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Preface

Digital systems constitute a basic technical discipline, essential to practically
any engineer. For that reason, the Engineering School of the Autonomous
University of Barcelona (UAB) has designed, a couple of years ago, an
introductory course entitled “Digital Systems: from Logic Gates to Proces-
sors.” It is available on the Coursera massive open online course (MOOC)
platform. A book including all the course material has recently been pub-
lished.1 This second book aims at continuing and at going deeper into some
of the topics dealt with in the above-mentioned course and related book. So,
this is not an introductory course but a more in deep approach to digital
systems.

Complex systems are made up of processors executing programs, mem-
ories that store instructions and data, buses that transmit data, input–output
interfaces that permit to communicate with other systems or with human
users and other peripherals of different types. Many of those components are
already available under the form of commercial off-the-shell products or of
intellectual property (IP) cores. The latter virtual components are synthe-
sizable descriptions in some hardware description language or even physical
descriptions, for example, integrated circuit layouts for ASICs or bit-streams
for FPGAs.

Thus, the development of a complex digital system generally consists in
choosing components that permit to implement the desired functions and to
reach the specified performance. Those components must be integrated and
interconnected within some physical support (printed circuit board, multi-
chip module, application-Specific integrated circuit and field-programmable
gate array). Furthermore, some of those components must be programmed.
Actually, a common system structure is a (set of) microprocessor(s) exe-
cuting the system tasks plus several peripherals such as input–output inter-
faces, device drivers and others.

Some systems must also include specific (non-preexisting) components
that implement algorithms whose execution on an instruction set processor
should be too slow. Typical examples of such complex algorithms are:
long-operand arithmetic operations, floating-point operations, encoding and
processing of different types of signals, data ciphering and many others.
Thus, the initial specification of the components that need a specific devel-
opment work most often is an algorithm.

1Deschamps JP, Valderrama E, Terés Ll (2017) Digital Systems: from Logic Gates to
Processors. Springer, New York.
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The central topic of this book is the description of synthesis methods that
permit to transform an initial algorithm into a specific component—a digital
circuit—that satisfies some constraints such as minimum speed, maximum
cost, maximum size, maximum power consumption or maximum time to
market. This book is not about the development of complete and complex
digital systems, a topic that includes both software and hardware aspects, but
about the design of digital circuits.

Nowadays, several commercial synthesis tools permit to translate an
algorithmic initial description to a digital circuit. In fact, those tools allow
synthesizing the circuit in a partially automatic way: the designer generates
the initial functional definition, for example, a C program, and guides the
synthesis tool all along the processing steps. So, this book addresses to
several types of research and development engineers. It describes synthesis
methods and optimization tools, so that it addresses to developers of syn-
thesis tools. It also addresses to developers of specific digital components,
even if they use automatic synthesis tools, helping them to understand the
way those tools are working and which are the choices to be made at each
synthesis step.

As already pointed out, this is not an introductory text so that some
previous knowledge of digital circuit design is assumed. A basic knowledge
of the hardware description language VHDL is also recommended. This
language is used to model digital circuits and is the input language to sim-
ulation and synthesis tools. Algorithms are defined using a pseudocode
similar to VHDL. In some cases, executable VHDL processes are also used
to check the correction of the proposed algorithms. All executable programs
are available at the Authors’ web sites www.arithmetic-circuits.org and
www.cnm.es/*icas/books-courses.

Tarragona, Spain Jean-Pierre Deschamps
Bellaterra, Spain Elena Valderrama
Bellaterra, Spain Lluís Terés
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Overview

Chapter 1 defines the classical partition of a digital circuit into data path and
control unit. It starts with an introductory example. Then some general
considerations are presented.

Scheduling and resource assignment are the topics of Chap. 2. In partic-
ular, the concept of precedence graph is introduced, different related opti-
mization problems are studied, and several examples are presented.

Chapter 3 is dedicated to pipelined circuits. The main topics are circuit
segmentation, combinational circuit to pipelined circuit transformation and
interconnection of pipelined circuits and self-timed circuits.

The optimal implementation of loops is a basic aspect of the synthesis of
digital circuits. It is the topic of Chap. 4. Combinational and sequential
implementations are considered. This chapter also includes the description of
techniques such as loop-unrolling and digit-serial processing.

Other topics of data path synthesis are treated in Chap. 5, for example,
data path connectivity (buses), first-in first-out (FIFO) files, register files,
arithmetic and logic unit (ALU), hierarchical description and sequential
implementation (lower cost and longer time).

Chapter 6 is dedicated to control units. Some of the studied aspects are
command encoding, hierarchical control, variable-latency operations,
sequencers and microprograms.

Several examples of input–output management protocols with the
corresponding interface circuits are described in Chap. 7.

The last chapter is a description of currently existing development tools,
among others high-level synthesis (HLS), logic synthesis, functional
simulation, logic simulation, timing analysis, intellectual property (IP) cores,
formal verification, emulators and accelerators.
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1Architecture of Digital Circuits

The first two chapters of this book describe the
classical architecture of many digital circuits and
present the conventional techniques that digital
circuit designers can use to translate an initial
algorithmic description to an actual circuit. The
main topics are the decomposition of a circuit
into data path and control unit and the solution of
two related problems, namely scheduling and
resource assignment.

In fact, modern Electronic Design Automation
tools have the capacity to directly generate
circuits from algorithmic descriptions, with
performances—latency, cost, consumption—
comparable with those obtained with more tra-
ditional methods. Some of those development
tools are described in Chap. 8.

An example of decomposition into data path
and control unit is described in Sect. 4.9.1 of
Deschamps et al. (2017). In this chapter, another
introductory example is studied, and some gen-
eral conclusions about the circuit structure and
about the operation timing are presented.

1.1 Introductory Example

As a first example, a simple method for com-
puting the base-2 logarithm of a real number is
considered. Given an n-bit normalized fractional
number x ¼ 1:x�1 x�2 � � � x�n; compute
y = log2x with an accuracy of p fractional bits.
As x belongs to the interval 1 � x < 2, its

base-2 logarithm is a nonnegative number smal-
ler than 1, so y ¼ 0:y�1 y�2 � � � y�p.

If y = log2x, then x ¼ 20:y�1 y�2 ��� y�p ���, so that
x2 ¼ 2y�1 y�2 ��� y�p ���: Thus

• if x2 � 2: y−1 = 1, x0 ¼ x2=2 ¼ 20:y�2 ��� y�p ���;
• if x2 < 2: y−1 = 0, x0 ¼ x2 ¼ 20:y�2 ��� y�p ���.

In both cases, x0 ¼ 20�y�2 ��� y�p ��� so that the same
method can be used to compute the value of y–2
and so on. The following algorithm computes y:

Algorithm 1.1 Base-2 logarithm
z = x; i = p;

while i > 0 loop

z = z2;
if z � 2 then yi�p�1 = 1; z = z/2;
else yi�p�1 = 0;
end if;
i = i-1;

end loop;

In order to check the correction of the
preceding algorithm, a functional VHDL model
logarithm.vhd has been generated and simulated.
It is available at the Authors’ web site. As an
example, with x = 1.691 and p = 16, the result is
y = 0.1100001000000100 (binary) = 49,668/216 =
0.75787353515625 (decimal) while the value of
ln (1.691)/ln (2) computed with a calculator is
0.75787665974789 ���. The difference is smaller
than 4�10−6 < 2−16 = 0.0000152587890625.

© Springer Nature Switzerland AG 2019
J.-P. Deschamps et al., Complex Digital Circuits,
https://doi.org/10.1007/978-3-030-12653-7_1
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To define a circuit able to execute the pre-
ceding algorithm, the following components are
necessary:

• registers that store the algorithm variables,
• computation resources that execute

operations,
• connections that transfer data between regis-

ters and computation resources.
A previous essential point is the definition of

the data types. Algorithm 1.1 processes real
numbers z. The initial value of z is a fixed-point
number z = 1.x–1 x–2… x–n. Assume that all along
the computation z is represented as a fixed-point
number with m fractional bits, where m > n. On
the other hand, the value of z is always smaller
than 4. Thus, z is an (m + 2)-bit number z1 z0. z–1
z–2 … z–m. Initially z = 01. x–1 x–2 … x–n 0 0 … 0.
The square of z is smaller than 4; it is a (2m + 2)-
bit number, say w1 w0. w–1 w–2 … w–2m, that must
be truncated so that z2 ≅ w1 w0. w–1 w–2 … w–m. If
the result z1 z0. z–1 z–2 … z–m of the squaring
instruction [z = truncated (z2)] is greater than or
equal to 2, that is if z1 = 1, then z/2 = z1. z0 z–1
z–2 … z–m and this result must also be truncated so
that z/2 ≅ 0z1.z0 z–1 z–2 … z–(m–1). If the result z1 z0.
z–1 z–2 … z–m of the squaring instruction is smaller
than 2, that is if z1 = 0, then the result remains
unchanged.

In conclusion, a previous mathematical (and
not so easy) analysis should be necessary to
define the value of m (number of fractional bits of
the processed data) such that the error log2x� yj j
is smaller than 2−p in spite of the rounding
(truncation) operations.

Taking into account the chosen data types,
Algorithm 1.1 is modified:

Algorithm 1.2 Base-2 logarithm with
fixed-point data

Algorithm 1.2 processes three variables: z, y
and i where

• z is an (m + 2)-bit fixed-point number z1 z0.
z–1 z–2 … z–m;

• y is a p-bit fixed-point number 0.y–1 y–2 … y–p;
• i is a k-bit natural such that 2k > p.

The circuit must contain three registers:
z (m + 2 bits), y (p bits) and i (k bits). Registers
z and i are parallel registers, but register y must
permit to individually store bits y–1, y–2 and so
on, in order to execute yi–p+1 = z1 for all values
of i. A straightforward option is a set of 1-bit
registers controlled by an address decoder that
associates a particular enable signal to each value
of i. A best option is a left shift register.

The algorithm executes three arithmetic
operations, z2, z/2 and i–1, and uses a binary
condition i > 0. The following computation
resources execute those operations:

• an (m + 1)-bit squaring circuit that computes
z0: z�1 z�2. . .z�mð Þ2¼ w1 w0:w�1 w�2. . .w�2m;

• a divider by 2 that amounts to simple con-
nections: if z = z1 z0. z–1 z–2 … z–m, then
z=2 ¼ z1: z0 z�1 z�2 . . . z�m;

• a k-bit subtractor that computes i–1;
• a combinational circuit that generates a binary

output equal to 1 if, and only if, i > 0, that is
the OR function of the k bits that represent i.

The corresponding circuit is shown in Fig. 1.1
(clk and reset signals are not represented). It is a
data path, that is to say a data processor dedi-
cated to the execution of a particular program,
namely Algorithm 1.2.

In order to control the execution of the pro-
gram, an additional circuit is necessary: it gen-
erates the control signals to be sent to the data
path (sel_z, load_z, sel_i, load_i, shift_y) in

z1 z0:z�1z�2���z�m ¼ 01:x�1x�2...x�n0 0 . . . 0 ; i = p;
while i > 0 loop

z1z0:z�1z�2...z�m = truncated z0:z�1z�2...z�mð Þ2
� �

;

yi�p�1 = z1 ;
if z1 = 1 then z = 0z1:z0z�1z�2...z�ðm�1Þ ; end if;

i = i-1;
end loop;

2 1 Architecture of Digital Circuits



function of two Boolean conditions (flags) i > 0
and z1 = 1. It can be modeled by the finite-state
machine of Fig. 1.2.

A structural VHDL model logarithm_circuit.
vhd that corresponds to Figs. 1.1 and 1.2 has
been generated and simulated. It is available at
the Authors’ web site. It includes a simple
communication protocol (Fig. 1.3) based on two
signals: an input signal start and an output signal
done: the computation starts on a positive edge of

start; then the done signal is lowered; it will be
raised when the computation is completed.

A conclusion of this first example is that, in
the case of digital circuits whose specification is
an algorithm, there exists a quite natural partition
of the system into two subcircuits:

• a data path that contains all resources (mem-
ory, computation and connection) necessary
to execute the algorithm—a kind of specific
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processor able to execute this particular
algorithm.

• a control unit, generally modeled by a
finite-state machine, that implements the
program executed by the specific processor: it
generates control signals such as control
inputs of registers (load, shift, …), control
inputs of multiplexers, programming inputs
of arithmetic resources (add, subtract, …)
and so on; it receives from the data path status
information about, for example, the current
value of some variables: zero or positive,
greater than some value, negative or non-
negative and so on; another example of status
information could be an overflow or a by-zero
division within an arithmetic block.

Obviously, the solution is not unique. The
definition of a data path and a control unit
implies the resolution of several optimization
problems. Some of them will be treated in the
next chapters. Another point to take into account
is the communication protocol that permits the
system to interchange data with other systems.

1.2 Data Path and Control Unit

The general structure of a digital circuit is shown
in Fig. 1.4. It consists of a data path and a
control unit. The data path (leftmost part of
Fig. 1.4) includes computation resources exe-
cuting the algorithm operations, registers storing
the algorithm variables and programmable con-
nections (e.g., multiplexers, not represented in
Fig. 1.4) between resource outputs and register
inputs, and between register outputs and resource
inputs. The control unit (rightmost part of
Fig. 1.4) is a finite-state machine. It controls the

sequence of data path operations by means of a
set of control signals (commands) such as clock
enables of registers, programming of computa-
tion resources and multiplexers and so on. It
receives from the data path some feedback
information (conditions) corresponding to the
algorithm control statements (loop, if, case and
so on).

In fact, the data path could also be considered
as being a finite-state machine. Its internal states
are all the possible register contents, the
next-state computation is performed by the
computation resources, and the output states are
all the possible values of conditions. Neverthe-
less, the number of internal states is enormous
and there is generally no sense to use a
finite-state machine model for the data path. Any
way, it is interesting to observe that the data path
of Fig. 1.4 is a Moore machine (the output state
only depends on the internal state) while the
control unit could be a Moore or a Mealy
machine. An important point is that when two
finite-state machines are interconnected, one of
them must be a Moore machine in order to avoid
combinational loops.

According to the chronograms of Fig. 1.4,
there are two critical paths: from the data regis-
ters to the internal state register and from the data
registers to the data registers through the control
unit. The corresponding delays are

Tdata�state ¼ t4 þ t1 ð1:1Þ

and

Tdata�data ¼ t4 þ t2 þ t3; ð1:2Þ

where t1 is the computation time of the next
internal state, t2 the computation time of the
commands, t3 the maximum delay of the

start

done

computation

Fig. 1.3 Communication protocol
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computation resources and t4 the computation
time of the conditions (the setup and hold
times of the registers have not been taken into
account).

The clock period must satisfy

Tclk [max t4 þ t1; t4 þ t2 þ t3f g: ð1:3Þ

If the control unit were a Moore machine,
there would be no direct path from the data
registers to the data registers through the control
unit, so that (1.2) and (1.3) should be replaced by

Tstate�data ¼ t2 þ t3 ð1:4Þ

and
Tclk [max t4 þ t1; t2 þ t3f g: ð1:5Þ

Actually, it is always possible to use a Moore
machine for the control unit. Generally, it has
more internal states than an equivalent Mealy
machine and the algorithm execution needs more
clock cycles. If the values of t1 to t4 do not
substantially vary, the conclusion could be that
the Moore approach needs more, but shorter,

clk
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conditions

commands

next_state

t4

t1

t2

next-state 
computation
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Fig. 1.4 Structure of a digital circuit: data path and control unit
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clock cycles. Many designers also consider that
Moore machines are safer than Mealy machines.

In order to increase the maximum frequency,
an interesting option is to insert a command
register at the output of the command generation
block. Then, relation (1.2) is substituted by

Tdata�commands ¼ t4 þ t2 and Tcommands�data ¼ t3;

ð1:6Þ

so that

Tclk [max t4 þ t1; t4 þ t2; t3f g: ð1:7Þ

With this type of registered Mealy machine,
the commands are available one cycle later than
with a non-registered machine, so that additional
cycles must be sometimes inserted in order that
the data path and its control unit remain
synchronized.

To summarize, the implementation of an
algorithm is based on a decomposition of the
circuit into a data path and a control unit. The
data path is in charge of the algorithm operations
and can be roughly defined in the following way:
associate registers to the algorithm variables,
implement resources able to execute the algo-
rithm operations, and insert programmable con-
nections (multiplexers) between the register
outputs (the operands) and the resource inputs,
and between the resource outputs (the results)
and the register inputs. The control unit is a
finite-state machine whose internal states roughly
correspond to the algorithm steps, the input states
are conditions (flags) generated by the data path,
and the output states are commands transmitted
to the data path.

In fact, the definition of a data path poses a
series of optimization problems, some of them
being dealt with in the next chapters, for exam-
ple, scheduling of the operations, assignment of
computation resources to operations and assign-
ment of registers to variables. It is also important
to notice that minor algorithm modifications
sometimes yield major circuit optimizations.

1.3 Exercises

1. Appendix A briefly describes the main binary
field operations. Design a circuit that com-
putes p(x) = a(x) � b(x) mod f(x) where inputs
a(x) and b(x) and output p(x) are polynomials
of degree smaller than m represented as m-bit
binary vectors and constant value f(x) is a
polynomial of degree m. Define a data path
and a control unit that execute Algorithm A1
(interleaved multiplication). Two combina-
tional computing resources are available: the
first has an m-bit input a(x) and an m-bit
output y(x) = a(x) � x mod f(x); the second has
two m-bit inputs a(x) and c(x) and a 1-bit input
bi and an m-bit output z(x) = c(x) + a(x) � bi.

2. The following algorithm computes the greatest
common divider gcd of two naturals a and b:

while a 6¼ b loop

if a < b swap(a, b); end if;

a = a-b;

end loop;

gcd = a;

Define a data path and a control unit that
execute the preceding algorithm and computes
z = gcd(a, b) where inputs a and b and output
z are m-bit naturals. Three combinational com-
putation resources are available: a magnitude
comparator with two m-bit inputs a and b and
two 1-bit outputs e = 1 if, and only if, a = b, and
g = 1 if, and only if, a > b; a swapping circuit
with two m-bit inputs a and b, a 1-bit control
input c and two m-bit outputs a′ and b′: (a′,
b′) = (a, b) if c = 0, (a′, b′) = (b, a) if c = 1; an
m-bit subractor.
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2Scheduling and Resource
Assignment

Operation scheduling consists of defining which
particular operations are in course of execution
during every clock cycle. For that, an important
concept is that of precedence relation. It defines
which operations must be completed before
starting a new one: if some result r of an oper-
ation A is an initial operand of some operation B,
the computation of r must be completed before
the execution of B starts. So, the execution of
A must be scheduled before the execution of B.

2.1 Introductory Example

A carry-save adder or 3-to-2 counter is a circuit
with 3 inputs and 2 outputs. The inputs xi and the
outputs yj are naturals. Its behavior is defined by
the following relation:

x1 þ x2 þ x3 ¼ y1 þ y2: ð2:1Þ

The basic component of a carry-save adder is
a 1-bit full adder: it is a combinational circuit
with three binary inputs x, y and c, and two
binary outputs z and d (Fig. 2.1a). It implements
the following switching functions:

z ¼ x� y� z and d ¼ x � yþ x � zþ y � z; ð2:2Þ

where ⊕ is themod2 sum (XOR function) and + is
theBoolean sum (OR function). In otherwords, the
2-bit vector (d, z) is the binary representation of the
sum x+ y+ z (in this case, the real sum):

xþ yþ z ¼ 2 � dþ z: ð2:3Þ

With n 1-bit full-adders, an n-bit carry-save
adder can be synthesized (Fig. 2.1b with n = 4).
In binary

x1 ¼ x13x12x11x10; x2 ¼ x23x22x21x20;

x3 ¼ x33x32x31x30;

y1 ¼ y13y12y11y10; y2 ¼ y24y23y22y21y20:

According to (2.3)

x10 þ x20 þ x30 ¼ 2 � y21 þ y10; x11 þ x21 þ x31
¼ 2 � y22 þ y11;

x12 þ x22 þ x32 ¼ 2 � y23 þ y12; x13 þ x23 þ x33
¼ 2 � y24 þ y13:

Then, multiply the second equation by 2, the
third by 4, the fourth by 8, and add up the four
equations. The result is

8 � x13 þ 4 � x12 þ 2 � x11 þ x10ð Þ
þ 8 � x23 þ 4 � x22 þ 2 � x21 þ x20ð Þ
þ 8 � x33 þ 4 � x32 þ 2 � x31 þ x30ð Þ
¼ 8 � y13 þ 4 � y12 þ 2 � y11 þ y10ð Þ
þ 16 � y24 þ 8 � y23 þ 4 � y22 þ 2 � y21ð Þ

that is (2.1).
The four (more generally n) components of

the circuit of Fig. 2.1b work in parallel so that the
delay of a carry-save adder is equal to the delay
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TFA of a 1-bit full adder, independently of the
number of bits of the operands.

Let CSA be the function associated with (2.1),
that is

y1; y2ð Þ ¼ CSA x1; x2; x3ð Þ: ð2:4Þ

Using carry-save adders as computation
resources, a 7-to-3 counter can be implemented. It
allows expressing the sum of seven naturals under
the form of the sum of three naturals, that is

x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 ¼ y1 þ y2 þ y3:

In order to compute y1, y2 and y3, the fol-
lowing operations are executed (op1 to op4 are
labels):

op1 : a1; a2ð Þ ¼ CSA x1; x2; x3ð Þ;
op2 : b1; b2ð Þ ¼ CSA x4; x5; x6ð Þ;
op3 : c1; c2ð Þ ¼ CSA b1; b2; x7ð Þ;
op4 : d1; d2ð Þ ¼ CSA a1; a2; c1ð Þ:

ð2:5Þ

According to (2.5) and the definition of CSA,

a1 þ a2 ¼ x1 þ x2 þ x3;

b1 þ b2 ¼ x4 þ x5 þ x6;

c1 þ c2 ¼ b1 þ b2 þ x7;

d1 þ d2 ¼ a1 þ a2 þ c1;

so that

c1 þ c2þ d1 þ d2 ¼ b1 þ b2 þ x7 þ a1 þ a2þ c1
¼ x1 þ x2 þ x3 þ x4 þ x5
þ x6þ x7þ c1:

Thus

c2 þ d1 þ d2 ¼ x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7

and y1, y2 and y3 can be defined as follows:

y1 ¼ d1; y2 ¼ d2; y3 ¼ c2:

The corresponding precedence relation is
defined by the graph of Fig. 2.2, according to
which op2 must be executed before op3, and op3
before op4. Thus, the minimum computation time
is equal to 3 � TFA.
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For implementing Eqs. (2.5), the following
option could be considered: a combinational
circuit made up of four carry-save adders
(Fig. 2.3) and whose structure is the same as that
of the graph of Fig. 2.2. Its computation time is
equal to 3 � TFA and its cost to 4 � CCSA, being
CCSA the cost of a carry-save adder. This is
probably a bad solution because the cost is high
(4 carry-save adders) and the delay is long (3
full-adders) so that the minimum clock cycle of a
synchronous circuit including this 7-to-3 counter
should be greater than 3 � TFA.

Other options could be considered. For
example, a data path including two carry-save
adders and several registers (Fig. 2.4). The
computation is executed in three steps:

0:(a1,a2)= CSA(x1,x2,x3),

(b1,b2)= CSA(x4,x5,x6);

1:(c1,c2)= CSA(b1,b2,x7);

2:(y1,y2)= CSA(a1,a2,c1),y2=c2;

The leftmost register stores a1 and a2 during
cycle 0. The rightmost register stores b1 and b2
during cycle 0 and c1 and c2 during cycle 1.
Observe that in this example, y3 is a registered
output while y1 and y2 are not. The computation
time is equal to 2 � Tclk+ TCSA, where Tclk >
TCSA = TFA, so that within a completely syn-
chronous circuit the computation time is equal to
3 � Tclk, and the cost is equal to 2 � CCSA, plus the
cost of two registers, six 2-to-1 multiplexers and
a control unit.

A third option is a data path including one
carry-save adder and several registers (Fig. 2.5).
The computation is executed in four cycles:

0:(a1,a2)= CSA(x1,x2,x3);

1:(b1,b2)= CSA(x4,x5,x6);

2:(c1,y3)= CSA(b1,b2,x7);

3:(y1,y2)= CSA(a1,a2,c1);

The leftmost register stores a1 and a2 during
cycle 0 and y1 and y2 during cycle 3. The right-
most register stores b1 and b2 during cycle 1 and
c1 and y3 during cycle 2. Observe that in this
example y1, y2 and y3 are registered outputs. The
computation time is equal to 4 � Tclk, where
Tclk > TFA, and the cost equal to CCSA, plus the
cost of two registers, three 4-to-1 multiplexers
and a control unit.

x1 x2 x3

CSA

x4 x5 x6

CSA

CSA

x7

b1 b2a1 a2

c1 c2

CSA

d1 d2

y1 y2 y3

Fig. 2.3 Combinational implementation of a 7-to-3 counter
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In conclusion, to the set of operations (2.5) cor-
respond several implementations with different
costs and delays. In order to get an optimized circuit,
according to some predefined criteria, the space of
possible implementations must be explored. For
that, optimization methods must be used.

2.2 Precedence Graph

Consider a computation scheme, that is to say an
algorithm without branches and loops. Formally,
it can be defined by a set of operations

opJ : xi; xk; . . .ð Þ ¼ f xl; xm; . . .ð Þ; ð2:6Þ

where xi, xk, xl, xm, … are variables of the algo-
rithm and f one of the algorithm operation types
(computation primitives). Then, the precedence
graph (or data flow graph) is defined as follows:

• Associate a vertex to each operation opJ.
• Draw an arc between vertices opJ and opM, if

one of the results generated by opJ is used by
opM.

An example was given in Sect. 2.1 (operations
(2.5) and Fig. 2.2).

Assume that the computation times of all
operations are known. Let tJM be the computation
time, expressed in number of clock cycles, of the
result(s) generated by opJ and used by opM.
Then, a schedule of the algorithm is an applica-
tion Sch from the set of vertices to the set of
naturals that defines the number Sch(opJ) of the
cycle at the beginning of which the computation
of opJ starts. A necessary condition is that

SchðopMÞ� SchðopJÞþ tJM ð2:7Þ

if there is an arc from opJ to opM.
As an example, if the clock period is greater

than the delay of a full adder, then, in the com-
putation scheme (2.5), all the delays are equal to
1 and two admissible schedules are

Schðop1Þ ¼ 1; Schðop2Þ ¼ 1; Schðop3Þ
¼ 2; Schðop4Þ ¼ 3; ð2:8Þ

Schðop1Þ ¼ 1; Schðop2Þ ¼ 2; Schðop3Þ
¼ 3; Schðop4Þ ¼ 4: ð2:9Þ

CSA

y1 y2 y3

CEN CEN

cycle

en03 en12

x1 x4 x2 x5 x3 x6 x7

0 1 2 3 0 1 2 3 0 1 2 3

Fig. 2.5 4-cycle implementation of a 7-to-3 counter
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They correspond to the circuits of Figs. 2.4
and 2.5.

The definition of an admissible schedule is an
easy task. As an example, the following algo-
rithm defines an ASAP (as soon as possible)
schedule:

• initial step: Sch(opJ) = 1 for all initial (without
antecessor) vertices opJ;

• step number n + 1: choose an unscheduled
vertex opM, whose all antecessors, say opP,
opQ, … have already been scheduled, and
define Sch(opM) =maximum{Sch(opP) + tPM,
Sch(opQ) + tQM, …}.

Applied to (2.5), the ASAP algorithm gives
(2.8). The corresponding data flow graph is
shown in Fig. 2.6a.

An ALAP (as late as possible) schedule can
also be defined. For that, assume that the latest
admissible starting cycle for all the final vertices
(without successor) has been previously
specified:

• initial step: Sch(opM) = latest admissible
starting cycle of opM for all final vertices opM;

• step number n + 1: choose an unscheduled
vertex opJ, whose all successors, say opP,
opQ, … have already been scheduled, and

define Sch(opJ) =minimum{Sch(opP) − tJP,
Sch(opQ) − tJQ,…}.

Applied to (2.5), with Sch(op4) = 4, the ALAP
algorithm generates

Schðop1Þ ¼ 2; Schðop2Þ ¼ 2; Schðop3Þ
¼ 3; Schðop4Þ ¼ 4: ð2:10Þ

The corresponding data flow graph is shown
in Fig. 2.6b.

Let ASAP_Sch and ALAP_Sch be ASAP and
ALAP schedules, respectively. Obviously, if opM
is a final operation, the previously specified value
ALAP_Sch(opM) must be greater than or equal to
ASAP_Sch(opM). More generally, assuming that
the latest admissible starting cycle for all the final
operations has been previously specified, for any
admissible schedule Sch the following relation
holds:

ASAP Sch opJð Þ� Sch opJð Þ
�ALAP Sch opJð Þ; 8 opJ :

ð2:11Þ

Along with (2.7), relation (2.11) defines the
admissible schedules.

An example of admissible schedule is defined
by (2.9), to which corresponds the data flow
graph of Fig. 2.9c.
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A second, more realistic, example is now
presented.

Example 2.1 This example corresponds to part of
an Elliptic Curve Cryptography algorithm,
namely the Montgomery point multiplication
(Hankerson et al. 2004, Algorithm 3.40). All
processed data are binary polynomials of degree
smaller than some previously defined constant m:

a zð Þ ¼ am�1z
m�1 þ am�2z

m�2 þ . . .þ a1zþ a0;

ai 2 0; 1f g 8i ¼ 0 tom� 1:

The operations used in the algorithm are the
addition a+ b and the product a � b of polynomials.
The product is computed modulo a polynomial

f zð Þ ¼ zm þ fm�1z
m�1 þ fm�2z

m�2 þ . . .þ f1zþ 1

of degree m so that a � b is a polynomial of
degree smaller than m (Appendix A).

The following algorithm (López and Dahab
1999) computes two polynomials xQ and yQ in
function of two polynomials xP and yP and of anm-
bit natural k= (km−1, km−2, …, k0). It executes the
so-called point multiplication (xQ, yQ) = k � (xP, yP)
for non-supersingular elliptic curves over binary
field—the basic operation of several cryptographic
protocols. The final last_step procedure includes
division operations but its implementation will not
be considered in this example. Observe that this
procedure is executed only once, outside the main
loop body, and should not significantly increase
the total computation time.

Algorithm 2.1 Montgomery Point Multiplic-
ation

xA=1;zA=0;xB=xP;zB =1;

foriin1..mloop

ifkm-i = 0then

T=zB;

zB =(xA�zB +xB�zA)
2;

xB =xP�zB+xA�xB�zA�T;
T=xA;

xA =xA
4 +zA

4;

zA =T2�zA
2;

else

T=zA;

zA =(xA�zB +xB�zA)
2;

xA =xP�zA+xA�xB�zB�T;
T=xB;

xB =xB
4 + zB

4;

zB =T2�zB
2;

endif;

endloop;

(xQ,yQ)=last_step(xA,xB,zA,zB,xP,yP);

To implement the preceding algorithm, with-
out the final procedure call, the following com-
putation resources (predefined components) are
available:

• adders that compute the sum a + b of two
polynomials in one clock cycle;

• mod fmultipliers that compute the product a � b
mod f of two polynomials in M clock cycles,
whereM � m; the product can be executed in
M cycles, but some additional cycles are nec-
essary to start the computation and to read the
result;

• mod f squaring circuits that compute the square
a2 mod f of a polynomial in one clock cycle.

The implementation of those components is
briefly described in Appendix A.

A first step of the implementation work is the
modification of Algorithm 2.1 so that only
2-operand (addition and multiplication) and
1-operand (squaring) operations are used:

Algorithm 2.2 Montgomery point multiplica-
tion, version 2

xA=1;zA=0;xB=xP;zB =1;

foriin1..mloop

ifkm-i = 0then

a=xA�zB;b=xB�zA;c=a+b;d=c2;

e=xP�d;f=a�b;g=e+f;h=xA�zA;

i=h2;j=xA+zA;k=j2;l=k2;

xA =l;zA =i;xB =g;zB =d;

else

a=xB�zA;b=xA�zB;c=a+b;d=c2;

e=xP�d;f=a�b;g=e+f;h=xB�zB;

i=h2;j=xB+zB;k=j2;l=k2;

xB =l;zB =i;xA =g;zA =d;

endif;
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endloop;

(xQ,yQ)=last_step(xA,xB,zA,zB,xP,yP);

Equation A.1 of Appendix A has been used to

compute x4A þ z4A ¼ xA þ zAð Þ4 and x4B þ z4B ¼
xB þ zBð Þ4.
Consider the main loop body of Algorithm 2.2,

and assume that kt−i= 0. The corresponding
sequence of operations is the computation scheme
described by the data flow graph of Fig. 2.7. The
operation type corresponding to every vertex is
indicated (instead of operation labels). If km−i= 1,
the computation scheme is the same but for the
interchange of indexes A and B.

Addition and squaring are one-cycle opera-
tions, while multiplication is an M-cycle opera-
tion. An ASAP schedule is shown in Fig. 2.8. The
computation of g starts at the beginning of cycle
2M+ 3, so that the final results are available at the
beginning of cycle 2M+ 4. The corresponding
circuit must include three multipliers as the
computations of a, b and h start at the same time 1.

The computation scheme includes 5 multipli-
cations. Thus, in order to execute the algorithm
with only one multiplier, the minimum number of

cycles is 5M. More precisely, one of the multipli-
cations e, f or h cannot start before cycle 4M+ 1, so
that the next operation (g or i) cannot start before
cycle 5M+1. An ALAP schedule assuming that
the computations of g, i and l start at the beginning
of cycle 5M+1 is shown in Fig. 2.9.
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In Fig. 2.10a, an ALAP schedule with Sch(g,
i, l) = 3M + 1 is shown and in Fig. 2.10b an
admissible schedule is shown.

Comment 2.1 A circuit based on the ASAP
schedule of Fig. 2.8 must include at least three
multipliers as three multiplications are scheduled
at cycle 1 (a, b and h). On the other hand, the
computation time is relatively short (about
2M cycles).With the schedule of Fig. 2.9, only one
multiplier is necessary, but the computation time is
long (about 5M cycles). With the schedule of
Fig. 2.10a, three multiplications are scheduled at
cycle 2M + 1 (h, f and e), and the computation time
is about 3M cycles. Finally, with the schedule of
Fig. 2.10b, two multiplications are scheduled at
cycle 1 (a and b), two multiplications at cycle
M+ 1 (h and f) and one at cycle 2M + 1 (e) so that
only two multipliers are necessary and the com-
putation time is about 3M. Thus, the choice of a
schedule has a direct effect on the circuit perfor-
mance. Some related optimization problems are
dealt with in the next section.

2.3 Optimization Problems

Assuming that the latest admissible starting cycle
for all the final operations has been previously
specified, any schedule such that (2.7) are (2.11)
hold true can be chosen. This poses optimization
problems. For example:

1. Assuming that the maximum computation
time has been previously specified, look for a
schedule that minimizes the number of com-
putation resources of each type.

2. Assuming that the number of available com-
putation resources of each type has been
previously specified, minimize the computa-
tion time.

An important concept is the computation
width w(f) with respect to the computation
primitive (operation type) f. First define the ac-
tivity intervals of f. Assume that f is the primitive
corresponding to the operation opJ, that is
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Fig. 2.10 Example 2.1: a ALAP schedule with Sch(g) = 3M + 1, b admissible schedule
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opJ : xi; xk; . . .ð Þ ¼ f xl; xm; . . .ð Þ:

Then

Sch opJð Þ; Sch opJð ÞþmaximumftJMg½ �

is an activity interval of f. This means that a
resource of type f must be available from the
beginning of cycle Sch(opJ) to the end of cycle
Sch(opJ) + tJM for all M such that there is an arc
from opJ to opM. An incompatibility relation over
the set of activity intervals of f can be defined:
two intervals are incompatible if they overlap. If
two intervals overlap, it is obvious that the cor-
responding operations cannot be executed by the
same computation resource. Thus, a particular
resource of type f must be associated with each
activity interval of f in such a way that if two
intervals overlap, then two distinct resources of
the same type must be used. The minimum
number of computation resources of type f is the
computation width w(f).

The following graphical method can be used
for computing w(f).

• Associate a vertex to every activity interval.
• Draw an edge between two vertices if the

corresponding intervals overlap.
• Color the vertices in such a way that two

vertices connected by an edge have different
colors (a classical problem of graph theory).

Then, w(f) is the number of different colors,
and every color defines a particular resource
assigned to all edges (activity intervals) with
this color.

Example 2.2 Consider the scheduled precedence
graph of Fig. 2.8. The activity intervals of the
multiplication are

a: ½1;M�; b: ½1;M�; h: ½1;M�; e: Mþ 3; 2Mþ 2½ �; f : Mþ 1; 2M½ �:

The corresponding incompatibility graph is
shown in Fig. 2.11a. It can be colored with three
colors (c1, c2 and c3 in Fig. 2.11a). Thus, the
computation width with respect to the multipli-
cation is equal to 3.

If the scheduled precedence graph of
Fig. 2.10b is considered, then the activity inter-
vals of the multiplication are

a: 1;M½ �; b: 1;M½ �; h: Mþ 1; 2M½ �; e: 2Mþ 1; 3M½ �; f : Mþ 1; 2M½ �:

The corresponding incompatibility graph is
shown in Fig. 2.11b. It can be colored with two
colors. Thus, the computation width with respect
to the multiplication is equal to 2.

Other schedules can be defined. According to
(2.11) and Figs. 2.8 and 2.10a, the time intervals
during which the five multiplications can start are
the following:

a: 1; 3M � 1½ �; b: 1; 3M � 1½ �; h: 1; 4Mþ 1½ �;
e: Mþ 3; 4Mþ 1½ �; f : Mþ 1; 4Mþ 1½ �:

As an example, consider the admissible
schedule of Fig. 2.12. The activity intervals of the
multiplication operation are

a: ½1;M�; b: Mþ 1; 2M½ �; h: 2Mþ 1; 3M½ �;
e: 4Mþ 1; 5M½ �; f : 3Mþ 1; 4M½ �:

a
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h e

f
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c2

c3 c2

c1
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h e
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c2 c1
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(a) (b)Fig. 2.11 Computation
width: graph coloring
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They do not overlap so that the incompati-
bility graph does not include any edge and can be
colored with one color. The computation width
with respect to the multiplication is equal to 1.

Thus, the two optimization problems men-
tioned above can be expressed in terms of com-
putation widths:

1. Assuming that the maximum computation
time has been previously specified, look for a
schedule that minimizes some cost function

C ¼ c1 � wðf 1Þþ c2 � wðf 2Þþ � � � þ cm � wðf mÞ
ð2:12Þ

where f 1; f 2; . . .; f m are the computation
primitives and c1; c2; . . .; cm their correspond-
ing costs.

2. Assuming that the maximum computation
width w(f) with respect to every computation
primitive f has been previously specified, look
for a schedule that minimizes the computation
time.

Both are classical problems of scheduling
theory. They can be expressed in terms of integer
linear programming problems whose variables

are xIt for all operation indices I and all possible
cycle numbers t: xIt= 1 if Sch(eI) = t, 0 otherwise.
Nevertheless, except for small computation
schemes—generally tractable by hand—the
so-obtained linear programs are intractable.
Modern electronic design automation tools exe-
cute several types of heuristic algorithms applied
to different optimization problems (not only to
schedule optimization). Some of the more com-
mon heuristic strategies are list scheduling, sim-
ulated annealing, and genetic algorithms.

2.4 Resource Assignment

Once the operation schedule has been defined,
several decisions must be taken.

• The number w(f) of resources of type f is
known, but it remains to decide which par-
ticular computation resource executes each
operation. Furthermore, the definition of
multifunctional programmable resources
could also be considered.

• As regards the storing resources, a simple
solution is to assign a particular register to
every variable. Nevertheless, in some cases
the same register can be used for storing
different variables.

A key concept for assigning registers to
variables is the lifetime [tI, tJ] of every variable: tI
is the number of the cycle during which its value
is generated, and tJ is the number of the last cycle
during which its value is used.

Example 2.3 Consider the computation scheme
of Fig. 2.7 and the schedule of Fig. 2.12. The
computation width is equal to 1 for all primitives
(multiplication, addition and squaring).

In order to compute the variable lifetimes, it is
assumed that the operations are executed as fol-
lows: in the case of an M-cycle operation such as
p= s � t mod f scheduled at cycle I:

• The assigned multiplier reads the operands
from the registers assigned to s and t, inter-
nally stores them and starts computing s � t.
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• The result is generated and available on the
multiplier output during cycle number I+M −
1 (or sooner) and is stored within the register
assigned to p at the end of this same cycle.

• Thus, the value of p is available for any
operation scheduled at cycle number I +M or
later.
In the case of a one-cycle operation such as

p= s+ t or p= s2 mod f, scheduled at cycle I, the
corresponding computing resource is a combi-
national circuit; the result is generated and
available on this combinational circuit output
during cycle number I and is stored within the
register assigned to p at the end of this same
cycle; thus, the value of p is available for any
operation scheduled at cycle number I+ 1 or
later.

Taking into account the preceding rules, the
computation is executed as follows:

For example, the multiplier executes f= a �
b as follows: during cycle number I= 3M + 1, the
multiplier reads and internally stores the values
of a and b, and the multiplication execution
begins; the result is generated during cycle

number I +M − 1 = 4M and is stored at the end of
this cycle within the register assigned to f; the
value of f is available for any operation beginning
at cycle number 4M+ 1 or later, for example
g= e+ f executed at cycle 5M + 1.

As regards the variables xA, zA, xB and zB, in
charge of passing values from one iteration step to
the next one (Algorithm 2.2), their values are
available from the beginning of the computation
scheme execution and must remain available up to
the last cycle during which those values are used.
At the end of the computation scheme execution,
they must be updated with their new values.

The lifetime intervals are given in Table 2.1.
As an example, the value of a is generated and
stored during cycle number M, and the last cycle
during which the value of a is used is cycle
number 3M + 1 (when a is read and internally
stored within the multiplier). Thus, the lifetime
interval of a is [M, 3M + 1].

The definition of a minimum number of reg-
isters can be expressed as a graph coloring
problem. For that, associate a vertex to every
variable and draw an edge between two variables
if their lifetime intervals are incompatible.

initialdata:xA,zA,xB,zB
cycle1: j=xA+zA;read,storeandstartxA�zB;

cycle2: k=j2;

cycle3: l=k2;

cycleM: a=multiplier_output;

cycleM+1: read,storeandstartxB�zA;

cycle2M: b=multiplier_output;

cycle2M+1: c=a+b;read,storeandstartxA�zA;

cycle2M+2: d=c2;

cycle3M: h=multiplier_output;

cycle3M+1: i=h2;read,storeandstarta�b;
cycle4M: f=multiplier_output;

cycle4M+1: read,storeandstartxP�d;
cycle5M: e=multiplier_output;

cycle5M+1: g=e+f;

final

results:(xA,zA,xB,zB):=(l,i,g,d);
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Definition 2.1
Two lifetime intervals are incompatible if they
have more than one common cycle. Actually,
lifetime intervals such as [t, u] and [u, v] with one
common cycle (number u) are compatible: [t, u]
corresponds to a variable y1 stored at the end of
cycle number t and used during cycle number
u> t, and [u, v] corresponds to a variable y2
stored at the end of cycle number u and used
during cycle number v > u. Thus, if edge-
triggered registers are used (flip-flops), the
same register can store the value of y1 all along

cycle number u and sample the value of y2 at the
end of the same cycle number u (Fig. 2.13).

As an example, the lifetime intervals [1, 2]
and [2, 3] of j and k are compatible; they corre-
spond to two successive instructions

cycle1:j=xA +zA;

cycle2:k=j2;

that may be substituted by

cycle1:R=xA +zA;

cycle2:R=R2;

At the end of cycle number 1, the value of
xA+ zA is stored within register R. During cycle
number 2, the square of R is computed, and the
result is stored in the same register R at the end of
the same cycle.

Similarly, the lifetime intervals [M, 3M + 1]
and [3M + 1, final] of a and i are compatible; they
correspond to instructions

cycleM:a=multiplier_output;

���
cycle3M+1:i=h2;read,storeandstart

a�b;

that may be substituted by

cycleM:R=multiplier_output;

���
cycle3M+1:R=h2;read,storeandstart

R�b;

clk

cycle t cycle u cycle v

··· ···

R y1 y2

Fig. 2.13 Life intervals with a common cycle number u

Table 2.1 Lifetime intervals

a [M, 3M + 1]

b [2M, 3M + 1]

c [2M + 1, 3M + 1]

d [2M + 2, final]

e [5M, 5M + 1]

f [4M, 5M + 1]

g [5M + 1, final]

h [3M, 3M + 1]

i [3M + 1, final]

j [1, 2]

k [2, 3]

l [3, final]

xA [initial, 2M + 1]

zA [initial, 2M + 1]

xB [initial, M + 1]

zB [initial,1]
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At the end of cycle number M, the multiplier
output value is stored within register R. During
cycle number 3M + 1, the value of R is stored
within the multiplier, the square of h is com-
puted, and the result h2 is stored within the same
register R at the end of the same cycle.

On the other hand, the lifetime intervals [M,
3M + 1] and [2M, 3M + 1] of a and b are not
compatible as they correspond to instructions

The (generally different) values of a and b
cannot be saved within the same register.

The following groups of variables have com-
patible lifetime intervals:

zB (initial! 1), j (1! 2), k (2! 3), l(3! final);
xB (initial !M + 1), b (2M ! 3M + 1), f (4M !
5M + 1), g(5M + 1 ! final);
zA (initial ! 2M + 1), c (2M + 1 ! 2M + 2),
d (2M + 2 ! final);
xA (initial ! 2M + 1), h (3M ! 3M + 1),
e (5M ! 5M + 1);
a (M ! 3M + 1), i (3M + 1 ! final).

Thus, the computing scheme can be executed
with five registers:

• xA stores the initial value of xA, h and e;
• zA stores the initial value of zA, c and d;
• xB stores the initial value of xB, b, f and g;
• zB stores the initial value of zB, j, k and l;
• R: stores a and i.

cycleM:a=multiplier_output;

���
cycle2M:b=multiplier_output;

���
cycle3M+1:i=h2;read,storeandstarta�b;

cycle1: zB=xA+zA;read,storeandstartxA�zB;

cycle2: zB=zB
2;

cycle3: zB=zB
2;

cycle3M: R=multiplier_output;

cycle3M+1: read,storeandstartxB�zA;
cycle2M: xB=multiplier_output;

cycle2M+1: zA =R+xB;read,storeandstartxA�zA;
cycle2M+2: zA =zA

2;

cycle3M: xA=multiplier_output;

cycle3M+1: R=xA
2; read,storeandstartstartR�xB;

cycle4M: xB=multiplier_output;

cycle4M+1: read,storeandstartxP�zA;
cycle5M: xA=multiplier_output;

cycle5M+1: xB =xA+xB;

finalresults:(xA,zA,xB,zB)=(zB,R,xB,zA);
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Obviously, the last two cycles can be
replaced by

cycle 5M+1: (xA, zA, xB, zB)=(zB, R, xA+xB,

zA);

Example 2.4 Consider the same computation
scheme (Fig. 2.7) with a different schedule
(Fig. 2.10b). The computation width with respect
to multiplication is equal to 2 and is equal to 1
with respect to addition and squaring. Thus, two
multipliers (multiplier1 and multiplier2) must be
used. The computation is executed as follows:

The lifetime intervals are given in Table 2.2.
The following groups of variables have com-

patible lifetime intervals:

zB (initial ! 1), j (1 ! 2), k (2 ! 3), l(3 !
final);
xB (initial ! 1), b (M ! M+ 1), f (2M !
3M + 1), g(3M + 1 ! final);
zA (initial ! M + 1), c (M+ 1 ! M + 2),
d (M + 2 ! final);
xA (initial ! M+ 1), h (2M ! 2M + 1),
i (2M + 1 ! final);
a (M ! M+ 1), e (3M ! 3M + 1).

Thus, the computing scheme can be executed
with five registers:

• xA stores the initial value of xA, h and i;
• zA stores the initial value of zA, c and d;
• xB stores the initial value of xB, b, f and g;
• zB stores the initial value of zB, j, k and l;
• R: stores a and i.

initialdata:xA,zA,xB,zB
cycle1: j=xA+zA;read,storeandstartxA�zBandxB�zA;

cycle2: k=j2;

cycle3: l=k2;

cycleM: a=multiplier1_output; b=multiplier2_output;

cycleM+1: c=a+b;read,storeandstarta�bandxA�zA;
cycleM+2: d=c2;

cycle2M: f=multiplier1_output; h=multiplier2_output;

cycle2M+1: i=h2;read,storeandstartxP�d;
cycle3M: e=multiplier2_output;

cycle3M+1: g=e+f;

finalresults:(xA,zA,xB,zB)=(l,i,g,d);

cycle1: zB =xA+zA;read,storeandstartxA�zBandxB�zA;

cycle2: zB =zB
2;

cycle3: zB =zB
2;

cycleM: R=multiplier1_output;xB=multiplier2_output;

cycleM+1: zA=R+xB;read,storeandstartR�xBandxA�zA;

cycleM+2: zA=zA
2;

cycle2M: xB=multiplier1_output;xA=multiplier2_output;

cycle2M+1: xA =xA
2;read,storeandstartxP�zA;

cycle3M: R=multiplier1_output;

cycle3M+1: (xA,zA,xB,zB):=(zB,xA,R+xB ,zA);
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Compare Examples 2.3 and 2.4 based on the
schedules of Figs. 2.12 and 1.10b, respectively.
The data path that corresponds to Example 2.3
must include a multiplier, a squaring circuit, an
adder and five registers, plus connection resour-
ces, for example multiplexers. It executes the
computation in about 5M cycles. The data path
that corresponds to Example 2.3 must include
two multipliers, a squaring circuit, an adder and
five registers, plus connection resources. It exe-
cutes the computation in about 3M cycles. The
second solution is faster (3M cycles instead of
5M) but needs two multipliers.

2.5 Final Example

To conclude this chapter, Algorithm 2.2 without
the final last_step procedure is implemented.

2.5.1 Data Path

The loop body consists of two computation
schemes, either the scheme of Fig. 2.7 executed
when km−i= 0, or a similar one when km−i = 1.
The schedule of Fig. 2.12 is chosen so that only
one multiplier is necessary.

The following computation resources are
necessary:

• an adder that computes the sum A +B of two
polynomials;

• a mod f multiplier that computes the product
A � B mod f of two polynomials;

• a mod f squaring circuit that computes the
square a2 mod f of a polynomial.

Field addition amounts to bit-by-bit modulo 2
additions (XOR functions) so that the adder is a
combinational circuit consisting of m XOR gates
working in parallel (Fig. 2.14a). It computes
C =A +B in one cycle.

Computation resources executing field
squaring and multiplication have been described
in (Deschamps et al. 2009). Complete and syn-
thesizable source files classic_squarer.vhd and
interleaved_mult.vhd are available at the
Authors’ web site. They are considered as pre-
defined IP components (intellectual property
components) whose main characteristics are the
following.

• The classic squarer is a combinational circuit
that computes c = a2 mod f in one cycle
(Fig. 2.14c).

• The interleaved multiplier computes the pro-
duct Z=A � B mod f of two polynomials in
M cycles, with M>m, being m the degree of
polynomial f (Fig. 2.14b). It communicates
with other circuits with two signals start and

Table 2.2 Lifetime intervals

a [M, M + 1]

b [M, M + 1]

c [M + 1, M + 2]

d [M + 2, final]

e [3M, 3M + 1]

f [2M, 3M + 1]

g [3M + 1, final]

h [2M, 2M + 1]

i [2M + 1, final]

j [1, 2]

k [2, 3]

l [3, final]

xA [initial, M + 1]

zA [initial, M + 1]

xB [initial, 1]

zB [initial,1]

2.4 Resource Assignment 21

http://dx.doi.org/10.1007/978-3-030-12653-7_1


done: it reads and internally stores the input
operands during the first cycle after detecting
a positive edge on start and raises an output
flag done when the multiplication result is
available (Fig. 2.15).

A number M of cycles has been previously
used to define admissible schedules. However, as

the multiplier raises a flag done when the result is
available, it is not necessary to use a mod
M counter to determine when the result is
available on the multiplier output. Algorithm 2.2
without the final last_step procedure is equiva-
lent to the following that includes wait instruc-
tions. Sentences separated by commas are
executed in parallel:

start

clk

A,B a,b

start command 
detected

input values 
sampled

compute a·b mod f
(m cycles)

end of 
computation

done

Z a·b mod f

Fig. 2.15 Communication protocol

A B

C

A B
mm

m

m m

reset
start

done

m

Z

interleaved 
multiplier

a

c

m

m

classic 
squarer

(a) (b) (c)

Fig. 2.14 Computation resources
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Algorithm 2.3

xA=1,zA=0,xB=xP,zB =1;

foriin1..mloop

ifkm-i = 0then

zB =xA+zA,start(Z=xA�zB);

zB =zB
2;

zB =zB
2;

waituntildone;

R=Z;

start(Z=xB�zA);
waituntildone;

xB =Z;

zA =R+xB,start(Z=xA�zA);

zA =zA
2;

waituntildone;

xA =Z;

R=xA
2, start(Z=R�xB);

waituntildone;

xB =Z;

start(Z=xP�zA);
waituntildone;

xA =Z;

(xA,zA,xB,zB)=(zB,R,xA+xB,zA);

else

zA =xB+zB,start(Z=xB�zA);

zA =zA
2;

zA =zA
2;

waituntildone;

R=Z;

start(Z=xA�zB);
waituntildone;

xA =Z;

zB =R+xA,start(Z=xB�zB);

zB =zB
2;

waituntildone;

xB =Z;

R=xB
2, start(Z=R�xA);

waituntildone;

xA =Z;

start(Z=xP�zB);
waituntildone;

xB =Z;

(xB,zB,xA,zA)=(zA,R,xB+xA,zB);

endif;

endloop;

A data path able to execute Algorithm 2.3
must include

• three computation resources: mod f adder,
multiplier and squaring circuit;

• five registers that store m-bit data: xA, xB, zA,
zB and R;

• controllable connections to transfer data
between external inputs and outputs, compu-
tation resources and registers.

It must also include a shift register that per-
mits to sequentially read the bits of k and a mod
m counter to control the loop execution.

To specify the connection resources, consider
first the set of products included in Algorithm
2.3. There are eight different products:

xA � zB; xB � zA; xA � zA;R � xB; xP � zA; xB � zB;
R � xA; xP � zB:

In order to connect the external input xP and
the five register outputs xA, xB, zA, zB and R to the
two multiplier operand inputs, a straightforward
solution is shown in Fig. 2.16a: two 4-to-1m-bit
multiplexers. However, as mod f product is a
commutative operation, a better solution could be
considered. For that define an incompatibility
relation over the set fxA; xB; zA; zB;R; xPg: two
elements are incompatible if they are operands of
a same operation. As an example, xA and zB are
incompatible, as xA � zB is one of the operations.
The corresponding graph (Fig. 2.16b) can be
colored with two colors corresponding to the sets
{xA, xB, xP} and {zA, zB, R}. Thus, none of the
operations is a product of two elements of the
same set, so that xA, xB and xP can be assigned to
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the leftmost multiplier input and zA, zB and R to
the rightmost input. For that, two 3-to-1m-bit
multiplexers are used (Fig. 2.17).

An important observation: the circuit of
Fig. 2.17 works correctly if the multiplexer out-
puts mult1 and mult2 transmit the correct oper-
and values during the first cycle after the
detection of a positive edge on start (Fig. 2.15).
In particular, operations such as zB= xA+ zA and
start(Z = xA � zB) could not be executed in parallel
because the first one modifies the value of zB
before the sampling and storing of zB within the
interleaved multiplier. A first solution is to
modify Algorithm 2.3 and to replace instructions
such as

zB =xA+zA,start(Z=xA�zB);

by two successive instructions

start(Z=xA�zB);
zB =xA+zA;

The computation time is a bit longer (actually
three more cycles). Another option that permit to
execute in parallel operations such as

zB =xA+zA,start(Z=xA�zB);

is to add a 2m-bit register (Fig. 2.18): in this
way, the multiplexer output values mult1 and
mult2 are sampled when start = 1 and the register
outputs mult1_reg and mult2_reg transmit the
correct operand values during the next cycle (the
first cycle after the detection of a positive edge
on start).

The same type of analysis must be done to
define the connections to the adder inputs. The
operations executed by the adder are

xA þ zA;Rþ xB; xA þ xB; xB þ zB;Rþ xA; xB þ xA:

In this case, the incompatibility graph must be
colored with three colors (Fig. 2.19a) corre-
sponding to the sets {xA, zB}, {xB,zA} and {R}.
A possible solution is to assign the first set to the

xA xB R xP zB zA xB xA

00 01 10 11 00 01 10 11

A
reset
start

done
B

Z

interleaved
multiplier

xA

zA

xB

zB

xP

R

c1

c1c1

c2c2

c2

(a) (b)Fig. 2.16 Inputs to the
multiplier: a straightforward
solution, b colored graph

xA xB xP zA zB R

00 01 1- 00 01 1-

A
reset
start

done
B

Z

interleaved
multiplier

sel_p1 sel_p2

product

start_mult
mult_done

mult1 mult2

Fig. 2.17 Inputs to the multiplier: a better solution
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leftmost adder input, the second to the rightmost
input, and R to both inputs. Two 3-to-1m-bit
multiplexers are used (Fig. 2.19b).

Finally, the operations realized by the squar-
ing primitive are

z2B; z
2
A; x

2
A; x

2
B:

A 4-to-1m-bit multiplexer is used (Fig. 2.20).
Consider now the storing resources. Assum-

ing that xP and k are input variables that remain
available during the whole algorithm execution,
there remain five variables that must be internally
stored: xA, xB, zA, zB and R. For every register, the
origin of the data stored in every register must be
defined.

The operations that update xA are

xA ¼ 1; xA ¼ Z; xA ¼ zB; xA ¼ xB þ xA;

So, the updated value can be: 1 (initial value),
the multiplier output product, the adder output
adder_out or zB. The corresponding part of the
data path is an m-bit register, that initially stores
000���01 (when load = 1), and a 3-to-1m-bit
multiplexer (Fig. 2.21a).

The operations that update xB are

xB ¼ xP; xB ¼ Z; xB ¼ xA þ xB; xB ¼ zA;

So, the updated value can be: xP (initial value),
the multiplier output product, the adder output
adder_out or zA. The corresponding part of the
data path is an m-bit register that initially stores
xP, and a 3-to-1m-bit multiplexer (Fig. 2.21b).

xA xB xP

00 01 1-

zA zB R

00 01 1-

A
reset
start

done
B

Z

interleaved
multiplier
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product

start_mult
mult_done

mult1 mult2

en

mult1_reg mult2_reg

Fig. 2.18 Registered inputs to the multiplier
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Fig. 2.19 Inputs to the adder
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Fig. 2.20 Inputs to the squaring circuit
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The operations that update zA are

zA ¼ 0; zA ¼ Rþ xB; zA ¼ z2A;

zA ¼ R; zA ¼ xB þ zB; zA ¼ zB;

So, the updated value can be: 0 (initial value),
the adder output adder_out, the squaring circuit
output square, R or zB. The corresponding part of
the data path is an m-bit register, that initially
stores 000���00, and a 4-to-1m-bit multiplexer
(Fig. 2.21c).

The operations that update zB are

zB ¼ 1; zB ¼ xA þ zA; zB ¼ z2B;

zB ¼ zA; zB ¼ Rþ xA; zB ¼ R;

So, the updated value can be: 1 (initial value),
the adder output adder_out, the squaring circuit
output square, zA or R. The corresponding part of
the data path is an m-bit register, that initially

stores 000���01, and a 4-to-1m-bit multiplexer
(Fig. 2.21d).

Finally, the operations that update R are

R ¼ Z;R ¼ x2A;R ¼ x2B;

So, the updated value can be: the multiplier
output product or the squaring circuit output
square. The corresponding part of the data path
is an m-bit register and a 2-to-1m-bit multiplexer
(Fig. 2.21e).

The data path includes two additional com-
ponents: a shift register that permits to sequen-
tially read the bits of k and a mod m counter to
control the loop execution. They are shown in
Fig. 2.22. The shift register works as follows:

• When load = 1, the value of k (a circuit input)
is stored within the internal register inter-
nal_k, so that internal_k= k.

product zB
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1 20

load
en_xA

adder_out

register
initially: 1

product zA

sel_xB
1 20

load
en_xB

adder_out
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initially: xP

adder_out R
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1 20
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en_zA

square
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3
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adder_out zA

sel_zB
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Fig. 2.21 Data path registers
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• When shift = 1, the register contents are shif-
ted one bit to the left: internal_k = internal_k
(m − 2 �� 0) & 0.

• The output msb-_k = internal_k(m − 1).

In this way, the m bits of k, initially stored in
internal_k, are outputted through the serial
msb_k output; first km−1, then km−2, and so on.

The counter works as follows:

• When load = 1, the value of count is reset to 0.
• When shift= 1 the counter contents are

incremented: count = count + 1.

The complete data path (Fig. 2.23) is made up
of the components of Fig. 2.18 (interleaved
multiplier and multiplexers with registered out-
puts), Fig. 2.19b (adder and input multiplexers),
Fig. 2.20 (squaring circuit and input multiplexer),
Fig. 2.21 (parallel registers with their corre-
sponding input multiplexers) and Fig. 2.22 (mod
m counter and left shift register).

A complete VHDL model scalar_product_-
data_path.vhd is available at the Authors’ web
site. The numbers of bits of the input and output
ports are defined in the following VHDL entity
declaration.

reset
load
shift

counter
initially: 0

count

load
shift shift register

msb_k

k

serial_out

parallel_in

(a)

(b)

Fig. 2.22 Shift register and counter
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mult_done
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Fig. 2.23 Data path

ENTITYscalar_product_data_path IS

PORT(

xP,k:INSTD_LOGIC_VECTOR(m-1DOWNTO0);

clk,reset,start_mult,load,shift,en_XA,

en_XB,en_ZA,en_ZB,en_R:INSTD_LOGIC;

sel_p1,sel_p2,sel_a1,sel_a2,sel_sq,sel_xA,

sel_xB,sel_zA,sel_zB:

INSTD_LOGIC_VECTOR(1 DOWNTO0);

sel_R:INSTD_LOGIC;

xA,zA,xB,zB:

INOUTSTD_LOGIC_VECTOR(m-1 DOWNTO0);

count:INOUTNATURALRANGE0TOm-1;

msb_k,mult_done:OUTSTD_LOGIC

);

ENDscalar_product_data_path;
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2.5.2 Complete Circuit

The complete circuit structure is shown in Fig. 2.24.
Thus, it remains to generate the control unit.

The generation of the control unit is a task
similar to the translation of a programming lan-
guage program to an equivalent program in the
machine language corresponding to a particular
processor.

• On the one hand, an algorithm has been
defined (Algorithm 2.3). It can be considered
as a program in a programming language—in
this case pseudocode.

• On the other hand, a synthesizable VHDL
model of a data path has been generated

(Fig. 2.23, scalar_product_data_path.vhd). It
can be considered as a specific processor able
to execute the pseudocode program.

The operations that the data path executes
correspond to all possible value combinations of
signals

• start_mult, load, shift, en_XA, en_XB, en_ZA,
en_ZB, en_R, sel_p1, sel_p2, sel_a1, sel_a2,
sel_sq, sel_xA, sel_xB, sel_zA, sel_zB, sel_R,

in total 27 bits (nine 1-bit signals and nine 2-bit
signals).

The program execution control is based on the
values of four signals

k xP

start_mult
load
shift

en_xA

en_xB

en_zA

en_zB

en_R
sel_p1
sel_p2
sel_a1
sel_a2
sel_sq
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sel_zB

reset
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count
msb_k

mult_done

data path

reset

start

done

control unit

sel_R

Fig. 2.24 Structure of the
scalar product circuit
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• count, msb_k, mult_done generated by the
data path;

• start (an external control signal),

whose values define branching or jump
conditions.

As seen before (Sect. 1.2), the control unit is
modeled by a finite state machine. In this case, an
easy way to specify the finite state machine is to
associate an internal state with each operation,
branching, or jump of Algorithm 2.3. More
precisely:

• Two initial instructions are added to detect a
positive edge of start.

• An output done is generated: it is equal to 0
from the beginning to the end of the com-
putation and equal to 1 as long as a start order
(positive edge of start) is waited for.

• A simple and obvious modification of Algo-
rithm 2.3 generates the following algorithm in
which only operations and wait until and go
to statements are used.

Algorithm 2.4 Internal states and operations
(Algorithm 2.3 modified)

0:waituntilstart=0,done=1;

1:waituntilstart=1;

2:xA=1,zA=0,xB =xP,zB=1,count=0,

done=0;

3: ifkm-i =1thengoto23;

4: zB=xA+zA,start(Z=xA�zB);
5: zB=zB

2;

6: zB=zB
2;

7: waituntilmult_done=1;

8: R=Z;

9: start(Z=xB�zA);

10: waituntilmult_done=1;

11: xB=Z;

12: zA=R+xB,start(Z=xA�zA);
13: zA=zA

2;

14: waituntilmult_done=1;

15: xA=Z;

16: R=xA
2, start(Z=R�xB);

17: waituntilmult_done=1;

18: xB=Z;

19: start(Z=xP�zA);

20: waituntilmult_done=1;

21: xA=Z;

22: (xA,zA,xB,zB)=(zB,R,xA+xB,zA),go

to42;

23: zA=xB+zB,start(Z=xB�zA);

24: zA=zA
2;

25: zA=zA
2;

26: waituntilmult_done=1;

27: R=Z;

28: start(Z=xA�zB);

29: waituntilmult_done=1;

30: xA=Z;

31: zB=R+xA,start(Z=xB�zB);
32: zB=zB

2;

33: waituntilmult_done=1;

34: xB=Z;

35: R=xB
2, start(Z=R�xA);

36: waituntilmult_done=1;

37: xA=Z;

38: start(Z=xP�zB);

39: waituntilmult_done=1;

40: xB=Z;

41: (xB,zB,xA,zA)=(zA,R,xB+xA,zB);

42:ifcount<m-1thencount=count+1, go

to3;

elsegoto0;

The preceding program is executed in a
sequential manner, except when an explicit jump
(go to) instruction is included. The corresponding
finite statemachine has 43 internal states 0, 1, 2, ���,
42. The next-state function can be directly
extracted from the preceding program (Algorithm
2.4). For example, if the current internal state is 0,
that corresponds to instruction

0:waituntilstart = 0,done = 1;

then the next internal state is 1 if start= 0 and 0
(does not change) if start= 1.

If the current internal state is 2, that corre-
sponds to instruction

2:xA=1,zA=0,xB =xP,zB=1,count=0,

done=0;

then the next internal state is 3.
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A last example: if the current internal state is
42, that corresponds to instruction

42:ifcount < m-1thencount = count +1,

goto3;

elsegoto0;

then the next internal state is 3 if count <m − 1
and is 0 if count =m − 1.

As in many cases, the next internal state is the
current state plus 1; an interesting option is the
use of an implicit program counter: for example,
in the case of instruction number 0, the next
internal state is current_state + 1 if start = 0 and 0
(does not change) if start= 1. Or, in the case of
instruction number 2, the next internal state is
current_state + 1.

Finally, the next-state function of the control
finite state machine is defined by the following
case statement.

Algorithm 2.5 Next-state function

casecurrent_stateis

when0=>ifstart=0thencurrent_state=c-

urrent_state+1;

endif;

when1=>ifstart=1then

current_state=current_state+1;

endif;

when2=>current_state=

current_state+1;

when3=>ifmsb_k=0then

current_state=4;

elsecurrent_state=23;endif;

when4to6=>current_state=

current_state+1;

when7=>ifmult_done=1then

current_state=current_state+1;

endif;

when8to9=>current_state=

current_state+1;

when10=>ifmult_done=1then

current_state=current_state+1;

endif;

when11to13=>current_state=

current_state+1;

when14=>ifmult_done=1then

current_state=current_state+1;

endif;

when15to16=>current_state=

current_state+1;

when17=>ifmult_done=1then

current_state=current_state+1;

endif;

when18to19=>current_state=

current_state+1;

when20=>ifmult_done=1then

current_state=current_state+1;

endif;

when21=>current_state=

current_state+1;

when22=>current_state=42;

when23to25=>current_state=

current_state+1;

when26=>ifmult_done=1then

current_state=current_state+1;

endif;

when27to28=>current_state=

current_state+1;

when29=>ifmult_done=1then

current_state=current_state+1;

endif;

when30to32=>current_state=

current_state+1;

when33=>ifmult_done=1then

current_state=current_state+1;

endif;

when34to35=>current_state=

current_state+1;

when36=>ifmult_done=1then

current_state=current_state+1;

endif;

when37to38=>current_state=

current_state+1;

when39=>ifmult_done=1then

current_state=current_state+1;

endif;

when40=>current_state=

current_state+1;

when41=>current_state=

current_state+1;

when42=>ifcount<m-1then

current_state=3;

elsecurrent_state=0;endif;

endcase;
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The definition of the output function is a con-
ceptually easy but rather tedious task: it consists
of associating with each operation—or set of
operations—of Algorithm 2.4 the values of the
control signals that initiate those operations within
the data path. Some examples are given below:

Instructions number 0 and 1

waituntilstart = 0andwaituntil start = 1

do not imply any operation (nop operation) and
the done flag is set to 1. The corresponding
values of the control signal and of done are

start_mult= 0, load = 0, shift= 0, en_xA = 0,
en_xB= 0, en_zA= 0, en_zB= 0, en_R = 0,
sel_p1 = 00, sel_p2 = 00, sel_a1 = 00, sel_a2 =
00, sel_sq= 00, sel_xA= 00, sel_xB = 00,
sel_zA = 00, sel_zB= 00, sel_R = 0, done= 1.

Actually signals start_mult, load, shift, en_xA,
en_xB, en_zA, en_zB, en_R must be equal to 0 and
done equal to 1. The other values do no matter
(don’t care values) but have been set to 0.

Instruction number 2

xA=1,zA=0,xB=xP,zB =1,count=0,done=0

is executed by the data path when load = 1, and
all register enable inputs are disabled. The done
flag is set to 0. Thus

start_mult= 0, load = 1, shift= 0, en_xA = 0,
en_xB= 0, en_zA= 0, en_zB= 0, en_R = 0,
sel_p1 = 00, sel_p2 = 00, sel_a1 = 00, sel_a2 =
00, sel_sq= 00, sel_xA= 00, sel_xB = 00,
sel_zA = 00, sel_zB= 00, sel_R = 0, done= 0.

Instruction number 3

ifkm-i = 1thengoto23

does not imply any operation (nop operation).
The done flag is set to 0. Thus

start_mult= 0, load = 0, shift= 0, en_xA = 0,
en_xB= 0, en_zA= 0, en_zB= 0, en_R = 0,
sel_p1 = 00, sel_p2 = 00, sel_a1 = 00, sel_a2 =
00, sel_sq= 00, sel_xA= 00, sel_xB = 00,
sel_zA = 00, sel_zB= 00, sel_R = 0, done= 0.

Instruction number 4 includes two operations
in parallel;

zB =xA+zA

is executed when en_ZB= 1, sel_a1 = 00,
sel_a2 = 01, sel_zB= 00, and

start(Z=xA�zB)

is executed when start_mult= 1, sel_p1 = 00 and
sel_p2 = 01. The done flag is set to 0. Thus

start_mult= 1, load = 0, shift= 0, en_xA = 0,
en_xB= 0, en_zA= 0, en_zB= 1, en_R = 0,
sel_p1 = 00, sel_p2 = 01, sel_a1 = 00, sel_a2 =
01, sel_sq= 00, sel_xA= 00, sel_xB = 00,
sel_zA = 00, sel_zB= 00, sel_R = 0, done= 0.

A complete VHDL model scalar_product.vhd
is available at the Authors’ web site.

2.5.3 Test

Some information about finite binary fields and
elliptic curves are given in Appendices A and B.
In this example, the binary field is GF(2163) and
consists of all binary polynomials of degree
smaller than 163, with operations modulo a
polynomial f(z) of degree m = 163:

f zð Þ ¼ z163 þ z7 þ z6 þ z3 þ 1:

Then, a particular elliptic curve EC is defined
as follows: it consists of all pairs (x, y) 2 GF
(2163) � GF(2163) of binary polynomials such
that y2 + xy = x3 + x2 + 1, plus a particular element
∞ called element at infinity:

EC ¼ f x; yð Þ 2 GF 2163
� �� GF 2163

� �jy2 þ xy
¼ x3 þ x2 þ 1g[ f1g:

An addition operation can be defined so that
EC is a commutative group (Appendix B), being
∞ the neutral element. Then, given a point P of
EC and a natural k, the scalar product kP is
defined by
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kP ¼ PþPþ � � � þP k timesð Þ;
8 k[ 0 and 0P ¼ 1:

A binary polynomial of degree <163 can be
represented by its 163 binary coefficients. Thus,
the elements of GF(2163) as well as the scalar
values k are 163-bit vectors that can also be
represented as 41-digit hexadecimal vectors.

To check the working of the circuit, the fol-
lowing values of P = (xP, yP) and k are used:

xP ¼ 2fe13c0537bbc11acaa07d793de4e6d5e5c94eee8;

yP ¼ 289070fb05d38ff58321f2e800536d538ccdaa3d9;

k ¼ 4000000000000000000020108a2e0cc0d99f8a5ef:

Actually, in Algorithm 2.1 the value of yP is
only used by the final (and not implemented)
last_step procedure. So, its value is not necessary
to simulate the circuit of Sect. 2.5.2.

The simulation of the circuit with the previ-
ously defined values of xP and k gives the fol-
lowing results:

xA ¼ 1d538b8105663e13c972bf682b49975f7a5fd6345

zA ¼ 4ae93681fa9e59e7a7aa2b2592ba6e92dcb7d4674

xB ¼ 2758e50c38d039b358daf65e05bdd89f8fb1e4a1a

zB ¼ 00000000000000000000000000000000000000000

Algorithm 2.4 is an iteration that is executed
m times, and each iteration step includes five mul-
tiplications. The interleaved multiplication algo-
rithm is also an iteration that is executed m times.
Thus, a lower bound of the number of cycles is
5m2, in this case 5 � 1632 = 132,845 cycles.

A test bench test_scalar_product.vhd is
available at the Authors’ web site. The final
cycles of the test bench simulation results are
shown in Fig. 2.25.

2.6 Comments

All along the two first chapters important con-
cepts have been presented. The starting point of
this study of digital circuits is the observation that
a practical, rigorous, unambiguous specification
method is an algorithm defined in some language
—pseudocode and VHDL in the proposed
examples and exercises. In Chap. 1, the classical
partition of the system into data path and control
unit has been presented. In Chap. 2, part of the
solution space within which the system designer
must move in order to get good circuits is
explored. The designer must deduce from the
algorithms to be implemented which are the
necessary computation resources; they could be
standard components, virtual IP components,
completely new components that must be devel-
oped “from scratch,” and others. A first decision
that has a direct impact on the cost and perfor-
mance of the resulting circuit is the scheduling of
the operations. From the chosen schedule, not
only the computation time of the circuit is
deduced, but also the number of resources of each
type, the number and type of memory elements,
the number and type of connection resources.

A rather long example (Algorithm 2.1 without
the final procedure) has been studied. Virtual
components (in this case, VHDL models avail-
able in a free access Web site) have been used.
Several schedules have been proposed with dif-
ferent trade-offs between cost (basically the
number of multipliers) and the computation time.
The schedule of Fig. 2.12 has been chosen. It
permits to implement the algorithm with only
one multiplier. The final result is a synthesizable
VHDL model of the circuit. However, other
circuits could have been developed. Two of them
are proposed as Exercises 2 and 3 (Sec. 2.7).

Fig. 2.25 Algorithm 2.4 implementation (ModelSim Starter Edition, courtesy of Mentor Graphics)
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Obviously, operation scheduling is funda-
mental and determines many characteristics of
the resulting circuit. However, the solution space
exploration is not limited to the finding of the
best schedule(s) with respect to some initially
specified characteristics. Additional design tech-
niques can be used to improve the circuit per-
formance. An example: in some cases, slight (or
not so slight) modifications of the initial algo-
rithm yield significant circuits improvements. In
fact, the translation of Algorithm 2.1 to Algo-
rithm 2.2 is an example of such a—in this case
trivial—modification, but other example will be
seen later. Another example (Fig. 2.18): the
multiplexer output register is necessary to permit
the parallel execution of two operations (zB=
xA+ zA and start(Z = xA � zB)). In the next chapter,
it will be seen that the insertion of registers is a
technique that sometimes permits to execute
operations in parallel and to increase the maxi-
mum circuit frequency.

The previous example also suggests some
comments in relation to the control unit. The data
path is controlled by eighteen signals, nine 1-bit
and nine 2-bit signals, in total twenty-seven bits.
Obviously, the number of different meaningful
commands that the data path can execute is much
lower than 227 = 134,217,728. This observation
suggests the use of some types of command
encoding that would make easier and clearer the
control unit definition.

Another example of possible modification of
the circuit of Sect. 2.5: the main circuit
(scalar_product) consists of a data path and a
control unit. One of the data path components
(interleaved_mult) is also made up of a data path
and a control unit, while the classic_squarer
component is a combinational circuit. An alter-
native solution is the definition of a data path
able to execute all the operations, including those
corresponding to the interleaved_mult and clas-
sic_squarer components. The so-obtained circuit
could be more efficient than the proposed one as
some computation resources could be shared
between the three algorithms (field multiplica-
tion, squaring and scalar product). Nevertheless,
the hierarchical approach consisting of using

already existing components is probably safer
and allows reducing the development times.

The next chapters are dedicated to several
design techniques that permit to improve the
circuit performance or to make the design work
safer and easier to automatize.

2.7 Exercises

1. Generate several VHDL models of a 7-to-3
counter. Use for that the three options pro-
posed in Sect. 2.1 (Figs. 2.3, 2.4 and 2.5).

2. Implement Algorithm 2.2 using the schedule
of Fig. 2.8 so that three multipliers must be
used and the computation time is about
2M cycles. As before, use the synthesizable
source files classic_squarer.vhd and inter-
leaved_mult.vhd available at the Authors’
web site.

3. ImplementAlgorithm2.2 using the schedule of
Fig. 2.10b so that two multipliers must be used
and the computation time is about 3M cycles.
As before, use the synthesizable source files
classic_squarer.vhd and interleaved_mult.vhd
available at the Authors’ web site.

4. The following algorithm defines the last_step
procedure of Algorithm 2.1:

if zB = 0 then xA = xP; yA = xP + yP;

else

xA = xA / zA;

xB = xB / zB;

yA = ((xA + xP)[(xA + xP)(xB + xP) + xP2 + yP]

/ xP) + yP;

end if;

xR = xA; yR = yR;

Use the synthesizable source files clas-
sic_squarer.vhd, interleaved_mult.vhd and
mod_f_binary_division.vhd (division in GF(2m)
available at the Authors’ web site.
5. Design a circuit to compute the greatest

common divisor of two natural numbers,
based on the following simplified Euclidean
algorithm.

2.6 Comments 33



whilea 6¼bloop

ifa>bthena=a –b;

elseb=b –a;

endloop;

gcd=a;

6. The distance d between two points (x1, y1)
and (x2, y2) of the (x, y)-plane is equal to
d= ((x1 − x2)

2 + (y1 − y2)
2)0.5. Design a circuit

that computes d with only one subtractor and
one multiplier.

7. Design a circuit that computes the distance
between two points (x1, y1, z1) and (x2, y2, z2)
of the three-dimensional space.

8. Given a point (x, y, z) of the three-
dimensional space, design a circuit that
computes the following transformation.

xt
yt
zt

2
4

3
5 ¼

a11 a21 a31
a21 a22 a32
a31 a32 a11

2
4

3
5�

x
y
z

2
4

3
5

9. Design a circuit for computing z= ex using the
formula

ex ¼ 1þ x

1!
þ x2

2!
þ x3

3!
þ � � �

10. Design a circuit for computing xn, where n is
a natural, using the following relations: x0 = 1;
if n is even then xn = (xn/2)2, and if n is odd
then xn = x � (x(n−1)/2)2.
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3Pipeline

A very useful implementation technique, espe-
cially for signal processing circuits, is pipelining
(De Micheli 1994; Parhami 2000). It consists in
inserting additional registers so that the maxi-
mum clock frequency and input data throughput
are increased. Furthermore, in the case of FPGA
implementations, the insertion of pipeline regis-
ters has a positive effect on the power
consumption.

3.1 Introductory Example

Consider the introductory example of Sect. 2.1.
The set of operations (2.5) can be implemented by
a combinational circuit (Fig. 2.3) made up of four
carry-save adders, with a computation time equal
to 3 � TFA. That means that the minimum clock
period of a synchronous circuit including this
7-to-3 counter should be greater than 3 � TFA, and
that the introduction interval between successive
data inputs should also be greater than 3 � TFA.
The corresponding circuit is shown in Fig. 3.1a.
As previously commented, this is probably a bad
circuit because its cost is high and its maximum
clock frequency is low.

Consider now the circuit of Fig. 3.1b in which
registers have been inserted in such a way that
operations scheduled in successive cycles,
according to the ASAP schedule of Fig. 2.6a, are
separated by a register. The circuit still includes
four carry-save adders, but the minimum clock

period of a synchronous circuit including this
counter must be greater than TFA, plus the setup
and hold times of the registers, instead of 3 � TFA.
Furthermore, the minimum data introduction
interval is now equal to Tclk: as soon as a1, a2, b1
and b2 have been computed, their values are
stored within the corresponding output register,
and a new computation, with other input data, can
start; at the same time, new computations of c1
and c2, and of d1 and d2 can also start. Thus,
at time t, three operations are executed in parallel:

a1ðtÞ;a2ðtÞ
� �¼ CSA x1ðtÞ;x2ðtÞ;x3ðtÞ

� �
;

b1ðtÞ;b2ðtÞ
� �¼ CSA x4ðtÞ;x5ðtÞ;x6ðtÞ

� �
;

c1ðtÞ;c2ðtÞð Þ¼ CSA b1 t� 1ð Þ;ð
b2 t� 1ð Þ;x7 t� 1ð ÞÞ;

y1ðtÞ;y2ðtÞð Þ¼ CSA a1 t� 2ð Þ;ð a2 t� 2ð Þ;
c1 t� 1ð ÞÞ;y3ðtÞ

¼ c2 t� 1ð Þ;

so that

y1 tð Þ þ y2 tð Þ þ y3 tð Þ
¼ a1 t � 2ð Þ þ a2 t � 2ð Þ þ c1 t � 1ð Þ
þ c2 t � 1ð Þ

¼ x1 t � 2ð Þ þ x2 t � 2ð Þ þ x3 t � 2ð Þ
þ b1 t � 2ð Þ þ b2 t � 2ð Þ þ x7 t � 2ð Þ

¼ x1 t � 2ð Þ þ x2 t � 2ð Þ þ x3 t � 2ð Þ
þ x4 t � 2ð Þ þ x5 t � 2ð Þ
þ x6 t � 2ð Þ þ x7 t � 2ð Þ:

© Springer Nature Switzerland AG 2019
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The total computation time is equal to 2 � Tclk +
TFA � 3 � Tclk, and a new set of input data can be
inputted every cycle.

To summarize, assuming that the setup and
hold times are negligible,

Tclk [ TFA; latency ¼ 3 � Tclk; r ¼ Tclk;

where latency is the total computation time and
r is the minimum data introduction interval
(Definition 3.1).

Another implementation with two carry-save
adders has been shown in Fig. 2.4. This same
circuit, with a different drawing, is also shown in
Fig. 3.2. It works in three steps:

0 : s1;s2ð Þ¼ CSA x1;x2;x3ð Þ; r1;r2ð Þ¼ CSA x4;x5;x6ð Þ;
1 : r1;r2ð Þ¼ CSA r1;r2;x7ð Þ;
2 : y1;y2ð Þ¼ CSA s1;s2;r1ð Þ;y3¼ r2;

and is based on the ASAP schedule of Fig. 2.6a.
The minimum clock period of a synchronous
circuit including this counter must be greater than
TFA, plus the setup and hold times of the registers.
The total computation time is equal to 3 � Tclk,
and the minimum data introduction interval is
also equal to 3 � Tclk. A VHDL model seven_-
to_three_seq_reg.vhd is available at the Authors’
web site. In this model, an output register,
enabled during the third step, has been added in
order to synchronize the three output signals. Part

of the simulation result is shown in Fig. 3.3: the
circuit computes

17þ 18þ 19þ 16þ 17þ 18þ 19

¼ 22þ 64þ 38;

33þ 34þ 35þ 32þ 33þ 34þ 35

¼ 38þ 128þ 70;

in three cycles and starts a new computation
every three cycles.

Consider now the circuit of Fig. 3.4. It con-
sists of a modification of the circuit of Fig. 3.2 in
which an additional pipeline register has been
inserted. This new circuit is made up of two
stages separated by the pipeline register. Within
every stage, the operations are executed in two
cycles. The first stage executes the two following
successive steps:

x1 x2 x3

CSA

x4 x5 x7

CSA

CSA

CSA

x6

a1 a2 b1 b2

c1 c2

d1 d2

y1 y2 y3

x1 x2 x3

CSA

x4 x5 x7

CSA

CSA

CSA

x6

a2 b1 b2

c1 c2

d2

y1 y2 y3

d1

a1

clk

clk

(a) (b)

Fig. 3.1 a Combinational circuit. b Pipelined circuit

x5 x6 x7

CSA

CSA

y3

CEN

0 0 0

0 0 0

1 1 1

1 1 1

sel

en01

x4

sel

r1 r2

x2 x3x1

CENen0

s1s2

y1 y2

Fig. 3.2 Three-cycle implementation of a 7-to-3 counter
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0 : r1ðtÞ;r2ðtÞ
� �¼ CSA x4ðtÞ;x5ðtÞ;x6ðtÞ

� �
;

1 : c1ðtÞ;c2ðtÞ
� �¼ CSA r1ðtÞ;r2ðtÞ;x7ðtÞ

� �
;

and the second stage executes

0 : s1ðtÞ;s2ðtÞ
� �¼ CSA x1 t� 1ð Þ;x2 t� 1ð Þ;x3 t� 1ð Þð Þ;

1 : y1ðtÞ;y2ðtÞ
� �¼ CSA s1ðtÞ;s2ðtÞ;c1 t� 1ð Þ� �

;

y3ðtÞ ¼ c2 t� 1ð Þ;

At the end of the second step,

• The first stage generates r1(t) and r2(t) such
that

c1 tð Þþ c2 tð Þ ¼ x4 tð Þþ x5 tð Þþ x6 tð Þþ x7 tð Þ;

• The second stage generates y1(t), y2(t) and
y3(t) such that

y1 tð Þþ y2 tð Þþ y3 tð Þ
¼ x1 t � 1ð Þþ x2 t � 1ð Þþ x3 t � 1ð Þ
þ c1 t � 1ð Þþ c2 t � 1ð Þ

¼ x1 t � 1ð Þþ x2 t � 1ð Þþ x3 t � 1ð Þ
þ x4 t � 1ð Þþ x5 t � 1ð Þ
þ x6 t � 1ð Þþ x7 t � 1ð Þ:

Fig. 3.3 Simulation of a 7-to-3 counter (courtesy of Mentor Graphics)

x1 x2 x3 x5 x6 x7

CSA

CSA

0 0 0

0 0 0

1 1 1

1 1 1

sel

x4

sel

CENen0

CENen0

s1s2

CENen1

y1 y2 y3

r1 r2

c1 c2

Fig. 3.4 Two-stage two-cycle implementation
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An output register, enabled during the second
cycle, synchronizes the three output signals.

The minimum clock period of a synchronous
circuit including this counter must be greater than
TFA, plus the setup and hold times of the regis-
ters. The total computation time is equal to
4 � Tclk (two stages and two cycles per stage), but
the two stages work in parallel, the first with
input data x4(t) to x7(t) and the second with input
data x1(t − 1) to x3(t − 1), so that the minimum
data introduction interval is now equal to 2 � Tclk.
A VHDL model seven_to_three_pipe.vhd is
available at the Authors’ web site. Part of the
simulation result is shown in Fig. 3.5: the circuit
computes

17þ 18þ 19þ 16þ 17þ 18þ 19

¼ 22þ 64þ 38;

33þ 34þ 35þ 32þ 33þ 34þ 35

¼ 38þ 128þ 70;

in four cycles and starts a new computation every
two cycles.

The circuit of Fig. 3.4 includes two carry-save
adders, and its timing constraints are the
following:

Tclk [ TFA þ Tmultiplexor; latency ¼ 4 � Tclk; r
¼ 2 � Tclk

where latency is the total computation time and
r is the minimum data introduction interval.

To summarize, the sequential circuit of Fig.
3.2, whose simulation result is shown in Fig. 3.3,
computes the 7-to-3 counter function in three
cycles and can start a new computation every
three cycles, while the pipelined circuit of Fig.
3.4, whose simulation result is shown in Fig. 3.5,
computes the same function in four cycles but
can start a new computation every two cycles.

Definition 3.1 The main parameters of a pipe-
lined circuit are the following.

• The latency (also called delay or response
time) is the total delay between the intro-
duction of a new set of input data and the
generation of the corresponding output
results. If the circuit consists of n pipeline
stages and all stages are executed in s clock
period Tclk, then the latency is equal to n � s �
Tclk. Thus, the latency of the circuit of Fig.
3.1b (n = 3, s = 1) is equal to 3 � Tclk, the
latency of the circuit of Fig. 3.2 (actually a
non-pipelined circuit so that n = 1, s = 3) is
equal to 3 � Tclk and the latency of the circuit
of Fig. 3.4 (n = 2, s = 2) is equal to 4 � Tclk.

• The pipeline rate (also called pipeline period)
is the data introduction interval. If all stages
are executed in s clock cycles, the pipeline
rate is equal to s � Tclk. Thus, the pipeline rate
of the circuit of Fig. 3.1.b is equal to Tclk, the
pipeline rate of the circuit of Fig. 3.2 is equal
to 3 � Tclk and the pipeline rate of the circuit of
Fig. 3.4 is equal to 2 � Tclk.

Fig. 3.5 Simulation of the pipelined circuit (courtesy of Mentor Graphics)
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• The throughput (also called speed, bandwidth
or production) is the number of input data
processed per time unit. Consider a sequence
of m successive input data. The computation
time of the first output data is equal to the
latency, that is, n � s � Tclk. Then, a new output
data is generated every r = s � Tclk time units.
Thus, the total computation time is equal to
n � s � Tclk + (m − 1) � r and the throughput is
equal to m/(n � s � Tclk + (m − 1) � r). So, for
great numbers of processed data (m!∞) the
throughput is equal to the inverse 1/r of the
pipeline rate r.

The main positive result of pipelining is an
important increase of the throughput (or band-
width) without a great increase of the cost. To
understand that point, consider the generic circuit
of Fig. 3.6a. It consists of n subcircuits whose
latencies are approximately equal, say T time
units. They could be combinational circuits or
sequential circuits that compute their function in
s clock periods in which case T = s � Tclk. The
total computation time is equal to n � T, and the
throughput (number of input data processed per
time unit) is equal to 1/n � T. The circuit of Fig.
3.6b is the pipelined version of the preceding.
Taking into account the setup times and hold
times of the pipeline registers, the period of the
pipeline register clock must be a bit longer than
T, say T + d time units. The total processing
time of a sequence of m input data is equal to
n � (T + d) + (m − 1) � (T + d) time units, so that
the throughput is equal tom/(n � (T + d) + (m − 1) �
(T + d)). For great m (m ! ∞), the throughput is
equal to 1/(T + d). The speedup factor that is the
relation between the throughput of the pipelined
circuit (Fig. 3.6b) and the throughput of the
initial circuit (Fig. 3.6a) is equal to

speedup factor ¼ n � T=ðT þ dÞ
¼ n=ð1þ aÞ where a ¼ d=T :

ð3:1Þ

Generally, a << 1 as it is the relation between
the sum of the setup and hold times of a register
and the computation time of a subcircuit of the
original circuit (Fig. 3.6a).

Thus, the throughput of the circuit has been
multiplied by n/(1 + a) ≅ n, that is, the number of
pipeline stages. On the other hand, the additional
cost of the pipelined circuit corresponds to the
pipeline registers. Assume that the n subcircuits
of Fig. 3.6a have approximately the same cost
C and that the pipeline registers are identical
(same number of bits). Then, the cost without
pipelining is equal to n � C, while the cost of the
pipelined circuit is equal to n � (C + Creg). The
cost increase is equal to

CþCreg

� �
=C ¼ 1þ b where b ¼ Creg=C:

ð3:2Þ

If all n subcircuits are relatively complex
circuits, so that C >> Creg, then b << 1 and the
cost increase is low.

It is worthwhile to comment that pipelining is
a very effective technique in the case of an FPGA
implementation of the circuit.

• The basic cell of a field-programmable gate
arrays includes a flip-flop, so that the inser-
tion of pipeline registers does not necessarily

subcircuit 
1

subcircuit 
2

subcircuit 
n

subcircuit 
1

subcircuit 
2

subcircuit 
n

EN

EN

········

EN

········

(a) (b)

Fig. 3.6 a Original circuit. b Pipelined circuit
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increase the total cost, computed in terms of
used basic cells. The pipeline registers could
consist of flip-flops not used in the
non-pipelined version.

• Most FPGA families also permit to imple-
ment with lookup tables (LUTs) those regis-
ters that do not need reset signals. This can be
another cost-effective option.

• The insertion of pipeline registers also has a
positive effect on the power consumption:
The presence of synchronization barriers all
along the circuit drastically reduces the
number of generated spikes.

3.2 Segmentation

In the preceding examples of pipelined circuits,
the partition of the circuit into several subcircuits
(Figs. 3.1, 3.2 and 3.6) was assumed to have been
defined in advance. The practical problem that the
circuit designer is faced with is the following:
given an initial non-pipelined circuit, how can it
be partitioned in such a way that an efficient
pipelined implementation could be considered.

According to the general design strategy pro-
posed in this course, it is assumed that the initial
circuit has been developed starting from an
algorithm and from the study of the precedence
relations between the algorithm operations. Then,
given a computation scheme and its precedence
graph G, a segmentation of G is an ordered par-
tition {S1, S2, …, Sk} of G. The segmentation is
admissible if it respects the precedence relation.
This means that if there is an arc from opJ 2 Si to
opM then either opM belongs to the same segment
Si or it belongs to a different segment Sj with j > i.

In fact, the elements Si of G will correspond to
pipeline stages and the order of the elements of
G will correspond to the order of the corre-
sponding stages. Thus, to be admissible the
chosen segmentation must respect the following
rule: if an operation is executed by some pipeline
stage, say number i, then all the data it generates
could only be used within this same stage or
within stage number j with j > i.

Two examples are shown in Fig. 3.7 in which
the segments are separated by dotted lines.

The segmentation of Fig. 3.7a, that is G1 =
{op1, op2}, G2 = {op3, op4}, G3 = {op5, op6}, is
admissible, while that of Fig. 3.7b, that is G1 =
{op1, op3}, G2 = {op2, op5}, G3 = {op4, op6}, is
not (there is an arc op2 ! op3 from G2 to G1).

Once an admissible partition has been defined,
every segment can be synthesized separately,
using the same methods as before (scheduling,
resource assignment). In order to assemble the
complete circuit, additional registers are inserted:
if an arc of the precedence graph crosses the line
that separates segments i and i + 1, then a register
must be inserted; it will store the output data
generated by segment i that in turn are input data
to segment i + 1. As an example, the structure of
the circuit corresponding to Fig. 3.7a is shown in
Fig. 3.8.

Assume that Ci and Ti are the cost and com-
putation time of segment i. The cost of the
complete circuit is equal to

C ¼ C1 þC2 þ . . .þCk þCregisters ð3:3Þ

where Cregisters represents the total cost of the
pipeline registers.

S1

S3

S2

S1

S2

S3

op1

op2

op3 op5

op4

op6

op1

op2

op3 op5

op4

op6

(a) (b)

Fig. 3.7 a Admissible segmentation. b Non-admissible
segmentation
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The pipeline registers are synchronized by a
clock signal whose period Tpipeline must be
greater than all segment computation times:

Tpipeline �maxfT1; T2; � � � ; Tkgþ Tregisters ð3:4Þ

where Tregisters is the additional delay introduced
by the pipeline registers (setup and hold times).

The latency of the complete circuit is equal to

T ¼ k � Tpipeline � k
� ½maxfT1; T2; � � � ; Tkgþ Tregisters� ð3:5Þ

and the pipeline rate time d, that is the time
interval between successive data inputs, is

d ¼ Tpipeline �maxfT1; T2; � � � ; Tkgþ Tregisters

ð3:6Þ

Example 3.1 Consider a three-dimensional space
defined as follows:

S ¼ 0; 1; 2; � � � ; 2M � 1
� �3 ð3:7Þ

for some natural M. The space points are repre-
sented under the form (x, y, z) where x, y and
z are M-bit naturals. The circuit to be designed
computes the distance between two points (x1, y1,
z1) and (x2, y2, z2):

distance ¼ x2 � x1j j2 þ y2 � y1j j2
h

þ z2 � z1j j2
i1=2 ð3:8Þ

The maximum value of distance is

½3 � ð2M � 1Þ2�1=2 ¼ 31=2 � ð2M � 1Þ\2Mþ 1

ð3:9Þ

so that it is an (M + 1)-bit natural.
According to (3.7), the center of S is point

(2M−1, 2M−1, 2M−1) and the minimum distance
between two points is 1. If the circuit under
development were included within a system that
process points belonging to a three-dimensional
space whose center is (0, 0, 0) and whose point
coordinates are signed fixed-point numbers,
previous translation and scaling operations
should have been previously executed.

The following algorithm computes (3.8):

a = | x2 - x1 |;
b = | y2 - y1 |;
c = | z2 - z1 |;
d = a2;
e = b2;
f = c2;
g = d + e + f;

distance = g1=2;

stage 1:
op1 and op2

stage 2:
op3 and op4

stage 3:
op5 and op6

Fig. 3.8 Pipelined circuit
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The corresponding precedence graph is shown
in Fig. 3.9.

Several admissible segmentations are shown
in Fig. 3.10.

Before choosing a pipeline configuration,
some previous decisions must be taken. Two

predefined components will be used:
shift_and_add_multiplier.vhd and SquareRoot.
vhd. Complete and synthesizable source files are
available at the Authors’ web site. They are
considered as predefined IP components (intel-
lectual property components) whose main char-
acteristics are the following.

• The shift_and_add_multiplier component
computes z = x � y + u + v, where x and u are
n-bit naturals, y and v are m-bit naturals and
z is an (n + m)-bit natural. The computation is
executed in m cycles with a minimum clock
period approximately equal to the delay of an
n-bit adder. In this circuit, inputs u and v will
be connected to constant values 0.

• The data input of the SquareRoot component
is a 2n-bit natural x. Its outputs are an n-bit
natural root and an (n + 1)-bit natural re-
mainder such that x = root2 + remainder
where remainder � 2 � root. The computa-
tion is executed in n cycles, and the minimum
clock period is approximately equal to the
delay of an n-bit adder.

Observe that if x = root2 + remainder and
remainder � 2 � root, then
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root2 ¼ x� remainder;

rootþ 1ð Þ2 ¼ root2 þ 2 � rootþ 1

¼ x� remainderð Þþ 2 � root
þ 1� xþ 1;

so that (remainder is natural)

root2 � x� rootþ 1ð Þ2�1\ rootþ 1ð Þ2:
ð3:10Þ

According to (3.10), root = bx1=2c, that is, the
integer square root of x.

Thus, shift_and_add_multiplier components
are used to compute

d ¼ a � aþ 0þ 0 ¼ a2; e ¼ b � bþ 0þ 0
¼ b2 and f ¼ c � cþ 0þ 0 ¼ c2

(Fig. 3.9), where a, b and c are M-bit naturals,
and d, e and f are 2M-bit naturals. The value of
parameters m and n is m = n = M, so that m + n =
2M, and the computation is executed inM cycles
with a minimum clock period approximately
equal to the delay of an M-bit adder.

A SquareRoot component is used to compute

distance ¼ g1=2

(Fig. 3.9), where distance is an (M + 1)-bit nat-
ural (Eq. 3.9) so that g is a (2 M + 2)-bit natural
and the value of parameter n is M + 1. The
computation is executed in n = M + 1 cycles with
a minimum clock period approximately equal to
the delay of an (M + 1)-bit adder.

The differences a = |x2 − x1|, b = |y2 − y1|, c = |
z2 − z1| where x1, x2, y1, y2, z1 and z2 are M-bit
naturals will be computed by combinational cir-
cuits whose delays are approximately equal to
the delay of an M-bit adder.

The sum g = d + e + f (Fig. 3.9) where d, e and
f are 2M-bit naturals will also be computed by a

combinational circuit whose delay is approxi-
mately equal to the delay of a 2M-bit adder.

To simplify the circuit design, it is assumed
that

• The clock period Tclk is greater than the delay
of a 2M-bit adder.

• The computation times of the shift_and_add
and SquareRoot components are equal to N �
Tclk where the number N of cycles is (slightly)
greater than M + 1 (so as to take into account
initial start and final done cycles).

To summarize, with the preceding assumptions,

• a, b, c and g are computed in 1 cycle.
• d, e, f and distance are computed in N cycles.

Consider the segmentation of Fig. 3.10a to
which corresponds a two-stage pipeline. Within
each stage, the schedule of the operations must be
defined. In the case of Fig. 3.11a, the first stage is
scheduled as follows: the three differences a,
b and c are computed during cycle 1, and the three
squares d = a2, e = b2 and f = c2 are computed
during cycles 2 to N + 1. During cycle N + 2, the
stage 1 results are transferred to stage 2. The
second stage is scheduled as follows: the sum g =
d + e + f is computed during cycle 1, and the
square root distance = g1/2 is computed during
cycles 2 to N + 1. During cycle N + 2, the stage 2
results are transferred to the circuit output.

This first solution is a pipeline with two
stages, each of them constituted of N + 2 cycles.
Thus,

latency ¼ 2 � N þ 2ð Þ � Tclk0 ffi 2 � N � Tclk;
ð3:11aÞ

pipeline rate ¼ Nþ 2ð Þ � Tclk ffi N � Tclk;
ð3:11bÞ

cost[ 3 � Csquare þCroot: ð3:11cÞ
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In (3.11c), only the cost of the more complex
components has been taken into account. The
actual cost also includes the register, adder,
connection and control unit costs.

In the case of Fig. 3.11b, the first stage is
scheduled as follows: a is computed during cycle
1, the square d = a2 is computed during cycles 2
to N + 1, b is computed during cycle N + 2, the
square e = b2 is computed during cycles N + 3 to
2 N + 2, c is computed during cycle 2N + 3, the
square f = c2 is computed during cycles 2N + 4 to
3N + 3, and the stage 1 results are transferred to
stage 2 during cycle 3N + 4. The second stage is
scheduled as follows: the sum g = d + e + f is
computed during cycle 1, and the square root
distance = g1/2 is computed during cycles 2 to N
+ 1. The stage 2 results are available at the
beginning of cycle N + 2. However, all pipeline
registers must be updated at the same time in
order to maintain the data flow synchronization,
so that the stage 2 results are transferred to the
circuit output during cycle number 3N + 4.

This second solution is a pipeline with two
stages and s = 3N + 4 cycles per stage. Thus,

latency ¼ 2 � 3N þ 4ð Þ � Tclk ffi 6 � N � Tclk;
ð3:12aÞ

pipeline rate ¼ 3Nþ 4ð Þ � Tclk;ffi 3 � N � Tclk;
ð3:12bÞ

cost[Csquare þCroot: ð3:12cÞ

Comparing with the precedent solution (Eq.
3.11a), the cost has been lowered (two complex
components instead of four), but the pipeline rate
has been multiplied by three (the throughput has
been divided by three).

Consider now the segmentation of Fig. 3.10c,
to which corresponds a two-stage pipeline, with
the stage schedules of Fig. 3.11c. The first stage
is scheduled as follows: a is computed during
cycle 1, the square d = a2 is computed during
cycles 2 to N + 1, b is computed during cycle N +
2, the square e = b2 is computed during cycles N
+ 3 to 2 N + 2, and the stage 1 results are
transferred to stage 2 during cycle 2 N + 3. The
second stage is scheduled as follows: c is com-
puted during cycle 1, the square f = c2 is com-
puted during cycles 2 to N + 1, the sum g = d + e
+ f is computed during cycle N + 2, and the
square root distance = g1/2 is computed during
cycles N + 3 to 2 N + 2. The stage 2 results are
transferred to the circuit output during cycle
number 2N + 3.
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Fig. 3.11 a First example of schedule. b Second example of schedule. c Third example of schedule
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This third solution is a pipeline with two
stages and 2N + 3 cycles per stage. Thus,

latency ¼ 2 � 2N þ 3ð Þ � Tclk ffi 4 � N � Tclk;
ð3:13aÞ

pipeline rate ¼ 2Nþ 3ð Þ � Tclk;ffi 2 � N � Tclk;
ð3:13bÞ

cost[ 2 � Csquare þCroot: ð3:13cÞ

Comparing with the precedent solutions (Eqs.
3.11a and 3.12a), the cost (three complex com-
ponents) and the pipeline rate have intermediate
values.

It is also interesting to evaluate the circuit
performance of a one-stage circuit (actually a
non-pipelined circuit). Consider the ASAP
schedule of Fig. 3.12.

latency ¼ 2Nþ 2ð Þ � Tclk ffi 2 � N � Tclk;
ð3:14aÞ

pipeline rate ¼ latency ffi 2 � N � Tclk; ð3:14bÞ
cost[ 3 � Csquare þCroot: ð3:14cÞ

Table 3.1 is a comparison of the preceding
options.

Obviously, there are other solutions. For
example, the admissible partition of Fig. 3.10b
could be considered. However, it is probably not
a good option. If the first stage is executed with
two multipliers, then the number of cycles per
stage is approximately equal to N but four
complex components must be used. Thus, the
rate is approximately equal to N � Tclk, the cost is
greater than 4 � Ccomplex-component, but the latency
is equal to 3 � rate ≅ 3 � N � Tclk, a longer delay
than in the second row of Table 3.1. If the first
stage is executed with one multiplier, then the
number of cycles to execute the first stage is
approximately equal to 2N. The rate is approxi-
mately equal to 2 � N � Tclk, the cost is greater
than 3 � Ccomplex-component, but the latency is
approximately equal to 3 � rate ≅ 6 � N � Tclk, a
longer delay than in the fourth row of Table 3.1.

To conclude this example, the circuit corre-
sponding to the schedule of Fig. 3.11c is imple-
mented. A block diagram of the data path is
shown in Fig. 3.13. An additional control unit
generates the control signals sel, start1, en,
en_pipe, start21 and start22. It is a mod 2N + 3
counter plus a decoder (Table 3.2) that generates
the control signals in function of the counter state
and according to the schedule of Fig. 3.11c.

A VHDL model distance.vhd is available at
the Authors’ web site. Part of the simulation
result with M = 8 and N = 12 is shown in Fig.
3.14. The circuit computes the distance between
points (11, 10, 9) and (7, 38, 5), points (0, 0, 0)
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Fig. 3.12 Non-pipelined circuit, ASAP schedule

Table 3.1 Comparison of
pipelined circuits

Latency Rate Cost

One stage, Fig. 3.12 2 � N � Tclk 2 � N � Tclk 4 � Ccomplex-component

Two stages, Fig. 3.11a 2 � N � Tclk N � Tclk 4 � Ccomplex-component

Two stages, Fig. 3.11b 6 � N � Tclk 3 � N � Tclk 2 � Ccomplex-component

Two stages, Fig. 3.11c 4 � N � Tclk 2 � N � Tclk 3 � Ccomplex-component
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Fig. 3.13 Distance
computation

Table 3.2 Command
decoder

State n° sel start_1 en en_pipe start21 start22

0 0 0 0 0 0 0

1 0 1 0 0 1 0

2 to N − 1 0 0 0 0 0 0

N 0 0 1 0 0 0

N + 1 1 0 0 0 0 0

N + 2 1 0 0 0 0 1

N + 3 to 2 N + 1 1 0 0 0 0 0

2N + 2 0 0 0 1 0 0
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and (255, 255, 255), and points (3, 18, 1) and
(7, 6, 5):

b½ 11� 7j j2 þ 10� 38j j2 þ 9� 5j j2�1=2c ¼ 28;

b½ 0� 255j j2 þ 0� 255j j2 þ 0� 255j j2�1=2c ¼ 441;

b½ 3� 7j j2 þ 18� 6j j2 þ 1� 5j j2�1=2c ¼ 13:

The latency is equal to 4N + 6 = 54 cycles, and
the pipeline rate is equal to 2N + 3 = 27 cycles.

Comment 3.1

• Pipelining has been presented in the case of
computation schemes (algorithm without
branches and loops). How can the case of
more complex algorithms be treated, for
instance algorithms including loops? In Chap.
2, an elliptic curve cryptography algorithm
has been partially implemented. It consists of
a loop whose body includes a branch (Algo-
rithm 2.1). The proposed method consisted in
implementing a data path able to execute both
branches of the loop body and to define a
control unit that executes the complete algo-
rithm using this data path as a specific pro-
cessor. This data path (Fig. 2.23) can be
segmented into several pipeline stages. An
example, with five stages, is given in
Deschamps et al. (2012, Example 3.1).
Nevertheless, the initial data of every loop
body execution is the results of the preceding
loop body execution. In consequence, new
input data is not available until the preceding
loop body execution is completed. Thus, the

pipeline rate is equal to the latency. Two
advantages of the pipelined circuit are that the
clock frequency has been incremented (mul-
tiplied by the number of pipeline stages) and
that the power consumption might have been
reduced because the synchronization barriers
(pipeline registers) reduce the generation of
spikes, but the throughput is the same as that
of the non-pipelined circuit. To increase the
throughput, the loop must be (at least par-
tially) flatten. This technique will be studied
in Chap. 4.

• More flexible pipeline circuits (elastic
pipelines) can also be considered: instead of
connecting the stages by means of pipeline
registers, all of them controlled by the same
clock signal, a more flexible configuration
uses first-in first-out (FIFO) memories instead
of registers. Then, the data flow control relies
on the following rule: a pipeline stage can
process data if its input FIFO is not empty,
and its output FIFO is not full. This technique
will be studied in Chap. 5.

3.3 Circuit Transformations

Often, pipelining techniques are used to improve
the working of an already existing circuit. In such
a case, the pipelined circuit is not developed
“from scratch” and the designer work consists of
a rather simple modification of the previously
developed circuit. Two cases are considered in
this section: combinational circuits and digital
signal processing circuits.

Fig. 3.14 Simulation of the distance computation (courtesy of Mentor Graphics)
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3.3.1 Combinational to Pipelined
Transformations

Consider a combinational circuit made up of
relatively small blocks, all of them with nearly
equal delays. Assume that the longest input-to-
output path (the critical path) goes through
n blocks. Then, the total computation time of this
combinational circuit is equal to n � T time units.
If this circuit is used as a computation resource of
a synchronous circuit, then the clock cycle must
be greater than n � T, and in some cases it could
be a too long time (a too low frequency). In order
to increase the clock frequency, as well as
to reduce the minimum time interval between
successive data inputs, the solution is pipelining.
As the combinational version already exists, it is
no longer necessary to use the general method of
Sect. 3.2 and the combinational circuit can be
directly segmented into stages. Actually, an
example has already been shown (Fig. 3.1).
Consider another generic example.

Example 3.2 The iterative circuit of Fig. 3.15a is
made up of twelve identical blocks (cells), each
of them with a maximum delay of tcell seconds.
Assume that it is part of a synchronous circuit,
and that all its inputs come from register outputs
and all its outputs go to register inputs. The
registers have minimum setup and propagation
times equal to tSU and tP time units, respectively,
and all connections are assumed to have the same
propagation delay tconnection. Then, the longest
paths between the input register and the output
register include six cells and seven connections.

One of the critical paths is shown in Fig. 3.15b.
Thus, the minimum clock cycle TCLK must sat-
isfy the following relation:

TCLK [ 6 � tcell þ 7 � tconnection þ tSU þ tP:

ð3:15Þ

If the period defined by condition (3.15) is too
long, the circuit must be segmented. A two-stage
segmentation is shown in Fig. 3.16. Registers
must be inserted in all positions where a con-
nection crosses the dotted line. Thus, seven
registers must be added. Assuming that the
propagation time of every part of a segmented
connection is still equal to tconnection, the fol-
lowing condition must hold:

clk

clk

clk

clk

clk

clk

(a) (b)Fig. 3.15 Combinational
circuit

clk

clk

clk

Fig. 3.16 Two-stage segmentation
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TCLK [ 3 � tcell þ 4 � tconnection þ tSU þ tP:

ð3:16Þ

A five-stage segmentation is shown in
Fig. 3.17. In this case, 32 registers must be added
and the following condition must hold:

TCLK [ tcell þ 2 � tconnection þ tSU þ tP: ð3:17Þ

Consider a concrete example.

Example 3.3 Implement a 128-bit adder made up
of four 32-bit adder components. A combinational
implementation is described in Fig. 3.18. In this
case, the connection propagation times are negli-
gible with respect to the component delays. Thus,
the computation time T of the circuit is equal to 4.
Tadder, where Tadder stands for the computation
time of a 32-bit adder. It corresponds to the crit-
ical path from the cin input to the cout output.

A four-stage segmentation is shown in
Fig. 3.19. Every stage includes one 32-bit adder

so that the minimum clock cycle, as well as the
minimum time interval between successive data
inputs, is equal to Tadder. The corresponding
circuit is shown in Fig. 3.20. In total (7 � 32 + 1)
+ (6 � 32 + 1) + (5 � 32 + 1) = 579 additional
flip-flops are necessary in order to separate the
pipeline stages.

In order to implement this circuit, a predefined
carry-select adder (Parhami 2000; Deschamps
et al. 2012) is used to synthesize the 32-bit adder
component. A parameterized VHDL model
carry_select_adder.vhd is available at the
Authors’ web site. The parameters m and k define
the structure of the carry-save adder: it consists
of m k-bit adders. In this case, the chosen
parameter values are m = 4 and k = 8 so that the
total number of bits is 4 � 8 = 32. A VHDL model
adder128pipeline.vhd of the circuit of Fig. 3.20
is available at the Authors’ web site. Part of the
simulation result is shown in Fig. 3.21. The cir-
cuit computes

0123456789abcdef0123456789abcdee + fed-
cba9876543210fedcba9876543210 + 1 =
0ffffffffffffffffffffffffffffffff,
11111111111111111111111111111110 +
00000000000000000000000000000000 + 1 =
011111111111111111111111111111111,
99999999999999999999999999999999 +
88888888888888888888888888888888 + 1 =
122222222222222222222222222222222,
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb +
44444444444444444444444444444444 + 1 =
100000000000000000000000000000000
(All numbers in hexadecimal).

The latency is equal to 4 cycles, and the
pipeline rate is equal to 1 cycle.
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clk

Fig. 3.17 Five-stage segmentation
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Fig. 3.21 Simulation of a pipelined 128-bit adder (courtesy of Mentor Graphics)
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3.3.2 Digital Signal Processing

A digital signal s is a sequence of successive
numbers x0, x1, x2 … where

• xi is a signal value belonging to some pre-
defined discrete type (an integer, a fixed-point
number, a floating-point number).

• xi is the value of s at time i � T where T is a
predefined sample period.

Generally, digital signals are the encoded rep-
resentation of analog signals. As an example, in
order to store an analog signal on a digital support,
for example a digital video disk (DVD), the ana-
log signal value is sampled every T seconds and
every sample is converted to a fixed-point num-
ber. Those operations are performed by a com-
ponent called analog-to-digital converter (ADC).
According to the Shannon–Nyquist theorem, if
the maximum frequency of the analog signal is
equal to fmax hertz and if the sample frequency 1/
T is greater than 2 � fmax, then the original analog
signal can be reconstructed by means of a com-
ponent called digital-to-analog converter (DAC).
The reconstructed analog signal contains an
additional noise due to quantization errors, but the
noise amplitude can be minimized—practically
eliminated—by encoding the signal samples with
a sufficient number of bits.

Operations such as filtering, storing, com-
pressing, ciphering of analog signals are com-
plex. Digital signal processing systems use the
possibility of converting analog signals to digital
signals, without practically any loss of informa-
tion, in order to execute those complex opera-
tions with digital circuits: the analog signal is

first converted to a digital signal; then it is pro-
cessed by means of a digital circuit; finally, the
resulting digital signal is converted to an analog
signal. A simplified block diagram of the whole
system is shown in Fig. 3.22.

The data input of the digital processing block
of Fig. 3.22 is a sequence of successive numbers
x = x0, x1, x2 … where xi is the quantized value of
the analog input signal sx at time i � T, being T the
sample period: xi ≅ sx(i � T). The data output of
the digital processing block is also a sequence
of successive numbers y = y0, y1, y2, … where yi
is the value of the analog output signal sy at time
i � T. Thus,

sy i � Tð Þ ¼ yi ¼ F x0; x1; x2 � � � ; xið Þ
ffi F sx 0ð Þ; sx Tð Þ; sx 2 � Tð Þ � � � ; sx i � Tð Þð Þ

ð3:18Þ

being F a function that describes the behavior of
the digital processing block.

As both the input and output sequences x and
y are synchronized by the same sampling signal,
the throughput is a central characteristic of this
type of circuit: a new sample xi is inputted every
T time units, and a processed value yi must be
outputted every T time units. On the other hand,
the latency is not a so important issue as the
implemented processes (filters and so on) gen-
erally are time-invariant processes: a delay on the
input signal only causes an equal delay of the
output signal.

To conclude, due to the central importance of
throughput, digital signal processing circuits are
clear candidates at pipelined implementations.

To illustrate the preceding ideas, consider a
common type of digital signal processing circuit:

ADCsx

(analog) x = [xi]
(digital)

digital 
processing y = [yi]

(digital)

DAC sy

(analog)

sample clock
(fsampling = 1/T)

Fig. 3.22 Digital processing of signals
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a digital filter. There are many textbooks on digital
filters, for example (Smith 2007). Consider the
system of Fig. 3.22 assuming that sx is an analog
signal, for example an audio signal, and that sy
must be a signal similar to sx but with a different
frequency spectrum: part of the frequencies are
passed unaltered, while other are attenuated.
Typical examples are low-pass filters, high-pass
filters, band-pass filters and band-stop filters.

In the case of a digital filter, the relation
between x ¼ xi½ � and y ¼ yi½ � that are the input
and output signals of the digital processing circuit
of Fig. 3.22 is an equation of the following type

yi ¼ a0 � xi þ a1 � xi�1 þ . . .þ ak � xi�k � b1 � yi�1

� b2 � yi�2 � . . .� bl � yi�1;

ð3:19Þ
being {a0, a1, …, ak, b1, b2, …, bl} a set of
predefined constants that belong to some previ-
ously defined type. The order of the filter is the
larger of k and l.

Only a particular type of filter will be con-
sidered in this example: if all coefficients bi are
equal to zero, so that

yi ¼ a0 � xi þ a1 � xi�1 þ � � � þ ak � xi�k; ð3:20Þ

the obtained circuit is a finite impulse response
(FIR) filter. If the input signal is a one-period
impulse at time p � T, that is a signal [xi] defined
as follows

xp ¼ 1 and xi ¼ 0 8 i 6¼ p; ð3:21Þ

then the output signal is a signal [hi] where

hi ¼ 0 if i\p; hp ¼ a0; hpþ 1 ¼ a1; . . .; hpþ k

¼ ak; hi ¼ 0 if i[ pþ k:

ð3:22Þ

(3.22) is a direct consequence of (3.20) and
(3.21).

The block diagram of a circuit that imple-
ments Eq. (3.20) is shown in Fig. 3.23: it consists
of a set of k registers that store xi − 1, xi − 2, …, xi
− k and a combinational circuit that computes
(3.20).

The latency is approximately equal to the
delay Tcc of the combinational circuit, and the
throughput is equal to 1/latency ≅ 1/Tcc.

There are several ways to synthesize the com-
binational circuit. In order to minimize the latency
and to maximize the throughput, the circuit can be
implemented as follows: a set of k + 1 multipliers
that compute in parallel all products aj � xi − j

(multipliers by a constant) and a fast (k + 1)-
operand adder (Fig. 3.24a). Assume that all data
(inputs and outputs) can be expressed as m-bit 2’s
complement fixed-point numbers and that a tree of
two-operand adders is used (Chap. 8 of Parhami
2000 and Chap. 11 of Deschamps et al. 2006).
Then, the magnitude order of the multi-operand
adder delay is O(m + log2k). However, a more
regular and expandable structure is generally
preferred (Fig. 3.24b): it consists of k+1
multiplier-accumulator components (MACs) that
compute acc + aj � xi − j (Fig. 3.24c).

If the two-operand adder included within each
MAC consists of m full adders (an m-bit ripple
adder), then the set of all two-operand adders is
an array of m � k full adders and the magnitude
order of the corresponding multi-operand adder
delay is O(m + k). An example with m = 4 and
k = 3 is shown in Fig. 3.25: the total delay of the
adder array is equal to (m + k) � TFA; one of the
critical paths is highlighted in Fig. 3.25. The
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register

····
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xi-2
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Fig. 3.23 FIR filter structure
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latency of the complete combinational circuit is
equal to Tmult(m) + (m + k) � TFA where Tmult(m) is
the delay of a multiplier by a constant whose
output is an m-bit 2’s complement fixed-point
number.

So, the circuit of Fig. 3.24b is regular and
easily expandable, but has a longer latency and a

lower throughput than a circuit using a fast
multi-operand adder (O (m + k) vs. O(m +
log2k)).

To increment the throughput, the solution is
pipelining. An FIR filter using a pipelined imple-
mentation of the circuit of Fig. 3.24b is shown in
Fig. 3.26a. Its latency is equal to (k + 1) � Tclk,
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where Tclkmust be greater than the delay TMAC of a
multiplier-accumulator component (MAC), and
the maximum throughput is approximately equal
to 1/TMAC.

Observe that the inputs xi, xi-1, …, xi – k + 1 of
the non-pipelined combinational circuit (Fig.
3.24b) now go through k, k − 1, k − 2,… pipeline
registers, so that all right inputs of the MAC
actually are equal to xi − k. So, the circuit of
Fig. 3.26a is equivalent to that of Fig. 3.26b:
a set of k registers that generate xi − k and a
(k + 1)-stage pipeline consisting of k + 1 MAC.
The k registers that generate xi − k are a sort of
delay line inserted on the input size of the digital
filter whose only (useless) effect is to increment
the latency. Obviously, those registers can be
removed. In this way, the circuit of Fig. 3.27 is
obtained.

Check the behavior of the circuit of Fig. 3.27:
it is defined by the following equation:

yi ¼ a0 � xi þ . . .þ ak�2 � xið Þdk�2

þ ak�1 � xið Þdk�1 þ ak � xið Þdk
ð3:23Þ

where zd stands for z delayed by a clock period.
Then, as a1, a2, … are constants,
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aj � xi
� �d j¼ aj � xi�j: ð3:24Þ

Thus, according to (3.23) and (3.24)

yi ¼ a0 � xi þ � � � þ ak�2 � xi�k�2 þ ak�1

� xi�k�1 þ ak � xi�k; ð3:25Þ

that is the equation that defines an FIR filter
(3.20).

The circuit of Fig. 3.27 has the same maxi-
mum throughput (approximately 1/TMAC) as the
circuit of Fig. 3.26a, but its latency is equal to
one clock period instead of k + 1.

A complete VHDL model fir_filter.vhd is
available at the Authors’ web site. The filter
parameters k, m, a0, a1, …, ak are defined within
a package fir_parameters. All data d (xi, yi, ai)
are real numbers. They are assumed to belong to
the interval

�2� d\2

and are represented under the form d =
D � 2−m + 2 where D is an m-bit 2s complement
integer, so that—2m−1 � D < 2m − 1 and thus—
2 � D � 2−m + 2 < 2. In other words, all data are
m-bit 2s complement fixed-point numbers with
m − 2 fractional bits:

dm�1 dm�2 dm�3 dm�4 � � � d0:

Within the VHDL model, the exponent 2−m+2

is implicit so that only the significant D (an m-bit
2s complement integer) is explicitly defined.

To test the VHDL model, a particular low-pass
filter with the following parameter values

k ¼ 10;m ¼ 24; a0 ¼ a10 ¼ �0:045016;

a1 ¼ a9 ¼ 0; a2 ¼ a8 ¼ 0:075026;

a3 ¼ a7 ¼ 0:159155; a4 ¼ a6 ¼ 0:225079;

a5 ¼ 0:25;

has been implemented.
The response to a one-period impulse is

shown in Fig. 3.28: the input signal is […, 0, 1,
0, …], and the output signal is [… 0, a0, a1, …,
ak, 0, …] that is signal [hi] defined by (3.22).

The response to a periodic signal [… −1, 1,
−1, 1, −1, 1, …], with a period equal to twice the
sample period, is shown in Fig. 3.29. The output
signal is a periodic symmetric signal with very
small maximum and minimum values
(±0.058132) that correspond to the following
sums of coefficients:

� a0 þ a1 � a2 þ a3 � a4 þ a5 � a6 þ a7 � a8

þ a9 � a10 ¼ 0:058132;

a0 � a1 þ a2 � a3 þ a4 � a5 þ a6 � a7 þ a8

� a9 þ a10 ¼ �0:058132:

Fig. 3.28 Impulse response

Fig. 3.29 Response to a periodic input signal
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3.4 Interconnection of Pipelined
Components

Assume that several pipelined circuits are used as
computational resources (predefined compo-
nents) for generating a new pipelined circuit. For
example, consider the two following pipelined
components:

• a two-stage adder that computes x + y in 2
clock periods (2 � T time units) with a pipeline
rate equal to 1/T;

• a three-stage multiplier that computes x � y in
3 clock periods (3 � T time units) with a
pipeline rate equal to 1/T.

The corresponding symbols are shown in
Fig. 3.30.

When interconnecting pipelined components,
it may be necessary to add registers to maintain
the correct synchronization of the processed data.
As an example, the two previously defined
pipelined components can be used to implement
a circuit that computes two functions g = a +
b and f = (a + b) � c + d according to the schedule
of Fig. 3.31a. The corresponding circuit block
diagram is shown in Fig. 3.31b. In order to
synchronize the input c with the output a + b of
the first adder, two (so-called) skewing registers
are inserted. Similarly, five skewing registers are
added to synchronize the input d with the mul-
tiplier output (a + b) � c. On the output side, five

deskewing registers must be added to synchro-
nize the output g with the output f of the second
adder. In this way, the obtained circuit (Fig.
3.31b) has seven pipeline stages (S1 to S7). The
latency is equal to 7 � T, and the pipeline rate is
equal to 1/T.

3.5 Self-timed Circuits

A pipelined circuit consists of a set of stages that
work in parallel. All stages transfer their output
data to the next stage under the control of a
common synchronization command (e.g.,
en_pipe in Fig. 3.13). When all stages have
approximately the same computation time, this is
an efficient option. In fact, this characteristic
(almost equal delays) is one of the aspects to be
taken into account when segmenting a circuit.
However, it can happen that the stage delays are
data-dependent so that in some cases the com-
putation time could be relatively short and in
other cases it could be relatively long. Then, the
pipeline period should be greater than the longest

x y
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x+y

x y

x

x

x·y

x

Fig. 3.30 Two pipelined components
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Fig. 3.31 Pipelined circuit that computes g = a + b and
f = (a + b) � c + d
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of all delays, probably an inefficient solution. An
alternative solution is self-timing.

As a generic example, consider the pipelined
circuit of Fig. 3.32a. To each stage, for example
number i, are associated a maximum delay
tMAX(i) and an average one tAV(i). The minimum
time interval between successive data inputs is

d ¼ max tMAX 1ð Þ; tMAX 2ð Þ; . . .; tMAX nð Þf g;
ð3:26Þ

and the circuit latency T is

T ¼ n � max tMAX 1ð Þ; tMAX 2ð Þ; . . .; tMAX nð Þf g:
ð3:27Þ

A self-timed version of the same circuit is
shown in Fig. 3.32b. The control is based on a
Request/Acknowledge handshaking protocol. An
example of handshaking protocol is shown in
Fig. 3.33. It works as follows:

• When stage i-1 has completed a computation,
it raises the req_out output signal to inform
stage i that processed data is available.

• As soon as stage i is idle—that means that it
has completed its current computation and
has received from stage i + 1 an acknowledge
signal asserting that the latest processed data
generated by stage i has been registered
within stage i + 1—the input data generated
by stage i − 1 is registered (ce = 1), and an
ack_out signal is issued to stage i − 1.

• The start signal of stage i is raised; after some
amount of time, the done signal of stage
i goes high indicating the completion of the
computation.

• A req_out signal to stage i + 1 is issued by
stage i; when stage i + 1 is idle, the output of
stage i is registered within stage i + 1 and
an ack_out signal to stage i is issued; and
so on.

If the probability distribution of the internal
data is uniform, inequalities (3.26) and (3.27) can
be substituted by the following ones:

d ¼ max tAV 1ð Þ; tAV 2ð Þ; . . .; tAV nð Þf g; ð3:28Þ
T ¼ tAV 1ð Þþ tAV 2ð Þþ . . .þ tAV nð Þ: ð3:29Þ

The protocol of Fig. 3.33 is implemented by
the finite-state machine of Fig. 3.34. A VHDL
model protocol.vhd is available at the Authors’
web site.

Example 3.4 A self-timed version of the distance
computation circuit of Fig. 3.13 is shown in Fig.
3.35. It consists of the following components:
step1 (Fig. 3.36), step2 (Fig. 3.37), two hand-
shaking protocol circuits, three registers and a
simplified handshaking circuit that controls the
output register.

A VHDL model distanceST.vhd is available at
the Authors’ web site. Part of the simulation
result is shown in Fig. 3.38. The circuit computes

b 3� 7j j2 þ 18� 6j j2 þ 1� 5j j2
h i1=2

c ¼ 13;

b 11� 7j j2 þ 10� 38j j2 þ 9� 5j j2
h i1=2

c ¼ 28;

b 0� 255j j2 þ 0� 255j j2 þ 0� 255j j2
h i1=2

c ¼ 441:
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Fig. 3.32 a Pipelined circuit. b Self-timed pipelined
circuit
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In the former example, the delays of the used
components are not data-dependent, so that a
self-timed circuit has no real advantage over the
pipelined circuit ofFig. 3.13.Actually, the input rate
is practically the same and the latencywould also be
practically the same without the input register.

Self-timed implementations can be considered
even in the case of combinational circuits. The
problem is the generation of the done signal. For
that, an interesting method consists in using a
redundant encoding of the binary signals (Sect.
10.4 of Rabaey et al. 2003): every signal s is

represented by a pair (s1, s0) according to the
definition of Table 3.3.

The circuit must have an additional reset input
and is designed in such a way that during the
initialization (reset = 1) and as long as the value

stage i
state

ce

ack_in from
stage i+1

ack_out to
stage i-1

start

done

req_out to 
stage i+1

req_in from
stage i-1

not idle idle not idlenot idle idle

Fig. 3.33 Handshaking protocol

S0
(idle) S1 S2 S3 S4 S5 S6
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 = 1
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done
 = 1
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 = 1

ce = 0
ack_out = 1

ack_out = 0
start = 1

req_out = 1start = 0 req_out = 0
ce = 0

ack_out = 0
start = 0

req_out = 0

Fig. 3.34 Handshaking protocol control state machine

Table 3.3 Redundant encoding

s s1 s0

Reset or in transition 0 0

0 0 1

1 1 0
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of s has not yet been computed, the value of the
pair (s1, s0) that encodes s is (0, 0). Once the
value of s is known, s1 = s and s0 = not(s).

Assume that the circuit includes n signals s1,
s2, …, sn. Every signal si is substituted by a pair
(si1, si0). Then, the done flag is computed as
follows:

done ¼ s11 þ s10ð Þ � s21 þ s20ð Þ. . . sn 1 þ sn 0ð Þ:

During the initialization (reset = 1) and as
long as at least one of the signals is in transition,
the corresponding pair is equal to (0, 0), so that
done = 0. The done flag will be raised only when
all signals have a stable value.

In the following example, only the signals
belonging to the critical path of the circuit are
encoded.
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Fig. 3.38 Simulation of distanceST.vhd (courtesy of Mentor Graphics)
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Example 3.5 Generate an n-bit ripple carry adder
(Fig. 3.39) with end of computation detection.

For that, all signals belonging to the carry
chain, that is c0, c1, c2, …, cn, are represented
under the form (c0, cb0), (c1, cb1), (c2, cb2),…, (cn,
cbn).The circuit is shown in Fig. 3.40. The mod-
ified FA cell implements the following equations:

ciþ 1 ¼ ðxi � yi þ xi � ci þ yi � ciÞ � reset; cbiþ 1

¼ ðxi � yi þ xi � ci þ yi � ciÞ � reset;
ð3:30Þ

zi ¼ xi 	 yi 	 ci ð3:31Þ

During the initialization (reset = 1), ci and cbi
are equal to 0, 8i 2 {0, 1, …, n}. When reset
goes down

c0 ¼ cin; cb0 ¼ cin; ð3:32Þ

and the circuit starts computing

ciþ 1 ¼ ðxi � yi þ xi � ci þ yi � ciÞ;
cbiþ 1 ¼ ðxi � yi þ xi � ci þ yi � ciÞ; ð3:33Þ

for i = 0, 1, 2,… starting from the least significant
bits c1 and cb1 up to the most significant bits cn
and cbn. The end of computation is detected when

cbi ¼ ci; 8i 2 f0; 1; . . .; ng: ð3:34Þ

A complete and synthesizable VHDL model
adder_ST2.vhd of the circuit of Fig. 3.40 is

available at the Authors’ web site. A test file
test_adder_ST2.vhd is also available. In order to
observe the carry chain delay, after clauses have
been added (1 ns for ci+1 and cbi+1, 0.2 ns for
eoci+1). For synthesis purpose, they must be
deleted.

3.6 Exercises

1. Generate VHDL models of different pipelined
128-bit adders.

2. In the following combinational circuits, the
delays of every cell and of every connection
are equal to 5 and 2 ns, respectively.

For each circuit:

a. Compute the combinational delay.
b. Segment the circuit in two stages. How many

registers must be added?
c. Segment the circuit in three stages. How

many registers must be added?
d. What is the maximum number of segmenta-

tion stages?

x0y1
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cb1

eoc0

x1

z1
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cb2

xn-1

modified 
FA

y0

eoc1
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eocn-1done = eocn

cout = cn

not(cout) = cbn

modified 
FA

modified 
FA

reset

cin
c0

cb0

···

···

···

Fig. 3.40 Ripple carry adder with end of computation detection
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e. Assume that the cutting of a connection
generates two new connections whose delays
are still equal to 2 ns, and that the registers
have a propagation delay of 1 ns and a setup
time of 0.5 ns. What is the maximum fre-
quency of circuits b. and c.?
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4Loops

Loops are present in practically any algorithm so
that their optimal implementation is a basic
aspect of the synthesis of digital circuits. Iterative
and sequential implementations are considered
and synthesis techniques such as loop-unrolling
and digit-serial processing are presented.

4.1 Introductory Example

The introductory example of Chap. 1 (base-2
logarithm) is revisited with two simple but
instructing modifications. The original algorithm
(Algorithm 1.1) is the following.

Algorithm 1.1 Base-2 logarithm

z = x; i = p;

while i > 0 loop

z = z2;

if z � 2 then yi-p-1 = 1; z = z/2;

else yi-p-1 = 0;

end if;

i = i-1;

end loop;

The corresponding data path and control unit
are shown in Figs. 1.1 and 1.2 of Chap. 1.
According to this algorithm, register z is
updated two times during the loop body
execution:

• First, the value stored in register z is squared
and the result is stored within the same reg-
ister z (z = z2);

• Then, if the value stored in register z is greater
than or equal to 2, this value is divided by 2
and the result is stored within the same reg-
ister z (z = z/2).
To execute the second operation, the control

unit reads the value stored in register z (actually
the most significant bit), and in function of the
read value, it generates the following control
signal values:

load_z = 1 and sel_z = 2 if z � 2, load_z =
0 and sel_z = don’t care if z < 2.
Consider now a slightly modified version of

Algorithm 1.1:

Algorithm 4.1 Base-2 logarithm (modified
version)

z = x; i = p;

while i > 0 loop

if z2 � 2 then yi-p-1 = 1; z = z2/2;

else yi-p-1 = 0; z = z2;

end if;

i = i-1;

end loop;

The difference is that the squaring of z is included
within a branching condition (if z2 � 2 then ���).
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In order to implement this conditional instruction,
a straightforward solution is to design a compu-
tation resource able to execute in one cycle the
following operation

if z2 � 2 then t = 1; next_z = z2/2;

else t = 0; next_z = z2;

end if;

where t is a binary value (flag, condition vari-
able). An example of implementation is given in
Fig. 4.1.

Then, the circuit of Fig. 1.1 can be replaced
by the data path of Fig. 4.2. Observe that the
selection of the value to be stored within register
z (either z2 or z2/2) is no longer defined by the
control unit; it is internally performed by a
multiplexer within the computation resource
(Fig. 4.1) of the data path. This is an example of
how a part of the control task can be moved from
the control unit to the data path.

Another modification is the way in which the
end of the loop execution is detected: instead of
checking whether the value stored in register i is
equal to 0 or not, the output value of the circuit
that computes i – 1 is considered. This permits to
update register i (i = i − 1) at the same time as
register z (z = next_z) and register y (shift y). The
control unit is shown in Fig. 4.3. When in state 2,
the branching to either state 2 or state 0 is based
on the next value (i – 1) of register i instead of
the current value. This is a kind of control
anticipation.

In conclusion, in this example two simple
circuit modifications (moving of part of the
control to the data path and control anticipation)
permit to reduce the number of cycles associated
with the loop body execution of the algorithm.

A VHDL model logarithm_circuit_bis.vhd is
available at the Authors’ web site.

The implementation of Figs. 4.2 and 4.3 is
based on the fact that Algorithm 4.1 mainly
consists of a loop that is executed p times. The
computation resource of Fig. 4.1 is (re)used
p times to compute the values of z and yi–p–1. The
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successive values of z are stored within a parallel
register, and the values of y–1, y–2, … , y–p are
stored within a shift register. To complete the
circuit a p-state counter, several controllable
connections (multiplexers) and a control unit
must be added. The computation time is equal to
p � Tclk where the clock period Tclk must be
greater than the computation time of the data
path of Fig. 4.2, including the propagation time,
hold time and setup time of the registers.

Another way to implement Algorithm 4.1 is
an iterative circuit. For that consider the follow-
ing equivalent Algorithm:

Algorithm 4.2 Base-2 logarithm (modified
version)

z0 = x;

for i = 1 to p loop

if zi-1
2 � 2 then y-i = 1; zi = zi-1

2 /2;

else y-i = 0; zi = zi-1
2 ;

end if;

end loop;

In this case, p copies of the computation
resource of Fig. 4.1 must be used, one for every
value of index i. The resulting circuit is shown in
Fig. 4.4.

The computation time is equal to p � Tresource
where Tresource is the delay of the combinational
circuit of Fig. 4.1. As the data path of Fig. 4.2 is
made up of the combinational circuit of Fig. 4.1
plus registers and connections, the clock period
Tclk of the circuit of Figs. 4.2 and 4.3 must be
greater that the delay of the circuit of Fig. 4.1.
Thus, p � Tresource \ p � Tclk and the iterative
implementation (Fig. 4.4) is faster than the
sequential implementation (Figs. 4.2 and 4.3).
On the other hand, the cost of the iterative circuit
is equal to p � Cresource where Cresource is the cost
of the combinational circuit of Fig. 4.1 while
the cost of the sequential circuit is equal to
Cresource + Cmultiplexers + Cregisters + Ccounter +
Ccontrol. Unless p is very small, the sequential
implementation is cheaper.

A VHDL model logarithm_circuit_iterative.
vhd of the circuit of Fig. 4.4 is available at the
Authors’ web site.

A rather rough conclusion might be that iter-
ative circuits are faster and sequential circuits are
most cost-effective.

Intermediate options could also be contem-
plated. Instead of completely unroll Algorithm
4.1 so as to get Algorithm 4.2, consider the fol-
lowing equivalent algorithm.

0

start=1

reset 1
start=0

start=0

2
start=1

3
nop nop

z = x,
i = p

z = next_z,
i = i-1,
shift y

i = 1

i > 1

Fig. 4.3 Control unit
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Algorithm 4.3 Base-2 logarithm (modified
version)

--p even equal to 2k

z0 = x; i = p/2;

while i > 0 loop

if z0
2 � 2 then y2i-p-1 = 1; z1 = z0

2/2;

else y2i-p-1 = 0; z1 = z0
2;

end if;

if z1
2 � 2 then y2i-p-2 = 1; z0 = z1

2/2;

else y2i-p-2 = 0; z0 = z1
2;

end if;

i = i-1;

end loop;

Every loop body execution computes the
value of two successive bits yi–p–1 and yi–p–2 of
y. A straightforward solution is to design a
computation resource able to execute in one
cycle the following operations

if z2 � 2 then t0 = 1; z′ = z2/2;

else t0 = 0; z′ = z2; end if;

if z′2 � 2 then t1 = 1; next_z = z′2/2;

else t1 = 0; next_z = z′2; end if;

where t0 and t1 are binary values. An example of
implementation is given in Fig. 4.5: it consists of
two serially connected copies of the circuit of
Fig. 4.1.

The data path of the complete circuit is
shown in Fig. 4.6, and the control unit is the
same as before (Fig. 4.3). A VHDL model log-
arithm_circuit_ter.vhd of the circuit is available
at the Authors’ web site.

The computation time is equal to p=2ð Þ � Tclk
where the clock period Tclk must be greater than
the computation time of the data path of Fig. 4.5,
including the propagation time, hold time and
setup time of the registers. The cost is equal to
2 � Cresource þCmultiplexers þCregisters + Ccounter þ
Ccontrol where Cresource is the cost of the combi-
national circuit of Fig. 4.1.
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4.2 Iterative Versus Sequential
Implementation of Loops

Some general considerations about loop imple-
mentations are now presented. The following
generic iterative algorithm mainly consists of a
loop instruction whose loop body is a procedure
operations (a: in; b: out) with an input parameter
a and an output parameter b.

Algorithm 4.4 Generic iterative algorithm

data0 := initial_values;

for i in 1 .. p loop

operations(datai-1, datai);

end loop;

final_results := datap;

Assume that a component that implements the
procedure operations has been previously
developed. It might be either a combinational
circuit with a delay equal to Toperations or a
sequential component with a computation time
equal to N clock cycles, in which case
Toperations ¼ N � tclock where tclock is the period of
the clock signal internally used by the component
operations. Two straightforward implementa-
tions of the algorithm are shown in Fig. 4.7. The
first one (Fig. 4.7a) is an iterative implementa-
tion: the loop construct has been completely
expanded (unrolled), and the corresponding

circuit uses p instances of the component oper-
ations. Its cost and delay are

Citerative ¼ p � Coperations; Titerative � p � Toperations
ð4:1Þ

where Coperations and Toperations are the cost and
the delay of the component that implement the
procedure operations. If operation is a combi-
national component, the delay could be smaller
than p � Toperations as the critical paths of the
complete p-component circuit do not necessarily
consist of concatenated critical paths of the
individual components. For example, the delay
of an n-bit ripple carry adder is proportional to n;
nevertheless, the delay of two serially connected
ripple carry adders that compute (a + b) + c is
proportional to n + 1, not to 2n.

The second one (Fig. 4.7b) is a sequential
implementation using only one instance of the
component operations. Its main characteristics are

Csequential ¼ Coperations þCextra; Tsequentiall
¼ p � Tclk with Tclk [ Toperations þ Textra

ð4:2Þ

where

• Cextra is the cost of the additional circuits
(registers, multiplexers and control) necessary
to execute a p-step iteration with only one
component. In particular, it includes the cir-
cuit (e.g., a mod p counter) that controls the
number of executions of the loop body.

• Textra is the additional delay of the critical
paths of the data path due to the additional
registers and connections.
In spite of the chosen names (iterative vs.

sequential) both implementations may be con-
sidered as being iterative, the first one over the
space domain (silicon surface and printed circuit
board area) and the second over the time domain
(time multiplexing of operations).

To compare (4.1) and (4.2), it is assumed that
Cextra does not depend on p. This is not com-
pletely correct as one of the functions of the
control circuit is to count the number of

initial_values

operations

data_1

operations

data_2

operations

·····
data_p-1

final_results

operations

registers

final_results

control

initial_values

reset

0 1

start done

ce reset

(a) (b)

Fig. 4.7 Iterative algorithm implementation: a Unrolled
implementation. b Sequential implementation
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executions of the loop body. Nevertheless, this is
only a part of the additional circuit and its cost is
proportional to log2p, not to p. Thus, according
to (4.1) and (4.2), the sequential implementation
(Fig. 4.7b) has a lower cost than the iterative
implementation (Fig. 4.7a) if p � Coperations [
Coperations þCextra, that is if

p[ 1þ Cextra=Coperations

� �
: ð4:3Þ

On the other hand, according to (4.1) and (4.2)

Tsequential ¼ p � Tclk [ p � Toperations þ Textra
� �

[ p
� Toperations � Titerative

ð4:4Þ

so that the iterative implementation is faster than
the sequential one.

An alternative option consists in partially
unroll the for loop (De Micheli 1994; Parhami
2000). Assume that p ¼ k � s. Then, s successive
iteration steps are executed at each clock cycle.
An example, with s = 3, is shown in Fig. 4.8.

Obviously, the clock cycle, say Tclk0 , must be
longer than in the sequential implementation of

Fig. 4.7b (Tclk). Nevertheless, it will be generally
shorter than s � Tclk. On the one hand, as already
quoted above, if operations is a combinational
component, the critical path length of s serially
connected components is generally shorter than
the critical path length of a single component,
multiplied by s. On the other hand, the additional
register delays are associated with groups of
s components so that their impact is divided
by s. In other words, Tclk0 ffi s � Toperations þ Treg
\s � Toperations þ Treg

� � ffi s � Tclk. Furthermore,
when interconnecting several circuits, some
additional logical simplifications can be per-
formed by the synthesis tool and have positive
repercussions on both the cost and the delay. So

Cpartially unrolled � s � Coperations þCextra;

Tpartially unrolled ¼ p=sð Þ � Tclk0 ;
ð4:5Þ

where

Tclk0\s � Tclk: ð4:6Þ

Thus, according to (4.1) and (4.5), the partially
unrolled implementation has a lower cost than the
iterative implementation if p � Coperations [
s � Coperations þCextra, that is if

p[ sþ Cextra=Coperations

� �
: ð4:7Þ

On the other hand, according to (4.2), (4.5)
and (4.6),

Tpartially unrolled ¼ p=sð Þ � T 0
clk\ p=sð Þ � s � Tclk

¼ p � Tclk ¼ Tsequential:

ð4:8Þ

4.3 Pipelined Implementation
of Loops

In Chap. 3, a circuit made up of a set of serially
interconnected subcircuits (Fig. 3.6a) has been
implemented by a pipelined circuit (Fig. 3.6b). This
method can obviously be applied to circuits that
implement completely unrolled loops under the
form of iterative circuits (e.g., Figs. 4.4 and 4.7a).

operations

operations

operations

initial_values

0 1

registers

final_results

reset
ce

control

start done

Fig. 4.8 Partially unrolled loop implementation (s = 3)
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As an example, consider the iterative imple-
mentation of Fig. 4.7a. The corresponding pipe-
lined circuit is shown in Fig. 4.9. The data
introduction interval is equal to Tclk > Toperation
instead of p � Toperation in the case of the circuit of
Fig. 4.7a. Furthermore, the power consumption
could be reduced because the synchronization
barriers (pipeline registers) reduce the generation
of spikes.

Another interesting point is the possibility to
use, or not, a pipelined version of the component
operations itself. Consider a pipelined version
(Fig. 4.10a) with k segments and a pipeline clock
period equal to tclock. Then, the circuit of
Fig. 4.7a can be implemented as shown in
Fig. 4.10b. The data introduction interval of this
circuit is equal to tclock, and its latency is equal to
k � p � tclock.

Consider now the sequential circuit of
Fig. 4.7b. The pipelined version of operations
might be used, but generally this will not reduce
the data introduction interval. The problem is the
data dependency between successive executions
of the procedure operations: at the beginning of
iteration number i, the input data of operations is
datai – 1; the value of the corresponding output is
datai and is the input data of the next procedure
execution; however, datai will be available only
after k clock cycles. Thus, with respect to the
data introduction interval, the use of a pipelined
component has no effect: the execution of itera-
tion number i cannot start before the execution of
iteration number i – 1 has been completed.

On the other hand, if there are no data
dependencies, then both the data introduction
interval and the latency can be reduced. Consider
the following generic algorithm in which datain
and dataout are p-component vectors.
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·····
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Fig. 4.9 Pipelined circuit
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Algorithm 4.5 Generic iterative without data
dependency

datain = input_value;

for i in 1 .. p loop

operations(datain(i), dataout(i));

end loop;

If a non-pipelined component operations with
computation time equal to Toperations is used
(Fig. 4.11a), the minimum data introduction
interval is Toperations, and the latency is equal to

latencynon�pipelined ¼ p � Toperations: ð4:9Þ

If a k-stage pipelined component operations
with computation time equal to k � tclk ffi
Toperations is used (Fig. 4.11b), the minimum data
introduction interval is tclk and the latency is
computed as follows: a first output [dataout (1)] is
generated after k clock periods. Then, a new
output [dataout (2), dataout (3),…, dataout (p)] is
generated every clock period. Thus,

latencypipelined ¼ kþ p� 1ð Þ � tclk\p � k � tclk
ffi p � Toperations
¼ latencynon�pipelined:

ð4:10Þ
Example 4.1 Generate a pipelined implementa-
tion of Algorithm 4.2 (base-2 logarithm compu-
tation). For that the iterative implementation of
Fig. 4.4 is modified: parallel registers are inser-
ted between successive computation resources.
Furthermore, in order to synchronize the outputs,
p deskewing shift registers (Sect. 3.4) are added.
The resulting circuit is shown in Fig. 4.12.
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Fig. 4.11 Implementation of Algorithm 4.5
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A VHDL model logarithm_circuit_pipeline.
vhd has been generated and simulated. It is
available at the Authors’ web site. The test is
executed with the following values: n = 8
(number of fractional bits of x), p = 16 (number
of fractional bits of y) and m = 16 (number of
fractional bits of z). The circuit repeatedly com-
putes (in hexadecimal)

log2 1:b1ð Þ ffi 0:c21a; log2 1:31ð Þ ffi 0:40ae;

log2 1:f1ð Þ ffi 0:f504; log2 1:05ð Þ ffi 0:0724

(Fig. 4.13). The number of loop body execu-
tions is equal to p so that the latency is equal to
p � Tclk, and the data introduction interval is equal
to Tclk. The simulation result of Fig. 4.13 shows
that once the pipeline is filled (p = 16 cycles), a
new result is outputted every cycle.

4.4 Digit-Serial Processing

In Sect. 4.2, a partially unrolled version of
Algorithm 4.1, namely Algorithm 4.3, has been
defined. Comparing both algorithms and both
data paths, a conclusion is that in the first case
(Algorithm 4.1), one bit t is generated at each
step and stored within the output shift register
(Fig. 4.2), while in the second case (Algorithm
4.3), two bits t1 and t0 are generated at each step
and stored within the output shift registers
(Fig. 4.6). So, as regards the result generation,
the first implementation could be considered as
bit-serial and the second as digit-serial, defining
in this case a digit as a 2-bit number.

In fact, the method for computing the base-2
logarithm of a real number presented in Chap. 1
may be modified in such a way that the result is

expressed in base 4 instead of 2. Given an n-bit
normalized fractional number x ¼ 1:x�1 x�2 � � �
x�n, compute y = log2x with an accuracy of
k fractional 4-ary digits. As x belongs to the
interval 1 � x < 2, its base-2 logarithm is a
nonnegative number smaller than 1, so y ¼
0:y�1 y�2 � � � y�k where y�i 2 0; 1; 2; 3f g.

If y = log2x, then x ¼ 20:y�1 y�2 ��� y�k ���; so that
x4 ¼ 2y�1 y�2 ��� y�k ���: Thus

• if x4 � 23: y–1 = 3, x4=23 ¼ 20:y�2 ��� y�k ��� and
1 � x4/23 < 2;

• if 22 � x4 < 23: y–1 = 2, x4=22 ¼
20:y�2 ��� y�k ��� and 1 � x4/22 < 2;

• if 2 � x4 < 22: y–1 = 1, x4=2 ¼ 20:y�2 ��� y�k ���

and 1 � x4/2 < 2;
• if x4 < 2: y–1 = 0 and x4 ¼ 20:y�2 ��� y�k ���.

The following algorithm computes y:

Algorithm 4.6 Base-2 logarithm (digit serial)

z = x; i = k;

while i > 0 loop

if z4 � 8 then yi-k-1 = 3; z = z4/8;

elsif z4 � 4 then yi-k-1 = 2; z = z4/4;

elsif z4 � 2 then yi-k-1 = 1; z = z4/2;

else yi-k-1 = 0; z = z4;

end if;

i = i-1;

end loop;

A component that executes the loop body
is shown in Fig. 4.14. This component computes
a 4-ary output value yi–p–1. The final value y = 0.
y–1 y–2 … y–k is expressed in base 4. The trans-
lation to a binary number is trivial: every 4-ary
digit represents two successive bits of the binary
representation. For example, if y is equal to

Fig. 4.13 Base-2 logarithm computation: simulation (courtesy of Mentor Graphics)
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0.20311231 in base 4, then in binary it is equal to
0.10 00 11 01 01 10 11 01. In particular, if y is
computed with a precision of k fractional 4-ary
digits, the corresponding binary number is com-
puted with a precision of 2 � k bits. Thus to obtain
the value of log2x with a precision of p fractional
bits, the number k of steps is equal to p/2.

With this component, several circuit imple-
mentations can be considered (iterative, sequen-
tial and pipeline). As an example, a pipelined
circuit using the component of Fig. 4.14 has
been implemented (Fig. 4.15). This circuit is
similar to the circuit of Fig. 4.12 with the fol-
lowing differences:

• Every component generates a 4-ary digit (two
bits) of the final result so that only p/2 com-
ponents and p/2–1 pipeline registers are used.

• The deskewing shift registers store 4-ary
digits.

The corresponding VHDL model loga-
rithm_circuit_pipe_DS.vhd is available at the
Authors’ web site. A simulation has been exe-
cuted with the following values: n = 8 (number
of fractional bits of x), p = 16 (number of frac-
tional bits of y) and m = 16 (number of fractional
bits of z). The circuit repeatedly computes (in
hexadecimal) the same values as in Fig. 4.13.
The number of loop body executions is equal to
p/2 so that the latency is equal to (p/2) � Tclk, and
the data introduction interval is equal to Tclk. The
simulation result of Fig. 4.16 shows that once the
pipeline is filled (p/2 = 8 cycles), a new result is
outputted every cycle.

The design techniques proposed in this sec-
tion are commonly used in arithmetic function
implementation: an algorithm processes data, or
part of them, in a bit-serial manner; a modified
version of this initial algorithm permits to pro-
cess several bits, say D, concurrently. The second

z = z3z2z1z0.z-1z-2 ,,, z-m

w = w3w2w1w0.w-1w-2 ,,, w-m = trunc(z4)
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implementation is called digital-serial, and D is
the digit size.

Loop-unrolling and digit-serial processing are
techniques that allow exploring cost–perfor-
mance tradeoffs, looking for intermediate options
between completely combinational (maximum
cost and minimum latency) and completely
sequential (minimum cost and maximum latency)
circuits. Loop unrolling can be directly per-
formed at circuit level, whatever the imple-
mented algorithm, while digit-serial processing
looks more like an algorithm transformation.
Nevertheless, it is not always so clear that they
are different techniques.

4.5 Exercises

1. Given two naturals x and y, with x < y, the
following restoring division algorithm com-
putes two fractional numbers q = 0.q–1 q–2 …
q–p and r < y � 2−p such that x = q � y + r and,
therefore, q � x/y < q + 2−p:

Algorithm 4.7 Restoring division algorithm

r0 = x;

for i in 1 .. p loop

z = 2�ri-1 - y;

if z < 0 then q-i = 0; ri = 2�ri-1;

else q-i = 1; ri = z;

end if;

end loop;

r = rp�2-p;

1:1 Define a component that executes the loop
body of Algorithm 4.7.

1:2 Implement a circuit that executes Algorithm
4.7.

1:3 Implement unrolled versions of the preceding
circuit with different values of s (2, 4, …).

1:4 Define digit-serial versions of Algorithm 4.7
with different values of D (2, 4, …), define
components that execute the loop body of the
modified algorithms and implement the cor-
responding circuits.

2. Design other versions (unrolled, digit-serial)
of the log2x computation circuit.
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5Other Topics of Data Path Synthesis

In this chapter, several additional design tech-
niques that permit to optimize some data path
features (cost, speed, power consumption), or to
make faster and safer the design work, are pro-
posed. The first of them is the use of predefined
data path connection structures.

5.1 Data Path Connectivity

Data paths are made of computation resources,
registers and connections (Fig. 1.4). This section
is dedicated to connections. A generic data path
structure is shown in Fig. 5.1. A first connection
network permits to transfer register outputs and
external inputs to computation resource inputs.
A second connection network is used to transfer
computation resource outputs to register inputs.
This architecture permits to implement sequences
of instructions (programs) of the following type:

Ri ¼ F w0;w1; . . .ð Þ; . . .;Rj ¼ G u0; u1; . . .ð Þ;
Rk ¼ H v0; v1; . . .ð Þ;

ð5:1Þ

where w0, w1, …, u0, u1, …, v0, v1, … 2 {x0, x1,
…, xn−1, y0, y1,…, ym−1}, and F,…, G, H are the
functions executed by some of the computation
resources.

5.1.1 Complete Connectivity

In preceding examples, the connections are imple-
mented by multiplexers. As an example consider
the second network of Fig. 5.1:

• For every register Ri, make a list {zj, zk,…, zl}
of all computation resource outputs that in
some cycle of the program execution must be
connected to register Ri;

• Then associate with register Ri, a multiplexer
with data inputs zj, zk, …, zl.

In this way, the second connection network is
implemented by m multiplexers each of them
with at most k data inputs.

Obviously, the same method can be used to
implement the first network. However, in some
cases, the computation resource inputs can be
interchanged, for example if the corresponding
operation is a commutative function. Then an
optimization problem must be considered. It can
be resolved using graph coloring techniques (as
in Figs. 2.16 and 2.19).

In this way, all data transfers necessary to exe-
cute instructions such as (5.1) can be performed
as soon as the corresponding data (operands or
operation results) are available. For that reason,
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this type of connection implementation has been
called “complete connectivity.”

In order to get an upper bound of the con-
nection network complexity, assume that

• All computation resources have p inputs (or
call p, the average number of inputs per
computation resource).

• All possible transfers from “register and
external inputs” to “resource inputs” and all
possible transfers from “resource outputs” to
“register inputs” are executed at least once
during the program execution, so that to each
computation resource input corresponds an
(n + m)-to-1 multiplexer, and to each register
input corresponds a k-to-1 multiplexer.

Then, the number of multiplexer inputs of net-
work 1 is k � p � (n + m) and the number of
multiplexer inputs of network 2 is m � k. Thus, an
upper bound of the number of multiplexer inputs
Nmux-inputs is defined by the following condition:

Nmux�inputs\k � p � nþmð Þþm � k: ð5:2Þ

It can easily be proved that an m-to-1 multi-
plexer can be implemented by m − 1 2-to-1
multiplexers (by induction from m = 2). This
property justifies that, in what follows, the
complexity of a connection network is evaluated
by the number of multiplexer inputs.

In fact, a correct cost evaluation should take
into account the types of the processed data. The

previous upper bound (5.2) is based on the
assumption that all registers, resource inputs and
resource outputs have the same number of bits.

Anyway, the upper bound (5.2) is obviously
very pessimistic. It corresponds to a circuit that
permits to implement (n + m)p�k different con-
nection configurations between n + m signals x0,
x1, …, xn−1, y0, y1, …, ym−1 and p � k resource
inputs, and km different connection configura-
tions between k resource outputs z0, z1, …, zk−1
and m register inputs. Thus, the total number of
connection configurations is the product (n +
m)p�k � km, a huge number generally much greater
than the number of different program
instructions.

5.1.2 An Optimization Problem

Consider a connection network with r inputs u0,
u1, …, ur−1 and s outputs v0, v1, …, vs−1
(Fig. 5.2) used to implement one of the two
connection networks of Fig. 5.1. At each step of
the program execution, it must be able to execute
in parallel a set of data transfers {ui ! vj} from
an input to an output. The general method pro-
posed in the preceding section could be sum-
marized as follows:

• For every output vj, make a list {ui} of inputs
such that during the program execution there
is at least once a transfer of data from ui to vj;

• Associate with output vj a multiplexer whose
data inputs are the elements of the list.

However, given a particular output vj, all data
transfers {ui ! vj} are generally not executed
during the same program execution cycle.

R0
EN R1

EN Rm-1
EN

····

y0 y1 ym-1

····

x0 x1 xn-1

connection network 1

computation 
resource 0

computation 
resource 1

computation 
resource k-1

····

···· ···· ····

connection network 2

to R0 to R1 to Rm-1

Fig. 5.1 Generic data path structure

u0

u1

ur-1

v0

v1

vs-1

connection 
network··· ···

Fig. 5.2 Generic connection network
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This suggests a decomposition of the connection
network into two sub-circuits.

• First define a partition of the set of inputs {u0,
u1, …, ur−1} into t subsets S0, S1, …, St−1,
such that if two inputs uk and ul belong to the
same subset then there is no program execu-
tion cycle during which both uk and ul are the
sources of a data transfer. Then define a first
sub-circuit that permits to connect all inputs
of a given subset Sl to a common intermediate
signal wl. The sub-circuit is shown in
Fig. 5.3a. By definition of the subsets Sl,
during every program execution cycle there is
at most one element of Sl that is the origin of
a data transfer.

• The second sub-circuit must permit to con-
nect the set of intermediate signals {w0, w1,
…, wt−1} to the set of outputs {v0, v1, …,
vs−1}. For that, use the same method as
before: for every output vj, make a list {wl} of
intermediate signals such that during the
program execution there is at least once a
transfer of data from one of the inputs of Sl to
vj, and associate with output vj a multiplexer
whose data inputs are the elements of the list
(Fig. 5.3b).

Consider a set of data transfer uk ! vj, …, ul!
vt that must be executed during some cycle. Then
inputs uk, …, ul must belong to different subsets
Sl, for example uk 2 Sp, …, ul 2 Sq, and the data
transfers are executed as follows: uk ! wp ! vj,
…, ul ! wq ! vt.

The partition of the set of inputs {u0, u1, …,
ur−1} into t subsets can be stated as a graph
coloring problem:

• Define an incompatibility relation over the set
of inputs {u0, u1, …, ur−1}: uk and ul are
incompatible if during some cycle uk and ul
are the source of a data transfer;

• Color the corresponding graph; assume that
there are t different colors c0, c1, …, ct−1;

• Sl is the set of inputs whose color is cl.

The number Nmux-inputs of multiplexer inputs of the
circuit of Fig. 5.3 satisfies the following condition:

Nmux�inputs\rþ t � s; ð5:3Þ

where r is the number of multiplexer inputs of
the circuit of Fig. 5.3a and t � s is an upper
bound of the number of multiplexer inputs of the
circuit of Fig. 5.3.b. The upper bound (5.3) is
smaller than r � s, if the number t of subsets Sl is
smaller than r � (s − 1)/s ≅ r.

Example 5.1 Consider the circuit of Fig. 2.21. It
connects signals Z (product), adder_out, square,
zA, zB and R to inputs of registers that store xA, xB,
zA, zB and R. It is the connection network 2
(Fig. 5.1) of a circuit that implements Algorithm
2.4. The inputs of this connection network are
{Z, adder_out, sqsuare, zA, zB, R}, and its out-
puts are {xA, xB, zA, zB, R}. During Algorithm 2.4
execution, the data transfers from inputs to out-
puts of this connection network, at each step, are
the following:

(a) (b)

Fig. 5.3 Decomposition into two blocks

5.1 Data Path Connectivity 77

http://dx.doi.org/10.1007/978-3-030-12653-7_2
http://dx.doi.org/10.1007/978-3-030-12653-7_2
http://dx.doi.org/10.1007/978-3-030-12653-7_2


0 to 3: none;

4: zB = adder_out;

5: zB = square;

6: zB = square;

7: none

8: R = Z;

9 to 10: none

11: xB = Z;

12: zA = adder_out;

13: zA = square;

14: none;

15: xA = Z;

16: R = square;

17: none;

18: xB = Z;

19 to 20: none;

21: xA = Z;

22: (xA, zA, xB, zB) = (zB, R, ad-

der_out, zA);

23: zA = adder_out;

24: zA = square;

25: zA = square;

26: none;

27: R = Z;

28 to 29: none;

30: xA = Z;

31: zB = adder_out;

32: zB = square;

33: none:

34: xB = Z;

35: R = square;

36: none;

37: xA = Z;

38 to 39: none;

40: xB = Z;

41: (xB, zB, xA, zA) = (zA, R, ad-

der_out, zB);

42: none;

The incompatible inputs are (instructions 22 and
41) zA, zB, adder_out and R. The graph of the
corresponding incompatibility relation is shown
in Fig. 5.4a. It can be colored with four colors c0,
c1, c2 and c3 to which correspond the following
subsets of compatible inputs:

S0 ¼ square; adder out;Zf g; S1 ¼ zAf g;
S2 ¼ zBf g; S3 ¼ Rf g:

ð5:4Þ
The circuit of Fig. 5.4b connects the inputs to

their corresponding intermediate signal w0–w3.
During Algorithm 2.4 execution, the follow-

ing data transfer must be executed:

xA  Z; adder out; zBf g� S0 [ S2;
xB  Z; adder out; zAf g� S0 [ S1;
zA  adder out; square; zB;Rf g� S0 [ S2 [ S3;
zB  adder out; square; zA;Rf g� S0 [ S1 [ S3;
R Z; squaref g� S0:

The circuit of Fig. 5.5 connects the interme-
diate signals w0–w3 to the output signals xA, xB,
zA, zB and R.

The complete circuit (Figs. 5.4b and 5.5)
consists of five multiplexers with, in total, thirteen
multiplexer inputs, while the circuit of Fig. 2.21
has also five multiplexers but with sixteen multi-
plexer inputs (actually not a great improvement!).

zA zB

adder
 out Z

Rsquare

c0

c0 c0

c1 c2

c3

adder
 out square Z

0 1 2

w0

zA

w1

zB

w2

R

w3

(a) (b)

Fig. 5.4 First sub-circuit
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5.1.3 Sequential Implementation

As in many aspects of digital circuit implementa-
tion, the reduction in the connection costs is pos-
sible if “space” is substituted by “time.” A generic
example is given in Fig. 5.6. This data path permits
to execute the same program as the circuit of
Fig. 5.1. It is assumed that all computation
resources have p inputs. The connections are exe-
cuted with an (n + m)-to-1 multiplexer, p − 1 A-
registers with enable input, k − 1 B-registers with
enable control input and a k-to-1 multiplexer.

An instruction such as

Ri ¼ Fðw0; . . .;wp�2;wp�1Þ; . . .;Rj

¼ Gðu0; . . .; up�2; up�1Þ;Rl

¼ Hðv0; . . .; vp�2; vp�1Þ; ð5:5Þ

is executed as follows:

• Operands w0 to wp−2 are sequentially transmit-
ted to mux1 and stored in registers A0 to Ap−2;

• Assume that F is the function that corre-
sponds to the computation resource number t;

w0 w2 = zB

0 1

xA

w0 w1 = zA

0 1

xB

w0 w2 = zB

0 1

zA

1

w3 = R w0 w1 = zA

0 1

zA

1

w3 = R w0

R
Fig. 5.5 Second sub-circuit

x0 xn-1
···

R0
en Rm-1

en

···

A0
en Ap-2

en···

CR0 CRk-2···
··· ···

B0
en Bk-2

en

CRk-1

···

mux1

mux2

Fig. 5.6 Sequential implementation of connections
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the value of the last operand wp−1 is trans-
mitted to mux1 and the value of F(A0, A1, …,
Ap−2, mux1) = F(w0, w1, …, wp−2, wp−1) is
stored in Bt;

• The values of the next values, up to G(u0, …,
up−2, up−1), are computed in the same way
and are stored in some of the B-registers;

• The value of H(v0,…, vp−2, vp−1) is computed
in the same way and directly stored into Rl;

• The other registers’ contents Ri, …, Rj are
updated with the values stored in B-registers.

In the case where all computation resources are
active during an instruction execution, the
sequence of operations is the following:

A0 = mux1 = w0;

…

Ap−2 = mux1 = wp−2;

B0 = CR0(A0, … , Ap−2, mux1) = CR0(A0, … ,

A
p−2
, wp−1);

…

A0 = mux1 = u0;

…

Ap−2 = mux1 = up−2;

Bk−2 = CRk−2(A0, … , Ap−2, mux1) = CRk

−2(A0, … , Ap−2, up−1);

A0 = mux1 = v0;

…

Ap−2 = mux1 = vp−2;

Rl = mux2 = CRk−1(A0,…,Ap−2,mux1) = CRk

−1(A0,…,Ap−2,vp−1);

Ri = mux2 = B0;

…

Rj = mux2 = Bk−2;;

The total number of steps is

Nsteps ¼ k � 1ð Þ � pþ p� 1ð Þþm
¼ k � pþm� 1 ð5:6Þ

instead of 1 in the case of Fig. 5.1, and there are

Nmux�inputs ¼ nþmþ k ð5:7Þ

multiplexer inputs instead of k � p �
(n + m) + m � k in the case of Fig. 5.1. Further-
more, there are p + k − 2 additional registers.

Comments 5.1

• Are necessary the B-registers? The problem is
“data dependency.” Consider an instruction
such as (5.5) and assume that u0 is the value
stored in Ri. In the case of the data path of
Fig. 5.1, all operations are executed in par-
allel so that G is computed with the latest (not
updated) value of u0 = Ri. In the case of the
data path of Fig. 5.6, the operations are
sequentially executed. If the value of
F(w0, …, wp−1) is directly stored in Ri, then
G would be computed with the next (updated)
value of u0 = Ri. In some cases, the problem
can be avoided by a convenient choice of the
order in which the operations are executed. In
other cases, the parallel behavior can be
emulated by inserting additional intermediate
registers (the B-registers of Fig. 5.6).

• As already mentioned in Chapter 3, in the
case of FPGA implementations, additional
registers does not necessarily increase the
total cost, computed in terms of used basic
cells. The additional registers could consist of
otherwise-not-used flip-flops.

A frequent particular case is when all computa-
tion resources have at most two operands and
there are no data dependency problems so that
the B-registers are no longer necessary. The cir-
cuit is shown in Fig. 5.7. The connections are
implemented with two multiplexers and a register
A (accumulator register).

The sequence of operations is the following:

A = mux1 = w0;

Ri = mux2 = CR0(A, mux1) = CR0(A, w1);

…

A = mux1 = u0;

Rj = mux2 = CRk−2(A, mux1) = CRk−2(A, u1);

A = mux1 = v0;

Rl = mux2 = CRk−1(A, mux1) = CRk−1(A, v1);

Thus

Nsteps ¼ 2 � k and Nmux�inputs ¼ nþmþ k: ð5:8Þ
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A still more particular case is when there is
only one computation resource; for example, a
programmable arithmetic and logic unit
(Sect. 5.3). The circuit is shown in Fig. 5.8. The
connections are implemented with a multiplexer
and an accumulator register A.

An instruction such as Ri = F(w0, w1) is exe-
cuted in two steps:

A = mux1 = w0;

Ri = CR(A, mux1) = CR(A, w1);

and there are n + m multiplexer inputs.
Instead of using multiplexers, a common

(traditional, old fashioned) technique is to use
buses. As an example, the architecture of Fig. 5.7
is equivalent to the two-bus architecture of
Fig. 5.9, with different control signals or with
additional address decoders.

Comment 5.2

Within integrated circuits, the internal connections
are generally implemented by means of multi-
plexers instead of busses. A drawback of busses is
that, under certain circumstances, busses could be
in high impedance, a potentially unstable and
undesirable state. This happens if none of the
connected 3-state amplifier outputs is in a

low-impedance state. To avoid a possible insta-
bility, pullup (or pulldown) devices are added.

5.2 Memory Blocks

Part of the registers of a digital system can be
grouped together within memory blocks. In this
way, the implementation of the corresponding set
of registers could be more efficient in terms of
silicon area, and the structure of the circuit might
be easier to understand and specific control
techniques can be considered. All standard cell

x0 xn-1
···

R0
en Rm-1

en

···

Aen

CR0 CRk-2··· CRk-1

mux1

mux2

Fig. 5.7 Two-multiplexer and accumulator architecture

x0 xn-1
···

R0
en Rm-1

en

···

Aen

CR

mux

Fig. 5.8 One-multiplexer and accumulator architecture
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and field programmable gate array libraries
include predefined macrocells that implement
different types of memory blocks. In this section,
some of those memory blocks are described.

5.2.1 Register Files

A register file is a set of m-bit parallel registers
plus additional circuits that permit to access the
stored data (read operation) and to update the
register contents (write operation). Some of the
main parameters of a register file are as follows:

• the number n of registers,
• the number m of bits per register,
• the number of input ports, and
• the number of output ports.

A register file with an input port and an output
port is a simple static random access memory that
stores 2n m-bit words. All ASIC and FPGA
vendor libraries contain predefined register files
that can be instantiated and integrated within the
circuit definition. Furthermore, many IC and
FPGA developing tools include generators that
permit to define customized register files, for
example LogiCORE IP Block Memory Genera-
tor (Xilinx) and Intel FPGA IP cores (Altera).

Apart from the parameters mentioned here
above, there are other features that the
designer must specify when defining a register
file. Even in the case of single input and output
ports, the write and read operations can be
controlled in several ways. In the following
example (Fig. 5.10), the write operation is
synchronous:

x0 xn-1
···

R0
en Rm-1

en

···

Aen

CR0 CRk-2··· CRk-1

bus1

bus2

Fig. 5.9 Two-bus and
accumulator architecture

CEN CEN CEN

···

···

EN0

···

write

data_in

···
0 1 15

data_out

0

1

15

···

EN1

EN15

EN0 EN1 EN15
X0 X1 X15

address

Fig. 5.10 Single input and
output port register file
(n = 16)
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• On a positive edge of clk, the value of data_in
is stored within register number i if
address = i and write = 1.

On the other hand, the read operation is
asynchronous:

• If address = i, then data_out is equal to the
value stored in register number i.

A VHDL model register_file.vhd is available at
the Authors’ web site.

Example 5.2 The circuit of Fig. 5.11 is a register
file with two input ports and two output ports.
Inputs and outputs are synchronized. The write
operations are executed as follows:

• The enable signal en_i of register number i is
equal to 1, if either write_A = 1 and
address_A = i or when write_B = 1 and
address_B = i;

• The data inputted to register number i is
defined by Table 5.1.

In order to avoid a conflict when trying to
transfer input_A to register number i and to
transfer input_B to the same register and at the
same time, it should be assumed that the product
write_A � (address_A = i) �write_B � (address_B
= i) is always equal to 0, for all i. Anyway, in
the case of Fig. 5.11, if write_A � (address_A
= i) and write_B � (address_B = i) are equal to
1, then the data stored into register number i is
input_B. So, when generating the data sheet of
the preceding circuit, the following rule could be
added: simultaneous write_A and write_B oper-
ations to the same register are allowed only if
input_A = input_B.

The read operation uses the same addresses as
the write operation (address_A and address_B);
it is executed as follows:

• The enable signal of output register A is equal
to read_A, and the enable signal of output
register B is equal to read_B;

• The data stored in output register A is selected
by a multiplexer controlled by address_A,

CEN CEN CEN

···

···

EN_A0

···

write_A

data_in_A

···
0 1 15

data_out_A

0

1

15

···

EN_A1

EN_A15
EN0 EN1 EN15

X0 X1 X15

address_A

···

EN_B0

···

write_B

0

1

15

···

EN_B1

EN_B15

address_B

···

EN0

EN1

EN15

0 1 0 1 0 1EN_B0 EN_B1 EN_B15

···

···

data_in_B

···
0 1 15

data_out_B

address_A

address_B

CENread_A CENread_B

Fig. 5.11 Two-port register file (n = 16)
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and the data stored into output register B is
selected by another multiplexer controlled by
address_B.

A VHDL model two_port_register_file.vhd is
available at the Authors’ web site.

Many different types of register files can be
synthesized. As already mentioned, most ASIC
and FPGA vendors have development tools that
include generators of customized register files.
According to the circuit specification, the designer
can choose the most convenient parameters, for
example: number of registers, number of bits,
number of input and output ports, synchronized
inputs, registered outputs. As an example, the
processor described in Chapter 5 of Deschamps
et al. (2017) includes a register file (Fig. 5.16 of
Deschamps et al. 2017) with the following char-
acteristics: n = 16, m = 8, one input port, two
output ports, three addresses i (first output port),
j (second output port) and k (input port). The
output ports are not registered so that instructions
such as Rk = F(Ri, Rj), where F is a function
executed by an external combinational circuit, can
be executed in one clock cycle, even if k = i or
k = j, if the clock period is longer than the com-
binational circuit delay.

5.2.2 First-In First-Out Memories

A FIFO is also a set of n m-bit parallel registers
but with restrictive access to the stored data. It
works as a queue. Assume that it currently stores
s data d0, d1, …, ds−1 with s < n. After a write
operation with input data equal to ds, the new
register contents will be d0, d1, …, ds−1, ds.
Conversely, starting from the preceding internal
state, after a read operation the new register
contents will be d1, d2, …, ds. A graphical
description of successive contents of a FIFO is
shown in Fig. 5.12.

The external control of a FIFO memory only
uses two control signals: write and read. There
are no address bits. On the other hand, two
condition signals (flags) are necessary:

• A full flag indicates that the memory already
stores n data so that a write operation is not
allowed;

• An empty flag indicates that the memory does
not store any data so that a read operation is
not allowed.

A simple way to implement an “address-less”
memory is to use a register file and to internally

Table 5.1 Input data
selection

write_A � (address_A = i) write_B � (address_B = i) Input to register nº i

0 0 Don’t care

0 1 data_B

1 0 data_A

1 1 Not allowed

d0ds-1 ds-2--initial state

d0ds-1 ds-2-write,
data_in = ds

ds

-

- -

-

d1ds ds-1-read -- -

d2- ds-read -- -

d2ds+1 ds-write,
data_in = ds+1

-- -

···

···

···

···

···

···

···

···

···

···

read d0

read d1

Fig. 5.12 FIFO file:
example of successive states
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generate the write and read addresses according
to some strategy, in this case a First-In First-Out
strategy. As an example, consider a register file
with an input port data_in, a registered output
port data_out, two commands write and read,
and two addresses write_address and read_address
(Fig. 5.13).

The complete FIFO structure is shown in
Fig. 5.14. The control circuit stores and updates
write_address, read_address and the number s of
currently stored data; it generates the write and
read commands as well as the empty and full
flags. In answer to an external write command,
the following operations are executed:

• The external value data_in is stored at
address write_address of the register file;

• The empty flag is set to false;
• If the current value of s is n − 1, the full flag is

set to true;
• write_address and s are updated: write_ad-

dress = write_address + 1; s = s + 1.

In answer to an external read command, the
following operations are executed:

• The data stored at address read_address is
sent to the output register.

• The full flag is set to false.
• If the current value of s is 1 the empty flag is

set to true.
• read_address and s are updated: read_ad-

dress = read_address + 1; s = s − 1.

The behavior of the control circuit is defined by
the following algorithm.

Algorithm 5.1 First-In First-Out memory:
control unit

−− on reset:

s = 0; empty = true; full = false;

write_address = 0; read_address = 0;

loop

if write = 1 then

empty = false;

if s = n−1 then full = true; end if;

write_address = (write_ad-

dress + 1) mod n;

s = s + 1;

elsif read = 1 then

full = false;

if s = 1 then empty = true; end if;

read_address = (read_ad-

dress +1) mod n;

s = s − 1;

end if;

end loop;

Examples of operations are shown in Fig. 5.15:

• Initially, the queue contents are d4 d3 d2 d1
that are stored between addresses read_ad-
dress and write_address − 1; d1 is the soon-
est stored data (First-In) and d4 is the latest
stored data; the previously read values are d0
(the latest) d−1 d−2 d−3;

CEN CEN CEN

···

···

EN0

···

write

data_in

···
0 1 15

data_out

0

1

15

···

EN1

EN15

EN0 EN1 EN15
X0 X1 X15

write_address

CENread

read_address

Fig. 5.13 Register file
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• After a first read operation, the soonest stored
data d1 is outputted and the new queue con-
tents are d4 d3 d2; the soonest stored data is
now d2;

• After a second read operation, the soonest
stored data d2 is outputted and the new queue
contents are d4 d3;

• After a write operation with data_in = d5, the
new queue contents are d5 d4 d3 being d5 the
latest stored data; the latest read value is still d2.

A VHDL model fifo.vhd is available at the
Authors’ web site. Simulation results are shown
in Fig. 5.16:

• Initially write_address = 0, read_ad-
dress = 0 and s = 0.

• Then ten write cycles with data_in = 00, 01,
02, …, 09 are executed; at the end of those
operations write_address = 10, read_ad-
dress = 0 and s = 10.

• Five read cycles are executed; data_out = 00,
01, 02, 03, 04; write_address = 10,
read_address = 5 and s = 5.

• Nine write cycles with data_in = 0A, 0B, …,
0F, 10, 11, 12 are executed; write_ad-
dress = (10 + 9) mod 16 = 3, read_ad-
dress = 5 and s = 5 + 9 = 14.

• Ten read cycles are executed; data_out = 05,
06, …, 0E; write_address = 3, read_ad-
dress = 5 + 10 = 15 and s = 14 − 10 = 4.

Observe that s = (write_address − read_ad-
dress) mod n.

An interesting application of FIFO memories
(queues) is the implementation of flexible con-
nections between circuits (Fig. 5.17a). Assume
that circuits A and B sequentially process data
and that their computation times are
data-dependent. It can happen that in some
moment circuit A has completed a computation
and has generated an output data, while circuit B
is still processing the previous data. Then circuit
A must wait for circuit B being ready before
sending it this new data. Conversely in some
other moment circuit B could be waiting for
circuit A having completed a computation. In
such a case, a FIFO (queue) could be inserted
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d0

d1

d2

d3

d4

write_address

read_address

d2

data_out data_out

d0

data_out

write

d0

d1

d2

d3

d4

d5

write_address

read_address

d2

data_out

d5

s = 4
full = false
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Fig. 5.15 Example of operations
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between circuits A and B (Fig. 5.17b): when
circuit A generates a new data, it sends it to the
queue; when circuit B is ready to process a new
data, it reads it from the queue. In this way, as
long as the queue is neither full nor empty, none
of circuits A and B will have to wait before
starting a new computation.

This type of interconnection can be used in
pipelined systems (flexible pipelining) or in
input–output interfaces.

5.2.3 First-In Last-Out Memories

A FILO (or LIFO = Last-In First-Out) is also a
set of n m-bit parallel registers with restrictive
access to the stored data. It works as a stack.
Assume that it currently stores s data d0, d1, …,
ds−1 with s < n. After a write operation with
input data equal to ds, the new register contents
will be d0, d1, …, ds−1, ds. Conversely, starting
from the preceding internal state, after a read
operation the new register contents will be d0, d1,
…, ds−1. A graphical description of successive
contents of a FILO is shown in Fig. 5.18.

The external control of a FILO memory uses
two control signals write (or push) and read (or
pop) and generates two condition signals (flags)
full and empty.

As in the case of a FIFO memory, a simple
way to implement a FILO memory is to use a

register file and to internally generate the write
and read addresses. As an example, consider
again the register file of Fig. 5.13 and the
structure of Fig. 5.19. The write_address points
to the register where a new data must be written,
while the read_address points to the register
where the latest data has been written. In answer
to an external write command, the following
operations are executed:

• The external value data_in is stored at
address write_address of the register file.

• The empty flag is set to false.
• If the current value of write_address is n 1,

then the full flag is set to true.
• write_address is updated: write_address

= write_address + 1.

Fig. 5.16 FIFO simulation (n = 16, m = 8) (courtesy of Mentor Graphics)
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In answer to an external read command, the
following operations are executed:

• The data stored at address read_ad-
dress = write_address − 1 is sent to the out-
put register.

• The full flag is set to false;
• If the current value of write_address is 1, then

the empty flag is set to true;
• write_address is updated: write_address =

write_address − 1.

The behavior of the control circuit is defined by
the following algorithm.

Algorithm 5.2 First-In Last-Out memory: con-
trol unit

−− on reset:

empty = true; full = false; write_ad-

dress = 0;

loop

if write = 1 then

empty = false;

if write_address = n−1 then full =

true; end if;

write_address = (write_address + 1)

mod n;

elsif read = 1 then

full = false;

if write_ad-

dress = 1 then empty = true; end if;

write_address = write_address −1;

end if;

end loop;

Examples of operations are shown in Fig. 5.20:

• Initially, the stack contents are d4 d3 d2 d1 d0
that are stored between addresses 0 and
read_address; d4 is the latest stored data
(Last-In) and d0 is the soonest stored data.

• After a write operation with data_in = d5, the
new queue contents are d5 d4 d3 d2 d1 d0 and
the latest stored data is now d5.

• After a read operation the latest stored data d5
is outputted and the new queue contents are
d4 d3 d2 d1 d0.

• After another read operation, the latest stored
data d4 is outputted and the new queue con-
tents are d3 d2 d1 d0.

A VHDL model filo.vhd is available at the
Authors’ web site. Simulation results are shown
in Fig. 5.21:

• initially write_address = 0;
• Then ten write cycles with data_in = 00, 01,

02, …, 09 are executed; at the end of
those operations write_address = 10 and
read_address = 9.

• Five read cycles are executed; data_out = 09,
08, 07, 06, 05; write_address = 10 − 5 = 5
and read_address = 4.

• Nine write cycles with data_in = 0A, 0B, …,
0F, 10, 11, 12 are executed; write_ad-
dress = 5 + 9 = 14 and read_address = 13.

• Ten read cycles are executed; data_out = 12,
11, …, 0A, 04; write_address = 14 − 10 = 4
and read_address = 3.

A common application of stacks is the storing of
the return addresses in processors whose instruc-
tion set includes subroutine calls. In order to
permit nested subroutine calls, every time that a
call is executed the return address is pushed onto
the stack. When executing the corresponding
“end of subroutine” instruction, the next address
is read from the stack. Furthermore, not only the
return addresses but also other context data, for
example current value of the state registers, can
be saved onto the stack when executing a call

register file

write_address

data_out

data_in

reset
control unit

empty
full

write

read_address

read

-1

Fig. 5.19 FILO structure
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and retrieved from the stack when completing
the subroutine execution.

Another (somewhat exotic) application is the
evaluation of arithmetic formulas expressed in
polish notation. Consider a string of numbers and
operands such as

þ d=cþ a b: ð5:9Þ

In this type of expression, the binary operators
(+ and / in this example) precede the corre-
sponding operands. For example

þ a b ¼ aþ bð Þ;
=cþ a b ¼ =c aþ bð Þ ¼ c= aþ bð Þ;

þ d=cþ a b ¼ þ d c= aþ bð Þð Þ ¼ dþ c= aþ bð Þð Þ:
ð5:10Þ

This computation can be executed with a
stack:

• Read the characters (operators and operands)
from right to left.

• If the read character is an operand, push it
onto the stack.

• If the read character is a binary operator, read
the two operands that are on the top of the
stack, execute the operation with those oper-
ands, and push the result onto the stack.

• After processing the leftmost character, the
result is in top of the stack.

The successive stack contents when computing
expression (5.9) are shown in Fig. 5.22.

Fig. 5.21 FILO simulation (n = 16, m = 8) (courtesy of Mentor Graphics)
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Fig. 5.22 + d/c + a b = d + (c/(a + b))
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5.3 Programmable Computation
Resources

Data paths (see, for example, the generic data
path of Fig. 5.1) include computation resources
that implement the computation primitives (op-
erations) corresponding to the executed instruc-
tions. The number and type of computation
resources mainly depend on the chosen schedule
and on the resource assignment (Chap. 2). A key
concept is that of activity intervals of every
computation primitive f (Sect. 2.3).

Consider now a computation resource CRi that
implements a primitive f. The activity intervals of
CRi can also be defined: they consist of all
activity intervals of f to which this particular
resource CRi has been assigned.

Example 5.3 Consider the scheduled precedence
graph of Fig. 2.8. The activity intervals of the
multiplication are [1, M], [1, M], [1, M], [M + 3,
2M + 2], [M + 1, 2M]. Three multiplications
must be executed during cycles 1 to M, so that
three computation resources (multipliers) CR1,
CR2 and CR3 are necessary to execute the pro-
gram. Their activity intervals can be chosen as
follows: CR1: [1, M], [M + 3, 2M + 2], CR2: [1,
M], [M + 1, 2M], CR3: [1, M].

Consider a particular data path. It can happen
that two or more computation resources, say CRi,
CRj, …, CRk, implement different functions, say
fi, fj, …, fk, but that their activity intervals do not
overlap: during cycles when CRi computes fi,

none of CRj, …, CRk is active; during cycles
when CRj executes fj, none of CRi, …, CRk is
active, and so on. Then instead of implementing
fi, fj, …, fk with separate resources CRi, CRj, …,
CRk, an alternative solution can be considered:
define a programmable resource PCR able to
execute either fi or fj or … or fk under the control
of signals generated by the control unit.

Example 5.4 Design a circuit that computes
z = (a + b) − (c + d). Assume that each opera-
tion (+ or −) is executed in a cycle and that a
2-cycle schedule has been chosen (actually the
ASAP schedule):

cycle0: e = a + b; f = c + d;

cycle1: z = e − f;

The computation width with respect to the
addition is equal to 2, and the computation width
with respect to the difference is equal to 1. The
corresponding circuit must include two adders
and a subtractor (Fig. 5.23a). Taking into
account that the adders are active during cycle 0
and the subtractor is active during cycle 1, a
programmable adder–subtractor could be con-
sidered: it computes e = a + b during cycle 0
and computes z = e − f during cycle 1. The
corresponding circuit is shown in Fig. 5.23b.
The programmable resource is an adder–sub-
tractor whose function (add or subtract) is
defined by a control signal cycle generated by the
control unit.

a b
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EN

c d
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EN

-

zcycle0
cycle0

a b

0: add   
1: subtract

e

EN

c d

+

f

ENcycle0
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cycle 0 1 0 1

z
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Fig. 5.23 z = (a + b) − (c + d)
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The definition of programmable resources
may have positive effects. In some cases, the cost
of a programmable resource is lower than the
sum of costs of the non-programmable substi-
tuted resources. This often happens in the case of
arithmetic circuits when a common kernel can be
extracted from a set of arithmetic functions, or
when one of the functions is a primitive used to
compute another function.

A simple and classical example is the adder–
subtractor. Assume that x and y are n-bit natural
(non-negative) numbers. Their sum is an (n + 1)-
bit natural and their difference is a 2’s comple-
ment (n + 1)-bit integer:

if 0� x; y\2n�1then 0� xþ y\2n and
� 2n�1\x� y\2n�1: ð5:11Þ

Their difference is computed as follows:

x� y ¼ xþ�yþ 1 ð5:12Þ

where �y stands for the bitwise complement of
y. It is easy to check that �y ¼ 2n � 1� y: The
structure of an adder–subtractor is shown in
Fig. 5.24. Its cost is practically equal to the cost
of a simple adder. It works as follows:

• If oper = 0 then zn−1 zn−2 …
z0 = (x + y) mod 2n and cout ⊕ oper = cout is
equal to 1 if x + y � 2n, so that cout ⊕ oper
is the most significant bit zn of x + y.

• If oper = 1 then zn-1 zn-2 … z0 = (x + (2n −
1 − y) + 1) mod 2n = (x − y) mod 2n and
cout ⊕ oper = not(cout) is equal to 1 if cout =
0, that is if x + (2n − 1 − y) + 1 < 2n and
thus x − y < 0, so that zn is the sign bit of
x − y.

A straightforward generalization of the adder–
subtractor is the arithmetic and logic unit (ALU).
It is a basic component of any processor. To
complete this section, an ALU kernel is
designed.

The circuit to be developed (Fig. 5.25) is a
combinational one. Its inputs and outputs are the
following:

• two m-bit data inputs x and y;
• an m-bit data output z;
• two input control signals: oper (1 bit) and

select (2 bits);
• four output state signals: carry, overflow,

negative and zero.

Its behavior is defined in Table 5.2 in which and,
or and not �ð Þ are bitwise logic operations.

n XOR 
gates

n-bit adder cincout

oper

x y

carry

zzn

Fig. 5.24 Adder–subtractor

x y

z

oper

select negative

carry
overflow

zero

ALU kernel

Fig. 5.25 Kernel of an arithmetic and logic unit

Table 5.2 ALU kernel operations

oper select Operation

0 00 z = (x + y) mod 2m

0 01 z = x and y

0 10 z = x or y

1 00 z = (x − y) mod 2m

1 01 z ¼ x and �y

1 10 z ¼ x or �y
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The state output signals (flags) are defined as
follows:

• carry: if x and y are interpreted as m-bit nat-
urals, carry = 1 if x + y � 2m (oper = 0) or
if x + y � 0 (oper = 1);

• overflow: if x and y are interpreted as m-bit
2’s complement integers, overflow = 1 if
x + y cannot be represented with only m bits
(oper = 0) or if x − y cannot be represented
with only m bits (oper = 1);

• negative: if z is interpreted as an m-bit 2’s
complement integer, negative = 1 if z < 0;

• zero: zero = 1 if z = 00 ��� 0.

The circuit structure is shown in Fig. 5.26b. The
basic cell (Fig. 5.26a) computes

gi ¼ xi � yi carry generateð Þ;
pi ¼ xi or yi carry propagateð Þ;
si ¼ xi � yi � ci;

ciþ 1 ¼ gi or ci � pi:

Observe that in this case the carry propagate
function is defined as being the Boolean sum of
xi and yi instead of their mod 2 sum.

Assume that x and y are interpreted as m-bit
naturals. If oper = 0, then the set of basic cells
computes x + y = cm � 2m + z, so that
z = (x + y) mod 2m and cm = 1 if x + y � 2m. If
oper = 1, then the set of basic cells computes
x + (2m − y − 1) + 1 = cm � 2m + z so that
z = (x − y) mod 2m and cm = 1 if x + (2m −

y − 1) + 1 � 2 m that is if x − y � 0. Thus the
carry flag is equal to cm.

To define the overflow flag, x and y must be
interpreted as m-bit 2’complement integers. Their
sum and their difference are (m + 1)-bit 2’com-
plement integers. In order to detect an overflow
condition, consider the circuit of Fig. 5.27 in
which x and y are represented with an additional
bit (with m + 1 bits). For that, the sign bits xm−1
and ym−1 are duplicated. If sm and sm−1 are not
equal, the result cannot be represented withm bits.
Condition sm 6¼ sm−1 is equivalent to cm 6¼ cm−1
so that the overflow flag is equal to cm ⊕ cm−1.

The two remaining flags are negative = zm−1
(sign bit of z) and zero = nor(zm−1, zm−2, …, z0).

A VHDL model alu_kernel.vhd is available at
the Authors’ web site.
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Fig. 5.27 Overflow detection
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5.4 Sequential Implementation

A central aspect of the development of a digital
system is the scheduling of the operations
(Chap. 2). The designer looks for a satisfactory
trade-off between characteristics such as cost,
speed, power consumption, reliability, time to
market, and others aspects. If speed is essential,
concurrent options based on ASAP schedules
should be considered, whatever the cost or the
power consumption (obviously within some
limits). On the contrary, if the main requirement is
to minimize the cost—the silicon area of an IC,
the number of FPGA cells—schedules that min-
imize the computation widths should be chosen.

On the other hand, techniques that permit to
reduce the cost of the data path have been descri-
bed in this chapter: sequential implementation of
connections, register files and programmable
computation resources. Thus, if cost is the main
issue, optimized schedules and sequential imple-
mentation techniques might be considered.

As an example, consider a PID (Proportional
Integral Derivative) controller loop (Fig. 5.28)
used to control a physical (e.g., industrial) pro-
cess. Its function is to maintain some process
parameter s(t)—a pressure, a temperature, etc.—
as close as possible to a reference value r(t). For
that, it periodically calculates an error e(t) equal
to the difference r(t) − s(t) and generates a cor-
rection u(t) whose effect on the process must be a
reduction of the error.

In PID, controllers the correction is a linear
combination (Kp, Ki and Kd are constant
coefficients)

u tð Þ ¼ Kpe tð ÞþKi

Z t

0

e kð ÞdkþKd
de tð Þ
dt

:

ð5:13Þ

The integral term makes smoother the transi-
tions between process stable states and the
derivative term serves to anticipate the process
reactions. Thus, the control is more stable and
faster than a simple proportional control.

A discrete version of (5.13) with sampling
period T is

u nTð Þ ¼ Kpe nTð Þ

þKi

Xk¼n
k¼0

e kTð ÞT

þKd
e nTð Þ � e n� 1ð ÞTð Þ

T
:

ð5:14Þ

From Eq. (5.14),

u n� 1ð ÞTð Þ ¼ Kpe n� 1ð ÞTð ÞþKi

Xk¼n�1
k¼0

e kTð ÞT

þKd
e n� 1ð ÞTð Þ � e n� 2ð ÞTð Þ

T
ð5:15Þ

so that (Eqs. 5.14 and 5.15)

u nTð Þ ¼ u n� 1ð ÞTð ÞþK1 � e nTð ÞþK2

� e n� 1ð ÞTð ÞþK3 � e n� 2ð ÞTð Þ;
ð5:16Þ

where

K1 ¼ KpþKi � T þKd=T ;K2

¼ �Kp � 2Kd=T ;K3 ¼ Kd=T : ð5:17Þ

A straightforward implementation of (5.16) is
shown in Fig. 5.29. For every T seconds, the
internal values ed, edd and ud are updated, and
new values of r and s are sampled. Then u =
ud + K1 � (r − s) + K2 � ed + K3 � edd is com-
puted. An upper bound of the computation time

r(t)
subtractor

e(t) correction 
computation

u(t)
process under control

s(t)+

-

PID controller

Fig. 5.28 PID controller
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is the sum of three delays: subtractor, multiplier
by a constant and 4-operand adder delays.

Practically in all the cases, the sample period T is
much longer than the computation time so that
sequential implementations could be considered. As
an example, the following algorithm executes the
PID controller function. It is assumed that an external
timer generates a time_out pulse every T seconds.

Algorithm 5.3 PID controller

loop

e = r − s;

acc = ud + K1�e;
acc = acc + K2�ed;
u = acc + K3�edd, ud = acc + K3�edd;
edd = ed;

ed = e;

wait until time_out = 1;

end loop;

A data path able to execute Algorithm 5.3 is
shown in Fig. 5.30. Is consists of

• a programmable computation resource that
computes z = x − y, z = x + k1 � y, z = x +
k2 � y, z = x + k3 � y and z = x, under the
control of an oper signal (Table 5.3);

• an eight-word register file, with an input port
and two output ports that stores the algorithm
variables e, ed, edd, ud and acc at addresses 0,

subtractor
+

-

r

s

e

ed

edd

K1 x

K2 x

K3 x

adder

ud

u

Fig. 5.29 Straightforward implementation

address_w
address_a
address_b

write_reg

register 
file

a b

w

0 1 0 1
sel

r s

computation 
resourceoper

ENout_en

u

Fig. 5.30 Sequential implementation: data path

Table 5.3 Computation resource operations

oper z

000 x

010 x + k1 � y
100 x + k2 � y
110 x + k3 � y
001 x − y
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1, 2, 3 and 7; the outputs are not registered so
that operations such as Ri = f(Rj, Rk), where
Ri, Rj and Rk are registers of the register file,
can be executed in one cycle;

• a connection network consisting of two 2-to-1
multiplexers;

• a control unit that generates address_w (input
port address), address_a and address_b (out-
put port addresses), write_reg, sel, oper and
out_en.

It is assumed that on an initial reset pulse the
register file contents and the timer are reset.

The control unit has seven internal states that
correspond to the seven instructions of the loop
body (Fig. 5.31).

Table 5.4 defines the control unit outputs.
A VHDL model pid_controller.vhd is avail-

able at the Authors’ web site. All processed data

(u, ud, e, ed, edd) are represented as m-bit 2’s
complement integers. This number must be
chosen in such a way that there is no overflow.
Simulation results are shown in Fig. 5.32.
They correspond to the following PID controller:

K1 ¼ 107;K2 ¼ �104;K3 ¼ 2; so that u
¼ ud þ 107 � r � sð Þ � 104 � ed þ 2 � edd:

0reset 1 2 3 4 5 6

time_out =0

nop

e = r-s

acc = ud+k1·e

acc = acc+k2·ed

u = acc+k3·edd,
ud = acc+k3·edd

edd = ed

ed = e time_out =1

Fig. 5.31 Control unit

Table 5.4 Control signals

Operation write_reg sel address_w address_a address_b oper en_out

e = r − s 1 0 0 – – 001 0

acc = ud + K1 � e 1 1 4 3 0 010 0

acc = acc + K2 � ed 1 1 4 4 1 100 0

u = ud = acc + K3 � edd 1 1 3 4 2 110 1

edd = ed 1 1 2 1 – 000 0

ed = e 1 1 1 0 – 000 0

wait (nop) 0 – – – – – 0

Fig. 5.32 Simulation results (courtesy of Mentor Graphics)

Table 5.5 First computation steps

r s ud e ed edd u

7 15 0 −8 0 0 −856

7 5 −856 2 −8 0 190

7 8 190 −1 2 −8 −141

7 7 −141 0 −1 −2 −33

7 7 −33 0 0 −1 −35
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The first computation steps are shown in
Table 5.5. Initially, ed, edd and ud are equal to 0
and r is equal to 7. The successive sampled
values of s are 15, 5, 8, 7 and 7.

5.5 Hierarchical Description

Hierarchical description and development con-
stitute an efficient strategy in many technical
disciplines. In particular, it is commonly used in
software engineering as well as in digital system
synthesis.

Generally, the initial specification of a digital
system is functional (a description of what the
system does). In the case of very simple systems, it
could be a table that defines the output signal val-
ues in function of the input signal values. How-
ever, for more complex systems, other
specification methods should be used. A natural
language description (e.g., in English) is a frequent
option. Nevertheless, an algorithmic description
(programing language, hardware description lan-
guage, pseudocode) could be a better choice: those
languages have a more precise and unambiguous
semantics than natural languages. Furthermore,

programing language and hardware description
language specifications can be compiled and exe-
cuted, so that the initial specification can be tested.

The digital system designer work is the gen-
eration of a circuit made up of available com-
ponents and whose behavior corresponds to the
initial specification. Many times this work con-
sists of successive refinements of an initial
description: starting from an initial specification,
a (top level) block diagram is generated; then,

every block is treated as a subsystem to which a
more detailed block diagram is associated, and so
on. The design work ends when all block dia-
grams are made up of interconnected compo-
nents defined by their function and belonging to
some available library of physical components
(logic gates, registers, multiplexers, memory
blocks, multipliers, dividers, and other cells and
macro-cells).

Consider the example of Sect. 5.4 whose
initial specification is Algorithm 5.3. From this
algorithm, a first data path block diagram
(Fig. 5.30) is generated. It includes five blocks: a
register file, two 2-to-1 multiplexers, a pro-
grammable computation resource and an output
register. The output register, the register file and
the two multiplexers can be considered as library
components (real or virtual compiled compo-
nents). On the other hand, the programmable
computation resource is a functional block whose
behavior is defined by Table 5.3. The part of the
VHDL code (pid_controller.vhd) that corre-
sponds to the programmable resource is the fol-
lowing (long_x and long_z are 2m-bit extensions
of m-bit integers x and z, necessary for syntax
correction):

A straightforward translation of this piece of
code to a block diagram is shown in Fig. 5.33. It
consists of a 2’s complement multiplier that
computes z = x + w � y and a multiplexer that
selects the value of w.

The 5-to-1 multiplexing function (selection of
w) can be implemented by an 8-to-1 multiplexer,
that is a library component. It remains to imple-
ment an m-bit by m-bit 2’s complement multi-
plier. For that, a modified shift and add algorithm

with oper select long_z <= long_x − one*y when "001",

long_x + k1*y when "010",

long_x + k2*y when "100",

long_x + k3*y when "110",

long_x when others;

z <= long_z(m−1 downto 0);
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could be used (see, e.g., Sect. 8.4 of Deschamps
et al. 2012). The corresponding circuit is an array
of (m + 1) by (m + 1) 1-bit multipliers that
computes z = x � y + u + v where x, y and u are
m-bit 2’s complement integers and v is an
(m − 1)-bit natural (in other words vm−1 = 0). An

example with m = 3 is shown in Fig. 5.34 and
can easily be generalized. There are two types of
cells: normal 1-bit multiplier cells that compute
two switching functions e and f of four binary
variables a, b, c and d

e ¼ a � b� c� d; f ¼ a � b � c� a � b � d � c � d;
ð5:18Þ

and modified 1-bit multiplier cells (last row) that
compute

e ¼ �a � b� c� d; f ¼ �a � b � c� �a � b � d � c � d:
ð5:19Þ

To summarize:

• A block diagram (Fig. 5.30) has been gener-
ated from Algorithm 5.3; it is a first hierar-
chical level; all blocks, but one, can be
implemented by real or virtual available
components.

000 010 100 110 001
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w y
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Fig. 5.33 Programmable computation resource
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• The programmable resource behavior is
defined by a table (Table 5.3); to this
behavior corresponds a block diagram
(Fig. 5.33); it is a second hierarchical level.

• At this point, the decision taken by the
designer is to use a multiplier that implements
the modified shift and add algorithm; the
corresponding block diagram is shown in
Fig. 5.34; it is an m + 1 by m + 1 array of
simple 1-bit multiplier cells; this is a third
hierarchical level;

• There are two types of multiplier cells, and
each of them is defined by very simple
switching functions (5.18 and 5.19) that can
easily be implemented with logic gates or
FPGA basic cells; it is a fourth hierarchical
level (gate level).

A parameterized VHDL model modified_par-
allel_mutiplier.vhd is available at the Authors’
web site. A VHDL model pid_controller2.vhd
including the programmable resource of
Fig. 5.33 and, in particular, the multiplier array
of Fig. 5.34 is available at the Authors’ web site.

Comment 5.3

When using a hardware description language
such as VHDL, hierarchical descriptions are
based on the instantiation of components. In the
case of the preceding example, a 2’s complement
multiplier is defined and encapsulated within an
entity called modified_parallel_multiplier. Then,
a computation_resource entity is defined; its
architecture includes the instantiation of the
modified_parallel_multiplier component. Finally,
a pid_controller2 entity is defined; its architecture
includes the instantiation of the computation_re-
source component (the definition of those entities
is available at the Authors’ web site).

This method is similar to the use of functions
in programming languages. It has the same

advantages as in the case of software engineer-
ing: clearer description and documentation, faster
and safer development task (an application to the
engineering world of the Latin “divide et impera”
sentence), reuse possibility, and others.

However, sometimes it can be useful to
transform the hierarchical description into a flat
description. It is an operation similar to inlining
in the case of software. It (roughly) consists of
replacing instantiations of components by the
code that describes the component. The reason is
that a flat description could give to the synthesis
programs more possibilities of low-level opti-
mizations. A very simple example: some pruning
operations (elimination of unnecessary gates or
other basic cells) are possible if completely flat
descriptions are considered. Thus

• Good design practices rely on hierarchical
descriptions.

• Subsequent flattening operations, executed by
EDA (Electronic Design Automation) tools,
can be considered.

5.6 Exercises

1. Define a “one-bus and accumulator” archi-
tecture that permits to execute in two clock
cycles operations such as Ri = F(w0, w1)
being Ri a register, w0 and w1 either register
contents or inputs, and F one of the functions
that a programmable computing resource CR
can execute.

2. Design a content-addressable memory with
an n-bit input address, an m-bit input data
and an n-bit output &data. It generates two
1-bit outputs (flags) match and no_match. It
internally stores 2n m-bit words within a
register file R. In write mode, it behaves as a
conventional register file: R(address) = data.
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In read mode, it compares data with the
register file contents, from address 0 to
address 2n − 1. If there is a match at address
i, then &data = i and match = 1. If there is
no match, no_match = 1.

address

data

&data

write

read

match

no_match

reset
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6Control Unit Synthesis

Modern electronic design automation (EDA)
tools have the capacity to synthesize the control
unit from a finite-state machine description or
even to extract and synthesize the control unit
from a functional description of the complete
circuit (Chap. 8). Nevertheless, in some cases,
the digital circuit designer can be interested in
performing part of the control unit synthesis.
Two specific synthesis techniques are presented
in this chapter: command encoding and hierar-
chical decomposition (De Micheli 1994). Both of
them pursue a double objective. On the one hand,
they aim at reducing the circuit cost. On the other
hand, they can make the circuit structure easier to
understand and to debug. The latter is probably
the most important aspect.

The use of components whose latency is
data-dependent has been implicitly dealt with in
Sect. 2.5. Some additional comments about
variable-latency operations are made in the third
section of this chapter.

Cost is generally not an issue in the case of
control unit synthesis. However, classical soft-
ware techniques such as separation of operations
and jumps, multi-way branching, subroutines and
others could be used to reduce the control unit
cost (if necessary).

6.1 Command Encoding

Consider the control unit of Fig. 1.4 and assume
that commands is an m-bit vector, conditions a
p-bit vector and internal_state an n-bit vector.
Thus, the command generation block generates
m + 1 binary function of p + n + 1 binary vari-
ables (Fig. 6.1a). Nevertheless, the number s of
different commands is generally much smaller
than 2m. An alternative option is to encode the
s commands with a t-bit vector, with 2t � s. The
command generation block of Fig. 6.1a can be
decomposed into two blocks as shown in
Fig. 6.1b: the first one generates t + 1 binary
functions of p + n + 1 variables, and the second
one (the command decoder) m binary functions
of t binary variables.

A generic circuit complexity measure is the
number of bits that a memory (ROM) must store
in order to implement the same functions. Thus,
the complexity of a circuit implementing a
function of p + n + 1 variables is 2p+n+1 bits
(size of the corresponding truth vector), and the
complexity of a circuit that implements m + 1
function of p + n + 1 variables is

mþ 1ð Þ � 2pþ nþ 1 bits: ð6:1Þ
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The total complexity of two circuits imple-
menting t + 1 function of p + n + 1 variables
and m functions of t variables, respectively, is

tþ 1ð Þ � 2pþ nþ 1 þm � 2t bits: ð6:2Þ

Complexity (6.1) is greater than complexity
(6.2) if

1� t=mð Þ � 2�t [ 2�ðpþ nþ 1Þ: ð6:3Þ

If t � m and t < p + n + 1 relation (6.3)
holds true.

Obviously, this complexity measure only
takes into account the numbers of outputs and
inputs of the combinational blocks and not the
functions they actually implement.

In the case of FPGA, combinational circuits are
synthesized with programmable blocks called
lookup tables (LUTs) which are able to implement
any k-variable switching function. Typical values
of current FPGAs are k = 4 and k = 6. This sug-
gests another generic complexity measure: for
that, the following property can be used:

The maximum number of external inputs of a
circuit made up of s ∙ k-input LUTs is
s ∙ k − (s − 1).

It can easily be demonstrated by induction:

• If s = 1, the maximum number of inputs is
k = 1 � k − (1 − 1).

• If s > 1, a circuit that consists of s LUTs can be
decomposed into a circuit that includes s − 1
LUTs plus an additional LUT (Fig. 6.2); the
maximum numbers of inputs is k + [(s − 1) �
k − (s − 2) − 1] = s � k − (s − 1).

Thus, the minimum number s of LUTs for
implementing a function of r variables satisfies the
following relation: s � k − (s − 1) � r, so that

s� r � 1ð Þ= k � 1ð Þd e: ð6:4Þ

A generic measure of the delay can also be
defined, based on the following property:

the maximum number of external inputs of a circuit
whose critical path includes l k-input LUTs is kl.

To check the preceding property, just observe
that a tree of k-input LUTs with depth equal to
l has at most kl inputs.

Thus, if a circuit has r external inputs, the
critical path includes at least l LUTs where kl

r, so that l � logk r and the circuit delay
t satisfies

(a)

(b)
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encoded 
commands

conditions

done
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tcommand 
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Fig. 6.1 Command generation

circuit made up of s-1
k-input LUT’s 

k

≤ (s-1)·k - (s-2) - 1
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Fig. 6.2 Circuit with s k-input LUTs
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t� logk rd e � TLUT ; ð6:5Þ

being TLUT the delay of a k-input LUT.
With the maximum cost and minimum delay

definitions (6.4) and (6.5), assuming that no LUT
is shared by two or more functions, the maxi-
mum cost c1 and minimum delay t1 of the circuit
of Fig. 6.1a are

c1 ¼ mþ 1ð Þ: pþ nð Þ= k � 1ð Þd eLUTs and t1
¼ logk pþ nð Þd e � TLUT : ð6:6Þ

With the same definitions, the maximum cost
c2 and delay t2 of the circuit of Fig. 6.1b are

c2 ¼ tþ 1ð Þ � pþ nð Þ= k � 1ð Þd eþ
m: t � 1ð Þ= k � 1ð Þd eLUTs ð6:7Þ

and

t2 ¼ logk pþ nð Þd eþ logktd eð Þ � TLUT : ð6:8Þ

Example 6.1 Consider the circuit of Sect. 2.5
(scalar_product.vhd, available at theAuthors’web
site). The operations that the data path executes
correspond to combinations of values of signals

start_mult, load, shift, en_XA, en_XB, en_ZA,
en_ZB, en_R, sel_p1, sel_p2, sel_a1, sel_a2,
sel_sq, sel_xA, sel_xB, sel_zA, sel_zB, sel_R;

in total twenty-seven bits (nine 1-bit signals and
nine 2-bit signals). The program execution control
is based on the values of three status signals (flags)
count,msb_k,mult_done generated by the data path
plus an external start command. The finite-state
machine (Algorithm 2.5) has forty-three states that
can be encoded with six bits. Thus, m = 27, p = 3
and n = 6. On the other hand, the number s of dif-
ferent commands can be deduced from Algorithm
2.4; the following table defines for every instruction
number (from 0 to 42) the command transmitted to
the data path as well as a name (mnemonic) that
permits to identify the command.

There are 20 � 227 different commands that
can be encoded with t = 5 bits.

Thus, the complexities in numbers of stored
bits (6.1 and 6.2) are

mþ 1ð Þ � 2pþ nþ 1 ¼ 28 � 210
¼ 28; 672 and tþ 1ð Þ

� 2pþ nþ 1 þm � 2t
¼ 7; 008; ð6:9Þ

and the complexities in numbers of LUTs (6.6
and 6.7), assuming that 4-input LUTs are used
(k = 4), are

c1 ¼ mþ 1ð Þ: pþ nð Þ= k � 1ð Þd e ¼ 28 � 9=3d e
¼ 84 LUT0s ð6:10Þ

and

c2 ¼ tþ 1ð Þ � pþ nð Þ= k � 1ð Þd eþ
m: t � 1ð Þ= k � 1ð Þd e

¼ 6 � 3þ 27 � ð4=3d e ¼ 72LUT0s: ð6:11Þ

The corresponding minimum delays (6.6 and
6.7) are

t1 ¼ logk pþ nð Þd e � TLUT
¼ log49d e � TLUT ¼ 2 � TLUT ð6:12Þ

and

t2 ¼ logk pþ nð Þd eþ logktd eð Þ � TLUT
¼ log49d eþ log45d eð Þ � TLUT ¼ 4TLUT :

ð6:13Þ

The second complexity measure (number of
LUTs) is surely more accurate than the first one.
Thus, according to (6.9–6.13), the encoding of
the commands hardly reduces the cost and
increases the delay. So, in this particular case, the
only advantage (if any) is clarity, flexibility and
ease of debugging and not cost reduction.
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A new version of the circuit of Sect. 2.5 has
been generated. The VHDL model scalar_pro-
duct_decoder.vhd is available at the Authors’
web site. The data path is unchanged. The control
unit includes the following type definition:

type instruction_set is (

nop, sw_reset, multAB1, squareB, updateR,

multBA1, updateB, multAA, squareA, upda-

teA,

multRB, multPA, updateAB, multBA2, mul-

tAB2,

multBB, multRA, multPB, updateBA, inc);

and a signal mnemonic of type instruction_set is
declared. The control unit includes a block
command decoder that associates to every value
of signal mnemonic the value of the control
signals:

decoder: PROCESS(mnemonic)

BEGIN

CASE mnemonic IS

WHEN nop =>

start_mult <= '0'; load <= '0'; shift <= '0'; en_xA <= '0';

en_xB <= '0'; en_zA <= '0'; en_zB <= '0';

en_R <= '0'; sel_p1 <= "00"; sel_p2 <= "00"; sel_a1 <= "00";

sel_a2 <= "00"; sel_sq <= "00"; sel_xA <= "00";

sel_xB <= "00"; sel_zA <= "00"; sel_zB <= "00"; sel_R <= '0';

WHEN sw_reset =>

start_mult <= '0'; load <= '1'; shift <= '0'; en_xA <= '0';

en_xB <= '0'; en_zA <= '0'; en_zB <= '0';

en_R <= '0'; sel_p1 <= "00"; sel_p2 <= "00"; sel_a1 <= "00";

sel_a2 <= "00"; sel_sq <= "00"; sel_xA <= "00";

sel_xB <= "00"; sel_zA <= "00"; sel_zB <= "00"; sel_R <= '0';

WHEN multAB1 =>

start_mult <= '1'; load <= '0'; shift <= '0'; en_xA <= '0'; en_xB

<= '0'; en_zA <= '0'; en_zB <= '1';

en_R <= '0'; sel_p1 <= "00"; sel_p2 <= "01"; sel_a1 <= "00";

sel_a2 <= "01"; sel_sq <= "00"; sel_xA <= "00";

sel_xB <= "00"; sel_zA <= "00"; sel_zB <= "00"; sel_R <= '0';

……………….

WHEN inc =>

start_mult <= '0'; load <= '0';

if count < m-1 then shift <= '1'; else shift <= '0'; end if;

en_xA <= '0'; en_xB <= '0'; en_zA <= '0'; en_zB <= '0';

en_R <= '0'; sel_p1 <= "00"; sel_p2 <= "00"; sel_a1 <= "00";

sel_a2 <= "00"; sel_sq <= "00"; sel_xA <= "00";

sel_xB <= "00"; sel_zA <= "00"; sel_zB <= "00"; sel_R <= '0';

END CASE;

END PROCESS decoder;
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and the block that generates encoded commands
is defined as follows:

CASE current_state IS

WHEN 0 to 1 => mnemonic <= nop; done <= '1';

WHEN 2 => mnemonic <= sw_reset; done <= '0';

WHEN 3 => mnemonic <= nop; done <= '0';

WHEN 4 => mnemonic <= multAB1; done <= '0';

…..

WHEN 41 => mnemonic <= updateBA;

done <= '0';

WHEN 42 => mnemonic <= inc; done <= '0';

END CASE;

Comment 6.1

The use of encoded commands and of mnemonics
is a common practice in microprocessor

programming: every machine language instruc-
tion has a name (mnemonic) that the programmer
will use even if it defines a program at this low
level. In this case, a set of instructions (Table 6.1)
has been defined, each of them with a name
(mnemonic), and to each instruction correspond a
set of data path operations. The translation of the
mnemonic to a vector of command signals is
executed by a command decoder circuit
(Fig. 6.1b). Once this decoder has been defined,
the generation of the control unit can be done with
mnemonics instead of command signal values,
making the circuit description clearer and easier
to debug and modify.

Actually, there are other commonly used
programming language techniques that can be
used to synthesize control units. Some of them
will be seen in the next sections.

Table 6.1 Commands

Instruction number Command Mnemonic

0,1,3,7,10,14,17,
20,26,29,33,36, 39,42
(count = m-1)

no operation nop

2 xA = 1, zA = 0, xB = xP, zB = 1,
count = 0

sw_reset

4 zB = xA + zA, start(Z = xA � zB) multAB1

5,6,32 zB = zB
2 squareB

8,27 R = Z updateR

9 start (Z = xB � zA) multBA1

11,18,34,40 xB = Z updateB

12 zA = R + xB, start (Z = xA � zA) multAA

13,24,25 zA = zA
2 squareA

15,21,30,37 xA = Z updateA

16 R = xA
2, start(Z = R � xB) multRB

19 start (Z = xP � zA) multPA

22 (xA, zA, xB, zB) = (zB, R, xA + xB, zA) updateAB

23 zA = xB + zB, start(Z = xB � zA) multBA2

28 start (Z = xA � zB) multAB2

31 zB = R + xA, start (Z = xB � zB) multBB

35 R = xB
2, start(Z = R � xA) multRA

38 start (Z = xP � zB) multPB

41 (xB, zB, xA, zA) = (zA, R, xB + xA, zB) updateBA

42 (count < m —1) count = count + 1 inc
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6.2 Hierarchical Control Unit

As already pointed out above, hierarchical design
is a usual strategy in many fields of system
engineering: hierarchy improves clarity, security,
easiness to debug and to maintain, thus reducing
development times.

Nevertheless, in the case of digital circuits, the
use of previously defined components sometimes
prevents the designer from sharing computation
resources between several components. In such a
case, a conventional (flat) structure could be con-
sidered. In order to maintain some type of hierar-
chy (meaning clarity, security and so on), the
corresponding control unit could be decomposed
into a main control unit, in charge of linking
together the operations, and secondary control
units in charge of controlling subsets of operations.

Consider an example. The diagram of Fig. 6.3
includes two PID controllers that control two
physical systems (processes). As a simple PID
controller has already been developed (Sect. 5.4),
a straightforward solution is two instantiate two
PID controllers, each of them with its corre-
sponding coefficient values (K11, K21, K31) and
(K12, K22, K32).

The complete circuit includes two computa-
tion resources, in particular two 2’s complement
multipliers and two register files. Another option
is to define a data path that permits to execute
both PID loops. Assuming that both PID loops
have the same sampling frequency equal to 1/T,
the algorithm to be executed is the following:

Algorithm 6.1 Double PID controller

loop

e1 = r1 - s1;

acc = u1d + K11�e1;
acc = acc + K21�e1d;

u1 = acc + K31�e1dd, u1d = acc + K31�e1dd;
e1dd = e1d;

e1d = e1;

e2 = r2 - s2;

acc = u2d + K12�e2;
acc = acc + K22�e2d;

u2 = acc + K32�e2dd, u2d = acc + K32�e2dd;
e2dd = e2d;

e2d = e2;

wait until time_out = 1;

end loop;

A data path able to execute Algorithm 6.1 is
shown in Fig. 6.4.

• The sixteen-word register file stores the
algorithm variables e1, e1d, e1dd, u1d, e2, e2d,
e2dd, u2d and acc at addresses 0, 1, 2, 3, 8, 9,
10, 11 and 15.

• The programmable computation resource
computes z = x − y, z = x + k11 � y, z = x +
k21 � y, z = x + k31 � y, z = x + k12 � y, z =
x + k22 � y, z = x + k32 � y and z = x,
under the control of an oper signal
(Table 6.2).

• There are two output registers, one for each
PID loop.

r1(t)
subtractor

processes under 
control

+

-

double PID controller

r2(t)
subtractor
+

-

u1(t)

u2(t)

s1(t)

s2(t)

e1(t)

e2(t)

u1 = u1d + K11·e1 + 
K21·e1d + K31·e1dd

u2 = u2d + K12·e2 + 
K22·e2d + K32·e2dd

Fig. 6.3 Double PID controller
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The control unit is a thirteen-state machine
whose internal states correspond to the Algo-
rithm 6.1 instructions:

0: e1 = r1 - s1;

1: acc = u1d + K11�e1;

2: acc = acc + K21�e1d;
3: u1 = acc + K31�e1dd, u1d = acc + K31�e1dd;

4: e1dd = e1d;

5: e1d = e1;

6: e2 = r2 - s2;

7: acc = u2d + K12�e2;

8: acc = acc + K22�e2d;
9: u2 = acc + K32�e2dd, u2d = acc + K32�e2dd;

10: e2dd = e2d;

11: e2d = e2;

12: wait until time_out = 1;

A complete VHDL model double_pid_con-
troller.vhd is available at the Author’s web site.

As quoted above, in order to maintain some type
of hierarchy, the corresponding control unit could
be decomposed into a main control unit and two
secondary control units. The control unit structure is
shown in Fig. 6.5. The next-state and output func-
tions are shown in Fig. 6.6 and Tables 6.3 and 6.4.

The first secondary control unit generates the
control signals that correspond to the first PID
loop execution, and the second secondary control
unit generates the control signals that correspond
to the second PID loop execution. In both sec-
ondary units, the control signal values corre-
sponding to nop (no operation) are write_reg = 0,
sel = 00, address_W = 0000, address_A = 0000,
address_B = 0000, oper = 000, so that the actual
command transmitted to the data path can be
generated by ORing the commands generated by
both control units: when a secondary unit gener-
ates commands different from nop, the other unit
is waiting for start = 1 and generates the nop
command.

A complete VHDL model double_pid_con-
troller2.vhd is available at the Author’s web site.
Simulation results are shown in Fig. 6.7. The
first PID controller is the same as in Chap. 5
(Table 5.4 and Fig. 5.32). The second controller
parameters are

K12 = 73, K22 = −86, K32 = 201, so that u2 =
u2d + 73 � (r2 − s2) − 86 � e2d + 201 � e2dd.

The first computation steps are shown in
Table 6.5.

The proposed solution is similar to the use of
procedures in programming languages: a main
control unit (a main program) calls two sec-
ondary control units (two procedures) that cor-
respond to PID loops 1 and 2.

Another solution can be considered: instead of
two secondary control units, a single secondary
unit is defined. The main control unit calls this
secondary unit and transmits parameters corre-
sponding to either PID loop 1 or 2. The parameters
transmitted to the secondary unit are addr_e,
addr_ed, addr_edd, addr_ud and pid_number.
They are the register file addresses where ei, eid,
eidd and uid (i = 1 or 2)must be stored plus a binary
identifier of the PID loop (1 or 2) to be executed.
The control unit structure is shown in Fig. 6.8.

address_w
address_a
address_b

write_reg

register 
file

a b

w

00 1-
sel

r1

computation 
resourceoper

ENout_en1

01

r2 s1 s2

10 -100

ENout_en2

u1 u2

Fig. 6.4 Double PID controller: data path

Table 6.2 Computation resource operations

oper z

000 x

010 x + k11 � y
100 x + k21 � y
110 x + k31 � y
001 x − y

011 x + k12 � y
101 x + k22 � y
111 x + k32 � y
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Fig. 6.5 Hierarchical control unit: structure
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Fig. 6.6 Hierarchical control unit: next-state and output functions
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Table 6.3 Signals generated by the first secondary control unit

operation wr_reg sel addr_w addr_a addr_b oper en_out

e1= r1 − s1 1 00 0 – – 001 0

acc = u1d + K11 � e1 1 11 15 3 0 010 0

acc = acc + K21 � e1d 1 11 15 15 1 100 0

u1= u1d= acc + K31 � e1dd 1 11 3 15 2 110 1

e1dd= e1d 1 11 2 1 – 000 0

e1d= e1 1 11 1 0 – 000 0

nop 0 00 0 0 0 000 0

Table 6.4 Signals generated by the second secondary control unit

operation wr_reg sel addr_w addr_a adds_b oper en_out

e2= r2 − s2 1 01 8 – – 001 0

acc = u2d+ K12 � e2 1 11 15 11 8 011 0

acc = acc + K22 � e2d 1 11 15 15 9 101 0

u2= u2d= acc + K32 � e2dd 1 11 11 15 10 111 1

e2dd= e2d 1 11 10 9 – 000 0

e2d= e2 1 11 9 8 – 000 0

nop 0 00 0 0 0 000 0

Fig. 6.7 Simulation results (courtesy of Mentor Graphics)

Table 6.5 First computation steps

r2 s2 u2d e2 e2d e2dd u2

7 31 0 −24 0 0 −1752

7 −9 −1752 16 −24 0 1480

7 24 1480 −17 16 −24 −5961

7 −6 −5961 13 −17 16 −334

7 −6 −334 13 13 −17 −3920
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The next-state functions are shown in
Fig. 6.9, and the output functions are defined in
Tables 6.6, 6.7 and 6.8.

A complete VHDL model double_pid_con-
troller3.vhd is available at the Author’s web site.

As in the previous example (Fig. 6.5), the
method used in this second example of hierar-
chical control unit is similar to the use of pro-
cedures in programming languages. There is a
difference with the first example:

• In the first example (Fig. 6.5), there are two
secondary units; one for the first PID con-
troller and another for the second controller;
the first secondary unit processes data stored
at addresses 0–3, and the others process data
stored at addresses 8–11; the main control

unit function is to alternatively call the sec-
ondary units.

• In the second example (Fig. 6.8), there is only
one secondary unit; the main control unit
function is to call the secondary unit and to
transmit the addresses of the data processed
by either the first (addresses 0–3) or the sec-
ond (addresses 8–11) PID loop; this is similar
to the passing of parameters by reference in
programming languages.

Comment 6.2

The definition of hierarchical control units is a
technique similar to the use of procedures and
functions in software generation. This type of

main control

reset

start done

reset

addr_e addr_ed addr_edd addr_ud pid_number

write_reg
sel
address_W
address_A
address_B
oper
out_en1

out_en2

secondary control 

Fig. 6.8 Hierarchical control unit, version 2
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start = 1
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0reset 1

time_out =1

done =0

done =1
2 3

done =1

done =0

4

time_out =0

reset

Fig. 6.9 Hierarchical control unit, version 2: next-state functions
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approach to control unit synthesis is more a
question of clarity (well-structured control unit),
easiness to debug and maintain, than of cost
reduction (control units are not expensive).

6.3 Variable-Latency Operations

In Sect. 2.2, operation scheduling was performed
assuming that the computation times tJM of all
operations were constant values. Once an

operation schedule has been selected, the defi-
nition of the control unit is quite obvious. Nev-
ertheless, in some cases, the computation time is
not a constant but a data-dependent value and the
control unit synthesis is not so clear.

Consider an example of variable-latency
operation.

Example 6.2 Design a circuit that computes yx

mod m, where x, y and m are naturals. It is the
basic function of the RSA public key encryption

Table 6.6 Output function of the main control unit

state addr_e addr_ed addr_edd addr_ud pid_number start

0 0 1 2 3 0 1

1 0 1 2 3 0 0

2 8 9 10 11 1 1

3 8 9 10 11 1 0

4 0 0 0 0 0 0

Table 6.7 Output function of the secondary control unit

state write_reg sel1 sel0 address_W address_A address_B

0 0 0 pid_number 0 0 0

1 1 0 pid_number addr_e 0 0

2 1 1 pid_number acc addr_ud addr_e

3 1 1 pid_number acc acc addr_ed

4 1 1 pid_number addr_ud acc addr_edd

5 1 1 pid_number addr_edd addr_ed 0

6 1 1 pid_number addr_ed addr_e 0

7 0 0 pid_number 0 0 0

Table 6.8 Output function of the secondary control unit (continued)

state oper2-1 oper0 out_en1 out_en2 done

0 00 0 0 0 0

1 00 1 0 0 0

2 01 pid_number 0 0 0

3 10 pid_number 0 0 0

4 10 pid_number 1 − pid_number pid_number 0

5 00 0 0 0 0

6 00 0 0 0 0

7 00 0 0 1
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algorithm (Rivest et al. 1978). If x = x0 + x1 � 2 +
x1 � 22 + ��� + xk−1 � 2 k−1 then

yx ¼ yx0 þ x1�2þ x2�22 þ ��� þ xk�1�2k�1

¼ yx0 � y2
� �x1 � y2

2
� �x2 �. . . � y2

k�1
� �xk�1 ð6:14Þ

so that the following algorithm computes z = yx

mod m.

Algorithm 6.2 Mod m exponentiation

a = 1; b = y;

for i in 0 to k-1 loop

if xi = 1 then a = a�b mod m; end if;

b = b2 mod m;

end loop;

z = a;

A data path that executes Algorithm 6.2 is
shown in Fig. 6.10a. Its main component is a
mod m multiplier that executes a � b mod m and
b � b mod m. A VHDL model mod_mm_multi-
plier.vhd of this component, with k = 192, is
available at the Authors’ web site.

To complete the circuit implementation, a
control unit must be defined. Its functions are the
following:

• It generates the signals load, en_a, en_b, sel,
start_mult and shift in function of xi (the shift
register serial output) and of the mult_done
flag.

• It includes a k-state counter that detects the end
of the loop execution (for i in 0 to k-1 loop).

• It executes a simple start/done communica-
tion protocol (Fig. 1.3) that permits the
communication of the circuit with other
components.

A complete VHDL model mod_mm_expo-
nentiation.vhd of the exponentiation circuit, with
k = 192, is available at the Authors’ web site.

The computation time of the exponentiation
circuit based on Algorithm 6.2 is data-dependent.
Let w(x) be the number of 1’s of the binary
representation of x. Then, Algorithm 6.2 executes
k mod m products b � b = b2 and w(x) mod
m products a � b, so that the total number of mod
m products is equal to k + w(x), a number
included between k and 2 � k.

The exponentiation circuit has been simulated.
A first simulation (Fig. 6.11) has been executed to
check theworking of the circuit: it computes z = yx

mod m where m = 2192−264 − 1, x = m and
y = 01111111���1111 = [7f ��� f]hexadecimal; as m is

0 1 0 1

EN EN

load

(a) (b)

en_a
en_b

0 1sel

a b

start_mult

mult_done z = x·y mod m

x y

z

z

1

y

load

x

shift register

xi

shiftshift

start
done

mod m exponentiator

x y

z = yx mod m

reset

Fig. 6.10 Data path and symbol of a circuit that computes z = yx mod m
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a prime number then, according to the little Fer-
mat’s theorem, ym mod m = y.

A second simulation (Fig. 6.12) shows that this is
a variable-latency operation. It computes z = yxmod
mwith the same values as before. Then, it computes
z = yx mod m with the same values of y and m and
with x = 10000000���0000 = [80 ��� 0]hexadecimal.
The first computation takes 75,644 cycles (from
the falling edge to the rising edge of done), while
the second takes 38,404. Actually, in the first
case, w(x) = 191 so that the number of products
is equal to k + w(x) = 383, while in the second
case, w(x) = 1 so that the number of products is
equal to k + w(x) = 193. Each mod m product
takes k = 192 cycles plus some additional ini-
tialization and termination cycles, so that the total
numbers of cycles are greater than 383 � 192 =
73,536 and 193 � 192 = 37,056, respectively
(Fig. 6.12).

Consider an algorithm that includes one or
several operations whose computation time is
data-dependent. The methods of Chap. 2 could
still be used if upper bounds of the number of
cycles necessary to complete each operation are
known. In the case of the exponentiation circuit of
Example 6.2, the maximum computation time is
equal to 2 k = 384 cycles, plus some initialization
and termination cycles, so that the computation
time of this component is equal to e.g. 388 cycles.
However, this could be an inefficient option as the

total algorithm execution time could be much
longer than actually necessary. A better option
could be a kind of dynamic operation scheduling
based on the use of status signals (flags) generated
by the circuits that implement the operations.
As an example, the control unit of the exponenti-
ation circuit of Example 6.2 generates an output
done = 1 (Fig. 6.10b) when it has completed a
computation and the operation result is available.
So, the VHDL description of a circuit that
uses the exponentiation circuit of Fig. 6.10b
should probably include sentences such as (or
equivalent to)

wait for done = '1'.

To summarize, in the case of variable-latency
components, two options could be considered:

• A first one is to previously compute an upper
bound of their computation times, if such a
bound exists.

• Another option is to use a start/done protocol:
done is lowered on the start positive edge and
raised when the results are available.

The second option is more general and gen-
erates circuits whose average latency is shorter.
In the particular case of pipeline circuits, an
interesting implementation method has been

Fig. 6.11 First simulation (little Fermat’s theorem) (courtesy of Mentor Graphics)

Fig. 6.12 Second simulation (computation time is data-dependent) (courtesy of Mentor Graphics)
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described in Sect. 3.5: a self-timed circuit based
on a handshaking protocol making use of the
start and done signals of each pipeline stage
(Figs. 3.32, 3.33, 3.34 and Example 3.4). Obvi-
ously handshaking protocols can be used in any
circuit including variable-latency components.

Another way to control the transmission of
data between variable-latency components is to
use flexible inter-component connections, for
example, FIFO files. In the following example,
start/done protocol techniques and FIFO inter-
face are used.

Example 6.3 The system of Fig. 6.13 consists of
an emitter and a receiver connected by a trans-
mission line. The emitter sends messages that are
sequences of n encoded words. Each word is a
natural and is encoded with the RSA publickey
encryption algorithm. Given a word wi of the
plaintext message, the transmitted data is zi = wi

e

mod m being e the public key. On the receiver
side, this encoded data zi is decoded by com-
puting zi

d mod m being d the private key. Module
m is a k-bit natural, and all constants and pro-
cessed variables, namely e, d, wi and zi, are k-bit
naturals smaller than m.

Assume that a variable-latency exponentiation
algorithm (see Example 6.2) is used to compute
wi
e mod m (emitter) and zi

d mod m (receiver).
Then, it might happen that the time interval
between successive data sent by the emitter to the
receiver be shorter than the decoding time within
the receiver. That will happen if the number of 1’s
of e is smaller than the number of 1’s of d. For
that reason, a memory is necessary on the receiver
side to store the incoming data. A possible option
is shown in Fig. 6.14: the transmitted data are
stored in a FIFO file under the control of the ready
signal and are read from the FIFO file under the
control of an exp_done signal generated by the
mod m exponentiation circuit of the receiver.

A complete VHDL model encoded_trans-
mission.vhd is available at the Authors’ web site.

• The emitter consists of a signal generator that
generates random sequences of n k-bit natu-
rals smaller than m and of a mod m expo-
nentiation circuit. For that the functions,
UNIFORM (random number generation) and
TRUNC (truncation) defined within the
IEEE.MATH_REAL package are used.

message

clk

emitter

data

ready

master_clk

transmission line

···

···

···

receiver
decoded

Fig. 6.13 Encoded transmission

FIFO file decodeddata

ready

master_clk
readwrite empty

mod m
exponentiationkey

start_exp

exp_donecontrol unit

Fig. 6.14 Receiver structure
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• The receiver structure is shown in Fig. 6.14,
and the control unit is described in Fig. 6.15a
and b. It consists of two independent finite-
state machines.

The partition of the control unit corresponds
to the fact that the data input rate to the FIFO and
the data output rate from the FIFO are different.
The input rate is determined by the emitter, and
the output rate is determined by the decoding
exponentiation circuit.

The use of a FIFO with separate input and
output control units is an example of flexible
inter-component connection.

A simulation result is shown in Fig. 6.16. It
corresponds to the transmission of n = 32 words;
each word is an 8-bit natural (k = 8); m = 91;
e (public key) is equal to 5 and d (private key) is
equal to 29. The final words of the original

message and of the encoded message are shown
in Fig. 6.15. The decoded message is (obviously)
identical to the original message with some delay
due to the difference between the computation
times of wi

5 mod 91 and zi
29 mod 91.

According to the conclusions of Example 6.2,
the number of mod m products to execute Algo-
rithm 6.2 is equal to k plus the number of 1’s in
the exponent: two 1’s in the case of e = 00000101
and four 1’s in the case of d = 00011101. In the
first case, each exponentiation includes
8 + 2 = 10 mod m products, and in the second
case, each exponentiation includes 8 + 4 = 12
products. Thus, the decoding operation is roughly
1.2 times slower than the encoding operation so
that the decoding of a 32-bit message takes about
the same times as the encoding of 32 � 1.2 = 38.4
words, roughly seven more words, a fact that is
confirmed by the simulation result.

0
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write = 0

ready = 0
1

ready = 0

(ready = 1) AND (full = 0)
2

write = 0 write = 1

3

(ready = 1) AND 
(full = 1)

write = 0

reset

0

empty = 1

read = 0
start_exp = 0

empty = 0
1 2 3

reset

read = 1
start_exp = 0

read = 0
start_exp = 1

exp_done = 0

read = 0
start_exp = 0

exp_done = 1
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(b)

Fig. 6.15 Control unit: a write fifo; b read fifo and start exponentiation

Fig. 6.16 Simulation (courtesy of Mentor Graphics)
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Comment 6.3

A typical case of data-dependent computation
time corresponds to algorithms that include while
loops: some iteration is executed as long as a
condition holds true. A straightforward imple-
mentation method is the use of a component
executing some kind of start/done protocol.
Now, assume that the resulting circuit is too
slow. A possible option (Chap. 4) is to unroll the
loop (partially or completely). For that, the while
loop must be substituted by a for loop including a
fixed number of steps, such as for i in 0 to n − 1
loop. Thus, in some cases, it might be worth-
while to substitute a variable-latency slow com-
ponent that executes a while loop by a
constant-latency component.

6.4 Sequencers and Microprograms

Control units are modeled by finite state
machines. Modern EDA tools include synthesis
programs that use classical techniques of
finite-state machine implementation. They define
an appropriate encoding of the internal states in
function of optimization criteria (cost, speed,
consumption). However, finite-state machines
that model the control unit of a circuit that
implements an algorithm have some character-
istics that permit to define specific implementa-
tion structures.

Consider the generic circuit of Fig. 1.4.
Assuming that a Moore model is used, the cor-
responding control unit structure is shown in

Fig. 6.17. It consists of two combinational cir-
cuits. One computes the next state in function of
the current internal state and of input signals such
as conditions (flags) generated by the data path or
external commands such as a start signal. The
other combinational circuit generates commands
sent to the data path and status information
transmitted to external circuits, for example, a
done signal, in function of the current internal
state (Moore model).

Assume that the internal states are repre-
sented by naturals 0, 1, 2,…. It was the case in
practically all examples of this book (VHDL
models available at the Authors’ web site).
When the finite-state machine is the control unit
of a data path that executes an algorithm (a
program), in many (most) cases, the next state
after state number i is state number i + 1,
independently of the input variable (conditions
and start in Fig. 6.17); this situation is called
normal sequence. In other cases, the next state
after state number i is state number j 6¼ i + 1,
independently of the input variable; this situa-
tion is called a jump. Another case is when the
next state after state number i is state number
j 6¼ i + 1 if some Boolean condition depending
on input signal values (a data path flag, an
external start command) is true and is state
number i + 1 in the contrary case; this situation
is called a conditional jump. A last case is when
the next state after state number i is state num-
ber j 6¼ i + 1 if some Boolean condition is true
and is state number k 6¼ i + 1 in the contrary
case; this situation is called a two-way
branching.

next-state 
computation

next state

internal state

command
generation

start
conditions

done

commands
start
conditionsFig. 6.17 Control unit

(Moore model)
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The following pieces of VHDL code corre-
spond to those four cases.

Generally, there are few two-way branching
instructions, and if any, it can be replaced by a
conditional jump followed by a jump. Obviously,
there is one more instruction, and the instruction
numbering must be updated.

In what follows the four types of next-state
definition are represented as follows:

--normal sequence:
i: increment;
--jump
i: goto j;
--conditional jump
i: if condition goto j;
--2-way branching
i: if condition goto j; else goto k;

as quoted above the preceding is equivalent to

--equivalent to a 2-way branching

i: if condition goto j;

i+1: goto k;

As an example, with this type of representation,
the next-state function defined byAlgorithm 2.5 of
Chap. 2 is equivalent to the following algorithm
that includes three types of next-state computation:
normal sequence, jump and conditional jump.

Algorithm 6.3 Algorithm 2.5 with three
instruction types

0: if start = 1 goto 0;

1: if start = 0 goto 1;

2: to next

3: if msb_k = 1 goto 23;

4 to 6: to next

7: if mult_done = 0 goto 7

8 to 9: to next

10: if mult_done = 0 goto 10

11 to 13: to next

14: if mult_done = 0 then goto 14

15 to 16: to next

17: if mult_done = 0 goto 17

18 to 19: to next

--normal sequence:

CASE current_state IS

WHEN i => current_state = current_ state +1;

--jump

CASE current_state IS

WHEN i => current_state = j;

--conditional jump

CASE current_state IS

WHEN i => if (condition = true) then current_state = j;

else current_state = current_state +1;

--2-way branching

CASE current_state IS

WHEN i => if (condition = true) then current_state = j;

else current_state = k;

--equivalent to a 2-way branching

CASE current_state IS

WHEN i => if (condition = true) then current_state = j;

else current_state = current_state + 1;

WHEN i+1 => current_state = k;

6.4 Sequencers and Microprograms 117

http://dx.doi.org/10.1007/978-3-030-12653-7_2
http://dx.doi.org/10.1007/978-3-030-12653-7_2


20: if mult_done = 0 goto 20

21: to next

22: goto 42

23 to 25: to next

26: if mult_done = 0 goto 26

27 to 28: to next

29: if mult_done = 0 goto 29

30 to 32: to next

33: if mult_done = 0 goto 33

34 to 35: to next

36: if mult_done = 0 goto 36

37 to 38: to next

39: if mult_done = 0 goto 39

40 to 41: to next

42: if count = m-1 goto 0;

43: goto 3;

Observe that instruction number 42 of original
next-state function Algorithm 2.5 has been
replaced by instructions 42 and 43. Furthermore,
the only instruction of the program (Algorithm 2.
4) that defines next states and operations in
which the executed operation depends on an
input signal value (count), namely

42: if count < m-1 then count = count

+1, go to 3;

else go to 0;

has been split into two equivalent instructions

42: if count = m-1 then go to 0;
43: count = count + 1, go to 3;

so that the control unit is a Moore state
machine.

Consider a control unit whose behavior is
defined by an algorithm such as Algorithm 6.3
with three types of instruction types. Each
instruction computes the next internal-state
number in function of four pieces of information:

• current internal-state number,
• type of instruction (normal sequence, jump,

conditional jump),
• value (true or false) of a condition in case of

conditional jump,
• next-state number in case of jump or condi-

tional jump.

This suggests the structure of Fig. 6.18 that
consists of the following blocks:

• a combinational circuit called “control pro-
gram” that associates to every internal-state
number the type of the instruction (normal
sequence, jump, conditional jump), an identi-
fier cond_id of the condition to be evaluated in
the case of conditional jump, and a next-state
number jump_num in case of jump or condi-
tional jump,

• a combinational circuit that evaluates whether
a particular condition cond on input signal
values, identified by a condition identifier, is
true or false,

start
conditions

type cond_id jump_num

control program

condition 
evaluation next state selection

cond

internal state 
register

reset

internal state

+1

plus_1

next

Fig. 6.18 Next-state
computation
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• a next-state selection circuit that selects the
next-state number among plus_1 and
jump_num,

• an increment circuit (half adder) that com-
putes plus_1 = current state + 1,

• an internal-state register.

Consider again Algorithm 6.3. It includes five
different conditions that will be identified by
numbers 0–4:

0 : start ¼ 1; 1 : start ¼ 0; 2 : msb k ¼ 1; 3
: mult done ¼ 0; 4 : count ¼ m� 1;

The corresponding condition evaluation cir-
cuit implementation is shown in Fig. 6.19a.

Assume that the three instruction types are
encoded as follows:

0 : normal sequence; 1 : jump; 2
: conditional jump:

Then, the next-state selection block works as
follows (Fig. 6.19b):

• If type = 0, then next = plus_1.
• If type = 1, then next = jump_num.
• If type = 2 and cond = false, then

next = plus_1.
• If type = 2 and cond = true, then

next = jump_num.

The working of the “control program” circuit
is defined by the following Table 6.9.

A common option is to use a read-only
memory to implement the control program
block defined by Table 6.9. Then, the current
internal-state number is the ROM address.
The ROM contents constitute a so-called micro-
program made up of three microinstruction types
(normal sequence, jump, conditional jump). Each
microinstruction contains three fields: microin-
struction type, condition identifier and jump
address. A fourth field command is added: it
associates to every internal-state number (mi-
croinstruction address) the corresponding values
of the commands sent to the data path and status
information transmitted to external circuits
(Moore machine). The complete circuit is shown
in Fig. 6.20. The sequencer block includes the
condition evaluation block (Fig. 6.19a), the
next-state selection block (Fig. 6.19b), the
increment circuit and the internal-state register.

A complete VHDL model scalar_pro-
duct_micro.vhd is available at the Authors’ web
site. To check the working of the circuit, the
same values as in Chap. 2 are used:

xP ¼ 2fe13c0537bbc11acaa07d793de4e6d5e5c94eee8;

k ¼ 4000000000000000000020108a2e0cc0d99f8a5ef;

and the result is

xA ¼ 1d538b8105663e13c972bf682b49975f7a5fd6345,

zA ¼ 4ae93681fa9e59e7a7aa2b2592ba6e92dcb7d4674;

xB ¼ 2758e50c38d039b358daf65e05bdd89f8fb1e4a1a;

zB ¼ 00000000000000000000000000000000000000000:

start
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mult_done
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comparatorcount

count = m

cond
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plus_1 jump_num

0- 1- 20 21
type
cond
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Fig. 6.19 a Condition evaluation. b Next-state number selection
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Consider again Algorithm 2.4 that has been
used to implement the scalar product circuit:
most instructions are either a jump, conditional
jump or branching, without any operation exe-
cution, or an operation execution with normal
sequence. The only exceptions are

22: (xA, zA, xB, zB) = (zB, R, xA+xB, zA),

go to 42;

and

42: if count < m-1 then count = count +1,

go to 3;

else go to 0;

Instruction 22 can be replaced by two
instructions: first execute the operation

(xA, zA, xB, zB) = (zB, R, xA+xB, zA)

and then jump to the next instruction (43 after
renumbering). Old instruction 42 (now instruc-
tion 43) can be replaced by three instructions:
first detect the end of computation:

if count = m-1 then go to 0;

then execute the operation:

count = count +1;

finally jump to the next instruction:

go to 3;

start
conditions

type cond_id jump_num

sequencer

internal state

commands done

reset

microprogram memory

Fig. 6.20 Microprogrammed control unit

Table 6.9 Control program

state number type cond_id jump_num

0 2 0 0

1 2 1 1

2 0 – –

3 2 2 23

4–6 0 – –

7 2 3 7

8–9 0 – –

10 2 3 10

11–13 0 – –

14 2 3 14

15–16 0 – –

17 2 3 17

18–19 0 – –

20 2 3 20

21 0 – –

22 1 – 42

23–25 0 – –

26 2 3 26

27–28 0 – –

29 2 3 29

30–32 0 – –

33 2 3 33

34–35 0 – –

36 2 3 36

37–38 0 – –

39 2 3 39

40–41 0 – –

42 2 4 0

43 1 – 3
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With those modifications, Algorithm 6.4,
equivalent to Algorithm 2.4, is obtained. Equiv-
alence means that the results of the algorithm
executions are the same. Obviously, Algorithm
6.4 execution needs more cycles than Algorithm
2.4, so that the corresponding circuit is (a bit)
slower.

Algorithm 6.4 Algorithm 2.4 modified

0: wait until start = 0;

1: wait until start = 1;

2: xA = 1, zA = 0, xB = xP, zB = 1, count = 0;

3: if km-i = 1 then go to 23;

4: zB = xA+zA, start(Z = xA�zB);

5: zB = zB
2;

6: zB = zB
2;

7: wait until mult_done = 1;

8: R = Z;

9: start (Z = xB�zA);
10: wait until mult_done = 1;

11: xB = Z;

12: zA = R + xB, start (Z = xA�zA);

13: zA = zA
2;

14: wait until mult_done = 1;

15: xA = Z;

16: R = xA
2, start(Z = R�xB);

17: wait until mult_done = 1;

18: xB = Z;

19: start (Z = xP�zA);
20: wait until mult_done = 1;

21: xA = Z;

22: (xA, zA, xB, zB) = (zB, R, xA+xB, zA);

23: go to 43;

24: zA = xB+zB, start(Z = xB�zA);

25: zA = zA
2;

26: zA = zA
2;

27: wait until mult_done = 1;

28: R = Z;

29: start (Z = xA�zB);
30: wait until mult_done = 1;

31: xA = Z;

32: zB = R + xA, start (Z = xB�zB);

33: zB = zB
2;

34: wait until mult_done = 1;

35: xB = Z;

36: R = xB
2, start(Z = R�xA);

37: wait until mult_done = 1;

38: xA = Z;

39: start (Z = xP�zB);
40: wait until mult_done = 1;

41: xB = Z;

42: (xB, zB, xA, zA) = (zA, R, xB+xA, zB);

43: if count = m-1 then go to 0;

44: count = count +1;

45: go to 0;

The interesting point is that each instruction
includes either a jump (conditional or not) or an
operation. This fact suggests the possibility of
merging the jump_num and commands fields
within the microprogram memory of Fig. 6.20.
Taking into account that generally jump_num
has fewer bits than commands, an interesting
option is to insert a command decoder
(Fig. 6.1b).

Using the same mnemonics as in Table 6.1,
Algorithm 6.4 can be rewritten as follows.

Algorithm 6.5 Microprogram

0: if start = 1 goto 0, done = 1;

1: if start = 0 goto 1, done = 1;

2: sw_reset, done = 0;

3: if msb_k = 1 goto 24, done = 0;

4: multAB1, done = 0;

5: squareB, done = 0;

6: squareB, done = 0;

7: if mult_done = 0 goto 7, done = 0;

8: updateR, done = 0;

9: multBA1, done = 0;

10: if mult_done = 0 goto 10, done = 0;

11: updateB, done = 0;

12: multAA, done = 0;

13: squareA, done = 0;

14: if mult_done = 0 then goto 14, done = 0;

15: updateA, done = 0;

16: multRB, done = 0;

17: if mult_done = 0 goto 17, done = 0;

18: updateB, done = 0;

19: multPA, done = 0;

20: if mult_done = 0 goto 20, done = 0;

21: updateA, done = 0;

22: updateAB, done = 0;

6.4 Sequencers and Microprograms 121

http://dx.doi.org/10.1007/978-3-030-12653-7_2
http://dx.doi.org/10.1007/978-3-030-12653-7_2
http://dx.doi.org/10.1007/978-3-030-12653-7_2


23: goto 43, done = 0;

24: multBA2, done = 0;

25: squareA, done = 0;

26: squareA, done = 0;

27: if mult_done = 0 goto 27, done = 0;

28: updateR, done = 0;

29: multAB2, done = 0;

30: if mult_done = 0 goto 30, done = 0;

31: updateA, done = 0;

32: multBB, done = 0;

33: squareB, done = 0;

34: if mult_done = 0 goto 34, done = 0;

35: updateB, done = 0;

36: multRA, done = 0;

37: if mult_done = 0 goto 37, done = 0;

38: updateA, done = 0;

39: multPB, done = 0;

40: if mult_done = 0 goto 40, done = 0;

41: updateB, done = 0;

42: updateBA, done = 0;

43: if count = m-1 goto 0, done = 0;

44: inc, done = 0;

45: goto 3, done = 0;

A circuit that implements this algorithm is
shown in Fig. 6.21. It consists of the following
components:

• sequencer that includes the condition evalu-
ation block (Fig. 6.19a), the next-state selec-
tion block (Fig. 6.19b), the increment circuit
and an internal-state register,

• command decoder that associates to every
value of signal mnemonic, represented by a
5-bit vector, the value of the control signals;
the relation between mnemonics and control
signals is defined in Table 6.1,

• microprogram memory: to each internal-state
number (memory address) are associated four
pieces of information—an instruction type
u_type, a condition identifier cond_id, a field
num_mnemo equal to the jump address (6-bit
number) in case of jump or conditional jump
instructions and equal to an encoded com-
mand (5-bit number) in case of normal
sequence instruction,

• a multiplexer that transmits the command nop
to the decoder in case of normal sequence
instruction.

The microprogram memory contents are
directly deduced from Algorithm 6.5. The cor-
responding VHDL code is a CASE construct that
defines the microprogram memory contents:

start
conditions

type cond_id num_mnemo

sequencer

internal state

commands done

reset

microprogram memory

nop

2,1 0

command 
decoder

Fig. 6.21 Microprogrammed control unit: version 2
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In fact, the microprogram memory component
is a combinational circuit with 6 inputs (internal
state) and 12 outputs (u_type: 2 bits, cond_id: 3
bits, num_mnemo: 6 bits, done: 1 bit) that can be
synthesized with components of any available
cell library (gates, LUTs, PLDs and so on), not
necessarily with a ROM block.

A complete VHDL model scalar_pro-
duct_decoder_micro.vhd is available at the
Authors’ web site.

Comment 6.4

• As mentioned at the beginning of this section,
control units are modeled by finite-state
machines and modern EDA tools include
synthesis programs able to generate optimized
state machine implementations. Furthermore,
within complex circuits, control units do not
constitute the most expensive part, but perhaps
the most difficult to debug, to modify and to
document. So, the main advantage (if any) of a
structure like that of Fig. 6.21 is clarity. All the
information necessary to implement the circuit
is included within an algorithm similar to
Algorithm 6.5. The synthesis of the sequencer
and of the command decoder is straightfor-
ward: the main task is to make a list of all jump
conditions and of all data path operations. The
synthesis of the microprogram memory block
consists in translating an algorithm such as
Algorithm 6.5 into a table that defines a

combinational circuit. Then, any type of
combinational circuit implementation can be
considered. Thus, the main design effort is the
debugging of the initial algorithm (Algorithm
6.5 in the preceding example).

• Additional instruction types and more
sophisticated sequencers could be (and have
been) considered. For example, subroutine
calls (at control unit level) could be useful if
identical sequences of commands must be
executed from different places of the control
program.

6.5 Exercises

1. Design several 8-channel PID controllers, all
with the same sample period T. Generate
VHDL models of all controllers.

2. Define microprogrammed implementations of
Algorithm 6.1 (double PID controller).
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CASE integer_address IS

WHEN 0 => u_type <= "10"; cond_id <= "000"; num_mnemo <= "000000"; done <= '1';

WHEN 1 => u_type <= "10"; cond_id <= "001"; num_mnemo <= "000001"; done <= '1';

WHEN 2 => u_type <= "00"; cond_id <= "000"; num_mnemo <= '0'&sw_reset; done <= '0';

WHEN 3 => u_type <= "10"; cond_id <= "010"; num_mnemo <= "011000"; done <= '0';

WHEN 4 => u_type <= "00"; cond_id <= "000"; num_mnemo <= '0'&multAB1; done <= '0';

WHEN 5 => u_type <= "00"; cond_id <= "000"; num_mnemo <= '0'&squareB; done <= '0';

……..

WHEN 42 => u_type <= "00"; cond_id <= "000"; num_mnemo <= '0'&updateBA; done <= '0';

WHEN 43 => u_type <= "10"; cond_id <= "100"; num_mnemo <= "000000"; done <= '0';

WHEN 44 => u_type <= "00"; cond_id <= "000"; num_mnemo <= '0'&inc; done <= '0';

WHEN 45 => u_type <= "01"; cond_id <= "000"; num_mnemo <= "000011"; done <= '0';

END CASE;

6.4 Sequencers and Microprograms 123



7Input–Output Interfaces

The way digital circuit components communicate
between them has already been dealt with in the
preceding chapters. Many examples have been
proposed in which a start/done protocol is used
to permit the communication with other compo-
nents. A more complete handshaking protocol
has also been defined and implemented in
Sect. 3.5. Sequential implementations of con-
nections have been considered in Sect. 5.1 (data
path connectivity); they are based on the use of
multiplexers or of equivalent internal buses.

This chapter deals with the communication
between digital circuits that are components of a
complete system. These components could be
general-purpose processors, application-specific
components, memories, electronic interfaces of
electromechanical devices (e.g., disk drivers),
digital-to-analog and analog-to-digital converters
and many others.

A commonly used technique for intercon-
necting such components is the use of external
buses. So, the main section of this chapter
(Sect. 7.2) is dedicated to the definition and
description of several types of buses. A first
section is dedicated to general concepts.

7.1 General Concepts

The communication between components of a
system can be implemented in different ways.
This section briefly describes and classifies sev-
eral communication implementation techniques.

Afirst category of communication implemen-
tation technique is based on the use of hand-
shaking protocols. Consider two components
A and B. A basic communication implementation
is shown in Fig. 7.1. To send data from A to B

• A puts data on the output port data_out and
raises the output port out_valid.

• When B has read data, it raises the output port
in_ack.

• A lowers the output port out_valid.
• B lowers the output port in_ack.

More sophisticated handshake protocols can
be considered. An example has been given in
Sect. 3.5 (self-timed circuits). Several (more than
one) data can be transmitted with this type of
protocol. Then valid and ack signals are associ-
ated with every data_out port.

A frequent case is the communication
between a processor and a memory. In Fig. 7.2,
component A is a processor and component B a
memory. An address_valid signal indicates that a
memory operation (read or write) must be exe-
cuted, and a write signal defines the particular
operation (0: read, 1: write). Practical imple-
mentation of this type of communication proto-
col, namely synchronous buses protocol with an
address/data strobe signal ADS used as an ad-
dress_valid signal, is described in Sect. 7.2.

In the case of address-less memories (FIFO,
FILO) the address_valid control signal generated
by component A in Fig. 7.2 is replaced by two
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current memory status flags not_empty and
not_full generated by the memory. In Fig. 7.3,
component A is a processor and component B an
address-less memory, for example, a first-in
first-out file. A read operation is possible only
if not_empty is true, and a write operation is
possible only if not_full is true.

First-in first-out (FIFO) memories can be used
to implement flexible inter-component connec-
tions. An example of data transmission from a
component A to a component C through an
address-less memory C is shown in Fig. 7.4.
A practical case has been defined and imple-
mented in Sect. 6 (Example 6.2).
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In the case of systems consisting of several
(more than two) components, the most com-
monly used technique is the use of external
buses. For that reason, the second section of this
chapter is dedicated to the definition and
description of several types of buses.

7.2 Buses

The structure of a generic system consisting of
several components is shown in Fig. 7.5. In order
to interchange data, the components use a com-
mon shared connection resource called bus based
on the use of three-state buffers (Sect. 2.4.3 of
Deschamps et al. 2017). Apart from the type of
data that can be transferred (basically the number
of bits per word), every bus has particular and
essential characteristics. For example, “how does
the bus control the transfer of data between two

components?”, or “what components have access
to the bus at any moment?” Several particular
bus types are described in the next sections.

7.2.1 Synchronous Bus

A first and very simple example of digital circuit
configuration is shown in Fig. 7.6. One of the
components is the bus master while the other
components are bus slaves. All data transfers are
between the master and one of the slaves: the
master component can receive a data stored in
one of the slaves (a read operation) and can
transfer a data to one of the slaves (a write
operation). The bus consists of the following
signals:

• a synchronization signal clk,
• an address/data strobe ADS,
• a write signal,
• a data bus that transfers data,
• an address bus that sends addresses to the

slave components.

Assume that there are four slave components
and that a 16-bit address bus a15 a14 … a0 is
used. Then, the two most significant bits a15 a14
of the address can be used to select one of the
slaves and the remaining bits a13 a12 … a0
address a data within the selected slave.
Chronograms of read and write operations are
shown in Fig. 7.7. In the first case (read opera-
tion, Fig. 7.7a), the master reads the data stored
at address a13 a12 … a0 of slave number 2. The
complete read operation consists of two clock
cycles:

data_out
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data_in

not_empty

data_out

Bnot_full

write write

read

not_full

data_in

C

not_empty

read

Fig. 7.4 Communication through a FIFO
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Fig. 7.6 Synchronous bus
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• The master generates a 16-bit address that
remains stable during two cycles.

• The master generates a write bit equal to 0
(inactive) during two cycles.

• The master generates an ADS bit equal to 1
during the first cycle.

• The master data output is in high impedance
state (ZZ … Z) during two cycles.

• The selected slave is assumed to output a data
during the second cycle; this data is sampled
by the master at the end of the second cycle.

• The data output of all other slaves is in high
impedance state.

The write operation (Fig. 7.7b) also consists
of two clock cycles:

• The master generates a 16-bit address that
remains stable during two cycles.

• The master generates a write bit equal to 1
(active) during two cycles.

• The master generates an ADS bit equal to 1
during the first cycle.

• The master outputs the data to be transmitted
during two cycles; this data is assumed to be
sampled by the slave at the end of the second
cycle.

• The data output of all slaves is in high
impedance state.

This could be a previously defined bus, with
its particular characteristics such as the data and
address sizes and the communication protocol.

When designing a new specific slave component
to be connected to this bus, those characteristics
must be taken into account. For instance, the
specific component must have a bidirectional
port data, an input port address, two 1-bit input
ports write and ADS; it must include an address
decoder that detects when it is addressed by the
bus master. On the other hand, if an already
existing component is used as bus slave, an
interface circuit must be inserted whose function
is to translate the bus commands to the compo-
nent commands. Consider an example.

Example 7.1 Consider the system of Fig. 7.6
where the bus master is a microprocessor with an
8-bit bidirectional port data, a 16-bit output port
address and two 1-bit control outputs write and
ADS. One of the slaves is a synchronous random
access memory (Fig. 7.8) with a 14-bit input port
address, an 8-bit input port data_in, an 8-bit
output port data_out and two control inputs WE
(write enable) and OE (output enable). It stores
214 8-bit words. A new word d7 d6 … d0 is stored
at address a13 a12 … a0 on the rising edge of clk if
address = a13 a12… a0, data_in = d7 d6… d0 and
WE = 1 (Fig. 7.8c). If OE = 1 and address = a13
a12 … a0, then data_out is equal to the word
stored at address a13 a12 … a0. If OE = 0, then
data_out = ZZZZZZZZ (Fig. 7.8b).

To connect this component to the bus of
Fig. 7.6 as slave number 2, an interface circuit
must be added (Fig. 7.9): a three-state finite-state
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machine generates control signals WE and OE
(Fig. 7.10) and slave_address is equal to address
(13 … 0).

A VHDL model bus_interface.vhd is avail-
able at the Authors’ web site.

In Fig. 7.7, it is assumed that when the master
reads a data stored in slave number a15a14, the
requested data is available on the data bus at the
end of the second cycle (Fig. 7.7a). If the
addressed slave is relatively slow, it could hap-
pen that it needs more than two clock cycles to
put the requested data on the data bus. Similarly

data_out data_in

address

write

OE

a13 a12 ... a0

word at address 
a13 a12 ... a0

data out

clk

address

write

stored at address 
a13 a12 ... a0

data_in d7 d6 ... d0

a13 a12 ... a0

address

WE

OE

214 8-bit 
words

14

8

(a) (b)

(c)

Fig. 7.8 Synchronous RAM

WE

OE

214 8-bit 
words

8

data
address
clk
write
ADS

bus
interface

reset

slave_address

Fig. 7.9 Connection to the bus

0

ADS·a15·not(a14) = 0

1

ADS·a15·not(a14)·write = 1

2

ADS·a15·not(a14)·not(write) = 1

reset

WE = 1, OE = 0

WE = 0, OE = 1

WE = 0, OE = 0

Fig. 7.10 Generation of signals WE and OE
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when the master sends a data to slave number
a15a14 (Fig. 7.7b), it could be that more than two
clock cycles are necessary to store the transmit-
ted data within the selected slave. Slowing down
the clock frequency is generally not a good
solution as it will slow down all data transfers,
even with “not so slow” slave components.
A better option is the insertion of waiting cycles.
For that, a ready signal is added to the bus
(Fig. 7.11): ready is raised by the addressed
slave component as soon as it has transmitted the
requested data to the data bus in the case of a
read operation (Fig. 7.12), or as soon as it has
stored the transmitted data in the case of a write
operation (Fig. 7.13). As several slaves can be
connected to the bus, the state of the bus signal
ready is the OR function of all corresponding
slave signal (wired OR).

Example 7.2 As a second example, consider the
system of Fig. 7.11 similar to Fig. 7.6 with an
additional status signal ready generated by the
slave components and read by the bus master.
The bus master is a microprocessor with a 32-bit
bidirectional port data, a 32-bit output port ad-
dress, two 1-bit control outputs write and ADS
and a binary input ready. One of the slaves is a
dynamic random access memory (Fig. 7.14) with
a 30-bit input port address, a 32-bit input port
data_in, a 32-bit output port data_out, two
control inputs ME (memory enable) and WE
(write enable) and a control output done. It stores
230 32-bit words.

The write and read operations are executed as
shown in Fig. 7.15. Once a command has been
externally generated by raising the ME input and

master slave 0 slave 1 ….

data
address

clk
write
ADS
ready

Fig. 7.11 Synchronous bus
with waiting cycles

clk

address

write

ADS

data
(from master)

zz...z

data
(to master)

1 0 a13 a12 ... a0

from slave 2

ready

….

….

….

….

….

….

sampled by 
master

Fig. 7.12 Read operation
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by defining an address, an operation (WE = 0 or
1) as well as an input data in the case of a write
operation, the internal circuits of the memory are
in charge of the command execution. The done
output is raised when either the previously
addressed data is available on the output port
data_out (read operation) or when the data pre-
viously inputted to the port data_in has been
stored at the previously defined address.

To connect this component to the bus of
Fig. 7.11 as slave number 2, an interface circuit
must be added (Fig. 7.16): a five-state finite-state

clk

address

write

ADS

1 0 a13 a12 ... a0

ready

….

….

….

….

….

sampled by 
slave 2

from master ….

Fig. 7.13 Write operation

address

WE

a29 a28 ... a0

word at address 
a29 a28 ... a0

data out

ME

done

clk
...

...

...

...

address sampling data reading

address

WE

a29 a28 ... a0

data in

ME

done

clk
...

...

...

address and data sampling

d31 d30 ... d0

(a) (b)

Fig. 7.15 a Read operation and b Write operation

data_out data_in

address

WE 230 32-bit 
words

30

32

ME

done

Fig. 7.14 Dynamic random access memory
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machine generates control signals WE, ME and
ready (Fig. 7.17), and slave_address is equal to
address (29 … 0).

A VHDL model bus_interface_2.vhd is
available at the Authors’ web site.

7.2.2 Asynchronous Bus

In the preceding examples (Figs. 7.6 and 7.11), a
common clock signal is used to synchronized the
bus operations. Asynchronous buses without a
common synchronization signal can also be
defined. It is an interesting option when some of
the slave components have very long response
times.

An example is shown in Fig. 7.18. The bus
consists of the following signals:

• An Address/Data bus able to transfer addres-
ses and data from the master to the slaves and
to transfer data from any slave to the master,

• ReadReq andWriteReq control bits, generated
by the master, that initialize a read or write
operation within the addressed slave,

• An Ack status bit generated by the master or
by a slave to acknowledge the reception of a
previous command,

• A Ready status bit generated by a slave when
it completes the requested operation.

As before, the most significant address bits can
be used to select a slave and the remaining address
bits to select particular data within the selected
slave. Chronograms of read and write operations
are shown in Fig. 7.19a. A read operation consists
of the following steps:

data
address
clk
write
ADS

bus
interface

reset

slave_address

ready

data_out

data_in

230 32-bit 
words

32

WE

ME

done

Fig. 7.16 Connection to the
bus

0

ADS·a31·not(a30) = 0

1

ADS·a31·not(a30)·write = 1

2

ADS·a31·not(a30)·not(write) = 1
reset

ME = 0, WE = -, 
ready = 0

ME = 1, WE = 1, 
ready = 0

ME = 1, WE = 0, 
ready = 0

3

ME = 0, WE = -, 
ready = 0

done = 0

4
done = 1

ME = 0, WE = -, 
ready = 1

Fig. 7.17 Generation of
signals ME, WE and ready
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• The master puts an address on the Address/
Data bus and raises ReadReq.

• The selected slave acknowledges the com-
mand by raising Ack.

• The master releases the Address/Data bus and
lowers ReadReq.

• When ready to transmit the requested data,
the previously selected slave puts the
data on the Address/Data bus and raises
Ready.

• The master acknowledges the reception of the
requested data by raising Ack.

• The slave releases the Address/Data bus.

The write operation (Fig. 7.19b) is performed
as follows:

• The master puts an address on the Address/
Data bus and raises WriteReq.

• The selected slave acknowledges the com-
mand by raising Ack.

• The master releases the Address/Data bus and
lowers WriteReq.

• When ready to store data, the previously
selected slave raises Ready.

• The master puts the data to be stored on the
Address/Data bus and raises Ack.

master slave 0 slave 1 ….

Address/Data

WriteReq
Ack
Ready

ReadReq

Fig. 7.18 Asynchronous bus

address
(master)Address/Data

ReadReq

Ack slave

slaveReady

data
(slave)

WriteReq

master

...

...

...

...

...

address
(master)Address/Data

ReadReq

Ack

Ready

data
(master)

WriteReq

master

...

...

...

...

...
slave

slave

(a)

(b)

Fig. 7.19 Bus operations:
a read and b write

7.2 Buses 133



• The master releases the Address/Data bus and
lowers Ack.

In the case of the bus of Figs. 7.11, 7.12 and
7.13, the slaves must be prepared to detect
1-cycle ADS strobes (all of them) and the master
must be able to detect 1-cycle ready signals.
Thus, a common synchronization signal is
essential. This type of bus is convenient in the
case of fast and close together components.

In the case of the bus of Figs. 7.18 and 7.19,
simple handshaking protocols are used. For
example when the master generates a read
command (ReadReq = 1, Fig. 7.19a), it waits
until the addressed slave acknowledges this
command (Ack = 1). Similarly, when the
addressed slave generates a ready pulse to indi-
cate that a data is available on the Address/Data
bus, it waits until the master acknowledges this

command (Ack = 1). Thus, the correct working
of the bus does not depend on the component
response delays.

Example 7.3 Consider a system that monitors the
value of a set of parameters within some area:
temperature, pressure, contaminant concentra-
tions and so on. The general system structure is
shown in Fig. 7.20. It consists of a central
computer and of several peripherals distributed
within the area to be controlled. All peripherals
include sensors that measure the parameter val-
ues. The central computer executes programs
that take decisions in function of those values
so that it must be able to communicate with the
peripherals in order to get this information.
The distance between the central computer and
the peripherals might be relatively long. On the
other hand, this type of system does not need
high-performance (speed) characteristics. So, the
use of an asynchronous bus to interconnect the
central computer with the peripherals could be
considered (Fig. 7.18): the central computer of
Fig. 7.20 is the bus master, and the peripherals
are slave components.

Every peripheral has a 1-bit control input
start, a 1-bit status output done, an 8-bit input
port data_in and an 8-bit output port data_out
(Fig. 7.21a). It works as follows (Fig. 7.21b):

• On a positive edge of start, the value of
data_in is read; it identifies the particular
parameter that must be detected and mea-
sured; the done flag is lowered.

central 
computer

peripheral_0

peripheral_1peripheral_n-1

…..

peripheral_2peripheral_n-2

Fig. 7.20 Parameter monitoring system

start

done

data_in data_out

sensors_i

start

done

identifierdata_in

valuedata_out

...

...

...

(a) (b)

Fig. 7.21 Peripheral
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• When the selected parameter has been mea-
sured, the done flag is raised, and the
parameter value is outputted to the data_out
port.

Assume that there are sixteen peripherals
(n = 16 in Fig. 7.20), sixteen parameter identi-
fiers, and that Address/Data (Fig. 7.18) is an 8-bit
bus. To connect peripheral_3 to the bus as slave
number 3, an interface circuit is added (Fig. 7.22).
When the central computer needs the value of
parameter number 11 of peripheral number 3, it
first executes a write operation (Fig. 7.19b) with

address = 0011---- and data = ----1011, and
then, it executes a read operation (Fig. 7.19a) at
the same address and gets the current value of the
selected parameter.

The bus interface of Fig. 7.22 is a nine-state
finite-state machine (Fig. 7.23) that generates
signals Ack_out, Ready_out, start and oe in
function of ReadReaq, WriteReq, bits 4–7 of
Address/Data (peripheral identifier) and Ack
equal to the OR function of the Ack_out outputs
of all peripherals (wired OR).

A VHDL model bus_interface_3.vhd is
available at the Authors’ web site.

Address/Data

WriteReq
Ack
Ready

ReadReq

peripheral_3

4oe

4

start
done

bus interface

8

ad(7..4) ad(3..0)

Fig. 7.22 Connection to the bus
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1

WriteReq·not(ad7)·not(ad6)·ad5·ad4 = 1

Ack_out = 1,
Ready = 0,
start = 0,

oe = 0

2

Ack_out = 0,
Ready = 0,
start = 0,

oe = 0

3

Ack_out = 0,
Ready = 1,
start = 0,

oe = 0

Ack = 0

Ack = 1
4

Ack_out = 0,
Ready = 0,
start = 1,

oe = 0

ReadReq·not(ad7)·not(ad6)·ad5·ad4 = 1

5

Ack_out = 1,
Ready = 0,
start = 0,

oe = 0

6

Ack_out = 0,
Ready = 0,
start = 0,

oe = 0

7

Ack_out = 0,
Ready = 1,
start = 0,

oe = 1

Ack = 1
8

Ack_out = 0,
Ready = 0,
start = 0,

oe = 0

Ack = 0

done = 1

done = 0

Fig. 7.23 Bus interface
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7.2.3 Multi-master Bus Systems

In the previous bus examples (Figs. 7.6, 7.11 and
7.19), there is only one bus master. All other
components are slaves. Multi-master buses can
also be considered. An example is shown in
Fig. 7.24. All components have the capacity to
control the bus operations under the supervision
of an additional component called bus arbiter.

The way that the arbiter grants the control of
the bus to a particular master is shown in
Fig. 7.25:

• Master i raises the req output (reqi = 1); as
the bus is currently idle, the arbiter grants the
bus control to master i; master i will keep
reqi = 1 as long as it executes bus operations.

• Masters j and k raise the corresponding req
outputs (reqj = reqk = 1); as soon as master
i completes its operations and lowers reqi, the
arbiter grants the bus control to either master
j or master k according to some priority policy;
assume it grants the bus control to master j.

• When master j completes its operations, it
lowers reqj; then the arbiter grants the control
to master k whose request is still pending.

• When master k completes its operations, it
lowers reqk.

Example 7.4 The system to be developed exe-
cutes an algorithm of image filtering in the spatial
domain. It is made up of a main processor (cpu)

that stores an m-row by n-column image. Each
pixel is a p-bit signed number. The filtering
algorithm is executed by a specific coprocessor
with its own data memory. The sequence of
operations executed by the main processor is the
following:

• Transmission to the coprocessor data mem-
ory, at addresses a to a + m � n − 1, of an
unfiltered image.

• Transmission to the coprocessor of the fol-
lowing command: “execute the filtering
algorithm on the image stored at addresses
a to a + m � n − 1 and store the resulting
filtered image at addresses b to b + m � n − 1”
(Fig. 7.26).

• Wait for completion of the command execu-
tion; the filtered image is now stored within
the coprocessor data memory.

• Reception of the filtered image from the
coprocessor data memory.

Thus, the communication resource must be
able to transmit data

• from the main processor to the coprocessor
(command including addresses a and b and a
start order),

• from the main processor to the coprocessor
data memory (unfiltered image) and from the
coprocessor data memory to the main pro-
cessor (filtered image),

master 1 master 2 master 3 ….

Address/Data/Control

req grant req grant req grant

arbiter
….

req1
grant1
req2
grant2
req3
grant3

Fig. 7.24 Multi-master bus
system
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• from the coprocessor data memory to the
coprocessor (reading of the unfiltered image)
and from the coprocessor to its data memory
(writing of the filtered image).

The proposed system configuration is shown
in Fig. 7.27. A simple synchronous bus
(Fig. 7.6) is used for all data transfers:

• In the case of data transmission from or to the
main processor, the latter is the bus master.

• When the main processor is not involved in
the data transmission, the coprocessor is the
bus master.

reqi

reqj

reqk

granti

grantj

grantk

bus controlled by master i controlled by master j controlled by master k

Fig. 7.25 Request–Grant protocol

a

a+ m·n-1

b

b+ m·n-1

unfiltered picture

filtered picture

Fig. 7.26 Data memory

main 
processor coprocessor data

memory

data

address

clk
write, ADS

Req grant Req grant

bus
arbiterReq1

grant1

Req2

grant2

Fig. 7.27 Image processing system
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In this way, the main processor can execute
other internal operations while waiting for
completion of the command execution. Thus,
there are two bus masters, the main processor
and the coprocessor, and an arbiter circuit is
necessary.

The operations executed by the main proces-
sor are described by the following algorithm.

Algorithm 7.1 Program executed by the main
processor

The operations executed by the coprocessor
depend on the chosen image filtering algorithm.
A very simple filter is used in this example.
Consider a 3-by-3 mask c(k, l) where k, l 2 {−1,
0, 1}. Then, every pixel value is replaced by a
linear combination of this pixel value and of the
eight adjacent pixel values:

filtered pixelði; jÞ ¼
X

k

X

l

cðk; lÞ
� pixelðiþ k; jþ lÞ: ð7:1Þ

--initial state: bus request signal inactive and

--outputs to the bus in high impedance

Req = 0; release(data, address, ADS, write);

--request bus control

Req = 1;

wait until Grant = 1;

--send unfiltered image to data memory

for i in 0 to m-1 loop

for j in 0 to n-1 loop

--write cycle (as bus master)

data_memory(a + i�n + j) = pixel(i,j);

end loop;

end loop;

--send addresses "a" and "b" and order

"start" to the

--coprocessor; three write cycles (as bus master)

coprocessor.a = a;

coprocessor.b = b;

coprocessor.start = true;

--release bus control: bus request signal inactive and

--outputs to the bus in high impedance

Req = 0; release(data, address, ADS, write);

--wait a few cycles while the arbiter grants the bus control --to the coprocessor;

wait for 100 cycles;

--request bus control; control will be granted when the

--coprocessor completes its operations

Req = 1;

wait until Grant = 1;

--read filtered image from the data memory

for i in 0 to m-1 loop

for j in 0 to n-1 loop

--read cycle (as bus master)

filtered_pixel(i,j)= data_memory(b + i�n + j);

end loop;

end loop;
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Consider the 9-by-16 image p of Fig. 7.28. As
an example, pixel p’(3,6) of the filtered image is
equal to

p0ð3; 6Þ ¼ cð0; 0Þ � pð2; 5Þþ cð0; 1Þ � pð2; 6Þ
þ cð0; 2Þ � pð2; 7Þþ cð1; 0Þ � pð3; 5Þ
þ cð1; 1Þ � pð3; 6Þþ cð1; 2Þ � pð3; 7Þ
þ cð2; 0Þ � pð4; 5Þþ cð2; 1Þ � pð4; 6Þ
þ cð2; 2Þ � pð4; 7Þ;

and pixel p′(6,10) of the filtered image is equal to

p0ð6; 10Þ ¼ cð0; 0Þ � pð5; 9Þþ cð0; 1Þ � pð5; 10Þ
þ cð0; 2Þ � pð5; 11Þþ cð1; 0Þ � pð6; 9Þ
þ cð1; 1Þ � pð6; 10Þþ cð1; 2Þ � pð6; 11Þ
þ cð2; 0Þ � pð7; 9Þþ cð2; 1Þ � pð7; 10Þ
þ cð2; 2Þ � pð7; 11Þ:

The operations executed by the coprocessor
are described by the following algorithm.

Algorithm 7.2 Program executed by the
coprocessor

p(0,0) p(0,2) p(0,3) p(0,4) p(0,5) p(0,6) p(0,7) p(0,8) p(0,9) p(0,10) p(0,11) p(0,12) p(0,13) p(0,14) p(0,15)

p(1,0) p(1,2) p(1,3) p(1,4) p(1,5) p(1,6) p(1,7) p(1,8) p(1,9) p(1,10) p(1,11) p(1,12) p(1,13) p(1,14) p(1,15)

P(2,0) p(2,2) p(2,3) p(2,4) p(2,5) p(2,6) p(2,7) p(2,8) p(2,9) p(2,10) p(2,11) p(2,12) p(2,13) p(2,14) p(2,15)

P(3,0) P(3,2) p(3,3) p(3,4) p(3,5) p(3,6) p(3,7) p(3,8) p(3,9) p(3,10) p(3,11) p(3,12) p(3,13) p(3,14) p(3,15)

p(4,0) p(4,2) p(4,3) p(4,4) p(4,5) p(4,6) p(4,7) p(4,8) p(4,9) p(4,10) p(4,11) p(4,12) p(4,13) p(4,14) p(4,15)

p(5,0) p(5,2) p(5,3) p(5,4) p(5,5) p(5,6) p(5,7) p(5,8) p(5,9) p(5,10) p(5,11) p(5,12) p(5,13) p(5,14) p(5,15)

p(6,0) p(6,2) p(6,3) p(6,4) p60,5) p(6,6) p(6,7) p(6,8) p(6,9) p(6,10) p(6,11) p(6,12) p(6,13) p(6,14) p(6,15)

p(7,0) p(7,2) p(7,3) p(7,4) p(7,5) p(7,6) p(7,7) p(7,8) p(7,9) p(7,10) P(7,11) p(7,12) p(7,13) p(7,14) p(7,15)

p(8,0) p(8,2) p(8,3) p(8,4) p(8,5) p(8,6) p(8,7) p(8,8) p(8,9) p(8,10) p(8,11) p(8,12) p(8,13) p(8,14) p(8,15)

c(0,0) c(0,1) c(0,2)

c(1,0) c(1,1) c(1,2)

c(2,0) c(2,1) c(2,2)

c(0,0) c(0,1) c(0,2)

c(1,0) c(1,1) c(1,2)

c(2,0) c(2,1) c(2,2)

Fig. 7.28 Image filtering

--initial state: bus request signal inactive and

--outputs to the bus in high impedance

Req = 0; release(data, address, ADS, write);

--branch (command decoding)

if write_cycle and address_in = address.a then

a = data_in;

elsif write_cycle and address_in = address.b then

b = data_in;

elsif write_cycle and address_in = address.start then

--request bus control

Req = 1;

wait until Grant = 1;
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In order to avoid negative pixel coordinates
when computing (7.1), the filtered image has
been reduced to m-2 rows and n-2 columns (left,
right, up and down edges are deleted).

A data flow model of the complete system is
available at the Authors’ web site. It consists
of five VHDL files: system.vhd, cpu.vhd, ar-
biter.vhd, coprocessor.vhd and data_memory.
vhd. The parameter values and the original
unfiltered image are defined within a package
included in coprocessor.vhd. In particular, the
addresses are 10-bit vectors defined as shown
in Table 7.1.

Parts of the simulation results are shown in
Figs. 7.29, 7.30 and 7.31. The unfiltered 9 � 16
image is

CONSTANT unfiltered: picture := (

1, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1,

1, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1,

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

1, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1,

1, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1,

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

1, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1,

1, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1,

4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4

);

and the mask coefficients are

CONSTANT c: mask := (

x"ff", x"ff", x"ff",

x"ff", x"08", x"ff",

x"ff", x"ff", x"ff"

);

--filtering operations

for i in 1 to m-2 loop

for j in 1 to m-2 loop

acc = 0;

for k in -1 to 1 loop

for l in -1 to 1 loop

--read data memory (as bus master)

--and update acc

acc = acc + c(k,l)�data_memory(a+(i+k)�n +j+l);

end loop;

end loop;

--write data memory (as bus master)

data_memory(b + i�n + j)= acc;

end loop;

end loop;

--release bus control: bus request signal inactive and

--outputs to the bus in high impedance

Req = 0; release(data, address, ADS, write);

else nop;

end if;

Table 7.1 Memory map

Address Addressed data

0000000000 coprocessor.a

0010000000 coprocessor.b

0100000000 coprocessor.start

1 a8 a7 a6 a5 a4 a3
a2 a1 a0

data_memory(a8 a7 a6 a5 a4
a3 a2 a1 a0)
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so that

filtered pictureð1; 1Þ ¼ ð�1Þ � 1þð�1Þ � 1
þð�1Þ � 2þð�1Þ � 1
þ 8 � 1þð�1Þ � 2
þð�1Þ � 4þð�1Þ � 4
þð�1Þ � 4 ¼ �11;

filtered pictureð1; 2Þ ¼ ð�1Þ � 1þð�1Þ � 2
þð�1Þ � 3þð�1Þ � 1
þ 8 � 2þð�1Þ � 3
þð�1Þ � 4þð�1Þ � 4
þð�1Þ � 4 ¼ �6;

Fig. 7.29 Data memory writing (unfiltered picture) (courtesy of Mentor Graphics)

Fig. 7.30 First pixel processing (courtesy of Mentor Graphics)

Fig. 7.31 Data memory reading (filtered picture) (courtesy of Mentor Graphics)
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filtered pictureð1; 3Þ ¼ ð�1Þ � 2þð�1Þ � 3
þð�1Þ � 4þð�1Þ � 2
þ 8 � 3þð�1Þ � 4
þð�1Þ � 4þð�1Þ � 4
þð�1Þ � 4 ¼ �3;

and so on. Figure 7.29 shows the first steps of the
transmission to the coprocessor data memory of
the unfiltered picture, Fig. 7.30 shows the first
step of the filtering operation, and Fig. 7.31
shows the first steps of the transmission to the
main processor of the filtered picture.

To conclude this section on buses, three
comments.

• Many other bus features and configurations
can be defined. As an example, the image
processing system (Example 7.4) suggests an
improved communication protocol: when the
main processor reads pixel values from the
data memory, m � n successive 2-cycle read
operations are executed (Fig. 7.31). A unique
k-cycle (k = m � n + 1) read operation could

also be considered (Fig. 7.32), so that the
complete transfer time would be equal to m �
n + 1 cycles instead of 2 � m � n. Similarly
instead of m � n successive 2-cycle write
operations, a unique k-cycle write operation
could be considered.

• Another comment similar to the previous: in
the case of systems that process large-width
data (structured data, arrays), it can be useful
to add the possibility of burst transmission. If
n-bit data must be transmitted, where n = s �m,
then in order to reduce the number of bits of
the input and output ports every data can be
transmitted as a burst of s successive m-bit
number. An example of synchronous bus,
with burst read and write capabilities, is
shown in Fig. 7.33. The master component
defines a base address (a) and a data size s (4
in the example). Then m-bit words are read
from or written to the selected slave at
addresses a to a + size-1.

• Modern IC and FPGA electronic design
automation packages include tools that permit
to synthesize input and output interfaces for
several predefined standard and complex buses.
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Fig. 7.32 Successive read operations
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7.3 Exercises

1. Design an interface (bridge) between a syn-
chronous bus with waiting cycles and an
asynchronous bus.

2. Design a new version of the image processing
system of Example 7.4 with two buses: a syn-
chronous bus with waiting cycles to which are
connected the main processor, the data memory
and the bus bridge and an asynchronous bus to

which are connected the coprocessor and the
bus bridge. Generate a VHDL model of the
complete system.
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8Development Tools

The implementation of a digital circuit in an
application-specific integrated circuit (ASIC), in a
field-programmable gate array (FPGA) or in a
complex programmable logic device (CPLD) is
divided into several steps. The first step is the
specification of the circuit. It includes a functional
description, for example, an algorithm that the
circuit must execute, as well as other character-
istics such as maximum computation time, max-
imum power consumption, maximum chip size
(ASIC), or maximum number of cells (FPGA,
CPLD). If the functional specification is an
algorithm, it can be defined in a very precise form
by a program in some languages such as C/C++,
Java, SystemC, MATLAB, or even in a hardware
description language (HDL) at functional level.
The resulting code can be executed so that the
designer has the possibility to check whether the
initial specification accurately defines the func-
tion that he actually wants to implement.

Once the functional specification has been
approved, the next step is the generation of a
digital circuit made up of available components
such as logic gates, registers, and memory blocks.
Nowadays several electronic design automation
(EDA) tools help the designer to translate the
initial specification to a logic circuit and to check
the correctness of the so-obtained circuit.

The remaining steps depend on the targeted
implementation technology. According to criteria
such as cost, frequency, time to market, and so
on, a Standard Cell (SC), Gate Array (GA),
FPGA or CPLD family is selected and the

previously obtained logic circuit is redesigned
using components of the corresponding SC, GA,
FPGA or CPLD libraries.

In this chapter, the main concepts related to
the EDA tools are briefly described. Examples
using Vivado HLS (Xilinx) and ISE (Xilinx)
tools are given.

8.1 Design Flow

The design flows are the combination of EDA
tools to carry out a circuit design. Figure 8.1
shows an example of design flow. It starts from an
initial specification in a programming language or
even in a hardware description language at func-
tional level. The resulting code can be executed to
check whether the initial specification accurately
defines the function to be implemented.

The translation of this initial specification to a
digital circuit, made up of available components, is
decomposed into two steps. First a register-
transfer level (RTL) description is generated: It
defines the working of the circuit cycle by cycle;
that means that the schedule of the operations is
explicitly defined. This RTL description is gen-
erally expressed in a standard HDL, so that RTL
description is another possible design entry point.
The RTL description can be simulated to check
whether the obtained circuit model accurately
defines the function to be implemented and fulfills
the expected timing characteristics (e.g., number
of clock cycles).
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The second part of the design work is the
translation from a RTL definition to a circuit
made up of available components such as logic
gates, registers, and memory blocks. In Fig. 8.1,
the translation to a logic circuit is divided into
two steps. First, a circuit made up of generic
gates, registers, memory blocks, and so on, is
defined. Then the obtained logic circuit is map-
ped to an equivalent logic circuit made up of
elements of the chosen implementation library
(Standard Cell, Gate Arrays, FPGA, CPLD
libraries). Those logic descriptions can be
expressed in several ways, for example a stan-
dard HDL, a standard netlist language such as
EDIF (Electronic Design Interchange Format), a
vendor-specific netlist language. Thus, logic
description is another possible design entry point.
Graphical user interfaces can also be used (e.g.,
schematic capture). The logic descriptions can be
simulated to check whether the obtained circuit
models accurately define the function to be
implemented and whether they fulfill the expec-
ted timing characteristics and reach the expected
cost and size limits (e.g., number of gates).

Once a logic circuit made up of components of
the chosen implementation libraries has been
defined, the implementation step is performed.
Those library elements are placed and routed
within a particular component with its

corresponding package. The implemented circuit
description is used to generate the information
necessary to execute the remaining (back end)
operations: generation of programming files
(FPGA, CPLD) or manufacturing of masks (SC,
GA). Furthermore, accurate timing information
predictions can be extracted (back annotation)
from the implemented circuit description. This
information can be used to simulate the circuit with
this timing information or to detect and analyze
critical paths.

8.2 Logic Synthesis

Logic synthesis is a basic function of any EDA
package. Its function is the translation of
register-transfer level (RTL) descriptions to logic
descriptions:

• RTL descriptions define the circuit working
cycle by cycle, so that they explicitly define
the schedule of the operations; many exam-
ples of RTL descriptions in VHDL have been
presented in the preceding chapters.

• Logic descriptions are constituted of a list of
components (gates, multiplexers, flip-flops,
and so on) and of interconnections nets, a
so-called netlist.
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Logic synthesis can be divided into two steps:

• First (logic synthesis in “strictly speaking”
sense) translation of the initial RTL descrip-
tion to logic descriptions consisting of generic
gates, flip-flops, registers, and so on, without
specification of the target technology.

• Then (technology mapping) mapping of the
obtained logic circuit to an equivalent circuit
made up of elements of the chosen imple-
mentation library (Standard Cell, Gate
Arrays, FPGA, CPLD libraries).

In some cases, both steps are integrated within
a unique synthesis tool. As an example, it is the
case of development tools supplied by FPGA or
CPLD vendors: The logic synthesis program
directly generates netlists whose elements belong
to the corresponding FPGA or CPLD basic
component libraries.

The input to a logic synthesizer is an RTL
description, for example, in some standard HDL.

The output is a structural description, for exam-
ple in a standard HDL, a standard netlist lan-
guage or even a proprietary (vendor specific)
netlist format, as well as various reports (number
of logic components, expected dynamic and
electrical characteristics).

The synthesis process executes optimization
tasks such as area reduction, speed optimization,
and reduction of the power consumption. Fur-
thermore, some aspects of the synthesis work can
be controlled by the designer. For example, the
way the internal states of a finite-state machine
are encoded (minimum number of state variables,
one variable per state, and so on), the maximum
fan-out of nets and other constraints, the use of
predefined components such as memory or
arithmetic blocks, and others.

Example 8.1 The following VHDL code (coun-
ter.vhd available at the Authors’ web site) defines
a mod 8 counter, with count enable input, at RT
level:

LIBRARY…

ENTITY counter IS

PORT (

clk, reset, count_enable: IN STD_LOGIC;

y: OUT STD_LOGIC_VECTOR(2 DOWNTO 0));

END counter;

ARCHITECTURE behavior OF counter IS

SIGNAL next_state, current_state: STD_LOGIC_VECTOR(2 DOWNTO 0);

BEGIN

next_state <= current_state + count_enable;

synchronization: PROCESS(reset, clk)

BEGIN

IF reset = '1' THEN current_state <= "000";

ELSIF clk'EVENT AND clk = '1' THEN current_state <= next_state;

END IF;

END PROCESS synchronization;

y <= current_state;

end behavior;
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On every positive edge of clk, the process
synchronization replaces the value of current_state
by next_state = current_state + count_enable, so
that if count_enable = 1 then the updated state is
equal to current_state + 1, and if count_en-
able = 0 then the updated state is equal to cur-
rent_state (the internal state does not change). The
three-bit output signal y is equal to current_state.
The logic synthesis tool XST of ISE (Xilinx)
generates the circuit of Fig. 8.2 consisting of three
input buffers (clk, reset, count_enable), three out-
put buffers (y), three flip-flops and two lookup
tables, and an inverter that generates the following
functions

result0 ¼ not cs0ð Þ; ð8:1aÞ
result1 ¼ cs0 � cs1; ð8:1bÞ

result2 ¼ cs0 � cs1 � cs2: ð8:1cÞ

Thus, if count_enable = 0, then the three
flip-flop CE (clock enable) inputs are equal to 0
so that the internal state cs (current_state) does
not change. When count_enable = 1 then,
according to Eq. (8.1) that define a 3-bit half
adder (result = cs +1 mod 8), the internal state cs
is replaced by cs + 1 mod 8.

The VHDL file counter_synthesis.vhd, auto-
matically generated by XST, describes the circuit
of Fig. 8.2. It is available at the Authors’ web
site. It uses the following components of UNI-
SIM (the library for functional simulation of

Xilinx primitives): two input buffers IBUF, a
clock input buffer BUFGP, three output buffers
OBUF, three FDCE flip-flop, an inverter INV, a
2-input lookup table LUT2 whose contents are
defined by a generic parameter equal to “6”
(Table 8.1) and a 3-input lookup table LUT3
whose contents are defined by a generic param-
eter equal to “6a” (Table 8.2).
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Fig. 8.2 Mod 8 counter

Table 8.1 LUT2 with generic parameter equal to
“6” = “0110”: O = I1 ⊕ I0

I1 I0 O

0 0 0

0 1 1

1 0 1

1 1 0

Table 8.2 LUT3 with generic parameter equal to
“6A” = “01101010”: O = I2�I1 ⊕ I0

I2 I1 I0 O

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0
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After the synthesis of the counter with generic
logic components, the next step (technology
mapping) is the generation of an equivalent logic
circuit made up of logic component belonging to
the specific libraries corresponding to the chosen
device. It is an intermediate and necessary step
between logic synthesis and implementation.

8.3 High-Level Synthesis

Commercial high-level synthesis (HLS) tools are
now available. Their function (Fig. 8.1) is the
translation of a high-level description to an RTL
description. The input to a high-level synthesizer

tool is the description of the function executed by
the circuit in a language such as C/C++, Java,
SystemC, MATLAB (especially for digital signal
processing functions), and others. The output is a
RTL description, generally in a standard HDL, as
well as various reports (e.g., number of clock
cycles). Thus, HLS tools must be able to execute
the tasks described in the preceding chapters, for
example, scheduling, resource assignment,
pipelining, loop unrolling, generation of input–
output interfaces, and so on. The designer has the

possibility to guide the HLS tool by inserting
directives (pragmas) within the initial description.

Example 8.2 The following C code defines a
circuit that computes a � 510.

unsignedinta_loop(unsignedint a)

{

for (int i = 0; i < 10; i ++)a = 5*a;

return a;

}

The following “finite-state machine with
operations” (Sect. 6.2 of Deschamps et al. 2017)
is an RTL description of the corresponding
circuit:

It is a 2-state finite-state machine with oper-
ations whose current internal state CS and con-
dition signal (flag) exit_cond has been defined as
1-bit vectors. It works as follows:

• initially (on reset) CS = 0 and done = 0;
• when CS = 0: if start = 1 then input a is

internally stored within int_a, index i is set to
0, CS = 1 and done = 0;

• when CS = 1: as long as exit_cond is false
(= 0), int_a is replaced by 5 � int_a = 4 �

fsm_with_operations: process(clk)

begin

if (clk'event and clk = '1') then

if (rst = '1') then CS <= "0"; done <= '0';

elsif (CS = "0") and (start = '1') then

CS <= "1"; int_a <= a; i <= "0000"; done <= '0';

elsif (CS = "1") and (exit_cond = "0") then

int_a <= shl(int_a, two) + int_a;

i <= i + 1; done <= '0';

elsif (CS = "1") and (exit_cond = "1") then

CS <= "0"; done <= '1';

end if;

end if;

end process;

data_return <= int_a;

exit_cond <= "1" when (i = "1010") else "0";
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int_a + int_a = (int_a shifted two bits to the
left) + int_a, and i is replaced by i + 1;

• when CS = 1 and exit_cond is true (= 1) then
CS = 0 and done = 1.

The exit_cond signal is equal to 1 if and only
if i is equal to 10, and the output data_return is
equal to int_a. The VHDL file rtl_loop.vhd
including the preceding RTL description is
available at the Authors’ web site. The VHDL
file a_loop.vhd automatically generated by
Vivado HLS (Xilinx) is also available at the
Authors’ web site, with some modification in
what respects the identifier names, and is
equivalent to the VHDL file rtl_loop.vhd. It
includes the definition of two additional output
signals ready and idle that can be used to control
the communication with other circuits (hand-
shake protocols).

Commercial HLS tools give the designer the
possibility to guide the synthesis process by
inserting directives (pragmas) within the initial
description.

Example 8.3 The following C code defines a cir-
cuit that computes the same function as the code of
Example 8.2 with an additional pragma “unroll”:

unsigned int a_loop(unsigned int a)

{

for (int i = 0; i < 10; i ++)

#pragma AP unroll

a = 5*a;

return a;

}

The following sequence of signal assignment
statements defines an iterative combinational
circuit, consisting of cells that compute ai = 4 �
ai−1 + ai−1 = 5 � ai−1, i = 1–9, with a0 = a, so
that the final result is a � 510:

a_1 <= shl(a, two) + a;

a_2 <= shl(a_1, two) + a_1;

a_3 <= shl(a_2, two) + a_2;

a_4 <= shl(a_3, two) + a_3;

a_5 <= shl(a_4, two) + a_4;

a_6 <= shl(a_5, two) + a_5;

a_7 <= shl(a_6, two) + a_6;

a_8 <= shl(a_7, two) + a_7;

a_9 <= shl(a_8, two) + a_8;

data_return <= shl(a_9, two) + a_9;

A complete VHDL file unroll_loop.vhd is
available at the Authors’ web site. It is equivalent
to the VHDL file automatically generated by
Vivado HLS (Xilinx).

Example 8.4 The following C code defines a
circuit that computes the same function as in the
preceding Examples 8.2 and 8.3 with an addi-
tional pragma specifying a pipeline circuit with
an input interval (II) equal to 1 clock period:

unsigned int a_loop(unsigned int a)

{

#pragma HLS PIPELINE II = 1

for (int i = 0; i < 10; i ++)

a = 5*a;

return a;

}

The synthesized circuit is similar to that of
Example 3 with additional pipeline registers
inserted between successive iterative cells. The
following sequence of signal assignment state-
ments defines ten combinational cells that com-
pute ai = 4 � ai−1d + ai−1d = 5 � ai−1d, i = 1–9,
with a0d = a and where ai d is equal to signal ai
delayed one cycle. Thus, the final result is equal
to a � 510 with a total delay equal to nine clock
cycles:

a_1 <= shl(a, two) + a;

a_2 <= shl(a_1d, two) + a_1d;

a_3 <= shl(a_2d, two) + a_2d;

a_4 <= shl(a_3d, two) + a_3d;

a_5 <= shl(a_4d, two) + a_4d;

a_6 <= shl(a_5d, two) + a_5d;

a_7 <= shl(a_6d, two) + a_6d;

a_8 <= shl(a_7d, two) + a_7d;

a_9 <= shl(a_8d, two) + a_8d;

data_return <= shl(a_9d, two) + a_9d;
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The complete circuit includes nine pipeline
registers that generate aid(n � T) = ai((n − 1) � T),
i = 1–9, being T the clock period:

The pipeline register enable signals it(0–9) are
generated by a shift register whose serial input is
start and whose serial output is done:

A complete VHDL file pp_loop.vhd is avail-
able at the Authors’ web site. It is equivalent to
the VHDL file automatically generated by
Vivado HLS (Xilinx).

In fact, many of the operations described in
the preceding chapters can be executed by
commercial HLS tools. Some examples of circuit
characteristics that the designer can define by
using high-level language constructs, declara-
tions, directives, are the following:

• definition of specific data types, for example,
binary vectors with non-standard bit width,
array partitioning, array merging;

• operation scheduling (Chap. 2), for example,
minimum and maximum latency, clock
frequency;

• resource assignment (Chap. 2), for example,
use of virtual components (IP cores) belong-
ing to available libraries;

• pipelining with predefined introduction
interval definition, latency, throughput
(Chap. 3, Example 8.4);

• loop implementation, for example, loop
unrolling (Chap. 4, Example 8.3), loop flat-
tening (collapsing of nested loops into a sin-
gle loop), merging of consecutive loops;

• data path optimization techniques, for exam-
ple use of buses, transmission of data through
FIFO memories (streaming), inlining
(Chap. 5);

• memory implementation options, for exam-
ple, blocks of RAM, FIFO, FILO (Chap. 5);

• interfaces, for example, handshaking proto-
cols (Chap. 7).

8.4 Implementation

The implementation step is executed by a
vendor-specific tool that places and routes the
design in the target device. The inputs to the
implementation tool are the previously synthe-
sized files as well as implementation constraints,
mainly timing and area constraints. The output is
a proprietary placed and routed netlist.

reg_i: process(clk)

begin

if clk'event and clk = '1' then

if it(i-1) = '1' then a_id <= a_i; end if;

end if;

end process;

it0 <= start;

shift_register: process(clk)

begin

if clk'event and clk = '1' then

if rst = '1' then it <= (others => '0');

else it <= it0&it(1 to 8);--right shift

end if;

end if;

end process;

done <= it(9);
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The implementation tools generate informa-
tion about the implemented circuit. For example

• detailed information about the used resources,
• information about the clock distribution

network,
• final timing compared with the implementa-

tion constraints,
• delay of internal interconnections,
• graphical view of the placed and routed

design within the target device,
• power consumption estimation.

The placed and routed netlist is used to gen-
erate the information necessary to program or to
manufacture the circuit: programming files
(FPGA, CPLD) or sets of masks (SC, GA).

8.5 Simulation

Commercial simulation tools are available for
every type of circuit definition, from functional (or
behavioral) level to transistor level. In Sect. 8.2,
two types of design tools have been described:
logic synthesis (from register-transfer level to
logic components level), and high-level synthesis
(from functional level to register-transfer level).
So, as regards simulation tools, three description
levels should be considered: functional, register
transfer and logic components levels.

Whatever the description level, simulation
tools—apart from the simulation program itself—
include the following designer interfaces:

• an input language or a visual interface to
define the circuit to be simulated;

• a language or a visual interface to define the
values of the input signals during each sim-
ulation step (stimuli, test vectors);

• a textual or visual interface to observe the
simulation results.

Consider the three types of simulation tools
mentioned above.

8.5.1 Functional Simulation

HLS descriptions define the circuit function in
languages such as C/C++, SystemC, or even
HDL’s at behavioral level. The language used to
specify the circuit function can also be used to
define the values of the input signals.

Example 8.5 Consider again the functional defi-
nition of Example 8.2. The following C code
defines a circuit that computes a � 510.

unsignedinta_loop(unsignedint a)

{

for (int i = 0; i < 10; i ++)a = 5*a;

return a;

}

To check the correctness of this description,
a C program that generates successive values
of a, and for each of them executes a call to
function a_loop, is defined (a so-called test
bench):

#include < iostream>

using std::cout;

using std::cin;

unsignedinta_loop(unsignedint a);

int main()

{

unsignedint a[10] = {2, 7, 5, 4, 3, 9, 1, 0, 9, 8};

unsignedint result[10];

for (int i = 0; i < 10; i ++)

{

result[i] = a_loop(a[i]);

cout < < a[i]; cout < < "�(5 exp 10) = ";

cout < < result[i]; cout < < std::endl;

}

}
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Successive values of a are defined (2, 7, 5,…)
and the “under test” function a_loop is executed
with those successive values of a. In this ele-
mentary example, the standard user interfaces
(keyboard, console) are used. The result is the
following:

2�(5 exp 10) = 19531250

7�(5 exp 10) = 68359375

5�(5 exp 10) = 48828125

4�(5 exp 10) = 39062500

3�(5 exp 10) = 29296875

9�(5 exp 10) = 87890625

1�(5 exp 10) = 9765625

0�(5 exp 10) = 0

9�(5 exp 10) = 87890625

8�(5 exp 10) = 78125000

In the preceding example, simulation steps
correspond to successive values of the input
signal a.

Example 8.6 Consider a second example in
which the potentiality of a programming lan-
guage description is much more obvious. In
Chap. 5 of Deschamps et al. (2017), a simple
8-bit microprocessor is developed, starting from
a functional definition. The initial functional
specification can be described in C. First, several
specific data types are defined using a predefined

file ap_int.h available within Vivado HLS
(Xilinx).

#include "ap_int.h"

typedef ap_int < 8> data;

typedef ap_uint < 4> instruction_field;

typedef ap_uint < 8> address;

typedef ap_uint < 16 > instruction;

The circuit processes 2’s complement 8-bit
numbers whose type is called data. It executes
16-bit instructions partitioned into four 4-bit
fields. The instruction memory stores 256 16-bit
words and has 8-bit addresses. The preceding
definitions are saved within a file hls_processor.h.
The processor is specified as a C function.

The input and output variables are

• reset (binary),
• IN0 to IN7: the eight 8-bit input ports,
• code, f1, f2 and f3: the four 4-bit instruction

fields,
• OUT0 to OUT7: the eight 8-bit output ports,
• number: 8-bit instruction memory address.

Three internally registered variables and an
8-element array are declared at the beginning of
the function description:

#include "hls_processor.h"

voidhls_processor (

bool reset, data IN0, data IN1, data IN2, data IN3, data IN4,

data IN5, data IN6, data IN7, instruction_field code,

instruction_field f1, instruction_field f2, instruction_field f3,

data * OUT0, data * OUT1, data * OUT2, data * OUT3, data * OUT4, data * OUT5, data * OUT6,

data * OUT7, address * number)

{

static data X[16];

static address pc;

static data output_port [8];

data input_port[8];

input_port[0] = IN0; input_port[1] = IN1; input_port[2] = IN2;

input_port[3] = IN3; input_port[4] = IN4; input_port[5] = IN5;

input_port[6] = IN6; input_port[7] = IN7;
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• X is a 16-word 8-bit register file, pc is the
8-bit program counter and output_port is the
set of eight 8-bit output registers; they are
internal registers of the processor and must be
modeled by static variables that maintain their

value between successive function calls
(global variables);

• input_port is the set of the eight 8-bit input
ports.

The function body definition is the following:

if (reset == 1) pc = 0;

else {

switch (code)

{

case 0: {

X[f3] = f2 + 16*f1; pc = pc + 1;

}

break;

case 2: {

X[f3] = input_port[f3]; pc = pc + 1;

}

break;

case 10: {

output_port[f1] = X[f2]; pc = pc + 1;

}

break;

case 8: {

output_port[f1] = f3 + 16*f2; pc = pc + 1;

}

break;

case 4: {

X[f3] = X[f1] + X[f2]; pc = pc + 1;

}

break;

case 5: {

X[f3] = X[f1] - X[f2]; pc = pc + 1;

}

break;

case 14: {

pc = f3 + 16*f2;

}

break;

case 12: {

if (X[f1] > 0) pc = f3 + 16*f2;

else pc = pc + 1;

}

break;

case 13: {

if (X[f1] < 0) pc = f3 + 16*f2;

else pc = pc + 1;

}

break;

}

}
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Initially, the program counter is set to 0. Then
the instruction code field is read, the corre-
sponding operation is executed and the program

counter is updated. The instruction encoding and
the corresponding operations are defined
Table 8.3 where A is an 8-bit immediate value,
N is an 8-bit program memory address, and i,
j and k are 4-bit vectors that address the 16-word
internal register file X.

To check the correctness of this description, a
test bench must be generated. For that a new
heading file temp_control.h is defined.

It defines the instruction memory contents that
correspond to a temperature control program exe-
cuted on the processor. This program consists of
sixteen instructions and is described in (Deschamps
et al. 2017, Fig. 5.3). The four instruction fields are
defined separately. The test bench starts with head
file inclusions, interface definitions, and declara-
tion of the function under test (hls_processor):

*OUT0 = output_port[0]; *OUT1 = output_port[1];

*OUT2 = output_port[2]; *OUT3 = output_port[3];

*OUT4 = output_port[4]; *OUT5 = output_port[5];

*OUT6 = output_port[6]; *OUT7 = output_port[7];

*number = pc;}

#include "hls_processor.h"

const instruction_field ccode [16] = {0x0, 0x2, 0x2, 0x5, 0xd, 0xc, 0xe, 0x8, 0xe, 0x8,

0x2, 0x2, 0x5, 0x5, 0xd, 0xe};

const instruction_field ii [16] = {0x0, 0x0, 0x0, 0x0, 0x4, 0x4, 0x0, 0x0, 0x0, 0x0,

0x0, 0x0, 0x2, 0x4, 0x4, 0x0};

const instruction_field jj [16] = {0xA, 0x0, 0x1, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,

0x2, 0x2, 0x3, 0x5, 0x0, 0x0};

const instruction_field kk [16] = {0x5, 0x0, 0x1, 0x4, 0x7, 0x9, 0xA, 0x1, 0xA, 0x0,

0x3, 0x2, 0x4, 0x4, 0xB, 0x1};

#include "hls_processor.h"

#include "temp_control.h"

#include < stdio.h>

#include < iostream>
using std::cout;

using std::cin;

voidhls_processor (bool reset, data IN0, data IN1, data IN2, data IN3, data IN4, data

IN5, data IN6, data IN7, instruction_field code, instruction_field f1, instruction_field

f2, instruction_field f3,

data * OUT0, data * OUT1, data * OUT2, data * OUT3, data * OUT4,

data * OUT5, data * OUT6, data * OUT7, address * number);
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The main function starts with the declaration
of the test bench outputs and inputs:

• onoff is the circuit output connected to output
port 0, and port1 to port7 correspond to the
other output ports (not used in this tempera-
ture control application),

• temp (current temperature), pos (reference
temperature) and time (current time) are

8-bit naturals connected to input ports 0,
1 and 2,

• mem_address is the instruction memory
address connected to the processor output
number,

• code, f1, f2 and f3 are the 4-bit instructions
fields read from the instruction memory.

int main () {

data onoff, port1, port2, port3, port4,

port5, port6, port7;

ap_uint < 8> temp, time, pos;

address mem_addr;

instruction_field code, f1, f2, f3;

During the first simulation step the hls_pro-
cessor function is executed with reset = 1,
temp = 15, pos = 20 and time = 0:

Then, 51 simulation steps are executed with
reset = 0, temp = 15 and pos = 20. At each step,
the value of time is incremented. Thevalues of code,
f1, f2 and f3 are read from the instructionsmemory at
address mem_address and the hls_processor func-
tion is executed. The values of time, pos, temp and
onoff are sent to the standard user interface.

temp = 15;

pos = 20;

time = 0;

hls_processor (1, temp, pos, time, 0, 0, 0, 0, 0, code, f1, f2, f3,

&onoff, &port1, &port2, &port3, &port4, &port5, &port6, &port7,

&mem_addr);

Table 8.3 Instruction encoding

Mnemonic Code f1 f2 f3 Operation

assign_value 0 A7.4 A3.0 k Xk= A

data_input 2 – j k Xk= INj

data_output 10 i j – OUTi= Xj

output_value 8 i A7.4 A3.0 OUTi= A

operation_add 4 i j k Xk= Xi+ Xj

operation_sub 5 i j k Xk= Xi − Xj

jump 14 – N7.4 N3.0 go to N

jump_pos 12 i N7.4 N3.0 if Xi>0 go to N

jump_neg 13 i N7.4 N3.0 if Xi<0 go to N
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The same operations are executed with other
values of the current temperature (temp = 25 and
temp = 18). As the reference temperature is
always equal to 20, when the current temperature

temp is equal to 15, onoff must be equal to 1;
when temp = 25, onoff must be equal to 0; when
temp = 18, onoff must be equal to 1. The simu-
lation results are the following:

for (int s = 0; s <=50; s ++) {

time = time + 1;

code = ccode[mem_addr]; f1 = ii[mem_addr]; f2 = jj[mem_addr];

f3 = kk[mem_addr];

hls_processor (0, temp, pos, time, 0, 0, 0, 0, 0,

code, f1, f2, f3, &onoff, &port1, &port2, &port3,

&port4,&port5, &port6, &port7,&mem_addr);

cout < < "time = "; cout < < time; cout < < " pos = ";

cout < < pos; cout < < " temp = "; cout < < temp;

cout < < " onoff = "; cout < < onoff; cout < < std::endl;

}

temp = 25;

..........

temp = 18;

..........

}

time = 1 temp = 15 mem_addr = 1 code = 0 onoff = 0

time = 2 temp = 15 mem_addr = 2 code = 2 onoff = 0

time = 3 temp = 15 mem_addr = 3 code = 2 onoff = 0

time = 4 temp = 15 mem_addr = 4 code = 5 onoff = 0

time = 5 temp = 15 mem_addr = 7 code = 13 onoff = 0

time = 6 temp = 15 mem_addr = 8 code = 8 onoff = 1

time = 7 temp = 15 mem_addr = 10 code = 14 onoff = 1

…

time = 51 temp = 15 mem_addr = 14 code = 5 onoff = 1

time = 52 temp = 25 mem_addr = 15 code = 13 onoff = 1

time = 53 temp = 25 mem_addr = 1 code = 14 onoff = 1

time = 54 temp = 25 mem_addr = 2 code = 2 onoff = 1

time = 55 temp = 25 mem_addr = 3 code = 2 onoff = 1

time = 56 temp = 25 mem_addr = 4 code = 5 onoff = 1

time = 57 temp = 25 mem_addr = 5 code = 13 onoff = 1

time = 58 temp = 25 mem_addr = 9 code = 12 onoff = 1

time = 59 temp = 25 mem_addr = 10 code = 8 onoff = 0

time = 60 temp = 25 mem_addr = 11 code = 2 onoff = 0

…

time = 102 temp = 25 mem_addr = 2 code = 2 onoff = 0

time = 103 temp = 18 mem_addr = 3 code = 2 onoff = 0

time = 104 temp = 18 mem_addr = 4 code = 5 onoff = 0

time = 105 temp = 18 mem_addr = 5 code = 13 onoff = 0

time = 106 temp = 18 mem_addr = 9 code = 12 onoff = 0

time = 107 temp = 18 mem_addr = 10 code = 8 onoff = 0

time = 108 temp = 18 mem_addr = 11 code = 2 onoff = 0

time = 109 temp = 18 mem_addr = 12 code = 2 onoff = 0

time = 110 temp = 18 mem_addr = 13 code = 5 onoff = 0
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The response time between a current temper-
ature change and the corresponding change of the
onoff output depends on the current program
counter value (mem_addr) when the temperature
value changes. Complete C files hls_processor.cc,
hls_processor.h, temp_control.h and hls_proces-
sor_test.cc are available at the Authors’ web site.

8.5.2 Register-Transfer Simulation

RTL descriptions define the circuit working cycle
by cycle, using for that hardware description

languages. The same languages can also be used
to generate test benches that define values of the
input signals at each clock cycle.

Example 8.7 In Example 8.2, an initial functional
specification (a C program) has been translated to
an RTL specification rtl_loop.vhd. The following
VHDL code (test_rtl_loop.vhd available at
Authors’ web site) simulates the circuit:

time = 111 temp = 18 mem_addr = 14 code = 5 onoff = 0

time = 112 temp = 18 mem_addr = 15 code = 13 onoff = 0

time = 113 temp = 18 mem_addr = 1 code = 14 onoff = 0

time = 114 temp = 18 mem_addr = 2 code = 2 onoff = 0

time = 115 temp = 18 mem_addr = 3 code = 2 onoff = 0

time = 116 temp = 18 mem_addr = 4 code = 5 onoff = 0

time = 117 temp = 18 mem_addr = 7 code = 13 onoff = 0

time = 118 temp = 18 mem_addr = 8 code = 8 onoff = 1

time = 119 temp = 18 mem_addr = 10 code = 14 onoff = 1

…

time = 153 temp = 18 mem_addr = 12 code = 2 onoff = 1

library …

entity test_rtl_loop is end test_rtl_loop;

architecture test of test_rtl_loop is

component rtl_loop is

port (

clk : IN STD_LOGIC;

rst : IN STD_LOGIC;

start : IN STD_LOGIC;

done : OUT STD_LOGIC;

a : IN STD_LOGIC_VECTOR (31 downto 0);

data_return : OUT STD_LOGIC_VECTOR (31 downto 0));

end component;

signal clk: STD_LOGIC : = '1';

signal rst, start, done: STD_LOGIC;

signal a: STD_LOGIC_VECTOR (31 downto 0);

signal data_return: STD_LOGIC_VECTOR (31 downto 0);

begin

dut: rtl_loop port map (

clk => clk, rst => rst, start => start, done => done, a => a,

data_return => data_return);

clk <= not(clk) after 50 ns;

rst <= '1', '0' after 100 ns;

start <= '0', '1' after 200 ns, '0' after 300 ns,

'1' after 2500 ns, '0' after 2600 ns;

a <= x"00000005", x"00000007" after 2500 ns;

end test;
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The test bench test_rtl_loop instantiates the
device under test (dut)—in this case the component
rtl_loop—anddefines thevalueof all input signals:

• clk is defined by an assignment that substi-
tutes clk by not(clk) every 50 ns (a kind of
oscillator), so that clk is a periodic signal with
a period equal to 100 ns;

• reset, start, and a are explicitly defined in
function of the current simulation time.

The compilation and execution of this test
bench with a VHDL simulator permits to visu-
alize the working of the circuit. Results corre-
sponding to the computation of 5 �
510 = 48,828,125 and 7 � 510 = 68,359,375 are
shown in Fig. 8.3.

A similar test bench of the pipelined imple-
mentation of the same function (Example 8.4)
can be defined (test_pp_loop.vhd available at the
Authors’ web site). It first computes 5 �
510 = 48,828,125, 7 � 510 = 68,359,375 and 4 �
510 = 39,062,500, with input interval equal to a
clock period and delay equal to nine clock peri-
ods, under the control of a 3-cycle start pulse; it
also computes 8 � 510 = 78,125,000 under the
control of a 1-cycle start pulse (Fig. 8.4).

In the preceding example, the input signal val-
ues are defined with simple signal assignments. In
fact, a language such as VHDL permits to define
circuits at several levels, not only at register-
transfer level. So, when defining test benches, the
whole potentiality of the language can be used.

Example 8.8 The following example is a radix 2k

adder (Sect. 7.3 of Deschamps et al. 2012). If
n = k �m, an n-bit adder can be implemented with
m serially connected 2k-bit adders (Fig. 8.5). This
carry-skip adder structure has a shorter compu-
tation time than a simple ripple carry adder.

A complete VHDL model base_2k_adder.vhd
is available at the Authors’web site. The following
VHDL entity is an exhaustive test: all combina-
tions of input signal values (x, y and cin) are con-
sidered, where x and y are k �m-bit numbers and cin
an initial carry. The output signal values are

z ¼ xþ yþ cinð Þmod 2n and cout
¼ xþ yþ cinð Þ=2n: ð8:2Þ

Furthermore, the use of assertion statements
permits to detect errors. For that, the value of
zz = x + y + cin is computed and compared with
the values of z and cout generated by the circuit
under test: if z 6¼ zz mod 2n or if cout 6¼ zz/2n then

Fig. 8.3 Simulation results (rtl_loop) (courtesy of Mentor Graphics)

Fig. 8.4 Simulation results (pp_loop) (courtesy of Mentor Graphics)
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an error message is generated, including a short
error description and the cycle during which it
happens.

Consider a first test bench execution, intro-
ducing an error in the circuit description
(base_2k_adder.vhd): the output carry cout has
been permanently connected to 0. The simulation
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Fig. 8.5 Radix 2k adder cell

LIBRARY …

ENTITY test_base_2k_adder IS END test_base_2k_adder;

ARCHITECTURE test OF test_base_2k_adder IS

CONSTANT k: natural: = 2;

CONSTANT m: natural: = 3;

COMPONENT base_2k_adder IS

GENERIC(k, m: NATURAL);

PORT(

x, y: IN STD_LOGIC_VECTOR(k*m-1 DOWNTO 0);

c_in: IN STD_LOGIC;

z: OUT STD_LOGIC_VECTOR(k*m-1 DOWNTO 0);

c_out: OUT STD_LOGIC

);

END COMPONENT;

SIGNAL x, y: STD_LOGIC_VECTOR(k*m-1 DOWNTO 0);

SIGNAL c_in: STD_LOGIC;

SIGNAL z: STD_LOGIC_VECTOR(k*m-1 DOWNTO 0);

SIGNAL zz: STD_LOGIC_VECTOR(k*m DOWNTO 0);

SIGNAL c_out: STD_LOGIC;

CONSTANT DELAY : time : = 50 ns;

BEGIN

dut: base_2k_adder GENERIC MAP(k => k, m => m)

PORT MAP(x => x, y => y, c_in => c_in, z => z, c_out => c_out);

zz <= ('0' & x) + y + c_in;

stimuli: PROCESS
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result is shown in Fig. 8.6 and the following
message is sent to the user interface:

# ** Error: error in c_out: 0 + 63 + 1
# Time: 6400 ns

Actually when x = 0, y = 63 and cin = 1, the
correct result should be z = 0 and cout = 1.

However, as shown in Fig. 8.6, cout = 0. The
simulation execution is aborted.

After correcting the error, the simulation
result is shown in Fig. 8.7 and the following
message is sent to the user interface:

# ** Note: simulation OK
# Time: 409600 ns

BEGIN

FOR i IN 0 TO 2**(k*m)-1 LOOP

FOR j IN 0 TO 2**(k*m)-1 LOOP

c_in <= '0';

x <= conv_std_logic_vector(i,k*m);

y <= conv_std_logic_vector(j,k*m);

wait for DELAY;

ASSERT ( z = zz(k*m-1 DOWNTO 0))

REPORT "error in addition: "

& integer'image(i) & " + " & integer'image(j) & " + 0"

SEVERITY ERROR;

ASSERT ( c_out = zz(k*m))

REPORT "error in addition: "

& integer'image(i) & " + " & integer'image(j) & " + 0"

SEVERITY ERROR;

c_in <= '1';

wait for DELAY;

ASSERT ( z = zz(k*m-1 DOWNTO 0))

REPORT "error in addition: "

& integer'image(i) & " + " & integer'image(j) & " + 1"

SEVERITY ERROR;

ASSERT ( c_out = zz(k*m))

REPORT "error in addition: "

& integer'image(i) & " + " & integer'image(j) & " + 1"

SEVERITY ERROR;

END LOOP;

END LOOP;

REPORT "simulation OK";

WAIT;

END PROCESS;

END test;

Fig. 8.6 Simulation result (an error is detected) (courtesy of Mentor Graphics)
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8.5.3 Logic Simulation

Hardware description languages, at structural
level, are commonly used to describe logic cir-
cuits. The instantiated components can be either
generic gates, flip-flops, registers, and so on, or
elements of a particular implementation library
(Standard Cell, Gate Arrays, FPGA, CPLD
libraries). Thus, there is no fundamental differ-
ence between RT and logic simulation.

Example 8.9 The RTL definition of a mod 8
counter (counter.vhd) has been given in Example
8.1. This RTL description has been synthesized
(Fig. 8.2) and the corresponding VHDL model
counter_synthesis.vhd is available at the Authors’
web site. It is a structural description using

components of the UNISIM library for functional
simulation of Xilinx primitives, namely flip-flops
(FDCE), lookup tables (LUT2, LUT3), an
inverter (INV), input and output buffers
(IBUF, OBUF) and a clock buffer (BUFGP).
The following test bench permits to simulate
the synthesized circuit (as far as the UNISIM
library is available within the simulation
environment).

This test bench instantiates the device under
test and defines the value of all input signals: clk,
reset and count_enable. The compilation and
execution of this test bench with a VHDL sim-
ulator (including UNISIM) permits to visualize
the working of the circuit (Fig. 8.8).

Fig. 8.7 Simulation result (without error) (courtesy of Mentor Graphics)

LIBRARY …

ENTITY test_counter IS END test_counter;

ARCHITECTURE test OF test_counter IS

COMPONENT counter IS

PORT (clk, reset, count_enable: IN STD_LOGIC;

y: OUT STD_LOGIC_VECTOR(2 DOWNTO 0));

END COMPONENT;

SIGNAL clk: STD_LOGIC : = '1';

SIGNAL reset, count_enable: STD_LOGIC;

SIGNAL y: STD_LOGIC_VECTOR(2 DOWNTO 0);

BEGIN

dut: counter PORT MAP(clk => clk, reset => reset,

count_enable => count_enable, y => y);

clk <= NOT(clk) AFTER 50 NS;

reset <= '1', '0' AFTER 200 NS;

count_enable <= '0', '1' AFTER 1500 NS, '0' AFTER 3000 NS;

END test
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8.5.4 Timing Simulation and Timing
Analysis

Once the circuit components have been placed
and routed, accurate timing information predic-
tions can be extracted (back annotation, Fig. 8.1)
from the implemented circuit description. Before
the physical programming (FPGA, CPLD) or
manufacturing (SC, GA) of prototypes, those
predictions can be used to simulate the circuit
with this timing information or to detect and
analyze critical paths. This gives the designer the
opportunity to detect and to fix possible timing
errors before performing costly and irreversible
back-end operations.

Back annotation generates HDL files
describing the implemented circuit with esti-
mated and accurate internal delays.

Example 8.10 The structural description of a
mod 8 counter (counter_synthesis.vhd) has been
given in Example 8.8. It uses components of the
UNISIM library. After implementation and back
annotation of the circuit a new VHDL model
counter_timesim.vhd is generated. It uses com-
ponents of the SIMPRIM library for timing
simulation of Xilinx primitives. This model is
available at the Authors’ web site. The same test
bench as in Example 8.9 can be used (as far as
the SIMPRIM library is available within the
simulation environment).

Static timing analysis tools compute the
expected timing of the circuit without requiring
simulation. The word static refers to the fact that
this analysis is carried out in an input indepen-
dent manner so that no test bench must be
defined. The objective is to find the worst-case
delay of the circuit over all possible input com-
binations. For that the interconnection graph, that
represents the final netlist and determines the

worst-case delay, is analyzed. The following are
some of the circuit characteristics that timing
analysis tools compute.

• Critical path: the path with the maximum
delay between an input and an output.

• Hold time violation: when an input signal
changes too fast, after the clock active tran-
sition (race conditions).

• Setup time violation: when a signal arrives too
late to a synchronous element and misses the
corresponding clock edge (long path fault).

8.6 Other Tools

To conclude this chapter, some other EDA tools
are briefly described. They are available within
most ASIC and FPGA vendor development
packages.

In order to make simpler the design of com-
plex systems, libraries of predefined complex
functions and circuits, that have been tested and
optimized, have been developed and are available
within most commercial EDA tools. They permit
to speed up the design process. These predefined
circuits are commonly called intellectual property
(IP) cores (or IP blocks) and are available from
semiconductor vendors and third-party IP sup-
pliers. Typical IP cores are arithmetic circuits,
memory blocks and memory controllers, clock
managers, receivers and transmitters, and others.

Such predefined circuits can be available
under the form of RT-level synthesizable hard-
ware description language code (VHDL, Ver-
ilog). In some cases, they are offered as generic
gate-level netlists. Both netlists and synthesizable
cores are called Soft IP cores. The logic synthesis
and place and route tools treat them as other
library components.

Fig. 8.8 Simulation result (courtesy of Mentor Graphics)
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Hard IP cores are low-level physical
description, for example parts of integrated cir-
cuit in transistor circuit format or even in layout
format. Thus, they are associated with a partic-
ular semiconductor vendor and with a particular
technology.

In the case of FPGA chips, heterogeneous
blocks such as those mentioned above (multi-
pliers, memories, and so on) can be previously
integrated outside the programmable areas. These
components are also called Hard IP cores.

Formal verification is a verification tool that,
instead of simulating the circuit working with test
benches, proves the correctness (or not) of a
system using formal mathematical methods.
Since hardware complexity growth continuously,
the verification complexity is more and more
challenging. As a matter of fact, it is impossible
to simulate all possible states of a circuit that
integrates hundreds of thousands of gates. In
order to implement the formal verification,
hardware verification languages (HVL) have
been defined; they are programming language
used to verify the correctness of circuits that are
described in a hardware description language
(HDL). System-Verilog, OpenVera, and Sys-
temC are examples of commonly used HVL’s.

There exist several tools (hardware and soft-
ware) that permit to make faster the verification
tasks and to emulate the working of the circuit
under development within its target system. For
example:

• Hardware Emulator: special purpose hard-
ware that imitates the behavior of the circuit
under development.

• In-circuit Emulator: hardware that can be
plugged into a system in place of the circuit
under development (actually a particular case
of the preceding).

• Simulation Accelerator: a hardware accelera-
tor connected to the used workstation; the
accelerator simulates the circuit behavior
while the test bench continues to run on the
workstation.
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Appendix A
Binary Field Operations

Consider the set of binary polynomials of degree
smaller than some previously defined constant m:

aðxÞ ¼ am�1x
m�1 þ am�2x

m�2 þ . . .þ a1xþ a0;

ai 2 0; 1f g 8i ¼ 0 to m� 1:

The coefficient operations are the mod 2 sum
(XOR function) and the product (AND function).
With those operations, the sum and the product
of two polynomials can be defined.

A1 Addition

The sum of two polynomials amounts to the mod
2 sum of their coefficients:

am�1x
m�1 þ am�2x

m�2 þ . . .þ a1xþ a0
� �

þ bm�1x
m�1 þ bm�2x

m�2 þ . . .þ b1xþ b0
� �

¼ ðam�1 � bm�1Þxm�1 þðam�2 � bm�2Þxm�2

þ . . .þða1 � b1Þxþða0 � b0Þ:

The corresponding computation resource is
a set of m XOR2 gates working in parallel
(Fig. A.1).

A2 Multiplication

The product of two polynomials is performed
modulo a polynomial f(x) of degree m:

f ðxÞ ¼ xm þ fm�1x
m�1 þ fm�2x

m�2 þ . . .þ f1xþ 1:
Tocomputea(x) � b(x)mod f(x),first compute c

(x) = a(x) � b(x), so that the degree of c(x) is

smaller than or equal to 2m − 2, but could be
greater than m − 1, and then reduce c(x) mod f(x).
The definition of the mod f(x) reduction of a
polynomial a(x) is similar to the definition of the
mod p reduction of a natural number. Given a
polynomial a(x), whatever its degree, a(x) mod
f(x) is the remainder of the division of a(x) by
f(x): if a(x) = f(x) � q(x) + r(x), with degree(r) <
degree(f) = m, then a(x) mod f(x) = r(x).

A classical mod f(x) multiplication algorithms
use the fact that the mod f(x) multiplication by
x is easy:

aðxÞ � x ¼ am�1x
m�1 þ am�2x

m�2þ . . .þ a1xþ a0
� �

� x ¼ am�1x
m þ am�2x

m�1 þ . . .þ a1x
2þ a0x

¼ f ðxÞ � am�1 � fm�1x
m�1þ fm�2x

m�2 þ . . .þ f1xþ 1
� �

� am�1 þ am�2x
m�1 þ . . .þ a1x

2 þ a0x;

so that a(x) � x mod f(x) =

am�2 � fm�1 � am�1ð Þxm�1 þ am�3 � fm�2 � am�1ð Þxm�2

þ . . .þ a0 � f1 � am�1ð Þxþ 0� am�1ð Þ:

Thus, as the mod 2 subtraction is equivalent to
the mod 2 sum, the coefficient of xi, with i > 0, is
equal to

ai�1 � am�1 if fi ¼ 1 and to ai�1 if fi ¼ 0;

and the degree-0 coefficient is am-1. The corre-
sponding circuit is shown in Fig. A.2.

The interleaved multiplication algorithm is
based on the following equality
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aðxÞ � bm�1x
m�1 þ bm�2x

m�2 þ . . .þ b1xþ b0
�

mod f ðxÞ ¼ aðxÞ � b0 þ aðxÞ � x � b1
þ aðxÞ � x2 � b2 þ . . .þ aðxÞ � xm�1 � bm�1 mod f ðxÞ:

From the latter expression, the following
Algorithm A.1 is deduced. It includes the sum of
polynomials, the product of a polynomial by a
constant bi that amounts to multiplying all
polynomial coefficients by bi, and the mod f(x)
multiplication by x.

Algorithm A.1 Interleaved multiplication, least
significant bit first

c(x) = 0;

for i in 0 to m-1 loop

c(x) = c(x) + a(x)�bi ;

a(x) = a(x)�x mod f(x);

end loop;

The computation resource that executes the
loop body operations is shown in Fig. A.3. Thus,
the computation time of a mod f(x) polynomial
multiplication is equal to m � TCLK where the
clock period TCLK must be greater than the delay
of the circuit of Fig. A.3 (two 2-input gate delays).

A3 Squaring

To compute a(x)2 mod f(x), the preceding inter-
leaved multiplication algorithm could be used.
Nevertheless, taking into account that the oper-
ations are executed over a binary field, it can
easily be demonstrated that

am�1x
m�1 þ am�2x

m�2 þ . . .þ a1xþ a0
� �2

¼ am�1x
2m�2 þ am�2x

2m�4

þ . . .þ a2x
4 þ a1x

2 þ a0:

It is a straightforward consequence of the fact
that, when multiplying a(x) by itself, partial
products such as aix

i � ajxj = (ai � aj)xi+j and
ajx

j � aixi = (aj � ai)xi+j, with i 6¼ j, cancel each
other as ai � aj ⊕ aj � ai = 0, while products like
aix

i � aixi are equal to (ai � ai)x2i = aix
2i.

Assume now that a set of binary constants rij
has been previously computed. They are defined
by the following relations:

xmþ i mod f ðxÞ ¼ rm�1;ix
m�1 þ rm�2;ix

m�2

þ . . .þ r1;ixþ r0;i; i ¼ 0 to m� 2:

Assume that m is odd and equal to 2 k−1.
Then,

·····

am-1bm-1am-2 bm-2 a1 b1 a0 b0

Fig. A.1 Addition of two polynomials

·····am-2

am-1·fm-1

am-3 a0

am-1·fm-2 am-1·f1 am-1

Fig. A.2 Multiplication by x

cm-1
+

cm-1 am-1 cm-2 am-2 c0 a0

bi

cm-2
+ c0+

·····

am-1
+ am-2

+ a1
+

·····am-2

am-1·fm-1

am-3 a0

am-1·fm-2 am-1·f1 am-1

a0
+

Fig. A.3 Interleaved multiplication step
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am�1x2m�2 þ am�2x2m�4

þ � � � þ a2x4 þ a1x2 þ a0
¼ am�1 � rm�1;m�2xm�1 þ rm�2;m�2xm�2

�
þ � � � þ r1;m�2xþ r0;m�2

�
þ am�2 � rm�1;m�4xm�1 þ rm�2;m�4xm�2

�
þ � � � þ r1;m�4xþ r0;m�4

�
þ ak � rm�1;1xm�1 þ rm�2;1xm�2

�
þ � � � þ r1;1xþ r0;1

þ ak�1xm�1 þ ak�2xm�3

þ � � � þ a1x2 þ a0:

Finally, a(x)2 mod f(x) = sm−1x
m−1 + sm−2x

m−2

+ sm−3x
m−3 +… + s1x + s0 where

sm�1 ¼ am�1 � rm�1;m�2 þ am�2 � rm�1;m�4

þ . . .þ ak � rm�1;1 þ ak�1;
sm�2 ¼ am�1 � rm�2;m�2 þ am�2 � rm�2;m�4

þ . . .þ ak � rm�2;1;
sm�3 ¼ am�1 � rm�3;m�2 þ am�2 � rm�3;m�4

þ . . .þ ak � rm�3;1 þ ak�2;
. . .:

s1 ¼ am�1 � r1;m�2 þ am�2 � r1;m�4

þ . . .þ ak � r1;1;
s0 ¼ am�1 � r0;m�2 þ am�2 � r0;m�4

þ . . .þ ak � r0;1 þ a0:

Thus, every coefficient si of a(x)
2 mod f(x) is

the sum of at most k ¼ m=2b c coefficients aj. In
the case of the most commonly used polynomials
f(x), the matrix [ri,j] has few nonzero coefficients
so that every coefficient si is the sum (XOR gate)
of a few coefficients aj (Fig. A.4).

Another interesting property of binary fields
(more generally, binary commutative rings) is
that

aðxÞþ bðxÞð Þ2¼ aðxÞ2 þ aðxÞ � bðxÞ
þ bðxÞ � aðxÞþ bðxÞ2 ¼ aðxÞ2 þ bðxÞ2;

aðxÞþ bðxÞð Þ4¼ aðxÞþ bðxÞð Þ2
� �2

¼ aðxÞ2 þ bðxÞ2
� �2

¼ aðxÞ4 þ bðxÞ4;
ðA:1Þ

and so on.

sm-1

am-1·rm-1,m-2

am-2·rm-1,m-4 ak·rm-1,1

··· ak-1

sm-2

am-1·rm-2,m-2

am-2·rm-2,m-4 ak·rm-2,1

···

s0

am-1·r0,m-2

am-2·r0,m-4 ak·r0,1
··· a0

s1

am-1·r1,m-2

am-2·r1,m-4 ak·r1,1
···

···

Fig. A.4 Squaring
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Appendix B
Elliptic Curves

In this appendix, a particular type of elliptic
curve, namely Koblitz curves over a binary field
F = GF(2m), is defined. The binary field
F (Appendix A) consists of all binary polyno-
mials of degree smaller than m, with operations
modulo an irreducible (non-factorizable) poly-
nomial f(z) of degree m:

f ðzÞ ¼ zm þ zm�1 þ . . .þ zþ 1:

B.1 Definition

An elliptic curve E(F) is defined as follows: it
consists of all pairs (x, y) 2 F2 of binary poly-
nomials such that y2 + xy = x3 + x2 + 1, plus a
particular element ∞ called element at infinity:

EðFÞ ¼ x; yð Þ 2 F2
��y2 þ xy ¼ x3 þ x2 þ 1

� �

[ 1f g:
ðB:1Þ

It has been demonstrated (Hasse theorem)
that, for great values of q = 2m, the number of
points of E(F) is approximately equal to the
number of field elements:

#EðFÞ ffi q ¼ 2m: ðB:2Þ

B.2 Additive Group

An addition operation can be defined over E(F).
The so-obtained algebraic structure (F, +,∞) is a

commutative group. The addition is defined by
the following rules.

(1) ∞ is the neutral element: P + ∞ = ∞ +
P = P, 8P 2 E(F).

(2) The inverse of P = (x, y) is −P = (x, x + y).
(3) If P = (x1, y1), Q = (x2, y2), P 6¼ Q and

P 6¼ −Q, then P + Q = (x3, y3) where

x3 ¼ k2 þ kþ x1 þ x2 þ a;

y3 ¼ k x1 þ x3ð Þþ x3 þ y1;

k ¼ y1 þ y2ð Þ= x1 þ x2ð Þ:

(4) If P = (x1, y1) and x1 6¼ 0, so that P 6¼ −P,
then P + P = (x3, y3) where

x3 ¼ k2 þ kþ a ¼ x21 þ b=x21;

y3 ¼ x21 þ kx3 þ x3; k ¼ x1 þ y1=x1:

According to (B.2), the order of this group
(the number of elements) is approximatively
equal to 2m.

B.3 Scalar Product

Given a point P of E(F) and a natural k, the scalar
product kP is defined by

kP ¼ PþPþ . . .þP ðk timesÞ;
8k[ 0 and 0P ¼ 1:

The order of a particular element P of E(F) is
the smallest integer s such that sP = ∞ (the neutral
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element). A well-known property of finite com-
mutative groups is that the order of an element
divides the number of elements of the group.

Some elliptic curves (E1-type Koblitz curves)
have the following property: the number of ele-
ments of the associated group E(F) is equal to
2n where n is a prime. Thus, as the order of an
element P divides 2n, the order of P is 1, 2 or
n. If the order of P is equal to 1, then
P = 1P = ∞. If the order of P is equal to 2, then
P 6¼ ∞, P = (x, y), (x, y) + (x, y) = ∞,
(x, y) = −(x, y) = (x, x + y) and x = 0. Thus, if
P is neither∞ nor (0, y), then its order is equal to
n, where n = #E(F)/2 ≅ 2 m−1 and all the scalar
products kP, with k 2 {0, 1, 2, ⋯, n−1}, have
different values.

B.4 An Example of Koblitz Curve
Over a Binary Field

Consider the elliptic curve (B.1) where F = GF
(2163) and f(z) = z163 + z7 + z6 + z3 + 1. The
order of the following point P = (xP, yP) where
xP and yP are binary polynomials represented as
41-digit hexadecimal numbers smaller than
2163 = 8 � 1640

xP ¼ 2fe13c0537bbc11acaa07d793de4e6d5e5c94eee8;

yP ¼ 289070fb05d38ff58321f2e800536d538ccdaa3d9;

is equal to

n ¼ 4000000000000000000020108a2e0cc0d99f8a5ef

(a 41-digit hexadecimal number). Observe that
n ≅ 4 � 1640 = 2162.

The function h: {0, 1, 2,⋯ , n − 1} ! E(F)
defined by h(k) = kP is a one-way function. That
means that even if the values of P and h(k) = kP
are known, it is very difficult to compute the
value of k. Actually, there is no simple algorithm
to compute h−1, and the trivial algorithm that
consists in computing sP for all s in {0, 1, 2, ⋯,
n − 1} until sP = kP (and thus k = s) has a
practically infinite computation time: assume that
a scalar product can be executed in 1 microsec-
ond; to compute kP for all k in {0, 1, 2, ⋯,
n − 1} with n ≅ 2162, the computation time is
about 2162 s and is longer than 1034 years
(2162 > 1048/366 � 24 � 3600 > 1034).
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