∂θk

∂2θk

∂φi∂φj
.

Thus, taking conditional expectation E(·|θ) (or equivalently E(·|φ)), and
noticing that the second term on the right hand side vanishes after taking
this conditional expectation, we have

E

[
∂2 log fX|Φ(X|φ)

∂φi∂φj

∣∣∣∣ φ

]
=

p∑
k=1

p∑
�=1

E

[
∂2 log fX|Θ(X|θ)

∂θk∂θ�

∣∣∣∣ θ

]
∂θk

∂φi

∂θ�

∂φj
.

If we let ∂θT /∂φ denote the matrix Aik = ∂θk/∂φi and let ∂θ/∂φT denote
the transpose of ∂θT /∂φ, then the above equation becomes

I(φ) = (∂θT /∂φ)I(θ)(∂θ/∂φT ).
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It follows that

det(I(φ)) = det(∂θT /∂φ) det(I(θ)) det(∂θ/∂φT ) = det(I(θ))
[
det(∂θ/∂φT )

]2
.

Now take square root on both sides the equation to verify (5.26). �

Example 5.10 Suppose that X1, . . . , Xn are i.i.d. N(θ, σ2) variables where
σ2 is known. Then the Fisher information is I(θ) = n/σ2. Hence Jeffreys prior
is
√

n/σ, which is proportional to the Lebesgue measure. If both μ and σ2 are
unknown, then the Fisher information is the matrix

I(θ) =
(

n/σ2 0
0 n/(2σ4)

)

So det(I(θ)) = n2/(2σ6), and the Jeffreys prior is proportional to 1/σ3. �

5.7 Statistical decision theory

Many topics in Bayesian statistical inference, such estimation, testing, and
classification, can be efficiently described within the framework of statistical
decision theory Berger (1985).

The statistical decision theory consists of several elements. Let (ΩA,FA)
be a measurable space, where ΩA is called the action space. For example, if
we estimate a parameter Θ, then ΩA is typically the same space as ΩΘ. If our
goal is to test a hypothesis, then ΩA is {0, 1}, where 1 represents rejection. If
our goal is classification, then ΩA is a list of categories.

Any mapping d : ΩX → ΩA that is measurable with respect to FX/FA,
and such that L(θ, d(X)) is integrable with respect to PX|Θ(·|θ) for any θ ∈ ΩΘ

is called a decision rule. A decision rule is a statistic — typically an estimate,
a test, or a classifier. The class of all decision rules is written as D.

A mapping L : ΩΘ × ΩA → R is called a loss function. It represents the
error one makes by taking a certain action in ΩA. For example, if our action
is to reject or accept a hypothesis, then it is either right or wrong; In this
case L takes values in {0, 1}, representing right and wrong. If our action is to
estimate Θ, then the loss may be Euclidean distance ‖Θ − a‖.

A loss is something that has already happened: if we took an action a ∈
ΩA, and it turned out the value θ of Θ is quite different from our action a,
and then we lose, or lose a certain amount. Of course a statistician’s job is
to prevent or to minimize the loss before it happens. That means we need
to be able to access a loss before it happens. This leads us to the notion of
the risk, which is the expectation of loss. There are three ways of taking this
expectation. The first is to condition on Θ:

R(θ, d) = E[L(Θ, d(X)|Θ)]θ.
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This is called the frequentist risk. It is a mapping from ΩΘ × D → R. The
second is to take expectation conditioning on X:

ρ(x, a) = E[L(Θ, a)|X]x.

This is called the posterior expected loss. It is a mapping from ΩX ×ΩA → R.
Finally we can take the unconditional expectation

r(d) = E[L(Θ, d(X))] = E[ER(Θ, d(X)|Θ)].

This is called the Bayes risk. It is a mapping from D → R.
One of the most important principles for choosing a decision is the Bayes

rule, defined as follows.

Definition 5.9 The Bayes rule dB is defined as

dB = argmin{r(d) : d ∈ D}.

If PΘ is improper, then this rule is called the generalized Bayes rule.

In appearance the Bayes rule is the minimizer of r(d) over a class of func-
tions D, which is in general a difficult problem. However, under mild condi-
tions this can be converted to a finite dimensional minimization problem using
Fubini’s theorem.

Theorem 5.9 If L(θ, a) ≥ C for some C > −∞ for all θ ∈ ΩΘ and a ∈ ΩA,
then the decision rule

ΩX → ΩA, x �→ argmin{ρ(x, a) : a ∈ ΩA} (5.27)

is a Bayes rule.

Proof. By definition,

r(d) =
∫

ΩΘ

∫
ΩX

L(θ, d(x))fX|Θ(x|θ)dμX(x)π(θ)dμΘ(θ).

Since the loss function is bounded from below, we interchange the order of
the integrals by Tonelli’s theorem. That is

r(d) =
∫

ΩX

∫
ΩΘ

L(θ, d(x))πΘ|X(θ|x)dμΘ(θ)fX(x)dμX(x)

=
∫

ΩX
ρ(x, d(x))fX(x)dμX(x).

Now let d0 : ΩX → ΩA be the decision rule

d0(x) = argmin{ρ(x, a) : a ∈ ΩA}.

Then for any d ∈ D,
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r(d0) =
∫

ΩX
ρ(x, d0(x))fX(x)dμX(x)

≤ ∫
ΩX

ρ(x, d(x))fX(x)dμX(x) = r(d).

In other words, d0 is a Bayes rule. �

Note that, to compute the posterior expected loss, we do not need the
marginal density fX(x), because

E(L(Θ, a)|X)x ∝ ∫
ΩX

L(θ, a)fX|Θ(x|θ)πΘ(θ)dμΘ(θ)

with a proportional constant (1/fX(x)) that does not depend on a. So it is
equivalent to define the d0 in Theorem 5.9 as

argmin{∫
ΩX

L(θ, a)fX|Θ(x|θ)πΘ(θ)dμΘ(θ) : a ∈ ΩA}. (5.28)

The generalized Bayes rule can also be computed using (5.28).
Another optimal criterion in decision theory is admissibility. In the fol-

lowing we assume that every decision rule in D has an integrable risk R(θ, d)
with respect to πΘ, where πΘ can be a proper or improper.

Definition 5.10 A decision rule is d ∈ D is inadmissible if there is a decision
rule d1 such that

R(θ, d1) ≤ R(θ, d) for all θ ∈ ΩΘ,

R(θ, d1) < R(θ, d) for some θ ∈ ΩΘ.

A decision rule is admissible if it is not inadmissible.

Admissibility is a uniform (in θ) property; whereas Bayes is an average
property. Admissibility is a weak optimality property, because it only presents
itself from being uniformly worse than any other decision rules. Bayes rule,
on the other hand, does require itself to be better than all other rules, albeit
according to a criterion weaker than the uniform criterion used in admissibil-
ity. It is then not surprising that under some mild conditions, a Bayes rule is
admissible.

Theorem 5.10 Suppose

1. for each d ∈ D, R(θ, d) is integrable with respect to PΘ;
2. for any d1, d2 ∈ D,

R(θ, d2) − R(θ, d1) < 0 for some θ ∈ ΩΘ

⇒ PΘ(R(θ, d2) − R(θ, d1) < 0) > 0.

Then any Bayes or generalized Bayes rule is admissible.
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Proof. Suppose d1 is an inadmissible Bayes rule in D. Then there is d2 ∈ D
such that R(θ, d2) is no more than R(θ, d1) for all θ ∈ ΩΘ and is strictly less
than R(θ, d1) for some θ. Hence∫

ΩΘ
[R(θ, d2) − R(θ, d1)]dPΘ =

∫
R(θ,d2)−R(θ,d1)<0

[R(θ, d2) − R(θ, d1)]dPΘ

Since PΘ(R(θ, d2) − R(θ, d1) < 0) > 0, the right hand side is negative, which
contradicts the assumption that d1 is Bayes. �

Here, we have implicitly used assumption 1, because without it the differ-
ence ∫

ΩΘ
[R(θ, d2) − R(θ, d1)]dPΘ

may not be defined. Assumption 2 of the theorem covers two interesting cases.
First, suppose ΩΘ = {θ1, θ2, . . .} is countable and πΘ is positive for each θi,
then this assumption is obviously satisfied. Second, if R(θ, d) is continuous
in θ for each d, and PΘ(A) > 0 for any nonempty open set, then it is also
satisfied. See Problem 5.35.

Problems

5.1. Let (ΩX ,FX), (ΩΘ,FΘ) be measurable spaces. Let

Ω = ΩX × ΩΘ, F = FX ×FΘ.

So (Ω,F) is a measurable space. Let X be the random element

X : Ω → Ω, (x, θ) �→ x.

Show that σ(X) = {A × ΩΘ : A ∈ FX}.

5.2. Let Ω1 and Ω2 be two sets, and T : Ω1 → Ω2 be any function. Show that

1. T−1(Ω2) = Ω1;
2. for any A ⊆ Ω2, T−1(Ac) = (T−1(A))c;
3. if A1, A2, . . . is a sequence of subsets of Ω2, then

∪∞
n=1T

−1(An) = T−1(∪∞
n=1An).

5.3. Let Ω1, Ω2 be two sets, and G1 be a σ-field in Ω1. Let T : Ω1 → Ω2 be
any function. Let B = {B : T−1(B) ⊆ G1}. Show that B is a σ-field in Ω2.

5.4. Let (Ω1,F1) and (Ω2,F2) be measurable space, and T : Ω1 → Ω2 be
a surjection that is measurable F1/F2. Let A be a subclass of F2 such that
σ(A) = F2. Show that σ(T−1(A)) = T−1(σ(A)).



166 5 Basic Ideas of Bayesian Methods

5.5. Let (ΩX ,FX), (ΩΘ,FΘ) be measurable spaces. Let

Ω = ΩX × ΩΘ, F = FX ×FΘ.

So (Ω,F) is a measurable space. Let X be the random element

X : Ω → ΩX , (x, θ) �→ x.

Show that σ(X) = {A × ΩΘ : A ∈ FX}.

5.6. Let (ΩX ,FX), (ΩΘ,FΘ), (Ω,F), and X be as defined in the previous
problem. Let (ΩT ,FT ) be another measurable space. Let T : ΩX → ΩT be a
function measurable FX/FT .

1. Show that

σ(T ◦X) = {T−1(A) × ΩΘ : A ∈ FX}.

2. Suppose, in addition, T is surjective. Let Θ be the random element

Θ : Ω → ΩΘ, (x, θ) �→ θ.

Let (T ◦X,Θ) be the random element

(T ◦X,Θ) : Ω → ΩT × ΩΘ, (x, θ) �→ (T (x), θ).

Show that

σ(T ◦X,Θ) = σ{T−1(C) × D : C ∈ FT ,D ∈ FΘ}.

3. Let

P = {T−1(C) × D : C ∈ FT ,D ∈ FΘ}.

Sow that P is a π-system.

5.7. Let (ΩX ,FX), (ΩΘ,FΘ), (ΩT ,FT ), (Ω,F), X, Θ, T , and P be as defined
in the previous problem. Let A ∈ FX . Define

Q1(B) = E[IBE(X−1(A)|T ◦X,Θ)], Q2(B) = E[IBE(X−1(A)|T ◦X)].

Show that L = {B ∈ σ(P) : Q1(B) = Q2(B)} is a λ-system.

5.8. Let (ΩX ,FX , μX), (ΩΘ,FΘ, μΘ) be σ-finite measure spaces. Let P be a
probability measure defined on (ΩX × ΩΘ,FX ×FΘ) with P � μX × μΘ.

1. Show that P ◦X−1 � μX and P ◦Θ−1 � μΘ.
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2. Let

fX|Θ(x|θ) =

{
[dP/d(μX × μΘ)]/[dP ◦X−1/dμX ] if dP ◦X−1/dμX = 0
0 if dP ◦X−1/dμX = 0

Show that, for each A ∈ FX , the function

θ �→
∫

A

fX|Θ(x|θ)dμX(x)

is (a version of) P (A|Θ).

5.9. Suppose that Θ = (Ψ,Λ). Suppose T (X) is a statistic that is sufficient
for λ for each fixed ψ. Show that, for any G ∈ FΘ,

P (Θ−1(G)|X,Ψ) = π(Θ−1(G)|T (X), Ψ).

5.10. Let Pθ = PX|Θ(·|θ). Show that the mapping

(x, θ) �→ Pθ(A|T ◦X)x

is a version of the conditional probability

(x, θ) �→ P (A|T ◦X,Θ)(x,θ).

5.11. Suppose that X|θ is a p-dimensional random vector with distribution
N(θ,Σ), where Σ is a p by p positive definite matrix. This matrix is treated
as the non-random parameter. The random parameter Θ is also distributed
as p-dimensional multivariate normal N(μ,Ω), where Ω is a p by p positive
definite matrix. Here μ and Ω are treated as non-random parameters. Find
the distribution of Θ|X as well as the marginal distribution of X.

5.12. Suppose that X1, . . . , Xn|θ are independent p-dimensional random vec-
tors distributed as N(θ,Σ), where Σ > 0 (this means Σ is positive definite).
Suppose that θ is distributed as N(μ,Ω) where Ω > 0. Find the posterior
distribution θ|X1, . . . , Xn. Write your result in its most interpretable form.

5.13. Let X and Y be two random elements. Suppose that the conditional
density of Y |X does not depend on X; that is f(y|x) = h(y) for some function
h. Then X and Y are independent.

5.14. Suppose that Φ ∼ χ−2
ν and Λ|φ ∼ N(0, φ).

1. Show that
√

νΛ ∼ t(ν).
2. Show that Φ|λ ∼ (1 + λ2)χ−2

ν+1 and that Φ/(1 + Λ2) Λ.

5.15. Show that, if

T |φ ∼ φχ2
(m), Φ ∼ τχ−2

(k),
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then Φ|t ∼ (t + τ)χ−2
(m+k). From this deduce that if X1, . . . , Xn are i.i.d.

N(λ, φ), where λ is treated as a constant, and if φ ∼ τχ−2
k then

Φ|(x1, . . . , xn) ∼
(

n∑
i=1

(xi − λ)2 + τ

)
χ−2
(n+k).

5.16. Prove Proposition 5.1.

5.17. Prove Proposition 5.5.

5.18. Prove Proposition 5.6.

5.19. Prove Proposition 5.7.

5.20. Show that, if

T |φ ∼ φχ2
(m), πΦ(φ) = 1/φ, φ > 0, k = 1, 2, . . .

then Φ|t ∼ tχ−2
(m).

5.21. Show that, in general, if

T |φ ∼ φχ2
(m), πΦ(φ) = 1/φk/2, φ > 0, k = 1, 2, . . .

then Φ|t ∼ tχ−2
(m+k−2).

5.22. Suppose X1, . . . , Xn|λ, φ are i.i.d. N(λ, φ) random variables, where both
λ and φ are unknown. Let (S, T ) be as defined in (5.16). Let πΘ be the
invariant noninformative prior

πΘ(λ, φ) = 1/φ3/2.

1. Find the marginal posterior distribution for Φ|X.
2. Find the conditional posterior distribution for Λ|Φ,X.
3. Find the marginal posterior distribution for Λ|X.

5.23. Suppose we have the following linear regression model

Yi = xiB + εi, i = 1, . . . , n,

where ε1, . . . , εn|φ are i.i.d. N(0, φ) variables, and x1, . . . , xn are nonrandom
constants. Let

T =
n∑

i=1

xiYi/

n∑
i=1

x2, S =
n∑

i=1

(Yi − Txi)2.

1. Show that S T |(B,Φ) and S B|Φ.
2. Find a conjugate prior for fS|Φ.
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3. For each fixed φ ∈ ΩΦ, find a conjugate prior for the conditional density
(t, λ) �→ fT |ΦΛ(t|φ, λ).

4. Find the joint posterior distribution of (Λ,Φ).
5. Find the marginal posterior distribution of Λ.

5.24. Suppose

Φ|(S = s) ∼ sχ−2
(m), T |(Φ = φ) ∼ N(a, cφ),

where a ∈ R, c > 0. Then

πΦ|S(φ|s)fT |Φ(t|φ) ∝ [s + (t − a)2/c]g(φ),

where g(φ) is the density of χ−2
(m+1), and the proportionality constant may

depend on s, t but does not depend on φ.

5.25. Suppose X is a random variable with density of the form

1√
φ

f

(
x2

φ

)
,

where x ∈ R = ΩX and φ ∈ (0,∞) = ΩΦ. Consider the set of transformations

hc(x) = cx, c ∈ (0,∞).

1. Show that H = {hc : c ∈ (0,∞)} is a group of transformations from ΩX

to ΩX .
2. Determine the transformation gc from ΩΦ to ΩΦ induced by the transfor-

mation hc.
3. Show that the set of transformations G = {gc : c ∈ (0,∞)} is a group.
4. Find the left and right Haar measures for the group G.

5.26. Suppose X is a random variable with density of the form

1√
φ

f

(
(x − μ)2

φ

)
.

Let θ = (μ, φ) and ΩΘ = R×R
+, where R

+ = (0,∞), be the parameter space.
Consider the set of transformations

H = {hb,c(x) = cx + b : b ∈ R, c ∈ R
+}.

1. Show that H is a group of transformations from ΩX to ΩX .
2. Determine the transformation gb,c from ΩΘ to ΩΘ induced by the trans-

formation hb,c ∈ H.
3. Show that G = {gb,c : b ∈ R, c ∈ R

+} is a group of transformations from
ΩΘ to ΩΘ.

4. Find the left and right Haar measures for the group G.
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5.27. Suppose X is a random vector of dimension p with density of the form

1
det(Σ)1/2

f
(
xT Σ−1x

)
,

where Σ is a member of Rp×p
+ , the set of all positive definite matrices. Consider

the set of transformations of the form

H = {hC(x) = Cx : C ∈ R
p×p
+ }.

1. Show that H is a group of transformations from ΩX to ΩX .
2. Determine the transformation gC induced by a transformation hC ∈ H.
3. Show that the set of transformations G = {gC : C ∈ R

p×
+ } is a group.

4. Find the left and right Haar measures for this group.

(Hint: To solve this problem, we need to take derivative of vec(ABC) with
respect to vec(B), where A, B, C are matrices, and vec is the vectorization
operator that stacks the columns of the argument matrix. Since vec(ABC) =
(C⊗AT )vec(B), where ⊗ is the Kronecker product between matrices, we have
∂vec(ABC)/∂vec(B)T = (C⊗AT ). Also, the following identity will be useful:
if A and B are square matrices with dimensions n1 and n2, respectively, then
det(A ⊗ B) = det(A)n1 × det(B)n2 .)

5.28. Suppose X is a random vector of dimension p with density of the form

1
det(Σ)1/2

f
(
(x − μ)T Σ−1(x − μ)

)
,

where μ ∈ R, Σ ∈ R
p×p
+ . Consider the set of transformations

H = {hb,C(x) = Cx + b : b ∈ R
p, C ∈ R

p×p
+ }.

Let θ = (μ,Σ) be the whole parameter and let ΩΘ = R
p × R

p×p
+ be the

parameter space.

1. Show that H is a group of transformations from ΩX to ΩX .
2. Determine the transformation gb,C from ΩΘ to ΩΘ induced by a transfor-

mation hb,C ∈ H.
3. Show that the set of transformations G = {gb,C : b ∈ R, C ∈ R

p×p
+ } is a

group.
4. Calculate the left Haar measure for this group.

5.29. Let ΩΓ = R
p×p
+ , the set of all positive definite matrices in R

p×p. Con-
sider the set of transformations on ΩΓ defined as

G = {(Γ �→ C1/2ΓC1/2) : C ∈ R
p×p
+ }.

1. Show that G is a group of transformations on ΩΓ ;
2. Find the left Haar measure on ΩΓ with respect to G;
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3. Find the right Haar measure on ΩΓ with respect to G.

5.30. Let ΩΓ = {(μ, Γ ) : μ ∈ R
p, Γ ∈ R

p×p
+ }. Consider the set of transfor-

mations on ΩΓ defined as

G = {(μ, Γ ) �→ (Cμ + d), C1/2ΓC1/2) : d ∈ R, C ∈ R
p×p
+ }.

1. Show that G is a group of transformations on ΩΓ ;
2. Find the left Haar measure on ΩΓ with respect to G;
3. Find the right Haar measure on ΩΓ with respect to G.

5.31. Let X be a random vector defined on (Rp,Rp). Suppose the family of
distributions of X has densities of the form

[1/det(Λ)]f(ΓΛΓT (x − μ)), μ ∈ R
p, Λ ∈ D

p×p, Σ > 0,

where D
p×p is the class of all p × p diagonal matrices with positive diagonal

entries, and Γ is a known orthogonal matrix. The parameter of this model is
Θ = (μ,diag(Λ)), where diag(Λ) is the vector of diagonal entries of Λ. Let A
be a class of matrices of the form

{ΓΔΓT : Δ ∈ D}.
Let G be the class of all transformations from R

p to R
p defined

x �→ Ax + b, A ∈ A, b ∈ R
p.

1. Show that G is a group.
2. Show that the transformation g̃ : ΩΘ → ΩΘ induced by the transforma-

tion g : ΩX → ΩX , g(x) = cx + b, c > 0, is of the form

g̃(μ,diag(Λ)) = (Aμ + b,diag(D) � diag(Λ)),

where � is the Hadamard, or entry-wise, product.
3. Derive the left and right Haar measures for the group of transformations

in part 2.

5.32. Suppose X1, . . . , Xn are i.i.d. N(μ, σ2) where μ is known. Derive Jeffreys
prior for σ2.

5.33. SupposeX1, . . . , Xn are i.i.d.p-dimensionalmultivariateNormalN(μ,Σ)
where μ ∈ R

p and Σ ∈ R
p×p
+ . Derive Jeffreys prior for (μ,Σ).

5.34. 1. If X has a Gamma distribution with parameterization

1
Γ (k)θ]k

xk−1e−x/θ, x > 0, θ > 0, k > 0,

find the Jeffreys prior for (θ, k).



172 5 Basic Ideas of Bayesian Methods

2. If X has a Gamma distribution with parameterization

βα

Γ (α)
xα−1e−βx, x > 0, α > 0, β > 0,

find the Jeffreys prior for (α, β).

5.35. Show that, if R(θ, d) is continuous in θ for each d ∈ D, and PΘ(A) > 0
for any nonempty open set A ∈ FΘ, then, for any d1, d2 ∈ D,

R(θ, d2) − R(θ, d1) < 0 for some θ ∈ ΩΘ

⇒ PΘ(R(θ, d2) − R(θ, d1) < 0) > 0.
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6

Bayesian Inference

Based on the concepts and preliminary results introduced in the last chapter,
we develop the Bayesian methods for statistical inference, including estima-
tion, testing, and classification, in this chapter. We will focus on Bayesian
rules under different settings. All three problems can be formulated as decision
theoretic problems described in Section 5.7, with different parameter spaces,
action space, and loss functions. For estimation, we take ΩA = ΩΘ = R

p; for
hypothesis testing, we take ΩA as a set of two elements — accept or reject; for
classification, we take ΩΘ = ΩA as a finite set representing a list of categories.
We will also explore some important special topics in Bayesian analysis, such
as empirical Bayes and Stein’s estimator.

6.1 Estimation

In a Bayesian estimation problem, the parameter Θ is typically a random
vector whose distribution PΘ is dominated by the Lebesgue measure. Also, it
is natural to assume ΩΘ = ΩA. The most commonly used loss function is the
L2-loss function, as defined below.

Definition 6.1 The L2-loss function is defined as

L(Θ, a) = (Θ − a)T W (Θ)(Θ − a), (6.1)

where W (θ) ∈ R
p×p is a positive definite matrix for all θ ∈ ΩΘ.

Recall that a Bayes rule can be calculated by minimizing the posterior
expected loss. For L2 loss this has an explicit solution, described in the next
Theorem.

Theorem 6.1 Suppose

1. E[ΘT W (Θ)Θ|X] < ∞ [P ];
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2. E[W (Θ)|X] > 0 [P ].

Then the Bayes rule with respect to loss function (6.1) is

dB(X) = [E(W (Θ)|X)]−1E[W (Θ)Θ|X]. (6.2)

Proof. By definition,

E[W (Θ)(Θ − dB(X))|X] = E[W (Θ)Θ|X] − E[W (Θ)|X]dB(X) = 0.

Hence, for any a ∈ ΩA,

E[(dB(X) − a)T W (Θ)(Θ − d(X))|X]

= (dB(X) − a)T E[W (Θ)(Θ − dB(X))|X] = 0.

Consequently,

E[L(Θ, a)|X]

= E[(Θ − dB(X))T W (Θ)(Θ − dB(X))|X]

+ E[(dB(X) − a)T W (Θ)(dB(X) − a)|X] ≥ E[L(Θ, dB(X))|X].

That is, dB(X) is a Bayes rule. �

It can be shown that the Bayes rule for the L2-loss (6.1) is unique modulo
P . See Problem 6.3. Now let us turn to the L1-loss function. We first consider
the one-dimensional case.

Definition 6.2 If p = 1, then the L1-loss is the function

L(θ, a) = |θ − a|. (6.3)

We would like to minimize the posterior expected loss

E(|Θ − a| |X).

We will show that the minimizer is the posterior median. We first give a
general definition of median.

Definition 6.3 Let U be a random variable with a cumulative distribution
function F . Then any number m satisfying

F (m) ≥ 1/2, F (m−) ≤ 1/2

is called a median of U .

In the next theorem U is a generic random variable that takes values in
ΩU .
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Theorem 6.2 If U is integrable and m is a median of U , then
∫

|U − m|dP ≤
∫

|U − a|dP

for all a ∈ ΩU .

Proof. Suppose a > m, a ∈ ΩU . Then
∫

ΩU

(|U − m| − |U − a|) dP

=
∫

U≤m

((m − U) − (a − U)) dP +
∫

m<U≤a

((U − m) − (a − U)) dP

+
∫

U>a

((U − m) − (U − a)) dP

= (m − a)P (U ≤ m) + (a − m)P (U > a) +
∫

m<U≤a

(2U − m − a) dP.

Because the last term on the right side is no more than (a−m)P (m < U ≤ a),
E|U − m| − E|U − a| is no more than

(m − a) [P (U ≤ m) − P (U > a) − P (m < U ≤ a)]
= (m − a) [P (U ≤ m) − P (U > m)] = (m − a) [2F (m) − 1] .

Similarly, for a < m, a ∈ ΩU , we have
∫

ΩU

(|U − m| − |U − a|) dP

= (
∫

U<a

+
∫

a≤U<m

+
∫

U≥m

) (|U − m| − |U − a|) dP

= (m − a)P (U < a) + (a − m)P (U ≥ m) +
∫

a≤U<m

(m + a − 2U) dP

≤ (a − m) [1 − 2F (m−)] .

To summarize, we have

E|U − m| − E|U − a| ≤
{

(m − a) [2F (m) − 1] if m < a

(a − m) [1 − 2F (m−)] if a < m

Because m is a median of U ,

2F (m) − 1 ≥ 0, 1 − 2F (m−) ≥ 0.

Hence E|U − m| − E|U − a| ≤ 0 for all a ∈ ΩU . �

Since the L1-loss is bounded from below, by Theorem 5.8 the posterior
median m(Θ|X) is a Bayes rule.
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Corollary 6.1 The posterior median m(θ|X) is a Bayes rule with respect to
the loss L(θ, a) = |θ − a|.

When Θ is a vector, there are more than one way to define a L1-loss. The
one possibility is to use the Euclidean norm

L(θ, a) = ‖θ − a‖.
The minimizer of the expectation of this loss is called the geometric median.
Thus the Bayes rule based on this loss is the posterior geometric median.
Another possibility is

L(θ, a) = |θ1 − a1| + · · · + |θp − ap|.
Since the function is additive, with each term involving on θi, the mini-
mization of the posterior expectation is equivalent to the minimization of
each E(|θi − ai| |X), so that the Bayes rule is simply the stacked marginal
posterior medians. For other choices of multivariate L1-loss, see Oja (1983);
Hettmansperger and Randles (2002).

In the univariate case, one can generalize L1-loss to the “check function”,
defined as

L(θ, a) =

{
α1(θ − a) if θ − a ≥ 0
α2(a − θ) if θ − a < 0

(6.4)

where α1 > 0 and α2 > 0. Note that the L1-loss function is the special case
where α1 = α2 = 1. It can be shown, using the similar argument for Theorem
6.2, that the α1/(α1 + α2)th percentile is the Bayes rule with respect to this
loss function. See Problem 6.4.

Another commonly used Bayesian estimator is the mode of the posterior
distribution, which is also called the generalized maximum likelihood estima-
tor (Berger, 1985, Chapter 4).

Definition 6.4 The generalized maximum likelihood estimator is

θ̂ = argmax{πΘ|X(θ|x) : θ ∈ ΩΘ}.
The generalized maximum likelihood estimator is the point in the parameter
space that is most likely to happen according to the posterior distribution.

We now illustrate these estimators by the constrained linear regression.
In some cases we know a priori that there should be some restrictions on
the parameter Θ. For example, if Θ represents height then we know it is
nonnegative. In Bayesian analysis this is handled by restricting the support
of the prior distribution according the desired constraint.

Example 6.1 Consider the linear regression model

Yi = Θxi + εi, i = 1, . . . , n,



6.1 Estimation 177

where, ε1, . . . , εn|θ are i.i.d. N(0, σ2) variables with a known σ2, and x1, . . . , xn

are nonrandom constants. Suppose we know the slope Θ is nonnegative and
would like to take this prior knowledge into account in analyzing the data.
Then it is natural to assign the improper prior

πΘ(θ) = I[0,∞)(θ).

Let x = (x1, . . . , xn) and y = (y1, . . . , yn). By simple algebra, we can show
that the likelihood function in this case is proportional to

exp
[
−1

2

(
xT x

σ2
θ2 − 2

xT y

σ2
θ

)]
.

By completing the square, we can rewrite this as

e−(θ−ν(x,y))2/(2τ2(x))

where ν(x, y) = xT y/xT x, and τ2(x) = σ2/xT x. Thus the posterior density
of Θ is

N(ν(x, y), τ2(x))∫ ∞
0

N(ν(x, y), τ2(x))dθ
=

N(ν(x, y), τ2(x))∫ ∞
−ν(x,y)/τ(x)

N(0, 1)dγ
=

N(ν(x, y), τ2(x))
Φ(ν(x, y)/τ(x))

where N(a, b) denotes the density of the Normal distribution N(a, b), and Φ
denotes the c.d.f. of N(0, 1). The posterior density of Γ = (Θ−ν(x, y))/τ(x))
is

N(0, 1)
Φ(ν(x, y)/τ(x))

I[0,∞)(γ).

The posterior mean of Γ is then

E(Γ |Y )y =

∫ ∞
−ν(x,y)/τ(x)

γN(0, 1)dγ

Φ(ν(x, y)/τ(x))
=

e−ν2(x,y)/(2τ2(x))

√
2πΦ(ν(x, y)/τ(x))

.

Hence the posterior mean of Θ is

E(Θ|Y )y = τ(x)
e−ν2(x,y)/(2τ2(x))

√
2πΦ(ν(x, y)/τ(x))

+ ν(x, y).

The posterior median is determined by the equation
∫ m

0

N(ν(x, y), τ2(x))dθ = (1/2)
∫ ∞

0

N(γ(x, y), τ2(x))dθ,

which is equivalent to
∫ (m−ν(x,y))/τ(x)

−ν(x,y)/τ(x)

N(0, 1)dγ = (1/2)
∫ ∞

−ν(x,y)/τ(x)

N(0, 1)dγ.
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Solve this equation to obtain

m = τ(x)Φ−1(1 − Φ(ν(x, y)/τ(x))/2) + ν(x, y).

The generalized maximum likelihood estimate of Θ is the maximizer of

N(ν(x, y), τ2(x))

subject to θ ≥ 0. So it is max(γ(x, y), 0). �

6.2 Bayes rule and unbiasedness

Recall from Chapter 3 that an estimator d(X) of θ (lower case, as in the fre-
quentist setting) is unbiased if Eθd(X) = θ for all θ. In the Bayesian setting,
this means E(d(X)|Θ)θ = θ for all θ ∈ ΩΘ. In fact, since conditional expec-
tation is unique modulo P , it is more accurate to write unbiasedness in the
Bayesian setting as

E(d(X)|Θ) = Θ [P ].

It is then natural to ask: is the Bayes rule unbiased? The answer is, somewhat
surprisingly, no.

Theorem 6.3 Suppose that dB(X) is a Bayes rule with respect to the L2-loss
(6.1) and suppose dB(X) is unbiased. Then

dB(X) = Θ [P ].

This theorem says that, unless dB(X) = Θ modulo P , a Bayes rule with
respect to the L2-loss cannot be unbiased. But dB(X) = Θ [P ] means we can
estimate Θ perfect modulo P — a clearly unrealistic premise. Thus, the the-
orem implies that, for all practical purposes, the Bayes rule is always biased.

Proof. By Theorem 6.1 and Problem 6.3, dB takes the form

dB(X) = [E(W (Θ)|X)]−1
E [W (Θ)Θ|X] [P ]. (6.5)

It suffices to show that r(dB) = 0. In the following we will abbreviate d(X)
by d and W (Θ) by W . Using the iterative law of conditional expectations, we
have

r(dB) = E{E[(Θ − dB)T W (Θ − dB)|X]}
= E[E(ΘT WΘ|X) − 2dT

BE(WΘ|X) + dT
BE(W |X)dB ]

Substitute (6.5) for the second dB in the last term on the right hand side, to
obtain
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r(dB) = E[E(ΘT WΘ|X) − dT
BE(WΘ|X)] = E(ΘT WΘ − dT

BWΘ).

Now apply the iterative law of conditional expectations in the reversed order,
to obtain

r(dB) = E[ΘT WΘ − E(dT
B |Θ)WΘ] = E(ΘT WΘ − ΘT WΘ) = 0.

where the second equality holds because, by unbiasedness of dB , E(dB |Θ) =
Θ. �

This theorem is by no means suggests that the Bayes rule with respect to
the L2-loss is undesirable. In fact, many useful estimators are not unbiased,
and the unbiasedness seems to be a too strict requirement for many practical
purposes.

6.3 Error assessment of estimators

Conceptually, the error of an estimate has very different meanings in the
Bayesian and the frequentist setting. In the frequentist setting, θ is fixed and
the error of d(X) is measured by how closely the distribution of d(X) clusters
around θ. In Bayesian analysis, d(x) is fixed, and its error is measured by
how closely the posterior distribution of Θ|X clusters around d(x). One such
measure is the posterior variance var(Θ|X). As usual, when Θ is a vector,
var(Θ|X) is a matrix. Another measurement of error is the posterior mean
squared error, which is the matrix

msed(Θ|X) = E[(d(X) − Θ)(d(X) − Θ)T |X].

Note that the posterior variance is not estimator specific — it only applies to
the Bayes rule dB for the L2-loss. In fact, we have

var(Θ|X) = mse(Θ, dB |X).

The posterior mean squared error is specific to the estimator d, and is used
as a measurement of error of d(X). It can be shown that (Problem 6.6) the
posterior mean squared error and the posterior variance are related by

msed(Θ|X) = var(Θ|X) + (d(X) − dB(X))(d(X) − dB(X))T . (6.6)

The next example illustrates the calculation of var(Θ|X) and msed(Θ|X).

Example 6.2 Suppose X1, . . . , Xn|φ are i.i.d. N(0, φ) variables and Φ ∼
τχ−2

(ν). Then, by Problem 5.14,

Φ|x ∼ (S + τ)χ2
(ν+n)
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where S =
∑n

i=1 x2
i . By Problem 6.5,

E(Φ|X) =
S + τ

ν + n − 2
, var(Φ|X) =

2(S + τ)2

(ν + n − 2)2(ν + n − 4)
.

Let d1(X) be the usual unbiased estimator of Φ; that is, d1(X) = S/(n − 1).
Then

msed1(Φ|X) =
2(S + τ)2

(ν + n − 2)2(ν + n − 4)
+

(
S

n − 1
− S + τ

ν + n − 2

)2

.

Let d2(X) be the generalized maximum likelihood estimate, which, by Prob-
lem 6.5 is of the form (S + τ)/(n + ν + 2). Then

msed2(Φ|X) =
2(S + τ)2

(ν + n − 2)2(ν + n − 4)
+

(
S + τ

n + ν + 2
− S + τ

ν + n − 2

)2

.

It is often easier to compute mse through relation (6.6) than to compute it
directly. �

6.4 Credible sets

The credible set is the Bayesian counterpart of the frequentist confidence set,
and has a more direct interpretation. Recall that, in the frequentist setting,
a confidence set is a random set that covers a nonrandom parameter with
certain probability. In Bayesian analysis, since Θ is random, the credible set
is directly defined as a set in FΘ such that Θ falls into it with a certain
probability.

Definition 6.5 A 100(1 − α)% credible set for Θ is any C ∈ FΘ such that
P (Θ−1(C)|x) ≥ 1 − α.

According to this definition there can be infinitely many 100(1 − α)%
credible sets. But, just as in the frequentist setting (Section 4.8), we would
like to minimize the size of the credible set. That gives rise to another criterion
for constructing credible sets – the measure of the credible set. The smaller the
measure of the credible set, the better. It turns out that the credible set that
has the highest posterior density has the smallest measure. We first define the
highest posterior density credible set and then prove its optimality.

Definition 6.6 The 100(1−α)% highest posterior density (HPD) credible set
for Θ is a C ∈ FΘ of the form

C = {θ ∈ ΩΘ : πΘ|X(θ|x) ≥ κα}
where κα is the largest constant such that P (Θ−1(C)|x) ≥ 1 − α; that is,

κα = sup
{
κ : PΘ|X(C(κ)|x) ≥ 1 − α

}
where C(κ) is the set {θ : πΘ|X(θ|x) ≥ κ}.
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Intuitively, when κ increases, the posterior probability of C decreases. The
critical point κα is the largest value of κ before P (C|x) drops below 1−α. The
following theorem shows that the measure of the HPD credible set is minimal.
The argument is somewhat similar to the Neyman Pearson Lemma.

Theorem 6.4 Suppose that πΘ(θ) > 0 on ΩΘ. Let C∗
α be a 100(1−α)% HPD

credible set and Cα be any 100(1−α)% credible set. Furthermore, assume that
PΘ|X(C∗

α|x) = 1 − α. Then μΘ(C∗
α) ≤ μΘ(Cα).

Proof. It suffices to show that any C ∈ FΘ with μΘ(C) < μΘ(C∗
α) cannot be

a 100(1 − α)% credible set. That is,

μΘ(C) < μΘ(C∗
α) ⇒ PΘ|X(C|x) < 1 − α.

Let C be a set in FΘ such that μΘ(C) < μΘ(C∗
α). Then

μΘ(C∗
α) = μΘ(C∗

α ∩ C) + μΘ(C∗
α \ C),

μΘ(C) = μΘ(C∗
α ∩ C) + μΘ(C \ C∗

α).

Because μΘ(C) < μΘ(C∗
α) we see that μΘ(C \ C∗

α) < μΘ(C∗
α \ C). Moreover,

by construction, πΘ|X(θ|x) ≥ κα on C∗
α \ C and πΘ|X(θ|x) ≤ κα on C \ C∗

α.
Hence

PΘ|X(C∗
α \ C|x) =

∫
C∗

α\C

πΘ|X(θ|x)dμΘ(θ)

≥καμΘ(C∗
α \ C)

>καμΘ(C \ C∗
α)

≥
∫

C\C∗
α

πΘ|X(θ|x)dμΘ(θ)

=PΘ|X(C \ C∗
α|x). (6.7)

Because

PΘ|X(C∗
α|x) = PΘ|X(C∗

α ∩ C|x) + PΘ|X(C∗
α \ C|x),

PΘ|X(C|x) = PΘ|X(C∗
α ∩ C|x) + PΘ|X(C \ C∗

α|x),

the inequality (6.7) implies PΘ|X(C|x) < PΘ|X(C∗
α|x) = 1 − α. So C is not a

(1 − α) × 100% credible set. �

Example 6.3 Consider the model in Example 5.5, where X1, . . . , Xn|λ, φ
are i.i.d. N(λ, φ) random variables, and the prior distribution of (Λ,Φ) is
determined by

Λ|φ ∼ N(a, φ/m), Φ ∼ τχ−2
(κ).
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In Example 5.5 we showed that
√

n + m(Λ − m(X))√
τ(X)/(n + κ)

|x ∼ t(n+k),

where

τ(x) =
n∑

i=1

(xi − x̄)2 + τ + (x̄ − a)2(m−1 + n−1)

m(x) = (nx̄ + ma)/(n + m).

So the 100(1 − α)% HPD credible set is
{

λ : −t(n+κ)(α/2) <

√
n + m(Λ − m(X))√

δ(X)/(n + κ)
< t(n+κ)(α/2)

}
.

It can be written as the interval(
m(x) − t(n+κ)(α/2)

√
δ(x)/[(n + κ)(n + m)],

m(x) + t(n+κ)(α/2)
√

δ(x)/[(n + κ)(n + m)]
)

.

Also, in Example 5.5 we derived that

Φ

τ(X)
|x ∼ χ−2

(n+κ)

So, if we let h(φ) denote the density of χ−2
(n+κ), then the 100(1 − α) percent

credible set has the form

(c1δ(x), c2τ(x))

where c1, c2 are the solutions to the equations

h(c1) = h(c2),
∫ c2

c1

h(φ)dφ = 1 − α,

which can be solved numerically. �

6.5 Hypothesis test

For hypothesis test the action space ΩA consists of only two actions, to accept
or to reject, which we denote by {a0, a1}. Similar to the frequentist setting,
the hypotheses are
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H0 : Θ ∈ Ω
(0)
Θ vs H1 : Θ ∈ Ω

(1)
Θ ,

where Ω
(0)
Θ ∈ FΘ and Ω

(0)
Θ ∩ Ω

(1)
Θ = ΩΘ. A commonly used loss function is

the 0-1 loss. That is, the loss is 1 if we make a wrong decision, and 0 if we
make a right decision. In symbols,

L(θ, a) =

{
0 if (θ, a) ∈ (Ω(0)

Θ × {a0}) ∪ (Ω(1)
Θ × {a1})

1 if (θ, a) ∈ (Ω(0)
Θ × {a1}) ∪ (Ω(1)

Θ × {a0})
(6.8)

A more nuanced loss function assigns different costs for two types of errors:
rejecting H0 when it is right (false positive), or accepting H0 when it is wrong
(false negative). In symbols,

L(θ, a) =

⎧⎪⎨
⎪⎩

0 if (θ, a) ∈ (Ω(0)
Θ × {a0}) ∪ (Ω(1)

Θ × {a1})
c0 if (θ, a) ∈ (Ω(0)

Θ × {a1})
c1 if (θ, a) ∈ (Ω(1)

Θ × {a0})
(6.9)

where c0 > 0 and c1 > 0 represent, respectively, the false positive cost and
false negative cost. Note that (6.8) is a special case of (6.9) with c0 = c1 = 1.
The next theorem gives the Bayes rule for the loss function (6.9).

Theorem 6.5 Suppose 0 < PΘ|X(Ω(0)
Θ |x) < 1 for all x ∈ ΩX . Then the

Bayes rule for loss function (6.9) is

dB(x) =

{
a0 if c1PΘ|X(Ω(1)

Θ |x) ≤ c0PΘ|X(Ω(0)
Θ |x)

a1 if c1PΘ|X(Ω(1)
Θ |x) > c0PΘ|X(Ω(0)

Θ |x)
(6.10)

Proof. Since the loss is bounded, by Theorem 5.8 we can calculate the Bayes
rule by minimizing the posterior expected loss (Section 5.6). For a = a0,

ρ(x, a0) = E[L(Θ, a0)|X]x

=
∫

Ω
(0)
Θ

0dPΘ|X(θ|x) +
∫

Ω
(1)
Θ

c1dPΘ|X(θ|x)

= c1PΘ|X(Ω(1)
Θ |x).

Similarly, ρ(x, a1) = c0PΘ|X(Ω(0)
Θ |x). So the Bayes rule for this problem is

dB(x) = argmin{ρ(x, a) : a ∈ {a0, a1}},
which is the same as (6.10). �

Since PΘ|X(Θ0|x) = 1−PΘ|X(Θ1|x), we can rewrite the Bayes rule (6.10)
as

dB(x) =

{
a0 if PΘ|X(Ω(1)

Θ |x) ≤ c0/(c0 + c1)
a1 if PΘ|X(Ω(1)

Θ |x) > c0/(c0 + c1)
(6.11)
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In some cases, Ω
(0)
Θ is a singleton or a finite set. For example for the two

sided hypothesis

H0 : Θ = θ0 vs H1 : Θ �= θ0, (6.12)

Ω
(0)
Θ is the singleton {θ0}. Any measure μΘ dominated by the Lebesgue mea-

sure will entail PΘ|X(Ω(0)
Θ |x) = 0, which violates the assumptions in Theorem

6.5. Thus to avoid this difficulty we must use a prior distribution not domi-
nated by the Lebesgue measure.

Definition 6.7 Let (Ω,F) be a measurable space and a ∈ Ω. The Dirac
measure for a is the set function

δa(B) =

{
0 if a /∈ B

1 if a ∈ B

It is left as an exercise to show that δa is indeed a measure on (Ω,F), and
for any F-measurable function we have

∫
Ω

f(ω)dδa(ω) = f(a).

Using the Dirac measure, we can construct a prior distribution PΘ with
nonzero mass at θ0, which gives rise to a posterior distribution that gives
nonzero mass at θ0. Let νΘ be a σ-finite measure on (ΩΘ,FΘ): the measure we
have in mind is one that is dominated by the Lebesgue measure. Suppose QΘ

is a probability measure on (ΩΘ,FΘ) dominated by νΘ. Let πΘ = dQΘ/dνΘ.
Let PΘ be the measure on (ΩΘ,FΘ) defined by

dPΘ = (1 − ε)dQΘ + εdδθ0 . (6.13)

As we will show in the next theorem, this prior distribution gives rise to a
posterior distribution that assign nonzero mass at θ0.

Theorem 6.6 Suppose the prior distribution PΘ is defined by (6.13), where
νΘ is dominated by the Lebesgue measure. Then the posterior probability of
the null set in the hypothesis (6.12) is

PΘ|X({θ0}|x) =
εfX|Θ(x|θ0)

(1 − ε)
∫

ΩΘ
fX|Θ(x|θ)πΘ(θ)dνΘ(θ) + εfX|Θ(x|θ0)

Proof. Let

τΘ(θ) =

{
πΘ(θ) if θ �= θ0

1 if θ = θ0
, μΘ = (1 − ε)νΘ + εδθ0 .

Then, for any B ∈ FΘ,
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∫
B

τΘ(θ)dμΘ(θ) = (1 − ε)
∫

B

τΘ(θ)dνΘ(θ) + εδθ0(B).

Since νΘ is dominated by the Lebesgue measure,
∫

B
τΘdνΘ =

∫
B

πΘdνΘ, and
the right hand side above becomes

(1 − ε)
∫

B

πΘ(θ)dνΘ(θ) + εδθ0(B) = PΘ(B).

This means PΘ  μΘ and dPΘ/dμΘ = τΘ. That is, τΘ is the prior density
of PΘ with respect to μΘ. The posterior density derived from τΘ and the
likelihood fX|Θ(θ|x) is then

τΘ|X(θ|x) =
fX|Θ(θ|x)τΘ(θ)∫

ΩΘ
fX|Θ(θ|x)τΘ(θ)dμΘ(θ)

, (6.14)

from which it follows that

PΘ|X({θ0}|x) =

∫
{θ0} fX|Θ(θ|x)τΘ(θ)dμΘ(θ)∫
ΩΘ

fX|Θ(θ|x)τΘ(θ)dμΘ(θ)
. (6.15)

Because τΘ is dominated by the Lebesgue measure we have the following
equalities:

∫
ΩΘ

fX|Θ(θ|x)τΘ(θ)dμΘ(θ)

= (1 − ε)
∫

ΩΘ

fΘ|X(θ|x)πΘ(θ)dνΘ(θ) + εfX|Θ(x|θ0)
(6.16)

and ∫
{θ0}

fX|Θ(θ|x)τΘ(θ)dμΘ(θ) = εfΘ|X(x|θ0). (6.17)

Substitute (6.16) and (6.17) into (6.15) to complete the proof. �

We can now construct the Bayes rule for the prior distribution defined by
(6.13) and the two-sided hypothesis (6.12).

Corollary 6.2 If the loss function is defined by (6.9) and the prior distribu-
tion PΘ is defined by (6.13) where νΘ is dominated by the Lebesgue measure,
then the Bayes for testing hypothesis (6.12) is defined by the rejection region

εfX|Θ(x|θ0)
(1 − ε)

∫
ΩΘ

fX|Θ(θ|x)πΘ(θ)dνΘ(θ) + εfX|Θ(x|θ0) <
c1

c0 + c1
(6.18)

We can also express the rejection rule (6.18) in terms of the posterior
density. Let πΘ|X denote the posterior density derived from πΘ and fX|Θ.



186 6 Bayesian Inference

Note that this is not the true posterior density, but rather the posterior density
derived from the continuous component of τΘ. In practice, this is usually the
continuous prior we assign when probability at θ0 being 0 is not of a concern.
We can now express the rejection rule (6.18) in terms on the πΘ|X .

Corollary 6.3 If π(θ0) �= 0, then the rejection region (6.18) can be expressed
as

επΘ|X(θ0|x)
(1 − ε)πΘ(θ0) + επΘ|X(θ0|x)

<
c0

c0 + c1
. (6.19)

Proof. Rewrite the density (6.14) as

τΘ|X(θ|x) =
fX|Θ(θ|x)πΘ(θ)(1 − I{θ0})(θ) + fX|Θ(x|θ0)I{θ0}
(1 − ε)

∫
ΩΘ

fX|Θ(θ|x)πΘ(θ)dνΘ(θ) + εfX|Θ(x|θ0) . (6.20)

Let fX be the marginal density of X derived from πΘ and fX|Θ; that is,

fX(x) =
∫

ΩΘ

fX|Θ(θ|x)τΘ(θ)dμΘ(θ).

Again, this is not the true marginal density, which is based on τΘ and fX|Θ.
Divide the numerator and denominator of (6.20) by fX(x), to obtain

τΘ|X(θ|x) =
πΘ|X(θ|x)(1 − I{θ0}(θ)) + [πΘ|X(θ0|x)/πΘ(θ0)]I{θ0}(θ)

(1 − ε) + επΘ|X(θ0|x)/πΘ(θ0)
.

Now take the integral
∫
{θ0}(· · · )dτΘ on both sides of the equation to complete

the proof. �

The next example illustrates the construction of one-sided and two-sided
tests.

Example 6.4 Suppose that X1, . . . , Xn|θ are i.i.d. Exp(θ) variables. Then
the likelihood function is

fX|Θ(x|θ) = θ−ne−t(x)/θ, where θ > 0 and t(x) =
∑n

i=1 xi.

Suppose Θ ∼ τχ−2
(m). Then it can be shown that (Problem 6.7)

Θ|x ∼ (2t(x) + τ)χ−2
(2n+m).

Suppose we want to test the one-sided hypothesis

H0 : Θ ≤ a vs H1 : Θ > a.

By (6.11), the Bayes rule has rejection region
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1 − F

(
a

2t(x) + τ

)
>

c1
c0 + c1

,

where F is the c.d.f. of χ−2
(2n+m). An alternative way to write this rule is

a < (τ + 2t(x))χ−2
(2n+m)(c1/(c0 + c1)).

To test the two sided hypothesis

H0 : Θ = a vs H1 : Θ �= a,

it is more convenient to use (6.19) than (6.18), because the form of πθ|X is
known. To use this rule we simply substitute πΘ(θ0) and πΘ|X by the densities
of τχ−2

(m) and (2t(x) + τ)χ−2
(2n+m). �

6.6 Classification

In a classification problem both the parameter space and the action space are
finite:

ΩΘ = {1, . . . , k}, ΩA = {a1, . . . , ak}.

As before, X is a p-dimensional random vector. Conditioning on Θ = θ, X has
distribution PX|Θ(·|θ) for θ = 1, . . . , k. The likelihoods PX|Θ(·|θ), θ = 1, . . . , k,
represent “classes” or “sub-populations”. These distributions describe k clus-
ters or data clouds in a p-dimensional space. Estimating Θ amounts to deter-
mining to which cluster a newly observed X belongs. An action aθ ∈ ΩA is
the action of choosing class θ. For simplicity, we write

ΩA = {1, . . . , k}

where each a ∈ ΩA is to be interpreted as “choosing class a”.
A distinct feature of the classification problem is that both the prior distri-

bution and the likelihood function are to be estimated from a training sample
or training data set, whereas the decision rule is to be applied to a sepa-
rate testing sample or testing data set. Because of this one might argue that
a classification procedure described here is not a truly Bayesian procedure.
Nevertheless, if we regard the training data as prior knowledge, then it is
Bayesian relative to this prior knowledge. Also note that this feature (of hav-
ing to estimate prior and likelihood function) should not be confused with the
empirical Bayes procedure to be discussed in the next section: in the latter
case, the prior is estimated by the same sample that is used for parameter
estimation.

The loss function in this setting can be represented by a matrix:
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L(i, j) = cij , where cij

{
= 0 if i = j

> 0 if i �= j
(6.21)

The next theorem gives the Bayes rule for this problem.

Theorem 6.7 The Bayes rule with respect to the loss function (6.21) is

dB(x) = argmin{a :
k∑

θ=1

cθafX|Θ(x|θ)πΘ(θ)}. (6.22)

Proof. Because the loss function is bounded, by Theorem 5.8 dB(x) is the
minimizer of the posterior expected loss ρ(x, a), which in this context takes
the form

ρ(x, a) = E(L(Θ, a)|X)θ =
k∑

θ=1

cθaπΘ|X(θ|x).

Thus

dB(x) = argmin{a : ρ(x, a)} = argmin{a :
k∑

θ=1

cθaπΘ|X(θ|x)}.

Because πΘ|X(θ|x) is proportional to fX|Θ(x|θ)πΘ(θ), where the proportion-
ality constant is independent of a, the above minimizer can be rewritten as
(6.22). �

To use the Bayes rule (6.22) we need to know the likelihood function fX|Θ
and the prior density πΘ. This is where the classification problem differs from
a typical Bayesian procedure. In actual classification problems the class label
does not fully specify the distribution of that class. We can think of k data
clouds situated in a p-dimensional space, with each cloud having a different
shape. The labels can only tell us cloud A, cloud B,. . . , but does not carry the
information about the shape of each cloud. Thus the distribution PX|Θ(·|θ)
requires an additional parameter (real- or vector-valued), say Ψ , to specify
itself. Let us then denote the likelihood as PX|ΘΨ , with Θ representing class
label and Ψ representing the additional parameter.

A training data set is one for which the class label for each X is known.
Thus, we have

Xθ1, . . . , Xθnθ
is an i.i.d. sample from PX|ΘΨ (·|θ, ψ), θ = 1, . . . , k.

We can then use the training data set

{Xθ1, . . . , Xθnθ
}, θ = 1, . . . , k,

to estimate Ψ , by either a Bayesian or a frequentist method. Denote this esti-
mate by ψ̂. The training sample also allows us to estimate the prior probability
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of each class. For example, a natural estimate is the proportion of the sample
size of a class relative to the total sample size:

π̂Θ(θ) = nθ/(n1 + · · · + nk).

We can then substitute PX|ΘΨ (·|θ, ψ̂) and π̂Θ(θ) into the Bayes rule (6.22) to
perform classification. That is,

d̂B(x) = argmin{a :
k∑

θ=1

cθafX|ΘΨ (x|θ, ψ̂)π̂Θ(θ)}, (6.23)

where fX|ΘΨ is the density of PX|ΘΨ .
Commonly used models for fX|ΘΨ are multivariate Normal distributions

with equal or unequal covariance matrices. That is,
{

N(μθ, Σ)
N(μθ, Σθ)

, θ = 1, . . . , k, (6.24)

where μθ are p-dimensional vectors and Σθ, Σ are p×p positive definite matri-
ces. The Bayes rule based on the first model (with common variance matrix)
is called linear discriminant analysis (LDA); that based on the second model
(with different variance matrices) is called quadratic discriminant analysis
(QDA). For example, if we use the UMVU estimates, then the estimates of
μθ and Σ for LDA are:

μ̂θ = n−1
θ

nθ∑
i=1

Xθi,

Σ̂ =

(
k∑

θ=1

nθ − k

)−1 k∑
θ=1

nθ∑
i=1

(Xθi − μ̂θ)(Xθi − μ̂θ)T ,

(6.25)

and the estimates of μθ and Σθ for QDA are:

μ̂θ = n−1
θ

nθ∑
i=1

Xθi,

Σ̂θ = (nθ − 1)−1
nθ∑
i=1

(Xθi − μ̂θ)(Xθi − μ̂θ)T .

(6.26)

It is left as an exercise (6.10) to show that these two sets of estimators are
indeed the UMVU estimators for the two models in (6.24). The reason for the
qualifiers linear and quadratic, is that, for LDA, d̂B(x) can be expressed in
terms of a linear function of x when k = 2; whereas for QDA, d̂B(x) can be
expressed in terms of a quadratic function of x when k = 2 (see Problems 6.8
and 6.9).
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LDA and QDA each have their own advantages for different distribution
shapes. If we imagine the k data clouds are all watermelon (or football) shaped,
then LDA works the best when these watermelons all have the same orienta-
tion and shape (but they can have different sizes), and QDA works the best
when these watermelons have different orientations, and have different shapes
(some longer, some rounder); they can also have different sizes.

6.7 Stein’s phenomenon

A phenomenon discovered by Stein in a short paper (Stein, 1956) turned out
to be highly influential in a wide range of subsequent developments, such as
shrinkage estimation and empirical Bayes. A lemma implicitly used in that
paper (see also Stein, 1981), the famous Stein’s lemma, is frequently used in
the area of sufficient dimension reduction (Li, 1992) and several other areas.
We devote this section to that result.

The phenomenon concerns the inadmissibility of a maximum likelihood
estimate based on the multivariate Normal distribution. We first state Stein’s
Lemma Stein (1981), which is a convenient method to demonstrate Stein’s
phenomenon. Although the lemma can be proved by a single line of integration
by parts, such a proof requires conditions quite strong. We will instead use
the original argument of Stein (1981) that relies on Fubini’s theorem, which
requires weaker assumptions than those used in the proof via integration by
parts.

Since the discussion of this section is largely in the realm of frequentist
decision theory, we tentatively revert to the frequentist notation. For example,
we use Pθ instead of PX|Θ(·|θ) to denote the conditional distribution of X
given θ.

Lemma 6.1 Suppose X is a Normally distributed random variable. Let g :
real → R be a function differentiable [λ], λ being the Lebesgue measure, and
its derivative ġ satisfies E|ġ(X)| < ∞. Then

cov(X, g(X)) = var(X)Eġ(X). (6.27)

Proof. First, assume X ∼ N(0, 1). Let φ denote the standard Normal density.
Let a be a point in R at which g is differentiable. Recall that φ̇(y) = −yφ(y).
We have

∫ ∞

−∞
ġφdx =

∫ a

−∞
ġφdx +

∫ ∞

a

ġφdx

=
∫ a

−∞
ġ(x)

∫ x

−∞
φ̇(z)dzdx −

∫ ∞

a

ġ(x)
∫ ∞

x

φ̇(z)dzdx.

By Fubini’s theorem, the right hand side is
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∫ a

−∞
φ̇(z)

∫ a

z

ġ(x)dxdz −
∫ ∞

a

φ̇(z)
∫ z

a

ġ(x)dxdz

=
∫ a

−∞
φ̇(z)(g(a) − g(z))dz −

∫ ∞

a

φ̇(z)(g(z) − g(a))dz

= −
∫ ∞

−∞
φ̇(z)g(z)dz

=
∫ ∞

−∞
zφ(z)g(z)dz.

This proves the theorem for the standard Normal case. Now suppose X ∼
N(μ, σ2). Then Z = (X − μ)/σ has a standard Normal distribution. Hence,
if we let g1(z) = g(σz + μ), then

cov(X, g(X)) = cov(σZ + μ, g1(Z))

= σcov(Z, g1(Z)) = σEġ1(Z) = σ2Eġ(X) = var(X)Eġ(X),

as to be demonstrated. �

We now generalize this lemma to the multivariate case.

Lemma 6.2 Suppose X is a p-dimensional random vector distributed as
N(θ, Ip). Suppose g : ΩX → R

q is a differentiable function such that the
components of ∂g/∂xT are integrable. Then

E[(X − EX)gT (X)] = E[∂gT (X)/∂x].

Proof. The (i, j)th entry of the matrix on the left is

E[(Xi − EXi)T gj(X)] = E{E[(Xi − EXi)T gj(X)|X
, � �= i]}.
Consider the conditional expectation

E[(Xi − EXi)gj(X)|X
 = x
, � �= i].

Because Xi is independent of {X
 : � �= i}, the above conditional expectation
is the unconditional expectation

E[(Xi − EXi)gj(x1, . . . , xi−1,Xi, xi+1, . . . , xp)],

which only involves one random variable Xi. By Lemma 6.1, the above ex-
pectation is the same as

E[∂gj(x1, . . . , xi−1,Xi, xi+1, . . . , xp)/∂xi] = E[∂gj(X)/∂xi|X
 = x
, � �= i].

In other words,

E[(Xi − EXi)gj(X)|X
, � �= i] = E[(∂gj(X)/∂xi|X
, � �= i].



192 6 Bayesian Inference

Now take expectation on both sides to complete the proof. �

We are now ready to state Stein’s paradox. Recall that, if X ∼ N(θ,Σ),
then X is the maximum likelihood estimate of θ. In fact, X is also the UMVU
estimator of θ. Stein (1956) showed that there is an estimator that is uniformly
better than X in terms of the frequentist risk R(θ, d) for the L2-loss.

Theorem 6.8 Suppose X ∼ N(θ, Ip), p ≥ 3, L(θ, a) = ‖θ − a‖2, and d(x) =
x. Then there is a decision rule d1 ∈ D such that

R(θ, d1) < R(θ, d), for all θ ∈ R.

Proof. Consider the alternative estimate

d1(x) = [1 − h(x)]x,

where h : R
p → R is a function to be specified later. For now we assume

nothing about h except that it must make d1 square integrable Pθ, and that
h(x)x must satisfy the conditions for g in Lemma 6.2. We have

R(θ, d1) =E‖X − θ − h(X)X‖2
=R(θ, d) − 2E[(X − θ)T h(X)X] + E[h2(X)‖X‖2]. (6.28)

By Lemma 6.2,

E[(X − θ)T h(X)X] = tr[E(X − θ)h(X)XT ]

= tr{XE[∂h(X)/∂xT + h(X)Ip]}
= E[(∂h(X)/∂xT )X] + pEh(X).

Hence

R(θ, d1) = R(θ, d) − 2E[(∂h/∂xT )X] − 2pEh(X) + E[h2(X)‖X‖2].
Let h(x) = α/‖x‖2. Then h is differentiable and the derivative is integrable,
so that the above equality holds for this particular choice. Using the form of
h we find, after some elementary computation,

− 2(∂h/∂xT )x − 2ph(x) + h2(x)‖x‖2 =
α(4 − 2p + α)

‖x‖2 .

Substitute this into the (6.28) to obtain

R(θ, d1) − R(θ, d) = α(4 − 2p + α)E(‖X‖−2).

The right hand side is negative if 0 < α < 2p − 4, which is possible because
p ≥ 3. For example, if we take α = p − 2, then R(θ, d1) < R(θ, d) for all
θ ∈ R

p. �

The choice α = p − 2 in the proof leads to the estimator

d1(x) =
(

1 − p − 2
‖x‖2

)
x, (6.29)

which is called the James-Stein estimator (James and Stein, 1961).
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6.8 Empirical Bayes

In the Bayes procedures described in the previous sections the prior distribu-
tion PΘ is assumed known — except for the classification problem in Section
6.6 where it is estimated from the training set. Even if we think of the training
set as prior knowledge, PΘ has a known form. In the empirical Bayes method
the prior distribution is estimated from the same sample that will be used for
estimation of the parameter Θ. Specifically, suppose

{PΘ,b : b ∈ ΩB}

is a parametric family of prior distributions defined on the sample space ΩB .
Then, for a b ∈ ΩB , the density of X is

fX,b(x) =
∫

ΩΘ

fX|Θ(x|θ)πΘ,b(θ)dμΘ(θ).

Thus we have a parametric family of probability distributions indexed by b:

{fX,b(x) : b ∈ ΩB}.

We can then use a frequentist method to estimate b from this family. For
example, we can estimate b by the maximum likelihood estimate, the moment
estimate, or the UMVU estimate described in Chapter 2. Once an estimate b̂
is obtained in this way, we then draw statistical inference about Θ using the
posterior density

πΘ|X,b =
fX|Θ(θ|x)πΘ,b(θ)

fX,b(x)
,

with b replaced by b̂. This procedure is called the Empirical Bayes procedure.
See Robbins (1955); Efron and Morris (1973), and Berger (1985, Section 4.5).

The empirical Bayes method is especially useful when we have a large
number of parameters — as many parameters as the sample size n or even
more. These parameters cannot be estimated accurately unless we introduce
some structures to them. Assigning these parameters a prior distribution with
a common parameter b is an effective way of building such a structure.

The next example shows that the James-Stein estimator described in the
last section can be derived as an empirical Bayes estimator with b estimated
by the UMVUE (Efron and Morris, 1973).

Example 6.5 Suppose that X1, . . . , Xp|Θ are independent random variables,
where Θ = (Θ1, . . . Θp)T . Also assume:

1. Θ1 · · · Θp;
2. Xi|Θ = θ ∼ N(θi, 1);
3. Θi ∼ N(0, b).
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Note that assumption 2 also implies Xi Θ(−i)|Θi, where Θ(−i) denote the
vector Θ with its i-th component removed. Under these assumptions the like-
lihood function and the prior density can be simplified as

fX|Θ(x|θ) =
p∏

i=1

fXi|Θ(xi|θ) =
p∏

i=1

fXi|Θi
(xi|θi),

πΘ,b =
p∏

i=1

πΘi,b(θi).

Hence the marginal density fX,b(x) is

fX,b(x) =
p∏

i=1

∫
R

fXi|Θi
(xi|θi)πΘi,b(θi)dPΘi,b =

p∏
i=1

fXi,b(xi).

The posterior density is

πΘ|X,b(θ|X) =
p∏

i=1

fXi|Θi
(xi|θi)πΘi,b(θi)/fXi,b(xi) =

p∏
i=1

πΘ|X,b(θi|xi, b).

The Bayes rule with respect to the L2-loss L(θ, a) = ‖θ − a‖2 loss is

dB(x) = E(Θ|X)x = (E(Θ1|X)x, . . . , E(Θp|X)x),

where each component is

E(Θj |X)x =
∫
Rp

θj

p∏
i=1

πΘ|X,b(θi|xi)dθ1 · · · dθp

=
∫
R

θjπΘj |Xj ,b(θj |xj , b)dθj

= E(Θj |Xj)xj
.

By Example 5.1,

Θj |xj ∼ N

(
xj

b−1 + 1
,

1
b−1 + 1

)
.

So the Bayes rule is

dB(x) =
(

1
b−1 + 1

)
x =

(
1 − 1

1 + b

)
x. (6.30)

Now let us derive the UMVU estimate for b. By Example 5.1 again, the
marginal distribution of Xi is N(0, b + 1). Hence S =

∑p
i=1 X2

i is complete
and sufficient for b. Moreover, S/(b+1) ∼ χ2

(p), which implies (b+1)/S ∼ χ−2
(p).

Hence, by Problem 6.5,
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E((b + 1)/S) = 1/(p − 2) ⇒ E((p − 2)/S) = 1/(p − 2).

Because S is complete and sufficient, by Corollary 2.2, (p−2)/S is the UMVUE
for 1/(b+1). Substituting this estimate for 1/(b+1) into the Bayes rule (6.30)
yields the James-Stein estimate (6.29). �

This method can be generalized to θi ∼ N(b1, b2), where b1 ∈ R, b2 > 0 are
unknown, as well as to the regression setting. Interested readers can consult
Morris (1983) and Berger (1985, Section 4.5). Some of these generalizations
are given as exercises.

Problems

6.1. Suppose X1, . . . , Xn are an independent sample from U(0, θ). Let π(θ)
be the Pareto(θ0, α) distribution, defined by

π(θ) =
α

θ0

(
θ0
θ

)α+1

I(θ0,∞)(θ), α > 0, θ0 > 0.

1. Find the posterior density π(θ|X1, . . . , Xn).
2. Assuming α > 2, find the Bayes estimate of θ with respect to the L2 loss

L(θ, a) = (θ − a)2.
3. Assuming α > 1, find the Bayes estimate of θ with respect to the L1-loss

L(θ, a) = |θ − a|.
4. Find the Generalized MLE for θ.
5. For what values of α are the Generalized MLE, the Bayes estimates based

on L1 and L2 losses approximately the same?
6. Let 0 < γ < 1. Find the (1 − γ)-level HPD credible set for θ.
7. Derive the Bayes rule (in the form of rejection region) for testing the

hypothesis

H0 : θ ≤ 2θ0 vs H1 : θ > 2θ0.

Use the loss function (6.9) with c0 = 0, c1 = 1, c2 = 2. Make the answer
as explicit as possible.

8. Derive the Bayes rule for testing the hypothesis

H0 : θ = 2θ0 vs H1 : θ �= 2θ0

use the same loss function and the prior distribution (6.13).

6.2. Let X1, . . . , Xn be an i.i.d. sample from N(μ, φ), and let Y1, . . . , Ym be
an i.i.d. sample from N(ν, ψ). Here, μ and ν are treated as parameters, and
φ and ψ as known constants. Suppose we know μ ≤ ν, and would like to
incorporate this prior knowledge into the estimation process. For example,
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if we are to estimate the population means of men’s heights and women’s
heights, as represented by μ and ν respectively, then it is quite reasonable to
assume μ ≥ ν. Assign (μ, ν) the improper prior

πΘ(μ, ν) = I(μ ≤ ν).

Derive the Bayes rule for estimating (μ, ν).
Hint: Let δ = ν − μ. Then the problem becomes that of deriving E(μ|X)

and E(μ + δ|X). The corresponding improper prior is

πΘ(μ, δ) = I(δ ≥ 0).

6.3. Prove that, under the assumptions of Theorem 6.1, the Bayes estimator
(6.2) is unique modulo P .

6.4. Suppose U is a random variable defined on (Ω,F , P ) taking values in
ΩU , and U is integrable with respect to P . Let L(θ, a) be the loss function
(6.4). Show that, if q satisfies

F (q) ≥ α1/(α1 + α2), F (q−) ≤ α1/(α1 + α2),

then ∫
ΩU

|q − U |dP ≤
∫

ΩU

|a − U |dP

for all a ∈ ΩU .

6.5. Suppose X ∼ χ−2
(m).

1. Show that if m > 2 then X is integrable and E(X) = (m − 2)−1.
2. Show that if m > 4 then X has finite variance and

var(X) = 2(m − 2)−2(m − 4)−1.

3. Show that the mode of the density of X is (m + 2)−1.

6.6. Suppose Θ is square integrable with respect to P and d ∈ D. Show that
(6.6) holds.

6.7. Suppose X1, . . . , Xn|θ are i.i.d. Exp(θ) random variables and Θ ∼ τχ−2
(m).

Show that

Θ|x ∼ (2t(x) + τ)χ−2
(2n+m),

where t(x) =
∑n

i=1 xi.
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6.8. Show that, under the first model in (6.24) and k = 2, the Bayes rule d̂B

based on (6.25) can be rewritten as

d̂B(x) =

{
1 if (x − (μ̂1 + μ̂2)/2)T Σ̂−1(μ̂2 − μ̂1) ≤ log[c21n1/(c12n2)]
2 if (x − (μ̂1 + μ̂2)/2)T Σ̂−1(μ̂2 − μ̂1) > log[c21n1/(c12n2)].

Note that, when

c21n1 = c12n2, (6.31)

the Bayes rule reduces to

d̂B(x) = 1 iff g(x) ≤ g((μ̂1 + μ̂2)/2),

where

g(x) = xT Σ̂−1(μ̂2 − μ̂1).

This function is linear in x, an is called Fisher’s linear discriminant function
(Fisher, 1935).

6.9. Show that, under the second model in (6.24), k = 2, and (6.31), the Bayes
rule d̂B(x) based on (6.26) takes action 1 if and only

(x − μ̂1)T Σ̂−1
1 (x − μ̂1) − (x − μ̂2)T Σ̂−1

1 (x − μ̂2) ≤ det(Σ̂2) − det(Σ̂2).

The left hand side is a quadratic function of x, and is called the quadratic
discriminant function.

6.10. Let
Xi1, . . . , Xini

, i = 1, . . . , k

be p dimensional random vectors. Assume:

a. for each i, Xi1, . . . , Xini
are an i.i.d. N(μi, Σi);

b. for i �= j,
{Xi1, . . . , Xini

} {Xj1, . . . , Xjnj
}.

For each i = 1, . . . , k, let

μ̂i = n−1
i

ni∑

=1

Xi
, Σ̂i = (ni − 1)−1
ni∑


=1

(Xi
 − μ̂i)(Xi
 − μ̂i)T .

Also, let n = n1 + · · · + nk. Prove the following statements:

1. The statistic
{(μ̂i, Σ̂i) : i = 1, . . . k}

is the UMVU estimator of {(μi, Σi) : i = 1, . . . , k}.
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2. If Σ1 = · · · = Σk, then the statistic
(

μ̂1, . . . , μ̂k,

∑k
θ=1(nθ − 1)Σ̂θ∑k

θ=1 nθ − 1

)

is the UMVU estimator for (μ1, . . . , μk, Σ).

6.11. Prove the following variations of Stein’s lemma. Suppose that X is a
random variable distributed as N(θ, 1). Then the following equalities hold.

1. If g : R → R is twice differentiable [λ], λ being the Lebesgue measure, and
|g(X)| and |g(2)| have finite expectations, then

E[(X − EX)2g(X)] = E[g(X) + g(2)(X)].

2. If, in addition, g is four times differentiable [λ] and |g(4)| has a finite
expectation, then

E[(X − θ)4g(X)] = E[3g(X) + 6g(2) + g(4)(X)].

6.12. Suppose X is a p-dimensional multivariate Normal random vector and
g : Rp → R

p is differentiable modulo λ, the Lebesgue measure on (Rp,Rp).
Suppose the entries of ∂gT /∂x are integrable. Then

cov[X, g(X)] = var(X)E[∂gT (X)/∂x].

6.13. The Beta prime distribution is defined by the density function

f(x) = xα−1(x + 1)−α−β , x > 0, α > 0, β > 0,

which we write as Beta′(α, β).

1. Show that if X ∼ Beta′(α, β) and β > 1, then X is integrable and

E(X) = α/(β − 1).

2. Show that if X ∼ Beta′(α, β) and β > 2 then X has finite variance and

var(X) =
α(α + β − 1)

(β − 2)(β − 1)2
.

3. Show that, if S|φ ∼ φχ2
(n) and Φ ∼ τχ−2

(m), then

S

τ
∼ Beta′(n/2,m/2).

6.14. Suppose φ = (φ1, . . . , φn), where the n components are i.i.d. τχ−2
(m)

random variables. Suppose S1, . . . , Sn|φ are independent random variables
with Si|φ ∼ φiχ

−2
(ni−1). Here Si may be the sum of the squared errors of an

i.i.d. sample Xi1, . . . , Xini
∼ N(μi, φi) from the ith group.
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1. Assuming τ is known, derive a Bayes rule for estimating φ.
2. Use the result of Problem 6.13 to find an unbiased estimate of τ of the

form

τ̂ =
n∑

i=1

wiSi.

3. Construct an empirical Bayes estimate of φ based on parts 1 and 2.

6.15. Suppose θ1, . . . , θn are i.i.d. N(b1, b2) random variables, where b1 ∈ R

and b2 > 0. Let θ = (θ1, . . . , θn). Suppose X1, . . . , Xn|θ are independent and
Xi|θ ∼ N(θi, 1).

1. Assuming b1 and b2 are known, derive a Bayes rule for estimating θ.
2. Find the marginal distribution of (X1, . . . , Xn) for a fixed (b1, b2). Based

on this distribution find the UMVU estimates of (b1, b2).
3. Construct an empirical Bayes rule for estimating θ based on the above

two parts.

6.16. Suppose θ1, . . . , θn are independent random variables with θi∼N(βxi, τ),
where β is a parameter, τ > 0 is a known constants, and x1, . . . , xn are con-
stants. Suppose Y1, . . . , Yn|θ are independent with Yi|θ ∼ N(θi, φ), where
φ > 0 is known.

1. Pretending β is known, derive a Bayes rule for estimating θ.
2. For each fixed β, derive the marginal distribution of (Y1, . . . , Yn). Based

on this distribution derive the UMVU estimate for β.
3. Construct an empirical Bayes estimate for θ based on Parts 1 and 2.
4. Construct a test for the hypothesis H0 : θ1 ≤ 0 vs H1 : θ1 > 0.
5. Construct a test for the hypothesis H0 : θ1 = 0 vs H1 : θ1 �= 0.

6.17. Suppose

1. λ|φ ∼ N(b1, φ/m), b1 ∈ R.
2. φ ∼ b2χ

−2
(k), b2 > 0.

3. T |φ, λ ∼ N(λ, φ/n).
4. S|φ, λ ∼ φχ2

(n−1).
5. S T |λ, φ.

Prove the following statements:

1. T S|φ.
2. T |s ∼ t(n−1+k)(b1, (n−1 + m−1)s/(n − 1)).
3. S ∼ b2 Beta′((n − 1)/2, k/2).

6.18. Suppose θ1, . . . , θn are independent 2-dimensional random vectors. Let
θi = (λi, φi). Let

θ = (θ1, . . . , θn), φ = (φ1, . . . , φn), λ = (λ1, . . . , λn).
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Suppose

Λi|φi ∼ N(b1, φi/m), Φi ∼ b2χ
−2
(k), b1 ∈ R, b2 > 0.

Suppose (S1, T1), . . . , (Sn, Tn) are 2-dimensional random vectors satisfying

1. (S1, T1) · · · (Sn, Tn)|θ.
2. (Si, Ti) θ(−i)|θi.
3. Si|θi ∼ φiχ

2
(ni−1).

4. Ti|θi ∼ N(λi, φi/ni).

Solve the following problems.

1. Assuming b1, b2 are known, derive a Bayes rule for estimating θ.
2. Use the result of Problem 6.17 to derive the joint distribution of

(S1, T1), . . . , (S1, T1)

(this is a distribution not conditioned on θ).
3. Use part 2 to derive an unbiased estimate of b1, b2.
4. Derive the empirical Bayes estimate of θ.
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Asymptotic tools and projections

In this chapter we review some crucial results about limit theorems in proba-
bility theory, which will be used repeatedly in the rest of the book. The limit
theorems include those about convergence in probability, almost everywhere
convergence, and convergence in distribution. For further information about
the content of this chapter, see Serfling (1980) and Billingsley (1995).

We shall also review some basic results on projections in Hilbert spaces.

7.1 Laws of Large Numbers

Let ‖ · ‖ denote the Euclidean norm.

Definition 7.1 The sequence Xn of random vectors is said to converge in
probability to a random vector X if for any ε > 0

lim
n→∞P (‖Xn − X‖ > ε) = 0.

This convergence is expressed as Xn
P→ X.

Thus convergence in probability means that, as n → ∞, the distributions
of the random vectors Xn−X are increasingly concentrated at the origin: the
probability of ‖Xn − X‖ escaping outside of any interval (−ε, ε) goes to 0.

In most cases, the limit random vector X is a constant vector. Convergence
in probability in these cases is often proved by the Weak Law of Large Num-
bers (WLLN). A proof of this depends on few useful probability inequalities,
which are presented below.

Lemma 7.1 (Markov’s inequality) If U ≥ 0 is a random variable with
E(U) < ∞, then for any ε > 0,

P (U > ε) ≤ ε−1E(U). (7.1)
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Proof. For any ε > 0,

P (U > ε) =
∫

U>ε

dP ≤
∫

U>ε

(U/ε) dP ≤ ε−1E(U),

as desired. �

Chebyshev’s inequality given in the next lemma is an easy consequence of
lemma 7.1.

Lemma 7.2 (Chebyshev’s inequality) Suppose X is a random variable
with finite variance. Then P (|X − E(X)| > ε) ≤ ε−2 var(X). �

From this inequality we can easily derive the Chebyshev’s Weak Law of
Large Numbers for random variables. A similar result for random vectors
follow easily by applying the result on random variables coordinate-wise.

Theorem 7.1 (Weak Law of Large Numbers) Let {X1,X2, . . .} be a se-
quence of uncorrelated random variables with finite second moments; that is,

E(X2
i ) < ∞, cov(Xi,Xj) = 0, i �= j.

If limn→∞ n−2
∑n

i=1 var(Xi) = 0, then

1
n

n∑
i=1

(Xi − E(Xi))
P→ 0.

Proof. Let Yi = Xi − E(Xi). Then

(
1
n

n∑
i=1

Yi

)2

=
1
n2

n∑
i=1

Y 2
i +

2
n2

n∑
i<j

YiYj .

Since Xi and Xj are uncorrelated, Yi and Yj are also uncorrelated. Thus

var

(
1
n

n∑
i=1

Xi

)
=

1
n2

n∑
i=1

var(Xi) → 0.

The theorem now follows from Lemma 7.2. �

A stronger mode of convergence of sequence of random variables is the
almost everywhere convergence.

Definition 7.2 A sequence of random variables Xn converges almost every-
where to a random variable X if P (limn→∞ |Xn − X| = 0) = 1.

If this definition is satisfied then we write Xn → X [P ].
Before focusing on almost everywhere convergence results for sample

means, let us first review limits of sets and the Borel-Cantelli Lemma.
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Definition 7.3 For a sequence An of measurable sets,

lim sup
n→∞

An = {ω : ω ∈ Ak, for infinitely many k},
lim inf
n→∞ An = {ω : ω ∈ Ak, for all but finitely many k}.

It is easy to establish that

lim inf
n→∞ An =

∞⋃
n=1

∞⋂
k=n

Ak ⊂ lim sup
n→∞

An =
∞⋂

n=1

∞⋃
k=n

Ak.

Lemma 7.3 (Borel-Cantelli Lemma) If
∑∞

n=1 P (An) < ∞, then

P

(
lim sup

n→∞
An

)
= 0. (7.2)

Proof. Note that the probability on the left hand side of (7.2) is no more than
P (∪∞

k=nAk) for any n, which is bounded from above by the sum
∑∞

k=n P (Ak).
This sum converges to 0 provided

∑∞
n=1 P (An) < ∞. �

Results concerning almost everywhere convergence of sums of random ele-
ments are called strong laws of large numbers (SLLN). A version of SLLN
can be proved along the lines of the proof for the weak law, but it is not the
most general one. Because the method is simple and exemplifies the use of
Markov inequality combined with Borel-Cantelli Lemma, we choose to prove
this version. We will state a more general version without proof later.

Theorem 7.2 (Strong Law of Large Numbers) If X1,X2, . . . is a se-
quence of independent and identically distributed (i.i.d.) random variables and
Xi has finite fourth moment, then n−1

∑n
i=1 Xi → E(X1) almost everywhere.

Henceforth, we will use EnX to denote the sample average n−1
∑n

i=1 Xi.
This notation is motivated by the fact that the sample average is in fact
the expectation of X with respect to the empirical distribution that assign
probability mass 1/n at each observation Xi.

Proof. If necessary by subtracting its expected value from Xi, we assume,
without loss of generality that E(Xi) = 0. Note that a sequence of numbers,
say xn, converges to 0 if there is a nonnegative sequence of numbers, say αn

such that αn → 0 and, for all large n, |xn| ≤ αn. So it suffices to show that
there is a nonnegative sequence αn, which converges to 0, such that

P (|En(X)| > αn for infinitely many n) = 0. (7.3)

By Markov’s inequality, we have

P (|En(X)| > αn) ≤ P (|(En(X))4 > α4
n) ≤ α−4

n E(En(X))4. (7.4)
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To get an upper bound for E(En(X))4, let Sn =
∑n

i=1 Xi. Since Xi are i.i.d.
with mean 0, we have E(XnS3

n−1) = 0 = E(X3
nSn−1),

E(X2
nS2

n−1) = E(X2
n)E(S2

n−1), and for any m,E(S2
m) = mE(X2

1 ).

Hence for some constant K > 0,

E(S4
n) = E(SnS3

n) =
∑n

i=1 E(XiS
3
n) = nE(XnS3

n)

= nE(Xn(Xn + Sn−1)3)

= nE(Xn(X3
n + 3XnS2

n−1 + 3X2
nSn−1 + S3

n−1)

= nE(X4
n) + 3nE(X2

n)E(S2
n−1)

= nE(X4
1 ) + 3nE(X2

1 )(n − 1)E(X2
1 )

= nE(X4
1 ) + 3n(n − 1)(E(X2

1 ))2 < Kn2. (7.5)

By taking αn = n−1/8, it follows from equations (7.4) and (7.5) that

∞∑
n=1

P (|En(X)| > αn) ≤
∞∑

n=1

Kα−4
n n−2 ≤ K

∞∑
n=1

n−3/2 < ∞.

The theorem now follows from Borel-Cantelli lemma and (7.3). �

Theorem 7.2 can be established under a weaker assumption of finite first
moment. A proof of the next theorem, called Kolmogorov’s SLLN, can be
found in Billingsley (1995, page 282).

Theorem 7.3 If X1,X2, . . . are i.i.d. random variables with E|Xi| < ∞, then
En(X) → E(X) almost everywhere.

By considering coordinate-wise convergence, the above theorem can be
extended to random vectors

Theorem 7.4 If X1,X2, . . . are i.i.d. random vectors with E‖Xi‖ < ∞, then
En(X) → E(X) almost everywhere.

It is easy to see that convergence almost everywhere implies convergence in
probability (see Problem 7.3). We record this fact below for future reference.

Corollary 7.1 Let X1,X2, . . . be an i.i.d. sequence or random vectors, where
E‖X1‖ < ∞. Then EnX

P→ E(X1).

7.2 Convergence in distribution

Convergence of a sequence random vectors means, roughly, that the distri-
bution of Xn converges to that of X. However, this intuitive statement has
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severe limitations. Consider the sequence of random variables {Xn} that is
distributed as N(0, 1/n). Here, it is intuitively clear that these distributions
converge to a probability measure assigning mass 1 at 0. Hence the limiting
distribution should be F (x) = I[0,∞)(x). However, if we denote by Fn the
cumulative distribution function of N(0, 1/n), then Fn(0) = 1/2 for all n,
and therefore does not tend to F (0), which equals 1. So a precise definition
of convergence in distribution or weak convergence should take care of this
caveat.

We first define weak convergence of a sequence of probability measures.
As before, let N denote the set of positive integers {1, 2, . . .}.
Definition 7.4 Let {μn : n ∈ N} and μ be probability measures on (Rp,Rp).
We say that μn converges weakly to μ and write μn ⇒ μ if, for any bounded
and continuous function f on R

p,
∫

fdμn → ∫
fdμ.

For a set A, let ∂A = Ā \ A◦ denote the boundary of A, where Ā is the
closure of A, and A◦ is the interior of A. As will be seen in the Portman-
teau Theorem stated later, μn converges weakly to μ if and only if, for any
measurable set A with μ(∂A) = 0, μn(A) → μ(A). This successfully avoids
the caveat we mentioned at the beginning of this section: if A = {0}, then
∂A = {0}, and μ(∂A) = 1. It is easy to check in that example that for any
set A ∈ R except A = {0} we have μn(A) → μ(A). Thus N(0, 1/n) indeed
converges weakly to the point mass at 0 even though the c.d.f. of N(0, 1/n)
at 0 does not converge to 1.

A sequence of p-dimensional random vectors {Xn} defined on probability
spaces (Ωn,Fn, Pn) converges in distribution to a random vector X defined
on a probability space (Ω,F , P ) if and only if the probability distributions
Pn ◦ X−1

n on (Rp,Rp) converges weakly to P ◦X−1. In symbols, Xn
D→ X if

and only if Pn ◦ X−1
n ⇒ P ◦X−1. If Q is a probability measure on (Rp,Rp),

and if Pn◦X−1
n ⇒ Q, then we also use the notation Xn

D→ Q.
A special case of convergence in distribution is Xn

D→ X, where X is
a degenerate random variable; that is, X = a almost everywhere for some
constant a. Then it can be shown that P (X = a) = 1 if and only if the
distribution P ◦X−1 is δa, the Dirac measure at a. Thus, the meaning of Xn

D→
X in this case is simply Xn

D→ δa. Furthermore, it can be shown that Xn
D→ δa

if and only if Xn
P→ a. See Problem 7.4.

The spaces (Ωn,Fn, Pn) and (Ω,F , P ) do not appear directly, but only
by way of the distributions they induce on the range space. In view of this,
there is no source of confusion if we drop the subscripts from Pn and EPn

. So
from now on, for example, we simply write E(Xn) for expectation instead of
EPn

(Xn). We return to explicit mention of Pn and EPn
(Xn) in Chapter 10.

In general, convergence in distribution is weaker than convergence in prob-
ability. That is, if Xn

P→ X for some random vector X, then Xn
D→ X. See

Problem 7.5.
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Often, results on weak convergence of random variables can be simplified
by using the next theorem, known as Skorohod’s Theorem. See Billingsley
(1995, Theorem 25.6).

Theorem 7.5 (Skorohod Theorem) Suppose a sequence of probability mea-
sures {νn} on the real-line converges weakly to a probability measure ν. Then
there exist random variables Yn and Y defined on a common probability
space (Ω,F , P ) such that Yn has distribution νn, Y has distribution ν, and
Yn(ω) → Y (ω) for all ω ∈ Ω.

In particular, if a sequence of random variables Xn
D→ X, where Xn has

distribution Fn and X has distribution F , then there exist random variables
Yn and Y defined on a common space Ω such that Yn has distribution Fn, Y
has distribution F , and Yn(ω) → Y (ω) for all ω ∈ Ω. Combining this with
Fatou’s Lemma 1.6 and Bounded Convergence Theorem (Theorem 1.8), we
get the following result. Proof is left as an exercise.

Lemma 7.4 Let {Xn} be a sequence of random variables such that Xn
D→ X.

Then
E(|X|) ≤ lim inf

n→∞ E(|Xn|).
If, in addition, |Xn| are uniformly bounded (that is, for some M > 0, then by
|Xn| ≤ M for all n), then

E(Xn) → E(X).

Skorohod’s Theorem also holds for random vectors.
There are several equivalent conditions to the definition of weak conver-

gence, and depending on context, each may be more useful than the others,
either as a tool to work with, or as a goal to work towards. These statements
are collectively called the Portmanteau theorem (See Billingsley, 1999, pages
16 and 26). Let h be a real-valued function. Let Dh be the collection of points
at which h is discontinuous, that is, Dh = {x : h is discontinuous at x}. We
say that a set A ∈ Rp is a P ◦X−1-continuity set of P ◦X−1(∂A) = 0. We first
define the upper and lower semi-continuity.

Definition 7.5 A function f is said to be upper semi-continuous at x if, for
any sequence xn → x, lim supn→∞ f(xn) ≤ f(x).
A function f is called lower semi-continuous at x if, for any sequence xn → x,
lim infn→∞ f(xn) ≥ f(x).

Theorem 7.6 (Portmanteau Theorem) Let {Xn : n ∈ N} be a sequence
of random vectors, and X a random vector. The following statements are
equivalent:

1. Xn
D→ X;

2. Eh(Xn) → Eh(X) for any bounded and uniformly continuous function h;
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3. For any P ◦X−1-continuity set A, limn→∞ P (Xn ∈ A) = P (X ∈ A);
4. For any closed set F , lim supn→∞ P (Xn ∈ F ) ≤ P (X ∈ F );
5. For any open set G, lim infn→∞ P (Xn ∈ G) ≥ P (X ∈ G);
6. for any upper semi-continuous function h that is bounded from above, we

have lim supn→∞ Eh(Xn) ≤ Eh(X);
7. For any lower semi-continuous function h that is bounded from below, we

have lim infn→∞ Eh(Xn) ≥ Eh(X).

Statements 5 and 7 are easy consequences of Lemma 7.4 under condition
1. The statements in the above theorem are in terms of convergence in dis-
tribution of Xn to X, but they can be equivalently stated in terms of weak
convergence of probability measures Pn to P defined on (Rp,Rp). For exam-
ple, the first five statements can be reformulated as

1. Pn ⇒ P ;
2.
∫

fdPn → ∫
fdP for every bounded and uniformly continuous function f ;

3. limn→∞ Pn(A) = P (A) for any A ∈ Rp with P (∂A) = 0;
4. lim supn→∞ Pn(F ) ≤ P (F ) for any closed set F in R

p;
5. lim infn→∞ Pn(G) ≥ P (G) for any open set G in R

p.

The rest of the theorem can be similarly translated in terms of probability
measures.

The Portmanteau theorem is a fundamental result and is extremely useful.
Many important results in asymptotic analysis can be derived from them.
Below we derive several of these results, both because of their importance
in future discussion and as exercises to practice the use of the Portmanteau
theorem.

The first result is the Continuous Mapping Theorem, which says that if
Xn

D→ X and h is a continuous function then h(Xn) D→ h(X). This is easily
seen using the Portmanteau theorem. Since h is continuous, h−1(G) is open
whenever G is open. Thus

lim inf
n→∞ P (h(Xn) ∈ G) = lim inf

n→∞ P (Xn ∈ h−1(G))

≥ P (X ∈ h−1(G)) = P (h(X) ∈ G).

Hence h(Xn) D→ h(X) by the Portmanteau theorem.
We record below without proof a more general version of the Continuous

Mapping Theorem. The proof is in the same spirit as the last paragraph.

Proposition 7.1 (Continuous Mapping Theorem) Suppose h is a vec-
tor valued function such that P (X ∈ Dh) = 0.

1. If Xn → X almost everywhere, then h(Xn) → h(X) almost everywhere.
2. If Xn

D→ X, then h(Xn) D→ h(X).
3. If Xn

P→ X, then h(Xn) P→ h(X).
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The proof of part 1 of this proposition is relatively straightforward, and
is left as an exercise. Part 2 follows from part 1 and k-dimensional version of
Skorohod Theorem (see Theorem 7.5). A complete proof of the above theorem
can be found in Serfling (1980).

Sometimes we want to know whether

Xn
D→ X, Yn

D→ Y ⇒ (Xn, Yn) D→ (X,Y ).

Obviously this cannot be true generally. In fact, we don’t even know what
(X,Y ) means — even if X and Y are well defined individually, it does not
specify anything about what happens between them. However, in some special
cases X and Y does specify (X,Y ). For example, if Y is a constant vector then
(X,Y ) is well defined. The question now is whether (Xn, Yn) D→ (X,Y ) in this
case. We are interested in this because many statistics we use, such as the
studentized statistics, involve two sequences with one converging to a random
vector and another converging to a constant vector. Using the Portmanteau
Theorem we can answer this question reasonably easily.

Theorem 7.7 Let {Xn} be a sequence of random vectors in R
p and let {Yn}

be a sequence of random vectors in R
q.

1. If p = q, Xn
D→ X and ‖Xn − Yn‖ P→ 0, then Yn

D→ X.
2. If Xn

D→ X and Yn
P→ c for some constant c ∈ R

q, then (Xn, Yn) D→ (X, c).

Proof. 1. We will use the third assertion of the Portmanteau theorem. Let F
be a closed set, we will show that lim supn→∞ P (Yn ∈ F ) ≤ P (X ∈ F ). Let
ε > 0. Then

P (Yn ∈ F ) = P (Yn ∈ F, ‖Xn − Yn‖ < ε) + P (Yn ∈ F, ‖Xn − Yn‖ ≥ ε).

The second probability on the right hand side goes to 0 as n → ∞. The event
inside the first probability on the right hand side implies Xn ∈ A(ε), where
A(ε) = {x : supy∈F ‖x− y‖ < ε}. Hence the first term on the right is no more
than P (Xn ∈ A(ε)). Because F is closed, ∩∞

k=1A(1/k) = F . By continuity of
probability, for any δ > 0 we can select a k so large that P (Xn ∈ A(1/k)) is
no more than P (Xn ∈ F ) + δ. Take ε < 1/k. Then

P (Yn ∈ F ) ≤ P (Xn ∈ F ) + δ + P ((‖Xn − Yn‖ ≥ ε).

Consequently lim supn→∞ P (Yn ∈ F ) ≤ P (X ∈ F )+δ for any δ, which implies
lim supn→∞ P (Yn ∈ F ) ≤ P (X ∈ F ).

2. We will use the first assertion of the Portmanteau theorem. Note that
‖(Xn, Yn) − (Xn, c)‖ = ‖Yn − c‖ P→ 0. By the first part of this theorem it
suffices to show that (Xn, c) D→ (X, c). Let h be a bounded and real-valued
continuous function. Then g defined by g(x) = h(x, c) is a bounded contin-
uous function. Because Xn

D→ X, we have Eg(Xn) → Eg(X), and hence
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Eh(Xn, c) → Eh(X, c). �

The next result is the well known Slutsky’s theorem, which combines the
second assertion of the above theorem with the continuous mapping theorem.

Corollary 7.2 (Slutsky’s Theorem) Suppose that Xn
D→ X, Yn

D→ c, and
h is a vector-valued function with P ((X, c) ∈ Dh) = 0. Then h(Xn, Yn) D→
h(X, c).

In some text books Slutsky’s theorem refers to the special case of the above
theorem when h is a rational function and Xn and Yn are random variables.

Corollary 7.3 Suppose that {(Xn, Yn)} is a sequence of bivariate random
vectors such that Xn

D→ X, and Yn
P→ c. Then

1. Xn + Yn
D→ X + c.

2. XnYn
D→ cX.

3. If c �= 0, then Xn/Yn
D→ X/c.

Besides the equivalent statements of convergence in distribution given in
the Portmanteau theorem, there is another such statement using character-
istic functions. A characteristic function of a random vector X is its Fourior
transform with respect to the measure P ; that is φX(t) = E(eitT X), where
i =

√−1 and t is any vector in R
p.

Proposition 7.2 A sequence of random vectors Xn converges in distribution
to X if and only if φXn

(t) → φX(t) for all t ∈ R
p.

Characteristic functions can be used to prove the Central Limit Theorems.
They can also be used to extend convergence in distribution for a sequence of
random variables to a sequence of random vectors. This is called the Cramér-
Wold device, introduced by Cramér and Wold (1936), see also Billingsley
(1995, page 383). For example, in the next section, we will use this device to
extend the Lindeberg Theorem to sequences of random vectors.

Theorem 7.8 (Cramér-Wold Device) Let X, {Xn : n = 1, 2, . . .} be
random random vectors of dimension p. Suppose that, for any a ∈ R

p,
aT Xn

D→ aT X. Then Xn
D→ X.

Proof. Because aT Xn
D→ aT X, the characteristic function of aT Xn converges

to that of aT X. That is, for any t ∈ R,

φaT Xn
(t) = Eeit(aT Xn) → Eeit(aT X) = φaT X(t).

Take t = 1. Then EeiaT Xn → EeiaT X . In other words, φXn
(a) → φX(a) for

all a ∈ R
p. Hence, by Proposition 7.2, Xn

D→ X. �
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7.3 Argument via subsequences

In this section we introduce two theorems that are useful for proving weak
convergence. Recall that, in calculus, a sequence of numbers {an} converges
to a number a if and only if every subsequence of {an} contains a further
subsequence that converges to a. This equivalence also applies to convergence
in distribution.

Theorem 7.9 A sequence of random vectors Xn converges in distribution to
X if and only if every subsequence Xn′ contains a further subsequence Xn′′

that converges in distribution to X.

A weaker condition than “every subsequence of {Xn} contains a further
subsequence that converges to X” is “every subsequence of {Xn} contains
a further subsequence that converges to some random vector”. In the latter
statement, the random vector that the further subsequence converges to may
depends on the subsequence and further subsequence involved. This property
is known as relative compactness. Prohorov’s theorem below gives a sufficient
condition for relative compactness: tightness.

Tightness is an extension of the boundedness in probability to metric
spaces. Since in this book we focus on random vectors in Euclidean spaces,
we do not need the more general meaning of tightness. Nevertheless, follow-
ing the standard usage in this area we will use the term tightness rather than
boundedness in probability. We first give the formal definition of tightness.

Definition 7.6 A family Π of probability measures on (Rp,Rp) is tight, if
for every ε > 0, there exists a compact set Kε ⊆ R

p such that P (Kε) > 1 − ε
for all P ∈ Π.

Since a compact set is a bounded and closed set in a Euclidean space, tightness
is equivalent to boundedness in probability in the case of Euclidean spaces.
For a sequence {Un} of random vectors, tightness translates to the property
that for every ε > 0, there exists a real number Mε, sucht that P (‖Un‖ >
Mε) < ε for all n. The next lemma asserts that marginal tightness implies joint
tightness, and marginal stochastic smallness implies joint stochastic smallness.

Lemma 7.5 If {Un} and {Vn} are tight, then {(UT
n , V T

n )T } is tight. Mor-
eover, if Un

P→ 0 and Vn
P→ 0, then (UT

n , V T
n )T P→ 0.

Proof. We note that

‖(UT
n , V T

n )T ‖2 = ‖Un‖2 + ‖Vn‖2.

Thus, if ‖Un‖ ≤ K and ‖Vn‖ ≤ K then ‖(UT
n , V T

n )T ‖ ≤ √
2K. Let ε > 0 be

any fixed constant. Let K be sufficiently large so that P (‖Un‖ > K) < ε/2
and P (‖Vn‖ > K) < ε/2. Then
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P (‖(UT
n , V T

n )T ‖ >
√

2K) ≤ P (‖Un‖ > K) + P (‖Vn‖ > K) < ε.

Thus (UT
n , V T

n ) is tight. The second statement can be proved similarly. �

Argument via subsequenes is implied by tightness. This is the Prohorov’s
Theorem. See, for example, Billingsley (1999, page 57).

Theorem 7.10 (Prohorov’s theorem) If a sequence of random vectors
{Un} is tight, then every subsequence Un′ , contains a further subsequence
{Un′′} such that Un′′ converges in distribution to a random vector.

Theorems 7.9 and 7.10 are often used together to show that a tight se-
quence of random vectors converges in distribution. If we are given a tight
sequence, say {Un}, then, by Theorem 7.10, every subsequence {Un′} con-
tains a further subsequence {Un′′} that converges in distribution to some
random vector U . If we can further show that this U does not depend on the
subsequence {n′} and the further subsequence {n′′}, then, by Theorem 7.9,
the entire sequence {Un} converges in distribution to U . For easy reference,
we refer to this method as the argument via subsequences.

Sometimes we have two sequences of random vectors that are tight under
different distributions. Specifically, suppose, for each n, Un is a random vector
distributed as Pn, and Vn is a random vector distributed as Qn. If {Un} is
tight with respect to {Pn} and {Vn} is tight with respect to {Qn} then by
Theorem 7.10, for any subsequence n′, there is a subsequence n′′ such that
Un′′ converges in distribution under Pn′′ , and there is another subsequence
n′′′ such that Vn′′′ converge in distribution under Qn′′′ . The question is, can
n

′′
and n′′′ be taken as the same subsequence? The next lemma answers this

question.

Lemma 7.6 If {Un} is tight under {Pn} and {Vn} is tight under {Qn}, then,
for any subsequence {n′}, there exist a further subsequence {n′′}, and random
vectors U and V , such that

Un′′
D→ U, Vn′′

D→ V. (7.6)

Proof. Let n′ be any subsequence. Because {Un} is tight under {Pn}, there is
a subsequence m′ of n′ and a random vector U such that

Um′
D→ U.

Because Vn is tight under Qn and {m′} is a subsequence of {n}, there is a
further subsequence {n′′} of {m′} and a random vector V such that

Vn′′
D→ V.

Because Um′ converges in distribution to U under Pm′ , it also converges in
distribution to U along the subsequence {n′′}. Thus we have (7.6). �
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7.4 Argument via simple functions

Let μ1 and μ2 be two measures defined on a measurable space (Ω,F). Let
g1 ≥ 0 and g2 ≥ 0 be measurable functions on the same space. In this section
we develop a general method to show that

∫
fg1 dμ1 =

∫
fg2 dμ2 (7.7)

holds for an arbitrary f .
For this we need the following fact: for any nonnegative and F-measurable

function f , there is a sequence of nonnegative simple functions {fn} such
that 0 ≤ fn ↑ f. Such a sequence can be constructed as follows. For each
n = 1, 2, . . ., we divide [0,∞) into n2n +1 left closed and right open intervals.
The first n2n intervals are of length 2−n, equally spaced between 0 and n; the
last interval is [n,∞). If f(ω) falls in one of these intervals, say [a, b), then
the value fn(ω) is defined as b. Specifically,

fn(ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 0 ≤ f(ω) < 2−n

2−n if 2−n ≤ f(ω) < 2 · 2−n

...
(k − 1)2−n if (k − 1)2−n ≤ f(ω) < k2−n

...
n − 2−n if n − 2−n ≤ f(ω) < n

n if n ≤ f(ω) < ∞

For convenience, the collection [0, 2−n), . . . , [n−2−n, n), [n,∞) is referred to as
the nth generation intervals. For each n, the collection of (n+1)th generation
intervals is a refinement of the collection of nth generation intervals; that is,
each (n + 1)th generation interval is contained in an nth generation interval.
Consequently, if f(ω) is contained in an (n + 1)th generation interval [a, b),
then [a, b) ⊆ [c, d) for some nth generation interval [c, d). Thus fn+1(ω) = a ≥
c = fn(ω). Also, by construction, for f(ω) < n,

|fn(ω) − f(ω)| ≤ 2−n,

and for any ω ∈ Ω, f(ω) < n for large enough n. From this we see that
limn→∞ fn(ω) = f(ω) for all ω ∈ Ω. Thus {fn} is a sequence of simple
functions satisfying 0 ≤ fn ↑ f . These preliminaries help in establishing the
next theorem.

Theorem 7.11 If (7.7) holds for all F-measurable indicator functions, then

1. it holds for all nonnegative measurable functions f ;
2. it holds for all measurable f such that the integrals on both sides of (7.7)

are finite.
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Proof. 1. Because equation (7.7) holds for all measurable indicator functions,
it holds for all simple functions, and in particular all nonnegative simple func-
tions. Now let f be a nonnegative measurable function and fn a sequence of
nonnegative simple functions such that fn ↑ f . Then 0 ≤ fng1 ↑ fg1 and
0 ≤ fng2 ↑ fg2. By the Monotone Convergence Theorem (see Theorem 1.5),
as n → ∞,

∫
fng1 dμ1 →

∫
fg1 dμ1,

∫
fng2 dμ2 →

∫
fg2 dμ1.

Because
∫

fng1 dμ1 =
∫

fng2 dμ2 holds for all n, equality (7.7) holds for f .

2. Let f be a measurable function such that
∫

f±g1 dμ1 and
∫

f±g2 dμ2 are
finite. Then ∫

fg1 dμ1 =
∫

f+g1 dμ1 −
∫

f−g1 dμ1

∫
fg2 dμ2 =

∫
f+g2 dμ2 −

∫
f−g2 dμ2.

By part 1,
∫

f+g1 dμ1 =
∫

f+g2 dμ2,

∫
f−g1 dμ1 =

∫
f−g2 dμ2.

Hence (7.7) holds for f . �

7.5 The Central Limit Theorems

Convergence in distribution is usually established using the Central Limit
Theorems. In the independent case, the most general version is the Lindeberg
Theorem. This is concerned with a triangular array of random vectors:

{Xnk : k = 1, . . . , kn, n = 1, 2, . . .} (7.8)

Typically, kn = n, in which case this array does look like a triangle. We first
consider the scalar case; that is, Xnk are random variables.

Theorem 7.12 (Lindeberg Theorem) Suppose

1. Xn1, . . . , Xnkn
are independent for each n; Sn = Xn1 + · · · + Xnkn

;
2. E(X2

nk) < ∞ for each n, k; var(Sn) > 0; Unk = [Xnk−E(Xnk)]/
√

var(Sn);
3. and for any ε > 0,

Ln(ε) =
kn∑

k=1

∫
|Unk|>ε

U2
nkdP → 0. (7.9)
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Then (Sn − ESn)/
√

var(Sn) D→ N(0, 1).

We will omit the proof of this theorem. Interested readers can find a proof
in Billingsley (1995, page 359). The sequence Ln(ε) in (7.9) is called the Linde-
berg sequence, and the condition Ln(ε) → 0 is called the Lindeberg condition.
The meaning of this condition is best seen through its special cases. The sim-
plest special case is concerned with a sequence of independent and identically
distributed random variables.

Corollary 7.4 (The Lindeberg-Levy Theorem) Suppose that X1,X2, . . .
is an i.i.d. sequence of random variables with a finite nonzero variance σ2.
Then

√
n(En(X) − E(X1))/σ

D→ N(0, 1).

Proof. Let μ = E(X1). Consider the triangular array {Xnk : k = 1, . . . , n, n =
1, 2, . . .} defined by Xnk = (Xk − μ)/σ. For this triangular array,

s2n = var(Xn1) + · · · + var(Xnn) = 1 + · · · + 1 = n.

Since Xnk are identically distributed as Z = (X1−μ)/σ, the Lindeberg number
Ln(ε) is

1
n

n∑
k=1

∫
|Xnk|>ε

√
n

X2
nk dP =

1
n

n∑
k=1

∫
|Z|>ε

√
n

Z2 dP =
∫
|Z|>ε

√
n

Z2 dP.

Because E(Z2) < ∞, the right hand side of the above expression tends to 0
as n → ∞. �

The next special case applies to triangular arrays where each |Xnk| has
slightly higher than second moment.

Corollary 7.5 (The Lyapounov Theorem) Let Xnk be a triangular ar-
ray, where the random variables in each row are independent. Suppose that,
E|Xnk|2+δ < ∞ for some δ > 0 and suppose, without loss of generality,
E(Xnk) = 0. If

Mn(ε) =
kn∑

k=1

1
s2+δ

n

E
(|Xnk|2+δ

)→ 0, then Sn/sn
D→ N(0, 1).

Proof. It suffices to show that Ln(ε) ≤ cMn(ε) for some c > 0 that does not
depend on n. We have



7.5 The Central Limit Theorems 217

Ln(ε) = an

kn∑
k=1

∫
|Xnk|>εsn

|Xnk/sn|2dP

≤
kn∑

k=1

∫
|Xnk|>εsn

(|Xnk/sn| /ε)δ |Xnk/sn|2dP

≤
kn∑

k=1

∫
(|Xnk/sn| /ε)δ |Xnk/sn|2dP = Mn(ε)/εδ,

as desired. �

Now consider the triangular arrays in which Xnk are p-dimensional vectors.
We will use the Cramér-Wold device described in Theorem 7.8, which allows
us to pass from the a central limit theorem for scalar random variables to
random vectors. Let var(Xnk) = Σnk and without loss of generality assume
E(Xnk) = 0. Let Sn = Xn1 + · · · + Xnkn

and Σn = Σn1 + · · · + Σnkn
. Define

L(p)
n (ε) =

kn∑
k=1

∫
(XT

nkΣ−1
n Xnk)1/2>ε

(
XT

nkΣ−1
n Xnk

)
dP.

Here, the superscript (p) of L
(p)
n (ε) indicates the dimension of Xnk. Note that

when p = 1, this reduces to the usual Lindeberg sequence.

Theorem 7.13 Suppose that {Xnk} is a triangular array of p-dimensional
random vectors with E(Xnk) = 0 and positive definite variance matrices Σnk.
Suppose that the random vectors in each row are independent. If L

(p)
n (ε) → 0,

then Σ
−1/2
n Sn

D→ N(0, Ip), where Ip is the p × p identity matrix.

Proof. Applying the Cramér-Wold device, it suffices to show that for any
t ∈ R

p, t �= 0,

tT Σ−1/2
n Sn

D−→ N(0, ‖t‖2).
To do so we need to verify that the Lindeberg sequence Ln(ε) for the triangular
array {tT Xnk} converges to 0, where

Ln(ε) =
kn∑

k=1

∫
|tT Σ

−1/2
n Xnk|>ε

(
tT Σ−1/2

n Xnk

)2
dP. (7.10)

Applying the Cauchy-Schwarz inequality (see Lemma 2.3), we obtain
(
tT Σ−1/2

n Xnk

)2
≤ ‖t‖2 (XT

nkΣ−1
n Xnk

)
. (7.11)

Consequently, we can replace the inequality that specifies the integral in (7.10)
by (XT

nkΣ−1
n Xnk)1/2 > ε/‖t‖ and replace the integrand of (7.10) by the quan-

tity on the right hand side of (7.11) without making the integral smaller. In
other words,
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Ln(ε) ≤ ‖t‖2
kn∑

k=1

∫
(XT

nkΣ−1
n Xnk)1/2>ε/‖t‖

(
XT

nkΣ−1
n Xnk

)
dP.

However, right hand side is just ‖t‖2L(p)
n (ε/‖t‖), which converges to 0 by

assumption. �

From this theorem we can easily generalize the Lyapounov and Lindeberg-
Levy theorems from random variables to random vectors. The proofs will be
left as exercises.

Corollary 7.6 Suppose that X1, . . . , Xn are independent and identically dis-
tributed random vectors in R

p with finite mean μ and positive definite variance
matrix Σ. Then,

√
nEn(X − μ) D→ N(0, Σ).

Corollary 7.7 Let {Xnk : k = 1, . . . , kn, n = 1, 2, . . .} be a triangular array
of p-dimensional random vectors in which the random vectors in each row are
independent. Suppose, without loss of generality, that E(Xnk) = 0. Let

Mn(ε) =
kn∑

k=1

E
(
XT

nkΣ−1
n Xnk

)1+δ
.

If Mn(ε) → 0 for some δ > 0, then Σ
−1/2
n Sn

D→ N(0, 1).

7.6 The δ-method

The δ-method is a convenient device that allows us to find the asymptotic
distribution of a function of a random vector that converges in distribution
to some random vector. Specifically, suppose Xn and U are p-dimensional
random vectors, and g is a differentiable function taking values in R

m, where
m ≤ p. The question is: if, for some positive sequence an and some μ ∈ R

p,
an(Xn − μ) converges in distribution to a random vector U , then what is the
limit of an[g(Xn) − g(μ)]? The most commonly used form of this result is
the case where U is the multivariate Normal random vector, an =

√
n, and

μ = E(X). However, it is actually easier to prove the theorem in the general
case.

In the following, we denote the ith component of g by gi, and jth compo-
nent of Xn by Xj

n. Furthermore, we let

g(x) − g(μ)
(x − μ)T

denote the m×p matrix whose (i, j)th entry is [gi(x)− gi(μ)]/(xj −μj). Note
that, in this notation, we have
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g(x) − g(μ) =
g(x) − g(μ)
(x − μ)T

(x − μ).

Moreover, if g is differentiable at μ, then

lim
x→μ

g(x) − g(μ)
(x − μ)T

=
∂g(μ)
∂μT

. (7.12)

Theorem 7.14 (The δ-method) Suppose {Xn : n = 1, 2, . . .} is a sequence
of p-dimensional random vectors such that, for a positive sequence an → ∞
and a vector μ ∈ R

p,
an(Xn − μ) D→ U. (7.13)

If g is a differentiable function taking values in R
m, where m ≤ p, then

an[g(Xn) − g(μ)] D→ [∂g(μ)/∂μT ]U.

Proof. Note that

an[g(Xn) − g(μ)] =
g(Xn) − g(μ)
(Xn − μ)T

[an(Xn − μ)]. (7.14)

Define h : Rp → R
m×p to be the following function

h(t) =

{
[g(t) − g(μ)]/(t − μ)T t �= μ

∂g(μ)/∂μT t = μ

Then we can rewrite the identity (7.14) as

an[g(Xn) − g(μ)] = h(Xn) [an(Xn − μ)],

which also holds obviously when Xn = μ. By (7.12), h is continuous at μ. By
(7.13), Xn

P→ μ. Hence, by the Continuous Mapping Theorem,

h(Xn) P→ h(μ) = ∂g(μ)/∂μT .

By Slutsky’s Theorem (see Corollary 7.2),

an[g(Xn) − g(μ)] = h(Xn)an(Xn − μ) D→ [∂g(μ)/∂μT ]U,

as desired. �

In the multivariate Normal case the above reduces to the following familiar
form.

Corollary 7.8 Suppose {Xn : n = 1, 2, . . .} is a sequence of p-dimensional
random vectors such that

√
n(Xn − μ) D→ N(0, Σ),

where μ = E(X). If g is a differentiable function taking values in R
m, where

m ≤ p, then

√
n[g(Xn) − g(μ)] D−→ N

(
0,

g(μ)
∂μT

Σ
gT (μ)

∂μ

)
.
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7.7 Mann-Wald notation for order of magnitude

Recall that, in calculus, the magnitude of a sequence of numbers is denoted by
the little o or the big O notation. If a sequence of numbers {xn} is bounded,
then we write xn = O(1); if the sequence converges to 0, then we write xn =
o(1). Furthermore, if {an} is another sequence such that xn/an = O(1), then
we write xn = O(an) and say that the magnitude of xn is no greater than
that of an. If xn/an = o(1), then we write xn = o(an) and say that xn is
ignorable compared with an. A similar notational system can be applied to a
sequence of random variables or random vectors. This notational system was
introduced by Mann and Wald (1943). In the following, Xn are p-dimensional
random vectors.

Definition 7.7 A sequence of random vectors {Xn} is said to be bounded in
probability if, for any ε > 0, there is a K > 0, such that

P (‖Xn‖ > K) < ε. (7.15)

for all n.

There are two more equivalent conditions for this definition: the first re-
quires (7.15) to hold for all sufficiently large n. That is, there exists an n0

such that (7.15) holds for all n > n0; the second is

lim sup
n→∞

P (‖Xn‖ > K) < ε.

This is a generalization of the notion of bounded sequence of numbers to
a sequence of random variables. Using this notion of boundedness, we can
extend the big O notation to sequence of random vectors.

Definition 7.8 If a sequence of random vectors {Xn : n = 1, 2, . . .} is
bounded in probability, then we write Xn = OP (1). Furthermore, if {an} is a
sequence of non-random positive constants, and if Xn/an = OP (1), then we
Xn = OP (an).

The interpretation of Xn = OP (an) is that the order of magnitude of the
random sequence {Xn} is not greater than that of the nonrandom sequence
{an}. Similarly, we replace the deterministic convergence xn → 0 with the
stochastic convergence Xn

P→ 0 extend the little o notation to a sequence of
random vectors.

Definition 7.9 If a sequence of random vectors {Xn : n = 1, 2, . . .} converges
in probability to zero, then we write Xn = oP (1). Furthermore, Xn = oP (an)
if {an} is a sequence of non-random positive constants, and Xn/an = oP (1).
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The interpretation of Xn = oP (an) is that the random sequence {Xn} is
ignorable compared with nonrandom sequence {an}.

If we think of O as a nonzero constant such as 1, and o as 0, then the
product between different types of O’s obeys the same rules of the product of
0 and 1. That is, similar to

1 × 1 = 1, 1 × 0 = 0, 0 × 0 = 0.

Thus, for two positive nonrandom sequences {an} and {bn}:
O(an)O(bn) =O(anbn),
O(an)o(bn) = o(anbn),
o(an)o(bn) = o(anbn).

These equalities should be interpreted in the following way. For example, the
first equality means that if xn = O(an), yn = O(bn), then xnyn = O(anbn).
The above rules can be easily proved by the definitions of O(an) and o(an). A
similar set of rules apply to OP and oP , as summarized by the next theorem.

Theorem 7.15 (The rules of Os)

OP (an)OP (bn) = OP (anbn)
OP (an)oP (bn) = oP (anbn)
oP (an)oP (bn) = oP (anbn).

Again, these equalities should be interpreted in terms of the underlying
sequences of random random variables. For example, the first equality should
be interpreted as: if Xn = OP (an), Yn = OP (bn), then XnYn = OP (anbn).
Note that, here, we assume Xn and Yn to be numbers rather than vectors.

Proof. 1. If Xn = OP (an) and Yn = OP (bn), then, for any ε > 0, there exist
K1 > 0 and K2 > 0 such that

lim sup
n

P (|Xn| > K1) < ε/2, lim sup
n

P (|Yn| > K2) < ε/2.

Because |XnYn|/(anbn) > K1K2 implies that at least one of the following
inequalities hold

|Xn|
an

> K1,
|Yn|
bn

> K2,

we have

P

( |XnYn|
anbn

> K1K2

)
≤ P

( |Xn|
an

> K1

)
+ P

( |Yn|
bn

> K2

)
.
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Hence

lim sup
n→∞

P

( |XnYn|
anbn

> K1K2

)
≤ lim sup

n→∞
P

( |Xn|
an

> K1

)
+ lim sup

n→∞
P

( |Yn|
bn

> K2

)

<
ε

2
+

ε

2
= ε,

which means |XnYn|/(anbn) is bounded in probability.

2. Suppose that Xn = OP (an) and Yn = oP (bn). Let ε > 0, δ > 0 be constants.
Let K > 0 be such that

P

( |Xn|
an

≥ K

)
< δ.

Then

P

( |XnYn|
anbn

> K

)
= P

( |XnYn|
anbn

> ε,
|Xn|
an

> K

)
+ P

( |XnYn|
anbn

> ε,
|Xn|
an

≤ K

)

≤ P

( |Xn|
an

> K

)
+ P

( |Yn|
bn

>
ε

K

)

≤ P

( |Yn|
bn

>
ε

K

)
+ δ.

Therefore,

lim sup
n→∞

P

(
XnYn

anbn
> ε

)
≤ lim sup

n→∞
P

( |Yn|
bn

>
ε

K

)
+ δ = δ.

Since δ > 0 is arbitrary, we have

lim sup
n→∞

P

(
XnYn

anbn
> ε

)
= 0,

as desired.

3. Let Xn/an = oP (1) and Yn/bn = oP (1). It suffices to show Xn/an = OP (1)
because, by part 2,

XnYn

anbn
= OP (1)oP (1) = oP (1).

If ε > 0, then

P

( |Xn|
an

> 1
)

= 0 < ε.

So Xn/an = OP (1). �

We can also use Theorem 7.15 to evaluate the order of products such as
anXn, where an is fixed and Xn is random. This is because o or O are special
cases of oP or OP , as the next proposition shows.
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Proposition 7.3 If Xn = O(an), then Xn = OP (an); if Xn = o(an), then
Xn = oP (an).

Proof. If Xn = O(an), then |Xn/an| ≤ K for some constant K. Let ε > 0,
then P (|Xn/an| > K + 1) = 0 < ε. If Xn = o(an), then Xn/an → 0. Let
ε > 0. Then, for sufficiently large n, |Xn/an| ≤ ε. So, for sufficiently large n,
P (|Xn/an| > ε) = 0. �

For example, by Theorem 7.15 and Proposition 7.3 we have the following
relations:

OP (an)O(bn) =OP (anbn),
OP (an)o(bn) = oP (anbn),
O(an)oP (bn) = oP (anbn),
oP (an)o(bn) = oP (anbn).

7.8 Hilbert spaces

The notion of projections in Hilbert spaces is used frequently later in this
book. In this section we outline basic properties of Hilbert spaces. A Hilbert
space is an extension of the Euclidean space R

p. We begin with the definition
of a vector space defined on the field of real numbers.

Definition 7.10 (Vector space) A vector space is a set V, together with an
operation + between elements in V, and an operation · between numbers in R

and elements V satisfying the following conditions.

1. Operation +:
1a. (closure) If v1, v2 ∈ V then v1 + v2 ∈ V;
1b. (commutative law) v1 + v2 = v2 + v1;
1c. (associative law) v1 + (v2 + v3) = (v1 + v2) + v3;
1d. (zero element) There is a unique element 0 ∈ V such that, for all

v ∈ V, v + 0 = v;
1e. (negative element) For each v ∈ V, there is a (−v) ∈ V such that

v + (−v) = 0.
2. Operation · between the members of R and V:

2a. (closure) If λ ∈ R, v ∈ V, then λ · v ∈ V;
2b. (distributive law 1) If λ ∈ R, u, v ∈ V, then λ · (u+v) = λ ·u+λ ·v;
2c. (distributive law 2) If λ, μ ∈ R and v ∈ V, then (λ+μ)·v = λ·v+μ·v;
2d. (associative law) If λ, μ ∈ R and v ∈ V then λ · (μ · v) = (λμ) · v;
2e. (unit element) For any v ∈ V, 1 · v = v.

Note that 0 · v = 0 for any v ∈ V, because

v + 0 · v = 1 · v + 0 · v = (1 + 0) · v = 1 · v = v.
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Thus, 0 · v is the zero element in V. Also note that the zero element is unique.
In fact, let 01, 02 be members of H that satisfies 01 + v = v and 02 + v = v
for all v ∈ V. By taking v = 01 and v = 02 separately in 1d above, we get
01 + 02 = 02, and 01 + 02 = 02 + 01 = 01. Therefore, 01 = 02.

For the rest of the book we will omit the dot in λ ·v and write it simply as
λv. To sum up, a vector space consists of four ingredients: a set V, an operation
+ between members of V, an operation · between members of R and members
of V, and finally a zero element in V. Thus, a rigorous notation of a vector
space is {V,+, ·, 0}. However, in most cases we simply denote a vector space
by the set V without causing ambiguity. We now give some examples of a
vector space.

Example 7.1 The space R
n. Let a, b ∈ R

n and λ ∈ R. Define
⎛
⎜⎝

a1

...
an

⎞
⎟⎠+

⎛
⎜⎝

b1
...

bn

⎞
⎟⎠ =

⎛
⎜⎝

a1 + b1
...

an + bn

⎞
⎟⎠, and λ

⎛
⎜⎝

a1

...
an

⎞
⎟⎠ =

⎛
⎜⎝

λa1

...
λan

⎞
⎟⎠.

Furthermore, define the zero element in R
n to be the vector (0, . . . , 0)T . Then,

it is easy to verify that the conditions in Definition 7.10 are satisfied, which
means R

n is a vector space. �

Example 7.2 Space of square-integrable functions. Let (Ω,F , P ) be a prob-
ability space. Let L2(P ) be the set of all real-valued functions f such that∫

f2dP < ∞. For f1, f2 ∈ L2(P ) and λ ∈ R define f1 + f2 and λf1 to be the
following members of L2(P ):

f1 + f2 : x �→ f1(x) + f2(x), λf1 : x �→ λf1(x).

Furthermore, define the zero element in L2(P ) to be the function f(x) = 0
almost everywhere P . Then it is easy to verify that the conditions in Definition
7.10 are satisfied. This space is called the L2 space with respect to (Ω,F , P ),
and is written as L2(P ). �

An inner product space V, or pre-Hilbert space, is a vector space together
with a mapping u : V × V → R that is symmetric, bilinear, and positive
definite.

Definition 7.11 Suppose that V is a vector space. An inner product is a
function u : V × V �→ R such that for any x, y, z ∈ V and α, β ∈ R we have

i. (symmetric) u(x, y) = u(y, x),
ii. (bilinear) u(αx + βy, z) = αu(x, z) + βu(y, z),
iii. (positive) u(x, x) ≥ 0 for all x ∈ V,
iv. (definite) u(x, x) = 0 implies x = 0.
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A vector space V, together with an inner product u : V × V → R, is called an
inner product space.

Note that, if x = 0, then it can be written as 0·y for some y ∈ V. Therefore,
u(x, x) = u(x, 0 · y) = 0×u(x, y) = 0. Thus an inner product also satisfies the
following condition

v. x = 0 implies u(x, x) = 0.

Also, by properties i and ii we see that

u(x, αy + βz) = u(αy + βz, x) = αu(y, x) + βu(z, x) = αu(x, y) + βu(x, z).

That is, u is in fact a bilinear function. We record this as the sixth property
of an inner product:

vi. u(x, αy + βz) = αu(x, y) + βu(x, z).

For the rest of the book we will write u(x, y) as 〈x, y〉V . If there is no source
of confusion, the subscript V is dropped and the inner product in V is simply
written as 〈x, y〉. Two examples of inner product spaces are given below.

Example 7.3 Let V be the vector space in Example 7.1, and let A be an n
by n positive definite matrix. Let u be the mapping

u : Rn × R
n → R, (x, y) �→ xT Ay.

Then it can be easily verified that u defines an inner product. This inner
product space is called the n-dimensional Euclidean space. �

Example 7.4 Let V be the vector space L2(P ) in Example 7.2. Define the
mapping u : V × V → R by

(f, g) �→
∫

fg dP.

The right-hand side is a finite number because, by Hölder’s inequality,

∫
|fg|dP ≤

(∫
f2dP

)1/2(∫
g2dP

)1/2

.

See, for example, Billingsley (1995). It is easy to check that the function u
thus defined satisfies properties i, ii, iii in Definition 7.11. However, condition
iv is in general not satisfied, because

∫
f2dP = 0 only implies f = 0 almost

everywhere P .
To make u an inner product, we introduce the following equivalence rela-

tion ∼ in V:

f ∼ g if and only if f = g almost everywhere P.
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It can be easily verified that ∼ thus defined is indeed an equivalence relation.
Let V/ ∼ be the quotient space with respect to ∼ (see Kelley, 1955). For two
members F and G of V/ ∼, let F +G be the equivalent class of f +g, where f
is any member of F and g is any member of G. For λ ∈ R and F ∈ V/ ∼, let
λ ·F be the equivalent class of λ ·f , where f is any member of F . Furthermore,
define the zero element of V/ ∼ as the equivalent class of any function that is
almost everywhere 0. It can then be shown that, with these definitions of +,
·, 0, V/ ∼ is indeed a vector space relative to R.

Furthermore, we introduce the mapping ũ : (V/ ∼) × (V/ ∼) → R as
follows. If F,G are members of V/ ∼, then

ũ(F,G) = u(f, g),

where f is any member of F and g is any member of G. Note that u(f, g) is
not affected by the choices of f and g. It can be shown that ũ does satisfy all
four conditions in Definition 7.11. Thus, it is a well defined inner product. In
other words,

{V/ ∼,+, ·, 0, ũ}

forms an inner product space.
For our purpose, however, it will not cause serious ambiguity if we simply

treat almost everywhere equal functions as the same function, and treat (sim-
ply) V/ ∼ as V. This we will do throughout the rest of the book. �

A norm in a vector space V is a mapping ρ : V → R such that

i. ρ(f) ≥ 0 for all f ∈ V,
ii. for any a ∈ R and f ∈ V, ρ(af) = |a|ρ(f),
iii. for any f, g ∈ V, ρ(f + g) ≤ ρ(f) + ρ(g),
iv. ρ(f) = 0 implies f = 0.

A norm is a generalization of the absolute value. In particular, ρ(f − g) is a
measure of distance between two members of V, just like |a − b| is a measure
of distance between two numbers. For the rest of the book, we write ρ(f) as
‖f‖V or simply ‖f‖. A vector space V, together with a norm ρ : V → R, is
called a normed space.

It can be shown that, if (V, u) is an inner product space, then the function

ρ : V → R, f �→ [u(f, f)]1/2

is a norm. Thus, an inner product space is also a normed space.
Using this norm we can define the notions of limit and completeness in

an inner product space. A sequence {fn : n = 1, 2, . . .} of elements of V is
a Cauchy sequence if, for any ε > 0, there exists an n0, such that for all
m,n > n0 we have
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‖fn − fm‖ < ε.

We say that a sequence fn converges to a member f of V if lim
n→∞ ‖fn−f‖ = 0.

Definition 7.12 An inner product space V is complete if every Cauchy
sequence {fn} in V converges to a member of V. That is, lim

n→∞ ‖fn − f‖ = 0
for some f ∈ V. A complete inner product space is called a Hilbert space.

If an inner product V is finite dimensional, then it is always complete.
Also, the L2-space with respect to a measure is always complete. In other
words, the inner product spaces in Example 7.3 and Example 7.4 are Hilbert
spaces.

Recall that, one of the defining assumptions of a norm is the triangular
inequality ‖f + g‖ ≤ ‖f‖ + ‖g‖. There is an inequality for inner product of
similar importance, but, unlike the triangular inequality, it is a consequence
of the four defining assumptions of the inner product. This is the Cauchy-
Schwarz inequality.

Theorem 7.16 (The Cauchy-Schwarz inequality) If 〈·, ·〉 is an inner
product in an inner product space V, then, for any f, g ∈ V,

〈f, g〉2 ≤ 〈f, f〉〈g, g〉. (7.16)

Moreover, the equality holds if and only if f and g are proportional to each
other.

Proof. First note that, if 〈g, g〉 = 0, then g = 0 and consequently the inequality
(7.16) holds. Now assume 〈g, g〉 �= 0. Let α ∈ R, f, g ∈ V. Then

0 ≤〈f − αg, f − αg〉 = 〈f, f〉 − 2α〈f, g〉 + α2〈g, g〉 ≡ F (α).

Since F (α) is a quadratic polynomial, it can be easily verified that it achieves
its minimum at α∗ = 〈f, g〉/〈g, g〉. So we have

0 ≤ F (α∗) = 〈f, f〉 − 2α∗〈f, g〉 + α∗2〈g, g〉

= 〈f, f〉 − 2
〈f, g〉
〈g, g〉 〈f, g〉 +

〈f, g〉2
〈g, g〉2 〈g, g〉

= 〈f, f〉 − 〈f, g〉2
〈g, g〉 ,

which is the inequality (7.16).
Now suppose the equality in (7.16) holds, then F (α∗) = 0. Hence 〈f −

α∗g, f − α∗g〉 = 0, which implies f = α∗g. Thus f and g are proportional to
each other. Conversely, if f and g are proportional then it is obvious that the
equality in (7.16) holds. �

Using the Cauchy-Schwarz inequality we can easily show that the mapping
ρ(f) = 〈f, f〉1/2 indeed satisfies the triangular inequality.
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Corollary 7.9 If 〈·, ·〉 is an inner product in an inner product space V and
ρ(f) = 〈f, f〉 1

2 , then, for any f, g ∈ V,

ρ(f + g) ≤ ρ(f) + ρ(g).

Proof. Note that

ρ(f + g)2 = ρ(f)2 + 2〈f, g〉 + ρ(g)2

≤ ρ(f)2 + 2|〈f, g〉| + ρ(g)2

≤ ρ(f)2 + 2ρ(f) ρ(g) + ρ(g)2

= (ρ(f) + ρ(g))2,

where the second inequality follows from the Cauchy-Schwarz inequality. Now
take square root on both sides to complete the proof. �

7.9 Multivariate Cauchy-Schwarz inequality

Recall that, in Lemma 2.3, we stated a version of the multivariate Cauchy-
Schwarz inequality to establish the Cramér-Rao lower bound. In this section
we further extend this inequality in terms of inner product matrices, which is
useful for developing optimal estimating equations among other things. Let
H be a Hilbert space, and let Hp be the p-fold Cartesian product:

Hp = H× . . . ×H︸ ︷︷ ︸
p

.

For any two members S,G of Hp, define their inner product matrix as

[S,G] =

⎛
⎜⎝
〈s1, g1〉 · · · 〈s1, gp〉

...
. . .

...
〈sp, g1〉 · · · 〈sp, gp〉

⎞
⎟⎠ .

The inner product matrix shares similar properties with an inner product,
as shown by the next Proposition. The proof is left as an exercise.

Proposition 7.4 Let H be a Hilbert space and Hp be its p-fold Cartesian
product. Let [·, ·] : Hp ×Hp → R

p×p be the inner product matrix in Hp. Then

1. (symmetry after transpose) [G1, G2] = [G2, G1]T ;
2. (bilinear) If G1, G2, G3 ∈ Hp and a1, a2, a3 ∈ R, then

[a1G1 + a2G2, G3] = a1[G1, G3] + a2[G2, G3],
[G1, a2G2 + a3G3] = a2[G1, G3] + a3[G1, G3];
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3. (positivity) for any G ∈ Hp, [G,G] is positive semidefinite;
4. (definiteness) [G,G] = 0 implies G = 0.

Another useful property for the inner product matrix is that, if A,B ∈ R
p×p

and F,G ∈ Hp, then

[AG,BF ] = A[G,F ]BT . (7.17)

To see this, let (AG)i and (BF )i be the ith component of AG and BF . Then
(AG)i = rowi(A)G and (BF )i = rowi(B)F , where, for example, rowi(A)
means the ith row of A. We have

[AG,BF ] =

⎛
⎜⎝
〈row1(A)G, row1(B)F 〉 · · · 〈row1(A)G, rowp(B)F 〉

· · · . . .
...

〈rowp(A)G, row1(B)F 〉 · · · 〈rowp(A)G, rowp(B)F 〉

⎞
⎟⎠

=

⎛
⎜⎝

row1(A)
...

rowp(A)

⎞
⎟⎠ [G,F ]

(
row1(B)T , · · ·, rowp(B)

)
= A[G,F ]BT .

Definition 7.13 For any two symmetric square matrices A and B, write
A � B if A − B is positive semi-definite. This partial ordering is called the
Loewner ordering.

In the special case where p = 1, G and S are simply members of H, and
the matrix inequality in Theorem 7.17 below reduces to the classical Cauchy-
Schwarz inequality:

〈G,S〉2 ≤ 〈G,G〉〈S, S〉.
Theorem 7.17 (Multivariate Cauchy-Schwarz inequality) If S and G
are members of Hp and the matrix [G,G] is invertible, then

[S, S] � [S,G][G,G]−1[G,S].

Proof. By Proposition 7.4, [G,G] � 0. Hence the matrix

[S − G[G,G]−1G,S − G[G,G]−1G]

is positive semi-definite. This matrix can be decomposed as

[S, S] − [S,G][G,G]−1[G,S] − [S,G][G,G]−1[G,S]

+ [S,G][G,G]−1[G,G][G,G]−1[G,S]

= [S, S] − [S,G][G,G]−1[G,S].

Hence the desired inequality. �

The condition that [G,G] is invertible in the above Proposition can be
relaxed using the Moore-Penrose inverse – see Problem 7.22.
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7.10 Projections

One of the most useful tools related to a Hilbert space is the notion of pro-
jection, which is based on orthogonality, as defined below.

Definition 7.14 (Orthogonality) If H is a Hilbert space and if f, g ∈ H,
then f and g are orthogonal if 〈f, g〉 = 0. We write this as g ⊥ f .

An immediate consequence of orthogonality is the Pythagaras theorem, as
given below. The proof is left as an exercise.

Proposition 7.5 If f1, . . . , fn are pairwise orthogonal vectors in H then

‖f1 + · · · + fn‖2 = ‖f1‖2 + · · · + ‖fn‖2.

A more general version of Pythagoras theorem the parallelogram law.
Again, the proof is left as an exercise.

Proposition 7.6 If H is a Hilbert space and f, g ∈ H, then

‖f + g‖2 + ‖f − g‖2 = 2(‖f‖2 + ‖g‖2).

We now define the linear subspace. Intuitively, it is any hyperplane that
passes through the origin.

Definition 7.15 A subset G of a Hilbert space is called a linear manifold if
it is closed under linear operation. That is, for any f1, f2 ∈ G and c1, c2 ∈ R,
we have c1f1 + c2f2 ∈ G. A closed linear manifold is called a linear subspace.

Note that a subspace G must contain the zero element of H. This is
because, for any g ∈ G, 0 · g = 0 must be a member of G. We now define
projection. For a member f of H and a subspace G of H, the member of G
that is nearest to f is the projection of f on to G. Intuitively, if f∗ is the
projection of f on to G, then the vector f − f∗ should be orthogonal to G.

Theorem 7.18 (Projection theorem) If H is a Hilbert space and G is a
linear subspace then, for any f ∈ H, there is a unique element f0 ∈ G such
that

‖f − f0‖ ≤ ‖f − g‖

for all g in G. furthermore, a vector f0 satisfies the above relation if and only
if it satisfies

〈f − f0, g〉 = 0 (7.18)

for all g ∈ G.
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The vector f0 is called the orthogonal projection of f on to G, and is
written as PG(f). Or, if there is no ambiguity we will simply write this as Pf .
The operator P : H → H thus defined is called a projection operator. It can
be shown that P is a idempotent and self-adjoint linear operator; that is, for
any f, g ∈ H, α, β ∈ R, we have

P (Pf) = Pf, 〈f, Pg〉 = 〈Pf, g〉, P (αf + βg) = αPf + βPg.

Conversely, if P : H → H is a self-adjoint and idempotent linear operator,
and if S = {Pf : f ∈ H}, then S is necessarily a linear subspace of H and,
for any f ∈ H, Pf is the orthogonal projection of f on to the subspace S.
The proofs of this theorem and the above statements can be found in Conway
(1990). Equation (7.18) provides a way to find the projection, as illustrated
by the next example.

Example 7.5 (Projection on to a finite dimensional subspace) Let H
be a Hilbert space and f ∈ H. Let M be the subspace of H spanned by the
vectors f1, . . . , fp in H. We want to find the projection of f on to M. Let f0 be
this projection; that is, f0 = PMf . Because f0 ∈ M, it is a linear combination
of f1, . . . , fp, say f0 = a1f1 + · · ·+ apfp. By the projection formula (7.18), we
have 〈f − f0, g〉 = 0 for all g ∈ M. In particular, this holds for f1, . . . , fp:

〈f − f0, fi〉 = 0, i = 1, . . . , p.

Since the left-hand side is

〈f, fi〉 −
〈

p∑
j=1

ajfj , fi

〉
= 〈f, fi〉 −

p∑
j=1

〈fj , fi〉aj ,

the coefficients a1, . . . , ap satisfy the following p equations

p∑
j=1

〈fj , fi〉aj = 〈f, fi〉.

In matrix notation,
⎛
⎜⎝

a1

...
ap

⎞
⎟⎠ =

⎛
⎜⎝

〈f1, f1〉 · · · 〈f1, fp〉
... · · · ...

〈fp, f1〉 · · · 〈fp, fp〉

⎞
⎟⎠

−1⎛
⎜⎝

〈f, f1〉
...

〈f, fp〉

⎞
⎟⎠

The projection of f onto M is therefore

PMf = (〈f, f1〉, · · ·, 〈f, fp〉)

⎛
⎜⎝

〈f1, f1〉 · · · 〈f1, fp〉
... · · · ...

〈fp, f1〉 · · · 〈fp, fp〉

⎞
⎟⎠

−1⎛
⎜⎝

f1
...

fp

⎞
⎟⎠ , (7.19)



232 7 Asymptotic tools and projections

provided that the matrix {〈fi, fj〉}p
i,j=1 is invertible. This matrix is called

the Gram matrix with respect to the set {f1, . . . , fn}, and will be written as
G(f1, . . . , fp). �

Example 7.6 (Ordinary Least Squares) This is a specialization of Exam-
ple 7.5 to H = R

n, which gives the formula for the Ordinary Least Squares.
Let x1, ..., xp, p ≤ n, be a set of linear independent vectors in R

n, and let L
be the linear subspace spanned by x1,..., xp. Let y be another vector in R

n.
Define the inner product in R

n by 〈x, y〉 = xT y. In this case, the Gram matrix
G(x1, . . . , xp) can be expressed as XT ΣX, where X is the n by p matrix whose
ith column is xT

i . The vector {〈f, fi〉} can be expressed as XT y. Hence, the
projection of y onto L can be expressed in matrix form as

ŷ = X(XT X)−1XT y ≡ Xβ̂,

where β̂ = (XT X)−1XT y is just the Ordinary Least Squares estimate and ŷ
is the prediction vector of y. �

Example 7.7 (Conditional Expectation) Let (X,Y ) be a random ele-
ment. Suppose PXY and PY denote the probability measures induced by
(X,Y ) and Y respectively. Then, it can be shown that L2(PY ) is a sub-
space of L2(PXY ). Let f be a member of L2(PXY ). We now show that
f0(Y ) = E[f(X,Y )|Y ] is the projection of f on to L2(PY ) using the pro-
jection formula (7.18). If g is an arbitrary member of L2(PY ), then

〈f − f0, g〉 =
∫

(f − f0)g dPXY

=E{[f(X,Y ) − f0(Y )]g(Y )}
=E{[f(X,Y ) − E(f(X,Y )|Y )]g(Y )}
=E[f(X,Y )g(Y )] − E[E(f(X,Y )|Y )g(Y )].

Since the second term in the last line is

E[E(f(X,Y )|Y )g(Y )] = E[E(g(Y )f(X,Y )|Y )] = E[g(Y )f(X,Y )],

we have

〈f − f0, g〉 = 0,

which means f0 is the projection of f on to L2(PY ). �

Before proceeding to the next example, we first introduce the concept of
the Moore-Penrose inverse (See, for example, Kollo and von Rosen, 2005).
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Definition 7.16 Let A be a matrix. The Moore-Penrose inverse A+ is defined
to be the (unique) matrix that satisfies

AA+A = A, A+AA+ = A+, (AA+)T = AA+, (A+A)T = A+A.

Example 7.8 Let Σ be a positive definite matrix in R
p×p and consider the

Hilbert space consisting of the linear space R
p and the inner product defined

by 〈x, y〉 = xT Σy. Let G be a linear subspace of Rp of dimension q ≤ p and let
{v1, . . . , vr}, r ≥ q, be a set of vectors in R

p that span G. Let V be the p × r
matrix (v1, . . . , vr). Note that v1, . . . , vr need not be linearly independent, and
hence V T ΣV need not be invertible. Let

PG(Σ) = V (V T ΣV )+V T Σ.

We now show that this matrix is the projection operator with range G.
We first note that

PG(Σ)PG(Σ) = V (V T ΣV )+V T ΣV (V T ΣV )+V T Σ

= V (V T ΣV )+V T Σ = PG(Σ).

Thus PG(Σ) is idempotent. Moreover, for any x, y ∈ R
p,

〈x, PG(Σ)y〉 = xT ΣV (V T ΣV )+V T Σy = 〈PG(Σ)x, y〉.

Thus PG(Σ) is self-adjoint. Since, for any x ∈ R
p, PG(Σ)x = V z for

some z ∈ R
p, the range of PG(Σ) is contained in span(V ) = G. Since

span(V ) is a q-dimensional subspace, V has rank q. Because Σ is nonsin-
gular, V (V T ΣV )+V T Σ also has rank q. Thus the range of PG(Σ) is not a
proper subset of G. �

Problems

7.1. Suppose Xn = (Yn1, . . . , Ynk)T , n = 1, 2, . . ., are k-dimensional random
vectors. Show that Xn converges almost everywhere to a random vector X =
(Y1, . . . , Yk)T if and only if Yni converges almost everywhere to Yi for each
i = 1, . . . , k.

7.2. Suppose Xn = (Yn1, . . . , Ynk)T , n = 1, 2, . . ., are k-dimensional random
vectors. Show that Xn converges in probability to a random vector X =
(Y1, . . . , Yk)T if and only if Yni converge to Yi in probability for each i =
1, . . . , k.

7.3. Show that, if Xn is a sequence of random vectors that converges almost
everywhere to a random vector, then the sequence converges to X in proba-
bility.
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7.4. Show that a random vector X is degenerate at a — that is, P (X = a) = 1
— if and only if P ◦X−1 = δa. Furthermore, use the Portmanteau theorem to
show that Xn

D→ δa if and only if Xn
P→ a.

7.5. Suppose Xn is a sequence of random vectors that converges in probability
to a random vector X; that is, P (‖Xn − X‖ > ε) → 0 for any ε > 0. Show
that, for any open set G ∈ FX , lim inf P (Xn ∈ G) ≥ P (X ∈ G). Use the
Portmanteau theorem to conclude that Xn

D→ X.

7.6. Prove part 3 of Proposition 7.1.

7.7. Suppose that X1,X2, . . . are independent and uniformly bounded random
variables with mean E(Xn) = 0 for all n. Let Sn = X1 + · · · + Xn and let
s2n = var(Sn). Show that, if sn → ∞, then Sn/sn

D→ N(0, 1).

7.8. Let X1, · · ·,Xn be uncorrelated random variables with means μ1, · · ·, μn

and variances σ2
1 , · · ·, σ2

n. Suppose that (σ2
1 + · · · + σ2

n)/n2 → 0 as n → ∞.
Prove that

n−1
n∑

i=1

(Xi − μi)
P−→ 0.

7.9. Let X1,X2, . . . be a sequence of i.i.d. random variables with finite first
four moments. Denote E(Xi) by μ and var(Xi) by σ2. Let Sn =

∑n
i=1(Xi −

X)2/(n − 1) be the unbiased estimate of σ2.

(a) Show that Sn
P−→ σ2.

(b) Show that
∑n

i=1(Xi − μ)√
nSn

D−→ N(0, 1).

7.10. Let X1, · · ·,Xn be an i.i.d. sequence with E(Xi) = μ �= 0 and var(Xi) =
σ2 < ∞. Find the asymptotic distribution of

(a)
√

n
(
X

−1 − μ−1
)
,

(b)
√

n
(
X

2 − μ2
)
,

(c)
√

n log(X/μ),
(d)

√
n
(
eX − eμ

)
.

7.11. Suppose that
√

n(Xn − μ) D→ N(0, σ2), and that g is a function of Xn

with continuous second derivative such that g′(μ) = 0 and g′′(μ) �= 0. Find
the asymptotic distribution of n[g(Xn)−g(μ)]. (Hint: a version of the Taylor’s
theorem states that if f has continuous kth derivative, then

f(x) = f(x0) + f ′(x0)(x − x0) + · · · + f (k)(ξ)(x − x0)k/k!

for some ξ satisfying |ξ − x0| ≤ |x − x0|. )
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7.12. Show that Definition 7.6 is equivalent to boundedness in probability.

7.13. Use the Dominated Convergence Theorem to show that X is P -integrable
(i.e. EP (|X|) < ∞) if and only if

lim
α→∞EP [|X|I(|X| ≥ α)] = 0.

7.14. Show that the following rules hold for OP and oP . For any positive
sequences an and bn, we have

OP (an) + OP (bn) =OP (max(an, bn)),
oP (an) + oP (bn) = oP (max(an, bn)),

oP (an) + OP (an) =OP (an).

7.15. Show that, if a sequence of random vectors Xn converges in distribution,
or in probability, or almost everywhere, to a random vector X, then Xn =
OP (1).

7.16. Show that, if Xn is a sequence of integrable random vectors with E‖Xn‖
being a bounded sequence, then Xn = OP (1).

7.17. Suppose that Xn is a sequence of random vectors taking values in A ⊆
R

k, and f : A → R
m satisfies the following Lipschitz condition:

‖f(x1) − f(x2)‖
‖x1 − x2‖ < K

for some K > 0 and for all x1, x2 ∈ A, x1 �= x2. Show that, if Xn = OP (1),
then f(Xn) = OP (1).

7.18. Show that, if f1, . . . , fn are orthogonal elements of a Hilbert space H,
then

‖f1 + · · · + fn‖2 = ‖f1‖2 + · · · + ‖fn‖2.

7.19. Show that a finite-dimensional Hilbert space is complete using the fact
that the real number system is complete. That is, if {xn} is a sequence of
numbers such that, for any ε > 0, there exists nε such that

|xn − xm| < ε, for all n,m ≥ nε,

then xn converges to a real number.

7.20. Show that, if f and g are members of a Hilbert space H, then

‖f + g‖2 + ‖f − g‖2 = 2(‖f‖2 + ‖g‖2).
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7.21. Let A be a p × p symmetric and positive semidefinite matrix. Let G
and B be p× q matrices. Suppose that BT AB is non-singular. Show that the
following inequality holds

GT AG � (GT AB)(BT AB)−1(BT AG).

7.22. Show that Theorem 7.17 can be generalized to the case where [G,G]
is not invertible using the Moore-Penrose inverse. That is, if S and G are
member of Hp, then

[S, S] � [S,G][G,G]+[G,S].

7.23. Prove Proposition 7.4.

7.24. Let PM : H → H be the operator defined by (7.19). Show that PM is
an idempotent and self adjoint linear operator.

7.25. In the setting of Example 7.7, show that L2(PY ) is a linear subspace of
L2(PXY ).

7.26. In the setting of Example 7.7, define P to be the operator

L2(PXY ) → L2(PXY ), f �→ E[f(X,Y )|Y ].

Show that P is an idempotent, and self adjoint linear operator.
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8

Asymptotic theory for Maximum Likelihood
Estimation

The theoretical properties of the Maximum Likelihood Estimate introduced in
Section 2.6 will be discussed in this chapter. This is one of the most commonly
used estimators. Suppose X is a random element whose distribution belongs
to a parametric family {Pθ : θ ∈ Θ ⊆ R

p}. Intuitively, if the data X(ω) = x
is observed, then a reasonable estimate of true parameter θ0 would be the
θ ∈ Θ that makes the observed data x most likely to be detected, because,
after all, it is x, and not some other values x′ of X, that has occurred. Thus,
the Maximum Likelihood Estimate seems to be derived from the following
dictum: “only the most likely to occur, occurs”. This is, of course, not true
in a literal sense: sometimes the least likely does occur. However, as a general
tendency this seems plausible. Indeed, without any prior knowledge about θ,
we seem to have no reason to think otherwise. In this chapter we systematically
develop the theoretical properties for the Maximum Likelihood Estimate: its
consistency, its asymptotic normality, and its optimality.

8.1 Maximum Likelihood Estimation

Let X1:n = (X1, . . . , Xn) be a sample of random vectors of dimension m that
take values in a measurable space (Ωn,Fn), with a joint distribution belonging
to a parametric family, say {Pθ : θ ∈ Θ ⊆ R

p}. Suppose that Pθ is dominated
by a σ-finite measure μ, and let fθ = dPθ/dμ be the density of X1:n.

Definition 8.1 Suppose that, for each x1:n ∈ Ωn, supθ∈Θ fθ(x1:n) can be
reached within Θ. Then the Maximum Likelihood Estimate is defined as

θ̂n = argmax
θ∈Θ

[fθ(X1:n)] = argmax
θ∈Θ

[log fθ(X1:n)].

In the above definition, the two argmax are the same because logarithm is
a strictly increasing function, and strictly increasing transformations do not
affect the maximizer of a function. Taking logarithm brings great convenience,
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237

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-9761-9_8&domain=pdf
https://doi.org/10.1007/978-1-4939-9761-9_8


238 8 Asymptotic theory for Maximum Likelihood Estimation

as it transforms a product into a sum, to which the Law of Large Numbers
and the Central Limit Theorem can be applied. The function θ �→ fθ(X1:n) is
called the likelihood; the function θ �→ log fθ(X1:n) is called the log likelihood.

Because the MLE θ̂ is the maximizer of the log likelihood, it satisfies the
equation

∂ log fθ(X1:n)/∂θ = 0, (8.1)

provided that the function θ �→ fθ(X1:n) is differentiable. This equation is
called the likelihood equation. The function on the left is called the score
function, and will be denoted by

s(θ,X1:n) = ∂ log fθ(X1:n)/∂θ.

Sometimes equation (8.1) is also called the score equation. The score function
has some interesting properties, as described in the next proposition.

Proposition 8.1 If fθ(x1:n) and s(θ, x1:n)fθ(x1:n) satisfy DUI+(θ, μ), then
for all θ ∈ Θ,

Eθ [s(θ,X1:n)] = 0, (8.2)

Eθ

[
s(θ,X1:n)s(θ,X1:n)T

]
= −Eθ

[
∂s(θ,X1:n)/∂θT

]
. (8.3)

Proof. Because fθ is the density of X1:n, we have
∫

Ωn

fθdμ = 1.

Differentiating both sides of the equation and evoking the first DUI+ condi-
tion, we have

∫

Ωn

∂fθ

∂θ
dμ = 0. (8.4)

Because fθ(x1:n) > 0 on Ωn, we have

∂fθ(x1:n)
∂θ

=
∂ log fθ(x1:n)

∂θ
fθ(x1:n) = s(θ, x1:n)fθ(x1:n). (8.5)

Hence the left-hand side of (8.4) is simply Eθ[s(θ,X1:n)]. This proves the first
identity.

Differentiating the equation
∫

Ωn

s(θ, x1:n)fθ(x1:n)dμ(x1:n) = 0

with respect to θT and evoking the second DUI+ condition, we have
∫

Ωn

∂s(θ, x1:n)
∂θT

fθ(x1:n)dμ(x1:n) +
∫

Ωn

s(θ, x1:n)
fθ(x1:n)

∂θT
dμ(x1:n) = 0.
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The first term on the left-hand side is simply Eθ[∂s(θ,X1:n)/∂θT ]. The second
term, by relation (8.5) again, can be rewritten as

Eθ[s(θ,X1:n)s(θ,X1:n)T ].

�

The matrix on the left-hand side of (8.3) is called the Fisher information
contained in X1:n, denoted by I1:n(θ); the identity (8.3) is called the infor-
mation identity. The relation (8.2) is known as the unbiasedness of the score
(see for example, Godambe, 1960).

We will focus on the case where X1, . . . , Xn are i.i.d. with a density func-
tion hθ(x), where θ ∈ Θ ⊆ R

p. In this case,

fθ(X1:n) =
n∏

i=1

hθ(Xi).

The log-likelihood is

log fθ(X1:n) =
n∑

i=1

log hθ(Xi) ∝ En[log hθ(X)].

Obviously, for the purpose of maximizing log fθ(X1:n), it is equivalent to use
the sum version

∑n
i=1 log hθ(Xi) or average version En log hθ(X), as they only

differ by a proportionality constant n−1. As we will see, the latter is in many
ways more convenient to use than the former.

By an abuse of notation, let s(θ,Xi) be the score for a single observa-
tion; that is, s(θ,Xi) = ∂hθ(Xi)/∂θ. Then Proposition 8.1 holds for a single
observation as well. That is,

Eθ [s(θ,Xi] = 0,

Eθ

[
s(θ,Xi)s(θ,Xi)T

]
= − [

∂s(θ,Xi)/∂θT
]
.

The matrix Eθ

[
s(θ,Xi)s(θ,Xi)T

]
is called the Fisher information contained

in a single observation, denoted by I(θ). It can be easily shown that

I1:n(θ) = nI(θ), s(θ,X1:n) =
n∑

i=1

s(θ,Xi) = nEn[s(θ,X)].

The assumption in Proposition 8.1 that the support of Pθ does not depend
on θ is quite important. Without it, even the definition of score function is
problematic. For example, consider the density hθ(x) for the uniform distri-
bution on (0, θ):

hθ(x) = θ−1I(x < θ).



240 8 Asymptotic theory for Maximum Likelihood Estimation

This function is not differentiable at θ = x. The log likelihood is only defined
for θ > x. If we define the derivatives of log hθ(x) only in the region θ > x,
then

∂ log hθ(x)/∂θ = −θ−1, ∂2 log hθ(x)/∂θ2 = θ−2, [∂ log hθ(x)/∂θ]2 = θ−2.

Thus none of the identities in Proposition 8.1 is satisfied.
Even in the case where the support of Pθ does not depend on θ, it is still

possible that the rest of the conditions in Proposition 8.1 are violated — see
Problem 8.3. Nevertheless, conditions such as those in Proposition 8.1 are
satisfied for a wide variety of commonly encountered statistical problems, and
are often evoked in statistical inference.

8.2 Cramér’s approach to consistency

In Section 2.6 we proved the Fisher consistency of the MLE. There are two
other types of consistency, strong consistency and consistency, which we define
below. Let T = T (X1:n) be a statistic.

Definition 8.2 A statistic T (X1:n) is a weakly consistent estimate (or sim-
ply consistent estimate) of the parameter θ0 if, under Pθ0 , T (X1:n) P→ θ0. It
is a strongly consistent estimate of θ0 if, under Pθ0 , T (X1:n) → θ0 almost
everywhere.

It turns out that the MLE is consistent in both senses, under different
sets of conditions. The methods for proving these two types of consistency are
also quite different. The weak consistency was proved in Cramér (1946); the
strong consistency was proved by Wald (1949). Each result reveals a different
nature of the MLE: the first one reveals the property of the score function;
the second reveals the property of the likelihood function. Both approaches
are used widely in statistical research. In this section we focus on Cramér’s
approach.

Suppose X1, . . . , Xn are i.i.d. with the common density belonging to a
parametric family {fθ(x) : θ ∈ Θ ⊆ R

p}. As before, let s(θ, x) be the score of
a single observation. Cramér’s statement of consistency does not directly state
“the MLE is consistent”. Rather, it states, roughly, that there is a sequence
of consistent solutions to the likelihood equation. The existence part of the
statement is established by a fixed point theorem (see Conway, 1990), which
is stated below.

Proposition 8.2 (Brouwer’s Fixed Point Theorem) Let B be a closed
unit ball in R

p. Suppose that h : B �→ B is a continuous function. Then there
is an x ∈ B such that h(x) = x

The next theorem is Cramer’s version of consistency of the MLE.
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Theorem 8.1 Suppose X1, . . . , Xn are i.i.d. random variables or vectors hav-
ing a density fθ0 (with respect to a σ-finite measure μ) belonging to a para-
metric family {fθ : θ ∈ Θ ∈ R

p}. Suppose, furthermore,

1. fθ(x) and s(θ, x)fθ(x) satisfy DUI+(θ, μ);
2. s(θ, x) satisfies DUI(θ,A, Pθ0), where A is the (common) support of fθ;
3. for all θ ∈ Θ, the entries of I(θ) are finite, and the matrix is positive

definite;
4. in a neighborhood of θ0, En[s(θ,X)] converges in probability uniformly to

E[s(θ,X)].

Then, there is a sequence of estimators {θ̂n} such that

i. with probability tending to 1, θ̂n is a solution to En[s(θ,X)] = 0,
ii. θ̂n

P→ θ0.

Proof. Henceforth for notational simplicity, the subscript θ0 will be dropped
from Eθ0 . Let Rn be the set of solutions of En[s(θ,X)] = 0. If Rn �= ∅, define

δn = inf
θ∈Rn

‖θ − θ0‖.

Then there is a sequence {θn,k : k = 1, 2, . . .} in Rn such that ‖θn,k−θ0‖ → δn

as k → ∞. Since the sequence {θn,k : k = 1, 2, . . .} is bounded, it contains
a subsequence {θn,k�

: 	 = 1, 2, . . .} that converges to some θ̂n,0. Note that
‖θ̂n,0 − θ0‖ = δn because otherwise ‖θn,k − θ0‖ → δn would have been impos-
sible.

Because En[s(θ,X)] is continuous, En[s(θn,k�
,X)] → En[s(θ̂n,0,X)] as

	 → ∞. Therefore, En[s(θ̂n,0,X)] = 0; that is, θ̂n,0 ∈ Rn. Now define

θ̂n =

{
θ̂n,0 if Rn �= ∅

0 if Rn = ∅

The value 0 for θ̂n doesn’t affect the asymptotic result in any way. It can be
replaced by any constant in the parameter space.

To show that {θ̂n} satisfies i and ii in the theorem, expand
(θ−θ0)T En[s(θ,X)], for θ sufficiently close to θ0, as

(θ − θ0)T En[s(θ,X)] = (θ − θ0)T E[s(θ,X)]

+
{
(θ − θ0)T En[s(θ,X)] − (θ − θ0)T E[s(θ,X)]

}
.

Because, by condition 2, E[s(θ,X)] =
∫

s(θ,X)dPθ0 is differentiable with
respect to θ under the integral sign, we have

(θ − θ0)
T E[s(θ, X)] = (θ − θ0)

T E[s(θ0, X)] + (θ − θ0)
T E

[
∂s(θ0, X)

∂θT

]
(θ − θ0)

+ o(‖θ − θ0‖2),
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where ‖ · ‖ denotes the Euclidean norm.
By condition 1 and Proposition 8.1 (as applied to a single observation), the

first term on the right-hand side is 0, and the second term on the right-hand
side is −(θ − θ0)T I(θ0)(θ − θ0). Hence,

(θ − θ0)T E[s(θ,X)] = −(θ − θ0)T I(θ0)(θ − θ0) + o(‖θ − θ0‖2). (8.6)

By condition 3, I(θ0) is a positive definite matrix. Consequently for suffi-
ciently small ε > 0, (θ − θ0)T E[s(θ,X)] < 0 whenever ‖θ − θ0‖ ≤ ε. Because
(θ − θ0)T E[s(θ,X)] is continuous on the compact set B(θ0, ε), it attains its
maximum within the closed ball. Hence for some δ > 0,

−δ > sup
θ∈B(θ0,ε)

{(θ − θ0)T Es(θ,X)} ≥ sup
θ∈∂B(θ0,ε)

{(θ − θ0)T Es(θ,X)} (8.7)

where ∂B(θ0, ε) is the boundary {θ : ‖θ − θ0‖ = ε}.
Next, note that

sup
θ∈∂B(θ0,ε)

{(θ − θ0)T Ens(θ,X)} ≤ sup
θ∈∂B(θ0,ε)

{(θ − θ0)T Es(θ,X)}

+ sup
θ∈∂B(θ0,ε)

{
(θ − θ0)T [Ens(θ,X) − Es(θ,X)]

}
.

By (8.7), the first term on the right is smaller than −δ. By Cauchy-Schwarz
inequality, the second term is no greater than

sup
θ∈∂B(θ0,ε)

{‖θ − θ0‖ ‖Ens(θ,X) − Es(θ,X)‖}

≤ ε sup
θ∈∂B(θ0,ε)

‖Ens(θ,X) − Es(θ,X)‖ ,

where, by condition 4, the right-hand side converges to 0 in probability. There-
fore,

P (Bn) → 1, where Bn =

{

sup
θ∈∂B(θ0,ε)

{(θ − θ0)En[s(θ,X)]} ≤ 0

}

. (8.8)

Let An = {ω : Rn ∩B(θ0, ε) �= ∅}. Then, on the event Ac
n, En[s(θ,X)]=0

has no solution on B(θ0, ε). In other words, En[s(θ,X)] �= 0 for all θ ∈ B(θ0, ε).
Consequently the mapping h defined on the unit ball by

h(η) = En[s(θ0 + εη,X)]/‖Ens(θ0 + εη,X)‖

is continuous. By Brouwer’s Fixed Point Theorem, there is an η∗ such that
‖η∗‖ ≤ 1 and h(η∗) = η∗. That is,

Ens(θ0 + εη∗,X)/‖Ens(θ0 + εη∗,X)‖ = η∗. (8.9)
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From this equality we also see that ‖η∗‖ = 1, which implies η∗T h(η∗) =
η∗T η∗ = 1.

Now let θ∗ = θ0 + εη∗. Then θ∗ ∈ ∂B(θ0, ε) and

(θ∗ − θ0)T Ens(θ∗,X) = εη∗T Ens(θ∗,X) = ε‖Ens(θ0 + εη∗,X)‖ > 0,

where, for the second equality, we have used the relation (8.9). Hence, on Ac
n,

sup
θ∈∂B(θ0,ε)

{(θ − θ0)T Ens(θ,X)} > 0.

Consequently, Bn ⊆ An. So by (8.8), P (An) → 1. But since

Rn ∩ B(θ0, ε) �= ∅ ⇒ Rn �= ∅ and ‖θ̂0,n − θ0‖ ≤ ε,

we have

P (En[s(θ̂n,X)] = 0) → 1, P (‖θ̂n − θ0‖ ≤ ε) → 0.

�

Cramér’s consistency result does not guarantee any specific solution to be
consistent when there are multiple solutions. It merely asserts that consis-
tent solution or solutions exist with probability tending to 1. Nevertheless,
if the likelihood equation only has one solution, then Cramér’s consistency
statement can guarantee that solution to be consistent.

The sufficient conditions for the uniform convergence condition 4 will be
further discussed in the next section. In the special case where p = 1, the
uniform convergence is unnecessary, because the boundary of the closed ball
B(θ0, ε) is simply the set of two points {θ0 − ε, θ0 + ε}. The convergence of
En[s(θ,X)] to E[s(θ,X)] is guaranteed by the law of large numbers. In the
next example we verify the sufficient conditions of Theorem 8.1 for p = 1 in
a Poisson regression problem.

Example 8.1 Suppose X is a random variable with density fX , and the
conditional distribution Y given X = x is Poisson(eθx). For simplicity, we
assume Θ = R, and ΩX = R. Suppose, for all θ ∈ Θ,

0 <

∫ ∞

−∞
x2eθxfX(x)dx < ∞. (8.10)

The goal here is to verify the first three conditions in Theorem8.1.
Since the joint density of (X,Y ) is

fθ(x, y) = (eθxy/y!) e−eθx

fX(x),

the log likelihood function is log fθ(x, y) = θxy−eθx +constant, and the score
function for a single observation is
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s(θ, x, y) = x(y − eθx). (8.11)

Conditions 1 and 2 can now be verified by straighforward calculations.
Condition 3 is simply assumption (8.10). �

The Cramér’s type consistency for all generalized linear models (McCul-
lagh and Nelder, 1989) can be verified in a similar way, where the predictor
X can be a vector. Here, we have made the simplifying assumption that the
predictor X is random. This is not an unreasonable assumption since the es-
timation is based on the conditional distribution of Y |X, and the marginal
density fX plays no role. The proof of the case where X1, . . . , Xn are fixed
can be carried out in the same spirit, but requires more careful treatment of
details.

8.3 Almost everywhere uniform convergence

In this section we further explore the condition in Theorem8.1 that re-
quires En[s(θ,X)] to converge to Es[(θ,X)] uniformly over the boundary set
∂B(θ0, ε), that is

sup
θ∈∂B(θ0,ε)

|Ens(θ,X) − Ens(θ,X)| P−→ 0.

For a set F of integrable functions, we are interested in whether the conver-
gence

sup
f∈F

|Enf(X) − Ef(X)| → 0 [P ], (8.12)

holds. In the case of Theorem 8.1, the set of functions is {s(θ,X) : θ ∈
∂B(θ0, ε)}. This type of uniform convergence is also important for the Wald-
type consistency that will be discussed in Section 8.4.

If F consists of a single function, then convergence (8.12) reduces to the
strong law of large numbers. But if F contains too many functions, then
uniform convergence over F will not hold. Then, what is the “appropriate
size” for F to ensure uniform convergence? To answer this question we first
have to define the “size of a family of functions”. Let S denote the class of
functions f on ΩX such that ‖f‖1 = E(|f(X)|) < ∞.

Definition 8.3 Given two members 	, u of S, the bracket [	, u] is the set

{f ∈ S : 	(x) ≤ f(x) ≤ u(x) for all x ∈ ΩX}.

The next theorem provides sufficient conditions under which a class F of
functions satisfies (8.12).
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Theorem 8.2 (Glivenko-Cantelli Theorem) Let X1,X2, . . . be an i.i.d.
sequence with distribution P . Suppose, for every ε > 0, there exists an integer
mε ≥ 1 and a set of functions {gij ∈ S : i = 1, . . . , mε, j = 1, 2} such that
‖gi2 − gi1‖1 < ε and F ⊂ ∪mε

i=1[gi1, gi2]. Then

sup
f∈F

|Enf(X) − Ef(X)| → 0 [P ].

Proof. If f ∈ [	, u] and ‖u − 	‖ < ε, then

En	(X) ≤ Enf(X) ≤ Enu(X), E	(X) ≤ Ef(X) ≤ Eu(X).

It follows that

Enf(X) − Ef(X) ≤ Enu(X) − E	(X)
≤ (Enu(X) − Eu(X)) + (Eu(X) − E	(X))
≤ (Enu(X) − Eu(X)) + ε,

Enf(X) − Ef(X) ≥ En	(X) − Eu(X)
≥ (En	(X) − E	(X)) − (Eu(X) − E	(X))
≥ (En	(X) − E	(X)) − ε.

Hence

|Enf(X) − Ef(X)| ≤ max {|En	(X) − E	(X)| , |Enu(X) − Eu(X)|} + ε.

Therefore,

sup
f∈F

|Enf(X) − Ef(X)| ≤ max
i=1,...,mε; j=1,2

|Engij(X) − Egji(X)| + ε.

By the strong law of large numbers each term inside the maximum on the
right converges to 0 almost everywhere. By Problem 8.6, the maximum itself
converges to 0 almost everywhere. It follows that, for each ε > 0,

P

(

lim sup
n→∞

sup
f∈F

|Enf(X) − Ef(X)| ≤ ε

)

= 1.

By Problem 8.7, the above implies

P

(

lim sup
n→∞

sup
f∈F

|Enf(X) − Ef(X)| = 0

)

= 1.

�

Thus, a sufficient condition for almost everywhere uniform convergence
over a class F is that for each ε > 0, F is covered by finite number of [	, u]
with ‖	 − u‖ < ε. The next proposition gives a sufficient condition for this.
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Proposition 8.3 Let F = {g(θ, x) : θ ∈ A}. Suppose that A is a compact
set in R

p, that g(θ, x) is continuous in θ for every x, and that, for all θ ∈
A, |g(θ, x)| is dominated by an integrable function G(x). Then, for any ε >
0, there exists an integer mε ≥ 1 and a set of functions {gij ∈ S : i =
1, . . . , mε, j = 1, 2} such that ‖gi2 − gi1‖1 < ε and F ⊆ ∪mε

i=1[gi1, gi2].

Proof. Let ε > 0. For any θ ∈ A, let B◦(θ, δ) be the open ball centered at θ
with radius δ; that is, B◦(θ, δ) = {θ′ : ‖θ′ − θ‖ < δ}. Let

u(θ, x, δ) = sup
θ′∈B◦(θ,δ)

g(θ′, x) and 	(θ, x, δ) = inf
θ′∈B◦(θ,δ)

g(θ′, x).

Because for each x, g(θ, x) is continuous in θ, for any ε > 0 there is a δ > 0
such that θ′ ∈ B◦(θ, δ) ⇒ |g(θ′, x) − g(θ, x)| < ε. Hence, for such a θ′,

g(θ′, x) = g(θ, x) + g(θ′, x) − g(θ, x)
≤ g(θ, x) + sup

θ′∈B◦(θ,δ)

|g(θ′, x) − g(θ, x)|

≤ g(θ, x) + ε.

Taking supremum, we have

u(θ, x, δ) = sup
θ′∈B◦(θ,δ)

g(θ′, x) ≤ g(θ, x) + ε.

Therefore lim supδ→0 u(θ, x, δ) ≤ g(θ, x). Similarly, lim infδ→0 	(θ, x, δ) ≥
g(θ, x). Thus we have shown that

lim
δ→0

u(θ, x, δ) = lim
δ→0

	(θ, x, δ) = g(θ, x).

We next use this result to construct a finite collection of [	, u] to cover F .
Note that

E {u(θ,X, δ) − 	(θ,X, δ)}
= E {u(θ,X, δ) − g(θ,X} + E {g(θ,X) − 	(θ,X, δ)} .

By assumption g(θ, x) is dominated by G(x), and hence |u(θ, x, δ)| and
|	(θ, x, δ)| are both dominated by G(x). By the Dominated Convergence The-
orem, both of the two terms on the right-hand side converge to 0 as δ → 0.
Consequently,

lim
δ→0

E {u(θ,X, δ) − 	(θ,X, δ)} = 0.

Hence, for any ε > 0, there is a δθ > 0 (which may depend on θ), 	θ, uθ

such that ‖	θ − uθ‖1 < ε, where 	θ(x) = 	(θ, x, δθ), and uθ(x) = u(θ, x, δθ).
Now consider the class of open balls
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O = {B◦(θ, δθ) : θ ∈ A} .

This is an open cover of A. Because A is compact, there is a finite subcover,
say, {B◦(θi, δθi

) : i = 1, . . . , m} of A. Then, the collection of {[	θi
, uθi

] : i =
1, . . . , m} must cover F because, if f ∈ F , then f = f(θ, x) for some θ ∈ A,
which must belong to one of the open balls, say θ ∈ B◦(θi, δθi

). Then,

	(θi, x, δθi
) ≤ sup

θ′∈B◦(θi,δθi
)

f(θ′, x) ≤ f(θ, x) ≤ sup
θ′∈B◦(θi,δθi

)

f(θ′, x) = u(θi, x, δθi
).

Thus f must be in the bracket [	θi
, uθi

]. �

8.4 Wald’s approach to consistency

The Wald approach to consistency (Wald, 1949) is quite different from
Cramer’s approach in that it relies on the properties of the log likelihood,
rather than the score function. Also, it asserts that the MLE is consistent,
rather than the existence of a solution to the score equation.

The structure of the proof is similar to those given in Wong (1986) and
van der Vaart (1998). The intuition is the following. Suppose again X1, . . . , Xn

are an i.i.d. sample from a density fθ(X). The log likelihood is proportional
to En log fθ(X). As shown in Theorem 2.1, if the family {Pθ : θ ∈ Θ} is
identifiable, then E[log fθ(X)] is uniquely maximized at the true parameter
θ0. If

sup
θ∈Θ

|En log fθ(X) − E log fθ(X)| → 0 [P ]

then we would expect that the maximizer θ̂n of En[log fθ(X)] to be close to
θ0, which is the maximizer of E[log fθ(X)]. Let Rn(θ) = En[log fθ(X)] and
R(θ) = E[log fθ(X)]. The next theorem makes the above intuition rigorous.

Theorem 8.3 Suppose R has a unique maximizer θ0 and Rn has a unique
maximizer θ̂n ∈ Θ modulo P . Suppose, furthermore,

1. lim
n→∞ sup

θ∈Θ
|Rn(θ) − R(θ)| = 0 [P ];

2. For every ε > 0, sup
‖θ−θ0‖>ε

R(θ) < R(θ0).

Then θ̂n → θ0 [P ].

Assumption 1 says that Rn converges uniformly to R almost everywhere,
which would be true if Θ is a compact set and log fθ(X) satisfies the con-
ditions in Proposition 8.3. Condition 2 is called “R(θ) has a well-separated
maximum”, which rules out the situations where, although R(θ) is less than
R(θ0), the former can get arbitrarily close to the latter (van der Vaart, 1998).



248 8 Asymptotic theory for Maximum Likelihood Estimation

Proof of Theorem 8.3. Since a probability 0 set does not affect our argument,
we can assume Rn has a unique maximizer without loss of generality. We first
show R(θ̂n) → R(θ0) [P ]. Since R(θ̂n) ≤ R(θ0), it suffices to show that

lim inf
n→∞ R(θ̂n) − R(θ0) ≥ 0 [P ].

Since

R(θ̂n) − R(θ0) = R(θ̂n) − Rn(θ̂n) + Rn(θ̂n) − Rn(θ0) + Rn(θ0) − R(θ0),

we have

lim inf
n→∞ [R(θ̂n) − R(θ0)] ≥ lim inf

n→∞ [R(θ̂n) − Rn(θ̂n)]

+ lim inf
n→∞ [Rn(θ̂n) − Rn(θ0)] + lim inf

n→∞ [Rn(θ0) − R(θ0)].

By condition 1, the first term and last term on the right-hand side are 0.
Therefore,

lim inf
n→∞ [R(θ̂n) − R(θ0)] ≥ lim inf

n→∞ [Rn(θ̂n) − Rn(θ0)],

where the right-hand side is nonnegative because θ̂n is the maximizer of Rn(θ).
Next, we show the desired relation

P ( lim
n→∞ ‖θ̂n − θ0‖ = 0) = P (lim sup

n→∞
‖θ̂n − θ0‖ = 0) = 1.

By Problem 8.7, it suffices to show that, for any ε > 0,

P (lim sup
n→∞

‖θ̂n − θ0‖ < ε) = 1. (8.13)

If lim supn→∞ ‖θ̂n − θ0‖ ≥ ε, then there a subsequence {θ̂nk
: k = 1, 2, . . .}

such that ‖θ̂nk
− θ0‖ > ε/2. By condition 2, there is a δ > 0 such that

sup
‖θ−θ0‖>ε/2

R(θ) ≤ R(θ0) − δ.

Thus, along the subsequence {θ̂nk
: k = 1, 2, . . .}, R(θ̂nk

) ≤ R(θ0)− δ, making
it impossible for R(θ̂n) to converge to R(θ0). Hence

P

(
lim sup

n→∞
‖θ̂n − θ0‖ ≥ ε

)
≤ P

(
lim

n→∞R(θ̂n) �= R(θ0)
)

,

where the right-hand side is 0 because we already established

R(θ̂n) → R(θ0) [P ].

This proves (8.13). �
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With slightly more effort the uniform convergence condition (condition 1)
in the above Theorem can be relaxed. Instead of assuming Rn(θ) converges
uniformly to R(θ) over Θ, we can assume Rn(θ) converges uniformly to R(θ)
over a subset K of Θ, and assume the maximizer of Rn(θ) is always in K.
This condition is known as essential compactness (Wong, 1986), and would
be satisfied if, for example, Rn(θ) concave.

Corollary 8.1 Suppose R has a unique maximizer θ0 and, with probability 1,
Rn has a unique maximizer θ̂n. Suppose, furthermore,

1. there is a subset K ⊆ Θ, whose interior contains θ0, such that

sup
θ∈K

|Rn(θ) − R(θ)| → 0 [P ];

2. with probability 1, Rn has a unique maximizer θ̃n over K;

3. P

(
lim inf
n→∞

{
sup
θ′ /∈K

Rn(θ) < sup
θ∈Θ

Rn(θ)
})

= 1;

4. For every ε > 0,

sup {R(θ) : ‖θ − θ0‖ ≥ ε, θ ∈ K} < R(θ0).

Then θ̂n → θ0 [P ].

Proof. Again, we can assume, without loss of generality, that Rn has a unique
maximizer θ̂n over Θ and a unique maximizer θ̃n over K. By condition 3,

P
(

lim
n→∞ ‖θ̂n − θ0‖ = 0

)

= P

({
lim

n→∞ ‖θ̂n − θ0‖ = 0
}
∩ lim inf

n→∞

{
sup
θ′ /∈K

Rn(θ) < sup
θ∈Θ

Rn(θ)
})

.

The event

lim inf
n→∞

{
sup
θ′ /∈K

Rn(θ) < sup
θ∈Θ

Rn(θ)
}

happens if and only if, for all sufficiently large n, θ̂n = θ̃n. Hence

P
(

lim
n→∞ ‖θ̂n − θ0‖ = 0

)

= P
(

lim
n→∞ ‖θ̂n − θ0‖ = 0, θ̂n = θ̃n for sufficiently large n

)

= P
(

lim
n→∞ ‖θ̃n − θ0‖ = 0, θ̂n = θ̃n for sufficiently large n

)

= P
(

lim
n→∞ ‖θ̃n − θ0‖ = 0

)
.

From the proof of Theorem8.3, we see that the probability on the right is 1. �
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The well-separated maximum condition (condition 1) of Theorem 8.3 is
guaranteed if K is a compact set, f is upper semi-continuous, and f has
a unique maximizer over K. Recall from Chapter 2 that, in the maximum
likelihood estimation context, the function R(θ) = E[log fθ(X)] has a unique
maximizer if the family {fθ : θ ∈ Θ} is identifiable.

The next proposition gives a set of sufficient conditions for a function f
to have a well separated maximum on a compact set.

Proposition 8.4 Suppose K is a compact set and f(θ) is an upper semi-
continuous function on K. Suppose f has a unique maximum over K and the
maximizer is an interior point of K. Then f has a well-separated maximum
on K.

Proof. If f is not well-separated on K then there is an ε > 0 such that

sup{f(θ) : ‖θ − θ0‖ > ε, θ ∈ K} = f(θ0).

Then there is a sequence {θn} ⊆ K \ B◦(θ0, ε) such that f(θn) → f(θ0). But
because the set K \B◦(θ0, ε) is compact this sequence has a subsequence say
{θnk

} such that θnk
→ θ∗ with θ∗ in K. By upper semi-continuity of f we

have lim supk→∞ f(θnk
) ≤ f(θ∗). However, by the uniqueness of maximum

f(θ∗) < f(θ0), contradicting to f(θn) → f(θ0). �

The next proposition gives a set of sufficient conditions for essential com-
pactness.

Proposition 8.5 Suppose that R has a unique maximuizer θ0. Suppose

1. There is a subset K ⊆ Θ whose interior contains θ0 such that

lim
n→∞ sup

θ∈K
|Rn(θ) − R(θ)| = 0 [P ];

2. R has a well-separated maximum over K;
3. Rn(θ) is concave with probability 1.

Then,

P

(
lim inf
n→∞

{
sup
θ/∈K

Rn(θ) < sup
θ∈Θ

Rn(θ)
})

= 1. (8.14)

Note that, in condition 3, we do not need Rn to be strictly concave with
probability 1.

Proof of Proposition 8.5. Let ε > 0 be such that B◦(θ0, ε) is contained in the
interior of K. By assumptions 1 and 2 there is a δ > 0 such that

P

(

lim sup
n→∞

sup
K\B◦(θ0,ε)

Rn(θ) < R(θ0) − δ

)

= 1.
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By condition 1, we have Rn(θ0) → R(θ0) [P ], which implies

P
(
lim inf
n→∞ Rn(θ0) > R(θ0) − δ/2

)
= 1

⇒P

(

lim inf
n→∞ sup

B◦(θ0,ε)

Rn(θ) > R(θ0) − δ/2

)

= 1.

Let An, Bn and Cn be the sets

An =

{

lim sup
n→∞

sup
K\B◦(θ0,ε)

Rn(θ) < R(θ0) − δ

}

,

Bn =

{

lim inf
n→∞ sup

B◦(θ0,ε)

Rn(θ) > R(θ0) − δ/2

}

,

Cn = {Rn is concave }.
Then, P (AnBnCn) = 1.

However, AnBnCn implies that, for sufficiently large n the supremum of Rn

outside K cannot be greater than R(θ0) − δ, which implies (8.14). �

Problems 8.8 through 8.11 contain step-to-step verifications of all the con-
ditions in Theorem8.3 in the Poisson regression setting.

8.5 Asymptotic normality

In this section we show that, if θ̂ is the MLE, then
√

n(θ̂ − θ0) converges in
distribution to a Normal random vector. Here, we have omitted the subscript
n of θ̂n for simplicity. As before, let X1, . . . , Xn, . . . be an i.i.d. sequence of
random variables or vectors with probability density function fθ(x), where θ ∈
Θ ⊆ R

p. Let s(θ,X) be the score function and I(θ) be the Fisher information
matrix as defined previously. Let J(θ) and K(θ) denote the matrices

Eθ

[
∂s(θ,X)/∂θT ], Eθ[s(θ,X)sT (θ,X)

]
, (8.15)

respectively. Although under the mild conditions in Proposition 8.1 we have
K(θ) = −J(θ) = I(θ), it makes the proof clearer if we use two separate
symbols.

For finite-dimensional spaces, all matrix norms are equivalent so long as
convergence is concerned. For definiteness, we use the Frobenius matrix norm:

‖A‖F =
√∑

i,ja
2
ij .

We will also use the matrix version of the rules of OP and oP in Theorem 7.15.
In particular, we say a sequence of random matrices An is of the order OP (an)
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or oP (an) if ‖An‖F = OP (an) or oP (an). The first relation in Theorem 7.15,
for example, is to be understood as: if An = OP (an), Bn = Op(bn), then
AnBn = Op(anbn), where AnBn is the matrix product. The proof of this
extension is left as an exercise (Problem 8.14).

The idea for developing the asymptotic distribution of the MLE is to use
Taylor expansion of Ens(θ̂, X) at θ0, and show that the remainder of the
Taylor approximation is stochastically small. A concise way to bound the
remainder is via the notion of stochastic equicontinuity.

Definition 8.4 Let {gn(θ,X1:n) : n = 1, 2, . . .} be a sequence of random func-
tions that map into R

q. The sequence is said to be stochastically equicontinuous
if, for any η > 0, ε > 0, there is a δ > 0 such that

lim sup
n→∞

P

(

sup
‖θ1−θ2‖<δ

‖gn(θ1X1:n) − gn(θ2,X1:n)‖ > ε

)

< η. (8.16)

This definition can be made more general. For example, both the domain
and the range of gn(·,X1:n) can be metric spaces. But this version is sufficient
for our discussion. Also, in our application of this concept gn(θ,X1:n) is ac-
tually a matrix rather than a vector. But a matrix can be viewed as a vector
by stacking its columns.

Recall that, if g(θ) is continuous at θ0 and θ̂
P→ θ0, then g(θ̂) P→ g(θ0).

Stochastic equicontinuity plays a similar role as continuity, but in the context
when g(θ) is replaced by a sequence of random functions. Specifically, stochas-
tic equicontinuity guarantees that, if θ̂ is a consistent estimate of θ0, then the
distance between gn(θ̂, X1:n) and gn(θ0,X1:n) converges in probability to 0.

Proposition 8.6 If {gn(θ,X1:n) : n = 1, 2, . . .} is stochastically equicontin-
uous and θ̂

P→ θ0, then

‖gn(θ̂, X1:n) − gn(θ0,X1:n)‖ P−→ 0.

Proof. Let ε > 0, η > 0, and let δ > 0 be a number such that (8.16) is satisfied.
Because θ̂

P→ θ0, we have P (‖θ̂ − θ0‖ < δ) → 1. Hence

0 ≤ lim sup
n→∞

P
(
‖gn(θ̂, X1:n) − gn(θ0,X1:n)‖ > ε

)

= lim sup
n→∞

P
(
‖gn(θ̂, X1:n) − gn(θ0,X1:n)‖ > ε, ‖θ̂ − θ0‖ < δ

)

≤ lim sup
n→∞

P

(

sup
‖θ1−θ2‖<δ

‖gn(θ1,X1:n) − gn(θ2,X1:n)‖ > ε

)

< η.

Since η > 0 is arbitrary, it follows that

lim sup
n→∞

P
(
‖gn(θ̂, X1:n) − gn(θ0,X1:n)‖ > ε

)
= 0.
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�

We now give a further consequence of stochastic equicontinuity when
gn(θ,X1:n) takes the special form En[g(θ,X)]. It follows directly from the
above proposition and the law of large numbers.

Corollary 8.2 If g(θ,X) is Pθ0-integrable, {Eng(θ,X) : n ∈ N} is stochasti-
cally equicontinuous, and θ̂

P→ θ0, then En[g(θ̂, X)] P→ E[g(θ0,X)].

The next proposition gives a sufficient condition for stochastic equiconti-
nuity when gn(θ,X1:n) takes the form En[g(θ,X)].

Proposition 8.7 Suppose X1, · · ·,Xn are i.i.d. random vectors with distri-
bution Pθ0 . If g(θ,X) is differentiable with respect to θ, and there is a Pθ0-
integrable function M(X) such that

sup
θ∈Θ

‖∂g(θ,X)/∂θT ‖F ≤ M(X),

then the sequence {En[g(θ,X)] : n ∈ N} is stochastically equicontinuous.

Proof. By Taylor’s mean value theorem, for any θ1, θ2 ∈ Θ, there is a ξ on
the line joining θ1 and θ2 such that

g(θ2,X) = g(θ1,X) + [∂g(ξ,X)/∂θT ] (θ2 − θ1).

Hence

‖g(θ2,X) − g(θ1,X)‖ ≤‖[∂g(ξ,X)/∂θT ] (θ2 − θ1)‖
≤ ∥

∥∂g(ξ,X)/∂θT
∥
∥
F
‖θ2 − θ1‖

≤M(X) ‖θ2 − θ1‖,

where the second equality follows from Problem 8.15. It follows that

‖En[g(θ2,X)] − En[g(θ1,X)]‖ ≤En[M(X)] ‖θ2 − θ1‖.

Then, for any δ > 0,

sup
‖θ1−θ2‖<δ

‖En[g(θ2,X)] − En[g(θ1,X)]‖ ≤En[M(X)] δ.

Let ε > 0 and η > 0. Because En[M(X)] P→ E[M(X)], En[M(X)] is
bounded in probability (Problem8.12). Hence there is a K > 0 such that

lim sup
n→∞

P (EnM(X) > K) < η.

Let δ > 0 be so small that ε/δ > K. Then
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lim sup
n→∞

P (En[M(X)] > ε/δ) < η.

Hence

lim sup
n→∞

P

(

sup
‖θ1−θ2‖<δ

‖En[g(θ2,X)] − En[g(θ1,X)]‖ > ε

)

≤ lim sup
n→∞

P (EnM(X)δ > ε) < η.

�

We are now ready to derive the asymptotic distribution of the maximum
likelihood estimate.

Theorem 8.4 Suppose that θ̂ is a consistent solution to likelihood equation
En[s(θ,X)] = 0 and that θ0 is an interior point of Θ. Suppose, furthermore,

1. fθ(x) satisfies DUI+(θ, μ);
2. s(θ, x)fθ(x) satisfies DUI+(θ, μ);
3. the sequence {En[∂s(θ,X)/∂θT ] : n ∈ N} is stochastically equicontinuous

over B(θ0, ε) for some ε > 0.

Then
√

n(θ̂ − θ0)
D−→ N(0, I−1(θ0)), provided that I(θ0) is positive definite.

Note that by the first two conditions and Proposition 8.1, the information
identities (8.2) and (8.3) hold — particularly for X1:n = X1. The assumption
that K(θ0) = I(θ0) is positive definite amounts to assuming the score s(θ0,X)
is non-degenerate under Pθ0 , which is also quite mild. Condition 3 is local in
nature. Although we do not know θ0, in a particular problem we can check
whether this condition is satisfied for every interior point of Θ.

Proof. By Taylor’s theorem,

0 = En[s(θ̂, X)] = En[s(θ0,X)] + [Enṡ(ξ,X)](θ̂ − θ0),

for some ξ on the line joining θ0 and θ̂. Because ξ
P→ θ0 and {Enṡ(θ,X) : n =

1, 2, . . .} is stochastically equicontinuous, we have, by Corollary 8.2,

Enṡ(ξ,X) = J(θ0) + oP (1),

where oP (1) means a matrix sequence whose Frobenius norm tends to 0. Hence

0 = En[s(θ0,X)] + J(θ0)(θ̂ − θ0) + oP (1)(θ̂ − θ0). (8.17)

Since J(θ0) is invertible, we have

(θ̂ − θ0) = − J(θ0)−1En[s(θ0,X)] + J(θ0)−1oP (1)(θ̂ − θ0).
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Rearranging the above equality, we have
√

n[Ip + oP (1)](θ̂ − θ0) = −J−1(θ0){
√

nEn[s(θ0,X)]}.

By the central limit theorem,

√
nEn[s(θ0,X)] D−→ N(0,K(θ0)),

where K(θ0) = E[s(θ0,X)sT (θ0,X)]. Hence, by Slutsky’s theorem,

−[J−1(θ0) + oP (1)][
√

nEns(θ0,X)] D−→ N(0, J−1(θ0)K(θ0)J−1(θ0)).

Since, by condition 2, K(θ0) = −J(θ0) = I(θ0), the right-hand side is simply
N(0, I−1(θ0)), leading to

√
n[Ip + oP (1)](θ̂ − θ0)

D−→ N(0, I−1(θ0)),

which implies
√

n(θ̂ − θ0)
D−→ N(0, I−1(θ0)) by Slutsky’s Theorem (Problem

8.13). �

Problems

8.1. Suppose that X is a random variable that takes values in ΩX ⊆ R having
an exponential family density (with respect to a σ-finite measure μ) of the
form

fθ(x) =
eθt(x)

∫
ΩX

eθt(x)dμ
, θ ⊆ Θ ∈ R. (8.18)

1. Show that the identities in Proposition 8.1 hold.
2. Show that the Fisher information I(θ) is of the form varθ[t(X)].
3. Repeat 1 and 2 if θ in (8.18) is replaced by a monotone increasing function

of ψ(θ). That is,

fθ(x) =
eψ(θ)t(x)

∫
ΩX

eψ(θ)t(x)dμ
.

8.2. Suppose that X is a random variable that takes values in ΩX ⊆ R

whose density with respect to a σ-finite measure μ is given by (8.18), where
varθ[t(X)] > 0.

1. Show that the function μ(θ) = Eθ[t(X)] is strictly increasing.
2. Show that the maximum likelihood estimate is given by

θ̂ = μ−1(En[t(X)]).
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8.3. Suppose that X is a random variable in (0, 1) whose density is of the
form

fθ(x) =
θ

θ − 1
x−1/θ, θ > 1.

1. Show that fθ(x) does not satisfy DUI+(θ, λ), λ being the Lebesgue mea-
sure.

2. Show that Eθ[s(θ,X)] �= 0.

8.4. Suppose X is a random variable whose density belongs to a parametric
family {fθ(X) : θ ∈ Θ ⊆ R

p}. Suppose the support of fθ does not depend on
θ. The Kullback-Leibler divergence between fθ and fθ0 is defined as

K(θ) = Eθ

{
log

[
fθ(X)
fθ0(X)

]}
.

Derive the second-order Taylor polynomial for K(θ) and express it in terms
of the Fisher information I(θ0).

8.5. Suppose that {A1,n}, . . . , {Ak,n} are k sequences of events and that, for
each i = 1, . . . , k, P (Ai,n) → 1 as n goes to infinity. Show that

lim
n→∞P

(
k⋂

i=1

Ai,n

)

= 1.

8.6. Suppose that {X1,n}, . . . , {Xk,n} are k sequences of random variables.

1. Show that if Xi,n
P→ 0 for each i = 1, . . . , k, then

max
i=1,...,k

(|X1,n|, . . . , |Xk,n|) P−→ 0.

2. Show that if Xi,n → 0 [P ] for each i = 1, . . . , k, then

max
i=1,...,k

(|X1,n|, . . . , |Xk,n|) → 0 [P ].

8.7. Let X ≥ 0 be a random variable. Show that if P (X ≤ ε) = 1 for all ε > 0,
then P (X = 0) = 1.

8.8. Suppose Y conditioning on X = x is distributed as Poisson(eθT x), θ ∈
Θ = R

p, and X has a density h with respect to the Lebesgue measure. Let
ΩX = {x ∈ R

p : fX(x) > 0} be the support of X, and suppose that ΩX

contains a nonempty open set in R
p. Let fθ(x, y) be the joint density of (X,Y )

under θ. Prove that {fθ(x, y) : θ ∈ Θ} is identifiable.

8.9. Suppose the joint distribution of (X,Y ) is as defined in Problem8.8.
Furthermore, suppose that
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1. E |log fX(X)| < ∞;
2. for any C > 0, E(eC‖X‖) < ∞, E(‖X‖eC‖X‖) < ∞.

Let A be a compact subset of R
p, and let F = {log fθ(x, y) : θ ∈ A}. Use

Proposition 8.3 to show that for all ε > 0, F can be covered by finite number
of bracket functions [	, u] such that ‖	 − u‖ < ε.

8.10. Under the conditions of Problem8.9, use Proposition 8.4 to show that
Eθf(X,Y ) has a well-separated maximum on any compact set A that contains
θ0 as an interior point.

8.11. Suppose the conditions of Problem8.9 are satisfied. Suppose, further
more, that Eθ0(e

θT XXXT ) has finite entries for all θ ∈ R
p. Use Proposition 8.5

to show that any compact set A in R
p whose interior contains θ0 is essentially

compact. That is, condition (8.14) is satisfied.

8.12. Suppose Xn is a sequence of random vectors that converges in proba-
bility to a fixed vector a. Show that, Xn = OP (1).

8.13. Suppose An is a sequence of random matrices that converges in proba-
bility to A, and Xn a sequence of random vectors. Use Slutsky’s Theorem to
show that, if AnXn

D−→ U , then AXn
D−→ U .

8.14. Suppose An and Bn are random matrices, and an, bn are sequences of
positive numbers. Prove the following statements:

1. if An = OP (an) and Bn = OP (bn), then AnBn = OP (anbn);
2. if An = OP (an) and Bn = oP (bn), then AnBn = oP (anbn);
3. if An = oP (an) and Bn = oP (bn), then AnBn = oP (anbn).

8.15. Suppose A is a p×q dimensional matrix and b is a q dimensional vector.
Show that

‖Ab‖ ≤ ‖A‖F ‖b‖.

8.16. Suppose A is an invertible square matrix and Δ is a matrix of the same
dimensions. Show that, there exists an ε > 0 such that, for all ‖Δ‖F ≤ ε,
A + Δ is invertible. Let B̄(A, ε) be the closed ball {A + Δ : ‖Δ‖F ≤ ε}. Let
f : B̄(A, ε) → R

p×p be defined via

f(Δ) = (A + Δ)−1.

Show that f(Δ) is continuous at Δ = 0.

8.17. Suppose An is a sequence of random matrices that converges in proba-
bility to a nonrandom, invertible matrix A. Use the result of Problem8.16 to
show that An is invertible with probability tending to 1.
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8.18. Show that the condition “θ̂ is a consistent solution to En[s(θ,X)] =
0” in Theorem 8.4 can be replaced by “θ̂ is consistent and with probability
tending to 1 is a solution to En[s(θ,X)] = 0.” Notice that the latter is the
conclusion of the Cramer-type consistency in Theorem 8.1.

8.19. Suppose X1, . . . , Xn are i.i.d. random variables whose common distri-
bution is Pθ0 , where θ0 is an interior point of a p-dimensional parameter space
Θ. Let θ̂ be a p-dimensional statistic, and let f be a function from Θ × ΩX

to R. Suppose

1.
√

n(θ̂ − θ0)
D→ N(0, Σ) for some positive semidefinite matrix Σ;

2. for each x ∈ ΩX , the function θ �→ f(θ, x) is differentiable;
3. for any θ ∈ Θ, the components of ∂f(θ,X)/∂θ are Pθ0-integrable;
4. the sequence of random functions {En[∂f(θ,X)/∂θ] : n = 1, 2, . . .} is

stochastically equicontinuous over Θ.

Derive the asymptotic distribution of
√

n[Enf(θ̂, X) − Ef(θ0,X)].

8.20. Suppose X is a random variable whose distribution belongs to a multi-
parameter exponential family:

fθ(x) =
eθT t(x)

∫
eθT t(x)dμ(x)

, θ ∈ Θ ⊆ R
p, x ∈ ΩX ⊆ R,

where μ is a σ-finite measure on ΩX and t is a function from ΩX to R
p.

Suppose X1, . . . , Xn are an i.i.d. sample from X. Let θ̂ be the maximum
likelihood estimate.

1. Derive the asymptotic distribution of
√

n(θ̂ − θ0).
2. Suppose we estimate the moment generating function of t(X), ϕ(u) =

Eθ0 [e
uT t(X)], by ϕ̂(u) = Eθ̂[e

uT t(X)]. Prove that

√
n[ϕ̂(u) − ϕ(u)] D−→ N(0, Λ),

where Λ is

ϕ2(u)[Eθ0+ut(X) − Eθ0t(X)]T {varθ0 [t(X)]}−1[Eθ0+ut(X) − Eθ0t(X)].

8.21. Suppose X1, . . . , Xn are an i.i.d. sample from the uniform distribution
U [0, θ]; that is,

fθ(x) = θ−1, 0 ≤ x ≤ θ.

1. Derive the maximum likelihood estimate θ̂ of θ0.
2. Derive the asymptotic distribution of n(θ̂ − θ0).
3. Explain the discrepancy between this asymptotic distribution and that

given by Theorem8.4.



8.5 Asymptotic normality 259

References

Conway, J. B. (1990). A course in functional analysis. Second edition.
Springer, New York.

Cramér, H. (1946). Mathematical Methods of Statistics. Princeton University
Press.

Godambe, V. P. (1960). An optimum property of regular maximum likelihood
estimation. The Annals of Mathematical Statistics, 31, 1208–1211.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, Second
Edition, Chapman & Hall.

van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University
Press.

Wald, A. (1949). Note on the consistency of maximum likelhood estimate.
Annals of Mathematical Statistics, 20, 595–601.

Wong, W. H. (1986). Theory of partial likelihood. The Annals of Statistics.
14, 88–123.



9

Estimating equations

In this chapter we develop the theory of estimating equations. Estimating
equations are a generalization of the maximum likelihood method, but they
do not require a fully specified probability model. Instead, they only require
the functional forms of their first two moments. Estimating equations have
wide range of applications: for example, the quasi likelihood method (Wedder-
burn, 1974; McCullagh, 1983; Godambe and Thompson, 1989; Heyde, 1997),
and the Generalized Estimating Equations (Liang and Zeger, 1986; Zeger and
Liang, 1986) are two important types of estimating equations that are widely
used in Generalized Linear Models and longitudinal data analysis. (Yes, a
Generalized Estimating Equation is indeed a special type of estimating equa-
tion due to the commonly adopted convention, even though this sounds like an
oxymoronic statement). In addition, estimating equations are related to the
Generalized Method of Moments (Hansen, 1982), which is popular in econo-
metrics. Estimating equations have also been developed in conjunction with
the Martingale theory, and are a powerful method for statistical inference for
stochastic processes (Heyde, 1997). As a natural extension of Maximum Like-
lihood Estimation and Method of Moments, estimating equations have their
combined flavors and advantages.

In addition to their wide applications in data analysis, estimating equa-
tions are also a convenient theoretical framework to develop many aspects of
statistical inference, such as conditional inference (Godambe, 1976; Lindsay,
1982), nuisance parameters, efficient estimator, and the information bound.
They make some optimal results in statistical inference transparent via pro-
jections in Hilbert spaces.

9.1 Optimal Estimating Equations

The basic theory of optimal estimating equations are introduced and devel-
oped by Godambe (1960, 1976), Durbin (1960), and Crowder (1987). See also
Morton (1981) and Jarrett (1984). An estimating equation is any measurable
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and Pθ-integrable function of θ and X. We usually assume its expectation
under θ is either 0 or statistically ignorable, so that under mild conditions its
solution is asymptotically Normal with a variance matrix depending on the
estimating equation. The optimal estimating equation in a class of estimat-
ing equations is the one whose solution has the smallest asymptotic variance
among the class in terms of Louwner’s ordering. The explicit form of the opti-
mal estimating equation can be derived by the multivariate Cauchy-Schwarz
inequality developed in Section 7.9.

As before, let X1, . . . , Xn be an i.i.d. sample with probability distribution
Pθ, where θ is a p-dimensional parameter in a parametric space Θ ⊆ R

p.
Throughout this chapter, we assume that the parametric family {Pθ : θ ∈ Θ}
is dominated by a σ-finite measure μ, and denote the density of Pθ with
respect to μ by fθ.

Definition 9.1 A function g : Θ×ΩX → R
p is called an unbiased estimating

equation if
Eθ[g(θ,X)] = 0

for all θ ∈ Θ.

An unbiased estimating equation is a generalization of the score function
s(θ,X), which satisfies Eθ[s(θ,X)] = 0 under the assumptions of Proposition
8.1. It also includes many other estimates, such as the method of moments, the
least squares estimate, and the quasi likelihood estimate (Wedderburn, 1974;
McCullagh, 1983). Given an estimating equation g(θ,X), the parameter θ is
estimated by solving the equation

En[g(θ,X)] = 0.

Let L2(Pθ) be the class of all Pθ-square-integrable random variables, and
let

Lp
2(Pθ) = L2(Pθ) × · · · × L2(Pθ)

be the p-fold Cartesian product of L2(Pθ). We often assume that, for each θ,
g(θ,X) is a member of Lp

2(Pθ). This is stated as the following formal definition
for easy reference.

Definition 9.2 An estimating equation g(θ,X) is Pθ-square-integrable if
g(θ,X) ∈ Lp

2(Pθ) for each θ ∈ Θ. Furthermore, a class of estimating equations
G is said to be Pθ-square-integrable if its members are Pθ-square-integrable.

The optimal estimating equation is defined in terms of the amount of
information contained in an estimating equation, as introduced by Godambe
(1960). We now give a general definition of this information.

Definition 9.3 Suppose that g(θ,X) is an unbiased and Pθ-square-integrable
estimating equation, and g(θ, x)fθ(x) satisfies DUI+(θ, μ). Then the following
matrix
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Ig(θ) = Eθ[∂gT (θ,X)/∂θ]{Eθ[g(θ,X)gT (θ,X)]}+Eθ[∂g(θ,X)/∂θT ].

is called the information contained in g(θ,X).

To understand the intuition behind this definition, consider the special
case where θ is a scalar, and the information Ig(θ) takes the form

Ig(θ) =
{Eθ[ġ(θ,X)]}2
Eθ[g2(θ,X)]

.

Intuitively, since θ̂ is solved from En[g(θ,X)] = 0, a larger slope of Eθ0 [g(θ,X)]
at θ0 would benefit estimation, because a slight departure from θ0 would cause
a large change in En[g(θ,X)], forcing its root to be close to θ0. On the other
hand, a smaller variance varθ0 [g(θ0,X)] would benefit estimation, because it
will make the random function En[g(θ,X)] packed tightly around 0 when θ is
near θ0, which makes the variation of the solution small. Thus the ratio of these
two quantities characterizes the tendency of an estimating equation having a
root close to the true parameter value. Also, as we shall see in Section 9.5,
I−1
g (θ) is the asymptotic variance of

√
n(θ̂g − θ0), where θ̂g is any consistent

solution to the estimating equation En[g(θ,X)] = 0. Thus maximizing the
information of an estimating equation amounts to minimizing the asymptotic
variance of its solution.

We now define the optimal estimating equation in a class G of estimating
equations.

Definition 9.4 Suppose G is a class of unbiased and Pθ-square-integrable es-
timating equations such that, for each g ∈ G, g(θ, x)fθ(x) satisfies DUI+(θ, μ).
If there is a member g∗ of G such that Ig∗ � Ig for all g ∈ G, then g∗ is called
the optimal estimating equation in G.

We next develop a general method for constructing the optimal estimating
equation. For all practical purposes a class G of estimating equations may be
assumed to be a linear manifold. That is, for each θ, the set {g(θ,X) : g ∈ G}
is a linear manifold in Lp

2(Pθ). As we will see in the subsequent development,
if this linear manifold is closed, then the optimal estimating equation can be
obtained by projecting the score function s(θ,X) on to the linear subspace.
However, the set {g(θ,X) : g ∈ G} may not be closed: for example the DUI
assumption may not be preserved after taking an L2(Pθ)-limit. While it might
be possible to get around this problem by using a more general definition of
a derivative, we take the simpler approach to assume that G contains the
optimal estimating equations, which is sufficient for the discussions here. The
method for constructing optimal estimating equations by projecting the score
function on to a class of estimating equations is referred to as the projected
score method by Small and McLeish (1989).

The next lemma is a generalization of the information identity (8.3) in
Proposition 8.1.
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Lemma 9.1 If g(θ, x) is an unbiased estimating equation such that g(θ, x)fθ(x)
satisfies DUI+(θ, μ), then

Eθ

[
∂g(θ,X)

∂θT

]
= −Eθ[g(θ,X)sT (θ,X)]. (9.1)

Proof. By unbiasedness of g(θ,X), we have∫
A

g(θ,X)fθ(X)dμ = 0,

where A is the common support of fθ(x). Because g(θ,X)fθ(X) satisfies
DUI+(θ, μ), by differentiating both sides of the equation we have

∫
A

∂g(θ,X)
∂θT

fθ(X)dμ +
∫

A

g(θ,X)
∂fθ(X)/∂θT

fθ(X)
fθ(X)dμ = 0.

The asserted result follows because first term on the left is Eθ[∂g(θ,X)/∂θT ],
and the second term on the left is Eθ[g(θ,X)sT (θ,X)]. �

Note that, if we take g(θ,X) to be s(θ,X), then the identity (9.1) re-
duces to the information identity (8.3) in Proposition 8.1. Before stating the
next theorem, we define the inner product matrix of two members of Lp

2(Pθ),
h1(θ,X) and h2(θ,X), to be

[h1, h2] = Eθ[h1(θ,X)hT
2 (θ,X)].

Theorem 9.1 Suppose G is a class of unbiased and Pθ-square-integrable-
estimating equations such that for each g∈G, g(θ, x)fθ(x) satisfies DUI+(θ, μ).
If there is a member g∗ of G satisfying [s−g∗, g] = 0 for all g ∈ G, then Ig∗ � Ig

for all g ∈ G.

Proof. By the multivariate Cauchy-Schwarz inequality (the more general ver-
sion in Problem 7.22), we have, for any g ∈ G,

[g∗, g∗] � [g∗, g][g, g]+[g, g∗].

By assumption, [g∗, g] = [s, g]. As shown in Lemma 9.1, under the DUI and
the unbiasedness assumption, we have

[g, s] = −Eθ[∂g(θ,X)/∂θT ]. (9.2)

Hence

[g∗, g][g, g]+[g, g∗] = E[∂gT /∂θ][E(ggT )]+E(∂g/∂θT ) = Ig.

Applying the above relation to g = g∗, we have

[g∗, g∗] = [g∗, g∗][g∗, g∗]+[g∗, g∗] = Ig∗ .
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Therefore Ig∗ � Ig. �

It follows immediately from the above theorem that the score function
s(θ, x) is the optimal estimating equation among a class of estimating equa-
tions G, as long as it belongs to G. In particular, we can take G to be the class
of all unbiased, Pθ-square-integrable estimating equations that satisfy the DUI
condition. This optimal property is stated in the next theorem, whose simple
proof is omitted. The core idea of this result is due to Godambe (1960) and
Durbin (1960).

Corollary 9.1 Suppose G is the class of all unbiased, Pθ-square-integrable
estimating equations such that, for each g ∈ G, fθ(x) and g(θ, x)fθ(x) satisfy
DUI+(θ, μ). If s(θ, x) is a member of G, then, for any g ∈ G, we have Is(θ) �
Ig(θ) for all θ ∈ Θ.

The optimality of maximum likelihood estimation can be stated at several
levels. The above result stated in terms of estimating equations is an intuitive
and relatively simple optimal property. We will revisit this issue to give a more
general form of this optimality in Chapter 10.

By itself, Corollary 9.1 does not lead to any new method; it merely states
that the maximum likelihood estimate is optimal in this sense. A more inter-
esting case is when s(θ,X) is not among the estimating equations considered,
in which case it leads to new methods such as the quasi likelihood method
and the generalized estimating equations.

The next proposition shows that the condition [s− g∗, g] = 0 for all g ∈ G
uniquely determines an optimal estimating equation in G provided that G is
a linear space.

Proposition 9.1 Suppose that G is a linear manifold of unbiased and Pθ-
square-integrable estimating equations such that, for each g ∈ G, g(θ, x)fθ(x)
satisfies DUI+(θ, μ). If there exist g∗1 and g∗2 in G satisfying [s − g∗i , g] = 0,
for i = 1, 2 and for all g ∈ G, then g∗1 = g∗2 .

Proof. By assumption,

[s − g∗1 , g] = 0, [s − g∗2 , g] = 0

for all g ∈ G. Since G is a linear manifold, g∗1 − g∗2 is a member of G. Hence

[s − g∗1 , g
∗
1 − g∗2 ] = 0, [s − g∗2 , g

∗
1 − g∗2 ] = 0.

Subtracting the first equation from the second, we have

[g∗1 − g∗1 , g
∗
1 − g∗2 ] = 0,

which implies g∗1 − g∗2 = 0 by Proposition 7.4. �
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In the next three sections we develop some special optimal estimating
equations, including the quasi likelihood estimating equation, and the Gen-
eralized Estimating Equation. They are the foundations of some important
statistical methodologies, and also serve to illustrate how to construct opti-
mal estimating equations using the general method introduced in this section
under different settings. Ideally all the results in the next three sections can be
written rigorously as lemmas, theorems, and corollaries, but doing so would in-
volve lengthy regularity conditions that may obscure otherwise simple ideas.
We will instead develop them somewhat informally without stating all the
regularity conditions.

9.2 Quasi likelihood estimation

Suppose that (X1, Y1), . . . , (Xn, Yn) are i.i.d. with a joint distribution from
a parametric family {Pθ : θ ∈ Θ ⊆ R

p}. We assume Xi is a p-dimensional
random vector, and Yi is a random variable. Again, assuming Xi to be random
is purely for convenience. The following estimating equation is based entirely
on conditional moments given X. That is, we are in effect treating X as fixed.
The optimal estimating equation we get is the same as that of assuming Xi

to be fixed.
Here, we do not assume the full parametric form of Pθ, but instead, we

only assume the forms of the first two conditional moments of Y given X:

Eθ(Y |X) = μ(θT X), varθ(Y |X) = V (θT X),

where μ and V are known functions. For example, in a log linear model for
the Poisson data,

μ(θT X) = eθT X , V (θT X) = eθT X .

Denote the conditional density of Y |X by fθ(y|x) and the marginal density
of X by fX(x). Neither fθ(y|x) nor fX needs to be specified except the con-
ditional moments μ(·) and V (·).

Consider the class of unbiased estimating equations of the form

G = {aθ(X)(Y − μ(θT X)) : a is a function from Θ × ΩX to R
p}.

Our goal is to find the optimal estimating equation in G that satisfies [s −
g∗, g]= 0 for all g ∈ G, where, as before, s = s(θ, x, y) represents the true score
function. Despite its appearance, this process does not require the form of s.
Our optimal estimating equation is derived from the defining relation

Eθ(g∗gT ) = Eθ(sgT ) = −Eθ(∂gT /∂θ).

In our setting, g∗ = a∗
θ(X)(Y −μ(θT X)), g = aθ(X)(Y −μ(θT X)). For conve-

nience, we abbreviate a∗
θ(X), aθ(X), and μ(θT X) by a∗, a, and μ, respectively.

The above relation specializes to
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Eθ[a∗aT (Y − μ)2] = −Eθ

[
∂aT

∂θ
(Y − μ)

]
+ Eθ

(
∂μ

∂θ
aT

)
. (9.3)

The left-hand side is

Eθ{a∗aT E[(Y − μ)2|X]} = Eθ(a∗aT V ).

The first term on the right-hand side of (9.3) is

−Eθ

[
∂aT

∂θ
E(Y − μ|X)

]
= 0.

Thus, a∗ satisfies the following functional equation

Eθ(a∗aT V ) = Eθ

(
∂μ

∂θ
aT

)
.

By inspection, we see that if we take a∗ = (∂μ/∂θ)/V , then the above equa-
tion is satisfied for all a. Thus we arrive at the following optimal estimating
equation

g∗(θ,X, Y ) = [∂μ(θT X)/∂θ] [Y − μ(θT X)]/V (θT X).

This optimal estimating equation is called the quasi score function. See Wed-
derburn (1974), McCullagh (1983), and Li and McCullagh (1994). The max-
imum quasi likelihood estimate is defined as the solution to the estimating
equation

En[g∗(θ,X, Y )] = 0.

The information contained in the quasi score is

Ig∗ = E[(∂μ/∂θ)(∂μ/∂θ)T /V ].

The above construction can be easily extended to vector-valued Yi, say, of
dimension q. In this case, μ(θT X) is a q-dimensional vector and V (θT X) is a
q × q matrix. Consider the class G of estimating equations of the form

A(θ,X)[Y − μ(θT X)],

where A(θ,X) is a p × q random matrix that may depend on θ and X but
does not depend on Y . By Theorem 9.1, if there is an A∗(θ,X) such that
g∗ = A∗(θ,X)[Y − μ(θT X)] satisfies

[A(θ,X)(Y − μ(θT X)), s]

= [A(θ,X)(Y − μ(θT X)), A∗(θ,X)(Y − μ(θT X))],
(9.4)

for all A(θ,X), then g∗ is an optimal estimating equation. The left-hand side
is
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[A(θ,X)(Y − μ(θT X)), s] =Eθ{∂[A(θ,X)(Y − μ(θT X))]/∂θT }
= − Eθ[A(θ,X)∂μ(θT X)/∂θT ].

The right-hand side of (9.4) is

Eθ[A(θ,X)V (θT X)A∗T (θ,X)]

So, if we let
A∗T (θ,X) = V −1(θT X)∂μ(θT X)/∂θT ,

then (9.4) is satisfied for all A(θ,X). Thus, the quasi score function in this
case is

[∂μT (θT X)/∂θ]V −1(θT X)[Y − μ(θT X)].

This is the form given in McCullagh (1983).

9.3 Generalized Estimating Equations

Generalized Estimating Equations (GEE) were introduced by Liang and Zeger
(1986), and Zeger and Liang (1986) to deal with the situations where each
subject has multiple observations that may be dependent. They are a flexible
and effective method for handling longitudinal data, and are widely used in
that area. Suppose we have observations

{(Xik, Yik) : k = 1, . . . , ni, i = 1, . . . , n},

where Xik are p-dimensional predictors, and Yik are 1-dimensional response.
We write

Yi = (Yi1, . . . , Yini
)T , Xi = (Xi1, . . . , Xini

).

Note that Yi (and also Xi) may have different dimensions for different i. The
responses within the same subject, {Yi1, . . . , Yini

}, may be dependent, but the
responses for different subjects are assumed to be independent.

As in quasi likelihood, we assume the functional forms of the conditional
mean and variance:

E(Yik|Xik) = μ(XT
ikβ), var(Yik|Xik) = V (XT

ikβ),

where μ and V are known functions. We write

μi(Xi, β) = (μ(βT Xi1), . . . , μ(βT Xini
))T ,

Vi(Xi, β) = diag
(
V (βT Xi1), . . . , V (βT Xini

)
)
.

Within the same subject, we assume

var(Yi|Xi) = Vi(Xi, β)1/2Ri(α)Vi(Xi, β)1/2,
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where, for each i, Ri(α) is a known matrix-valued function of α. These Ri(α)
are called the working correlation matrices. An important feature of the GEE
is that Ri(α) need not be correctly specified for GEE to yield

√
n-consistent

estimates, but if Ri(α) are correctly specified, then GEE is the optimal esti-
mating equation, as described below.

Consider the following class of linear (in Y ) and unbiased estimating equa-
tions

G =

{
n∑

i=1

Wi(Xi, α, β)(Yi − μi(Xi, β)) : Wi(Xi, β) ∈ R
p×ni

}
.

It is natural to consider this class of estimating equations because their inner
products can be completely specified by the form of the first two moments
that we assume. We seek the optimal estimating equation within this class.
Let

S(α, β,X1:n, Y1:n) =
n∑

i=1

s(α, β,Xi, Yi)

be the score function. Let G be an arbitrary member of G, and G∗ be the
optimal estimating equation in G. That is,

G(α, β,X1:n, Y1:n) =
n∑

i=1

Wi(Xi, α, β)(Yi − μi(Xi, β)),

G∗(α, β,X1:n, Y1:n) =
n∑

i=1

W ∗
i (Xi, α, β)(Yi − μi(Xi, β)).

For convenience, we omit the arguments of the functions and write

S = S(α, β,X1:n, Y1:n), si = s(α, β,Xi, Yi),
G = G(α, β,X1:n, Y1:n),
Wi = Wi(Xi, α, β), Ri = Ri(α), μi = μi(β,Xi), Vi = Vi(β,Xi).

The optimal estimating equation G∗ is determined by the equation

[S,G] = [G∗, G] (9.5)

for all G ∈ G. The right-hand side is

E[G∗GT ] =
n∑

i=1

E
[
W ∗

i (Yi − μi)(Yi − μi)T WT
i

]

=
n∑

i=1

E
{
W ∗

i E[(Yi − μi)(Yi − μi)T |Xi]WT
i

}

=
n∑

i=1

E
(
W ∗

i V
1/2
i RiV

1/2
i WT

i

)
.

(9.6)
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The left-hand side of (9.5) is

E(SGT ) =
n∑

i=1

E
[
si(Yi − μi)T WT

i

]
.

By Lemma 9.1, the summand in the right-hand side is

− E
{
(∂/∂β)[(Yi − μi)T WT

i ]
}

= −E
{
[∂(Yi − μi)T /∂β]WT

i

}− E
{
(Yi − μi)T (∂WT

i /∂β)
}

.

In the second term, (Yi − μi)T is a row vector, and WT
i is an ni × p matrix.

The expression (Yi − μi)T (∂WT
i /∂β) simply means the p × p matrix whose

jth row is (Yi − μi)T (∂WT
i /βj). Since

E
{
[∂(Yi − μi)T /∂β]WT

i

}
= − E

[
(∂μT

i /∂β)WT
i

]
E
{
(Yi − μi)T (∂WT

i /∂β)
}

=E[E(Yi − μi|Xi)T (∂WT
i /∂β)] = 0,

we have

[S,G] = E
[
(∂μT

i /∂β)WT
i

]
. (9.7)

By (9.6) and (9.7), the defining relation (9.5) for an optimal estimating equa-
tion specializes to the following form in the GEE setting:

n∑
i=1

E
(
W ∗

i V
1/2
i RiV

1/2
i WT

i

)
=

n∑
i=1

E
[
(∂μT

i /∂β)WT
i

]
. (9.8)

If we let

W ∗
i = (∂μT

i /∂β)V −1/2
i R−1

i V
−1/2
i ,

then (9.8) holds for all Wi. Thus we arrive at the following optimal estimating
equation

n∑
i=1

[∂μi(Xi, β)T /∂β][V 1/2
i (Xi, β)Ri(α)V 1/2

i (Xi, β)]−1[Yi − μi(Xi, β)] = 0.

At the sample level, the parameters α and β are estimated by the following
iterative regime. For a fixed α̂, we estimate β by solving the above equation.
For a fixed β̂, we define the residuals as

r̂ik =
Yik − μi(Xi, β̂)

V
1/2
i (Xi, β̂)

.

We then estimate (k, k′)th component of Ri as
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(R̂i)kk′ =
1

N − p

n∑
i=1

r̂ik r̂ik′ .

In this case, we do not assume any further structure in the correlation matrix
Ri, so that the distinct entries of Ri themselves constitute α. But it is possible
to build more structure into the Ri(α), such as the autoregressive model,
the exchangeable correlation model. See Liang and Zeger (1986) for further
information.

9.4 Other optimal estimating equations

The above two sections are concerned with the quasi score function and the
generalized estimating equation, both of which can be regarded as the optimal
estimating equations among the linear estimating equations of the form

A(θ,X)[Y − μ(θT X)],

where A(θ,X) is a scalar or a vector. In this section we make a brief exposition
of several other types of optimal estimating equations to get a broader view
of the methology of estimating equations.

Crowder (1987) considered the following general class of estimating equa-
tions

g(θ,X, Y ) = W (θ,X)u(θ,X, Y ),

where u is a function on Ω × Θ to R
r, whose components are unbiased and

Pθ-square-integrable estimating equations. The components of u may be any
fixed set of functions of X,Y, θ. In particular, Crowder (1987) considered the
special case where u is the vector of linear and quadratic polynomials of Y ,
as a modification of the quasi score function when the fourth moment of Y is
available.

Another type of optimal estimating equations are the ones used for con-
ditional inference, which were developed by Waterman and Lindsay (1996).
Suppose (X1, . . . , Xn) is distributed as Pθ, where θ consists of a parameter
of interest ψ and a nuisance parameter λ. For simplicity, we will focus on
the case where both ψ and λ are scalars. But the following development can
be extended in a straightforward (albeit quite tedious) manner to the vector-
valued ψ and λ. The vector-valued ψ and λ will be considered in Section 9.8,
but there we will only consider the first-order projection, a special case of the
mth-order projection developed below.

We are interested in statistical inference about ψ. The parameter λ is not
of interest, but it is needed to specify a meaningful statistical model. Ideally,
if we have a statistic T that is sufficient for λ, then the conditional distri-
bution of (X1, . . . , Xn)|T does not depend on the nuisance parameter λ, and
we can infer about ψ using this conditional distribution. This is, in fact, the
approach we took in Chapter 4 to develop the UMPU test for a parameter
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of interest for an exponential family distribution, for which such a statistic T
does exit. However, existence of such a T is a very stringent requirement, which
a majority of distributions outside the exponential family do not meet. Water-
man and Lindsay (1996) proposed a generalization of the conditional score
s(c)(ψ,X1, . . . , Xn) = ∂ log fX1,...,Xn|T (x1, . . . , xn|t;ψ)/∂ψ using the idea of
optimal estimating equations for the situations where the sufficient statistic
T for λ does not exist. For convenience, only for the rest of this section, we
will use X to abbreviate X1, . . . , Xn, so that, for example, s(c)(ψ,X1, . . . , Xn)
is abbreviated by s(c)(ψ,X). After this section, we will resume the convention
that X1, . . . , Xn are random copies of X — a convention that has been used
throughout the rest of the book.

To develop the intuition, let us first derive an alternative representation
of the conditional score s(c)(ψ,X) when T exists. Since

fX(x; θ) = fX|T (x|t;ψ)fT (t; θ), (9.9)

we have
sψ(θ,X) = s(c)(ψ,X) − s(m)(θ, T ),

where sψ(θ, x) = ∂ log fX(x; θ)/∂ψ is the score function for ψ, and s(m)(θ, T )
is the marginal score ∂ log fT (t; θ)/∂ψ. Next, consider the linear subspace B
of L2(Pθ) spanned by

bk(x) =
∂kfX(x; θ)/∂λk

fX(x; θ)
, k = 1, 2, . . .

These functions are called the Bhattacharyya basis (Bhattacharyya, 1946)
(and hence the notation B). By (9.9), it is easy to check that

bk(x) =
∂kfT (t; θ)/∂λk

fT (t; θ)
≡ ck(t).

If the set of functions {ck(t) : k = 1, 2, . . .} is rich enough so that s(m)(θ, t)
is contained in B, then s(m)(θ, T ) is, in fact, the projection of sψ(θ,X) on to
B in terms of the L2(Pθ) inner product. To see this, take any basis function
ck(t) from B, and we have

Eθ{ck(T )[sψ(θ,X) − s(m)(θ, T )]} = Eθ[ck(T )s(c)(ψ,X)]

= Eθ{ck(T )Eψ[s(c)(ψ,X)|T ]} = 0.

Consequently, s(c)(ψ,X) = sψ(θ,X)− s(m)(θ, T ) is the projection of sψ(θ,X)
on to B⊥. In other words, s(c)(ψ,X) is the optimal estimating equation in B⊥.

The point of the above derivation is that, while the conditional score
s(c)(ψ,X) is defined only when there is a sufficient statistic T for λ, the pro-
jection sψ(θ,X) on to B⊥ is not restricted by the existence of T . Motivated by
this, Waterman and Lindsay (1996) proposed to use the projection of sψ(θ,X)
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on to B⊥
m as the generalized conditional score to conduct statistical inference

about ψ, where Bm = span{b1(x), . . . , bm(x)}.
We can now derive the explicit form of this projection. Let PBm

be the
projection operator on to the subspace of L2(Pθ) spanned by the set Bm. By
Example 7.5, the projection of sψ = sψ(θ,X) on to Bm is

PBm
sψ = (〈sψ, b1〉, . . . , 〈sψ, bm〉)

⎛
⎜⎝

〈b1, b1〉 · · · 〈b1, bm〉
...

. . .
...

〈bm, b1〉 · · · 〈bm, bm〉

⎞
⎟⎠
⎛
⎜⎝

b1
...

bm

⎞
⎟⎠ .

Thus, the projection of sψ on to B⊥
m is sψ − PBm

sψ.
An important — and most commonly used — special case is m = 1, where

the above projection becomes

sψ − Eθ(sψsλ)
Eθ(sλsλ)

sλ = sψ − Iψλ

Iλλ
sλ,

where sλ = ∂ log fX(x; θ)/∂λ is the score function for λ; Iψλ and Iλλ are
the (ψ,ψ)- and (ψ, λ)-components of the Fisher information. This estimating
equation is commonly known as the efficient score, to which we will return in
Section 9.8.

9.5 Asymptotic properties

Let X1, . . . , Xn be independent copies of X, where X is distributed as Pθ.
Let g be an unbiased estimating equation. We estimate the parameter θ by
solving the estimating equation

En[g(θ,X)] = 0.

The existence of consistent solutions, as stated in the next theorem, can be
proved using a similar method as that used in Theorem 8.1.

Theorem 9.2 Suppose X1, . . . , Xn are i.i.d. random variables or vectors hav-
ing a density fθ0 belonging to a parametric family {fθ : θ ∈ Θ ⊆ R

p}, and
the support B of fθ does not depend on θ. Suppose g : Θ × ΩX → R

p is an
unbiased estimating equation such that

1. for all θ ∈ Θ, the matrix A(θ0) = E[∂g(θ,X)/∂θT ] is negative definite;
2. g(θ, x) satisfies DUI(θ,B, Pθ0);
3. in a neighborhood of θ0, En[g(θ,X)] converges in probability uniformly to

E[g(θ,X)].

Then, there is a sequence of estimators {θ̂n} such that

i. with probability tending to 1, θ̂n is a solution to En[g(θ,X)] = 0,
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ii. θ̂n
P→ θ0.

The assumption that A(θ0) is negative definite is not unreasonable. For
example, if g = g∗ is the optimal estimating equation, then we have

E[∂g∗(θ,X)/∂θT ] = −E[g∗(θ,X)g∗T (θ,X)],

which is negative definite if g∗(θ,X) is not degenerate for any θ. Another ex-
ample is when En[g(θ,X)] is derived from the derivative of a concave objective
function, in which case, ∂g(θ,X)/∂θT is the Hessian matrix of a concave func-
tion, which is negative semi-definite. The proof of this theorem is similar to
the proof of Theorem 8.1, and is left as an exercise.

Since the estimating equation method does not start with an objective
function to maximize or minimize, Wald’s approach to consistency cannot be
directly applied. So a commonly used consistency statement is existence of a
consistent solution to an estimating equation as in Theorem 9.2, which is not
as specific as the Wald-type consistency statement. However, it is possible to
construct an objective function such that a Wald-type consistency statement
can be obtained. For example, Li (1993, 1996) introduced a deviance function
for the quasi-likelihood method as a function of the first two moments. It was
shown that the minimax of this deviance function is consistent under mild
assumptions.

Next, we derive the asymptotic distribution of a consistent solution to an
estimating equation. Let Jg(θ) and Kg(θ) denote the matrices

Jg(θ) = Eθ[∂g(θ,X)/∂θT ], Kg(θ) = Eθ[g(θ,X)gT (θ,X)]. (9.10)

The information contained in the estimating equation g is simply

Ig(θ) = JT
g (θ)K−1

g (θ)Jg(θ). (9.11)

As before, let B◦(θ0, ε) denote the open ball centered at θ0 with radius ε.

Theorem 9.3 Suppose

1. g(θ, x) is an unbiased, Pθ-square-integrable estimating equation such that
g(θ, x)fθ(x) satisfies DUI+(θ, μ);

2. the sequence {En[∂g(θ,X)/∂θT ] : n = 1, 2, . . .} is stochastically equicon-
tinuous over B◦(θ0, ε);

3. the true parameter θ0 is an interior point of Θ.

If θ̂ is a consistent solution to likelihood equation En[g(θ,X)] = 0, then
√

n(θ̂−
θ0)

D−→ N(0, I−1
g (θ0)).

Proof. The similar arguments in the proof of Theorem 8.4 lead to

√
n(θ̂ − θ0)

D→ N(0, J−1
g (θ0)Kg(θ0)J−T

g (θ0))
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But here, we no longer have

Kg(θ) = −Jg(θ) = Ig(θ).

So, by (9.11), the asymptotic distribution of
√

n(θ̂ − θ) is N(0, Ig(θ0)). �

The finite-sample optimality in Corollary 9.1, combined with the asymp-
totic normality in Theorem 9.3, shows that the maximum likelihood estimate
has the smallest asymptotic variance (in terms of Louwner’s ordering) among
the solutions to estimating equations En[g(θ,X)] = 0, where g satisfies the
conditions in Theorem 9.3. This property is a form of asymptotic efficiency of
the maximum likelihood estimate.

Similarly, in the situations where G does not include the true score func-
tion, if g∗ is the optimal estimating equation in G, and if θ̂g∗ is the solution
to the estimating equation En[g∗(θ,X)] = 0, then

√
n(θ̂g∗ − θ0) converges in

distribution to N(0, I−1
g∗ (θ0)). Since Ig∗ � Ig for any g ∈ G,

√
n(θ̂g∗ − θ0) has

the the smallest asymptotic variance among the solutions to the estimating
equations in G.

9.6 One-step Newton-Raphson estimate

The maximum likelihood estimate is not the unique estimate that achieves
asymptotic efficiency. In fact, if we are given a

√
n-consistent estimator, then

it is quite easy to construct an asymptotically efficient estimator. We first give
a formal definition of

√
n-consistency.

Definition 9.5 We say that θ̃ is a
√

n-consistent estimate of θ0 if θ̃ − θ0 =
OP (n−1/2).

Before introducing the one-step Newton-Raphson estimate, we now briefly
review the Newton-Raphson algorithm. Consider a generic equation

F (θ) = 0,

where F : Θ → R
p is a differentiable function. Suppose we have an initial

value θ(0). Then, near θ(0), we can approximate F (θ) by its first-order Taylor
polynomial F̂ (θ) = θ(0)+[∂F (θ(0))/∂θT ](θ−θ(0)). Instead of solving F (θ) = 0,
we solve the linear equation F̂ (θ) = 0, which gives

θ = θ(0) − [∂F (θ(0))/∂θT ]−1F (θ(0)).

Motivated by this approximation, the Newton-Raphson algorithm consists of
the iterations

θ(k+1) = θ(k) − [∂F (θ(k))/∂θT ]−1F (θ(k))
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until convergence.
In our context, the equation to solve is En[s(θ,X)] = 0. So the Newton-

Raphson algorithm for computing the maximum likelihood estimate is

θ(k+1) = θ(k) − [En∂s(θ(k),X)/∂θT ]−1Ens(θ(k),X).

By the central limit theorem, En[∂s(θ0,X)/∂θT ] is a
√

n-consistent estimate
of −I(θ0). So it is reasonable to replace En[∂s(θ(k),X)/∂θT ] by −I(θ(k)) in
the above formula, resulting in

θ(k+1) = θ(k) + I−1(θ(k))En[s(θ(k),X)].

This is called the Fisher scoring algorithm (Cox and Hinkley, 1974).
The one-step Newton-Raphson estimate is derived from this, except that

the initial value is a
√

n-consistent estimate, and that we only need to apply
the formula (9.12) once. That is, if θ̃ is a

√
n-consistent estimate of θ0, then

the one-step Newton-Raphson estimate is

θ̂ = θ̃ + I−1(θ̃)En[s(θ̃, X)]. (9.12)

The next theorem implies that even though the updated θ has not converged
yet after one iteration, this estimate is fully efficient: it has the same asymp-
totic distribution as the maximum likelihood estimate.

In fact, we shall prove a more general result. Let g be an unbiased, Pθ-
square-integrable estimating equation such that g(θ, x)fθ(x) satisfies
DUI+(θ, μ). If we define θ̃g as the one-step Newton-Raphson estimator

θ̃g = θ̃ − J−1
g (θ̃)En[g(θ̃, X)], (9.13)

then
√

n(θ̃g−θ0) has the same asymptotic distribution as
√

n(θ̂g−θ0), where θ̂g

is a consistent solution to En[g(θ,X)] = 0. Consequently, if g∗ is the optimal
estimating equation in G, then θ̃g∗ has the smallest asymptotic variance among
the solutions to estimating equations in G. In particular, for g(θ,X) = s(θ,X),
the estimate in (9.12) is an asymptotically efficient estimate.

Theorem 9.4 Suppose

1. θ̃ is a
√

n-consistent estimator of θ0;
2. g is an unbiased, Pθ-square-integrable estimating equation such that g(θ, x)

fθ(x) satisfies DUI+(θ, μ);
3. the sequence of random functions {En[∂g(θ,X)/∂θT ] : n = 1, 2, . . .} is

stochastic equicontinuous in a neighborhood of θ0;
4. Jg(θ) is continuous in θ.

If θ̃g is defined as (9.13), then

√
n(θ̃g − θ0)

D→ N
(
0, I−1

g (θ0)
)
.
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Proof. By Taylor’s mean value theorem,

En[g(θ̃, X)] = En[g(θ0,X)] +
∂En[g(ξ,X)]

∂θT
(θ̃ − θ0), (9.14)

for some ξ. By the stochastic equicontinuity condition and Corollary 8.2,

∂En[g(ξ,X)]
∂θT

= Jg(θ0) + oP (1). (9.15)

Substituting (9.15) into the right-hand side of (9.14), we have

En[g(θ̃, X)] = En[g(θ0,X)] + Jg(θ0)(θ̃ − θ0) + oP (1)(θ̃ − θ0).

Because θ̃ is
√

n-consistent, the term oP (1)(θ̃ − θ0) is of the order oP (n−1/2),
resulting in

En[g(θ̃, X)] = En[g(θ0,X)] + Jg(θ0)(θ̃ − θ0) + oP (n−1/2). (9.16)

Moreover, since Jg(θ) is continuous, by the Continuous Mapping Theorem
(see Theorem 7.1), Jg(θ̃) = Jg(θ0) + oP (1). Hence, by the definition of θ̃g,

θ̃g = θ̃ + [J−1
g (θ0) + oP (1)]En[g(θ̃, X)].

Now substituting (9.16) into the right-hand side of the above equation, we
have

θ̃g = θ̃ − [J−1
g (θ0) + oP (1)]

{
En[g(θ0,X)] + Jg(θ0)(θ̃ − θ0) + oP (n−1/2)

}
.

Since E[g(θ0,X)] = 0, by the Central Limit Theorem,
√

nEn[g(θ0,X)] con-
verges in distribution to a Normal random vector. Hence En[g(θ0,X)] is of
the order OP (n−1/2). Because θ̃ is

√
n-consistent, the term Jg(θ0)(θ̃ − θ0) is

also of the order OP (n−1/2). Therefore,

oP (1)
{

En[g(θ0,X)] + Jg(θ0)(θ̃ − θ0) + oP (n−1/2)
}

= oP (n−1/2).

Consequently,

θ̃g = θ̃ − J−1
g (θ0)

{
En[g(θ0,X)] + Jg(θ0)(θ̃ − θ0)

}
+ oP (n−1/2)

= θ0 − J−1
g (θ0)En[g(θ0,X)] + oP (n−1/2).

Hence
√

n(θ̃g − θ0) = −J−1
g (θ0)

√
nEn[g(θ0,X)] + oP (1).

By the Central Limit Theorem, the leading term on the right-hand side con-
verges in distribution to

N
(
0, J−1

g (θ0)Kg(θ0)J−T
g (θ0)

)
= N(0, I−1

g (θ0)).

The desired result now follows from Slutsky’s theorem. �
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9.7 Asymptotic linear form

In Section 9.5 we have shown that, if θ̂g is consistent, then
√

n(θ̂g − θ0) con-
verges in distribution to a Normal random vector, which, in turn, implies that
θ̂g is

√
n-consistent. In this section we develop a stronger asymptotic property

for θ̂g than the asymptotic normality.

Theorem 9.5 If the conditions in Theorem 9.3 hold, then

θ̂g = θ0 − J−1
g (θ0)En[g(θ0,X)] + oP (n−1/2). (9.17)

Note that, by straightforward applications of the Central Limit Theorem
and Slutsky’s theorem, we can deduce from (9.17) the asymptotic Normality

√
n(θ̂g − θ0)

D→ N(0, I−1
g (θ0)).

Proof of Theorem 9.5. Since, by Theorem 9.3, θ̂g is
√

n-consistent, and by
the proof of Theorem 9.4, the relation (9.16) holds for θ̂g. In this case,
En[g(θ̂g,X)] = 0 because θ̂g is a solution to the equation En[g(θ,X)] = 0.
Hence

0 = En[g(θ0,X)] + Jg(θ0)(θ̂g − θ0) + oP (n−1/2),

which implies the desired result. �

An estimate that satisfies a relation such as (9.17) is said to be asymptot-
ically linear. See, for example, Bickel, Klaassen, Ritov, and Wellner (1993).
More generally, we have the following definition.

Definition 9.6 Suppose X1, . . . , Xn are independent copies of a random vec-
tor X, whose Pθ0 belongs to a parametric family {Pθ : θ ∈ Θ ⊆ R

p}. An
estimate θ̂ of θ0 is asymptotically linear if

θ̂ = θ0 + En[ψ(θ0,X)] + oP (n−1/2), (9.18)

where

1. E[ψ(θ0,X)] = 0;
2. the covariance matrix var[ψ(θ0,X)] has finite elements.

Note that, because ψ(θ0,X) is a mean 0 function, the term En[ψ(θ0,X)]
in (9.18) is of the order OP (n−1/2) by the Central Limit Theorem. This condi-
tion is satisfied by a large number of statistics. The term “asymptotic linear”
refers to the fact that, after ignoring the term oP (n−1/2), the leading term is a
linear functional of the empirical distribution Fn. A typical estimate is asymp-
totically linear; whereas a typical test statistic is asymptotically quadratic.
The function ψ in (9.18) is called the influence function. So, for example,
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the influence function of θ̂g is −J−1
g (θ0)g(θ0,X). By the Central Limit Theo-

rem, an asymptotically linear estimate θ̂ has the following asymptotic Normal
distribution:

√
n(θ̂ − θ0)

D→ N (0, var[ψ(θ0,X)]) .

Two important special cases are when g is the score function s or the
optimal estimating equation g∗ ∈ G. In both cases,

Ig∗(θ) =Kg∗(θ) = −Jg∗(θ), I(θ) = K(θ) = −J(θ).

Thus, the maximum likelihood estimate θ̂ and a consistent solution θ̂g∗ of an
optimal estimating equation g∗ have the following asymptotic linear forms:

θ̂ = θ0 + I−1(θ0)En[s(θ0,X)] + oP (n−1/2),

θ̂g∗ = θ0 + I−1
g∗ (θ0)En[g∗(θ0,X)] + oP (n−1/2).

The asymptotic linear form provides more information about an estimate
than the asymptotic distribution. For example, if we know the asymptotic
linear forms of two estimates are

θ̂ = θ0 + Enψ1(θ0,X) + oP (n−1/2),

θ̃ = θ0 + Enψ2(θ0,X) + oP (n−1/2),

then we know the joint asymptotic distribution of [
√

n(θ̂ − θ0),
√

n(θ̃ − θ0)] is

N

(
0,

(
E[ψ1(θ0,X)ψT

1 (θ0,X)] E[ψ1(θ0,X)ψT
2 (θ0,X)]

E[ψ2(θ0,X)ψT
1 (θ0,X)] E[ψ2(θ0,X)ψT

2 (θ0,X)]

))
.

However, if we only know the asymptotic distributions of the random vectors√
n(θ̂ − θ0) and

√
n(θ̃ − θ0), then we cannot deduce the joint asymptotic

distribution of the two random vectors. Fortunately, in most cases where we
know a statistic is asymptotically Normal, its asymptotic linear form is readily
available.

9.8 Efficient score for parameter of interest

In this section we take a closer look at the efficient score described at the end of
Section 9.4. We will consider the more general case where θ, ψ, and λ are vec-
tors. That is, θ is a p-dimensional parameters consisting of an r-dimensional
subvector ψ, which is the parameter of interest, and an s-dimensional subvec-
tor λ, which is the nuisance parameter.

For the purpose of estimating ψ, we need to extend the notion of the
information about the whole parameter θ contained in an estimating equation
g(θ, x), as defined in Definition 9.3, to that of the information about a part
(ψ) of the parameter θ contained in the estimating equation g(θ, x).
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Definition 9.7 Suppose g : Θ × ΩX → R
r is an unbiased, Pθ-square-

integrable estimating equation such that g(θ, x)fθ(x) satisfies DUI+(ψ, μ).
Then the matrix

Ig(ψ|θ) = Eθ

(
∂gT (θ,X)

∂ψ

){
Eθ

[
g(θ,X)gT (θ,X)

]}+
Eθ

(
∂g(θ,X)

∂ψT

)

is called the information about ψ contained in g(θ,X).

This is a generalization of the information matrix Ig(θ) in Definition 9.3
because, when ψ is the entire parameter θ, Ig(θ|θ) = Ig(θ). The optimal esti-
mating equation for ψ can be found in the same way as that for θ. Recall that
sψ stands for the ψ-component of s(θ,X). That is, sψ(θ, x) = ∂ log fθ(x)/∂ψ.
The proof of the next theorem is similar to that of Theorem 9.1 and is left as
an exercise.

Theorem 9.6 Suppose G is a class of unbiased, Pθ-square-integrable estimat-
ing equations of dimension r such that, for each g ∈ G, g(θ, x)fθ(x) satisfies
DUI+(θ, μ). If there is a member g∗ of G such that [sψ − g∗, g] = 0 for all
g ∈ G, then Ig∗(ψ|θ) � Ig(ψ|θ) for all g ∈ G.

When estimating ψ, it is natural to consider a class of estimating equations
that are, in some sense, insensitive to the nuisance parameter λ. We now give
a formal definition for such estimating equations.

Definition 9.8 An unbiased and Pθ-square-integrable estimating equation g :
Θ × ΩX → R

r is said to be insensitive to λ to the first order if g(θ, x)fθ(x)
satisfies DUI+(θ, μ), and

E

(
∂g(θ,X)

∂λT

)
= 0. (9.19)

Let Gψ·λ denote the class of such estimating equations.

The next proposition gives a characterization of the space Gψ·λ.

Proposition 9.2 Let g : Θ × ΩX → R
r be an unbiased, Pθ-square-integrable

estimating equation such that g(θ, x)fθ(x) satisfies DUI+(θ, μ). Then g belongs
to Gψ·λ if and only if [g, sλ] = 0.

Proof. By the DUI+ assumption,∫
(∂g/∂λT )fθdμ +

∫
gsλfθdμ = 0.

Hence [g, sλ] = 0 if and only if g ∈ Gψ·λ. �

By Problem 9.14 we see that the optimal estimating equation in Gψ·λ that
maximizes Ig(ψ|θ) is
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sψ − [sψ, sλ][sλ, sλ]−1sλ.

Note that the Fisher information for θ can be written as the matrix

I(θ) =
(

[sψ, sψ] [sψ, sλ]
[sλ, sψ] [sλ, sλ]

)
≡
(

Iψψ Iψλ

Iλψ Iλλ

)
.

Thus the optimal estimating equation in Gψ·λ can be written as

g∗ = sψ − IψλI−1
λλ sλ. (9.20)

Note that the information for ψ contained in g∗(θ,X) is

Ig∗(ψ|θ) = Iψψ − IψλI−1
λλ Iλψ. (9.21)

Because of the special importance of the optimal estimating equation g∗ in
(9.20) and the information Ig∗(ψ|θ) in statistical inference, we give them spe-
cial names and notations.

Definition 9.9 The optimal estimating equation g∗(θ,X) in (9.20) is called
the efficient score for ψ, and is written as sψ·λ(θ,X); the information Ig∗(ψ|θ)
in (9.21) is called the efficient information for ψ, and is written as Iψ·λ(θ).

Before proceeding further, let us review some formulas about inversion of
a block matrix. The next proposition can be proved by straightforward matrix
multiplication.

Proposition 9.3 (Inversion of a block matrix) Let B be a p by p non-
singular and symmetric matrix, which is partitioned into

B =
(

B11 B12

B21 B22

)
,

where B11 is an r×r matrix, B12 = BT
21 is an r×s matrix, and B22 is an s×s

matrix, with r+s = p. Let the inverse B−1 of B be partitioned, in accordance
with the above dimensions, as

B−1 =
(

(B−1)11 (B−1)12
(B−1)21 (B−1)22

)
.

Then

(B−1)11 = (B11 − B12B
−1
22 B21)−1

(B−1)22 = (B22 − B21B
−1
11 B12)−1

(B−1)12 = − (B−1)11B12B
−1
22 = −B−1

11 B12(B−1)22 = (B−1)T
21.

Partition the inverse Fisher information I−1(θ) into block matrix
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I−1 =
(

(I−1)ψψ (I−1)ψλ

(I−1)λψ (I−1)λλ

)
.

By Proposition 9.3, we have

[(I−1)ψψ]−1 = Iψψ − IψλI−1
λλ Iλψ = Iψ·λ.

Thus, the efficient information is nothing but the inverse of the (ψ,ψ)-block
of the inversed Fisher information matrix. Because the matrix IψλI−1

λλ Iλψ is
positive semi-definite, the above equality also implies that

Iψψ(θ) � Iψ·λ(θ) (9.22)

for all θ ∈ Θ in terms of Louwner’s ordering. The interpretation of this inequal-
ity is the following. The matrix Iψψ is the information contained in s(ψ, λ,X)
when λ is treated as known; the matrix Iψ·λ is the information in s(θ,X)
about ψ, but λ is not treated as known. So Iψψ must be larger than Iψ·λ
because the former assumes more information. Also note that the equality in
(9.22) holds if and only if Iψλ = 0, which means sψ and sλ are orthogonal in
the L2(Pθ) geometry. Thus, under the orthogonality of sψ and sλ, estimation
accuracy of ψ is not increased by knowing λ, or decreased by not knowing λ.

We now use the efficient score and efficient information to express asymp-
totic linear form of the ψ-component of the maximum likelihood estimate.

Theorem 9.7 Suppose the conditions in Theorem 9.7 are satisfied with g(θ,X)
being the score function s(θ,X). Denote by ψ̂ and λ̂ the ψ-component and the
λ-component of the MLE θ̂. Then ψ̂ has the following asymptotic linear form

ψ̂ = ψ0 + I−1
ψ·λEn[sψ·λ(θ0,X)] + oP (n−1/2).

Proof. Rewrite the expansion (9.17) in terms of ψ̂ and λ̂ to obtain
(

ψ̂ − ψ0

λ̂ − λ0

)
=
(

(I−1)ψψ (I−1)ψλ

(I−1)λψ (I−1)λλ

)(
Ensψ(θ0,X)
Ensλ(θ0,X)

)
+ oP (n−1/2).

From this we can read off the expansion of ψ̂ − ψ0, as follows

ψ̂ − ψ0 = (I−1)ψψEnsψ(θ0,X) + (I−1)ψλEnsλ(θ0,X) + oP (n−1/2)

= (I−1)ψψ

[
Ensψ(θ0,X) + (I−1)−1

ψψ(I−1)ψλEnsλ(θ0,X)
]

+ oP (n−1/2).

From Proposition 9.3 we see that

(I−1)ψψ = I−1
ψ·λ

(I−1)−1
ψψ(I−1)ψλ = (I−1)−1

ψψ

[−(I−1)ψψIψλI−1
λλ

]
= −IψλIλλ.

It follows that
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ψ̂ − ψ0 = I−1
ψ·λEn

[
sψ(θ0,X) − IψλI−1

λλ sλ(θ0,X)
]
+ oP (n−1/2)

= I−1
ψ·λEnsψ·λ(θ0,X) + oP (n−1/2),

as desired. �

From the above expansion we can easily write down the asymptotic dis-
tribution of the MLE for the parameter of interest.

Corollary 9.2 Under the assumptions in Theorem 9.7, we have

√
n(ψ̂ − ψ0)

D→ N(0, I−1
ψ·λ(θ0)).

Recall that sψ·λ is the optimal estimating equation in Gψ·λ. Thus Iψ·λ(θ)
is the upper bound of the information Ig(ψ|θ) for any estimating equation in
Gψ·λ. Meanwhile, if we pretend λ0 to be known, then Theorem 9.3 implies
that any consistent solution ψ̂g to the estimating equation

En[g(ψ, λ0,X)] = 0

has asymptotic distribution
√

n(ψ̂g − ψ0)
D→ N(0, I−1

g (ψ0|θ0)). Thus, intu-
itively, we can say that ψ̂ has the smallest asymptotic variance among the
solutions to all estimating equations in Gψ·λ. Of course, this statement is not
rigorous as we pretend λ0 to be known. This statement will be made rigorous
by Theorem 9.9.

The efficient score and efficient information share some similarities with the
score s(θ,X) and the information I(θ) when there is no nuisance parameter.
For example, the information identity has its analogy for the efficient score.

Theorem 9.8 Suppose sψ·λ(θ,X) is Pθ-square-integrable, and fθ(x) and
sψ·λ(θ, x)fθ(x) satisfy DUI+(θ, μ). Then

Eθ[sψ·λ(θ,X)] = 0, (9.23)

Eθ

[
∂sψ·λ(θ,X)

∂λT

]
= 0, (9.24)

Eθ

[
∂sψ·λ(θ,X)

∂ψT

]
= − E

[
sψ·λ(θ,X)sT

ψ·λ(θ,X)
]

= −Iψ·λ(θ). (9.25)

Proof. The equality (9.23) follows from Eθ[s(θ,X)] = 0, as can be verified by
differentiating the equation

∫
fθ(x)dμ(x) = 1 with respect to θ.

To establish (9.24), first observe that by the definition of sψ·λ(θ,X), we
have

Eθ

[
∂sψ·λ(θ,X)

∂λT

]
= Eθ

[
∂sψ(θ,X)

∂λT

]
− Eθ

[
∂(IψλI−1

λλ sλ(θ,X))
∂λT

]
. (9.26)

The second term on the right is
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−Eθ

[
∂(IψλI−1

λλ )
∂λT

sλ(θ,X) + IψλI−1
λλ

∂sλ(θ,X)
∂λT

]
,

where the notation [∂(IψλI−1
λλ )/∂λT ]sλ(θ,X) simply means the matrix

s∑
i=1

∂(IψλI−1
λλ )

∂λi
sλi

(θ,X),

sλi
(θ,X) being the score function for λi, ∂ log fθ(X)/∂λi. Since the above

term has expectation 0,

Eθ

[
∂(IψλI−1

λλ sλ(θ,X))
∂λT

]
= Eθ

[
IψλI−1

λλ

∂sλ(θ,X)
∂λT

]
= −IψλI−1

λλ Iλλ = −Iψλ.

Hence the right-hand side of (9.26) reduces to −Iψλ +Iψλ = 0, proving (9.24).
Finally, to establish (9.25), first differentiate the equation

∫
sψ·λ(θ, x)fθ(x)dμ(x) = 0, (9.27)

with respect to λ to obtain

Eθ

[
∂sψ·λ(θ,X)

∂λT

]
= − E

[
sψ·λ(θ,X)sT

λ (θ,X)
]
.

By (9.24), the left-hand side is 0, and hence E
[
sψ·λ(θ,X)sT

λ (θ,X)
]

= 0,
leading to

E
[
sψ·λ(θ,X)sT

ψ(θ,X)
]

= E
[
sψ·λ(θ,X)sT

ψ·λ(θ,X)
]
.

Next, differentiate the equation (9.27) with respect to ψ to obtain

Eθ

[
∂sψ·λ(θ,X)

∂ψT

]
= −E

[
sψ·λ(θ,X)sT

ψ(θ,X)
]

= −E
[
sψ·λ(θ,X)sT

ψ·λ(θ,X)
]
,

proving (9.25). �

One way to use estimating equations in Gψ·λ, such as the efficient score
sψ·λ(θ,X), is to estimate ψ by solving the equation

En[g(ψ, λ̃,X)] = 0, (9.28)

where λ̃ is some estimate of the nuisance parameter λ0. Since an estimating
equation in Gψ·λ is insensitive to the nuisance parameter λ0, intuitively, it
should be able to tolerate a relatively poor estimate of λ0 while still producing
an accurate estimate of ψ. Indeed, the next theorem shows that even if λ̃−λ0 =
oP (n−1/4), which can be much slower than the parametric rate OP (n−1/2), the
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solution to (9.28) produces an estimate for ψ that is asymptotically equivalent
to the solution to En[g(ψ, λ0,X)] = 0, where λ0 is treated as known.

We need to introduce some additional notations. Suppose h(λ) is a func-
tion from R

s to R
r with components h1(λ), . . . , hr(λ). We use ∂2h(λ)/∂λ∂λT

denote the r × s × s array
{

∂2hi(λ)
∂λj∂λk

: i = 1, . . . , r, j, k = 1, . . . , s

}
.

Furthermore, if a, b ∈ R
s, then the notation aT

[
∂2h(λ)/∂λ∂λT

]
b represents

the r-dimensional vector whose ith component is

s∑
j=1

s∑
k=1

ajbk
∂2hi(λ)
∂λj∂λk

.

For an estimating equation g ∈ Gψ·λ, let

Jg(ψ|θ) = Eθ

[
∂g(θ,X)

∂ψT

]
, Kg(ψ|θ) = Eθ

[
g(θ,X)gT (θ,X)

]
,

so that we have

Ig(ψ|θ) = Jg(ψ|θ)T K−1
g (ψ|θ)Jg(ψ|θ).

As before, we use N to denote the set of natural numbers {1, 2, . . .}. To our
knowledge, the following result has not been recorded in the statistical liter-
ature.

Theorem 9.9 Suppose that g is an estimating equation in Gψ·λ satisfying the
following additional conditions:

1. g(θ,X) is twice differentiable with respect to λ and the entries of the r ×
s × s array;

2. in a neighborhood of θ0, the sequences of random elements
{

En

[
∂g(ψ, λ,X)

∂ψT

]
: n ∈ N

}
,

{
En

[
∂2g(ψ, λ,X)

∂λ∂λT

]
: n ∈ N

}

are stochastically equicontinuous;
3. the matrices Jg(ψ|θ) and Kg(ψ|θ) are nonsingular.

If λ̃ is an estimate of λ0 such that λ̃− λ0 = oP (n−1/4), and ψ̂ is a consistent
solution to the estimating equation En[g(ψ, λ̃,X)] = 0, then

√
n(ψ̂ − ψ0)

D→ N
(
0, I−1

g (ψ0|θ0)
)
.
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Proof. Applying Taylor’s mean value theorem to the function ψ 
→
En[g(ψ, λ̃,X)], we have

0 = En[g(ψ̂, λ̃,X)] = En[g(ψ0, λ̃,X)] + En

[
g(ξ, λ̃,X)

∂ψT

]
(ψ̂ − ψ0)

for some ξ between ψ0 and ψ̂. Because (ξ, λ̃) converges in probability to
(ψ0, λ0), by the first equicontinuity assumption in 2 and Corollary 8.2, we
see that En[g(ξ, λ̃,X)/∂ψT ] differs from J(ψ0|θ0) by oP (1). Hence

0 = En[g(ψ0, λ̃,X)] + [Jg(ψ0|θ0) + oP (1)](ψ̂ − ψ0). (9.29)

Next, applying (the second-order) Taylor’s mean-value theorem to the
function λ 
→ En[g(ψ0, λ,X)], we have

En[g(ψ0, λ̃,X)] = En[g(ψ0, λ0,X)] + En

[
∂g(ψ0, λ0,X)

∂λT

]
(λ̃ − λ0)

+
1
2
(λ̃ − λ0)T En

[
∂2g(ψ0, λ1,X)

∂λ∂λT

]
(λ̃ − λ0),

(9.30)

for some λ1 on the line joining λ̃ and λ0. By the second equicontinuity as-
sumption in 2 and Corollary 8.2,

En

[
∂2g(ψ0, λ

†,X)
∂λ∂λT

]
P→ E

[
∂2g(ψ0, λ0,X)

∂λ∂λT

]
.

Therefore, the term on the left-hand side above is OP (1), and hence the third
term on the right-hand side of (9.30) is of the order oP (n−1/2). Moreover,
because g ∈ Gψ·λ, we have E[∂g(θ0,X)/∂λT ] = 0. Hence, by the central limit
theorem,

En

[
∂g(ψ0, λ0,X)

∂λT

]
= OP (n−1/2),

which implies that the second term in (9.30) is of the order oP (n−3/4). So the
following approximation holds:

En[g(ψ0, λ̃,X)] = En[g(ψ0, λ0,X)] + oP (n−1/2).

Substituting this into the right-hand side of (9.29) results in

0 = En[g(ψ0, λ0,X)] + [Jg(ψ0|θ0) + oP (1)](ψ̂ − ψ0) + oP (n−1/2).

Multiplying both sides of the above equation by the matrix J−1
g (ψ0|θ0) from

the left, we obtain

[Ir + oP (1)](ψ̂ − ψ0) = −J−1
g (ψ0|θ0)En[g(ψ0, λ0,X)] + oP (n−1/2).
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Hence, by the central limit theorem and Slutsky’s theorem,

√
n[Ir + oP (1)](ψ̂ − ψ0)

D→ N(0, Ig(ψ0|θ0)),
which implies the asserted result by Problem 8.13. �

An important special case of Theorem 9.9 is when g is the efficient score,
which says that for any λ̃ that converges to λ0 at a rate faster than n−1/4, a
consistent solution to

En[sψ·λ(ψ, λ̃,X)] = 0

has the asymptotic distribution N(0, Iψ·λ(θ0)−1). This result also makes pre-
cise the optimal statement following Corollary 9.2. That is, for any estimating
equation g ∈ Gψ·λ, and any estimate λ̃ satisfying λ̃ = λ0 + oP (n−1/4), the
asymptotic variance of the solution to

En[g(ψ, λ̃,X)] = 0

reaches its lower bound (in terms of Louwner’s ordering) when g is the efficient
score sψ·λ.

Problems

9.1. Prove Theorem 9.2 by following the proof of Theorem 8.1.

9.2. Let X1, · · ·,Xn be i.i.d. with density f(x;μ) = xμ−1e−x/Γ (μ).

1. Find all the solutions to the estimating equation

n∑
i=1

(X2
i − μ − μ2) = 0, (9.31)

and decide which one is consistent. Derive the asymptotic distribution of
this solution.

2. Find the maximum likelihood estimate of μ and derive its asymptotic
distribution.

3. Let μ̂(1) = X̄, μ̂(2) be the consistent solution to the estimating equation
(9.31), and μ̂(3) be the maximum likelihood estimate of μ. Let V1(μ),
V2(μ), and V3(μ) be the asymptotic variances of the above three estimators
of μ. Using a computer to plot them against μ. What is your conclusion?

9.3. Suppose that (X1, Y1), . . . , (Xn, Yn) are an i.i.d. sample from (X,Y ),
where X is a random vector in R

p, and Y is a random variable. Suppose that
conditional distribution of Y |X is given by N(eβT x, eβT x) for some β ∈ R

p,
and that the marginal distribution of X does not depend on β.

1. Derive the score function s(β,X, Y ).
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2. Derive the Fisher information matrix I(β).
3. Derive the quasi score function g∗(β,X, Y ).
4. Derive the information contained in g∗, and show that this information is

smaller (in terms of Louwner’s ordering) than obtained in part 2.
5. Write down Fisher scoring iterative algorithms for estimating the maxi-

mum likelihood estimate and maximum quasi likelihood estimate.

9.4. In the setting of Problem9.3, suppose we estimate β by the Least Squares
method — that is, by minimizing

En(Y − eβT X)2

over β ∈ R
p to estimate β.

1. Derive the estimating equation for β.
2. Compute the information contained in this estimating equation, and show

that it is smaller (in terms of Louwner’s ordering) than that obtained in
part 4 of Problem9.3.

9.5. Suppose θ ∈ Θ ⊆ R
p is a p-dimensional parameter and g1, . . . , gm are

p-dimensional unbiased, Pθ-square-integrable estimating equations such that
gi(x)fθ(x), i = 1, . . . ,m, satisfy DUI+(θ, μ). Consider the following class of
unbiased estimating equations

G = {A1(θ)g1(θ,X) + · · · + Am(θ)gm(θ,X) : A1(θ), . . . , Am(θ) ∈ R
p×p},

where Ai(θ) are p× p nonrandom matrices that may depend on θ. Derive the
optimal equation g∗ in G.

9.6. Consider the generalized estimating equation described in Section 9.3
with the following simplifications: ni = m are the same for all i = 1, . . . , n,
and

μi(Xi, β) = μ(XT
i β), Vi(Xi, β) = V (XT

i β), Ri(α) = R(α).

Furthermore, assume that (X1, Y1), . . . , (Xn, Yn) are an i.i.d. sample from
(X,Y ). These lead the following generalized estimating equation

En

{
[∂μ(βT X)T /∂β][V 1/2(βT X)R(α)V 1/2(βT X)]−1[Y − μ(βT X)]

}
= 0.

Denote the term in En{· · · } by g(β, α,X, Y ). Assume that α̂ converges in
probability to a fixed vector α0 with the rate oP (n−1/4). Let β̂ be a consistent
solution to the equation

En[g(β, α̂,X, Y )] = 0.

Let β0 be the true parameter.
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1. Derive the asymptotic distribution of
√

n(β̂ − β0) when the form of R(α)
might be misspecified.

2. Derive the asymptotic distribution of
√

n(β̂ − β0) when the form of R(α)
is correctly specified.

3. Show that, when R is correctly specified, g(β, α,X, Y ) is the optimal es-
timating equation among estimating equations of the form

A(X,α, β)[Y − μ(βT X)],

where A(X,α, β) is an m×m random matrix that may depend on X,α, β
but does not depend on Y .

9.7. Prove Theorem 9.6.

9.8. Let X = (X1, . . . , Xn) be a sample with joint distribution Pθ, where
θ is a two dimensional vector with a parameter of interest ψ and a nuisance
parameter λ. Suppose Pθ has a density fθ with respect to a σ-finite measure μ.
Suppose there is a sufficient statistic T = T (X1:n) for the nuisance parameter
λ — that is, the conditional density fX|T (x|t;ψ) does not depend on λ. Let
Gψ be a class of estimating equations for ψ satisfying the following conditions:

(i). each g(ψ,X) in Gψ is a function of X and ψ;
(ii). Eψ,λ[g(ψ,X)] = 0 for all values of λ;
(iii). g(ψ,X) is Pθ-square-integrable, and g(ψ, x)fθ(x) is differentiable with re-

spect to ψ under the integral with respect to μ.

Let sX|T (ψ,X) be the conditional score function ∂ log fX|T (x|t;ψ)/∂ψ and
assume that it satisfies condition (iii). Note that this conditional score depends
on both X and T , but since T is a function of X, we can write it as sX|T (ψ,X).

1. Show that the conditional score satisfies (ii).
2. Assuming sX|T (ψ;X) belongs to Gψ, show that it is the optimal estimating

equation in that class in terms of the information Ig(ψ|θ).
3. Let sψ(θ;X) be the unconditional score for (∂/∂ψ) log fθ(X). Show that

sX|T (ψ,X) = sψ(θ;X) − E(sψ(θ;X)|T ).

(This problem is inspired by Godambe (1976)).

9.9. Suppose X ∼ Poisson(λ1), Y ∼ Poisson(λ2), and X,Y are independent.
We are interested in estimating ψ = λ1/λ2, treating λ2 as the nuisance pa-
rameter. For simplicity, we denote λ2 by λ. Let T = X + Y .

1. Show that, for each fixed ψ, T is sufficient for λ.
2. Derive the conditional score function sX|T (ψ,X).
3. Derive the information about ψ contained in the conditional score. Express

it in terms of both the original parameter (λ1, λ2) and the transformed
parameter (ψ, λ).
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9.10. In the setting of Problem9.9, show that the efficient score sψ·λ has the
same form as the conditional score in Problem 9.9.

9.11. Suppose X and Y are i.i.d. N(λ, ψ). We are interested in estimating ψ
in the presence of the nuisance parameter λ. Let T = X + Y .

1. Show that, for each fixed ψ, T is sufficient for λ.
2. Find the conditional distribution of X given T .
3. Derive the conditional score ∂ log fX|T (x|t;ψ)/∂ψ.
4. Compute the information about ψ contained in the conditional score.

9.12. In the setting of Problem9.11, compute the efficient score sψ·λ(ψ, λ,X).
Compute the information about ψ contained in the efficient score. Compare
this information with the information contained in the conditional score as
derived in Problem9.11, and explain the discrepancy.

9.13. In the setting of Problem9.11, compute the estimating equation sψ −
PBm

sψ in Section 9.4 with m = 2. Show that this estimating equation has the
same form as the conditional score obtained in Problem9.11.

9.14. Suppose θ is a p-dimension parameter consisting of an r-dimensional
parameter of interest ψ and an s-dimensional nuisance parameter λ, where
p = r + s. Let Gψ·λ be the class of estimating equations defined in Definition
9.8. Show that sψ − [sψ, sλ][sλ, sλ]−1sλ is the optimal estimating equation in
Gψ·λ in the sense that it maximizes the information Ig(ψ|θ) among g ∈ Gψ·λ.

9.15. Prove the following extension of Lemma 9.1. Suppose θ is a p-dimension
parameter consisting of an r-dimensional parameter of interest ψ and an s-
dimensional nuisance parameter λ, where p = r + s. Let g : Θ × ΩX →
R

r be an unbiased, Pθ-square-integrable estimating equation for ψ such that
g(θ, x)fθ(x) satisfies DUI+(ψ, μ). Let sψ(θ,X) = ∂ log fθ(X)/∂ψ. Show that

Eθ

[
∂g(θ,X)

∂ψT

]
= −Eθ[g(θ,X)sT

ψ(θ,X)].

9.16. Let X1, · · ·,Xn be an i.i.d. sample from a distribution with density of
the form f(x; θ), where θ ∈ R

p consists of a parameter of interest ψ ∈ R
r,

and a nuisance parameter λ ∈ R
s, with r + s = p. Let g(λ,X) be an unbiased

estimating equation for λ that satisfies the conditions in Theorems 9.2 and
9.3, and suppose λ̃ is a consistent solution to

En[g(λ,X)] = 0.

Let sψ(ψ, λ,X) be the score for ψ, and let sψ·λ(ψ, λ,X) be the efficient score.

1. Let ψ̃ be a consistent solution to the estimating equation

En[sψ(ψ, λ̃,X)] = 0.

Derive the asymptotic distribution of
√

n(ψ̃ − ψ0).
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2. Let ψ̂ be a consistent solution to the estimating equation

Ensψ·λ(ψ, λ̃,X) = 0.

Derive the asymptotic distribution of
√

n(ψ̂ − ψ0).
3. Compare the asymptotic variances of

√
n(ψ̃ − ψ0) and

√
n(ψ̂ − ψ0).

9.17. Suppose θ is a p-dimensional parameter, consisting of a parameter of
interest ψ ∈ R

r, and a nuisance parameter λ ∈ R
s, where r + s = p. Let

sψ·λ(ψ, λ,X) be the efficient score, and let Iψ·λ(ψ, λ) be the efficient informa-
tion. Suppose ψ̃ and λ̃ are estimates of ψ0 and λ0 such that

ψ̃ − ψ0 = OP (n−1/2), λ̃ − λ0 = oP (n−1/4).

Moreover, suppose:

1. sψ·λ(ψ, λ,X) is differentiable with respect to ψ and twice differentiable
with respect to λ;

2. the entries of the arrays

A(ψ, λ) =
∂sψ·λ(ψ, λ,X)

∂ψT
, B(ψ, λ) =

∂2sψ·λ(ψ, λ,X)
∂λ∂λT

are Pθ-integrable;
3. the sequences of random arrays

{En[A(ψ, λ)] : n = 1, 2, . . .}, {En[B(ψ, λ)] : n = 1, 2, . . .}

are stochastic equicontinuous in an open ball centered at θ0 = (ψT
0 , λT

0 )T .

Let ψ̂ be the one-step Newton-Raphson estimate for the parameter of interest
ψ0, defined as

ψ̂ = ψ̃ − I−1
ψ·λ(ψ̃, λ̃)En[sψ·λ(ψ̃, λ̃,X)].

1. Show that

ψ̂ = ψ0 − I−1
ψ·λ(ψ0, λ0)En[sψ·λ(ψ0, λ0,X)] + oP (n−1/2).

2. Derive the asymptotic distribution of
√

n(ψ̂ − ψ0).

9.18. Suppose that the parameter θ ∈ R
p consists of a parameter of interest

ψ ∈ R
r and a nuisance parameter λ ∈ R

s, with r + s = p. Let g(θ,X) be
a p-dimensional unbiased and Pθ-square-integrable estimating equation such
that g(θ, x)fθ(x) satisfies DUI+(θ, μ). Let gψ be the first r components of g
and gλ be the last s components of g. Let Jg(θ) and Kg(θ) be the matrices
defined in (9.10). Decompose Jg and J−1

g as block matrices according to the
dimensions of ψ and λ, as follows:
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Jg =
(

(Jg)ψψ (Jg)ψλ

(Jg)λψ (Jg)λλ

)
, J−1

g =
(

(J−1
g )ψψ (J−1

g )ψλ

(J−1
g )λψ (J−1

g )λλ

)
.

Let Kg and K−1
g be decomposed similarly. Let

gψ·λ(θ,X) = gψ(θ,X) − (Jg)ψλ[(Jg)λλ]−1gλ(θ,X).

Let θ̂ be a consistent solution to En[gψ·λ(θ,X)] = 0, and let ψ̂ be its first r
components. You may impose further regularity conditions such as stochastic
equicontinuity.

1. Show that

ψ̂ = ψ0 + (J−1
g )ψψEn[gψ·λ(θ,X)] + oP (n−1/2).

2. Derive the asymptotic distribution of
√

n(ψ̂−ψ0), and express the asymp-
totic variance in terms of the sub-matrices of Jg and Kg.

9.19. In the setting of Problem9.18. Suppose λ̃ is an estimate of λ0 satisfying
λ̃−λ0 = oP (n−1/4). Let ψ̂ be a consistent solution to the estimating equation

En[gψ·λ(ψ, λ̃,X)] = 0.

Show that
√

n(ψ̂ − ψ0) has the same asymptotic distribution as the one ob-
tained in Problem9.18.
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10

Convolution Theorem and Asymptotic
Efficiency

In Chapters 8 and 9 we have developed optimality of the maximum likelihood
estimate among the class of solutions to estimating equations in terms of the
information the asymptotic variance. The optimality of the maximum likeli-
hood estimate, in fact, goes much deeper. In this chapter we show that the
maximum likelihood estimate, as well as estimates that are asymptotically
equivalent to it, have the smallest asymptotic variance among all regular esti-
mates. This is a wide class of estimates that includes not only the asymptot-
ically linear estimates such as the solutions to estimating equations, but also
asymptotically nonlinear (and therefore asymptotically non-Gaussian) esti-
mates. We systematically develop the theory underlying this general result:
the framework of Local Asymptotic Normality and the Convolution Theorem
(Le Cam 1953, 1960; Hájek 1970). This is an amazingly logical system that
leads to far-reaching results with a small set of assumptions. Some techniques
introduced in this chapter, such as Le Cam’s third lemma and the convolution
theorem, will also be useful for developing local alternative distributions for
asymptotic hypothesis tests in the next chapter.

As a historical note, it had been known since Fisher (1922, 1925) that the
maximum likelihood estimate has the smallest asymptotic variance among,
roughly, all estimates that are asymptotically normal. But Fisher did not give
a rigorous proof and counterexamples were found, the first of which by J. L.
Hodges, Jr. in an unpublished paper, which was cited by Le Cam (1953). This
led to intensive research in the ensuing years on what kind of estimates can
reach Fisher’s asymptotic variance lower bound, how wide a class of estimates
the lower bound applies to, as well as how meaningful the counterexamples
are. Hall and Mathiason (1990), van der Vaart (1997, 1998), and Le Cam and
Yang (2000) are excellent references on this topic. Some of the developments
here echo the logic lines in these works.
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10.1 Contiguity

Recall that a probability measure P is absolutely continuous with respect
to a probability measure Q if, for any measurable set A, Q(A) = 0 implies
P (A) = 0. Contiguity is an analogue of this condition for two sequences of
probability measures.

Definition 10.1 Let {Pn} and {Qn} be two sequences of probability mea-
sures. Pn is said to be contiguous with respect to Qn if, for any sequence An,
Qn(An) → 0 implies Pn(An) → 0. This property is written as Pn � Qn. If
Pn � Qn and Qn � Pn, then Pn and Qn are said to be mutually contiguous,
and this property is expressed as Pn ��Qn.

Even though contiguity between sequences of probability measures is anal-
ogous to absolute continuity between two probability measures, the latter does
not imply the former logically. In particular, even if Pn � Qn for every n, that
does not imply Pn �Qn. For example, let Pn be the distribution of N(0, 1/n)
and Qn be the distribution of N(1, 1/n). In this case Pn � Qn for each n. The
limiting distribution of Pn is a point mass at 0 and the limiting distribution
of Qn is a point mass at 1. So if, for each n, An is the set (−1/2,−1/2), then
Qn(An) → 0 and yet Pn(An) → 1. Proof of the next Proposition is left as an
exercise.

Proposition 10.1 The following statements are equivalent:

1. Pn � Qn.
2. Whenever Qn(An) → 1, we have Pn(An) → 1.
3. If Tn is any sequence of random variables with Qn(|Tn| ≥ ε) → 0, then

Pn(|Tn| ≥ ε) → 0.

We now focus on two results known as Le Cam’s first and third lemmas.

10.2 Le Cam’s first lemma

Le Cam’s first lemma is concerned with a set of sufficient and necessary con-
ditions for contiguity. Recall that, for two probability measures P and Q, if
P � Q, then

EQ

(
dP

dQ

)
=

∫
dP

dQ
dQ =

∫
dP = 1, (10.1)

where EQ denotes the expectation with respect to the probability measure Q.
Le Cam’s first Lemma is analogous to this result when P and Q are replaced
by sequences of probability measures {Pn} and {Qn} and absolute continuity
P � Q is replaced by contiguity Pn � Qn.

The following technical lemma is established first.
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Lemma 10.1 Suppose that gn : R → R is a sequence of functions such that,
for any ε > 0, lim infn→∞ gn(ε) ≥ 0. Then there is a sequence εn ↓ 0 such that
lim infn→∞ gn(εn) ≥ 0.

Proof. Since for each integer k ≥ 1, lim infn→∞ gn(1/k) ≥ 0, there is a pos-
itive integer nk such that, for all n ≥ nk, gn(1/k) > −1/k. Without loss of
generality, we can assume that nk+1 > nk for all k = 1, 2, . . .. Let εn = 1/k
for nk ≤ n < nk+1. Then gn(εn) > −εn for all n ≥ n1. Clearly εn ↓ 0 and
lim infn→∞ gn(εn) ≥ 0. �

In the following discussion, multiple probability measures are considered
on single measurable spaces. So for clarity of the exposition, we revamp the
notation for convergence in distribution and convergence in probability. For
n ∈ N, let Xn and X be random variables defined, respectively, on the prob-
ability spaces (Ωn,Fn, Pn) and (Ω,F , P ) taking values in (Rk,Rk).

We write
Xn

D−→
Pn

X,

if Xn converges in distribution to X under the sequence {Pn}; that is, for
every bounded and continuous f on R

k,∫
f(Xn)dPn →

∫
f(X)dP.

Similarly, if Xn converges in Pn-probability to a constant a; that is,

Pn(‖Xn − a‖ > ε) → 0,

for every ε > 0, then we write Xn
Pn−→a.

The first statement of the next theorem is analogous to (10.1), and the
second statement is analogous to P � Q.

Theorem 10.1 (Le Cam’s first lemma) Let Pn and Qn be sequences of
probability measures on measurable spaces (Ωn,Fn), and assume Pn ≡ Qn.
Then the following statements are equivalent:

1. If dPn/dQn
D−→

Qn

V along a subsequence, then E(V ) = 1.

2. Pn � Qn.
3. If dQn/dPn

D−→
Pn

U along a subsequence, then P (U > 0) = 1.

Proof. 1 ⇒ 2. Suppose Qn(An) → 0 for a sequence of measurable sets {An}.
Then we shall show that Pn(An) → 0, proving statement 2. First note that,
since Pn � Qn, the sequence of densities {dPn/dQn} is tight under the se-
quence of measures {Qn}. By Prohorov’s Theorem (Theorem 7.10), every
subsequence {n′} has a further subsequence {n′′}, and a random variable V ,
such that dPn′′/dQn′′

D−→
Qn′′

V .
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Since Qn(An) → 0 ⇒ 1 − IAn

Qn−→ 1, by a version of Slutsky’s theorem
(Corollary 7.3),

0 ≤ (dPn′′/dQn′′)(1 − IAn′′ )
D−→

Qn′′
V.

Since Pn(An) =
∫

IAn
(dPn/dQn)dQn, we have by Fatou’s lemma (Lemma

7.4), and equation (10.1),

E(V ) ≤ lim inf
n′′→∞

EQn′′ ((dPn′′/dQn′′)(1 − IAn′′ )) = 1 − lim sup
n′′→∞

Pn′′(An′′).

By statement 1, E(V ) = 1, so Pn′′(An′′) → 0. Thus we have shown that every
subsequence of the sequence {Pn(An)} of real numbers, contains a further
subsequence Pn′′(An′′) → 0. Hence Pn(An) → 0.

2 ⇒ 3. Suppose dQn′/dPn′
D−→

Pn′
U for some subsequence {n′}. Clearly, P (U ≥

0) = 1, as dQn′/dPn′ ≥ 0. Thus it suffices to show that P (U = 0) = 0. By the
Portmanteau Theorem (Theorem 7.6), for any ε > 0,

lim inf
n′→∞

Pn′(dQn′/dPn′ < ε) − P (U < ε) ≥ 0. (10.2)

By Lemma 10.1, there exists a sequence εn′ ↓ 0 such that

lim inf
n′→∞

{Pn′(dQn′/dPn′ < εn′) − P (U < εn′)} ≥ 0.

Since P (U < ε) ≥ P (U = 0) for all ε > 0, we have

lim inf
n′→∞

Pn′(dQn′/dPn′ < εn′) ≥ lim sup
n′→∞

P (U < εn′) ≥ P (U = 0). (10.3)

It remains to show that the left-hand side of (10.3) is 0. Since Pn ≡ Qn, by
Radon-Nikodym Theorem (see Theorem 1.11)

Qn′(dQn′/dPn′ < εn′) =
∫

dQn′/dPn′<εn′
(dQn′/dPn′)dPn′

≤ εn′

∫
dPn′ = εn′ → 0. (10.4)

Since Pn′ � Qn′ , (10.4) implies

Pn′(dQn′/dPn′ < εn′) → 0.

Therefore the left-hand side of (10.3) is 0.

3 ⇒ 1. Let μn be the probability measure (Pn + Qn)/2. Then Pn � μn and
Qn � μn. Since Pn ≡ Qn, by Theorem 1.13, the probability densities pn and
qn of Pn and Qn with respect to μn satisfy
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0 ≤ pn, qn ≤ 2, μn{pn = 0} = μn{qn = 0} = 0, pn + qn = 2,

μn

{
pn

qn
=

dPn

dQn

}
= 1, and μn

{
qn

pn
=

dQn

dPn

}
= 1.

(10.5)

Clearly for any c > 0,

{(pn/qn) < c} ⇔ {(2 − qn)/qn < c} ⇔ {qn > 2/(1 + c)},
and hence

EQn

(
pn

qn
I{pn/qn≤c}

)
= Eμn

(
pnI{pn/qn≤c}

)

≥ Eμn

(
pnI{pn/qn<c}

)
= Eμn

(
(2 − qn)I{qn>2/(1+c)}

)
.

(10.6)

Now suppose dPn/dQn
D−→

Qn

V along a subsequence {n′}. By (10.5), we have

(pn′/qn′) D−→
Qn′

V . Since, for any K > 0,

μn(qn > K) ≤ (1/K)Eμn
(dQn/dμn) = 1/K,

Pn(qn/pn > K) = Pn(dQn/dPn >K) ≤ (1/K)EPn
(dQn/dPn) = 1/K,

the sequence {qn} is tight under {μn}, and the sequence {(qn/pn)} is tight
under {Pn}. So, by Lemma 7.6, there is a further subsequence {n′′} of {n′}
such that

qn′′

pn′′

D−→
Pn′′

U, (10.7)

pn′′

qn′′

D−→
Qn′′

V, and qn′′
D−→

μn′′
W, (10.8)

for some random variables U, W . Hence by Fatou’s lemma (Lemma 7.4),
(10.5), and bounded convergence theorem (Theorem 1.8),

E(V ) ≤ 1, E(W ) = 1. (10.9)

In view of (10.6) and (10.8), by applying Portmanteau Theorem (Theorem
7.6) to the upper bounded upper semi-continuous function f(x) = xI{x≤c} and
the lower bounded lower semi-continuous function g(x) = (2−x)I{x>2/(1+c)},
we get for any c > 0,

E(V ) ≥ E
(
V I{V ≤c})

) ≥ lim sup
n′′→∞

EQn′′

(
pn′′

qn′′
I{pn′′/qn′′≤c}

)

≥ lim inf
n′′→∞

Eμn′′
(
(2 − qn′′)I{qn′′>2/(1+c)}

)
≥ E

(
(2 − W )I{W>(2/(1+c)}

)
.

(10.10)
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Now let c → ∞ in (10.10), and use (10.9) to get

1 ≥ E(V ) ≥E
(
(2 − W )I{W>0})

)
=2P (W > 0) − E(W )
=1 − 2P (W = 0). (10.11)

To complete the proof it is sufficient to prove P (W = 0) = 0. Toward this
end, let 0 < ε < 1, and apply Portmanteau Theorem 7.6 to (10.7) and (10.8)
to conclude

P (W = 0) ≤ P (W < ε) ≤ lim inf
n′′→∞

μn′′(qn′′ < ε)

≤ lim sup
n′′→∞

Pn′′((qn′′/pn′′) ≤ ε)

≤P (U ≤ ε).

By the right continuity of probability distribution functions and Statement 3,
it follows that P (W = 0) ≤ P (U ≤ ε) ↓ P (U = 0) = 0, as ε ↓ 0. �

10.3 Le Cam’s third lemma

Le Cam’s third lemma establishes the limit form of the local alternative distri-
butions Pn based on the limit form of the null distributions Qn. This is useful
for proving the convolution theorem and for developing the asymptotic power
of a test statistic under the local alternative distributions. To understand the
intuition behind Le Cam’s third lemma, it is again helpful to make an analogy
with the situation involving two probability measures P, Q. If P � Q and U
is a random vector, then for any measurable set B,

P (U ∈ B) = EP [IB(U)] = EQ

[
IB(U)

dP

dQ

]
.

Le Cam’s third lemma is an analogous statement with probability measures
P and Q replaced by sequences of probability measures Pn and Qn, and the
absolute continuity P � Q with contiguity Pn � Qn.

Theorem 10.2 (Le Cam’s third lemma) Suppose that Pn, Qn are proba-
bility measures defined on (Ωn,Fn) such that Pn ≡ Qn and Pn � Qn. If {Un}
is a sequence of random vectors in R

k such that

(Un, dPn/dQn) D−→
Qn

(U, V ), (10.12)

then L(B) = E(IB(U)V ) defines a probability measure on the Borel sets of
R

k, and Un
D−→
Pn

L.



10.3 Le Cam’s third lemma 301

Proof. Because Pn � Qn and dPn/dQn
D−→

Qn

V , by Le Cam’s first lemma

L(Rk) = E(V ) = 1. As V ≥ 0, clearly L(B) ≥ 0 for all Borel sets B.
By Problem 1.26, L is a probability measure on R

k. By the definition of
L, E[f(U)V ] =

∫
fdL holds for any measurable indicator function f . Thus,

by Theorem 7.11,

E[f(U)V ] =
∫

fdL, (10.13)

for all non-negative measurable functions f , and hence clearly (10.13) holds
for all measurable functions that are bounded below.

We shall now show that Un
D−→
Pn

L. Since Pn ≡ Qn, for any measurable

function f that is bounded below, we have

EPn
(f(Un)) = EQn

(
f(Un)

dPn

dQn

)
.

Thus for any lower semi-continuous function f that is bounded from below,
the function that maps (u, v) to f(u)v is a also lower semi-continuous and is
bounded from below. Thus, by the Portmanteau Theorem and the convergence
(Un, dPn/dQn) D−→

Qn

(U, V ), we have

lim inf
n→∞

∫
f(Un)dPn = lim inf

n→∞

∫
f(Un)

dPn

dQn
dQn ≥ E(f(U)V ). (10.14)

Hence by (10.13) and (10.14),

lim inf
n→∞

∫
f(Un)dPn ≥

∫
fdL.

Now another application of Portmanteau Theorem yields Un
D−→
Pn

L. �

In the above proof we have used
∫

fdL = E[f(U)V ] for any measurable
function bounded from below. We now expand this result somewhat and state
it as a corollary for future reference. This corollary is a direct consequence of
Theorem 7.11.

Corollary 10.1 Suppose U is a random vector and V is a nonnegative ran-
dom variable with E(V ) = 1. Let L be the set function defined by L(B) =
E[IB(U)V ] for all Borel sets B of Rk. Then L defines a probability measure
and the equality

E[f(U)V ] =
∫

f(U)dL

holds (i) for any nonnegative measurable function f ; (ii) for any measurable
function f(u) such that E|f(U)V | < ∞ and

∫ |f(U)|dL < ∞.
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In particular, the moment generating function (if it exists) and the char-
acteristic function of L are, respectively,

φL(t) = E(etT UV ), κL(t) = E(eitT UV ).

The next corollary gives the local alternative distribution of (Un, Ln) under
the conditions in Le Cam’s third lemma.

Corollary 10.2 Suppose that the assumptions in Theorem 10.2 hold. Then
L(B) = E[IB(U, log V )V ] defines a probability measure and

(Un, Ln) D−→
Pn

L.

Proof. By (10.12) and the continuous mapping theorem,

(Un, log(dPn/dQn), dPn/dQn) D−→
Qn

(U, log V, V ).

By Theorem 10.2 (with Un replaced by the random vector (Un, log(dPn/dQn))),
we have

(Un, log(dPn/dQn)) D−→
Pn

L,

as desired. �

10.4 Local asymptotic Normality

We now set up the assumptions and notations for a framework known as the
local asymptotic Normality. See Le Cam (1960), Hall and Mathiason (1990),
van der Vaart (1998), and Le Cam and Yang (2000). This framework will be
important for the development of both the convolution theorem in Section
10.5 and the local alternative distributions of hypothesis testing in Chapter
11. We first make some assumptions about the parametric family that is the
basis of our discussions.

Assumption 10.1 (parametric model) 1. (Ωn,Fn), n ∈ N, is a se-
quence of measurable spaces;

2. for each n, {Pnθ : θ ∈ Θ ⊆ R
p} is a homogeneous parametric family of

probability measures on (Ωn,Fn) dominated by a σ-finite measure μn.
3. The density fnθ = dPnθ/dμn is differentiable with respect to θ.
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Recall from Section 2.1.1, a parametric family {Pnθ : θ ∈ Θ} being homoge-
neous means that Pnθ′ ≡ Pnθ′′ for all θ′, θ′′ ∈ Θ. This assumption is stronger
than necessary and is introduced to simplify the subsequent technical devel-
opments. Note that above definition makes no reference to the random vectors
underlying the distributions Pnθ.

To facilitate the asymptotic analysis, we localize the above parametric
family around an interior point θ0 in the parameter space, as described by the
next definition.

Definition 10.2 (local parametric model) Suppose Assumption 10.1 holds.
Let θ0 be an interior point of Θ, and let θn(δ) = θ0 + n−1/2δ∈ Θ.

1. The set {Pnθn(δ) : δ ∈ R
p} is called the local parametric family around θ0.

2. The sequence {Pnθ0 : n ∈ N} is called the null sequence and is denoted by
{Qn : n ∈ N}.

3. The sequence {Pnθn(δ) : n ∈ N} is called the local alternative sequence and
is denoted by {Pn(δ) : n ∈ N}.

4. Ln(δ) = log(dPn(δ)/dQn) is called the local log likelihood ratio.
5. Sn = n−1/2∂(log fnθ)/∂θ|θ=θ0 = n−1/2∂Ln(δ)/∂δ|δ=0 is called the stan-

dardized score.

When it causes no ambiguity, we will write θn(δ), Pn(δ), and Ln(δ) simply
as θn, Pn, and Ln. The vector δ serves as the localized parameter — localized
within a neighborhood with size of the order n−1/2. In a hypothesis test
setting, the sequence Qn can be regarded as the null hypothesis, and the
sequence Pn(δ) the local alternative hypothesis. In the estimation setting,
{Pn(δ) : δ ∈ R

p} is simply a family of distributions indexed by the local
parameter δ. The localization scale n−1/2 is chosen to guarantee contiguity of
Pn(δ) with respect to Qn.

The next assumption is the local asymptotic normal assumption (LAN).
It assumes that the standard score function Sn is asymptotically Normal,
and the second-order Taylor expansion of Ln has a desired remainder term.
The conditions for these are quite mild, which are satisfied not only for the
independent case but also for some stochastic processes.

Assumption 10.2 (LAN) Under Assumption 10.1, we further assume

Sn
D−→

Qn

N(0, I(θ0)) (10.15)

Ln(δ)
Qn= δT Sn − δT I(θ0)δ/2 + oP (1), (10.16)

where I(θ0) is a positive definite matrix, called the Fisher information. If these
conditions hold, then we say (Sn, Ln) satisfies LAN.

The notation
Qn= in (10.16) indicates the probability underlying oP (1) is Qn:

thus, Xn
Qn= Yn + oP (1) means that for any ε > 0,
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Qn(‖Xn − Yn‖ > ε) → 0.

This notation will be used repeatedly throughout the rest of the Chapter. The
next lemma shows that Pn(δ) is contiguous with respect to Qn under LAN.

Lemma 10.2 If (Sn, Ln(δ)) satisfies LAN, then Pn(δ) � Qn.

Proof. By Slutsky’s theorem, Ln(δ) D−→
Qn

L(δ), where

L(δ) ∼ N(−δT I(θ0)δ/2, δT I(θ0)δ).

By the continuous mapping theorem,

dPn/dQn = eLn(δ) D−→
Qn

eL(δ).

The expectation of eL(δ) is simply the moment generating function of L(δ)
evaluated at 1, which is

E(eL(δ)) = φL(δ)(1) = exp[(−δT Iδ/2) + (δT Iδ)12/2] = 1.

Here, we used the fact that the moment generating function of normal distri-
bution with mean μ and variance σ2 is exp(μt+σ2t2/2). Hence, by Theorem
10.1, Pn(δ) � Qn. �

We next develop a set of sufficient conditions for LAN under the i.i.d.
parametric model. To do so, we first give a rigorous definition of the i.i.d.
parametric model and the regularity conditions needed.

Assumption 10.3 (i.i.d. parametric model) 1. X1,X2, . . . are i.i.d. ran-
dom vectors with distribution belonging to a homogeneous parametric fam-
ily {Pθ : θ ∈ Θ} defined on a measurable space (Ω,F).

2. Pθ is dominated by a σ-finite measure μ, with its density denoted by fθ =
dPθ/dμ.

3. fθ is differentiable with respect to θ.

Under the i.i.d. model, the various quantities in Assumption 10.1 and Defini-
tion 10.2 reduce to the following:

- (Ωn,Fn, μn) = (Ω × · · · × Ω,F × · · · × F , μ × · · · × μ);
- Pnθ = Pθ × · · · × Pθ;
- Ln(δ) = nEn[�(θn,X) − �(θ0,X)], where �(θ,X) = log[fθ(X)];
- Sn = n1/2En[s(θ,X)], where s(θ,X) = ∂[log fθ(X)]/∂θ.

The next proposition gives the sufficient conditions for LAN. Following
the notations in Chapter 9 (see equation (9.10)), let

J(θ) = Eθ[∂s(θ,X)/∂θT ], K(θ) = Eθ[s(θ,X)sT (θ,X)].
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Proposition 10.2 Suppose Assumption 10.3 holds and

1. �(θ, x) is twice differentiable;
2. fθ(X) and s(θ,X)fθ(X) satisfy DUI+(θ, μ);
3. s(θ,X) is Pθ-square integrable;
4. the sequence of random matrices {E[∂2�(θ,X)/∂θ∂θT ] : n ∈ N} is stochas-

tically equicontinuous in a neighborhood of θ0.

Then J(θ) = −K(θ), and LAN is satisfied with I(θ) = −J(θ) = K(θ).

Proof. Under Assumption 10.3, Sn =
√

nEn[s(θ0,X)]. Because fθ(X) satisfies
DUI+(θ, μ), s(θ,X) is an unbiased estimating equation. Because s(θ,X) is Pθ-
square-integrable, by the Central Limit Theorem,

Sn
D−→

Qn

N(0,K(θ0)), (10.17)

By Taylor’s mean value theorem,

En[�(θn,X)] = En[�(θ0,X)] + n−1/2En[∂�(θ0,X)/∂θT ]δ

+ n−1δT En[∂�(θ†,X)/∂θ∂θT ]δ

for some θ† between θ0 and θn. By θn → θ0, the stochastic equicontinuity
condition 4, and Corollary 8.2, we have

En[∂�(θ†,X)/∂θ∂θT ]
Qn= J(θ0) + oP (1).

Hence

Ln
Qn= δT Sn − δT (J + oP (1))δ/2 = δT Sn − δT Jδ/2 + oP (1), (10.18)

where J is the abbreviation of J(θ0). Finally, because s(θ,X)fθ(X) satisfies
DUI+(θ, μ), we have

−J(θ) = K(θ) = I(θ). (10.19)

Now the proposition follows from (10.17), (10.18), and (10.19). �

10.5 The convolution theorem

Now we are ready to prove the Le Cam-Hajek convolution theorem (see, for
example, Bickel, Klaassen, Ritov, and Wellner (1993)). This theorem asserts,
roughly, if θ̃ is a regular estimate (see below for a definition) of θ0, then√

n(θ̃ − θ0) can be written as the sum of two asymptotically independent
random vectors, the first of which has asymptotic distribution N(0, I−1(θ0)).
This is significant because it implies that the asymptotic variance of any
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regular estimate is greater than or equal to the asymptotic variance of the
maximum likelihood estimate. This form of optimality of the MLE is much
stronger than the one stated in Section 9.5 following the proof of Theorem 9.3,
because a regular estimate need not be asymptotically linear or asymptotically
normal.

We first introduce the concept of a regular estimate. Let θ0 ∈ Θ be the
true parameter. Let h : Θ → R

r, r ≤ p, be a differentiable function.

Definition 10.3 Under the local parametric model in Definition 10.2, we say
that ψ̂ is a regular estimate of h(θ0) if

√
n{ψ̂ − h[θn(δ)]} D−→

Pn(δ)
Z,

where Z is a random vector whose distribution does not depend on δ.

Of special importance are the following two scenarios:

1. h(θ) = θ for all θ ∈ Θ. In this case θ̂ is a regular estimate of θ0 if and only
if

√
n[θ̂ − θn(δ)] D−→

Pn(δ)
Z,

where the distribution of Z does not depend on δ.
2. θ = (ψT , λT )T , where ψ ∈ R

r is the parameter of interest, and λ ∈ R
s is

the nuisance parameter. In this case ψ̂ is a regular estimate of ψ0 if and
only if

√
n[ψ̂ − ψn(δ)] D−→

Pn(δ)
Z,

where ψ(δ) is the first r components of θn(δ), and the distribution of Z
does not depend on δ.

Intuitively, regularity means that in the vicinity of θ0, the asymptotic
distribution of

√
n[ψ̂ − h(θ)] under Pnθ is essentially the same. Thus it is a

type of smoothness of the limiting distribution. Technically, since regularity
concerns the asymptotic distribution under the local alternative distribution
Pn(δ), it links

√
n(ψ̂ − h(θ0)) with the likelihood ratio Ln. Indeed, a main

point of the convolution theorem is that, if ψ̂ is regular and (Sn, Ln) satisfies
LAN, then the joint distribution of

√
n(ψ̂ − h(θ0)) and Ln converges weakly.

We are now ready to prove the convolution theorem.

Theorem 10.3 (Convolution Theorem) If ψ̂ is a regular estimate of h(θ0)
and (Sn, Ln) satisfies LAN, then

√
n{ψ̂ − h[θn(δ)]} D−→

Pn(δ)
ḣT I−1S + R, (10.20)

where S R, and S, I are as defined in LAN – that is, Sn
D−→

Qn

S and

E(SST ) = I.



10.5 The convolution theorem 307

Proof. Let Un =
√

n[ψ̂ − h(θ0)]. Since ψ̂ is regular,

√
n{ψ̂ − h[θn(δ)]} D−→

Pn(δ)
U

where the distribution of U does not depend on δ. Taking δ = 0, we have
Un

D−→
Qn

U. By the LAN assumption, we also have Sn
D−→

Qn

N(0, I). Therefore

both sequences {Un} and {Sn} are tight under Qn, implying that (Un, Sn)
is jointly tight under Qn. By Prohorov’s theorem, for any subsequence {n′}
there is a further subsequence {n′′} such that (Un′′ , Sn′′) D−→

Qn

W , where the

first r arguments of W has the same distribution as U and the last p argu-
ments of W has the same distribution as S. Naturally, we denote this fact by
(Un′′ , Sn′′) D−→

Qn

(U, S).

Now fix a subsequence {n′} and for convenience write the further subse-
quence {n′′} as {k}. By the LAN assumption and Slutsky’s theorem,

(Uk, Lk(δ))
Qk= (Uk, δT Sk − δT Iδ/2) + oP (1) D−→

Qk

(U, δT S − δT Iδ/2).

By Continuous Mapping Theorem,

(Uk, dPk(δ)/dQk) D−→
Qk

(U, eδT S−δT Iδ/2).

By Le Cam’s third Lemma (Theorem 10.2), if L is the set function L(B) =
E[IB(U)eδT S−δT Iδ/2], then L is a probability measure, and Uk

D−→
Pk(δ)

L. By

Corollary 10.1, the characteristic function of L is

κL(t) = E
(
eitT U+δT S−δT Iδ/2

)
. (10.21)

The same characteristic function can be deduced from the regularity of ψ̂.
Because h is differentiable, Uk can be expressed as

Uk =
√

k[ψ̂ − h(θk(δ))] + ḣT δ + o(1).

Hence Uk
D−→

Pk(δ)
U + ḣT δ, and an alternative expression for the characteristic

function of the limit law of Uk under Pk(δ) is

κL(t) = E
(
eitT U+itT ḣT δ

)
. (10.22)

From (10.21) and (10.22) we have

E
(
eitT U+δT S−δT Iδ/2

)
= E

(
eitT U+itT ḣT δ

)
.
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By Lemma 2.2, both sides of the above equality are analytic functions of
δ ∈ R

p. Hence, by the analytic continuation theorem (Theorem 2.7), the
equality holds for all δ ∈ C

p, the p-fold Cartesian product of the complex
plane C. Take δ = iu, where u ∈ R

p. Then

E(eitT U+iuT S+uT Iu/2) = E(eitT U−tT ḣT u)

⇒E(eitT U+iuT S) = e−tT ḣT u−uT Iu/2E(eitT U ).
(10.23)

Since the right hand side depends only on U , the joint distribution of (U, S)
does not depend on the subsequence k. Therefore, (Un, Sn) D−→

Qn

(U, S) along

the whole sequence. By continuous mapping theorem

(Un − ḣT I−1Sn, Sn) D−→
Qn

(U − ḣT I−1S, S) ≡ (R,S).

Next, let us show that R and S are independent. The characteristic func-
tion of (R,S) is

κ(R,S)(t, u) = E
(
eitT (U−ḣT I−1S)+iuT S

)

= E
(
eitT U+i(−I−1ḣt+u)T S

)
= κ(U,S)(t,−ḣT I−1t + u)

By (10.23),

κ(U,S)(t,−ḣT I−1t + u)

= e−tT ḣT (−I−1ḣt+u)−(−I−1ḣt+u)T Iθ(−I−1ḣt+u)/2E(eitT U )

= etT ḣT I−1ḣt/2−uT Iu/2E(eitT U ).

Therefore,

κ(R,S)(t, u) =
(
e−uT Iu/2

)(
etT ḣT I−1ḣt/2EeitT U

)
.

Since the characteristic function of (R,S) factorizes into the product of a
function of t and a function of u, R and S are independent. Therefore, U −
ḣT I−1S and ḣT I−1S are independent. So

Un
D−→

Qn

U = (U − ḣT I−1S) + ḣT I−1S,

where U − ḣT I−1S and ḣT I−1S are independent.
Finally, because ψ̂ is regular, the asymptotic distribution of

√
n{ψ̂ −

h[θn(δ)]} under Pn(δ) is the same as the asymptotic distribution of Un under
Qn. Thus we have (10.20). �

The next corollary gives an alternative form of the convolution theorem.
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Corollary 10.3 Suppose (Sn, Ln) satisfies LAN and ψ̂ is a regular estimate
of h(θ0). Then

√
n[ψ̂ − h(θ0)] = ḣT I−1Sn + Rn,

where (Sn, Rn) D−→
Qn

(S,R) and S R.

Proof. By the proof of Theorem 10.3, (Sn, Rn) D−→
Qn

(S,R), where S R and

Rn =
√

n[ψ̂ − h(θ0)] − ḣT I−1Sn. �

The name “convolution” is motivated by the fact that, because of the
independence between S and R, the distribution of U is the convolution of the
distribution of R and the distribution of ḣT I−1S. An important fact emerged
in the proof of the above theorem — that is, (Un, Sn) converges in distribution
to a random vector (U, S). This is not automatically implied by Un

D−→
Qn

U ,

Sn
D−→

Qn

S, and Ln
D−→

Qn

log(V ). Instead it was deduced from the regularity of

ψ̂ and the LAN condition using the argument via subsequences. This result
is of importance in its own and we record it below as a corollary.

Corollary 10.4 If (Sn, Ln) satisfies LAN and ψ̂ is a regular estimate of
h(θ0), then (Un, Sn) D−→

Qn

(U, S) for some random vector in R
k+p, where

Un =
√

n[ψ̂ − h(θ0)]. The characteristic function of (U, S) is

κU,S(t, u) = e−tT ḣT u−uT Iu/2E(eitT U ).

To complete the picture of regular estimate and convolution theorem, we
show that the convolution form, in fact, characterizes a regular estimate; that
is, an estimate that can be written as the convolution form must be regular.
We first prove a lemma.

Lemma 10.3 If X ∼ N(μ,Σ), then, for any s ∈ C
p,

E(esT X) = exp(μT s + sT Σs/2). (10.24)

Proof. Since the moment generating function of X is the right-hand side of
(10.24) with s ∈ R

p, the equality (10.24) holds for all s ∈ R
p. Because the

functions on both sides of (10.24) are analytic functions of s, by the analytic
continuation theorem (Theorem 2.7), the equality holds for all s ∈ C

p. �

Theorem 10.4 Suppose that (Sn, Ln) satisfies LAN. Then the following
statements are equivalent:

1. ψ̂ is a regular estimate of h(θ0);
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2.
√

n[ψ̂ − h(θ0)] = ḣT I−1Sn + Rn where (Sn, Rn) D−→
Qn

(S,R) with S R.

Proof. 1 ⇒ 2. This is Corollary 10.3.
2 ⇒ 1. By the differentiability of h and the LAN assumption,

(√
n{ψ̂ − h[θn(δ)]}

Ln

)
Qn=

(
ḣT I−1Sn + Rn − ḣT δ

δT Sn − δT Iδ/2

)
+ oP (1).

Because (Sn, Rn) D−→
Qn

(S,R), the above implies

(√
n{ψ̂ − h[θn(δ)]}

Ln

)
D−→

Qn

(
ḣT I−1S + R − ḣT δ

δT S − δT Iδ/2

)
.

By Le Cam’s third lemma and Corollary 10.1,
√

n{ψ̂−h[θn(δ)]} D−→
Pn(δ)

L, where

the characteristic function of L is

κL(t) = E
{

exp[i(ḣT I−1S + R − ḣT δ)T t] exp(δT S − δT Iδ/2)
}

= E
{

exp[itT ḣT I−1S − itT ḣT δ + δT S − δT Iδ/2]
}

κR(t)

= E
{

exp[(iI−1ḣt + δ)T S]
}

exp(−itT ḣT δ − δT Iδ/2)κR(t),

(10.25)

where the second equality holds because S R, and κR is the characteristic
function of R. Because S ∼ N(0, I), by Lemma 10.3,

E
{

exp[(iI−1ḣt + δ)T S]
}

= exp
[
(iI−1ḣt + δ)T I(iI−1ḣt + δ)/2

]

= exp
(
−tT ḣT I−1ḣt/2 + itT Ṫ δ + δT Iδ/2

)
.

Substituting this into the right-hand side of (10.25), we have

κL(t) = exp
(
−tT ḣT I−1ḣt/2

)
κR(t).

Since this characteristic function is independent of δ, the probability measure
L does not depend on δ. Hence ψ̂ is a regular estimate of h(θ0). �

10.6 Asymptotically efficient estimates

Equipped with the convolution theorem, we can now answer the question
raised at the beginning of this chapter: the maximum likelihood estimate —
or any estimate that is asymptotically equivalent to it — is optimal among
how large a class of estimates? The convolution theorem implies that if ψ̂ is
a regular estimate of h(θ0) and (Sn, Ln) satisfies LAN, then
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√
n[ψ̂ − h(θ0)]

D−→
Qn

ḣT I−1S + R, S R.

Thus the asymptotic variance of
√

n[ψ̂ − h(θ0)] is bounded from below by
ḣT I−1ḣ in terms of Louwner’s ordering. In other words, any regular estimate
of h(θ0) that is asymptotically normal with asymptotic variance ḣT I−1ḣ is
optimal among all regular estimates. This leads to the following formal defi-
nition.

Definition 10.4 Under the LAN assumption, an estimate ψ̂ of h(θ0) is
asymptotically efficient if it is regular with asymptotic distribution

√
n[ψ̂ − h(θ0)]

D−→
Qn

N(0, ḣT I−1ḣ), (10.26)

where I = E(SST ), and S is as defined in LAN.

Note that, because ψ̂ is a regular estimate of h(θ0), expression (10.26) is
equivalent to

√
n[ψ̂ − h(θn(δ))] D−→

Pn(δ)
N(0, ḣT I−1ḣ) for all δ ∈ R

p.

Moreover, the above convergence implies the regularity of ψ̂ and the conver-
gence (10.26). Hence we have the following equivalent definition of an asymp-
totically efficient estimate.

Definition 10.5 Under the LAN assumption, an estimate ψ̂ of h(θ0) is
asymptotically efficient if

√
n[ψ̂ − h(θn(θ))] D−→

Pn(δ)
N(0, ḣT I−1ḣ) for all δ ∈ R

p. (10.27)

In the case of h(θ) = θ, the right-hand side of (10.26) is N(0, I−1). As
shown in Chapter 8, this is the asymptotic distribution of the maximum like-
lihood estimate in the i.i.d. case. Hence the maximum likelihood estimate is
asymptotically efficient estimate of θ0 in that case. In the case of h(θ) = ψ, the
right-hand side of (10.26) is N(0, ḣT I−1ḣ), where ḣ(θ0) = (Ir, 0). Following
the notations in Section 9.8, let Iψψ be the r × r upper left block I and Iψλ

be the upper right block of dimension r × s, and so on, and make the similar
partition to I−1. Then

ḣT I−1ḣ = (Ur, 0)I−1(Ur, 0)T = (I−1)ψψ = (Iψψ − IψλI−1
λλ Iλψ)−1 ≡ I−1

ψ·λ.

As in Section 9.8, we call Iψ·λ the efficient information. Note that, here, I
has a much more general meaning than the Fisher information in the i.i.d.
case, as the LAN assumption accommodates far more probability models than
the i.i.d. model. In this i.i.d. case, this definition reduces to the definition in
Section 9.8 because E(SST ) is precisely E[s(θ0,X)s(θ0,X)T ]. We have shown
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in Chapter 9 that, if ψ̂ is the ψ-component of the maximum likelihood estimate
θ̂, then

√
n(ψ̂ − ψ) has asymptotic normal with variance I−1

ψ·λ. Thus, ψ̂ is an
asymptotically efficient estimate of ψ0 among all regular estimates of ψ0.

More generally, if θ̂ is the maximum likelihood estimate, then, by the δ-
method,

√
n(h(θ̂) − h(θ0)) has asymptotic distribution N(0, ḣT I−1ḣ). Thus

ψ̂ = h(θ̂) is an asymptotically efficient estimate of h(θ0). Furthermore, as we
have shown in Chapter 9, there is a wide class of estimates, such as the one-
step Newton-Raphson estimates, that have the same asymptotic distribution
as the maximum likelihood estimate. All these estimates are asymptotically
efficient.

The next theorem gives a sufficient and necessary condition for an estimate
to be asymptotically efficient.

Theorem 10.5 If (Sn, Ln) satisfies LAN, then the following conditions are
equivalent:

1. ψ̂ is an asymptotically efficient estimate of h(θ0);

2.
√

n[ψ̂ − h(θ0)]
Qn= ḣT I−1Sn + oP (1).

Proof. 2 ⇒ 1. Obviously, statement 2 implies
√

n[ψ̂ − h(θ0)]
D−→

Qn

N(0, ḣT Iḣ).

To see that ψ̂ is regular, note that statement 2 means
√

n[ψ̂ − h(θ0)] = ḣT I−1Sn + Rn

where Rn
D−→

Qn

0. Because Sn
D−→

Qn

S and 0 and S are independent, by Theorem

10.4, ψ̂ is a regular estimate of h(θ0).

1 ⇒ 2. Let Un =
√

n[ψ̂ − h(θ0)]. Because ψ̂ is a regular estimate of h(θ0),

Un = ḣT I−1Sn + Rn,

where Rn and Sn are asymptotically independent. Hence the asymptotic vari-
ance of Un is the sum of the asymptotic variance of ḣT I−1Sn and the asymp-
totic variance of Rn. By assumption, the asymptotic variance of Un is ḣT I−1ḣ.
Since Sn

D−→
Qn

N(0, I), the asymptotic variance of ḣT I−1Sn is also ḣT I−1ḣ. So

the asymptotic variance of Rn is 0, implying Rn
Qn= oP (1). �

10.7 Augmented LAN

An important special case of Le Cam’s third lemma is when (Un, Sn) has
a joint asymptotic normal distribution in addition to the LAN assumption
on (Sn, Ln). This not only provides us concrete examples and verification
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criteria for regular estimates, but also plays a critical role in the development
of local alternative distribution for hypothesis testing that will be done in
the next chapter. Following Hall and Mathiason (1990), we refer to the LAN
assumption together with the joint asymptotic normal assumption on (Un, Sn)
as the augmented local asymptotic normal assumption, or ALAN (Hall and
Mathiason abbreviated this assumption as LAN#).

Assumption 10.4 (ALAN) Let {Un : n ∈ N} be a sequence random vectors
on (Ωn,Fn). We say that (Un, Sn, Ln) satisfies ALAN if (10.16) holds and

(
Un

Sn

)
D−→

Qn

N

[(
0
0

)
,

(
ΣU ΣUS

ΣSU I

)]
. (10.28)

From Assumption 10.4, we can easily derive the asymptotic joint distribu-
tion of (Un, Ln) under Qn.

Proposition 10.3 If (Un, Sn, Ln) satisfies ALAN, then
(

Un

Ln(δ)

)
D−→

Qn

N

[(
0

−δT Iδ/2

)
,

(
ΣU ΣUSδ

δT ΣSU δT Iδ

)]
. (10.29)

Proof. Let (U, S) be the random vector whose joint distribution is the multi-
variate Normal distribution on the right-hand side of (10.28). By the contin-
uous mapping theorem,(

Un

δT Sn − δT Iδ/2

)
D−→

Qn

(
U

δT S − δT Iδ/2

)
.

By (10.16) and Slutsky’s Theorem,
(

Un

Ln(δ)

)
D−→

Qn

(
U

δT S − δT Iδ/2

)
.

Because

E(U) = 0, E(δT S − δT Iδ/2) = −δT Iδ/2

var(U) = ΣU , cov(U, δT S − δT Iδ/2) = ΣUSδ,

var(δT S − δT Iδ/2) = δT Iδ,

the distribution of (UT , δT S − δT Iδ/2)T is the right-hand side of (10.29). �

Recall from Corollary 10.4 that regularity of ψ̂ and LAN together implies
the joint convergence in distribution of (Un, Sn). From this and the above
proposition we can easily deduce the following sufficient and necessary condi-
tion for ALAN.

Proposition 10.4 Suppose ψ̂ is a regular estimate of h(θ0), and let Un =√
n[ψ̂ − h(θ0)]. Then the following conditions are equivalent:
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1. (Sn, Ln) satisfies LAN and Un
D−→

Qn

N(0, ΣU );

2. (Un, Sn, Ln) satisfies ALAN with ΣUS = ḣT .

Proof. 2 ⇒ 1. If 2 holds, then (Un, Sn) converges to a multivariate normal ran-
dom vector. Hence Sn converges marginally to a multivariate normal vector,
which, together with the assumption on Ln in ALAN, implies that (Sn, Ln)
satisfies LAN. Since Un also converges marginally to a multivariate normal
vector, Un

D−→
Qn

N(0, ΣU ) holds.

1 ⇒ 2. Since ψ̂ is regular and (Sn, Ln) satisfies LAN, by Corollary 10.4,
(Un, Sn) D−→

Qn

(U, S) with characteristic function

κU,S(t, u) = e−tT ḣT u−uT Iu/2E(eitT U ).

Because U ∼ N(0, ΣU ),

κU,S(t, u) = e−tT ḣT u−uT Iu/2e−tT ΣU t/2

= e−
1
2 (u

T Iu−2tT ḣT u+tT ΣU t),

which is the characteristic function of a multivariate normal distribution with
mean 0 and variance matrix (

ΣU ḣT

ḣ I

)
.

Thus statement 2 holds. �

We now develop sufficient conditions for ALAN under the i.i.d. paramet-
ric model. Let θ̂ be an estimate of θ0 and let Un =

√
n(θ̂ − θ0). The next

proposition gives the sufficient conditions for (10.28).

Proposition 10.5 Suppose Assumption 10.3 holds and

1. θ̂ is an asymptotically linear estimate of θ0 with influence function ψ;
2. s(θ,X) is Pθ-square integrable and s(θ, x)fθ(x) satisfies DUI+(θ, μ);

Then condition (10.28) is satisfied with Un =
√

n(θ̂ − θ0).

Proof. By Definition 9.6, θ̂ being an asymptotically linear estimate of θ0 means
√

n(θ̂ − θ0) =
√

nEn[ψ(θ0,X)] + oP (1),

where ψ(θ0,X) is Pθ-square integrable and E[ψ(θ0,X)] = 0. Also, under As-
sumption 10.3, Sn =

√
nEn[s(θ0,X)]. By the Central Limit Theorem and

Slutsky’s Theorem,(
Un

Sn

)
D−→

Qn

N

[(
0
0

)
,

(
E[ψ(θ0,X)ψT (θ0,X)] E[ψ(θ0,X)sT (θ0,X)]
E[s(θ0,X)ψT (θ0,X)] E[s(θ0,X)sT (θ0,X)]

)]

By condition 2, the Fisher information I(θ0) is well defined and it is the ma-
trix E[s(θ0,X)sT (θ0,X)]. �
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10.8 Le Cam’s third lemma under ALAN

Le Cam’s third lemma reduces to a particularly convenient form under ALAN,
which will be used heavily in the next chapter. We first develop the specific
forms of the measure L(B) in Theorem 10.2 and Corollary 10.2.

Lemma 10.4 Suppose U is a p-dimensional random vector and V is a posi-
tive random variable and their joint distribution is determined by

(
U

log V

)
∼ N

[(
μU

−σ2/2

)
,

(
ΣU β
βT σ2

)]
. (10.30)

If L is the probability measure on (Rp,Rp) defined by

L(B) = E[IB(U)V ],

then the c.d.f. of L is N(μU + β,ΣU ).

Proof. Let W = log V . Then L(B) can be rewritten as E[IB(U)eW ]. By Corol-
lary 10.1, the characteristic function of L is

φL(t) = E(eitT UeW ) = exp

[(
it
1

)T (
U
W

)]

By (10.30) and Lemma 10.3, the right-hand side is

exp

[(
it
1

)T (
μU

−σ2/2

)T

+
1
2

(
it
1

)T (
ΣU β
βT σ2

)(
it
1

)]

= exp
(
itT (μU + β) − tT ΣU t/2

)
,

which is the characteristic function of N(μU + β,ΣU ). �

If we replace U in the lemma by (UT , log V )T then we get the following
result.

Corollary 10.5 Suppose U is a p-dimensional random vector and V is a
positive random variable with their joint distribution determined by (10.30).
If L is the probability measure on (Rp+1,Rp+1) defined by

L(B) = E[IB(U, log V )V ] (10.31)

then the c.d.f. of L is

N

[(
μU + β
σ2/2

)
,

(
ΣU β
βT σ2

)]
. (10.32)
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Proof. If (10.30) holds then
⎛
⎝ U

log V
log V

⎞
⎠ ∼ N

⎡
⎣

⎛
⎝ μU

−σ2/2
−σ2/2

⎞
⎠ ,

⎛
⎝ΣU β β

βT σ2 σ2

βT σ2 σ2

⎞
⎠

⎤
⎦ . (10.33)

By Lemma 10.4 (with U replaced by (UT , log V )T ), the probability measure
L defined by (10.31) corresponds to the distribution

N

[(
μU + β

−σ2/2 + σ2

)
,

(
ΣU β
βT σ2

)]
= N

[(
μU + β
σ2/2

)
,

(
ΣU β
βT σ2

)]
,

as desired. �

The next theorem gives the special form of Le Cam’s third lemma under
the ALAN assumption.

Theorem 10.6 If (Un, Sn, Ln) satisfies ALAN, then
(

Un

Ln

)
D−→

Pn(δ)
N

[(
ΣUSδ
δT Iδ/2

)
,

(
ΣU ΣUSδ

δT ΣSU δT Iδ

)]
. (10.34)

In particular, Un
D−→

Pn(δ)
N(ΣUSδ,ΣU ).

Proof. By Proposition 10.3, (UT
n , Ln)T D−→

Qn

(UT ,W )T , where (UT ,W )T is the

random vector whose joint distribution is the right-hand side of (10.29). By
the continuous mapping theorem,

(
Un

dPn/dQn

)
D−→

Qn

(
U
eW

)
.

By Corollary 10.2, (UT
n , Ln)T D−→

Pn

L, where L is defined by (10.31). By Corol-

lary 10.5 this measure is, in fact, the distribution on the right-hand side of
(10.34). �

A variation of Le Cam’s third lemma under the ALAN assumption con-
cerns the joint distribution of Un and the standardized score function Sn,
which is given by the next corollary.

Corollary 10.6 If (Un, Sn, Ln) satisfies ALAN, then
(

Un

Sn

)
D−→

Pn(δ)
N

[(
ΣUSδ

Iδ

)
,

(
ΣU ΣUS

ΣSU I

)]
. (10.35)
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Proof. Let (UT , ST )T represent the random vector whose joint distribution is
(10.28). By the continuous mapping theorem,

⎛
⎝ Un

Sn

δT Sn − δT Iδ/2

⎞
⎠ D−→

Qn

⎛
⎝ U

S
δT S − δT Iδ/2

⎞
⎠ .

Hence, by (10.16) and Slutsky’s theorem,
⎛
⎝Un

Sn

Ln

⎞
⎠ D−→

Qn

⎛
⎝ U

S
δT S − δT Iδ/2

⎞
⎠ .

Because

cov
[(

U
S

)
, δT S − δT Iδ/2

]
=

(
ΣUSδ

Iδ

)
,

by Theorem 10.6, (10.35) holds. �

10.9 Superefficiency

In the last two sections we have shown that ḣT I−1ḣ is the lower bound of the
asymptotic variances of all regular estimates. An estimate whose asymptotic
variance reaches this lower bound is asymptotically efficient. In this section we
use an example to show that it is possible for an estimate that is not regular to
have a smaller asymptotic variance than an asymptotically efficient estimate.
We call such estimates superefficient estimates. More specifically, let θ̂ be an
estimate such that

√
n(θ̂−θ) converges in distribution under Pnθ. Let AVθ̂(θ)

be the asymptotic variance of
√

n(θ̂ − θ) under Pnθ. Let I(θ) be the Fisher
information.

Definition 10.6 An estimate θ̂ is superefficient if AVθ̂(θ) ≤ I−1(θ) for all
θ ∈ Θ, and AVθ̂(θ) < I−1(θ) for some θ ∈ Θ. Here, when θ is a vector, the
inequality is in terms of Louwner’s ordering.

For convenience, let us refer to an estimate that is not regular as an irregular
estimate. We first prove a lemma.

Lemma 10.5 Suppose Xn = OP (1). Then for any sequences {an} and {bn}
such that an → ∞ and bn > 0, we have I(Xn > an) = oP (bn).

The point of this lemma is that if I(Xn > an) = oP (1), then its order of
magnitude is arbitrarily small — for example I(Xn > an) = oP (n−100). This
fact will prove convenient for the discussions in this section.
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Proof. Since Xn ≤ |Xn|, it suffices to show that I(|Xn| > an) = oP (bn).
This means, for any ε > 0, P (b−1

n I(|Xn| > an) > ε) → 0. Because bn > 0,
b−1
n I(|Xn| > an) > ε if and only if I(|Xn| > an) = 1. Hence we only need

to show P (|Xn| > an) → 0. For any fixed ε > 0, let K > 0 be such that
P (|Xn| > K) < ε for all n. Because an → ∞, an > K for all sufficiently large
n. Therefore, for sufficiently large n, P (|Xn| > an) < ε. Because ε is arbitrary
we have lim supn→∞ P (|Xn| > an) = 0, as desired. �

The next example describes an estimate, called Hodges-Lehmann estimate,
that is irregular and superefficient.

Example 10.1 Suppose that X1,X2, . . . are i.i.d. N(θ, 1) where θ ∈ R. Let
θ̂ be the estimator

θ̂ =

{
X̄ if |X̄| > n− 1

4

aX̄ if |X̄| ≤ n− 1
4

where 0 ≤ a < 1. We first show that the above estimate is superefficient. Let
AVθ̂(θ) denote the asymptotic variance of

√
n(θ̂ − θ). We will show that

AVθ̂(θ)

{
≤ I−1(θ) for all θ �= 0
< I−1(θ) for all θ = 0.

(10.36)

Note that
√

n (X̄ − θ) D= Z, where Z has normal distribution with mean zero
and unit variance.

Case I: θ = 0. In this case,
√

n(θ̂ − 0) =
√

n X̄I(|X̄| > n− 1
4 ) +

√
n aX̄I(|X̄| ≤ n− 1

4 ).
D= ZI(|Z| > n

1
4 ) + aZI(|Z| ≤ n

1
4 )

D→ aZ ∼ N(0, a2).

Case II: θ �= 0. In this case
√

n(θ̂ − θ) =
√

n X̄I(|X̄| > n− 1
4 ) +

√
n aX̄I(|X̄| ≤ n− 1

4 ) −√
n θ.

Without loss of generality, assume θ > 0. Note that

|X̄| ≤ n− 1
4 ⇔− n− 1

4 ≤ X̄ ≤ n− 1
4

⇔√
n(−n− 1

4 − θ) ≤ √
n(X̄ − θ) ≤ √

n(n− 1
4 − θ)

⇒√
n(θ − X̄) ≥ √

n(θ − n− 1
4 ).

Because θ > 0, the right-hand side of the last line goes to ∞. But we also know
that, under Pθ, the term

√
n(θ− X̄) = OP (1) (in fact,

√
n(θ− X̄) ∼ N(0, 1)).

Therefore, by Lemma 10.5, for any sequence bn > 0, we have
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I
(√

n(θ − X̄) ≥ √
n(θ − n− 1

4 )
)

= o(bn),

which implies I(|X̄| ≤ n− 1
4 ) = oP (bn). Take bn = n−1/2, then we have I(|X̄| ≤

n− 1
4 ) = oP (n−1/2). Hence

√
n(θ̂ − θ) =

√
nX̄(1 + oP (n−1/2)) +

√
naX̄ oP (n−1/2) −√

nθ.

Because X̄
P→ θ,

√
nX̄ = OP (n1/2). Therefore

√
n(θ̂ − θ) =

√
n(X̄ − θ) + oP (1) D−→ N(0, 1).

Meanwhile, it is easy to see that the Fisher information in this case is I(θ) ≡ 1.
Therefore (10.36) holds.

Next, we show that θ̂ is irregular at θ = 0. Since θn(δ) = δ/
√

n, under
Pθn(δ),

√
n(X̄ − δ/

√
n) is distributed as N(0, 1) and therefore has order of

magnitude OP (1). In the meantime,

|X̄| > n− 1
4 ⇔ X̄ > n− 1

4 or X̄ < −n− 1
4

⇔ X̄ − n− 1
2 δ > n− 1

4 − n− 1
2 δ or X̄ − n− 1

2 δ < −n− 1
4 − n− 1

2 δ

⇔ √
n(X̄ − n− 1

2 δ) > n
1
4 − δ or −√

n(X̄ − n− 1
2 δ) > n

1
4 + δ.

Hence

I(|X̄| > n− 1
4 )

≤ I
(√

n(X̄ − n− 1
2 δ) > n

1
4 − δ

)
+ I

(
−√

n(X̄ − n− 1
2 δ) > n

1
4 + δ

)
.

Because
√

n(X̄ − n− 1
2 δ) =OP (1), n

1
4 − δ → ∞,

−√
n(X̄ − n− 1

2 δ) =OP (1), n
1
4 + δ → ∞,

we have, by Lemma 10.5, for any bn > 0,

I(|X̄| > n− 1
4 ) = oP (bn), and in particular, I(|X̄| > n− 1

4 ) = oP (1).

Hence, under Pθn(δ),

θ̂ = X̄I(|X̄| > n− 1
4 ) + aX̄I(|X̄| ≤ n− 1

4 ) = aX̄ + oP (n−1/2).

It follows that
√

n(θ̂ − n− 1
2 δ) =

√
n(aX̄ − n− 1

2 δ) + oP (1)

=
√

n(a(X̄ − n− 1
2 δ + n− 1

2 δ) − n− 1
2 δ) + oP (1)

=
√

na(X̄ − n− 1
2 δ) +

√
n(an− 1

2 δ − n− 1
2 δ) + oP (1)

=
√

na(X̄ − n− 1
2 δ) + (a − 1)δ + oP (1) D−→ N((a − 1)δ, a2).

Since this distribution depends on δ, θ̂ is irregular at θ = 0. �
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The existence of superefficient estimates does not diminish the importance
of asymptotically efficient estimates, as superefficient estimates are somewhat
pathological. Suppose θ̂ is a superefficient estimate. Let us say that θ ∈ Θ is
a superefficient point if AVθ̂(θ) < I−1(θ). Let S be the set of all superefficient
points. Then it can be shown that S has Lebesgue measure 0. See Le Cam
(1953, 1960); Bahadur (1964); van der Vaart (1997). This issue will be further
explored in a series problems in the Problems section.

Problems

10.1. Let Pn and Qn probability measures defined by the following distribu-
tions:

1. Qn = N(0, 1/n), Pn = N(0, 1/n2);
2. Qn = N(0, 1/n), Pn = N(1/

√
n, 1/n);

3. Qn = U(0, 2/n), Pn = U(0, 1/n);
4. Qn = U(0, 1/n), Pn = U(0, 1/n2).

In each of the above scenarios,

1. Show that dPn/dQn
D−→

Qn

V for some V , and find the distribution of V ;

2. Compute E(V );
3. Prove or disprove Pn � Qn.

10.2. Show that, if c > 0, then

1. f(x) = xI{x≤c} is an upper semi-continuous function bounded from above;
2. g(x) = (2 − x)I{x>2/(1+c)} is a lower semi-continuous function bounded

from below.

10.3. Under the assumptions of Theorem 10.2, show that the following state-
ments are equivalent:

1. Pn ��Qn;
2. If dPn/dQn

D−→
Qn

V along a subsequence, then E(V ) = 1, P (V > 0) = 1.

10.4. Suppose that θ̂ is a regular estimator of θ0 and h is a differentiable
function. Show that h(θ̂) is a regular estimator of h(θ0).

10.5. Suppose that X1, . . . , Xn are i.i.d. with Eμ(X) = μ and varμ(X) = 1.
We are interested in estimating μ2 by X̄2. Let us say {na} is normalizing
sequence if a is so chosen that na(X̄2−μ2) = OP (1) and na(X̄2−μ2) �= oP (1).

1. If μ �= 0, find the normalizing sequence na and the asymptotic distribution
of na(X̄2 − μ2).

2. If μ = 0, find the normalizing sequence na and the asymptotic distribution
of na(X̄2 − μ2). What is the asymptotic variance of this distribution?
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3. If μn = n−1/2δ where δ �= 0, find the normalizing sequence na and the
asymptotic distribution of na(X̄2 −μ2

n). What is the asymptotic variance
of this distribution?

4. Is X̄2 a regular estimator of μ2 if at μ = 0?

10.6. Suppose that θ̂ is a regular estimate of a scalar parameter θ0, and
that (

√
n(θ̂ − θ0), Sn, Ln) satisfies ALAN. Denote the limiting distribution

of
√

n(θ̂ − θn(δ)) under Pn(δ) by N(0, σ2). Let h be a differentiable function
of θ. Define the notion of a normalizing sequence as in the last problem.

1. Suppose that ḣ(θ0) �= 0. Find the normalizing sequence na in na[h(θ̂) −
h(θ0)] and derive the asymptotic distribution of na[h(θ̂)−h(θn(δ))] under
Pn(δ). Is h(θ̂) regular at θ0?

2. Suppose that h is twice differential at θ0 and that ḣ(θ0) = 0. Find the
normalizing sequence na in na[h(θ̂) − h(θ0)] and derive the asymptotic
distribution of na[h(θ̂) − h(θn)] under Pn(δ). Is h(θ̂) regular at θ0?

10.7. Let θ be a p-dimensional vector, and suppose that θ̂ is a regular estimate
of θ, and that (

√
n(θ̂ − θ0), Sn, Ln) satisfies ALAN. Let

θ̃ =

{
θ̂ if ‖θ̂ − θ0‖ > n− 1

4

θ0 + a(θ̂ − θ0) if ‖θ̂ − θ0‖ ≤ n− 1
4

where 0 < a < 1. Denote Un =
√

n(θ̃ − θ0). Show that Un satisfies ALAN
at under θ0, and derive the asymptotic covariance ΣUS between Un and Sn

under θ0. Is θ̃ a regular estimate of θ0?

10.8. Suppose Tn is a regular estimate of θ0 ∈ R
p. Assuming p ≥ 0, the

James-Stein-type estimator of θ based on Tn can be defined as follows

Un = Tn − (p − 2)
Tn

‖√nTn‖2 ,

where ‖·‖ is the Euclidean norm. In the following, let Z represent the standard
Normal random variable.

1. Write down the local alternative asymptotic distribution of
√

n(Un−θn(δ))
at θ0 �= 0 in terms of Z. Is Un regular at θ �= 0?

2. Write down the local alternative asymptotic distribution of
√

n(Un−θn(δ))
at θ0 = 0 in terms of Z. Is Un regular at θ0 = 0?

10.9. Suppose Qn is the probability measure N(0, σ2
n) and Pn is the proba-

bility measure N(θn, σ2
n). Prove the following statements:

1. If limn→∞ μn/σn → ρ for some ρ �= 0, then Pn � Qn;
2. If limn→∞ μn/σn = 0, then Pn � Qn;
3. If limn→∞ μn/σn = ∞, then Pn is not contiguous with respect to Qn.
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10.10. A distance between two probability measures, say P and Q, is defined
by

‖P − Q‖ = sup
A

|P (A) − Q(A)|,

where the supremum is taken all measurable sets. Let {Pn} and {Qn} be two
sequences of probability measures. Show that if ‖Pn − Qn‖ → 0 as n → ∞
then Pn ��Qn.

10.11. Let K : R1 �→ R1 be a function such that (a) 0 < K(0) < 1, (b)
lim|u|→∞ K(u) = 1, and (c) K is differentiable and has bounded derivative;
that is, K̇(u) < C for some C > 0. Let θ̂ be a regular estimator of θ.

1. Show that K(n1/4θ̂) P→ K(0) under θ = 0 and K(n1/4θ̂) P→ 1 under θ �= 0.
2. Show that K(n1/4θ̂) P→ K(0) under θn = n−1/2δ and K(n1/4θ̂) P→ 1 under

θn = θ + n−1/2δ, with θ0 �= 0.
3. Let θ̃ = K(n1/4θ̂)θ̂. Derive the asymptotic distribution of

√
n(θ̃ − θn(δ))

under θn(δ), where θn(δ) = n−1/2δ. Is θ̃ regular at 0?

Remarks on Problems 10.12 through 10.15

An alternative definition of a regular estimate is the following: ψ̂ is a regular
estimate of h(θ0) if, for any sequence of parameters θn such that

√
n(θn − θ0)

is bounded, we have
√

n[ψ̂ − h(θ0)]
D−→

Pnθn

Z, where the distribution of Z does

not depend on the sequence θn chosen. This alternative definition obviously
implies Definition 10.3; it is equivalent to Definition 10.3 under the following
assumption: if δn → δ, then

Ln(δn)
Qn= Ln(δ) + oP (1). (10.37)

Problems 10.12 through 10.15 provide a proof of the equivalence, and also
give a sufficient condition for (10.37). These problems touch on many aspects
of this chapter.

10.12. Suppose that (Sn, Ln(δ)) satisfies LAN, and ψ̂ is a regular estimate of
h(θ0) in the sense of Definition 10.3. Show that

(
Un

Ln(δ)

)
D−→

Qn

(
U

δT S − δT Iδ/2

)
.

10.13. Suppose the conditions in Problem 10.12 are satisfied. Consider a
sequence of local alternative parameters θn such that

√
n(θn − θ0) ≡ δn → δ

for some δ ∈ R
p. Note that θn can be written as θ0 + n−1/2δn, and Pnθn

can
be written as Pn(δn). Let
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Ln(δn) = log[dPnθn
/dQn] = log[dPn(δn)/dQn].

Suppose that Ln(δn)
Qn= Ln(δ) + oP (1). Show that

√
n[ψ̂ − h(θn(δn))] D−→

Pn(δn)
Z,

where the distribution of Z is the same as the limiting distribution of
√

n[ψ̂−
h(θn(δ))] under Pn(δ). Hence conclude that the distribution of Z doesn’t
depend on the sequence {δn} chosen.

10.14. Suppose the conditions in Problem 10.12 are satisfied and, whenever
δn → δ

Ln(δn) = Ln(δ) + oP (1).

Use the argument via subsequences to show that, for any θn such that
√

n(θn−
θ0) is bounded,

√
n[ψ̂−h(θn)] D−→

Pnθn

Z, where the distribution of Z is the same

as the limiting distribution of
√

n(ψ̂ − h(θn(δ))] under Pn(δ). Hence conclude
that the distribution of Z does not depend on the sequence {θn} chosen.

10.15. Under the assumptions of Proposition 10.2, prove that condition
(10.37) is satisfied for all δ ∈ R

p.

10.16. Suppose that U ∈ R
r and S ∈ R

p, where p ≥ r, are random vectors
with joint distribution F and marginal distribution FU and FS . Suppose H
is a p× r matrix, I is a p× p positive definite matrix. Suppose FS is N(0, I).
For each δ ∈ R

p, let GU,δ be a measure defined by

GU,δ(B) = EF [IB(U)eδT S−δT Iδ/2].

Show that GU,δ is a probability measure. Moreover, suppose that, for any
δ ∈ R

p, U + HT δ has distribution GU,δ. Show that

U − HT I−1S S,

and derive the characteristic function of R = U − HT I−1S.

10.17. Suppose ψ̂ is a regular estimate of h(θ0) and (Sn, Ln) satisfies LAN.
Show that (

√
n(ψ̂ − h(θ0)), Ln) D−→

Qn

(U,W ) with characteristic function

κU,W (t, v) = e−tT ḣT δv−v2δT Iδ/2E(eitT U ).

10.18. Under the i.i.d. model (Assumption 10.3), suppose that ψ̂ is an asymp-
totically linear estimate of h(θ0) with influence function ρ(θ,X). That is,

√
n[ψ̂ − h(θ0)]

Qn= En[ρ(θ0,X)] + oP (n−1/2).
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where E[ρ(θ0,X)] = 0 and ρ(θ0,X) is Pθ0-square-integrable. Suppose that
ρ(θ,X)fθ(X) satisfies DUI+(θ, μ). Use Theorem 10.4 to show that ψ̂ is a
regular estimate of h(θ0) if and only if

E

[
∂ρ(θ0,X)

∂θT

]
= −ḣ(θ0).

10.19. Recall from Theorem 9.7 that, under the assumptions of Theorem 9.5,
a consistent solution θ̂ to the estimating equation En[g(θ,X)] = 0 can be
expanded as the form

θ̂ = θ0 − J−1
g (θ0)E[g(θ0,X)] + oP (1),

where

Jg(θ0) = E

[
∂g(θ0,X)

∂θT

]
.

Show that, under the conditions in Theorem 9.5, θ̂ is a regular estimate of θ0.

10.20. Suppose that (Sn, Ln) satisfies LAN, and θ = (ψT , λT ), where ψ ∈ R
r

is the parameter of interest, and λ ∈ R
s is the nuisance parameter. Suppose

ψ̂ is a regular estimate of ψ. Show that
√

n(ψ̂−ψ0) Sλ, where Sλ is the last
s components of S, and S is as defined in the LAN assumption.

10.21. Suppose that X1, . . . , Xn are i.i.d. with density f(x − θ) where f is a
known symmetric p.d.f. defined on R satisfying

∫ ∞

−∞
[ḟ(t)/f(t)]2f(t)dt < ∞, lim

t→∞ f(t) = 0,

where ḟ denote the derivative of f . Let T1 = X̄ and T2 be the sample median
of X. It can be shown that T2 satisfies

T2
Qn= θ0 − 1

f(0)
En[I(X ≤ θ0) − 1/2] + oP (1).

1. Derive the asymptotic distribution of
√

n(T2 − θ0) under Qn.
2. Show that T2 satisfies LAN and is a regular estimate of θ0.
3. Derive the asymptotic distribution of

√
n(T2 − θ0) under Pn(δ).

4. Derive the asymptotic distribution of
√

n(T1 − θ0, T2 − θ0) under Qn.
5. Derive the asymptotic distribution of

√
n(T1 − θ0, T2 − θ0) under Pn(δ).
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Remarks on Problems 10.22 through 10.28

Bahadur (1964) gave a relatively simple proof that the collection of supereffi-
cient points have Lebesgue measure 0. This method uses the Neyman-Pearson
Lemma to derive an inequality concerning the null and local alternative distri-
butions. The next few problems walk through his proof (with adaptation to our
context, assumptions, and notations). Proving the various steps of this result
turns out to be excellent exercises, as it involves many techniques developed
in this chapter. In the context of 1-dimensional θ, it suffices to consider one
δ value, say δ = 1. Thus in the following we use θn(1), Ln(1), and Pn(1) and
so on. Also, note that Pn(1) and Pnθn(1) mean the same probability measure.
Throughout these problems, we will always make the following assumptions

1. (Sn, Ln(1)) satisfies LAN;
2. θ̂ is an estimate of θ0 such that

√
n(θ̂ − θ0)

D−→
Qn

N(0, v(θ0)).

Our goal is to show that the collection of superefficient points {θ0 : v(θ0) <
I−1(θ0)} has Lebesgue measure 0.

10.22. Use Corollary 10.1 to show that Ln(1) D−→
Pn(1)

N(I/2, I).

10.23. Let Kn = [Ln(1) + I/2]/
√

I. Show that

1. Kn
D−→

Qn

N(0, 1), Kn
D−→

Pn(1)
N(

√
I, 1);

2. for any k >
√

I, limn→∞ Pnθn(1)(Kn ≥ k) < 1/2.

10.24. Use the Neyman-Pearson lemma to show that, if C is the event Kn≥k,
and D is any other event such that

Pnθn(1)(C) < Pnθn(1)(D),

then Pnθ0(C) < Pnθ0(D).

10.25. Show that, if

lim sup
n

Pnθn(1)(θ̂ ≥ θn(1)) ≥ 1/2,

then, for any k >
√

I, there is a subsequence n′ such that

Pn′θn′ (1)(Kn′ ≥ k) < Pn′θn′ (1)(θ̂ ≥ θn′(1)),

whence use the result of Problem 10.24 to conclude that

Pn′θ0(Kn′ ≥ k) < Pn′θ0(θ̂ ≥ θ0). (10.38)
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10.26. By taking limits on both sides of (10.38), show that v(θ0) ≥ k−2 for
any k > I1/2(θ0). Conclude that v(θ0) ≥ I−1(θ0), and whence that

{θ0 : lim sup
n

Pnθn(1)(θ̂ ≥ θn(1)) ≥ 1/2} ⊆ {θ0 : v(θ0) ≥ I−1(θ0)}.

10.27. Let Δn(θ) = |Pθ(θ̂ < θ) − 1/2|, and Φ the c.d.f. of N(0, 1). Use the
Bounded Convergence Theorem to show that

lim
n→∞

∫
Δn(θ + n1/2)dΦ(θ) = 0.

Using this to show that Δn
Φ−→0 (i.e. Δn converges in Φ-probability to 0).

10.28. Using the fact that, if Un
P→ a, then Un → a almost surely along some

subsequence of {n}, to show that

Φ
(
{θ0 : lim inf

n
Δn(θn) = 0}

)
= 1,

whence conclude, in turn,

1. Φ({θ0 : lim supn Pnθn(1)(θ̂ ≥ θn(1)) ≥ 1/2}) = 1;
2. Φ({θ0 : v(θ0) ≥ I−1(θ0)}) = 1.
3. the set {θ0 : v(θ0) < I−1(θ0)} has Lebesgue measure 0.
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11

Asymptotic Hypothesis Test

In this chapter we develop various asymptotic methods for testing statistical
hypotheses under the general framework of Quadratic Form tests (QF test,
Hall and Mathiason 1990), a class of statistics that are asymptotically equiv-
alent to quadratic forms in statistics that satisfy the ALAN assumption in
Chapter 10. The asymptotic null and local alternative distributions of a QF
test can be easily derived from Le Cam’s third lemma. Several commonly used
test statistics will be shown to be special cases of QF tests, including Wilks’s
likelihood ratio test, Wald’s test, Rao’s score test, Neyman’s C(α) test, the
Lagrangian multiplier test, as well as tests based on estimating equations.
We first consider the testing problem that involves an explicit parameter of
interest and an explicit nuisance parameter, and then the more general test-
ing problem where the null hypothesis is specified by an arbitrary nonlinear
equation of parameters. We will also introduce the concept of asymptotically
efficient QF test whose local power is the greatest among the collection of all
QF tests, and Pitman’s efficiency that can be used to numerically compare
the powers of two tests.

11.1 Quadratic Form test

Consider the setting where θ is a p-dimensional parameter consisting of an r-
dimensional parameter of interest ψ and an s-dimensional nuisance parameter
λ; that is, θ = (ψ, λ). We allow r = p, so as to accommodate the special case
ψ = θ – that is, the entire parameter θ is of interest. Thus, the null hypothesis
is

H0 : ψ = ψ0. (11.1)

Here, in the asymptotic approach to hypothesis testing, we consider the fol-
lowing sequence of local alternative hypotheses:

H
(n)
1 : θ = θn(δ), where θn(δ) = θ0 + n−1/2δ.
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Note that the local alternative hypothesis involves the nuisance parameter λ0,
which does not appear in the null hypothesis. However, λ0 will always remain
offstage, and will not affect the further development in anyway. As before, let
Qn denote the null probability measure Pnθ0 and Pn(δ) the local alternative
probability measure Pnθn(δ).

A more general testing problem than (11.1) is

H0 : h(θ) = 0, (11.2)

where h is an arbitrary differentiable function. This will be taken up in a
later section. Although the setting (11.1) is a special case of (11.2), and all
the related theories under (11.1) are special cases of their counterparts under
(11.2), we will nevertheless first develop the special case and then move on to
the more general case. We choose this somewhat inefficient way of presenta-
tion because (11.1) is the most commonly used form of hypothesis, and also
because this special case helps to develop intuition, especially that related to
the efficient score and efficient information. We now give the definition of a
Quadratic Form test for the hypothesis (11.1). Let Ln and Sn be the local log
likelihood ratio and the standardized score as defined in Definition 10.2 and
the note immediately following it. For random vectors Vn and Wn, recall that
we write Vn

Qn= Wn +oP (1) to mean Qn(‖Vn−Wn‖ > ε) → 0 for every ε > 0.

Definition 11.1 A test statistic Tn ∈ R is a Quadratic Form (QF) test if
there is an r-dimensional random vector Un such that (Un, Sn, Ln) satisfies
ALAN with ΣU � 0, and such that

Tn
Qn= UT

n Σ−1
U Un + oP (1). (11.3)

Using Le Cam’s third lemma under ALAN (Corollary 10.6), we can easily
derive the asymptotic null and alternative distribution of a QF test.

Theorem 11.1 If Tn is a QF test of the form (11.3), then, for any δ ∈ R
p,

Tn
D−→

Pn(δ)
χ2

r

(
δT ΣSUΣ−1

U ΣUSδ
)
.

In particular, when δ = 0, we have Tn
D−→

Qn

χ2
r.

Proof. Because Tn is a QF test, it can be written as (11.3) where
(

Un

Sn

)
D−→

Qn

N

[(
0
0

)
,

(
ΣU ΣUS

ΣSU I

)]
.

By Corollary 10.6, Un
D−→

Pn(δ)
N(ΣUSδ,ΣU ). Hence

Σ
−1/2
U Un

D−→
Pn(δ)

N(Σ−1/2
U ΣUSδ, Ir),
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which implies

UT
n Σ−1

U Un
D−→

Pn(δ)
χ2

r(δ
T ΣSUΣ−1

U ΣUSδ).

Also, because Pn(δ) � Qn, by Proposition 10.3,

Tn
Pn(δ)
= UT

n Σ−1
U Un + oP (1).

Now apply Slutsky’s theorem to prove the asserted convergence. �

The above theorem applies to all QF tests, which include many well known
test statistics. Thus, as long as we can show that a particular statistic is a QF
test, then we can automatically write down their null and local alternative
distributions using the the above theorem. In the following few sections we
shall show that a set of most commonly used test statistics are QF tests.

11.2 Wilks’s likelihood ratio test

First, consider the parametric model as specified by Assumption 10.1. Suppose
θ̂ is the maximum likelihood estimate, and θ̃ = (ψT

0 , λ̃T )T is the maximum
likelihood estimate under the constraint ψ = ψ0. Then the likelihood ratio
test is defined as

Tn = 2 log(dPnθ̂/dPnθ̃),

which is also known as Wilks’s test (Wilks, 1938). Under the i.i.d. parametric
model (Assumption 10.3), the above reduces to

Tn = 2nEn[
(θ̂, X) − 
(θ̃, X)].

The next theorem shows that Tn is a QF test under the i.i.d. model. Recall
the notations

J(θ) = Eθ[∂s(θ,X)/∂θT ], K(θ) = Eθ[s(θ,X)sT (θ,X)],

where s(θ,X) is the score function ∂ log fθ(X)/∂θ for an individual observa-
tion X. Also recall that, if fθ(X) and s(θ,X)fθ(X) satisfy DUI+(θ, μ), and
s(θ,X) is Pθ-square integrable, then K(θ) = −J(θ), and the common matrix
I(θ) is known as the Fisher information. Let Iψ·λ(θ) and sψ·λ(θ,X) be the
efficient information and efficient score defined in Section 9.8. Let

Jn(θ) = En[∂s(θ,X)/∂θT ]. (11.4)

Theorem 11.2 Suppose Assumption 10.3 holds and

1. 
(θ, x) is twice differentiable;
2. fθ(X) and s(θ,X)fθ(X) satisfy DUI+(θ, μ);
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3. s(θ,X) is Pθ-square integrable and K(θ) is positive definite;
4. the sequence of random matrices {Jn(θ) : n ∈ N} in (11.4) is stochastically

equicontinuous in a neighborhood of θ0;
5. θ̂ and λ̃ are consistent estimates of θ0 and λ0, respectively.

Then Tn is a QF test of the form Tn
Qn= UT

n Σ−1
U Un + oP (1), where

Un = n1/2En[sψ·λ(θ0,X)], ΣU = Iψ·λ(θ0), ΣUS = (Iψ·λ(θ0), 0).

The above theorem is intended to cover the case r = p as well. In this case,
sψ·λ and Iψ·λ are to be understood as s and I, and the theorem asserts that

Tn
Qn= UT

n Σ−1
U Un + oP (1), where

Un = n1/2En[s(θ0,X)], ΣU = I(θ0), ΣUS = I(θ0).

Proof of Theorem 11.2. First, consider the case r < p. By conditions 2 and 3,

K(θ) = −J(θ) = I(θ), (11.5)

which implies, in particular, J(θ) is invertible. Rewrite Tn as T
(1)
n − T

(2)
n ,

where

T (1)
n = 2nEn[
(θ̂, X) − 
(θ0,X)], T (2)

n = 2nEn[
(θ̃, X) − 
(θ0,X)].

By Taylor’s theorem,

T (1)
n /(2n) =En[
(θ̂, X)] − En[
(θ0,X)]

=En[sT (θ0,X)](θ̂ − θ0) +
1
2
(θ̂ − θ0)T Jn(θ†)(θ̂ − θ0),

for some θ† between θ0 and θ̂. Because θ†
Qn−→θ0, by the stochastic equiconti-

nuity assumption and Corollary 8.2,

Jn(θ†)
Qn= −I(θ0) + oP (1).

Hence

T (1)
n /(2n)

Qn= En[sT (θ0,X)](θ̂ − θ0) +
1
2
(θ̂ − θ0)T [−I(θ0) + oP (1)](θ̂ − θ0).

By Theorem 9.5 (as applied to g(θ, x) = s(θ, x)), and the assumption that the
MLE θ̂ is consistent, we have

θ̂ − θ0
Qn= I−1(θ0)En[s(θ0,X)] + oP (1). (11.6)

Hence
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T (1)
n /(2n)

Qn= [(θ̂ − θ0)T I(θ0) + oP (n−1/2)](θ̂ − θ0)

+
1
2
(θ̂ − θ0)T [−I(θ0) + oP (1)](θ̂ − θ0).

Because (11.6) also implies θ̂ − θ0
Qn= OP (n−1/2), we have

T (1)
n /(2n)

Qn=
1
2
(θ̂ − θ0)T I(θ0)(θ̂ − θ0) + oP (n−1). (11.7)

By a similar argument we can show that

T (2)
n /(2n)

Qn=
1
2
(λ̂ − λ0)T Iλλ(θ0)(λ̂ − λ0) + oP (n−1). (11.8)

Next, we establish an asymptotic linear relation between θ̂−θ0 and λ̃−λ0.
Applying Theorem 9.5 to the estimating equation En[sλ(ψ0, λ,X)] = 0 where
ψ0 is fixed and λ alone is the argument, under the assumption that λ̃ is a
consistent solution to this estimating equation (condition 5), we have

λ̃ − λ0
Qn= I−1

λλ (θ0)En[sλ(θ0,X)] + oP (1)
Qn= [0, I−1

λλ (θ0)]En[s(θ0,X)] + oP (1)
Qn= [0, I−1

λλ (θ0)]I(θ0)(θ̂ − θ0) + oP (1),

(11.9)

where, for the third equality we used again the relation (11.6). Substituting
this into the right-hand side of (11.8), we have

T (2)
n /(2n)

Qn=
1
2
(θ̂ − θ0)T I

(
0

I−1
λλ

)
Iλλ

(
0 I−1

λλ

)
I(θ̂ − θ0) + oP (1)

Qn=
1
2
(θ̂ − θ0)T

(
IψλI−1

λλ Iλψ Iψλ

Iλψ Iλλ

)
(θ̂ − θ0) + oP (1).

Hence

Tn/(2n) =T (1)
n /(2n) − T (2)

n /(2n)

Qn=
1
2
(θ̂ − θ0)T

(
Iψ·λ 0
0 0

)
(θ̂ − θ0) + oP (n−1)

Qn=
1
2
(ψ̂ − ψ0)T Iψ·λ(ψ̂ − ψ0) + oP (n−1).

(11.10)

By Theorem 9.7 we have

ψ̂ − ψ0
Qn= I−1

ψ·λ En[sψ·λ(θ0,X)] + oP (n−1/2).

Substituting the above into the right-hand side of (11.10), we have
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Tn
Qn= nEn[sT

ψ·λ(θ0,X)]I−1
ψ·λ(θ0)En[sψ·λ(θ0,X)] + oP (1)

≡UT
n Σ−1

U Un + oP (1).
(11.11)

It remains to show that (Un, Sn) converges to a multivariate normal dis-
tribution with asserted forms of ΣU and ΣUS . For convenience, we abbreviate
s(θ0,X), sλ(θ0,X), sψ(θ0,X), and sψ·λ(θ0,X) by s, sψ, sλ, and sψ·λ. By the
central limit theorem

(
n1/2En(sψ·λ)
n1/2En(s)

)
D−→

Qn

N

[(
0
0

)
,

(
E(sψ·λsT

ψ·λ) E(sψ·λsT )
E(ssT

ψ·λ) E(ssT )

)]
,

where

E(sλsT
ψ·λ) = Iλψ − IλλI−1

λλ Iλψ = 0,

E(sψsT
ψ·λ) = Iψψ − IψλI−1

λλ Iλψ = Iψ·λ.

Hence ΣSU = (Iψ·λ, 0)T . Also, by Theorem 9.8,

ΣU = E(sψ·λsT
ψ·λ) = Iψ·λ,

thus proving the case of r < p.
The case of r = p can be proved by substituting (11.6) into (11.7). �

From Theorems 11.1 and 11.2 we can easily derive the null and local al-
ternative distributions of the likelihood ratio test.

Theorem 11.3 Under the conditions in Theorem 11.2, we have, for any δ ∈
R

p,

Tn
D−→

Pn(δ)
χ2

r(δ
T
ψ Iψ·λδψ),

where δψ is the first r components of δ. In particular, when δ = 0, we have

Tn
D−→

Qn

χ2
r.

Proof. By Theorem 11.1, Tn
D−→

Pn(δ)
χ2

r(δ
T ΣSUΣ−1

U ΣUSδ). Substituting into the

noncentrality parameter the forms of ΣU and ΣUS as given in Theorem 11.2,
we have

δT ΣSUΣ−1
U ΣUSδ = δT

(
Iψ·λ
0

)
I−1
ψ·λ

(
Iψ·λ 0

)
δ = δT

ψ Iψ·λδψ,

as desired. �

It is interesting to note that the limiting distribution of Tn under Pn(δ)
only depends on δψ. In the local parametric family {Pn(δ) : δ ∈ R

p}, δψ
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plays the role of the parameter of interest ψ, and δλ plays the role of the
nuisance parameter λ. Thus, the limiting distribution of Tn only depends on
the parameter of interest in the local parametric family.

In practice, we use the null distribution in Theorem 11.1 to determine the
critical value of the rejection region, and use the local alternative distribution
to determine the power at an arbitrary θ0 + n−1/2δ. Since λ0 is not specified
in the null hypothesis, we can replace it by λ̃. The estimated power is

√
n-

consistent estimate of the true power at θ0 + n−1/2δ.

11.3 Wald’s, Rao’s, and Neyman’s tests

In this section we introduce three more commonly used tests which turn out
to be QF-tests having the same form of UT

n Σ−1
U Un as the likelihood ratio test.

11.3.1 Wald’s test

Wald (1943) introduced the following statistic

Wn = n(θ̂ − θ0)T I(θ0)(θ̂ − θ0)

for testing the hypothesis H0 : θ = θ0 asymptotically. He showed that this
statistic converges in distribution to χ2

p. For the more general hypothesis
(11.1), Wald’s test takes the following form.

Definition 11.2 The Wald test for hypothesis (11.1) takes the form

Wn = n(ψ̂ − ψ0)T Iψ·λ(θ̄)(ψ̂ − ψ0),

where θ̄ is any consistent estimate of θ0.

The often-used θ̄ is the global MLE θ̂, or the constrained MLE (ψ0, λ̃).
Since Wald’s test itself is already in a quadratic form, it is no surprise that it
is a QF test, as shown in the next Theorem.

Theorem 11.4 If the conditions in Theorem 9.7 hold and I(θ) is a contin-
uous function of θ, then Wn in Definition 11.2 is a QF test with the same
quadratic form as Tn.

Proof. By Theorem 9.7,
√

n(ψ̂ − ψ0)
Qn=

√
nI−1

ψ·λEn[sψ·λ(θ0,X)] + oP (1).

Since I(θ) is continuous, I(θ̄)
Qn= I(θ0) + oP (1). Hence Wn is of the form

(11.11). �

As a consequence, the asymptotic null and local alternative distributions
of Wn are the same as those of Tn, as given in Theorem 11.2.
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11.3.2 Rao’s test

Rao’s test, also known as the score test, was introduced by Rao (1948). In the
case where ψ = θ, Rao’s statistic is of the form

Rn = nEn[sT (θ0,X)]I−1(θ0)En[s(θ0,X)].

This, by definition, is in the form of a QF test with Un = n1/2En[s(θ0,X)],
ΣU = I(θ0), and ΣUS = I(θ0). The general form of Rao’s test is given by the
following definition (Rao, 2001).

Definition 11.3 Suppose θ̃ = (ψT
0 , λ̃T )T is the constrained MLE under the

null hypothesis H0 : ψ = ψ0. Then Rao’s statistic is

Rn = nEn[sT (θ̃, X)]I−1(θ̃)En[s(θ̃, X)].

An interesting feature of Rao’s statistic is that it only involves the con-
strained maximum likelihood estimate (ψ0, λ̃) under the null hypothesis; the
global MLE appears nowhere in this statistic. In particular, in the case where
ψ = θ, no estimate is needed to perform this test. This gives a numerical
advantage to Rao’s test, because we only need to perform the maximization
over an s-dimensional space. That Rao’s test is a QF test will be proved in
the next subsection along with the Neyman’s C(α) test.

11.3.3 Neyman’s C(α) test

This test was introduced by Neyman (1959). One way to motivate Neyman’s
C(α) test is through its relation with Rao’s test, as explained in Kocherlakota
and Kocherlakota (1991). Since λ̃ is a solution to En[sλ(ψ0, λ,X)] = 0, we
have

En[s(θ̃, X)] =
(

En[sψ(θ̃, X)]
0

)
.

Hence Rao’s test can be equivalently written as

Rn =n(EnsT
ψ(θ̃, X), 0)I−1(θ̃)(EnsT

ψ(θ̃, X), 0)T

=nEn[sT
ψ(θ̃, X)][I−1(θ̃)]ψψEn[sψ(θ̃, X)]

=nEn[sT
ψ·λ(ψ0, λ̃,X)]I−1

ψ·λ(ψ0, λ̃)En[sψ·λ(ψ0, λ̃,X)],

(11.12)

where, for the third equality, we used En[sψ(θ̃, X)] = En[sψ·λ(θ̃, X)], which
holds because En[sλ(θ̃, X)] = 0, and [I−1(θ̃)]ψψ = I−1

ψ·λ(θ̃), which follows from
the formula of the inverse of block matrix given in Proposition 9.3. The right-
hand side of (11.12) is precisely the form of Neyman’s C(α) test introduced
by Neyman (1959) except that the latter does not require λ̃ to be the MLE
under the null hypothesis H0 : ψ = ψ0. Instead, Neyman’s C(α) test allows λ̃
to be any

√
n-consistent estimate of λ0.
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Definition 11.4 Let λ̃ be any
√

n consistent estimate of λ0, Neyman’s C(α)
test is the statistic

Nn = nEn[sT
ψ·λ(ψ0, λ̃,X)]I−1

ψ·λ(ψ0, λ̃)En[sψ·λ(ψ0, λ̃,X)].

Rao’s test is a special case of Neyman’s C(α) test when λ̃ is the constrained
MLE under the null hypothesis. We next prove that Nn — and hence also Rn

— is a QF test.

Theorem 11.5 Suppose Assumption 10.3 holds and

1. 
(θ, x) is twice differentiable;
2. fθ(X) and s(θ,X)fθ(X) satisfy DUI+(θ, μ);
3. s(θ,X) is Pθ-square integrable and K(θ) is positive definite and continu-

ous;
4. the sequence of random matrices

{En[∂sψ·λ(ψ0, λ,X)/∂λT ] : n ∈ N} (11.13)

is stochastically equicontinuous in a neighborhood of λ0;
5. λ̃ is a

√
n-consistent estimate of λ0.

Then Nn is a QF test with the same quadratic form as Tn.

The assumptions in this theorem are essentially the same as those in The-
orem 11.2 except conditions 4 and 5: we only require these conditions for the
λ-component. Nevertheless, we do need the derivatives of 
 with respect to θ
(not just with respect to λ) because both the efficient score and the efficient
information involve derivatives with respect to θ.

Proof of Theorem 11.5. By Taylor’s theorem,

En[sψ·λ(ψ0, λ̃,X)]

= En[sψ·λ(θ0,X)] + En

[
∂sψ·λ(ψ0, λ

†,X)
∂λT

]
(λ̃ − λ0),

(11.14)

for some λ† between λ0 and λ̃. By the equicontinuity condition 4, and Corol-
lary 8.2,

En

[
∂sψ·λ(ψ0, λ

†,X)
∂λT

]
Qn= E

[
∂sψ·λ(θ0,X)

∂λT

]
+ oP (1).

However, by Theorem 9.8, the expectation on the right-hand side is 0, leading
to

En

[
∂sψ·λ(ψ0, λ

†,X)
∂λT

]
Qn= oP (1).

This, together with (11.14) and condition 5, implies
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Ensψ·λ(ψ0, λ̃,X)
Qn= Ensψ·λ(θ0,X) + oP (1)OP (n−1/2)
Qn= Ensψ·λ(θ0,X) + oP (n−1/2).

(11.15)

Meanwhile, by the continuity and nonsingularity of I(θ), we have

I−1
ψ·λ(θ̃)

Qn= I−1
ψ·λ(θ0) + oP (1). (11.16)

Now substitute (11.15) and (11.16) into the right-hand side of (11.12) to com-
plete the proof. �

11.4 Asymptotically efficient test

The local asymptotic distribution we have developed for the QF tests allows
us to compare the local asymptotic power among these tests. Since, as we will
show below, the local asymptotic power of a QF test is an increasing function
of the noncentrality parameter of its asymptotic noncentral χ2 distribution,
a QF test with the greatest noncentrality parameter achieves maximum local
asymptotic power. We first define the class of regular QF tests, which is the
platform for developing the asymptotically efficient QF tests.

Definition 11.5 A test Tn for H0 : ψ = ψ0 is regular if Tn
D−→

Pn(δ)
F (δ), where

F (δ) depends on, and only on, δψ in the sense that

1. if δψ �= 0, then F (δ) �= F (0);
2. if δ

(1)
ψ = δ

(2)
ψ , then F (δ(1)) = F (δ(2)).

In the case where ψ = θ, the above definition requires that the limiting
distribution F (δ) genuinely depends on δ; that is, F (δ) �= F (0) whenever
δ �= 0. This seems to contradict with the definition of a regular estimate,
which requires that the limiting distribution of

√
n(ψ̂ − ψ0 − n−1/2δψ) under

Pn(δ) to be the same for all δ. This apparent inconsistency of terminologies
comes from the fact that Tn is usually of the form

Tn
Qn= n(ψ̂ − ψ0)T Iψ·λ(θ0)(ψ̂ − ψ0) + oP (1),

where ψ̂ is a regular estimate of ψ0, and asymptotic distribution of
√

n(ψ̂−ψ0)
under Pn(δ), unlike that of

√
n(ψ̂−ψ0−n−1/2δψ) under Pn(δ), should indeed

depend on δψ. The next theorem gives a sufficient and necessary condition
for a QF test to be regular. In the following, we use S to denote the limit
of Sn; that is, Sn

D−→
Qn

S, where S ∼ N(0, I), I being the Fisher information.

This is guaranteed by the ALAN assumption. We use Sψ to denote the first
r components of S, and Sλ the last s components of S.
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Theorem 11.6 A QF test Tn for the hypothesis H0 : ψ = ψ0 is regular if
and only if ΣUSψ

is non-singular and ΣUSλ
= 0.

Proof. By Theorem 11.1, Tn
D−→

Pn(δ)
F (δ), where F (δ) = χ2

r(δ
T ΣSUΣ−1

U ΣUSδ).

The noncentrality parameter can be rewritten as

δT
ψΣSψUΣ−1

U ΣUSψ
δψ + 2δT

ψΣSψUΣ−1
U ΣUSλ

δλ + δT
λ ΣSλUΣ−1

U ΣUSλ
δλ.

If ΣUSψ
is nonsingular and ΣUSλ

= 0, then the above reduces to

δT
ψΣSψUΣ−1

U ΣUSψ
δψ,

where ΣSψUΣ−1
U ΣUSψ

is positive definite. Hence F (δ) satisfies conditions 1
and 2 in Definition 11.5. Conversely, if F (δ) satisfies conditions 1 and 2 in
Definition 11.5, then, by condition 1, F ((0, δψ)) �= F (0) for any δψ ∈ R

r,
implying

δT
ψΣSψUΣ−1

U ΣUSψ
δψ > 0.

Thus ΣUSψ
is nonsingular. By condition 2 of Definition 11.5, F (0) = F (0, δλ)

for any δλ ∈ R
s. Hence

δT
λ ΣSλUΣ−1

U ΣUSλ
δλ = 0

for all δλ ∈ R
s, implying ΣUSλ

= 0. �

Note that the quadratic form UT
n Σ−1

U Un is not unique. In fact, it is in-
variant under any invertible linear transformation; that is, if we transform
Un to Vn = AUn for some nonsingular A ∈ R

r×r, then Vn
D−→

Qn

AU , with

ΣV = AΣUAT . Hence

V T
n Σ−1

V Vn = UT
n AT A−T Σ−1

U A−1AUn = UT
n Σ−1

U Un.

Thus, there are infinitely many representations of a QF test. As the next theo-
rem shows, a special choice of Un shares the same asymptotically independent
decomposition as a regular estimate (see the convolution theorem, Theorem
10.3). Let Sn,ψ and Sn,λ be the first r and last s components of Sn, respec-
tively, and let Sn,ψ·λ be the standardized efficient score Sn,ψ − IψλI−1

λλ Sn,λ.

Theorem 11.7 A QF test Tn for H0 : ψ = ψ0 is regular if and only if it can
be written as

Tn
Qn= UT

n Σ−1
U Un + oP (1),

where Un = I−1
ψ·λSn,ψ·λ + Rn, with (Rn, Sn, Ln) satisfying ALAN and R S.

Here (R,S) is the limit of (Rn, Sn); that is, (Rn, Sn) D−→
Qn

(R,S).
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Proof. Because Tn is a regular QF test, it can be written as Tn
Qn= V T

n Σ−1
V Vn+

oP (1) for some Vn ∈ R
r such that (Vn, Sn, Ln) satisfies ALAN with ΣV Sψ

be-
ing a nonsingular matrix and ΣV Sλ

= 0. Let Un = Σ−1
V Sψ

Vn. Then (Un, Sn, Ln)
satisfies ALAN with ΣUS = (Ir, 0), and

Tn
Qn= UT

n Σ−1
U Un + op(1).

The limiting random vector U of Un can be written as I−1
ψ·λSψ·λ + R where

R = U − I−1
ψ·λSψ·λ and Sψ·λ = Sψ − IψλI−1

λλ Sλ. To show that S and R are
independent, note that

cov(R,S) = cov(U, S) − cov(I−1
ψ·λSψ·λ, S)

=ΣUS − I−1
ψ·λcov(Sψ·λ, S).

By construction, ΣUS = (Ir, 0). Also,

cov(Sψ·λ, S) = (cov(Sψ·λ, Sψ), cov(Sψ·λ, Sλ)) = (Iψ·λ, 0).

Hence cov(R,S) = 0. Because R and S are jointly Normal, we have R S.
The reverse implication is obvious. �

Since U = I−1
ψ·λSψ·λ + R with R S, the variance of U is always greater

than or equal to I−1
ψ·λ in terms of Louwner’s ordering. Since the noncentrality

parameter for the distribution of UT Σ−1
U U is

δT

(
Ir

0

)
Σ−1

U

(
Ir 0

)
δ = δT

ψΣ−1
U δψ,

δT
ψ Iψ·λδψ is the upper bound of the noncentrality parameter of any regular

QF test. We summarize this optimal result in the next corollary.

Corollary 11.1 Suppose Tn is a regular QF test. Then the following state-
ments hold:

1. Tn
D−→

Pn(δ)
χ2

r(δ
T
ψΣ−1

U δψ), where Σ−1
U 
 Iψ·λ;

2. in the above statement, ΣU = I−1
ψ·λ if and only if Tn can be represented as

Tn
Qn= UT

n Σ−1
U Un + oP (1), where Un

Qn= I−1
ψ·λSn,ψ·λ + oP (1).

Proof. 1. By Theorem 11.7, Tn can be written as

Tn
Qn= UT

n Σ−1
U Un + oP (1),

where Un = I−1
ψ·λSn,ψ·λ+Rn with (Rn, Sn, Ln) satisfying ALAN and ΣRS = 0.

Hence ΣU = I−1
ψ·λ + ΣR, implying Σ−1

U 
 Iψ·λ.
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2. Σ−1
U = Iψ·λ if and only if ΣU = I−1

ψ·λ which, by part 1, holds if and only if

ΣR = 0, which in turn holds if and only if Rn
Qn= oP (1). �

We now define the the asymptotically efficient QF test. A natural definition
would be in terms of the local asymptotic power, which is indeed the approach
we adopt. Let Q denote the collection of all sequences of QF tests. So a member
of Q is {Tn : n ∈ N} where Tn is a QF test.

Definition 11.6 An asymptotically efficient QF test is a member {T ∗
n : n ∈

N} of Q such that for any member {Tn : n ∈ N} of Q, δ ∈ R
p, and any c > 0,

P (T ∗(δ) ≥ c) ≥ P (T (δ) ≥ c),

where T ∗(δ) is the limit of T ∗
n under Pn(δ) and T (δ) is the limit of Tn under

Pn(δ); that is,
Tn

D−→
Pn(δ)

T (δ) and T ∗
n

D−→
Pn(δ)

T ∗(δ).

This definition is an asymptotic analogue of the UMPU test described
in Chapters 3 and 4. Mathew and Nordstrom (1997) showed that a noncen-
tral chi-squared distribution with a larger noncentrality parameter is always
stochastically larger than a noncentral chi-squared distribution with the same
degrees of freedom and a smaller noncentrality parameter. A rigorous state-
ment of this is given below without proof.

Proposition 11.1 If K1 ∼ χ2
r(d1) and K2 ∼ χ2

r(d2) and d2 ≥ d1, then, for
any c > 0,

P (K2 ≥ c) ≥ P (K1 ≥ c)

Using this proposition we immediately arrive at the following equivalent
definition of an asymptotically efficient QF test.

Definition 11.7 An asymptotically efficient QF test is a member {T ∗
n : n ∈

N} of Q such that T ∗
n

D−→
Pn(δ)

χ2
r(δ

T
ψ Iψ·λδψ) for any δ ∈ R

p.

Since all the four test statistics Tn, Wn, Rn, and Nn developed in the
previous sections are QF tests with the same quadratic form

ST
n,ψ·λI−1

ψ·λSn,ψ·λ + oP (1)

under Qn, where Sn,ψ·λ = n1/2En[sψ·λ(θ0,X)], their noncentrality parame-
ters all reach the upper bound δT

ψ Iψ·λδψ. Hence they are all asymptotically
efficient.

In the rest of this section we develop a relation between a regular estimate
that satisfies ALAN and a regular QF test.
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Proposition 11.2 Suppose that ψ̂ is a regular estimate of ψ0 and (Un, Sn, Ln)
satisfies ALAN with Un =

√
n(ψ̂ − ψ0). Then Tn of the form

Tn
Qn= UT

n Σ−1
U Un + oP (1) (11.17)

is a regular QF test. Furthermore, Tn is asymptotically efficient if and only if
ψ̂ is asymptotically efficient.

Proof. Because ψ̂ is regular and (Un, Sn, Ln) satisfies ALAN, we have, by
Proposition 10.4, ΣUS = ḣT = (Ir, 0), where h(θ) = ψ = (Ir, 0)θ. Hence by
Theorem 11.6, Tn is regular.

By Corollary 11.1, Tn
D−→

Pn(δ)
χ2

r(δ
T
ψΣ−1

U δψ). Therefore, Tn is asymptotically

efficient QF test if and only if Σ−1
U = Iψ·λ, which holds, in turn, if and only

if ψ̂ is asymptotically efficient estimate. �

The converse statement of Proposition 11.2 is not true: Problem 11.13
shows that it is possible to construct a regular QF test based on an estimate
that is not regular.

11.5 Pitman efficiency

This section is concerned with a numerical measurement of asymptotic rela-
tive efficiency between two test statistics introduced by Pitman (1948) in an
unpublished lecture notes. See, for example, Neother (1950), Neother (1955),
and van Eeden (1963). The general definition given here is from Hall and
Mathiason (1990). Recall that each member of Q converges in distribution
to a noncentral χ2 distribution under Pn(δ), which characterizes the local
asymptotic power in the direction of δ: the larger the noncentrality parameter
the greater the asymptotic power in the direction of δ. The relative Pitman
efficiency of one member of Q with respect to another is defined as the ratio of
the respective noncentrality parameters. Let {Tn} and {T ∗

n} be two members
of Q with

Tn
Qn= UT

n Σ−1
U Un + oP (1), T ∗

n
Qn= U∗

n
T Σ−1

U∗U∗
n + oP (1),

where (Un, Sn) D−→
Qn

(U, S), (U∗
n, Sn) D−→

Qn

(U∗, S). Let

ΣUS = cov(U, S), ΣU∗S = cov(U∗, S).

Definition 11.8 The relative Pitman efficiency of {Tn} with respect to {T ∗
n}

in the direction of δ is
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ET,T∗(δ) =
δT ΣSUΣ−1

U ΣUSδ

δT ΣSU∗Σ−1
U∗ΣU∗Sδ

.

The Pitman efficiency of {Tn} in the direction of δ is its relative Pitman
efficiency with respect to any Asymptotically Efficient QF test; that is

ET (δ) =
δT ΣSUΣ−1

U ΣUSδ

δT
ψ Iψ·λδψ

.

Note that if Tn
Qn= UT

n Σ−1
U Un+oP (1) is a regular QF test for the parameter

of interest ψ, then ΣUS = (ΣUSψ
, 0). Thus ΣUSδ = ΣUSψ

δψ, and the Pitman
efficiency for any regular QF test is of the form

ET (δ) =
δT
ψΣSψUΣ−1

U ΣUSψ
δψ

δT
ψ Iψ·λδψ

.

Pitman efficiency can be equivalently defined using the correlation matrix
between two random vectors. If U and V are random vectors with finite and
positive definite variance matrices ΣU = var(U) and ΣV = var(V ), then their
correlation matrix is defined to be

RUV = Σ
−1/2
U ΣUV Σ

−1/2
V ,

where ΣUV = cov(U, V ). Let

ρ2(U, V ) = tr(RUV RV U ) = tr(RV URUV ).

Then, the Pitman efficiency of {Tn} can be rewritten as

ET (δ) = ρ2(δT
ψSψ, U).

11.6 Hypothesis specified by an arbitrary constraint

We now turn to the general hypothesis testing problem where the null hy-
pothesis is specified by one or a set of equations. Suppose that h : Θ �→ R

r is
a mapping from Θ ⊆ R

p to R
r, where r ≤ p. We are interested in testing

H0 : h(θ) = 0.

The test with an explicit parameter of interest, H0 : ψ = ψ0, can be regarded
as a special case of the above test with h(θ) = ψ − ψ0. All the tests we
developed in the previous sections can be generalized to this setting. The
likelihood ratio test and the score test take almost exactly the same form
as before, with θ̃ being the MLE under the constraint h(θ) = 0. However,
because there is no explicit parameter of interest in this case, the forms of
Wald’s test and Neyman’s C(α) test have to be modified.
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11.6.1 Asymptotic analysis of constrained MLE

Let θ̃ be the maximizer of the likelihood En[
(θ,X)] under the constraint
h(θ) = 0. In this subsection we derive the asymptotic linear form of θ̃ under
standard regularity conditions. Let F (θ) be the Lagrangian

F (θ) = En[
(θ,X)] − hT (θ)ρ,

where ρ ∈ R
r is the Lagrangian multiplier. It is well known in Calculus that,

if 
 and h are continuously differentiable with respect to θ, then, for some
ρ̃ ∈ R

r, (θ̃, ρ̃) satisfies the system of equations
{

En[s(θ,X)] − H(θ)ρ = 0
h(θ) = 0.

(11.18)

where H(θ) is the p × r matrix ∂hT (θ)/∂θ.
In the following development, we will frequently encounter sequences of

random matrices, say An, which converges in probability to an invertible
matrix A, but which themselves may not be invertible. The next lemma shows
that, in this case, the Moore-Penrose inverse of An converges in probability
to the inverse of A.

We need to use two facts from linear algebra. First, if a matrix A ∈ R
p×p

is invertible, then there is an open ball

B(A, ε) = {M ∈ R
p×p : ‖M − A‖ < ε}

such that every M ∈ B(A, ε) is invertible, where the norm is the Frobenius
norm. This is because M is invertible if and only if det(M) is nonzero, and
det(M), being a linear combination of products of entries of M , is continuous
in M in the Frobenius norm. This implies there is an open all B(A, ε) in which
every M has det(M) �= 0.

Second, on any open set G of R
p×p of invertible matrices, the function

M �→ M−1 is continuous. This is because

M−1 = [det(M)]−1adj(M),

where adj(A) is the adjugate of A (see, for example, Horn and Johnson, 1985,
page 22). Since both [det(M)]−1 and adj(M) are continuous in M on G, M−1

is continuous in M on G.

Lemma 11.1 If An
P→ A and A is invertible, then

1. P (A+
n = A−1

n ) → 1;
2. A+

n
P→ A−1.

Proof. 1. As discussed above, since A is invertible, there is an open ball
B(A, ε) such that all M ∈ B(A, ε) are invertible. Because An

P→ A, P (An ∈
B(A, ε)) → 1. The assertion holds because An ∈ B(A, ε) implies A+

n = A−1
n .
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2. Let g : R
p×p → R

p×p be the function g(M) = M+. Since every M
in B(A, ε) is invertible, g(M) = M+ = M−1 on B(A, ε). By the discussion
preceding this Lemma, g(M) is continuous on B(A, ε). By the Continuous
Mapping Theorem,

A+
n = g(An) P→ g(A) = A+ = A−1,

where the last equality holds because A is invertible. �

The next theorem gives an asymptotic linear form of the Lagrangian mul-
tiplier ρ̃ and the constrained MLE θ̃ under h(θ) = 0. In the following, we
abbreviate the gradient matrix H(θ0) by H and the Fisher information I(θ0)
by I. As before, the symbol I should be differentiated from Ik, the k × k
identity matrix.

Theorem 11.8 Suppose Assumption 10.3 holds and

1. 
(θ, x) is twice differentiable;
2. fθ(X) and s(θ,X)fθ(X) satisfy DUI+(θ, μ);
3. s(θ,X) is Pθ-square integrable, and I(θ) is invertible;
4. h(θ) is continuously differentiable, and HT (θ)I−1(θ)H(θ) is invertible;
5. the sequence of random matrices {Jn(θ) : n ∈ N} in (11.4) is stochastically

equicontinuous in a neighborhood of θ0.

If θ̃ is a consistent solution to En[s(θ,X)] = 0 under the constraint h(θ) = 0,
then

ρ̃ = (HT I−1H)−1HT I−1En[s(θ0,X)] + oP (n−1/2),

θ̃ = θ0 + I−1QH(I−1)En[s(θ0,X)] + oP (n−1/2),
(11.19)

where QH(I−1) = Ip − PH(I−1), and

PH(I−1) = H(HT I−1H)−1HT I−1.

Recall from Example 7.8 that the matrix PH(I−1) is simply the projection on
to the subspace span(H) of Rp with respect to the inner product 〈x, y〉I−1 =
xT I−1y. Hence QH(I−1) is the projection on to span(H)⊥ with respect to the
inner product 〈·, ·〉I−1 .

Before proving the theorem, we note the following fact: if an is a sequence
of constants that goes to 0 as n → ∞, and Un, Vn, Wn are random vectors,
then

P (Un = Vn) → 1, Vn = Wn + oP (an) ⇒ Un = Wn + oP (an). (11.20)

The proof of this is left as an exercise.

Proof of Theorem 11.8. To prove the first relation in (11.19), note that, by
(11.18),
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H(θ̃)ρ̃ = En[s(θ̃, X)].

By the above equality and Taylor’s theorem,

H(θ̃)ρ̃ = En[s(θ0,X)] + Jn(θ†)(θ̃ − θ0)

h(θ̃) = h(θ0) + HT (θ‡)(θ̃ − θ0)
(11.21)

for some θ† and θ‡ between θ0 and θ̃. Because h(θ̃) = 0 by definition and
h(θ0) = 0 under the null hypothesis H0, the second equation in (11.21) reduces
to HT (θ‡)(θ̃ − θ0) = 0 under H0. Multiplying the first equation in (11.21) by
HT (θ‡)J+

n (θ†) from the left, we have

HT (θ‡)J+
n (θ†)H(θ̃)ρ̃ = HT (θ‡)J+

n (θ†)En[s(θ0,X)] + Rn, (11.22)

where Rn = HT (θ‡)J+
n (θ†)Jn(θ†)(θ̃ − θ0).

Because {Jn(θ) : n ∈ N} is stocahstically equicontinuous in a neighbor-
hood of θ0 and θ† P→ θ0, we have, by Corollary 8.2, Jn(θ†) P→ −I, where I is
invertible. Hence, by Lemma 11.1, part 1

P (J+
n (θ†)Jn(θ†) = Ip) → 1,

which, in view of HT (θ‡)(θ̃ − θ0) = 0, implies P (Rn = 0) → 1. Since Rn = 0
implies

HT (θ‡)J+
n (θ†)H(θ̃)ρ̃ = HT (θ‡)J+

n (θ†)En[s(θ0,X)],

we have

P
(
[HT (θ‡)J+

n (θ†)H(θ̃)]+HT (θ‡)J+
n (θ†)H(θ̃)ρ̃

= [HT (θ‡)J+
n (θ†)H(θ̃)]+HT (θ‡)J+

n (θ†)En[s(θ0,X)]
)
→ 1.

(11.23)

Because Jn(θ†) P→ −I and I is invertible, by Lemma 11.1, part 2, we have

J+
n (θ†) P→ −I−1. (11.24)

Because H(θ) is continuous, we have

H(θ̃) P→ H and H(θ‡) P→ H. (11.25)

Consequently,

HT (θ‡)J+
n (θ†)H(θ̃) P→ −HT I−1H. (11.26)

Because HT I−1H is invertible, by part 1 of Lemma 11.1, we have

P
(
[HT (θ‡)J+

n (θ†)H(θ̃)]+ = [HT (θ‡)J+
n (θ†)H(θ̃)]−1

)
→ 1. (11.27)
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By (11.23) and (11.27),

P
(
ρ̃ = [HT (θ‡)J+

n (θ†)H(θ̃)]+HT (θ‡)J+
n (θ†)En[s(θ0,X)]

)
→ 1. (11.28)

Now by (11.26) and part 2 of Lemma 11.1,

[HT (θ‡)J+
n (θ†)H(θ̃)]+ P→ −(HT I−1H)−1. (11.29)

Hence by (11.24), (11.25), (11.29), and

En[s(θ0,X)] = OP (n−1/2), (11.30)

we have

[HT (θ‡)J+
n (θ†)H(θ̃)]+HT (θ‡)J+

n (θ†)En[s(θ0,X)]

= (HT I−1H)−1HT I−1En[s(θ0,X)] + oP (n−1/2).

By (11.20), the above relation and (11.28) imply

ρ̃ = (HT I−1H)−1HT I−1En[s(θ0,X)] + oP (n−1/2). (11.31)

proving the first expression in (11.19).
Next, substitute (11.31) into the first equation in (11.21) to obtain

Jn(θ†)(θ̃ − θ0)

= −En[s(θ0,X)] + H(θ̃){(HT I−1H)−1HT I−1En[s(θ0,X)] + oP (n−1/2)}
= −En[s(θ0,X)] + H(HT I−1H)−1HT I−1En[s(θ0,X)] + oP (n−1/2)

= −En[s(θ0,X)] + PH(I−1)En[s(θ0,X)] + oP (n−1/2),

where the second equality follows from (11.25) and (11.30), and the third from
the definition of PH(I−1). Hence

J+
n (θ†)Jn(θ†)(θ̃ − θ0) = − J+

n (θ†)En[s(θ0,X)]

+ J+
n (θ†)PH(I−1)En[s(θ0,X)]

+ J+
n (θ†)oP (n−1/2),

(11.32)

Because J+
n (θ†) = OP (1), the last term on the right-hand side of (11.32) is

oP (n−1/2). By (11.24) and (11.30), the first and second terms on the right-hand
side of (11.32) are I−1En[s(θ0,X)]+oP (n−1/2)and−I−1PH(I−1)En[s(θ0,X)]+
oP (n−1/2), respectively. Because P (J+

n (θ†)Jn(θ†) = Ip) → 1, the left-hand
side of (11.32) is θ̃−θ0 with probability tending to 1. Consequently, by (11.20),

θ̃ − θ0 = I−1En[s(θ0,X)] − I−1PH(I−1)En[s(θ0,X)] + oP (n−1/2),

proving the second expression in (11.19). �
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It is informative to investigate the forms of the various quantities in (11.19)
in the special case where h(θ) = ψ. In this case, HT = (Ir, 0) and, as shown
in Problem 11.19,

I−1QH(I−1) =
(

0 0
0 I−1

λλ

)
, I−1QH(I−1)En[s(θ,X)] =

(
0

En[sλ(θ,X)]

)
.

So the second equation in (11.19) reduces to

λ̃ = λ0 + I−1
λλ En[sλ(θ0,X)] + oP (n−1/2),

which is implied by Theorem 9.5 when g(θ,X) therein is taken to be the
estimating equation (λ, x) �→ sλ(ψ0, λ, x). The Lagrangian multiplier ρ̃ also
has an interesting interpretation in the special case of h(θ) = ψ: since θ̃ =
(0T , λ̃T )T and h(θ) = ψ, we have

En[s(θ̃, X)] =
(

En[s(ψ0, λ̃,X)]
0

)
, H(θ̃) =

(
Ir

0

)
.

Hence, ρ̃ is simply the plugged-in score En[sψ(ψ0, λ̃,X)]. Finally, the quan-
tities on the right-hand side of the first equation in (11.19) generalizes the
efficient score and efficient information when h(θ) = ψ. As shown in Problem
11.19,

(HT I−1H)−1 = Iψψ − IψλI−1
λλ Iψλ = Iψ·λ. (11.33)

Thus (HT I−1H)−1 is the generalization of the efficient information. Also, as
shown in Problem 11.19,

(HT I−1H)−1HT I−1s(θ,X) = sψ·λ(θ,X). (11.34)

Thus, (HT I−1H)−1HT I−1s(θ,X) is the generalization of the efficient score.
This motivates the following definition.

Definition 11.9 The efficient information and efficient score for the hypoth-
esis H0 : h(θ) = 0 is

I(H)(θ) = [HT (θ)I−1(θ)H(θ)]−1

s(H)(θ,X) = I(H)(θ)HT (θ)I−1(θ)s(θ,X).

In terms of the efficient score, the first equation in (11.19) can be reex-
pressed as

ρ̃ =En[s(H)(θ0,X)] + oP (n−1/2). (11.35)

Thus, the Lagrangian multiplier is asymptotically equivalent to the efficient
score. This point will be useful later.
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11.6.2 Likelihood ratio test for general hypotheses

In this subsection we derive the asymptotic distribution of Wilks likelihood
test statistic for testing the hypothesis H0 : h(θ) = 0, which is defined as

Tn = 2n[En
(θ̂, X) − En
(θ̃, X)], (11.36)

where θ̂ is the global MLE and θ̃ is the MLE under the constraint h(θ) = 0.

Theorem 11.9 If the assumptions in Theorem 11.8 are satisfied and θ̂ is
a consistent solution to the likelihood equation En[s(θ,X)] = 0, then Tn in
(11.36) is a QF test of the form

Tn
Qn= UT

n Σ−1
U Un + oP (1), (11.37)

where

Un = n1/2En[s(H)(θ0,X)], ΣU = I(H), ΣUS = I(H)H
T . (11.38)

Proof. From the proof of Theorem 11.2, we have

2[En
(θ̂, X) − En
(θ0,X)] = (θ̂ − θ0)T I(θ̂ − θ0) + oP (n−1)

= (Ens)T
I−1 (Ens) + oP (n−1),

where s is the abbreviation of s(θ0,X). Also, similar to the argument used in
that proof, by Taylor’s theorem we can show that

2[En
(θ̃, X) − En
(θ0,X)]

= 2 (Ens)T (θ̃ − θ0) − (θ̃ − θ0)T I(θ̃ − θ0) + oP (n−1).

Substituting the second equation in (11.19) into the right hand side, we have

2[En
(θ̃, X) − En
(θ0,X)]

= 2 (Ens)T
I−1QH(I−1) (Ens) − (Ens)T

I−1[QH(I−1)]2 (Ens) + oP (n−1)

= (Ens)T
I−1QH(I−1) (Ens) + oP (n−1),

where, for the second equality, we have used the fact that, as a projection,
QH(I−1) is idempotent. Therefore

2[En
(θ̂, X) − En
(θ̃0,X)]

= (Ens)T
I−1PH(I−1) (Ens) + oP (n−1)

= (Ens)T
I−1H(HT I−1H)−1HT I−1 (Ens) + oP (n−1)

=
(
Ens(H)

)T
I−1
(H)

(
Ens(H)

)
+ oP (n−1).
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Hence Tn
Qn= UT

n Σ−1
U Un +oP (1) with Un = n1/2En(s(H)) and ΣU = I(H). By

the central limit theorem,

(
n1/2En(s(H))

n1/2En(s)

)
D−→

Qn

N

[(
0
0

)
,

(
E(s(H)s

T
(H)) E(s(H)s

T )
E(ssT

(H)) E(ssT )

)]

,

It is easy to verify that E(s(H)s
T ) = I(H)H

T . Hence ΣSU = I(H)H
T . �

This theorem implies that, for any δ ∈ R
p,

Tn
D−→

Pn(δ)
χ2

r(δ
T HI(H)Hδ).

When h(θ) = ψ, the noncentrality parameter reduces to δT
ψ Iψ·λδψ; when δ = 0,

Pn(δ) reduces to Qn and the noncentral chi-squared distribution reduces to
the central chi-squared distribution.

11.6.3 Wald’s test and Rao’s test for general hypotheses

Wald’s and Rao’s tests for the general hypothesis H0 : h(θ) = 0 are defined
as follows:

Wn =nhT (θ̂)I(H)(θ̂)h(θ̂) (11.39)

Rn =nEn[sT (θ̃, X)]I−1(θ̃)En[s(θ̃, X)]. (11.40)

In (11.39), h(θ̂) is a generalization of ψ̂ − ψ0, and I(H) is a generalization of
Iψ·λ. In (11.40), Rn takes the same form as Definition 11.3 except that here
θ̃ is the constrained maximizer of En
(θ,X) subject to h(θ) = 0 rather than
(ψT

0 , λ̃T )T . Since, by (11.18), H(θ̃)ρ̃ = En[s(θ̃, X)], Rn can be equivalently
written as

Rn = ρ̃T HT (θ̃)I−1(θ̃)H(θ̃)ρ̃. (11.41)

For this reason, Rao’s score test is also known as the Lagrangian multiplier
test in the econometrics literature (see Engle, 1984; Bera and Bilias, 2001).
The next lemma gives the asymptotic linear form of h(θ̂).

Lemma 11.2 Suppose Assumption 10.3 and the assumptions 1∼5 in Theo-
rem 11.9 are satisfied. If θ̂ is a consistent solution to the likelihood equation
En[s(θ,X)] = 0, then

h(θ̂) = h(θ0) + I−1
(H)En[s(H)(θ0,X)] + oP (n−1/2).

Proof. By Taylor’s theorem,

h(θ̂) = h(θ0) + HT (θ†)(θ̂ − θ0)
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for some θ† between θ0 and θ̂. By Theorem 9.5, as applied to g(θ, x) = s(θ, x),
we have θ̂ − θ0 = I−1En[s(θ0,X)] + oP (n−1/2). Because H(θ) is continuous
we have H(θ†) = H + oP (1). Hence

h(θ̂) = h(θ0) + [H + oP (1)]T {I−1En[s(θ0,X)] + oP (n−1/2)}
= h(θ0) + HT I−1En[s(θ0,X)] + oP (n−1/2)

= h(θ0) + I−1
(H)En[s(H)(θ0,X)] + oP (n−1/2),

where, for the second equality, we have used En[s(θ0,X)] = OP (n−1/2). �

We now show that Wn and Rn in (11.39) and (11.40) are QF tests with
the same quadratic form UT

n Σ−1
U Un as in Tn in (11.36).

Theorem 11.10 Suppose Assumption 10.3 and the assumptions 1∼5 in The-
orem 11.9 are satisfied. Suppose, in addition, I(θ) is continuous.

1. If θ̂ is a consistent solution to En[s(θ,X)] = 0 then Wn is a QF test of
the form specified by (11.37) and (11.38);

2. If θ̃ is a consistent solution to En[s(θ,X)] = 0 subject to the constraint
h(θ) = 0, then Rn is a QF test of the form specified by (11.37) and (11.38).

Proof. 1. By Lemma 11.2,

Wn
Qn= n[HT I−1Ens + oP (n−1/2)]T I(H)(θ̂)[HT I−1Ens + oP (n−1/2)],

where Ens is the abbreviation of En[s(θ0,X)]. Because I(θ) and H(θ) are
continuous, I is invertible, and HT I−1H is invertible, we have, by Lemma
11.1, I(H)(θ̂)

P→ I(H). Hence,

Wn
Qn= n[HT I−1Ens + oP (n−1/2)]T [I(H) + oP (1)][HT I−1Ens + oP (n−1/2)]
Qn= n(HT I−1Ens)T I(H)(HT I−1Ens) + oP (1)

=n(Ens(H))T I−1
(H)(Ens(H)) + oP (1),

where, for the second equality, we have used Ens = OP (n−1/2), and in the
third line, s(H) is the abbreviation of s(H)(θ0,X).
2. By (11.35), (11.41) and the first equation in (11.19),

Rn
Qn= [Ens(H) + oP (n−1/2)]T HT (θ̃)I−1(θ̃)H(θ̃)[Ens(H) + oP (n−1/2)].

Because θ̃ is consistent, H(θ) and I(θ) are continuous and I(θ) is invertible,
we have

HT (θ̃)I−1(θ̃)H(θ̃)
Qn−→HT I−1H.

Hence
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Rn
Qn= n[Ens(H) + oP (n−1/2)]T [HT I−1H + oP (1)][Ens(H) + oP (n−1/2)]

=n(Ens(H))T I−1
(H)(Ens(H)) + oP (1),

where, for the second equality, we used En(s(H)) = OP (n−1/2). �

11.6.4 Neyman’s C(α) test for general hypotheses

Next, we extend Neyman’s C(α) test in Section 11.3.3 to the general hy-
pothesis H0 : h(θ) = 0. Replacing the efficient score function and efficient
information matrix in Definition 11.4 by s(H) and I(H) leads to the following
definition of the extended Neyman’s C(α) statistic.

Definition 11.10 Neyman’s C(α) statistic for the general hypothesis H0 :
h(θ) = 0 is defined as

Nn = nEn[sT
(H)(θ̃, X)]I−1

(H)(θ̃)En[s(H)(θ̃, X)]. (11.42)

where θ̃ is any
√

n-consistent estimate of θ0 that satisfies h(θ̃) = 0.

We next show that the Neyman’s C(α) thus defined is a QF-test with the
same asymptotic quadratic form as Tn, Rn, and Wn.

Theorem 11.11 Suppose Assumption 10.3 and the assumptions 1∼5 in The-
orem 11.9 are satisfied. Suppose, in addition, I(θ) is continuous and θ̃ is a√

n-consistent estimate of θ0 satisfying the constraint h(θ̃) = 0. Then Nn is a
QF test of the form specified by (11.37) and (11.38).

Proof. Abbreviate I(θ̃) and H(θ̃) by Ĩ and H̃. By definition,

En[s(H)(θ̃, X)] = (H̃T Ĩ−1H̃)−1H̃T Ĩ−1En[s(θ̃, X)].

By Taylor’s theorem,

En[s(θ̃, X)] = En[s(θ0,X)] + Jn(θ†)(θ̃ − θ0)

for some θ† between θ0 and θ̃. Since {Jn(θ) : n ∈ N} is stochastic equicontin-

uous and θ†
Qn−→θ0, we have by Corollary 8.2 Jn(θ†)

Qn= −I + oP (1). Hence

En[s(θ̃, X)]
Qn= En[s(θ0,X)] − I(θ̃ − θ0) + oP (n−1/2). (11.43)

Because both En[s(θ0,X)] and θ̃ − θ0 are of the order OP (n−1/2) under Qn,

we have En[s(θ̃, X)]
Qn= OP (n−1/2). Furthermore, because H(θ), I(θ) are

continuous, and I(θ) and HT (θ)I−1(θ)H(θ) are invertible, we have, by Lemma
11.1,
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(H̃T Ĩ−1H̃)−1H̃T Ĩ−1 Qn= (HT I−1H)−1HT I−1 + oP (1).

Therefore,

En[s(H)(θ̃, X)]
Qn= (HT I−1H)−1HT I−1En[s(θ̃, X)] + oP (n−1/2). (11.44)

Now substituting (11.43) into (11.44), we have

En[s(H)(θ̃, X)]
Qn= (HT I−1H)−1HT I−1En[s(θ0,X)]

− (HT I−1H)−1HT (θ̃ − θ0) + oP (n−1/2).
(11.45)

By Taylor’s theorem

h(θ̃) = h(θ0) + HT (θ‡)(θ̃ − θ0)

= h(θ0) + HT (θ̃ − θ0) + oP (n−1/2),

where the second equality follows from the continuity of H(θ) and the
√

n-
consistency of θ̃. Because both θ̃ and θ0 satisfy the constraint h(θ) = 0, we
have HT (θ̃ − θ0) = oP (n−1/2). Hence the second term on the right hand side
of (11.45) is of the order oP (n−1/2), resulting in

En[s(H)(θ̃, X)] = (HT I−1H)−1HT I−1En[s(θ0,X)] + oP (n−1/2)

= En[s(H)(θ0,X)] + oP (n−1/2).

Substituting the above relation as well as I−1
(H)(θ̃)

Qn= I−1
(H)(θ0)+oP (1) into the

right hand side of (11.42), we have

Nn = nEn[s(H)(θ0,X)]T I−1
(H)(θ0)En[s(H)(θ0,X)] + oP (1),

as desired. �

11.6.5 Asymptotic efficiency

In this subsection we extend the concept of an asymptotically efficient test to
the general hypothesis H0 : h(θ) = 0. We first extend the concept of a regular
test for such a hypothesis. Let δH be the projection of δ on to span(H) with
respect to the I−1-inner product, and δH⊥ the projection on to the orthogonal
complement of span(H). That is,

δH = PH(I−1)δ, δH⊥ = QH(I−1)δ.

These vectors play the roles of δψ and δλ when ψ and λ are explicitly defined.

Definition 11.11 A statistic Tn for testing H0 : h(θ) = 0 is regular if
Tn

D−→
Pn(δ)

F (δ), where F (δ) depends on, and only on, δH in the sense that
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1. if δH �= 0, then F (δ) �= F (0);
2. if δ

(1)
H = δ

(2)
H , then F (δ(1)) = F (δ(2)).

The next theorem, which is a generalization of Theorem 11.6, gives a
necessary and sufficient condition for a QF test to be regular. Let Sn, Un, ΣSU

be as defined in Assumption 10.4.

Theorem 11.12 A QF test Tn for the hypothesis H0 : h(θ) = 0 is regular if
and only if span(ΣSU ) = span(H).

Proof. By Theorem 11.1, Tn
D−→

Pn(δ)
χ2

r[f(δ)], where f(δ) = δT ΣSUΣ−1
U ΣUSδ.

Decomposing ΣSU as PH(I−1)ΣSU + QH(I−1)ΣSU , we have

f(δ) = δT
HΣSUΣ−1

U ΣUSδH + 2δT
HΣSUΣ−1

U ΣUSδH⊥

+ δT
H⊥ΣSUΣ−1

U ΣUSδH⊥ .
(11.46)

If span(ΣSU ) = span(H), then there is a nonsingular A ∈ R
r×r such that

ΣSU = HA and

f(δ) = δT
HHAΣ−1

U AT HT δH , (11.47)

which depends on and only on δH . Conversely, suppose f(δ) satisfies 1
and 2 of Definition 11.11. Then, for any δ ∈ span(H), δ �= 0, we have
δT ΣSUΣ−1

U ΣUSδ �= 0, implying

span(H) ⊆ span(ΣSUΣ−1
U ΣUS) = span(ΣSU ).

For any δ ⊥ span(H), δ �= 0, we have δT ΣSUΣ−1
U ΣUSδ = f(δ) = f(0) = 0,

implying

span(H)⊥ ⊆ span(ΣSUΣ−1
U ΣUS)⊥ = span(ΣSU )⊥.

Hence span(ΣSU ) = span(H). �

The next theorem is a generalization of Theorem 11.7. It says that a QF
test for H0 : h(θ) = 0 is regular if and only if its Un can be so chosen as to
obey the convolution theorem for a regular estimate. We will use Sn,(H) and
S(H) to represent I(H)H

T I−1Sn and I(H)H
T I−1S, respectively, where S is

the limit of Sn and S ∼ N(0, I). Note also that Sn,(H) reduces to the rescaled
efficient score

√
nEn[s(H)(θ0,X)] under the i.i.d. assumption.

Theorem 11.13 A QF test Tn for H0 : h(θ) = 0 is regular if and only if it
can be written as the form

Tn
Qn= UT

n Σ−1
U Un + oP (1),

where Un = I−1
(H)Sn,(H) + Rn, with (Rn, Sn, Ln) satisfying ALAN and R S.
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Proof. Because Tn is a QF test, it can be written as Tn
Qn= V T

n Σ−1
V Vn +

oP (1) for some Vn ∈ R
r such that (Vn, Sn, Ln) satisfies ALAN. Furthermore,

because Tn is regular, by Theorem 11.12, ΣV S satisfies span(ΣV S) = span(H).
Hence ΣV S = HA for some nonsingular A ∈ R

r×r. Let Un = A−T Vn. Then
(Un, Sn, Ln) satisfies ALAN with ΣSU = ΣSV A−1 = H, and

Tn
Qn= UT

n Σ−1
U Un + oP (1).

The limiting random vector U can be written as I−1
(H)S(H) + R where R =

U − I−1
(H)S(H) and S(H) = I(H)H

T I−1S. Note that

cov(R,S) = cov(U, S) − cov(I−1
(H)S(H), S)

=ΣUS − I−1
(H)cov(S(H), S)

=HT − I−1
(H)I(H)H

T = 0,

where, for the third equality, we have used ΣSS = I. which implies R S
because R and S are jointly Normal by the ALAN assumption. �

By this theorem and its proof, if Tn is any regular QF test for H0 : h(θ) = 0,
then it can be represented by UT

n Σ−1
U Un + oP (1), where

ΣU = I−1
(H)I(H)I

−1
(H) + ΣR � I−1

(H),

and ΣSU = H. Hence the noncentrality parameter of the asymptotic noncen-
tral chi-squared distribution of Tn under Pn(δ) is

δT ΣSUΣ−1
U ΣUSδ = δT HΣ−1

U HT δ.

This implies that the upper bound of the noncentrality parameter is δT HI(H)

HT δ. Furthermore, for any regular QF test that reaches this upper bound,
its Un is asymptotically equivalent to I−1

(H)Sn,(H). We summarize this result
in the next corollary.

Corollary 11.2 Suppose Tn is any regular QF test. Then the following state-
ments hold.

1. Tn
D−→

Pn(δ)
χ2

r(δ
T HΣ−1

U HT δ), where Σ−1
U 
 I(H).

2. Tn
D−→

Pn(δ)
χ2

r(δ
T HI(H)H

T δ) if and only if Tn can be written in the form

Tn
Qn= UT

n Σ−1
U Un + oP (1), where Un

Qn= I−1
(H)Sn,(H) + oP (1).

Naturally, we define those QF tests for H0 : h(θ) = 0 with largest noncen-
trality parameter δT HI(H)H

T δ in their asymptotic distribution under Pn(δ)
as the asymptotically efficient tests. All the four tests Tn, Wn, Rn, and Nn

are Asymptotically Efficient tests.
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11.7 QF tests for estimating equations

In this section we develop QF-tests for estimating equations. To our knowl-
edge, the results presented here have not all been recorded in the statistics lit-
erature. The most relevant publications are Rotnisky and Jewel (1990), where
a Wald-type statistic was proposed for testing hypothesis for parameters in
a Generalized Estimating Equation, and Boos (1992), which developed score
tests based estimating equations rather than the likelihood score functions. Of
course, the general strategy in Hall and Mathiason (1990) also plays a critical
role in the following development, as it has throughout this chapter. We will
only consider the case where the parameter of interest and the nuisance param-
eter are explicitly defined, omitting the general hypothesis H0 : h(θ) = 0,
which can be developed by making analogies to the steps in Section 11.6.
Problems 11.24 and 11.25 are devoted to this further generalization.

11.7.1 Wald’s, Rao’s, and Neyman’s tests for estimating equations

Let θ, ψ, and λ be as defined in Section 11.1. Let X1, . . . , Xn be an i.i.d.
sample from an unspecified distribution Pθ, where θ ∈ Θ ⊆ R

p. Suppose we
are interested in testing the hypothesis

H0 : ψ = ψ0.

Let g : Θ × ΩX → R
p be an unbiased and Pθ-square-integrable estimating

equation. We estimate the true parameter θ0 = (ψT
0 , λT

0 )T by solving the
equation

En[g(θ,X)] = 0. (11.48)

Let gψ be the first r components of g, and gλ the last s components of g,
and, as in Chapter 9, let

Jg(θ) = Eθ[∂g(θ,X)/∂θT ], Kg(θ) = Eθ[g(θ,X)gT (θ,X)].

The information contained in g is Ig(θ) = JT
g (θ)K−1

g (θ)Jg(θ). Let Jg(θ) and
Kg(θ) be partitioned, in obvious ways, into the following block matrices

Jg(θ) =
(

Jg,ψψ(θ) Jg,ψλ(θ)
Jg,λψ(θ) Jg,λλ(θ)

)
, Kg(θ) =

(
Kg,ψψ(θ) Kg,ψλ(θ)
Kg,λψ(θ) Kg,λλ(θ)

)
.

Here, we do not assume Jg(θ) to be symmetric: for example JT
g,ψψ(θ) need

not be the same as Jg,ψψ(θ) and JT
g,ψλ(θ) need not be the same as Jg,λψ(θ).

Mimicking the efficient score, let

gψ·λ(θ,X) = gψ(θ,X) − Jg,ψλ(θ)J−1
g,λλ(θ)gλ(θ,X).
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Notice that, in the above definition, the coefficient matrix for gλ(θ,X) is not
Ig,ψλ(θ)Ig,λλ(θ), as one might anticipate. We abbreviate Jg(θ0), Kg(θ0) and
Ig(θ0) by Jg, Kg, and Ig, respectively, and abbreviate gψ(θ0,X), gλ(θ0,X),
and gψ·λ(θ0,X) by gψ, gλ, and gψ·λ. Let (J−1

g )ψθ denote the r × p matrix
consisting of the first r rows of J−1

g , (J−1
g )ψψ the upper-left r× r block of the

matrix J−1
g , and (J−1

g )ψλ the upper-right r × s block of J−1
g . The following

lemma gives some properties about gψ·λ(θ0,X) that will be useful further on.

Lemma 11.3 Suppose g(θ,X) is an unbiased and Pθ-square-integrable esti-
mating equation. If the derivatives, inverses, and moments involved are de-
fined, then

1. [J−1
g (θ)]ψψ gψ·λ(θ,X) = [J−1

g (θ)]ψθ g(θ,X);
2. var[(J−1

g )ψψ gψ·λ] = (I−1
g )ψψ;

3. E[∂gψ·λ(θ0,X)/∂ψT ] = (J−1
g )−1

ψψ;
4. E[∂gψ·λ(θ0,X)/∂λT ] = 0,

where Ig = Ig(θ0), Jg = Jg(θ0), gψ,λ = gψ,λ(θ0,X) in parts 2, 3, and 4.

Proof. 1. By construction,

[J−1
g (θ)]ψθ = ([J−1

g (θ)]ψψ, [J−1
g (θ)]ψλ)

= [J−1
g (θ)]ψψ(Ir, [J−1

g (θ)]−1
ψψ[J−1

g (θ)]ψλ),

where the second equality is obtained by factoring out the term [J−1
g (θ)]ψψ.

By Proposition 9.3, [J−1
g (θ)]−1

ψψ[J−1
g (θ)]ψλ = −Jg,ψλ(θ)J−1

g,λλ(θ). Hence

[J−1
g (θ)]ψθ g(θ,X) = [J−1

g (θ)]ψψ(Ir, [J−1
g (θ)]−1

ψψ[J−1
g (θ)]ψλ)

= [J−1
g (θ)]ψψ [Ir,−Jg,ψλ(θ)J−1

g,λλ(θ)] g(θ,X)

= [J−1
g (θ)]ψψ [gψ(θ,X) − Jg,ψλ(θ)J−1

g,λλ(θ)gλ(θ,X)]

= [J−1
g (θ)]ψψ gψ·λ(θ,X).

2. Because, by part 1, (J−1
g )ψψ gψ·λ = (J−1

g )ψθ g, we have

var[(J−1
g )ψψ gψ·λ] = (J−1

g )ψθ Kg [(J−1
g )ψθ]T . (11.49)

Note that, for any p × p matrix A, if Aψθ represents the first r rows of A,
then (Aψθ)T is simply the first r columns of AT . That is, (Aψθ)T = (AT )θψ.
Consequently, the right-hand side of (11.49) is

(J−1
g )ψθ Kg (J−T

g )θψ.

This matrix is simply the upper-left r × r block of the matrix J−1
g KgJ

−T
g ;

that is, (J−1
g KgJ

−T
g )ψψ. Because J−1

g KgJ
−T
g is the inverse of the information

matrix Ig, we have
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(J−1
g )ψθ Kg (J−T

g )θψ = (I−1
g )ψψ.

Thus we have the identity in 2.

3. By definition, for each i = 1, . . . r,

E[∂gψ·λ(θ0,X)/∂ψi] = E[∂gψ(θ0,X)/∂ψi]

− ∂[Jg,ψλ(θ0)J−1
g,λλ(θ0)]/∂ψi E[gλ(θ0,X)]

− Jg,ψλJ−1
g,λλE[∂gλ(θ0,X)/∂ψi].

Because g(θ,X) is unbiased, the second term on the right-hand side is 0,
resulting in

E[∂gψ·λ(θ0,X)/∂ψT ]

= E[∂gψ(θ0,X)/∂ψT ] − Jg,ψλJ−1
g,λλE[∂gλ(θ0,X)/∂ψT ]

= Jg,ψψ − Jg,ψλJ−1
g,λλJg,λψ = (J−1

g )ψψ.

4. Similarly, E[∂gψ·λ(θ0,X)/∂λT ] = Jg,ψλ − Jg,ψλJ−1
g,λλJg,λλ = 0. �

Let θ̂ = (ψ̂T , λ̂T )T be a solution to the estimating equation (11.48). Let λ̃
be a solution to the estimating equation

En[gλ(ψ0, λ)] = 0.

Let θ̃ = (ψT
0 , λ̃T )T . Let λ̄ be any

√
n-consistent estimate of λ0, and θ̄ =

(ψT
0 , λ̄T )T . We now give the formal definitions of Wald’s, Rao’s, and Neyman’s

test statistics for an estimating equation g.

Definition 11.12 The Wald’s, Rao’s, and Neyman’s C(α) test statistics for
H0 : ψ = ψ0 based on the estimating equation g are defined, respectively, as

Wn(g) = n(ψ̂ − ψ0)T [I−1
g (θ̂)]−1

ψψ(ψ̂ − ψ0),

Rn(g) = nEn[gT
ψ (θ̃, X)][J−1

g (θ̃)]ψψ[I−1
g (θ̃)]−1

ψψ[J−1
g (θ̃)]ψψEn[gψ(θ̃, X)],

Nn(g) = nEn[gT
ψ·λ(θ̄, X)][J−1

g (θ̄)]ψψ[I−1
g (θ̄)]−1

ψψ[J−1
g (θ̄)]ψψEn[gψ·λ(θ̄, X)].

These statistics are generalizations of Wn, Rn and Nn defined in (11.39),
(11.40), (11.42): if we take g to be the score function s, then

Wn = Wn(s), Rn = Rn(s), Nn = Nn(s).

Note that, similar to Wn, Rn, and Nn, Wn(g) requires θ̂, the solution to the
full estimating equation En[g(θ,X)] = 0; Rn(g) requires λ̃, the solution to
λ-component of the full estimating equation, En[gλ(ψ0, λ,X)] = 0; whereas
Nn(g) just requires any

√
n-consistent estimate λ̄ of λ0.

In the following, We use Jg,n(θ) to denote the matrix
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En[∂g(θ,X)/∂θT ].

The next theorem shows that Wn(g), Rn(g), and Nn(g) are QF tests with the
same asymptotic quadratic form.

Theorem 11.14 Suppose Assumption 10.3 holds and

i. g(θ,X) is an unbiased, Pθ-square-integrable estimating equation and
g(θ, x)fθ(x) satisfies DUI+(θ, μ);

ii. Jg(θ) and Kg(θ) are invertible and continuous;
iii. the sequence of random matrices {Jg,n(θ) : n ∈ N} is stochastically

equicontinuous in a neighborhood of θ0;
iv. the true parameter θ0 is an interior point of Θ.

Then the following assertions hold.

1. If θ̂ is a consistent solution of En[g(θ,X)] = 0, then

Wn(g)
Qn= UT

n (g)Σ−1
U(g)Un(g) + oP (1),

where (Un(g), Sn, Ln) satisfies ALAN with

Un(g) =
√

n(J−1
g )ψψEn(gψ·λ), ΣU(g) = (I−1

g )ψψ, ΣU(g)S = − (Ir, 0) .

2. If λ̃ is a consistent solution to En[gψ(ψ0, λ,X)] = 0, then Rn(g) is a QF
test of the same form as Wn(g).

3. If λ̄ is any
√

n-consistent estimate of λ0, gψ·λ(ψ0, λ) is differentiable with
respect to λ, and

{En[∂gψ·λ(ψ0, λ)/∂λT ] : n ∈ N}
is stochastically equicontinuous with respect to λ, then Nn(g) is a QF test
of the same form as Wn(g).

Proof. 1. By Theorem 9.5 we have

θ̂ = θ0 − J−1
g (θ0)En[g(θ0,X)] + oP (n−1/2).

Read off the first r lines of this equation to obtain
√

n(ψ̂ − ψ0) = −√
n(J−1

g )ψθEn[g(θ0,X)] + oP (n−1/2). (11.50)

Because Ig(θ) is continuous and θ̂ is consistent, Ig(θ̂)
Qn−→Ig, By the invert-

ibility of Ig and Lemma 11.1, this convergence implies I−1
g (θ̂)

Qn−→I−1
g , which,

by the continuous mapping theorem, implies [I−1
g (θ̂)]ψψ

Qn−→(I−1
g )ψψ. Because

(I−1
g )ψψ is invertible, we have, by Lemma 11.1 again,

[I−1
g (θ̂)]−1

ψψ

Qn−→(I−1
g )−1

ψψ. (11.51)
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Substituting (11.50) and (11.51) into Wn(g) in Definition 11.12, we have

Wn(g)
Qn= [−√

n(J−1
g )ψθEn(g) + oP (n−1/2)]T [(I−1

g )−1
ψψ + oP (1)]

[−√
n(J−1

g )ψθEn(g) + oP (n−1/2)]

= n[(J−1
g )ψθEn(g)]T (I−1

g )−1
ψψ[(J−1

g )ψθEn(g)] + oP (1).

By Lemma 11.3, the right-hand side can be rewritten as

n[(J−1
g )ψψEn(gψ·λ)]T (I−1

g )−1
ψψ[(J−1

g )ψψEn(gψ·λ)] + oP (1). (11.52)

Let Un(g) =
√

n(J−1
g )ψψEn[gψ·λ(θ0,X)]. By the central limit theorem,

(
Un(g)

Sn

)
D−→

Qn

(
U(g)

S

)
,

where

var
[(

U(g)
S

)]
=

(
var[(J−1

g )ψψE(gψ·λ)] (J−1
g )ψψE(gψ·λsT )

[(J−1
g )ψψE(gψ·λsT )]T I

)
.

By Lemma 11.3,

var[(J−1
g )ψψE(gψ·λ)] = (I−1

g )ψψ.

Because g(θ,X)fθ(X) satisfies DUI+(θ, μ), we have, by Lemma 9.1, E(gsT ) =
−E(∂g/∂θT ). Hence, by Lemma 11.3,

(J−1
g )ψψE(gψ·λsT ) = (J−1

g )ψθE(gsT ) = −(J−1
g )ψθJg = −(Ir, 0).

Thus we have ΣU(g) = (I−1
g )ψψ and ΣU(g)S = − (Ir, 0).

2. By Taylor’s theorem,

En[gψ(ψ0, λ̃,X)] = En[gψ(θ0,X)] + [Jg,n(ψ0, λ
†)]ψλ(λ̃ − λ0)

for some λ† between λ0 and λ̃. Because {Jg,n(θ) : n ∈ N} is stochastically

equicontinuous and θ†
Qn−→λ0, we have Jg,n(ψ0, λ

†)
Qn= Jg+oP (1), which implies

[Jg,n(ψ0, λ
†)]ψλ

Qn= Jg,ψλ + oP (1).

By Theorem 9.5 (as applied to the estimating equation (λ, x) �→ gλ(ψ0, λ, x)),

λ̃ = λ0 − J−1
g,λλEn(gλ) + oP (n−1/2).

Hence

En[gψ(ψ0, λ̃,X)] = En(gψ) + [Jg,ψλ + oP (1)][−J−1
g,λλEn(gλ) + oP (n−1/2)]

= En(gψ·λ) + oP (n−1/2),
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where, for the second equality we used En(gλ) = OP (n−1/2). Using arguments
similar to the proof of part 1, we can show that

[I−1
g (θ̃)]−1

ψψ

Qn= (I−1
g )ψψ + oP (1), [J−1

g (θ̃)]ψψ
Qn= (J−1

g )ψψ + oP (1).

Hence

Rn(g) = [En(gψ·λ) + oP (n−1/2)]T [(J−1
g )ψψ + oP (1)][(I−1

g )ψψ + oP (1)]

[(J−1
g )ψψ + oP (1)]T [En(gψ·λ) + oP (n−1/2)]

=n[(J−1
g )ψψEn(gψ·λ)]T (I−1

g )−1
ψψ[(J−1

g )ψψEn(gψ·λ)] + oP (1),

where the right-hand side is the same as (11.52). The rest of the proof of part
2 is same as that of part 1.

3. By Taylor’s theorem,

En[gψ·λ(ψ0, λ̄,X)] = En[gψ·λ(θ0,X)] + En[∂gψ·λ(ψ0, λ
‡,X)/∂λT ](λ̃ − λ0)

for some λ‡ between λ0 and λ̄. Because {En[∂gψ·λ(ψ0, λ,X)] : n ∈ N} is

stochastically equicontinuous and λ‡ Qn−→λ0, we have by Corollary 8.2

En[∂gψ·λ(ψ0, λ
‡,X)/∂λT ]

Qn= E[∂gψ·λ(θ0,X)/∂λT ] + oP (1) = oP (1),

where the second equality follows from Lemma 11.3, part 4. Therefore,

En[gψ·λ(ψ0, λ̄,X)]
Qn= En[gψ·λ(θ0,X)] + oP (n−1/2).

Using arguments similar to those in the proof of part 1, we can show that

[I−1
g (θ̄)]−1

ψψ

Qn= (I−1
g )ψψ + oP (1), [J−1

g (θ̄)]ψψ
Qn= (J−1

g )ψψ + oP (1).

Hence

Nn(g)
Qn= n[(J−1

g )ψψEn(gψ·λ)]T (I−1
g )−1

ψψ[(J−1
g )ψψEn(gψ·λ)] + oP (1),

where the right-hand side is the same as (11.52). The rest of the proof of this
part is the same as that of part 1. �

From Theorem 11.14 we can immediately derive the asymptotic distribu-
tions of Wn(g), Rn(g), and Nn(g) under Pn(δ) for any δ ∈ R

p. The proof is
straightforward and is omitted.

Corollary 11.3 Under the conditions in Theorem 11.14, Wn(g), Rn(g) and
Nn(g) each converges in distribution to χ2

r(δ
T
ψ (I−1

g )−1
ψψδψ) under the local al-

ternative distribution Pn(δ).
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Note that (I−1
g )−1

ψψ is monotone nondescreasing with respect to Ig in the
sense that, if Ig∗ � Ig, then (I−1

g∗ )−1
ψψ � (I−1

g )−1
ψψ. This is because

Ig∗ � Ig ⇒ I−1
g∗ 
 I−1

g ⇒ (I−1
g∗ )ψψ 
 (I−1

g )ψψ ⇒ (I−1
g∗ )−1

ψψ � (I−1
g )−1

ψψ.

Hence, if g∗ is the optimal estimating equation among a class of estimating
equations G, then the local alternative asymptotic distribution of Wn(g∗),
Rn(g∗), and Nn(g∗) under Pn(δ) have the largest noncentrality parameter
among that class, implying that they are asymptotically most powerful com-
pared with any Wn(g), Rn(g), and Nn(g) for g ∈ G. In other words, an optimal
estimating equation leads to an optimal QF test.

11.7.2 QF tests for canonical estimating equations

The QF tests described above are applicable to arbitrary unbiased and Pθ-
square-integrable estimations that satisfy some mild additional assumptions.
These statistics take simpler forms when the identity Jg = −Kg holds. Recall
that this relation does hold for the score function s(θ, x) under mild conditions;
that is,

−J(θ) = K(θ) = I(θ)

for J(θ) and K(θ) defined in (8.15). This relation does not hold for a general
estimating equation g, but it is always possible to find an equivalent transfor-
mation of g that satisfies this relation.

Specifically, let g(θ,X) be any unbiased and Pθ-square-integrable estimat-
ing equation such that fθ(x)g(θ, x) satisfies DUI+(θ, μ). All the estimating
equations in the class

Gg = {B(θ)g(θ,X) : B(θ) ∈ R
p×p, B(θ) is differentiable and invertible}

are equivalent. That is, En[h(θ,X)] = 0 produces the same solution(s) for any
h ∈ Gg. Adopt again the notation

Eθ[g1(θ,X)gT
2 (θ,X)] = [g1, g2].

In this notation, and in view of Lemma 9.1, we have

Jg(θ) = −[g, s], Kg(θ) = [g, g],

where s = s(θ, x) is the score function. Let g̃(θ,X) = B(θ)g(θ,X), and con-
sider the equation [g̃, s] = [g̃, g̃]. If this holds then

[s, g]BT = B[g, g]BT

⇒ [s, g] = B[g, g]

⇒ B = [s, g][g, g]−1

⇒ B = −JT
g (θ)K−1

g (θ).
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So, if we let

g̃(θ,X) = −JT
g (θ)K−1

g (θ) g(θ,X),

then g̃ satisfies Jg̃ = −Kg̃, and g̃ is equivalent to g. This motivates the fol-
lowing definition of canonical form of an estimating equation.

Definition 11.13 Let g be an unbiased, Pθ-square-integrable estimating func-
tion such that g(θ, x)fθ(x) satisfies DUI+(θ, μ) with Jg(θ) and Kg(θ) invert-
ible. The canonical form of g is −Jg(θ)T K−1

g (θ)g(θ,X).

Since the canonical form of an estimating equation is equivalent to the
estimating equation, we can assume, without loss of generality, any estimating
equation satisfies Jg = −Kg. With this in mind, we can redefine Wn(g), Rn(g),
and Nn(g) in the canonical form of g.

Definition 11.14 Suppose g is a canonical estimating equation. The Wald’s,
Rao’s, and Neyman’s C(α) tests are defined as

Wn(g) =n(ψ̂ − ψ0)T [I−1
g (θ̂)]−1

ψψ(ψ̂ − ψ0),

Rn(g) =nEn[gT
ψ (θ̃, X)][I−1

g (θ̃)]ψψEn[gψ(θ̃, X)].

Nn(g) =nEn[gT
ψ·λ(θ̄, X)][I−1

g (θ̄)]ψψEn[gψ·λ(θ̄, X)].

Note that Wn(g) takes the same form as that in Definition 11.12, but here
Ig = −Jg = Kg, which is not the case for Wn(g) in Definition 11.12. The
forms of Rn(g) and Nn(g) are simplified due to the relation −Jg = Ig. The
Rao’s statistic for a canonical estimating equation takes a particularly simple
form. Since gλ(ψ0, λ̃) = 0, Rn(g) reduces to

nEn[gT (θ̃, X)]I−1
g (θ̃)En[g(θ̃, X)],

which is of the same form as the score test for likelihood in Definition 11.3
except that s is replaced by g. The quadratic form of Wn(g), Rn(g), and
Nn(g) when g is in the canonical form is simplified correspondingly, which is
recorded in the next corollary.

Corollary 11.4 If the conditions in Theorem 11.14 hold and g is in its canon-
ical form, then under Qn, the statistics Wn(g), Rn(g), and Nn(g) are of the
following asymptotic quadratic form

UT
n (g)Σ−1

U(g)Un(g) + oP (1),

where (Un(g), Sn, Ln) satisfies ALAN with

Un(g) =
√

nEn(gψ·λ), ΣU(g) = (I−1
g )−1

ψψ, ΣU(g)S = −((I−1
g )−1

ψψ, 0).

Consequently, they converge in distribution to χ2
r(δψ(I−1

g )−1
ψψδψ) under Pn(δ).

Interestingly, the asymptotic distribution of Wn(g), Rn(g), and Nn(g) are
the same whether or not g is in its canonical form, which is not surprising
because an estimating equation is equivalent to its canonical form in the sense
that they have the same solution(s).
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11.7.3 Wilks’s test for conservative estimating equations

Up to this point we haven’t mentioned the generalization of the likelihood
ratio test for estimating equations. This is because an estimating equation
g(θ,X) does not in general correspond to a “likelihood”; that is, there need
not be a function 
(θ,X) such that

∂
(θ,X)/∂θT = g(θ,X).

A set of sufficient conditions for g(θ,X) to possess such a function 
(θ,X) are

1. g(θ,X) is continuously differentiable with ∂g(θ,X)/∂θT being a symmet-
ric matrix;

2. Θ is a convex set in R
p.

The convex assumption Θ is not the weakest possible, but is good enough for
our purpose. Li and McCullagh (1994) call such estimating equations conser-
vative estimating equations because {g(θ,X) : θ ∈ Θ} forms a conservative
vector field. For such estimating equations the line integral

∫

C

gT (θ,X)dθ,

where C is a smooth curve from a fixed point a ∈ Θ to an arbitrary point
θ ∈ Θ, does not depend on the curve C. As such, the integral is a function
of θ. We define this integral as the “quasilikelihood function” 
(θ,X) for the
estimating equation g(θ,X). McCullagh (1983) introduced such a definition
for linear estimating equations. A convenient choice of C is the straight line.
Specifically, fix any point a ∈ Θ, and let θ ∈ Θ be an arbitrary point. Because
Θ is assumed convex, the straight line {(1 − t)a + tθ : t ∈ [0, 1]} is contained
in Θ, and we can define 
(θ,X) as the line integral


(θ,X) =
∫ 1

0

gT [(1 − t)a + tθ,X](θ − a)dt. (11.53)

It can be easily checked (Problem 11.20) that ∂
(θ,X)/∂θ = g(θ,X). This
motivates the following definition of the Wilks likelihood ratio statistics based
on a conservative and canonical estimating equation g.

Definition 11.15 Suppose that g(θ,X) is a canonical and conservative esti-
mating equation. Let 
(θ,X) be the line integral (11.53). Let θ̂ be a solution
to En[g(θ,X)] = 0 and θ̃ be a solution to En[gλ(ψ0, λ,X)] = 0. The Wilks’s
statistic for the estimating equation g is

Tn(g) = 2nEn[
(θ̂, X) − 
(θ̃, X)].

The next theorem shows that Tn(g) is a QF-test with of the same asymp-
totic quadratic form as Wn(g), Rn(g), and Nn(g). Of course, we should keep in
mind that Tn(g) requires g to be a conservative estimating equation, whereas
the other tests do not.
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Theorem 11.15 Suppose Assumption 10.3 holds and

1. g(θ,X) is an unbiased, Pθ-square-integrable, canonical, and conservative
estimating equation;

2. fθ(X) and g(θ,X)fθ(X) satisfy DUI+(θ, μ) with Jg(θ) invertible;
3. the sequence {En[∂g(θ,X)/∂θT ] : n ∈ N} is stochastically equicontinuous;
4. θ̂ is a consistent solution to En[g(θ,X)] = 0 and λ̃ is a consistent solution

to En[g(ψ0, λ,X)] = 0.

Then Tn(g) is a QF test of the form given in Corollary 11.4. Consequently,

Tn(g) D−→
Pn(δ)

χ2
r

(
δT
ψ (I−1

g )−1
ψψδψ

)
.

The proof is similar to that of Theorem 11.2 and is left as an exercise
(Problem 11.23).

Problems

Many of the following problems require regularity assumptions that are too
tedious to be stated completely. We therefore leave it to the readers to impose
them as appropriate. In particular, these types of assumptions will be made
without mentioning:

1. integrability: certain moments involved, such as means, variances, and
third moments, are finite;

2. differentiability and DUI: certain functions of θ are differentiable to a
required order, and when needed, the derivatives can be exchanged with
integral over a random variable;

3. stochastic continuity: certain sequences of random functions of θ are
stochastic equicontinuous.

It is usually obvious where these assumptions should be imposed.

11.1. The notion of a QF test can be extended to the case where ΣU is
singular. Suppose (Un, Sn, Ln) satisfies ALAN with a singular ΣU , where Un ∈
R

r, Sn ∈ R
p, and ΣU ∈ R

p×p. Suppose Σ−
U is a reflexive generalized inverse

of ΣU ; that is,

ΣUΣ−
U ΣU = ΣU , Σ−

U ΣUΣ−
U = Σ−

U .

See, for example, Kollo and von Rosen (2005). Suppose, furthermore, Σ−
U is

a symmetric matrix. We define a corresponding QF test as any statistic Tn

that satisfies

Tn
Qn= UT

n Σ−
U Un + oP (1).

Show that



366 11 Asymptotic Hypothesis Test

Tn
D−→

Pn(δ)
χ2

d(δ
T ΣSUΣ−

U ΣUSδ),

where d is the rank of ΣU . (Here, we have used a more general definition of
inverse than the Moore-Penrose inverse to accommodate Pearson’s test, which
is discussed in the next problem).

11.2. This problem concerns Pearson’s Chi-square test. Suppose X1, . . . , Xn

are i.i.d. multinomial variables with k categories and probabilities (p1, . . . , pk).
Let θ = (p1, . . . , pk)T .

1. Show that the MLE of θ is

θ̂ = (n1/n, . . . , nk/n)T ,

where ni =
∑n

�=1 I(X� = i).
2. Since the MLE is obtained by maximizing En[
(θ,X)] subject to h(θ) =

1T
p θ = 1, the score function is to be derived from

{
En
(θ,X) − [∂h(θ)/∂θ]λ = 0
h(θ) = 1

From this deduce that

Sn =
√

n Qdiag(θ)−1En(Z),

where Q = Ip − 1p1T
p , Z = (Z1, . . . , Zk)T and Zi = I(X = i).

3. Let Un =
√

n(θ̂ − θ0). Show that (Un, Sn, Ln) satisfies ALAN with

ΣU = diag(θ) − θθT , ΣUS = Q.

4. Show that Σ−
U = diag(θ)−1−1k1T

k is a reflexive and symmetric generalized
inverse of ΣU .

5. In the setting of Problem 11.2, show that Wald’s statistic Wn = n(θ̂ −
θ0)T Σ−

U (θ̂)(θ̂ − θ0) in this case reduces to the Pearson’s chi-square test

Wn =
k∑

i=1

(ni − npi)2

npi
. (11.54)

6. Show that Wn
D−→

Pn(δ)
χ2

k−1(δ
T Qdiag(θ)−1Qδ).

11.3. In the setting of Problem 11.2, prove the following statements.

1. The Fisher information is I(θ) = Qdiag(θ)−1Q.
2. A reflexive generalize inverse of I(θ) is

I−(θ) = diag(θ) − θθT .
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3. I−(θ) = QI−(θ) = I−(θ)Q = QI−(θ)Q.
4. Rao’s score test, Rn = nST

n I−(θ0)Sn, also takes the form of Pearson’s
chi-square test in (11.54).

11.4. In the setting of Problem 11.2, show that the Wilks’s likelihood ratio
test takes the form

Tn =
k∑

i=1

ni log
(

ni

npi

)
.

Derive the asymptotic distribution of Tn under Pn(δ).

11.5. Suppose X1, . . . , Xn are an i.i.d. sample from N(θ, θ), where θ > 0. Let
θ̂ be the maximum likelihood estimate of the true parameter θ0.

1. Let Tn be the Wilks’s test statistic for testing H0 : θ = 1. If n = 100, find
the local asymptotic alternative distribution of Tn at θ = 1.1.

2. Let Un = n(X − θ0)2/θ0. Derive the asymptotic null distribution (under
Qn) and local alternative distribution of Wn (under Pn(δ)).

3. Derive the Pitman efficiency of Un and show that it is no greater than 1.
4. Let Mn = n−1

∑n
i=1(Xi − X)2, and Vn = n(Mn − θ0)2/(2θ20). Derive

the asymptotic null and local alternative distribution of Vn for testing
H0 : θ = θ0.

5. Derive the Pitman efficiency of Vn.
6. For which region of θ is Vn more efficient than Un?

11.6. Let X1, . . . , Xn be an i.i.d. sample from probability density function fθ,
which is supported on (−∞,∞) and dominated by the Lebesgue measure. For
0 < p < 1, let τp(θ) be the pth quantile of X. That is,

∫ τp(θ)

−∞
fθ(x)dλ(x) = p.

Let Tn be the sample pth quantile (the exact definition of this statistic is
not important for our purpose). It is known that Tn has expansion (Bahadur,
1966)

Tn
θ= τp(θ) + cEn[I(X ≤ τp(θ)) − p] + oP (1/

√
n).

It is also known that Tn is a regular estimate.

1. Use the fact that Tn is regular to derive the value of the constant c.
2. Find the asymptotic null and local alternative distributions of

√
n(Tn −

τp(θ)).
3. Construct a QF test based on Tn for testing H0 : θ = θ0, and derive its

asymptotic local alternative distribution.
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4. Suppose that the distribution of Xi is N(θ, 1), and that the p in τp is
1/2. Find the asymptotic local alternative distribution of the QF test
constructed in part 2, for testing the hypothesis H0 : θ = 0, and derive
Pitman’s efficiency.

11.7. Suppose that X1, . . . , Xn are i.i.d. N(θ1, θ2) where θ1 ∈ R and θ2 > 0.
Let θ = (θ1, θ2)T . We are interested in testing the null hypothesis

H0 : θ1 = θ2.

Let θ̂ be the global MLE and θ̃ be the MLE under H0. Let Tn be the Wilks’s
test statistic:

Tn = 2
n∑

i=1

[
(θ̂, Xi) − 
(θ̃, Xi)].

Derive the asymptotic distribution of Tn under Pn(δ).

11.8. Let X1, . . . , Xn be i.i.d. with p.d.f. fθ(x), where θ ∈ Θ ⊆ R
p is a

parameter. We are interested in testing the null hypothesis H0 : θ = θ0.
Let θ̂ be a consistent maximum likelihood estimate and define

R(θ0, θ) =
n∑

i=1

[
fθ(Xi)
fθ0(Xi)

− fθ0(Xi)
fθ(Xi)

]
.

Show that the statistic R(θ0, θ̂) is a QF test, and derive its asymptotic distri-
bution under Pn(δ). Is this an asymptotically efficient test? (See Li, 1993).

11.9. Let X1, . . . , Xn be independent copies of X, where X is a random vari-
able with finite fourth moments. Assume that X has distribution Pθ, where
θ ∈ Θ ⊆ R

p (here, the dimension of θ is irrelevant). Let θ0 be the true param-
eter value of θ. Let μ1(θ), μ2(θ), μ3(θ), μ4(θ) denote the first four moments of
X. Let σ2(θ) denote the variance of X. Let ρ(θ) be the signal-to-noise ratio
defined as follows

ρ(θ) =
μ1(θ)
σ(θ)

.

Estimate ρ(θ0) by ρ̂ = μ̂1/σ̂, where μ̂1, σ̂ are the sample mean and sample
standard deviation, respectively.

1. Derive the asymptotic distribution of
√

n(ρ̂ − ρ(θ0)) under Pn(δ).
2. Based on part 1 construct a QF test Tn, and derive its asymptotic distri-

bution under Pn(δ).

11.10. Let X1, ...,Xn be an i.i.d. sample from a distribution whose density is
fθ(x), with θ = (ψT , λT )T ∈ R

p, ψ ∈ R
r, λ ∈ R

s. For testing the null hypothe-
sis H0 : ψ = ψ0, let θ̂ = (ψ̂T , λ̂T )T be a consistent solution to En[s(θ,X)] = 0,
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and λ̃ a consistent solution to the estimating equation En[sλ(ψ0, λ,X)] = 0.
Let Sn,ψ(θ) =

√
nEn[sψ(θ,X)] be the rescaled score for ψ. Let

Bn =
√

n(ψ̂ − ψ0)T Sn,ψ(ψ0, λ̃,X).

This is a hybrid between the Wald’s and Rao’s score statistic similar to the
statistic proposed by Li and Lindsay (1996).

1. Show that Bn is a QF test, derive its asymptotic quadratic form, and its
asymptotic distribution under Pn(δ).

2. Show that Bn can be rewritten as the more compact form

Bn =
√

n(θ̂ − θ̃)T Sn(θ̃, X),

where θ̃ = (ψT
0 , λ̃T )T .

11.11. Under the setting of Problem 11.10, let Sn,ψ·λ(θ,X) be the rescaled
efficient score

√
nEn[sψ·λ(θ,X)]. Let λ̃ be any

√
n-consistent estimate of λ0.

Derive the asymptotic distribution of
√

n(ψ̂ − ψ0)T Sn,ψ·λ(θ̃;X)

under Pn(δ).

11.12. Under the setting of Problem 11.10, for testing the null hypothesis
H0 : h(θ) = 0, let θ̂ be a consistent solution to En[s(θ,X)] = 0 and θ̃ be a
consistent solution to En[s(θ,X)] = 0 subject to h(θ) = 0. Show that

√
n(θ̂ − θ̃)T Sn(θ̃, X)

is a regular QF test. Derive its asymptotic distribution under Pn(δ). Is this
test an Asymptotically Efficient test?

11.13. Suppose X1, . . . , Xn are i.i.d. random variables with density fθ(x),
where θ ∈ Θ ⊆ R

p, θ = (ψT , λT )T , ψ ∈ R
r and λ ∈ R

s, r + s = p. We are
interested in testing the null hypothesis H0 : ψ = ψ0. Consider the following
procedure for estimating ψ0. First, estimate λ0 by λ̃, which is the solution to
estimating equation En[sλ(ψ0, λ)] = 0. Second, estimate ψ0 by ψ̃, which is
the solution in ψ to the estimating equation En[sψ(ψ, λ̃)] = 0.

1. Show that ψ̃ is not regular at θ0 unless Iψλ = Or×s.
2. Compare the asymptotic variances of

√
n(ψ̃ − ψ) and

√
n(ψ̂ − ψ), where

ψ̂ is the first r components of the MLE θ̂.
3. Construct a QF test based on the asymptotic distribution of

√
n(ψ̃ − ψ),

and show that this test is a regular test despite the fact that ψ̃ in not
regular at θ0. Is this test asymptotically efficient?

11.14. Under the setting of Problem 11.13, suppose θ̂ is the unconstrained
MLE, and ψ̂ is the first r components of θ̂.
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1. Derive the asymptotic linear form of
√

nEn[sψ(ψ0, λ̂;X)], and construct
a QF test based this form.

2. Derive the asymptotic distribution of this QF test under Pn(δ).
3. Is this QF test regular? Is it asymptotically efficient?

11.15. Under the setting of Problem 11.13, suppose θ̂ is the unconstrained
MLE, and λ̂ is the last s components of θ̂. Let λ̃ be the MLE for λ0 under
the null hypothesis H0 : ψ = ψ0. Assume r = s.

1. Derive the asymptotic linear form of
√

n(λ̂ − λ̃).
2. Assuming (I−1)λλ − I−1

λλ is nonsingular, derive a QF test based on the
asymptotic linear form obtained in part 1.

3. Show that the QF test in part 2 is regular if and only if Iλψ is nonsingular.
4. Show that, when this QF test is regular, it is asymptotically efficient.

11.16. Under the setting of Problem 11.13, suppose θ̂ is the unconstrained
MLE, and ψ̂ is the first r components of θ̂. Let λ̃ be the MLE for λ0 under
the null hypothesis H0 : ψ = ψ0.

1. Derive the asymptotic linear form of
√

nEn[sψ(ψ̂, λ̃,X)], and based on
this result construct a QF test.

2. Give a necessary and sufficient condition for this QF test to be regular.
3. Show that, if this QF test is regular and r = s, then it is asymptotically

efficient.

11.17. Let X1, . . . , Xn be an i.i.d. sample from a distribution in {Pθ : θ ∈ Θ},
where Θ ∈ R

p. Consider testing the implicit hypothesis H0 : h(θ0) = 0 versus
H1 : h(θ0) �= 0 where h is a mapping from Θ to R

r. Let θ̂ be the global MLE
and θ̃ be the MLE subject to the constraint h(θ) = 0. Suppose the conditions
in Theorem 11.8 are satisfied.

1. Derive the asymptotic linear form of
√

n(θ̂ − θ̃) under θ0.
2. Based on part 1 construct a QF test, and derive its asymptotic distribution

under Pn(δ).
3. Is this QF test asymptotically efficient?

11.18. Prove the implication in (11.20).

11.19. In the special case where θ = (ψT , λT )T and h(θ) = ψ, prove the
following statements:

1. the first equality in (11.19) reduces to

En[sψ(ψ0, λ̃,X)] = En[sψ·λ(θ0,X)] + oP (n−1/2).

2. the second equality in (11.19) reduces to

λ̃ = λ0 + I−1
λλ En[sλ(θ0,X)] + oP (n−1/2)

3. the efficient information I(H) in Definition 11.9 reduces to Iψ·λ.
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4. the efficient score s(H) in Definition 11.9 reduces to sψ·λ.

11.20. Let 
(θ,X) be the function defined in (11.53). Show that

∂
(θ,X)/∂θ = g(θ,X).

11.21. Suppose that (X1, Y1), . . . , (Xn, Yn) are i.i.d. random vectors with an
unknown p.d.f. fθ(x, y), where θ ∈ Θ ∈ R

p. Suppose the parametric forms of
the conditional mean and variance are given:

Eθ(Y |X) = μθ(X), varθ(Y |X) = V (μθ(X)),

for some known functions μ(·) and V (·). Consider the class of estimating
equations of the form aθ(X)(Y − μθ(X)). Recall from Section 9.2 that the
optimal estimating function among this class is

g∗(θ,X, Y ) =
∂μθ(X)

∂θ
× Y − μθ(X)

V (μθ(X))
.

This is a special case of the optimal estimating equation in Section 9.2 be-
cause the function V here is assume to depend on θT X through μ. Suppose
θ = (ψT , λT )T , where ψ ∈ R

r is the parameter of interest and λ ∈ R
r is the

nuisance parameter. We are interested in testing H0 : ψ = ψ0. Assume regular-
ity conditions such as differentiability, integrability and stochastic continuity
as appropriate.

1. Let θ̂ is a consistent solution to En[g∗(θ,X, Y )] = 0, and λ̃ a consistent
solution to En[g∗λ(ψ0, λ,X)] = 0. Find the asymptotic linear forms of√

n(θ̂ − θ0) and
√

n(θ̃ − θ0).
2. For a fixed vector a ∈ Θ, let 
(μ, Y ) be the function


(μ, Y ) =
∫ μ

a

Y − ν

V (ν)
dν,

and let

Tn = 2n{En[
(μθ̂(X), Y )] − En[
(μθ̃(X), Y )]},

where θ̃ = (ψT
0 , λ̃)T . Show that Tn is a QF test and derive its asymptotic

distribution under Pn(δ).

11.22. Under the setting of Problem 11.21, assume that

varθ(Y |X) = V (θT X).

The difference from Problem 11.21 is that, here, we do not assume V (·) de-
pends on θT X through μ(θT X). In this case, the quasi score function

g∗(θ,X, Y ) =
∂μT (θT X)

∂θ

Y − μ(θT X)
V (θT X)
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need not be a conservative estimating equation. For testing H0 : ψ = ψ0, let
θ̂ be a consistent solution to En[g∗(θ,X, Y )] = 0, and λ̃ a consistent solution
to En[g∗(ψ0, λ,X, Y )] = 0. Let

c(θ, η) =
μ(ηT X) − μ(θT X)

V (θT X)
[Y − μ(θT X)].

and
C(θ, η) = nEn[c(θ, η) − c(η, θ)].

Show that C(θ̃, θ̂) is a QF test, and derive its asymptotic distribution under
Pn(δ).

11.23. Prove Theorem 11.15.

11.24. Suppose that X1, . . . , Xn are i.i.d. with p.d.f. fθ(x), where θ ∈ Θ ⊆ R
p.

Let g : Θ × ΩX → R
p be an unbiased and Pθ-square-integrable function. For

an integer 1 ≤ r < p, let h : Θ �→ R
r be a differentiable function. We are

interested in testing the hypothesis

H0 : h(θ) = 0

based on the estimating equation g(θ, x). For convenience, and without loss of
generality, assume that g is in its canonical form. Let H(θ) = ∂hT (θ)/∂θ, and
suppose it has full column rank for all θ ∈ Θ. Let Ig(θ) be the information
contained in g(θ,X) and assume that it is nonsingular for all θ ∈ Θ. Let

I(H),g = [HT (θ)I−1
g (θ)H(θ)]−1

g(H)(θ,X) = I(H),g(θ)HT (θ)I−1(θ)g(θ,X).

Let θ̂ be a consistent solution to En[g(θ,X)] = 0 and θ̃ a consistent solution
to En[g(θ,X)] = 0 subject to h(θ) = 0. Let

Wn(g) = nhT (θ̂)I(H),g(θ̂)h(θ̂)

Rn(g) = nEn[gT (θ̃, X)]I−1
g (θ̃)En[g(θ̃, X)].

Show that Wn(g) and Rn(g) are QF test, derive their asymptotic quadratic
forms, and their asymptotic distributions under Pn(δ).

11.25. Under the setting of Problem 11.10, suppose we want to test the hy-
pothesis H0 : h(θ) = 0 based on an estimating equation g(θ,X). Suppose g is
in its canonical form. Let θ̂ be a consistent solution to En[g(θ,X)] = 0 and θ̃
be a consistent solution to En[g(θ,X)] = 0 subject to h(θ) = 0. Show that

n(θ̂ − θ̃)T En[g(θ̃, X)]

is a regular QF test for testing H0 : h(θ) = 0, and derive its asymptotic
distribution under Pn(δ).
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Symbols
L2 space, 224
L2-loss function, 173
S refines T , 40
α-Neyman, 101
α-similar test, 100
δ-method, 218
σ-algebra, 2
σ-field, 1√

n-consistent estimate, 275
n-dimensional Euclidean space, 225
Wilks’s likelihood ratio test, 331

A
absolutely continuous, 8, 31
action space, 162
admissibility, 164
almost everywhere, 6
almost everywhere convergence, 204
analytic function, 42
asymptotic efficiency, 275
asymptotic normality, 237
asymptotically efficient estimator, 275
asymptotically efficient QF test, 341
asymptotically linear, 278
Augmented LAN, 312

B
Bayes risk, 163
Bayes rule, 163
Bayes theorem, 137
Bayesian analysis, 135
Bayesian approach, 135

Bayesian statistical inference, 162
Bayesian sufficiency, 140
Beta prime distribution, 198
bivariate normal distribution, 133
block matrix, 281
Borel-Cantelli Lemma, 204
Bounded Convergence Theorem, 11
bounded in probability, 220
bracket [�, u], 244
Brouwer’s Fixed Point Theorem, 240

C
canonical form, 363
Cauchy sequence, 226
Central Limit Theorem, 215
chain, 32
characteristic function, 211
Chebyshev’s inequality, 204
check function, 176
classification, 162
classifier, 162
completeness, 31
conditional

density, 22
distribution, 22
expectation, 14
probability, 14

Conditional expectation, 18
conditional inference, 261
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conjugate pair, 7
conjugate prior, 144
consistency, 237
consistent estimate, 240
contiguous, 296
Continuous Mapping Theorem, 209
convergence in distribution, 206, 207
convex

function, 7
set, 7

convex hull, 146
Convolution Theorem, 295, 306
Cramér-Rao lower bound, 31
Cramér-Wold device, 211
credible set, 180
critical region, 62
cumulative distribution function, 4

D
decision rule, 162
definite integral, 5
degenerate probability, 7
Dirac, 184
Dominated Convergence Theorem, 10
dominated family, 32
Dynkin’s π − λ theorem, 23

E
efficient estimator, 261
Empirical Bayes, 173, 193
Empirical Bayes procedure, 193
equivalence relation, 226
equivalent class, 226
estimating equation, 261
Euclidean norm, 203
Euclidean space, 2
event, 1
expectation, 6
expectation of loss, 162
exponential family, 31

F
Fatou’s Lemma, 10
Fisher

consistency, 53
consistent estimate, 53
information, 31

Fisher information, 239
Fisher scoring algorithm, 276

Fisher’s linear discriminant function,
197

Fisher-Neyman factorization theorem,
37

fixed point theorem, 240
frequentist risk, 163
Frobenius norm, 254
Fubini’s Theorem, 15, 16

G
Gaussian random variable, 69
GEE, 268
generalized Bayes rule, 164
Generalized Estimating Equations, 268
Generalized Linear Models, 261
generalized maximum likelihood

estimator, 176
Generalized Method of Moments, 261
Generalized Neyman-Pearson Lemma,

79
geometric median, 176
Glivenko-Cantelli Theorem, 245
Gram matrix, 232

H
Hölder’s inequality, 7
Haar measure, 156
Hadamard product, 171
highest posterior density credible set,

180
Hilbert space, 20, 223, 227
Hodges-Lehmann estimate, 318
homogeneous family, 34
HPD credible set, 180
hypothesis

alternative, 62
composite, 64
null, 62
one-sided, 61
simple, 64
statistical, 62
two-sided, 61

I
i.i.d., 205
idempotent, 231
identifiable parametric family, 34
improper prior, 154
inadmissible, 164
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independent identically
distributed, 205

inequality
Cauchy-Schwarz, 44
Cramér-Rao, 44
Rao-Blackwell, 50

information bound, 261
information contained in, 263
information identity, 239
inner product matrix, 228
inner product space, 225
insensitive to λ to the first order, 280
integrable, 5
intermediate value theorem, 65
invariant, 114
inverse chi-square distribution, 147
inverse Wishart distribution, 152
irregular estimate, 317

J
James-Stein estimator, 192
Jeffreys prior, 161
joint density, 23
joint posterior distribution, 151

K
Kolmogorov’s SLLN, 206

L
Lagrangian, 344
Lagrangian multiplier, 344
Lagrangian multiplier test, 350
Laplace transformation, 43
Le Cam-Hajek convolution theorem,

305
least squares estimate, 262
left Haar measure, 156
left transformation, 157
level of a test, 63
level of significance, 63
likelihood, 136, 238
likelihood equation, 238
likelihood function, 54, 137
likelihood inequality, 34
likelihood ratio, 69
Lindeberg condition, 216
Lindeberg sequence, 216
Lindeberg Theorem, 211
Lindeberg-Levy Theorem, 216

linear discriminant analysis, 189
linear manifold, 230
linear operation, 230
linear regression model, 176
linear space, 263
linear subspace, 230
Lipschitz with dominating slope, 58
Local Asymptotic Normality, 295
location transformation group, 157
location-scale transformation group,

157
Loewner ordering, 229
log likelihood, 238
longitudinal data analysis, 261
loss function, 162
lower semi-continuous function, 209
Lyapounov Theorem, 216

M
Mann-Wald notation, 220
marginal density, 23
marginal distribution, 136
marginal posterior distribution, 151
matrix

positive definite, 44
positive semidefinite, 44

Maximum Likelihood Estimate, 237
maximum likelihood estimator, 53
measurable

function, 3
mapping, 3
partition, 4
set, 2
space, 2
statement, 8

measurable rectangle, 15
measure, 2, 184

σ-finite, 2
counting, 3
Lebesgue, 2
probability, 2

measure space, 2
median, 174
method of moment, 53, 262
minimal sufficient statistic, 40
Minkowski’s inequality, 7
mixture, 146
MLE, 54
model, 34
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moment generating function, 94
Monotone Convergence Theorem, 9
monotone likelihood ratio (MLR), 70
Most Powerful (MP) test, 64
MP, 64
multivariate Gamma function, 152
multivariate Normal likelihood, 152
mutually contiguous, 296

N
Newton-Raphson algorithm, 91, 275
Newton-Raphson estimate, 275
Neyman structure, 101
Neyman’s C(α) test, 336
Neyman-Pearson Lemma, 61
NICH family, 148
NIW family, 153
noninformative prior, 160
nonrandomized test, 62
nonregular family, 125
norm, 226
Normal Inverse Chi-square distribution,

148
Normal Inverse Wishart distribution,

152
normed space, 226
nuisance parameters, 41, 107

O
optimal

estimating equation, 263
estimator, 50
tests, 61

optimal estimating equation, 261
optimality, 237
ordering

Louwner’s, 44
positive definite, 44
positive semidefinite, 44

orthogonal projection, 231
orthogonal vectors, 230
outcome, 1

P
parallelogram law, 230
parametric family, 34
parametric family of probability

measures, 74
Pitman efficiency, 342

Portmanteau theorem, 208
posterior density, 137
posterior distribution, 136
posterior expected loss, 163
posterior geometric median, 176
posterior mean squared error, 179
posterior median, 174
power function, 63
power of the test, 62
pre-Hilbert space,, 224
prior density, 137
prior distribution, 136
probability, 1

density, 13
probability space, 2
product measure, 15
projected score method, 263
projection, 230
projection operator, 231
Pythagaras theorem, 230

Q
QF test, 330
quadratic discriminant analysis, 189
Quadratic Form test, 330
quasi likelihood estimate, 262, 267
quasi likelihood method, 261
quasi score function, 267
quasilikelihood function, 364
quotient space, 226

R
Radon-Nikodym

derivative, 14
Theorem, 13

random element, 4
Rao’s score test, 336
real analytic function, 42
regular estimate, 306
regular test, 338
rejection region, 62
relative compactness, 212
right Haar measure, 156
right transformation, 157
risk, 162

S
scalar parameter, 61
scale transformation group, 157
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score equation, 238
score function, 45, 238
self-adjoint linear operator, 231
significance level, 63
size of the test, 62
Skorohod Theorem, 208
Slutsky’s theorem, 211
square integrable function, 44
stacked marginal posterior medians, 176
standard normal random variable, 91
statement holds modulo μ, 8
statistic

ancillary, 37
bounded complete, 40
complete, 37
sufficient, 37

statistical decision theory, 162
Stein’s estimator, 173
Stein’s paradox, 192
stochastic smallness, 212
strictly unbiased test, 130
strong law of large numbers, 205
strongly consistent estimate, 240
sufficiency, 31

minimal, 31
sufficient dimension reduction, 190
superefficient estimate, 317

T
tightness, 212
Tonelli’s Theorem, 15
translation group, 115
type I error, 62
type II error, 62

U
UMAU confidence sets, 129
UMP α-similar, 100
UMP test, 67
UMP-α test, 68
UMPU test, 75
UMPU-α, 77
UMPU-α test, 100
UMVUE, 50
unbiased confidence set, 129
unbiased estimating equation, 262
unbiased estimator, 31
unbiasedness of the score, 239
Uniformly Minimum Variance Unbiased

Estimator, 50
Uniformly Most Accurate, 129
Uniformly Most Powerful test, 67
uniformly most powerful unbiased, 41
Uniformly Most Powerful Unbiased

test, 77
upper semi-continuous function, 209

V
variance, 6
vector space, 223
vectorization operator, 170

W
Wald test, 335
weak convergence, 207
Weak Law of Large Numbers, 203
weakly consistent estimate, 240
Wilks’s test, 331
Wishart distribution, 152
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