MACHINE LEARNING
FOR COMPUTER AND
CYBER SECURITY

Principles, Algorithms, and Practices

g W WS "'.
016 '.‘tf'
TR ‘|m:~:
;:l :E'S‘.“
:‘1"" ~
NS, _‘4\“‘,

Editors
Brij B. Gupta and Michael Sheng

CRC Press

Taylor & Francis Croup

A SCIENCE PUBLISHERS BOOK

Machine Learning for
Computer and Cyber Security

Principles, Algorithms, and Practices

Editors
Brij B. Gupta
National Institute of Technology, Kurukshetra, India

Michael Sheng
Department of Computing, Macquarie University, Sydney, Australia

CRC Press
Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A SCIENCE PUBLISHERS BOOK

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2019 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20181123

International Standard Book Number-13: 978-1-138-58730-4 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the
validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the
copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to
publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let
us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted,
or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, includ-
ing photocopying, microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers,
MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety
of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment
has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Gupta, Brij, 1982- editor. | Sheng, Quan Z. editor.

Title: Machine learning for computer and cyber security : principles,
algorithms, and practices / editors Brij B. Gupta, National Institute of
Technology, Institute of National Importance, Kurukshetra, India, Michael
Sheng, Department of Computing, Macquarie University, Sydney, Australia.

Description: Boca Raton, FL : Taylor & Francis Group, [2019] | “A science
publishers book.” | Includes bibliographical references and index.

Identifiers: LCCN 2018054743 | ISBN 9781138587304 (acid-free paper)

Subjects: LCSH: Computer networks--Security measures--Data processing. |
Computer security--Data processing. | Machine learning. | Artificial
intelligence.

Classification: LCC TK5105.59 .M3284 2019 | DDC 006.3/1--dc23

LC record available at https://lccn.loc.gov/2018054743

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.crcpress.com
http://www.taylorandfrancis.com
https://lccn.loc.gov
http://www.copyright.com
http://www.copyright.com

Dedicated to my wife Varsha Gupta and daughter
Prisha Gupta for their constant support during
the course of this book.

B.B. Gupta

Dedicated to my mum for her love.
Michael Sheng

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Foreword

“A baby learns to crawl, walk and then run.
We are in the crawling stage when it comes to applying machine learning.”

—Dave Waters

Whether you are a student in any school or a research fellow in any university or
faculty, or an IT professional or for that matter, any person who is drawn to cyber
security, you will find something useful and enjoyable in this book. This book caters
to the needs of the global research community. On going through the book, you shall
discover the profoundness of the influence which machine learning and data-mining
techniques have in developing defense solutions against attackers. It explores some
of the most exciting solutions developed and the future opportunities for current
researchers. A lot of effort has been put into the designing of this book. It is written
and compiled in a lucid, visually distinct and illustrative way to provide insights to
the user about the manner in which upfront technologies, like machine learning and
data mining, have integrated with cyber security. The inspiration behind this book
was to enlighten the researchers and to gather greater appreciation for a difficult, but
fascinating subject-machine learning. This book is exemplary of infinite applications
that machine learning has.

The emerging technologies, like machine learning and data mining, are the
gift of many tedious endeavours; a gift that possesses immense power to shape the
futuristic secure cyberspace. We hope this book will contribute to the imagination of
the students and young researchers in this field to explore further as there is so much
yet to be discovered and invented by man. But this is only a first foot in this direction;
many more volumes will follow. I congratulate the authors as I think there are going
to be many grateful readers who shall gain broader perspectives on the discipline of
machine learning as a result of their efforts.

Gregorio Martinez Perez

Department of Computer Science
University of Murcia (UMU), Spain
E-mail: gregorio@um.es

Homepage: http://webs.um.es/gregorio/

http://webs.um.es
mailto:gregorio@um.es

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Acknowledgement

Many people have contributed greatly to this book on Machine Learning for Computer
and Cyber Security: Principles, Algorithms, and Practices. We, the editors, would like
to acknowledge all of them for their valuable help and generous ideas in improving
the quality of this book. With our feelings of gratitude, we would like to introduce first
the authors and reviewers of the chapters for their outstanding expertise, constructive
reviews and devoted effort; secondly the CRC Press, Taylor and Francis Group staff
for their constant encouragement, continuous assistance and untiring support and
finally, the editor’s family for being the source of continuous love, unconditional
support and prayers not only for this work, but throughout our life. Last but far from
the least, we express our heartfelt thanks to the Almighty for granting us the courage
to face the complexities of life and complete this work.

B.B. Gupta
Michael Sheng

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Preface

Computer security pertains to the use of technology and policies to assure
confidentiality, integrity and availability by adopting the activities of prevention,
detection and recovery. While researching and teaching cyber security for many years,
we noticed an increasing trend towards machine learning-based solutions, most of
which revolve around machine learning and data-mining techniques. Being unable to
find any appropriate compilation of these modern techniques, we decided to come up
with this book titled, Machine Learning for Computer and Cyber Security: Principles,
Algorithms, and Practices.

The cyberspace continues to face challenging threats and vulnerabilities, exposing
us to different kinds of cyber attacks of varied severity levels and to counter which,
machine learning is an ideal solution. We believe learning and understanding of any
technical matter demands studying it multiple times in different manners, which
offer an ever new perspective of the problem. Thus, for ensuring an acceptable and
satisfactory level of security, it is required that researchers clearly understand the new
technologies and their working mechanism. This book serves as a valuable reference
point for researchers, educators and engineers who want to explore different machine-
learning techniques and tools in cyber security. It is also of general interest to one using
machine-learning techniques in software development, particularly in developing
cyber security applications. It is our hope that the work presented in this book will
stimulate new discussions and generate original ideas that will further develop this
important area.

We would like to express our heartfelt gratitude and acknowledgement to the
authors for their contributions and the reviewers for their expertise to improve the
manuscript. We are grateful to CRC Press, Taylor & Francis Group for giving the
opportunity to publish this book. We would like to thank them for their support and
professionalism during the entire publication process.

August 2018 B.B. Gupta
Michael Sheng

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Contents

Foreword

Acknowledgement

Preface

1.

A Deep Learning-based System for Network Cyber Threat Detection
Angel Luis Perales Gomez, Lorenzo Fernandez Maimo and Felix J.
Garcia Clemente

Machine Learning for Phishing Detection and Mitigation
Mohammad Alauthman, Ammar Almomani, Mohammed Alweshah,
Waleed Omoush and Kamal Alieyan

Next Generation Adaptable Opportunistic Sensing-based Wireless
Sensor Networks: A Machine Learning Perspective

Jasminder Kaur Sandhu, Anil Kumar Verma and Prashant Singh Rana

A Bio-inspired Approach to Cyber Security
Siyakha N. Mthunzi, Elhadj Benkhelifa, Tomasz Bosakowski and
Salim Hariri

Applications of a Model to Evaluate and Utilize Users’ Interactions
in Online Social Networks
Izzat Alsmadi and Muhammad Al-Abdullah

A Deep-dive on Machine Learning for Cyber Security Use Cases
Vinayakumar R., Soman KP., Prabaharan Poornachandran and
Vijay Krishna Menon

A Prototype Method to Discover Malwares in

Android-based Smartphones through System Calls

B.B. Gupta, Shashank Gupta, Shubham Goel, Nihit Bhardwaj and
Jaiveer Singh

Metaheuristic Algorithms-based Feature Selection Approach
for Intrusion Detection

Ammar Almomani, Mohammed Alweshah, Saleh Al Khalayleh,
Mohammed Al-Refai and Riyadh Qashi

vii

ix

26

48

75

105

122

159

184

Xil

10.

11.

12.

13.

14.

15.

Machine Learning for Computer and Cyber Security

A Taxonomy of Bitcoin Security Issues and Defense Mechanisms
Prachi Gulihar and B.B. Gupta

Early Detection and Prediction of Lung Cancer using Machine-
learning Algorithms Applied on a Secure Healthcare Data-system
Architecture

Mohamed Alloghani, Thar Baker, Dhiya Al-Jumeily, Abir Hussain,
Ahmed J. Aljaaf and Jamila Mustafina

Preventing Black Hole Attack in AODV Routing Protocol using
Dynamic Trust Handshake-based Malicious Behavior Detection
Bhawna Singla, A.K. Verma and L.R. Raheja

Detecting Controller Interlock-based Tax Evasion Groups in
a Corporate Governance Network
Jianfei Ruan, Qinghua Zheng, Bo Dong and Zheng Yan

Defending Web Applications against JavaScript Worms on
Core Network of Cloud Platforms

Shashank Tripathi, Pranav Saxena, Harsh D. Dwivedi and
Shashank Gupta

Importance of Providing Incentives and Economic Solutions
in IT Security
Amrita Dahiya and B.B. Gupta

Teaching Johnny to Thwart Phishing Attacks: Incorporating the
Role of Self-efficacy into a Game Application

Nalin A.G. Arachchilage and Mumtaz Abdul Hameed

Index

209

233

258

278

290

320

337

351

CHAPTER 1

A Deep Learning-based System for
Network Cyber Threat Detection

Angel Luis Perales Gomez,* Lorenzo Fernandez
Maimo and Feliz J. Garcia Clemente

New network technologies and paradigms are rendering existing intrusion detection
and defense procedures obsolete. In particular, the upcoming fifth generation (5G)
mobile technology with large volumes of information and high transmission rates is
posing new challenges on cybersecurity defense systems. In this regard, this chapter
proposes a system for network cyberthreats detection in 5G mobile networks by
making use of deep learning techniques with statistical features obtained from network
flows. Since these features are payload-independent, they can be computed even with
encrypted traffic. The system analyzes network traffic in real time and, additionally, is
able to adapt in order to manage traffic fluctuation. This proposal has been evaluated
in a botnet context, reaching reasonable classification accuracy. Moreover, the model
prediction runtime has also been evaluated with a variety of deep learning frameworks
and a wide range of traffic loads. The experimental results show that the model is
suitable in a real 5G scenario.

1. Introduction

Over the years, cyber-security researchers have used diverse techniques and developed
multiple solutions to protect assets of organizations from malicious attackers. Cyber-
security solutions provide encryption, rights management and inspection capabilities
for protecting network data. However, cyber security threats, such as trojans, viruses,
worms and botnets, among others [1] require cyber security solutions to be constantly
updated. In this sense, solutions based on Intrusion Detection Systems (IDS) include
proactive techniques to anticipate vulnerabilities and trigger reactive actions.

Departamento de Ingenieria y Tecnologia de Computadores, University of Murcia, 30100 Murcia, Spain.
E-mails: Ifmaimo@um.es; fgarcia@um.es
* Corresponding author: angelluis.perales@um.es

mailto:angelluis.perales@um.es
mailto:fgarcia@um.es
mailto:lfmaimo@um.es

2 Machine Learning for Computer and Cyber Security

The large volume of traffic carried by modern networks make IDSs ineffective
to collect and analyze every network packet. As an illustration, a deep packet
inspection (DPI) tool like Snort [2] begins to discard packets from 1.5 Gbps [3] due
to overheads. Recently, intensive experiments were conducted in order to obtain a
thorough performance evaluation of Snort and the application of machine learning
techniques on it [4]. These experiments covered a wide range of bandwidths, resulting
in 9.5 per cent of packets dropped at 4 Gbps, while packet drop rose to 20 per cent at
10 Gbps. In order to improve performance, advanced parallelization techniques based
on hardware accelerators were proposed. Among them, techniques based on Field
Programmable Gate Array (FPGA) support speeds of up to 4 Gbps without loss [5]
while the ones based on Application-Specific Integrated Circuit (ASIC) reach speeds
close to 7.2 Gbps [6].

Consequently IDS-based solutions based on DPI adopted new ways of detection,
evolving towards the use of innovative Al-based techniques [7]. A complete survey
dealing with solutions to quickly classify gathered network flows and detect attacks,
can be found in [8]. However, upcoming networks with even higher transmission rates
will make these solutions insufficient. That is the case with the Internet of Things [9]
or the new fifth generation (5G) mobile technology, where its new advanced features
will be a challenge for the existing detection procedures; therefore, these procedures
need to be adapted accordingly to the new requirements.

The 5G-PPP consortium has identified a pool of Key Performance Indicators
(KPI) that have a high impact when analyzing and inspecting traffic network flows
[10]. This inspection computes certain characteristics of the incoming network flow
needed for the detection procedure in an efficient and quick manner. Among these
KPIs, the following four make detection procedures an even greater challenge in 5G
mobile networks:

* 1000 times higher mobile data volume per geographical area.
* 10 to 100 times more connected devices.

+ 10 times to 100 times higher typical user data rate.

* End-to-end latency of < 1 ms.

The large number of User Equipments (UE) belonging to 5G subscribers, the large
volumes of data traffic produced by them and the reduced latency in connectivity make
us face new challenges to be solved without losing cyber threat detection accuracy in
real-time scenarios.

To overcome this challenge, this chapter presents a 5G-oriented architecture to
identify cyber threats in 5G networks by means of deep learning techniques. This
approach is based on a feature vector made up of statistical measures obtained from
the network flows within a given time period. These features are payload-independent,
making them suitable to be used even with encrypted traffic. In our proposal, a deep
learning model is trained in a supervised way with the feature vectors computed from
a well-known botnet dataset. Subsequently, this model is used to classify the network
traffic as normal or anomalous within this botnet context [11]. Our experimental
results show the classification accuracy of our proposal as well as its prediction
runtime. This runtime is shown to be suitable for the time restrictions imposed by the
5G networks. Moreover, this chapter first presents a detailed study of different deep
learning techniques and how they can be applied to network anomaly detection.

A Deep Learning-based System for Network Cyber Threat Detection 3

2. Deep Learning

For years, machine learning has been used in a wide range of applications, such
as spam filters or recommendation systems. Nowadays, machine learning is being
replaced with more advanced deep learning techniques. Both are closely related and
share the same philosophy—they build a model from an input dataset and use it to
make predictions on unseen data. Indeed, deep learning is considered as a subfield
of machine learning (Fig. 1). However, machine learning needs feature engineering
to generate the input features, thus requiring more domain expertise, whereas deep
learning obtains their own features from raw data [12]. This fact, together with the
increase of computation power in modern hardware and the availability of public
datasets to be used in a wide domain of problems, are the main reasons of deep
learning success.

In this section, a brief introduction to machine learning is presented, describing the
typical problems where machine learning is used and the different training methods
available. Next, the main concepts behind deep learning are explained, starting
from a basic feed-forward artificial neural network and ending with more complex
architectures.

Field of Artificial Intelligence

Field of
Machine Learning

Deep
Learning

Fig. 1: Relationship among artificial intelligence, machine learning and deep learning.

2.1 Machine Learning

Machine learning is an artificial intelligence field that allows a computer to learn from
data without being explicitly programmed. Machine learning algorithms (also called
‘models’) need a training phase before being used to make predictions. During the
training stage, the algorithm uses the input data to find a model that allows predictions
about unseen data belonging to the same context. If the model accurately predicts
unseen data, the model can generalize and, hence, can be used to make future
predictions. Conversely, if the model predicts accurately the data used during the
training but has much less accuracy when used with new data, then the model has
overfitted the training data. Overfitting means that it has also learned the noise, and
thus, it cannot generalize.

Additionally, the model may have parameters that cannot be optimized from
the data; they are called ‘hyperparameters’. In many cases, their default values are

4 Machine Learning for Computer and Cyber Security

sufficient to obtain an acceptable result. However, reaching state-of-the-art requires
the tuning of these model hyperparameters. Frequently this is the more time-
consuming part because it implies fitting and testing the model for a wide range of
hyperparameter values.

We can consider two main machine-learning tasks regarding their desired output:
classification and regression (Fig. 2).

Classification: We want to determine the most probable class of an element, for
example, distinguishing between pictures of cats and dogs. This typically consists
in finding a boundary that separates the different classes. When we have only two
classes, it is called binary classification. If we have more than two classes, it is called
categorical classification. A typical classification problem in machine learning is to
recognize handwritten digits. One approach to solve this task is to train a model by
using the well-known MNIST dataset. In this problem, the input data is an image that
represents a handwritten digit and the output is the digit itself. This can be seen as a
10-class classification task.

Regression: Attempt to model the relationship between a dependent variable and
one or more independent variables. It is used to make both prediction and inference.
A prediction example is when we want to predict the house pricing from variables
such as number of bedrooms, number of bathrooms, square meters, city, and district.
Conversely, if we want to know how much increase in house price is associated with
a given city, we are making inference.

In addition to categorizing machine-learning algorithms regarding their desired
output, we can also classify them as supervised or unsupervised, depending on whether
or not they need labeled data respectively:

Supervised: Each sample has its label, so we can compute the error between the real
and the predicted values and adjust the model parameters accordingly.

Unsupervised: In this case, the dataset has no labels, thus the approach to this problem
is mainly based on clustering algorithms. The algorithms are based on grouping data
in clusters, that is, the samples of each cluster are more similar to each other than to
those in the other cluster.

A non-exhaustive list of supervised machine-learning algorithms includes linear
regression, logistic regression, support vector machine, artificial neural networks,
random forest, or tree decision just to name a few. Some of those algorithms, such

-
& L
'I_-s- +
+
+
Classification Regression

Fig. 2: Classification versus regression. In classification the dotted line represents a linear boundary
that separates the two classes; in regression, the dotted line models the linear relationship between the
two variables.

A Deep Learning-based System for Network Cyber Threat Detection 5

as logistic regression, focus on classification tasks; while others focus on regression
tasks (e.g., linear regression). Some of them can be used both for regression and
classification; for example, support vector machines, artificial neural networks or
random forests. Regarding unsupervised algorithms, an example is the well-known
k-means clustering method.

2.2 Artificial Neural Networks

Feedforward neural network is one of the basic artificial neural network architectures
and it is made up of neurons organized in layers. Artificial neurons are inspired
by biological neurons in the sense that they receive an input signal from different
connections, perform a weighted sum of the inputs and apply an activation function
to produce an output.

A detailed artificial neuron scheme can be seen in Fig. 3. The inputs are
x, ... x and they are multiplied by the weights labeled as w, ... w . The weighted sum
is performed and, finally, the activation function is applied, producing an output.

From a mathematical point of view, a neuron performs a well defined operation
given by Eq. 1. We can represent the weighted sum operator as a matrix multiplication,
where both x and w have an n x 1 shape, and 7 is the number of inputs of the neuron.

g0 =0(> wx, +b)= o (W x+b) (1)

The activation function o is used to introduce non-linearity to the output. Three
of the most common activation functions are sigmoid, hyperbolic tangent (tanh) and
REctifier Linear Unit (ReLU). The output of the sigmoid activation function takes
values between 0 and 1. A special case of sigmoid, called logistic function, is frequently
used as final step in binary classification problems (Eq. 2). These problems are rather
common; for example, in supervised anomaly detection, the goal is to predict between
two classes, normal and abnormal. Therefore, a sigmoid can be applied as a last step
to limit the output between 0 and 1. Finally, a threshold decides the class (e.g., class
one if sigmoid(x) > 0.5 or class two if sigmoid(x) <0.5).

sigmoid(x) =

2

Hyperbolic tangent activation function can be expressed as a function of hyperbolic
cosine and hyperbolic sine. The output values goes from —1 to 1 (Eq. 3).

l+e™*

tanh(x) = sinh(x) _e—-e

= 3
cosh(x) e +e
ReL U, in turn, is based on a maximum function and it takes the maximum value
between 0 and the input (Eq. 4). ReLU is simpler than sigmoid or tanh because any
negative value is set to 0; hence, it does not need to compute any operation, such as
multiplication or exponential. An interesting property of ReLU is that it helps to solve
the vanishing gradient problem [13].

ReLU (x) =max(0,x) 4)

The three activation function are plotted in Fig. 4.

6 Machine Learning for Computer and Cyber Security

Inputs Weights Netinput Activation
function function

» & -

Fig. 3: One-layer artificial neural network—the perceptron.

1.00 —— 30
075
08 25
050
20
06 025
0.00 15
04 -0.25
10
050
02 0s
075
-1.00 ——— 00
3) Y o 1 2 3

2 3

(a) sigmoid (b) tanh (¢) ReLU

Fig. 4: The most common activation functions used in neural networks.

In general, as shown by Fig. 5, a feed-forward neural network is made up of a first
layer called ‘input layer’, one or more ‘hidden layers’, and a final layer called ‘output
layer’. In the training phase, the input layer receives the training data; then, each
neuron computes its output and propagates it to the next layer. This is repeated for each
hidden layer until the output layer is reached. This is called ‘forward propagation’.
When the output layer is reached, a loss function computes the error between the
output and the ground truth. Common loss functions are mean square error (MSE) for
regression and binary cross-entropy (two classes) or categorical cross-entropy (three
or more classes) for classification. The MSE function is computed as the mean of the
difference between the observed values y and the predicted values y, where y and y are
vectors of size n (Eq. 5).

MSE =23 (3, 3 5)

The binary cross-entropy and multi-class cross-entropy are closely related. Indeed,
the last one is a generalized case of the first. Binary cross-entropy and multi-class
cross-entropy are computed as shown in Egs. 6 and 7 respectively. In these formulas,
y is the prediction vector, y is the observed values vector and i and j the i-th element in
the vector and the j-th class respectively.

~ 3Ly, ~log(3) +(1- 3)log(1 - 3] ©)

A Deep Learning-based System for Network Cyber Threat Detection 7

—%iim log(1-5,)] %)

This error measure is used to update the weight of each layer by means of a
technique called ‘backpropagation’ [14]. This technique is an efficient way to compute
the gradient of the loss functions with respect to each optimizable parameter of the
network. When the backpropagation process ends, the weights are updated by a
version of gradient descent. This procedure is repeated until a minimum is reached.

There exists a wide variety of neural network architectures. Historically only
shallow models were considered suitable; however, the modern hardware has
achieved enough computational power to deal with millions of parameters of the
deeper architectures. This compute power, together with enhanced regularization
methods, initialization heuristics and larger datasets have substantially improved the
convergence and performance of the deeper models.

In the following sections, two of the most popular architectures are described—
convolutional neural networks (CNN), which have achieved state-of-the-art results in
fields such as computer vision or natural language processing; and recurrent neural
networks (RNN), including Long Short-Term Memory (LSTM), a deep architecture
that is capable of detecting complex temporal patterns.

7
N
A\\ %

Ny
Previtios
LA
S0

RN
SE7

AN
SR

Input Laver Hidden Layer @ output Layer

Fig. 5: Two-hidden layer artificial network architecture.

2.3 Convolutional Neural Networks

Feed-forward neural networks are based on fully-connected layers, in which every
neuron is connected to every other in adjacent layers. By contrast, CNNs utilize
local receptive fields (also called filters, which enforce a local connectivity pattern
between neurons of adjacent layers, that is, a neuron is connected to a small region of
the previous layer), shared weights (the weights are associated to the filter, so every
output uses the same weights) and pooling (which simplifies the output).

Although CNNs have achieved state-of-the-art results in computer vision tasks
(e.g., image classification or object detection), they are neither limited to image
processing nor to two-dimensional inputs. In addition, they have proved their
effectiveness in fields such as natural language processing or time series prediction.

8 Machine Learning for Computer and Cyber Security

Three main types of layers are commonly used to build convolutional networks—
convolutional layer, pooling layer and fully-connected layer (the same as in feed-
forward networks).

2.3.1 Convolutional Layer

This is the core layer in the convolutional neural networks architecture and it is based
on the convolution operator. Convolution is a linear operation widely used in computer
vision and image processing applications. For images, convolution is represented as a
matrix called kernel, filter or feature detector. The kernel matrix is moved across the
image and applied to each image position. The resulting matrix is called feature map,
activation map or convolved feature.

Figure 6 graphically shows how the operation is performed. It is important to
notice that it is not a traditional matrix multiplication, but the dot product of the kernel
and the underlying pixels. Different kernels result in different activation maps. In the
figure, the output is computed as follows:

IX0+2x1+4x0+2x14+4x—4+6x1+3x0+2x1+7x0=-4

The purpose of a convolutional layer is to extract features from the input image,
where the filter weights determine the feature that is going to be detected. These
weights are the parameters that the network will learn during the training phase.

24 zJo 2 2[5
2 4162716 [2 |6 -4
327815 B8 |2 o1
229525 |2 |7 1|4l

B EE ol 1
224227 [0 6

257243]2 |6

426 2|8 4[5 |2

Fig. 6: Convolution operation—The result is stored in the output cell corresponding to the center of
the filter.

2.3.2 Pooling Layer

Frequently, a pooling layer is used just after a convolutional layer. The purpose is to
reduce the dimensionality of the output by selecting the most representative feature
in a patch. Pooling operation consists in a subsampling of its input by means of an
aggregation operation (typically maximum or average) applied in a given stride. One
interesting property of the pooling operation is that it also introduces translation
invariance.

2.3.3 Fully Connected Layer

Fully connected layer is similar to the layers used in feed-forward neural networks. In
CNN context, this layer is used as a final classification stage. The last convolutional
layer outputs a given number of feature maps. This output is flattened into a single
vector before being passed to the fully connected layer.

A Deep Learning-based System for Network Cyber Threat Detection 9

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT 6@28x28

32x32 S2: f. maps C5: layer gg.

s tm \120 y g‘? layer ?OUTPUT
B

|

b
Full conl\ection | Gaussian connection
Convolutions Subsampling Convolutions Subsampling Full connection

Fig. 7: Convolutional neural network architecture.

In Fig. 7, we can see a well-known convolutional neural network architecture
called LeNet-5 [15] used in handwritten digit classification. LeNet-5 accepts images
of 28 x 28 pixels as input. The network is made up of two convolutional layers, each
of them with a corresponding max pooling layer, and two fully connected layers,
followed by a final 10-output classification layer. Each output represents a class-
membership estimation. This neural network architecture can be used in conjunction
with the above-mentioned MNIST dataset to classify handwritten digit.

2.3.4 Recurrent Neural Networks

A recurrent neural network (RNN) is an architecture of artificial neural networks
where connections between units form a directed graph along a sequence. Unlike
feed-forward neural networks, RNNs can use their internal state to process sequences
of inputs. This makes RNNs suitable for use in tasks that require data sequences, such
as speech recognition, language modeling, translation or image captioning.

The input to the recurrent neural networks is a sequence of length n, denoted by
X, X,,..., X_. The internal state can be represented by Eq. 8, where 7, is the hidden
state after processing x, input, %, is the previous hidden state. /¥ and U are the
corresponding weights. The output function (y) can be seen in the Eq. 9, where V are
the weights.

h=oc(Wx,+U,h,) (®)

yi=oVh))

The key concept in RNN architecture is the use of the previous state /2, , that gives
the network information about the past. This provides the network with a temporal
context that can be used to predict the next element of a temporal series, or to translate
a given sentence considering a number of previous words. However, RNN suffers
from vanishing gradient; hence has trouble dealing with long-term dependencies.
Long short-term memory neural networks (LSTM) solve this drawback by using a
more complex architecture.

2.3.5 Long Short-Term Memory Neural Network

Long short-term memory neural network (LSTM) [16] is a special RNN architecture
capable of learning long-term dependencies. It can remember information for a long
period of time. An LSTM architecture uses the LSTM unit as a base block to build
the network.

10 Machine Learning for Computer and Cyber Security

An LSTM unit is made up of a cell state ¢, and three different gates: the forget
gate (f)), the input gate (7,), and the output gate (0,). In this model, the hidden state (/)
is also the cell output and there is a new internal cell state (c) that is managed by the
forget and input gates. The forget gate provides a forgetting coefficient computed from
the input data (x)) and the previous hidden state (%, ,). Finally a sigmoid function (o)
is applied. The operations to compute the forget gate, the input gate and the new cell
state are shown in Eq. 10. Here, W and U are the weights associated with the current
input data and the previous hidden state respectively; and b is the bias.

fi=oW,x,+U h_ +b,)
i, = (Wx, + U, +b) (10)
¢, = fi*c,_ +i *tanh(W.x, +Uh_ +b)

-1

The input gate decides how the cell state should be updated. The next step is to
obtain a candidate value to update the cell state. This candidate value is generated by
applying tanh to a function of the previous hidden state and the input data. The new
cell value is computed as a sum of the former cell state and the candidate, entry-wise
multiplied (*) by the forget and input values respectively.

The output gate is responsible for deciding what information will be passed to
the next unit. Its value is calculated from the input data and the previous hidden state.
Finally, the output (or hidden state) is computed by entry-wise multiplying the output
gate and the fanh function applied to the cell state (Eq. 11).

o,=c(Wx,+Uh_ +b,)

o't 0''t-1

h, =o, *tanh(c,)

(11

3. Deep Learning Applied to Anomaly Detection

Anomaly detection is the identification of items, events or observations which do not
conform to an expected pattern or behavior. A simple anomaly detection procedure
could be to define a region representing normal behavior and label any sample in the
data that does not belong to this normal region as an anomaly. According to [17], there
are several challenges in this simple approach—difficulty in defining such a normal
region; anomalies produced by an adaptive malicious attacker; normal behavior
evolution; context dependent definition of anomaly (e.g., in medical domain, a small
fluctuation in body temperature can be an anomaly, whereas similar deviation in stock
market domain may be normal); or lack of availability of labeled datasets.

Given the variety of anomalies, the general anomaly detection problem is
considered as extremely hard. Moreover, even in a given context, the concept of
anomaly can change with time. As an illustration, let us assume a network where
P2P traffic is not allowed. In this case, P2P traffic would be classified as anomalous.
However, if the company decides to take advantage of some P2P platform to provide
a new service, the anomalous P2P traffic would be extremely difficult to differentiate
from the allowed one.

In computer networks, anomaly detection has been a subject of study for decades
and many approaches have been explored [17, 18]. The deep learning perspective,
however, has received special attention in recent years [19].

A Deep Learning-based System for Network Cyber Threat Detection 11

Deep-learning anomaly detection techniques typically act as classifiers that
distinguish between normal and anomalous classes. These techniques operate in one
of the following three modes:

Supervised detection requires a dataset with traffic labeled as normal or anomalous.
The main issue is how to build a really comprehensive training set with all the
anomalous traffic properly labeled. These datasets are not usually available and they
can be difficult to collect and maintain [20]. There are several reasons for this, such
as the excessive effort needed to collect such data, the level of expert knowledge that
would be necessary for the analysis and even the issues with the users’ privacy. In
fact, there are different legal aspects in collecting all the traffic from the network of a
company or institution.

Unsupervised detection does not require any labeled training. The goal in this
technique is typically to discover groups of similar samples within the data (clustering).
A question that arises is how to be certain that the identified classes correspond to
the desired ones. Even if we have a large amount of data covering all the different
scenarios and traffic patterns, we cannot blindly trust the results. However, when
used for dimension reduction, these methods are well suited to extract discriminative
higher-level features that can improve the classification performance of a supervised
or semi-supervised algorithm.

Semi-supervised detection tries to estimate the probability distribution of the normal
traffic from a sufficient amount of collected samples. This defines a tight boundary
around the region (not necessarily convex) where a sample is classified as normal. The
difference with respect to the supervised method is that there is no information about
the shape of the anomalous region in the sample space. The new traffic is classified as
anomalous in case it exceeds a threshold distance.

Among the unsupervised learning methods, Deep Belief Networks (DBN) [21]
and Stacked Autoencoders (SAE) [22] have proved to be effective in learning invariant
features from complex and high-dimensional datasets. The Restricted Boltzmann
Machine (RBM) is the building block of a DBN, where each layer is separately trained
in a greedy way as a RBM, that takes the input from the feature layer learned in the
previous layer. SAE use the same idea to train stacked autoencoders in an unsupervised
way, one at a time, to obtain a set of more descriptive low-dimension features. Both
can be fine-tuned by means of backpropagation or Support Vector Machine (SVM)
layers in a supervised way. They can also be configured as a semi-supervised one-class
method, for example, adding a one-class SVM as a last layer [23, 24]. These semi-
supervised one-class algorithms are well suited in anomaly detection, where the set of
anomalous traffic captured is usually much smaller than the set of normal traffic. They
can also be used in a prior phase to detect background traffic outliers, which could
give us some useful insights into the traffic characteristics.

Training deep learning methods is a costly process because they need a great
amount of data and iterations to converge. However, these methods usually outperform
other classic algorithms. Additionally, they exhibit highly parallel computation
patterns in prediction mode that take great advantage of GPU’s computing power.
We are interested in time-effective solutions that offer sufficient accuracy with a low
evaluation runtime, to process the features coming from the large volumes of input
information expected in 5G mobile networks.

12 Machine Learning for Computer and Cyber Security

4. Proposal for Network Cyber Threat Detection

To achieve effective network anomaly detection, we use a distributed system that
integrates in 5G networks [25] following the ETSI NFV architecture [26], which has
also been used as the basis for other proposals [27, 28].

The system is depicted in Fig. 8, which is made up of two Virtualized Network
Functions (VNF)—Anomaly Symptom Detection (ASD) and Network Anomaly
Detection (NAD). The former is located within the Radio Access Network (RAN)
infrastructure. It focuses on the quick search of anomaly symptoms, where a symptom
is basically a sign of anomaly detected in the traffic. The latter is a collector of
timestamped and RAN-associated symptoms, where a central process analyzes the
timeline and the relationship among these symptoms to identify any network anomaly.
Once an anomaly is detected, it is immediately communicated to the monitoring and
diagnoser module.

Our proposal is flexible because it can deploy new virtualized resources to continue
detecting anomaly symptoms when network traffic increases. It is also extensible,
since the symptom detection is performed in a distributed way in the RANs, while the
anomaly detection is performed in a centralized way in the core network, known as
Evolved Packet Core (EPC).

Regarding ASD and NAD functions, we propose using deep-learning techniques
to analyze network flows. We divide flow accounting in two-step process: flow export
and flow collection. The former is responsible for generating the flows, while the latter
aggregates flows to compute a feature vector, suitable for the anomaly detection task.
However, a prime design decision is to determine the set of network flow features to
be computed in order to train our system.

The anomaly detection problem can be approached from a wide range of methods.
In particular, we propose to use deep learning because it has been shown to be a useful
choice in other similar problems, and because it has a set of features that are well
aligned with the new requirements based on the KPIs identified for 5G networks.

In our architecture, the anomaly detection is arranged in two levels, as shown in
Fig. 9. At the low level, the flow collector gathers all the different flows during a given
period of time and calculates a vector of features that the ASD module will classify as
anomalous or normal. This initial classification has to be made as quickly as possible,
even at the expense of sacrificing accuracy for a lower response time. If an anomaly is
suspected, a symptom packet composed of the feature vector involved, a time stamp
and the type of anomaly detected (when a multi-class method is being used), is sent to
the next level, the NAD module.

Evolved Packet Core

(EPC)

Network Anomaly Anomaly

Detection (NAD)
v —ran——L 4 ' v

@ a
D—> <AT)\ Fow Q;;Ei'r)r’l g— Security < Monitoring
D (X)/ &=y Detection & Rl i Ll
eNB] @soy =

Fig. 8: Network anomaly detection system.

A Deep Learning-based System for Network Cyber Threat Detection 13

LST™M Network
Anomaly
Detection

Anomaly Symptom
Detection

Flow collector

Symptoms

vector

Fig. 9: Detail of the low-level (ASD) and high-level (NAD) modules.

The NAD receives several streams of symptoms from all the ASDs, sorts them by
their time stamps and assembles their time sequence. The task of deciding whether
this sequence belongs to any of a set of attack categories can be seen as a sequence-of-
symptoms classification problem.

4.1 Suitable Deep Learning Models

Focusing on NAD, the model selected to detect anomalies was LSTM. The main
reason is that the NAD module has less strict time restrictions if the ASDs have
sufficient classification performance. In our research we are mainly interested in the
ASD module, as its runtime performance is critical.

Regarding the ASD module, the deep learning models selected to be used were
DBN and SAE. Both models share the same structure and can be used in supervised and
unsupervised learning. We can use a DBN or SAE model followed by a classification
layer if a labeled dataset is available. Otherwise, we propose to use DBN as a semi-
supervised method, training with the normal network traffic and using DBN as a sort
of Discriminative RBM without any further back-propagation layer [29].

Using a DBN or SAE followed by an SVM as a final layer is proposed by some
authors [23]. This model can be used as a supervised two-class method or as a semi-
supervised one-class method. This approach is discarded because it is not well suited
to large-scale high-dimensional datasets.

We evaluated three different supervised DBN architectures. They have one, three
and six hidden layers, respectively. As a final layer we chose a classification layer with
a sigmoid activation function that gives the probability of the flow being normal or
abnormal. These models are assumed to be trained with a labeled dataset, having two
classes—normal or anomalous.

4.2 Network Flow Features

As mentioned in previous sections, machine-learning features need engineering
by hand. In order to avoid the domain expertise, we try to automatically compute
discriminative features from an input vector with many metrics.

Flow export requires NetFlow that defines how flow records are transported to
the flow collector. NetFlow records contain for each flow—source and destination
IP addresses and ports, start and end timestamps, type of service, level 3 protocol,
TCP flags, next hop router, input and output SNMP interfaces, source and destination

14 Machine Learning for Computer and Cyber Security

autonomous systems and network masks. In addition, each flow record carries
aggregated information about the number of packets and bytes exchanged.

Each flow record could be directly sent from the flow collector to the symptom
detection module. However, the flow record is too simple and only allows extracting
of a few features. A step forward is to obtain aggregated views from a window of flow
records [24]. In this case, a timer and/or accounting function triggers the aggregation
process after receiving a certain number of flows (offset). The aggregated view is
computed, taking one or more time periods in a multi-scale way (e.g., three feature
vectors could be obtained considering S-minute, 1-minute and 1-second periods).

The required features can be different, depending on the anomaly that we want to
detect; for example, if we want to detect TCP anomalies, we only need TCP features.
In our experiments we identified 288 features that were calculated from the features
presented in Table 1. In order to generate this features we considered two subset of
flows—one whole set of TCP/UDP flows and another with TCP/UDP flows filtered so
that their source/destination IPs belong to the flows within the offset.

Among the selected TCP/UDP features, we highlighted the features related to
calculate the entropy and variance of NetFlow records. Firstly, the entropy of source
IPs for incoming flows and the entropy of destination IPs for outgoing flows allow
features regarding how the corresponding IPs appear in the set of flows. The entropy
of source ports for incoming flows and the entropy of destination ports for outgoing
flows allow similar features related to network ports. Secondly, the variances of the
number of IP packets and total bytes for incoming, outgoing and total flows allow
features regarding how different the flows are in the analyzed set.

Table 1: Selected TCP/UDP features computed from the network flows for the classification test.

Features (7)

Number of flows, number of incoming flows, number of outgoing flows.

% of incoming and outgoing flows over total.

% of symmetric and asymmetric incoming flows over total.

Sum, maximum, minimum, mean and variance of IP packets per incoming, outgoing and total flows.
Sum, maximum, minimum, mean and variance of bytes per incoming, outgoing and total flows.
Sum, maximum, minimum, mean and variance of source bytes per incoming, outgoing and
total flows.

Number of different source IPs for incoming flows and destination IPs for outgoing flows.
Number of different source and destination ports for incoming and outgoing flows.

Entropy of source IPs for incoming flows and destination IPs for outgoing flows.

Entropy of source and destination ports for incoming and outgoing flows.

% of source and destination ports > 1024 for incoming and outgoing flows.

% of source and destination ports < 1024 for incoming and outgoing flows.

5. Experimental Results

The rather complex 5G scenario imposes important constraints on the runtime
consumed in evaluating the model. Therefore, the experiments are aimed at not only
finding a deep learning model with sufficient classification accuracy, but also an
architecture with a low evaluation runtime. In this section, the ASD module depicted
in the Fig. 9 is analyzed from two different perspectives—its classification accuracy
and its model evaluation runtime.

A Deep Learning-based System for Network Cyber Threat Detection 15

In Section 3 the difficulty of dealing with the general concept of anomaly was
discussed. Bearing this in mind, the scope of the proposed anomaly detection method
needed to be constrained. It is well known that anomalies in communication networks
are commonly related to malicious behavior of computers infected by malware
forming botnets. This fact, together with the availability of recent public datasets with
realistic labeled traffic, made us focus on botnets attack detection. Therefore, for this
experimental section, a supervised method has been chosen, leaving to future work the
discussion of an unsupervised approach.

5.1 The CTU Dataset

CTU [30] is a publicly available dataset, captured in the CTU University, Czech
Republic, in 2011 and suitable to be used in this context. It tries to accomplish all the
good requirements to be considered as a good dataset—it has real botnets attacks and
not simulations, unknown traffic from a large network, ground-truth labels for training
and evaluating as well as different types of botnets. The CTU dataset comprises
13 scenarios with different numbers of infected computers and seven botnet families.
The traffic of each scenario was captured in a pcap file that contained all the packets
and was post-processed to extract other types of information. The number of packets
and total size of the captured traffic and the bot present in each scenario can be seen
in Table 2.

Although a detailed description of the different scenarios is available at [31], we
briefly present some of them. Scenario 1 is based on the Neris botnet running for
6.15 hours. This botnet used an HTTP-based C&C channel and tried to send SPAM.
In the scenario 3, the Rbot botnet ran for several days and scanned large network
ranges. The Murlo botnet was run in the scenario 8 for 19.5 hours and tried to connect
to several remote C&C systems. The botnets in the rest of scenarios did other actions,
like UDP and ICMP DDoS, scan web proxies or P2P connections.

Table 2: CTU botnet scenarios.

Dataset Packets Size Bot
Scenario 1 71971 482 52GB Neris
Scenario 2 71 851 300 60 GB Neris
Scenario 3 167 730 395 121 GB Rbot
Scenario 4 62 089 135 53 GB Rbot
Scenario 5 4481 167 37.6 GB Virut
Scenario 6 38764 357 30GB Menti
Scenario 7 7467 139 5.8 GB Sogou
Scenario 8 155207 799 123 GB Murlo
Scenario 9 115415 321 94 GB Neris
Scenario 10 90 389 782 73 GB Rbot
Scenario 11 6337202 5.2GB Rbot
Scenario 12 13212268 8.3 GB NSIS.ay
Scenario 13 50 888 256 34 GB Virut

16 Machine Learning for Computer and Cyber Security

5.2 Classification Performance

In our classification experiments that support our decision to use a simple deep learning
model, we need a model to be tested. Any of the models mentioned in 4 could have
been selected; however, we decided to use a DBN followed by a classification layer.

First, feature vectors are created from the CTU dataset by taking aggregated
views of 30 and 60 seconds after receiving every network flow. In this way, if the last
received network flow is anomalous, then the corresponding feature vector will be
labeled as anomalous as well.

Unfortunately, this sort of dataset is highly unbalanced as the percentage of
anomalous traffic is usually smaller in a real network. This makes the learning process
more challenging because, in this case, neural networks tend to classify all traffic as
normal and consider anomalies as noise, achieving an accuracy close to 100 per cent.
In this case, we are using a weighted loss function to compensate for the different
label frequencies. In addition, we use more appropriate metrics than accuracy: the pair
(precision, recall), or more concisely the '/ score. The entries in the confusion matrix
are denoted as:

True Positive (TP): This entry refers to the number of positive examples which are
correctly predicted as positives.

True Negative (TN): It denotes the number of negative examples correctly classified
as negatives.

False Positive (FP): This entry is defined as the number of negative examples
incorrectly classified as positives.

False Negative (FN): It is the number of positive examples incorrectly assigned as
negatives.
And the proposed error metrics are:

Precision: Indicates what per cent of positive predictions were correct.

P

Precision=——
TP + FP

Recall or sensitivity: Defines what per cent of positive cases a classifier predicted
correctly.
7P

Recall =—
TP + FN

F1 score: Shows the trade-off between the precision and recall regarding the positive
class.

Fl score = 2% Precision x Recall

Precision + Recall

In our experiment, we use two different training/test partitions. The first partition
is built from the whole dataset splitting it into training, validation and testing sets,
while the second dataset is built using the same partition suggested by the authors of
the CTU dataset [30]. The method they used divides the whole dataset in two subsets:
training and testing. The division process considers the following restrictions: the
training and cross-validation subset should be 80 per cent approximately of the whole

A Deep Learning-based System for Network Cyber Threat Detection 17

dataset; the testing subset should be 20 per cent of the whole dataset and none of the
botnet families used in the training and cross-validation dataset should be used in the
testing dataset.

Bearing all this in mind, we wanted to find a simple deep-learning model
with sufficient classification performance. We restricted the search domain to
three DBNs with up to six hidden layers and ReLu as activation function, an input
vector of 288 features, batch normalization and a binary classifier as output layer
(anomaly vs. normal). The activation function of the output was a sigmoid and
cross-entropy was the cost function used. The hyperparameters of each of the given
networks were: learning rate € [0.001, 0.5], dropout € [0, 0.4] and L2-regularization
€ [0, 0.2]. Hyperparameter tuning was carried out by means of 10-fold cross-validation
and randomized search.

When trained and tested with all the botnets, the 128-64-32 model achieved the
highest F1-score, with a precision of 0.9537 and a recall of 0.9954; that is, 95.37 per
cent of the anomaly predictions were actually anomalies, and 99.54 per cent of the
actual anomalies were correctly classified (Table 3). Regarding the models tested with
unknown scenarios, the 16-8-4 model obtained the better generalization results in spite
of'its simplicity. The evaluation of the trained model reached a precision of 0.6861 and
a recall of 0.7096 on an average. Approximately 71 per cent of the anomalous traffic
was correctly detected, even though the model had never seen those botnets before.
The global scores of each model evaluated on the unknown scenarios are presented in
Table 4. In addition, a breakdown by unknown scenario of the scores obtained by the
16-8-4 model is provided in Table 5.

Table 3: Classification results of the three selected deep models regarding known botnets.

Hidden Layers LR A Precision Recall F1-score
16-8-4 0.01 0.00 0.8311 0.9947 0.9055
128-64-32 0.01 0.00 0.9537 0.9954 0.9741
128-128-64-64-32-32 0.1 0.01 0.9534 0.9904 0.9715

Table 4: Classification results of the three selected deep models regarding unknown botnets.

Hidden Layers LR A Precision Recall Fl-score
16-8-4 0.01 0.00 0.6861 0.7095 0.6976
128-64-32 0.01 0.01 0.6910 0.6775 0.6842
128-128-64-64-32-32 0.01 0.01 0.8693 0.4803 0.6187

Table 5: Breakdown of classification results by unknown scenario for the 16-8-4 model.

Test Set Precision Recall F1-score
Scenario 1 0.742 0.902 0.814
Scenario 2 0.631 0.544 0.584
Scenario 6 0.724 0.937 0.812
Scenario 8 0.410 0.756 0.531
Scenario 9 0.941 0.388 0.549

18 Machine Learning for Computer and Cyber Security

Although the precision obtained is not too high, it is expected that the second-
level detector in the NAD module substantially improves it. This module is in charge
of detecting complex patterns in the temporal series of symptoms received from all
the ASDs.

5.3 Execution Performance

There exist a variety of commercial deep-learning frameworks and libraries. To train
the neural network proposed, the selected framework must support LSTM Recurrent
Networks (the model used in NAD module) and DBNS, besides having multiple-GPU
support. The selected deep-learning libraries to test our performance benchmark were:
TensorFlow 1.4 [32], Caffe2 0.8.1 [33, 34], Theano 1.0.0rc1 [35], PyTorch 0.2.0'4
[36], MXNet 0.11.0 [37] and CNTK 2.2 [38]. All of them have been widely used in
different kinds of R&D and commercial projects and in different scenarios. In addition,
the selected frameworks are open-source projects and all of them except Theano are
supported by prominent high-tech companies. Caffe2 and Pytorch are sponsored by
Facebook; Tensorflow is supported by Google; CNTK, by Microsoft; and MxNet, by
Amazon. Theano is considered one of the first deep-learning frameworks and it was
developed by a research group of the University of Montreal.

A common feature of all the selected frameworks is to provide developers with
a Python API, allowing to prototype quickly. Another relevant feature is that most of
the frameworks also offer a C API that enables to compile to machine code ready for
deployment in production. We use both Python and C API in the deployment of our
experiments.

In these experiments, the performance of the above frameworks has been evaluated
by using a DBN. We have included in the evaluation our own implementation on
cuBLAS [39] as a baseline solution with minimal overhead. The DBN model keeps
the same input and output size for each experiment (i.e., the input layer has the same
size as the feature vector, and the output layer size is 2). Softmax is then used to
estimate the likelihood of belonging to the normal or anomalous class.

The chosen architectures are:

* One hidden full layer of 128 floats.
 Three hidden full layers of 128, 64 and 32 floats.
+ Six hidden full layers of 128, 128, 64, 64, 32 and 32 floats.

The model can be evaluated on either the CPU or the GPU, and the batch of feature
vectors is assumed to arrive at the system’s memory at maximum speed. Therefore,
if the model is evaluated by the CPU, the batch is directly accessible. Conversely, if
the model is evaluated by the GPU, it is necessary to transfer the batch to the GPU’s
memory.

Several factors have to be taken into account in order to reach the best
performance. The batch size has a great influence on the execution time, regardless
of which processor is running the model. If the model is evaluated by the CPU, a
big batch takes advantage of the Advanced Vector Extensions. However, above a
certain batch size, there will probably be more cache/TLB misses and page faults,
resulting in a worse throughput. Conversely, if the model is evaluated by the GPU,
increasing the batch size can decrease the execution time as a greater percentage of
the available processing units can be used simultaneously. However, in this latter case,

A Deep Learning-based System for Network Cyber Threat Detection 19

the time spent on transferring the batch to the GPU’s memory also increases. In this
experimental work, we used only one GPU so that the batch size was limited by the
GPU’s memory size.

We carried out the performance evaluation using a workstation with 32 GB of
RAM, a six-core Intel i7-5930K at 3.5 GHz with hyper-threading running Linux, and
one NVIDIA GeForce GTX 1080 with 8 GB RAM.

5.3.1 Determining the Optimum Batch Size and Framework

Although most of deep-learning frameworks are designed to work as a computation
graph, we have decided to take a deep-learning framework as a black box and
determine the more suitable framework by using a benchmark executed during the
installation procedure of our software on each RAN. This benchmark runs several
tests to find out the best batch size for a given framework. Performance is measured
for all the feasible combinations of the tuple (model, framework, vector size, batch
size). Here, vector size is the number of components of the feature vector, batch size
is the number of feature vectors in the batch; model is the trained deep learning model;
and framework is the deep learning framework used to train and evaluate the model.
These models and frameworks have been described above.

For the shake of clarity, Fig. 10 only shows the resulting performance for the six
hidden-layer neural network running on the GPU. The performances of the one and
three hidden-layer neural networks have no significant behavior change except scale.
The figure shows that the speedup, as a function of the vector size when the batch size
is fixed, is not linear. There might be several reasons for this fact—memory transfer
time, computing time, number of GPU threads or CUDA’s grid and block dimensions,
among others. However, our goal is not to provide an insightful description of this
behavior but tuning our software to maximize its performance. Specifically, Fig. 10

le7
1.2
210

2
3 0.8

2
5 0.6
504
0.2 .
0'0 211 213 215 217 219

Ll

211 213 215 217
COcuBLAS [Caffe2 EECNTK @l TensorFlow EMTheano EdPyTorch I MxNet

o o o
N w =

o
iy

Performance (feat/s)

Fig. 10: Six hidden layer neural network (GPU) performance for a wide range of batch sizes and two
selected feature vector sizes when running on the GPU. (7op) 128-feature vector (Bottom) 256-feature
vector.

20 Machine Learning for Computer and Cyber Security

presents the marks obtained by every framework for an input vector of 128 and 256
features, and a variety of batch sizes.

As seen in Fig. 10, the best performance for all vectors and batches sizes is our
own implementation using cuBLAS, followed closely by Caffe2. Given that all the
analyzed frameworks use cuBLAS for matrix operation, our ad hoc implementation
of the models can be considered as an upper bound of the achievable throughput. Our
version does not suffer from the overhead imposed by the abstraction layers that the
frameworks need in order to provide flexibility and extended functionality.

Examining the behavior of each framework, cuBLAS’s best marks are 0.8 and
0.46 million feature vectors per second for 128 and 256 vector size, respectively. It is
followed closely by Caffe2, with a small performance difference that becomes even
smaller when batch size is increased. In contrast, MxNet and Theano obtain the worst
marks; Theano achieves its best result (0.15 million feature vectors per second) with
a batch size of 2'7 and a vector size of 128; while MxNet obtains 0.21 million feature
vectors per second as its best marks for a batch size of 2'° and a vector size of 128.
It should be noticed that Theano is a special case because the performance remains
almost unchanged for all batch sizes with the vector size fixed.

Although the number of features can be potentially unlimited, we set the feature
vector to 256 elements. This number was chosen because it is a representative value
considering the previous ASD classification performance (see Section 4.2). With this
input vector size and running the models on our workstation, the best batch sizes in the
three DBN architectures are shown in Table 6.

The cuBLAS implementation can be considered as the maximum throughput
achievable by using the frameworks. However, fixing the vector size to 256 and
taking into account only commercial frameworks, the best performance is offered by
Caffe2 for all batch sizes. For one-layer architecture and a batch size of 2'7 it reaches
5.1 million feature vectors per second, while the second best option is CNTK offering
3.8 million feature vectors per second. On the other hand, MxNet and Theano
compete for the worst position in the ranking, providing poor results in almost
every configuration when compared with Caffe2 and PyTorch. Particularly, in this
configuration MxNet reaches its best mark of 1.54 million feature vectors per second
for the batch size 2'°. Theano obtains 1.64 million feature vectors per second for a
batch size of 217,

We should bear in mind that these results have been obtained by running the
benchmark on the specific workstation described above. Therefore, the marks could

Table 6: Optimum batch size.

Framework One Hidden Layer | Three Hidden Layers | Six Hidden Layers
TensorFlow 28 21 2
Caffe2 21 21 217
Theano 2v 2v 217
PyTorch 21 217 21
MxNet 218 28 28
CNTK 2Y 2Y 27
cuBLAS 217 217 21

A Deep Learning-based System for Network Cyber Threat Detection 21

be rather different with other existing hardware configurations, where the virtualized
computational resources available in each RAN can result in a different optimal
combination of deep-learning framework and batch size. This makes it crucial to
run the benchmark suite on each RAN at installation stage and determine the best
framework that suits each particular RAN in the 5G network. It should also be noted
that, although Caffe2 running on a GPU provides the best performance, it could not be
the most suitable option. As a case in point, a system with low traffic can decide not to
use a GPU due to power consumption policy. In this case, TensorFlow on a CPU would
be the best option. Additionally, other system configurations could be considered,
such as frameworks using more than one GPU. In any case, our architecture allows
self-adaptation to every hardware context.

5.3.2 CPU vs GPU Performance

GPUs have become an essential tool for machine-learning computation, because deep-
learning models are actually well suited to be executed on them. The more complex
and independent the computations are, the more impressive the performance gain
usually is.

In our particular case, the time spent in transferring the batch from main memory
to the GPU cannot be disregarded when compared with the computing time. If the
batch is small, the number of memory transfers increases, limiting the throughput.
Conversely if the batch is large, the memory becomes the most common limitation.
Figure 11 illustrates how some of the frameworks improve as the batch size increases.
In contrast, some others even get worse in the same case. GPU shows for every

le6

5.0
E 4.0
g 3.0
2
g
s 2.0
5 E _a——fh————p
a v
1.0 Y
211 213 215 217
le6
1.4
1.2
3 1.0
0.8
o 0.6
o
[=
£ 04 .\!—‘b
15 r : ——
g 0.2)
a
0
211 213 215 217
CUBLAS Caffe2 A CNTK @ TensorFlow B Theano PyTorch MxNet

Fig. 11: Comparison between GPU (Top) and CPU (Bottom) performance with a vector of 256
features for one hidden layer architecture.

22 Machine Learning for Computer and Cyber Security

framework a significant performance improvement compared to CPU. It is important
to note that cuBLAS is a library running on GPU, so the CPU benchmark does not
include it.

It is worth mentioning that TensorFlow running on CPU gets a better mark than
some frameworks running on GPU. In particular, for one hidden layer architecture
with 23 and 2" batch sizes, TensorFlow behaves better than MxNet and similar to
Theano. In contrast, Caffe2, which gets the best mark on GPU, obtains the worst
mark on CPU. In general, all the frameworks running on CPU show a performance
lower than 1 million feature vectors per second, with the TensorFlow exception, which
reaches up to 1.3 million feature vectors per second in the one-layer architecture.

5.4 Discussion

In order to contextualize the experimental results, let us consider a real 5G-scenario
of a city with a 5 RAN and 50 eNBs per RAN (elements of the LTE Radio Access
Network for connectivity purpose) and 10 millions of habitants with 1 UE each of
them. Let us assume that each RAN handles 2 millions inhabitants and each connected
UE is generating 10 flows per second on an average and that there is a perfect balancing
0f 40000 UEs per eNB. In this configuration, each eNB will manage 400000 flows per
second. If we assume an ASD per eNB and an offset of one flow will result in having
400000 feature vectors per second sending to each ASD. According to the experiment
results, this load can be managed on CPU by TensorFlow using any batch size or
MxNet using 2'! or 23 batch size. Similarly, if we assume that there are five eNBs
sending data to the ASD, instead of only one, we obtain 2 million feature vectors
per second. In this case, the system should select a framework running on GPU as
any framework running on CPU can handle the traffic load. The suitable frameworks
are: PyTorch, CNTK, Caffe2 and the implementation based on cuBLAS as shown in
Fig. 11.

The worst scenario would be when 13 or more eNBs are simultaneously sending
data to the ASD. In this situation, a framework change wouldn’t be enough even if the
GPU is used. As a solution, two mechanisms are suggested: (a) to deploy dynamically
more computational resources through new virtualized components as VNFs (for
example, using an additional available GPU); and (b) to adapt the flow aggregation
frequency in order to reduce the rate of collected feature vectors. This can be made by
increasing the offset value.

These realistic scenarios illustrate the capacity of the system to adapt to the traffic
circumstances. When the traffic load is low, that is, few UEs are connected to the
eNBs and sending data simultaneously, the system can select a framework with a CPU
performance sufficient to handle the traffic. When the traffic increases for any reason
(for example, the course of an event, such as a football match or a music festival) and
more UEs are connected and send data simultaneously in a short period of time, the
system can switch to another framework that offers best performance. Conversely, if
there is no suitable framework, the system can decide to use the GPU, either keeping
the same framework or substituting it with another more suitable. Finally, when the
traffic load is too high and no framework can handle it, the system can deploy more
virtualized resources, if available.

It should be noted that the system behavior strongly depends on the available
hardware in the RAN. Therefore, the marks obtained by each framework could be

A Deep Learning-based System for Network Cyber Threat Detection 23

totally different with other hardware configuration. This makes it crucial to run the
benchmark suite on each RAN at installation phase in order to measure the performance
of each framework with a wide range of batch sizes.

6. Conclusion

A system for anomaly detection in the context of a 5G mobile-network architecture
has been proposed. This proposal is based on a novel two-level deep machine-learning
model where the first level is a supervised or semi-supervised learning method
implementing a DBN or a SAE running on every RAN as quickly as possible. This
sacrifices some accuracy due to the amount of network traffic that a RAN handles.
Its task is to detect symptoms, that is, local anomalous traffic conditions happening
during a configurable short time period. All the collected symptoms are sent to the
NAD component, where they are assembled and used as input for a LSTM Recurrent
Network, trained in a supervised way to recognize temporal patterns of cyber attacks.

A number of experiments were also conducted to realize a comprehensive
comparative performance evaluation of deep-learning frameworks. The aim was to
determine the best suited one for reaching the highest processing performance. The
experimental results showed that each system in the 5G network were able to use
one framework or another depending on, for example, the availability of physical
resources (GPU or CPU) in a given RAN or the network flow reception rate.

As future work, several aspects can be considered. First, it is necessary to train
the ASD and NAD module using real traffic from a SG network and test the anomaly
detection accuracy, taking the system as a whole. Second, another important issue is
the efficiency of the feature vector creation which is carried out in the flow collector
from a window of network flows. Some of the statistical features cannot be computed
incrementally as the new flows arrive, making their calculation computationally
expensive. Therefore, we need to develop an efficient implementation that enables
us to generate the feature vector in real time. Finally, a last issue is the integration of
our anomaly detection method based on deep-learning techniques, with deep packet
inspection (DPI) tools, such as Snort. When the system detects an anomaly, the network
flows involved should be stored in an efficient way, e.g., using an high-performance
database. The DPI tool can then analyze them to determine more precisely the type
of anomaly.

References

[1] Gupta, B., Agrawal, D.P. and Yamaguchi, S. (2016). Handbook of Research on Modern
Cryptographic Solutions for Computer and Cyber Security. IGI Global.

[2] Sourcefire, Inc. (2018). Snort: An open source network intrusion detection and prevention
system. http://www.snort.org.

[3] Richariya, V., Singh, U.P. and Mishra, R. (2012). Distributed approach of intrusion detection
system: Survey. International Journal of Advanced Computer Research 2(6): 358-363.

[4] Raza Shah, S.A. and Issac, B. (2018). Performance comparison of intrusion detection systems
and application of machine learning to Snort system. Future Generation Computer Systems
80: 157-170.

[5]1 Yu,J. Yang, B., Sun, R. and Chen, Y. (2009). FPGA-based parallel pattern matching algorithm
for network intrusion detection system. pp. 458—461. In: 2009 International Conference on
Multimedia Information Networking and Security.

http://www.snort.org

24 Machine Learning for Computer and Cyber Security

(6]
[7]

[8]

[

[10]

[11]

[12]
[13]

[14]

[15]
[16]
[17]

(18]

[19]
[20]
(21]
[22]

(23]

[24]

[25]

[26]

[27]

(28]

Hsiao, Y.M., Chen, M.J., Chu, Y.S. and Huang, C.H. (2012). High-throughput intrusion
detection system with parallel pattern matching. IEICE Electronics Express 9(18): 1467-1472.
Buczak, A.L. and Guven, E. (2016). A survey of data mining and machine learning
methods for cyber security intrusion detection. IEEE Communications Surveys & Tutorials
18(2): 1153-1176.

Gardiner, J. and Nagaraja, S. (2016). On the security of machine learning in malware C&C
detection: A survey. ACM Computing Surveys 49(3): 59:1-59:39.

Stergiou, C., Psannis, K.E., Kim, B.G. and Gupta, B. (2018). Secure integration of iot and
cloud computing. Future Generation Computer Systems 78: 964-975.

The 5G Infrastructure Public Private Partnership. (2016). Key Performance Indicators (KPI).
http://5g-ppp.eu/kpis.

Alomari, E., Manickam, S., Gupta, B., Karuppayah, S. and Alfaris, R. (2012). Botnet-based
distributed denial of service (ddos) attacks on web servers: classification and art. arXiv preprint
1208.0403.

Goodfellow, 1., Bengio, Y. and Courville, A. (2016). Deep Learning. MIT Press.

Glorot, X., Bordes, A. and Bengio, Y. (2011). Deep sparse rectifier neural networks.
pp. 315-323. In: Gordon, G., Dunson, D. and Dudk, M. (eds.). Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, PMLR, Fort Lauderdale, FL,
USA, Proceedings of Machine Learning Research, Vol. 15.

LeCun, Y., Bottou, L., Orr, G.B., Miiller, K.R. (1998). Efficient backprop. pp. 9-50. In:
Neural Networks: Tricks of the Trade, This Book is an Outgrowth of a 1996 NIPS Workshop,
Springer-Verlag, London, UK.

Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998). Gradient-based learning applied to
document recognition. pp. 2278-2324. In: Proceedings of the IEEE.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Comput.
9(8): 1735-1780.

Chandola, V., Banerjee, A. and Kumar, V. (2009). Anomaly detection: A survey. ACM
Computing Surveys 41(3): 15:1-15:58.

Garcia-Teodoro, P., Diaz-Verdejo, J., Macia-Fernandez, G. and Vazquez, E. (2009). Anomaly-
based network intrusion detection: Techniques, systems and challenges. Computers & Security
28(1-2): 18-28.

Hodo, E., Bellekens, X., Hamilton, A., Tachtatzis, C. and Atkinson, R. (2017). Shallow and
deep networks intrusion detection system: A taxonomy and survey. arXiv preprint 1701.02145.
Aviv, AJ. and Haeberlen, A. (2011). Challenges in experimenting with botnet detection
systems. pp. 6. In: 4th Conference on Cyber Security Experimentation and Test.
Salakhutdinov, R. and Hinton, G.E. (2009). Deep Boltzmann machines. pp. 448-455. In:
Artificial Intelligence and Statistics.

Hinton, G.E. and Salakhutdinov, R.R. (2006). Reducing the dimensionality of data with neural
networks. Science 313(5786): 504-507.

Erfani, S.M., Rajasegarar, S., Karunasekera, S. and Leckie, C. (2016). High-dimensional
and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern
Recognition 58: 121-134.

Niyaz, Q., Sun, W. and Javaid, A.Y. (2016). A deep learning-based DDoS detection system in
Software-Defined Networking (SDN). arXiv preprint 1611.07400.

Fernandez Maimo, L., Perales Goméz, A., Garcia Clemente, F., Gil Pérez, M. and Martinez
Pérez, G. (2018). A self-adaptive deep learning-based system for anomaly detection in 5G
networks. IEEE Access 6: 7700-7712.

ETSI NFV ISG. (2017). Network Functions Virtualisation (NFV); Network Operator
Perspectives on NFV Priorities for 5G. Tech. rep.

Siddiqui, M.S. etal. (2016). Hierarchical, virtualised and distributed intelligence 5G architecture
for low-latency and secure applications. Transactions on Emerging Telecommunications
Technologies 27(9): 1233-1241.

Neves, P. et al. (2017). Future mode of operations for 5G-The SELFNET approach enabled by
SDN/NFV. Computer Standards & Interfaces 54(4): 229-246.

http://5g-ppp.eu

[29]
[30]
[31]
[32]

[33]

[34]
[35]
[36]

[37]

[38]

[39]

A Deep Learning-based System for Network Cyber Threat Detection 25

Fiore, U., Palmieri, F., Castiglione, A. and De Santis, A. (2013). Network anomaly detection
with the restricted Boltzmann machine. Neurocomputing 122: 13-23.

Garcia, S., Grill, M., Stiborek, J. and Zunino, A. (2014). An empirical comparison of botnet
detection methods. Computers & Security 45: 100—123.

Czech Technical University ATG Group. (2018). Malware capture facility project. https://
mcfp.weebly.com.

Abadi, M. etal. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint 1603.04467.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S. and
Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. pp. 675-678.
In: 22nd ACM International Conference on Multimedia.

Facebook Open Source. (2017). Caffe2: A new hightweight, modular, and scalable deep
learning framework. http://caffe2.ai (accessed April 17, 2018).

Theano Development Team. (2016). Theano: A python framework for fast computation of
mathematical expressions. arXiv preprint 1605.02688.

Collobert, R., Kavukcuoglu, K. and Farabet, C. (2011). Torch7: A Matlab-like environment for
machine learning. /n: BigLearn, NIPS Workshop, EPFL-CONF-192376.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, C. and Zhang, Z.
(2015). Mxnet: A flexible and efficient machine learning library for heterogeneous distributed
systems. arXiv preprint 1512.01274.

Seide, F. and Agarwal, A. (2016). CNTK: Microsoft’s open-source deep-learning toolkit.
pp. 2135-2135. In: 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining.

NVIDIA Corporation. (2016). Dense Linear Algebra on GPUs. http://developer.nvidia.com/
cublas.

http://developer.nvidia.com
http://developer.nvidia.com
http://caffe2.ai
https://mcfp.weebly.com
https://mcfp.weebly.com

CHAPTER 2

Machine Learning for Phishing
Detection and Mitigation

Mohammad Alauthman,>* Ammar Almomani,”

Mohammed Alweshah,” Waleed Omoush® and
Kamal Alieyan®

1. Introduction

Phishing e-mails refer to fraudulent e-mails sent with the aim of deceiving people and
tricking them into revealing confidential information, such as passwords, usernames
and credit card information. Such information may be related to bank accounts. That
is done to obtain an illegal financial gain. Sending such e-mails is criminal. Phishing
attacks include unknown ‘zero-day’ phishing attack.! Such attacks can cause severe
losses. Although there are many defense mechanisms used for fighting against
‘zero-day’ phishing attacks, phishers are developing methods for getting past these
mechanisms.

The present study aims at identifying and discussing machine-learning approaches
for fighting against and detecting phishing e-mails. These approaches are used for
filtering the phishing attacks. Researchers too have carried out assessment of several
phishing e-mails filtering methods besides comparing them. Such a comparison was

* Department of Computer Science, Faculty of Information Technology, Zarqa University, Zarqa,
Jordan.

® Department of Information Technology, Al-Huson University College, Al-Balga Applied University,
P.O. Box 50, Irbid, Jordan; ammarnavo@bau.edu.jo

¢ Prince Abdullah Bin Ghazi Faculty of Information Technology, Al-Balga Applied University, Salt,
Jordan; weshah@bau.edu.jo

4 Dept. of CS, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.

¢ National Advanced IPv6 Centre (NAv6), Universiti Sains Malaysia, 11800 Gelugor, Penang,
Malaysia; kamal alian@nav6.usm.my

* Corresponding author: malauthman@zu.edu.jo

! They refer to unknown attacks through which the attackers bypass security defenses. These attacks
occur by exploiting the vulnerability existing in the targeted system.

mailto:malauthman@zu.edu.jo
mailto:kamal_alian@nav6.usm.my
mailto:weshah@bau.edu.jo
mailto:ammarnav6@bau.edu.jo

Machine Learning for Phishing Detection and Mitigation 27

conducted in terms of advantages and limitations. Thus, the present study aims to
deepen one’s understanding of matters related to phishing attacks besides creating
awareness about the methods used for fighting against and filtering phishing e-mails.

2. Background and Overview of Phishing E-mails

Through this section, the researchers identified the types, life cycle and analyses of
phishing attacks. They also identified the several options available to detect such
e-mails. It is necessary to shed light on e-mail-related problems because e-mails are
used by all governments, organizations, people and sectors for several goals. For
instance, they may be used for sharing, distributing and organizing data [1-3]. Due to
the significance of using e-mails, it is necessary to shed light on phishing e-mails and
the approaches used for fighting against them.

Phishing e-mails refer to e-mail scams that represent part of a fraud scheme.
Phishers usually disguise as a trustworthy entity (e.g., bank officer) and through
e-mails, ask the targeted victims to open an embedded link that distributes malware. It
should be noted that this problem is becoming more serious day by day. For instance,
Gartner [4] suggests that 3.6 million users in USA lose money each year due to
phishing e-mails. He also suggests that this problem leads to losing 3.2 billion US
dollars per year in USA alone, In 2006, 2.3 million people fell victim to phishing
e-mails and in 2007, the number rose to 6 million people.

According to e-Crime Trends Report [1], phishing attacks are increasing each
year by a percentage of 12 per cent. Such an increase leads to increase in the losses
incurred by companies and buyers. These e-mails also have a negative impact on
electronic commerce because customers will no longer consider companies and on-
line commerce websites trustworthy. Today, unknown ‘zero-day’ phishing e-mails are
considered one of the biggest threats facing the world of business. This is because
they are launched by unknown attackers by bypassing security defenses. These attacks
occur by exploiting the vulnerability existing in the targeted system [2-5].

Phishing e-mails pose a serious problem. Thus, programmers have been developing
several solutions to detect such e-mails, whiel phishers have been developing various
methods to overcome such approaches and exploit the vulnerabilities of the targeted
system [6]. Solutions so far have not proven to be effective [7]. Such solutions
include communication-oriented approaches, such as authentication protocols.
Such solutions also include content-based filtering approaches that sometimes rely
on a computing (AI) technique [12]. Current algorithms discover phishing
e-mails supported-fastened options and rules, whereas a number of machine-learning
algorithms square measure to figure in online mode [8].

Through an online mode, data arrives one at a time. Upon the arrival of each
datum, local learning is performed, while in offline mode, all the data set is available
for global learning [8, 9]. Online mode is designed to work with internet connectivity.
The error level in the classification process increases over time, particularly while
addressing unknown zero-day phishing e-mails [10].

2.1 Phishing Attacks

Phishing attacks may be considered as a type of spam that employs two techniques—
one is the deceptive phishing technique and the other is the malware-based phishing

28 Machine Learning for Computer and Cyber Security

technique. Phishing e-mails refer to e-mail scams that represent part of a fraud scheme
[11]. By using the deceptive technique, the phisher usually disguises as a trustworthy
entity or person (e.g., bank officer) and through e-mail ask the targeted victim to open
an embedded link. Through the link, the phisher seeks redirecting of the targeted
victim to a fake website, in which the phisher asks the victim to provide confidential
information related to bank account or credit card. This enables the phisher to obtain
financial gain illegally.

Through use if the malware-based phishing technique, the phisher usually disguises
as a trustworthy entity or person (e.g., bank officer) and through e-mail, asks the
targeted victim to open an embedded link that distributes malware or deems a malicious
code. Through such malware or code, the phisher can control the victim’s system and
obtain the confidential data directly. That is done by exploiting a vulnerability existing
in the targeted system. Sometimes, the phisher tries to misdirect the user to a fake or
legitimate website monitored by proxies [16]. Through this present study, researchers
focus on deceptive phishing because it is one of the common phishing technique.
Figure 1 presents the forms of phishing attacks [17].

Phishing
x

Social engineering ‘ Technical subterfuge ‘

Phishing email embedded Email has malicious or malware
Phishing URL website crime ware onto PCs or proxies

Fig. 1: Types of phishing attacks.

2.2 Life Cycle of Phishing E-mails

The stages that represent the life cycle of phishing e-mails are presented in Fig. 2.
By identifying such stages, one can understand the way the phishing attack occurs.
It becomes clear that the phishing attack starts with someone sending the fraudulent
e-mail that includes a link. This stage is similar to the fishing process because the
criminal during this stage, sends e-mails to many people, hoping to find a vulnerable
victim, who may visit the attached link. It should be noted that phishing e-mails
usually look like a legitimate e-mail. A criminal disguises as a bank officer or corporate
employee and usually provides the name and address of a legitimate company/bank.
As for the attached link, it appears to be legitimate. All this is provided by phishers to
trick people into taking the bite (i.e., opening the link) [12].

At the beginning, phishers used to disguise as representatives of legitimate well-
known websites. On March 9, 2004, a phishing attack was reported. The phisher
disguised as a representative of e-bay website. The e-mail of the phisher is presented
in Fig. 3 [18]. The phisher claimed that the e-mail receiver had provided invalid
information. The e-mail receiver was asked to update his information.

The phisher provided a link in the e-mail which facilitated access to a fake
webpage appearing to be for e-Bay. This fake webpage asked the user to provide
contact information, information about his social security and MasterCard. He was
also asked to provide e-Bay username and countersign.

Machine Learning for Phishing Detection and Mitigation 29

The e-mail appeared to be a legitimate e-mail sent by e-Bay and was represented
through the e-mail of the sender (S-Harbor@eBay.com). The website appeared
legitimate. For instance, the web address includes (http). The user found that the
IP address of the fake webpage was 210.93.131.250 and belonged to the Republic
of Korea. Thus, there was no relationship between this fake website and the actual
website of e-Bay. Figure 4 presents a screenshot of this fake webpage [18]. However,
there are different methods used for classifying e-mails into legitimate and phishing
which enable the users to detect phishing e-mails. The researchers identified these
methods as given below.

phisher
Compromise a host and installs a phish

web site and mass-mailer

Sends out phishing e-mail

_
Victim clicks a phishing URL @ @
—

) . Victim user Victim user
Phishing web site is viewed
—_—

Victim submits information

Victim web Server Victim user Victim user

Fig. 2: Life cycle of phishing e-mail.

This might be a phishing message and is potentially unsafe |

From: PayPal[services@paypal-australia.com.au

To:

1. Fake sender domain
CC: (not service @paypal.com.au)
Subject: Your account has been limited
paypal

2. suspicious subject and

Dear paypal member, contentsl

v
To restore your payPal account, you'll need login your account
{l—| ,—| 3. bad grammer

It's easy,
http:169.162.70.169//ppau
Click to follow link

How to restore your PayPal account

1. click
2. confirme , and then follow the instructions.

Log in your account now

4. hovering over link reveals
suspicious URL

Fig. 3: An example of a phishing e-mail (the concerned phisher was disguised as a representative of
e-bay website) [13].

P Can'tlog in?- Paypal x
c PayPal,Inc.[US] https:/mww.PayPal.com/au/cgi-bin/webscr?cmd=_Flow &si

Choose a way to pay Actual IP Address:
69.162.70.169

PayPal security processes Payments for TBD

Fig. 4: Screenshot of the e-bay fake web page [13].

mailto:S-Harbor@eBay.com

30 Machine Learning for Computer and Cyber Security

2.3 Phishing E-mail Classification Methods (i.e., Methods for Filtering
E-mails)?

Filtering e-mails is a process through which e-mail messages are classified
automatically into legitimate and phishing ones. This process is carried out by a
phishing e-mail filter through which e-mail messages are analyzed and classified.
E-mail messages may be processed separately which entails checking each e-mail
to detect the presence of any distinct word. E-mail messages could also be filtered
through a learning-based filter. This filter aims to analyze a set of labelled coaching
information (pre-collected messages with upright judgments) [19]. The associate
degree e-mails consist of 2 parts; the body and the header. E-mail headers include
several fields (e.g., from, subject, to, etc.); in associate degree e-mails, the header lines
are followed by the body. The header lines provide the routing data of the message
explicitly besides supplying information about the subject, recipient and sender. As
for the body, it provides the content of the intended message. Figure 5 presents the
structure of the e-mail messages. As for Fig. 6, it presents an example of the structure
of e-mail messages and are suggested for purposes related to feature extraction and

selection [12].

I
whole Email Header Body
message
asan as an unstructured graphical
unstructured set of words elements
set of words

as an unstructured
set of words
asatextina

natural language

Fig. 5: Taxonomy of e-mail message structure [14].

general
characteristics
(such as size)

selected fields

Unstructured set of

words: header Selected fields of

the header
From,sarah.example.com IP1= XXX XXX XXX XXX]
. to IP2=[YYY.YYY.YYY.YYY]
jone.org,received \ From:<sarah@example.com> /‘
To:<jone@example.org> -
Unstructured set of Received from[xoox.xox.ox.xxxby. .. General characteristics
words: all Received fromlyyy.yyy.yyy.yyylby... Al Size = 3.550 bytes
7| Number of attachments=1
From,sarah.example.com ' Dear Jone !
to,jone.org,received... o | would like to
Dear,l,would like,... chj congratulate you with Body as atextin a
natural language

Unstructured set
of words: body Dear jone
- I would like to
Dear,jone,l,would, . '
like,to,congratulate, Graphical elements congratulate you with ...

Fig. 6: An example of the structure of e-mail messages (suggested for purposes related to feature
extraction and selection) [14].

2 Methods for classifying e-mail messages into legitimate and phishing ones. Such methods enable the
users to detect phishing e-mails.

Machine Learning for Phishing Detection and Mitigation 31

In order to identify the steps of the pre-processing phase, the e-mail format must be
identified. In addition, understanding the e-mail filtering techniques requires having an
operating data about the e-mail format and structure. The structure of e-mail is defined
in RFC 5322 [19]. Like ancient communicating mail, there is an associate degree
envelope. However, users usually do not see the envelope because the e-mail systems
throw away the envelope before delivering the e-mail message to the user. Figure 7
presents an example of an e-mail envelope. As for Fig. 8, it presents an example of an
e-mail source code. Extra envelope recipients are defined with extra RCPT.

EHLO col0-omc4-s517.col0.hotmail.com
MAIL From:<rohanamin@live.com> SIZE=26103 BODY=8BITMIME
RCPT To:<rohan@rchanamin.com>

Fig. 7: An example of an e-mail envelope.

a8iew=om&th=13828feabff4abf8

d by best guess record for domain of Survey. nt-1p=50.20.30.10;
is neither permitced nor denied by best guess record for domain of Survey.Administrator@syndics.com)

s-MT) ([69.15.253.230])
Jun 2012 08:32:51 -0400

Fig. 8: An example of e-mail source code.

HELO: The client sends HELO command to the SMTP server for identifying it and
initiating the SMTP conversation.

From the above source code, the system shall extract 21 binary features. The
e-mail message usually consists of two major elements—the body and the header. The
body contains the message text and any additional attachment. Figure 8 presents an
example of the associate degree of an e-mail. This is presented along with the body
and the header. As for the e-mail source code, it consists of the following:

1. Delivered-To: 1t refers to the e-mail address that the message shall be delivered to.
2. Received: It refers to a list that includes all the servers through which the e-mail
message travels through in order to reach the targeted e-mail address.
Return-Path: The e-mail address where non-delivery receipts are to be sent.
Received-SPF: Sender Policy Framework (SPF) domain authenticates the results.
Message-ID: 1t is a unique identifier of electronic messages.

The Content: Type of header which aims to specify the nature of the data.
X-originating-IP: 1t is a de facto standard used for identifying the originating IP
address of a client connecting to a mail service’s HTTP frontend.

N kW

32

10.
11.

12.

Machine Learning for Computer and Cyber Security

. From: It consists of an e-mail address and a phrase which identify who the sender is.
. To: Tt consists of an e-mail address and a phrase. They are determined by the

sender and identify who the receiver is.

Subject: It is the message topic, specified by the sender.

Date: 1t is determined by the e-mail program of the sender and includes
the time zone of the sender’s system.

Content-Disposition: It includes data related to the attachment.

2.4 Features of Learning-based Methods for Spam Filtering

One of the methods used by phishers is represented in searching for victims and
directing them to a fake websites. Through such websites, victims are asked to reveal
their confidential information. However, there are learning-based methods for spam
filtering and are characterized with several features. These features are classified into
three types—Ilatent topic model features, basic features and dynamic Markov chain
features [12].

2.4.1 Basic Features

The basic features are directly extracted from the associate degree e-mail and

are

%

classified into the following:

Structural features are extracted from associate degree hypertext markup language
tree that explains the structure of e-mail body, like the MIME commonplace
that explains the message format variety. These features embody distinct and
composite body components with a quantity of other body components.

Link features represent totally different options of universal resource locator links
embedded in associate degree e-mail, like the quantity of links with information
processing, variety of deceptive links (URL visible to the user), variety of links
behind a picture, variety of dots in a link and so on.

Component features represent the kind of internet technology employed in
associate degree e-mail, like hypertext markup language, scripting, explicit
JavaScript and alternative forms.

Spam filter feature in general has two Boolean values (0, 1). Most researchers use
the Spam Assassin (SA) tool [21], that has over 50 options to work out, whether
or not associate degree e-mail is assessed as spam or not. By default, a message
is taken into account as spam if it scores over 5.0 [22].

Word list features an inventory of words perhaps characterizing a phishing
e-mail, which might be classified by Boolean features irrespective of the words
occurring within the e-mail or not. Word stems like, account, update, confirm,
verify, secure, log, click and then on [12].

2.4.2 Latent Topic Model Features

These features are imperceptible ‘latent’ ones and employ clusters of words that
square measure in e-mail. The options expect that in a phishing e-mail, the words

Machine Learning for Phishing Detection and Mitigation 33

‘click’ and ‘account’ are usually seen. In addition, in traditional money e-mails, the
words ‘market’, ‘prices’ and ‘plan’ are seen [12, 23, 24].

2.4.3 Dynamic Markov Chain Features

Here text-based features are employed and support the bag-of-words, that models
the ‘language’ of every category of messages, thereby capturing the likelihood of
e-mails belonging to a particular category. These e-mails are generated as the
basis for knowledge analysis. For a replacement message, these options calculate
its chance to belong to various categories (e.g., phishing or ham e-mail class)
[12, 25, 26].

2.5 Supervised Learning Methods vs Unsupervised Ones

In machine-learning algorithms, each instance of a dataset is identified by using the
same set of features, which could be continuous, binary or categorical. If the
instances are labelled (i.e., corresponding correct outputs), then the learning scheme
is known as ‘supervised’. A supervised learning formula analyzes the coaching
knowledge and produces an inferred operate, referred to as a classifier. The
inferred operate ought to predict the right output price for any valid input object. Thus,
the learning formula should generalize from the coaching knowledge to the unseen
things. Such types of algorithms may include the NN(MLP) and SVM algorithms [15].

As for unsupervised learning, it is represented in the problem of finding structures
hidden behind unlabeled data because the examples provided to the learner are not
labelled. There is no reward signal nor error available for evaluating a potential
solution. Lack of such signal distinguishes supervised learning from unsupervised
learning and general learning, for example, clustering techniques, such as the K-means
clustering algorithm and ECM algorithms [15].

Hybrid (supervised/unsupervised) learning models combine the principles and
elements of both supervised and unsupervised learning methods [16].

3. Approaches for Fighting Against Phishing E-mail Attacks

Several approaches were developed for fighting attacks. Five areas of defense were
classified according to their position in the attack flow (Fig. 9) [7]. Researchers of
the present study proposed PDENFF, which is a server-side filter and a classifier
(number 5). There are other elements in the data flow, such as Simple Mail Transfer
Protocol (SMTP) and IMAP server’s protocols that are considered web standards
for e-mail transmission across web protocol (IP). These protection approaches are
developed for countering phishing attacks.

3.1 Network Level Protection

This is enforced to prevent the spread of science IP addresses or domains from entering
the network, thus enabling websites’ administrators to dam messages sent by those
systems. Such messages are usually spams or phishing e-mails. Domain name system
blacklists [17], which are employed by a web service supplier (ISPs), are updated and

34 Machine Learning for Computer and Cyber Security

|2»Authentication ! SMTP IMAP
Mail server Mail Mail server
Database
| 1-Network level protection | I5—Server side Filters and c\assmersl

|3-Client Side Tools ||——

Real web site

f

oo
& SalSn Phishing web site R \fl.
g ser Education|— _ 71
p g i

phisher Victim

Fig. 9: Approaches developed for protecting users from any phishing attack.

generated by identifying the traffic behavior. The nature of this approach is reactive.
A phisher shall overcome this protection technique by controlling legitimate users’
computer or unendingly dynamical science addresses [18] is open supply package
extensively utilized at the network level. The rules existing in Snort are updated
perpetually to maintain protection. A researcher conducted [19] a comparison in
terms of performance between four classification algorithms. This comparison was
conducted to explore and examine DNS-poisoning-based phishing attacks through
collecting the routing data throughout a week. They discovered that a ‘k-nearest
neighbor’ formula showed the best performance in comparison to the other examined
classification methods. It showed a false positive rate (0.7) per cent and a real positive
rate (99.4) per cent.

3.2 Authentication

Authentication-based approaches are used for filtering phishing e-mail and are
designed to identify whether the received e-mail message is sent by a legitimate path or
not as it conveys that the name is not being spoofed by a phisher. The latter approaches
increase the protection of the communication conducted through e-mails. User-level
authentication is used secretly as credentials. However, secret authentication can
be broken, as proven by the increasing number of phishing attacks. Domain-level
authentication is enforced on the supplier (e.g., from a mail server to another mail
server). Microsoft has proposed a replacement technology called Sender ID [20]. It is
used for domain-level authentication (Fig. 10). An identical technology called Domain
Keyis was developed by Yahoo [21]. However, in order to have an effective domain-
level authentication, the suppliers (the sender and the receiver) must use identical
technology [11].

There are other techniques enforced in e-mail authentication by causing the hash
(a code calculated to support content of message) of the secret with the name
exploitation digital signature and secret hashing. Establishments would establish a
policy whereby all high-value e-mail communications with customers are digitally
signed with a certified non-public key. When receiving the e-mail, the recipient shall
verify the legitimacy of the e-mail. It is not likely to have a phisher, producing a

Machine Learning for Phishing Detection and Mitigation 35

Connection Protocol Connection
Level Protection Level Protection Level Protection

: ::F.’“CO.””edio” Recipient and sender Content Filtering

server > Resl Tine Block List + Blocking + Anti-Phishing user
eal lime Block Lists + Sender ID Framework « Postmarks and Puzzles

* Reputation Data

Fig. 10: Microsoft’s sender ID integration into a typical anti-phishing solution [20].

legitimate signature on a dishonest e-mail. PGP and S/MIME are samples of
digital-signature technologies. Many authors counseled use of key distribution and
digital signature to detect phishing e-mail, but most users today do not use e-mail
authentication [11].

Some banks (e.g., Bank of Austria) use user-dealing authentication numbers
(TANS) to detect phishing e-mails. These numbers are distributed to the user through
an (SMS) message [22], though this approach reduces the risk of being attacked by
phishers. This approach continues to be subject to man-in-the-middle attacks. The
mobile TAN requires cost, time and substantial infrastructure. Thus, TAN is not
considered acceptable for evaluating the risk associated with communication.

To overcome the authentication filter, a phisher shall send a suggestion to
a computer program (e.g., Froogle) with a lower cost. This suggestion shall direct a
stream of holiday-makers to his website. The computer [23] program cannot manage
such transfers or payment transactions. Thus, a replacement approach for filtering the
content of websites and e-mail messages is required.

3.3 Client-side Tools

The tools that treat the shopper aspect embody user profile filters and browser-based
toolbars. SpoofGuard [24], NetCraft [25] (Fig. 11), eBay toolbar [26], Calling ID [27],
Cloud Mark [28] and phishing filter [29] are a number of the shopper aspect tools.
They examine phishing and attacking by sleuth phishing ‘Web browsers’ directly.
Alternative techniques additionally propose solutions in shopper aspect tools that
embody domain checks, algorithms, URL examination, page content and community
input. These tools, that are designed and trained exploit typical prototypes of phishing
web site URLs, warn the user with a window. Figure 11 presents NetCraft, a shopper
aspect tool [25].

Figure 11 shows data related to accessed websites. They assist USA in
assessing dishonest URLSs (e.g., the $64000 Citibank or Barclays sites). It is unlikely
for these websites to be hosted within the former Soviet Union. Usually, these
tools depend on white-listing and black-listing, which is a technique for fighting
against phishing attacks by checking internet addresses embedded in e-mails. It can be
done by checking the websites. Inside the Mozilla Firefox browser, every website is
tested and examined to provide protection against a blacklist of well-known phishing
websites [30].

Through the black-listing method, the user machine downloads a list of the
detected phishing websites. This list is updated regularly. In general, websites receive
a ‘blacklist’ classification, which is provided by a user or a search engine, for instance,
Google analyzes and examines websites to identify the risk associated with it.

36 Machine Learning for Computer and Cyber Security

Risk Rating Country: the flag and
Gaurge the trust worthiness two-letter ISO code of
of the current site the country the current
| sie i hosted in
| Netcraft Anti-Phishing Toolbar |
Tty |i€ www.exaniplebank.com v |
| Services risk rating since 200 Rank: 311393 report UK Netcraft |

Since: The first
Net craft web

Rank: popularity Amongst ||Host: The name of the
Fig. 11: NetCraft—a client side tool [25].

Net craft & services
Menu: Access Netcraft services
And report phishing sites

toolbar users site report: ||organization hosting
link to a detailed report the current

Similarly, users will flag the domains they understand as being threats. They
shall report them to Google or sites, e.g., Stop Badware and CyberTopCops
[31]. The common threat time of a phishing website is three days. However, this
method requires time for a replacement phishing web site to be reportable.

Phishing e-mails are hosted by numerous servers on Botnets which publish
the phishing attacks [32-34]. Blacklisting can manufacture false negatives and
miss some phishing e-mails. Thus, it is not significantly effective. Blacklists are
ineffective in protecting a system against a ‘fresh’ phishing e-mail because most of
them block around 20 per cent of phish at hour zero [35].

Black-listing and white-listing techniques (Table 1) are very weak to keep up with
technology-related changes (like IPV4 versus IPV6, tiny URLs, etc.) [11]. Moreover,
most users do not give attention to the warning dialogs owing to higher than mentioned
weaknesses. These techniques do not appear to be a good choice for detecting ‘zero
day’ attack [36].

Table 1: Comparison between the coaching methods connected with awareness and education.

Approach Strength Weakness Used in

White-listing | Accept legitimate email only | high false positive IE, Mozilla Firefox
browsers [37, 38]

Black-listing | smart with well-known high false negatives | IE, Mozilla Firefox
phishing sites browsers [37, 38]

3.4 User Education

Supported social response approaches depend on the extent of awareness and
education of the launcher of the phishing attacks [39—43]. There are three primary
approaches in user education techniques as mentioned below:

The first approach offers online information about the risks associated with phishing
attacks. It also provides information about the methods used to stay away from such
kinds of attacks. These materials square measure printed by governments, non-profit
organizations from commercialism platforms, such as eBay, Amazon and Bank of
America to money enterprise as seen in Fig. 12.

The second approach refers to on-line coaching and testing and scores user ability to
see the phishing websites and emails like ‘Phil Game’ [44]. A well-known plan from

Machine Learning for Phishing Detection and Mitigation 37

Fig. 12: Comic strip that was presented to people in generic condition [41].

Kumaraguru [58] was developed. It embodies coaching styles to enable users to
detect phishing e-mails. Through such coaching, users receive a notice informing them
about the existence of a phishing e-mail. The primary coaching system shall provide
a warning about threatening texts or graphics. The second coaching uses a comic-
book strip format for transmitting similar information. The authors projected conjointly
a game-based approach for coaching users on a way to pay attention to phishing
websites and e-mails. They examined this method on a gaggle of users of different age
categories and found that this method facilitates the extent of data concerning phishing
attacks.

3.5 Serverside Filters and Classifiers

Supported content-based filtering approaches are based on content. This is
because the best choice is represented in fighting ‘zero day’ attacks. Therefore,
most researchers aim to fight against such attacks [5]. This method depends
on associate extracted group of phishing e-mail options which square measure trained
on machine-learning algorithms by adaptation into an applied math classifier. This is
done for differentiating between legitimate e-mails and phishing ones. Subsequently
the classifier is used on associate e-mail stream for predicting the category of
the e-mail that has been received recently. In general, filtering phishing e-mails is an
associate application that carries out the operation in the manner listed below [12, 45].

C iing eman | 11 the email e is considered phishing email
F(e,0) = (M
C,on > |1 the email e is considered phishing email

where e refers to an email that shall be classified later. As for 0, it refers to a vector of
parameters, and C phishing email and C ham email are labels assigned to the email
messages.

Most of the phishing e-mails content-based filtering methods are based on
machine learning classification algorithms. Regarding the learning-based
technique, the parameter vector 0 is a result of coaching the classifier on a pre-dataset.
0=0(E). E={(e,). (€, 7). - (€, 3,)] ;€ {Cprpn smas> o > WherE
e, e,...e refer to an email messages collected earlier.. y, y, ... y, refer to the
matching labels. As for O, it refers to the training function [14].

38 Machine Learning for Computer and Cyber Security

During this, some aspect filters and classifiers based on machine-learning
techniques are divided into five sub-sections. Generally, everyone uses a
similar technique and inherits a similar option with some differences.

3.5.1 Methods Based on Bag-of-Words Model

This methodology could be a phishing e-mail filter that considers the computer file to be
a formless set of words that may be enforced either on some or on the complete e-mail
message. It is based on machine learning classifier algorithms [14, 46, 47]. To make
it clear, assume that there are two types of e-mail messages: phishing e-mail and ham
e-mail. Then, assume that we have a group of labeled coaching e-mail messages with
corresponding notes that every label contains a vector of ‘s’ binary options and one
among two values C .. or C . supporting the category of the message.
Hence, with coaching information set £, the message shall be pre-processed through
the following:

U={(i,y,) (i, y,) ... (0,) (@)
W 2,y

iE{Cphixhing email’ cham email?
s refers to the features range used, the new input sample @,_Z°, is the classifier that

provides the basis for classification, y_c , - . c _, of the new input sample.
X = phmhmglemml . ham email} K
Some classifiers and approaches associated with this methodology are given below.

Support Vector Machine (SVM) is one of the foremost usually used classifier
in phishing e-mail detection. In 2006, the SVM classifier was projected for
phishing e-mail filtering [48]. SVM supported coaching e-mail samples and a
pre-outlined transformation ©: R® — F that builds a map from options to provide
a reworked feature house, storing the e-mail samples of the two categories with a
hyperplane within the reworked feature house (Fig. 13). The decision rules appear in
the following formula:

f@)=sign(} (@x K@i, 0)+5) 3)

where K (u, 0) = O(u) . O(0), is the kernel function and o, i = 1...n and S maximizes
the margin space separating hyperplane. The value 1 corresponds to C, and 1
corresponds to C,

am email’
hishing e-mail*

k-Nearest Neighbor (k-NN) is a classifier projected for phishing e-mail
filtering by Gansterer [49]. For this classifier, the choice is created as
follows: supported k-nearest coaching input, samples measure chosen and pre-
defined similarity function; afterwards, the e-mail x is labeled as happiness to a
similar category of the bulk among this set of k£ samples (Fig. 14).

Term frequency-inverse document frequency (TF-IDF) is employed by Dazeley [71]
for word weights, as options for the agglomeration. The document frequency of the
word w is enforced by DF(w) that is defined because the range of e-mail messages
within the collected information set wherever the word w appears in the document, a
minimum of one is shown within the formula 12 [52].

S
W =TF . Log x— 4
o~ 1Fy Log X0 “)

Machine Learning for Phishing Detection and Mitigation 39

Support vectors (class 1)

Support vectors
Hyperplane 2 ® @ (class 2)

Fig. 13: Support vector machine [50].

9 CLASSA
CLASS B
© o
X1 ®
CCe e o
O K=3 ®
K=6
X2

Fig. 14: K-nearest neighbor algorithm [51].

Wherever w, is the weight of x, words within the y, document (e-mail), TF . is
the occurrences range of the x, word (w) within the y, document (e-mail). DF is
the range of e-mail messages during which the i, word (w) happens and S, as above, is
the total range of messages within the coaching dataset. Bag-of-Words model has
several limitations. It is enforced with an oversized range of options, consumes
memory and time, and largely works with a supervised learning formula. Moreover, it
is not effective with ‘zero day’ attack [20].

3.5.2 Multiclassifier Algorithms

These approaches generally depend upon comparison between sets of classifiers.
Presently,alotofanalysishasused new classifieralgorithms, like Random Forests (RFs).
RFs are classifiers that merge many tree predictors, especially wherever every tree
depends on the value of a random vector sampled one by one, and may handle a
giant number of variables in an information set. Another algorithm, Regression
(LR) is one among the foremost widely applied math models in many fields for
binary information prediction. It is attributable to its simplicity. Neural Network
(NNet) classifiers that accommodate three layers (input layer, hidden layer and output
layer), gain the requisite information by coaching the system with each the input and
output of the popular drawback. The network is refined till the results have reached
acceptable accuracy levels as shown in Fig. 15. The power of NNet comes from the
non-linearity of the hidden vegetative cell layers. Non-linearity is vital for network

40 Machine Learning for Computer and Cyber Security

Input layer
Hidden lgyer
[4 tput layer

Fig. 15: Neural network.

learning of advanced mappings. Sigmoid operate is the commonly-used operate in
neural networks [50].

Abu-Nimeh [50] compared six classifiers concerning machine learning techniques
for phishing e-mail prediction, namely, Theorem Additive Regression Trees (BART),
LR [53] SVM, REF, Classification and Regression Trees (CART) and NNet. He used
43 features for coaching and testing of the six classifiers within the information set.
However, the results indicated that there was no customary classifier for phishing
e-mail prediction, for instance, if some classifiers have low levels of FP, they’ll have
a high level of FN or LR, whose FP is 4 per cent, then an outsized variety of FN is at
17 per cent.

3.5.3 Classifiers Model-based Features

These approaches build full models that are ready to produce new options with several
reconciling algorithms and classifiers to provide the ultimate results [54]. A number of
approaches can be seen below.

PHONEY: Mimicking user response was projected by Chandrasekaran [55] as a unique
approach. This method detects phishing e-mail attacks and the sham responses that
mimic real users, basically reversing the character of the victim and also the enemy.
The PHONEY technique was tested and evaluated for less than 20 completely different
phishing e-mails over eight months. It was found that the collected information was
too little to deal with an enormous downside, like phishing e-mails. This method needs
time to reverse the characters of the victim and also the phisher as shown in Fig. 16.
The authors obtained results higher than that in the Filch technique on identical
dataset and tested the effectiveness of the designated topic options. What is more,
this model was developed in an exceedingly real-life setting at an advert ISP [77].
However, this method selects an enormous variety of options, about 81, and its several

— ‘ Preliminary Content ~ |:::
L i Processing == Scanner = ? l
iD il tai Semantic analysis of tieshDe - l
'Does email contain ’ .
MTA |URLS, forms, etc? suspicious content Dynamically Ph'Sh';‘g attack ! MUA
' generate or not? I
| phoneys .

Fig. 16: Block diagram of PHONEY architecture [55].

Machine Learning for Phishing Detection and Mitigation 41

feature extraction
& processing

I — =
classifier
I:) B %, trainin,

— %Y 0\35?-\23\:)“
o 9,.,= phishing
X classifier
htd model

Fig. 17: The machine learning techniques [56].

Voew = Nam

algorithms for classification. This implies that it is long and within the analytical
method, an outsized variety of dynamic Markov chain suffer from high memory
demand.

3.5.4 Clustering of Phishing E-mail

Clustering of phishing e-mail clump is the method of shaping information classified in
line with similarity. It is typically an unsupervised machine-learning algorithmic rule.
This cluster of machine-learning techniques depends on filtering phishing e-mails
supported clump e-mails via online or offline mode. One in every foremost used
clump techniques is k&-means clump. K-means clump is an offline and unsupervised
algorithmic rule that begins by crucial cluster k because it is the assumed center of
this cluster. Any random e-mail object or options vector is designated as initial center.
Then the process continues confirming the center coordinate and the gap of every
e-mail object (vector) to the center cluster of e-mail objects supporting a minimum
distance [57]. Some approaches connected with this method are seen below.

3.5.5 Multi-layered System

These approaches are based on combining different algorithms of classifiers working
together to enhance results of classification accuracy for phishing e-mail detection.

Multi-tier technique of classifying phishing e-mails has the most
effective arrangement within the classification method. In this technique, phishing
e-mail options are extracted and classified in an exceedingly ordered fashion by
areconciling multi-tier classifier whereas the outputs are sent to the choice classifier as
shown in Fig. 18, where c/, ¢2 and c¢3 are classifiers in three tiers. If the message is
misclassified by any of the tiers of the classifiers, the third tier can create the ultimate
call withinthemethod. The mosteffectiveresultcame fromc/ (SVM),c2 (AdaBoost) [58]
and ¢3 (Naive Bayes) [59] adaptive algorithmic rule. The typical accuracy of the three
tiers was 97 per cent. However, this method is characterized by protracted process
times and quality of study needs several stages. What is more, the third of the
information set still was misclassified [12].

PhishGILLNET projected by Ramanathan [11] could be a multi-layered
approach to find phishing attacks employing a system-supported linguistic
communication process and machine learning techniques that utilize three algorithms

42 Machine Learning for Computer and Cyber Security

— =
5 il

o=+ i, * o

528 Classifier-1 . 0

ggo

350 ¥ Cp I Sl ¥

@ Classifier-2 §

o 4 o

ﬁ) C.pCp * cpc) v cico jcie) 4

E ' : = o

I ‘ Analyser section l Iy
173

¢ z yi77] % Q@

Q B & Label_C#Label_C, A 3

2 e | Classifier-3 b 2 So
& 7 = - v
& e

o g /9', of . Temy \

&

2 T .

3 l—.’g’ Phishing | |

&8 \ LY \ Y

e

ig. 18: Block diagram of the multi-tier classification model [60].

inthree layers. These algorithms are as follows: Probabilistic Latent linguistics Analysis
(PLSA), that is employed to create a subject model; AdaBoost, that is employed to
create a strong classifier; and Co-coaching, that is employed to create a classifier
from labeled and unlabelled examples. For this multi-layered approach, Ramanathan
got a 97.7 per cent result. However, this method used 47 complicated features that
needed vital process and took additional memory and computation time. Therefore,
this approach was not effective with real-world applications.

3.5.6 Evolving Connectionist System (ECOS)

Evolving Connectionist System is a connectionist architecture that simplifies the
evolution process, using knowledge discovery. It can be a neural network or a set
of networks that run continuously and change their structure and functionality
through a continuous relationship with the environment and with other systems. This
system, like traditional expert systems, works with unfixed number of rules used to

(Email Dataset 0

<

Pre-processing

| Features parsing and stemming |

| Import features represent phishing email |

<

(processed Email Dataset 0

<

Email Object Similarity
features Fetching
Ranking features

Create crisp values
Grouping Features email similarity

- Han
<}:{>< Applying clustering Technique PECM > Email

Fig. 19: The overall phishing e-mail clustering approach, PECM.

Machine Learning for Phishing Detection and Mitigation 43

develop artificial intelligence (AI) [61]. It is flexible with respect to the dynamic rule,
works on either online or offline mode and interacts dynamically with the changing
environment. Such a system can solve the complexity and changeability of many real-
world problems. It grows throughout the process and adopts many techniques.

PECM is projected by ALmomani [85] who proposes a unique thought that adapts
the evolving clump technique for classification (ECMC) to create new model referred
to as the Phishing Evolving clump technique (PECM). PECM functions support the
extent of similarity between two teams of features of phishing e-mails. The PECM
model tested extremely effective in terms of classifying e-mails into phishing e-mails
or ham e-mails in online mode, while not being intense on excessive amount of
memory, speed and use of a one-pass algorithmic rule, thus increasing the extent of
accuracy to 99.7 per cent.

PENFF is planned by ALmomani [86] for detection and prediction of unknown
‘zero-day’ phishing e-mails by offering areplacement framework referred to as Phishing
Evolving Neural Fuzzy Framework (PENFF) that supported adoptive Evolving Fuzzy
Neural Network (EFuNN) [62]. As a performance indicator; the foundation Mean Sq.
Error (RMSE) and Non-Dimensional Error Index (NDEI) had 0.12 and 0.21 severally,
which was low error rate as compared with alternative approaches (Fig. 20).

PDENFF 1is planned by ALmomani [63] and introduces a novel framework that
adapts the ‘evolving connectionist system’. PDENFF is framework adaptive online
that is increased by offline learning to find dynamically the unknown ‘zero day’
phishing e-mails. Framework is intended for high-speed ‘life-long’ learning with low
memory footprint and minimizes the quality of the rule base ad in nursing configuration
and shows an improvement by 3 per cent when compared with the generated existing
solutions to ‘zero day’ phishing e-mail exploits (Fig. 21).

| Email Dataset |

) 4

Pre-processing
Feature parsing and stemming
Import features represent
Phishing email

2

Email Object similarity
Features Fetching
Ranking Features

Create crisp Values
Grouping similar Features
of Emails

PHISHING
EMAIL Evolving Fuzzy Ham
Neural Networks Email

EFUNN

Fig. 20: PENFF.

44 Machine Learning for Computer and Cyber Security

| Phishing Email | | Ham Email |

;H

based on back-propagation

inimi; - linear least-square estimator | Online mode
to minimize the error |Load enhanced rules q

(LSE) with learning data

Enhanced Rules;

DyNFIS GaussianMF, <capmre . GaussianMF,
Offline-mode Enhancement rules, updated oad new rules] L’”"’f/"e_‘ create and updated the rule by DENFIS
Framework

Counter
ECMc By Default=800 samples ECM
Offline mode Online mode
Rule Base Rule Base

L S S

Email Object Similarity
A- Feature ranking
B- Creation of Crisp value
C- Grouping of features based on similarities
Short vector

Pre-Processing
A- Selected Phishing e-mail features
B- Features parsing and stemming
(extract binary features)
Long vector

Email Dataset

Fig. 21: PDENFF.

4. Conclusion

This chapter is amongst the most recent and most problematic of trends in
network security threats. It is a method of getting confidential information
through dishonest e-mails that seem to be legitimate. We have a chapter on protection
against these phishing e-mail attacks. This chapter improves the understanding of the
phishing e-mails downside, this answer area and also the future scope to filter phishing
e-mails. Approaches given within the literature still have abundant limitations
regarding accuracy or performance, particularly with ‘zero day’ phishing e-mail
attacks. Most classifiers will not establish phishing e-mail area primarily
based on supervised learning, i.e., they have to learn before they will find a
replacement attack. Unsupervised learning, that is quicker, however, incorporates
a low level of accuracy or a hybrid (supervised and unsupervised) learning, that is
time spending and expensive. Several algorithms are adopted but so far there is no
commonplace technique available.

References

[1] IID. (2011). eCrime Trends Report First Quarter, 2011, Report 2011.

[2] Cook, D.L., Gurbani, V.K. and Daniluk, M. (2009). Phishwish: A simple and stateless phishing
filter. Security and Communication Networks 2: 29—43.

[3] Dunlop, M., Groat, S. and Shelly, D. (2010). GoldPhish: Using images for content-based
phishing analysis. pp. 123—128. In: Fifth International Conference on Internet Monitoring and
Protection, ICIMP.

(4]
[5]

(6]
[7]

[8]
[9]

[10]
[11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]
[19]

[20]
[21]
[22]
(23]
[24]
[25]
[26]
[27]
(28]

[29]

Machine Learning for Phishing Detection and Mitigation 45

Parmar, B. (2012). Protecting against spear-phishing. Computer Fraud & Security 2012: 8-11.
Khonji, M., Iraqi, Y. and Jones, A. (2012). Enhancing phishing e-mail classifiers: A lexical
URL analysis approach. International Journal for Information Security Research (IJISR), 2.
US-CERT. (2012). Monthly Activity Summary—January 2012, United States Computer
Emergency Readiness Team.

Venkatesh Ramanathan, H.W. (2012). phishGILLNET—phishing detection methodology
using probabilistic latent semantic analysis, AdaBoost and co-training. EURASIP Journal on
Information Security.

Kasabov, Z.S.H.C.N., Song, Q. and Greer, D. (2005). Evolving Connectionist Systems with
Evolutionary Self-optimisation 173.

Almomani, A., Alauthman, M., Albalas, F., Dorgham, O. and Obeidat, A. (2018). An online
intrusion detection system to cloud computing based on neucube algorithms. International
Journal of Cloud Applications and Computing (IJCAC) 8: 96-112.

Krebs (2013, 28 June). In a Zero-Day World, It’s Active Attacks that Matter. Available: http://
krebsonsecurity.com/2012/10/in-a-zero-day-world-its-active-attacks-that-matter;/.

Almomani, A., Obeidat, A., Alsaedi, K., Obaida, M.A.-H. and Al-Betar, M. (2015). Spam
e-mail filtering using ECOS algorithms. Indian Journal of Science and Technology 8: 260-272.
Almomani, A., Gupta, B., Atawneh, S., Meulenberg, A. and Almomani, E. (2013). A survey
of phishing e-mail filtering techniques. Communications Surveys & Tutorials, IEEE
15:2070-2090.

Group, A.-P. W. (2004). eBay—Notice eBay obligatory verifying—Invalid user information.
Available: http://www.millersmiles.co.uk/email/ebay-notice--obligatory-verifying-invalid-
user-ebay.

Blanzieri, E. and Bryl, A. (2008). A survey of learning-based techniques of e-mail spam
filtering. Artificial Intelligence Review 29: 63-92.

Wikipedia. (2013). Supervised learning. Available: http://en.wikipedia.org/wiki/Supervised
learning.

Kasabov, N. (2001). Evolving fuzzy neural networks for supervised/unsupervised online
knowledge-based learning. Systems, Man and Cybernetics, Part B: Cybernetics, IEEE
Transactions on 31: 902-918.

DNSBL. (28 May 2012). Information—Spam Database Lookup. Available: http://www.dnsbl.
info/.

Fire, S. (29 May 2012). Snort. Available: http://www.snort.org/.

Kim, H. and Huh, J. (2011). Detecting DNS-poisoning-based phishing attacks from their
network performance characteristics. Electronics Letters 47: 656—658.

Microsoft. (February 2008). Sender ID framework protecting brands and enhancing detection
of Spam, Phishing, and Zero-day exploits. A White Paper.

Yahoo. (2012, 29 May). DomainKey Library and Implementor’s Tools. Available: http://
domainkeys.sourceforge.net/.

Oppliger, R., Hauser, R. and Basin, D. (2007). SSL/TLS Session-aware user authentication: A
lightweight alternative to client-side certificates. Computer 41: 59-65.

Bazarganigilani, M. (2011). Phishing e-mail detection using ontology concept and naive bayes
algorithm. International Journal of Research and Reviews in Computer Science 2.

Chou, N., Ledesma, R., Teraguchi, Y., Boneh, D. and Mitchell, J.C. (2004). Client-side defense
against web-based identity theft. /n: Proceedings of the 11th Annual Network and Distributed
System Security Symposium (NDSS 04), San Diego, CA.

Netcraft. (2006, 29 May). Netcraft Toolbar. Available: http://toolbar.netcraft.com/.

Toolbar, E. (2012, 29 May). Available: http://download.cnet.com/eBay-
Toolbar/3000-12512_4-10153544.html?tag=contentMain;downloadLinks.

Calling ID. (2012, 29 May). Your Protection from Identity Theft, Fraud, Scams and Malware.
Available: http://www.callingid.com/Default.aspx.

Cloud Mark. (2012, 29 May). Available: http://www.cloudmark.com/en/products/cloudmark-
desktopone/index.

Filter, I.P. (2012, 29 May). Available: http://support.microsoft.com/kb/930168.

http://www.dnsbl.info
http://en.wikipedia.org
http://support.microsoft.com
http://www.cloudmark.com
http://www.cloudmark.com
http://www.callingid.com
http://download.cnet.com
http://download.cnet.com
http://toolbar.netcraft.com
http://domainkeys.sourceforge.net
http://domainkeys.sourceforge.net
http://www.snort.org
http://www.dnsbl.info
http://en.wikipedia.org
http://www.millersmiles.co.uk
http://www.millersmiles.co.uk
http://krebsonsecurity.com
http://krebsonsecurity.com

46 Machine Learning for Computer and Cyber Security

[30]
[31]
[32]
[33]

[34]

[35]

[36]
[37]

[38]
[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

Wu, Y., Zhao, Z., Qiu, Y. and Bao, F. (2010). Blocking foxy phishing emails with historical
information. pp. 1-5. In: Proc. of the Conf. on Communications, Cape Town.

Williams, J. (2011, 5 June). Why is My Site Blacklisted? Available: http://www.ehow.com/
info 12002995 blacklisted.html.

Herzberg, A. (2009). Combining authentication, reputation and classification to make phishing
unprofitable. Presented at the Emerging Challenges for Security, Privacy and Trust.
Almomani, A. (2018). Fast-flux hunter: A system for filtering online fast-flux botnet. Neural
Computing and Applications 29: 483-493.

Al-Nawasrah, A., Al-Momani, A., Meziane, F. and Alauthman, M. (2018). Fast flux botnet
detection framework using adaptive dynamic evolving spiking neural network algorithm. /n:
Proceedings, the 9th International Conference on Information and Communication Systems
(ICICS 2018).

Sheng, S., Wardman, B., Warner, G., Cranor, L., Hong, J. and Zhang, C. (July 2009). An
empirical analysis of phishing blacklists. Sixth Conference on Email and Anti-Spam, 54.
Ramanathan, V. and Wechsler, H. (2012). EURASIP Journal on Information Security 2012: 1.
Microsoft. (2012). Download Internet Explorer. Available: http://windows.microsoft.com/en-
US/internet-explorer/downloads/ie.

Mozilla. (11 June). firefox free download. Available: http://www.mozilla.org/en-US/firefox/
new/.

Dodge, R.C., Carver, C. and Ferguson, A.J. (2007). Phishing for user security awareness.
Computers & Security 26: 73—80.

Lungu, I. and Tabusca, A. (2010). Optimizing anti-phishing solutions based on user awareness,
education and the use of the latest web security solutions. Informatica Economica Journal
14: 27-36.

Kumaraguru, P., Sheng, S., Acquisti, A., Cranor, L.F. and Hong, J. (2008). Lessons from a real
world evaluation of anti-phishing training. pp. 1-12. In: eCrime Researchers Summit, GA,
USA.

Aloul, F. (2010). The need for effective information security awareness. International Journal
of Intelligent Computing Research (IJICR) 1: 176-183.

Arachchilage, N.A.G. and Cole, M. (2011). Design a mobile game for home computer users to
prevent from phishing attacks, pp. 485-489.

Jianyi Zhang, S.L., Zhe Gong, Xi Ouyang, Chaohua Wu and Yang Xin. (2011). Protection
against phishing attacks: A survey. IJACT: International Journal of Advancements in
Computing Technology 3: 155-164.

Ammar ALmomani, T.-C.W., Ahmad Manasrah, ItyebAltaher, Eman Almomani, Ahmad
Alnajjar and Sureswaran. (2012). Asurvey of learning-based techniques of phishing e-mail
filtering. JDCTA International Journal of Digital Content Technology and its Application 6.
Basnet, R.B. and Sung, A.H. (2010). Classifying phishing e-mails using confidence-weighted
linear classifiers. pp. 108—112. /n: International Conference on Information Security and
Artificial Intelligence, Chengdu, China.

Biggio, B., Fumera, G., Pillai, I. and Roli, F. (2011). A survey and experimental evaluation of
image spam filtering techniques. Pattern Recognition Letters 32: 1436-1446.
Chandrasekaran, M., Narayanan, K. and Upadhyaya, S. (2006). Phishing email detection
based on structural properties. pp. 2—8. In: New York State Cyber Security Conference (NYS),
Albany, NY.

Gansterer, W.N. (2009). E-Mail Classification for Phishing Defense, presented at the
Proceedings of the 31th European Conference on IR Research on Advances in Information
Retrieval, Toulouse, France.

Abu-Nimeh, S., Nappa, D., Wang, X. and Nair, S. (2007). A comparison of machine learning
techniques for phishing detection. pp. 60-69. In: Proceedings of the eCrime Researchers
Summit, Pittsburgh, PA.

Toolan, F. and Carthy, J. (2009). Phishing detection using classifier ensembles. pp. 1-9.
In: eCrime Researchers Summit, Tacoma, WA, USA.

Dazeley, R., Yearwood, J.L., Kang, B.H. and Kelarev, A.V. (2010). Consensus clustering
and supervised classification for proling phishing emails in internet commerce security.

http://www.mozilla.org
http://www.ehow.com
http://www.mozilla.org
http://windows.microsoft.com
http://windows.microsoft.com
http://www.ehow.com

[53]

[54]

[55]

[56]

[57]
[58]
[59]
[60]
[61]

[62]

[63]

Machine Learning for Phishing Detection and Mitigation 47

pp. 235-246. In: Knowledge Management and Acquisition for Smart Systems and Services,
Berlin Heidelberg.

Shih, K.H., Cheng, C.C. and Wang, Y.H. (2011). Financial information fraud risk warning for
manufacturing industry-using logistic regression and neural network. Romanian Journal of
Economic Forecasting, 54-71.

Olivo, C.K., Santin, A.O. and Oliveira, L.S. (2011). Obtaining the threat model for e-mail
phishing. Applied Soft Computing, 1-8.

Chandrasekaran, M., Chinchani, R. and Upadhyaya, S. (2006). Phoney: Mimicking user
response to detect phishing attacks. pp. 668—672. In: Symposium on World of Wireless,
Mobile and Multimedia Networks, WoWMoM.

Bergholz, A., Chang, J.H., Paal3, G., Reichartz, F. and Strobel, S. (2008). Improved phishing
detection using model-based features. pp. 1-10. /n: Proceedings of the Conference on Email
and Anti-Spam (CEAS). CA.

Ram Basnet, S.M. and Andrew H. Sung. (2008). Detection of phishing attacks: A machine
learning approach. Soft Computing Applications in Industry 226: 373-383.

Zhu, J., Rosset, S., Zou, H. and Hastie, T. (2006). Multi-class Adaboost. Ann Arbor
1001: 1612.

Murphy, K.P. (2006). Naive Bayes Classifiers. Technical Report, October 2006.

Islam, M.R., Abawajy, J. and Warren, M. (2009). Multi-tier phishing e-mail classification
with an impact of classifier rescheduling. pp. 789-793. In: The International Symposium on
Pervasive Systems, Algorithms, and Networks, Kaohsiung, Taiwan.

Benuskova, L. and Kasabov, N. (2007). Evolving Connectionist Systems (ECOS). pp. 107—
126. In: Computational Neurogenetic Modeling, Springer US.

Kasabov, N. (1998). Evolving fuzzy neural networks-algorithms, applications and biological
motivation. Methodologies for the Conception, Design and Application of Soft Computing,
World Scientific 271-274.

Almomani, A., Wan, T.-C., Manasrah, A., Altaher, A., Baklizi, M. and Ramadass, S. (March
2013). An enhanced online phishing e-mail detection framework based on “evolving
connectionist system”. International Journal of Innovative Computing, Information and
Control (IJICIC) 9.

CHAPTER 3

Next Generation Adaptable
Opportunistic Sensing-based
Wireless Sensor Networks
A Machine Learning Perspective

Jasminder Kaur Sandhu,* Anil Kumar Verma and
Prashant Singh Rana

1. Introduction

Opportunistic networks exploit the broadcast nature of wireless transmission,
functioning efficiently in wireless networks with multi-hop transmission and preferably
higher density. The routing in these networks takes place in the following three steps:

i. The packet is broadcasted from a node.
ii. Best node is selected to forward the packet based upon coordination protocol.
iii. Ultimately the packet is forwarded.

This routing mechanism has certain advantages, which include considerable
improvement in reliability; probability of failure while sending packets is minimized
as overheard packets are utilized and, transmission range is expanded [1, 2]. These
networks can be categorized as follows based on their application areas (Fig. 1):

Sensor Network: This type of network senses an area of interest, where a particular
event had taken place. The sensors, being battery-driven, have limited energy for
communication. Hence, many energy-conservation techniques are devised to optimize
their usage. Opportunistic networks pave the way for efficient data delivery in these
sensor networks. They communicate the data from the source till they sink by sending

Computer Science and Engineering Department, TIET, Patiala (Punjab) India.
E-mails: akverma@thapar.edu; psrana@gmail.com
* Corresponding author: jasminder.kaur@thapar.edu

mailto:jasminder.kaur@thapar.edu
mailto:psrana@gmail.com
mailto:akverma@thapar.edu

Next Generation Adaptable Opportunistic Sensing-based Wireless Sensor Networks 49

Opportunistic Network

' ! ! !

. Amorphous
| Vehicular Network | | Opportunistic Network

L e | [| [

Tolerant Opportunistic
Networks) Network

Pocket Switch Network

| Sensor Network |

Monitoring
Wildlife

Fig. 1: Categories and application domain of opportunistic network.

data to the immediate neighbor and so on, till the data reaches the destination. Also, the
redundancy feature of the opportunistic network allows successful data transmission.
The relevancy of this hybrid mechanism of communicating data in sensor network
using opportunistic method gave rise to applications, such as Bionets (Biologically-
inspired Autonomic Networks and Services), ZebraNet (A Wildlife Monitoring
Network).

Pocket Switched Network: These types of networks are not dependent on infrastructure.
They facilitate communication between mobile devices and users. The most popular
example is Manets (Mobile Ad-Hoc Networks) in which mobile devices are connected,
using wireless technology.

Vehicular Network: These networks are basically used where connectivity issues, such
as highly sparse nodes, but here greater delays exist. Also, in these networks, end-to-
end connectivity is not crucial. The DTN (Delay Tolerant Network) is one such type
of network.

Amorphous Opportunistic Network: In this network, hosts are connected to another
group of hosts. Data sharing takes place between these insecure host groups with a
greater level of uncertainty. The SON (Semantic Opportunistic Network) lies in this
category. The conditional similarity is of primary concern in SON.

1.1 Quality of Service

The Quality of Service (QoS) stands out to be an important aspect of these networks
and is determined at two levels, namely, user-defined level and low-level. Also,
the dependability aspect of a network is predominantly related to the QoS. The
dependability includes features from both the levels described above. The QoS is an
umbrella term for dependability evaluation as shown in Fig. 2.

The dependability evaluation in this work is carried out using Wireless Sensor
Networks (WSN), which is a type of opportunistic network. This work considers the
data flow in a WSN. Its dependability is directly dependent on the packet delivery
ratio of a network and it can be increased if the data flow for the network is optimized.

1.2 Wireless Sensor Networks

Numerous sensor nodes are set up in the region of interest and they collaborate to
realize a pre-defined task assigned by a user or according to a particular application
domain [3]. The data is communicated between the source node and destination (also
known as ‘sink node’ or ‘base station’), using a technique called ‘hopping’. When

50 Machine Learning for Computer and Cyber Security

Quality of Service (QoS)

User-Described Low-Level

Integrity

}\
Dependability |<+—

Safety
Confidentiality
Maintainability
Scalability

Fault Recovery
Energy Effciency
Latency
Throughput
Packet Error Ratio
Packet Loss Ratio

Responsiveness

Variation in Delay

i

Fig. 2: The QoS for an opportunistic network.

intermediate nodes are involved in this communication, it is termed as ‘multiple
hopping’. The direct communication between the source and destination node is
termed as a ‘single hop communication’.

1.3 Dependability Assessment

The networks ability to provide pre-determined services to the user is termed as

‘dependability’ [4, 5]. The network becomes more dependable when the trust feature

is incorporated into the network or when data flow is optimized, thereby improving

the overall QoS [6—8]. The dependability assessment focuses on three aspects [9—11]

as demonstrated in Fig. 3.

(a) Features or characteristics of a dependable network include availability,
reliability, safety, integrity, security, confidentiality and maintainability. The
dependability of a network is inferred by the attributes. The inference is based
upon the user requirements. The various attributes are:

= Availability means the ‘uptime’ of a network when it is called for service [15].

= Reliability is considered to be high when a network works consistently according
to the user’s specification or in a particular environment [12, 14, 15, 18-20, 24].

= Safety makes the network usable and environment-friendly [17].

= Confidentiality guarantees authenticated and theft-free data transmission [16, 17].

= [Integrity fortifies the modification of data which is in any illicit manner [23].

* Maintainability and adaptability are mutually dependent terms including two
capabilities: improvement, which means to enhance and maintain; and adjustment,
which means to adapt to a particular condition set [19, 23].

(b)

Next Generation Adaptable Opportunistic Sensing-based Wireless Sensor Networks 51

| Dependability Assessment
I

The Characteristics

Postive Traits

Availability
Reliability
S
Confidentiality

Integrity

Maintainability

L

Security

Fig. 3: Dependability assessment.

Security, in this context, means safeguarding the data from attacks, be it internal
or external [13].

Negative traits degrade the dependability of a network (threats) [4, 28]. The
fault — error — failure chain demonstrates these traits in the network [30]. The
summarized definitions of threats are as follows [21, 22, 27]:

Fault reveals the flaw in a network, thereby causing an error (Fig. 4).

Error is caused at run-time and results in incorrect output.

Failure makes the network unworkable [29, 31-33]. Also, it affects the network
state and changes it from stable to unstable state (Fig. 5).

Positive traits improve the dependability of the network (means). These traits
make the network more adaptable according to the demands of the users or the
environment in which this network is functioning. These include fault prevention,
removal, forecast, and tolerance capability as explained below [23, 25, 26]:
Prevention incorporates initial deigning-phase transition to the final maintenance
stage. The error — fault — failure cycle is prevented, starting from the initial
phase.

Hardware Faults
Domain l—
_’l {Software Faults
Developmental Faults
Occurrence |—
_’l { Operational Faults
- Internal Faults
—Pl System Boundaries l—{ External Faults
Fault
- Natural Faults
—PI Phenomenological Cause |_{H Made Fault
uman-Made Faults
Accidental Faults
Intect l—
_’l e {Deliberately Malicious Faults
Permanent Faults
Persist |—
_’l ——— {Transients Faults

Fig. 4: Categories of faults.

52 Machine Learning for Computer and Cyber Security

- Value
Domain |—{ Timing
— Controlled
Controllability l—{ Uncontrolled
Failures
Consi |_ { Consistent
onsistency Inconsistent
Minor
Consequences I—{

Catastrophic
Fig. 5: Categories of failures.

= Tolerance facilitates reliable and interruption-free communication in the network.

= Removal governs fault reduction and thereby eliminates the possibility of
occurrence of severe faults.

= Forecasting predicts the faults which can occur in future and act accordingly to
avoid those.

1.4 Motivation

The communication in WSN involves voluminous data for an efficient communication
which this network depends on performance parameters, such as throughput, traffic
flow, delay, packet delivery ratio. These parameters vary from one application domain
to another and determine the QoS provided by the network. The main component
of QoS is dependability, which can be studied from three different aspects—the
characteristics, the negative traits which hamper dependability of network and
the positive traits to enhance dependability of the network. For optimum network
functionalities, the dependability aspect needs to be considered as it directly linked to
the packet delivery ratio of a network. If the packet delivery ratio is high, the network
is more dependable and less is the packet drop. Also, if an optimum data flow is
maintained while communicating data in a WSN, the lifetime can greatly be enhanced.
This paves the way for prediction of optimum data flow in a WSN, using various
machine learning techniques. This concept is demonstrated in Fig. 6.

The WSN uses radio frequency for communication. These signals are converted,
using ADC (Analog-to-Digital) and DAC (Digital-to-Analog) converter when required.

Wireless Sensor Network |

Communication [[- - -
Smart | Machine Learning Paradigm }—
Antenna

“d Radio (-Iﬂ,(-) Data
Frequency _) Observation _)Computation

Dataset

c Collection Features

y 2
ontrol . and Action Evalution
Selection

Fig. 6: The amalgamation of WSN data and machine learning paradigm.

Next Generation Adaptable Opportunistic Sensing-based Wireless Sensor Networks 53

This generates a huge amount of data in communication and which is assembled as a
dataset containing various performance parameters of the network, such as throughput,
delay, average path length, routing overhead, packet drop and packet delivery ratio.
These features are evaluated using the machine learning paradigm and predictions are
made for further effective functioning of a network.

2. Machine Learning

The WSN falls under the category of Opportunistic Networks. WSN, as the name
suggests, use wireless (radio) links for communication. They sense the environmental
phenomena and communicate the data. WSNs are large-scale innovative networks
[34] which are different from various other wireless networks [35, 36], due to their
dynamic, reconfigurable and self-adaptive nature.

This section provides a detailed workflow starting with the first phase of dataset
creation; the second is applying machine learning models in networking domain and
its statistical interpretation; and lastly it is cross-validation of results along with usage
of the trained models on the basis of this dataset.

Statistical Prediction Cross-Validation
Model system

Dataset

Partition the data into training
and testing data Cross-Validation based
* l system for prediction
Brima Learning model for prediction
Simulatedn{iata New network Final
repository A - features prediction
Obtaining results for different Input Outout
prediction models npu utpu
Statistical evaluation of various
Feature Preprocess prediction outcomes
Selection and load the
Cleaning of data data
T

Selection of the models
which performs well on
the dataset

Fig. 7: The prediction framework.

5
Processed
Data

2.1 Dataset

The dataset for network analysis is collected, using simulations. Wireless scenarios
are constructed using the NS-2.35 simulator [37]. The simulation parameters [38] set
for the WSN scenario generations are given in Table 1.

The simulations have been carried out for 60 seconds with a warm-up time of
30 seconds. The omnidirectional wireless communication takes place between nodes
using the reactive protocols AODV (Ad-hoc On-demand Distance Vector) [39] and
DSR (Dynamic Source Routing) [40]. The network is scaleable [41] with a node
variation of 5 to 50. The sample dataset is shown in Table 2.

54 Machine Learning for Computer and Cyber Security

Table 1: NS-2.35 simulation setup.

S. No. | Parameter Value
1. Channel type Wireless
2. Radio-propagation model Two-Ray Ground
3. Interface queue type DropTail/CMUPriQueue
4. Antenna model Omni-directional
S. Maximum number of packets 150
supported by the interface queue
6. Number of nodes Range = 0-50
7. Data flow 0.1-10 Mb
8. Routing protocols AODV/DSR
9. X-dimension of topography 1000 m
10. Y-dimension of topography 1000 m
11. Simulation time 60 seconds

This collected dataset is saved in a repository for all further accesses. Data
pre-processing [42] is carried out to remove redundant values (if any) [43] and the
processed data is passed to the next phase, known as the Statistical Prediction Model.

2.2 Statistical Prediction Model

The dataset is analyzed statistically, using the box plot to show the distribution
[44, 45] of all the features of the dataset (Fig. 8). This analysis has been carried out
in R (Version 3.3) and shows the maximum and minimum range in which a particular
feature of the dataset lies. This plot has been plotted with the help of a Rattle library
contained in the R repository.

Similarly, the correlation between various features of the dataset can be analyzed
[46, 47]. The negative correlations are in black color and positive correlations in gray
in Fig. 9.

In this phase, the entire dataset is partitioned into training-testing data [48, 49]. The
standard partition ratio followed is 70 per cent for training and 30 per cent for testing.
Then, the learning model for prediction is chosen by identifying the category under
which the problem falls. The categories are regression type, classification (binary or
multi-class) or the clustering problem [50-52]. If the target variable to be predicted is
of decimal type, the problem is of regression and, if the target variable to be predicted
is of binary type, the problem is of binary-class. Further, if the target variable to
be predicted is of multi-class type, the problem is of multi-class classification and
contains multiple classes.

Various machine learning models are available for R (Version 3.3) which is
implemented depending upon the category of the problem. For this chapter, we
consider DF to be the prediction parameter. DF is the target variable for this dataset,
so the problem falls into the category of regression. Four machine learning models
are chosen to demonstrate the prediction technique, namely Linear Model, Neural
Network, Random Forest and Decision Tree. These prediction models will be

Next Generation Adaptable Opportunistic Sensing-based Wireless Sensor Networks 55

pod ¢ 219y

(01 0 LS cCeele L66S00°€ €LE089 Y GI888¢E'6 8¢EEl 78SEl L99 544!
01 0 9¢ 18°0v1¢ L66S00°€ 98THIL'Y EVILSS6 8¢€T £eeel L99 000%1
(01 0 S 19'680¢ L66S00°€ 606058t 6060€L°6 8¢EEl £30¢1 L99 0SLET
01 0 ¥'S 1¥'8€0¢€ L66S00°€ 17L0Y6'Y IT1116'6 8¢EET £€8C1 L99 00S€1
(01 0 [1T°L86T L66S00°€ 796£€0°S 11860701 8¢EEl £385C1 L99 0Scel
01 0 s TT9g6T L66S00°€ SLEOET'S s16T01 8¢ET 14394 L99 100€1
0l 0 s 70°688¢ L66S00°€ 7960€T’S £eor 0l 8¢EEl ¥80CI L99 ISLTL
01 0 S 78°¢€€8T L66S00°€ €LSSEE'S YIE0L01 8¢ET PE8II L99 10SCI
0l 0 6y 79'T8LT L66S00°€ YSyyvy'S 9S1T6'01 8¢EEl P8SII L99 1scel
01 0 8% wIELT L66S00°€ L8LSS’S LO6YTTI 8¢ET PeCTl L99 100T1
0l 0 L'y 10°089C L66S00°€ 96S9L9°S €CLBET 8EEl €38011 L99 0SLIT
01 0 9t 20°679C L66S00°€ 96¥66L'S LLEEITI 8EET €801 L99 10STI
0l 0 Y C8'LLST L66S00°€ 79¢€8T6°S 8CC68'11 8EEl ¥8501 L99 155418
01 0 1744 79'9TsT L66S00°€ $80£90°9 €5291°ClL 8EET PEC0T L99 10011
01 0 (94 1TSLYT L66S00°€ 1$9%0T°9 1S9%¥°Cl 8EEl £3001 L99 0SL01
01 0 (4% Tyt L66S00°€ 9LLISE9 POIPLTI 3eEl 7€86 L99 10501
01 0 'y 0'eLeT L66S00°€ 7899059 6£CS0°¢l 8EET 7856 L99 16201
(NN) (1dV) (Had) oney (ow) (\2:)] am (@
SIPON JO | (Nd) dweN (€ () (HL) Wiwyed | AwLApA PeAYIAQ DUCELY paddoaq spdEd ds)
Jdquny [0903014 Mo vieq | yndySnoayy, AgerdAy dRg Supnoy Supnoy SE)RLE POAIIY | $)9YIRd JUIS

*(sp10oa1 eyep enaed ‘papgnys) joserep pajenuls ATewWl] :g d[qeL

56 Machine Learning for Computer and Cyber Security

01 0 SL el L665S00°€ PPILSS'E 619S€T°L 8¢ET ¥8081 L99 1SL81
01 0 YL 17290t L66500°€ S0vS09°¢ TEYTETL 8¢€l €E8LIL L99 00581
01 0 €L [aaaliis L665S00°€ P6SrS9°€ SoTIEEL 8EET ¥8SLT L99 16281
01 0 L 10°096¢ L66500°€ 9SSS0L'€E £ECEEY’L 8¢€l £eeLl L99 00081
01 0 'L 18'806¢ L66500°€ OVLLSL'E 8T08€ESL 8EET €80L1 L99 0SLLT
01 0 L T8'LS8¢E L66500°€ T1TII8°¢ LLTSYY'L 8¢€l €891 L99 10SL1
01 0 69 1¥7908¢ L66500°€ £99998°¢ TTSOSL'L 8EET £8591 L99 0STLI
01 0 89 1TSSLE L66500°€ 6TSETO'E 88S0L8'L 8¢€l £€€91 L99 000LT
01 0 L9 10v0LE L66500°€ 60T86'¢ 90886°L 8EET £€8091 L99 0SL91
01 0 99 0°¢59¢ L66500°€ 6L1THO'Y 665801°8 8¢€l P€8S1 L99 10591
01 0 $9 19°'109¢ L66500°€ SI9%0Tv Ir8EET8 8EET £8661 L99 05291
01 0 ¥'9 79°055¢€ L66500°€ 687891t LL619E'8 8¢€l PEEST L99 10091
01 0 €9 1T°66¥¢ L66500°€ 1ceveTy 8ETSOY'S 8¢ET £80S1 L99 0SLST
01 0 9 (443 L66500°€ 8¥6T0¢Y 10L1€9'8 8¢€l PE8Y1 L99 10SST
01 0 19 0°L6gE L66500°€ P8YELEY SOTELL'S 8¢ET y8SY1 L99 1STST
01 0 9 19°Sp¢€ L66500°€ L9991t 6'8 8¢€l geevl L99 000ST
01 0 6'S 9v6te L66500°€ LTLITSY 1LS0LO'6 8¢ET ¥80%1 L99 ISLYT
01 0 8¢S wrerTe L66500°€ £8966S Y S69TT6 8¢€l P€8¢€1 L99 10St1
(NN (14V) (Had oney (oW V) (€ () (@
SIPON Jo | (Nd) dureN (€ () (HL) W3 ed | ApAIpq PeIYIAQ Spuady paddoaq spaydRd as)
JaquinN [020)01g Mmopg ejeq | ndysnoayg, AdeIAy IE) 1B | supnoy sunnoy SEVRLE PIAIINY [SE) 61 BLEIN

PIod ¢ 21qnL

Next Generation Adaptable Opportunistic Sensing-based Wireless Sensor Networks 57

“piod g 21quy
St 0 9% 8€°019¢ LTE660°€ 89L9T'S PSTPS 01 L¥el L0601 165 10511
st 0 St 81'655C LT€660°€ 1€56LT°S 9pES0'IT YTl L8901 165 1540
st 0 a4 8L°L0ST £V9L60°€ 60S66€'S Y9TE 11 9pel LOY01 165 10011
st 0 ¢y 85°95HC LT€660°€ 1855S°S 911 YTl 95101 165 0SL01
St 0 Ty 8€'S0bT £v9L60°€ 109959' ¥SS98'11 9peI L066 v6s 10501
st 0 'y 8ESET LT€660°€ LSSY6L'S LYIT'TI YTl L596 v6s 15201
St 0 v 81'€0€T LTE660°€ 90v6£6'S SL89V'TI L¥el LOV6 v6s 10001
st 0 6€ 8L'15TT LT€660°€ 80£260'9 PLOSL'TI YTl 9516 v6s 0SL6
St 0 8'€ 8L°00CC LTE660°€ €L615T9 €6vTIEl L¥el L068 v6s 1056
st 0 Le 8€6HIT LT€660°€ T91TH'9 8018Y €1 YTl 9598 v6s 0526
st 0 9¢ L6'L60T £V9L60°€ 99 P8l 9peI 908 v6s 0006
st 0 s'¢ 86'910C LT€660°€ 158819 PISTHI YTl 9518 v6s 0sL8
St 0 a3 8L'S661 LTE660°€ $£7886'9 650L9°V1 L¥el 906L v6s 00s8
st 0 e 8SPH61 LT€660°€ TL SISITSI YT 959L 16s 0528
st 0 Te LTE68T €Y9L60°€ sTrL SLS'ST 9pel 90vL v6s 0008
st 0 I'e 8I'THSI LTE660°€ 915¥99'L 7€060°91 YT 9S1L 16s 0SLL
St 0 ¢ 86°06L1 £V9L60°€ Pr6816'L 1991 9pel L069 v6s 10SL
st 0 6C 86'65L1 LTE660°€ PLOT6T'S €9L61°LI YT £§99 16s 159
St 0 8T 85'8891 LTE660°€ VILSSY'S 6TPIS'LI L¥el 90v9 v6s 000L
st 0 L'e 8€'LEIT LTE660°€ 8'8 LOYLY'ST YT 9519 16s 05L9

58 Machine Learning for Computer and Cyber Security

St I 89 §'568¢ 6ILIVEY 788508°C ILYILE 6 Y651 £7S91 LLY 000LT
St I L9 S0€6€ 86vS1Y 128S€T'€ 9680T°01 OILIT 80791 ws 0SL91
St I 99 9 16LE eS0Ty 8SLEO6O'T 8SEEOS°6 €861 L0091 1414 10591
St I $9 1€ThLE 91¥8¢E'S 1€T69¢€°C 69L8€°01 8891 S98¢S1 68¢ 05291
St I ¥'9 6T°069¢ 68C9LTY 1901€0°¢ 6790€6°6 6851 91851 S8y 10091
St I €9 65°009¢ 69L0TY1 L6EST80 6S106°01 LILT 02951 o€l 0SLST
St I 9 §T98¢5¢ ST0T9%'v L98LSOE 1798501 1791 LTOST YLy 10SST
St I 1’9 ISR 4393 11L0T°€ SYeTrTy T€E9¢°6 Ead! Y0911 LY9 1STS1
St I 9 88 78%¢ BLLLLTY yTe 901 €651 145941 981 000ST
St I 6'S LY €eve sTey LI0YST € 1961801 9651 LTyl 08t ISLY1
St I 8¢ Se8¢e 8TLYEY $T€96T'€ TLEEOTT 0091 €TVl 8Ly 10St1
St I LS LO'TEEE L916TEY S8189¢°¢ STEIT I 8651 ILLET 08t 1Y44!
St I 9¢ 6878LTE Y00T+EY 98Tr1v'e YILOY'TT L6ST (1433 8Ly 000%1
St I Ss P8 ¥8I1¢ 8Y1€L91 SSYS8L0 9€96¢°T1 6691 ot 801 0SLET
St I ¥'s 90°LLTE SLITTY Y YLOVLY' € 63888°11 S091 T€0€T 69t 00S€T
St I Y €6'8C1¢ S81¢6TE Y9TTIL'Y 9L0T6°01 Lyvl 619T1 1€9 0scel
St I s yTT80¢ £Vre66'6 €LOSYET 8€860°1C €VLT 969T1 So¢ 100€T
St 0 LYy 8€'199C LTE660°€ 61€550°S LLT19°01 LYTl 9STII 65 0SLIT
(NN (14V) (Had oney (oW V) (€ () (@
SIPON Jo | (Nd) dureN (€ () (HL) W3 ed | ApAIpq PeIYIAQ Spuady paddoaq spaydRd as)
JaquinN [020)01g Mmopg ejeq | ndysnoayg, AdeIAy IE) 1B | supnoy sunnoy SEVRLE PIAIINY [SE) 61 BLEIN
Pos g a1qup

Next Generation Adaptable Opportunistic Sensing-based Wireless Sensor Networks 59

T poo g opgng
Sy 88 l6'6l6v L6ETITY 6661C LY69LT'L 6LS1 LISIT 1214 100Z¢
Sy L8 8T LI8Y €5018¢Y 808€81°C 695€8E°L 9091 9LTIT SLY ISL1T
Sy 98 8L 1181 99LTS Y LY0981°C 8C9TIL'L 8691 0€0I¢ 0Ly 00s1¢C
Sy S8 L9YOLY 69LLTTE 6C€910°¢ ¥8961L°9 8Tyl 0190¢ 79 1sCIc
Sy ¥'8 9L80LY 69L0€L™8 CECPITT 9L8E19°8 6081 L9L0T 1494 1001¢
Sy €8 S e99% 9$¥06CY 8LTTET S00EY9'L 98¢1 6920C [4:14 1520T
Sy 8 [4 %3994 C190€°9¢ €106£T°0 €198¢v'8 0€LT s¥0T (414 1050C
Sy '8 8C09S¥y 89T yessyle SYeEl’L 524! 1961 LE9 10T
Sy 8 9T'80SY ILL60EY SO¥'¢ 96'L 2681 61561 18y 0000C
Sy 6L 6L ESYY SYeE6or 'y SI8¥6€C P¥80€'8 791 8LT61 €LY ISL61
Sy 8L 8E9¢hY L8TITL8 80€T68'1 15029°¥1 168¢ 1erel 69¢ 00561
Sy L'L 69°SSEy 8TEEYT'E 16060€°€ LLEETY'L (44! €1981 LE9 0sco61
Sy 9L C6'8ClY 9S€L80¢E IL8LSY0 €C8LY ¢l 665C 71681 L8 10061
Sy S'L £6'981Y 60817L°0C 6798690 996L°¢1 L8ST 02981 1€l 1SL81
Sy VL 1reocy co6veE 896L9¢°¢ VISEI6'L 124! LL8LT €29 00581
Sy €L SISy 99LLTEY 1489 44°N4 89LEEL'S Y651 CLLLY 6Ly 16281
Sy L 8¥'660¥ 88ISVEY 966659°C £EEE8Y'8 6651 CCSLT 8Ly 00081
Sy 'L r'880¥ $908¢CI1'8 909L90°C €08EL Y1 919¢ €8¢ELT L9¢€ 0SLLT
Sy L 76'866¢ €0S6LTY TP86SL'C [16050°6 ¥8C1 8TO0LT €8y TOSLIT
Sy 69 16'976¢€ LELLT'E P0€16L'E CTLOSST'8 244! 96591 ¥S9 0SCTL1

60 Machine Learning for Computer and Cyber Security

0S I 90 w'ITL €YILOVY 806LE' 1€ L8T6'901 S091 0€0T ILY 10ST
0S I S0 vL9 $0958¢°S CIS60° 1€ 60LE9¢€1 90LT 798 68¢ 1s21
0S I ¥'0 67819 wosseEy SYTsS'Ly SOvS 651 L6ST 949 LY 1001
0S I €0 8T'1¢€8 SLE6Y'L L9999°tt L990°LLT 8L0T ocy (1143 0SL
0S I 40 1'91¢ PSS8ETY C10t°66 9L6'T1E €961 € 86t 10
0S I 1’0 86°€9T ¥8TY 6510966 9160°LTE 128 I 0ST IS¢
St I 01 L9TESS EEVLLTY €6'l €e9 €861 LISYT €8y 000ST
St I 66 90°18%S L80TET'€ 6£6£65°T 66868L'S (334! 801+C w9 0SLYT
St I 86 LO0EYS 6Y8ILEY 8LLTYO'T €6L0SS™9 S091 SToye LY 10StC
St I L6 6°08€S 9$819T't 8166661 reETs9 851 99L€T % [§Y444
St I 96 LYLTES 8LYIEY LIYL86'1 1TTL899 S091 yTsee LLY 100tC
St I $6 LY'9LTS 98Tr1T'E 6LSTILT 1124009 144! 901€T 9 0SLET
St I ¥'6 STeors 90TE81°S PETLY'T SYLS66'9 Pr91 LOTET £6¢ 00S€T
St I €6 SLLITS 8€099°€¢ LY6LTTO IP8yyY L T€LT 861€C €S §Y4%4
St I 6 €YTIs 9016T'Y Y0€160°C 6097889 €861 615TC 18% 000€T
St I I'6 61°CLOS S00¥SES $2010L'1 89T790%°L $891 $9¢€TT L8E 1SLTT
St I 6 88°020S SLSLTO1T 8ILLEE'T Y€801'CI woLT 002TT 10€ 10STC
St I 6'8 LY 6961 SY8Y6TY SLL6LT'T T0T8I°L 8651 S9LIT % 0STTT
(NN (14V) (Had oney (oW V) (€ () (@
SIPON Jo | (Nd) dureN (€ () (HL) W3 ed | ApAIpq PeIYIAQ Spuady paddoaq spaydRd as)
JaquinN [020)01g Mmopg ejeq | ndysnoayg, AdeIAy IE) 1B | supnoy sunnoy SEVRLE PIAIINY [SE) 61 BLEIN

PIod ¢ 21qnL

Next Generation Adaptable Opportunistic Sensing-based Wireless Sensor Networks 61

oo g 21quL
0s 9T L8'EVL LT6LYE Y 6LYEREL LT6ILYT L091 1209 08¥ 1059
0s T 6T'9€L1 L991'C1 109564 Pr16v'8T 18L1 $609 961 1529
0s VT PSPPOT £