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Introduction

Congratulations on your decision to explore deep learning and the exciting world of 

anomaly detection using deep learning.

Anomaly detection is finding patterns that do not adhere to what is considered as 

normal or expected behavior. Businesses could lose millions of dollars due to abnormal 

events. Consumers could also lose millions of dollars. In fact, there are many situations 

every day where people’s lives are at risk and where their property is at risk. If your bank 

account gets cleaned out, that is a problem. If your water line breaks, flooding your 

basement, that’s a problem. If all flights get delayed in the airport, causing long delays, 

that’s a problem. You might have been misdiagnosed or not diagnosed at all with a 

health issue, which is a very big problem directly impacting your well-being.

In this book, you will learn how anomaly detection can be used to solve business 

problems. You will explore how anomaly detection techniques can be used to address 

practical use cases and address real-life problems in the business landscape. Every 

business and use case is different, so while we cannot copy-paste code and build a 

successful model to detect anomalies in any dataset, this book will cover many use cases 

with hands-on coding exercises to give an idea of the possibilities and concepts behind 

the thought process.

We choose Python because it is truly the best language for data science with a 

plethora of packages and integrations with scikit-learn, deep learning libraries, etc.

We will start by introducing anomaly detection and then we will look at legacy 

methods of detecting anomalies used for decades. Then we will look at deep learning to 

get a taste of it.

Then we will explore autoencoders and variational autoencoders, which are paving 

the way for the next generation of generative models.

We will explore RBM (Boltzmann machines) as way to detect anomalies. Then we’ll 

look at LSTMs (long short-term memory) models to see how temporal data can be 

processed.

We will cover TCN (Temporal Convolutional Networks), which are the best in 

class for temporal data anomaly detection. Finally, we will look at several examples of 

anomaly detection in various business use cases.
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In addition, we will also cover Keras and PyTorch, the two most popular deep 

learning frameworks in detail in the Appendix chapters.

You will combine all this extensive knowledge with hands-on coding using Jupyter 

notebook-based exercises to experience the knowledge first hand and see where you can 

use these algorithms and frameworks.

Best of luck and welcome to the world of deep learning!

Introduction



1
© Sridhar Alla, Suman Kalyan Adari 2019 
S. Alla and S. K. Adari, Beginning Anomaly Detection Using Python-Based Deep Learning,  
https://doi.org/10.1007/978-1-4842-5177-5_1

CHAPTER 1

What Is Anomaly 
Detection?
In this chapter, you will learn about anomalies in general, the categories of anomalies, 

and anomaly detection. You will also learn why anomaly detection is important and how 

anomalies can be detected and the use case for such a mechanism.

In a nutshell, the following topics will be covered throughout this chapter:

•	 What is an anomaly?

•	 Categories of different anomalies

•	 What is anomaly detection?

•	 Where is anomaly detection used?

�What Is an Anomaly?
Before you get started with learning about anomaly detection, you must first understand 

exactly what you are targeting. Generally, an anomaly is an outcome or value that 

deviates from what is expected, but the exact criteria for what determines an anomaly 

can vary from situation to situation.

�Anomalous Swans
To get a better understanding of what an anomaly is, let’s take a look at some swans 

sitting by a lake (Figure 1-1).
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Say you want to observe these swans and make assumptions about the color of the 

swans. Your goal is to determine the normal color of swans and to see if there are any 

swans that are of a different color than this (Figure 1-2).

Figure 1-1.  A couple of swans by a lake

Chapter 1  What Is Anomaly Detection?
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More swans show up, and given that you haven’t seen any swans that aren’t white, 

it seems reasonable to assume that all swans at this lake are white. Let’s just keep 

observing these swans, shall we?

Figure 1-2.  More swans show up, and they’re all white swans

Chapter 1  What Is Anomaly Detection?
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What’s this? Now you see a black swan show up (Figure 1-3), but how can this be? 

Considering all of your previous observations, you’ve seen enough of the swans to 

assume that the next swan would also be white. However, the black swan you see defies 

that entirely, making it an anomaly. It’s not really an outlier where you could have a 

really big white swan or really small white swan, but it’s a swan that’s entirely a different 

color, making it the anomaly. In this scenario, the overwhelming majority of swans are 

white, making the black swan extremely rare.

In other words, given a swan by the lake, the probability of it being black is very 

small. You can explain your reasoning for labeling the black swan as an anomaly with 

one of two approaches, though you aren’t just limited to these two approaches.

First, given that a vast majority of swans observed at this particular lake are white, 

you can assume that, through a process similar to inductive reasoning, the normal color 

for a swan here is white. Naturally, you would label the black swan as an anomaly purely 

based on your prior assumption that all swans are white, considering that you’ve only 

seen white swans thus far.

Another way to look at why the black swan is an anomaly is through probability. 

Assuming that there is a total of 1000 swans at this giant lake with only two black swans, 

Figure 1-3.  A black swan appears

Chapter 1  What Is Anomaly Detection?
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the probability of a swan being black is 2/1000, or 0.002. Depending on the probability 

threshold, meaning the lowest probability for an outcome or event that will be accepted 

as normal, the black swan could be labeled as anomalous or normal. In your case, you 

will consider it an anomaly because of its extreme rarity at this lake.

�Anomalies as Data Points
Let’s extend this same concept to a real-world application. In the following example, 

you will take a look a factory that produces screws and attempt to determine what an 

anomaly could be in this context. The factory produces massive batches of screws all 

at once, and samples from each batch are tested to ensure that a certain level of quality 

is maintained. For each sample, assume that the density and tensile strength (how 

resistant the screw is to breaking under stress) is measured.

Figure 1-4 is an example graph of various sample batches with the dotted lines 

representing the range of densities and tensile strengths allowed.

Figure 1-4.  Density and tensile strength in sample batches of screws

Chapter 1  What Is Anomaly Detection?
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The intersections of the dotted lines create several different regions containing data 

points. Of interest is the bounding box (solid lines) created from the intersection of both 

dotted lines since it contains the data points for samples deemed acceptable (Figure 1-5). 

Any data point outside of that specific box will be considered anomalous.

Now that you know what points are and aren’t acceptable, let’s pick out a sample 

from a new batch of screws and check its data to see where it falls on the graph  

(Figure 1-6).

Figure 1-5.  Data points are identified as good or anomaly based on their 
location

Chapter 1  What Is Anomaly Detection?
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The data for this sample screw falls within the acceptable range. That means that this 

batch of screws is good to use since its density and tensile strength are appropriate for 

use by the consumer. Now let’s look at a sample from the next batch of screws and check 

its data (Figure 1-7).

Figure 1-6.  A new data point representing the new sample screw is generated, 
with the data falling within the bounding box

Chapter 1  What Is Anomaly Detection?
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The data falls far outside the acceptable range. For its density, the screw has abysmal 

tensile strength and is unfit for use. Since it has been flagged as an anomaly, the factory 

can investigate the reasons for why this batch of screws turned out to be brittle. For a 

factory of considerable size, it is important to hold a high standard of quality as well 

as maintain a high volume of steady output to keep up with consumer demand. For a 

monumental task like that, automation to detect any anomalies to avoid sending out 

faulty screws is essential and has the benefit of being extremely scalable.

So far, you have explored anomalies as data points that are either out of place, in the 

case of the black swan, or unwanted, in the case of faulty screws. So what happens when 

you introduce time as a new variable?

Figure 1-7.  A new data point is generated for another sample, but it falls outside 
the bounding box

Chapter 1  What Is Anomaly Detection?
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�Anomalies in a Time Series
With the introduction of time as a variable, you are now dealing with a notion of 

temporality associated with the data sets. What this means is that certain patterns 

can emerge based on the time stamp, so you can see monthly occurrences of some 

phenomenon.

To better understand time-series based anomalies, let’s take a random person and 

look into his/her spending habits over some arbitrary month (Figure 1-8).

Assume the initial spike in expenditures at the start of the month is due to the 

payment of bills like rent and insurance. During the weekdays, our person occasionally 

eats out, and on the weekends goes shopping for groceries, clothes, or just various items.

These expenditures can vary from month to month from the influence of various 

holidays. Let’s take a look at November, when you can expect a massive spike in 

purchases on Black Friday (Figure 1-9).

Figure 1-8.  Spending habits of a person over the course of a month

Chapter 1  What Is Anomaly Detection?
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As expected, there are a lot of purchases made on Black Friday, some of them quite 

expensive. However, this spike is expected since it is a common trend for many people. 

Now assume that unfortunately, your person had his/her credit card information stolen, 

and the criminals responsible for it have decided to purchase various items of interest to 

them. Using the same month as in the first example (Figure 1-8), Figure 1-10 is a possible 

graph showcasing what could happen.

Figure 1-9.  Spending habits for the same person during the month of November

Chapter 1  What Is Anomaly Detection?
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Because of the record of purchases for the user from a previous year, the sudden 

influx in purchases would be flagged as anomalies given the context. Such a cluster of 

purchases might be normal for Black Friday or before Christmas, but in any other month 

without a major holiday it might look out of place. In this case, your person might be 

contacted by the corresponding officials to confirm if they made the purchase or not.

Some companies might even flag purchases that follow normal societal trends. What 

if that TV wasn’t really bought by your person on Black Friday? In that case, company 

software can ask the client directly through a phone app, for example, whether or not  

he/she actually bought the item in question, allowing for some additional protection 

against fraudulent purchases.

�Taxi Cabs
Similarly, you can look at the data for taxi cab pickups and drop-offs over time for a 

random city and see if you can detect any anomalies. On an average day, the total 

number of pickups can look somewhat like Figure 1-11.

Figure 1-10.  Graph of purchases for the person during the same month as in 
Figure 1-8

Chapter 1  What Is Anomaly Detection?
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From the graph, you see that there’s a bit of post-midnight activity that drops off to 

near nothing during the late-night hours. However, it picks up suddenly around morning 

rush hour and remains high until the evening, when it peaks during evening rush hour. 

This is essentially what an average day looks like.

Let’s expand the scope out a bit more to gain some perspective of passenger traffic 

throughout the week; see Figure 1-12.

Figure 1-11.  Graph of the number of pickups for a taxi company throughout 
the day

Chapter 1  What Is Anomaly Detection?
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As expected, most of the pickups occur during the weekday when commuters 

must get to and from work. On the weekends, a fair amount of people still go out to get 

groceries or just go out somewhere for the weekend.

On a small scale like this, causes for anomalies are anything that prevents taxis from 

operating or incentivizes customers not to use a taxi. For example, say that a terrible 

thunderstorm hits on Friday. Figure 1-13 shows that graph.

Figure 1-12.  Graph of the number of pickups for a taxi company throughout 
the week

Chapter 1  What Is Anomaly Detection?
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The presence of the thunderstorm could have influenced some people to stay 

indoors, resulting in a lower number of pickups than usual for a weekday. However, 

these sorts of anomalies are usually too small scale and to have any noticeable effect on 

the overall pattern.

Let’s take a look at the data over the entire year; see Figure 1-14.

Figure 1-13.  Graph of the number of pickups for a taxi company throughout the 
week, with a heavy thunderstorm on Friday

Figure 1-14.  Number of pickups for a taxi company throughout the year

Chapter 1  What Is Anomaly Detection?
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The dips occur around the winter months when snowstorms are expected. Sure 

enough, these are regular patterns that can be observed at similar times every year,  

so they are not an anomaly. But what happens when a polar vortex descends sometime 

in April?

As you can see in Figure 1-15, the vortex unleashes several intense blizzards on the 

imaginary city, severely slowing down all traffic in the first week and burdening the city 

in the following two weeks. Comparing this graph from the one above, there’s a clearly 

defined anomaly in the graph caused by the polar vortex for the month of April. Since 

this pattern is extremely rare for the month of April, it would be flagged as an anomaly.

�Categories of Anomalies
Now that you have some perspective of what anomalies can be in various situations, you 

can see that they generally fall into these broad categories:

•	 Data point-based anomalies

•	 Context-based anomalies

•	 Pattern-based anomalies

Figure 1-15.  Number of pickups for a taxi company throughout the year, with a 
polar vortex hitting the city in April

Chapter 1  What Is Anomaly Detection?
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�Data Point-Based Anomalies
Data point-based anomalies can seem comparable to outliers in a set of data points. 

However, anomalies and outliers are not the same thing. Outliers are data points that are 

expected to be present in the data set and can be caused by unavoidable random errors 

or from systematic errors relating to how the data was sampled. Anomalies are outliers 

or other values that one doesn’t expect to exist. These types of anomalies can be found 

wherever a data set of values exists.

An example of this is a data set of thyroid diagnostic values, where the majority of 

the data points are indicative of normal thyroid functionality. In this case, anomalous 

values represent sick thyroids. While they are not necessarily outliers, they have a low 

probability of existing when taking into account all the normal data.

You can also detect individual purchases totaling to excessive amounts and label 

them as anomalies since, by definition, they are not expected to occur or have a very low 

probability of occurrence. In this case, they are labeled as fraud transactions, and the 

card holder is contacted to ensure the validity of the purchase.

Basically, you can say this about the difference between anomalies and outliers: you 

should expect there to be outliers in a set of data, but not anomalies.

�Context-Based Anomalies
Context-based anomalies consist of data points that might seem normal at first, but 

are considered anomalies in their respective contexts. For example, you might expect 

a sudden surge in purchases near certain holidays, but these purchases could seem 

out of place in the middle of August. As you saw in the example earlier, the person who 

made a high volume of purchases towards Black Friday was not flagged because it is 

typical for people to do so around that time. However, if the purchases were made in a 

month where it is out of place given previous purchase history, it would be flagged as 

an anomaly. This might seem similar to the example brought up for data point-based 

anomalies; the distinction here is that the individual purchase does not have to be 

expensive. If your person never buys gasoline because he/she owns an electric car, 

sudden purchases of gasoline would be out of place given the context. Buying gasoline is 

quite a normal thing to do for everyone, but in this context, it is an anomaly.

Chapter 1  What Is Anomaly Detection?
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�Pattern-Based Anomalies
Pattern-based anomalies are patterns and trends that deviate from their historical 

counterparts. In the taxi cab example, the pickup counts for the month of April were 

pretty consistent with the rest of the year. However, once the polar vortex hit, the numbers 

tanked visibly, defining a huge drop in the graph that was labeled as an anomaly.

Similarly, when monitoring network traffic in the workplace, there are expected 

patterns of network traffic that are formed from constant monitoring of data over several 

months or even years for some companies. When an employee attempts to download 

or upload large volumes of data, it will generate a certain pattern in the overall network 

traffic flow that could be considered anomalous if it deviates from the employee’s usual 

behavior.

If an external hacker decided to DDOS the company’s website (DDOS, or a 

distributed denial-of-service attack, is an attempt to overwhelm the server that handles 

network flow to a certain website in an attempt to bring the entire website down or 

stop its functionality), every single attempt would register as an unusual spike in 

network traffic. All of these spikes are clearly deviants from normal traffic and would be 

considered anomalous.

�Anomaly Detection
With a better understanding of the different types of anomalies you can encounter, you 

can now proceed to start creating models to detect them. Before you do that, there are a 

couple approaches you can take, although you are not limited to just these methods.

Recall the reasoning for labeling the swan as an anomaly. One of the reasons was 

that since all the swans you saw thus far were white, the black swan was the anomaly. 

Another reason was that since the probability of a swan being black was very low, it was 

an anomaly since you didn’t expect that outcome.

The anomaly detection models you will explore in this book will follow these 

approaches by either training on normal data to classify anomalies, or classifying 

anomalies by their probabilities if they are below a certain threshold. However, in one 

of the classes of models that you choose, the anomalies and normal data points will 

both labeled as such, so you will basically be told what swans are normal and what 

swans are anomalies.

Chapter 1  What Is Anomaly Detection?



18

Finally, let’s explore anomaly detection. Anomaly detection is the process in 

which an advanced algorithm identifies certain data or data patterns to be anomalous. 

Heavily related to anomaly detection are the tasks of outlier detection, noise removal, 

and novelty detection. In this book, you will explore all of these options as they are all 

basically anomaly detection methods.

�Outlier Detection
Outlier detection is a technique that aims to detect anomalous outliers within a given 

data set. As discussed, three methods that can be applied to this situation are to train 

only on normal data to identify anomalies by a high reconstruction error, to model a 

probability distribution in which anomalies are labeled based on their association with 

really low probabilities, or to train a model to recognize anomalies by teaching it what an 

anomaly looks like and what a normal point looks like.

Regarding the high reconstruction error, think of the model as having trouble 

labeling an anomaly because it is odd compared to all the normal data points that it has 

seen. Just like how the black swan is really different based on your initial assumption that 

all swans are white, the model perceives this anomalous data point as “different” and has 

a harder time interpreting it.

�Noise Removal
In noise removal, there is constant background noise in the data set that must be filtered 

out. Imagine that you are at a party and you are talking to your friend. There is a lot of 

background noise, but your brain focuses on your friend’s voice and isolates it because 

that’s what you want to hear. Similarly, the model learns an efficient way to represent the 

original data so that it can reconstruct it without the anomalous interference noise.

This can also be a case where an image has been altered in some form, such as by 

having perturbations, loss of detail, fog, etc. The model learns an accurate representation 

of the original image and outputs a reconstruction without any of the anomalous 

elements in the image.

�Novelty Detection
Novelty detection is very similar to outlier detection. In this case, a novelty is a data 

point outside of the training set, the data set the model was exposed to, that was shown 

Chapter 1  What Is Anomaly Detection?
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to the model to determine if it is an anomaly or not. The key difference between novelty 

detection and outlier detection is that in outlier detection, the job of the model is to 

determine what is an anomaly within the training data set. In novelty detection, the 

model learns what is a normal data point and what isn’t, and tries to classify anomalies 

in a new data set that it has never seen before.

�The Three Styles of Anomaly Detection
It is important to note that there are three overarching “styles” of anomaly detection. 

They are

•	 Supervised anomaly detection

•	 Semi-supervised anomaly detection

•	 Unsupervised anomaly detection

Supervised anomaly detection is a technique in which the training data has labels 

for both anomalies and for normal data points. Basically, you tell the model during the 

training process if a data point is an anomaly or not. Unfortunately, this isn’t the most 

practical method of training, especially because the entire data set needs to be processed 

and each data point needs to be labeled. Since supervised anomaly detection is basically 

a type of binary classification task, meaning the job of the model is to categorize data 

under one of two labels, any classification model can be used for the task, though not 

every model can attain a high level of performance. An example of this can be seen in 

Chapter 7 with the temporal convolutional network.

Semi-supervised anomaly detection involves partially labeling the training data 

set. In the context of anomaly detection, this can be a case where only the normal data 

is labeled. Ideally, the model will learn what normal data points look like, so that the 

model can flag anomalous data points as anomalies since they differ from normal data 

points. Examples of models that can use semi-supervised learning for anomaly detection 

include autoencoders, which you will learn about in Chapter 4.

Unsupervised anomaly detection, as the name implies, involves training the model 

on unlabeled data. After the training process, the model is expected to know what 

data points are normal and what points are anomalous within the data set. Isolation 

forest, a model you will explore in Chapter 2, is one such model that can be used for 

unsupervised anomaly detection.

Chapter 1  What Is Anomaly Detection?
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�Where Is Anomaly Detection Used?
Whether we realize it or not, anomaly detection is being utilized in nearly every facet 

of our lives today. Pretty much any task involving data collection of any sort could have 

anomaly detection applied to it. Let’s look at some of the most prevalent fields and topics 

that anomaly detection can be applied in.

�Data Breaches
In today’s age of big data, where huge volumes of information are stored about users 

in various companies, information security is vital. Any information breaches must 

be reported and flagged immediately, but it is hard to do so manually at such a scale. 

Data leaks can range from simple accidents such as losing a USB stick that contains a 

company’s sensitive information to employees intentionally sending data to an outside 

party to intrusion attacks that attempt to gain access to the database. You must have 

heard of some high-profile data leaks, such as the Facebook security breach, the iCloud 

data breach, and the Google security breach where millions of passwords were leaked. 

All of those companies operate on an international scale, requiring automation to 

monitor everything in order to ensure the fastest response time to any breach.

The data breaches might not even need network access. For example, an employee 

could email an outside party or another employee with connections to rival companies 

about travel plans to meet up and exchange confidential information. Anomaly 

detection models can sift through and process employee emails to flag any suspicious 

employees. The software can pick up key words and process them to understand the 

context and decide whether or not to flag an employee’s email for review.

When employees try to upload data to another connection, the anomaly detection 

software can pick up on the unusual flow of data while monitoring network traffic and 

flag the employee. An important part of an employee’s regular work day would be to 

pull and push to a code repository, so one might expect regular spikes in data transfer in 

these cases. However, the software takes into account lots of variables, including who the 

sender is, who the recipient is, how the data is being sent (in erratic intervals, all at once, 

or spread out over time). In either case, something won’t add up, which the software will 

pick up and then it will flag the employee.

The key benefit to using anomaly detection in the workspace is how easy it is to scale 

up. These models can be used for small companies as well as large-scale international 

companies.
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�Identity Theft
Identity theft is another common problem in today’s society. Thanks to the development 

of online services allowing for ease of access when purchasing items, the volume of 

credit card transactions that take place every day has grown immensely. However, 

this development also makes it easier to steal credit card information or bank account 

information, allowing the criminals to purchase anything they want if the card isn’t 

deactivated or if the account isn’t secured again. Because of the huge volume of 

transactions, it can get hard to monitor everything. However, this is where anomaly 

detection can step in and help, since it is highly scalable and can help detect fraud 

transactions the moment the request is sent.

As you saw earlier, context matters. If a transaction is made, the software will take 

into account the card holder’s previous history to determine if it should be flagged or not. 

Obviously, a high value purchase made suddenly would raise alarms immediately, but 

what if the criminals were smart enough to realize that and just make a series of purchases 

over time that won’t put a noticeable hole in the card holder’s account? Again, depending 

on the context, the software would pick up on these transactions and flag them again.

For example, let’s say that someone’s grandmother was recently introduced to 

Amazon and to the concept of buying things online. One day, unfortunately, she 

stumbles upon an Amazon lookalike and enters her credit card information. On the 

other side, some criminal takes it and starts buying random things, but not all at once 

so as not to raise suspicion–or so he thought. The identify theft insurance company 

starts noticing some recent purchases of batteries, hard drives, flash drives, and other 

electronic items. While these purchases might not be that expensive, they certainly 

stand out when all the purchases made by the grandmother up until now consisted 

of groceries, pet food, and various decoration items. Based on this previous history, 

the detection software would flag the new purchases and the grandmother would be 

contacted to verify these purchases. These transactions can even be flagged as soon 

as an attempt to purchase is made. In this case, either the location or the transactions 

themselves would raise alarms and stop the transaction from being successful.

�Manufacturing
You explored a use case of anomaly detection in manufacturing. Manufacturing plants 

usually have a certain level of quality that they must ensure that their products meet 

before shipping them out. When factories are configured to produce massive quantities 
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of output at a near constant rate, it becomes necessary to automate the process of 

checking the quality of various samples. Similar to the screw example, manufacturing 

plants in real life might test to uphold the quality of various metal parts, tools, engines, 

food, clothes, etc.

�Networking
Perhaps one of the most important use cases that anomaly detection has is in 

networking. The internet is host to a vast array of various websites that are located 

all around the world. Unfortunately, due to the ease of access to the Internet, various 

individuals can access the Internet with nefarious purposes. Similar to the data leaks that 

were discussed earlier in the context of protecting company data, hackers can launch 

attacks on other websites as well to leak their information.

One such example is hackers attempting to leak government secrets through a 

network attack. With such sensitive information as well as the high volumes of expected 

attacks every day, automation is a necessary tool to help cybersecurity professionals deal 

with the attacks and preserve state secrets. On a smaller scale, hackers might attempt to 

breach individual cloud networks or a local area network and try to leak data. Even in 

smaller cases like this, anomaly detection can help detect network intrusion attacks as 

they happen and notify the proper officials. An example data set for network intrusion 

anomaly detection is the KDD Cup 1999 data set. This data set contains a large amount 

of entries that detail various types of network intrusion attacks as well as a detailed list of 

variables for each attack that can help a model identify each type of attack.

�Medicine
Moving on from networking, anomaly detection has a massive role to play in the field of 

medicine. For example, models can detect subtle irregularities in a patient’s heartbeat 

in order to classify diseases, or they can measure brainwave activity to help doctors 

diagnose certain conditions. Beyond that, they can help analyze raw diagnostic data for a 

patient’s organ and process it in order to quickly diagnose any possible problems within 

the patient, similarly to the thyroid example discussed earlier.

Anomaly detection can even be used in medical imagery to determine if a given 

image contains anomalous objects or not. For example, if a model was only exposed to 

MRI imagery of normal bones and was shown an image of a broken bone, it would flag 
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the new image as an anomaly. Similarly, anomaly detection can even be extended to 

tumor detection, allowing for the model to analyze every image in a full body MRI scan 

and look for the presence of abnormal growth or patterns.

�Video Surveillance
Anomaly detection also has uses in video surveillance, where anomaly detection 

software can monitor video feeds and help flag any videos that capture anomalous 

action. While this might seem dystopian, it can certainly help catch criminals or 

maintain public safety on busy streets or in cities. For example, this software could 

identify a mugging in a street at night as an anomalous event and alert authorities who 

can call in police officers. Additionally, it can detect unusual events at crossroads such as 

an accident or some unusual obstruction and immediately call attention to the footage.

�Summary
Generally, anomaly detection is utilized heavily in medicine, finance, cybersecurity, 

banking, networking, transportation, and manufacturing, but it is not just limited 

to those fields. For nearly every case imaginable involving data collection, anomaly 

detection can be put to use to help users automate the process of detecting anomalies 

and possibly removing them. Many fields in science can utilize anomaly detection 

because of the large volume of raw data collection that goes on. Anomalies that would 

interfere with the interpretation of results or otherwise introduce some sort of bias into 

the data could be detected and removed, provided that the anomalies are caused by 

systematic or random errors.

In this chapter, we discussed what anomalies are and why detecting anomalies can 

be very important to the data processing we have at our organizations.

In the next chapter, we will look at traditional statistical and machine learning 

algorithms for anomaly detection.
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CHAPTER 2

Traditional Methods 
of Anomaly Detection
In this chapter, you will learn about traditional methods of anomaly detection. You 

will also learn how various statistical methods and machine learning algorithms work 

and how they can be used to detect anomalies and how you can implement anomaly 

detection using several algorithms.

In a nutshell, the following topics will be covered throughout this chapter:

•	 A data science review

•	 The three styles of anomaly detection

•	 The isolation forest

•	 One-class support vector machine (OC-SVM)

�Data Science Review
It is important to understand some basic data science concepts in order for you to 

evaluate how well your model performs and to compare its performance with other 

models.

First of all, the goal in anomaly detection is to determine whether or not a given 

point is an anomaly or not. Essentially, you are labeling a data point x with a class y. 

Assume that in some context, you are trying to classify whether or not an animal tests 

positive (meaning yes) for some disease. If the animal is diseased and it tests positive, 

this case is a true positive. If the animal is healthy and the test shows negative (meaning 

it doesn’t have the disease), then it’s called a true negative. However, there are cases 
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where the test can fail. If the animal is healthy but the test says positive, this case is a 

false positive. If the animal is diseased but the test shows negative, this case is a false 
negative.

In statistics, there are similar terms to false positive and false negative: type I 
error and type II error. These errors are used in hypothesis testing where you have 

a null hypothesis (which usually says that there is no relation between two observed 

phenomena), and an alternate hypothesis (which aims to disprove the null hypothesis, 

meaning there is a statistically significant relation between the two observations).

A type I error is when the null hypothesis turns out to be true, but you reject it 

anyways in favor of the alternate hypothesis. In other words, a false positive, since you 

reject what turns out to be true to accept something that is false. A type II error is when 

the null hypothesis is accepted to be true (meaning you don’t reject the null hypothesis), 

but it turns out the null hypothesis is false, and that the alternate hypothesis is true. This 

is a false negative, since you accept what is false, but reject what is true.

For the context of the following definitions, assume that the condition is what you’re 

trying to prove. It could be something as simple as “this is animal sick.” The condition 

of the animal is either sick or healthy, and you’re trying to predict if it is sick or healthy. 

Here are some definitions:

•	 True positive: When the condition is true, and the prediction is  

also true

•	 True negative: When the condition is false, and the prediction is  

also false

•	 False positive: When the condition is false, but the prediction is true

•	 False negative: When the condition is true, but the prediction is false

Putting them together, you can form what is called a confusion matrix (Figure 2-1). 

One thing to note is that in the case of anomaly detection, you only need a 2x2 confusion 

matrix since data points are either anomalies or they are normal data.
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From the values in each of the four squares, you can derive values for accuracy, 

precision, and recall to gain a better understanding of how your model performs.

Here’s the confusion matrix with all the formulas (Figure 2-2):

Figure 2-1.  Confusion matrix
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•	 Precision is a measurement that describes how many of your true 

predictions actually turned out to be true. In other words, for all of 

your true predictions, how many did the model get right?

•	 Accuracy is a measurement that describes how many predictions 

you got right over the entire data set. In other words, for the entire 

data set, how many did the model correctly predict were positive  

and negative?

•	 Recall is a measurement that describes how many you predicted true 

for all data points that were actually true. In other words, for all of 

the true data points in the data set, how many of them did the model 

predict correctly?

Figure 2-2.  Precision, Accuracy and Recall
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From here, you can derive more values.

F1 Score is the harmonic mean of precision and recall. It’s a metric that can tell us 

how accurate the model is, since it takes into account both how well the model makes 

true predictions that are actually true, and how many of the total true predictions that 

the model correctly predicted.

	
F Score1

2
=

* *
+

Precision Recall

Precision Recall 	

The true positive rate (TPR) = recall = sensitivity. The same as recall, the TPR  

tells us how many of the data points that are actually true were predicted as true by  

the model.

	
The false positive rate FPR specificity( ) = ( ) =

+
1–
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FP TN 	

The FPR tells us how many of the data points that are actually false were predicted to 

be positive by the model. The formula is similar to recall, but instead of the proportion 

of true positives to all of the true data points, it’s the proportion of false positives to all of 

the false data points.

	
Specificity FPR= =

+
1–

TN
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Specificity is very similar to recall in that it tells us how many of the data points that 

are actually false were predicted as false by the model.

We can use the TPR and the FPR to form a graph known as a receiver operating 
characteristic curve, or ROC curve. From the area under the curve, or AUC (you 

may see this called area under the curve of the receiver operating characteristic, or 

AUROC), a data point, meaning the probability of the model to have a true positive or 

true negative case. This curve can also be called an AUCROC curve.

ROC curve with AUC = 1.0 (Figure 2-3).
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This is the most ideal AUC curve. However, it is nearly impossible to attain, so a goal 

of AUC > 0.95 is most desirable. The closer we can get the model to attaining a value of 

1.0 for the AUC, the more the probability of the model to predict a true positive or true 

negative case. The AUC value in the graph above indicates that this probability is 1.0, 

meaning it predicts it correctly 100% of the time. However, an extremely high AUC value 

of say 0.99999 could indicate that the model is overfitting, meaning it’s getting really 

good at predicting labels for this particular data set. You will explore this concept a bit 

further in the context of support vector machines, but you want to avoid overfitting as 

much as possible so that the model can perform well even when introduced to new data 

that includes unexpected variations.

It is important to mention that although the AUC can be 0.99, for example, it is not 

guaranteed that the model will continue to perform at that high of a level outside of 

the training data set (the data used to train the model so that it can learn to classify 

anomalies and normal data). This is because in the real world, there is the factor of 

unpredictability that even has humans confused at times. The world would be a simpler 

place if data is black and white, so to speak, but more often than not, there is a huge 

Figure 2-3.  ROC curve with AUC = 1.0
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gray area (are we sure that point is X and not Y? Is this really an anomaly or just a really 

weird case of a normal point?). For deep learning models, it is important that they keep 

achieving high AUC scores when exposed to new data that includes plenty of variation. 

Basically, it’s a reasonable assumption to expect a slight drop in performance when 

exposing your model to new data outside of your training set.

The goal with training models is to avoid overfitting and to keep the AUC as high as 

possible. If the AUC turns out to be 0.99999 even after being exposed to an extremely 

large sample of new data that includes a lot of variety, that means the model is basically 

about as ideal of a model we can get and has far surpassed human performance, which 

is impossible for the time being.

ROC curve with AUC = 0.75 (Figure 2-4)

Figure 2-4.  ROC curve with AUC = 0.75
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The value for the AUC indicates that the model correctly predicts labels for data points 

only 75% of the time. It’s not bad, but it’s not good, so there’s clearly room to improve.

ROC curve with AUC = 0.5 (Figure 2-5)

The value for the AUC indicates that the model only has a 50% chance, or a 

probability of 0.5, to predict the correct label. This is about the worst AUC value  

you can get, since it means the model cannot distinguish between the positive and 

negative classes.

ROC curve with AUC = 0.25 (Figure 2-6)

Figure 2-5.  ROC curve with AUC = 0.5
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In this case, the model only has a probability of 0.25 to predict the right label, but this 

just means that it has a 0.75 probability of predicting the incorrect label. In the case that 

the AUC is 0, this means that the model is perfect at predicting the wrong label, meaning 

the labels are switched. If the AUC is < 0.5, this means the model gets better at predicting 

incorrectly as the AUC approaches 0.0. It’s the perfectly opposite case of when the AUC is 

> 0.5, where the model gets better at predicting correctly as the AUC approaches 1.0.

In any case, you want the AUC to be > 0.5, and at least greater than 0.9 and ideally 

greater than 0.95.

Figure 2-6.  ROC curve with AUC = 0.25
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�Isolation Forest
An isolation forest is a collection of individual tree structures that recursively partition 

the data set. In each iteration of the process, a random feature is selected, and the data 

is split based on a randomly chosen value between the minimum and maximum of 

the chosen feature. This is repeated until the entire data set is partitioned to form an 

individual tree in the forest. Anomalies generally form much shorter paths from the 

root than normal data points since they are much more easily isolated. You can find the 

anomaly score by using a function of the data point involving the average path length.

Applying an isolation forest to an unlabeled data set in order to catch anomalies is an 

example of unsupervised anomaly detection.

�Mutant Fish
To better understand what an isolation forest does, let’s look at an imaginary scenario. 

At a particularly large lake, an irresponsible fish breeder has released a mutant species 

of fish that looks eerily similar to the native species, but are on average bigger than the 

native species. Additionally, the proportion of the length of its tail fin to the length of its 

body is larger than the native species. All in all, there are three features you can use to 

distinguish the invasive, mutant species from the native species.

Here’s a visual example detailing the differences of an average specimen of both 

species. You can see the native species in Figure 2-7.

Figure 2-7.  This is an example of the native species at this lake
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You can see the invasive species in Figure 2-8.

The invasive species is larger, has a bigger circumference, and has a longer tailfin 

on average (compare Figure 2-7 to Figure 2-8). However, the problem is that while the 

average specimen of each species has some noticeable distinctions between them, there 

is plenty of overlap between the two species where some of the native species grow large, 

some of the mutant species are just smaller, both have varying tail fin sizes, etc. so the 

differences might not always be as clear-cut.

To find out the extent of this infiltration, a large group of fishermen have been 

assembled and presented with the task of identifying the species of each fish in a catch 

of 1,000 fish. In this case, assume that each fisherman will randomly profile each fish to 

determine whether it is a member of the native species or not.

Now onto the evaluations. Each fisherman first picks a random feature to judge 

the samples on: the length of the fish, the circumference of the fish, or the proportion 

of its tail fin to its overall length. Then, the fisherman picks a random value between 

the known minimum and maximum values of the corresponding measurement for the 

native species and splits all the fish accordingly (all fish with the relevant measurement 

equal to or bigger than the picked value go right, and everything else goes left, for 

example). The fisherman repeats the entire process over and over again until every 

single fish has been partitioned and a “tree” of fish has been created.

Figure 2-8.  This is an example of the new, mutant species that has been released 
into the lake
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In this case, each individual fisherman represents a tree in the isolation forest, and 

the resulting trees of the entire group of fishermen represent an isolation forest. Now, 

given a random fish in the entire catch, you can get an anomaly score to see how many 

of the fisherman found that this fish is anomalous. Based on the threshold you pick for 

the anomaly score, you can label certain fish as the invasive species and the others as the 

native species.

However, the problem is that this is not a perfect system; there will be some invasive 

fish that pass off as native fish, and some native fish that pass off as invasive species. 

These cases represent false positives and false negatives.

�Anomaly Detection with Isolation Forest
Now that you understand more about how an isolation forest works, you can move on to 

applying it to a data set. Before you start, it is important to note that an isolation forest 

performs well on high-dimensional data. For the invasive fish example, you had three 

features to work with: fish length, circumference, and proportion of tail fin length to 

overall length. In this next example, you will have 42 features per data entry.

You will use the KDDCUP 1999 data set, which contains an extensive amount of 

data representing a wide variety of intrusion attacks. In particular, you will focus on all 

data entries that involve an HTTP attack. The data set can be found at http://kdd.ics.

uci.edu/databases/kddcup99/kddcup99.html. After opening the link, you should see 

something like Figure 2-9.
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Download the kddcup.data.gz file and extract it.

There shouldn’t be any issues with version mismatch and code functionality, but just 

in case, the exact Python 3 packages used in this example are as follows:

•	 numpy 1.15.3

•	 pandas 0.23.4

•	 scikit-learn 0.19.1

•	 matplotlib 2.2.2

First, import all the necessary modules that your code calls upon (Figure 2-10).

Figure 2-9.  This is what you should see when you open the link
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The module numpy is a dependency of many of the other modules since it allows 

them to perform high levels of computation. Pandas is a module that allows us to 

read data files of various formats in order to store them as data frame objects, and it is 

a popular framework for data science in general. These data frames hold data entries 

in a similar fashion to arrays and can be thought of as a table of values. Matplotlib is 

a Python library that allows us to customize and plot data. Finally, scikit-learn is a 

package that allows us to apply various machine learning models to data sets as well as 

provide tools for data analysis.

%matplotlib inline allows for graphs to be displayed below the cell and to be saved 

alongside the notebook.

Next, define the columns and load the data frame (Figure 2-11).

Figure 2-10.  Importing numpy, pandas, matplotlib.pyplot, and sklearn modules
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Each data entry is massive, with 42 columns of data per entry. The exact name 

doesn’t matter, but it’s important to have “service” and “label” stay the same. The entire 

list of columns names is as follows:

•	 duration

•	 protocol_type

•	 service

•	 flag

•	 src_bytes

•	 dst_bytes

•	 land

•	 wrong_fragment

•	 urgent

•	 hot

Figure 2-11.  You define all of the columns and save the data set as a variable 
named df
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•	 num_failed_logins

•	 logged_in

•	 num_compromised

•	 root_shell

•	 su_attempted

•	 num_root

•	 num_file_creations

•	 num_shells

•	 num_access_files

•	 num_outbound_cmds

•	 is_host_login

•	 is_guest_login

•	 count

•	 srv_count

•	 serror_rate

•	 srv_serror_rate

•	 rerror_rate

•	 srv_rerror_rate

•	 same_srv_rate

•	 diff_srv_rate

•	 srv_diff_host_rate

•	 dst_host_count

•	 dst_host_srv_count

•	 dst_host_same_srv_rate

•	 dst_host_diff_srv_rate

•	 dst_host_same_src_port_rate
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•	 dst_host_srv_diff_host_rate

•	 dst_host_serror_rate

•	 dst_host_srv_serror_rate

•	 dst_host_rerror_rate

•	 dst_host_srv_rerror_rate

•	 label

To get the dimensions of the table, or shape, as it’s referred to in pandas, do

df.shape

or if you’re not in Jupyter, do

print(df.shape)

In Jupyter, you should see something like Figure 2-12 after running the code.

As you can see, this is a massive dataset.

Next, filter out the entire data frame to only include data entries that involve an 

HTTP attack, and drop the service column (Figure 2-13).

Just to make sure, check the shape of df again (Figure 2-14).

Figure 2-12.  The output is a tuple that describes the dimensions of the data frame

Figure 2-13.  Filtering df to only have HTTP attacks and removing the service 
column from df
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The number of rows has been drastically reduced, and the column count went 

down by one because you removed the service column since you don’t actually need it 

anymore.

Let’s check all the possible labels and the number of counts for each label, just to get 

a feel of the data distribution.

Run the following:

df["label"].value_counts()

or

print(df["label"].value_counts())

You should see something like Figure 2-15.

The vast majority of the data set is comprised of normal data entries, with around 

0.649% of data entries for all HTTP attacks comprising actual intrusion attacks.

Additionally, some of the columns have categorical data values, meaning the model 

will have trouble training on them. To bypass this issue, you use a built-in feature of 

scikit-learn called a label encoder.

Figure 2-16 shows what you currently see if you run df.head(5), meaning you want 

five entries to display.

Figure 2-14.  The dimensionality of the filtered df

Figure 2-15.  The unique labels in df along with the number of instances of data 
points in df with that specific label
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You can also run print(df.head(5)), but it prints in a text format (Figure 2-17).

To resolve this issue, the label encoder takes the unique (meaning one entry per 

categorical value instead of multiple) list of categorical values and assigns a number 

representing each of them. If you had an array like

[ "John", "Bob", "Robert"],

the label encoder would create a numerical representation like

[0, 1, 2], where 0 represents "John", 1 represents "Bob", and 2 represents 

"Robert."

Figure 2-16.  A line of code to display the top five entries in the table. In this case, 
the image has been cropped to show the first few columns

Figure 2-17.  The same function as in Figure 2-16, but in text format
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Now do the same with the labels in your data frame.

Run the code in Figure 2-18.

encoded.fit(df[col]) gives the label encoder all of the data in the column from 

which it extracts the unique categorical values from. When you run

df[col] = encoded.transform(df[col])

you are assigning the encoded representation of each categorical value to df[col].

Let’s check the data frame now (Figure 2-19).

Good, all the categorical values have been replaced with numerical equivalents.

Now run the code in Figure 2-20.

Figure 2-18.  Applying the label encoder to the columns with data values that are 
strings

Figure 2-19.  Looking at the first five entries of df after applying the label encoder
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With

df = df.iloc[np.random.permutation(len(df))]

you are randomly shuffling all the entries in the data set to avoid the problem of 

abnormal entries pooling in any one region of the data set.

With

df2 = df[:500000]

you are assigning the first 500,000 entries of df to a variable df2.

In the next line of code, labels = df2["label"], you assign the label column to  

the variable labels. Next, you assign the rest of the data frame to a variable named  

df_validate to create the validation data set with df_validate = df[500000:].

To split your data into the training set and testing set, you can use a built-in  

scikit-learn function called train_test_split, as detailed below:

x_train, x_test, y_train, y_test = train_test_split(df2, labels,  

test_size = 0.2, random_state = 42)

The parameters are as follows: x, y, test_size, and random_state. Note that x and 

y are supposed to be the training data and training labels, respectively, with test_size 

indicating the percentage of the data set to be used as test data. random_state is a 

Figure 2-20.  Shuffling the values in df and creating your training, testing, and 
validation data sets

Chapter 2  Traditional Methods of Anomaly Detection



46

number used to initialize the random number generator that determines what data 

entries are chosen for the training data set and for the test data set.

Finally, you delegate the rest of the data to the validation set. To define the terms 

again:

•	 Training data is the data that the model trains and learns on. For an 

isolation forest, this set is what the model partitions on. For neural 

networks, this set is what the model adjusts its weights on.

•	 Testing data is the data that is used to test the model’s performance. 

The train_test_split() function basically splits the data into 

a portion used to train on and a portion used to test the model’s 

performance on.

•	 Validation data is used during training to gauge how the model’s 

training is going. It basically helps ensure that as the model gets 

better at performing the task on the training data, it also gets better 

at performing the same task over new, but similar data. This way, 

the model doesn’t only get really good at performing the task on the 

training data, but can perform similarly on new data as well. In other 

words, you want to avoid overfitting, a situation where the model 

performs very well on a particular data set, which can be the training 

data set, yet the performance noticeably drops when new data is 

presented. A slight drop in performance is to be expected when the 

model is exposed to new variations in the data, but in this case, it is 

more pronounced.

In this example, you don’t use the validation set or testing set during training, but 

this will come into play later on when you are training neural networks. Instead, you use 

them to evaluate the performance of the model.

Let’s take a look at the shapes of your new variables by running the code in  

Figure 2-21.
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To build your isolation forest model, run the following:

isolation_forest = IsolationForest(n_estimators=100, max_samples=256, 

contamination=0.1, random_state=42)

Here’s an explanation of the parameters:

•	 n_estimators is the number of trees to use in the forest. The default  

is 100.

•	 max_samples is the maximum number of data points that the 

tree should build on. The default is whatever is smaller: 256 or the 

number of samples in the data set.

•	 contamination is an estimate of the percentage of the entire data set 

that should be considered an anomaly/outlier. It is 0.1 by default.

•	 random_state is the number it will initialize the random number 

generator with to use during the training process. An isolation forest 

utilizes the random number generator quite extensively during the 

training process.

Now, let’s train your isolation forest model by running

isolation_forest.fit(x_train)

This process will take some time, so get up and stretch for a bit!

Once it’s finished, you can go about calculating the anomaly scores. Let’s create a 

histogram of the anomaly scores when tested on the validation set.

Run the code in Figure 2-22.

Figure 2-21.  Getting the shapes of the training, testing, and validation data sets
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You should see a graph that looks like Figure 2-23.

anomaly_scores = isolation_forest.decision_function(x_val)

plt.figure(figsize=(15, 10))

plt.hist(anomaly_scores, bins=100)

plt.xlabel('Average Path Lengths', fontsize=14)

plt.ylabel('Number of Data Points', fontsize=14)

plt.show()

Figure 2-22.  Getting the anomaly scores from the trained isolation forest model 
and plotting a histogram

Figure 2-23.  A histogram plotting the average path lengths for the data points.  
It helps you determine what is an anomaly by using the shortest set of path lengths, 
since that indicates that the model was able to easily isolate those points
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A quick note: plt.show() is not necessary on Jupyter if you have %matplotlib inline, 

but if you are using anything else, this should open up a new window with the graph.

Let’s calculate the AUC to see how well the model did. Looking at the graph, there 

appears to be a few anomalous data with average path of less than -0.15. You expect 

there to be a few outliers within the normal range of data, so let’s pick something more 

extreme, such as -0.19. Remember that the lesser the path length, the more likely the 

data is to be anomalous, hence why there’s a curve that increases drastically as the graph 

goes right. Run the code in Figure 2-24.

You should see something like Figure 2-25.

That’s an impressive score! But could it be the result of overfitting? Let’s get the 

anomaly scores of the test set to find out.

Run the code in Figure 2-26.

Figure 2-24.  Classifying anomalies based on a threshold that you picked from a 
graph and generating the AUC score from that set of labels for each point

Figure 2-25.  The generated AUC score after running the code
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You should get a graph like Figure 2-27.

There is a similar pattern of what appear to be anomalous data to the left of -0.15. 

Again, assume that there are expected outliers, and pick any average path length less 

than -0.19 as the cutoff for anomalies.

Run the code in Figure 2-28.

Figure 2-26.  Creating a histogram like in Figure 2-23 for the testing set instead of 
the validation set

Figure 2-27.  A histogram like in Figure 2-23, but for the testing set
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It should look like Figure 2-29.

That’s really good! It seems to perform very well on both the validation data and the 

test data.

Hopefully by now you will have gained a better understanding of what an isolation 

forest is and how to apply it. Remember, an isolation forest works well for multi-

dimensional data (in this case, you had 41 columns after dropping the service column) 

and can be used for unsupervised anomaly detection when applied in the manner 

implemented in this section.

�One-Class Support Vector Machine
The One-Class SVM is a modified support vector machine model that is well-suited for 

novelty detection (an example of semi-supervised anomaly detection). The idea is 

that the model trains on normal data and is used to detect anomalies when new data is 

presented to it. While the OC-SVM might seem best suited to semi-supervised anomaly 

detection, since training on only one class means it’s still “partially labeled” when 

considering the entire data set, it can also be used for unsupervised anomaly detection. 

You will perform semi-supervised anomaly detection on the same KDDCUP 1999 data 

Figure 2-28.  Applying the code in Figure 2-24 to the test set. In this case, the 
threshold was the same, but you still picked it based on the histogram

Figure 2-29.  The generated AUC score for the test set
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set as the isolation forest example. Similar to the isolation forest, the OC-SVM is also 

good for high-dimensional data. Additionally, the OC-SVM can capture the shape of the 

data set pretty well, a point that will be elaborated upon below.

To understand how a support vector machine works, first visualize some data on a 

2D plane (Figure 2-30).

How do you separate the data into two distinct regions using a line? Well, it’s pretty 

simple (Figure 2-31).

Figure 2-30.  Some points plotted so that they group up in two regions on  
the graph
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Now you have two regions representing two different labels. However, the problem 

goes a little bit deeper than that.

The reason the model is called a “support vector machine” is because these “support 

vectors” actually play a huge role in how the model draws the decision boundary, 

represented in this case by the line in Figure 2-32.

Figure 2-31.  A line that separates the two regions based on the points plotted
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Basically, a support vector is a vector parallel to the hyperplane that acts as the 

decision boundary, containing a point that is closest to the hyperplane, and helps 

establish a margin for the decision boundary. In this example, the hyperplane is a line 

because there are only two dimensions. In three dimensions, the hyperplane would be a 

plane, and in four dimensions, it would be a three-dimensional space, and so on.

The most optimal hyperplane would involve the support vectors establishing a 

maximum margin for the hyperplane. The example in Figure 2-32 is not optimal, so let’s 

look for a more optimal hyperplane in Figure 2-33.

Figure 2-32.  The decision boundary drawn with support vectors
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With how the hyperplane is drawn, the points which their respective support vectors 

pass through are the closest to the hyperplane. This is a more optimal solution for a 

hyperplane since the margin for the hyperplane is much larger than in the previous 

example (Figure 2-32).

However, realistically, you will see hyperplanes that are more like Figure 2-34.

Figure 2-33.  A hyperplane with support vectors that allow for a larger margin
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There will always be outliers that prevent a clear distinction between two 

classifications. If you think back to the invasive fish example, there were some native fish 

that looked like invasive fish, and some invasive fish that looked like native fish.

Alternatively, Figure 2-35 shows a possible solution.

Figure 2-34.  A more realistic example of how a hyperplane functions
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While this does count as a solution to the classification problem, this would lead to 

overfitting, resulting in another issue. If the SVM performs too well on the training data, 

it could perform worse on new data that contains different variations.

The decision boundaries won’t be that simple either. You could run into situations 

such as the one shown in Figure 2-36.

Figure 2-35.  An example of a hyperplane completely separating the two regions. 
However, this is an example of overfitting
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You can’t draw a line for this, so you have to think differently instead of using a linear 

SVM. Let’s try to map the distances of each point from the center of the dark dots onto 

the 3D plane through some function (see Figure 2-37).

Figure 2-36.  A graph showcasing a different type of grouping of the data points

Chapter 2  Traditional Methods of Anomaly Detection



59

Now there is a clear separation between the two classes, and you can go ahead with 

separating the data points into two regions, as in Figure 2-38.

Figure 2-37.  Plotting the points onto the 3D plane shows that you can now 
separate the regions
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When you go back to the 2D representation of the points, you can see something like 

Figure 2-39.

Figure 2-38.  The hyperplane now is an actual plane because of the added third 
dimension
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What you just did was use a kernel to transform the data into another dimension 

where there is a clear distinction between the classes of data. This mapping of data 

is called a kernel trick. There are different types of kernels, including the linear 
kernel you saw in the earlier examples. Other types of kernels include polynomial 
kernels, which map the data to some nth dimension using a polynomial function, and 

exponential kernels, which map the data according to an exponential function.

Another term to cover is regularization, a parameter that tells the SVM how much 

you want to avoid misclassifications. Lower regularization values lead to graphs like 

the one you saw earlier where there were a few outliers on either side of the hyperplane. 

Higher regularization values lead to graphs where you saw the hyperplane separate 

every single point, at the cost of possibly overfitting on the data.

Gamma tells the SVM how much to consider points farther away from the region 

of separation between the classes. Higher gamma values tell the SVM to only consider 

nearby points, while lower gamma values tell the SVM to also consider the points 

farther away.

Figure 2-39.  This is what the hyperplane looks like when you go back to 2D
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Finally, the margin is the separation between each class and the hyperplane. As 

discussed earlier, an ideal margin involves the maximum equidistant separation of 

each of the closest from the hyperplane. A bad margin or suboptimal margin has 

the hyperplane too close to one class or the distance not be as far as it can be to the 

hyperplane for each point or support vector.

As for the one-class support vector machine, Figure 2-40 shows what the graph 

would look like.

During training, the OC-SVM learns the decision boundary for normal observations, 

accounting for a few outliers. If novelties, new data points that the model has never seen 

before, fall within this decision boundary, they are considered normal by the model. If 

they fall outside of the boundary, they are considered anomalous. This technique is an 

example of semi-supervised novelty detection, where the goal is to train the model on 

normal data, and then it attempts to find anomalies in new data.

By doing so, the OC-SVM can capture the shape of the data pretty well thanks to the 

decision boundary that captures most of the training observations.

Figure 2-40.  An example of the decision boundary for a one-class support vector 
machine
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�Anomaly Detection with OC-SVM
Now that you know more about how SVMs work, let’s get started by applying a one-class 

SVM to the KDDCUP 1999 data set.

Import your modules and load up the data set (see Figure 2-41 and Figure 2-42).

Figure 2-41.  Importing your modules for the OC-SVM

Figure 2-42.  Defining the columns for the data set, and importing the data set 
into the data frame variable df
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Now, let’s move on to filtering out all the normal data entries. You will make two 

data frames that consist of normal entries and an equal mix of anomalies and normal 

data entries.

Run the code in Figure 2-43.

Figure 2-44 shows the shapes of the two data frames.

The first half of the data frame “novelties” consists of anomalies, while the latter half 

consists of normal data entries.

Now you move on to encoding all the categorical values in the data frames (see 

Figure 2-45).

Figure 2-43.  Filtering out the anomalies and the normal data points to construct 
a new data set that is a mixture of the two

Figure 2-44.  Printing out the shapes of the novelty and normal data sets
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Now run the code in Figure 2-46 to set up your training, testing, and validation sets.

Figure 2-47 shows the shapes of the data sets.

Figure 2-45.  Applying the label encoder to the data sets

Figure 2-46.  Shuffling the entries in the normal data set, and defining the 
training, testing, and validation sets
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You are only using a subset of the entire data set to train the model on because the 

larger the training data, the longer it takes for the OC-SVM to train.

Run the code in Figure 2-48 to declare and initialize the model.

By default, the kernel is set to ‘rbf’, meaning radial basis function. It is similar to the 

circular decision boundary that you saw in the earlier examples, and you use it here 

because you want to define a circular boundary around a set of regions that contain 

normal data. As seen in the earlier examples, any points that fall outside of the region 

are to be considered anomalies. Gamma tells the model how much you want to consider 

points further from the hyperplane. Since it is pretty small, this means you want to 

emphasize the points farther away. The random_state is just a seed for initializing the 

random number generator, similar to the isolation forest model. The next parameter, nu, 

specifies how much of the training set contains outliers. Again, you set this to 0.1, similar 

to the isolation forest model. This acts similar to the regularization parameter that you 

saw earlier, since it tells the model approximately how many data points you expect the 

model to misclassify.

Now let’s train the model and evaluate predictions (see Figure 2-49).

Figure 2-47.  Printing the output shapes of the training, testing, and validation sets

ocsvm = OneClassSVM(kernel='rbf', gamma=0.00005, random_state = 
42, nu=0.1)

Figure 2-48.  Defining your OC-SVM model
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One thing to note is that you can’t get the values for an AUC curve for x_test and 

x_validation since they comprise entirely of normal data values. You can’t get values for 

true negative or for false positive since there are no anomalies in the data set to classify 

falsely as normal or correctly as anomalies.

However, you can still measure the accuracy of the model on the test and validation 

sets. Even though accuracy is not the best metric to go by, it can still give you a good 

indicator of the model’s performance.

Also one thing to note: Accuracy in this case is a measure of the percentage of 

data points in the predictions that are normal data points. Remember, you assumed 

that around 10% of the data points in the data set are anomalies, so the most optimal 

“accuracy” to obtain is 90%.

Run the code in Figure 2-50.

Figure 2-49.  Training the OC-SVM model on the training data

preds = ocsvm.predict(x_test)

score = 0

for f in range(0, x_test.shape[0]):

if(preds[f] == 1):

score = score + 1

accuracy = score / x_test.shape[0]

print("Accuracy: {:.2%}".format(accuracy))

Figure 2-50.  Making predictions and generating the “accuracy” score
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Figure 2-51 shows that the accuracy is about 89.1%, which is pretty good considering 

that you assumed 10% of the data would misclassify.

Let’s run the code on x_validation this time (see Figure 2-52).

Figure 2-51.  The resulting output accuracy for the testing data set

Figure 2-52.  Generating the accuracy score for the validation set
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This time the accuracy was even better at around 89.5% (Figure 2-53).

Now to test on the novelties data set. This time, you can find the AUC score because 

there is a 50-50 split between anomalies and normal data. The other two data sets, x_test 

and x_validation, only had normal data, but this time it is possible for the model to 

classify false positives and true negatives.

Run the code in Figure 2-54.

Figure 2-53.  The resulting percentage of data points in the predictions that were 
considered normal

Figure 2-54.  The code to generate the AUC score
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Figure 2-55 shows the score. That’s pretty good for an AUC score!

Let’s look at the distribution of predictions in Figure 2-56.

Figure 2-55.  The generated AUC score from the predictions on the novelty set

Figure 2-56.  Code to display a graph that shows the distributions for the 
predictions
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As you can see in Figure 2-57, the model ended up predicting more anomalies than 

normal data points, but from what the AUC tells us, it managed to classify most of the 

data entries correctly.

Hopefully by now you will have gained a better understanding of what an  

OC-SVM is and how to apply it. Remember, OC-SVM works well for multi-dimensional 

data (in this case, you had 41 columns after dropping the service column) and can 

be used for semi-supervised anomaly detection when applied in the manner 

implemented in this section.

�Summary
In this chapter, we discussed traditional methods of anomaly detection and how they 

can be used to implement anomaly detection in an unsupervised and semi-supervised 

manner.

In the next chapter, we will look at the advent of deep learning networks.

Figure 2-57.  The resulting output. 1 stands for normal data points, and -1 stands 
for anomaly data points
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CHAPTER 3

Introduction to Deep 
Learning
In this chapter, you will learn about deep learning networks. You will also learn how 

deep neural networks work and how you can implement a deep learning neural 

networks using Keras and PyTorch.

In a nutshell, the following topics will be covered throughout this chapter:

•	 What is deep learning?

•	 Intro to Keras: A simple classifier model

•	 Intro to PyTorch: A simple classifier model

�What Is Deep Learning?
Deep learning is a special subfield of machine learning that deals with different types of 

artificial neural networks. Drawing inspiration from the structure and functionality of 

a brain, artificial neural networks at their core are layers of interlinked, individual units 

call neurons that each perform a specific function given input data.

In “deep” learning specifically, some of the best models consist of dozens of layers 

and millions of neurons, and have been trained on multiple gigabytes of data. Generally, 

deep learning models don’t always need to be this big to perform well on certain tasks, 

and the tasks that the large models are expected to perform are complex, ranging from 

outlining a wide variety of objects within an image to generating summaries of articles.

Thanks to recent increases in the computational power and availability of GPUs 

(graphics processing units), anyone with access to a decent enough GPU can train their 

own deep learning models, keeping in mind that larger models might require more GPU 

resources such as memory.
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Today, deep learning is taking the world by storm thanks to the extreme versatility 

and performance that it offers. More traditional models in machine learning have a 

problem where adding more training samples leads to a plateau in performance, but 

that problem doesn’t exist with deep learning. Instead, deep learning models get better 

and better with more samples, meaning they scale far better in terms of data set size 

and gain better performance as a result. Deep learning models can be applied to nearly 

any task with resounding success, and so are employed in the fields of cybersecurity, 

meteorology, finances and stock markets, speech recognition, medicine, search engines, 

etc. What exactly about deep learning makes it so great? First, let’s take a look at what an 

artificial neural network is.

�Artificial Neural Networks
Artificial neural networks are layers of interconnected nodes, or artificial neurons, that 

function in a way inspired by biological neural networks. Figure 3-1 shows an example of 

a neuron.

Figure 3-1.  An example of what a neuron can look like
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Inputs are taken in through the dendrites, after which the neuron decides whether 

or not to fire. Upon firing, the neuron sends a signal down the axon to its terminal axons, 

where the signals are output to any other neurons. This transfer of signals is called a 

synapse, which is modeled in Figure 3-2.

We use a similar concept in artificial neural networks (Figure 3-3).

Figure 3-2.  How two neurons might connect to form a chain and transfer signals 
through that connection. The terminal axon of the first neuron connects to the 
dendrites of the second neuron

Figure 3-3.  How an artificial neuron in an artificial neural network can function. 
This mimicry of the biological neuron is the basis of artificial neural networks
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In the case of this artificial neuron, we find the dot product between the input 

vector X and the weight vector W. X represents the input data, and W represents the 

list of weights that this node carries to multiply with the input vector. Recall that the 

dot product is when each element in the vector is multiplied with the corresponding 

element in the second vector, as in Figure 3-4.

Both are different ways to represent a vector, although the second method is ideal 

considering your data and weights would most likely take the shape of a matrix.

After that, there is an optional bias function where the value b (called bias) is added 

to the dot product result. From there, it passes through an activation function that 

decides if the entire node sends data or not. In this case, the activation function only 

varies between 0 and 1 depending on whether or not the dot product plus the bias 

reaches a certain value or not (threshold). It is possible to have other activation functions 

such as a sigmoid function, which outputs some value between 0 and 1.

Calling the output y and the input x, the basic function for each node can be 

represented by the equation in Figure 3-5.

An artificial neural network is comprised of interlinked layers of these nodes and can 

look like Figure 3-6.

Figure 3-4.  This is how dot product works. Shown here is an example with two 
different types of vector notation

Figure 3-5.  An equation that captures the basic functionality of an artificial 
neuron. In this case, f(x) is an activation function

Chapter 3  Introduction to Deep Learning



77

A hidden layer is one that is between the input layer and the output layer. There 

can be multiple hidden layers in a network. Now that you’ve seen what an artificial 

neural network can look like, let’s take a look at how the data can flow through this 

network. First, we start with nothing but the input data in the network, and assume that 

neurons only wholly activate (neurons can partially activate depending on the activation 

function, but in this example each neuron either outputs a 1 or a 0) (Figure 3-7).

Figure 3-6.  An example of what an artificial neural network can look like
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The input layer takes all of the corresponding inputs and produces an output that 

is linked to the first hidden layer. The outputs of the nodes that activate in the input 

layer are now the inputs of the hidden layer, and the new data flows correspondingly 

(Figure 3-8).

Figure 3-7.  The input data runs through the input layer, and selective nodes fire 
based on the input received
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Hidden layer 1 processes the data in a similar fashion to the input layer, just with 

different parameters for activation function, weight, bias, etc. The data passes through 

this layer and the output of this layer becomes the input for the next hidden layer. In this 

case, only two nodes activate based on the input from the previous layer (Figure 3-9).

Figure 3-8.  The outputs from the activated neurons in the input layer pass on 
to the first hidden layer. These outputs are now the inputs of the next layer, and 
selective neurons fire based on this input
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Hidden layer 2 processes the data and sends the data to a new layer called the output 

layer, where only one of the nodes in the layer will be activated. In this case, the first 

node in the output layer is activated (Figure 3-10).

Figure 3-9.  This process repeats with hidden layer 2
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The nodes in the output layer can represent the different labels that you want to give 

to the input data. For example, in the iris dataset, you can take various measurements of 

an iris flower and train an artificial neural network on this data to classify the species of 

the flower.

Upon initialization, the weights of the model will be far from ideal. Throughout the 

training process, the data flow from the model goes forward (left to right from input to 

output), and then backwards in what is known as backpropagation to recalculate the 

weights and biases for each activated node.

In backpropagation, a cost function takes into account the model’s predictions 

for one pass of the training data through the network and what the actual predictions 

should be. The cost function gives you an indicator of how good the model’s weights are 

at predicting the correct outcome. For this example, assume that Figure 3-11 shows the 

formula of the cost function.

Figure 3-10.  Finally, the data from the second hidden layer goes to the output 
layer, where one neuron fires in this case
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This cost function is called the mean squared error, named so because the function 

given input θ, the weights, finds the average difference squared between the predicted 

value and the actual value. The parameter hθ represents the model with the weight 

parameter θ passed in, so hθ(xi) gives the predicted value for xi with model’s weights θ. The 

parameter yi represents the actual prediction for the data point at index i. If the parameter 

you are passing in includes both weight and bias, then it will look more like Figure 3-12.

Note that hw, b(xi) will have the formula in Figure 3-13.

The cost function reflects the overall performance of the model with the current 

weight parameter, so the most ideal value output from the cost function will be as small 

as possible. Since the cost function is a measure of how far the model’s predictions 

are from the actual value, you want to make the output from the cost function as small 

as possible since that means your predictions were almost what the actual prediction 

should be.

To minimize the cost function, you need to tell the model how to adjust the weights, 

but how do you do that? If you think back to calculus, optimization problems involved 

finding the derivative and solving for the critical points (points where the derivative of 

the original equation is 0). In your case, you want to find the gradient, which can be 

Figure 3-11.  The formula for the mean squared error cost function

Figure 3-12.  A formula for the mean squared error cost function, with more 
specific notation separating the weights and the biases

Figure 3-13.  An elaboration on what the function h(w, b) means in Figure 3-12
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thought of as similar to the derivative but in a multi-dimensional setting, and adjust the 

weights in a direction that would change the gradient so it approaches 0.

There are several optimization algorithms to help the model achieve the optimal 

weights including gradient descent. Gradient descent is an optimization algorithm that 

finds the gradient of the cost function and takes a single step in the direction of the local 

minimum to generate values to use to adjust the weights and biases.

How much of a step you take is controlled by the learning rate. The bigger the 

learning rate, the larger the step you take at each iteration, and the quicker the local 

minimum is approached. The smaller the learning rate, the longer the training takes 

since the steps are smaller. However, a problem with too large of a learning rate is that it 

could overshoot the local minimum entirely, leading to a complete failure to ever reach 

the local minimum. Too small of a learning rate and the local minimum might take way 

too long to reach. When the model starts to reach an ideal level of performance, the 

gradients should be approaching 0 since the weights would have the cost function reach 

a local minimum, signifying that the differences between the model’s predictions and 

the actual predictions are very small.

In a process called backpropagation, the gradients are calculated and the weights 

are adjusted for each node in a layer, before the same process is done for the layer 

before that until all of the layers have had their weights adjusted. The entire process of 

passing the data through the model and backpropagating to readjust the weights is what 

comprises the training process of a model in deep learning.

While the entire training process may sound complicated and computationally 

heavy, GPUs help train the models much quicker because they are optimized to perform 

the matrix calculations required by graphics processing.

Now that you know more about what deep learning is and how artificial neural 

networks operate, a question might arise on why we should use deep learning for 

anomaly detection.

First of all, thanks to the advancements in GPU technology, we can train deep 

learning models that are far deeper (many layers with lots of parameters) and on huge 

data sets. This in itself leads to incredible performances by the networks and allows the 

model to have much more powerful applications.

Not only has this led to a diverse set of models that are each suited for different 

applications (image classification, video captioning, object detection, language 

translation, generative models that can summarize articles, etc.), but the models keep 

getting better and better at their respective tasks.
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The models are also far more scalable than their traditional counterparts, since 

deep learning models don’t hit a plateau in training accuracy as the number of data 

entries increases, meaning we can apply deep learning models to massive volumes of 

data. This attribute of deep learning models pairs very well with the trend of big data in 

today’s society.

In this chapter, you will look at applying deep learning models to classifying 

handwritten digits as an introduction to using two great, popular deep learning 

frameworks in Python: Keras, with a TensorFlow backend, and PyTorch. These 

frameworks help you create customized deep learning models in just a few dozen lines 

of code as opposed to creating them entirely from scratch.

Keras is a high-level framework that lets you quickly create, train, and test powerful 

deep learning models while abstracting all of the little details away for you. PyTorch 

is more of a low-level framework, but it doesn’t carry with it the amount of syntax that 

TensorFlow (a much more popular deep learning framework) does. Compared to Keras, 

however, there are still more things that you must define since it’s no longer abstracted 

away for you.

Using PyTorch over TensorFlow or vice-versa is more of a personal preference, but 

PyTorch is easier to pick up. Both offer very similar functionality, and if there are any 

functions that TensorFlow has that PyTorch doesn’t, you can still implement them using 

the PyTorch API.

Another note to make is that TensorFlow has integrated Keras into its API, so if you 

want to use TensorFlow in the future, you can still build your models using tf.keras.

�Intro to Keras: A Simple Classifier Model
Before you get started, it is recommended that you have the GPU version of TensorFlow 

installed along with all of its dependencies, including CUDA and cuDNN. While they are 

not necessarily required to train deep learning models, having a GPU helps to massively 

reduce training time. Both TensorFlow and PyTorch utilize CUDA and cuDNN to access 

the GPU while training, and Keras runs on top of TensorFlow.

If you have any questions about Keras, feel free to refer to Appendix A to get a better 

understanding of how Keras works and of the functionality that it offers.
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Here are the exact versions of the necessary Python 3 packages used:

•	 tensorflow-gpu version 1.10.0

•	 keras version 2.0.8

•	 torch version 0.4.1 (this is PyTorch)

•	 CUDA version 9.0.176

•	 cuDNN version 7.3.0.29

You will create, train, and evaluate a deep learning architecture known as a 

convolutional neural network (CNN) in Keras using the MNIST data set. You don’t need 

to download this data set since it is included within TensorFlow.

The MNIST data set, or the Modified National Institute of Standards and Technology 

data set, is a large collection of handwritten images used to train computer vision and 

image processing models such as the CNN. It is a common data set to start with and is 

basically like the “hello world” data set of computer vision.

The data set contains 60,000 training images and 10,000 testing images of 

handwritten digits 0-9, each with a dimension of 28x28 pixels.

First, import all the dependencies (Figure 3-14).

Figure 3-14.  Importing the modules needed to create the model
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Now define some variables that you will use later (Figure 3-15).

One pass of the entire data set through the model is called an epoch. The batch 
size is how many data entries pass through the model in one iteration. In this case, the 

training data passes through the model 128 entries at a time until all of the entries have 

passed through, marking the end of one epoch. The number of classes is 10 to represent 

each of the 10 digits from 0-9. These variables are also known as hyperparameters, 
parameters that are set before the training process.

Let’s create your training and testing data sets. One thing to note is that you can use 

data frames, arrays, matrices, etc. in Keras to serve as your data sets. Run the code in 

Figure 3-16.

You can use matplotlib to see what one of these images looks like. Run the code in 

Figure 3-17 and see the results in Figure 3-18.

Figure 3-15.  Variables to use later

Figure 3-16.  Define the training and testing data sets
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You can enter anywhere from 0 to 59,999 to visualize a sample in x_train.

Just looking at 10 examples of the digit 1, you can see there is plenty of variation in 

the data set (see Figure 3-19 and Figure 3-20).

Figure 3-17.  Importing matplotlib.pyplot to see what these training images 
look like

Figure 3-18.  The output of running the code in figure 3-17
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Figure 3-19.  Code to generate a plot that shows some example images for a 
specific class
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Now, extend the shape by a dimension. Right now, the dimensions of the training 

and testing sets are as shown in Figure 3-21 and Figure 3-22.

Figure 3-20.  The output of running the code in Figure 3-19. Notice the amount of 
variation, as well as anomalous data that you would barely consider as numbers

Figure 3-21.  Code to output the shapes of the training and testing data sets

Figure 3-22.  The output of running the code in Figure 3-21
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For the purposes of training your model, you want to extend this shape to (60000, 28, 

28, 1) and (10000, 28, 28, 1).

A property of images is that there are three dimensions for color images and two for 

grey scale images. Grey scale images are simply row x column since they don’t have color 

channels. Color images, on the other hand, can be formatted as row x column x channel 

or channel x row x column. For color images, the variable channel is 3 because you want 

to know the pixel values for red, green, and blue (RGB).

In this case, it’s grey scale, so you don’t have to worry about the channel variable, but 

the following code will account for both cases if you end up using a data set with color 

such as the CIFAR-10 data set. CIFAR-10 is extremely similar to MNIST, but this time you 

are classifying the 32x32 images based on labels such as cars, birds, ships, etc. and they 

are in color. Run the code in Figure 3-23.

Now convert the values to float32 and divide by 255. Right now, the values are all 

integer values that range from 0 to 255, but you want to convert those values to float and 

make them 0 to 1. This is a process called normalization, or feature scaling, where you 

attempt to rescale the data to smaller, more manageable values. In this example, you use 

a method called min-max normalization, defined by the formula in Figure 3-24.

Figure 3-23.  Code to reshape the training and testing data sets depending 
on whether or not the channels are first, and then to define the input shape 
of the model
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Your values ranged from 0 to 255. For each value, you “subtracted” 0 from x, and 

divided by 255 – 0, which is just 255. Rescaling the pixel values from a range of [0, 255] to 

[0, 1] is common in image tasks and can be done with colored images as well.

There are other methods, including mean normalization, standardization (z-score 
normalization), and unit length scaling.

The formulas for each method are as follows:

Mean normalization (Figure 3-25)

This formula is similar to min-max normalization, except you use xaverage in the 

numerator over xmin.

Standardization (Figure 3-26)

You basically find z-score values for each x and use those instead of the original x values.

Unit length scaling (Figure 3-27)

Figure 3-24.  Formula for min-max normalization

Figure 3-25.  Formula for mean normalization

Figure 3-26.  Formula for standardization

Figure 3-27.  Formula for unit length scaling
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You find the unit vector for x and use that instead. Unit vectors have a magnitude of 1.

The next block of code is shown in Figure 3-28.

What keras.utils.to_categorical() does is take the vector of classes and create a 

binary class matrix of the number of classes. Assume that you have a vector representing 

y_train with 6 classes at most, going from 0-5 (Figure 3-29).

After running keras.utils.to_categorical(y_train, n_classes) where  

n_classes = 5, Figure 3-30 shows what you would now get for y_train.

Figure 3-28.  Converting x_train and x_test to float32 and applying min-max 
normalization by dividing by 255. For y_train and y_test, you convert them to a 
one-hot encoded format

Figure 3-29.  A vector representing y_train that has 6 classes with values ranging 
from 0-5
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The classes are still the same, but this time you have to get the class by their index 

and not by direct value. At index 1 (row 1 if you think of this as a matrix with 1 column) 

of the original vector, you see that the class label is 5. In your transformed y_train data 

(which is now a matrix), at row 1 (previously index 1 before the transformation), you see 

that everything is a 0 in the vector at that index except for the value at column 5. And so, 

y_train is still 5 at index 1, but it’s formatted differently.

Now let’s check the shapes of your transformed data in Figure 3-31 and Figure 3-32.

Figure 3-30.  A one-hot encoded representation of the y_train vector in Figure 3-39

Figure 3-31.  Print the shapes of the transformed data

Figure 3-32.  The resulting output
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Note T he \ character tells Python that you want to continue to the next line. 
Without it, the code would not run because Python doesn’t see the end of the string 
denoted by the second “, but what \ tells Python is to continue on the next line.

Now you can move on to defining and compiling your model.

Run the code in Figure 3-33.

Figure 3-33.  Code to define a deep learning model and add layers to it
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In Keras, the sequential model is a stack of layers. The Conv2D is a two-dimensional 

convolutional layer.

In convolutional neural networks, a convolution layer filters through the data and 

multiplies each of the values element-wise by the weights in the filter and sums them 

up to generate one value. In this case, it’s a 3x3 filter that slides over each of the pixels to 

generate a smaller layer called an activation map or feature map. This feature map then 

has another filter applied to it in the second convolutional layer to generate another, 

smaller feature map. The weights that are optimized during backpropagation are found 

in the filter. To get a better idea of this, let’s look at some examples of how this works.

Assume a 5x5 pixel picture like Figure 3-34.

Assume also that your kernel size (filter dimensions) is 2x2. Figure 3-35 shows how 

the convolutions would go.

Figure 3-34.  A 5x5 pixel picture, with 0 representing black pixels and 1 
representing white pixels
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To begin with, you have a random set of weights for the 2x2 filter, or kernel. 
The filter goes over the first 2x2 region in the image and sums the element-wise 

multiplication of the values in the filter and the values in the 2x2 region of the image. 

This value is the first element of the feature map, which is a 4x4 layer image. Given an 

nxn filter and mxm image, your feature map dimensions will be an m-n+1 x m-n+1 

dimensional image. In this case, your image is 5x5 and the kernel is 2x2, so the feature 

map is 5 – 2 + 1 = 4x4 pixels.

The filter goes through each region in the image pixel by pixel, as shown in  

Figure 3-36.

Figure 3-35.  An example of one multiplication of the 2x2 filter on a 2x2 section 
of the input image. The filter weights are applied element-wise and produce an 
output value that is part of the feature map–the output of this convolutional layer
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The filter continues doing this until it reaches the right side of the image. After  

that, the filter goes one down and starts again from the left side of the image, like in  

Figure 3-37.

Figure 3-36.  After the operation in Figure 3-35, the filter moves to the next set of 
data to multiply over, producing the second value in the feature map
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From here, the filter continues moving right in a pixel by pixel fashion  

(see Figure 3-38).

Figure 3-37.  Showing what happens after the filter reaches the right-most side of 
the image. It moves down one (in this case, at least; you can specify how much you 
want the filter to move as a parameter when calling this layer) and then continues 
its operations as usual
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Once it reaches the end, it goes back to the first column and down one row and 

continues its operations until it reaches the bottom right region (see Figure 3-39).

Figure 3-38.  The filter continues moving as normal, adding more values to the 
feature map
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The feature map doesn’t make much sense due to the randomness of the weights.

After the two convolutional layers, you run into the MaxPooling2D layer. Max 
pooling is where the input data is scanned by a filter, which in this case is a 2x2 filter, and 

the maximum value in the 2x2 region of the image is chosen to be the value in the new 

n-dimensional image. If the stride length is not given, by default Keras chooses the pool 

size. The stride length is how far the filter should shift, and it plays a role in determining 

the feature map size. In this case, since the stride length is 2 and the pooling filter size is 

also 2x2, the dimensions of the input data are reduced in half.

Assume that the 4x4 image in Figure 3-40 is the input to a max pooling layer with 

pool size of 2x2.

Figure 3-39.  Once the filter reaches this value here, the convolution operation 
ceases, outputting a feature map to the next layer
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Since the pool size is 2x2 and the stride length is also 2 in this case (no parameter 

was provided for stride length), the pooling layer happens to split the entire image into 

regions of 2x2 pooling filters.

If the stride length was 1, then you would have a situation similar to the convolution 

example you saw earlier, and the dimensions of the feature map would be 4-2+1 = 3x3. 

This process of pooling can also be referred to as downsampling.

The pooling layer helps reduce the size of the data to allow for easier computation. 

Additionally, it can help with pattern identification because the maximum value in each 

region is selected, allowing for the patterns to stand out more.

The dropout layer is next. Dropout is a regularization technique where a proportion 

(this is a parameter passed in) of randomly selected nodes are “dropped,” or ignored 

during the training process.

Flatten is a layer where the entire input is squashed into one dimension. Assume 

that you are trying to flatten a 3x3 image, like Figure 3-41.

Figure 3-40.  What a max pooling operation looks like on a 4x4 image
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The dense layer is simply a layer of regular nodes similar to those in the artificial 

neural network example. They perform in the same way, but in this case the number of 

nodes varies from 128 in the first dense layer and to 10 in the second dense layer. The 

activation function also changes, from ‘relu’, or rectified linear unit (ReLU) in the first 

dense layer, to softmax in the second.

Mathematically, the ReLU function is defined as y = max(0, x), so when the node 

calculates the dot products between the input and the weights and adds the bias, it 

simply outputs whatever is bigger between 0 or the calculation.

The graph for ReLU looks like Figure 3-42.

Figure 3-41.  Showing what a flatten layer does to an input 3x3 image

Chapter 3  Introduction to Deep Learning



103

The general formula for softmax is shown in Figure 3-43.

As for the optimizer, it is set to the Adam optimizer, a type of gradient-based 

optimizer. By default, the parameter known as the learning rate is set to 0.001. Recall 

that the learning rate helps determine the step size taken by the optimization algorithm 

to see how much to adjust the weights by.

After executing the code in Figure 3-43, you get the output in Figure 3-44.

Figure 3-42.  A graph showing the ReLU function

Figure 3-43.  Formula for the softmax activation function
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Figure 3-44.  The output for the code in Figure 3-33. Note how it tells you the 
output shapes of each layer and the number of parameters; this can be useful when 
creating custom models and finding out that there is a mismatch between the 
dimensionality of what a layer expects and what it actually receives
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Now let’s move on to training the data. Depending on your setup, this can take 

anywhere from a few seconds to several minutes. Without cuda, expect that this will take 

much longer.

Run the code in Figure 3-45.

Figure 3-45.  Code to train the model and print accuracy and loss values for the 
test set
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Figure 3-46.  Run this code if you don’t want to save the model

The variable checkpoint will store the model in the same folder as this code with 

the name keras_MNIST_CNN.h5. If you don’t want to save the model, run the code in 

Figure 3-46 instead.
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Figure 3-47.  The output of running the training function, accompanied by the loss 
and accuracy values for the test set

If successful, you should see something like Figure 3-47.

Let’s check the AUC score for this. Run the code in Figure 3-48.
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Basically, the variable predictions are a list of arrays with 10 elements, each containing 

the probability values for class predictions for each of the x_test data samples.

To check the values for the predictions before doing np.round(), run the code in 

Figure 3-49 and see the results in Figure 3-50.

Figure 3-48.  Code to generate the AUC score for this model based on the test set

Figure 3-49.  Code to see what the predictions actually look like before rounding 
them
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The data values for the predictions for every other class besides the one it predicts 

correctly are so small that rounding them off is insignificant. The AUC score is shown in 

Figure 3-51.

That’s a really good AUC score! This score indicates that this model is really good at 

identifying handwritten digits, provided they’re in a similar format to the MNIST data set 

you used during training.

Referring back to the convolutional layers, let’s run some code to see what the feature 

maps look like after the first two convolutional layers compared to the original image.

Run the code in Figure 3-52 and look at the output in Figure 3-53.

Figure 3-50.  The output for running the code in Figure 3-49

Figure 3-51.  The generated AUC score for the model. This is the output of running 
the code in Figure 3-48
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Figure 3-52.  Code to generate graphs of what the images look like at various 
stages of the model
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As the image passes through the convolutional layers, its dimensions get reduced 

and the patterns become more apparent. While to us that might not look so much 

like a three, the model identifies those patterns from the original image and bases its 

prediction on that.

So now you have a much better understanding of what a CNN is and how Keras can 

be used to easily create and train your very own deep neural network. If you would like to 

explore the framework further, feel free to check out Appendix A. If you have any further 

questions, or would like to explore Keras beyond what’s in Appendix A, check out the 

official Keras documentation.

�Intro to PyTorch: A Simple Classifier Model
Now that you have a better idea of what a CNN is and how a classifier model looks like in 

Keras, let’s jump straight into implementing a CNN in PyTorch.

Figure 3-53.  The output of running the code in Figure 3-52
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PyTorch doesn’t abstract everything to the extent that Keras does, so there’s a bit 

more syntax involved. If you would like to explore this framework further, check out 

Appendix B, where we cover the basics of PyTorch, its functionality, and apply it to the 

models that you will explore in Chapter 7.

Just like in Keras, however, you start by importing the necessary modules and 

defining your hyperparameters (Figure 3-54).

In PyTorch, you must specify to torch that you want to use the GPU if it exists. In 

Keras, since you are using tensorflow-gpu as the back end (what Keras runs on top of), it 

is expected that you have a GPU, CUDA, and cuDNN installed.

Now configure your hyperparameters (Figure 3-55).

Figure 3-54.  Code to import the modules you need and to define the device 
(CPU or GPU) to run PyTorch on
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In this example, you will match the model architecture used in the example for Keras 

as best as PyTorch allows you to. Not every function is equivalent between TensorFlow 

and PyTorch, but the vast majority of them are.

Now create your testing and training data sets (Figure 3-56).

Figure 3-55.  Code to define the hyperparameters to use

Figure 3-56.  Using DataLoaders, a feature of PyTorch, to get the training and 
testing data
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The procedure for loading the MNIST data might be a bit different in PyTorch, using 

data loaders instead of data frames, but you can still use data frames, arrays, and so on 

in PyTorch after converting them to tensors. The procedure is usually to convert the data 

frame to a numpy array and then to a PyTorch tensor.

Let’s move on to creating your model (Figure 3-57).

Figure 3-57.  Creation of a convolutional neural network in PyTorch
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The procedure is a bit different than in Keras. In this example, the major layers were 

defined under __init__, which are your two convolutional layers and the two dense 

layers. The rest of the layers are defined under forward(). In forward(), you set x equal 

to the output of the activation function of the first convolutional layer. This new x is 

now the input of the next convolutional layer, and you set x equal to the output of the 

activation function of the second convolution layer. This same process repeats for the 

other layers, but the exact flow of data can be a bit confusing, so Figure 3-58 shows an 

example of what this code actually does.

The original inputs of x, self.conv1, and F.relu can be shown as such. x passes into the 

convolutional layer, and the outputs of that layer pass through the ReLU function. Then 

you get your final output X’ (Figure 3-59).

Figure 3-58.  F.relu is f(x), x is the training data, and self.conv1 is the first 
convolutional layer
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Now, X is X’, and this new X gets passed onto the next layer (Figure 3-60).

Figure 3-59.  The outputs of f(x) are now the new x. Basically, x = f(x). In this case, 
the output x’ is the new x

Figure 3-60.  The new x is now the new input for the next convolutional layer
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The same process repeats again, except with the new value of X (Figure 3-61).

And now you get the new output X′ (Figure 3-62).

This new output X″ is then the new value of X, and the process continues.

Figure 3-61.  The same process repeats, leading to a new value for x

Figure 3-62.  Once again, you redefine x as x″. The process then continues for as 
many layers as you have in the network
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This is the same logic behind the rest of the code, where the output of the activation 

layer for the old is now the new definition of x. This new x then goes to the next layer, 

where a function is applied after it goes through a layer and then that data becomes the 

new definition of x, and so on.

So

x = x.view(-1, 12*12*64)

performs the same function as the flatten layer in the Keras example.

Now you can move on to training your data (Figure 3-63).

Figure 3-63.  You initialize the model, your loss function, and your optimizer, and 
then you start the training process
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It might take a while, but you should see something like Figure 3-64.

After training is done, you can test your model and find the AUC score (Figure 3-65).

Figure 3-64.  The output of the training process
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Figure 3-65.  Code to evaluate the model and generate the AUC score
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The resulting output is shown in Figure 3-66.

Now you a bit more about how to create and train your own CNN in PyTorch. 

PyTorch is a bit harder to learn than Keras, which aims to make everything quite 

readable and simple, having abstracted all of the more complicated bits of code. 

TensorFlow and PyTorch are both low-level APIs that require more code to be written 

because of the lack of abstraction, but offer more flexibility in controlling exactly how 

you want everything to be. Between the two, PyTorch is easier to debug if you’re using 

the debugging tool in PyCharm. In the end, it’s all a matter of preference, although 

TensorFlow and PyTorch both perform faster on larger data sets.

Figure 3-66.  The generated accuracy score on the test set and the AUC score for 
the model
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If you would like to explore PyTorch further, check out Appendix B, where we cover 

a more refined way to create models, train, and test, as well as the general functionality 

that PyTorch offers. Appendix B also applies PyTorch to the models in Chapter 7, which 

are done in Keras.

If you would like to learn more about PyTorch after visiting Appendix B, check out 

the official PyTorch documentation.

�Summary
In recent years, deep learning has revolutionized an incredible variety of fields. Thanks 

to deep learning, we now have self-driving cars, models that have beaten professionals in 

detecting certain cancers, instant translation between languages, etc. It is of no surprise, 

then, that deep learning has also contributed heavily to the field of anomaly detection.

In this chapter, we discussed what deep learning is and what an artificial neural 

network is. You explored two popular frameworks, Keras and PyTorch, by applying them 

to the task of image classification with the MNIST data set.

In the upcoming chapters, we will take a look at the applications to anomaly 

detection of the following types of deep learning models: autoencoders, restricted 
Boltzmann machines, RNN/LSTM networks, and temporal convolutional networks.

In the next chapter, we will look at unsupervised anomaly detection with 

autoencoders.
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CHAPTER 4

Autoencoders
In this chapter, you will learn about autoencoder neural networks and the different types 

of autoencoders. You will also learn how autoencoders can be used to detect anomalies 

and how you can implement anomaly detection using autoencoders.

In a nutshell, the following topics will be covered throughout this chapter:

•	 What are autoencoders?

•	 Simple autoencoders

•	 Sparse autoencoders

•	 Deep autoencoders

•	 Convolutional autoencoders

•	 Denoising autoencoders

•	 Variational autoencoders

�What Are Autoencoders?
In the previous chapter, you learned about the basic functioning of a neural network. 

The basic concept is that a neural network essentially computes a weighted calculation 

of inputs to produce outputs. The inputs are in the input layer and the outputs are in 

the output layer and there are one or more hidden layers between the input and output 

layers. Back propagation is a technique used to train the network while trying to adjust 

the weights until the error is minimized. Autoencoders use this property of a neural 

network in a special way to accomplish some very efficient methods of training networks 

to learn normal behavior, thus helping to detect anomalies when they occur. Figure 4-1 

shows a typical neural network.
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Autoencoders are neural networks that have the ability to discover low-dimensional 

representations of high-dimensional data and are able to reconstruct the input from the 

output. Autoencoders are made up of two pieces of the neural network, an encoder and 

a decoder. The encoder reduces the dimensionality of a high dimensional dataset to a 

low dimensional one whereas a decoder essentially expands the low-dimensional data 

to high-dimensional data. The goal of such a process is to try to reconstruct the original 

input. If the neural network is good, then there is a good chance of reconstructing the 

original input from the encoded data. This inherent principle is critical in building an 

anomaly detection module.

Note that autoencoders are not that great if you have training samples containing 

few dimensions/features at each input point. Autoencoders perform well for five or more 

dimensions. If you have just one dimension/feature then, as you can imagine, you are 

just doing a linear transformation, which is not useful.

Figure 4-1.  A typical neural network
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Autoencoders are incredibly useful in many use cases. Some popular applications of 

autoencoders are

	 1.	 Training deep learning networks

	 2.	 Compression

	 3.	 Classification

	 4.	 Anomaly detection

	 5.	 Generative models

�Simple Autoencoders
Of course, we will focus on the anomaly detection piece in this chapter. Now, an 

autoencoder neural network is actually a pair of two connected sub-networks, an 

encoder and a decoder. An encoder network takes in an input and converts it into a 

smaller, dense representation, also known as a latent representation of the input, which 

the decoder network can then use to convert it back to the original input as much as 

possible. Figure 4-2 shows an example of an autoencoder with encoder and decoder 

sub-networks.

Figure 4-2.  A depiction of an autoencoder

Autoencoders use data compression logic where the compression and 

decompression functions implemented by the neural networks are lossy and are mostly 

unsupervised without much intervention. Figure 4-3 shows an expanded view of an 

autoencoder.
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The entire network is usually trained as a whole. The loss function is usually either 

the mean-squared error or cross-entropy between the output and the input, known as 

the reconstruction loss, which penalizes the network for creating outputs different from 

the input. Since the encoding (which is simply the output of the hidden layer in  

the middle) has far less units than the input, the encoder must choose to discard 

information. The encoder learns to preserve as much of the relevant information as 

possible in the limited encoding and intelligently discards the irrelevant parts. The 

decoder learns to take the encoding and properly reconstruct it back into the input. If 

you are processing images, then the output is an image. If the input is an audio file, the 

output is an audio file. If the input is some feature engineered dataset, the output will be 

a dataset too. We will use a credit card transaction sample to illustrate autoencoders in 

this chapter.

Figure 4-3.  Expanded view of an autoencoder
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Why do we even bother learning the presentation of the original input only to 

reconstruct the output as well as possible? The answer is that when we have input with 

many features, generating a compressed representation via the hidden layers of the 

neural network could help in compressing the input of the training sample. So when the 

neural network goes through all the training data and fine tunes the weights of all the 

hidden layer nodes, what will happen is that the weights will truly represent the kind of 

input that we typically see. As a result of this, if we try to input some other type of data, 

such as having data with some noise, the autoencoder network will be able to detect the 

noise and remove at least some portion of the noise when generating the output. This is 

truly fantastic because now we can potentially remove noise from, for example, images 

of cats and dogs. Another example is when security monitoring cameras capture hazy 

unclear pictures, maybe in the dark or during adverse weather, causing noisy images.

The logic behind the denoising autoencoder that if we have trained our encoder 

on good, normal images and the noise when it comes as part of the input is not really a 

salient characteristic, it is possible to detect and remove such noise.

Figure 4-4 shows the basic code to import all necessary packages in a Jupyter 

notebook. Note the versions of the various packages.
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Figure 4-5 shows the code to visualize the results via a confusion matrix, a chart for 

the anomalies and a chart for the errors (the difference between predicted and truth) 

while training. It shows the Visualization helper class.

Figure 4-4.  Importing packages in a Jupyter notebook
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You will use the example of credit card data to detect whether a transaction is 

normal/expected or abnormal/anomaly. Figure 4-6 shows the data being loaded into a 

Pandas dataframe.

Figure 4-5.  Visualization helpers
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You will collect 20k normal and 400 abnormal records. You can pick different ratios 

to try, but in general more normal data examples are better because you want to teach 

your autoencoder what normal data looks like. Too much abnormal data in training 

will train the autoencoder to learn that the anomalies are actually normal, which goes 

against your goal. Figure 4-7 shows sampling the dataframe and choosing the majority of 

normal data.

Figure 4-6.  Examining the Pandas dataframe

Figure 4-7.  Sampling the dataframe and choosing the majority of normal data

You split the dataframe into training and testing data sets (80-20 split). Figure 4-8 

shows the code to split the data into the train and test subsets.

Figure 4-8.  Spliting the data into test and train sets, using 20% as holdout  
test data
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Now it’s time to create a simple neural network model with just an encoder and 

decoder layer. You will encode the 29 columns of the input credit card dataset into 

12 features using the encoder. The decoder expands the 12 back into the 29 features. 

Figure 4-9 shows the code to create the neural network.

Figure 4-9.  Creating the simple autoencoder neural network

If you look at the code in Figure 4-9, you will see two different activation functions, 

namely relu and softmax. So what are they?

RELU, the Rectified Linear Unit, is the most commonly used activation function in 

deep learning models. The function returns 0 if it receives any negative input, but for any 

positive value xx it returns that value back. So it can be written as

f(x)=max(0,x).

Softmax, the Softmax function, outputs a vector that represents the probability 

distributions of a list of potential outcomes. The probabilities always add up to 1.

Needless to say, there are several activation functions available and you can refer to 

the Keras documentation to look at the options at https://keras.io/activations/.

Now, compile the model using RMSprop as the optimizer and mean squared error 

for the loss computation. The RMSprop optimizer is similar to the gradient descent 

algorithm with momentum. A metric function is similar to a loss function, except that 

the results from evaluating a metric are not used when training the model. You may use 
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any of the loss functions as a metric function, as listed in https://keras.io/losses/. 

Figure 4-10 shows the code to compile the model using mean absolute error and 

accuracy as metrics.

Now you can start training the model using the training dataset to validate the model 

at every step. Choose 32 as the batchsize and 20 epochs. Figure 4-11 shows the code to 

train the model, which is the most time consuming part of the process.

Figure 4-10.  Compiling the model

Figure 4-11.  Training the model

As you see, the training process outputs the loss and accuracy, as well as the 

validation loss and validation accuracy at each epoch. Figure 4-12 shows the output of 

the training step.
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Figure 4-12.  Showing the progress of the training phase
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Figure 4-14 shows the plotting of the accuracy during the training process through 

the epochs of training.

Figure 4-13.  Model graph shown in TensorBoard

Figure 4-13 is a graph of the model as shown by TensorBoard.

Figure 4-14.  Plotting of accuracy shown in TensorBoard
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Figure 4-16 shows the plotting of the loss during the training process through the 

epochs of training.

Figure 4-15 shows the plotting of the mae (mean absolute error) during the training 

process through the epochs of training.

Figure 4-15.  Plotting of mae shown in TensorBoard

Figure 4-16.  Plotting of loss shown in TensorBoard
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Figure 4-17 shows the plotting of the accuracy of validation during the training 

process through the epochs of training.

Now that the training process is complete, let’s evaluate the model for loss and 

accuracy. Figure 4-19 shows that the accuracy is 0.81, which is pretty good. It also shows 

the code to evaluate the model.

Figure 4-17.  Plotting of validation accuracy shown in TensorBoard

Figure 4-18.  Plotting of validation loss shown in TensorBoard

Figure 4-18 shows the plotting of the loss of validation during the training process 

through the epochs of training.
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The next step is to calculate the errors, and detect and also plot the anomalies and 

errors. Choose a threshold of 10. Figure 4-20 shows the code to measure anomalies 

based on that threshold.

Figure 4-19.  Code to evaluate the model

Figure 4-20.  Code to measure anomalies based on a threshold

Let’s delve deeper into the code shown above because this will be seen throughout 

the chapter when you classify data points as anomalies or normal. As you can see, this 

is based on a special parameter called the threshold. You are simply looking at the error 

(difference between actual and predicted) and comparing it to the threshold. First, 

calculate the precision and recall for threshold = 10. Figure 4-21a shows the code to show 

the precision and recall.

Figure 4-21a.  Code to show the precision and recall
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Let’s also calculate for thresholds = 1, 5, 15. See Figures 4-21b, 4-21c, and 4-21d.

Threshold = 1.0

Figure 4-21b.  Code to show the precision and recall for threshold = 1.0

Figure 4-21c.  Code to show the precision and recall for threshold = 5.0

Figure 4-21d.  Code to show the precision and recall for threshold = 15.0

If you observe the four classification reports, you can see that the precision and recall 

columns are not good (note the very low values for precision and recall in row 0 and row 1)  

for threshold = 1 or 5. They look better for threshold = 10 or 15. In fact, threshold = 10 

looks pretty good with a good recall and also higher precision than for threshold = 1 or 5.

Threshold = 5.0

Threshold = 15.0
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Picking a threshold is a matter of experimentation in this and other models and 

changes as per the data being trained on.

Compute the AUC (Area Under the Curve, 0.0 to 1.0) which comes up as 0.86. 

Figure 4-21e shows the code to show AUC.

Figure 4-21e.  Code to show AUC

You can now visualize the confusion matrix to see how well you did with the model. 

Figure 4-22 shows the confusion matrix.

Figure 4-22.  Confusion matrix

Now, using the predictions of the labels (normal or anomaly), you can plot the 

anomalies in comparison to the normal data points. Figure 4-23 shows the anomalies 

based on the threshold.

Chapter 4  Autoencoders



140

�Sparse Autoencoders
In the above example of a simple autoencoder, the representations were only 

constrained by the size of the hidden layer (12). In such a situation, what typically 

happens is that the hidden layer is learning an approximation of PCA (principal 

component analysis). But another way to constrain the representations to be compact 

is to add a sparsity constraint on the activity of the hidden representations, so fewer 

units would fire at a given time. In Keras, this can be done by adding an activity_

regularizer to your dense layer.

The difference between the simple and sparse autoencoders is mostly due to the 

regularization term being added to the loss during training.

 

You will use the same credit card dataset as in the simple autoencoder example 

above. You will use the credit card data to detect whether a transaction is normal/

expected or abnormal/anomaly. Shown below is the data being loaded into a Pandas 

dataframe.

Figure 4-23.  Anomalies based on the threshold
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Then, you will collect 20k normal and 400 abnormal records. You can pick different 

ratios to try, but in general more normal data examples are better because you want 

to teach your autoencoder what normal data looks like. Too much abnormal data in 

training will train the autoencoder to learn that the anomalies are actually normal, which 

goes against your goal. Split the dataframe into training and testing data sets (80-20 split).

Now it’s time to create a neural network model with just an encoder and 

decoder layer. You will encode the 29 columns of the input credit card dataset into 

12 features using the encoder. The decoder will expand the 12 back into 29 features. 

The key difference compared to the simple autoencoder is the activity regularizer to 

accommodate the sparse autoencoder. Figure 4-24 shows the code to create the neural 

network.

Figure 4-24.  Code to create the neural network
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Figure 4-25 shows the graph of the model as visualized by TensorBoard.

�Deep Autoencoders
You do not have to limit yourself to a single layer as encoder or decoder; you can use a 

stack of layers. It’s not a good idea to use too many hidden layers, and how many layers 

depends on the use case, so you have to play with it to seek the optimal number of layers 

and the compressions.

The only thing that really changes is the number of layers. Shown below is the simple 

autoencoder with multiple layers.

You will use the example of credit card data to detect whether a transaction is 

normal/expected or abnormal/anomaly. Shown below is the data being loaded into 

Pandas dataframe.

You will collect 20k normal and 400 abnormal records. You can pick different ratios 

to try, but in general more normal data examples are better because you want to teach 

your autoencoder what normal data looks like. Too much abnormal data in training 

will train the autoencoder to learn that the anomalies are actually normal, which goes 

against your goal. Split the dataframe into training and testing data sets (80-20 split).

Now it’s time to create a deep neural network model with three layers for the encoder 

layer and three layers as part of decoder layer. You will encode the 29 columns of the 

input credit card dataset into 16, then 8, and then 4 features using the encoder. The 

decoder expands the 4 back into the 8 and then 16 and then finally into 29 features. 

Figure 4-26 shows the code to create the neural network.

Figure 4-25.  Model graph created by TensorBoard
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Figure 4-27 shows the graph of the model as visualized by TensorBoard.

Figure 4-26.  Code to create the neural network

Figure 4-27.  Model graph shown in TensorBoard
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�Convolutional Autoencoders
Whenever your inputs are images, it makes sense to use convolutional neural networks 

(convnets or CNNs) as encoders and decoders. In practical settings, autoencoders 

applied to images are always convolutional autoencoders because they simply perform 

much better.

Let’s implement one. The encoder will consist in a stack of Conv2D and MaxPooling2D 

layers (max pooling is being used for spatial down-sampling), while the decoder will 

consist in a stack of Conv2D and UpSampling2D layers.

Figure 4-28 shows the basic code to import all necessary packages in a Jupyter 

notebook. Also note the versions of the various packages.

Figure 4-28.  Importing packages in a Juypter notebook
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You will use the mnist images data set for this purpose. Mnist contains images for the 

digits 0 to 9 and is used for many different use cases. Figure 4-29 shows the code to load 

MNIST data.

Figure 4-30.  Code to transform the images from MNIST

Figure 4-29.  Code to load MNIST data

Split the dataset into training and testing subsets. You must also reshape the data to 

28X28 images. Figure 4-30 shows the code to transform the images from MNIST.

Create a CNN model with Convolutions and MaxPool layers. Figure 4-31 shows the 

code to create the neural network.
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Compile the model using RMSprop as the optimizer and mean squared error for the 

loss computation. The RMSprop optimizer is similar to the gradient descent algorithm 

with momentum. Figure 4-32 shows the code to compile the model.

Figure 4-31.  Code to create the neural network

Chapter 4  Autoencoders



147

Now you can start training the model using the training dataset while using the 

validation dataset to validate the model at every step. Choose 32 as the batchsize and 20 

epochs. The training process outputs the loss and accuracy as well as the validation loss 

and validation accuracy at each epoch. Figure 4-33 shows the model being trained.

Figure 4-32.  Code to compile the model

Now that the training process is complete, let’s evaluate the model for loss and 

accuracy. Figure 4-34 shows that the accuracy is 0.81, which is pretty good. It also shows 

the code to evaluate the model.

Figure 4-34.  Code to evaluate the model

Figure 4-33.  The model being trained
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The next step is to use the model to generate the output images for the testing subset. 

This will show how well the reconstruction phase is going. Figure 4-35 shows the code to 

predict based on the model.

Figure 4-35.  Code to predict based on the model

You can also see how the encoder phase is working by displaying the test subset 

images in this phase. Figure 4-36 shows the code to display the encoded images.
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Figure 4-37 shows the graph of the model as visualized by TensorBoard.

Figure 4-36.  Code to display encoded images
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Figure 4-38 shows the plotting of the accuracy during the training process through 

the epochs of training.

Figure 4-37.  A model graph shown in TensorBoard
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Figure 4-39 shows the plotting of the loss during the training process through the 

epochs of training.

Figure 4-38.  Plotting of accuracy shown in TensorBoard

Figure 4-39.  Plotting of loss shown in TensorBoard
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Figure 4-40 shows the plotting of the accuracy of validation during the training 

process through the epochs of training.

Figure 4-40.  Plotting of validation accuracy shown in TensorBoard

Figure 4-41.  Plotting of validation loss shown in TensorBoard

Figure 4-41 shows the plotting of the loss of validation during the training process 

through the epochs of training.
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�Denoising Autoencoders
You can force the autoencoder to learn useful features by adding random noise to its 

inputs and making it recover the original noise-free data. This way the autoencoder 

can’t simply copy the input to its output because the input also contains random noise. 

The autoencoder will remove noise and produce the underlying meaningful data. 

This is called a denoising autoencoder. Figure 4-42 shows a depiction of a denoising 

autoencoder.

Figure 4-42.  Depiction of a denoising autoencoder

Other example is a security monitoring camera capturing some kind of hazy unclear 

picture, maybe in the dark or during adverse weather, causing a noisy image.

The logic behind the denoising autoencoder is that if you have trained your encoder 

on good normal images, and the noise, when it comes as part of the input, is not really a 

salient characteristic, it is possible to detect and remove such noise.

Figure 4-43 shows the basic code to import all necessary packages. Also note the 

versions of the various packages.
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You will use the mnist images data set for this purpose. Mnist contains images for the 

digits 0 to 9 and is used for many different use cases. Figure 4-44 shows the code to load 

MNIST images.

Figure 4-43.  Code to import packages

Figure 4-44.  Code to load MNIST images
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Split the dataset into training and testing subsets. Also, reshape the data to 28X28 

images. Figure 4-45 shows the code to load and reshape images.

Figure 4-46 shows the code to display the images.

Figure 4-45.  Code to load and reshape images

Figure 4-46.  Code to display the images

Create a CNN model with Convolutions and MaxPool layers. Figure 4-47 shows the 

code to create the neural network.
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Compile the model using RMSprop as the optimizer and mean squared error for the 

loss computation. The RMSprop optimizer is similar to the gradient descent algorithm 

with momentum. Figure 4-48 shows the code to compile the model.

Figure 4-47.  Code to create the neural network
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Now, you can start training the model using the training dataset to validate the model 

at every step. Choose 32 as the batchsize and 20 epochs. The training process outputs 

the loss and accuracy as well as the validation loss and validation accuracy at each epoch. 

Figure 4-49 shows the code to start training the model.

Figure 4-48.  Code to compile the model

Figure 4-49.  Code to start training the model
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Now that the training process is complete, let’s evaluate the model for loss and 

accuracy. Figure 4-50 shows that the accuracy is 0.81, which is pretty good. It also shows 

the code to evaluate the model.

The next step is to use the model to generate the output images for the testing subset. 

This will show you how well the reconstruction phase is going on. Figure 4-51 shows the 

code to display denoised images.

Figure 4-50.  Code to evaluate the model

Figure 4-51.  Code to display denoised images
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You can also see how the encoder phase is working by displaying the test subset 

images in this phase. Figure 4-52 show the code to display encoded images.

Figure 4-52.  Code to display encoded images

Figure 4-53 shows the graph of the model as visualized by TensorBoard.
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Figure 4-54 shows the plotting of the accuracy during the training process through 

the epochs of training.

Figure 4-53.  Model graph shown in TensorBoard
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Figure 4-55 shows the plotting of the loss during the training process through the 

epochs of training.

Figure 4-54.  Plotting of accuracy shown in TensorBoard

Figure 4-55.  Plotting of loss shown in TensorBoard
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Figure 4-56 shows the plotting of the accuracy of validation during the training 

process through the epochs of training.

Figure 4-56.  Plotting of validation accuracy shown in TensorBoard

Figure 4-57 shows the plotting of the loss of validation during the training process 

through the epochs of training.

Figure 4-57.  Plotting of validation loss shown in TensorBoard
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�Variational Autoencoders
A variational autoencoder is a type of autoencoder with added constraints on the 

encoded representations being learned. More precisely, it is an autoencoder that learns 

a latent variable model for its input data. So instead of letting your neural network 

learn an arbitrary function, you learn the parameters of a probability distribution 

modeling your data. If you sample points from this distribution, you can generate new 

input data samples. This is the reason why variational autoencoders are considered to be 

generative models.

Essentially, VAEs attempt to make sure that encodings that come from some known 

probability distribution can be decoded to produce reasonable outputs, even if they are 
not encodings of actual images.

In many real-world use cases, we have a whole bunch of data that we’re looking 

at it (it could be images, it could be audio or text; well, it could be anything) but the 

underlying data that needs to be processed might be lower in dimensions than the 

actual data, so lot of the machine learning models involve some sort of dimensionality 

reduction. One very popular technique is singular value decomposition or principal 

component analysis. Similarly, in the deep learning space, variational autoencoders do 

the task of reducing the dimensions.

Before we dive into the mechanics of variational autoencoders, let’s just recap 

the normal autoencoders that you saw in this chapter. Autoencoders basically use an 

encoder and decoder layer at a minimum to reduce the input data features into a latent 

representation by the encoder layer. The decoder expands the latent representation 

to generate the output with the goal of training the model well enough to reproduce 

the input as the output. Any discrepancy between the input and output could signify 

some sort of abnormal behavior or deviation from what is normal, otherwise known as 

anomaly detection. In a way, the output gets compressed into a smaller representation 

but has less dimension than the input, and this is what we call the bottleneck. From the 

bottleneck, we try to reconstruct the input.

Now that you have the basic concept of the normal autoencoders, let’s look at the 

variational autoencoders. In variational autoencoders, instead of mapping the input to a 

fixed vector, we map the input to a distribution so the big difference is that the bottleneck 

vector seen in the normal order in quarters is replaced with the mean vector and a 

standard deviation vector by looking at the distributions and then taking the sampled 

latent vector as the actual bottleneck. Clearly this is very different from the normal 

autoencoder where the input directly yields a latent vector.
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First, an encoder network turns the input sample x into two parameters in a latent 

space, which you can call z_mean and z_log_sigma. Then, you randomly sample similar 

points z from the latent normal distribution that is assumed to generate the data,  

via z = z_mean + exp(z_log_sigma) * epsilon, where epsilon is a random normal 

tensor. Finally, a decoder network maps these latent space points back to the original 

input data. Figure 4-58 depicts the variational encoder neural network.

Figure 4-58.  The variational encoder neural network

The parameters of the model are trained via two loss functions: a reconstruction 

loss forcing the decoded samples to match the initial inputs (just like in the previous 

autoencoders), and the KL divergence between the learned latent distribution and the 

prior distribution, acting as a regularization term. You can actually get rid of this latter 

term entirely, although it does help in learning well-formed latent spaces and reducing 

overfitting to the training data.
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The distribution that you’re learning from is not too far removed from a normally 

distributed so you going to try to force your latent distribution to be relatively close to 

a mean of zero and a standard deviation of one so before you can train your variational 

autoencoder you must consider that there is a sampling problem that could happen. 

Since you are only taking a sample of the distribution from the mean vector and the 

standard deviation, it is harder to realize backpropagation there. You are sampling it so 

how do you get back during the back propagation step?

A variational autoencoder is a kind of a mix of neural networks and graphical models 

since the first paper came up on variational autoencoder tried to create a graphical 

model and then turn the graphical model to a neural network. The variational auto 

encoder is based on variational inference.

Assume that there are two different distributions, p and q, and that you can use KL 

divergence to show dissimilarity between the two distributions, p and q. Thus, a KL 

divergence serves as a measure of the similarity between the two distributions, p and q.

The best way to understand the need for a variational autoencoder is that in a general 

autoencoder, the bottleneck is too dependent on the inputs and there is no understanding 

of the nature of the data. Since you use sampling of the distribution instead, you will be 

able to better accommodate the model to new types of data.

Figure 4-59 shows the basic code to import all necessary packages in Jupyter. Also 

note the versions of the various necessary packages.
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Figure 4-60 shows the code to visualize the results via a confusion matrix, a chart for 

the anomalies, and a chart for the errors (difference between predicted and truth) while 

training.

Figure 4-59.  Code to import packages in Jupyter
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You will use the example of credit card data to detect whether a transaction is 

normal/expected or abnormal/anomaly. Figure 4-61 shows the data being loaded into a 

Pandas dataframe.

Figure 4-60.  Code to visualize the results
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You will collect 20k normal and 400 abnormal records. You can pick different ratios 

to try, but in general more normal data examples are better because you want to teach 

your autoencoder what normal data looks like. Too much of abnormal data in training 

will train the autoencoder to learn that the anomalies are actually normal, which goes 

against your goal. Figure 4-62 shows the code to take the majority of normal data records 

with a few abnormal records.

Figure 4-61.  Code to load the dataset using Pandas

Figure 4-62.  Code to take the majority of normal data records with a few 
abnormal records

Figure 4-63.  Code to split the data into train and test subsets

Split the dataframe into training and testing data sets (80-20 split). Figure 4-63 shows 

the code to split the data into train and test subsets.
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The biggest difference between the standard autoencoders you have seen so far and 

the variational autoencoder is that here you do not just take the inputs as is; rather, you 

take the distribution of the input data and then sample the distribution. Figure 4-64 

shows the code to implement such a sampling strategy.

Figure 4-64.  Code to sample the distributions

Now it’s time to create a simple neural network model with an encoder and a 

decoder phase. You will encode the 29 columns of the input credit card dataset into 12 

features using the encoder. The encoder uses the special distribution sampling logic 

to generate two parallel layers and then wraps the sampling output (above) as a Layer 

object.

The decoder phase uses this latent vector and reconstructs the input. While doing 

this, it also measures the error of reconstruction in order to minimize it. Figure 4-65 

shows the code to create the neural network.
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Figure 4-66 shows the code to show the neural network.

Figure 4-65.  Code to create the neural network
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Figure 4-66.  Code to show the neural network

Figure 4-67.  Code to compile the model

Compile the model using adam as the optimizer and mean squared error for the 

loss computation. Adam is an optimization algorithm that can be used instead of the 

classical stochastic gradient descent procedure to update network weights iteratively 

based on training data. Figure 4-67 shows the code to compile the model.

Chapter 4  Autoencoders



172

Now, you can start training the model using the training dataset to validate the 

model at every step. Choose 32 as the batchsize and 20 epochs. The training process 

outputs the loss and accuracy as well as the validation loss and validation accuracy at 

each epoch. Figure 4-68 shows the code to train the model.

Figure 4-68.  Code to train the model
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Now that the training process is complete, let’s evaluate the model for loss and 

accuracy. Figure 4-69 shows that the accuracy is 0.23. It also shows the code to evaluate 

the model.

The next step is to calculate the errors, and detect and also plot the anomalies and 

the errors. Choose a threshold of 10. Figure 4-70 shows the code to predict the anomalies 

based on the threshold.

Figure 4-69.  Code to evaluate the model

Figure 4-70.  Code to predict the anomalies based on the threshold

Figure 4-71.  Code to calculate AUC

Compute the AUC (Area Under the Curve 0.0 to 1.0); it comes up as 0.93, which is 

very high. Figure 4-71 shows the code to calculate the AUC.

You can now visualize the confusion matrix to see how well you did with the model. 

Figure 4-72 shows the code to show the confusion matrix.
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Using the predictions of the labels (normal or anomaly) you can plot the anomalies 

in comparison to the normal data points. Figure 4-73 shows the anomalies relative to the 

threshold.

Figure 4-72.  Code to show the confusion matrix
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Figure 4-74 shows the graph of the model as visualized by TensorBoard.

Figure 4-73.  Showing the anomalies relative to the threshold

Figure 4-74.  Model graph shown in TensorBoard
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Figure 4-75 shows the graph of the model as visualized by TensorBoard.

Figure 4-76 shows the plotting of the accuracy during the training process through 

the epochs of training.

Figure 4-75.  Model graph shown in TensorBoard

Figure 4-76.  Plotting of accuracy shown in TensorBoard

Figure 4-77 shows the plotting of the loss during the training process through the 

epochs of training.
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Figure 4-78 shows the plotting of the accuracy of validation during the training 

process through the epochs of training.

Figure 4-77.  Plotting of loss shown in TensorBoard

Figure 4-79 shows the plotting of the loss of validation during the training process 

through the epochs of training.

Figure 4-78.  Plotting of validation accuracy shown in TensorBoard
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�Summary
In this chapter, we discussed autoencoders, types of autoencoders, and how they can 

be used to build anomaly detection engines. We looked at implementing a simple 

autoencoder and sparse, deep, convolutional, and denoising autoencoders. We also 

explored the variational autoencoder as a means to detect anomalies.

In the next chapter, we will look at another method of anomaly detection, 

Boltzmann machines.

Figure 4-79.  Plotting of validation loss shown in TensorBoard
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CHAPTER 5

Boltzmann Machines
In this chapter, you will learn about Boltzmann machines and how the restricted 

Boltzmann machine can be used to perform anomaly detection.

In a nutshell, the following topics will be covered throughout this chapter:

•	 What is a Boltzmann machine?

•	 Restricted Boltzmann machines (RBMs)

•	 RBM applications

�What Is a Boltzmann Machine?
A Boltzmann machine is a special type of bidirectional neural network comprised 

only of hidden nodes and input nodes, designed to learn the probability distribution 

of a data set. What makes a Boltzmann machine special is that each and every node is 

interconnected to each other, meaning the neurons in the hidden layer are connected 

to each other as well. Additionally, the Boltzmann machine has fixed weights, and the 

nodes make stochastic (probabilistic) decisions about whether or not to fire.

To better understand the model, let’s take a look at an example in Figure 5-1.
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Despite there being a distinction between visible nodes and hidden nodes, that 

doesn’t matter in a Boltzmann machine. In this model, every node communicates to 

every other node, and the entire model works as a system to create a generative network 

(meaning it’s capable of generating its own data based on what it has learned by fitting 

on a data set). In Boltzmann machines, the visible nodes are what we can interact with; 

we can’t interact with the hidden nodes. One more distinction to make is that there is no 

training process; the nodes learn to model the data set as best as they can on their own, 

making the Boltzmann machine an unsupervised deep learning model.

However, Boltzmann machines aren’t necessarily that practical, and they suffer from 

problems when the network is scaled up in size. Specific derivations of the Boltzmann 

machine such as restricted Boltzmann machines (RBM), deep Boltzmann machines 
(DBM), and deep belief networks (DBN) are much more suitable and practical to work 

with, although they are a bit outdated and have no support from the major frameworks 

such as Keras, TensorFlow, and PyTorch. Despite that, they still see some new uses today, 

even though they are overshadowed by newer deep learning models. For our purposes, we 

will look at applying the RBM to anomaly detection, particularly because it is the easiest of 

the three Boltzmann machine derivations to implement and because it is simpler to work 

with when we consider the mathematics (which are still at an advanced level) at play.

F

E

D

C

B

A

H

G

Hidden Nodes

Visible Nodes

WBC  is the weight 
between nodes B and 
C

WGF

Figure 5-1.  A graph showing how a Boltzmann machine can be structured. Notice 
that all of the nodes are interconnected, even if they are in the same layer
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�Restricted Boltzmann Machine (RBM)
The RBM is similar to the Boltzmann machine in that it is an unsupervised, stochastic 

(probabilistic), generative deep learning model. However, a key difference is that 

the RBM is only comprised of two layers: the input layer and the hidden layer. Its 

architecture is similar to that of the artificial neural network model you explored in 

Chapter 3, with the RBM layers looking like the first two layers of an ANN. Because 

we place a restriction on the layers that none of the nodes within their own layer are 

to be interconnected, the model is termed as a restricted Boltzmann machine. More 

specifically, since each node outputs a binary value, we are dealing with a Boolean/
Bernoulli RBM. Figure 5-2 shows an RBM.

v0

v1

v2

h4

h3

h2

h0

h1

Input 
Layer

Hidden 
Layer

Figure 5-2.  A visual representation of a basic restricted Boltzmann machine

We can expand this model out even more to include biases (see Figure 5-3).
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Bias a adds to all of the outputs of the input layer, and bias b adds to the outputs of 

the hidden layer. From here, we can define what is called the energy function, which the 

RBM tries to minimize. The energy function is shown in Figure 5-4.

v0 v1 v2

h4h3h2h0 h1

Input 
Layer

Hidden 
Layer

b

a

Bias b

Bias a

Figure 5-3.  A visual representation of a restricted Boltzmann machine with a 
different bias feeding into each of the two layers

Figure 5-4.  A formula that defines the energy function of the restricted Boltzmann 
machine

The first summation term is an element-wise multiplication between bias a and 

visible layer v, where each term ai is multiplied with each term vi. The second summation 

term follows the same logic, except uses element-wise multiplication with bias b and 

hidden layer h. Finally, the last summation term multiplies each visible node vi with 

each hidden node hj and the weight value wij for that connection.

The summations are basically element-wise multiplication between two vectors, one 

being transposed, so 1xn (1 column n rows), and the other being nx1 (n columns 1 
row). When a vector or matrix is transposed, we reverse the dimensions of the vector/

matrix and rearrange the values. In a vector, the same values in a row/column are now in 

a column/row. For matrices, it’s a bit more complex. To better understand the concept of 

transposing a vector or matrix, refer to Figure 5-5, Figure 5-6, and Figure 5-7.
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Square Matrix vs. Transposed Square Matrix (Figure 5-6)

1
5
4
2

A = 1  5  4  2AT =

Figure 5-5.  Original vector vs. its transposed version

B = BT =
1  2  3
4  5  6
7  8  9

1  4  7
2  5  8
3  6  9

Figure 5-6.  Original matrix vs. its transposed self. Note how the entries seem to be 
flipped along the diagonal

Vector vs. Transposed Vector (Figure 5-5)

Matrix (nxm) vs. Transposed Matrix (mxn) (Figure 5-7)

C = CT =
1  2 
3  4 
5  6 

1  3  5
2  4  6

Figure 5-7.  Original nxm matrix vs. its transposed mxn self. The columns of the 
original matrix C become the rows of the transposed matrix CT

Rewriting the summations to reflect the multiplication of the respective vectors, one 

being transposed, the energy function is equivalent to the equation in Figure 5-8.

Figure 5-8.  The equivalent formula for the energy function written without 
summations

Using the energy function, we can define a probability function that will output the 

probability of the network having a specific (v,h). To elaborate on v and h, v is a vector 

that represents the states of each node in the input layer, and h is a vector that represents 

the states of each node in the hidden layer.
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Z is defined as shown in Figure 5-10.

The probability function is shown in Figure 5-9, given a specific (v,h).

Figure 5-9.  The probability function that is associated with the visible layer v and 
the hidden layer h

Figure 5-10.  Z performs the operation over every possible v and h in the data set, 
so you can see how it forms a probability function. (Say you want a probability of 
all hearts in a card deck. This is 13/52, with 13 being all of the hearts and 52 being 
the total number of cards.)

Z is the sum of the function e−E(v, h) over every single pair of input and hidden layer 

state vectors (a vector representing the states of the layer). The parameters passed into 

p(v,h) are supposed to be vectors representing a specific configuration of the two layers 

in terms of what neurons are activated.

You can see how this forms a probability function, since we want to find e−E(v, h) for 

some v, h over the sum of e−E(v, h) for all possible pairs of v, h.

We can go a step further and define formulas for the probability of v or h given h or v 

(see Figure 5-11 and Figure 5-12).

Figure 5-11.  Formula for the probability of the hidden layer being in the state h 
given the visible layer being in the state v

Figure 5-12.  Formula for the probability of the hidden layer being in the state v 
given the visible layer being in the state h
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The Π works similarly to Σ, except with multiplication instead of addition. 

Essentially, p(h | v) is the multiplication of every p(hi, v) that exists. In these cases, m is 

the number of hidden nodes, and n is the number of visible nodes.

This could be a bit complex, so just know that the formulas in Figure 5-11 and 5-12 

are basically to find the probabilities of v or h being in their states given their respective 

h or v layer counterparts.

From there, we can define two more formulas regarding the probability that a 

particular node vi or hj activates given the vector h or v, respectively (see Figure 5-13 and 

Figure 5-14).

Figure 5-15.  The formula for a sigmoid function

Figure 5-13.  The probability of one particular node vi activating given the 
multiplication of the weights between vi and every single hidden node added with 
the bias

Figure 5-14.  The probability of one particular node hj activating given the 
multiplication of the weights between hj and every single visible node added with 
the bias

The σ represents the sigmoid function, defined by the formula in Figure 5-15.

Finally, given training inputs, we want to maximize the joint probability of the inputs, 

given by the formula in Figure 5-16.

Figure 5-16.  We are maximizing the joint probability of every possible visible 
node (the inputs) with respect to the weights
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Essentially, we will end up with a huge chain of multiplication of p(v) for every 

possible v given V, the set of all possible training inputs. We take that, and we want to 

maximize that product with respect to the weights W, so we want the weights to be 

increasing the joint probability (that product of all possible v layers).

We can also rewrite this in terms of maximizing the expected value of the log 

probability as shown in Figure 5-17.

Figure 5-17.  We take the log of p(v) for some v that’s a part of the whole training set 
V. Then we sum those terms up (think back to the log rules) and find the average of 
them all. That is what we want to maximize with respect to the weights W

The notation E [ ] stands for the expected value. In probability, E(X) is the expected 

value of some random variable X and can be thought of as the mean. In our case, we are 

trying to maximize the mean value of the log probability. Once again, V is the set of all 

training inputs.

So to explain what the formula means, we use log rules to rewrite the joint 

probability as a summation instead, and then we seek to maximize the average of that 

sum with respect to W, the weights. We want to adjust the weights so that we continue to 

maximize this expected value for every input in the entire training set.

The formulas pertaining to the RBM can get more complicated and detailed, but the 

ones listed so far should hopefully be enough to help you gain a good understanding 

of what an RBM is and how it works. At its core, the RBM is a probabilistic model that 

operates in accordance with a set of formulas. Additionally, the goal of the formulas is to 

help the RBM learn a probability distribution to represent V, explaining why the RBM is 

an unsupervised learning algorithm.

As for the training algorithm, there are two choices: contrastive divergence (CD) 

and persistent contrastive divergence (PCD). These algorithms both use Markov 

chains to help the training algorithm determine what direction to perform the gradient 

calculations in, but both differ and have their pros and cons. PCD can get better 

samples of the data and explore the domain of the input space better, but CD is better at 

extracting features.
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Some RBMs might also incorporate a feature known as momentum, which basically 

allows for an increase in learning speed and can be thought of as simulating a ball rolling 

down a hill in terms of optimizing the target function. (Think back to gradient descent 

and how the goal is to get to a local minimum. As the “ball” rolls towards the minimum, 

it gains “momentum” and descends faster and faster. Once it overshoots, it will gain new 

momentum in the opposite direction, incentivizing it to reach the minimum faster).

There are more intricacies to the RBM, but in the end, you only need to know that 

RBMs can be used to create a probability distribution of the input data. We will use this 

property of RBMs to single out anomalies by checking the probability of that particular 

sample of occurring.

�Anomaly Detection with the RBM - Credit Card Data Set
Now that you know more about the complex mechanisms of the RBM, let’s apply the RBM 

to a data set and see how it performs. For your application, let’s use the credit card data set, 

which can be found at www.kaggle.com/mlg-ulb/creditcardfraud/version/3.

Begin by importing all of your packages. For this application, you will only explore 

how an RBM can be applied to the code, since the source code is quite large. However, 

you can access the source code through the GitHub link at https://github.com/

aaxwaz/Fraud-detection-using-deep-learning.

Simply download the folder titled rbm and place it in your working directory 

(wherever you have your notebook file or Python file). In this case, we placed in a folder 

named boltzmann_machines.

Now, import your modules (see Figure 5-18).

Figure 5-18.  Importing all the modules you need. %matplotlib inline is to save the 
graph within the Jupyter notebook itself
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Next, import the data set.

Run the following (refer to Figure 5-19 for the output):

df = pd.read_csv("datasets/creditcardfraud/creditcard.csv", sep=",",  

index_col=None, encoding="utf-8-sig")

Figure 5-19.  Visualizing the data set you just loaded. This figure is scrolled right to 
show the classes

Looking at the data, it seems that the values in the columns Amount and especially 

Time need to be normalized. Take a look at how large the values for time get  

(see Figure 5-20).

Figure 5-20.  Looking at the tail end of the data frame (bottom five entries), the 
values for time clearly become massive. You must address this in order to train the 
RBM and ensure that the training process goes smoothly and works properly. Large 
values like this can ruin the whole process and even lead to no convergence
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To avoid numbers like these from potentially ruining the training process, you should  

standardize the values for both columns. Everything else seems to already be standardized, 

so you should only worry about these columns. Run the code in Figure 5-21.

Figure 5-21.  Standardizing the values in the columns Amount and Time

Now let’s take a look at the values to see how they were transformed (see Figure 5-22 

and Figure 5-23).

Figure 5-22.  Looking at the values for the column Amount to see how they were 
standardized

Figure 5-23.  Looking at the values for the column Time to see how they were 
standardized

Chapter 5  Boltzmann Machines



190

Awesome; looking much better. Now, you can define your training and testing data 

sets (see Figure 5-24).

Figure 5-24.  This is a different process than usual because of how the RBM model 
expects the input

Figure 5-25.  The output shapes of the training and testing sets

You should see something like Figure 5-25 as the output.
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Getting to the model itself, use the code in Figure 5-26.

Figure 5-26.  Initializing the model with a set of parameters

The parameters are as follows:

•	 num_visible: The number of nodes in the visible layer

•	 num_hidden: The number of nodes in the hidden layer

•	 visible_unit_type: If the visible units are of type binary or gauss

•	 main_dir: The main directory where to put the models and the 

directories for data and summary

•	 model_name: The name of the model used when saving

•	 gibbs_sampling_steps: (Optional) Default is 1.

•	 learning_rate: (Optional) Set to the default value of 0.01. Specifies 

the learning rate.

•	 momentum: The value for momentum to use in gradient descent. 

Default is 0.9.

•	 l2: The l2-weight decay. Default is 0.001.

•	 batch_size: (Optional) Default is 10.

•	 num_epochs: (Optional) Default is 10.

•	 stddev: (Optional) Default is 0.1. Ignored if the visible_unit_type is 

not gauss.

•	 verbose: (Optional) Default is 0. A value of 1 shows the outputs, and 

0 shows nothing.

•	 plot_training_loss: Whether or not to plot the training loss. Default is 

True.
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Now that you finished training, you can look at evaluating your model. To get the 

probability values for each entry in the test set, you have to calculate the free energy for 

each data point (this is a function unique to this version of the RBM). From there, you 

can get the probability of each data point occurring given its free energy. Run the code in 

Figure 5-28.

Now you can fit the data to the model. Run the following (refer to Figure 5-27 for the 

output):

model.fit(x_train, validation_set=x_test)

Figure 5-27.  The output of training the model
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Figure 5-28.  Code to get the costs from the test set and get the AUC scores from that

The output should be something like Figure 5-29.

Figure 5-29.  The AUC score ended up at 95.84%

Considering the seemingly simple architecture of the RBM (with how few nodes 

there are in the model compared to neural networks), that’s a pretty good AUC score!

You can also graph the free energy vs. the probability of each data point to get an 

idea of what the anomalies look like compared to the normal data points. Before you do 

that, let’s check a five-number summary of each data set to get a sense of how they are 

distributed.

Figure 5-30 shows the code for the five-number summary of the normal data.

Figure 5-30.  Code to check the five-number summary of the normal data

The output should look somewhat like Figure 5-31.
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Now let’s check the five-number summary of the anomalies (see Figure 5-32).

Figure 5-31.  The five-number summary shows that the normal data is right 
skewed, since the values for each quartile are in the negative, while the outlier 
values in the tail bring the mean up into the positives

Figure 5-32.  The code to check the five-number summary for the anomalies

The output should look somewhat like Figure 5-33.

Figure 5-33.  Looking at the data, it seems that all of the anomalies are below 250. 
Knowing this, you can now pick a threshold value so only the relevant data is displayed 
on the graph
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Knowing the general distribution of the data, you can pick a threshold value so that 

only relevant data is shown on the graph. You know the majority of the normal data is 

situated around the value zero, so the outliers are irrelevant to you since they won’t show 

up on the graph anyways (a few values for 20,000 won’t show up when compared to tens 

of thousands of values around zero).

And so let’s choose a cutoff point of 250, since the maximum free energy for an 

 anomaly is at around 232. Figure 5-34 shows a graph of the free energy vs. the probabilities 

for the test set.

Figure 5-34.  Code to plot the free energies associated with x_test and the 
respective probabilities

Figure 5-35 shows the code.

Figure 5-35.  The code to graph the free energies of the data points and their 
probabilities
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The output graph is shown in Figure 5-36.

Figure 5-36.  The graph of the free energies vs. the probability of the normal and 
anomaly data points in the test set with costs less than 500

The graph automatically graphs the probabilities of the data points based on 

their free energies, but this isn’t exactly made very clear for you to see. The way the 

probabilities are computed correspond with this line of code:

probs = costs / np.sum(costs)

This essentially takes the individual free energy and divides it by the total free energy 

associated with the whole set.

The RBM seems to have learned the distribution well enough that you can see a 

pretty clear separation between the normal values and the anomalies, although there is 

a bit of an overlap. In any case, the RBM performed pretty well on the credit card dataset 

with an AUC of 95.84%.
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�Anomaly Detection with the RBM - KDDCUP Data Set
Remember the KDDCUP data set you looked at in Chapter 2? Let’s try to apply the RBM 

to it as well. The application will be a similar procedure to that in the previous example, 

but instead of dealing with excessively large values in the data set, you will learn how to 

deal with data that is comprised of a hefty number of zero entries.

Again, you begin by importing all of the necessary modules (see Figure 5-37).

Figure 5-37.  Importing the necessary modules

Next, you need to import your data set. Since you’ve used it before, you don’t have to 

do df.head() or print out the shape, but it still helps to get a sense of what the data set 

looks like (see Figure 5-38).
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The output is shown in Figure 5-39.

Figure 5-38.  Defining the columns and loading the data set

Figure 5-39.  Notice that there are categorical labels to deal with, and that there 
are a huge number of columns per data entry
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As in Chapter 2, you only want to focus on HTTP attacks, so let’s filter the data frame 

to only include them (see Figure 5-40).

Figure 5-40.  Filtering all the entries to include only HTTP attacks and dropping 
the service column from the data frame

The new output is shown in Figure 5-41.

Figure 5-41.  The columns only consist of HTTP attacks. Here you look at the tail 
end of the data frame

As a reminder, df.tail() performs the same function as df.head() but shows the 

entries from the bottom up as opposed to top down. Also, you can pass a parameter in 

the parenthesis to indicate the number of rows you want to see.

You don’t want values that are strings in your data, so you have to use the label 

encoder as in Chapter 2 (see Figure 5-42).
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The new output is shown in Figure 5-43.

Figure 5-42.  Using the label encoder on the categorical values in your data frame

Figure 5-43.  The output showing the new data frame with the categorical values 
converted to integer label equivalents

In this data set, the normal data entries comprise an overwhelmingly large 

proportion of the data entries, pretty much drowning out the anomalous data. Not only 

that, but you don’t want to pass in all of the data values into the RBM, so you will create 

a new data frame that contains a portion of normal data entries and all of the anomalous 

data entries. Run the code in Figure 5-44.
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As in Chapter 2, the normal labels are encoded as 4 so you can use them as the basis 

to separate the normal entries from the anomalies.

Since the data set is so large, the entries are shuffled randomly ten times before a sample of  

50,000 is selected from them. This is to ensure a random selection of values from the entire 

data set instead of having the entries just in the top 50,000. The output is shown in Figure 5-45.

Figure 5-44.  Code to define an anomaly data set and a normal data set. Then, the 
normal data set is shuffled to ensure random selections, and a new data set named 
novelties is formed

Figure 5-45.  The output of the code in Figure 5-44

One thing about the KDDCUP data set is that there are a massive amount of entries 

with data values as either miniscule values or as 0. You’ve dealt with massive values 

with the credit card data set, and you know that those values can throw off the training 

process entirely. Likewise, massive amounts of zero values or really tiny data values can 

also hamper the training process.
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Since novelties.head() only displays some of the columns, you’ll have to use 

something else to check every column, so look at the code in Figure 5-46.

Figure 5-46.  Code to print all the columns and five rows in the data frame

The parameters are self-explanatory. In the example, all 41 columns are displayed for 

the first 5 rows (Figure 5-47 and Figure 5-48).

Figure 5-47.  The output from the code in Figure 5-46. Notice the massive amount 
of zero values in the columns of the data entries
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While the large amount of zero-value entries might not have affected the isolation 

forest, they will certainly mess with the training process of the RBM, leading to terrible 

AUC scores. Therefore, standardizing all of the values will help the RBM during the 

training process and help it attain proper AUC scores.

You don’t want to standardize the data values for the columns protocol_type, flag, or 

label, so exclude them specifically (see Figure 5-49).

Figure 5-48.  The rest of the output continued from Figure 5-46. There are still 
many zero values or really small values in each entry
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The output showing the standardized data is shown in Figure 5-50, Figure 5-51, and 

Figure 5-52.

Figure 5-49.  Standardizing every value except for the columns the label encoder 
transformed

Figure 5-50.  The code in a Jupyter cell

Figure 5-51.  The first part of the output showing that most of the values have been 
transformed

Figure 5-52.  The same output but scrolled right to show that more of the values 
have been transformed
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As you can see, most of the zero value entries have been standardized in accordance 

with all of the values in their respective columns. The few nonzero entries in these 

columns will help the scaler to standardize the rest of the values in that column.

Just as you want to avoid massive values in the training set, you also seek to avoid 

large amounts of zero value entries in the data. In both such cases, the calculations 

for the gradient will be thrown off, resulting in cases such as the “exploding gradient” 

(gradients so big that the model can never converge on the local minimum) or the 

“vanishing gradient” (gradients so small that they are practically nonexistent, and 

the model never converges on the local minimum). An abundance of values that are 

too large or too small can negatively affect the training process, so it’s a good idea to 

preprocess the data set before training the model on it.

Now you can move on to defining your training and testing sets (see Figure 5-53).

Figure 5-53.  Defining the training and testing sets and printing out the shapes of each

The corresponding output is shown in Figure 5-54.
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The 43,000 entries indicate a roughly 80-20 split between the training and testing 

data sets.

Again, you drop the last column, since this is unsupervised training (although it is 

true that both the anomalies and the normal entries are labeled, the model only sees 

unlabeled data during the training and prediction processes).

With your data sets created, you can define and train the model (see Figure 5-55, 

Figure 5-56, and Figure 5-57).

Figure 5-54.  The output shapes and some entries of  y_test are displayed

Figure 5-55.  Initializing the model

The code to train the model is shown in Figure 5-56.

Figure 5-56.  Training the model on x_train, using x_test as validation data
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The output you should see is shown in Figure 5-57.

Figure 5-57.  The training output by the model for the code in Figure 5-56

Since the labels aren’t binary, you want to redefine them as either normal, 0, or 

anomalous, 1. Run the code in Figure 5-58.
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The output you should see is shown in Figure 5-59.

Figure 5-58.  Code to change all labels that are 4 to 0, representing normal entries, 
and all labels that aren’t 4 to 1, representing anomalies

Figure 5-59.  The labels should now be transformed. Some of the entries in y_test 
are shown to make sure they were transformed correctly

Now that your labels have been corrected, you can get the free energy and find the 

AUC score (see Figure 5-60).

Figure 5-60.  Code to get the free energy for each model in x_test and then to find 
the AUC score based on that
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The output you should see is shown in Figure 5-61.

Figure 5-61.  The generated AUC score

That’s an even better AUC score than for the credit card data set! Let’s take a look 

at what happens when you plot the free energy vs. the probability. As with the previous 

example, let’s take a look at the five-number summary for the normal data to see how the 

distribution looks (Figure 5-62 and Figure 5-63).

Figure 5-62.  Code to check the five-number summary of the normal data

The output should look somewhat like Figure 5-63.

Figure 5-63.  It seems that the graph is skewed right, and that all of the values are 
under 1150
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Now let’s look at the five-number summary to see what the general distribution of 

the anomalous data looks like (see Figure 5-64 and Figure 5-65).

Figure 5-64.  Code to check the five-number summary of the anomalous data

Figure 5-65.  Based on the maximum value, you don’t need to filter out any values 
for cost, except for what is an anomaly and what is a normal point

The output should look somewhat like Figure 5-65.

Now you can graph the free energy vs. the probabilities for each value in the test set 

separated by their label. Run the code in Figure 5-66.
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The output should look somewhat like Figure 5-67.

Figure 5-67.  There seems to be a defined separation between the anomalies and 
the normal data points. The anomalies in general seem to have a much higher free 
energy cost and a lower-than-usual probability of occurring

Figure 5-66.  Code to plot the free energy vs. the probability for each entry in the 
test set. All of the anomalies have free energies under 1500, so you can filter out all 
values for cost under 1500 to make the graph easier to visualize
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Once again, the RBM has learned the distribution well enough that there’s a clear 

and defined separation between the anomalies and the normal data entries.

�Summary
In this chapter, we discussed restricted Boltzmann machines and how they can be used 

for anomaly detection. We also explored the application of the RBM to two data sets that 

represented two cases where standardization of the data is necessary for proper training. 

You now know more about what an RBM is, how it works, and how to apply it to different 

data sets.

In the next chapter, we will take a look at anomaly detection using recurrent neural 

networks.
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CHAPTER 6

Long Short-Term  
Memory Models
In this chapter, you will learn about recurrent neural networks and long short-term 

memory models. You will also learn how LSTMs work and how they can be used to 

detect anomalies and how you can implement anomaly detection using LSTM. You 

will work through several datasets depicting time series of different types of data such 

as CPU utilization, taxi demand, etc. to illustrate how to detect anomalies. This chapter 

introduces you to many concepts using LSTM so as to enable you to explore further 

using the Jupyter notebooks provided as part of the book material.

In a nutshell, the following topics will be covered throughout this chapter:

•	 Sequences and time series analysis

•	 What is a RNN?

•	 What is an LSTM?

•	 LSTM applications

�Sequences and Time Series Analysis
A time series is a series of data points indexed in time order. Most commonly, a 

time series is a sequence taken at successive equally spaced points in time. Thus, it is a 

sequence of discrete-time data. Examples of time series are ECG data, weather sensors, 

and stock prices.
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Figure 6-1 shows some examples of time series.

Figure 6-1.  A time series

Figure 6-2.  Monthly values of the AMO index

Figure 6-2 shows the monthly values of AMO index for last 150 years.
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Figure 6-3 shows a chart of the BP stock price for a 20-year time period.

Figure 6-3.  BP stock price

Time series analysis refers to the analysis of change in trends of data over a period of 

time. Time series analysis comprises methods for analyzing time series data in order 

to extract meaningful statistics and other characteristics of the data and has a variety of 

applications. One such application is the prediction of the future value of an item based 

on its past values. Future stock price prediction is probably the best example of such 

an application. Another very important use case is the ability to detect anomalies. By 

analyzing and learning the time series in terms of being able to understand the trends 

and changes seen from historical data, we can detect abnormal or anomalous data 

points in the time series.

Figure 6-4 is a time series with anomalies. It shows the normal data in green and 

possible anomalies in red.
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�What Is a RNN?
You have seen several types of neural networks throughout the book so you know that 

the high-level representation of neural networks looks like Figure 6-5.

Figure 6-4.  Time series with anomalies

Figure 6-5.  A high-level representation of neural networks

Clearly, the neural network processes input and produces output, and this works on 

many types of input data with varying features. However, a critical piece to notice is that 

this neural network has no notion of the time of the occurrence of the event (input), only 

that input has come in.

So what happens with events (input) that come in as a stream over long periods of 

time? How can the neural network shown above handle trending in events, seasonality 

in events, etc.? How can it learn from the past and apply it to the present and future?

Recurrent neural networks try to address this by incrementally building neural 

networks, taking in signals from a previous timestamp into the current network.  

Figure 6-6 shows a RNN.
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You can see that RNN is a neural network with multiple layers or steps or stages. 

Each stage represents a time T; the RNN at T+1 will consider the RNN at time T as one 

of the signals. Each stage passes its output to the next stage. The hidden state, which is 

passed from one stage to next, is the key for the RNN to work so well and this hidden 

state is analogous to some sort of memory retention. A RNN layer (or stage) acts as an 

encoder as it processes the input sequence and returns its own internal state. This state 

serves as the input of the decoder in the next stage, which is trained to predict the next 

point of the target sequence, given previous points of the target sequence. Specifically, 

it is trained to turn the target sequences into the same sequences but offset by one 

timestep in the future.

Backpropagation is used when training a RNN as in other neural networks, but 

in RNNs there is also a time dimension. In backpropagation, we take the derivative 

(gradient) of the loss with respect to each of the parameters. Using this information 

(loss), we can then shift the parameters in the opposite direction with a goal to minimize 

the loss. We have a loss at each timestep since we are moving through time and we 

can sum the losses across time to get the loss at each timestep. This is the same as 

summation of gradients across time.

The problem with the above recurrent neural networks, constructed from regular 

neural network nodes, is that as we try to model dependencies between sequence values 

that are separated by a significant number of other values, the gradients of timestep 

Figure 6-6.  A recurrent neural network
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T depends on gradients at T-1, gradients at T-2, and so on. This leads to the earliest 

gradient’s contribution getting smaller and smaller as we move along the timesteps 

where the chain of gradients gets longer and longer. This is what is known as the 

vanishing gradient problem. This means the gradients of those earlier layers will become 

smaller and smaller and therefore the network won’t learn long-term dependencies. 

RNN becomes biased as a result, only dealing with short-term data points.

LSTM networks are a way of solving this problem with RNNs.

�What Is an LSTM?
A LSTM network is a kind of recurrent neural network. As seen above, a recurrent 

neural network is a neural network that attempts to model time or sequence dependent 

behavior, such as language, stock prices, weather sensors, and so on. This is performed 

by feeding back the output of a neural network layer at time T to the input of the 

same network layer at time T + 1. LSTM builds on top of the RNN, adding a memory 

component meant to help propagate the information learned at a time T to the future 

T+1, T+2, and so on. The main idea is that LSTM can forget irrelevant parts of previous 

state while selectively updating state and then outputting certain parts of the state that 

are relevant to the future.

How does this solve the vanishing gradient problem in RNNs? Well, now we are 

throwing some state, updating some state, and propagating forward some part of the 

state so we no longer have a long chain of backpropagation seen in RNNs. Thus, LSTMs 

are much more efficient than typical RNN.
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Figure 6-7 is a RNN with tanh activation.

The tanh function is called an activation function. There are several types of 

activation functions that help in applying non-linear transformations on the inputs at 

every node in the neural network. Figure 6-8 shows common activation functions.

Figure 6-7.  A RNN with tanh activation

Figure 6-8.  Common activation functions

The key idea behind activation functions is to add non-linearity to the data to align 

better with real-world problems and real-world data. In Figure 6-9, the top graph shows 

linearity and the bottom graph shows nonlinearity.
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Clearly, there is no linear equation to handle the nonlinearity so we need an 

activation function to deal with this property. The different activation functions are listed 

at https://keras.io/activations/.

In time series data, the data is spread over a period of time, not some instantaneous 

set such as seen in Chapter 4 autoencoders, for example. So not only it is important to look 

at the instantaneous data at some time T, it is also important for older historical data to 

the left of this point to be propagated through the steps in time. Since we need the signals 

from historical data points to survive for a long period of time, we need an activation 

function that can sustain information for a longer range before going to zero. tanh is the 

ideal activation function for the purpose and is graphed as shown in Figure 6-10.

Figure 6-9.  Linear and nonlinear data plots

Figure 6-10.  tanh activation
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We also need sigmoid (another activation function) as a way to either remember or 

forget the information. A sigmoid activation function is shown in Figure 6-11.

Now, conventional RNNs have a tendency to remember everything including 

unnecessary inputs which results in an inability to learn from long sequences. By 

contrast, LSTMs selectively remember important inputs and this allows them to handle 

both short-term and long-term dependencies.

So how does LSTM do this? It does this by releasing information between the hidden 

state and the cell state using three important gates: the forget gate, the input gate, and 

the output gate. A common LSTM unit is composed of a cell, an input gate, an output 

gate, and a forget gate. The cell remembers values over arbitrary time intervals and 

the three gates regulate the flow of information into and out of the cell.

A more detailed LSTM architecture is shown in Figure 6-12. There are a couple of key 

functions used, the tanh and the sigmoid, which are activation functions. Ft is the forget 

gate, It is the input gate, and Ot is the output gate.

Figure 6-11.  A sigmoid activation function
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A forget gate is the first part of the LSTM stage and pretty much decides how much 

information from a prior stage should be remembered or forgotten. This is accomplished 

by passing the previous hidden state hT-1 and current input xT through a sigmoid 

function.

The input gate helps decide how much information to pass to current stage by using 

the sigmoid function and also a tanh function.

The output gate controls how much information will be retained by the hidden state 

of this stage and passed onto the next stage. Again, the current state passes through the 

tanh function.

Just for information, the compact forms of the equations for the forward pass of an 

LSTM unit with a forget gate are (source : Wikipedia)
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where the initial values are c0 = 0 and h0 = 0, and the operator 0 denotes the element-wise 

product. The subscript indexes the time step.

Figure 6-12.  A detailed LSTM network 
Source: commons.wikimedia.org
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Variables

•	 x t ∈ R d {\displaystyle x_{t}\in \mathbb {R} ^{d}} xt ∈ ℝd: Input vector 

to the LSTM unit

•	 f t ∈ R h {\displaystyle f_{t}\in \mathbb {R} ^{h}} ft ∈ ℝh: Forget gate’s 

activation vector

•	 i t ∈ R h {\displaystyle i_{t}\in \mathbb {R} ^{h}} it ∈ ℝh: Input/update 

gate’s activation vector

•	 o t ∈ R h {\displaystyle o_{t}\in \mathbb {R} ^{h}} ot ∈ ℝh: Output 

gate’s activation vector

•	 h t ∈ R h {\displaystyle h_{t}\in \mathbb {R} ^{h}} ht ∈ ℝh: Hidden 

state vector, also known as the output vector of the LSTM unit

•	 c t ∈ R h {\displaystyle c_{t}\in \mathbb {R} ^{h}} ct ∈ ℝh: Cell state 

vector

•	 W ∈ R h × d {\displaystyle W\in \mathbb {R} ^{h\times d}} W ∈ ℝh × d, 

U ∈ ℝh × h and b ∈ ℝh U ∈ R h × h {\displaystyle U\in \mathbb {R} 

^{h\times h}} b ∈ R h {\displaystyle b\in \mathbb {R} ^{h}} : Weight 

matrices and bias vector parameters, which need to be learned 

during training

The superscripts refer to the number of input features and number of hidden units, 

respectively.

	
s g sigmoid function:  	

	 s c hyperbolic tangent function:   	

	 sh hyperbolic tangentfunction:  	

�LSTM for Anomaly Detection
In this section, you will look at LSTM implementations for some use cases using time 

series data as examples. You have few different time series datasets to use to try to detect 

anomalies using LSTM. All of them have a timestamp and a value that can easily be 

plotted in Python.
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Figure 6-13 shows the basic code to import all necessary packages. Also note the 

versions of the various necessary packages.

Figure 6-14 shows the code to visualize the results via a chart for the anomalies and a 

chart for the errors (the difference between predicted and truth) while training.

Figure 6-13.  Code to import packages
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You will use different examples of time series data to detect whether a point is 

normal/expected or abnormal/anomaly. Figure 6-15 shows the data being loaded into a 

Pandas dataframe. It shows a list of paths to datasets.

Figure 6-14.  Code to visualize errors and anomalies

Figure 6-15.  A list of paths to datasets
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You will work with one of the datasets in more detail now. The dataset is nyc_taxi, 

which basically consists of timestamps and demand for taxis. This dataset shows the 

NYC taxi demand from 2014–07–01 to 2015–01–31 with an observation every half hour. 

There are few detectable anomalies in this dataset: Thanksgiving, Christmas, New Year’s 

Day, a snow storm, etc.

Figure 6-16 shows the code to select the dataset.

Figure 6-16.  Code to select the dataset

You can load the data form the dataFilePath as a csv file using Pandas. Figure 6-17 

shows the code to read the csv datafile into Pandas.

Figure 6-17.  Code to read a csv datafile into Pandas

Figure 6-18 shows the plotting of the time series showing the months on the  

x-axis and the value on the y-axis. It also shows the code to generate a graph showing  

the time series.
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Let’s understand the data more. You can run the describe() command to look at the 

value column. Figure 6-19 shows the code to describe the value column.

Figure 6-18.  Plotting the time series

Figure 6-19.  Describing the value column
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You can also plot the data using seaborn kde plot, as shown in Figure 6-20.

The data points have a minimum of 8 and maximum of 39197, which is a wide range. 

You can use scaling to normalize the data.

The formula for scaling is (x-Min) / (Max-Min). Figure 6-21 shows the code to scale 

the data.

Figure 6-20.  Using kde to plot the value column

Figure 6-21.  Code to scale the data
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Now that you scaled the data, you can plot the data again. You can plot the data using 

seaborn kde plot, as shown in Figure 6-22.

Figure 6-22.  Using kde to plot the scaled_value column

You can take a look at the dataframe now that you have scaled the value column. 

Figure 6-23 shows the dataframe showing the timestamp and value as well as scaled_

value and the datetime.

Figure 6-23.  The modified dataframe
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There are 10320 data points in the sequence and your goal is to find anomalies. This 

means you are trying to find out when data points are abnormal. If you can predict a 

data point at time T based on the historical data until T-1, then you have a way of looking 

at an expected value compared to an actual value to see if you are within the expected 

range of values for time T. If you predicted that ypred number of taxis are in demand on 

January 1, 2015, then you can compare this ypred with the actual yactual. The difference 

between ypred and yactual gives the error, and when you get the errors of all the points 

in the sequence, you end up with a distribution of just errors.

To accomplish this, you will use a sequential model using Keras. The model consists 

of a LSTM layer and a dense layer. The LSTM layer takes as input the time series data and 

learns how to learn the values with respect to time. The next layer is the dense layer (fully 

connected layer). The dense layer takes as input the output from the LSTM layer, and 

transforms it into a fully connected manner. Then, you apply a sigmoid activation on the 

dense layer so that the final output is between 0 and 1.

You also use the adam optimizer and the mean squared error as the loss function. 

Figure 6-24 shows the code to build a LSTM model.

Figure 6-24.  Code to build a LSTM model
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As shown above, you used a LSTM layer. Let’s look at the details of the LSTM 

layer function with all the possible parameters (Source: https://keras.io/layers/

recurrent/):

keras.layers.LSTM(units, activation=‘tanh’, recurrent_

activation=‘hard_sigmoid’, use_bias=True, kernel_

initializer=‘glorot_uniform’, recurrent_initializer=‘orthogonal’, 

bias_initializer=‘zeros’, unit_forget_bias=True, 

kernel_regularizer=None, recurrent_regularizer=None, 

bias_regularizer=None, activity_regularizer=None, 

kernel_constraint=None, recurrent_constraint=None, 

bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, 

implementation=1, return_sequences=False, return_state=False, 

go_backwards=False, stateful=False, unroll=False)

Arguments

•	 units: Positive integer, dimensionality of the output space

•	 activation: Activation function to use (see https://keras.io/

activations). Default: hyperbolic tangent (tanh). If you pass None, 

no activation is applied (i.e. “linear” activation: a(x) = x).

•	 recurrent_activation: Activation function to use for the recurrent 

step (see https://keras.io/activations). Default: hard sigmoid 

(hard_sigmoid). If you pass None, no activation is applied (ie. “linear” 

activation: a(x) = x).

•	 use_bias: Boolean, whether the layer uses a bias vector

•	 kernel_initializer: Initializer for the kernel weights matrix, used 

for the linear transformation of the inputs (see https://keras.io/

initializers)

•	 recurrent_initializer: Initializer for the recurrent_kernel weights 

matrix, used for the linear transformation of the recurrent state 

(see https://keras.io/initializers).

•	 bias_initializer: Initializer for the bias vector (see https://keras.

io/initializers)
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•	 unit_forget_bias: Boolean. If True, add 1 to the bias of the 

forget gate at initialization. Setting it to true will also force bias_

initializer="zeros". This is recommended in Jozefowicz et al. 

(2015).

•	 kernel_regularizer: Regularizer function applied to the kernel 

weights matrix (see https://keras.io/regularizer)

•	 recurrent_regularizer: Regularizer function applied to the 

recurrent_kernel weights matrix (see https://keras.io/

regularizer)

•	 bias_regularizer: Regularizer function applied to the bias vector 

(see https://keras.io/regularizer)

•	 activity_regularizer: Regularizer function applied to the output of 

the layer (its “activation”) (see https://keras.io/regularizer)

•	 kernel_constraint: Constraint function applied to the kernel 

weights matrix (see https://keras.io/constraints)

•	 recurrent_constraint: Constraint function applied to the recurrent_

kernel weights matrix (see https://keras.io/constraints)

•	 bias_constraint: Constraint function applied to the bias vector (see 

https://keras.io/constraints)

•	 dropout: Float between 0 and 1. Fraction of the units to drop for the 

linear transformation of the inputs.

•	 recurrent_dropout: Float between 0 and 1. Fraction of the units to 

drop for the linear transformation of the recurrent state.

•	 implementation: Implementation mode, either 1 or 2. Mode 1 will 

structure its operations as a larger number of smaller dot products 

and additions, whereas mode 2 will batch them into fewer, larger 

operations. These modes will have different performance profiles on 

different hardware and for different applications.

•	 return_sequences: Boolean. Whether to return the last output in the 

output sequence, or the full sequence.
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•	 return_state: Boolean. Whether to return the last state in addition 

to the output. The returned elements of the state’s list are the hidden 

state and the cell state, respectively.

•	 go_backwards: Boolean (default False). If True, process the input 

sequence backwards and return the reversed sequence.

•	 stateful: Boolean (default False). If True, the last state for each 

sample at index i in a batch will be used as the initial state for the 

sample of index i in the following batch.

•	 unroll: Boolean (default False). If True, the network will be unrolled, 

else a symbolic loop will be used. Unrolling can speed up a RNN, 

although it tends to be more memory-intensive. Unrolling is only 

suitable for short sequences.

If you notice the LSTM call in the above code snippet, there is a parameter time_

steps=48 being used. This is the number of steps in the sequence that is used in training 

LSTM. 48 clearly means 24 hours, since your data points are 30 minutes apart. You can 

try changing this to 64 or 128 and see what happens to the output.

Figure 6-25 shows the code to split the sequence into a tumbling window of 

sub-sequences of length 48. Note the shape of sequence_trimmed, which is 215 

subsequences of 48 points each with 1 dimension at each point (clearly you only have 

scaled_value as a column at each time stamp).

Figure 6-25.  Code to create subsequences
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Now, let’s train your model for 20 epochs, using the training set as the validation 

data. You can do so as follows. Figure 6-26 shows the code to train the model.

Figure 6-26.  Code to train the model
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Figure 6-27 shows the plotting of the loss during the training process through the 

epochs of training.

Figure 26.  (continued)

Figure 6-27.  Graph of loss in TensorBoard

Figure 6-28 shows the plotting of the mean absolute error during the training process 

through the epochs of training.
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Figure 6-29 shows the plotting of the loss of validation during the training process 

through the epochs of training.

Figure 6-28.  Graph of mean absolute error in TensorBoard

Figure 6-29.  Graph of loss of validation in TensorBoard
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Figure 6-30 shows the plotting of the mean absolute error of validation during the 

training process through the epochs of training.

Figure 6-30.  Graph of mean absolute error of validation in TensorBoard

Figure 6-31 shows the graph of the model as visualized by TensorBoard.
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Once the model is trained, you can predict a test dataset that is split into 

subsequences of the same length (time_steps) as the training datasets. Once this is done, 

you can then compute the root mean square error (RMSE).

Figure 6-31.  Graph of the model as visualized by TensorBoard
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Figure 6-32 shows the code to predict on the testing dataset.

RMSE is 0.040, which is quite low, and this is also evident from the low loss from 

the training phase after 20 epochs: loss: 0.0251 - mean_absolute_error: 0.0251 - 

val_loss: 0.0248 - val_mean_absolute_error: 0.0248

Now you can use the predicted dataset and the test dataset to compute the difference 

as diff, which is then passed through vector norms. Calculating the length or magnitude 

of vectors is often required directly as a regularization method in machine learning. 

Then you can sort the scores/diffs and use a cutoff value to pick the threshold. This 

obviously can change as per the parameters you choose, particularly the cutoff value 

(which is 0.99 in Figure 6-33). The figure also shows the code to compute the threshold.

Figure 6-32.  Code to predict on the testing dataset
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You got 0.333 as the threshold; anything above is considered an anomaly.

Figure 6-34 shows the code to plot testing dataset (GREEN) and the corresponding 

predicted dataset (RED).

Figure 6-34.  Plotting the testing and predicted datasets

Figure 6-33.  Code to compute the threshold
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Figure 6-35 shows the code to classify a datapoint as anomaly or normal.

Figure 6-36 shows the code to plot the data points with respect to the threshold.

Figure 6-35.  Code to classify a datapoint as anomaly or normal

Figure 6-36.  Code to plot the data points with respect to the threshold
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Figure 6-37 shows the code to append the anomaly flag to the dataframe.

Figure 6-37.  Code to append the anomaly flag to the dataframe

Figure 6-38 shows the code to generate a graph showing the anomalies.

Figure 6-38.  A graph showing anomalies
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In above graph you can spot an anomaly around Thanksgiving Day, one around New 

Year Eve, and another one possibly on a snow storm day in January.

If you play around with some of the parameters you used, such as number of time_

steps, threshold cutoffs, epochs of the neural network, batch size, and hidden layer, you 

will see different results.

A good way to improve the detection is to curate good normal data, use identified 

anomalies, and put it in the mix to have a way to tune the parameters until you get good 

matches on the identified anomalies.

�Examples of Time Series
�art_daily_no_noise
This data set has no noise or anomalies and is a normal time series dataset. As you can 

see below, the time series has values at different timestamps.

Dataset: art_daily_no_noise.csv

Figure 6-39 shows the code to generate a graph showing the time series.

Figure 6-39.  A graph showing the time series
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Using visualization, you can plot the new time series now. As shown below, the time 

series shows the datatime vs. the value column. Since there are no anomalies, everything 

is green. Figure 6-40 shows code to generate a graph showing anomalies.

Since this data set has no noise or anomalies and is a normal time series dataset, 

there are no anomalies (datapoints in RED) shown and everything is green.

Next, let’s examine another dataset which is different from the current dataset. You 

will build a LSTM model and see if there are anomalies or not.

�art_daily_nojump
This data set has no noise or anomalies and is a normal time series dataset. As you can 

see below, the time series has values at different timestamps.

Using visualization, you can plot the time series now. You convert the timestamp to 

datetime for this work and also drop the timestamp column. As shown below, the time 

series shows the datatime vs. the value column.

Dataset: art_daily_nojump.csv

Figure 6-40.  A graph showing anomalies
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Figure 6-41 shows the code to generate a graph showing the time series.

Figure 6-41.  A graph showing the time series

Let’s add the anomaly column to the original dataframe and prepare a new 

dataframe. Using visualization, you can plot the new time series now. As shown below, 

the time series shows the datatime vs. the value column. Since there are no anomalies, 

everything is green. Figure 6-42 shows the code to generate a graph showing anomalies.
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Since this data set has no noise or anomalies and is a normal time series dataset, 

there are no anomalies (datapoints in RED) shown and everything is green.

Next, let’s examine another dataset which is different from the current dataset. You 

will build a LSTM model and see if there are anomalies or not.

�art_daily_jumpsdown
This data set has mixture of normal data and anomalies. As you can see below, the time 

series has values at different timestamps.

Using visualization, you can plot the time series now. You convert the timestamp to 

datetime for this work and also drop the timestamp column. As shown below, the time 

series shows the datatime vs. the value column.

Dataset: art_daily_jumpsdown.csv

Figure 6-42.  A graph showing anomalies

Chapter 6  Long Short-Term Memory Models 



247

Figure 6-43 shows the code to generate a graph showing the time series.

Figure 6-43.  A graph showing the time series

Let’s add the anomaly column to the original dataframe and prepare a new 

dataframe. Using visualization, you can plot the new time series now. As shown below, 

the time series shows the datatime vs. the value column. Normal data points are shown 

in green and anomalies are shown in red. Figure 6-44 shows the code to generate a graph 

showing anomalies.
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Since this data set has some noise or anomalies, there are anomalies (datapoints in 

RED) shown and everything else that is normal is green.

Next, let’s examine another dataset which is different from the current dataset. You 

will build a LSTM model and see if there are anomalies or not.

�art_daily_perfect_square_wave
This data set has no noise or anomalies and is a normal time series dataset. As you can 

see below, the time series has values at different timestamps.

Using visualization, you can plot the time series now. You convert the timestamp to 

datetime for this work and also drop the timestamp column. As shown below, the time 

series shows the datatime vs. the value column.

Dataset: art_daily_perfect_square_wave.csv

Figure 6-44.  A graph showing anomalies
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Figure 6-45 shows the code to generate a graph showing the time series.

Figure 6-45.  A graph showing the time series

Let’s add the anomaly column to the original dataframe and prepare a new 

dataframe. Using visualization, you can plot the new time series now. As shown below, 

the time series shows the datatime vs. value column. Since there are no anomalies, 

everything is green. Figure 6-46 shows the code to generate a graph showing anomalies.

Figure 6-46.  A graph showing anomalies

Chapter 6  Long Short-Term Memory Models 



250

Since this data set has no noise or anomalies and is a normal time series dataset, 

there are no anomalies (datapoints in RED) shown and everything is green.

Next, let’s examine another dataset which is different from the current dataset. You 

will build a LSTM model and see if there are anomalies or not.

�art_load_balancer_spikes
This data set has mixture of normal data and anomalies. As you can see below, the time 

series has values at different timestamps.

Using visualization, you can plot the time series now. You convert the timestamp to 

datetime for this work and also drop the timestamp column. As shown below, the time 

series shows the datatime vs. the value column.

Dataset: art_load_balancer_spikes.csv

Figure 6-47 shows the code to generate a graph showing the time series.

Figure 6-47.  A graph showing the time series

Let’s add the anomaly column to the original dataframe and prepare a new 

dataframe. Using visualization, you can plot the new time series now. As shown below, 

the time series shows the datatime vs. the value column. Normal data points are shown 

in green and anomalies are shown in red. Figure 6-48 shows the code to generate a graph 

showing anomalies.
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Since this data set has some noise or anomalies, there are anomalies (datapoints in 

RED) shown and everything else that is normal is green.

Next, let’s examine another dataset which is different from the current dataset. You 

will build a LSTM model and see if there are anomalies or not.

�ambient_temperature_system_failure
This data set has mixture of normal data and anomalies. As you can see below, the time 

series has values at different timestamps.

Using visualization, you can plot the time series now. You convert the timestamp to 

datetime for this work and also drop the timestamp column. As shown below, the time 

series shows the datatime vs. the value column.

Dataset: ambient_temperature_system_failure.csv

Figure 6-48.  A graph showing anomalies
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Figure 6-49 shows the code to generate a graph showing the time series.

Let’s add the anomaly column to the original dataframe and prepare a new 

dataframe. Using visualization, you can plot the new time series now. As shown below, 

the time series shows the datatime vs. the value column. Normal data points are shown 

in green and anomalies are shown in red. Figure 6-50 shows the code to generate a graph 

showing anomalies.

Figure 6-49.  A graph showing the time series

Figure 6-50.  A graph showing anomalies
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Since this data set has some noise or anomalies, there are anomalies (datapoints in 

RED) shown and everything else that is normal is green.

Next, let’s examine another dataset which is different from the current dataset. You 

will build a LSTM model and see if there are anomalies or not.

�ec2_cpu_utilization
This data set has mixture of normal data and anomalies. As you can see below, the time 

series has values at different timestamps.

Using visualization, you can plot the time series now. You convert the timestamp to 

datetime for this work and also drop the timestamp column. As shown below, the time 

series shows the datatime vs. the value column.

Dataset: ec2_cpu_utilization.csv

Figure 6-51 shows the code to generate a graph showing the time series.

Figure 6-51.  A graph showing the time series

Let’s add the anomaly column to the original dataframe and prepare a new 

dataframe. Using visualization, you can plot the new time series now. As shown below, 

the time series shows the datatime vs. the value column. Normal data points are shown 

in green and anomalies are shown in red. Figure 6-52 shows the code to generate a graph 

showing anomalies.
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Since this data set has some noise or anomalies, there are anomalies (datapoints in 

RED) shown and everything else that is normal is green.

Next, let’s examine another dataset which is different from the current dataset. You 

will build a LSTM model and see if there are anomalies or not.

�rds_cpu_utilization
This data set has mixture of normal data and anomalies. As you can see below, the time 

series has values at different timestamps.

Using visualization, you can plot the time series now. You convert the timestamp to 

datetime for this work and also drop the timestamp column. As shown below, the time 

series shows the datatime vs. the value column.

Dataset: rds_cpu_utilization.csv

Figure 6-52.  A graph showing anomalies
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Figure 6-53 shows the code to generate a graph showing the time series.

Let’s add the anomaly column to the original dataframe and prepare a new 

dataframe. Using visualization, you can plot the new time series now. As shown below, 

the time series shows the datatime vs. the value column. Normal data points are shown 

in green and anomalies are shown in red. Figure 6-54 shows the code to generate a graph 

showing anomalies.

Figure 6-54.  A graph showing anomalies

Figure 6-53.  A graph showing the time series
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Since this data set has some noise or anomalies, there are anomalies (datapoints in 

RED) shown and everything else that is normal is green.

�Summary
In this chapter, we discussed recurrent neural networks and long short-term memory 

models. We also looked at LSTMs as a means to detect anomalies. We also walked 

through several different examples of time series data with different anomalies and 

showed how to start detecting anomalies.

In the next chapter, we will look at another method of anomaly detection,  

the temporal convolutional network.
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CHAPTER 7

Temporal Convolutional 
Networks
In this chapter, you will learn about temporal convolutional networks (TCNs). You will 

also learn how TCNs work and how they can be used to detect anomalies and how you 

can implement anomaly detection using a TCN. 

In a nutshell, the following topics will be covered throughout this chapter:

•	 What is a temporal convolutional network?

•	 Dilated temporal convolutional networks

•	 Encoder-decoder temporal convolutional networks

•	 TCN applications

�What Is a Temporal Convolutional Network?
Temporal convolutional networks refer to a family of architectures that incorporate 

one-dimensional convolutional layers. More specifically, these convolutions are causal, 
meaning no information from the future is leaked into the past. In other words, the 

model only processes information going forward in time. One of the problems with 

recurrent neural networks in the context of language translation is that it reads sentences 

from left to right in time, leading it to mistranslate in some cases where the order of the 

sentence is switched around to create emphasis. To solve this, bi-directional encoders 

were used, but this meant future information would be considered in the present. 

Temporal convolutional networks don’t have this problem because they don’t rely on 

information from previous time steps, unlike recurrent neural networks, thanks to their 

casuality. Additionally, TCNs can map an input sequence of any length to an output 

sequence with the same length, just as a recurrent neural network (RNN) can do.
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Basically, temporal convolutional networks seem to be a great alternative to RNNs. 

These are the advantages of TCNs, specifically considering RNNs in general:

•	 Parallel computations: Convolutional networks pair well with 

GPU training, particularly because the matrix-heavy calculations 

of the convolutional layers are well suited to the structure of GPUs, 

which are configured to carry out matrix calculations that are part of 

graphics processing. Because of this, TCNs can train much faster than 

RNNs.

•	 Flexibility: TCNs can change input size, filter size, increase dilation 

factors, stack more layers, etc. in order to easily be applied to various 

domains.

•	 Consistent gradients: Because TCNs are comprised of convolutional 

layers, they backpropagate differently than RNNs do, and thus all 

of the gradients are saved. RNNs have a problem called exploding 

or vanishing gradients, where sometimes the calculated gradient is 

either extremely large or extremely small, leading to the readjusted 

weight to be too extreme of a change or to be a relatively nonexistent 

change. To combat this, types of RNNs such as the LSTM, GRU, and 

HF-RNN, were developed.

•	 Lighter on memory: LSTMs store information in their cell gates so 

if the input sequence is long, much more memory is used by the 

LSTM network. Comparatively, TCNs are relatively straightforward 

because they are comprised of several layers that all share their own 

respective filters. Compared to LSTMs, TCNs are much lighter to run 

in regards to their memory usage.

However, TCNs do carry some disadvantages:

•	 Memory usage during evaluation mode: RNNs only need to 

know some input xt to generate a prediction, since they maintain 

a summary of everything they learned through their hidden state 

vectors. In comparison, TCNs need the entire sequence up until the 

current point again to make an evaluation, leading to potentially 

higher memory usage than an RNN.
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•	 Problems with transfer learning: First, let’s define what transfer 
learning is. Transfer learning is when a model has been trained for 

one particular task (classifying vehicles for example), and has the last 

layer(s) taken out and retrained completely so that the model can be 

used for a new classification task (classifying animals, for example).

In computer vision, there are some really powerful models, such 

as the inception-v3 model, that have been trained on powerful 

GPUs for quite some time in order to achieve the performances 

that they do. Instead of training our own CNN from the ground up 

(and most of us don’t have the GPU hardware or the time to spend 

in long training an extremely deep model like inception-v3), we 

can simply take inception-v3, for example, which is really good 

at extracting features out of images, and train it to associate the 

features that it extracts with a completely new set of classes. This 

process takes a lot less time since the weights in the entire network 

are already well optimized, so you’re only concerned with finding 

the optimal weights for the layers you are retraining.

That’s why transfer learning is such a valuable process; it allows us 

to take a pretrained, high-performance model and simply retrain 

the last layer(s) with our hardware and teach the model a new 

classification task (for CNNs).

Going back to TCNs, the model might be required to remember 

varying levels of sequence history in order to make predictions. 

If the model did not have to take in as much history in the old task 

to make predictions, but in the new task it had to receive even 

more/less history to make predictions, that would cause issues 

and might lead the model to perform poorly.

In a one-dimensional convolutional layer, we still have parameter k to determine the 

size of our kernel, or filter. The way the convolutional layer works is pretty similar to the 

two-dimensional convolutional layer you looked at in Chapter 3, but we are only dealing 

with vectors in this case.

Here’s an example of what the one-dimensional convolutional operation looks like. 

Assuming an input vector defined as in Figure 7-1,
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and a filter initialized as in Figure 7-2,

the output of the convolutional layer is calculated as shown in Figure 7-3, Figure 7-4, 

Figure 7-5, and Figure 7-6.

10   5   15   20   10   20x = 

Figure 7-1.  A vector x defined with these corresponding values. This is the input 
vector

1   0.2   0.1

Filter Weights

Figure 7-2.  The filter weights associated with this one-dimensional 
convolutional layer

Input:

1   0.2   0.1Filter Weights:

Output:

10   5   15  20   10   20

10 + 1 + 1.5

*

=

12.5

Figure 7-3.  How the first entry of the output vector is calculated using the filter 
weights. The filter weights are multiplied element-wise with the first three entries in 
the input, and the results are summed up to produce the output value
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Input:

1   0.2   0.1Filter Weights:

Output:

10 5   15  20 10   20

5 + 3 + 2

*

=

12.5 10

Figure 7-4.  How the second entry of the output vector is calculated using the 
filter weights. The procedure is the same as in Figure 7-3, but the filter weights are 
shifted right one

Input:

Filter Weights:

Output:

10 5 15  20 10 20

15 + 4 + 1

1   0.2   0.1
*

=

12.5   10 20

Figure 7-5.  How the third entry of the output vector is calculated using the filter 
weights

Input:

Filter Weights:

Output:

10 5 15 20 10 20

12.5   10   20 24

20 + 2 + 2

1   0.2   0.1
*

=

Figure 7-6.  How the last entry of the output vector is calculated using the filter 
weights
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Now we have the output of the one-dimensional convolutional layer. These 

one-dimensional convolutional layers are quite similar to how two-dimensional 

convolutional layers work, and they comprise nearly the entirety of the two different 

TCNs we will look at: the dilated temporal convolutional network and the encoder-
decoder based temporal convolutional network. It is important to note that both 

models involve supervised anomaly detection, although the encoder-decoder TCN is 

capable of semi-supervised anomaly detection since it is an autoencoder.

�Dilated Temporal Convolutional Network
In this type of TCN, we deal with a new property known as a dilation. Basically, when the 

dilation factor is greater than 1, we introduce gaps in the output data that correspond to 

the dilation factor. To understand the concept of dilation better, let’s look at how it works 

for a two-dimensional convolutional layer.

This is a standard convolution, equivalent to what you looked at in Chapter 3.  

You can also think of a standard convolutional layer as having a dilation factor of one 

(refer to Figure 7-7).

Now, let’s look at what happens when we increase the dilation factor to two. For the 

first entry in the feature map, the convolution looks like Figure 7-8.

Feature Map

Figure 7-7.  A standard convolution with a dilation factor of one
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Notice that the spacing between each sampled entry has increased by one across all 

directions. Vertically, horizontally, and diagonally, the sampled entries are all spaced 

apart by one entry. Essentially, this spacing is determined by finding what d – 1 is, where 

d is the dilation factor. For a dilation factor of three, this spacing will be two apart. Now, 

for the second entry, the convolution process proceeds as normal (see Figure 7-9).

Feature Map

Figure 7-8.  A standard convolution with a dilation factor of two defining the first 
entry in the feature map

Feature Map

Figure 7-9.  The convolution with a dilation factor of two defining the second 
entry in the feature map
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Once the process terminates, we will have our feature map. Notice the reduction 

in dimensionality of the feature map, which is a direct result of increasing the dilation 

factor. In the standard two-dimensional convolutional layer, we had a 4x4 feature map 

since the dilation factor was one, but now we have a 3x3 feature map after increasing this 

factor to two.

A one-dimensional dilated convolution is similar. Let’s revisit the one-dimensional 

convolution example and modify it a bit to illustrate this concept.

Assume now that the new input vector and filter weights are as shown in Figure 7-10 

and Figure 7-11.

and

Let’s also assume now that the dilation factor is two, not one. The new output vector 

is the following, using dilated one-dimensional convolutions with a dilation factor of two 

(see Figure 7-12, Figure 7-13, Figure 7-14, and Figure 7-15).

2   8   12   4   6   4   2   12   x = 

Figure 7-10.  The new input vector weights

0.5   0.2   0.4

Filter Weights

Figure 7-11.  The new filter weights

Input:

0.5   0.2   0.4Filter Weights:

Output:

2 8   12 4   6 4   2   12

1 + 2.4 + 2.4

*

=

Spacing of 1

5.8

Figure 7-12.  Calculating the first entry in the output factor using dilated 
one-dimensional convolutions with a dilation factor of two
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Input:

0.5   0.2   0.4Filter Weights:

Output:

2   8 12 4 6   4 2   12

4 + 0.8 + 1.6

*

=

5.8 6.4

Figure 7-13.  The next set of three input vector values are multiplied with the filter 
weights to produce the next output vector value

Input:

0.5   0.2   0.4Filter Weights:

Output:

2   8   12 4   6 4   2 12

6 + 1.2 + 0.8

*

=

5.8   6.4 8

Figure 7-14.  The third set of three input vector values are multiplied with the filter 
weights to produce the next output vector value

Input:

0.5   0.2   0.4Filter Weights:

Output:

2   8   12 4 6   4 2   12

2 + 0.8 + 4.8

*

=

5.8   6.4   8 7.6  

Figure 7-15.  The final set of three input vector values are multiplied with the filter 
weights to produce the last output vector value
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Now that we’ve covered what a dilated convolution looks like in the context of one-

dimensional convolutions, let’s look at the difference between an acausal and a casual 
dilated convolution. To illustrate this concept, assume that both examples are referring 

to a set of dilated one-dimensional convolutional layers. With that in mind, Figure 7-16 

shows an acausal network.

It might not be that apparent from the way the architecture is structured, but if you 

think of the input layer as a sequence of some data going forward in time, you might be 

able to see that information from the future would be accounted for when selecting the 

output. In a casual network, we only want information that we’ve learned up until the 

present, so none of the information from the future will be accounted for in the model’s 

predictions. Figure 7-17 shows what a causal network looks like.

Input Layer

Hidden Layer 1

Hidden Layer 2

Output Layer

Figure 7-16.  An acausal dilated network. The first hidden layer has a dilation 
factor of two, and the second hidden layer has a dilation factor of four. Notice how 
inputs “forward in the sequence” contribute to the next layer’s node as well
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From this, we can see how the linear nature of time is preserved in the model, and 

how no information from the future would be learned by the model. In casual networks, 

only information from the past until the present is considered by the model. The dilated 

temporal convolutional network we are referring to has a similar model architecture, 

utilizing dilated causal convolutions in each layer preceding the output layer.

�Anomaly Detection with the Dilated TCN
Now that you know more about what a TCN is and how it works, let’s try applying a 

dilated TCN to the credit card dataset.

First, import all of the necessary packages (see Figure 7-18a).

Input Layer

Hidden Layer 1

Hidden Layer 2

Output Layer

Figure 7-17.  A causal dilated network. The first hidden layer has a dilation factor 
of two, and the second hidden layer has a dilation factor of four. Notice how no 
inputs forward in the sequence contribute to the next layer’s node. This type of 
structure is ideal if the goal is to preserve some sort of flow within the data set, 
which is time in our case

Chapter 7  Temporal Convolutional Networks



268

Then, you must create a class for the visualization of confusion matrix, etc.  

(see Figure 7-18b).

Figure 7-18a.  Importing all of the necessary packages in order to start your code
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After that, proceed to importing your data set and processing it (see Figure 7-19).

Figure 7-18b.  Creating a visualization class

df = pd.read_csv("datasets/creditcardfraud/creditcard.csv", 
sep=",", index_col=None)

print(df.shape)

df.head()

Figure 7-19.  Importing your data set and displaying the first five entries
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The output should look somewhat like Figure 7-20.

The data frame continues in Figure 7-21.

Each entry is noticeably large, with 31 columns per entry. If you check the tail end of 

the data frame in Figure 7-22,

Figure 7-20.  The first five entries of the data frame

Figure 7-21.  The output in Figure 7-20 scrolled right
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you can see that the data set is pretty massive with 284,807 entries in total (the index 

starts at 0). Additionally, notice how the values for time become absurdly large. If you 

pass in values this large into the model for training, you are bound to get errors with 

convergence. Not only that, it’s just good practice to normalize any large values, since it 

improves performance and training efficiency if you pass in smaller values to the model. 

Run the code in Figure 7-23 to standardize the values for Time and for Amount.

Now you can see that the values for the columns Time (Figure 7-24)

Figure 7-22.  The tail end of the data frame. Notice how large the values for 
time get

df['Amount'] = 
StandardScaler().fit_transform(df['Amount'].values.reshape(-1, 1))

df['Time'] = StandardScaler().fit_transform(df['Time'].values.reshape(-
1, 1))

df.tail()

Figure 7-23.  This code standardizes the values for Time and Amount
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and for Amount (Figure 7-25)

are much smaller and much more manageable numbers to pass in.

Since there are so many entries in the entire data set, it’s best to limit the number 

of “normal” data entries you feed into the model since the model seems to ignore the 

anomalies if the entire data set is passed in. To avoid drowning out the anomalous data 

entries, let’s pick 10,000 normal entries to derive your training and testing data sets from 

(see Figure 7-26).

The output should look somewhat like Figure 7-27.

Figure 7-24.  The standardized values for the Time column

Figure 7-25.  The standardized values for the Amount column

anomalies = df[df["Class"] == 1]

normal = df[df["Class"] == 0]

anomalies.shape, normal.shape

Figure 7-26.  Defining two data frames: anomalies and normal
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In this block of code, you name two new data frames as anomalies and normal, with 

their names corresponding to their content. Checking their shape reveals that there are 

relatively few anomalies compared to the entire data set, comprising around 0.173% of 

the whole data set.

Now let’s get to defining your training and testing data sets (see Figure 7-28).

Figure 7-27.  The output of the code in Figure 7-26

for f in range(0, 20):

normal = normal.iloc[np.random.permutation(len(normal))]

data_set = pd.concat([normal[:2000], anomalies])

x_train, x_test = train_test_split(data_set, test_size = 0.4, 
random_state = 42)

x_train = x_train.sort_values(by=['Time'])

x_test = x_test.sort_values(by=['Time'])

y_train = x_train["Class"]

y_test = x_test["Class"]

x_train.head(10)

Figure 7-28.  Defining the training and testing sets and sorting both by time to 
maintain the temporal flow
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Shuffling the normal data set as well as using the train_test_split function to 

randomly select testing and training samples helps ensure that you pick a good range of 

data values to represent normal data. You can limit the number of iterations in the for 

block at the start of the code if you wish.

From there, the first 10,000 data entries of the shuffled normal data are concatenated 

with the anomalies, and the training and testing data sets are created. Both sets are then 

sorted by the Time column to maintain the entire aspect of time.

The output should look somewhat like the Figure 7-29.

Notice how the indices vary in number, although they are all ordered by time.

Now you can move on to reshaping your data sets to pass into the model.

Running the code block in Figure 7-30 can give you a sense of how the data sets are 

structured.

Figure 7-29.  The data sets sorted by the Time column
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The output should look somewhat like Figure 7-31.

To pass the data sets into the model, the x sets must be three-dimensional, and the y 

sets must be two-dimensional. You can simply reshape the x sets, and change the y sets 

to be categorical (refer to Chapter 3 to see what the keras to_categorical() function does).

Run the code in Figure 7-32.

Figure 7-30.  Outputs the shapes to provide an understanding of how the data sets 
are structured

Figure 7-31.  The shapes of both data sets

Figure 7-32.  Makes the x sets three-dimensional and the y sets two-dimensional 
by reshaping the x sets and changing the y sets to be categorical. The reshaping of 
the x sets is done to fit the input shape of the model
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Let’s take a look at how the operations changed the data sets. Run the code in 

Figure 7-33.

The output should look like Figure 7-34.

Alright, now both of the data sets have been reshaped successfully. The input shape 

tells the model how many columns and rows to accept per entry. In this case, the input 

shape indicates that there will be 1 row and 31 columns.

Now let’s move on to defining your model. The code chunk in Figure 7-35 defines the 

one-dimensional convolutional layers and the dropout layers.

Figure 7-33.  Code to print the shapes of the data sets to see how the operations 
changed the structure

Figure 7-34.  The x sets are three-dimensional while the y sets are two-dimensional

Chapter 7  Temporal Convolutional Networks



277

Figure 7-35.  Defines all of the one-dimensional convolutional layers and the 
dropout layers in the model
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The code chunk in Figure 7-36 defines the last two layers, which consist of a layer to 

flatten the data and one layer to represent the two classes.

Now let’s compile the model and look at the summary of the layers (see Figure 7-37).

The output should look like Figure 7-38.

Figure 7-36.  Defines the last two layers, which consist of a layer to flatten the data 
and one layer to represent the two classes

Figure 7-37.  Code to compile the data, define a callback to save the model under 
the given filepath, and output the summary of the model
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Looking at the model summary can help you understand more about what’s 

going on at each layer. Sometimes, it can help with debugging, where there can be 

dimensionality reductions that you don’t expect. For example, sometimes when odd 

dimensions become reduced by a factor of 2, they might become rounded down. When 

expanding back up, this can prove to be problematic because the new dimension does 

not match the old dimension. You can expect to run into problems like these with 

autoencoders, where the entire aim of the architecture is to compress the data and 

attempt to reconstruct it.

Figure 7-38.  The summary of the model. You can use this to help debug your 
models when you’re creating one from scratch by checking that the output shapes 
for the layers match the input shapes of the subsequent layer
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Run the code in Figure 7-39 to begin the training process.

You should see something like Figure 7-40 during the training process.

At the end, you should see something like Figure 7-41.

Now that the training is finished, you can evaluate your model’s performance  

(see Figure 7-42).

TCN.fit(x_train, y_train,

batch_size=128,

epochs=25,

verbose=1,

validation_data=(x_test, y_test),

callbacks = [checkpointer])

Figure 7-39.  Code to start the training process for the model

Figure 7-40.  The output during the training process

Figure 7-41.  The output when the training process ends
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The output should look somewhat like Figure 7-43.

Now you can check the AUC score (see Figure 7-44).

The output should look somewhat like Figure 7-45a.

Figure 7-42.  Code to evaluate the loss and the accuracy on the test sets

Figure 7-43.  The generated loss and accuracy scores for the test set. The accuracy 
is really good, but again, accuracy isn’t always the best metric to judge models by

Figure 7-44.  Code to generate an AUC score given the test sets and the 
predictions
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For the classification report and confusion matrix, see Figure 7-45b.

Figure 7-45a.  The generated AUC score of 99.02% for this model

Figure 7-45b.  Classification report and confusion matrix
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That’s a pretty good AUC score! However, this was an example of supervised 
anomaly detection, meaning you had the anomalies and the normal data labeled. You 

won’t always have this luxury, and you shouldn’t expect it either because of the massive 

volumes of data that can be involved. For your next example, you will be implementing 

the encoder-decoder based temporal convolutional network (ED-TCN), but it will also 

be an instance of supervised anomaly detection so that it can be compared to the dilated 

TCN model given a similar task. However, keep in mind that since it is based on an 

autoencoder framework, the ED-TCN should also be able to perform semi-supervised 
anomaly detection.

�Encoder-Decoder Temporal Convolutional Network
The version of the encoder-decoder TCN you will be exploring involves a combination 

of one-dimensional causal convolutional and pooling layers to encompass the encoding 

stage and a series of upsampling and one-dimensional causal convolutional layers to 

comprise the decoding stage. The convolutional layers in this model aren’t dilated, but 

they still count as layers of a temporal convolutional network. To better understand the 

structure of this model, take a look at Figure 7-46.
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The diagram might seem pretty complicated, so let’s break it down layer by layer.

First, look at the encoding stage and start with the input layer at the very bottom. 

From this layer, you perform a causal convolution on the input as part of the first 

convolutional layer. The outputs of the first convolutional layer, which you will call 

conv_1, are now the inputs of the first max pooling layer, which you will call pool_1.

Recall from Chapter 3 that the pooling layer emphasizes the maximum value in 

the areas it passes through, effectively generalizing the inputs by choosing the heaviest 

values. From here, you have another set of causal convolutions and max pooling with 

layers conv_2 and pool_2. Note the progressive reduction in size of the data as it passes 

through the encoding stage, a feature characteristic to autoencoders. Finally, you have a 

dense layer in the middle of the two stages, representing the final, encoded output of the 

encoding stage as well as the encoded input of the decoding stage.

Input

Encoding 
Stage

Conv 2

Pool 1

Conv 1

Pool 2

Output of Encoding Stage Input of Decoding Stage

Decoding 
Stage

Output

Conv 1

Upsample 2

Conv 2

Upsample 1

Softmax

Figure 7-46.  In both the encoding and decoding stages, the model is comprised of 
causal convolutional layers and is structured so that the layers are always causal
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The decoding stage is a bit different in this case, since you make use of what is called 

upsampling. Upsampling is a technique in which you repeat the data n number of times 

to scale it up by a factor n. In the max pooling layers, the data is reduced by a factor of 

two. So, to upsample and increase the data by the same factor of two, you repeat the 

data twice. In this case, you are using one-dimensional upsampling, so the layer repeats 

each step n times with respect to the axis of time. To get a better understanding of what 

upsampling does, let’s apply one-dimensional upsampling to Figure 7-47 and Figure 7-48.

Keeping in mind that each individual temporal step is repeated twice, you would see 

something like Figure 7-49, Figure 7-50, and Figure 7-51.

4   2   6   7   1   6   9x = 

Figure 7-47.  A vector x defined with the corresponding values

n = 2
So data increases by factor of 2 /
repeat each step two 
mes

Figure 7-48.  The upsampling factor n

4 2   6   7   1   6   9   5

4   4

Figure 7-49.  The first entry in the input is repeated twice to form the first two 
entries in the upsampled output vector

4   2 6   7   1   6   9   5

4   4   2   2

Figure 7-50.  The next entry is repeated twice to form the next two entries in the 
output vector of the upsampling operation
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And so on until you finally get Figure 7-52.

Going back to the model, each upsampling layer is then connected to a one-

dimensional convolutional layer, and the pair of upsampling layer and one-dimensional 

convolutional layer repeats again until the final output is passed through a softmax 

function to result in the output/prediction.

�Anomaly Detection with the ED-TCN
Let’s put this model to the test by applying it to the credit card dataset. Once again, this 

example is another instance of supervised learning, so you will have both anomalies 

and normal data labeled.

First, begin by importing all of the necessary modules (see Figure 7-53).

4   2   6 7   1   6   9   5

4   4   2   2 6   6

Figure 7-51.  This process is repeated with the third entry in the input vector to 
form the next third pair of entries in the output vector

4   2   6   7   1   6   9   5

4   4   2   2   6   6   7   7   1   1   6   6   9   9   5   5 

Figure 7-52.  The output vector after the upsampling operation compared to the 
original input vector below it
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Next, load your data and preprocess it. Notice that the steps are basically the same as 

in the first example (see Figure 7-54).

Figure 7-53.  Importing the necessary modules
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And now you reshape the data sets as shown in Figure 7-55.

Figure 7-54.  Using the standard scaler on the columns Time and Amount, 
defining the anomaly and normal value data sets, and then defining a new data 
set to generate the training and testing sets from. Finally, these sets are sorted in 
increasing order of time

Figure 7-55.  Reshaping the training and testing sets so that they correspond with 
the input shape of the model
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Now that the data preprocessing is done, let’s build the model. This is the encoding 

stage (see Figure 7-56).

Figure 7-56.  Defining the code for the encoding stage
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Following that block is the code for the decoding stage (see Figure 7-57).

Figure 7-57.  Code to define the decoding stage and then the final layer. The model 
is then initialized
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Now that the model has been defined, let’s compile it and train it (see Figure 7-58).

The output should look somewhat like Figure 7-59.

Figure 7-58.  Compiling the model, defining the checkpoint callback, and calling 
the summary function
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Notice the addition of the zero padding layer. What this layer does is add a 0 to the 

data sequence in order to help the dimensions match. Because the original data had an 

odd number of columns, the number of dimensions in the output of the decoder stage 

did not match the dimensions of the original data after being upsampled (this is because 

of rounding issues, since everything is an integer). To counter this,

zero_pad_1 = ZeroPadding1D(padding=(0,1))(conv_5)

Figure 7-59.  The summary of the model. This can help you get an idea of how the 
encoding and decoding works by looking at the output shapes of each layer
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was included, where the tuple is formatted as (left_pad, right_pad) to customize how 

the padding should be. Otherwise, passing in an integer will just pad on both ends. To 

summarize, zero padding will add a zero to each entry in the data to the left, right, or 

both (default) sides.

With the model compiled, all that’s left for you to do is train the data (see Figure 7-60).

After a while, you should end with something like Figure 7-61.

TCN.fit(x_train, y_train,

batch_size=128,

epochs=25,

verbose=1,

validation_data=(x_test, y_test),

callbacks = [checkpointer])

Figure 7-60.  Training the data on the training sets

Figure 7-61.  This output is similar to what you should see after the training 
process ends
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Now evaluate your model’s performance (see Figure 7-62).

You should see an output similar to Figure 7-63.

Pretty good, but how’s the AUC score? Run the code in Figure 7-64.

The output should look somewhat like Figure 7-65.

Figure 7-62.  Evaluates the model’s performance in terms of loss and accuracy

Figure 7-63.  The generated outputs for loss and accuracy for the model when the 
test sets are passed in

Figure 7-64.  Code to check the AUC score given the rounded predictions and the 
test sets
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That’s a nice AUC score! So for both the encoder-decoder TCN and dilated TCN 

architectures, you’ve managed to attain AUC scores of over 98% on the credit card 

data set in a supervised setting. Although both models trained and performed in a 

supervised setting, since the anomalies and the normal entries were labeled as such, 

the key takeaway is that TCNs are incredibly quick to train with GPUs and can perform 

really well.

�Summary
In this chapter, we discussed temporal convolutional networks and showed how they 

fare when applied to anomaly detection.

In the next chapter, we will look at practical use case of anomaly detection.

Figure 7-65.  The generated AUC score
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CHAPTER 8

Practical Use Cases 
of Anomaly Detection
In this chapter, you will learn how anomaly detection can be used in several industry 

verticals. You will explore how anomaly detection techniques can be used to address 

practical use cases and address real-life problems in the business landscape. Every 

business and use case is different, so while we cannot copy-paste code to build a 

successful model to detect anomalies in any dataset, this chapter will cover many use 

cases to give an idea of the possibilities and concepts behind the thought processes.

In a nutshell, the following topics will be covered throughout this chapter:

•	 What is anomaly detection?

•	 Real-world use cases of anomaly detection

•	 Telecom

•	 Banking

•	 Environmental

•	 Healthcare

•	 Transportation

•	 Social Media

•	 Finance and Insurance

•	 Cybersecurity

•	 Video Surveillance

•	 Manufacturing
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•	 Smart Homes

•	 Retail

•	 Implementation of deep learning-based anomaly detection

�Anomaly Detection
Anomaly detection is finding patterns that do not adhere to what is considered as 

normal or expected behavior. Businesses can lose millions of dollars due to abnormal 

events. Consumers can also lose millions of dollars. In fact, there are many situations 

every day where people’s lives are at risk and where their property is at risk. If your 

bank account gets cleaned out, that’s a problem. If your water line breaks, flooding 

your basement, that’s a problem. If all flights get delayed, that’s a problem. You might 

have been misdiagnosed or not diagnosed at all with a health issue, which is a very big 

problem that directly impacts your well-being.

Figure 8-1 is an example of an anomaly showing a rainbow-colored fish in the 

blueish fish family.

Figure 8-1.  An example of an anomaly
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In business use cases, everything is centered around data, and anomaly detection is 

the identification of abnormal data points, events, or observations that raise suspicions 

due to the fact that they differ significantly from the data perceived as normal or typical. 

Many such anomalies can impact the business operations or bottom lines significantly, 

which is why anomaly detection is gaining a lot of traction in certain industries and 

many businesses are investing heavily in technologies that can help them identify 

abnormal behavior before it is too late. Such proactive anomaly detection is becoming 

more and more visible, and due to the new technologies developed as part of the AI 

revolution, this problem is also getting solved in ways never possible before.

Figure 8-2 is an example of the daily number of cars that cross the Golden Gate 

Bridge in San Francisco.

The kind of anomaly detection that can potentially help businesses depends very 

much on the kind of data collected as part of the business operations and the kind of 

techniques and algorithms used as part of the strategy to perform the anomaly detection.

�Real-World Use Cases of Anomaly Detection
We will look at several industry verticals and businesses, and how anomaly detection can 

be used.

Figure 8-2.  Daily count of cars crossing
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�Telecom
In the telecom sector, some of the use cases for anomaly detection are to detect roaming 

abuse, revenue fraud, and service disruptions. So how do we detect roaming abuse in the 

telecom sector? By looking at the location of the cellular devices, we can categorize the 

kind of behavior of the cellular device at any particular moment as normal or abnormal. 

This helps us detect cellular device usage at that period of time. By looking at all of 

the other information we know in general about roaming activity, we can also detect 

how this cellular device is being used and whether any roaming abuse is taking place. 

Figure 8-3 shows how roaming works for your phone as you travel around the world.

Service disruption is another very high impact use case for anomaly detection. 

Cellular devices are connected to cellular networks via towers, which are all over the 

place. Your cell phone connects to the nearest tower in order to participate in the cellular 

network. In case of events involving large crowds such as a concert or a football game, 

the cellular towers that typically perform quite well get heavily overloaded, causing 

serious service disruptions and very bad customer experience for the duration of the 

overload. Figure 8-4 shows a service disruption of phone service in the northwestern 

United States.

Figure 8-3.  Roaming
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If we know the various metrics of the cell phone towers and the associated devices 

at some period of time and for a long duration, along with any kind of information 

we have on the typical nature of activity around the towers in terms of whether there 

were concerts or games in the vicinity or a major event is expected in the vicinity of 

the cellular towers, we can use a time series as a basis to represent all such activity and 

subsequently use TCN or LSTM algorithms to detect anomalies pertaining to the major 

events because they have a temporal dependency. This will help in looking at how 

these services are being used and how effective the service is for the particular cell 

phone towers.

The cell phone companies now have a way of understanding whether certain hours 

need to be upgraded or more towers need to be built. For instance, if major office 

buildings are being built near a particular tower, using data on the time series of all the 

towers owned by the cellular network, it is possible to detect anomalies in other parts of 

the network and apply the principles to the tower that is probably going to be impacted 

by the newly constructed office buildings (which will add thousands of cell phone 

connections and could cause overloading on the tower and affect how the tower will be 

used in the near future).

Figure 8-4.  Service disruptions
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�Banking
In the banking sector, some of the use cases for anomaly detection are to flag abnormally 

high transactions, fraudulent activity, phishing attacks, etc. Credit cards are used by 

almost everyone in the world, and typically every individual has a certain way of using 

their credit card, which is different from everyone else. So there is an implicit profile of 

the individual using the credit card in terms of how they use it, when they use it, why 

they use it, and what did they use it for. If the credit card company has such information 

about the credit card usage of very large number of consumers, it is possible to use 

anomaly detection to detect when a specific credit card transaction may be fraudulent.

Autoencoders are very useful in such an anomaly detection use case. With such a 

case, we can take all the credit card transactions by individual consumers, and capture 

and convert the features into numerical features such that we can assign certain scores 

to every credit card based on various factors along with a kind of indicator as to whether 

the transaction are normal or abnormal. Then, using autoencoders, we can build an 

anomaly detection model that can quickly determine a specific transaction as normal or 

abnormal given everything we know about all the other transactions for a customer. The 

autoencoder does not even need to be extremely complicated; it can be built with just a 

few hidden layers for the encoder and a few hidden layers for the decoder and still have 

pretty decent detection of abnormal activity (otherwise known as fraudulent activity) on 

the credit cards. Figure 8-5 is a depiction of credit card fraud.

Figure 8-5.  Depiction of credit card fraud
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�Environmental
When it comes to environmental aspects, anomaly detection has several applicable 

use cases. Whether it is deforestation or melting of glaciers, air quality or water quality, 

anomaly detection can help in identifying abnormal activities. Figure 8-6 is a photo of 

deforestation.

Figure 8-6.  Deforestation 
Source: commons.wikimedia.org

Let’s look at an example of the air quality index. The air quality index provides 

some kind of measurement of breathable air quality, which can be measured by using 

various sensors placed at various locations in the region. These sensors measure and 

send periodic data to be collected by a centralized system where such data is collected 

from all of the sensors. This becomes a time series, with each measurement consisting 

of several attributes or features. With each point in time having a certain number of 

features, which can then be input into a neural network such as an autoencoder, we can 

build an anomaly detector. Of course, we can use a LSTM or even TCN to do the same. 

Figure 8-7 shows the air quality index in Seoul in 2015.
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�Healthcare
Healthcare is one of the domains that can benefit a lot from anomaly detection, whether 

it is to prevent fraud, detect cancer or chronic illness, improve ambulatory services, etc.

One of the biggest use cases for anomaly detection in healthcare is to detect 

cancer from various diagnostic reports even before there are any significant symptoms 

that might indicate the presence of cancer. This is extremely important given the 

serious consequences of cancer for any person. Some of the techniques in anomaly 

detection that we can use here involve convolutional neural networks combined with 

autoencoders.

Convolutional neural networks use the concept of dimensionality reduction to 

reduce the large number of features/pixels with colors into much lower dimensionality 

points using the neural networks layers. So, if we combine this convolutional neural 

network with autoencoders, we can also use autoencoders to look at images such as MRI 

images, mammograms, or other images from diagnostic technologies in the healthcare 

industry. Figure 8-8 is a set of images from a CT scan.

Figure 8-7.  Air quality index 
Source: commons.wikimedia.org
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Let’s look at another use case of detecting abnormal health conditions of 

residents of a particular neighborhood. Typically, local hospitals are used by residents 

of specific neighborhoods. Using such data, the hospital can collect and store various 

kinds of health metrics from all the residents in this neighborhood. Some of the 

possible metrics are blood test results, lipid profiles, glycemic values, blood pressure, 

ECG, etc. When combined with demographic data such as age, sex, health conditions, 

etc., this information potentially allows us to build a sophisticated AI-based anomaly 

detection model.

Figure 8-9 shows different health issues observed by looking at ECG results.

Figure 8-8.  CT scan images 
Source: commons.wikimedia.org
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There are a lot of different use cases in healthcare where we can use different 

anomaly detection algorithms to implement preventative measures.

�Transportation
In the transportation sector, anomaly detection can be used to ensure proper 

functioning of the roadways and vehicles. If we can collect different types of events from 

all the sensors that are operational on the roadways such as toll booths, traffic lights, 

security cameras, and GPS signals, we can build an anomaly detection engine that we 

can then use to detect abnormal traffic patterns.

Anomaly detection can also be used to look at times in schedules of public 

transportation and the related traffic conditions in the similar area of transportation.  

Figure 8-9.  ECG results 
Source: commons.wikimedia.org
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We can also look for abnormal activity in terms of fuel consumption, number of 

passengers the public transportation is supporting, seasonal trends, etc. Figure 8-10 is an 

image of a traffic jam due to peak time unexpected traffic.

�Social Media
In social media platforms such as Twitter, Facebook, and Instagram, anomaly detection 

can be used to detect hacked accounts spamming everyone, false advertisements, fake 

reviews, etc. Social media platforms are used extensively by billions of people, so the 

amount of activity on social media platforms is extremely high and is ever growing. In 

order to ensure the privacy of the individuals using the social media platforms as well 

as to ensure the proper experience for each and every individual using the social media 

platforms, there are many techniques that can be used to enhance the capabilities of this 

system. Using anomaly detection, every individual activity can be examined for normal 

and abnormal behavior.

Similarly, any advertising platforms ads, any personalized friend recommendations, 

any news articles that the individual might have been interested in, such as elections, 

Figure 8-10.  Traffic jam
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can be processed for abnormal or anomalous activity. It would be a great use case 

for anomaly detection if anomaly detection could detect troll activity on your tweets, 

propagandized bots, fake news, and so on. Anomaly detection can also be used to 

detect if your account has been taken over, because all of a sudden your account might 

be posting an immense amount of tweets, pause tweets, and comments, or might be 

trolling other accounts and spamming everyone else. Figure 8-11 shows an article on 

fake news on Facebook.

�Finance and Insurance
In the finance and insurance industries, anomaly detection can be used to detect 

fraudulent claims, fraudulent transactions such as transfer of money in and out of the 

country, fraudulent travel expenses, and the risk associated with the specific policy or 

individual, etc. The finance and insurance industries depend on the ability to target 

the right consumers and take the right amount of risk when dealing with finance and 

Figure 8-11.  Fake news on Facebook
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insurance. For instance, if they already know that a specific area is prone to forest fires 

or earthquakes or very frequent flooding, the insurance company insuring your home 

needs to have all the tools that they can get their hands on to quantify the amount of risk 

involved when writing the policy for homeowner insurance.

Anomaly detection can also be used to detect wire fraud where a large amount 

of money is transferred in and out of the country using several different accounts, 

something extremely difficult for human eyes to manually glance over and figure out 

considering the massive volume of transactions that can take place every hour. This is 

feasible because AI techniques can be trained on very large amounts of data to detect 

very new and innovative wire fraud beyond the capabilities of any human or many of the 

statistical techniques that have been in place for decades. Deep learning does solve a very 

big problem in the financial and insurance industries, and with the advent of graphical 

processing units (GPUs), this is becoming a reality in many of the very hard-to-crack use 

cases. Anomaly detection and deep learning can be used together in order to serve the 

needs of the business. Figure 8-12 shows the mortgage loan fraud reporting trend.

Figure 8-12.  Mortgage loan fraud reporting trend

�Cybersecurity
Another use case for anomaly detection is in cybersecurity or networking. In fact, one of 

the very first use cases	  for anomaly detection was decades ago when just the statistical 

models were being used to try to detect any intrusion attempts into networks. In the 

cybersecurity space, there are many things that can happen. One of the most prevalent 
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attacks is a denial of service (DOS) attack. When a denial of service attack is launched 

against your company’s website or portal so as to disrupt service to your customers, 

typically a large number of machines are mobilized to run simultaneous connections and 

random useless transactions against your portal (which is probably dealing with some 

kind of a payment service for customers). As a result, the portal isn’t responsive to the 

customers, eventually leading to very poor customer experience and a loss of business.

Anomaly detection can detect the anomalous activity since we’re training the system 

on data that has been collected for a long period of time. This data is comprised of 

typical use behavior, patterns in payment, how many users are active, and how much 

the payment is at this particular time, as well as seasonal behaviors and other trends 

that exist for the payment portal. When a DOS attack is suddenly launched against your 

payment portal, it is very possible for your anomaly detection algorithm to detect such 

activity and quickly notify the infrastructure or operational teams who can take corrective 

action such as setting up different firewall rules or better routing rules that attempt to 

block the anomalous or bad actors from launching the attack or prolonging the attack 

against the portal. Figure 8-13 is example of anomaly monitoring network flows.

Another example is when hackers try to get into a system given that they were 

somehow able to set up a Trojan to get into the network in the first place. Typically, this 

process involves a lot of scanning, such as port or IP scanning, to see what machines exist 

in the network when the services are being run. The machines may be running SSH and 

telnet (which is easier to crack), and the hacker may try to launch several different types 

Figure 8-13.  Anomaly monitoring network flows
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of attacks that exploit the vulnerabilities of the telnet or asset service. Eventually, one of 

the targeted machines will respond, and the hacker will get into the system and continue 

the penetration of the internal network until they accomplish what they came for.

Typically, networks have a pattern of usage, and there are database servers, web 

servers, development servers, payroll systems, QA systems, and end user-facing systems. 

Usually the well-known, expected behavior is seen for a long period of time. Then 

there is a change that is observed and expected over a long period of time as to how the 

machines are used as well as how the networks are used. We can also measure the ways 

machines talk to each other and via which service/ports.

Using anomaly detection, we can detect if a specific port or service on a specific 

machine or machines is being connected to or transacted with at an abnormal rate, 

meaning that there is some kind of intrusion activity taking place where some intruder is 

trying to hack into the specific system or systems. This is extremely valuable information 

to the operations team, who can quickly pull in the cybersecurity experts and try to drill 

down into what is really going on and take any kind of preventive or proactive action 

rather than reactivate. This could be the difference between the business staying afloat 

or the business shutting down (at least temporarily). There have been instances where 

a single cyber security intrusion almost bankrupted a business, costing hundreds of 

millions of dollars in damages. This is the reason why the cybersecurity domain is 

very interested in deep learning, and the use cases that involve deep learning anomaly 

detection are some of the top use cases in the cyber security and networking space in 

this day and age. Figure 8-14 shows an anomaly in the number of TCP connections on 

different service ports.

Figure 8-14.  TCP connections over service ports
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Not all the use cases are doom and gloom in cyber security or networking; anomaly 

detection can also be involved in determining whether we need to upgrade some of the 

systems, whether our systems are able to sustain the traffic for now and in the future, 

whether any node capacity planning needs to take place to bring everything back 

to normal, and so on. This is again very important for the operations team so it can 

understand if there are trends which were not foreseen a year ago that are now affecting 

the normal to abnormal behavior of the network. It is very important to know right now 

rather than later when it is too late and to start proactively planning to deal with this 

origin traffic or transactions that are happening in our network against some specific 

machine or machines.

�Video Surveillance
Another domain where anomaly detection is becoming extremely important is 

video surveillance. Nowadays, it is very common to see security cameras and video 

surveillance systems no matter where you go: a local school, a local park, Main Street, 

near a neighbor’s house, or in your own house. The point is, video surveillance is here 

to stay. Given all the new technological advancements in smart apps and smartphones, 

this is definitely not going to change any time soon. Rather, we should expect much 

more video surveillance. In the very near future, we will see lot more smart cars and 

self-driving cars. They also depend on continuous processing of video using real-time 

analysis and detecting various objects. At the same time, they can also detect any kind 

of anomaly. In a strictly security video surveillance sense, anomaly detection can be 

used to detect the normal for the specific camera that is looking at your backyard. When 

a specific anomaly is detected because of some kind of motion within the vicinity of 

your house, such as a wild animal or even an intruder walking on your lawn, your home 

security system is able to see that this is not normal. In order for the cameras to do this 

effectively, the manufacturers train very sophisticated machine learning models to 

assess the video signals in real time. The feed coming from the cameras is determined 

as normal or abnormal. For example, if you are driving in a self-driving car on the 

interstate, video of the car will clearly indicate what is normal right now according to 

how the road should look, where the signs should be, where the trees should be, and 

where the next car should be. Using anomaly detection, self-driving cars can avoid any 

abnormalities happening on the path and then take corrective action before anything 

bad can happen.

Figure 8-15 is an object-detecting video surveillance system.
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�Manufacturing
Anomaly detection is also being used heavily in the manufacturing sector. Specifically, 

since most of the manufacturing nowadays involves robots and a lot of automation, 

anomaly detection can be used to detect malfunctions or impending failure of parts of 

the manufacturing system.

In the manufacturing industry, because of all the automation that is happening, 

there is a lot of emphasis on various kinds of sensors and other types of metrics 

being collected in a real-time or near real-time basis. This data can be used to build 

a sophisticated anomaly detection model to try to detect if there is any impending 

problem that will be seen very soon in the plant or the manufacturing cycle.

Another example of anomaly detection and how it can be used in business is the case 

of oil and natural gas platforms. An oil and natural gas platform typically has thousands 

of components all interconnected in various ways in order to make the plant functional. 

Needless to say, all the components can be monitored using sensors that do specific 

measurements of the various parameters of the components to which the sensors are 

attached to. All these sensors can be part of an IoT (Internet of Things) platform. If you 

Figure 8-15.  Object-detecting video surveillance system
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can collect all the sensor output from the tens of thousands of sensors attached to the 

tens of thousands of components, then it becomes possible for us to collect such data 

for a longer period of time and train sophisticated anomaly detection models such as 

autoencoders, LSTMs, and TCNs.

Figure 8-16 shows a manufacturing plant with sensor readings.

Figure 8-16.  Manufacturing plant with sensor readings
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�Smart Home
Another kind of business that is also using anomaly detection to its advantage is the 

smart home system. Smart homes have lots of integrated components, such as smart 

thermostats, refrigerators, and interconnected devices, that all talk to each other. 

Let’s say you have an Amazon Alexa. Alexa can talk to your smart lights, which use 

smart bulbs. All components can use a very smart app on your smart phone. Even 

thermostats are interconnected. So how do we really use anomaly detection in this 

use case? A simple way is to monitor how you set your thermostat for the optimal 

temperature during all weather conditions and follow some sort of recommendation 

or recommended behavior. Because the thermostats are personalized to some extent 

in each household, there may be a very good deep learning algorithm out there that is 

continuously looking for the thermostats across all houses, including yours, and can 

then detect how you use it normally. Figure 8-17 is an illustration of a smart home.

�Retail
Another big industry that uses anomaly detection algorithms is the retail industry. In 

the retail industry, there are certain use cases such as the efficiency of the supply chain 

in terms of distribution of goods and services. Also interesting are the returns from 

customers because returned goods are tricky: sometimes it costs less to sell them in a 

clearance sale than to restock.

Figure 8-17.  A smart home
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Looking at customer sales is also critical both in terms of revenue generated by 

sales and in terms of planning future products and sales strategies, especially when it 

comes to targeting the consumers better. Figure 8-18 shows the historical sales figures 

of a product.

�Implementation of Deep Learning-Based Anomaly 
Detection
Given these use cases in these different industries, what are the key steps in establishing 

an anomaly detection practice in your organization or business?

The key steps involved in anomaly detection are as follows:

•	 Identifying business use case and getting aligned on the expectations

•	 Defining what data is available and understanding it and the nature 

of the data itself

•	 Establishing the processes to consume the data in order to process it

•	 Establishing the type of models to use

•	 A strategic discussion of how the models will be used and executed

Figure 8-18.  Historical sales figures of a product
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•	 Investigating the results and feedback analysis as it effects the 

business

•	 Operationalizing the model used in the day-to-day activity of the 

business

In particular, we are very interested in how the models are built and in what type 

of models we should be using. The type of anomaly detection algorithm used affects 

pretty much everything that we are trying to get out of this anomaly detection strategy. 

This in turn depends on the type of data available, as well as whether the data is already 

labeled or identified. One of the things that will affect the decision to figure out what 

type of anomaly detection will work best for the specific use case is whether it is a 

point anomaly, contextual anomaly, or a collective anomaly. We are also interested in 

looking at whether the data is an instantaneous snapshot at some point in time or if it 

is continuously evolving or ever-changing, real-time, time series data. Also important 

is whether the specific features or attributes of the data are categorical or numerical, 

nominal, ordinal, binary, discrete, or continuous. It is also very important to know if the 

data is being labeled already or if some sort of a hint is provided as to what this data is, 

since it could steer us in the direction of supervised, semi-supervised, or unsupervised 

algorithms.

While the technologies and algorithms are available to be used, there are several key 

challenges to implementing an anomaly detection approach based on deep learning:

•	 It’s hard to integrate AI into existing processes and systems.

•	 The technologies and the expertise needed are expensive.

•	 Leadership needs to be educated on what AI can and cannot do.

•	 AI algorithms are not natively intelligent; rather, they learn by 

analyzing “good” data.

•	 There is a need for change in “culture,” especially in large companies.

�Summary
In this chapter, we discussed practical use cases of anomaly detection in the business 

landscape. We showed how anomaly detection can be used to address real-life problems 

in many businesses. Every business and use case is different, so while we cannot copy/
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paste code to build a successful model to detect anomalies in any dataset, this chapter 

covered many use cases to give you an idea of the possibilities and concepts behind the 

thought process.

Remember that this is an evolving field with continuous inventions and 

enhancements to the algorithms present, which means that in the future the 

algorithms will not look the same. Just couple of years ago, the RNN (recurrent neural 

network) was the best algorithm for a time series, but now the LSTM (Chapter 6) is 

being used heavily and the TCN (Chapter 7) will be the future of dealing with a time 

series. Even autoencoders have changed quite a bit; the traditional autoencoders have 

evolved into variational autoencoders (Chapter 4). The RBM (Chapter 5) is not used 

that much any longer.

In the next chapter, Appendix A, we will look at Keras, which is a popular framework 

for deep learning.
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APPENDIX A�

Intro to Keras
In this appendix, you will be introduced to the Keras framework along with the 

functionality that it offers. You will also take a look at using the back end, which is 

TensorFlow in this case, to perform low-level operations all using Keras.

Regarding the setup, we use

•	 tensorflow-gpu version 1.10.0

•	 keras version 2.0.8

•	 torch version 0.4.1 (this is PyTorch)

•	 CUDA version 9.0.176

•	 cuDNN version 7.3.0.29

�What Is Keras?
Keras is a high-level, deep learning library for Python, running with TensorFlow, CNTK, 

or Theanos as the back end. The back end can basically be thought of as the “engine” 

that does all of the work, and Keras is the rest of the car, including the software that 

interfaces with the engine.

In other words, Keras being high-level means that it abstracts away much of the 

intricacies of a framework like TensorFlow. You only need to write a few lines of code 

to have a deep learning model ready to train and ready to use. In contrast, TensorFlow 

being more of a low-level framework means you have much more added syntax and 

functionality to define the extra work that Keras abstracts away for you. At the same 

time, TensorFlow and PyTorch also allow for much more flexibility if you know what 

you’re doing.

https://doi.org/10.1007/978-1-4842-5177-5
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TensorFlow and PyTorch allow you to manipulate individual tensors (similar to 

matrices, but they aren’t limited to two dimensions; they can range from vectors to 

matrices to n-dimensional objects) to create custom neural network layers, and to create 

new neural network architectures that include custom layers.

With that being said, Keras allows you to do the same things as TensorFlow and 

PyTorch do, but you will have to import the back end itself (which in this case is 

TensorFlow) to perform any of the low-level operations. This is basically the same thing 

as working with TensorFlow itself since you’re using the TensorFlow syntax through 

Keras, so you still need to be knowledgeable about TensorFlow syntax and functionality.

In the end, if you’re not doing research work that requires you to create a new type 

of model, or to manipulate the tensors directly, simply use Keras. It’s a much easier 

framework to use for beginners, and it will go a long way until you become sufficiently 

advanced enough that you need the low-level functionality that TensorFlow or PyTorch 

offers. And even then, you can still use TensorFlow (or whatever back end you’re using) 

through Keras if you need to do any low-level work. One thing to note is that Keras has 

actually been integrated into TensorFlow, so you can access Keras through TensorFlow 

itself, but for the purpose of this appendix, we will use the Keras API to showcase the 

Keras functionality, and the TensorFlow back end through Keras to demonstrate the low-

level operations that are analogous to PyTorch.

�Using Keras
When using Keras, you will most likely import the necessary packages, load the data, 

process it, and then pass it into the model. In this section, we will cover model creation 

in Keras, the different layers available, several submodules of Keras, and how to use the 

back end to perform tensor operations.

If you’d like to learn Keras even more in depth, feel free to check out the official 

documentation. We only cover the basic essentials that you need to know about Keras, so 

if you have further questions or would like to learn more, we recommend you to explore 

the documentation.

For details on implementation, Keras is available on GitHub at https://github.

com/keras-team/keras/tree/c2e36f369b411ad1d0a40ac096fe35f73b9dffd3.

The official documentation is available at https://keras.io/.
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�Model Creation
In Keras, you can build a sequential model, or a functional model.

The sequential model is built as shown in Figure A-1.

Figure A-1.  Code defining a sequential model in Keras

Figure A-2.  Code defining a functional model in Keras

Once you’ve defined a sequential model, you can simply add layers to it by calling 

model_name.add(), where the layer itself is the parameter. Once you’ve finished adding 

all of the layers that you want, you are ready to compile and train the model on whatever 

data you have.

Now, let’s look at the functional model, the format of which is what you’ve used in 

the book thus far (see Figure A-2).

The functional model allows you to have more flexibility in how you define your 

neural network. With it, you can connect layers to any other layer that you want, instead 

of being limited to just the previous layer like in the sequential model. This allows you 

to share a layer with multiple other layers or even reuse the same layer, allowing you to 

create more complicated models.
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Once you’re done defining all of you layers, you simply need to call Model() with 

your input and output parameters respectively to finish your whole model. Now, you can 

continue onwards to compiling and training your model.

�Model Compilation and Training
In most cases, the code to compile your model will look something like Figure A-3.

Figure A-3.  Code to compile a model in Keras

However, there are many more parameters to consider:

•	 optimizer: Passes in the name of the optimizer in the string or an 

instance of the optimizer (you call the optimizer with whatever 

parameters you like. We will elaborate on this further below in the 

Optimizers section.)

•	 loss: Passes in the name of the loss function or the function itself.  

We elaborate on what we mean by this below in the Losses section.

•	 metrics: Passes in the list of metrics that you want the model to 

evaluate during the training and testing processes. Check out the 

Metrics section for more details on what metrics you can use.

•	 loss_weights: If you have multiple outputs and multiple losses, the 

model evaluates based on the total loss. The loss_weights are a list 

or dictionary that determines how much each loss factors into the 

overall, combined loss. With the new weights, the overall loss is now 

the weighted sum of all losses.

•	 sample_weight_mode: If your data has 2D weights with timestep-
wise sample weighting, then you should pass in "temporal". 
Otherwise, None defaults to 1D sample-wise weights. You can also 
pass a list or dictionary of sample_weight_modes if your model has 
multiple outputs. One thing to note is that you need at least a 3D 

output, with one dimension being time.
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•	 weighted_metrics: A list of metrics for the model to evaluate and 

weight using sample_weight or class_weight during the training and 

testing processes.

After compiling the model, you can also call a function to save your model as in 

Figure A-4.

Figure A-4.  A callback to save the model to some file path

Here are the set of parameters associated with ModelCheckpoint():

•	 filepath: The path where you want to save the model file. Typing just 

“saved_model.h5” saves it in the same directory.

•	 monitor: The quantity that you want the model to monitor. By 

default, it’s set to “val_loss”.

•	 verbose: Sets verbosity to 0 or 1. It’s set to 0 by default.

•	 save_best_only: If set to True, then the model with the best 

performance according to the quantity monitored will be saved.

•	 save_weights_only: If set to True, then only the weights will be 

saved. Essentially, if True, model.save_weights(filepath), else model.

save(filepath).

•	 mode: Can choose between auto, min, or max. If save_best_only is 

True, then you should pick a choice that would suit the monitored 

quantity best. If you chose val_acc for monitor, then you want to pick 

max for mode, and if you choose val_loss for monitor, pick min for 

mode.

•	 period: How many epochs there are between each checkpoint.

Now, you can train your model using code similar to Figure A-5.
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The model.fit() function has a big list of parameters:

•	 x: This is a Numpy array representing the training data. If you have 

multiple inputs, then this is a list of Numpy arrays that are all training 

data.

•	 y: This is a Numpy array that represents the target or label data. 

Again, if you have multiple outputs, then this is a list of target data 

Numpy arrays.

•	 batch_size: Set to 32 by default. This is the integer number of 

samples to run through the network before updating the gradients.

•	 epochs: An integer value dictating how many iterations for the entire 

x and y data to pass through the network.

•	 verbose: 0 makes it train without outputting anything, 1 shows a 

progress bar and the metrics, and 2 shows one line per epoch. Check 

the figures below for exactly what each value does:

Verbosity 1 (Figure A-6)

Figure A-6.  The training function with verbosity 1

Figure A-5.  Code to train the model
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Verbosity 2 (Figure A-7)

Figure A-7.  The training function with verbosity 2

•	 callbacks: A list of keras.callbacks.Callback instances. Remember 

the ModelCheckpoints instance defined earlier as “checkpointer”? 

This is where you include it. To see how it’s done, refer to one of the 

above figures that showcase the model.fit() function being called.

•	 validation_split: A float value between 0 and 1 that tells the model 

how much of the training data should be used as validation data.

•	 validation_data: A tuple (x_val, y_val) or (x_val, y_val, val_sample_

weights) with variable parameters that pass the validation data to 

the model, and optionally, the val_sample_weights as well. This also 

overrides validation_split, so use one or the other.

•	 shuffle: A Boolean that tells the model whether or not to shuffle 

the training data before each epoch, or pass in a string for “batch”, 

meaning it shuffles in batch-sized chunks.

•	 class_weight: (optional) A dictionary that tells the model how to 

weigh certain classes in the training process. You can use it to weigh 

under-represented classes higher, for example.

•	 sample_weight: (optional) A Numpy array of weights that have a 1:1 

map between the training samples and the weight array you passed 

in. If you have temporal data (an extra time dimension), pass in a 2D 
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array with a shape (samples, sequence_length) to apply these weights 

to each timestep of the samples. Don’t forget to set “temporal” for 

sample_weight_mode in model.compile().

•	 initial_epoch: An integer that tells the model what epoch to start 

training at (can be used when resuming training).

•	 steps_per_epoch: The number of steps, or batches of samples, for 

the model to take before completing one epoch.

•	 validation_steps: (Only if you specify steps_per_epoch.) The number 

of steps to take (number of batches of samples) to use for validation 

before stopping.

•	 validation_freq: (Only if you pass in validation data.) If you pass in 

n, it runs validation every n epochs. If you pass in [a, e, h], it runs 

validation after epoch a, epoch e, and epoch h.

�Model Evaluation and Prediction
After training the model, you can not only evaluate its performance on some test data, 

but you can make predictions and use the output for any other application you want. 

Previously, you’ve used the predictions to generate AUC scores to help better evaluate 

the model (accuracy is not the best metric to judge model performance by), but you can 

use these predictions in any way you want, especially if the model’s really good at its job.

The code to evaluate your model on some test data might look similar to Figure A-8.

Figure A-8.  Code to evaluate the model given x and y data sets

For model.evaluate(), the parameters are

•	 x: The Numpy array representing the test data. Pass in a list of Numpy 

arrays if the model has multiple inputs.

•	 y: The Numpy array of target or label data that is a part of the test 

data. If there are multiple inputs, pass in a list of Numpy arrays.
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•	 batch_size: If none is specified, the default is 32. This parameter 

expects an integer value that dictates how many samples there are 

per evaluation step.

•	 verbose: If set to 0, no output is shown. If set to 1, the progress bar is 

shown and looks like Figure A-9.

Figure A-9.  The evaluate function with verbosity 1

Figure A-10.  The prediction function generates predictions given some data set x

•	 sample_weight: (optional) A Numpy array of weights for each of 

the test samples. Again, either a 1:1 map between the sample and 

the weights, unless it’s temporal data. If you have temporal data (an 

extra time dimension), pass in a 2D array with a shape (samples, 

sequence_length) to apply these weights to each timestep of the 

samples. Don’t forget to set “temporal” for sample_weight_mode in 

model.compile().

•	 steps: If None, then ignored. Otherwise, it’s the integer parameter n 

number of steps (batches of samples) before declaring the evaluation 

as done.

•	 callbacks: Works the same way as the callbacks parameter for model.

fit().

Finally, to make predictions, you can run code similar to Figure A-10.
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In this case, the parameters are

•	 x: The Numpy array representing the prediction data. Pass in a list of 

Numpy arrays if the model has multiple inputs.

•	 batch_size: If none is specified, the default is 32. This parameter 

expects an integer value that dictates how many samples there are 

per batch.

•	 verbose: Either a 0 or 1.

•	 steps: How many steps to take (batches of samples) before finishing 

the prediction process. This is ignored if None is passed in.

•	 callbacks: Works the same way as the callbacks parameter for model.

fit().

One more thing to mention: If you’ve saved a model, you can load it again by calling 

the code in Figure A-11.

Figure A-11.  Loading a model given some file path

Now that we’ve covered the basics of model construction and operation, let’s move 

on to the parts that constitute the models themselves: layers.

�Layers
�Input Layer

keras.layers.Input()

This is the input layer of the entire model, and it has several parameters:

•	 shape: This is the shape tuple of integers that tells the layer what 

shape to expect. For example, if you pass in shape=(input_shape) and 

input_shape is (31, 1), you’re telling the model to expect entries that 

each have a dimension (31, 1).
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•	 batch_shape: This is also a shape tuple of integers that includes the 

batch size. Passing in batch_shape = (input_shape), where input_

shape is (100, 31, 1), tells the model to expect batches of 100 31x1 

dimensional entries. Passing in an input_shape of (None, 31, 1) tells 

the model that the number of batches can be some arbitrary number.

•	 name: (Optional) A string name for the layer. It must be unique, and 

if nothing is passed in, some name is autogenerated.

•	 dtype: The data type that the layer should expect the input data to 

have, specified as a string. It can be something like ‘int32’, ‘float32’, etc.

•	 sparse: A Boolean that tells the layer whether or not the placeholder 

that the layer creates is sparse.

•	 tensor: (Optional) A tensor to pass into the layer to serve as the 

placeholder for input. If something is passed in, then Keras will not 

automatically create some placeholder tensor.

�Dense Layer

keras.layers.Dense()

This is a neural network layer comprised of densely-connected neurons. Basically, 

every node in this layer is fully connected with the previous and next layers if there are any.

Here are the parameters:

•	 units: The number of neurons in this layer. This also factors into the 

dimension of the output space.

•	 activation: The activation function to use for this layer.

•	 use_bias: A Boolean for whether or not to use a bias vector in this 

layer.

•	 kernel_initializer: An initializer for the weight matrix. For more 

information, check out the Initializers section.

•	 bias_initializer: Similar to the kernel_initializer, but for the bias.
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•	 kernel_regularizer: A regularizer function that’s been applied to the 

weight matrix. For more information, check out the Regularizers 

section.

•	 bias_regularizer: Regularizer function applied to the bias.

•	 activity_regularizer: Regularizer function applied to the output of 

the layer.

•	 kernel_constraint: A constraint function applied to the weights. For 

more information, check out the Constraints section.

•	 bias_constraint: A constraint function applied to the bias.

For a better idea of what a dense layer is, check out Figure A-12.

Input
Data Input Layer Dense Layer 1 Dense Layer 2

Output Layer
(Dense)

Figure A-12.  Dense layers in an artificial neural network
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�Activation

keras.layers.Activation()

This layer applies an activation function to the input. Here is the argument:

•	 activation: Pass in either the activation function (see the Activations 

section) or some Theanos or TensorFlow operation.

To understand what an activation function is, Figure A-13 shows what each artificial 

neuron looks like.

Figure A-13.  The activation function is applied to the output of the function the 
node carries out on the input

The activation passes in the output from the input ∗ weights + bias and passes it into 

the activation function. If there is no activation function, then that input just gets passed 

along as the output.

�Dropout

keras.layers.Dropout()

What the dropout layer does is take some float f proportion of nodes in the preceding 

layer and “deactivates” them, meaning they don’t connect to the next layer. This can help 

combat overfitting on the training data.
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Here are the parameters:

•	 rate: A float value between 0 and 1 that indicates the proportion of 

input units to drop.

•	 noise_shape: A 1D integer binary tensor that is multiplied with 

the input to determine what units are turned on or off. Instead of 

randomly selecting values using rate, you can pass in your own 

dropout mask to use in the dropout layer.

•	 seed: An integer to use as a random seed.

�Flatten

keras.layers.Flatten()

This layer takes all of the inputs and flattens them into a single dimension.

Images can have three channels if they’re color images. They can be RGB (red, green, 

blue), BGR (blue, green, red), HSV (hue, saturation, value), etc., so the dimensions of 

these images are actually (height, width, channels) if it’s formatted channels last or 

(channels, height, width) if it’s formatted channels first. To preserve this formatting, 

there is a parameter you can pass in to the flatten layer:

•	 data_format: A string that’s either ‘channels_first’ or ‘channels_last’. 

This tells the flattening layer how to format the flattened output to 

preserve this formatting.

To get a better idea of how the layer flattens the input, check out the summary in 

Figure A-14 of a convolutional neural network.
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�Spatial Dropout 1D

keras.layers.SpatialDropout1D()

This function drops entire 1D feature maps instead of neuron elements, but 

otherwise has the same functionality as the regular dropout function. In earlier 

convolutional layers, the feature maps tend to be strongly correlated, so regular dropout 

functions won’t help much with regularization in that case. Spatial dropout helps address 

this and also helps improve independence between the feature maps themselves.

The function takes one parameter:

•	 rate: A float between 0 and 1 that determines the proportion of input 

units to drop.

Figure A-14.  Notice how the flattening layer reduces the dimensionality of its input
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�Spatial Dropout 2D

keras.layers.SpatialDropout2D()

This function is similar to the spatial dropout 1D function, except it works on 2D 

feature maps. Images can have three channels if they’re color images. They can be 

RGB (red, green, blue), BGR (blue, green, red), HSV (hue, saturation, value), etc., so 

the dimensions of these images are actually (height, width, channels) if it’s formatted 

channels last or (channels, height, width) if it’s formatted channels first.

This function takes one additional parameter compared to SpatialDropout1D():

•	 rate: A float between 0 and 1 that determines the proportion of input 

units to drop.

•	 data_format: ‘channels_first’ or ‘channels_last’. This tells the 

flattening layer how to format the flattened output to preserve the 

formatting of channels first or channels last.

�Conv1D

keras.layers.Conv1D()

Check out Chapter 7 for a detailed explanation on how one-dimensional 

convolutions work.

This layer is a one-dimensional (or temporal) convolutional layer. It basically passes 

a filter over the one-dimensional input and multiplies the values element-wise to create 

the output feature map.

These are the parameters that the function takes:

•	 filters: An integer value that determines the dimensionality of the 

output space. In other words, this is also the number of filters in the 

convolution.

•	 kernel_size: An integer (or tuple/list of a single integer) that specifies 

the length of the filter/kernel that is used in the 1D convolution.

•	 strides: An integer (or tuple/list of a single integer) that tells the 

layer how many data entries to shift by after one element-wise 

multiplication of the filter and the input data. Note: A stride value != 1 

isn’t compatible if the dilation_rate != 1.
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•	 padding: ‘valid’, ‘causal’, or ‘same’. ‘valid’ doesn’t zero pad the output.  

‘same’ zero pads the output so that it’s the same length as the input. 

‘causal’ padding generates causal, dilated convolutions. For an 

explanation on what ‘causal’ padding is, refer to Chapter 7.

•	 data_format: ‘channels_first’ or ‘channels_last’. This tells the 

flattening layer how to format the flattened output to preserve the 

formatting of channels first or channels last. ‘channels_first’ has 

the format (batch, features, steps), and ‘channels_last’ has the 

format (batch, steps, features).

•	 dilation_rate: An integer (or tuple/list of a single integer) serves 

as the dilation rate for this dilated convolutional layer. For an 

explanation of how this works, refer to Chapter 7.

•	 activation: Passes in either the activation function (see the 

Activations section) or some Theanos or TensorFlow operation. 

If nothing is specified, the data is passed along unaltered after the 

convolutional process.

•	 use_bias: A Boolean for whether or not to use a bias vector in this 

layer.

•	 kernel_initializer: An initializer for the weight matrix. For more 

information, check out the Initializers section.

•	 bias_initializer: Similar to the kernel_initializer, but for the bias.

•	 kernel_regularizer: A regularizer function that’s been applied to the 

weight matrix. For more information, check out the Regularizers 

section.

•	 bias_regularizer: A regularizer function applied to the bias.

•	 activity_regularizer: A regularizer function applied to the output of 

the layer.

•	 kernel_constraint: A constraint function applied to the weights. For 

more information, check out the Constraints section.

•	 bias_constraint: A constraint function applied to the bias.
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�Conv2D

keras.layers.Conv1D()

Check out Chapter 3 for a detailed explanation on how the 2D convolutional layer 

works.

This layer is a two-dimensional convolutional layer. It basically passes a 2D filter over 

the input and multiplies the values element-wise to create the output feature map.

These are the parameters that the function takes:

•	 filters: An integer value that determines the dimensionality of the 

output space. In other words, this is also the number of filters in the 

convolution.

•	 kernel_size: An integer (or tuple/list of two integers) that specifies 

the height and width of the filter/kernel that is used in the 2D 

convolution.

•	 strides: An integer (or tuple/list of two integers, one for height and 

one for width, respectively) that tells the layer how many data entries 

to shift by after one element-wise multiplication of the filter and the 

input data. Note: A stride value != 1 isn’t compatible if the dilation_

rate != 1.

•	 padding: ‘valid’ or ‘same’. ‘valid’ doesn’t zero pad the output. ‘same’ 

zero pads the output so that it’s the same length as the input.

•	 data_format: ‘channels_first’ or ‘channels_last’. This tells the 

flattening layer how to format the flattened output to preserve the 

formatting of channels first or channels last.

•	 dilation_rate: An integer (or tuple/list of a two integers) serves as the 

dilation rate for this dilated convolutional layer. For an explanation of 

how this works, refer to Chapter 7.

•	 activation: Passes in either the activation function (see the 

Activations section) or some Theanos or TensorFlow operation. 

If nothing is specified, the data is passed along unaltered after the 

convolutional process.

•	 use_bias: A Boolean for whether or not to use a bias vector in this layer.
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•	 kernel_initializer: An initializer for the weight matrix. For more 

information, check out the Initializers section.

•	 bias_initializer: Similar to the kernel_initializer, but for the bias.

•	 kernel_regularizer: A regularizer function that’s been applied to the 

weight matrix. For more information, check out the Regularizers 

section.

•	 bias_regularizer: A regularizer function applied to the bias.

•	 activity_regularizer: A regularizer function applied to the output of 

the layer.

•	 kernel_constraint: A constraint function applied to the weights. For 

more information, check out the Constraints section.

•	 bias_constraint: A constraint function applied to the bias.

�UpSampling 1D

keras.layers.UpSampling1D()

For a detailed explanation on how upsampling works, refer to Chapter 7.

This layer essentially repeats the data n times with respect to time (where n is the 

parameter passed in):

•	 size: An integer n that specifies how many times to repeat each data 

entry with respect to time. The order of time is preserved, so each 

element is repeated n times according to its time entry.

�UpSampling 2D

keras.layers.UpSampling2D()

Similar to UpSampling1D(), but for 2D inputs. The rows and columns are repeated n 

times according to size[0] and size[1].

This is the list of parameters:

•	 size: An integer or tuple of two integers. The integer is the 

upsampling factor for both rows and columns, and the tuple lets you 

specify the upsampling factor for rows and for columns individually.
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•	 data_format: ‘channels_first’ or ‘channels_last’. This tells the 

flattening layer how to format the flattened output to preserve the 

formatting of channels first or channels last.

•	 interpolation: ‘nearest’ or ‘bilinear’. CNTK does not support 

‘bilinear’ yet, and Theanos only supports size=(2,2). ‘nearest’ and 

‘bilinear’ are interpolation techniques used in image processing.

�ZeroPadding1D

keras.layers.ZeroPadding1D()

Depending on the input, pads the input sequence with zeroes on both sides or either 

a zero on the left side or a zero on the right side of the input sequence.

This is the list of parameters:

•	 padding: An integer, a tuple of two integers, or a dictionary. The 

integer is a number that tells the layer how many zeroes to add on 

both the left and right side. An input of 1 adds a zero on both the left 

and right side. The tuple is formatted as (left_pad, right_pad), so 

you can pass in (0, 1) to tell it to add no zeroes on the left side and 

add one zero on the right side.

�ZeroPadding2D

keras.layers.ZeroPadding2D()

Depending on the input, it pads the input sequence with a row and columns of 

zeroes at the top, left, right, and bottom of the image tensor.

This is the list of parameters:

•	 padding: An integer, a tuple of two integers, a tuple of two tuples 

with two integers each. The integer tells it to add n rows of zeroes on 

the top and bottom of the image tensor, and n columns of zeroes. 

The tuple of two integers is formatted as (symmetric_height_pad, 

symmetric_width_pad), so you can tell the layer to add m rows of 

zeroes and n columns of zeroes to each side, respectively, if you pass 

in a tuple (m, n). Finally, the tuple of two tuples is formatted as ((top_

pad, bottom_pad), (left_pad, right_pad)), so you can customize 

even more how you want the layer to add rows or columns of zeroes.
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•	 data_format: ‘channels_first’ or ‘channels_last’. This tells the 

flattening layer how to format the flattened output to preserve the 

formatting of channels first or channels last.

�MaxPooling1D

keras.layers.MaxPooling1D()

It applies max pooling on a 1D input. To get a better idea of how max pooling works, 

check out Chapter 3. Max pooling in 1D is similar to max pooling in 2D, except the 

sliding window only works in one dimension, going from left to right.

This is the list of parameters:

•	 pool_size: An integer value. If an integer n is given, then the 

window size of the pooling layer is 1xn. These are also the factors to 

downscale by, so if an integer n is passed in, the dimensions for both 

height and width are downscaled by that factor.

•	 strides: An integer or None. By default, the stride is set to pool_size. 

If you pass in an integer, the pooling window moves by integer n 

amount after completing its pooling operation on a set of entries.

•	 padding: ‘valid’ or ‘same’. ‘valid’ means there’s no zero padding, and 

‘same’ pads the output sequence with zeroes so that it matches the 

dimensions of the input sequence.

•	 data_format: ‘channels_first’ or ‘channels_last’. This tells the 

flattening layer how to format the flattened output to preserve the 

formatting of channels first or channels last. ‘channels_first’ has 

the format (batch, features, steps), and ‘channels_last’ has the 

format (batch, steps, features).

�MaxPooling2D

keras.layers.MaxPooling2D()

It applies max pooling on a 2D input. To get a better idea of how max pooling works, 

check out Chapter 3.
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This is the list of parameters:

•	 pool_size: An integer that dictates the size of the pooling window. 

An integer of n makes the pooling window size n, meaning it sifts 

through n entries at a time and selects the maximum value to pass on 

to the output.

•	 strides: An integer or None. By default, the stride is set to pool_size. 

If you pass in an integer, the pooling window moves by integer n 

amount after completing its pooling operation on a set of entries. It is 

also a factor that determines how much to downscale the dimensions 

by, as a parameter n will reduce the dimensions by a factor n.

•	 padding: ‘valid’ or ‘same’. ‘valid’ means there’s no zero padding, and 

‘same’ pads the output sequence with zeroes so that it matches the 

dimensions of the input sequence.

•	 data_format: ‘channels_first’ or ‘channels_last’. This tells the 

flattening layer how to format the flattened output to preserve the 

formatting of channels first or channels last.

�Loss Functions
In the examples, y_true is the true label and y_pred is the predicted label.

�Mean Squared Error

keras.losses.mean_squared_error(y_true, y_pred)

If you have questions on the notation for this equation, refer to Chapter 3. See the 

equation in Figure A-15.

Figure A-15.  The equation for mean squared error
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Given input θ, the weights, the formula finds the average difference squared between 

the predicted value and the actual value. The parameter hθ represents the model with 

the weight parameter θ passed in, so hθ(xi) gives the predicted value for xi with model’s 

weights θ. The parameter yi represents the actual prediction for the data point at index i. 

Lastly, there are n entries in total.

This loss metric can be used in autoencoders to help evaluate the difference between 

the reconstructed output and the original. In the case of anomaly detection, this metric 

can be used to separate the anomalies from the normal data points, since anomalies 

have a higher reconstruction error.

�Categorical Cross Entropy

keras.losses.categorical_crossentropy(y_true, y_pred)

See the equation in Figure A-16.

Figure A-16.  The equation for categorical cross entropy

Figure A-17.  Another way to write the equation for categorical cross entropy

In this case, n is the number of samples in the whole data set. The parameter hθ 

represents the model with the weight parameter θ passed in, so hθ(xi) gives the predicted 

value for xi with model’s weights θ. Finally, yi represents the true label for data point 

at index i. The data needs to be regularized to be between 0 and 1, so for categorical 

cross entropy, it must be piped through a softmax activation layer. The categorical cross 

entropy loss is also called softmax loss.

Equivalently, you can write the previous equation as shown in Figure A-17.

In this case, m is the number of classes.

The categorical cross entropy loss is a commonly used metric in classification tasks, 

especially in computer vision with convolutional neural networks. Binary cross entropy 

is a special case of categorical cross entropy where the number of classes m is two.
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�Sparse Categorical Cross Entropy

keras.losses.sparse_categorical_crossentropy(y_true, y_pred)

Sparse categorical cross entropy is basically the same as categorical cross entropy, 

but the distinction between them is in how their true labels are formatted. For 

categorical cross entropy, the labels are one-hot encoded. For an example of this, refer 

to Figure A-18, if you had your y_train formatted originally as the following, with six 

maximum classes.

Figure A-18.  An example of how y_train can be formatted. The value in each 
index is the class value that corresponds to the value at that index in x_train

Figure A-19.  The y_train in Figure A-18 is converted into a one-hot encoded 
format

You can call keras.utils.to_categorical(y_train, n_classes) with n_classes as 

6 to convert y_train to that shown in Figure A-19.

So now your y_train looks like Figure A-20.
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This type of truth label formatting (one-hot encoding) is what categorical cross 

entropy uses. For sparse categorical cross entropy, it suffices to simply pass in the 

information in Figure A-21.

Figure A-21.  The y_train to pass in for sparse categorical cross entropy

Figure A-22.  An example of y_train in the code that can be passed in if sparse 
categorical cross entropy is the metric

Figure A-20.  Converting y_train into a one-hot encoded format in Jupyter

Or the code shown in Figure A-22.

�Metrics
�Binary Accuracy

keras.metrics.binary_accuracy(y_true, y_pred)

To use this function, the ‘accuracy’ must be a metric that’s passed into the model.

compile() function, and binary cross entropy must be the loss function.
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Essentially, the function finds the number of instances where the true class label 

matches the rounded prediction label and finds the mean of the result (which is the 

same thing as dividing the total number of correct matches by the total number of 

samples).

The predicted values are rounded since as the neural network is trained more and 

more, the output values tend to change so that the predicted value is something really 

close to one, and the rest of the value are something really close to zero. In order to 

match the predicted values to the original truth labels (which are all integers), you can 

simply round the predicted values.

In the official Keras documentation on GitHub, this function is defined as shown in 

Figure A-23.

Figure A-23.  The code definition in the Keras GitHub page of binary accuracy

�Categorical Accuracy

keras.metrics.categorical_accuracy(y_true, y_pred)

Since most problems tend to involve categorical cross entropy (implying more than 

two classes in the data set), this tends to be the default accuracy metric when ‘accuracy’ 

is passed into the model.compile() function.

Instead of finding all of the instances where the true labels and rounded predictions 

match, categorical accuracy finds all of the instances where the true labels and 

predictions have a maximum value in the same spot.

Recall that for categorical cross entropy, the labels are one-hot encoded. Therefore, 

the truth labels only have one maximum per entry, along with the predictions (though 

again, one value will be really close to one while the others are really close to zero). What 

categorical accuracy does is check if the maximum value in the entry is in the same 

position for both y_true and for y_pred.

Once it’s found all those instances, it finds the mean of the result, leading to an 

accuracy value.

Essentially, it’s a similar equation to the one for binary accuracy, but with a different 

condition regarding y_true and y_pred.
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The function is defined by Keras as shown in Figure A-24.

Figure A-25.  Code to define a custom metric and use that for the model

Figure A-24.  The code definition of categorical accuracy as seen in the Keras 
GitHub page

Of course, there are many more metrics that are available on the Keras 

documentation, and you can even define custom metrics. To do that, just simply define 

a function that takes in y_true and y_pred, and call that function name in your metrics, 

as shown in Figure A-25.

In this example, you simply rewrite the binary accuracy metric in several lines and 

return the score. You can actually condense this function to just one line like in the actual 

implementation seen above, but this is just an example to showcase a custom metric.

�Optimizers
�SGD

keras.optimizers.SGD()

This is the stochastic gradient descent optimizer, a type of algorithm that aids in 

the backpropagation process by adjust the weights. It is commonly used as a training 

algorithm in a variety of machine learning applications, including neural networks.
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The optimizer has several parameters:

•	 lr: Some float value where the learning rate lr >= 0. The learning rate 

is a hyperparameter that determines how big of a step to take when 

optimizing the loss function.

•	 momentum: Some float value where the momentum m >= 0. 

This parameter helps accelerate the optimization steps in the 

direction of the optimization, and helps reduce oscillations when 

the local minimum is overshot (refer to Chapter 3 to refresh your 

understanding on how a loss function is optimized).

•	 decay: Some float value where the decay d >= 0. Helps determine 

how much the learning rate decays by after each update (so that as 

the local minimum is approached, or after some number of training 

iterations, the learning rate decreases so smaller step sizes are taken. 

Big learning rates means the local minimum might be overshot more 

easily).

•	 nesterov: A Boolean value to determine whether or not to apply 

Nesterov momentum. Nesterov momentum is a variation of 

momentum where the gradient is computed not from the current 

position, but from a position that takes into account the momentum. 

This is because the gradient always points in the right direction, 

but the momentum might carry the position too far forward and 

overshoot. Since it doesn’t use the current position but instead 

some intermediate position that takes into account momentum, the 

gradient from that position can help correct the current course so 

that the momentum doesn’t carry the new weights too far forward.

It essentially helps for more accurate weight updates and helps converge faster.

�Adam

keras.optimizers.Adam()

The Adam optimizer is an algorithm that extends upon SGD, and has grown quite 

popular in deep learning applications in computer vision and in natural language 

processing.
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These are the parameters for the algorithm:

•	 lr: Some float value where the learning rate lr >= 0. The learning rate 

is a hyperparameter that determines how big of a step to take when 

optimizing the loss function. The paper describes good results with a 

value of 0.001 (the paper refers to the learning rate as alpha).

•	 beta_1: Some float value where 0 < beta_1 < 1. This is usually some 

value close to 1, but the paper describes good results with a value of 0.9.

•	 beta_2: Some float value where 0 < beta_2 < 1. This is usually some 

value close to 1, but the paper describes good results with a value  

of 0.999.

•	 epsilon: Some float value where epsilon e >= 0. If None, then it 

defaults to K.epsilon(). Epsilon is some small number, described as 

10E-8 in the paper, to help prevent division by 0.

•	 decay: Some float value where the decay d >= 0. Helps determine 

how much the learning rate decays by after each update (so that as 

the local minimum is approached, or after some number of training 

iterations, the learning rate decreases so smaller step sizes are taken. 

Big learning rates means the local minimum might be overshot more 

easily).

•	 amsgrad: A Boolean on whether or not to apply the AMSGrad 

version of this algorithm. For more details on the implementation 

of this algorithm, check out “On the Convergence of Adam and 

Beyond.”

�RMSprop

keras.optimizers.RMSprop()

RMSprop is a good algorithm for recurrent neural networks. RMSprop is a gradient-

based optimization technique developed to help address the problem of gradients 

becoming too large or too small. RMSprop helps combat this problem by normalizing 

the gradient itself using the average of the squared gradients. In Chapter 7, it’s explained 

that one of the problems with RNNs is the vanishing/exploding gradient problem, 

leading to the development of LSTMs and GRU networks. And so it’s of no surprise that 

RMSprop pairs well with recurrent neural networks.
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Besides the learning rate, it’s recommended to leave the rest of the algorithms in 

their default settings. With that in mind, here are the parameters for this optimizer:

•	 lr: Some float value where the learning rate lr >= 0. The learning rate 

is a hyperparameter that determines how big of a step to take when 

optimizing the loss function.

•	 rho: Some float value where rho >= 0. Rho is a parameter that helps 

calculate the exponentially weighted average over the gradients squared.

•	 epsilon: Some float value where epsilon e >= 0. If None, then it 

defaults to K.epsilon(). Epsilon is a very small number that helps 

prevent division by 0 and to help prevent the gradients from blowing 

up in RMSprop.

•	 decay: Some float value where the decay d >= 0. Helps determine how 

much the learning rate decays by after each update (so that as the local 

minimum is approached, or after some number of training iterations, 

the learning rate decreases so smaller step sizes are taken. Big learning 

rates means the local minimum might be overshot more easily).

�Activations
You can pass in something like ‘activation_function’ for the activation parameter in a 

layer, or the full function, keras.activations.activation_function(), if you want to 

customize it more. Otherwise, the default initialized activation function is used in the layer.

�Softmax

keras.activations.softmax()

This performs a softmax activation on the input x and on the given axis.

The two parameters are

•	 x: The input tensor

•	 axis: The axis that you want to use softmax normalization on. By 

default, it is set to -1.

The general formula for softmax is shown in Figure A-26 (K is the number of 

samples).
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�ReLU

keras.activations.relu()

ReLU, or “Rectified Linear Unit”, performs a simple activation based on the function 

shown in Figure A-27.

Figure A-28.  The ReLU formula if max_value is set

Figure A-29.  The ReLU formula if threshold is also set

Figure A-26.  The general formula for softmax

Figure A-27.  This is the general ReLU formula

The parameters are as follows:

•	 x: The input tensor

•	 alpha: A float that determines the slope of the negative part. Set to 

zero by default.

•	 max_value: A float value that represents the upper threshold, and is 

set to None by default.

•	 threshold: A float value set to 0.0 by default that’s the lower 

threshold.

If max_value is set, then you get the equation shown in Figure A-28.

If threshold is also set, then you get the equation shown in Figure A-29.
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Otherwise you get the equation shown in Figure A-30.

Figure A-30.  The formula for ReLU if alpha and threshold are set

Figure A-31.  The graph for a basic ReLU function

For an example of what the base ReLU function does, refer to Figure A-31.

�Sigmoid

keras.activations.sigmoid(x)

This is a simple activation function to call, as there are no parameters other than the 

input tensor x.

The sigmoid function does have its uses, primarily because it forces the input to be 

between 0 and 1, but it is prone to the vanishing gradient problem, and so it is seldom 

used in hidden layers.

To get an idea of what the equation is like when graphed, refer to Figure A-32.
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�Callbacks
�ModelCheckpoint

keras.callbacks.ModelCheckpoint()

ModelCheckpoint is basically a function that saves the model every epoch (unless 

otherwise directed via parameters). How it does so can be configured by the set of 

parameters associated with ModelCheckpoint():

•	 filepath: The path where you want to save the model file. Typing just 

“model_name.h5” saves it in the same directory.

•	 monitor: The quantity that you want the model to monitor. By 

default, it’s set to “val_loss”.

•	 verbose: Sets verbosity to 0 or 1. It’s set to 0 by default.

•	 save_best_only: If set to true, then the model with the best 

performance according to the quantity monitored will be saved.

•	 save_weights_only: If set to True, then only the weights will be saved. 

Essentially, if True, model.save_weights(filepath); else, model.

save(filepath).

Figure A-32.  The graph of a sigmoid function
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•	 mode: Choose between auto, min, or max. If save_best_only is True, 

then you should pick a choice that would suit the monitored quantity 

best. If you chose val_acc for monitor, then you want to pick max for 

mode, and if you choose val_loss for monitor, pick min for mode.

•	 period: How many epochs there are between each checkpoint.

�TensorBoard

keras.callbacks.TensorBoard()

TensorBoard is a visualization tool that comes with TensorFlow. It helps you see in 

detail what’s going on as your model trains.

To launch TensorBoard, type this into the command prompt:

tensorboard --logdir=/full_path_to_your_logs

keras.callbacks.TensorBoard(log_dir='./logs', histogram_freq=0, batch_

size=32, write_graph=True, write_grads=False, write_images=False, 

embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None, 

embeddings_data=None, update_freq='epoch')

With that, here is the list of parameters:

•	 log_dir: The path to the directory where you want the model to save 

the log files. This is the same directory you pass as an argument in the 

command prompt. It is ‘./logs’ by default.

•	 histogram_freq: The frequency (in epochs) that you want the 

activation and weight histograms to be computed for the model’s 

layers. Set to 0 by default, which means it won’t compute histograms. 

To visualize these histograms, validation_data (or validation_split) 

must be passed in.

•	 batch_size: The size of each batch of inputs to pass into the network 

to compute histograms from. Set to 32 by default.

•	 write_graph: Whether or not to allow the graph to be visualized in 

TensorBoard. Set to True by default. Note: When set to True, the log 

files can become large.
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•	 write_grads: Whether or not to allow TensorBoard to visualize 

the gradient histograms. Set to False by default, and also needs 

histogram_freq to be a value greater than 0.

•	 write_images: Whether or not to visualize the model weights as an 

image in TensorBoard. Set to False by default.

•	 embeddings_freq: The frequency, in epochs, to save selected 

embedding layers. Set to 0 by default, which means that the 

embeddings won’t be computed. To visualize data in TensorBoard’s 

Embedding tab, pass in the data as embeddings_data.

•	 embeddings_layer_names: The list of names of layers for 

TensorBoard to track. If None or an empty list, then all of the layers 

will be watched. Set to None by default.

•	 embeddings_metadata: A dictionary that maps layer names to the 

corresponding file names where the metadata for this embedding 

layer is saved. Set to None by default. If the same metadata file is used 

for all of the embedding layers, then a string can be passed.

•	 embeddings_data: The data to be embedded at the layers specified 

in embeddings_layer_names. This is a Numpy array if the model 

expects a single input, and multiple Numpy arrays if the model has 

multiple inputs. Set to None by default.

•	 update_freq: A ‘batch’, ‘epoch’, or integer. ‘batch’ writes the losses and 

metrics to TensorBoard after each batch. ‘epoch’ is the same, except 

the losses and metrics are written to TensorBoard after each epoch. 

The integer tells it to write the metrics and losses to TensorBoard 

every integer n samples, where n is the integer passed in. Note: 

Writing to TensorBoard too frequently can slow down the training 

process.

With that being said, Figure A-33 shows an example of using TensorBoard as a 

callback when training a convolutional neural network on the MNIST data set.
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Once you execute that code, you will notice the training process will begin. At this 

point, enter the line

tensorboard --logdir=/full_path_to_your_logs

�into your command prompt and press Enter. It should show you something like  

Figure A-34.

Figure A-33.  Code to define a TensorBoard callback and use that when training
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Figure A-35.  The general page that appears when you launch TensorBoard

Figure A-34.  You should see something like this after executing the above line in 
command prompt. It should tell you where to go to access TensorBoard, which is 
http://MSI:6006 in this case

Simply follow that link and you should see the screen shown in Figure A-35.
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Figure A-36.  Graphs for val_acc and val_loss

From here, you can see graphs for the metrics accuracy and loss. You can expand the 

other two metrics, val_acc and val_loss, to view those graphs as well (see Figure A-36).
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As for the individual graphs, you can expand them out by pressing the leftmost 

button below the graph, and you can view data on the graph as you move your mouse 

across it, as seen in Figure A-37.

Figure A-37.  The result of pressing the leftmost button underneath the graph. 
Doing so expands the graph, and regardless of whether the graph is expanded or 
not, you can point your mouse cursor at any point along the graph to get more 
details about that point

You can also view a graph of the entire model by pressing the Graphs tab, as shown 

in Figure A-38.

Figure A-38.  There are two tabs. You started on the tab named SCALARS. Press 
GRAPHS to switch the tab
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Doing so will result in a graph similar to the one shown in Figure A-39.

Figure A-39.  The result of clicking on the GRAPHS tab

There are definitely more features and functionality that TensorBoard offers, but the 

general idea is that you will be able to examine your models in a much better fashion.

�Back End (TensorFlow Operations)
You can also perform operations with TensorFlow (if it is the back end) through Keras by 

importing the back end. Below, we will demonstrate some basic functions, but keep in 

mind that TensorFlow has a vast variety of operations and functions.

You can use the back end to create custom layers, metrics, loss functions, etc., 

allowing for a much deeper level of customization. However, you must basically be 

knowledgeable in TensorFlow to accomplish all of this, since this is practically just using 

TensorFlow.

If you want the most customization possible, then using tf.keras along with 

TensorFlow is better, since tf.keras is wholly compatible with all of TensorFlow, and 

you’ll have access to many more TensorFlow commands that you can’t get with just the 

Keras back end.

Here are some of the commands you can execute using the back end (Figure A-40, 

Figure A-41, Figure A-42, Figure A-43).
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Figure A-40.  Some TensorFlow operations such as defining placeholders and 
variables done through the Keras back end

Figure A-41.  Finding the dot product of two placeholder variables c and d using 
the Keras back end

Figure A-42.  Finding the sum of c along different axes using the Keras back end

Figure A-43.  Finding the mean of c using the Keras back end

Those are just some of the most basic functions available through the back end. The 

complete list of backend functions is available at https://keras.io/backend/.
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�Summary
Keras is a great tool to help you easily get involved with creating, training, and testing deep 

learning models, and provides a great deal of functionality while abstracting away the 

complicated syntax that TensorFlow has. Keras by itself can be sufficient, but as the content 

gets more advanced, it's better to have the level of customization and flexibility that 

TensorFlow or PyTorch offers. Keras allows you to use a wide variety of functions through 

the back end, allowing you to write custom layers, custom models, metrics, loss functions, 

and so on, but for the most customization and flexibility in how you want your neural 

networks to be (especially if you want to make completely new types of neural networks), 

then either tf.keras + TensorFlow or PyTorch would be better suited for your needs.
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�APPENDIX B

Intro to PyTorch
In this appendix, you will be introduced to the PyTorch framework along with the 

functionality that it offers. PyTorch is more involved than Keras is, and it is a lower-level 

framework (meaning there’s more syntax, and elements aren’t abstracted away from you 

like in Keras).

Regarding the setup, we use

•	 Torch version 0.4.1 (PyTorch)

•	 CUDA version 9.0.176

•	 cuDNN version 7.3.0.29

�What Is PyTorch?
PyTorch is a deep learning library for Python, developed by artificial-intelligence 

researchers at Facebook and based on the Torch library. While PyTorch is also a low-

level language like TensorFlow, it is easier to pick up because of the huge difference in 

syntax. TensorFlow has a much steeper learning curve, and you have to define a lot more 

elements than in PyTorch.

TensorFlow at the moment far surpasses PyTorch in how much community support 

it has, and this is primarily because PyTorch is a relatively new framework. Although you 

will find more resources for TensorFlow, more and more people are switching to PyTorch 

due to it being more intuitive while still offering practically the same functionality as 

TensorFlow (though TensorFlow does have some functions that PyTorch does not, 

you can easily implement those functions in PyTorch if you know what the logic is; an 

example of this is arctanh function).

In the end, it is mostly a matter of personal preference when deciding to use 

TensorFlow or PyTorch. Depending on the context of your work, one framework might 

be more suitable than the other.

https://doi.org/10.1007/978-1-4842-5177-5
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That being said, PyTorch might be easier to use for research purposes, considering 

that it is easier to prototype in due to the lessened burden from the syntax. On the other 

hand, TensorFlow has more resources and the advantage of having TensorBoard. It 

is also better suited for cross-platform compatibility, since a model can be trained in 

Python but deployed in Java, for example, allowing for better scalability. If loading and 

saving models is a priority, perhaps TensorFlow is more suitable. Again, it all comes 

down to personal preference, since there’s usually a workaround for many of the 

problems that both frameworks might face.

�Using PyTorch
This section will be a bit different from the previous appendix. Here, we will demonstrate 

how some basic tensor operations are done, and then move on to illustrating how to 

use PyTorch by exploring PyTorch equivalent models of the temporal convolutional 

networks in Chapter 7.

First, let’s begin by looking at some simple tensor operations. If you would like to 

know more about the framework itself and the functionality that it supports, check out 

the documentation at https://pytorch.org/docs/0.4.1/index.html

and the code implementation at https://github.com/pytorch/pytorch.

Let’s begin (see Figure B-1).
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With PyTorch, you can see that the data values like the tensors are some sort of array, 

unlike in TensorFlow. In TensorFlow, you must run the variable through a session to be 

able to see the data values.

In comparison, Figure B-2 shows TensorFlow.

Figure B-1.  A series of tensor operations in PyTorch. The code shows the operation 
and the output shows the results after the operations were performed on the 
corresponding tensors
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PyTorch has much more functionality in how you can manipulate tensors, so it’s 

worth checking out the documentation if you haven’t.

Now, let’s move on to creating a PyTorch model in a somewhat advanced, but 

organized format. Splitting up the definition of the model, the training process, and the 

testing process into their respective parts will help you understand how these models are 

created, trained, and evaluated.

You start by applying a convolutional neural network to the MNIST data set in order 

to showcase the more customizable format of training.

As usual, you begin with your imports (see Figure B-3 and Figure B-4).

Figure B-2.  Some tensor operations conducted in TensorFlow. Note that to 
actually see results, you need to pass everything through a TensorFlow session
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In Chapter 3, the code was introduced in a manner similar to basic Keras formatting, 

so you defined the hyperparameters and loaded your data sets (data loaders in this case) 

right after importing the modules you need.

Instead, you will now define the model (see Figure B-5 and Figure B-6).

Figure B-3.  Importing the basic modules needed to create your network

Figure B-4.  The code in Figure B-3 in a Jupyter cell
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Figure B-5.  Defining the model
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With that out of the way, you can define both the training and testing functions (see 

Figure B-7 and Figure B-8 for the training function, and Figure B-9 and Figure B-10 for 

the testing function).

Figure B-6.  The code in Figure B-5 in a Jupyter cell
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Figure B-7.  The training algorithm. The for loop takes each pair of image and 
labels and passes them into the GPU as a tensor. They then go into the model, and 
the gradients are calculated. The information about the epoch and loss are then 
output
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The training function takes in the following parameters:

•	 model: An instance of a model class. In this case, it’s an instance of 

the CNN class defined above.

•	 device: This basically tells PyTorch what device (if the GPU is an 

option, which GPU to run on, and if not, the CPU is the device) to run 

on. In this case, you define the device right after the imports.

•	 train_loader: The loader for the training data set. In this case, you 

use a data_loader because that’s how the MNIST data is formatted 

when importing from torchvision. This data loader contains the 

training samples for the MNIST data set.

•	 criterion: The loss function to use. Define this before calling the train 

function.

•	 optimizer: The optimization function to use. Define this before 

calling the train function.

•	 epoch: What epoch is running. In this case, you call the training 

function in a for loop while passing in the iteration as the epoch.

The testing function is shown in Figure B-9 and Figure B-10.

Figure B-8.  The code in Figure B-7 in a Jupyter cell
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Figure B-9.  The code for the testing algorithm. Once again, the for loop takes 
the image and label pairs and passes them through the model to get a prediction. 
Then, once every pair has a prediction, the AUC score is calculated
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Notice that you use the AUC score as part of the testing metric. You don’t have to do 

this, but it might be a better indicator of the model’s performance than plain accuracy, so 

it was included in this example.

The parameters the model takes in are

•	 model: An instance of a model class. In this case, it’s an instance of 

the CNN class defined above.

•	 device: This basically tells PyTorch what device (if the GPU is an 

option, which GPU to run on, and if not, the CPU is the device) to run 

on. In this case, you define the device right after the imports.

•	 test_loader: The loader for the testing data set. In this case, you use 

a data_loader because that’s how the MNIST data is formatted when 

importing from torchvision. This data loader contains the testing 

samples for the MNIST data set.

Now you can get to defining your hyperparameters and data loaders, and calling 

your train and test functions (Figures B-11 through B-13).

Figure B-10.  The code in Figure B-9 in a Jupyter cell
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Figure B-11.  Defining the hyperparameters, loading the MNIST data, and 
defining the training and testing set data loaders
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Figure B-12.  Initializing the model and passing it to the GPU, defining your 
criterion function (cross entropy loss), and defining your optimizer (the Adam 
optimizer). Then, the training and testing functions are called
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Figure B-13.  What the code from Figures B-11 and B-12 should look like after 
pasting them into a Jupyter cell
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After the training process, you get Figure B-14 and Figure B-15.

Figure B-14.  The initial output of the training process

Figure B-15.  The training process has finished

Although in your Keras examples you didn’t spread apart your training and testing 

functions (since they’re just one line each), more complicated implementations of 

models involving custom layers, models, and so on can be formatted in a similar fashion 

to the PyTorch example above.
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Hopefully, you understand a bit more on how to implement, train, and test neural 

networks in PyTorch.

Next, we will explain some of the basic functionality that PyTorch offers in terms 

of model layers (activations included), loss functions, and optimizers, and then you’ll 

explore PyTorch applications of temporal convolutional neural networks to the data set 

found in Chapter 7.

�Sequential vs. ModuleList
Similar to Keras, PyTorch has a couple different ways to define the model.

Sequentially, as in Figure B-16

Figure B-16.  A sequential model in PyTorch

This is similar to the sequential model in Keras, where you add layers one at a time 

and in order.

ModuleList, as in Figure B-17
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Figure B-17.  A model in PyTorch defined in a ModuleList format

This is similar to the functional model that you can build in Keras. This is a more 

customizable way to build your model, and allows you much more flexibility in how you 

want to build it too.

�Layers
We’ve covered how to build the models, so let’s look at examples of some common layers 

you can build.

�Conv1d

torch.nn.Conv1d()

Check out Chapter 7 for a detailed explanation on how one-dimensional 

convolutions work.
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This layer is a one-dimensional (or temporal) convolutional layer. It basically passes 

a filter over the one-dimensional input and multiplies the values element-wise to create 

the output feature map.

These are the parameters that the function takes:

•	 in_channels: The dimensionality of the input space; the number of 

input nodes.

•	 out_channels: The dimensionality of the output space; the number 

of output nodes.

•	 kernel_size: The dimensionality of the kernel/filter. An integer n 

makes the dimensions of the kernel nxn, and a tuple of two integers 

allows you to specify the exact dimensions (height, width).

•	 stride: The number of elements to shift right by after one filter/

kernel operation. An integer n makes the kernel shift right by that 

amount. A tuple of two integers allows you to specify (vertical_shift, 

horizontal_shift). Default = 1.

•	 padding: The amount of zero padding to add to the layer in the 

output. An integer n pads n entries to the rows and columns. A tuple 

of two integers allows you to specify (vertical_padding, horizontal_
padding). Default = 0.

•	 dilation: For an explanation on how dilation works, refer to Chapter 7. 

An integer n means a dilation factor of n. Default = 1.

•	 groups: Controls the connections between the input and output 

nodes. Groups=1 means all inputs correlate with all outputs. 

Groups=2 means there’s really two convolutional layers side by side, 

so half the inputs go to half the outputs. Default = 1.

•	 bias: Whether or not to use bias. Default = True.

�Conv2d

torch.nn.Conv2d()

Check out Chapter 3 for a detailed explanation on how the 2D convolutional layer 

works.
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This layer is a two-dimensional convolutional layer. It basically passes a 2D filter over 

the input and multiplies the values element-wise to create the output feature map.

These are the parameters that the function takes:

•	 in_channels: The dimensionality of the input space; the number of 

input nodes.

•	 out_channels: The dimensionality of the output space; the number 

of output nodes.

•	 kernel_size: The dimensionality of the kernel/filter. An integer n 

makes the dimensions of the kernel nxn, and a tuple of two integers 

allows you to specify the exact dimensions (height, width).

•	 stride: The number of elements to shift right by after one filter/

kernel operation. An integer n makes the kernel shift right by that 

amount. A tuple of two integers allows you to specify (vertical_shift, 

horizontal_shift). Default = 1.

•	 padding: The amount of zero padding to add to the layer in the 

output. An integer n pads n entries to the rows and columns. A tuple 

of two integers allows you to specify (vertical_padding, horizontal_
padding). Default = 0.

•	 dilation: For an explanation on how dilation works, refer to Chapter 7.  

An integer n means a dilation factor of n. A tuple of two integers 

allows you to specify (vertical_dilation, horizontal_dilation). 

Default = 1.

•	 groups: Controls the connections between the input and output 

nodes. Groups=1 means all inputs correlate with all outputs. 

Groups=2 means there’s really two convolutional layers side by side, 

so half the inputs go to half the outputs. Default = 1.

•	 bias: Whether or not to use bias. Default = True.
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�Linear

torch.nn.Linear()

This is a neural network layer comprised of densely-connected neurons. Basically, 

every node in this layer is fully connected with the previous and next layers if there are any.

Here are the parameters:

•	 in_features: The size of each input sample; number of inputs.

•	 out_features: The size of each output sample; number of outputs.

•	 bias: Whether or not to use bias. Default = True.

�MaxPooling1D

torch.nn.MaxPool1d()

This applies max pooling on a 1D input. To get a better idea of how max pooling 

works, check out Chapter 3. Max pooling in 1D is similar to max pooling in 2D, except 

the sliding window only works in one dimension, going from left to right.

This is the list of parameters:

•	 kernel_size: The size of the pooling window. If an integer n is given, 

then the window size of the pooling layer is 1xn.

•	 stride: Defaults to kernel_size if nothing is passed in. If you pass in 

an integer, the pooling window moves by integer n amount after 

completing its pooling operation on a set of entries.

•	 padding: An integer n representing the zero padding to add on both 

sides. Default = 0.

•	 dilation: Similar to the dilation factor in the convolutional layer, 

except with max pooling. Default = 1.

•	 return_indices: If set to True, it will return the indices of the max 

values along with the outputs. Default = False.

•	 ceil_mode: If set to True, it will use ceil instead of floor to compute 

the output shape. This comes into play because of the dimensionality 

reduction involved (a kernel size of n will reduce dimensionality by a 

factor of n).
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�MaxPooling2D

torch.nn.MaxPool2d()

It applies max pooling on a 2D input. To get a better idea of how max pooling works, 

check out Chapter 3.

This is the list of parameters:

•	 kernel_size: The size of the pooling window. If an integer n is given, 

then the window size of the pooling layer is 1xn. A tuple of two 

integers allows you to specify the dimensions as (height, width).

•	 stride: Defaults to kernel_size if nothing is passed in. If you pass in 

an integer, the pooling window moves by integer n amount after 

completing its pooling operation on a set of entries. A tuple of two 

integers allows you to specify (vertical_shift, horizontal_shift).

•	 padding: An integer n representing the zero padding to add on both 

sides. A tuple of two integers allows you to specify (vertical_padding, 
horizontal_padding). Default = 0.

•	 dilation: Similar to the dilation factor in the convolutional layer, 

except with max pooling. An integer n means a dilation factor of 

n. A tuple of two integers allows you to specify (vertical_dilation, 

horizontal_dilation). Default = 1.

•	 return_indices: If set to True, it will return the indices of the max 

values along with the outputs. Default = False.

•	 ceil_mode: If set to True, it will use ceil instead of floor to compute 

the output shape. This comes into play because of the dimensionality 

reduction involved (a kernel size of n will reduce dimensionality by a 

factor of n).

�ZeroPadding2D

torch.nn.ZeroPad2d()

Depending on the input, it pads the input sequence with a row and columns of 

zeroes at the top, left, right, and bottom of the image tensor.

appendix B  Intro to PyTorch



382

Here is the parameter:

•	 padding: An integer or a tuple of four integers. The integer tells it 

to add n rows of zeroes on the top and bottom of the image tensor, 

and n columns of zeroes. The tuple of four integers is formatted as 

(padding_left, padding_right, padding_top, padding_bottom), so 

you can customize even more how you want the layer to add rows or 

columns of zeroes.

�Dropout

torch.nn.Dropout()

What the dropout layer does in PyTorch is take the input and randomly zeroes the 

elements according to some probability p using samples from a Bernoulli distribution. 

This process is random, so with every forward pass through the model, different 

elements will be chosen to be zeroed. This process helps with regularization of layer 

outputs and helps combat overfitting.

Here are the parameters:

•	 p: The probability of an element to be zeroed. Default = 0.5

•	 inplace: If set to True, it will perform the operation in place.  

Default = False.

You can define this as a layer within the model itself, or apply dropout in the forward 

function like so:

torch.nn.functional.Dropout(input, p = 0.5, training=False, inplace=False)

Input is the previous layer, and training is a parameter that determines whether or not 

you want this dropout layer to function outside of training (such as during evaluation).

Figure B-18 shows an example of how you can use this layer in the forward function.

Figure B-18.  The dropout layer in the forward function of a model
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Figure B-19.  The general formula that ReLU follows

So with dropout, you have two ways of applying it, both producing similar outputs. In 

fact, the layer itself is an extension of the functional version of dropout, which itself is an 

interface. This is really up to personal preference, since both are still dropout layers and 

there’s no real difference in behavior.

�ReLU

torch.nn.ReLU()

ReLU, or “Rectified Linear Unit”, performs a simple activation based on the function, 

as shown in Figure B-19.

Here is the parameter:

•	 inplace: If set to True, it will perform the operation in place.  

Default = False.

For ReLU, the graph can look like Figure B-20.

Figure B-20.  The general graph of a ReLU function
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Similarly to dropout, you can define this as a layer within the model itself, or apply 

ReLU in the forward function like so:

torch.nn.functional.relu(input, inplace=False)

Input is the previous layer.

Figure B-21 shows an example of how you can use this layer in the forward function.

Just like with dropout, you have two ways of applying ReLU, but it all boils down to 

personal preference.

Figure B-22.  The general formula for softmax. The parameter i goes up until the 
total number of samples, which is K

Figure B-21.  The ReLU layer in the forward function of a model

�Softmax

torch.nn.Softmax()

This performs a softmax on the given dimension.

The general formula for softmax is shown in Figure B-22 (K is the number of 

samples).

Here is the parameter:

•	 dim: The dimension to compute softmax along, determined by some 

integer n. This is so every slice along the dimension will sum to 1. 

Default = None.

You can define this as a layer within the model itself, or apply softmax in the forward 

function like so:

torch.nn.functional.softmax(input, dim=None, _stacklevel=3)
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Input is the previous layer.

Figure B-23 shows an example of how you can use this layer in the forward function.

Figure B-24.  The general formula for log_softmax. The value i goes up until the 
total number of samples, K.

Figure B-23.  The softmax layer in the forward function of a model

However, this doesn’t work well if you’re using NLLL (negative log likelihood) loss, in 

which case you should use log_softmax instead.

�Log_Softmax

torch.nn.LogSoftmax()

This performs a softmax activation on the given dimension, but passes that through 

a log function.

The general formula for log_softmax is shown in Figure B-24 (K is the number of 

samples).

Here is the parameter:

•	 dim: The dimension to compute softmax along, determined by some 

integer n. This is so every slice along the dimension will sum to 1. 

Default = None.

You can define this as a layer within the model itself, or apply softmax in the forward 

function like so:

torch.nn.functional.log_softmax(input, dim=None, _stacklevel=3)

Input is the previous layer.
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Figure B-25.  The log softmax layer in the forward function of a model

Figure B-25 shows an example of how you can use this layer in the forward function.

�Sigmoid

torch.nn.Sigmoid()

This performs a sigmoid activation.

The sigmoid function does have its uses, primarily because it forces the input to be 

between 0 and 1, but it is prone to the vanishing gradient problem, and so it is seldom 

used in hidden layers.

There are no parameters, so it’s a simple function to call.

To get an idea of what the equation is like when graphed, refer to Figure B-26.

Figure B-26.  The general graph of a sigmoid function
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You can define this as a layer within the model itself, or apply sigmoid in the forward 

function like so:

torch.nn.functional.sigmoid(input)

Input is the previous layer.

Figure B-27 shows an example of how you can use this layer in the forward function.

Figure B-28.  The general formula for mean squared loss

Figure B-27.  The sigmoid layer in the forward function of a model

�Loss Functions
�MSE

torch.nn.MSELoss()

If you have questions on the notation for this equation, refer to Chapter 3. The 

equation is shown in Figure B-28.

Given input θ, the weights, the formula finds the average difference squared between 

the predicted value and the actual value. The parameter hθ represents the model with the 

weight parameter θ passed in, so hθ(xi) would give the predicted value for xi with model’s 

weights θ. The parameter yi represents the actual prediction for the data point at index i. 

Lastly, there are n entries in total.

This function has several parameters (two are deprecated):

•	 size_average: (Deprecated in favor of reduction.) The losses are 

averaged over each loss element in the batch by default (True). If 

set to False, then the losses are summed for each minibatch instead. 

Default = True.
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•	 reduce: (Deprecated in favor of reduction.) The losses are averaged 

or summed over observations for each minibatch depending on 

size_average by default (True). If set to False, then it returns a loss per 

batch element and ignores size_average. Default = True.

•	 reduction: A string value to specify the type of reduction to be done. 

Choose between ‘none’, ‘elementwise_mean’, or ‘sum’. ‘none’ means 

no reduction is applied, ‘elementwise_mean’ will divide the sum of 

the output by the number of elements in the output, and ‘sum’ will 

just sum the output. Default = ’elementwise_mean’. Note: specifying 

either size_average or reduce will override this parameter.

This loss metric can be used in autoencoders to help evaluate the difference between 

the reconstructed output and the original. In the case of anomaly detection, this metric 

can be used to separate the anomalies from the normal data points, since anomalies 

have a higher reconstruction error.

�Cross Entropy

torch.nn.CrossEntropyLoss()

The equation is shown in Figure B-29.

Figure B-29.  The general formula for cross entropy loss

In this case, n is the number of samples in the whole data set. The parameter hθ 

represents the model with the weight parameter θ passed in, so hθ(xi) would give the 

predicted value for xi with model’s weights θ. Finally, yi represents the true labels for 

data point at index i. The data needs to be regularized to be between 0 and 1, so for 

categorical cross entropy, it must be piped through a softmax activation layer.  

The categorical cross entropy loss is also called softmax loss.

Equivalently, you can write the previous equation as Figure B-30.
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In this case, m is the number of classes.

The categorical cross entropy loss is a commonly used metric in classification tasks, 

especially in computer vision with convolutional neural networks.

This function has several parameters (two are deprecated):

•	 weight: (Optional) A tensor that’s the size of the number of classes 

n. This is essentially a weight given to each class so that some classes 

are weighted more heavily in how they affect the overall loss and 

optimization problem.

•	 size_average: (Deprecated in favor of reduction.) The losses are 

averaged over each loss element in the batch by default (True). If 

set to False, then the losses are summed for each minibatch instead. 

Default = True.

•	 ignore_index: (Optional) An integer that specifies a target value 

that is ignored so it does not contribute to the input gradient. If 

size_average is True, then the loss is averaged over targets that aren’t 

ignored.

•	 reduce: (Deprecated in favor of reduction.) The losses are averaged 

or summed over observations for each minibatch depending on size_

average by default (True). If set to False, it returns a loss per batch 

element and ignores size_average. Default = True.

•	 reduction: A string value to specify the type of reduction to be done. 

Choose between ‘none’, ‘elementwise_mean’, or ‘sum’. ‘none’ means 

no reduction is applied, ‘elementwise_mean’ will divide the sum of 

the output by the number of elements in the output, and ‘sum’ will 

just sum the output. Default = ’elementwise_mean’. Note: Specifying 

either size_average or reduce will override this parameter.

Figure B-30.  An alternate way to write the equation in Figure B-29
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�Optimizers
�SGD

torch.optim.SGD()

This is the stochastic gradient descent optimizer, a type of algorithm that aids in 

the backpropagation process by adjust the weights. It is commonly used as a training 

algorithm in a variety of machine learning applications, including neural networks.

This function has several parameters:

•	 params: Some iterable of parameters to optimize, or dictionaries with 

parameter groups. This can be something like model.parameters().

•	 lr: A float value specifying the learning rate.

•	 momentum: (Optional) Some float value specifying the momentum 

factor. This parameter helps accelerate the optimization steps in the 

direction of the optimization, and helps reduce oscillations when 

the local minimum is overshot (refer to Chapter 3 to refresh your 

understanding on how a loss function is optimized). Default = 0.

•	 weight_decay: A l2_penalty for weights that are too high, helping 

incentivize smaller model weights. Default = 0.

•	 dampening: The dampening factor for momentum. Default = 0.

•	 nesterov: A Boolean value to determine whether or not to apply 

Nesterov momentum. Nesterov momentum is a variation of 

momentum where the gradient is computed not from the current 

position, but from a position that takes into account the momentum. 

This is because the gradient always points in the right direction, 

but the momentum might carry the position too far forward and 

overshoot. Since this doesn’t use the current position but instead 

some intermediate position that takes into account momentum, the 

gradient from that position can help correct the current course so 

that the momentum doesn’t carry the new weights too far forward. 

It essentially helps for more accurate weight updates and helps 

converge faster. Default = False.
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�Adam

torch.optim.Adam()

The Adam optimizer is an algorithm that extends upon SGD. It has grown quite 

popular in deep learning applications in computer vision and in natural language 

processing.

This function has several parameters:

•	 params: Some iterable of parameters to optimize, or dictionaries 

with parameter groups. This can be something like model.

parameters().

•	 lr: A float value specifying the learning rate. Default = 0.001 (or 1e-3).

•	 betas: (Optional) A tuple of two floats to define the beta values 

beta_1 and beta_2. The paper describes good results with (0.9, 0.999) 

respectively, which is also the default value.

•	 eps: (Optional). Some float value where epsilon e >= 0. Epsilon is 

some small number, described as 10E-8 in the paper, to help prevent 

division by 0. Default is 1e-8.

•	 weight_decay: A l2_penalty for weights that are too high, helping 

incentivize smaller model weights. Default = 0.

•	 amsgrad: A Boolean on whether or not to apply the AMSGrad 

version of this algorithm. For more details on the implementation 

of this algorithm, check out “On the Convergence of Adam and 

Beyond.” Default=False.

�RMSProp

torch.optim.RMSprop()

RMSprop is a good algorithm for recurrent neural networks. RMSprop is a gradient-

based optimization technique developed to help address the problem of gradients 

becoming too large or too small. RMSprop helps combat this problem by normalizing 

the gradient itself using the average of the squared gradients. In Chapter 7, it’s explained 

that one of the problems with RNNs is the vanishing/exploding gradient problem, 
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leading to the development of LSTMs and GRU networks. And so it’s of no surprise that 

RMSprop pairs well with recurrent neural networks.

This function has several parameters:

•	 params: Some iterable of parameters to optimize, or dictionaries 

with parameter groups. This can be something like model.

parameters().

•	 lr: A float value specifying the learning rate. Default = 0.01 (or 1e-2).

•	 momentum: (Optional). Some float value specifying the momentum 

factor. This parameter helps accelerate the optimization steps in the 

direction of the optimization, and helps reduce oscillations when 

the local minimum is overshot (refer to Chapter 3 to refresh your 

understanding on how a loss function is optimized). Default = 0.

•	 alpha: (Optional) A smoothing constant. Default = 0.99

•	 eps: (Optional). Some float value where epsilon e >= 0. Epsilon is 

some small number, described as 10E-8 in the paper, to help prevent 

division by 0. Default is 1e-8.

•	 centered: (Optional) If True, then compute the centered RMSprop 

and have the gradient normalized by an estimation of its variance. 

Default = False.

•	 weight_decay: An l2_penalty for weights that are too high, helping 

incentivize smaller model weights. Default = 0.

Hopefully by now you understand how PyTorch works by looking at some of the 

functionality that it offers. You built and applied a model to the MNIST data set in an 

organized format, and you looked at some of the basics of PyTorch by learning about the 

layers, how models are constructed, how activations are performed, and what the loss 

functions and optimizers are.

�Temporal Convolutional Network in PyTorch
Now, you will look at an example of using PyTorch to construct a temporal convolutional 

network and apply it to the credit card data set from Chapter 7.
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�Dilated Temporal Convolutional Network
The particular TCN you will reconstruct in PyTorch is the dilated TCN in Chapter 7.

Once again, you begin with your imports and define your device (Figure B-31 and 

Figure B-32).

Figure B-31.  Importing the necessary modules

Figure B-32.  The code in Figure B-31 in a Jupyter cell
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Next, you load your data set (Figure B-33).

Figure B-33.  Loading your data set and displaying the first five rows

The output should look somewhat like Figure B-34.

Figure B-34.  The output of the code in Figure B-33

You need to standardize the values for Time and for Amount since they can get large. 

Everything else has already been standardized in the data set. Run the code in Figure B-35.

Figure B-35.  Standardizing the values in the columns Amount and Time
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Figure B-37.  Defining the anomaly and normal data sets

The output should look somewhat like Figure B-36.

Figure B-36.  The output of the code in figure B-35.

Now you define your normal and anomaly data sets (see Figure B-37.

The output should look like Figure B-38.

Figure B-38.  The output of the code in Figure B-37
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After isolating the anomalies from the normal data, let’s create your training and 

testing sets (see Figure B-39.

Figure B-39.  The creation of the training and testing data sets
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Figure B-40.  The output of the code in Figure B-39

The output should look somewhat like Figure B-40.
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Figure B-41.  Reshaping the training and testing data sets so you can pass them 
into the model

After defining your data sets, you need to reshape the values so that your neural 

network can accept them (see Figure B-41).

The output should look like Figure B-42.

Figure B-42.  The output of the code in Figure B-41
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Now you can define your model (Figure B-43 and Figure B-44).

Figure B-43.  The first part of the TCN class
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Figure B-44.  The forward function in the TCN class

The code for the model should look like Figure B-45.
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Figure B-45.  The code from Figures B-43 and B-44 in a Jupyter cell. This defines 
the entire model

Now you can define your training and testing functions (Figure B-46, Figure B-48, 

and Figure B-49).
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Figure B-46.  The training function. Since you don’t have data loaders, you pass  
in x_train and y_train directly into the GPU after converting them to tensors.  
The inputs then pass through, and the gradients are calculated.

appendix B  Intro to PyTorch



403

Figure B-47.  The code from Figure B-46 in a Jupyter cell
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Figure B-48.  The testing function. Since there are no data loaders, the testing sets 
must be converted into a tensor and passed into a GPU before being able to make 
predictions on them. The AUC score is then generated along with an accuracy 
value

The rest of the testing function code is shown in Figure B-49.
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Figure B-49.  The rest of the testing function. This deals with calculating the AUC 
score and accuracy value

The entire test function should look like Figure B-50.

Figure B-50.  The entire test function, comprised of code from Figures B-48 and B-49
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Finally, you can train our model as shown in Figure B-51.

Figure B-51.  Initializing the TCN model, defining the criterion as the cross 
entropy loss, and defining the optimizer (Adam optimizer)
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The output should look somewhat like Figure B-52.

Figure B-53.  Calling the test function

Figure B-52.  The output of the training process

And now you can evaluate your model (see Figure B-53).
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The output should look somewhat like Figure B-54.

Figure B-54.  The output AUC value of the testing function

With the end of this example, you will have created a TCN in both Keras and PyTorch. 

This way, you’ll have a good way to compare how the model is built, trained, and 

evaluated in both frameworks, allowing you to observe the similarities and differences in 

how both frameworks handle those processes.

By now, you should have a better understanding of how PyTorch works, especially 

with how it’s meant to be more intuitive. Think back to the training function and the 

process of converting the data sets, passing them through the GPU and through the 

model, calculated the gradients, and backpropagating. Though it’s not abstracted away 

from you like in Keras, it still makes logical sense in that the functions called directly 

correlate to the training process of a neural network.

�Summary
PyTorch is a low-level tool that allows you to quickly create, train, and test your 

own deep learning models, although it is more complicated than doing the same in 

Keras. However, it offers you much more functionality, flexibility, and customizability 

compared to Keras, and compared to TensorFlow, it is much lighter on syntax. With 

PyTorch, you don’t have to worry about switching frameworks as you get more advanced 

because of the functionality that it offers, making it a great tool to use when conduct 

deep learning research. PyTorch should be enough for most of your needs as you 

become more experienced with deep learning, and using either PyTorch or TensorFlow 

(or tf.keras + TensorFlow) is just a matter of personal preference.
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