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1 Biological and Machine Vision

Throughout this chapter and much of this book, the visual system of biological
organisms is used as an analogy to bring deep learning to, um... life. In addition to
conveying a high-level understanding of what deep learning is, this analogy also
provides insight into how deep learning approaches are so powerful and so broadly-

applicable.

BIOLOGICAL VISION

Five hundred and fifty million years ago, in the prehistoric Cambrian Period, the
number of species on the planet began to surge (Figure 1.1). From the fossil record,
there is evidence ! that this explosion was driven by the development of light detectors
in the trilobite (Figure 1.2). A visual system, even a primitive one, bestows a delightful
bounty of fresh capabilities. One can, as examples, spot food, foes, and friendly-looking
mates at some distance. Other senses, like smell, enable animals to detect these as well,
but not with the accuracy and light-speed pace of vision. Once the trilobite could see,
the hypothesis goes, this set off an arms race that produced the Cambrian explosion:

The trilobite’s prey, as well as its predators, themselves had to evolve to survive.
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Figure 1-1 The “Cambrian explosion”: the number of species on earth began to

increase rapidly 550 million years ago, during the prehistoric Cambrian Period



Figure 1-2 A bespectacled trilobite

In the half-billion years since trilobites developed vision, the complexity of the sense
has increased considerably. Indeed, in modern mammals, a large proportion of the
cerebral cortex—the outer, grey matter of the brain * —is involved in visual perception.
At Johns Hopkins University in the late 1950s, the physiologists David Hubel and
Torsten Wiesel (Figure 1.3) began carrying out their pioneering research on how visual
information is processed in the mammalian cerebral cortex, > work which contributed
to them later being awarded a Nobel Prize. + As depicted in Figure 1.4, Hubel and
Wiesel conducted their research by showing images to anaesthetized cats while
simultaneously recording the activity of individual neurons from the primary visual

cortex, the first part of the cerebral cortex to receive visual input from the eyes.



Figure 1-3 The Nobel Prize-winning neurophysiologists Torsten Wiesel and
David Hubel

Projecting slides onto a screen, Hubel and Wiesel began by presenting simple shapes
like the dot shown in Figure 1.4 to the cats. Their initial results were disheartening;:
Their efforts were met with no response from the neurons of the primary visual cortex.
They grappled with the frustration of how these cells, which anatomically appear to be
the gateway for visual information to the rest of the cerebral cortex, would not respond
to visual stimuli. Distraught, Hubel and Wiesel tried in vain to stimulate the neurons by
jumping and waving their arms in front of the cat. Nothing. And, then as with many of
the great discoveries, from X-rays to penicillin to the microwave oven, Hubel and
Wiesel made a serendipitous observation: As they removed one of their slides from the
projector, its straight edge elicited the distinctive crackle of their recording equipment
to alert them that a primary visual cortex neuron was firing. Overjoyed, they celebrated

up and down the Johns Hopkins laboratory corridors.
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Figure 1-4 Hubel and Wiesel used a light projector to present slides to
anaesthesized cats while they recorded the activity of neurons in the cats’ primary
visual cortex. In their experiments, electrical recording equipment was implanted
within the cat’s skull. Instead of illustrating this, we suspected it would be a fair bit
more palatable to use a lightbulb to represent neuron activation. Depicted in this
figure is a primary visual cortex neuron being serendipitously activated by the

straight edge of a slide.

The serendipitously crackling neuron was not an anomaly. Through further
experimentation, Hubel and Wiesel discovered that the neurons that receive visual
input from the eye are in general most responsive to simple, straight edges. Fittingly

then, they named these cells simple neurons.

As shown in Figure 1.5, Hubel and Wiesel determined that a given simple neuron
responds optimally to an edge at a particular, specific orientation. A large group of
simple neurons, with each specialized to detect a particular edge orientation, together
are able to represent all 360 degrees of orientation. These edge-orientation detecting
simple cells then pass along information to a large number of so-called complex
neurons. A given complex neuron receives visual information that has already been
processed by several simple cells so it is well-positioned to recombine multiple line

orientations into a more complex shape like a corner or a curve.



Figure 1-5 A “simple” cell in the primary visual cortex of a cat fires at different
rates, depending on the orientation of a line shown to the cat. The orientation of
the line is provided in the left-hand column of the figure, while the right-hand
column shows the firing (electrical activity) in the cell over time (one second). A
vertical line (in the fifth row) causes the most electrical activity for this particular
simple cell. Lines slightly off vertical (in the intermediate rows) cause less activity
for the cell, while lines approaching horizontal (in the top-most and bottom-most

rows) cause little to no activity.

Figure 1.6 illustrates how, via many hierarchically-organized layers of neurons feeding
information into increasingly higher-order neurons, gradually more complex visual
stimuli can be represented by the brain. The eyes are focused on an image of a rat’s
head. Photons of light stimulate neurons located in the retina of each eye and this raw
visual information is transmitted from the eyes to the primary visual cortex of the
brain. The first layer of primary visual cortex neurons to receive this input—what Hubel
and Wiesel termed simple cells—are specialized to detect edges (straight lines) at
specific orientations. There would be many thousands of such neurons; for simplicity,
we’re only showing four. In our caricature, we’re illustrating that neurons one, three,
and four are activated by viewing the rat’s head. These three simple neurons relay that

information to a subsequent layer, where complex cells assimilate the information



about various edge orientations, enabling them to represent more complex visual
stimuli, like the curvature of the rat’s head. As information is passed through several
subsequent further layers, the complexity and abstractness of the visual stimuli that can
be represented incrementally increases. As depicted by the far-right layer of neurons,
following many layers of such hierarchical processing, the brain is ultimately able to

represent visual concepts as abstract as a rat, a cat, a bird or a dog.

Figure 1-6 A caricature of how consecutive layers of biological neurons represent

visual information in the brain of, e.g., a cat or a human. See main text for detail.

Today, through countless subsequent recordings from the cortical neurons of brain-
surgery patients as well as non-invasive techniques like magnetic resonance imaging, °
neuroscientists have pieced together a fairly high-resolution map of regions that are

specialized to process particular visual stimuli, e.g., color, motion, faces (see Figure 1.7).
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Figure 1-7 Regions of the visual cortex. The V1 region receives input from the
eyes and contains the “simple” cells that detect edge orientations. Through the
recombination of information via myriad subsequent layers of neurons (including
within the V2, V3, and V3aregions), increasingly abstract visual stimuli are
represented. In the human brain (shown here), there are regions containing
neurons with concentrations of specializations in, as examples, the detection of

color (V4), motion (V5), and people’s faces (fusiform face area).

MACHINE VISION

We haven’t been discussing the biological visual system solely because it’s interesting
(though hopefully you did find the previous section thoroughly interesting). We covered
the biological visual system primarily because it served as the inspiration for the
modern deep learning approaches to machine vision, as will become clear in this

section.

Figure 1.8 provides a concise historical timeline of vision, in both biological organisms
and machines. The top timeline, in blue, highlights the development of vision in
trilobites as well as Hubel and Wiesel’s 1959 publication on the hierarchical nature of
the primary visual cortex, as covered in the previous section. The machine vision
timeline is split into two parallel streams to call attention to two alternative approaches.
The middle timeline, in pink, represents the deep learning track that is the focus of our
book. The bottom timeline, in purple, meanwhile represents the traditional machine
learning path to vision, which —through contrast —will clarify why deep learning is

distinctively powerful and revolutionary.
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Figure 1-8 Abridged timeline of biological and machine vision, highlighting the
key historical moments in the deep learning and traditional machine learning

approaches to vision that are covered in this section.

The Neocognitron

Inspired by Hubel and Wiesel’s discovery of the simple and complex cells that form the
primary visual cortex hierarchy shown in Figure 1.6, in the late ‘70s the Japanese
electrical engineer Kunihiko Fukushima proposed an analogous architecture for
machine vision. ° Figure 1.9 shows Fukushima’s leading diagrams of this model
architecture, which he named the neocognitron. Much of the detail of his diagrams is
not important at this stage. There are, however, three particular items worth noting.
First, Fukushima references Hubel and Wiesel explicitly; indeed, the paper refers to
three of their landmark articles on the organization of the primary visual cortex.
Second, Fukushima borrows the “simple” and “complex” cell language of Hubel and
Wiesel, calling deeper (i.e., further right) layers hypercomplex. 7 The third point, and
the most critical one, is that by arranging artificial neurons °® in this hierarchical
manner, they—like their biological inspiration—generally represent line orientations in
the cells of the layers closest to the raw visual image (i.e., those on the far left, receiving
input from the image U, in Figure 1.9) while successively deeper (i.e., further-right)
layers represent successively complex, successively abstract objects. To make clear this
potent property of the neocognitron and its deep learning descendants, we’ll go through

an interactive example at the end of this chapter that demonstrates it.
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Figure 1-9 Diagrams of Kunihiko Fukushima’s “neocognitron” from his 1980
paper. Borrowing Hubel and Wiesel’s “simple” and “complex” cell language,
Fukushima’s artificial neural network model architecture emulates the hierarchy of
the biological visual system. The image (U,) is represented in the furthest-left layer
of neurons (US;) as edges (straight lines). As we move deeper (i.e., to the right),
each successive layer facilitates increasingly complex and increasingly abstract
visual representations. This is analogous to Figure 1.6, the caricature of

hierarchical representations found in biological visual systems.

LeNet-5

While the neocognitron was capable of, for example, identifying handwritten
characters, ° the accuracy and efficiency of Yann LeCun (Figure 1.10) and Yoshua
Bengio’s (Figure 1.11) LeNet-5 model'® made it a significant development. LeNet-5’s
hierarchical architecture (Figure 1.12) built on Fukushima’s lead and the biological
inspiration uncovered by Hubel and Wiesel."* In addition, LeCun and his colleagues’
benefited from superior data for training their model,** faster processing power and,

critically, the backpropagation algorithm.



Figure 1-10 Paris-born Yann LeCun is one of the pre-eminent figures in artificial
neural network and deep learning research. Professor LeCun is the Founding
Director of the New York University Center for Data Science as well as the Director
of AT Research at the social network Facebook.

Figure 1-11 Yoshua Bengio is another of the leading characters in artificial neural
networks and deep learning. Born in France, he is a computer science professor at
the University of Montreal and co-directs the renowned Machines and Brains

program at the Canadian Institute for Advanced Research.
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Figure 1-12 LeNet-5 retains the hierarchical architecture uncovered in the primary
visual cortex by Hubel and Wiesel and leveraged by Fukushima in his
neocognitron. As in those other systems, the left-most layer represents simple

edges, while successive layers represent increasingly complex features.

Backpropagation, often abbreviated to backprop, facilitates efficient learning
throughout the layers of artificial neurons within a deep learning model.*® Together
with their data and processing power, backprop rendered LeNet-5 sufficiently reliable
to become an early commercial application of deep learning: It was used by the United
States Postal Service to automate the reading of ZIP codes'* written on mail envelopes.
In Chapter 10, on machine vision, we will experience LeNet-5 first-hand by designing it

ourselves and training it to (guess what!) recognize handwritten digits.

In LeNet-5, Yann LeCun and his colleagues had an algorithm that could correctly
predict what handwritten digits had been drawn without them needing to include any
expertise about handwritten digits in their code. As such, LeNet-5 provides an
opportunity to introduce a fundamental difference between deep learning and the
traditional machine learning ideology. As conveyed by Figure 1.13, the traditional
machine learning (ML) approach is characterized by practitioners investing the bulk of
their efforts into engineering features. This feature engineering is the application of
clever, and often elaborate, algorithms to raw data in order to preprocess them into
input variables that can be readily modeled by traditional statistical techniques. These
techniques—e.g., regression, random forest, support vector machine—are seldom
effective on unprocessed data, and so the engineering of input data has historically

been a prime focus of machine learning professionals.
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Figure 1-13 Feature engineering—the transformation of raw data into
thoughtfully-transformed input variables—often predominates the application of
traditional machine learning algorithms. In contrast, the application of deep
learning often involves little to no feature engineering, with the majority of time

spent instead on the design and tuning of model architectures.

In general, a minority of the traditional ML practitioner’s time is spent optimizing ML
models or selecting the most effective one from those available. The deep learning
approach to modeling data turns these priorities upside-down. The deep learning
practitioner typically spends little to none of her time engineering features, instead
spending it modeling data with various artificial neural network architectures that
process the raw inputs into useful features automatically. This distinction between
deep learning and traditional machine learning is a core theme of this book. The next
section provides a classic example of feature engineering to concretely explicate the

distinction.

The Traditional Machine Learning Approach

Following LeNet-5, research into artificial neural networks, including deep learning, fell
out of favor. The consensus became that the approach’s automated feature generation
was not pragmatic—that while it worked well for handwritten character recognition, the
feature-free ideology was perceived to have limited breadth of applicability.*
Traditional machine learning, including its feature engineering, appeared to hold more

promise and funding shifted away from deep learning research.™

To make clear what feature engineering is, Figure 1.14 provides a celebrated example
from Paul Viola and Michael Jones in the early noughties."” Viola and Jones employed
rectangular filters such as the vertical or horizontal black and white bars shown in the
figure. Features generated by passing these filters over an image can be fed into

machine learning algorithms to reliably detect the presence of a face. Their work is



notable because the algorithm was efficient enough to be the first real-time face
detector outside the realm of biologyls. Devising clever face-detecting filters to process
raw pixels into features for input into a machine learning model was accomplished via
years of research and collaboration on the characteristics of faces. And, of course, it is
limited to detecting faces in general, as opposed to being able to recognize a particular
face as, say, Angela Merkel’s or Oprah Winfrey’s. To develop features for detecting
Oprah in particular, or for detecting some non-face class of objects like houses, cars, or
Yorkshire Terriers, would require the development of expertise in that category, which
could again take years of academic-community collaboration to execute both efficiently

and accurately. If only we could circumnavigate all that time and effort somehow...

Figure 1-14 Engineered features leveraged by Viola and Jones (2001) to detect
faces reliably. Their efficient algorithm found its way into FujiFilm cameras,

facilitating real-time auto-focus.

ImageNet and the ILSVRC

As mentioned earlier, one of the advantages LeNet-5 had over the neocognitron was a
larger, high-quality set of training data. The next breakthrough in neural networks was
also facilitated by a high-quality public dataset—this time much larger: ImageNet, a
labelled index of photographs devised by Fei-Fei Li (Figure 1.15), armed machine vision

1920 For reference, the

researchers with an immense catalog of training data.
handwritten digit data used to train LeNet-5 contained tens of thousands of images.

ImageNet, in contrast, contains tens of millions.



Figure 1-15 The hulking ImageNet data set was the brainchild of Chinese-
American computer science professor Fei-Fei Li and her colleagues at Princeton at
the time. In addition to her faculty position at Stanford, Li is the Chief Scientist of
A.I./Machine Learning for Google’s cloud platform.

The fourteen million images in the ImageNet data set are spread across 22,000
categories. These categories are as diverse as container ships, leopards, starfish and
elderberries. Since 2010, Professor Li has run an open challenge called ILSVRC* on a
subset of the ImageNet data that has become the premier ground for assessing the
world’s state-of-the-art machine vision algorithms. The ILSVRC subset consists of 1.4
million images across a thousand categories. In addition to providing a broad range of
categories, many of the selected categories are breeds of dogs, thereby evaluating the
algorithms’ ability not only to distinguish broadly-varying images, but also to specialize

in distinguishing subtly varying ones.**

AlexNet

As graphed in Figure 1.16, in the first two years of the ILSVRC all algorithms entered
into the competition hailed from the feature-engineering-driven traditional machine
learning ideology. In the third year, all entrants except one were traditional ML
algorithms. If that one deep learning model in 2012 had not been developed or its
creators not competed in ILSVRC, then the year-over-year image classification accuracy
would have been negligible. Instead, Alex Krizhevsky and Ilya Sutskever—working out
of the University of Toronto lab led by Geoffrey Hinton (Figure 1.17)—crushed the
existing benchmarks with their submission, today referred to as AlexNet (Figure 1.18).
This was a watershed moment. In an instant, deep learning architectures emerged from
the fringes of machine learning to its fore. Academics and commercial practitioners
scrambled to grasp the fundamentals of artificial neural networks as well as to create
software libraries—many of them open-source—to experiment with deep learning
models on their own data and use-cases, be they machine vision or otherwise. As Figure

1.16 illustrates, in the years since 2012 all of the top-performing models in the ILSVRC



have been deep learning-driven.
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Figure 1-16 Performance of the top entrants to the ILSVRC by year. AlexNet was
the victor by a head-and-shoulders margin in the 2012 iteration. All of the best
algorithms since have been deep learning models. In 2015, machines surpassed

human accuracy.



Figure 1-17 The eminent British-Canadian artificial neural network pioneer
Geoffrey Hinton, habitually referred to as “the godfather of deep learning” in the
popular press. Hinton is an Emeritus Professor at the University of Toronto and an
Engineering Fellow at Google, responsible for managing the search giant’s Brain

Team, a research arm, in Toronto.
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Figure 1-18 AlexNet’s hierarchical architecture is reminiscent of LeNet-5 and the
neocognitron with the first (left-hand) layer representing simple visual features
like edges and deeper layers representing increasingly complex features and

abstract concepts.

While the hierarchical architecture of AlexNet is reminiscent of LeNet-5, there are three
principal factors that enabled it to be the state-of-the-art machine vision algorithm in
2012. First is the training data. Not only did Krizhevsky and his colleagues have access
to the massive ImageNet index, they also artificially expanded the data available to
them by applying transformations (e.g., horizontal reflection) to the training images.
Second is processing power. Not only had computing power per unit of cost increased
dramatically from 1998 to 2012, but Krizhevsky, Hinton and Sutskever also

programmed two GPUs3 to train their large data sets with previously unseen efficiency.



Third is architectural advances. AlexNet is deeper (has more layers) than LeNet-5, and
it takes advantage of both a new type of artificial neuron® and a nifty trick® that helps
generalize deep learning models beyond the data they’re trained on. As with LeNet-5,

we will build AlexNet ourselves in Chapter 10 and use it to classify images.

Our ILSVRC case study underlines how deep learning models like AlexNet are so widely
useful and disruptive across industries and computational applications: They
dramatically reduce the subject-matter expertise required for building highly accurate
statistical models. This trend away from expertise-driven feature engineering and
toward surprisingly powerful automatic-feature-generating deep learning models has
been prevalently borne out across not only vision applications, but, as examples, the
playing of complex games (the topic of Chapter 4) and natural language processing
(Chapter 2) as well?®. One no longer needs to be a specialist in the visual attributes of
faces to create a face-recognition algorithm. One no longer requires a thorough
understanding of a game’s strategies to write a program that can master it. One no
longer needs to be an authority on the structure and semantics of each of several
languages to develop a language-translation tool. For a rapidly-growing list of use-
cases, one’s ability to apply deep learning techniques outweighs the value of domain-
specific proficiency. While such proficiency may have necessitated a doctoral degree or
perhaps years of postdoctoral research within a given domain, a functional level of deep
learning capability can be developed with relative ease—as by working through this
book!

TENSORFLOW PLAYGROUND

For a fun, interactive way to crystallize the hierarchical, feature-learning nature of deep
learning, make your way to the TensorFlow Playground via the following URL:
bit.ly/TFplayground. By using this custom link, your network should automatically look
similar to the one shown in Figure 1.19. We'll be returning to define all of the terms on
the screen in Part II; for the present exercise, they can be safely ignored. It suffices at
this time to know that this is a deep learning model. The model architecture consists of
six layers of artificial neurons: an input layer on the left (below the FEATURES
heading), four “hidden” layers (which bear the responsibility of learning), and an
output layer (the grid on the far right ranging from 6 to +6 on both axes). The network’s
goal is to learn how to distinguish orange dots (negative cases) from blue dots (positive
cases) based solely on their location on the grid. As such, in the input layer, we are only
feeding in two pieces of information about each dot: its horizontal position (X;) and its
vertical position (X,). The dots that will be used as training data are shown by default
on the grid. By clicking the Show test data toggle, you can also see the location of dots

that will be used to assess the performance of the network as it learns. Critically, these



test data are not available to the network while it’s learning, so they help us ensure that

the network generalizes well to new, unseen data.
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Figure 1-19 A deep neural network ready to learn how to distinguish a spiral of
orange dots (negative cases) from blue dots (positive cases) based on their

position on the X; and X, axes of the grid on the right.

Click the prominent Play arrow in the top-left corner. Enable the network to train until
the “Training loss” and “Test loss” in the top-right corner have both approached zero,
say less than 0.5. How long this takes will depend on the hardware you’re using but will

hopefully not be more than a few minutes.

As captured in Figure 1.20, you should now see the network’s artificial neurons
representing the input data with increasing complexity and abstraction the deeper
(further to the right) they are positioned—as in the neocognitron, LeNet-5, and
AlexNet. Every time the network is run, the neuron-level details of how the network
solves the spiral classification problem are unique, but the general approach remains
the same (you can refresh the page and re-train the network to see this for yourself).
The artificial neurons in the left-most “hidden” layer are specialized in distinguishing
edges (straight lines), each at a different particular orientation. Neurons from the first
hidden layer pass information to neurons in the second hidden layer, each of which
recombine the edges into slightly more complex features like curves. The neurons in
each successive layer recombine information from the neurons of the previous layer,
gradually increasing the complexity and abstraction of the features they can represent.

By the final (right-most) layer, the neurons are adept at representing the intricacies of



the spiral shape, enabling the network to accurately predict whether a dot is orange (a
negative case) or blue (a positive case) based on its position (X; and X, coordinates) in
the grid. Hover over a neuron to project it onto the far-right OUTPUT grid and examine

its individual specialization in detail.
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Figure 1-20 The network after training

QUICK, DRAW!

To interactively experience a deep learning network carrying out a machine vision task
in real-time, navigate to quickdraw.withgoogle.com. Click Let’s Draw! to begin playing
the game. You will be prompted to draw an object and a deep learning algorithm will
guess what you sketch. By the end of Chapter 10, we will have covered all of the theory
and practical code examples needed to devise a machine vision algorithm akin to this
one. To boot, the drawings you create will be added to the data set that we’ll leverage in
Chapter 12 when we create a deep learning model that can convincingly mimic human-

drawn doodles. Hold onto your seat! We’re embarking on a fantastic ride.

SUMMARY

Hopefully the parallel between biological vision and machine vision was clear to you.
This is a theme that has popped up a few times in deep learning over the years: the
ways in which deep learning models represent information are analogous with those

same information processing systems in the natural world. Machine vision is a huge



subfield within deep learning, and one which has seen many great advancements in
recent years. There is a staggering amount of image-based data available, and
previously most of this data was difficult or impossible to access—we did not have a way
for computers to understand what was happening in the images. We’ll unpack the

details of the various machine vision models in Chapter 10. See you there!
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recognition by the neocognitron. IEEE Transactions on Neural Networks, 2, 355-65.

10. LeCun, Y., et al. (1998). Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 2, 355-65.

11. LeNet-5 was the first Convolutional Neural Network, a deep learning variant that

dominates modern machine vision and that we’ll detail in Chapter 10.

12. Their classic data set, the handwritten MNIST digits, will be detailed later in Part II,
“Essential Theory Illustrated”.

13. We will detail the backpropagation algorithm later in Chapter 7.
14. The USPS term for postal code

15. At the time, there were stumbling blocks associated with optimizing deep learning
models that have since been resolved, including poor weight initializations (covered in
Chapter 9), covariate shift (also in Chapter 9) and the predominance of the relatively

inefficient sigmoid activation function (Chapter 6).

16. Public funding for artificial neural network research ebbed globally, with the
notable exception of continued support from the Canadian federal government

enabling, e.g., the Universities of Montreal, Toronto, and Alberta to become



powerhouses in the field.

17. Viola, P., & Jones, M. (2001). Robust real-time face detection. International
Journal of Computer Vision, 57, 137-54.

18. A few years later, the algorithm found its way into digital FujiFilm cameras,
facilitating auto-focus on faces for the first time—a now everyday attribute of digital

cameras and smartphones alike.
19. www.image-net.org

20. Deng, J., et al. (2009). ImageNet: A large-scale hierarchical image database.

Proceedings of the Conference on Computer Vision and Pattern Recognition.
21. ImageNet Large Scale Visual Recognition Challenge

22. On your own time, try to distinguish photos of Yorkshire Terriers from Australian
Silky Terriers. It’s tough, but Westminster Dog Show judges, as well as contemporary
machine vision models, can do it. Tangentially, these dog-heavy data are why deep
learning models trained with ImageNet have a disposition toward “dreaming” about

dogs (see, e.g., deepdreamgenerator.com).

23. Graphical Processing Units: These are designed primarily for rendering video
games but are well-suited to performing the matrix multiplication that abounds in deep

learning across hundreds of parallel computing threads.
24. The Rectified Linear Unit, which will be introduced in Chapter 77
25. Dropout, introduced in Chapter 9

26. An especially entertaining recounting of the disruption to the field of machine
translation is provided by Gideon Lewis-Kraus in his article “The Great A.I.

Awakening”, published in The New York Times Magazine on December 14th, 2016.



2 Human and Machine Language

In the previous chapter, we introduced the high-level theory of deep learning via
analogy to the biological visual system. All the while, we highlighted that one of the
technique’s core strengths lies in its ability to learn features automatically from data. In
this chapter, we’ll build atop our deep learning foundations by examining how it’s
incorporated into human language applications, with a particular emphasis on how it

can automatically learn features that represent the meaning of words.

The Austro-British philosopher Ludwig Wittgenstein famously argued, in his
posthumous and seminal work Philosophical Investigations, “The meaning of a word is
its use in the language.” ' He further orated that, “One cannot guess how a word
functions. One has to look at its use, and learn from that.” Wittgenstein was suggesting
that words on their own have no real meaning; rather, it is by their use within the larger
context of language we’re able to ascertain their meaning. As you’ll see through this
chapter, natural language processing with deep learning relies heavily on this premise
—word2vec quite literally derives its semantic understanding of a word by analyzing it

within its contexts across a large corpus.

Armed with this notion, let’s begin by breaking down deep learning for natural
language processing as a discipline, and then we’ll go on to discuss modern deep
learning techniques for representing words and language. By the end of the chapter,
you should have a good grasp on what is possible with deep learning and NLP, the

groundwork for writing such code in Chapter 11.

DEEP LEARNING FOR NATURAL LANGUAGE PROCESSING

The two core concepts in this chapter are deep learning and natural language
processing. Initially, we’ll cover the relevant aspects of these concepts separately, then

we’ll weave them together as the chapter progresses.

Deep Learning Networks Learn Representations Automatically

As established way back in this book’s introduction, deep learning can be defined as the

layering of simple algorithms called artificial neurons into networks several layers



deep. Via the Venn diagram in Figure 2.1, we show how deep learning resides within the
machine learning family of representation learning approaches. The representation
learning family, which contemporary deep learning dominates, includes any techniques
that learn features from data automatically. Indeed, we can use the terms “feature” and

“representation” interchangeably.
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Figure 2.1 Venn diagram that distinguishes the “traditional” family from the

“representation learning” family of machine learning techniques.

Figure 1.13 summarised the advantage of representation learning relative to traditional
machine learning approaches. Traditional ML typically works well because of clever,
human-designed code that transforms raw data—whether be it images, audio of speech,
or text from documents—into input features for machine learning algorithms (e.g.,
regression, random forest, support vector machines) that are adept at weighting
features but not particularly good at learning features from raw data directly. This
manual creation of features is often a highly-specialized task. For working with
language data, for example, it might require graduate-level training in linguistics. A
primary benefit of deep learning is that it eases this requirement for subject-matter
expertise. Instead of manually curating input features from raw data, the data can be
fed directly into a deep learning model. Over the course of many examples provided to
the deep learning model, the first layer of artificial neurons receiving the input data
learn how to represent simple abstractions of these data, while each successive layer
learns to represent increasingly complex non-linear abstractions on the layer that
precedes it. As we’ll discover in the current chapter, this isn’t solely a matter of
convenience; learning features automatically has additional advantages. Features
engineered by humans tend to not be comprehensive, tend to be excessively specific,
and can involve lengthy, ongoing loops of feature ideation, design and validation that
could stretch for years. representation learning models, meanwhile, generate features

quickly (typically over hours or days of model training), adapt straightforwardly to



changes in the data (e.g., new words, meanings, or ways of using language), and adapt

automatically to shifts in the problem being solved.

Natural Language Processing

Natural language processing (NLP) is a field of research that sits at the intersection of
computer science, linguistics, and “artificial intelligence” (Figure 2.2). NLP involves
taking the naturally-spoken or naturally-written language of humans—like this
sentence you're reading right now—and processing it with machines to automatically
complete some task or to make a task easier for a human to do. Examples of language
use that do not fall under the umbrella of natural language could include code written

in a software language or short strings of characters within a spreadsheet.

computer
science

Figure 2.2 NLP sits at the intersection of the fields computer science, linguistics
and artificial intelligence.

Examples of NLP in industry include:

ce classifying documents: using the language within a document (e.g., an email, a
Tweet, or a review of a film) to classify it into a particular category (e.g., high urgency,

positive sentiment, or predicted direction of the price of a company’s stock)

oe machine translation: assisting language-translation firms with machine-generated
suggestions from a source language (e.g., English) to a target language (e.g., German or
Mandarin); increasingly, fully-automatic—though not always perfect—translations

between languages

ce search engines: autocompleting users’ searches and predicting what information or

website they’re seeking



oe speech recognition: interpret voice commands to provide information or take action,

as with virtual assistants like Amazon’s Alexa, Apple’s Siri or Microsoft’s Cortana

ce chatbots: modern chatbots fall short of convincingly carrying out a natural
conversation for an extended period of time, but are nevertheless helpful for relatively
linear conversations on narrow topics like the routine components of a given firm’s

customer-service phone calls

Some of the easiest NLP applications to build are spell-checkers, synonym-suggesters
and keyword-search querying tools. These simple tasks can be fairly straightforwardly
solved with deterministic, rules-based code using say, reference dictionaries or
thesauruses. deep learning models are unnecessarily sophisticated for these

applications and so they won’t be discussed further in this book.

Intermediate-complexity NLP tasks include assigning a school-grade reading level to a
document, predicting the most likely next words while making a query in a search
engine, classifying documents (see above), and extracting information from documents
or websites like prices or named entities. > These intermediate NLP applications are
well-suited to solving with deep learning models. In Chapter 11, for example, we’ll
leverage a variety of deep learning architectures to predict the sentiment of film

reviews.

The most sophisticated NLP implementations are required for machine translation (see
above), automated question-answering and chatbots. These are tricky because they
need to handle application-critical nuance (as an example, humor is particularly
transient), a response to a question can depend on the intermediate responses to
previous questions, and meaning can be conveyed over the course of a lengthy passage
of text consisting of many sentences. Complex NLP tasks like these are beyond the
scope of this book, however the content we cover will serve as superb foundations for

their development.

A Brief History of Deep Learning for NLP

The timeline in Figure 2.3 calls out recent milestones in the application of deep
learning to NLP. This timeline begins in 2011, when the University of Toronto computer
scientist George Dahl and his colleagues at Microsoft Research revealed the first major
breakthrough involving a deep learning algorithm applied to a large data set. 3 This
breakthrough happened to involve natural language data. Dahl and his team trained a
deep neural network to recognize a substantial vocabulary of words from audio
recordings of human speech. A year later, and as detailed already in Chapter 1, the next

landmark deep learning feat also came out of Toronto: AlexNet blowing the traditional



machine learning competition out of the water in the ImageNet Large-Scale Visual
Recognition Competition (Figure 1.16). For a time, this staggering machine vision

performance heralded a focus on applying deep learning to machine vision

applications.
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Figure 2.3 Milestones involving the application of deep learning to natural

language processing. See text for details.

By 2015, the deep learning progress being made in machine vision began to spill over
into NLP competitions such as those that assess the accuracy of machine translations
from one language into another. These deep learning models approached the precision
of traditional machine learning approaches, however they required less research and
development time, while conveniently offering lower computational complexity.
Indeed, this reduction in computational complexity provided Microsoft the opportunity
to squeeze real-time machine translation software onto mobile phone processors—
remarkable progress for a task that previously required an Internet connection and
computationally-expensive calculations on a remote server. In 2016 and 2017, deep
learning models entered into NLP competitions began to not only be more efficient
than traditional machine learning models, they began outperforming them on accuracy

as well. The remainder of this chapter will begin to illuminate how.

COMPUTATIONAL REPRESENTATIONS OF LANGUAGE

In order for deep learning models to process language, we have to supply that language
to the model in a way that it can digest. For all computer systems, this means a
quantitative representation of language, e.g., a two-dimensional matrix of numerical
values. Two popular methods for converting text into numbers are one-hot encoding

and word vectors. 4 We'll discuss both methods in turn in this section.

One-Hot Representations of Words

The traditional approach to encoding natural language numerically for processing it
with a machine is one-hot encoding (Figure 2.4). In this approach, the words of natural

language in a sentence (e.g., “the”, “cat”, “sat”, “on”, “the”, and “mat”) are represented

by the columns of a matrix. Each row in the matrix, meanwhile, represents a unique



word. If there are a hundred unique words across the corpus ®> of documents you're
feeding into your natural language algorithm, then your matrix of one-hot-encoded
words will have one hundred rows. If there are a thousand unique words across your

corpus, then there will be a thousand rows in your one-hot matrix, and so on.

The bat sat on the cat.

the 1 00 01 O

bat 0O 1. 000 O
on 0O 00 1 0 O
n

unigue_words

Figure 2.4 One-hot encodings of words, such as this example, predominate the

traditional machine learning approach to natural language processing.

Cells within one-hot matrices consist of binary values, i.e., they are a zero or a one.
Each column contains at most a single one, but is otherwise made up of zeroes,
meaning that one-hot matrices are sparse. ® Values of one indicate the presence of a
particular word (row) at a particular position (column) within the corpus. In Figure 2.4,
our entire corpus has only six words in it, five of which are unique. Given this, a one-hot
representation of the words in our corpus has six columns and five words. The first
unique word—“the”—occurs in the first and fifth positions, as indicated by the cells
filled with ones in the first row of the matrix. The second unique word in our wee
corpus is “cat”, which occurs only in the second position, so it is represented by a value
of one in second row of the second column. One-hot word representations like this are
fairly straightforward, and they are an acceptable format for feeding into a deep
learning model (or, indeed, other machine learning models). As we shall see
momentarily, however, the simplicity and sparsity of one-hot representations are

limiting when incorporated into a natural language application.

Word Vectors

Vector representations of words are the information-dense alternative to one-hot

encodings of words. While one-hot representations capture information about word



location only, word vectors capture information about word meaning as well as
location. 7 This additional information renders word vectors favorable for a variety of
reasons that we’ll catalogue over the course of this chapter. The key advantage,
however, is that—analogous to the visual features learned automatically by deep-
learning machine-vision models in Chapter 1—word vectors enable deep-learning NLP

models to automatically learn linguistic features.

When creating word vectors, the overarching concept is that we’d like to assign each
word within a corpus to a particular, meaningful location within a multi-dimensional
space called the vector space. Initially, each word is assigned to a random location
within the vector space. By considering the words that tend to be used around a given
word within the natural language of your corpus, however, the locations of the words
within the vector space can gradually be shifted into locations that represent the

meaning of the words.

Figure 2.5 uses a toy-sized example to demonstrate in more detail the mechanics
behind how word vectors are constructed. Commencing at the first word in our corpus
and moving to the right one word at a time until we reach the final word in our corpus,
we consider each word in our corpus to be the target word. At the particular moment
captured in Figure 2.5, the target word that happens to be under consideration is word.
The next target word would be by, followed by the, then company, and so on. For each
target word in turn, we consider it relative to the words around it—its context words. In
our toy example, we’re using a context-word window size of three words. This means
that while word is the target word, the three words to the left (a, know and shall)
combined with the three words to the right (by, company, and the) together constitute
a total of six context words. ° When we move along to the subsequent target word (by),
the windows of context words also shift one position to the right, dropping shall and

by as context words while adding word and i t.



context context

you shall know a word by the company 1t keeps

target

Figure 2.5 A toy example for demonstrating the high-level process behind
techniques that convert natural language into word vectors like wordavec and
GloVe. See text for details.

By a considerable margin, the two most popular techniques for converting natural
language into word vectors are word2vec'® and GloVe.** With either technique, our
objective while considering any given target word is to accurately predict the target
word given its context words'?. Improving at these predictions, target word after target
word over a large corpus, we gradually assign words that tend to appear in similar

contexts to similar locations in vector space.

Figure 2.6 provides a cartoon of vector space. The space can have any number of
dimensions so we can call it an n-dimensional vector space. In practice, depending on
the richness of the corpus we have to work with and the complexity of our NLP
application, we might create a word-vector space with dozens, hundreds or—in extreme
cases—thousands of dimensions. As overviewed in the previous paragraph, any given
word from our corpus (e.g., king) is assigned a location within the vector space. In, say
a 100-dimensional space, the location of the word king is specified by a vector that we
can call vyp4 that must consist of 100 numbers in order to specify the location of the
word king across all of the available dimensions. Human brains aren’t adept at spatial
reasoning in more than three dimensions, so our cartoon in Figure 2.6 has only three
dimensions. In this three-dimensional space, any given word from our corpus needs
three numeric coordinates to define its location within the vector space: x, y and z. In
this cartoon example then, the meaning of the word king is represented by a vector
Uking that consists of three numbers. If vy, is located at the coordinates x = 1.1, y = 2.4,
and z = 3.0 in the vector space, we can use the annotation [-1.1, 2.4, 3.0] to
describe this location succinctly. This succinct annotation will come in handy later

when we perform arithmetic operations on word vectors.
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Figure 2.6 Diagram of word meaning as represented by a three-dimensional

vector space. See text for details.

The closer two words within vector space,' the closer their meaning, as determined by
the similarity of the context words appearing near them in natural language. Synonyms
and common misspellings of a given word—because they share an identical meaning—
would be expected to have near-identical context words and therefore near-identical
locations in vector space. Words that are used in similar contexts, such as those that
denote time for example, tend to occur near each other in vector space. In Figure 2.6,
Monday, Tuesday, and Wednesday could be represented by the orange-colored dots
located within the orange days-of-the-week cluster in the cube’s top-right corner.
Meanwhile, months of the year might occur in their own purple cluster, which is
adjacent but distinct to the days of the week—they both relate to the date, but they’re
separate sub-clusters within a broader dates cluster. As a second example, we would
expect to find programming languages clustering together in some location within the
word vector space that is distant from the time-denoting words, say in the top-left
corner. Again here, object-oriented programming languages like Java, C++, and Python
would be expected to form one sub-cluster, while nearby we would expect to find
functional programming languages like Haskell, Clojure and Erlang forming a separate
sub-cluster. As we’ll see in Chapter 11 when we build our own word vectors, less
concretely-defined terms that nevertheless convey a specific meaning (e.g., the verbs

created, developed, built) are also allocated positions within word-vector space



that enable them to be useful in NLP tasks.

Word Vector Arithmetic

Remarkably, because it turns out to be an efficient way for relevant word information to
be stored in a vector space, particular movements across vector space come to represent
relative particular meanings between words. This is a bewildering property.'# Returning
to our cube in Figure 2.6, the brown arrows represent the relationship between
countries and their capital. That is, if we calculate the direction and distance between
the coordinates of the words Paris and France, then trace this direction and distance
from London, we should find ourselves in the neighborhood of the coordinate
representing the word England. As a second example, we can calculate the direction
and distance between the coordinates for man and woman. This movement through
vector space represents gender and is symbolized by the green arrows in Figure 2.6. If
we trace the green direction and distance from any given male-specific term (e.g., king,
uncle), we should find our way to a coordinate near the term’s female counterpart

(queen, aunt).

A by-product of being able to trace vectors of meaning (e.g., gender, capital-country
relationship) from one word in vector space to another is that we can perform word
vector arithmetic. The canonical example of this is: If we begin at vy, the vector
representing king (continuing with our example from the previous section, this
location is described by [-1.1, 2.4, 3.0]), subtract the vector representing man
from it (let’s say v;qn = [-1.1, 2.4, 3.0])and add the vector representing woman
(let’s say vyyoman = [-3.2, 2.5, 2.6]),we should find a location near the vector
representing queen. To make this arithmetic explicit by working through it dimension

by dimension, we would estimate the location of vgeen by calculating:

Tqueen = Tking — Tman + Twoman = —0.9+ 1.1 -3.2=-3.0
Yqueen = Yking — Yman + Yenoman = 1.9=-24+25=2.10 (2_1}

Zqueen = Zking — Zman T Zwoman = 22—-3.0+26=1.8

All three dimensions together then, we expect vgyeen to be near [-3.0, 2.0, 1.8].

Figure 2.7 provides further, entertaining examples of arithmetic through a word vector
space that was trained on a large natural language corpus crawled from the web. As
we’ll later observe in practice in Chapter 11, the preservation of these quantitative
relationships of meaning between words across vector space is a robust starting point

for deep learning models within NLP applications.
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Figure 2.7 Examples of word vector arithmetic.

word2viz

To develop your intuitive appreciation of word vectors, navigate to
lamyiowce.github.io/word2viz. The default screen for the word2viz tool for
exploring word vectors interactively is shown in Figure 2.8. Leaving the top-right
dropdown box set to “Gender analogies”, try adding in pairs of new words under the
“Modify words” heading. If you add pairs of corresponding gender-specific words like
princess and prince, duchess and duke, and businesswoman and

businessman, you should find that they fall in instructive locations.

Explore word analogies
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(2017).

Figure 2.8 The default screen for wordaviz, a tool for exploring word vectors

interactively.

The developer of the word2viz tool, Julia Bazinska, compressed a fifty-dimensional
word-vector space down to two dimensions in order to visualize the vectors on an xy-
coordinate system." For the default configuration, Bazinska scaled the x-axis from the
words she to he as a reference point for gender, while the y-axis was set to vary from a
common base toward a royal peak by orienting it to the words woman and queen. The
displayed words, placed into vector space via training on a natural language data set
consisting of six billion instances of 400,000 unique wordsl6, fall relative to the two
axes based on their meaning. The more regal (queen-like) the words, the higher on the
plot they should be shown, and the female (she-like) terms fall to the left of their male
(he-like) counterparts.



When you’ve indulged yourself sufficiently with word2viz’s “Gender analogies” view,
you can experiment with other perspectives of the word vector space. Selecting
“Adjectives-Analogies” from the “What do you want to see?” drop-down box, you could
for example add the words small and smallest. Subsequently, you could change the
x-axis labels to nice and nicer, and then again to small and big. Switching to the
“Numbers say-write analogies” view via the drop-down box, you could play around with

changing the x-axis to 3 and 7.

You may build your own word2viz plot from scratch by moving to the “Empty” view.
The (word vector) world is your oyster, but you could perhaps examine the country-
capital relationships mentioned earlier when familiarizing ourselves with Figure 2.6. To
do this, set the x-axis to range from west to east and the y-axis to city and
country. Word pairs that fall neatly into this plot include 1ondon—england, paris

—france,berlin —germany and beijing —china.

This paragraph is the Trilobite Attention SIDEBAR on Bias. While on the one hand
word2viz is an enjoyable way to develop a general understanding of word vectors, on
the other hand it can also be a serious tool for gaining insight into specific strengths or
weaknesses of a given word-vector space. As an example, use the “What do you want to
see?” drop-down box to load the “Verb tenses” view and then add the words 1ead and
led. Doing this, it becomes apparent that the coordinates words were assigned to in
this vector space mirror existing gender stereotypes that were present in the natural
language data the vector space was trained on. Switching to the “Jobs” view, this gender
bias becomes even more stark. It is probably safe to say that any large natural language
data set is going to have some biases in it, whether intentional or not. The development
of techniques for reducing biases in word vectors is an active area of research.'” Mindful
that these biases may be present in your data, however, the safest bet is to test your
downstream NLP application in a range of situations that reflect a diverse user-base,
checking that the results are appropriate. END SIDEBAR.

Localist versus Distributed Representations

With an intuitive understanding of word vectors under our figurative belts, we can
contrast them with one-hot representations (Figure 2.4), which have been an
established presence in the NLP world for longer. A summary distinction is that we can
say word vectors store the meaning of words in a distributed representation across n-
dimensional space. That is, with word vectors, word meaning is distributed gradually
—“smeared”—as we move from location to location through vector space. One-hot
representations, meanwhile, are localist—they store information on a given word

discretely, within a single row of a typically-extremely-sparse matrix.



To more thoroughly characterize the distinction between the localist, one-hot approach
and the distributed, vector-based approach to word representation, Table 2.1 compares
them across a range of attributes. Firstly, one-hot representations lack nuance; they are
simple binary flags. Vector-based representations, on the other hand, are extremely
nuanced: Within them, information about words is smeared throughout a continuous,
quantitative space. In this high-dimensional space, there are essentially infinite

possibilities for capturing the relationships between words.

Table 2.1 Table contrasting attributes of localist, one-hot

representations of words with distributed, vector-based

representations
One-Hot Vector-Based
not subtle very nuanced
manual taxonomies automatic
handle new words poorly seamlessly incorporate new words
subjective driven by natural language data

word similarity not represented  word similarity = proximity in space

Secondly, the use of one-hot representations in practice often requires labor-intensive,
manually-curated taxonomies. These taxonomies include dictionaries and other
specialised reference language databases.'® Such external references are unnecessary
for vector-based representations, which are fully-automatic with natural language data

alone.

Third, one-hot representations don’t handle new words well. A newly introduced word
requires a new row in the matrix and then re-analysis relative to the existing rows of the
corpus, followed by code changes—perhaps via reference to external information
sources. With vector-based representations, new words can be incorporated by training
the vector space on natural language that includes examples of the new words in their
natural context. A new word gets its own new n-dimensional vector. Initially, there may
be few training data points involving the new word so its vector might not be very
accurately positioned within n-dimensional space, but the positioning of all existing
words remain intact and the model will not fail to function. Over time, as the instances
of the new word in natural language increases, the accuracy of its vector-space
coordinates will improve.*

Fourth, and following on from the previous two points, the use of one-hot
representations often involves subjective interpretations of the meaning of language.

This is because they often require coded rules or reference databases that are designed



by (relatively small groups of) developers. The meaning of language in vector-based

representations, meanwhile, is data-driven.*®

Fifth, one-hot representations natively ignore word similarity: Similar words, like
couch and sofa are represented no differently than couch and cat. In contrast,
vector-based representations innately handle word similarity: As mentioned earlier
with respect to Figure 2.6, the more similar two words, the closer they are in vector

space.

ELEMENTS OF NATURAL HUMAN LANGUAGE

Thus far, we have considered only one element of natural human language: the word.
Words, however, are made up of constituent language elements. In turn, words
themselves are the constituents of more abstract, more complex language elements.
We'll begin with the language elements that make up words and build up from there,
following the schematic in Figure 2.9. With each element, we’ll discuss how it is
typically encoded from the traditional machine learning perspective as well as from the
deep learning perspective. As we move through these elements, notice how the
distributed deep learning representations are fluid and flexible vectors while the

traditional ML representations are local and rigid (Table 2.2).

morphemes

words — syntax — semantics

phonemes

abstractness and complexity

Figure 2.9 Relationships between the elements of natural human language. The
left-most elements are building blocks for further-right elements. As we move to
the right, the more abstract the elements become and therefore the more complex

they are to model with an NLP application.



Table 2.2 Table of traditional machine learning and deep learning

representations, by natural language element.

Representation Traditional ML Deep Learning Audio-Only

phonology all phonemes vectors true
morphology all morphemes vectors false
words one-hot encoding  vectors false
syntax phrase rules vectors false
sematics lambda calculus vectors false

Phonology is concerned with the way that language sounds when it is spoken. Every
language has a specific set of phonemes (sounds) that make up its words. The
traditional ML approach is to encode segments of auditory input as specific phonemes
from the language’s range of available phonemes. With deep learning, we train a model
to predict phonemes from features automatically learned from auditory input and then
represent those phonemes in a vector space. In this book, we’ll be working with natural
language in text format only, but the techniques we cover can be applied directly to

speech data if you're keen to do so in your own time.

Morphology is concerned with the forms of words. Like phonemes, every language has
a specific set of morphemes, which are the smallest units of language that contain some
meaning. For example, the three morphemes out, go, and ing combine to form the word
outgoing. The traditional ML approach is to identify morphemes in text from a list of all
the morphemes in a given language. With deep learning, we train a model to predict the
occurrence of particular morphemes. Hierarchically-deeper layers of artificial neurons
can then combine multiple vectors (e.g., the three representing out, go, and ing) into a

single vector representing a word.

Phonemes (when considering audio) and morphemes (when considering text) combine
to form words. Whenever we work with natural language data in this book, we’ll work
at the word level. We do this for four reasons. First, it’s straightforward to define what a
word is and everyone is familiar with what they are. Second, it’s easy to break up
natural language into words via a process called tokenization®* that we’ll work through
in Chapter 11. Third, words are the most-studied level of natural language, particularly
with respect to deep learning, so we can readily apply cutting-edge techniques to them.
Fourth, and perhaps most critically, for the NLP models we’ll be building, word vectors
simply work well: they prove to be functional, efficient and accurate. In the previous
section, we already detailed the shortcomings of localist, one-hot representations that

predominate traditional ML relative to the word vectors used in deep learning models.



Words are combined to generate syntax. Syntax and morphology (already introduced
above) together constitute the entirety of a language’s grammar. Syntax is the
arrangement of words into phrases and phrases into sentences in order to convey
meaning in a way that is consistent across the users of a given language. In the
traditional ML approach, phrases are bucketed into discrete, formal linguistic
categories.*® With deep learning (surprise, surprise!), we employ vectors. Every word
and every phrase in a section of text can be represented by a vector in n-dimensional

space, with layers of artificial neurons combining words into phrases.

Semantics is the most abstract of the elements of natural language in Figure 2.9 and
Table 2.2; it is concerned with the meaning of sentences. This meaning is inferred from
all the underlying language elements like words and phrases, as well as the overarching
context that a piece of text appears in. Inferring meaning is complex because, for
example, whether a passage is supposed to be taken literally or as a humorous and
sarcastic remark can depend on subtle contextual differences and shifting cultural
norms. Traditional ML, because it doesn’t represent the fuzziness of language (e.g., the
similarity of related words or phrases), is limited in capturing semantic meaning. With
deep learning, vectors come to the rescue once again. Vectors can represent not only
every word and every phrase in a passage of text, but every logical expression as well.
As with the language elements already covered, layers of artificial neurons can
recombine vectors of constituent elements—in this case to calculate semantic vectors

via the non-linear combination of phrase vectors.

GOOGLE DUPLEX

One of the more attention-grabbing examples of deep-learning-based NLP in recent
memory is that of Google Duplex, which was unveiled at the their I/0 developers
conference in May 2018. The search giant’s CEO, Sundar Pichai, held spectators in
rapture as he demonstrated Google Assistant making a phone call to a Chinese-food
restaurant to book a reservation. The audible gasps from the audience were in response
to the natural flow of Duplex’s conversation. It had mastered the cadence of a human
conversation, replete with the uh’s and hhhm’s that we sprinkle into conversations
while we’re thinking. Furthermore, the phone call was of average audio quality and the
human on the line had a strong accent—Duplex never faltered, and managed to make
the booking.

Bearing in mind that this is a demonstration—and not even a live one—what
nevertheless impressed us was the breadth of deep-learning applications that had to
come together to facilitate this technology. Consider the flow of information back-and-

forth between the two agents on the call, Duplex and the restaurateur: Duplex needs a



sophisticated speech recognition algorithm that can process audio in realtime and
handle an extensive range of accents and call qualities on the other end of the line, and
also overcome the background noise.?

Once the human’s speech has been faithfully transcribed, an NLP model needs to
process the sentence and decide what it means. The intention is that the person on the
line doesn’t know they’re speaking to a computer and so doesn’t need to modulate their
speech accordingly, but in turn, this means that humans respond with complex, multi-

part sentences that can be tricky for a computer to tease apart:

“We don’t have anything tomorrow, but we have the next day and Thursday, anytime

before 8. Wait no... Thursday at 7 is out. But we do can after 8?”

This sentence is poorly structured—you’d never write an email like this—but in natural
conversation, these sorts of on-the-fly corrections and replacements happen regularly,

and Duplex needs to be able to follow along.

With the audio transcribed and meaning of the sentence processed, Duplex’s NLP
model conjures up a response. This response must either ask for more information if
the human was unclear or if the answers were unsatisfactory, otherwise it should
confirm the booking. The NLP model will generate a response in text form, so a test-to-

speech engine is required to synthesize the sound.

This paragraph is a Trilobite Reading SIDEBAR Duplex uses a combination of de novo
waveform synthesis using Tacotron® and WaveNet*, as well as a more classical
“concatenative” text-to-speech engine26. This is where the system crosses the uncanny
valley”’—the voice heard by restauranteur is not a human voice at all. WaveNet is able
to generate completely synthetic waveforms, one sample at a time, using a deep neural
network trained on real waveforms from human speakers. Beneath this, Tacotron maps
sequences of words to corresponding sequences of audio features, which capture
subtleties of human speech such as pitch, speed, intonation and even pronunciation.
These features are then fed into WaveNet which synthesizes the actual waveform that
the restauranteur hears. This whole system is able to produce natural sounding voice
with the correct cadence, emotion and emphasis. During moments of more-or-less rote
moments in the conversation, the simple concatenative TTS engine (comprised of
recordings of it’s own “voice”) which is less computationally demanding to execute, is
used. The entire model dynamically switches between the various models as needed.
END SIDEBAR.

To misquote Jerry Maguire: you had all of this at “hello.” The speech recognition



system, NLP models, and TTS engine all work in concert from the instant the call is
answered. Things only stand to get more complex for the Duplex from then on.
Governing all of this interaction is a deep neural network that is specialized in handling
information that occur in a sequence®. This governor tracks the conversation and feeds
the various inputs and outputs into the appropriate models. It should be clear from this
overview that Google Duplex is a highly sophisticated system of deep learning models
that work in harmony to produce a seamless interaction on the phone. For now, Duplex
is limited to a few very specific domains: scheduling appointments. The system cannot
carry out general conversations. So while this represents a significant step forward for

artificial intelligence, there is still much work to be done.

SUMMARY

In this chapter, we learned about applications of deep learning to the processing of
natural language. In so doing, we described further the capacity for deep learning
models to automatically extract the most pertinent features from data, removing the
need for labor-intensive one-hot representations of language. Instead, NLP applications
involving deep learning make use of vector-space embeddings, which capture the
meaning of words in a nuanced manner that improves both model performance and

accuracy.

Later, in Chapter 11, we’ll ourselves construct an NLP application by making use of
artificial neural networks that handle the input of natural language data all the way
through to the output of an inference about those data. In such an “end-to-end” deep
learning model, the initial layers create word vectors that flow seamlessly into deeper,
specialized layers of artificial neurons, including layers that incorporate “memory”.
These model architectures will highlight both the strength and the ease-of-use of deep

learning with word vectors.

1 . Wittgenstein, L. (1953). Philosophical Investigations. (Anscombe, G., Trans.).
Oxford, UK: Basil Blackwell.

2 . Trilobite Attention SIDEBAR Named entities include places, well-known

individuals, company names and products.

3 . Dahl, G,, et al. (2011). Large vocabulary continuous speech recognition with

context-dependent DBN-HMMs. Proceedings of the International Conference on

Acoustics, Speech, and Signal Processing.



4 . If this were a book dedicated to NLP, then we would have been wise to also describe

natural language methods based on word frequency, e.g., TF-IDF (term frequency-

inverse document frequency) and PMI (pointwise mutual information).

5 . Trilobite Reading SIDEBAR A corpus is the collection of all of the documents you

use as your input data for a given natural language application. In Chapter 11, we’ll
make use of a corpus that consists of eighteen classic books. Later in that chapter, we’ll
separately make use of a corpus of 25,000 film reviews. An example of a much larger
corpus would be all of the English-language articles on Wikipedia. The largest corpuses
are crawls of all the publicly-available data on the Internet, e.g., as at

commoncrawl. org.

6 . Non-zero values are rare (i.e., they are sparse) within a sparse matrix. In contrast,

dense matrices are rich in information: they typically contain few—perhaps even no—

zero values.

7 . Strictly speaking, a one-hot representation is technically a “word vector” itself as

each column in a one-hot word matrix consists of a vector representing a word at a
given location. In the deep learning community, however, use of the term “word vector”
is commonly reserved for the dense representations covered in this section—i.e., those

derived by word2vec, GloVe, and related techniques.

8 . As mentioned at the beginning of this chapter, this understanding of the meaning

of a word from the words around it was proposed by Ludwig Wittgenstein. Later, in
1957, the idea was captured succinctly by the British linguist J.R. Firth with his phrase

“You shall know a word by the company it keeps”.

9 . It is mathematically simpler and more efficient to not concern ourselves with the

specific ordering of context words, particularly as word order tends to confer negligible
extra information to the inference of word vectors. Ergo, we provide the context words

in parentheses alphabetically, an effectively random order.

10. Mikolov, T., et al. (2013). Efficient estimation of word representations in vector

space. arXiv:1301.3781.

11. Pennington, J., et al. (2014). GloVe: Global vectors for word representations.

Proceedings of the Conference on Empirical Methods in natural language processing.



12. Or, alternatively, we could predict context words given a target word. More on that

in Chapter 11.

13. Measured by Euclidean distance, which is the plain old straight-line distance

between two points.

14. One of your esteemed authors, Jon, prefers terms like “mind-bending” and “trippy”
to describe this property of word vectors, but he consulted a thesaurus to narrow in on

a more professional-sounding adjective.
15. We'll detail how to perform vector space dimensionality reduction in Chapter 11.
16. Technically, 400,000 tokens—a distinction that we’ll examine later.

17. E.g.: Bolukbasi, T., et al. (2016). Man is to Computer Programmer as Woman is to
Homemaker? Debiasing Word Embeddings. arXiv:1607.06520. Caliskan, A., et al.
(2017). Semantics derived automatically from language corpora contain human-like
biases. Science 356: 183-6. Zhang, B., et al. (2018). Mitigating Unwanted Biases with
Adversarial Learning. arXiv:1801.07593

18. E.g., WordNet (wordnet.princeton.edu), which describes synonyms as well as

hypernyms (“is-a” relationships, so furniture, for example, is a hypernym of chair)

19. An associated problem not addressed here is when an in-production NLP algorithm
encounters a word that was not included within its corpus of training data. This out of
vocabulary problem impacts both one-hot representations and word vectors. There are
approaches—e.g., Facebook’s fastText library—that try to get around the issue by
considering sub-word information, but these approaches are beyond the scope of this
book.

20. Noting that they may nevertheless include biases found in natural language data.
See the “Trilobite-Attention SIDEBAR” on Bias.

21. Essentially, tokenization is the use of characters like commas, periods and

whitespace to assume where one word ends and the next begins.
22. These categories have names like “noun-phrase” and “verb-phrase”.

23. This is known as the “cocktail-party problem”—or less jovially, “multi-talker speech
separation”. It’s a problem that humans solve innately, isolating single voices from a
cacophony quite well without explicit instruction on how to do so. Machines typically

struggle with this, though a variety of groups have proposed solutions, e.g., see



Simpson, A., et al. (2015). Deep Karaoke: Extracting Vocals from Musical Mixtures
Using a Convolutional Deep Neural Network. arXiv:1504.04658; Yu, D., et al. (2016).
Permutation Invariant Training of Deep Models for Speaker-Independent Multi-talker

Speech Separation. arXiv:1607.00325
24. ai.googleblog.com/2017/12/tacotron-2-generating-human-like-speech.html
25. deepmind.com/blog/wavenet-generative-model-raw-audio

26. Concatenative TTS engines use vast databases of pre-recorded words and snippets,
which can be strung together to form sentences. This approach is common and fairly
easy, but yields stilted, unnatural speech and cannot adapt the speed and intonation—

you can’t modulate a word to make it sound like a question is being asked, for example.

27. The uncanny valley is a dangerous space wherein humans find human-like
simulations weird and creepy because they’re too similar to real humans, but it’s also
clear they’re not real humans. Product designers endeavor to avoid the uncanny valley.
They’ve learned that users respond well to simulations that are either very robotic or

not robotic at all.

28. Called a recurrent neural network. These feature in Chapter 11
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3 Machine Art

In this chapter, we’ll introduce some of the concepts that enable deep learning models
to seemingly create art, an idea that may be paradoxical to some. The University of
California, Berkeley philosopher Alva Noé€, for one, opined “Art can help us frame a

”> 1 If this is true, how can machines create art? Or

better picture of our human nature.
put differently, are the creations that emerge from these machines, in fact, art? Another
interpretation—and one we like best—is that these creations are indeed art and that

programmers are artists wielding deep-learning models as brushes.

By the end of this chapter, you’ll have learned the essential ideas behind generative
adversarial networks (GANs) and you will have seen how they can be used to generate
completely novel works. We’'ll have hopefully drawn a convincing link between the
word vector spaces of the previous chapter and the latent spaces associated with GANSs.
We'll also cover some intersections between art and deep learning that don’t make use
of GANs, wherein the deep learning models are more obviously tools that can be
applied to some end. Enough with the philosophy, let’s get our overalls covered in

paint! But first... a drink.

A BOOZY ALL-NIGHTER

Sitting below Google’s offices in Montreal sits a bar called Les 3 Brasseurs, a moniker
that translates from French to The 3 Brewers. It was at this watering hole in 2014,
while a Ph.D. student in Yoshua Bengio’s renowned lab (Figure 1.11), that Ian
Goodfellow conceived of an algorithm for fabricating realistic-looking images, * a
technique that Yann LeCun (Figure 1.10) has hailed as the “most important” recent

breakthrough in Deep Learning. 3

Goodfellow’s friends described to him a generative model they were working on, i.e., a
computational model that aims to produce something novel, be it a quote in the style of
Shakespeare, a musical melody, or a work of abstract art. In their particular case, the
friends were attempting to design a model that could generate photorealistic images
such as portraits of human faces. For this to work well via the Traditional Machine

Learning approach (Figure 1.13), the engineers designing the model would need to not



only catalog and approximate the critical individual features of faces like eyes, noses
and mouths, but also accurately estimate how these features should be arranged
relative to each other. Thus far, their results had been underwhelming. The generated
faces tended to be excessively blurry or they tended to be missing essential elements

like the nose or the ears.

Perhaps with his creativity heightened by a pint of beer or two, * Goodfellow proposed
a revolutionary idea: a deep learning model in which two artificial neural networks act
against each other competitively as adversaries. As illustrated in Figure 3.1, one of these
deep ANNs would be programmed to produce forgeries while the other would be
programmed to act as a detective and distinguish the fakes from real images (which
would be provided separately). These adversarial deep learning networks would play off
one another: As the generator became better at producing fakes, the discriminator
would need to become better at identifying them, and so the generator would need to
produce even more compelling counterfeits, and so on. This virtuous cycle would
eventually lead to convincing novel images in the style of the real training images, be
they of faces or otherwise. Best of all, Goodfellow’s approach would circumnavigate the
need to program features into the generative model manually. As we’ve already
expounded with respect to machine vision (Chapter 1) and natural language processing

(Chapter 2), deep learning would sort the model’s features out automatically.
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Figure 3.1 High-level schematic of a generative adversarial network (GAN). Real

Real Art Generator

images, as well as forgeries produced by the generator are provided to the
discriminator, which is tasked with identifying which are the genuine article. The
purple cloud represents latent space (Figure 3.4) “guidance” that is provided to the
forger. This guidance can either be random (as is generally the case during
network training; see Chapter 12) or selective (during post-training exploration, as

in Figure 3.3).

Goodfellow’s friends were doubtful his imaginative approach would work. So, when he
arrived home and found his girlfriend asleep, he worked late to architect his dual-ANN
design. It worked the first time and the astounding deep learning family of generative

adversarial networks was born!

That same year, Goodfellow and his colleagues revealed GANs to the world at the
prestigious Neural Information Processing Systems (NIPS) conference. > Some of
their results are shown in Figure 3.2. Their GAN produced these novel images by being
trained on: (a) handwritten digits; 6 (b) photos of human faces; 7 and (c) & (d) photos
from across ten classes (e.g., planes, cars, dogs). 8 The results in (c) are markedly less
crisp than in (d) because the GAN that produced the latter featured neuron layers
specialized for machine vision called convolutional layers ° while the GAN that

produced the former used a more general layer type only.*



Figure 3.2 Results presented in Goodfellow and colleagues’ (2014) GAN paper.
See text for details.

ARITHMETIC ON FAKE HUMAN FACES

Following on from Goodfellow’s lead, a research team led by the American machine-
learning engineer Alec Radford determined architectural constraints for GANs that
guide considerably more realistic image creation. Some examples of portraits of fake
humans that were produced by their deep convolutional GANs* are provided in Figure
3.3. In their paper, Radford and his teammates cleverly demonstrated interpolation
through, and arithmetic with, the latent space associated with GANSs. Let’s start off by
explaining what latent space is before moving on to latent-space interpolation and

arithmetic.



man man woman
with glasses without glasses without glasses

woman with glasses

Figure 3.3 An example of latent-space arithmetic from Radford et al. (2016).

The latent-space cartoon in Figure 3.4 may be reminiscent of the word vector-space
cartoon in Figure 2.6. As it happens, there are three major similarities between latent
spaces and vector spaces. First, while the cartoon is only three-dimensional for
simplicity and comprehensibility, latent spaces are n-dimensional spaces, usually in the
order of hundreds of dimensions. The latent space of the GAN we’ll later architect
ourselves in Chapter 12, for example, will have n = 100 dimensions. Second, the closer
two points are in the latent space, the more similar the images that those points
represent are. And third, movement through the latent space in any particular direction
can correspond to a gradual change in a concept being represented, such as age or

gender for the case of photorealistic faces.



n - dimensional space

Figure 3.4 A cartoon of the latent space associated with generative adversarial
networks (GANs). Moving along the purple arrow, the latent space corresponds to
images of a similar-looking individual aging. The green arrow represents gender

while the orange one represents the inclusion of glasses on the face.

By picking two points far away from each other along some n-dimensional axis
representing age, interpolating between them, and sampling points from the
interpolated line, we could find what appears to be the same (fabricated) man gradually
appearing to be older and older.** In our latent-space cartoon (Figure 3.4), we
represented such an “age” axis in purple. To observe interpolation through an authentic
GAN latent space, we recommend scanning through Radford and colleagues’ paper for,
as an example, smooth rotations of the “photo angle” of synthetic bedrooms. At the
time of writing the book manuscript you're presently reading, the state of the art in
GANSs can be viewed at youtu.be/G06dEcZ-QTg. This video, produced by researchers
at the graphics-card manufacturer Nvidia'3, provides a breathtaking interpolation

through high-quality portrait “photographs” of ersatz celebrities.

Moving a step further with what we’ve learned, we could now perform arithmetic with
images sampled from a GAN’s latent space. When sampling a point within the latent

space, that point can be represented by the co-ordinates of its location—the resulting



vector is analogous to the word vectors described in Chapter 2. Just as with word
vectors, we can perform arithmetic with these vectors and move through the latent
space in a semantic way. Figure 3.3 showcases an instance of latent-space arithmetic
from Radford and his co-workers. Starting with a point in their GAN’s latent space that
represents a man with glasses, subtracting a point that represents a man without
glasses, and adding a point representing a woman without glasses, the resulting point
exists in the latent space near to images that represent women with glasses. Our
cartoon in Figure 3.4 illustrates how the relationships between meaning in latent space
are stored (again, akin to the way they are in word-vector space), thereby making

arithmetic on points in latent space possible.

STYLE TRANSFER: CONVERTING PHOTOS INTO MONET (AND VICE
VERSA)

One of the more magical applications of GANSs is style transfer. Zhu, Park and their
coworkers from the University of California, Berkeley’s A.I. Research lab introduced a
new flavor of GAN'* that enables stunning examples of this, as shown in Figure 3.5.
Alexei Efros, one of the paper’s co-authors, took photos while on holiday in France and
they employed their CycleGAN to transfer these photos into the style of the
Impressionist Claude Monet, the 19th-century Dutch artist Van Gogh and the Japanese
“Ukiyo-e” genre, amongst others. If you navigate to junyanz.github.io/CycleGAN,
you'll be delighted to discover instances of the inverse (Monet paintings converted into

photorealistic images), as well as:
ce summer scenes converted into wintry ones, and vice versa
ce baskets of apples converted into baskets of oranges, and vice versa

ce flat, low-quality photos converted into what appear to be ones captured by high-end

single-lens reflex cameras
ce a video of a horse running in a field converted into a zebra

ce a video of a drive taken during the day converted into a nighttime one
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Figure 3.5 Photos converted into the styles of well-known painters by
CycleGANSs.

MAKE YOUR OWN SKETCHES PHOTOREALISTIC

Another GAN application out of Alexei Efros’ A.I. Research lab at Berkeley, and one
that you can amuse yourself with yourself straightaway, is pix2pix.*® If you make your
wayto affinelayer.com/pixsrv (convert to bit.ly), you can interactively translate
images from one type to another. Using the “edges2cats” tool, for example, we sketched
the three-eyed cat in the left-hand panel of Figure 3.6 to generate the photorealistic(-
ish) mutant kitty in the right-hand panel. As it takes your fancy, you are also welcome
to convert your own creative visions of felines, shoes, handbags and building facades
into photorealistic analogs within your browser. The authors of the pix2pix paper called
their approach a conditional GAN (cGAN for short) because the generative adversarial

network produces an output that is conditional on the particular input provided to it.
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Figure 3.6 A mutant three-eyed cat (right-hand panel) synthesized via the pix2pix
web application. The sketch in the left-hand panel that the GAN output was
conditioned on was clearly not doodled by this book’s illustrator, Aglaé, but one of

its other authors (who shall remain nameless).

CREATING PHOTOREALISTIC IMAGES FROM TEXT

To round out this chapter, we’d like you to take a gander at the truly photorealistic
high-resolution images in Figure 3.7. These images were generated by StackGAN 16 an
approach that stacks two GANs on top of each other. The first GAN in the architecture
is configured to produce a rough, low-resolution image with the general shape and
colors of the relevant objects in place. This is then supplied to the second GAN as its
input, where the forged “photo” is refined by fixing up imperfections and adding
considerable detail. The StackGAN is a cGAN like the pix2pix network in the previous

section, however, the image output is conditioned on text input instead of an image.
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Figure 3.7 Photorealistic high-resolution images output by StackGAN, which
involves two GANSs stacked upon each other. See text for further detail.

IMAGE PROCESSING USING DEEP LEARNING

Since the advent of digital camera technology, image processing (both on-device and
post-processing) has become a staple in most (if not all) photographers’ workflows.
This ranges from simple on-device processing, such as increasing saturation and
sharpness immediately after capture, to complex editing of RAW image files in software

applications like Adobe Photoshop and Lightroom.

Machine learning has been used extensively in on-device processing, where the camera
manufacturer would like the image that the consumer sees to be vibrant and pleasing to

the eye with minimal end-user effort. Some examples of this are:

ce early face recognition algorithms in point-and-shoot cameras which optimize the
exposure and focus for faces or even selectively fire the shutter when they recognize

that the subject is smiling (as in Figure 1.14);

ce scene-detection algorithms that adjust the exposure settings to capture the whiteness

of snow or activate the flash for nighttime photos.

In the post-processing arena, a variety of automatic tools exist although generally
photographers who are taking the time to post-process images are investing

considerable time and domain-specific knowledge into color and exposure correction,



de-noising, sharpening, tone-mapping and touching up (to name just a few of the

corrections that may be applied).

These corrections have been difficult to execute programmatically because, for
example, de-noising might need to be applied selectively to different images and even
different parts of the same image. This is exactly the kind of intelligent application that

deep learning is poised to excel at.

In a 2018 paper from Chen Chen and his collaborators at Intel Labs', deep learning
was applied to the enhancement of images that were taken in near total darkness, with
astonishing results (Figure 3.8). In a phrase, their deep learning model involves
convolutional layers organized into the innovative U-Net™® architecture (that we'll break
down for you in Chapter 10). The authors generated a custom dataset for training this
model: the See-in-the-Dark (SID) dataset consists of 5094 raw images taken in near
total darkness using a short-exposure (that is, a short enough exposure time to enable
practical hand-held capture without motion blur but which renders images too dark to
be useful) with a corresponding long-exposure image (using a tripod for stability) of the
same scene. The exposure times on the long-exposure images were 100—300 times that
of the short-exposure training images, with actual exposure times in the range of 10—30
seconds. The raw short-exposure images were fed into the convolutional layers, using

the long-exposure images as the ground truth.

Figure 3.8 A sample image (left) processed using a traditional pipeline (center)

and the deep learning pipeline by Chen at al. (2018)

The trained model demonstrates a remarkable ability to brighten images from near
total darkness with successful noise suppression and correct color transformation
(Figure 3.8)—the deep-learning image-processing pipeline far outperforms the results
of the traditional pipeline shown in the center panel. There are, however, limitations as

yet:

ce the model is not fast enough to perform this correction in real time (and certainly not

on-device), however runtime optimization will certainly help here;

ce a dedicated network must be trained for different camera models and sensors,



whereas a more generalized and camera model-agnostic approach would be favorable;

ce while the results far exceed the capabilities of traditional pipelines, there are still

some artifacts present in the enhanced photos which could stand to be improved;

ce and, finally, the dataset is limited to selected static scenes and needs to be expanded

to other subjects (most notably, humans).

Limitations aside, this work nevertheless provides a beguiling peek into how deep
learning can adaptively correct images in photograph post-processing pipelines with a

level of sophistication not before seen from machines.

SUMMARY

I'm not sure if this chapter will have convinced you that GANs are artists, or even that
you can be an artist yourself if you skip ahead to Chapter 12, but hopefully it has
introduced the idea that deep learning models—GANSs in particular, in this case—
encode some fairly sophisticated representations in their latent spaces. That said, a
model is only as good as the data, and that certainly applies here. These networks
produce some sensational results, but like all deep-learning models, they’re constrained
by what they’re trained on. A model that turns your family photos into Monet paintings
can’t do very much else. As it turns out, the model has just learned the features typical
to Monet paintings and can mathematically transform pixels so that they conform and
we’re thusly entertained. This, I think, is a long way from general creativity. This has
been a brief introduction to an incomplete list of creative applications for deep learning.
In Chapter 12 we’ll be making our own GAN using sketches from Google’s Quick, Draw!

dataset (introduced in Chapter 1). Take a gander at Figure 3.9 for a preview.
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Figure 3.9 Novel “hand-drawings” of apples produced by the GAN architecture
we’ll develop together in Chapter 12. Using this approach, you'll trivially be able to
produce machine-drawn “sketches” from across any of the hundreds of categories

involved in the Quick, Draw! game.
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4 Game-Playing Machines

Alongside the generative adversarial networks introduced in Chapter 3, deep
reinforcement learning has produced some of the most surprising artificial-neural-
network advances, including the lion’s share of the headline-grabbing “artificial
intelligence” breakthroughs of recent years. In this chapter, we’ll introduce what
reinforcement learning is as well as how its fusion with deep learning has enabled
machines to meet or surpass human-level performance on a diverse range of complex
challenges, including Atari video games, the board-game Go, and subtle physical-

manipulation tasks.

DEEP LEARNING, Al, AND OTHER BEASTS

Earlier in this book, we introduced deep learning with respect to vision (Chapter 1),
language (Chapter 2) and the generation of novel “art” (Chapter 3). In doing this, we've
loosely alluded to deep learning’s relationship to the concept of artificial intelligence. At
this stage, as we begin to cover deep reinforcement learning, it is worthwhile to define
these terms more thoroughly as well as the terms’ relationships to one another. As

usual, we will be assisted by visual cues—in this case, the Venn diagram in Figure 4.1.

¢~ DLfor RNNs
\'“----L____rf"LP LSTMs
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Figure 4.1 Venn diagram that conveys the relative positioning of the major

concepts covered over the course of this book.



Artificial Intelligence

Artificial intelligence is the buzziest, vaguest and broadest of the terms we’ll be
covering in this section. Taking a stab at a technical definition regardless, a decent one
is that Al involves a machine processing information from its surrounding environment
and then factoring that information into decisions toward achieving some desired
outcome. Perhaps given this, some consider the goal of Al to be the achievement of
“general intelligence”—intelligence as it is generally referred to with respect to broad
reasoning and problem-solving capabilities. * In practice and particularly in the
popular press, “Al” is used to describe any cutting-edge machine capability. Presently,
these capabilities include voice recognition, describing what’s happening in a video,
question-answering, driving a car, industrial robots that mimic human exemplars in the
factory, and dominating humans at “intuition-heavy” board games like Go. Once an Al
capability becomes commonplace (e.g., recognizing handwritten digits, which was
cutting-edge in the ‘90s; see Chapter 1), the “AI” moniker is typically dropped by the
popular press for that capability such that the goal posts on the definition of Al are

always moving.

Machine Learning

Machine learning is a subset of Al alongside other facets of Al like robotics. It is a field
of computer science concerned with setting up software in a manner so that the
software can recognize patterns in data without the programmer needing to explicitly
dictate how the software should carry out all aspects of this recognition. That said, the
programmer would typically have some insight into or hypothesis about how the
problem might be solved, and would thereby provide a rough model framework and
relevant data such that the learning software is well-prepared and well-equipped to
solve the problem. As depicted in Figure 1.13 and discussed time and again within the
earlier chapters of this book, machine learning traditionally involves cleverly—albeit
manually, and therefore laboriously—processing raw inputs to extract features that jive

well with data-modeling algorithms.

Representation Learning

Peeling back another layer of the Figure 4.1 onion, we find representation learning.
This term was introduced at the start of Chapter 2 so we won’t explicate on it in too
much detail again here. To recap briefly, representation learning is a branch of machine
learning in which models are constructed in a way that—provided they are fed enough
data—they learn features (or representations) automatically. These learned features
may wind up being both more nuanced and more comprehensive than their manually-

curated cousins. The trade-off is that the learned features might not be as well



understood nor as straightforward to explain, although academic and industrial

researchers alike are increasingly tackling these hitches. *

Artificial Neural Networks

Artificial neural networks (ANNs) dominate the field of representation learning today.
As was touched on in earlier chapters and will be laid bare in Chapter 6, artificial
neurons are simple algorithms inspired by biological brain cells, especially in the sense
that individual neurons—whether biological or artificial—receive input from many
other neurons, perform some computation, and then produce a single output. An
artificial neural network, then, is a collection of artificial neurons arranged so that they
send and receive information between each other. Data (e.g., images of handwritten
digits) are fed into an ANN, which processes these data in some way with the goal of
producing some desired result (e.g., an accurate guess as to what digits are represented

by the handwriting).

Deep Learning

Of all the terms in Figure 4.1, deep learning is the easiest to define because it’s so
precise. We mentioned a couple of times already in this book that a network composed
of at least a few layers of artificial neurons can be called a deep learning network. As
exemplified by the classic architectures in Figures 1.9, 1.12 and 1.18; diagramed simply
in Figure 4.2; and will be fleshed out fully in Chapter 7, deep learning networks have a

total of five or more layers with the following structure:
1. A single input layer that is reserved for the data being fed into the network.

2. Three or more hidden layers that learn representations from the input data. A
general-purpose and frequently used type of hidden layer is the dense type, in which all
of the neurons in a given layer can receive information from each of the neurons in the
previous layer (it is apt, then, that a common synonym for “dense layer” is fully-
connected layer). In addition to this versatile hidden-layer type, there is a cornucopia
of specialized types for particular use cases; we’ll touch on the most popular ones as we

make our way through this section.

3. A single output layer that is reserved for the values (e.g., predictions) that the
network yields.
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Figure 4.2 Generalization of deep-learning model architectures.

With each successive layer in the network being able to represent increasingly abstract,
non-linear recombinations of the previous layers, deep learning models with fewer than
a dozen layers of artificial neurons are often sufficient for learning the representations
that are of value for a given problem being solved with a given data set. That said, deep
learning networks with hundreds or even upwards of a thousand layers have in

occasional circumstances been demonstrated to be of utility. 3

As rapidly-improving accuracy benchmarks and countless competition wins since
AlexNet’s 2012 victory in the ILSVRC (Figure 1.16) have demonstrated, the deep
learning approach to modeling excels at a broad range of machine-learning tasks.
Indeed, with deep learning driving so much of the contemporary progress in Al
capabilities, the words “deep learning” and “artificial intelligence” are used essentially

interchangeably by the popular press.

Let’s move inside the deep learning ring of Figure 4.1 to explore classes of tasks that
deep learning algorithms are leveraged for: machine vision, natural language

processing and reinforcement learning.

Machine Vision

Via analogy to the biological vision system, Chapter 1 introduced machine vision. There
we focused on object recognition tasks such as distinguishing handwritten digits or
breeds of dogs. Other prominent examples of applications that involve machine vision
algorithms include self-driving cars, face-tagging suggestions, and phone-unlocking via
face recognition on smartphones. More broadly, machine vision is relevant to any Al
that is going to need to recognize objects by their appearance at a distance or navigate a

real-world environment.



Convolutional neural networks (ConvNets or CNNs for short) are a prominent type of
deep learning architecture in contemporary machine vision applications. A CNN is any
deep learning model architecture that features hidden layers of the convolutional type.
We mentioned convolutional layers with respect to Ian Goodfellow’s generative
adversarial network results in Figure 3.2; we will detail and deploy them in Chapter
10.

Natural Language Processing

In Chapter 2, we covered language and natural language processing. Deep learning
doesn’t dominate natural language applications as comprehensively as it does machine
vision applications, so our Venn diagram in Figure 4.1 shows “NLP” in both the deep
learning region as well as the broader machine-learning territory. As depicted by the
timeline in Figure 2.3, however, deep learning approaches to NLP are beginning to
overtake traditional machine learning approaches in the field with respect to both
efficiency and accuracy. Indeed, in particular NLP areas like voice recognition (e.g.,
Amazon’s Alexa or Google’s Assistant), machine translation (including real-time voice
translation over the phone), and aspects of Internet-search engines (like predicting the
characters or words that will be typed next by a user), deep learning already
predominates. More generally, deep learning for NLP is relevant to any Al that
interacts via natural language—be it spoken or typed—including to answer a complex

series of questions automatically.

A type of hidden layer that is incorporated into many deep learning architectures in the
NLP sphere is the long short-term memory (LSTM) cell, a member of the recurrent
neural network (RNN) family. RNNs are applicable to any data that occur in a
sequence such as financial time series data, inventory levels, traffic and weather. We
will expound on RNNs, including LSTMs, in Chapter 11 when we incorporate them into
predictive models involving natural language data. These language examples will
provide a firm foundation even if you're primarily seeking to apply deep learning

techniques to the other classes of sequential data.

THREE CATEGORIES OF MACHINE LEARNING PROBLEMS

The one remaining section of the Venn diagram in Figure 4.1 involves reinforcement
learning, which is the focus the rest of this chapter. To introduce reinforcement
learning, we’ll contrast it with the two other principal categories of machine-learning

problems: supervised and unsupervised learning.

Supervised Learning



In supervised learning problems, we have both an x variable and a y variable, where:
ce x represents the data we’re providing as input into our model, and

ce y represents an outcome we’re building a model to predict. This y variable can also
be called a label.

The goal with supervised learning is to have our model learn some function that uses x

to approximate y. Supervised learning typically involves either:

1. Classification, where our y-values consist of labels that assign each instance of x into
a particular category. In other words, y is a so-called categorical variable. Examples
include identifying handwritten digits (we will code up models that do this in Chapter
10) or predicting whether someone who has reviewed a film loved it or loathed it (as

we’ll do in Chapter 11).

2. Regression, where our y is a continuous variable. Examples include predicting the
number of sales of a product, or predicting the future price of an asset like a home or a

share in an exchange-listed company.

Unsupervised Learning

Unsupervised learning problems are distinguishable from supervised learning
problems by the absence of a label y. Ergo, in unsupervised learning problems, we have
some data x that we can put into a model, but we have no outcome y to predict. Rather,
our goal with unsupervised learning is to have our model discover some hidden,
underlying structure within our data. An oft-used example is that of grouping news
articles by their theme. Instead of providing a pre-defined list of categories that the
news articles belong to (politics, sports, finance, etc.), we configure the model to group
those with similar topics for us automatically. Other examples of unsupervised learning
include creating a word-vector space (see Chapter 2) from natural language data (we’ll
do this in Chapter 11), or producing novel images with a generative adversarial network

(as in Chapter 12).

Reinforcement Learning

Returning to Figure 4.1, we're now well-positioned to cover reinforcement learning
problems, which are markedly different from the supervised and unsupervised
varieties. As illustrated light-heartedly in Figure 4.3, reinforcement learning problems
are ones that we can frame as having an agent take actions within some environment.
The agent could, for example, be a human or an algorithm playing an Atari video game,

or it could be a human or an algorithm driving a car. Perhaps the primary way in which



reinforcement learning problems diverge from supervised or unsupervised ones is that
the actions that the agent takes influences the information that the environment
provides to the agent—that is, the agent receives direct feedback on the actions it takes.
In supervised or unsupervised problems, in contrast, the model never impacts the

underlying data, it simply consumes it.
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Figure 4.3 The reinforcement learning loop. The top diagram is a generalized

version. The bottom diagram is specific to the example elaborated on in the text of
an agent playing a video game on an Atari console. To our knowledge, trilobites
can’t actually play video games; we're using the trilobite as a symbolic
representation of the reinforcement learning agent, which could either be a human

or a machine.



Let’s dive a bit further into the relationship between a reinforcement learning agent and
its environment by exploring some examples. In Figure 4.3, the agent is represented by
an anthropomorphized trilobite but this agent could be either human or it could be a

machine. Where the agent is playing an Atari video game:

ce The possible actions that can be taken are the buttons that can be pressed on the

video game controller. *

e The environment (the Atari console) returns information back to the agent. This
information comes in two delicious flavors: state (the pixels on the screen that
represent the current condition of the environment) and reward (the point score in the

game, which is what the agent is endeavoring to maximize).

ce If the agent is playing Pac-Man, then selecting the action of pressing the “up” button
results in the environment returning an updated state where the pixels representing the
video-game character on the screen have moved upward. Prior to playing any of the
game, a typical reinforcement learning algorithm would not even have knowledge of
this simple relationship between the “up” button and the Pac-Man character moving

upward; everything is learned from the ground up via trial and error.

ce If the agent selects an action that causes Pac-Man to cross paths with a pair of
delectable cherries, then the environment will return a positive reward: an increase in
points. On the other hand, if the agent selects an action that causes Pac-Man to cross
paths with a spooky ghost, then the environment will return a negative reward: a

decrease in points.
In a second example where the agent is driving a car:

ce The available actions are much broader and richer than for Pac-Man. The agent can
adjust the steering column, the accelerator and the brakes to varying degrees ranging

from subtle to dramatic.

e The environment in this case is the real world, consisting of roads, traffic,
pedestrians, trees, sky and so on. The state then is the condition of the vehicle’s
surroundings, as perceived by a human agent’s eyes and ears, or by an autonomous

vehicle’s cameras and lidar.

ce The reward, in the case of an algorithm, could be programmed to be positive for,
say, every meter of distance travelled toward a destination; it could be slightly negative

for minor traffic infractions and severely negative in the event of a collision.



DEEP REINFORCEMENT LEARNING

At long last, we reach the deep reinforcement learning section near the center of the
Venn diagram in Figure 4.3. A reinforcement learning algorithm earns its “deep” prefix
when an artificial neural network is involved in it, e.g., to learn what actions to take
when presented with a given state from the environment in order to have a high
probability of obtaining a positive reward. ° As we’ll see in the examples coming up in
the next section, the marriage of deep learning and reinforcement learning approaches

has proved a prosperous one. This is because:

e Deep neural networks excel at processing the complex sensory input provided by real
environments or advanced, simulated environments in order to distill relevant signals
out from a cacophony of incoming data. This is analogous to the functionality of the
biological neurons of your brain’s visual and auditory cortices, which receive input from

the eyes and ears, respectively.

e Reinforcement learning algorithms, meanwhile, shine at selecting an appropriate

action from a vast scope of possibilities.

Taken together, deep learning and reinforcement learning are a powerful problem-
solving combination. Increasingly complex problems tend to require increasingly large
data sets for deep reinforcement learning agents to wade through vast noise as well as
vast randomness in order to discover an effective policy for what actions it should take
in a given circumstance. Since many reinforcement learning problems take place in a
simulated environment, obtaining a sufficient amount of data is usually not a problem:

The agent can simply be trained on further rounds of simulations.

While the theoretical foundations for deep reinforcement learning have been around
for a couple of decades, ® as with AlexNet for vanilla deep learning (Figure 1.18) deep
reinforcement learning has in the past few years benefited from a confluence of

tailwinds:
1. Exponentially larger data sets and much richer simulated environments;

2, Parallel computing across many graphics processing units (GPUs) to model
efficiently with large data sets as well as the breadth of associated possible states and

possible actions;

3. A research ecosystem that bridges academia and industry, producing a quickly-
developing body of new ideas on deep neural networks in general as well as on deep

reinforcement learning algorithms in particular, e.g., to identify optimal actions across



a wide variety of noisy states.

VIDEO GAMES

Many readers of this book recall learning a new video game as a child. Perhaps while at
an arcade or staring at the family’s heavy cathode-ray-tube television set, it quickly
became apparent that missing the ball in Pong or Breakout was an unproductive move.
We processed the visual information on the screen and, yearning for a score in excess of
our friends’, devised strategies to manipulate the controller effectively and achieve this
aim. In recent years, researchers at a firm called DeepMind have been producing

software that likewise learns how to play classic Atari games.

DeepMind was a British technology startup founded by Demis Hassabis (Figure 4.4),
Shane Legg and Mustafa Suleyman in London in 2010. Their stated mission was to
“solve intelligence”, which is to say they were interested in extending the field of Al by
developing increasingly general-purpose learning algorithms. One of their early
contributions was the introduction of Deep Q-Learning Networks (DQNSs; noted within
Figure 4.1). Via this approach, a single model architecture was able to learn to play

multiple Atari 2600 games well—from scratch, simply through trial and error.

Figure 4.4 Demis Hassabis co-founded DeepMind in 2010 after completing his

Ph.D. in cognitive neuroscience at University College London.

In 2013, Volodymyr Mnih 7 and his DeepMind colleagues published ® on their DQN
agent, a deep reinforcement learning approach that we will come to understand
intimately when we construct a variant of it ourselves line by line in Chapter 13. Their

agent received raw pixel values from its environment, a video-game emulator, ° as its



state information—akin to the way human players of Atari games view a TV screen. In
order to efficiently process this information, Mnih et al.’s DQN included a
convolutional neural network (CNN), a common tactic for any deep reinforcement
learning model that is fed visual data (this is why we elected to overlap “Deep RL”
somewhat with “Machine Vision” in Figure 4.1). The handling of the flood of visual
input from Atari games (in this case, a little over two million pixels per second)
underscores how well-suited deep learning in general is to filtering out pertinent
features from noise. Further, playing Atari games within an emulator is a problem that
is well-suited to deep reinforcement learning in particular: While they provide a rich set
of possible actions that are engineered to be challenging to master, there is thankfully
no finite limit on the amount of training data available since the agent can engage in

endless rounds of play.

During training, the DeepMind DQN was not provided any hints or strategies—it was
provided only with state (screen pixels), reward (its point score, which it is
programmed to maximize) and the range of possible actions (game-controller buttons)
available in a given Atari game. The model was not altered for specific games, yet it was
able to outperform existing machine-learning approaches in six of the seven games
Mnih and his co-workers tested it on, even surpassing the performance of expert
human players on three. Presumably influenced by this impressive progress, Google
acquired DeepMind in 2014 for the equivalent of half a billion U.S. dollars.

In a follow-up paper published in the distinguished journal Nature, Mnih and his
teammates at now-Google DeepMind assessed their DQN algorithm across 49 Atari
games.'® The results are shown in Figure 4.5: It outperformed other machine-learning
approaches on all but three of the games (94% of them), and astonishingly, it scored

above human level on the majority of them (59%).*
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Figure 4.5 The normalized performance scores of Mnih and colleagues’ (2015)
DQN relative to a professional game tester: Zero percent represents random play,
while 100% represents the pro’s best performance. The horizontal line represents
the authors’ defined threshold of “human-level” play: the 75th percentile of
professionals’ scores.

BOARD GAMES

It might sound sensible that board games would serve as a logical prelude to video

games given their analog nature and their chronological head-start, however the use of



software emulators provided a simple and easy way to interact with video games
digitally. Instead, the availability of these emulation tools provided the means, and so
the principal advances in modern deep reinforcement learning initially took place in the
realm of video games. Additionally, relative to Atari games, the complexity of some
classical board games is much greater. There are myriad strategies and long-plays
associated with chess expertise that are not readily apparent in Pac-Man or Space
Invaders, for example. In this section, we provide an overview of how deep
reinforcement learning strategies mastered the board games Go, chess and shogi

despite the data-availability and computational-complexity headwinds.

AlphaGo

Invented several millennia ago in China, Go (illustrated in Figure 4.6) is a very popular
two-player strategy board game in Asia. The game has a simple set of rules based
around the idea of capturing one’s opponents’ pieces (called stones) by encircling them
with one’s own." This uncomplicated premise belies intricacy in practice, however. The
larger board and the larger set of possible moves per turn make the game much more
complex than, say, chess, for which we’ve had algorithms that can defeat the best
human players for two decades.”® There are a touch over 2 x 107 possible legal board
positions in Go, which is far more than the number of atoms in the universe* and about

100

a googol (10" ") more complex than chess.

Figure 4.6 The Go board game. One player uses the white stones while the other
uses the black stones. The objective is to encircle the stones of your opponent,
thereby capturing them.

An algorithm called Monte Carlo tree search (MCTS) can be employed to play
uncomplicated games competently. In its purest form, MCTS involves selecting random
moves'® until the end of gameplay. By repeating this many times, moves that tended to
lead to victorious game outcomes can be weighted as favorable options. Because of the

extreme complexity and sheer number of possibilities within sophisticated games like



Go, pure MCTS approach is impractical: There are simply too many options to search
through and evaluate. Instead of pure MCTS, an alternative approach involve MCTS
applied to a much more finite subset of actions that were curated by, for example, an
established policy of optimal play. This curated approach has proved sufficient for
defeating amateur human Go players but is uncompetitive against professionals. To
bridge the gap from amateur- to professional-level capability, David Silver (Figure 4.7)
and his colleagues at Google DeepMind devised a program called AlphaGo that

combines MCTS with both supervised learning and deep reinforcement 1earning.16.

Figure 4.7 David Silver is a Cambridge- and Alberta-educated researcher at
Google DeepMind. He has been instrumental in combining the deep learning and

reinforcement learning paradigms.

This paragraph will be in a trilobite-reading sidebar. Silver et al. (2016) used supervised
learning on a historical database of expert human Go moves to establish something
called a policy network, which provides a shortlist of possible moves for a given
situation. Subsequently, this policy network was refined via self-play deep
reinforcement learning, wherein both opponents are Go-playing agents of a comparable
skill level. Through this self-play, the agent iteratively improves upon itself, and
whenever it improves, it is pitted against its now-improved self, producing a positive-
feedback loop of continuous advancement. Finally, the cherry atop the AlphaGo
algorithm: a so-called value network that predicts the winner of the self-play games,
thereby evaluating positions on the board and learning to identify strong moves. The

combination of these policy and value networks reduces the breadth of search space for



the MCTS. END SIDEBAR.

AlphaGo was able to win the vast majority of games it played against other computer-
based Go players. Perhaps most strikingly, AlphaGo was also able to defeat Fan Hui,
the then-reigning European Go champion, five games to zero. This marked the first
time a computer defeated a professional human player in a full play of the game. As
exemplified by the Elo ratings' in Figure 4.8, AlphaGo performed at or above the level
of the best players in the world. Following this success, AlphaGo was famously matched
against Lee Sedol in March 2016 in Seoul, South Korea. Sedol has 18 world titles and is
considered one of the great players. The five-game match was broadcast and viewed live
by 200 million people. AlphaGo won the match 4-1 launching DeepMind, Go, and the

artificially-intelligent future into public imagination.
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Figure 4.8 The Elo score of AlphaGo (blue) relative to Fan Hui (green) and
several Go programs (red). The approximate human rank is shown on the right.
AlphaGo Zero

Having just learned about the incredible feats achieved by AlphaGo, it should come as
no surprise that the folks at DeepMind took their work further and created a second-
generation Go player: AlphaGo Zero. If you recall from the previous section, AlphaGo
was initially trained in a supervised manner; that is, expert human moves were used to
train the network initially, whereafter the network learned by reinforcement learning
through self-play. While this is still an impressive achievement, it doesn’t exactly “solve

intelligence” as DeepMind’s founders would have liked. A better approximation of



general intelligence would be a network that can learn to play Go in a completely de
novo setting —where the network is not supplied with any human input or domain

knowledge, but improves by deep reinforcement learning alone. Enter: AlphaGo Zero.

As we’ve alluded to before, the game of Go requires sophisticated lookahead capabilities
through vast search spaces. That is, there are so many possible moves and such a tiny
fraction of them are good moves in the short- and long-play of the game that
performing a search for the optimal move, keeping the likely future state of the game in
mind, becomes impossibly complex and computationally impractical. It is for this
reason that it was thought at the time that Go would be a final frontier for machine
intelligence —indeed, it was thought that the achievements of AlphaGo in 2016 were
still a decade or more away. Working off the momentum from the AlphaGo-Sedol
match in Seoul, researchers at DeepMind created AlphaGo Zero which learns to play
Go far beyond the level of the original AlphaGo—while being revolutionary in several
Ways.18 First and foremost, it is trained without any data from human gameplay. That
means it learns purely by trial-and-error. Second, it uses only the stones on the board
as input features. Contrastingly, AlphaGo received 15 additional features during
training, which included information such as how many turns since a move was played
or how many opponent stones would be captured. Third, a single (deep) neural network
was used to evaluate the board and decide on a next move, rather than separate policy
and value networks. Finally, the tree search is simpler and relies on the neural network

to evaluate positions and possible moves.

AlphaGo Zero played almost five million games of self-play over three days, taking an
estimated 0.4s per move to “think”. Within 36 hours, it had begun to outperform the
model that beat Lee Sedol in Seoul (retrospectively termed AlphaGo Lee), which—in
stark contrast—took several months to train. At the 72-hour mark, the model was pitted
against AlphaGo Lee in match conditions, where it handily won every single one of a
hundred games. Even more remarkable is that AlphaGo Zero achieved this on a single
machine with four tensor processing units (TPUs)"® whereas AlphaGo Lee was
distributed over multiple machines and used 48 TPUs (Similarly, AlphaGo Fan, which
beat Fan Hui, was distributed over 176 GPUs). In Figure 4.9, the Elo score® for
AlphaGo Zero is shown over time compared to the scores for AlphaGo Master®' and
AlphaGo Lee. On the right we can see the absolute Elo scores for a variety of iterations
of AlphaGo and some other Go programs. AlphaGo Zero is far-and-away the superior

Go player amongst this prestigious group.

Another interesting point that emerged from this research was that the nature of the
game-play by AlphaGo Zero is qualitatively different to that of human players and
AlphaGo Lee. AlphaGo Zero began with random play, but quickly learned professional



Jjoseki —corner sequences that are considered heuristics of good play. Eventually, after
further training, the mature model tended to prefer novel joseki that were previously
unknown to humankind. AlphaGo Zero did spontaneously learn a whole range of
classical Go moves, implying a pragmatic alignment with these techniques. However,
the model did this in a novel manner: It did not learn the concept of shicho (ladder
sequences), for example, until much later in its training, whereas this is one of the first
concepts taught to new human players. The authors additionally trained another
iteration of the model in a supervised manner. This supervised model performed better
initially, however it began to succumb to the self-learned model within the first 24
hours of training and ultimately achieves a lower Elo score (Figure 4.9). Together, these
results suggest that the self-learned model might have a distinct style of play to that of

human players; a more dominating style and one that the supervised model fails to

develop.
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Figure 4.9 Comparing Elo scores between AlphaGo Zero and other AlphaGo
variations or other Go programs. In the left-hand figure, the comparison is over

days of AlphaGo Zero training.

AlphaZero

Following these successes, the team at DeepMind went on to look into even more
general game-playing neural networks. While AlphaGo Zero is adept at playing Go,
could a comparable network learn to play multiple games well? To put this to the test,
they added two new games to the repertoire: chess and shogi*?. Most readers are likely
familiar with the game of chess, and shogi—referred to by some as Japanese chess—is
similar. Both games are two-player strategy games, both take place on a grid-format
board, both culminate in a checkmate of the opponent’s king, and both consist of a
range of pieces with different moving abilities. However, shogi is significantly more
complex than chess given the larger board size (9x9, versus 8x8 in chess) and the fact

that opponent pieces can be replaced anywhere on the board after their capture.

Historically, artificial intelligence has had a rich interaction with the game of chess.



Over several decades, computer programs that play chess have been developed
extensively. Perhaps the most famous to date is Deep Blue, a creation of IBM, that went
on to beat the world champion Garry Kasparov in 199723, It was heavily reliant on
brute-force computing power* to execute complex searches through possible moves,
and combined this with hand-crafted features and domain-specific adaptations. The
evaluation function of Deep Blue was fine-tuned by analyzing thousands of master
games (it was a supervised-learning system!) and this function was even tweaked
between games.* It’s clear that Deep Blue, and other chess programs like it, were hard-

coded to play chess and nothing else.

While Deep Blue was an achievement two decades ago, however their system was not
generalizable—it conceivably would not perform well at any task other than chess. After
AlphaGo Zero demonstrated that the game of Go could be learned by a neural network
from first principles alone, given nothing but the board and the rules of the game, Silver
and his colleagues set out to devise a generalist neural network, a single network

architecture that could dominate not only at Go, but other board games as well.

Compared to Go, chess and shogi present pronounced obstacles. The rules of the games
are position-dependent (in that pieces can move differently based on where they are on
the board), asymmetrical (pieces can only move in one direction)?, long-range actions

are possible (such as the queen moving across the entire game), captured pieces can be

replaced in shogi, and the game can result in a draw.

AlphaZero feeds the board positions into a neural network and outputs a vector of move
probabilities for each possible action, as well as a scalar®” outcome value for that move.
The network learns the parameters for these move probabilities and outcomes entirely
from self-play deep reinforcement learning, AlphaGo Zero did. An MCTS is then
performed on the reduced space guided by these probabilities, returning a vector of
probabilities over the possible moves. Where AlphaGo Zero optimized the probability of
winning (Go is a binary win/loss game), Alpha Zero instead optimizes for the expected
outcome. During self-play, AlphaGo Zero would retain the best player to date, and
evaluate updated versions of itself against that player, continually replacing the player
with the next best version; Alpha Zero instead maintains a single network and at any
given time is playing against the latest version of itself. Alpha Zero was trained to play
each of chess, shogi and Go for a mere 24 hours. There were no game-specific
modifications, with the exception of a noise parameter that promotes move exploration

—this was scaled to the number of legal moves in each game.

After one hundred games, Alpha Zero had not lost a single game against the 2016 Top
Chess Engine Championship (TCEC) world champion Stockfish. In shogi, the Computer



Shogi Association (CSA) world champion Elmo managed to beat Alpha Zero only eight
times in 100 games. Perhaps its most worthy opponent, AlphaGo Zero was able to
defeat Alpha Zero in forty of their hundred games. Figure 4.10 shows the Elo scores for
Alpha Zero relative these three adversaries. Not only was Alpha Zero superior; it was
efficient. Alpha Zero’s Elo score exceeded its greatest foes’ after just two, four and eight
hours for shogi, chess and Go, respectively. This is a sensationally rapid rate of
learning, considering that in the case of Elmo and Stockfish, these computer programs
represent the culmination of decades of research and fine-tuning in a focused, domain-
specific manner. The generalizable Alpha Zero algorithm is able to play all three games
with aplomb: Simply switching out learned weights from otherwise identical neural
network architectures imbues each with the same skills that have taken years to
develop by other means. These results demonstrate that deep reinforcement learning is

a strikingly powerful approach for developing general expert gameplay in an undirected

fashion.
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Figure 4.10 Comparing Elo scores between Alpha Zero and each of its opponents
in chess, shogi and Go. Alpha Zero rapidly outperformed all three opponents.

MANIPULATION OF OBJECTS

As this chapter’s title might have suggested, we’ve centered our coverage of deep
reinforcement learning on its game-playing applications. While games offer a hot
testbed for exploring the generalization of machine intelligence, in this section we’ll
spend a few moments expounding on a practical, real-world applications of deep
reinforcement learning as well. We mentioned some such applications earlier in this
chapter: autonomous vehicles are an excellent example (and it might be plain to see,

this application isn’t that different from game-playing, albeit with higher stakes).

As an example, we’ll provide an overview of research by Sergey Levine, Chelsea Finn
(Figure 4.11) and lab-mates at the University of California, Berkeleyzs. These
researchers trained a robot to perform a number of motor skills that require complex
visual understanding and depth perception, such as screwing the cap back onto a bottle,
removing a nail with a toy hammer, placing a hanger on a rack or inserting a cube in a

shape-fitting game (Figure 4.12).



Figure 4.11 Chelsea Finn is a doctoral candidate at the University of California,
Berkeley in its AI Research Lab.

(a) hanger (b) cube (¢) hammer (d) bottle

Figure 4.12 Sample images from Levine, Finn et al. (2016) exhibiting various

object-manipulation actions the robot was trained to perform.

Levine, Finn and colleagues’ algorithm maps raw visual input directly to the movement
of the motors in the robot’s arm. Their policy network was a seven-layer-deep
convolutional neural network (CNN) consisting of less than a hundred thousand
artificial neurons—a minuscule amount in deep-learning terms, as we’ll see when we

train orders-of-magnitude larger networks later in this book. While it would be tricky to



elaborate further on this approach before we’ve delved much into artificial-neural-
network theory (Part II, which is just around the corner), there are three takeaway
points we’d like to highlight on this elegant practical application of deep reinforcement
learning. First, it is an “end-to-end” deep learning model in the sense that the model
takes in raw images (pixels) as inputs and then outputs directly to the robot’s motors.
Second, the model generalizes neatly to a broad range of unique object-manipulation
tasks. Third, it is an example of the policy gradient family of deep reinforcement
learning approaches, rounding out the terms featured in the Venn diagram in Figure
4.1. Policy gradient methods are distinct from the DQN approach that is the focus of
Chapter 13 but we’ll touch on it then too.

POPULAR DEEP REINFORCEMENT LEARNING ENVIRONMENTS

Over the last few sections, we’ve talked a fair bit about software emulation of
environments in which to train reinforcement learning models. This area of
development is crucial to the ongoing progression of reinforcement learning—without
environments in which our agents can play and explore (and gather data!) there would
be no training of models. Here we’ll introduce a the three most popular environments,

discussing their high-level attributes.

OpenAl Gym

The OpenAl Gym™ is developed by the non-profit Al research company OpenAI*°. The
mission of OpenAl is to advance artificial general intelligence (more on that in the next
section!) in a safe and equitable manner. To that end, the researchers at OpenAl have
produced and open-sourced a number of tools for Al research, including the OpenAl
Gym. This toolkit is designed to provide an interface for training reinforcement
learning models, be they deep or otherwise. As captured in Figure 4.13, the Gym
includes a wide variety of environments, including a number of Atari 2600 games,*'
multiple robotics simulators, a few simple text-based algorithmic games and several
robotics simulations using the MuJoCo physics engine®?. In Chapter 13, we'll install
OpenAl Gym in a single line of code and then employ an environment it provides to
train the DQN agent that we build. The gym is written in Python and is compatible with
any deep-learning computation library, e.g., TensorFlow (Chapter 14) and PyTorch

(Chapter 15).
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Figure 4.13 A sampling of OpenAI Gym environments. (a) CartPole, a classic

control-theory problem. (b) LunarLander, a continuous-control task run inside a
two-dimensional simulation. (¢) Skiing, an Atari 2600 game. (d) Humanoid, a
three-dimensional MuJuCo physics engine simulation of a bipedal person. (e)
FetchPickAndPlace, one of several available simulations of real-world robot arms,
in this case involving one called Fetch with the goal of grasping a block and
placing it in a target location. (f) HandManipulateBlock, another practical

simulation of a robotic arm, the Shadow Dexterous Hand.

DeepMind Lab

DeepMind Lab®? is another RL environment, this time from the developers at Google
DeepMind (although they point out that DeepMind Lab is not an official Google
product). As can be seen in Figure 4.14, the environment is built on top of id software’s
Quake III Arena®* and provides a sci-fi inspired three-dimensional world in which

agents can explore. The agent experiences the environment from the first-person



perspective, which is distinct from the Atari emulators available via the OpenAI Gym.

Figure 4.14 A DeepMind Lab environment, in which positive-reward points are

awarded for capturing scrumptious green apples.

There are a variety of levels available which can be roughly divided into four categories:

1. Fruit gathering levels, where the agent simply tries to find and collect rewards

(apples and melons) while avoiding penalties (lemons).

2. Navigation levels with a static map, where the agent is tasked with finding a goal and
remembering the layout of the map. The agent can either be randomly placed within a
map at the start of each episode while the goal remains stationary, which tests initial
exploration followed by a reliance on memory to repeatedly find the goal; or the agent
can start in the same place while the goal is moved for every episode, testing the agents

ability to explore.

3. Navigation levels with random maps, where the agent is required to explore a novel
map in each episode and find the goal, and then repeatedly return to the goal as many

times as possible within a time limit.

4. Laser-tag levels, where the agent is rewarded for hunting and attacking bots in an
array of different scenes. The color and texture of the bots are randomized for each

episode to prevent the agent from recognizing simple colors too easily.

Installation of DeepMind Lab is not as straightforward as the OpenAI Gym,® but it

provides a rich, dynamic first-person environements in which to train agents, and the



levels provide complex scenarios involving navigation, memory, strategy, planning and
fine-motor skills. These challenging environments push the limits of what is tractable

with contemporary deep reinforcement learning.

Unity ML-Agents

Unity is a highly sophisticated engine for two- and three-dimensional video games and
digital simulations. Given everything we’ve learned about reinforcement learning over
the course of this chapter, it should come as no surprise that the makers of a popular
game engine are also in the business of providing environments to incorporate
reinforcement learning into video games. The Unity ML-Agents plugin36 enables
reinforcement learning models to be trained within Unity-based video games or
simulations and, perhaps more fitting with the purpose of Unity itself, allows
reinforcement learning models to guide the actions of agents within the game. From a
distance, it appears inevitable that the development of sophisticated reinforcement
learning models to control other characters within video games is going to be a

momentous step forward in the gaming experience.

As with DeepMind Lab, installation of Unity ML-Agents is not a one-liner.%’

THREE CATEGORIES OF Al

Of all deep learning topics, deep reinforcement learning is perhaps the one most closely
tied to the popular perception of artificial intelligence as a system for replicating the
cognitive, decision-making capacity of humans. In light of that, to wrap up this chapter,

in this section we introduce three categories of Al

Artificial Narrow Intelligence

Artificial narrow intelligence (ANI) is machine expertise at a very specific task. Many
diverse examples of ANI exist today, and we’ve mentioned plenty already, such as the
visual recognition of objects, real-time machine translation between natural languages,

automated financial-trading systems, AlphaZero and self-driving cars.

Artificial General Intelligence

Artificial general intelligence (AGI) would involve a single algorithm that could
perform well at all of the tasks described in the previous paragraph: It would be able to
recognize your face, translate this book into another language, optimize your
investment portfolio, beat you at Go, and take you safely to your holiday destination.
Indeed, this algorithm would be approximately indistinguishable from all of the

intellectual capabilities that humans have. There are so many hurdles to overcome in



order for AGI to be realized that it is probably impossible to guess when it will be
achieved, if it will be achieved at all. That said, Al experts are happy to wave a finger in
the air and speculate on timing. In a study conducted by the philosopher Vincent
Miiller and the influential futurist Nick Bostrom,g‘8 the median estimate across

hundreds of professional Al researchers was that AGI will be attained in the year 2040.

Artificial Super Intelligence

Artificial Super Intelligence (ASI) is difficult to describe because it’s properly mind-
boggling. AST would be an algorithm that is markedly more advanced than the
intellectual capabilities of a human.?® If AGI is possible, then ASI may be as well. Of
course, there are even more hurdles on the road to ASI than to AGI, presumably most
of which we can’t foresee clearly today. Citing the Miiller and Bostrom (2014) survey
again, however, Al experts’ median estimate for the arrival of ASI is 2060, a rather
hypothetical date that falls within the lifespan of many earthlings alive today. In
Chapter 16, at which point you’ll be well-versed in deep learning both in theory and in
practice, we’ll discuss both how deep learning models could contribute to AGI as well as
the present limitations associated with deep learning that would need to be bridged in

order to attain AGI or, gasp, ASI.

SUMMARY

The chapter began with an overview relating deep learning to the broader field of
artificial intelligence. We then detailed deep reinforcement learning, an approach that
blends deep learning with the feedback-providing reinforcement learning paradigm. As
discussed via real-world examples ranging from the boardgame Go to the grasping of
physical objects, such deep reinforcement learning enables machines to process vast
amounts of data and take sensible actions on complex tasks, associating it with popular

conceptions of Al.
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5 The (Code) Cart Ahead of the (Theory) Horse

In Part I, we provided a high-level overview of deep learning by demonstrating its use
across a spectrum of cutting-edge applications. Along the way, we sprinkled in
foundational deep learning concepts from its hierarchical, representation-learning
nature through to its relationship to the field of artificial intelligence. Repeatedly, as we
touched on a concept, we noted that in the second part of the book we would dive into
the low-level theory and mathematics behind it. While we promise this is true, we are
going to take this final opportunity to put the fun, hands-on coding cart ahead of the

proverbial—in this case, theory-laden—horse.

In this chapter we will do a line-by-line walk through of a notebook of code featuring a
deep learning model. While you will need to bear with us because we have not yet
detailed much of the theory underpinning the code, this serpentine approach will make
the apprehension of theory in the subsequent chapters easier: Instead of being an
abstract idea, each element of theory we introduce in this part of the book will be rooted

by a tangible line of applied code.

PREREQUISITES

Working through the examples in this book will be easiest if you are familiar with the
basics of the Unix command line. These are provided by Zed Shaw in Appendix A of his
deceptively enjoyable Learn Python the Hard Way. *

Speaking of Python, since it is comfortably the most popular software language in the
data science community (at time of writing, anyway), it’s the language we selected for
our example code throughout the book. Python’s prevalence extends both across the
composition of standalone scripts through to the deployment of machine-learning
models into production systems. If you're new to Python or you're feeling a tad rusty,
Shaw’s book serves as an appropriate general reference while Daniel Chen’s Pandas for

Everyone * is appropriate for applying the language to modeling data in particular.

INSTALLATION

Regardless of whether you're planning on executing our code notebooks via Unikx,



Linux, Mac OS or Windows, we have made step-by-step installation instructions

available in the GitHub repository that accompanies this book:

github.com/illustrated-series/deep-learning-illustrated. If you’d prefer to view the
completed notebooks instead of running them on your own machine, you are more than

welcome to do that from the GitHub repo as well.

We elected to provide our code within the comfort of interactive Jupyter notebooks. 3
Jupyter is a common option today for writing and sharing scripts, particularly during
exploratory phases in which a data scientist is experimenting with preprocessing,
visualizing and modeling her data. Our installation instructions suggest running
Jupyter from within a Docker container. * This containerization ensures that you’ll
have all of the software dependencies you need to running our notebooks while
simultaneously preventing these dependencies from clashing with software you already

have installed on your system.

A SHALLOW NETWORK IN KERAS

To kick off the code portion of our book, we will:

ce Detail a revered data set of handwritten digits,

ce Load these data into a Jupyter notebook,

ce Use Python to prepare the data for modeling, and

ce Write a few lines of code in the high-level API Keras to construct an artificial neural
network (in TensorFlow, behind the scenes) that predicts what digit a given

handwritten sample represents.

The MNIST Handwritten Digits

Back in Chapter 1 when we introduced the LeNet-5 machine-vision architecture (Figure
1.12), we mentioned that one of the advantages Yann LeCun (Figure 1.10) and his
colleagues had over previous deep-learning practitioners was a superior data set for
training their model. This data set of handwritten digits, called MNIST (see the samples
in Figure 5.1), came up again in the context of being imitated by Ian Goodfellow’s
generative adversarial network (Figure 3.2a). The MNIST data set is ubiquitous across
deep-learning tutorials, and for good reason. By modern standards, the data set is small
enough that it can be modeled rapidly, even on a laptop computer processor. In
addition to their portable size, the MNIST digits are also handy because they occupy a

sweet spot with respect to how challenging they are to classify: The handwriting



samples are sufficiently diverse and contain complex enough details that they are not
easy for a machine-learning algorithm to identify with high accuracy, and yet by no
means do they pose an insurmountable problem. However, as we shall observe
ourselves as this part of the book develops, a well-designed deep-learning model can

near-faultlessly classify the handwriting as the appropriate digit.
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Figure 5.1 A sample of a dozen images from the MNIST dataset. Each image
contains a single digit handwritten by either a high-school student or a U.S. census

worker.

The MNIST data set was curated by LeCun, Corinna Cortes (Figure 5.2) and the
Microsoft-Al-researcher-turned-musician Chris Burges in the 1990s. ® It consists of
sixty thousand handwritten digits for training an algorithm and ten thousand more for
validating the algorithm’s performance on previously unseen data. The data are a
subset (nay, a modification) of a larger body of handwriting samples collected from
high school students and census workers by the United States’ National Institute of
Standards and Technology (INIST).



Figure 5.2 The Danish computer scientist Corinna Cortes is Head of Research at
Google’s New York office. Among her countless contributions to both pure and
applied machine learning, Cortes (with Chris Burges and Yann LeCun) curated the
ubiquitous MNIST dataset.

As exemplified by Figure 5.3, every MNIST digit is a 28-by-28 pixel image. ® We
quickly became bored of drawing individual pixels so only depicted them individually in
the top-left corner of the figure, but of course the entirety of the handwritten digit (in
this example, the number two) is represented by pixels. Each pixel is 8-bit, meaning
that the pixel darkness can vary from zero (white) to 255 (black), with the intervening

range of integers representing gradually darker shades of gray.
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Figure 5.3 Each handwritten MNIST digit is stored as a 28-by-28-pixel grayscale
image. See the Jupyter notebook titled MNIST digit pixel by pixel that accompanies

this book for the code we used to create this figure.

A Schematic Diagram of the Network

In our Shallow Net in Keras Jupyter notebook 7 , we create an artificial neural network
to predict what digit a given handwritten MNIST image represents. As shown in the
rough schematic diagram in Figure 5.4, this artificial neural network features one
hidden layer of artificial neurons for a total of three layers. Recalling Figure 4.2, with so
few layers this ANN would not generally be considered a deep learning architecture;

hence it is shallow.

28 x 28 =784

!

64 sigmoid neurons

l

output 10 softmax neurons

Figure 5.4 A rough schematic of the shallow artificial-neural-network
architecture we’re whipping up in this chapter. We’ll cover the particular sigmoid

and softmax flavors of artificial neurons in Chapter 6.

The first layer of the network is reserved for inputting our MNIST digits. As they are



28-by-28 pixel images, each one has a total of 784 values. After we load in the images,
we’ll flatten them from their native, two-dimensional 28-by-28 shape to a one-

dimensional array of 784 elements.

This paragraph is a Trilobite-attention SIDEBAR. You could argue that collapsing the
images from two dimensions to one will cause us to lose a lot of the meaningful
structure of the handwritten digits. Well, if you argued that, you’d be right! Working
with one-dimensional data, however, means we can use less sophisticated deep learning
models, which is appropriate at this early stage in our journey. Later, in Chapter 10,
we’ll be in a position to appreciate more complex models that can handle multi-
dimensional inputs. END SIDEBAR.

The pixel-data inputs will be passed through a single, hidden layer of 64 artificial
neurons. ° The number (64) and type (sigmoid) of these neurons aren’t critical details
at present; we’ll begin to explain these model attributes in the next chapter. The key
piece of information at this time is that, like we demonstrated in Chapter 1 (see Figures
1.19 and 1.20), the neurons in the hidden layer are responsible for learning
representations of the input data so that the network can predict what digit a given

image represents.

Finally, the information output by the hidden layer will be passed to ten neurons in the
output layer. Again, we’ll detail how softmax neurons work in the next chapter but, in
essence, we have ten neurons because we have ten types of digit to classify. These ten
neurons each output a probability: one for each of the ten possible digits that a given
MNIST image could represent. As an example, a fairly-well-trained network which is
fed the image in Figure 5.3 might output that there is a 0.92 probability that the image
is of a two, a 0.06 probability that it’s a three, a 0.02 probability that it’s an eight, and a
zero probability for the other seven digits.

Loading the Data

At the top of the notebook we import our software dependencies, which is unexciting

but necessary:

Example 5.1 Software dependencies for shallow net in Keras

import keras
from keras.datasets import mnist

from keras.models import Sequential



from keras.layers import Dense
from keras.optimizers import SGD

from matplotlib import pyplot as plt

We import Keras because that’s the library we’re using to fashion our neural network.
We also import the MNIST dataset because these, of course, are the data we're working
with in this example. The lines ending in Sequential, Dense and SGD will make
sense later; no need to worry about them at this stage. Finally, the matplotlib line

will enable us to plot MNIST digits out to our screen.

With these dependencies imported, we can conveniently load the MNIST data in a

single line of code:

(X train, y train), (X valid, y valid) = mnist.load data()

Let’s examine these data. As mentioned in Chapter 4, the mathematical notation x is
used to represent the data we’re feeding into a model as input while y is used for the
labelled output that we’re training the model to predict. With this in mind, X train
stores the MNIST digits we’ll be training our model on. ° Executing X train.shape
yields the output (60000, 28, 28).This shows us that, as expected, we have 60,000
images in our training data set, each of which is a 28-by-28 matrix of values. Running
y_train.shape, we unsurprisingly discover we have 60,000 labels indicating what digit
each of the 60,000 training images contains. y_train[0:12] outputs an array of twelve
integers representing the first dozen labels, so we can see that the first handwritten
digit in the training set (X_train[0]) is the number five, the second is a zero, the third is

a four, and so on:

array([(5, O, 4, 1, 9, 2, 1, 3, 1, 4, 3, 5], dtype=uint8)

These happen to be the same dozen MNIST digits that were shown above in Figure 5.1,

a figure we created by running the following chunk of code:



plt.figure(figsize=(5,5))

for k in range (12):
plt.subplot (3, 4, k+1)
plt.imshow (X train[k], cmap='Greys')
plt.axis('off")

plt.tight layout ()

plt.show ()

Akin to the training data, by examining the shape of the validation data

(X _valid.shape, y valid.shape), we note that there are the expected ten
thousand 28-by-28 pixel validation images, each with a corresponding label: (10000,
28, 28),(10000,). Investigating the values that make up an individual image like

X valid[0], we observe that the matrix of integers representing the handwriting is
primarily zeros (whitespace). Tilting our head, you might even be able to make out that
the digit in this example is a seven with the highest integers (e.g., 254, 255)
representing the black core of the handwritten figure and the outline of the figure
(composed of intermediate integers) fading toward white. To corroborate that this is
indeed the number seven, we both printed out the image with

plt.imshow(X valid[0], cmap='Greys') (outputshown in Figure 5.5) and
printed out its label with y valid[0] (output was 7).
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Figure 5.5 The first MNIST digit in the validation data set (X_valid[0]) is a

seven.

Reformatting the Data

The MNIST data now loaded, we come across the heading Preprocess data in the
notebook. We won’t, however, be preprocessing the images by applying functions to,
say, extract features that provide hints to our artificial neural network. We will simply
be rearranging the shape of the data so that they match up with the shapes of the input

and output layers of the network.

Thus, we’ll flatten our 28-by-28 pixel images into 784-element-long arrays. We

employed the reshape () method to do this:

X train = X train.reshape (60000, 784) .astype('float32"')

X valid = X valid.reshape (10000, 784) .astype('float32'")

Simultaneously, we used astype(' f1oat32 ') to convert the pixel darknesses from
integers into single-precision float values.'® This conversion was preparation for the
subsequent step, in which we divided all of the values by 255 so that they range from

zero to one:™

X train /= 255



X valid /= 255

Revisiting our example handwritten seven from Figure 5.5 by running X valid[0],
we can verify that it is now represented by a one-dimensional array made up of float

values as low as zero and as high as one.

That’s all for reformatting our model inputs X. For the labels y, we need to convert

them from integers into one-hot encodings; we’ll demonstrate what these are via

application:
n classes = 10
y train = keras.utils.to categorical(y train, n classes)

y valid = keras.utils.to categorical(y valid, n classes)

There are ten possible handwritten digits, so we set n_ classes equal to 10. In the other
two lines of code we use a convenient utility function to_ categorical, which is provided
within the Keras library, to transform both the training and validation labels from
integers into the one-hot format. Execute y_valid to see how the label seven is

represented now:

array([0., 0., 0., 0., 0., 0., 0., 1., 0., 0.1, dtype=float3?

Instead of using an integer to represent seven, we have an array of length ten consisting
entirely of zeroes, with the exception of a 1 in the eighth position. In such a one-hot
encoding, the label zero would be represented by a lone 1 in the first position, one by a
lone 1 in the second position, and so on. We arrange the labels with such one-hot
encodings so that they line up with the ten probabilities being output by the final layer
of our artificial neural network. They represent the ideal output that we are striving to
attain with our network: If the input image is a handwritten seven then a perfectly-
trained network would output a probability of 1.00 that it is a seven and a probability of

0.00 for each of the other nine classes of digits.

Designing a Neural Network Architecture

From your authors’ perspective, this is the most pleasurable bit of any script featuring



deep learning code: architecting the artificial neural net itself. There are infinite
possibilities here and, as we progress through the book, you will begin to develop an
intuition that guides the selection of the architectures you experiment with for a given
problem. Referring back to Figure 5.4, for the time being, we’re keeping the

architecture as elementary as possible in Example 5.2:

Example 5.2 Keras code to architect a shallow neural network

model = Sequential ()
model.add (Dense (64, activation='sigmoid', input shape=(784,))

model .add (Dense (10, activation='softmax'))

In the first line of code, we instantiate the simplest type of neural-network model
object, the sequential type'” and—in a dash of extreme creativity—name the model
model. In the second line, we use the add () method of our mode1 object to specify the
attributes of our network’s hidden layer (64 sigmoid-type artificial neurons in the
general-purpose, fully-connected arrangement defined by the Dense () method)™ as
well as the shape of our input layer (one-dimensional array of length 784). In the third
and final line we use the add () method again to specify the output layer and its
parameters: ten artificial neurons of the sof tmax variety, corresponding to the ten
probabilities (one for each of the ten possible digits) that the network will output when

fed a given handwritten image.

Training a Deep Learning Model

Later, we'll return to the model . summary () and model.compile () steps of the
Shallow Net in Keras notebook, as well as its three lines of arithmetic. For now,

skipping ahead to the model-fitting step:

Example 5.3 Keras code to train our shallow neural network

model.fit (X train, y train,
batch size=128, epochs=200,

verbose=1,



validation data=(X valid, y valid))

The critical aspects are that:

1. The fit () method of our model object enables us to train our artificial neural
network with the training images X train as inputs and their associated labels

y train as the desired outputs.

2. As the network trains, the £it () method also provides us with the option to
evaluate the performance of our network by passing our validation data X validand

y_validintothe validation data parameter.

3. With machine learning, and especially with deep learning, it is commonplace to train
our model on the same data multiple times. One pass through all of our training data
(60,000 images in the current case) is called one epoch of training. By setting the
epochs parameter to 200, we cycle through all 60,000 training images two hundred

separate times.

4. By setting verbose to 1, model. fit () will provide us with plenty of feedback as
we train. At the moment, we’ll focus on the val acc statistic output following each
epoch of training. Validation accuracy is the proportion of the 10,000 handwritten
images in X valid where the network’s highest probability in the output layer

corresponds to the correct digit as per the labelsin y valid.

Following the first epoch of training, we observe val acc: 0.1010."** Thatis, 10.1%
of the images from the held-out validation dataset were correctly classified by our
shallow architecture. Given that there are ten classes of handwritten digits, we’d expect
a random process to guess ten percent of the digits correctly by chance, so this is not an
impressive result. As the network continues to train, however, the results improve.
After ten epochs of training, it is correctly classifying 36.5% of the validation images—
far better than would be expected by chance! And this is only the beginning: After 200
epochs, the network’s improvements appears to be plateauing as it approaches 86%

validation accuracy.

Since we constructed such an uninvolved, shallow neural-network architecture, this is

not too shabby!

SUMMARY



Putting the cart before the horse, in this chapter we coded up a shallow, elementary
artificial neural network. With decent accuracy, it is able to classify the MNIST images.
Over the coming chapters, as we dive into theory, unearth artificial neural network
best-practices, and layer up to authentic deep learning architectures, we should surely

be able to do much better, no? Let’s see...

1 . Shaw, Z. (2013). Learn Python the Hard Way, 3rd Ed. New York, NY: Addison-

Wesley. This relevant appendix, Shaw’s Command Line Crash Course, is available

online at learnpythonthehardway.org/book/appendixa.html

2 . Chen. D. (2017). Pandas for Everyone: Python Data Analysis. New York, NY:
Addison-Wesley.

3 . jupyter.org; we recommend familiarizing yourself with the hot keys to breeze

through Jupyter notebooks with pizzazz.

4 . docker.com

5 . yann.lecun.com/exdb/mnist/

6 . Python uses zero-indexing so the first row and column are denoted with a zero. The

28th row and 28th column of pixels are therefore both denoted with 27.

7 . Within this book’s GitHub repository, navigate into the notebooks directory.

8 . “Hidden” layers are so called because they are not exposed; data impact them only

indirectly, via the input layer or the output layer of neurons.

9 . The convention is to use an upper-case letter like X when the variable being

represented is a two-dimensional matrix or a data structure with even higher
dimensionality. In contrast, a lower-case letter like x is used to represent a single value

(a scalar) or a one-dimensional array.

10. The data are initially stored as uint8, which is an unsigned integer from o to 255.
This is more memory efficient, but of course it doesn’t encapsulate much precision

since there are only 256 possible values. Without specifying, Python would default to a



64-bit float which is overkill. Thus, by specifying a 32-bit float we can be sure of what

we're feeding to the network.

11. Machine learning models tend to learn more efficiently when fed standardized
inputs. Binary inputs would typically be a 0 or a 1, while distributions are often
normalized to have a mean of zero and a standard deviation of one. As we’ve done here,

pixel intensities are generally scaled to range from zero to one.

12. So named because each layer in the network passes information to only the next

layer in the sequence of layers

13. Once more, these now-esoteric terms will become comprehensible over the coming

chapters.

14. Artificial neural networks are stochastic (due to the way they’re initialized as well as
the way they learn) so your results will vary slightly from ours. Indeed, if you re-run the
whole notebook (e.g., by clicking on the Kernel option in the Jupyter menu bar and

selecting Restart & Run All), you should obtain new, slightly different results yourself.

15. By the end of Chapter 8, we’ll have enough theory under our belts to study the
output model.fit () in all its glory. For our immediate “cart before the horse”

purposes, coverage of the validation accuracy metric alone suffices.



6 Artificial Neurons Detecting Hot Dogs

Having received tantalizing exposure to applications of deep learning in the first part of
this book and having coded up a functioning neural network in the preceding chapter,
the moment has come to delve into the nitty-gritty theory underlying these capabilities.
We will begin by dissecting artificial neurons, the units that—when wired together—

constitute an artificial neural network.

BIOLOGICAL NEUROANATOMY 101

As presented in the opening paragraphs of this book, ersatz neurons are inspired by
biological ones. Given that, let’s take a gander at Figure 6.1 for a précis of the first
lecture in any neuroanatomy course: A given biological neuron receives input into its
cell body from many (generally thousands) of dendrites, with each dendrite receiving
signals of information from another neuron in the nervous system—a biological neural
network. When the signal conveyed along a dendrite reaches the cell body, it causes a
small change in the voltage of the cell body. ' Some dendrites cause a small positive
change in voltage, while the others cause a small negative change. If the cumulative
effect of these changes causes the voltage to increase from its resting state of -70
millivolts to the critical threshold of -55 millivolts, the neuron will fire something called
an action potential away from its cell body, down its axon, which transmits a signal to

other neurons in the network.



Figure 6.1 Cartoon of the anatomy of a biological neuron.

To summarize, biological neurons typically:
1. receive information from many other neurons,
2, via changes in cell voltage at the cell body, and

3. transmit a signal if the cell voltage crosses a threshold level, which can be received by

many other neurons in the network.

TRILOBITE SIDEBAR: An observant reader might have noticed the use of matching
colors in the text and figures here. This is intentional, and it’s a tool we’ll use more
often in the coming chapters as we begin to discuss a few important equations and the

variables they contain—so keep your eye out for it!

THE PERCEPTRON

In the late 1950s, the American neurobiologist Frank Rosenblatt (Figure 6.2) published
on his perceptron, an algorithm influenced by his understanding of biological neurons,
making it the earliest formulation of an artificial neuron. * Analogous to their living

inspiration, the perceptron (Figure 6.3) can:
1. receive input from multiple other neurons,

2, via a simple arithmetic operation called the weighted sum,

and

3. generate an output if this weighted sum crosses a threshold level, which can then be



sent on to many other neurons within a network.

Figure 6.2 The American neurobiology and behavior researcher Frank
Rosenblatt. He conducted much of his work out of the Cornell Aeronautical
Laboratory, including physically constructing his Mark I Perceptron there. This
machine, an early relic of artificial intelligence, can today be viewed at the

Smithsonian Institution in Washington, D.C.
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Figure 6.3 Schematic diagram of a perceptron, an early artificial neuron. Note the
structural similarity to the biological neuron in Figure 6.1.

The Hot Dog / Not Hot Dog Detector

Let’s work through a light-hearted example to understand how the perceptron
algorithm works. We're going to look at a perceptron that is specialized in

distinguishing whether a given object is a hot dog or, well... not a hot dog.



A critical attribute of perceptrons is that they can only be fed binary information as
inputs, and their output is restricted to being binary as well. Thus, our hot dog-
detecting perceptron must be fed its particular three inputs (indicating whether the
object involves ketchup, mustard, or a bun, respectively) as either a 0 or a 1. In Figure
6.4:

ce The first input (a purple 1) indicates the object being presented to the perceptron

involves ketchup.
oe The second input (also a purple 1) indicates the object has mustard.

ce The third input (a purple 0) indicates the object does not include a bun.

hot dog?

g
[I—

()

Figure 6.4 Example 1 of a hot dog-detecting perceptron: In this instance, it
predicts there is indeed a hot dog.

To make a prediction as to whether the object is a hot dog or not, the perceptron
independently weights each of these three inputs. * The weights that we arbitrarily
selected in this (entirely contrived) hot dog example indicate that the presence of a bun,
with its weight of six, is the most influential predictor of whether the object is a hot dog
or not. The intermediate predictor is ketchup with its weight of three, and the least

influential predictor is mustard with a weight of two.

Let’s determine the weighted sum of the inputs: One input at a time (i.e., element-
wise), we multiply the input by its weight, and then sum the individual results. So, first

let’s calculate the weighted inputs:

1. for the ketchup input: 3 x1=3



2. for mustard: 2 x 2 =2
3. and for bun: 6 x 0 =0

With those three products, we can compute that the weighted sum of the inputs is five:
3 + 2 + 0 = 5. To generalize from this example, the calculation of the weighted sum of

inputs is captured by Equation 6.1:

Z W - T (6.1)

Where:

ce 1w; is the weight of a given input i (in our example, w, = 3, w, = 2 and w, = 6)

e x; is the value of a given input 7 (in our example, x; = 1, x, = 1 and x5 = 0)

oe w; - x; represents the product of 1v; and x;—i.e., the weighted value of a given input 1

(\ Z:I_ 1 indicates that we sum all of the individual weighted inputs w; - x;, where n is
the total number of inputs (in our example, we had three inputs but artificial neurons

can have any number of inputs).

The final step of the perceptron algorithm is to evaluate whether the weighted sum of
the inputs is greater than the neuron’s threshold. As with the weights above, we have
again arbitrarily chosen a threshold value for our perceptron example: four (shown in

red in the center of the neuron in Figure 6.4). The perceptron algorithm is shown below

zﬂ: . = threshold, output 1 6.2)
= < threshold, output 0

=

Where:

ce If the weighted sum of a perceptron’s inputs is greater than its threshold, then it

outputs a 1, indicating that the perceptron predicts the object is a hot dog.

ce Otherwise, if the weighted sum is less than or equal to the threshold, the perceptron

outputs a 0, indicating that it predicts there is not a hot dog.

Knowing this, we can wrap up our example from Figure 6.4: The weighted sum of five is

greater than the neuron’s threshold of four, and so our hot dog-detecting perceptron



outputsa 1.

Riffing on our first hot dog example, in Figure 6.5 the object evaluated by the
perceptron now includes mustard only—there is no ketchup and it is still without a bun.
In this case the weighted sum of inputs comes out to 2. Because 2 is less than the
perceptron’s threshold, the neuron outputs 0, indicating that it predicts this object is

not a hot dog.

0

—

Figure 6.5 Example 2 of a hot dog-detecting perceptron: In this instance, it
predicts there is not a hot dog.

In our third and final perceptron example, shown in Figure 6.6, the artificial neuron
evaluates an object that involves neither mustard nor ketchup, but is on a bun. The
presence of a bun alone corresponds to the calculation of a weighted sum of 6. Since 6
is greater than the perceptron’s threshold, the algorithm predicts the object is a hot dog

and outputs a 1.
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Figure 6.6 Example 3 of a hot dog-detecting perceptron: In this instance, it again
predicts the object presented to it is a hot dog.

The Most Important Equation in this Book

To achieve the formulation of a simplified and universal perceptron equation, we must
introduce a term called the bias, which we annotate as b and which is equivalent to the

negative of an artificial neuron’s threshold value (Equation 6.3):

= —threshold (6.3)

Together, a neuron’s bias and its weights constitute all of its parameters—the
changeable variables that prescribe what the neuron will output in response to its

inputs.

With the concept of a neuron’s bias now available to us, we arrive at the most widely-

used perceptron equation (Equation 6.4):

lifw-z4+b>0
0 otherwise

output { (6.4)

Notice that we made the following five updates to our initial perceptron equation (from

Equation 6.2):
1. substituted the bias b in place of the neuron’s threshold

2. flipped b onto the same side of the equation as all of the other variables



3. used the array v to represent all of the w; weights from w, through to w,,
4. likewise, used the array x to represent all of the x; values from x; through to x;,

5. used the dot product notation 1w x to abbreviate the representation of the weighted

sum of neuron inputs (the longer form of this was already shown in Equation 6.1:
D ic1 Wiy

Right at the heart of the perceptron equation in Equation 6.4 is w - x + b, which we
have cut out for emphasis and placed alone in Figure 6.7. If there is one item you note
down to remember from this chapter, it should be this three-variable formula, which
is an equation that represents artificial neurons in general. We will refer back to this
equation many times over the course of this book, especially over the remainder of Part
IT and in Chapter 14 when we move beyond the Keras API to create our own artificial

neurons from scratch in TensorFlow proper.

Figure 6.7 The general equation for artificial neurons that we will return to time

and again. It is the most important equation in this book.

This paragraph is a Trilobite-attention SIDEBAR. To keep the arithmetic as
undemanding as possible in our hot dog-detecting perceptron examples, all of the
parameter values we made up—the perceptron’s weights as well as its bias—were
positive integers. These parameters could, however, be negative values and, in practice,
they would rarely be integers—instead, parameters are configured as float values, which

are less clunky.

This paragraph is also in the same Trilobite-attention SIDEBAR. Finally, while all of the
parameters in these examples were fabricated by us, they would usually be learned
through the training of artificial neurons on data. In Chapter 8, we’ll cover how this

training is accomplished in practice. END SIDEBAR.



MODERN NEURONS AND ACTIVATION FUNCTIONS

Modern artificial neurons, such as those in the hidden layer of the shallow architecture
we built in the previous chapter (look back to Figure 5.4 or to our Shallow Net in Keras
notebook), are not perceptrons. While the perceptron provides a relatively
uncomplicated introduction to artificial neurons, it is not used in practice today. The
most obvious restriction of the perceptron is that operates solely with binary values: it
receives only binary inputs and provides only a binary output. In many cases, we’d like
to make predictions from inputs that are continuous variables not binary integers, and

so this restriction alone would make perceptrons unsuitable.

A less obvious (yet even more critical) corollary of the perceptron’s binary-only
restriction is that it makes learning rather challenging. Consider Figure 6.8, in which
we use a new term, z, as short-hand for the value of the lauded v - x + b equation from
Figure 6.7. When 7 is any value less than or equal to zero, the perceptron outputs its
smallest possible output, 0. If z becomes positive to even the tiniest extent, the
perceptron outputs its largest possible output, 1. This sudden and extreme transition is
not optimal during training: When we train a network, we make slight adjustments to
w and b based on whether it appears the adjustment will improve the network’s output.
4 With the perceptron, the majority of slight adjustments to v and b would make no
difference whatsoever to its output; z would generally be moving around at negative
values much lower than zero or at positive values much higher than zero. That behavior
on its own would be unhelpful, but the situation is even worse: Every once and a while,
a slight adjustment to w or b will cause 7 to cross from negative to positive (or vice
versa), leading to a whopping, drastic swing in output from zero all the way to one (or
vice versa). Essentially, the perceptron has no finesse—it’s either yelling or it’s silent.

A
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Figure 6.8 The perceptron’s transition from outputting zero to outputting one

happens suddenly, making it challenging to gently tune v and b to match a desired
output.



The Sigmoid Neuron

Figure 6.9 provides an alternative to the erratic behavior of the perceptron: a gentle
curve from 0 to 1. This particular curve shape is called the sigmoid function and is

defined by o(2) = where:

1 _
1+e—*°
ce 7 is equivalent to w - x + b

ce e is the mathematical constant beginning in 2.718... that is perhaps best known for

its starring role in the natural exponential function

ce 0 is the Greek letter sigma, the root word for “sigmoid”

E

1_-

sigmoid

L =

Figure 6.9 The sigmoid activation function. z is the input into the

The sigmoid function is our first example of an artificial neuron activation function. It
may be ringing a bell for you already because it was the neuron type that we selected for
the hidden layer of our Shallow Net in Keras from Chapter 5. As we’ll see as this section
progresses, the sigmoid function is the canonical activation function; so much so that
the Greek letter o (sigma) is conventionally used to denote any activation function. The
output from any given neuron’s activation function is referred to simply as its
activation and throughout this book, we will use the variable term a—as shown along

the vertical axis in Figure 6.9—to denote it.

In our view, there is no need to memorize the sigmoid function (or indeed any of the
activation functions). Instead, we believe it’s easier to understand a given function by
playing around with its behavior interactively. With that in mind, feel free to join us in
the Sigmoid Function Jupyter notebook from the book’s GitHub repository as we work
through the following lines of code.

Our only dependency in the notebook is the constant e, which we load with from math



import e. Next is the fun bit, where we define the sigmoid function itself:

def sigmoid(z) :

return 1/ (1l+e**-z2)

As depicted in Figure 6.9 and demonstrated by executing sigmoid (.00001), near-
zero inputs into the sigmoid function will lead it to return values near 0. 5. Increasingly
large positive inputs will result in values that approach 1. As an extreme example, an
input of 10000 results in an output of 1. 0. Moving more gradually with our inputs—
this time in the negative direction—we obtain outputs that gently approach zero: As

examples, sigmoid (-1) returns 0.2689 while sigmoid (-10) returns 4.5398e-05.
5

Any artificial neuron that features the sigmoid function as its activation function is
called a sigmoid neuron and the advantage of these over the perceptron should now be
tangible: Small, gradual changes in a given sigmoid neuron’s parameters 1 or b cause
small, gradual changes in z, thereby producing similarly gradual changes in the
neuron’s activation, a. Large negative or large positive values of z illustrate an
exception: At extreme z values, sigmoid neurons—like perceptrons—will output 0’s
(when 7 is negative) or 1’s (when z is positive). Just like the perceptron, this means that
subtle updates to the weights and biases during training will have little to no effect on
the output and thus learning will stall. This situation is called neuron saturation and
can occur with any activation function. Thankfully, there are tricks to avoid saturation,

as we’ll see in Chapter 9.

The Tanh Neuron

A popular cousin of the sigmoid neuron is the tanh (pronounced “tanch” in the deep-
learning community) neuron. The tanh activation function is pictured in Figure 6.10
and is defined by c}'( 2 } = % The shape of the tanh curve is similar to the
sigmoid curve, with the chief distinction being that the sigmoid function exists in the
range [0 : 1], while the tanh neuron’s output has the range [ —1 : 1]. This difference is
more than cosmetic. With negative z inputs corresponding to negative a activations, z =
o corresponding to a = 0, and positive z corresponding to positive a activations, the

output from tanh neurons tends to be centered near zero. As we’ll cover further in

Chapters 7 through 9 , these zero-centered a outputs usually serve as the inputs x to

other artificial neurons in a network, and such zero-centered inputs make (the



dreaded!) neuron saturation markedly less likely, thereby enabling the entire network

to learn more efficiently.

L

1_-

a O+

tanh

x+b=

Figure 6.10 The tanh activation function.

ReLU: Rectified Linear Units

The final neuron we’ll detail in this book is the Rectified Linear Unit, or ReLU neuron,
whose behavior we’ve graphed in Figure 6.11. The ReLU activation function, whose
shape diverges glaringly from the sigmoid and tanh sorts, was inspired by properties of
biological neurons ® and popularized within artificial neural networks by Vinod Nair
and Geoff Hinton (Figure 1.17). 7 The shape of the ReLU function is defined by a =

max(0, z). This function is uncomplicated:

ce If 7 is a positive value, the ReLU activation function returns z (unadulterated) as a =

Z.

ce If 7 = 0 or z is negative, the function returns its floor value of zero, i.e., the activation

a=o0.

RelLU

Figure 6.11 The ReLU activation function.



The ReLU function is one of the simplest functions to imagine that is non-linear. That
is, like the sigmoid and tanh functions, its output a does not vary uniformly linearly
across all values of z. The ReLU is in essence two distinct linear functions combined
(one at negative 7 values returning zero, and the other at positive z values returning z,
as is visible in Figure 6.11) to form a straightforward, non-linear function overall. This
non-linear nature is a critical property of all activation functions used within deep
learning architectures. As demonstrated via a series of captivating interactive applets in
Chapter 4 of Michael Nielsen’s Neural Networks and Deep Learning e-book, these
non-linearities permit deep learning models to approximate any continuous function.

8 This universal ability to approximate some output y given some input x is one of the
hallmarks of deep learning—the characteristic that makes the approach so effective

across such a breadth of applications.

The relatively simple shape of the ReLLU function’s particular brand of non-linearity
works to its advantage. As we’ll see in Chapter 8, learning appropriate values for v and
b within deep learning networks involves partial derivative calculus, and these calculus
operations are much more computationally efficient on the linear portions of the ReLU
function relative to on the curves of, say, the sigmoid and tanh functions. ° As a
testament to its utility, the incorporation of ReLU neurons into AlexNet (Figure 1.18)
was one of the factors behind it trampling existing machine-vision benchmarks in 2012
and shepherding in the era of deep learning. Today, ReLU units are the most widely-
used neuron within the hidden layers of deep artificial neural networks and they appear

in the majority of the Jupyter notebooks associated with this book.

CHOOSING A NEURON

Within a given hidden layer of an artificial neural network, you are able to choose any
activation function you fancy. With the constraint that you should select a non-linear
function if you’d like to be able to approximate any continuous function with your deep
learning model, you're nevertheless left with quite a bit of room for choice. To assist
your decision-making process, let’s rank the neuron types we already discussed in this
chapter, ordering them from those we recommend least through to those we

recommend most:

1. The perceptron, with its binary inputs and the aggressive step of its binary output, is

not a practical consideration for deep learning models.

2. The sigmoid neuron is an acceptable option but it tends to lead to neural networks
that train less rapidly than those composed of, say, tanh or ReLU neurons. Thus, we

recommend limiting your use of sigmoid neurons to situations where it would be



helpful to have a neuron provide output within the range of [0, 1].*°

3. The tanh neuron is a solid choice. As we covered above, their zero-centered output

helps deep learning networks learn rapidly.

4. Our preferred neuron is the ReLU because of how efficiently learning algorithms can
perform computations with them. In our experience they tend to lead to well-calibrated

artificial neural networks in the shortest period of training time.

In addition to the neurons covered in this chapter, there is a veritable zoo of activation
functions available and the list is ever-growing. At time of writing, some of the
“advanced” activation functions provided by Keras'! are the Leaky ReLU, the
Parametric ReLU, and the Exponential Linear Unit—all three of which are derivations
from the ReLU neuron. We encourage you to check these activations out in the Keras
documentation and read about them on your own time. Furthermore, you are welcome
to swap out the neurons we use in any of the Jupyter notebooks in this book to compare
the results. We’d be pleasantly surprised if you discover they provide efficiency or

accuracy gains in your neural networks that are far beyond the performance of ours.

SUMMARY

In this chapter, we detailed the mathematics behind the neural units that make up
artificial neural networks, including deep learning models. We also summarized the
pros and cons of the most established neuron types, providing you with guidance on
which ones you might select for your own deep learning models. In the upcoming
chapter, we’ll cover how artificial neurons are networked together in order to learn

features from raw data and approximate complex functions.

KEY CONCEPTS

This section should probably appear as a sidebar-style box. As the list lengthens in
subsequent chapters, it would probably appear tidier if the list were laid out across

multiple columns.

As we move through the chapters of the book, we will gradually add terms to this list of
Key Concepts. If you keep these foundational concepts fresh in your mind, you should
have little difficulty understanding subsequent chapters and, by book’s end, possessing

a firm grip on deep learning theory and application. The critical concepts thus far are:
oe parameter

ce weight w



oe bias b

oe activation a

oe artificial neuron
ce sigmoid

oe tanh

ce ReLU

1 . More precisely, it causes a change in the voltage difference between the cell’s

interior and its surroundings.

2 . Rosenblatt, F. (1958). The Perceptron: A Probabilistic Model for Information

Storage and the Organization in the Brain. Psychological Review, 65, 386-408.

3 . If you are well-accustomed to regression modeling, this should be a familiar

paradigm.

4 . Improvement here means providing output more closely in line with the true

output y given some input x. We’'ll discuss this further soon, in Chapter 8.

5 .Theein 4.5398e-05 should not be confused with the base of the natural
logarithm. Here, it refers to an exponent, so the output is the equivalent of 4.5398 x
-5
10 °.

6 . The action potentials of biological neurons have only a “positive” firing mode; they

have no “negative” firing mode. See Hahnloser, R., & Seung, H. (2001). Permitted and
Forbidden Sets in Symmetric Threshold-Linear Networks. Proceedings of Neural

Information Processing Systems.

7 . Nair, V. & Hinton, G. (2010). Rectified Linear Units Improve Restricted Boltzmann

Machines. Proceedings of the International Conference on Machine Learning.

8 . neuralnetworksanddeeplearning.com/chap4.html



9 . In addition, there is mounting research that suggests ReLU activations encourage

parameter sparsity—i.e., less elaborate neural-network-level functions that tend to

generalize to validation data better. More on model generalization coming up in
Chapter 9.

10. In Chapter 11, we will encounter a couple of these situations—most notably, with a

sigmoid neuron as the sole neuron in the output layer of a binary-classifier network.

11. See keras.io/layers/advanced-activations



7 Artificial Neural Networks

In the preceding chapter, we examined the intricacies of artificial neurons. The theme
of the current chapter is the natural extension of that: We’ll cover how individual neural
units are linked together to form artificial neural networks, including deep learning

networks.

THE INPUT LAYER

In our Shallow Net in Keras Jupyter notebook (a schematic of which is available back

in Figure 5.4), we crafted an artificial neural network with:

1. an input layer consisting of 784 neurons, one for each of the 784 pixels in an MNIST

image
2. a hidden layer composed of 64 sigmoid neurons

3. an output layer consisting of 10 softrmax neurons, one for each of the ten classes of

digits

Of these three, the input layer is the most straightforward to detail. We'll start with it,

and then move onto discussion of the hidden and output layers.

Neurons in the input layer don’t perform any calculations; they are simply placeholders
for input data. This place-holding is essential because, as we’ll see first-hand in Chapter
14 when we begin writing code in low-level TensorFlow, the use of artificial neural
networks involves performing computations on matrices that have pre-defined
dimensions. At least one of these pre-defined dimensions in the network architecture

corresponds directly to the shape of the input data.

DENSE LAYERS

There are many kinds of hidden layers, but as mentioned in Chapter 4, the most general
type is the dense layer, which can also be called a fully-connected layer. Dense layers

are found in many deep learning architectures, including the majority of the models



we'll go over in this book. Their definition is uncomplicated: Each of the neurons in a
given dense layer receive information from every one of the neurons in the previous
layer of the network. In other words, a dense layer is fully-connected to the layer before
it!

While they might not be as specialized nor as efficient as the other flavors of hidden
layers we’ll get to in Part III, dense layers are broadly useful because they can non-
linearly recombine the information provided by the previous layer of the network. *
Reviewing the TensorFlow Playground demo from the end of Chapter 1, we're now
better-positioned to appreciate the deep learning model we built. Breaking it down

layer by layer, the network in Figures 1.19 and 1.20 has:

1. An input layer with two neurons: one for storing the vertical position of a given dot

within the grid on the far right, and the other for storing the dot’s horizontal position.

2. A hidden layer composed of eight ReLU neurons. Visually, we can see that this is a
dense layer because each of the eight neurons in it is connected (i.e., is receiving
information) from both of the input-layer neurons, for a total of 16 (= 8 x 2) incoming

connections.

3. Another hidden layer composed of eight ReLU neurons. We can again discern that
this is a dense layer because its eight neurons each receive input from each of the eight
neurons in the previous layer, for a total of 64 (= 8 x 8) inbound connections. Note how
the neurons in this layer are non-linearly recombining the straight-edge features
provided by the neurons in the first hidden layer to produce more elaborate features

like curves and circles. >

4. A third dense hidden layer, this one consisting of four ReLU neurons for a total of
32 (= 4 x 8) connecting inputs. This layer non-linearly recombines the features from
the previous hidden layer to learn more complex features that begin to look directly
relevant to the binary (orange versus blue) classification problem shown in the grid on
the right.

5. A fourth and final dense hidden layer. With its two ReLU neurons, it receives a total
of eight (= 2 x 4) inputs from the previous layer. The neurons in this layer devise such
elaborate features via non-linear recombination that they visually approximate the

overall boundary dividing blue from orange on the grid.

6. An output layer made up of a single sigmoid neuron. Sigmoid is the typical choice of
neuron for a binary classification problem like this one. As shown in Figure 6.9, the

sigmoid function outputs activations that range from zero up to one, allowing us to



obtain the network’s estimated probability that a given input x is a positive case (a blue
dot in the current example) or inversely, the probability that it is a negative case. Like
the hidden layers, the output layer is dense too: Its neuron receives information from

both neurons of the final hidden layer for a total of two (= 1 x 2) connections.

In summary, every layer within the networks provided by the TensorFlow Playground
is a dense layer. We can call such a network a dense network and we’ll be

experimenting with these versatile creatures for the remainder of Part II.

A HOT DOG-DETECTING DENSE NETWORK

Let’s further strengthen our comprehension of dense networks by returning to two old
flames of ours from Chapter 6: a frivolous hot dog-detecting binary classifier and the
mathematical notation we used to define artificial neurons. As shown in Figure 7.1, our
hot dog classifier is no longer a single neuron; in this chapter, it is a dense network of

artificial neurons. More specifically, with this network architecture:
e We have reduced the number of input neurons down to two for simplicity:

ce The first input neuron, x;, represents the volume of ketchup (in, say, milliliters,
which abbreviates to mL) on the object being considered by the network. (We are no

longer working with perceptrons, so we are no longer restricted to binary inputs only.)
ce The second input neuron, x,, represents mL of mustard.

oe We have two dense hidden layers:

ce The first hidden layer has three ReLLU neurons.

ce The second hidden layer has two ReLLU neurons.

ce The output neuron is denoted by 7 in the network. This is a binary classification
problem, so—as outlined in the previous section—this neuron should be sigmoid. As in
our perceptron examples in Chapter 6, y = 1 corresponds to the presence of a hot dog

and y = o corresponds to the presence of some other object.



layer 1 2 3 4

forward propagation

Figure 7.1 A dense network of artificial neurons, highlighting the inputs to the

neuron labelled a;.

Forward Propagation through the First Hidden Layer

Having described the architecture of our hot dog-detecting network, let’s turn our
attention to its functionality by focusing on the neuron labelled a,. 3 This particular
neuron, like its siblings a, and a;, receives input regarding a given object’s ketchup-y-
ness and mustard-y-ness from x; and x,, respectively. Despite receiving the same data
as a, and ag, a, treats these data uniquely by having its own unique parameters.
Remembering Figure 6.7, “the most important equation in this book” —w x + b—we
may grasp this behavior more concretely. Breaking this equation down for the neuron
labelled a,, we consider that it has two inputs from the previous layer, x; and x,. This
neuron also has two weights: 10, (which applies to the importance of the ketchup
measurement x;) and w, (which applies to the importance of the mustard measurement
X,). With these five pieces of information we can calculate z, the weighted input to that

neuron:

c=w-T+b (?1}
> = (w11 + woxe) + b -

In turn, with the z value for the neuron labelled a,, we can calculate the activation a it

outputs. Since the neuron labelled a, is a ReLU neuron, we use the equation introduced



in Figure 6.11:

a = mazx(0, ) (7.2)

To make this computation of the output of neuron a, tangible, let’s concoct some

numbers and work through the arithmetic together:
e X, is 4.0 mL of ketchup for a given object presented to the network

e X, is 3.0 mL of mustard for that same object

oeb=-09

To calculate z let’s start with Equation 7.1 and then fill in our contrived values:

> =w-T+b
= w1 +wiTe+b
=—-0.5x404+1.5x3.0-0.9 (7.3)
=—-2+45-0.9

= 1.6
Finally, to compute a—the activation output of the neuron labelled a,—we can leverage

Equation 7.2:

a = max(0, =)
= max(0, 1.0) (7.4)
= iy
As suggested by the right-facing arrow along the bottom of Figure 7.1, executing the

calculations through an artificial neural network from the input layer (the x values)
through to the output layer (7)) is called forward propagation. Immediately above, we
detailed the process for forward propagating through a single neuron in the first hidden
layer of our hot dog-detecting network. To forward propagate through the remaining
neurons of the first hidden layer—that is, to calculate the a values for the neurons
labelled a, and a;—we would follow the same process as we did for the neuron labelled
a,. The inputs x; and x, are identical for all three neurons, but despite being fed the
same measurements of ketchup and mustard, each neuron in the first hidden layer will

output a different activation a because the parameters 1v,, w. and b vary for each of the



neurons in the layer.

Forward Propagation through Subsequent Layers

The process of forward propagating through the remaining layers of the network is
essentially the same as propagating through the first hidden layer, but for clarity’s sake,
let’s work through it together. In Figure 7.2, we’ll assume that we’ve already calculated
the activation value a for each of the neurons in the first hidden layer. Returning our
focus to the neuron labelled a,, the activation it outputs (a, = 1.6) becomes one of the
three inputs into the neuron labelled a, (and, as highlighted in the figure, this same

activation of a = 1.6 is also fed as one of the three inputs into the neuron labelled as).

Figure 7.2 Our hot dog-detecting network from Figure 7.1, now highlighting the
activation output of neuron a,, which is provided as an input to both neuron a, and

neuron 615.

To provide an example of forward propagation through the second hidden layer, let’s
compute a for the neuron labelled a,. Again, we employ the all-important equation wv -

x + b. For brevity’s sake, we've combined it with the ReLU activation function:

a = mazx(0, )
maz(0, (w -z + b)) (7.5)
= maz(0, (w,z; + weTy + w3z3 + b))

This is sufficiently similar to Equations 7.3 and 7.4 that it would be superfluous to walk

through the arithmetic again with feigned values. The only twist, as we propagate



through the second hidden layer, is that the layer’s inputs (i.e., x in the equation w x +
b) come not from outside the network—instead they are provided by the first hidden

layer. Thus, in Equation 7.5:
e X, is the value a = 1.6, which we obtained earlier from the neuron labelled a,

e X, is the activation output a (whatever it happens to equal) from the neuron labelled

a.,, and
e X, is likewise a unique activation a from the neuron labelled a,

In this manner, the neuron labelled a, is able to non-linearly recombine the
information provided by the three neurons of the first hidden layer. The neuron
labelled a; also non-linearly recombines this information, but it would do it in its own
distinctive way: The unique parameters w;,, w., w, and b for this neuron would lead it

to output a unique a activation of its own.

Having illustrated forward propagation through all of the hidden layers of our hot dog-
detecting network, let’s round the process off by propagating through the output layer.
Figure 7.3 highlights that our single output neuron receives its inputs from the neurons
labelled a, and a;. Let’s begin by calculating z for this output neuron. The formula is
identical to Equation 7.1, which we used to calculate z for the neuron labelled a,, except

that the (contrived, as usual) values we plug into the variables are different:

- =w-x+Db
= wiTi + oo + lb
—1.0 X 2.5+ 0.5 x 2.0 — 5.5 (7.6)

=35—-15.5

=-2.0

— el
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Figure 7.3 Our hot dog-detecting network, with the activations providing input to
the output neuron #j highlighted.

The output neuron is sigmoid so to compute its activation a we pass its z value through

the sigmoid function from Figure 6.9:

a=oc(z)

l+e
1

T+e (20
~ 0.1192

We are lazy, so we didn’t work out the final line of this equation manually. Instead, we

(7.7)

used the Sigmoid Function Jupyter notebook that we created in Chapter 6. By
executing the line sigmoid (-2.0) within it, our machine did the heavy lifting for us

and kindly informed us that a comes out to 0.1192 and change.

The activation a computed by the sigmoid neuron in the output layer is a very special
case because it is the final output of our entire hot dog-detecting neural network. Since
it’s so special, we assign it a distinctive designation: {j, which is pronounced “why hat”.
This value 7 is the network’s guess as to whether the object presented to it was a hot
dog or not a hot dog, and we can express this in probabilistic language. Given the inputs
x; and x, that we fed into the network—that is, 4.0 mL of ketchup and 3.0 mL of

mustard—the network estimates that there is an 11.92% chance that an object with



those particular condiment measurements is a hot dog. # If the object presented to the
network was indeed a hot dog (y = 1) then this 7j of 0.1192 was pretty far off the mark.
On the other hand, if the object was truly not a hot dog (y = 0) then the 7 is quite good.
We'll formalize the evaluation of §J in Chapter 8, but the general notion is is that the

closer g is to the true value y, the better.

THE SOFTMAX LAYER OF A FAST FOOD-CLASSIFYING NETWORK

As demonstrated thus far in the chapter, the sigmoid neuron suits us well if we're
building a network to distinguish two classes, e.g., a blue dot versus an orange dot, or a
hot dog versus something other than hot dog. In many other circumstances, however,
we have more than two classes to distinguish between. For example, MNIST consists of
the ten numerical digits, so our Shallow Net in Keras from Chapter 6 had to

accommodate ten output probabilities—one representing each digit.

When concerned with a multi-class problem, the solution is to use a softmax layer as
the output layer of our network. Softmax is in fact the activation function that we
specified for the output layer in our Shallow Net in Keras Jupyter notebook, but we
initially suggested you not worry yourself with that detail too much. Now, a couple of

chapters later, the time to unravel softmax has arrived.

In Figure 7.4, we've provided a new architecture that builds upon our binary hot dog
classifier. The schematic is the same—right down to its volume-of-ketchup-and-
mustard inputs—except that instead of having a single output neuron, we now have
three. This multi-class output layer is still dense, so each of the three neurons receives
information from both of the neurons in the final hidden layer. Continuing on with our

proclivity for fast food, let’s say that now:
ce y, represents hot dogs,
ce Y., is for burgers, and

e Y, is for pizza.



Figure 7.4 Our hot dog-detecting network, now with three softmax neurons in the

output layer.

Note that with this configuration, there can be no alternatives to hot dog, burger or
pizza. The assumption is that all objects presented to the network belong to one of these

three classes of fast food, and one of the classes only.

Because the sigmoid function applies only to binary problems, the output neurons in
Figure 7.4 take advantage of the softmax activation function. Let’s use code from our
Softmax Demo Jupyter notebook to elucidate how this activation function operates.
The only dependency is the exp function, which calculates the natural exponential of
whatever value it’s given. More specifically, if we pass x into it with the command

exp (x), we will get back e”. The effect of this exponentiation will become clear as we
move through the forthcoming example. We import the exp function into the notebook

with from math import exp.

To concoct another example, let’s say that we presented a slice of pizza to the network
in Figure 7.4. Presumably this pizza slice has negligible amounts of ketchup and
mustard on it, and so x; and x, are near-zero values. Provided these inputs, we use
forward propagation to pass information through the network toward the output layer.
Based on the information that the three neurons receive from the final hidden layer,

they individually use our old friend v - x + b to calculate three unique z values:



ce 7 for the neuron labelled y,, which represents hot dogs, comes out to -1.0
ce for the neuron labelled y., which represents burgers, 7 is 1.0
ce and for the pizza neuron y,, z comes out to 5.0

These values indicate that the network estimates that the object presented to it is most
likely to be pizza and least likely to be a hot dog. Expressed as z, however, it isn’t
straightforward to intuit how much more likely the network predicts the object to be

pizza relative to the other two classes. That’s where the softmax function comes in.

After importing our dependency, we create a list named z to store our three z values:

z = [-1.0, 1.0, 5.0]
Applying the softmax function to this list involves a three-step process. The first step is
to calculate the exponential of each of the z values. More explicitly:
e exp (2[0]) comes outto 0.3679 for hot dog °
oeexp(z[1]) givesus 2. 718 for burger
e and exp (2 [2]) gives us the much much larger (exponentially so!) 148 . 4 for pizza

The second step of the softmax function is to sum up our exponentials:

total = exp(z[0]) + exp(z[l]) + exp(z[2])
With this total variable we can execute the third and final step, which provides
proportions for each of our three classes relative to sum of all of the classes:

e exp(z[0])/total outputs 0.002428, indicating that the network estimates

there’s a ~0.2% chance that the object presented to it is a hot dog

eexp(z[1])/total givesus 0.01794, indicating an estimated ~1.8% chance that

it’s a burger, and

e exp(z[2])/total returns 0. 9796 for an estimated ~98.0% chance that the object

is pizza



Given the above arithmetic, the etymology of the “softmax” name should now be
discernible: The function returns z with the highest value (the max), but it does so soft-
ly. That is, instead of indicating that there’s a 100% chance the object is pizza and a zero
percent chance it’s either of the other two fast food classes (that would be... hard), the
network hedges its bets, to an extent, and provides a likelihood that the object is each of
the three classes. This leaves us to make the decision over how much confidence we

: c .6
would require before we make a decision.

Trilobite-reading sidebar: The use of the softmax function with a single neuron is a

special case of softmax that is mathematically equivalent to using a sigmoid neuron.

REVISITING OUR SHALLOW NETWORK

With the knowledge of dense networks that we developed over the course of this
chapter, we can return to our Shallow Net in Keras notebook and understand the
model summary within it. Example 5.2 shows the three lines of Keras code we used to
architect a shallow neural network for classifying MNIST digits. As detailed in Chapter
5, over those three lines of code we instantiated a model object and added layers of
artificial neurons to it. By calling the summary() on the model, we see the model-

summarizing table provided in Figure 7.5. The table has three columns:
e Layer (type):the name and type of each of our layers
e Output Shape: the dimensionality of the layer

e Param #:the number of parameters (weights v and biases b) associated with the

layer

Layer (type) Output Shape Param #
dense 1 (Dense)  (Nome, 64) 50240
dense 2 (Dense) (None, 10) 650

Total params: 50,890
Trainable params: 50,890
Non-trainable params: 0

Figure 7.5 A summary of the model object from our “Shallow Net in Keras”
Jupyter notebook.

The input layer performs no calculations and never has any of its own parameters so no

information on it is displayed directly. The first row in the table, therefore, corresponds



to the first hidden layer of the network. The table indicates that this layer:

ce is called dense 1;this is a default name as we did not designate one explicitly
e is a Dense layer, as we specified in Example 5.2

ce is composed of 64 neurons, as we further specified in Example 5.2

oe has 50240 parameters associated with it, broken down into:

e 50176 weights, corresponding to each of the 64 neurons in this dense layer receiving

input from each of the 784 neurons in the input layer (64*784)
ce plus 64 biases, one for each of the neurons in the layer

ce giving us a total of 50240 parameters:

Nparameters = M + Np = 50176 + 64 = 50240

The second row of the table in Figure 7.5 corresponds to the model’s output layer. The
table tells us that this layer:

ce is called dense 2

e is a Dense layer, as we specified it to be

ce consists of 10 neurons—yet again, as we specified
ce has 650 parameters associated with it:

e 640 weights, corresponding to each of the ten neurons receiving input from each of
the 64 neurons in the hidden layer (64*10)

ce plus 10 biases, one for each of the output neurons

From the parameter counts for each layer, we can calculate for ourselves the Total

params line displayed in Figure 7.5:

Ttotal = 111 + N2
= 50240 + 650 (7.8)
= 50890

All 50890 of these parameters are “Trainable params” because—during the



subsequent model.fit () call in the Shallow Net in Keras notebook—they are
permitted to be tuned during model training. This is the norm, but as we’ll see in Part
III, there are situations where it is fruitful to freeze some of the parameters in a model

rendering them “Non-trainable params”.

SUMMARY

In this chapter, we detailed how artificial neurons are networked together to
approximate an output y given some inputs x. In the remaining chapters of Part II, we’ll
detail how a network learns to improve its approximations of y by using data to tune
the parameters of its constituent artificial neurons. Simultaneously, we’ll broaden our
understanding of best practices for designing and training artificial neural networks so

that we can add hidden layers and form a high-calibre deep learning model.

KEY CONCEPTS

Here are the essential foundational concepts thus far. New terms from the current

chapter are highlighted in purple:
oe parameters:

ce weight w

ce bias b

ce activation a

ce artificial neurons:
ce sigmoid

ce tanh

e ReLU

ce input layer

ce hidden layer

ce output layer

ce layer types:



ce dense (fully-connected)
ce softmax

ce forward propagation

1 . This statement assumes the dense layer is made up of neurons with a non-linear

activation function like the sigmoid, tanh and ReL.U neurons introduced in the previous

chapter, which should be a safe assumption.

2 . By optionally returning to playground.tensorflow.org, you can observe these

features by hovering over these neurons with your mouse.

3 . We're using a shorthand notation for conveniently identifying neurons in this

chapter. See Appendix 17 (This should presumably be labelled Appendix A) for a more

precise and formal neural network notation.

4 . Don’t say we didn’t warn you from the start that this was a silly example! If we’re

lucky, its outlandishness will make it memorable.

5 . Recall that Python uses zero indexing so z[ 0] corresponds to the z of neuron y;.
6 . Typically, we’d simply choose the class with the highest likelihood. This is easily

achieved with the argmax () function in Python, which returns the index position (i.e.,

the class label) of the largest value.

https://avxhm.se/blogs/hill0
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8 Training Deep Networks

In the preceding chapters, we described artificial neurons comprehensively and we
walked through the process of forward propagating information through a network of
neurons to output a prediction, such as whether a given fast-food item is a hot dog, a

juicy burger or a greasy slice of pizza. In those culinary examples from Chapters 6 and
7 , we fabricated numbers for the neuron parameters—i.e., weights and biases. In real-

world applications, however, these parameters are not typically concocted arbitrarily:

They are learned by training the network on data.

In this chapter, we will become acquainted with two methods—called gradient descent
and backpropagation—that work in tandem to learn artificial neural network
parameters. As usual in this book, our presentation of these methods is not only
theoretical: We will provide pragmatic best practices for implementing the techniques.
The chapter will culminate in the application of these practices to the construction of an

intermediate-depth neural network.

COST FUNCTIONS

In Chapter 7, we discovered that, upon forward propagating some input values all the
way through an artificial neural network, the network provides its estimated output,
which is denoted 7. If a network was perfectly calibrated, it would output 7 values that
are exactly equal to the true label y. In our binary classifier for detecting hot dogs, for
example (Figure 7.3), y = 1 indicated that the object presented to the network is a hot
dog while y = 0 indicated that it’s something else. In an instance where we have in fact

presented a hot dog to the network, therefore, it would ideally output 7j = 1.

In practice, the gold standard of §j = y is not always attained and so may be an
excessively stringent definition of the “correct” ij. Instead, we might be quite pleased to
see a 7 of, say, 0.9997 as that would indicate that the network has an extremely high
confidence that the object is a hot dog. A 7 of 0.9 might be considered acceptable, §j =
0.6 to be rather disappointing and 7 = 0.1192 (as computed in Equation 7.7) to be
downright awful.



To quantify the spectrum of output-evaluation sentiments from “quite pleased” all the
way to “downright awful”, machine learning algorithms often involve cost functions
(also known as loss functions). The two such functions that we’ll cover in this book are

called quadratic cost and cross-entropy cost. Let’s cover them in turn.

Quadratic Cost

Quadratic cost is one of the simplest cost functions to calculate. It is alternatively called

mean squared error, which handily describes all that there is to its calculation:

1 . \D
{H:— Wi — ;i .
=D (v — ) (8.1)

i=1
For any given instance 7, we calculate the difference (the error) between the true label

y; and the network’s estimated 7J;. We then square this difference, for two reasons:

1. Squaring ensures that whether y is greater than 7 or vice versa, the difference

between the two is stated as a positive value.

2. Squaring penalizes large differences between y and § much more severely than small

differences.
Having obtained a squared error for each instance i with (y; — 9);)°, we can at last
calculate the mean cost C across all n of our instances by:

s
1. Summing up all of our instances with E
i=1

2. Dividing by however many instances we have with %

By taking a peek inside the Quadratic Cost Jupyter notebook from the book’s GitHub
repo, you can play around with Equation 8.1 yourself. At the top of the notebook, we

define a function to calculate squared error for an instance i:

def squared error(y, yhat):

return (y - yhat)**2

By plugging a true y of 1 and the ideal yhat of 1 into the function with
squared error (1, 1), we observe that—as desired—this perfect estimate is

associated with a cost of 0. Likewise, minor deviations from the ideal such as a yhat of



0.9997, correspond to an extremely small cost: 9.0e-08. ' As the difference between
y and yhat increases, we witness the expected exponential increase in cost: Holding y
steady at 1 but lowering yhat from 0.9 to 0. 6, and then to 0.1192, the cost climbs
increasingly rapidly from 0.01 to 0.16 and then 0. 78. As a final bit of amusement in
the notebook, we note that had y truly been 0, our yhat of 0.1192 would be

associated with a small cost: 0.0142.

Saturated Neurons

While quadratic cost serves as a straightforward introduction to loss functions, it has a
vital flaw. Consider Figure 8.1, in which we summarize the tanh activation function
from back in Figure 6.10. The issue presented in the figure, called neuron saturation, is
common across all activation functions but we’ll use tanh as our lone exemplar. A
neuron is considered saturated when the combination of its inputs and parameters
(interacting as per “the most important equation” z = w - x + b) produce extreme values
of z—the areas encircled with red in the plot. In these areas, changes in z (via
adjustments to the neuron’s underlying parameters 1w and b) cause only teensy-weensy

changes in the neuron’s activation a. *

1
e
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R

Figure 8.1 Plot reproducing the tanh activation function shown in Figure 6.10,

drawing attention to the high and low values of z at which a neuron is saturated.

Using methods that we’ll cover later in this chapter—namely, gradient descent and
backpropagation—a neural network is able to learn to approximate y through the
tuning of its neurons’ parameters 1w and b. In a saturated neuron, where changes to w
and b lead to only minuscule changes in a, this learning slows to a crawl: If adjustments
to w and b make no discernible impact on a given neuron’s activation a then these
adjustments cannot have any discernible impact downstream (via forward propagation)

on the network’s 7J, its approximation of y.

Cross-Entropy Cost



One of the ways 2 to minimize the impact of saturated neurons on learning speed is to
use cross-entropy cost in lieu of quadratic cost. This alternative loss function is
configured to enable efficient learning anywhere within the activation function curve of
Figure 8.1. Because of this, it is a far more popular choice of cost function and it is the

selection that predominates the remainder of this book.

You need not preoccupy yourself heavily with the equation for cross-entropy cost, but

for the sake of completeness, here it is:

€ = =23 s Ingi + (1 - ) In(1 — ) (8:2)

i=1

The most pertinent aspects of the equation are that:
1. Like quadratic cost, divergence of from 7 from y corresponds to increased cost.

2, Also, similar to the use of the square in quadratic cost, the use of the natural
logarithm [n in cross-entropy cost causes larger differences between ij and y to be

associated with exponentially larger cost.

3. Cross-entropy cost is structured so that the larger the difference between §j and y, the
4

faster the neuron is able to learn.
To make it easier to remember that the greater the cost, the more quickly a neural
network incorporating cross-entropy cost learns, here’s a flippant analogy that would
absolutely never happen to any of your esteemed authors: Let’s say you're at a cocktail
party leading the conversation to a group of cool, stylish people that you've met that
evening. The strong martini you’re holding has already gone to your head and so you go
out on a limb by throwing a vulgar joke into your otherwise charming repartee.
Unexpectedly, your audience reacts with immediate, visible disgust. With this response
clearly indicating that your quip was well off the mark, you learn pretty darn quickly.

It’s exceedingly unlikely you’ll be repeating the joke anytime soon.

Anyway, that’s plenty enough on disasters of social etiquette. The final item to note on
cross-entropy cost is that, by including 7, the formula provided in Equation 8.2 applies
to only the output layer. Recall from the previous chapter (specifically the discussion of
Figure 7.3) that 7 is a special case of a: It’s actually just another plain old a value—
except that it’s being calculated by neurons in the output layer of a neural network.
With this in mind, Equation 8.3 could be expressed with a; substituted in for 7j; so that
the equation generalizes neatly beyond the output layer to neurons in any layer of a

network:



mn
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i=1
To cement all of this theoretical chatter about cross-entropy cost, let’s interactively
explore our aptly-named Cross Entropy Cost Jupyter notebook. There is only one
dependency in the notebook: the 10g function from the NumPy package, which enables
us to compute the natural logarithm In shown twice in Equation 8.3. We load this

dependency with from numpy import log.

Next, we define a function for calculating cross-entropy cost for an instance i:

def cross entropy(y, a):

return -1*(y*log(a) + (l-y)*log(l-a))

Plugging the same values into our cross entropy () function as we did into the
squared error () function earlier in this chapter, we observe comparable behavior.
As shown in Table 8.1, by holding y steady at 1 and gradually decreasing a from the
near-ideal estimate of 0. 9997 downward, we get exponential increases in cross-
entropy cost. The table further illustrates that—again, consistent with the behavior of
its quadratic cousin—cross-entropy cost would be low withanaof 0.1192 ify
happened to in fact be 0. These results reiterate for us that the chief distinction between
the quadratic and cross-entropy functions is not the particular cost value that they
calculate per se, but rather it is the rate at which they learn within a neural net—

especially if saturated neurons are involved.

Table 8.1 Table of cross-entropy costs associated with selected example

inputs
y a C
1 09997 0.0003
1 0.9 01
1 0.6 0.5
1 01192 21

0 01192 01269
1 101192 0.1269

OPTIMIZATION: LEARNING TO MINIMIZE COST



Cost functions provide us with a quantification of how incorrect our model’s estimate of
the ideal y is. This is most helpful because it arms us with a metric we can track if we’d
like to reduce our network’s incorrectness. And, we’d pretty well always like to reduce

its incorrectness!

As alluded to a couple of times already in this chapter, the primary approach for
minimizing cost in deep learning paradigms is to pair a method called gradient descent
with another one called backpropagation. Together, these methods are optimizers that
enable the network to learn. They accomplish this by adjusting the model’s parameters
so that its estimated 7 gradually converges toward the target of y, and thus the cost
decreases. We'll cover gradient descent now and move on to backpropagation

immediately afterward.

Gradient Descent

Gradient is a handy, efficient tool for adjusting a model’s parameters with the aim of
minimizing cost, particularly if we have a lot of data. It is widely used in other families

of machine learning techniques as well, not only in deep learning.

In Figure 8.2, we've used a nimble trilobite in a cartoon to illustrate how gradient
descent works. Along the horizontal axis in each frame is some parameter that we’ve
denoted as p. In an artificial neural network, this parameter would be either a neuron’s
weight w or bias b. In the top frame, the trilobite finds itself on a hill. Its goal is to
descend the gradient, thereby finding the location with the minimum cost, C. But,
there’s a twist: The trilobite is blind! It cannot see whether deeper valleys lie far away
somewhere, it can only use its cane to investigate the slope of the terrain in its

immediate vicinity.



Figure 8.2 A trilobite using gradient descent to find the value of a parameter p
associated with minimal cost, C.

The orange line in Figure 8.2 indicates the blind trilobite’s calculation of the slope at
the point that it finds itself. According to that slope line, if the trilobite takes a step to
the left (i.e., to a slightly lower value of p), it would be moving to a location with smaller
cost. On the hand, if the trilobite takes a step to the right (a slightly higher value of p), it
would be moving to a location with higher cost. Given the trilobite’s desire to descend

the gradient, it chooses to take a step to the left.

By the second frame, the trilobite has taken several steps to the left. Here again, we see
it evaluating the slope with the orange line and discovering that, yet again, a step to the
left will bring it to a location with lower cost and so it takes another step left. In the
third frame, the trilobite has succeeded in making its way to the location—i.e., the value
of the parameter p—corresponding to the minimum cost. From this position, if it were

to take a step to the left or to the right, cost would go up, so it gleefully remains in place.

In practice, a deep learning model would not have just one parameter in it. It is not



uncommon for deep learning networks to have millions of parameters and some
industrial applications have billions of them. Even our Shallow Net in Keras—one of
the smallest models we’ll build in this book—has 50,890 parameters (Figure 7.5).

While it’s impossible for the human mind to imagine a billion-dimensional space, the
two-parameter cartoon shown in Figure 8.3 provides a sense of how gradient descent
scales up to minimize cost across multiple parameters simultaneously. Across however
many trainable parameters there are in a model, gradient descent iteratively evaluates
slopes ° to identify the adjustments to those parameters that correspond to the
steepest reduction in cost. With two parameters, as in the trilobite cartoon in Figure 8.3
for example, this procedure can be likened to a blind hike through the mountains

where:
ce latitude represents one parameter, say p,
ce longitude represents the other parameter, p,

ce altitude represents cost—the lower the altitude, the better!
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Figure 8.3 A trilobite exploring along two model parameters, p, and p., in order
to minimize cost via gradient descent. In a mountain-adventure analogy, p, and p»
could be thought of as latitude and longitude, while altitude represents cost.

The trilobite randomly finds itself at a location in the mountains. From that point, it
identifies the direction of the step it can take that will reduce its altitude the most. It
then takes that single step. Repeating this process many times, the trilobite may

eventually find itself at the latitude and longitude coordinates that correspond to the

lowest-possible altitude (minimum cost), at which point the trilobite’s surreal alpine



adventure is complete.

Learning Rate

For conceptual simplicity, in Figure 8.4, let’s return to a blind trilobite navigating a
single-parameter world. Now, let’s imagine that we have a ray-gun that can shrink or
enlarge trilobites. In the middle panel, we’ve used our ray-gun to make our trilobite
very small. The trilobite’s steps will then be correspondingly small and so it will take
our intrepid little hiker a very long time to find its way to the legendary valley of
minimum cost. On the other hand, consider the bottom panel, in which we’ve used our
ray-gun to make the trilobite very large. The situation here is even worse! The trilobite’s
steps will now be so large that it will step right over the valley of minimum cost and so

it never has any hope of finding it.

-
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Figure 8.4 The learning rate (1) of gradient descent expressed as the size of a
trilobite. The middle panel has a small learning rate and the bottom panel, a large

one.



In gradient descent terminology, step size is referred to as learning rate and denoted
with the Greek letter n (eta, pronounced “ee-ta”). Learning rate is the first of several
model hyperparameters that we will cover in this book. In machine learning, including
deep learning, hyperparameters are aspects of the model that we configure before we
begin training the model. So, hyperparameters like 1 are pre-set while, in contrast,

parameters—namely, v and b—are learned during training.

Getting your hyperparameters right for a given deep learning model often requires
some trial and error. For the learning rate 7, it’s something like the fairy tale of
Goldilocks and the Three Bears: too small and too large are both inadequate, but
there’s a sweet spot in the middle. More specifically, as we cartooned in Figure 8.4, if
is too small, then it will take many, many iterations of gradient descent (read: a long
time) to reach the minimal cost. On the other hand, picking an 7 that is too large means
we might never reach minimal cost at all: The gradient descent algorithm will act

erratically as it zooms right over the parameters associated with minimal cost.

Coming up in Chapter 9, we have a clever trick waiting for you that will circumnavigate
the need for you to pick a given neural network’s n hyperparameter entirely. In the

interim, however, here are our rules of thumb on the topic:
ce Begin with a learning rate of about 0.01 or 0.001.

ce If your model is able to learn (i.e., if cost decreases consistently epoch over epoch)
but training happens very slowly (i.e., each epoch, the cost decreases only a small
amount), then increase your learning rate by an order of magnitude (e.g., from 0.01 to
0.1). If the cost begins to jump up and down erratically epoch over epoch, then you've

gone too far, so reign your learning rate back down.

ce At the other extreme, if your model is unable to learn, then it could be because your
learning rate is too high. Try decreasing it by orders of magnitude (e.g., from 0.001 to

0.0001) until cost decreases consistently epoch over epoch.

Batch Size and Stochastic Gradient Descent

When we introduced gradient descent, we suggested that it is efficient for machine
learning problems that involve a large data set. In the strictest sense, we outright lied to
you. The truth is that if we have a very large data set, ordinary gradient descent would
not work at all because it wouldn’t be possible to fit all of the data into the memory
(RAM) of our machine.

Memory isn’t the only potential snag—compute power could cause us headaches too. A



relatively large data set might squeeze into the memory of our machine, but if we tried
to train a neural network containing millions of parameters with all those data, vanilla
gradient descent would be highly inefficient because of the computational complexity of

the associated high-volume, high-dimensional calculations.

Thankfully, there’s a solution to these memory and compute limitations: the stochastic
variant of gradient descent. With this variation, we split up our training data into mini-
batches—small subsets of our full training data set—to render gradient descent both

manageable and productive.

Although we didn’t focus on it at the time, when we trained the model in our Shallow
Net in Keras notebook back in Chapter 5 we were already using stochastic gradient
descent by setting our optimizer to SGD in the model.compile () step. Further, in
the subsequent line of code when we called the model. fit () method, we set
batch size to 128 to specify the size of our mini-batches—the number of training
data points that we use for a given iteration of SGD. Like the learning rate 1 presented

earlier in this chapter, batch size is also a hyperparameter.

Let’s work through some numbers to make the concepts of batches and stochastic
gradient descent more tangible. In the MNIST data set, there are 60,000 training
images. With a batch size of 128 images, we then have 468.75 = 469 batches ® of

gradient descent per epoch:

[size of trainine data set
number of batches = g
batch size

[ 60, 000 images

- 128images .‘ (84)
= [468.75]

= 469

Before carrying out any training, we initialize our network with random values for each

neuron’s parameters w and b. 7 To begin the first epoch of training:

1. We shuffle and divide the training images into mini-batches of 128 images each.
These 128 MNIST images provide 784 pixels each, which all together constitute the
inputs x that are passed into our neural network. The shuffling step puts the stochastic

into stochastic gradient descent.

2. By forward propagation, information about the 128 images is processed by the

network, layer through layer, until the output layer ultimately produces 7 values.



3. A cost function (e.g., cross-entropy cost) evaluates the network’s ij values against the

true y values, providing a cost C for this particular mini-batch of 128 images.

4. To minimize cost and thereby improve the network’s estimates of y given x, the
gradient decent part of stochastic gradient descent is performed: Every single v and b
parameter in the network is adjusted proportional to how much each contributed to the
error (i.e., the cost) in this batch (note that the adjustments are scaled by the learning

rate hyperparameter 7). 8

The above four steps constitute a round of training, as summarized by Figure 8.5.

Round of Training:

1. Sample a mini-batch of x values

2. Forward propagate x through network

to estimate v with ¢
3. Calculate cost (= by comparing v and 7

4. Descend gradient of ¢ to adjust = and b, enabling
x to better predict v

Figure 8.5 An individual round of training with stochastic gradient descent.
Although mini-batch size is a hyperparameter that can vary, in this particular case,
the mini-batch consists of 128 MNIST digits, as exemplified by our hike-loving
trilobite carrying a small bag of data.

Figure 8.6 captures how rounds of training are repeated until we run out of training
images to sample. The sampling in step one is done without replacement, meaning that
at the end of an epoch each image has been seen by the algorithm only once, yet
between different epochs the mini-batches are sampled randomly. After a total of 468

rounds, the last batch contains only 96 samples.
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Figure 8.6 An outline of the overall process for training a neural network with
stochastic gradient descent. The entire dataset is shuffled and split into batches.
Each batch is forward propagated through the network, the output is compared to
the ground truth and the cost is calculated, backpropagation calculates the
gradients, and the parameters are updated. The next batch (indicated by a dotted
line) is forward propagated, and so on until all of the batches have moved through
the network. Once all the batches have been used, a single epoch is complete and

the process starts again with a re-shuffling of the data.

This marks the end of the first epoch of training. Assuming we’ve set our model up to
train for further epochs, we begin the next epoch by replenishing our pool with all
60,000 training images. As we did through the previous epoch, we then proceed
through a further 468 rounds of stochastic gradient descent. ° Training continues in

this way until the total desired number of epochs is reached.

The total number of epochs that we set our network to train for is yet another
hyperparameter, by the way. This hyperparameter, though, is one of the easiest to get
right:

ce If the cost on your validation data is going down epoch over epoch, and your final

epoch attained the lowest cost yet, then you can try training for additional epochs.

ce Once the cost on your validation data begins to creep upward, that’s an indicator that

your model has begun to overfit to your training data because you've trained for too



many epochs. (We'll elaborate much more on overfitting in Chapter 9.)

ce There are methods you can use to automatically monitor training and validation cost
and stop training early if things start to go awry. In this way, you could set the number
of epochs to be arbitrarily large and know that training will continue until the

validation cost stops improving—and certainly before the model begins overfitting!

Escaping the Local Minimum

In all of the examples of gradient descent thus far in the chapter, our hiking trilobite
has encountered no hurdles on its journey toward minimum cost. There are no
guarantees that this would be the case, however. Indeed, such smooth sailing would be

unusual.

Figure 8.7 shows the mountaineering trilobite exploring the cost of some new model
that is designed for solving some new problem. With this new problem, the relationship
between the parameter p and cost C'is more complex. To have our neural network
estimate y as accurately as possible, gradient descent needs to identify the parameter
values associated with the lowest-attainable cost. However, as our trilobite makes its
way from its random starting point in the top panel, gradient descent leads it to getting
trapped in a local minimum. As shown in the middle panel, while in the local minimum
a step to the left or a step to the right both lead to an increase in cost and so the blind
trilobite stays put, completely oblivious to the existence of a deeper valley—the global

minimum—lying yonder.



Figure 8.7 A trilobite applying vanilla gradient descent from a random starting
point (top panel) is ensnared by a local minimum of cost (middle panel). By
turning to stochastic gradient descent in the bottom panel, the daring trilobite is

able to bypass the local minimum and make its way toward the global minimum.

All is not lost, friends, for stochastic gradient descent comes to the rescue here again.
The sampling of mini-batches can have the effect of smoothing out the cost curve, as
exemplified by the dotted curve shown in the bottom panel of Figure 8.7. This
smoothing happens because when estimating the gradient from a smaller mini-batch
(versus from the entire data set), the estimate is inherently noisier—while the actual
gradient in the local minimum truly is zero, estimates of the gradient from small
subsets of the data don’t tell the whole picture and might give an inaccurate reading
causing our trilobite to take a step thinking there is a gradient when there really isn’t
one. This is a good thing! The incorrect gradient may result in a step that is large
enough for the trilobite to escape the valley and continue down the mountain. Thus, by
estimating the gradient many times on these mini-batches, the noise of all of these
gradient estimates is eventually smoothed and we are able to avoid local minima.

Conversely, if the gradient were estimated from the entire data set' there would be no



noise. The trilobite would receive a noise-free reading of a zero gradient in that local
minimum and would never know there was a whole world of cost-gains to be had just
over the rise, and so this approach will get stuck in the first local minimum it fell into.**
So, although each mini-batch on its own lacks complete information about the cost
curve, in the long run—over a large number of mini-batches—this tends to work to our

advantage.

Like the learning rate hyperparameter 1, there is also a Goldilocks-style sweet spot for
batch size. If the batch size is too large (perhaps even enveloping the entire data set),
the estimate of the gradient of the cost function is far more accurate. In this way, the
trilobite has a more complete image of the mountain in that moment and is able to take
a step (proportional to 1) in the direction of the steepest possible descent. However, the
model is at risk of becoming trapped in local minima as we described above. Besides
that, the model might not fit in memory on your machine and the compute time per
iteration of gradient descent could be very long. On the other hand, if the batch size is
too small, each gradient estimate will be noisier (since a very small subset of the data is
being used to estimate the gradient of the entire data set) and the corresponding path
down the mountain will be more circuitous—training will take longer because of these
erratic gradient descent steps. Furthermore, you're not taking advantage of the memory
and compute resources on your machine.** With that in mind, here are our rules of

thumb for finding the batch-size sweet spot:
ce Start with a batch size of 32 or 64.

ce If the mini-batch is too large to fit into memory on your machine or if epochs of
training proceed very slowly, try decreasing your batch size by powers of two (e.g., from

32 to 16).

ce If your model trains well (i.e., cost is going down consistently) but each epoch is
taking very long and you are aware that you have RAM to spare, try increasing your

batch size by powers of two, (e.g., from 64 to 128).

BACKPROPAGATION

While stochastic gradient descent operates well on its own to adjust parameters and

minimize cost in many types of machine learning models, for deep learning models in
particular there is an extra hurdle: We need to be able to efficiently adjust parameters
through multiple layers of artificial neurons. To do this, stochastic gradient descent is

partnered up with a method called backpropagation.

Backpropagation—or backprop for short—is an elegant application of the “chain rule”



from calculus.™* As shown along the bottom of Figure 8.6 and as suggested by its very
name, backpropagation courses through a neural network in the opposite direction of
forward propagation. While forward propagation carries information about the input x
through successive layers of neurons to approximate y with i, backpropagation carries
information about the cost C backwards through the layers in reverse and, with the

overarching aim of reducing cost, adjusts neuron parameters throughout the network.

While the nitty-gritty of backpropagation has been relegated to an appendix, it’s worth
understanding (in broad strokes) what the backpropagation algorithm does: As we’ve
seen thus far, any given model is randomly initialized with network parameters (1v and
b values). Thus, at the very beginning of training when the first x value is fed in, the
network essentially outputs a completely random guess at ij. Of course, this won’t be a
very good guess and the associated cost of the random guess will be high. At this point,
we need to update the weights in order to minimize the cost—the very essence of
learning in neural networks. Backpropagation calculates the gradient of the cost
function with respect to each weight in the network. Recall from our mountaineering
analogies earlier that the cost function represents a hiking trail and our trilobite is
trying to reach basecamp. At each step along the way, the trilobite finds the gradient (or
the slope) of the cost function and moves down that gradient. That movement that the
trilobite just made is a weight update: By adjusting the weight in proportion to the cost
function’s gradient with respect to that weight, we essentially adjust that weight in a
way that reduces the cost! We know that last sentence might be hard to digest at first,
so hang with us. If you recall the most important equation from Figure 6.7 in Chapter 6
(w - x + b), and you follow that neural networks are stacked and everything feeds
together, it shouldn’t be hard to imagine that any given weight in the network
contributes to the final §j output, and thus the cost. Using backpropagation, we move
layer-by-layer backwards through the network, starting at the cost in the output layer,
and we find the gradients of every single parameter. We then use the product of the
gradient of that parameter—i.e., the relative amount which that parameter contributed

to the total cost—and the learning rate i to update the parameter.

This is not the lightest section of this book, by a wide margin. Also, you wouldn’t be the
first deep learning practitioner who isn’t able to sketch out the specifics of
backpropagation on a whiteboard. So if there’s only one thing you take away from this
whole section, let it be this: Backpropagation uses the cost to calculate the relative
contribution by every single parameter to the total cost, and then updates each
parameter accordingly. In this way, the network slowly begins to reduce cost and, well...

learn!

NETWORK DEPTH: TUNING HIDDEN-LAYER COUNT



As with learning rate and batch size, the number of hidden layers you add into your
neural network is also a hyperparameter. And as with the previous two, there is yet
again a Goldilocks sweet spot for your network’s count of layers. Throughout this book,
we’ve reiterated that with each additional hidden layer within a deep learning network,
the more abstract the representations that the network can represent. That is the

primary advantage of adding layers.

The disadvantage of adding layers is that backpropagation becomes less effective: As
demonstrated by the plot of learning speed across the layers of a four-hidden-layer
network in Figure 8.8, backprop is able to have its greatest impact on the parameters of
the hidden layer of neurons closest to the output 7j. The further a layer is away from g
(where cost is calculated), the more diluted the effect of that layer’s parameters
becomes on the overall cost. This is because with more hidden layers there are simply
more parameters, and the relative contribution of each parameter is diminished. Thus,
the fourth layer, which is closest to the output 7, learns most rapidly because those
weights will have larger gradients. In contrast, the second layer, which is three layers
away from the cost calculation, learns about an order of magnitude more slowly than

the final layer.
Here are our rules of thumb for selecting the number of hidden layers in your network:

e The more abstract the ground-truth value y you’d like to estimate with your network
is, the more helpful additional hidden layers may be. With that in mind, we recommend

starting off with about two to four hidden layers.

ce If reducing the number of layers does not increase the cost you can achieve on your
validation data set, then do it. Following the problem-solving principle called Occam’s
razor, the simplest network architecture that can provide the desired result is the best

—it will train more quickly and require fewer compute resources.

ce On the other hand, if increasing the number of layers decreases the validation cost

then you should layer away!
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Figure 8.8 The speed of learning over epochs of training for a deep learning
network with four hidden layers. The fourth layer, which is closest to the output i

learns about an order of magnitude more quickly than the second hidden layer.

AN INTERMEDIATE NET IN KERAS

To wrap up this chapter, let’s incorporate the new material we’ve uncovered into a
neural network to see if we can outperform our previous Shallow Net in Keras model at

classifying handwritten digits.

The first few stages of our Intermediate Net in Keras Jupyter notebook are identical to
its Shallow Net predecessor. We load the same Keras dependencies, load the MNIST
data set in the same way, and preprocess the data the same way. The situation begins to

get interesting at the cell where we design our neural network architecture:

Example 8.1 Keras code to architect an intermediate-depth neural
network

model = Sequential ()

model.add (Dense (64, activation='relu', input shape=(784,)))

model .add (Dense (64, activation='relu'))

model .add (Dense (10, activation='softmax'))

The first line of this code chunk, model = Sequential (), is still the same as before



(refer back to Example 5.2)—this is our instantiation of a neural network model object.
It’s in the second line that we begin to diverge. In it, we specify that we’ll substitute the
sigmoid activation function in the first hidden layer with our most-highly-
recommended neuron from Chapter 6, the re1u. Other than this neuron swap, the first
hidden layer remains the same: It still consists of 64 neurons and the dimensionality of

the 784-neuron input layer is unchanged.

The other significant change in Example 8.1 relative to the shallow architecture of
Example 5.2 is that we specify a second hidden layer of artificial neurons. By calling the
model .add () method, we near-effortlessly add a second Dense layer of 64 relu
neurons, providing us with the notebook’s namesake: an intermediate-depth neural
network. With a call to model . summary (), we can see from Figure 8.9 that this
additional layer corresponds to an additional 4160 trainable parameters relative to our
shallow architecture (refer back to Figure 7.5). We can break these parameters down

into:

e 4096 weights, corresponding to each of the 64 neurons in the second hidden layer

densely receiving input from each of the 64 neurons in the first hidden layer (64 x 64 =
4096)

ce plus 64 biases, one for each of the neurons in the second hidden layer

ce giving us a total of 4160 parameters: nparameters = Mw + Mp = 4096 + 64 = 4160

Layer (type) Qutput Shape Param #
demse_1 (Dense)  (Nome, 64) 50240
dense 2 (Dense) (None, 64) 4160
dense_3 (Dense) (None, 10) 650

Total params: 55,050
Trainable params: 55,050
Non-trainable params: 0

Figure 8.9 A summary of the model object from our “Intermediate Net in Keras”

Jupyter notebook.

In addition to changes to the model architecture, we’ve also made changes to the

parameters we specify when compiling our model:

Example 8.2 Keras code to compile our intermediate-depth neural
network



model.compile (loss='categorical crossentropy',
optimizer=SGD(1lr=0.1),

metrics=["'accuracy'])

With these lines from Example 8.2, we:

ce set our loss function to cross-entropy cost with
loss="categorical crossentropy’ (in Shallow Net in Keras, we used quadratic

cost by setting 1oss="mean squared error')

ce set our cost-minimizing method to stochastic gradient descent with

optimizer=SGD
ce specified our SGD learning rate hyperparametr nto 1r=0.1"%

ce indicated that, in addition to the Keras default of providing feedback on 1oss, by
setting metrics=["'accuracy'], we'd also like to receive feedback on model

16
accuracy

Finally, we train our intermediate net by running:

Example 8.3 Keras code to train our intermediate-depth neural
network

model.fit (X train, y train,
batch size=128, epochs=20,
verbose=1,

validation data=(X valid, y valid))

Relative to the way we trained our shallow net (see code at Example 5.3), the only
change we’ve made is reducing our epochs hyperparameter from 200 down by an
order of magnitude to 20. As we’ll see next, our much-more-efficient intermediate

architecture required far fewer epochs to train.



Figure 8.10 provides the results of the first three epochs of training the network.
Recalling that our shallow architecture plateaued as it approached 86% accuracy on the
validation dataset after 200 epochs, our intermediate-depth network is clearly superior:
The val acc field shows that we attained 92.34% accuracy after a single epoch of
training. This accuracy climbs to over 95% by the third epoch and appears to plateau

around 97.6% by the twentieth. My, how far we’ve come already!

Epoch 1/20

60000/60000 [===== ———— ====] = 1ls l5us/step - loss: 0.4744
1l loss: 0.2686 - val _acc: 0.9234

Epoch 2/20

60000/60000 [===== —m—— ====] - 13 l2us/step - loss: 0.2414 - acc: 0.9289 - va
l loss: 0.2004 - val acc: 0.9404

Epoch 3/20

60000/60000 [===== - ====] - 1lg l2us/step - loss: 0.1871 - acc: 0.9452 - va
1l loss: 0.1578 = wal acc: 0.9521

Epoch 4/20

60000/60000 [========msmszs=zzzzsszzzz==s=z==] - 1g l2us/step - loss: 0.1538 - acc: 0.9551 - va

acc: 0.B8637 - va

Figure 8.10 The performance of our intermediate-depth neural network over its

first three epochs of training.

Breaking down the verbose model. fit () output shown in Figure 8.10 in a further

detail:

ce The progress bar shown below fills in over the course of the 468 “rounds of training”

(Figure 8.5):

ce 1s 15us/step indicates that all 468 rounds in the first epoch required one second

to train, at an average rate of 15 microseconds per round.

ce 1oss shows the average cost on our training data for the epoch. For the first epoch
thisis 0.4744 and, epoch over epoch, this cost is reliably minimized via stochastic
gradient descent and backpropagation, eventually diminishing to 0. 0332 by the 20th
epoch.

ce acc is the classification accuracy on training data for the epoch. The model correctly
classified 86.37% for the first epoch, increasing to over 99% by the twentieth. Because a
model can easily overfit to the training data, one shouldn’t be overly impressed by high

accuracy on the training data.

ce Thankfully, our cost on the validation data (val loss) set does generally decrease
as well, eventually plateauing as it approaches 0.08 over the final five epochs of

training.



ce Corresponding to the decreasing cost of the validation data is a corresponding
increase in accuracy (val acc). As mentioned in the previous paragraph, validation
accuracy plateaued at about 97.6%, which is a vast improvement over the 86% of our

shallow net.

SUMMARY

We covered a lot of ground in this chapter. Starting from an appreciation of how a
neural network with fixed parameters processes information, we developed an
understanding of the cooperating methods—cost functions, stochastic gradient descent,
and backpropagation—that enable network parameters to be learned so that we can
approximate any y that has a continuous relationship to some input x. Along the way,
we introduced several network hyperparameters, including learning rate, mini-batch
size, and number of epochs of training—as well as our rules of thumb for configuring
each of these. The chapter concluded by applying our new-found knowledge to a
develop an intermediate-depth neural network that greatly outperformed our previous,
shallow network on the same handwritten-digit-classification task. Up next, we have
techniques for improving the stability of artificial neural networks as they deepen,

enabling us to architect and train a bonafide deep learning model for the first time.

KEY CONCEPTS

Here are the essential foundational concepts thus far. New terms from the current

chapter are highlighted in purple:
oe parameters:

oe weight w

ce bias b

ce activation a

ce artificial neurons:

ce sigmoid

ce tanh

oe ReLU

ce input layer



ce hidden layer

ce output layer

ce layer types:

ce dense (fully-connected)

ce softmax

ce cost (loss) functions:

ce quadratic (mean squared error)
e cross-entropy

ce forward propagation

ce backpropagation

oe optimizers:

ce stochastic gradient descent
ce optimizer hyperparameters:
ce learning rate n

oe batch size

1.9.0e-08 is equivalent to 9.0 x 10°°

2 . Recall from Chapter 6 that a = 0(2), where o is some activation function—in this

example, the tanh function.

3 . More methods for attenuating saturated neurons and their negative effects on a

network will be covered in Chapter 9.

4 . This footnote is a Trilobite-Reading SIDEBAR. To understand how the cross-

entropy cost function in Equation 8.2 enables a neuron with larger cost to learn more

rapidly, we require a touch of partial-derivative calculus. (Since we endeavor to



minimize the use of advanced mathematics in this book, we’ve relegated this
calculusfocused explanation to this sidebar.) Central to the two computational methods
that enable neural networks to learn—gradient descent and backpropagation—is the

comparison of the rate of change of cost C relative to neuron parameters like weight w.

&
s’

The cross-entropy cost function is deliberately structured so that, when we calculate its

Using partial-derivative notation, we can represent these relative rates of change as

derivative, 2~ is related to () — y). Thus, the larger the difference between the ideal

output y and the neuron’s estimated output 7, the greater the rate of change of cost C

with respect to weight w.

5 . Using partial-derivative calculus

6 . Since 60,000 is not perfectly divisible by 128, that 469th batch would only contain

0.75 x 128 = 96 images.

7 . We'll detail parameter initialization with random values in Chapter 9.

8 . This error-proportional adjustment is calculated during backpropagation. We

haven’t covered backpropagation explicitly yet, but it’s coming up in the next section so

hang on tight!

9 . Because we're sampling randomly, the order in which we select training images for

our 468 mini-batches is completely different for every epoch.
10. This is often not even a possibility due to memory constraints.

11. It’s worth noting that the learning rate 7 plays a role here. If the size of the local
minimum was smaller than the step size, the trilobite would likely breeze right past the

local minimum just as we step over cracks in the sidewalk.

12. A batch-size of one is also known as online learning. It’s worth noting that this is
not the fastest method in terms of compute - as it happens, the matrix multiplications
in mini-batches are highly optimized and so training is several orders of magnitude

faster when using mini-batches as compared to online learning.

13. On a Unix-based operating system, including Mac OS, RAM usage could be assessed

by running the top or htop command within a Terminal window.

14. To elucidate the mathematics underlying backpropagation, a fair bit of partial-



derivative calculus is necessary. While we encourage the development of an in-depth
understanding of the beautiful phenomenon of backprop, we also appreciate that
calculus might not be the most appetizing topic for everyone. As such, we’ve placed our
content on backprop mathematics in Appendix 18. (This should presumably be labelled
Appendix B)

15. On your own time, you can play around with increasing this learning rate by several
orders of magnitude as well as decreasing it by several orders magnitude, and observing

how it impacts training.

16. Trilobite-Attention Sidebar: While loss provides the most important metric for
tracking a model’s performance epoch over epoch, its particular values are specific to
the characteristics of a given model and are not generally interpretable or comparable
between models. Because of this, other than knowing that we would like our loss to be
as close to zero as possible, it can be esoteric to interpret how close to zero loss should
be for any particular model. Accuracy, on the other hand, is highly interpretable and
highly generalizable: We know exactly what it means (e.g., “the shallow neural network
correctly classified 86% of the handwritten digits in the validation dataset”) and we can
compare this classification accuracy to any other model (“86% is worse than the

performance of our deep neural network”).



9 Improving Deep Networks

In Chapter 6, we detailed individual artificial neurons. In Chapter 7, we arranged these
neural units together as the nodes of a network, enabling the forward propagation of
some input x through the network to produce some output 7. Most recently, in Chapter
8, we described how to quantify the inaccuracies of a network (compare 7 to the true y
with a cost function) as well as how to minimize these inaccuracies (adjust the network
parameters 1w and b via optimization with stochastic gradient descent and
backpropagation). In this chapter, we’ll cover common barriers to the creation of high-
performing neural networks and techniques that overcome them. We'll apply these
ideas directly in code while architecting our first deep neural network. ! Combining
this additional network depth with our new-found best-practices, we’ll see if we can
outperform the handwritten-digit classification accuracy of our simpler, shallower

architectures from previous chapters.

WEIGHT INITIALIZATION

Back in Chapter 8, we introduced the concept of neuron saturation (see Figure 8.1),
where very low or very high values of z diminish the capacity for a given neuron to
learn. At the time, we offered cross-entropy cost as a solution. While cross-entropy does
effectively attenuate the effects of neuron saturation, pairing it with thoughtful weight
initialization will reduce the likelihood of saturation occurring in the first place. As
mentioned in a footnote in Chapter 1, modern weight initialization provided a
significant leap forward in deep learning capability: It is one of the landmark
theoretical advances between LeNet-5 (Figure 1.12) and AlexNet (Figure 1.18) that
dramatically broadened the range of problems artificial neural networks could reliably
solve. In this section, we’ll play around with several weight initializations to develop an

intuition around how they’re so impactful.

While describing neural-network training in Chapter 8, we mentioned that the
parameters 1w and b are initialized with random values such that a network’s starting
approximation of y will be far off the mark, thereby leading to a high initial cost C. We
haven’t needed to dwell on this much because, in the background, Keras by default

constructs TensorFlow models that are initialized with sensible values for v and b. In



Chapters 14 and 15, we’ll get our hands dirty with raw TensorFlow and PyTorch code, at
which point we’ll explicitly need to make decisions about parameter initialization
ourselves. Even now however, it’s worthwhile discussing this initialization: not only to
be aware of another method for avoiding neuron saturation, but also to fill in a gap in
our understanding of how network training works. While Keras does a sensible job of
choosing default values—and that’s a key benefit of using Keras in the first place—it’s
certainly possible, and sometimes even necessary, to change these defaults to suit your

problem.

To make this section interactive, we encourage you to check out our accompanying
Jupyter notebook, First TensorFlow Neurons. This marks our inaugural foray into
TensorFlow code, but we’ll save the details for Chapter 14, skimming over them for the

moment.

As shown in the upcoming chunk of code, our library dependencies are NumPy (for

numerical operations), matplotlib (for generating plots) and, as promised, TensorFlow:

import numpy as np

import tensorflow as tf

import matplotlib.pyplot as plt

In this notebook, we’re going to simulate 784 pixel values as inputs to a single dense
layer of artificial neurons. The inspiration behind our simulation of these 784 inputs
comes of course from our beloved MNIST digits (Figure 5.3). For the number of

neurons in the dense layer, we picked a number large enough so that, when we make

some plots later on, they look pretty:

n_input = 784

n_dense = 256

When Keras creates TensorFlow networks for us, it handily generates all of the
components of the network, including arrays of data for storing all of the relevant
network values. As we’ll detail in Chapter 14, these arrays are called tensors. Without
Keras doing the heavy lifting for us, we’ll have to initialize all the relevant tensors

ourselves. We begin by creating a tensor for holding our 784 input values:



x = tf.placeholder(tf.float32, [None, n input])

Now, for the primary point of this section: the initialization of the network parameters
w and b. Before we begin passing training data into our network, we’d like to start with

reasonably scaled parameters. This is because:

1. Large 1w and b values tend to correspond to larger z values, and therefore saturated

neurons.

2. Large parameter values would imply that the network has a strong opinion about
how x is related to y—before any training on data has occurred, any such strong

opinions are wholly unmerited.

Parameter values of zero, on the other hand, imply the weakest opinion on how x is
related to y. To bring back the fairytale yet again, we’re aiming for a Goldilocks-style,
middle-of-the-road approach that starts training off from a balanced and learnable
beginning. With that in mind, let’s use the TensorFlow zeros () method to initialize

the 256 neurons in our dense layer with b = o:

b = tf.Variable(tf.zeros([n dense]))

Following the line of thinking from the previous paragraph to its natural conclusion, we
might be tempted to think that we should also initialize our network weights 1v with
zeros as well. In fact, this would be a training disaster: If all weights and biases were
identical, many neurons in the network would treat a given input x identically, giving
stochastic gradient descent a minimum of heterogeneity for identifying individual
parameter adjustments that might reduce the cost C. It would be more productive to
initialize weights with a range of different values so that neurons treat a given x in
unique ways, thereby providing SGD with a wide variety of starting points for
approximating y. By chance, some of the initial neuron outputs may partly contribute
to a sensible mapping from x to y. While this contribution will be weak at first, SGD can
experiment with it to determine if it might contribute to a reduction in the cost C

between the predicted i and the target y.

As worked through earlier (e.g., in discussion of Figures 7.5 and 8.9), the vast majority
of the parameters in a typical network are weights; relatively few are biases. As such,

it’s acceptable (indeed, it’s the most common practice) to initialize biases with zeros



and the weights with a range of values near zero. One straightforward way to generate
random values near zero is to use TensorFlow’s random normal () method to sample

values from a normal * distribution like so:

Example 9.1 Weight initialization with values sampled from a normal

distribution

W = tf.Variable(tf.random normal ([n input, n dense]))

To observe the impact of the weight initialization we’ve chosen, we write some code to

represent our dense layer of neurons:

Example 9.2 Code for calculating the output of a layer of neurons

z = tf.add(tf.matmul (x, W), b)

o)
Il

tf.sigmoid(z)

If you decompose the first line, you can see that it is our “most important equation”

(Figure 6.7), z=w - x + b:

3

e tf.matmul (x, W) uses the TensorFlow matrix multiplication operation ° to

calculate the dot product w - x
ce tf.add () adds b to that product, returning us z

Simply beautiful, isn’t it? In the second line of Example 9.2, we go on to apply whatever
activation function we fancy—in this case the sigmoid () function—to z, giving us the
neuron activation a. Since these activation functions are such a core part of deep
learning, TensorFlow has implemented many of them within the library (recall how we
defined the sigmoid () function in the Sigmoid Function Jupyter notebook in Chapter
6), and they’re optimized to help speed up the compute time!

We won'’t explore the details until Chapter 14, but in the following lines of code we use
the NumPy random () method # to feed 784 random numbers as inputs into our dense

layer of 256 neurons, returning 256 a activations to a variable named layer output:

initializer op = tf.global variables initializer ()



with tf.Session() as session:

session.run(initializer op)

layer output = session.run(a,

{x: np.random.random([1l, n input])})

With one more line of code, we use a histogram to visualize the a values stored in

layer_output:5

_ = plt.hist (np.transpose (layer output))

Your result will look slightly different from ours because of the random() method we
used to generate our input values, but your outputs should look approximately like

those shown in Figure 9.1.
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Figure 9.1 Histogram of the a activations output by a layer of sigmoid neurons,

with weights initialized using a normal distribution.

As expected given Figure 6.9, the a activations output from our sigmoid layer of
neurons is constrained to a range from zero to one. What is undesirable about these
activations, however, is that they are chiefly pressed up against the extremes of the
range: Most of them are either immediately adjacent to 0 or immediately adjacent to 1.
This indicates that with the normal distribution that we sampled from to initialize the
layer’s weights 10, we ended up encouraging our artificial neurons to produce large z

values. This is unwelcome for two reasons:



1. It means the vast majority of the neurons in the layer are saturated.

2, It implies that the neurons have strong opinions about how x would influence y prior

to any training on data.

Thankfully, this ickiness can be resolved by initializing our network weights with values

sampled from alternative distributions.

Xavier Glorot Distributions

In deep-learning circles, popular distributions for sampling weight-initialization values
were devised by Xavier Glorot and Yoshua Bengio ® (portrait provided in Figure 1.11).
These Glorot distributions, as they are typically called, are tailored such that sampling
from them will lead to neurons initially outputting small z values. Let’s examine them
in action. By replacing the normal-distribution-sampling code (Example 9.1) of our
First TensorFlow Neurons notebook with the following line, we sample from a Glorot

distribution instead:

Example 9.3 Weights initialization with values sampled from a Glorot

distribution

W = tf.get variable('W', [n input, n dense],

initializer=tf.contrib.layers.xavier initializer())

| L

By restarting and re-running the notebook, 7 you should now observe a distribution of

layer output similar to the histogram shown in Figure 9.2.
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Figure 9.2 Histogram of the a activations output by a layer of sigmoid neurons,
with weights initialized using a Glorot distribution.



In stark contrast to Figure 9.1, the a activations obtained from our layer of sigmoid
neurons is now normally distributed with a mean of ~0.5 and few (if any) values at the
extremes of the sigmoid range (i.e., less than 0.1 or greater than 0.9). This is a good

starting point for a neural network because:
1. Few, if any, of the neurons are saturated. 8

2, It implies that the neurons generally have weak opinions about how x would

influence y, which—prior to any training on data—is sensible.

This paragraph is a Trilobite-attention SIDEBAR: As demonstrated in this section, one
of the potentially confusing aspects of weight initialization is that, if we would like the a
values returned by a layer of artificial neurons to be normally distributed (and we do!),
we should not sample our initial weights from a standard normal distribution. END
SIDEBAR.

There are two Glorot distributions you can select between: Glorot uniform and Glorot
normal. By using the TensorFlow xavier initializer () method in Example 9.3,
we were using the default option, which is Glorot uniform. On the other hand, by
setting the method’s uni form parameter to false—as in,

xavier initializer (uniform=False)—we are opting to sample values from the
Glorot normal distribution. The impact of selecting one of these Glorot distributions
over the other when initializing your model weights is generally imperceptible. You're
welcome to re-run the notebook while sampling values from the Glorot normal
distribution; your histogram of activations should come out more or less

indistinguishable from Figure 9.2.

By swapping out the sigmoid activation function in Example 9.2 with tanh (a =
tf.tanh(z)) orReLU (a = tf.nn.relu(z)) inthe First TensorFlow Neurons
notebook, you can observe the consequences of initializing weights with values sampled
from a standard normal distribution (Figure 9.1) relative to a Glorot distribution
(Figure 9.2). Regardless of activation function, weight initialization with the standard
normal leads to relatively extreme a activations from the layer of dense neurons, as

shown in Figure 9.3.
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Figure 9.3 The activations output by a dense layer of 256 neurons, while varying
activation function (tanh or ReLU) and weight initialization (standard normal or

Glorot uniform)

We hope the exposure to TensorFlow in this section instilled a sense of eager
anticipation for what’s to come in Chapter 14. With respect to parameter initialization
in Keras, you can delve into the API’s documentation on a layer-by-layer basis but, just
as we’ve suggested here, its default configuration is typically to initialize biases with

zero and to initialize weights with a Glorot distribution.

UNSTABLE GRADIENTS

Another issue associated with artificial neural networks, and one that becomes
especially perturbing as we add more hidden layers, is unstable gradients. Unstable
gradients can either be vanishing or explosive in nature. We’'ll cover both varieties in

turn here.

Vanishing Gradients

Recall that using the cost C between the network’s predicted g and the true y, as
diagrammed in Figure 8.6, backpropagation works its way from the output layer toward
the input layer, adjusting network parameters with the aim of minimizing cost. As

exemplified by the mountaineering trilobite in Figure 8.2, the parameters are each



adjusted in proportion to their gradient with respect to cost: If, for example, the
gradient of a parameter (with respect to the cost) was large and positive, this implies
that the parameter contributes a large amount to the cost and so decreasing it

proportionally would correspond to a decrease in cost. °

In the hidden layer that is closest to the output layer, the relationship between its
parameters and cost is the most direct. The further away a hidden layer is from the
output layer, the more muddled the relationship between its parameters and cost
becomes. The impact of this is that, as we move from the final hidden layer toward the
first hidden layer, the gradient of a given parameter relative to cost tends to flatten—it
gradually vanishes. As a result of this, and as plotted in Figure 8.8, the further a layer is
from the output layer, the more slowly it tends to learn. Because of the vanishing
gradient problem, if we were to naively add more and more hidden layers to our neural
network, eventually the hidden layers furthest from the output would not be able to
learn to any extent, crippling the capacity for the network as a whole to learn to

approximate y given x.

Exploding Gradients

While they occur much less frequently than vanishing gradients, certain network
architectures can induce exploding gradients. In this case, the gradient between a given
parameter relative to cost becomes increasingly steep as we move from the final hidden
layer toward the first hidden layer. As with vanishing gradients, exploding gradients
can inhibit an entire neural network’s capacity to learn by saturating the neurons with
extreme values (recall that this was a problem from our discussion about weights

initialization).

Batch Normalization

During the course of normal training, the distribution of hidden parameters in a layer
may gradually move around—this is known as internal covariate shift. In fact, this is
sort of the point—we want the parameters to change in order to learn things about the
underlying data. But as the distribution of the weights in a layer changes, so the inputs
to the next layer might be shifted away from an ideal distribution. Enter batch
normalization (or batch norm for short).*® Batch norm takes the a activations output
from the previous layer and subtracts the batch mean and divides by the batch standard
deviation. This acts to re-center the distribution of the a values with a mean of 0 and a
standard deviation of 1 (Figure 9.4). Thus, if there are any extreme values in the
previous layer, they won’t cause exploding or vanishing gradients in the next layer.

Batch norm has a few advantages:



ce It allows layers to learn more independently from each other, since large values in

one layer won’t adversely influence the next layer.

ce It allows for selection of a higher learning rate because there are no extreme values

in the normalized activations, thus enabling faster learning.

oe The layer outputs are normalized to the batch mean and standard deviation, which
adds a noise element (especially with smaller batch sizes) which, in turn, contributes to
regularization. (Regularization will be covered in the next section, but suffice to say

here that regularization helps a network generalize, which is a good thing.)
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Figure 9.4 Batch normalization transforms the distribution of the activations

output by a given layer of neurons toward a standard normal distribution.

Another point to consider with batch norm is that it adds two extra learnable
parameters to the normalized layers: y (gamma) and § (beta). In the final step of batch
norm, the outputs are linearly transformed by multiplying by y and adding 3, where y is
analogous to the standard deviation, and S to the mean. If your math is on point, you'll
notice this is the exact inverse of the operation that normalized the output values in the
first place! However, the output values were originally normalized by the batch mean
and batch standard deviation, whereas these two parameters are learned by SGD. We

initialize the batch norm layer with y = 1 and 8 = 0, thus at the start of training this



linear transformation makes no changes—batch norm is allowed to normalize the
outputs as intended. As the network learns though, it may determine that de-
normalizing any given layer’s activations is optimal for reducing cost. In this way, if
batch norm is not helpful the network will learn to stop using it on a layer-by-layer
basis. In fact, the network can decide to what degree it would like to de-normalize the

outputs, depending on what works best to minimize the cost. Pretty neat!

MODEL GENERALIZATION (AVOIDING OVERFITTING)

In Chapter 8, we mentioned that after training a model for a certain number of epochs
the cost calculated on the validation dataset—which may have been decreasing nicely
over earlier epochs—could begin to increase paradoxically, despite the fact that the cost
calculated on the training dataset is still decreasing! This situation—where training
cost continues to go down while validation cost goes up—is formally known as

overfitting.

Overfitting is nicely illustrated in Figure 9.5. Notice we have the same data points
scattered along x and y axes in each panel. We can imagine that there is some
distribution that describes these points, and here we have a sampling from that
distribution. Our goal is to generate a model that explains the relationship between x
and y, but perhaps most importantly that also approximates the original distribution—
in this way, the model will be able to generalize to new data points drawn from the
distribution and not just model the sampling of points we already have. In the first
panel (top left), we use a single-parameter model, which is limited to fitting a straight
line to the data.” This straight line underfits the data: The cost (represented by the
vertical gaps between the line and the data points) is high and the model would not
generalize well to new data points. Put simply, the line misses most of the points
because this kind of model is not complex enough. In the next panel (top right), we use
a model with two parameters, which fits a parabola-shaped curve to the data.** With
this parabolic model, the cost is much lower relative to the linear model and it appears

the model would also generalize well to new data—great!
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Figure 9.5 Fitting y given x using models with varying numbers of parameters.
Top right: A single-parameter model underfits the data. Top left: A two-parameter
model fits a parabola that suits the relationship between x and y well. Bottom left: A
many-parameter model overfits the data, generalizing poorly to new data points

(shown in green in the bottom-right panel).

In the third panel (bottom left) of Figure 9.5, we use a model with too many parameters
—more parameters than we have data points. With this approach we reduce the cost
associated with our training data points to nil: There is no perceptible gap between the

curve and the data. In the last panel (bottom right), however, we show new data points



from the original distribution in green, which were unseen by the model during training
and so can be used to validate the model. Despite eliminating training cost entirely, the
model fits these validation data poorly and so it gets a correspondingly sizeable
validation cost. The many-parameter model, dear friends, is overfit: It is a perfect
model for the training data, but it doesn’t actually capture the true relationship between
x and y—rather, it has learned the exact features of the training data too closely and

subsequently it performs badly on unseen data.

Consider how in three lines of code in Example 5.2, we created a shallow neural
network architecture with over 50,000 parameters (Figure 7.5). Given this, it should
not be surprising that deep learning architectures regularly have millions of
parameters.™ This hints at why deep learning models typically require large amounts of
data: Working with data sets that may only have thousands of training samples but
millions of parameters'# could be a recipe for severe overfitting. Since we yearn to
capitalize on deep, sophisticated network architectures even if we don’t have oodles of
data at hand, thankfully we can rely on techniques specifically designed to reduce

overfitting. We'll cover three of the best-known such techniques now.

L1 and L2 Regularization

In branches of machine learning other than deep learning, the use of L1 regularization
or L2 regularization to reduce overfitting is prevalent. These techniques—which are
alternately known as ridge regression and LASSO™ regression, respectively—both
penalize models for including parameters by adding the parameters to the model’s cost
function. The larger a given parameter’s size, the more that parameter adds to the cost
function. Because of this, parameters will not be retained by the model unless they
appreciably contribute to the reduction of the difference between the model’s estimated

7 and the true y. In other words, extraneous parameters are pared away.

This paragraph is a Trilobite-reading SIDEBAR: The distinction between L1 and L2
regularization is that L1’s additions to cost correspond to the square of parameter sizes
while L2’s additions correspond to the absolute value. The net effect of this is that L1
regularization tends to lead to the inclusion of a larger number of smaller-sized
parameters in the model, while L2 regularization tends to lead to the inclusion of a

smaller number of larger-sized parameters. END SIDEBAR.

Dropout

L1 and L2 regularization work fine to reduce overfitting in deep learning models, but
deep learning practitioners tend to favor the use of a neural network-specific

regularization technique instead. This technique, called dropout, was developed by



Geoff Hinton (Figure 1.17) and his colleagues at the University of Toronto™® and was
made famous its incorporation in their benchmark-smashing AlexNet architecture

(Figure 1.18).

Hinton and his coworkers’ intuitive yet powerful concept for preventing overfitting is
captured by Figure 9.6. In a nutshell, dropout simply pretends that a randomly-selected
proportion of the neurons in each layer don'’t exist during each round of training. To
illustrate this, three rounds of training'” are shown in the figure. For each round, we

remove a specified proportion of hidden layers by random selection:

ce For the first hidden layer in the network, we’ve configured it to drop out one third

(33.3%) of the neurons.

ce For the second hidden layer, we’ve configured 50% of the neurons to be dropped out.



Figure 9.6 Dropout, a technique for reducing model overfitting, involves the
removal of randomly-selected neurons from a network’s hidden layers in each

round of training. Three rounds of training with dropout are shown here.

Let’s cover each of the three training rounds in turn:

1. In the top panel, the second neuron of the first hidden layer and the first neuron of

the second hidden layer are randomly dropped out.

2. In the middle panel, it is the first neuron of the first hidden layer and the second one
of the second hidden layer that are selected for dropout. There is no “memory” of which
neurons have been dropped out on previous training rounds, and so it is by chance
alone that the neurons dropped out in the second round are distinct from those

dropped out in the first.



3. In the bottom panel, the third neuron of the first hidden layer is dropped out for the
first time. For the second consecutive round of training, the second neuron of the

second hidden layer is also randomly selected.

Instead of reining in parameter sizes toward zero (as with batch normalization),
dropout doesn’t (in theory) constrain how large a given parameter value can become.
Dropout is nevertheless an effective regularization technique because it prevents any
single neuron from become excessively influential within the network: Dropout makes
it challenging for some very specific aspect of the training dataset to create an overly
specific forward-propagation pathway through the network because, on any given
round of training, neurons along that pathway could be removed. In this way, the
model doesn’t become over-reliant on certain features of the data to generate a good

prediction.

When validating a neural network model that was trained using dropout, or indeed
when making real-world inferences with such a network, we must take an extra step
first. During validation or inference, we would like to leverage the power of the full
network, i.e., its total complement of neurons. The snag is that, during training, we only
ever used a subset of the neurons to forward propagate x through the network and
estimate 7J. If we were to naively carry out this forward propagation with suddenly all of
the neurons, our 7 would emerge befuddled: There are now too many parameters and
the totals after all the mathematical operations would be larger than expected. To
compensate for the additional neurons, we must correspondingly adjust our neuron
parameters downward. If we had, say, dropped out half of the neurons in a hidden layer
during training, then we multiply the layer’s parameters by 0.5 prior to validation or
inference. For a hidden layer in which we dropped out 33.3% of the neurons during
training, we multiply the layer’s parameters by 0.667 prior to validation. Thankfully,
Keras handles this parameter-adjustment process for us automatically. When working
in low-level TensorFlow, however, you need to be mindful and remember to carry out

these adjustments yourself.

This paragraph is a Trilobite-Reading Sidebar. If you're familiar with creating
ensembles of statistical models (e.g., a single random forest out of multiple random
decision trees), then it may already be evident to you that dropout produces such an
ensemble. During each round of training, a random subnetwork is created and its
parameter values are tuned. Later, at the conclusion of training, all of these
subnetworks are reflected in the parameter values throughout the final network—in this
way, the final network is an aggregated ensemble of its constituent subnetworks. END
SIDEBAR.



Like learning rate and mini-batch size discussed in Chapter 8, network architecture
options pertaining to dropout are hyperparameters. Here are our rules of thumb for

choosing which layers to apply dropout to and how much of it to apply:

ce If your network is overfitting to your training data (i.e., your validation cost increases
while your training cost goes down), then dropout is warranted somewhere in the

network.

ce Even if your network isn’t obviously overfitting to your training data, adding some
dropout to the network may improve validation accuracy—especially in later epochs of

training.

ce Applying dropout to all of the hidden layers in your network may be overkill. If your
network has a fair bit of depth, it may be sufficient to apply dropout solely to later
layers in the network (the shallowest layers may be harmlessly identifying features). To
test this out, you could begin by applying dropout only to the deepest layer and
observing if this is sufficient for curtailing overfitting; if not, add dropout to the next

deepest layer, test it, and so on.

ce If your network is struggling to reduce validation cost or to recapitulate low
validation costs attained when less dropout was applied, then you’ve added too much
dropout—pare it back! As with other hyperparameters, there is a Goldilocks-zone for

dropout too.

oe With respect to how much dropout to apply to a given layer, each network behaves
uniquely and so some experimentation is required. In our experience, dropping out
20% up to 50% of the hidden layer neurons in machine-vision applications tends to
provide the highest validation accuracies. In natural language applications, where
individual words and phrases can convey particular significance, we have found that
dropping out a smaller proportion—between 20% and 30% the neurons in a given

hidden layer—tends to be optimal.

Data Augmentation

In addition to regularizing our model’s parameters to reduce overfitting, another
approach is to increase the size of our training dataset. If it is possible to collect
additional high-quality training data for the particular modeling problem you’re
working on, then you should do so! The more data provided to a model during training,

the better the model will be able to generalize to unseen validation data.

In many cases, collecting fresh data is a pipe dream. It may nevertheless be possible to



generate new training data from existing data by augmenting it, thereby artificially
expanding your training dataset. With the MNIST digits, for example, many different
types of transforms would yield training samples that constitute suitable handwritten

digits, e.g.:

ce skewing the image

ce blurring the image

ce shifting the image a few pixels

ce applying random noise to the image
ce rotating the image slightly

Indeed, as shown on the website of Yann LeCun (Figure 1.10), many of the record-
setting MNIST validation dataset classifiers took advantage of such artificial training

dataset expansion.’®

FANCY OPTIMIZERS

So far in this book we’ve only used one optimization algorithm: stochastic gradient
descent. While SGD performs well, researchers have devised shrewd ways to improve

them.

Momentum

The first SGD improvement is to consider momentum. Here’s an analogy of the
principle: Let’s imagine it’s winter and out intrepid trilobite is skiing down a snowy
gradient-mountain. If a local minimum is encountered (as in the middle panel of Figure
8.7), the momentum of the trilobite’s movement down the slippery hill will keep it
sailing by and the minimum will be easily bypassed. In this way, the gradients on

previous steps have influenced the current step.

We calculate momentum in SGD by taking a moving average of the gradients for each
parameter and using that to update the weights in each step. When using momentum,
we have additional hyperparameter 3 (beta), which ranges from zero to one, and which
controls how many previous gradients are incorporated in the moving average. Small
values permit older gradients to contribute to the moving average, which can be
unhelpful—the trilobite wouldn’t want the steepest part of the hill to guide its speed as
it approaches the lodge for the apres-ski portion of the day. Typically we’d use larger 8

values, with f = 0.9 serving as a reasonable default.



Nesterov Momentum

Another version of momentum is called Nesterov momentum. In this approach, the
moving average of the gradients is first used to update the weights and find the
gradients at whatever that position may be—this is equivalent to a quick peek at where
momentum might take us. We then use the gradients from this sneak-peek position to
execute a gradient step from our original position. In other words, our trilobite is
suddenly aware of its speed down the hill, so it’s taking that into account, guessing
where its own momentum might be taking it, and then adjusting its course before it

even gets there.

AdaGrad

While both momentum approaches improve SGD, a shortcoming is that they both use a
single learning rate n for all parameters. Imagine, if you will, that we could have an
individual learning rate for each parameter, thus enabling those parameters which have
already reached their optimum to slow or halt learning, whilst those that are far from
their optima can keep going. Well, you're in luck! That’s exactly what can be achieved
with the other optimizers we’ll discuss in this section: AdaGrad, AdaDelta, RMSProp
and Adam.

The name AdaGrad comes from “Adaptive Gradient”.* In this variation, every
parameter has a unique learning rate that scales depending on the importance of that
feature. This is especially useful for sparse data where some features occur only rarely:
When those features do occur, we’d like to make larger updates their parameters. We
achieve this individualization by maintaining a matrix of the sum of squares of the past
gradients for each parameter, and dividing the learning rate by its square root.
AdaGrad is the first introduction to the parameter ¢ (epsilon), which is a doozy: Epsilon
is a smoothing factor to avoid divide-by-zero errors and can safely be left at its default
value of e = 1 x 107°.%°

An added benefit of AdaGrad is that it minimizes the need to tinker with the learning
rate hyperparameter . You can generally just set-and-forget-it at its default of n = 0.01.
A considerable downside of AdaGrad is that, as the matrix of past gradients increases in
size, the learning rate is increasingly divided by a larger and larger value, which
eventually renders the learning rate impractically small and so learning essentially

stops.

AdaDelta and RMSProp

AdaDelta resolves the gradient-matrix-size shortcoming of AdaGrad by maintaining a

moving average of previous gradients in just the same way that momentum does.*



AdaDelta also eliminates the 1 term so a learning rate doesn’t need to be set.**

RMSProp (Root Mean Square Propagation) was developed by Geoff Hinton (Figure
1.17) at about the same time as AdaDelta.* It works similarly except it retains the
learning rate n parameter. Both RMSProp and AdaDelta involve an extra
hyperparameter p (rho), or decay rate, which is analogous to the f value from
momentum and which guides the size of the window for the moving average.
Recommended values for the hyperparameters are p = 0.95 for both, and 1 = 0.001 for
RMSProp or 1 = 1 for AdaDelta.

Adam

The final optimizer we’ll discuss in this section is also the one we’ll employ most often
in the book. Adam—short for Adaptive Moment Estimation—builds on the optimizers

that came before it.** It’s essentially the RMSProp algorithm with two exceptions:

1. An extra moving average is calculated, this time of past gradients for each parameter
(called the average first moment of the gradient, or just the mean) and this is used to

inform the update instead of the actual gradients at that point.

2. A clever bias trick was used to help prevent these moving averages from skewing

towards zero at the start of training.

Adam has two f hyperparameters, one for each of the moving averages that are
calculated. Recommended defaults are 5, = 0.9 and 8, = 0.999. The learning rate
default with Adam is n = 0.001.

Since RMSProp, AdaDelta and Adam are so similar they may be used interchangeably
in similar applications, although the bias correction may help Adam later in training.
Even though these new-fangled optimizers are in vogue, there is still a strong case for
simple SGD with momentum (or Nesterov momentum), which in some cases performs
better. As with other aspects of deep learning models, you can experiment with

optimizers and observe what works best for your particular problem.

A DEEP NEURAL NETWORK IN KERAS

We can now sound the trumpet as we're reached a momentous milestone! With the
additional theory we’ve covered in this chapter, we have enough knowledge under our
belts to competently design and train a deep learning model. If you’d like to follow
along interactively as we do so, pop into the accompanying Deep Net in Keras Jupyter
notebook. Relative to our shallow and intermediate-depth model notebooks (refer to

Example 5.1), we have a pair of additional dependencies—namely, dropout and batch



normalization:

Example 9.4 Additional dependencies for deep net in Keras

from keras.layers import Dropout

from keras.layers.normalization import BatchNormalization

We load and preprocess the MNIST data the same was as previously. It’s the neural

network architecture cell where we begin to diverge:

Example 9.5 Deep net in Keras model architecture

model = Sequential ()

model.add (Dense (64, activation='relu', input shape=(784,)))

model.add (BatchNormalization())

model.add (Dense (64, activation='relu'))

model .add (BatchNormalization())

model .add (Dense (64, activation='relu'))

model .add (BatchNormalization())

model .add (Dropout (0.2))

model .add (Dense (10, activation='softmax'))



As before, we instantiate a Sequential model object. After we add our first hidden
layer to it, however, we also add a BatchNormalization () layer. In doing this we are
not adding an actual layer replete with neurons, but rather we’re adding the batch norm
transformation for the activations a from the layer before (the first hidden layer). As
with the first hidden layer, we also add a BatchNormalization () layer atop the
second hidden layer of neurons. Our output layer is identical to the one used in the
shallow and intermediate-depth nets, but to create an honest-to-goodness deep neural
network, we are further adding a third hidden layer or neurons. As with the first and
second hidden layers, the third hidden layer consists of 64 batch-normalized relu
neurons. We are, however, supplementing this final hidden layer with Dropout, set to

remove a fifth (0. 2) of the layer’s neurons during each round of training.

The only other change relative to our intermediate-depth network is that we use the

Adam optimizer (optimizer="adam") in place of ordinary SGD optimization:

model.compile (loss="'categorical crossentropy',
optimizer="adam',

metrics=["'accuracy'])

Note that we need not supply any hyperparameters to the Adam optimizer because
Keras handily includes all the sensible defaults we detailed in the previous section
automatically. For all of the other optimizers we covered, Keras (and TensorFlow for
that matter) has implementations that can easily be dropped in in place of ordinary
SGD or Adam. Simply refer to the documentation for those libraries to see exactly how

it’s done.

When we call the £it () method on our model,? we discover that our digestion of all
the additional theory in this chapter paid off: With our intermediate-depth network,
our validation accuracy plateaued around 97.6%, but our deep net attained 97.87%
validation accuracy after the 15th epoch of training, shaving 11% of our already-small
error rate away. To squeeze even more juice out of the error-rate lemon that that, we're
going to need machine vision-specific neuron layers such as those introduced in the

upcoming Chapter 10.

TENSORBOARD



When evaluating the performance of your model epoch over epoch, it can be tedious
and time-consuming to read individual results numerically, as in Figure 9.7,
particularly if the model has been training for many epochs. Instead, TensorBoard

(Figure 9.8) is a convenient, graphical tool for:
ce visually tracking model performance in real time,
ce reviewing historical model performances, and

ce comparing model performances.

Epoch 15720
60000/60000 [=== = - ==] - 1s 23us/step - loss: 0.0288 - acc: 0.9906 - val les
s: 0.0865 - wal_ace: 0,9787

Figure 9.7 Our deep neural network architecture peaked at a 97.87% validation
accuracy at the 15th epoch, besting the accuracy of our shallow and intermediate-
depth architectures. Due to the randomness of network initialization and training,
you may obtain a slightly lower or a slightly higher accuracy with the identical
architecture.
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Figure 9.8 The TensorBoard dashboard enables you to, epoch over epoch, visually
track your model’s cost (1oss) and accuracy (acc) across both your training data

and your validation val data.

TensorBoard comes automatically with the TensorFlow library and instructions for
getting it up and running are available via the TensorFlow site.?” It’s generally

straightforward to set up though. Here, for example, is a procedure that adapts our



Deep Net in Keras notebook for TensorBoard use on a Unix-based operating system,

including Mac OS:

1. As shown in Example 9.6, change your Python code as follows:?®

a. Import the TensorBoard dependency from keras.callbacks

b. Instantiate a TensorBoard object (we’ll call it tensorboard) and specify a new,
unique directory name (e.g., deep-net) that you’d like to create and have TensorBoard
log data written into for this particular run of model-fitting: tensorboard =

TensorBoard(log dir='logs/deep-net')

c. Pass the TensorBoard object as a cal 1back parameter to the £fit () method:

callbacks = [tensorboard]

2. In your terminal, run:

tensorboard --logdir='logs/deep-net' --port 6006

3. Navigate to 1ocalhost: 6006 in your favorite web browser.
Example 9.6 Code to use TensorBoard while fitting a model in Keras

from keras.callbacks import TensorBoard

tensorboard = TensorBoard('logs/deep-net')

model.fit (X train, y train,
batch size=128, epochs=20,
verbose=1,
validation data=(X valid, y valid),

callbacks=[tensorboard])



By following the above steps or an analogous procedure for the circumstances of your
particular operating system, you should see something like Figure 9.8 in your browser
window. From there, you can visually track any given model’s cost and accuracy across
both your training and validation data sets in real time as these metrics change epoch
by epoch. This kind of performance tracking is one of the primary uses of TensorBoard,
though the dashboard interface also provides heaps of other functionality, like visual
breakdowns of your neural-network graph and the distribution of your model weights.
You can learn about these additional features by reading the TensorBoard docs and

exploring the interface on your own.

SUMMARY

Over the course of the chapter, we discussed common pitfalls in modeling with neural
networks and covered strategies for eliminating these pitfalls—or at least minimizing
their impact on model performance. We wrapped up the chapter by applying all of the
theory learned thus far in the book to construct our first bonafide deep learning
network, which provided us with our best-yet accuracy on MNIST handwritten-digit
classification. While such deep, dense neural nets are applicable to generally
approximating any given output y when provided some input x, they may not be the
most efficient option for specialized modeling. Coming up next in Part III, we’ll
introduce neural network layers and deep learning approaches that excel at particular
tasks, including machine vision, natural language processing, the generation of art, and

playing games.

KEY CONCEPTS

Here are the essential foundational concepts thus far. New terms from the current

chapter are highlighted in purple:
oe parameters:

oe weight w

ce bias b

ce activation a

ce artificial neurons:

ce sigmoid

e tanh



e ReLU

ce input layer

ce hidden layer

ce output layer

ce layer types:

ce dense (fully-connected)

ce softmax

oe cost (loss) functions:

ce quadratic (mean squared error)
e cross-entropy

ce forward propagation

ce backpropagation

ce unstable (especially vanishing) gradients
oe Glorot weight initialization
ce batch normalization

ce dropout

ce optimizers:

ce stochastic gradient descent
ce Adam

ce optimizer hyperparameters:
ce learning rate n

oe batch size



1 . Recall from Chapter 4 that a neural network earns the deep moniker if it consists of

at least three hidden layers.

2 . Also known as a Gaussian distribution.

3 . This is part of the magic of a library like TensorFlow. While there are other

operations in Python already that perform matrix multiplication, such a

numpy .matmul (), TensorFlow has implemented highly optimized versions of these
operations. Deep learning performs such a staggering number of calculations like this
one, that without some heavy optimization of the underlying code, the calculations
might take a long time. Additionally, TensorFlow also implements methods to perform
these calculations on a GPU rather than a CPU if needed. Wherever possible, it’s best to

make use of TensorFlow’s operations over their NumPy counterparts.

4 . In an apparent affront to the previous footnote, we’re not using

tf.random uniform (), butin this instance it doesn’t matter—this method is only
called once at the start of training to initialize out trivial (and random!) example, and so

it won’t slow things down by a measurable amount.

5 . In case you're wondering, the leading underscore (=) keeps the Jupyter

notebook tidier by outputting the plot only, instead of the plot as well as an object that
stores the plot.

6 . Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep

feedforward neural networks. Proceedings of Machine Learning Research, 9, 249-56.

7 . Select Kernel from the Jupyter notebook menu bar and choose Restart & Run

A11. This ensures we start completely fresh and don’t re-use old parameters from the

previous run.

8 . It can be helpful to remember that some neurons should be saturated, i.e. their

values should be very large or very small. We just endeavor to create a situation where
the network learns where this is appropriate and does so intentionally, as opposed to

starting off that way.

9 . The change is directly proportional to the negative magnitude of the gradient,



scaled by the learning rate n.

10. Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. arXiv: 1502.03167.

11. This is essentially a linear relationship, the simplest form of regression.
12. Recall the quadratic function from high school algebra.

13. Indeed, as early as Chapter 10, we’ll be encountering models with tens of millions of

parameters.

14. Which can be annotated as n > p, indicating the number of samples is much

greater than the parameter count.
15. Least Absolutely Shrinkage and Selection Operator

16. Hinton, G., et al. (2012). Improving neural networks by preventing co-adaptation of
feature detectors. arXiv:1207.0580.

17. If the phrase round of training is not immediately familiar, refer back to Figure 8.5

for a refresher.
18. yann.lecun.com/exdb/mnist

19. Duchi, J., et al. (2011) Adaptive Subgradient Methods for Online Learning and
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